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Abstract

In this work the effect of isolated surface roughness on the behaviour of a hyper-
sonic boundary layer is investigated, with a particular focus on the effect of the
three-dimensional roughness shape on the instability of the roughness wake and
the subsequent transition process. The analysis is performed computationally using
direct numerical simulations, which solve the compressible Navier-Stokes equa-
tions, and a new code, developed in the scope of the current work, to analyse the
linear stability of these equations. The full three-stage roughness-induced transi-
tion process has been investigated: firstly, the receptivity process and generation
of boundary layer instabilities from freestream disturbances; secondly, the genera-
tion of a roughness wake and its initial linear instability; and finally the non-linear
breakdown to turbulence of the roughness wake. In particular the effect of the
three-dimensional roughness shape on these processes has been studied, looking
at the roughness height, frontal profile, planform shape and upward/downward
ramps. Also the effect of freestream disturbance amplitude and wall cooling has been
investigated. It has been found that the roughness height and frontal profile have
a large influence on the stability characteristics of the resulting wake and the sub-
sequent transition. The roughness planform shape has a marginal effect, although
cylindrical and diamond-shaped elements yield more unstable wakes than a square
roughness element. Bi-local stability analysis can be used in most cases to predict the
most unstable wake mode, but it under-predicts the instability growth rates due to
non-parallel effects. The roughness shape has been observed to affect the transition
onset location. The criteria commonly used to predict roughness-induced transition,
do not take into account the three-dimensional shape, and an alternative transition
prediction, based on the amplitude of the roughness-induced streamwise streak, is
considered.
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Chapter 1

Introduction

1.1 Motivation

The motion of fluids has been a topic of interest for hundreds of years. The drafting
of the governing equations of motion in the early nineteenth century, which we now
call the Navier-Stokes equations, gave rise to a new field of research. By careful
investigation of the equations governing an inviscid flow, Stokes (1843) was one of the
first to point out that fluid motion can become unstable under certain circumstances,
allowing for a small disturbance to change the nature of the flow to become sinusoidal.
Reynolds (1883) showed this experimentally in his famous pipe flow experiment.
What they observed is what we now call turbulence.

Turbulent flows have some beneficial properties such as improved mixing – useful
in, for example, chemical processes – and delayed flow separation, which reduces
pressure drag and can thus sometimes be desirable in certain applications such as
cars, airplanes, etc. Turbulence is however often undesirable because it increases
friction drag and heat loads, and can decrease the performance of control surfaces
when caught in a turbulent wake. Because these effects are often crucial in fluid
flows, understanding turbulence is of great importance.

How exactly the transition from a laminar flow to turbulence occurs is still not
fully understood, despite the great deal of work that has been done on this topic.
Researchers have tried to gain more insight into the laminar-turbulent transition
process by studying the effects of geometry, surface roughness, compressibility, shock
interaction, etc. Some reviews of these topics can be found in Tani (1969), Reshotko
(1976), Adamson and Messiter (1980), Lele (1994), Schneider (2008) and Fedorov
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(2011) among others. However a single theory of transition to turbulence is still to
be found and laminar-turbulent transition is one of the great outstanding problems
in modern day aerodynamics.

With recent and ongoing hypersonic flight vehicle development projects, such as
Boeing’s X-51[1], SKYLON[2], ZHEST[3] and European Space Agency’s ATLLAS[4],
the need to understand turbulence and the transition process in the high Mach
number regime is greater than ever. Although stability and transition of supersonic
and hypersonic boundary layers has been studied for more than 50 years (Schnei-
der, 2004), the computational advances in the last decade have made it possible to
study these phenomena numerically, allowing for a more in-depth analysis of the
mechanisms behind them. An important consideration to be taken into account
in hypersonic vehicle design is the presence of surface roughness. Surface rough-
ness can come in the form of distributed surface irregularities, originating from
e.g. machining processes, material oxidation or ablation, or in the form of discrete
isolated protuberances. Both surface roughness types are known to be able to pro-
mote boundary layer transition. A practical example of the latter roughness type is
the gap filler that was found protruding from in between the thermal protection tiles
of the Space Shuttle orbiter (Berry and Hamilton, 2002; Horvath et al., 2012), acting
as a discrete roughness element and inducing transition at a higher Mach number
than anticipated.

The mechanisms governing roughness-induced transition are not yet fully under-
stood, and the prediction of transition due to surface roughness is still mainly based
on engineering correlations and transition criteria originating from wind tunnel
testing and in-flight experiments. The current work aims to add to the body of
knowledge by analysing some of the processes involved.

1.2 Theory of boundary layer instability and transition

Even though the transition from a laminar boundary layer to a turbulent one is
a much studied topic, it is still not completely understood as it is a complicated

[1]Boeing X-51, http://www.boeing.com/boeing/defense-space/military/waverider/index.

page
[2]Reaction Engines Ltd., http://www.reactionengines.co.uk/
[3]EADS, http://www.eads.com/eads/int/en/our-innovation/our-technologies/

Advanced-Concepts/ZEHST-concept.html
[4]ATLLAS II, http://www.esa.int/Our_Activities/Space_Engineering/ATLLAS_II_-_

Project_summary
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1.2. Theory of boundary layer instability and transition

process that is dependent on many factors. The noise level in the freestream, the
presence of roughness or shocks and other external perturbations can significantly
change the way boundary layer instabilities originate, grow and eventually lead to
the breakdown to turbulence.

Boundary layer transition is in essence a stability problem. If perturbations intro-
duced in a laminar flow increase in amplitude, the boundary layer is unstable and
may eventually transition to turbulence if a critical disturbance amplitude is reached.
If the perturbations die out before reaching this critical amplitude, the boundary
layer will remain laminar. The topic concerned with studying this behaviour is called
stability analysis.

1.2.1 Instability

In the early 20th century Orr (1907) and Sommerfeld (1908) had a big influence
in this subject. They investigated the stability of two-dimensional harmonic per-
turbations superimposed on a parallel laminar flow and derived a fourth order
ordinary differential equation governing the amplitude of a perturbation mode. This
equation – which is now called the Orr-Sommerfeld equation in their honour – is
one of the corner stones of linear stability theory (LST). Squire (1933) performed
a similar analysis based on the growth of small perturbations, but looked at the
evolution of three-dimensional disturbances in a steady incompressible flow be-
tween parallel walls. He concluded that the development of a three-dimensional
disturbance is similar to that of a two-dimensional one and that any instability for
the three-dimensional case is also present for two-dimensional disturbances at a
lower Reynolds number. Therefore (for incompressible parallel flows) “it is sufficient
to confine attention to disturbances of two-dimensional type”.

Many authors have used linear stability theory to look at the linear growth of dis-
turbances and no attempt is made here to give a complete overview of this topic. A
detailed review of linear stability theory of boundary layers can be found in Reed
et al. (1996) and Schmid and Henningson (2001). Linear stability theory is concerned
with the growth of small disturbances in a flow. Although this linear growth stage is
important in laminar-turbulent transition, it is far from being the complete picture.
The mechanism of how these small initial disturbances enter the boundary layer —
called receptivity — and the various ways how transition can occur are explained
next.
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Figure 1.1. Paths to boundary layer transition depending on disturbance amplitude.

1.2.2 Receptivity & Transition Mechanisms

External disturbances enter the boundary layer through a process called receptivity
(Morkovin, 1969) where they are transformed into instability waves (Kerschen, 1993;
Ma and Zhong, 2003). These disturbances can originate from the freestream envi-
ronment, such as sound, vorticity and entropy waves (Kovasznay, 1953), or from
localised features such as surface imperfections (Choudhari, 1993; Gaponenko et al.,
2002) and other wall perturbations (Fedorov and Khokhlov, 2002). The different
mechanisms that lead to transition after the instabilities have entered the bound-
ary layer are highly dependent on the character of the disturbance environment
(Kachanov, 1994). A schematic showing the potential paths to transition as proposed
by Morkovin (1994) and Reshotko (2008a) is given in Figure 1.1.

In a very low disturbance environment, transition follows the traditional three-stage
path A . Primary boundary layer eigenmodes, i.e. two-dimensional Tollmien-
Schlichting waves, are generated by the receptivity process and grow linearly. After
this initial growth, described by linear stability theory, secondary three-dimensional
non-linear instabilities will form, grow rapidly and eventually break down into tur-
bulence. As disturbance amplitude increases, transient growth becomes important.
Transient growth is essentially algebraic growth followed by an exponential decay
and arises from the non-orthogonality of Orr-Sommerfeld and Squire eigenfunctions.
It has been described in detail by Landahl (1980) and Hultgren and Gustavsson
(1981). Weak transient growth can occur for two-dimensional and axi-symmetric
modes leading to path B (Reshotko, 2001). Stronger transient growth can skip the
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eigenmodes stage and lead directly to the non-linear instabilities ( C ) or bypass
these instabilities completely and break down to turbulence right away as depicted
by path D . Path E describes the transition mechanism where no linear regime is
present. This occurs in the case of very large amplitude forcing (Reshotko, 2001).

These paths are essentially the same for low and high speed boundary layers, however
the basic features can be quite different (Fedorov, 2011). For example, the primary
instabilities might be of a different nature, i.e. viscid or inviscid. The transition
mechanisms for supersonic and hypersonic flows are also more complex and less
well understood than those for incompressible boundary layers (Zhong and Wang,
2012). Most of the early work on receptivity and transition was done for subsonic
or low supersonic flows. Since the focus of the present work will be on high speed
boundary layers (high supersonic to hypersonic), we will keep the focus of this
literature review on this topic. An extended overview of the work done on low
speed receptivity and transition can be found in Reshotko (1976), Kachanov (1994)
and Reed et al. (1996) among others. It should be noted that the term hypersonic is
used in the current work for flows with a Mach number greater than or equal to 6,
irrespective of the occurrence of high-enthalpy effects like dissociation.

Mack (1975) was the first to investigate the linear stability characteristics of a com-
pressible boundary layer. He studied the linear growth or decay of boundary layer
modes in high supersonic and hypersonic flow using linear stability theory. He
showed that the stability characteristics of a boundary layer in high supersonic and
hypersonic flows are very different from their subsonic counterparts (Mack, 1984).
Mack discovered the existence of higher acoustic instability modes, called Mack
modes, and found that at Mach numbers higher than 4, the second mode is the
dominant one and thus very likely to cause transition.

Fedorov and Khokhlov (1991, 1992) used asymptotic theory to show the excitation
of boundary layer modes in the leading-edge region by acoustic waves. Their results
agreed very well with the experimental work of Maslov et al. (2001) as later shown
by Fedorov (2003). The mechanisms responsible for this were identified as being
diffraction and/or scattering of these acoustic waves. From this it follows that the
excitation of the boundary layer modes is dependent on the angle of the incident
waves. Gaponov (1995) reached a similar conclusion by studying the receptivity
of a boundary layer by acoustic plane waves. He concluded that the intensity of
the boundary layer disturbance is highly dependent on the spatial orientation of
external acoustic waves.
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Not a lot of experimental supersonic and hypersonic receptivity work has been
reported because of the inherent difficulties of such studies. The high background
noise level of conventional wind tunnels promotes bypass transition, circumventing
the linear receptivity stage. Kendall (1975) studied the evolution of fluctuations in a
zero pressure gradient boundary layer and reported a strong correlation between
the freestream acoustic disturbances and the boundary layer fluctuations. It was
also found that significant growth occurs already before the region of instability
predicted by linear stability theory for Mach numbers between 3.0 and 5.6. Stetson
et al. (1991) showed the same for a Mach number of 8. Also Maslov et al. (2001)
investigated the receptivity at hypersonic flow velocities and used concentrated
two-dimensional and three-dimensional acoustic sources. All these studies confirm
that acoustic disturbances in the freestream generate boundary layer modes and the
boundary layer receptivity coefficient, defined as the ratio of the amplitude of the
Tollmien-Schlichting wave in the leading-edge region to the freestream disturbance
amplitude, is highly dependent on the incident wave angle.

1.2.3 Effect of the free-stream disturbance type

All receptivity studies mentioned until now used acoustic waves as freestream dis-
turbances. McKenzie and Westphal (1968) showed that a single-type wave – either
acoustic, vorticity or entropy – upstream of a leading-edge shock will produce dis-
turbances of all three types after the shock. One might therefore argue that it is
necessary to investigate receptivity to all types of freestream disturbances. Choud-
hari and Streett (1990) examined the generation of instability waves near local wall
inhomogeneities and found that receptivity to acoustic disturbances is much stronger
than receptivity to vorticity or entropy disturbances. Ma and Zhong (2005) investi-
gated the receptivity to slow and fast acoustic waves, entropy waves and vorticity
waves. They found that slow acoustic waves can excite Mack modes in the boundary
layer directly, while the other three disturbance types follow a completely different
path. Fast acoustic waves can generate stable mode I waves in the leading-edge
region because of their resonant interaction. These modes are then converted into
second Mack modes at their synchronisation point. They found that the receptivity
to entropy and vorticity waves follows the same two-step resonant interaction path
because of the fast acoustic waves generated behind the shock as predicted by the
theory of McKenzie and Westphal (1968). Quantitatively the amplitude of distur-
bances behind the shock in the case of entropy and vorticity waves is several orders
of magnitude smaller than for fast acoustic waves.
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1.2.4 Roughness-induced transition

Already early on in transition research it was known that surface roughness (either
distributed or isolated) can lead to early boundary layer transition. Some of the
important work on roughness-induced transition in the low speed regime is sum-
marised in Tani (1969) and Saric et al. (2003) among others, and is not considered
here. More recently the effects of roughness on supersonic transition were addressed
by Reshotko (2008b) while hypersonic transition was reviewed very extensively by
Schneider (2008), who in particular summarised the physical effects of roughness,
the parameters affecting transition and some of the commonly used correlations.
Schneider concluded that there are essentially three ways roughness can affect transi-
tion: instabilities might grow in the wake behind the roughness element, streamwise
vortices generated by the surface roughness may grow or boundary layer modes
might be generated by interaction of freestream disturbances with the roughness
element.

Almost all of the work cited by Schneider (2008) is experimental or based on flight
data. Because of the high computational cost, direct numerical simulations (DNS)
have not made a great contribution in studies concerning roughness-induced transi-
tion in high speed flows. Only recently DNS has been used to simulate the effect of
roughness elements on high speed boundary layer transition. Marxen and Iaccarino
(2008) investigated the effect of two-dimensional localised roughness on boundary
layer instability in a Mach 4.8 flow. They observed a strong alteration of disturbance
amplitudes in the vicinity of the roughness element. Near the separation zones
upstream and downstream of the roughness, the second-mode disturbance was
found to be amplified; along the roughness element the disturbance was strongly
damped. They proposed the hypothesis that “two-dimensional roughness elements
behave as disturbance amplifiers with limited bandwidth, capable of filtering a range of
frequencies and strongly amplify only a selected range”.

Direct numerical simulations and bi-global stability analysis of the flow behind a
three-dimensional roughness element at Mach 4.8 were performed by Groskopf et al.
(2008), who found that absolute instabilities can occur in the recirculation zones
around the roughness elements and that the trailing vortices generate streaks that
sustain strongly growing convective instabilities. Different types of wake instabil-
ities can occur: sinuous (sometimes called odd or anti-symmetric) and varicose
(or even/symmetric). It is still not entirely understood how the dominant mode
depends on the flow conditions and the roughness geometry, but it has been found
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that varicose modes are generally more unstable (Choudhari et al., 2013). Choudhari
et al. (2010) found that the sinuous mode was dominant for a roughness element
with lower height, while the varicose mode was more unstable for larger roughness
heights.

Redford et al. (2010) studied transition due to an isolated smooth bump at Mach
3.0 and 6.0 and found a strong effect of compressibility on the detached shear layer
behind the roughness element. They also found a correlation based on roughness
height Reynolds number, Mach number and wall temperature that separated the
cases that went through transition from those that remained laminar. Bernardini et al.
(2012a) did comparable simulations and extended the range of flow conditions. They
found a similar correlation as Redford et al. (2010), thereby validating this transition
criterion. Bernardini et al. (2014) proposed an alternative transition criterion based
on the momentum deficit induced by a roughness element, thereby incorporating
the effect of the projected frontal shape and aspect ratio of the roughness element.

Most of these studies on roughness wake instability modes are based on numerical
simulations. The high structural loads on measurement probes makes it inherently
difficult to perform experimental measurements of wake instability at hypersonic
speeds. The first experimental detection of the instability of the wake behind a
cylindrical roughness element at Mach 6.0 was performed by Wheaton and Schneider
(2012, 2014), who found that the instability was largest away from the wake centreline.
These experimental results were successfully cross-validated using direct numerical
simulations by Subbareddy et al. (2014).

De Tullio and Sandham (2012, 2015) performed a receptivity study of a Mach 6.0
boundary layer with a sharp-edged localised roughness element. They looked at
the effect of roughness height, type of imposed disturbance and wall temperature.
Their results showed that roughness height has a significant effect on instability
growth. For a roughness height approaching the local displacement thickness, the
detached shear layer becomes receptive to a broad range of frequencies, increasing
the growth rate of instabilities. A roughness element half as high had only a small
effect on mode growth. De Tullio and Sandham also found that different types of
disturbances lead to differences in amplitude functions and mode growth rates, and
that wall cooling tends to reduce the growth rate of instabilities.

The wake behind a Mach 2.5 sharp-edged roughness element was comprehensively
analysed using direct numerical simulations, bi-global stability analysis and analysis
of the three-dimensional parabolic stability equations (PSE) by De Tullio et al. (2013).
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A large number of potential instability modes were found to be sustained by the
shear layers of the wake, with varicose modes being more unstable than the sinuous
ones. Bi-global stability was found to accurately predict the mode shapes but not
the instability growth rates, while the three-dimensional PSE analysis could be used
to accurately compute the growth rate of these modes.

1.3 Current study

In the current work, roughness-induced wake instability and transition behaviour at
Mach 6.0 is studied for a large number of different roughness elements. It aims to
extend the work of De Tullio (2013), who performed a similar study for a sharp-edged
rectangular box roughness element, to roughness elements with three-dimensional
geometries of various types.

The current work tries to analyse and quantify the effect of the three-dimensional
roughness shape on the instabilities in the resulting wake and the subsequent transi-
tion process. In particular, the roughness frontal profile, planform shape, and the
presence of upward or downward ramps have been investigated. This extensive
study has been performed using direct numerical simulations and linear stability
analysis. For this purpose, a new code was developed and validated that is able to
perform linear stability analysis of compressible flows.

Some of the specific research questions that have been addressed in this work are:

(i) How does the three-dimensional shape of an isolated roughness element affect
the growth of boundary layer and roughness wake instability modes?

(ii) Does the three-dimensional roughness shape influence the onset location and
behaviour of the turbulence transition process?

(iii) Can roughness-induced transition be predicted more accurately using an ap-
proach based on features of the roughness near-wake?

(iv) Is linear stability analysis capable of accurately predicting the roughness wake
instability modes and/or the overall growth of wake instabilities?

The outline of the current work is as follows: the direct numerical simulation method-
ology and implementation of the code is discussed in Chapter 2 (Direct Numerical
Simulation Code). Linear stability theory is discussed and the newly developed linear
stability analysis code COMPASS is introduced and validated in Chapter 3 (COMPASS:
Compressible Stability Analysis). The computational set-up of the different direct
numerical simulations performed in this work is explained in Chapter 4 (Problem
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Definition & Numerical Set-up), followed by discussion of the results. The results from
the direct numerical simulations concerned with the boundary layer receptivity and
linear wake instability behind various roughness elements is discussed in Chapter 5
(Roughness Receptivity & Wake Instability), while the linear stability analysis of these
roughness wakes is performed in Chapter 6 (Stability Analysis of Roughness Wakes).
The full non-linear transition process and the effect of roughness elements on the
onset of transition is studied in Chapter 7 (Roughness-induced Transition). Finally, the
results are summarised, conclusions are drawn and suggestions for future studies
are given in Chapter 8 (Conclusions & Future Work).
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Chapter 2

Direct Numerical Simulation Code

In this chapter the governing equations, the three-dimensional compressible Navier-
Stokes equations, and the non-dimensionalisation of these equations used in this
work are described. Also the implementation of the direct numerical simulation
(DNS) code SBLI to numerically solve these equations is briefly explained. Although
the in-house developed SBLI code has been used in the Aerodynamics and Flight
Mechanics research group of the University of Southampton for the last few years
and has been validated extensively (Redford et al. (2010) and Touber and Sandham
(2011) among others), an additional validation test case is discussed that will give
more fidelity in some of the more recent code developments and the applicability of
SBLI to the problems in this work.

2.1 Governing equations

The compressible Navier-Stokes equations for a Newtonian fluid with viscosity µ
are obtained by imposing conservation of mass, momentum and energy on a fluid
element. The result is a system of non-linear partial differential equations, which in
dimensionless form and in a Cartesian reference system can be written as

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (2.1a)

∂ρui
∂t

+
∂ρuiuj
∂xj

+
∂p

∂xi
=
∂τij
∂xj

(2.1b)

∂ρE

∂t
+
∂ (ρE + p)ui

∂xi
= − ∂qi

∂xi
+
∂uiτij
∂xj

. (2.1c)
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2. Direct Numerical Simulation Code

The symmetric viscous stress tensor, τij , is defined as

τij =
µ

Re

(
∂uj
∂xi

+
∂ui
∂xj

− 2

3

∂uk
∂xk

δij

)
, (2.2)

where δij is the Kronecker delta function defined as

δij =

1 for i = j

0 for i 6= j.
(2.3)

The properties of the fluid and the components of the heat flux vector (qj) are
calculated considering the equation of state and the Fourier’s law of heat conduction,
given respectively by:-

p = (γ − 1)

(
ρE − 1

2
ρuiui

)
=

1

γM2
ρT (2.4)

and
qj = − µ

(γ − 1)M2PrRe

∂T

∂xj
. (2.5)

The non-dimensional parameters involved in the calculations are Reynolds number
(Re), Prandtl number (Pr), Mach number (M ) and ratio of specific heats (γ), defined
as:

Re =
ρ∗ru

∗
rl

∗
r

µ∗r
, Pr =

C∗
pµ

∗

λ∗
, M =

u∗r√
γR∗T ∗

r

and γ =
C∗
p

C∗
v

, (2.6)

where C∗
p and C∗

v are the specific heats at constant pressure and constant volume,
R∗ is the specific gas constant and λ∗ is the thermal conductivity. Note that the
subscript r refers to reference values whereas the asterisks (*) denote dimensional
variables. The reference values for velocity (u∗r), density (ρ∗r), temperature (T ∗

r ) and
dynamic viscosity (µ∗r) are taken at the free stream. The reference length (l∗r ) is
specific to the problem under investigation. Unless stated otherwise, it is taken as
the displacement thickness δ∗0 of the laminar similarity profile at the inlet of the
numerical domain. The principal non-dimensional variables are defined as follows,

t =
t∗u∗r
l∗r

, xi =
x∗i
l∗r
, ρ =

ρ∗

ρ∗r
, ui =

u∗i
u∗r

,

p =
p∗

ρ∗ru
∗2
r

, E =
E∗

u∗2r
, T =

T ∗

T ∗
r

, µ =
µ∗

µ∗r
. (2.7)

The molecular viscosity of a Newtonian fluid is, by definition, only dependent upon
temperature and pressure. Here, only its variation with temperature is taken into

12



2.2. Numerical methodology

account and is calculated by applying Sutherland’s law,

µ = T
3
2
1 + S∗/T ∗

r

T + S∗/T ∗
r

, (2.8)

where S∗ = 110.4 K is the Sutherland reference temperature. The reference tempera-
ture T ∗

r , taken in the freestream as mentioned earlier, is set to T ∗
r = 273.15 K unless

otherwise stated. It should be noted that this reference value has been chosen to
match the set-up of earlier numerical simulations, as will be discussed in Chapter 4
(Problem Definition & Numerical Set-up), and does not correspond to any wind tunnel
experiments.

2.2 Numerical methodology

2.2.1 Core of SBLI

The core of the SBLI DNS code is a collection of Fortran routines to solve the Navier-
Stokes equations numerically and advance the solution in time. The calculations are
carried out on a structured single-block or multi-block grid discretising the compu-
tational domain. An explicit 4th-order central difference scheme is used to compute
spatial derivatives at the internal points of the domain, while at the boundaries a
stable boundary treatment by Carpenter et al. (1999) is applied, giving an overall
4th-order accuracy. Time integration is based on an explicit third-order compact
Runge-Kutta method (Wray, 1986). SBLI was made parallel in all spatial directions
using the Message Passing Interface (MPI) library.

In order to improve the stability of the non-dissipative central scheme, an entropy
splitting approach by Sandham et al. (2002) is used to split the inviscid flux deriva-
tives into conservative and non-conservative parts. The viscous and heat conduction
terms in the Navier-Stokes equations are formulated in their Laplacian form to avoid
odd-even decoupling commonly associated with central schemes. Odd-even de-
coupling could occur when a second-derivative is computed by two first-derivative
central-difference operations. A total variation diminishing (TVD) shock capturing
scheme of Yee et al. (1999) coupled with the Ducros sensor (Ducros et al., 1999) and
the Artificial Compression Method (ACM) of Harten (1979) are implemented to
handle shocks and contact discontinuities, while minimising introduced numerical
dissipation. More features, such as high-order filtering, large eddy simulation (LES)
models and passive scalar transport, are available in SBLI but have not been used
for the work in this report.

13



2. Direct Numerical Simulation Code

2.2.2 Boundary conditions

A variety of different boundary conditions are implemented in SBLI. A very short
description is given of the boundary conditions that were used in the simulations of
this report.

Wall boundary condition The boundary condition used at walls is isothermal
and no-slip (i.e. ui = 0). The wall temperature is set to the wall temperature of the
laminar boundary layer imposed at the domain inflow.

(Integrated) characteristic boundary condition At boundaries where unwanted
reflections need to be minimised, such as the top and outflow boundary, characteristic
boundary conditions are used. At the top boundary, where certain mean freestream
conditions are imposed, an integrated characteristic boundary condition (Sandhu
and Sandham, 1994) is applied.

Periodic boundary condition At spanwise boundaries of the domain, periodic
boundary conditions are always employed. Halo points at the outside of the domain
are updated at every time step so that the fourth order central scheme can be used
at the periodic boundaries and the use of a one-sided scheme is avoided at these
points.

Inflow boundary condition The boundary condition imposed at the inflow is
case-specific. A fixed, extrapolated or other inlet condition might be used, and
the boundary conditions used for the various cases will be presented in Chapter 4
(Problem Definition & Numerical Set-up).

2.2.3 Linearised version of SBLI

The SBLI code can also be run in a linearised mode. This linearised version solves the
fluctuating flow variables of the compressible three-dimensional linearised Navier-
Stokes equations in its primitive form (and thus for primitive variables (ρ,u, v,w,T )>)
around a steady imposed base flow, instead of the full non-linear Navier-Stokes equa-
tions of Equation (2.1). This version has been used to support the validation of the
stability analysis code COMPASS, presented in Chapter 3 (COMPASS: Compressible
Stability Analysis).
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2.3. Validation of SBLI

2.3 Validation of SBLI

New major features have been implemented in SBLI in recent years, notably the
possibility of having a numerical grid defined fully in three-dimensional generalised
coordinates. An earlier version of the code was only able to have extruded grids
in the third spatial direction, i.e. ∂ξ

∂ζ = ∂η
∂ζ = 0. This new feature allows for the

simulation of fully three-dimensional geometries with body-fitted grids, such as
wavy walls or bumps. Another new feature is the possibility of defining sector-like
grids in cylindrical coordinates. This makes it possible to simulate the flow around
bodies of revolution, such as cylindrical cones, with a reduced cost.

2.3.1 Taylor-Couette flow

Taylor-Couette flow is the flow that exists between two cylinders which have a
difference in angular velocity between them, i.e. either one cylinder is rotating with
the other stationary or both are rotating at different angular velocities. The former
case has been chosen here. The curved geometry and the existence of an analytical
solution for incompressible Taylor-Couette flow makes it an ideal test case to verify
the previously discussed new features of SBLI.

2.3.1.1 Numerical set-up

The numerical grid for this test case has been generated between two cylinders; the
inner cylinder of radius r1 = 1 and outer cylinder of radius r2 = 2. The grid does
not encompass the full 360° in azimuthal direction, but uses a sectorial grid with an
azimuthal angle of θL = 28° with periodic boundary conditions. A diagram of the
Taylor-Couette domain is shown in Figure 2.1. Note that not all grid lines are drawn.

The inner boundary (r1) has been defined as an isothermal wall at which the velocity
components have been set to have an azimuthal velocity of unity (uθ = 1) while the
outer boundary (r2) has been defined as an isothermal wall at which all velocity
components are zero. In radial direction 75 grid points were used and the grid
was stretched to cluster more points near the walls. In the azimuthal direction the
domain was divided into sectors of 2◦, i.e. 15 points ranging from θ = 0− 28◦. In the
axial direction (x-direction) the domain length has been set to Lx = 0.2 with only 10
grid points since no variation in the axial direction was expected. Periodic boundary
conditions are defined to essentially simulate infinite cylinders.
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θz

r, y

Figure 2.1. Diagram of the Taylor-Couette numerical domain

The Mach number of the flow, i.e. at the rotating inner cylinder, is set to M = 0.1 so
the result can be compared to the incompressible analytical solution of Taylor-Couette
flow. Running the code at a lower Mach number requires very small time steps for
stability reasons and was not performed for this validation study. The Reynolds
number in this simulation is Re = 100.0. The analytical solution of Taylor-Couette
flow is independent of Reynolds number however.

2.3.1.2 Analytical solution

In this section the analytical solution of incompressible Taylor-Couette flow is derived
from the non-dimensionalised incompressible mass and momentum conservation
equations in cylindrical coordinates. A steady-state solution is assumed with no
variation in azimuthal and along the length of the cylinder (z-direction). The velocity
in the latter direction is set to zero. Therefore

∂

∂t
= 0, uz = 0,

∂

∂θ
=

∂

∂z
= 0 . (2.9)

Applying these assumptions to the mass conservation equation yields

1

r

∂ (rur)

∂r
+

1

r�
��
∂uθ
∂θ

+
�
��
∂uz
∂z

= 0

ur = 0 , (2.10)

since ur(r1) = ur(r2) = 0.
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The radial and azimuthal momentum equations then yield

�
�

��
ur
∂ur
∂r

+
uθ
r�

��
∂ur
∂θ

−
u2θ
r

+
�
�
��

uz
∂ur
∂z

= −∂p
∂r

+
1

Re

(
1

r���
���∂

∂r

(
r
∂ur
∂r

)
−
�
��
ur
r2

+
�

�
�
�1

r2
∂2ur
∂θ2

−
�
�

��2

r2
∂uθ
∂θ

+
�

�
�∂2ur

∂z2

)
(2.11)

�
�
��

ur
∂uθ
∂r

+
uθ
r�

��
∂uθ
∂θ

+
�
�
�uruθ
r

+
�
�
��

uz
∂uθ
∂z

= −1

r �
��
∂p

∂θ
+

1

Re

(
1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ
r2

+
�

�
�
�1

r2
∂2uθ
∂θ2

+
�
�

��2

r2
∂ur
∂θ

+
�

�
�∂2uθ

∂z2

)
(2.12)


u2θ
r

=
∂p

∂r
1

r

∂

∂r

(
r
∂uθ
∂r

)
=
uθ
r2

(2.13)

Solving the system in Equation (2.13) for the azimuthal velocity uθ when applying
boundary conditions uθ(r1) = uθ1 and uθ(r2) = 0 results in the analytical solution
for the azimuthal velocity in function of the radial coordinate

uθ(r) =
r1

r21 − r22
uθ1

(
r − r22

r

)
. (2.14)

From this equation it is clear that the solution is only dependent on the azimuthal
velocity of the inner cylinder uθ1 and cylinder radii.

2.3.1.3 Validation results

The simulation has been initialised using a linear azimuthal velocity profile in the
radial direction and then run until convergence was reached. A contour plot of
azimuthal velocity uθ after convergence is shown in Figure 2.2. It shows perfect
concentric circles as expected.

A better comparison between the results can be seen in Figure 2.3, which shows
the computed velocity profile at θ = 10◦ compared to the analytical profile. The
largest relative error between the analytical velocity profile and the DNS results
has been found to be approximately 0.006%. Two additional simulations have been
performed for which the coordinate system is rotated to ensure that there are no
implementation errors that are coordinate-dependent. Excellent agreement has been
reached between the different simulations, and it has been found that results are
completely independent of the coordinate system.
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Figure 2.2. Contour plot of azimuthal velocity uθ. Contours are drawn for∆uθ = 0.1.
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Figure 2.3. Comparison between the numerical result (DNS) and the analytical
solution.

18



Chapter 3

COMPASS:
Compressible Stability Analysis

A suite of tools has been developed to perform linear stability analysis of fluid flows,
both in the incompressible and compressible regime. It has been named COMPASS

(Compressible Analysis-of-Stability Suite) and can perform temporal or spatial stability
analysis of one-dimensional, two-dimensional or three-dimensional base flows. It
has been validated using a large number of reference cases, from the subsonic to
the hypersonic flow regime. In this chapter the concept of linear stability theory is
briefly explained, the implementation of the code is discussed and the result of the
validation campaign are given.

3.1 Linear stability theory

3.1.1 Linearised Navier-Stokes equations

Linear stability theory is concerned with the growth or decay of small unsteady per-
turbations in a steady base flow. Assuming these perturbations have a much smaller
amplitude than the base flow, the primitive flow variables q = (ρ,u, v,w,T )> in the
Navier-Stokes equations can be decomposed into a steady part q̄ = (ρ̄, ū, v̄, w̄, T̄ )>

and unsteady part q̃ = (ρ̃, ũ, ṽ, w̃, T̃ )>, i.e.

q(x, t) = q̄(x) + ε q̃(x, t) (3.1)

with the small amplitude ansatz

O (ε) � 1 . (3.2)
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3. COMPASS: Compressible Stability Analysis

Note that the Navier-Stokes equations in the context of stability analysis are expressed
in a primitive variable form, different from the equations in the DNS code discussed
in the previous chapter. The primitive form of the compressible Navier-Stokes
equations are:

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (3.3a)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

+
1

γM2

∂ρ T

∂xi
=
∂τij
∂xj

(3.3b)

ρ
∂T

∂t
+ ρuj

∂T

∂xj
+ (γ − 1) ρT

∂uj
∂xj

=
γ

RePr

∂

∂xj

(
µ
∂T

∂xj

)
+ γ(γ − 1)M2

(
τij
∂ui
∂xj

)
. (3.3c)

The Navier-Stokes equations can be linearised around the steady base flow by sub-
stitution of the Reynolds decomposition and discarding the higher-order terms of ε
using the small amplitude ansatz. After subtracting the original Navier-Stokes terms
from these equations, the linearised Navier-Stokes equations (LNSE) are obtained.
These equations govern the behaviour of the unsteady perturbations and are valid
as long as the assumption in Equation (3.2) is not violated. In incompressible form
the linearised Navier-Stokes equations can be written as

∇ · ũ = 0 (3.4a)
∂ũ

∂t
+ ū · ∇ũ+ ũ · ∇ū = −∇p̃+ 1

Re
∇2ũ (3.4b)

The compressible form of the linearised Navier-Stokes equations is given in Ap-
pendix A. From here onwards the compressible linearised Navier-Stokes equations
are always used.

Note that also in the primitive form of the Navier-Stokes equations, Sutherland’s
law of viscosity is assumed. Special care should be taken of the linearisation and
differentiation of the terms consisting viscosity, because the linearisation of Suther-
land’s law is non-trivial. Spatial derivatives of the mean viscosity µ̄ follow the usual
definition:

∂µ̄

∂x
=

dµ̄

dT̄

∂T̄

∂x
(3.5)

During the linearisation, terms consisting of the fluctuating viscosity µ̃ are intro-
duced. This variable is a new unknown, and a relation between µ̃ and other (mean)
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flow quantities should be defined explicitly. Using a Taylor expansion of the fluctu-
ating viscosity, it can be written as (Lees and Reshotko, 1962)

µ̃ =
dµ̄

dT̄
T̃ (3.6)

for which dµ̄
dT̄

arises directly from Sutherland’s law and T̃ is part of the solution vector.
Derivatives of this term are then expressed as

∂µ̃

∂x
=

dµ̄

dT̄

∂T̃

∂x
+

∂

∂x

(
dµ̄

dT̄

)
T̃ . (3.7)

3.1.2 Modal stability analysis

Using the linearised Navier-Stokes equations, both the stability of modal and non-
modal perturbations can be investigated. In the current work only modal stability
analysis is performed.

3.1.2.1 Tri-global stability analysis

If temporally growing (or decaying) modal disturbances with circular frequency ω
are assumed one can write the unsteady fluctuations as

q̃(x, t) = q̂(x) e−iωt (3.8)

and the linearised Navier-Stokes equations can be rewritten and expressed as the
following generalised eigenvalue problem:

Aq̂ = ωBq̂ . (3.9)

The matrices A and B in this system are square and have dimensions (5NxNyNz)
2.

They multiply the solution vector

q̂ = (ρ1,1,1,u1,1,1,T1,1,1, ρ1,1,2, . . . ,TNx,Ny ,Nz)
> (3.10)

and contain the linear operators of the linearised Navier-Stokes equations.

These operators consist of terms originating from the base flow, derivative operators
D working on the base flow, and derivative operators working on the solution vector
q̂. The derivative matrices D are dependent on the chosen method of discretisation,
as will be discussed further in this chapter.

In this most general form, no further assumptions are made about the disturbances
and the solution of Equation (3.9) yields three-dimensional eigenmodes q̂ with
eigenvalue ω. This type of analysis is called tri-global stability analysis because it
resolves the three non-homogeneous spatial directions.
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3.1.2.2 Bi-local/bi-global stability analysis

A simplification of the general tri-global analysis can be made by assuming a parallel
base flow and modal disturbances with wavenumber α in the streamwise direction,
i.e.

q̃(x, t) = q̂(y, z) ei(αx−ωt) . (3.11)

The base flow and eigenmodes of the resulting eigenvalue problem will have two
non-homogeneous spatial directions, i.e. y and z, and this analysis is therefore called
bi-local stability analysis. Note that one could also assume modal disturbances in the
spanwise direction z with wavenumber β and keep the streamwise direction non-
homogeneous. This would allow for the analysis of e.g. two-dimensional growing
boundary layers, but is not considered in the current work. Note that in literature
bi-local stability analysis is usually called bi-global analysis. However, this term does
not seem appropriate here, since the instability analysis is not concerned with global
instabilities but convective instabilities. Therefore, the term bi-local will be used from
here onwards.

Both temporally and spatially growing (or decaying) instabilities can be investigated
using the bi-local stability framework of Equation (3.11). Temporally growing distur-
bances can be computed by defining a real wavenumber α and solving the resulting
eigenvalue problem for the complex eigenvalue ω = ωr + iωi in which ωr is the
wavenumber and ωi the growth rate of the corresponding eigenmode. Spatially
growing disturbances can be computed by defining a real frequency ω and solving
for a complex α = αr + iαi. In this case, the resulting eigenvalue problem will be a
quadratic eigenvalue problem (QEVP) due to the higher spatial derivatives in the
LNSE. The resulting QEVP has the following form:

α2Mq̂+ αCq̂+Kq̂ = 0 . (3.12)

Direct quadratic eigenvalue solvers exist but are a fairly recent development, such
that this quadratic eigenvalue problem is often linearised so that traditional eigen-
value solvers can be used. More details on the used eigenvalue solvers and their
implementation into COMPASS will be discussed in the next section.
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Table 3.1. Summary of different stability analysis types and the related assumptions,
base flow, disturbance and phase functions

Analysis Assumption Base Flow Disturbance Phase Func.

Tri-global - q̄(x, y, z) q̃(x, y, z, t) e−iωt

Bi-local ∂q̄
∂x = 0 q̄(y, z) q̃(y, z, t) ei(αx−ωt)

Local ∂q̄
∂x = ∂q̄

∂z = 0 q̄(y) q̃(y, t) ei(αx+βz−ωt)

3.1.2.3 Local stability analysis

A further simplification can be made by assuming a single non-homogeneous direc-
tion, in this case the wall-normal direction y, and perturbations of the form

q̃(x, t) = q̂(y) ei(αx+βz−ωt) . (3.13)

This type of analysis is called local stability analysis. After substituting the assump-
tion of Equation (3.13) in the incompressible form of the linearised Navier-Stokes
equations, the classic Orr-Sommerfeld (OS) equation can be retrieved. The com-
pressible form of the resulting equations can be found in Malik (1990). Similarly to
bi-local stability, both temporal and spatial local stability analysis can be performed
by solving for complex frequency ω or wavenumber α respectively. A summary of
the different types of analysis, the assumptions, and the form of the base flow and
disturbances is given in Table 3.1.

3.2 Implementation of the stability code COMPASS

COMPASS consists of a number of tools, written in MATLAB and Fortran, to perform
modal linear stability analysis, both temporal and spatial, in a local or bi-local
framework. In the code all matrices and structures are inherently three-dimensional,
so that performing tri-global analysis of three-dimensional base flows would be
trivial, except for the computational cost.

Figure 3.1 is a diagram that shows the core of the COMPASS code. Further in this
section some of the building blocks in this diagram will be discussed in more detail,
but essentially it consists of four main pillars:

Initialisation The flow variables (M , Re, Csuth, etc) and the analysis variables
(type of analysis, grid size, ω, α, etc) are set, matrices are allocated in memory
and a numerical grid is constructed.
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Initialise

Load Base Flow

Mapping onto
Stability Grid

Derivatives of
Base Flow

Populate Matrices

Apply Boundary Conditions

Solver?

MATLAB Eigensolver

Export ...

COMPASS PAR(Q)ES

COMPASS

Figure 3.1. Flowchart of the core of COMPASS and solver COMPASS PAR(Q)ES

Loading base flow The base flow is read from an external file (or computed in case
of simple flows like a Blasius boundary layer), mapped onto the numerical
grid and its spatial derivatives are computed.

Matrix generation The matrices A and B (or M, C, K for spatial analysis) of the
relevant eigenvalue problem are constructed and populated. Appropriate
boundary conditions are also applied.

Solving The relevant eigenvalue problem can be solved by two different solvers:
the internal MATLAB eigensolvers or the fully parallelised COMPASS PAR(Q)ES.

The main routine of COMPASS expects the following input arguments: Mach number
M , Reynolds number Re, streamwise wavenumber α, spanwise wavenumber β,
frequency ω, number of grid points of the numerical grid in all three directions
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(Nx,Ny,Nz)
>, size of the numerical domain (Lx,Ly,Lz)

> and Sutherland’s law con-
stant Csuth. Note that not all arguments are required for all types of analysis, e.g. for
temporal stability analysis the frequency ω is the sought after variable and there-
fore does not need to be given as input, whereas for bi-local stability the spanwise
wavenumber β is not required since no modal solution is assumed in the spanwise
direction.

3.2.1 Numerical grid and differentiation methods

During initialisation, a numerical grid is constructed based on the input arguments.
The grid coordinates in a certain direction not only depend on the length of the
domain and the number of grid points, but also on the differentiation method that
will be used in that direction.

3.2.1.1 Fourier spectral differentiation

In the spanwise direction, a spectral differentiation method based on the (inverse)
discrete Fourier transform (DFT) is used in the current work. On an equispaced
grid with coordinates xn = 2πn/N , the discrete Fourier transform of a continuous
periodic function f(x) is defined as

Fk =
1

N

N−1∑
n=0

fn e
−ikxn , for k = 0, 1, . . . ,N − 1 (3.14)

with N the number of Fourier modes, always taken to be even in this work. The
inverse DFT is then

f(xn) ≡ fn =

N−1∑
k=0

Fk e
ikxn . (3.15)

If a function f(x) can be approximated at a coordinate xn as f(xn) ≡ fn, then the
first derivative f ′(x) of this function can then be approximated as

f ′(xn) =

N−1∑
k=0

i k Fk e
ikxn . (3.16)

This operation can be expressed explicitly as a matrix multiplication

f ′ = D
(1),Fourier
N · f (3.17)
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with D
(1),Fourier
N the Fourier differentiation matrix for the first derivative. The ele-

ments d(1)i,j of this matrix can be computed a priori:

d
(1)
i,j =

0 if i = j

1
2(−1)(i+j) cot((i− j)h/2) if i 6= j

(3.18)

so that the Fourier differentiation matrix has the form

D
(1),Fourier
N =



0 . . . −1
2 cot

1
2h

−1
2 cot

1
2h

. . . 1
2 cot

2
2h

1
2 cot

2
2h

. . . −1
2 cot

3
2h

... . . . ...
1
2 cot

1
2h . . . 0


(3.19)

with h = 2π/N .

Matrix multiplication with matrix D(1),Fourier yields a first derivative. Higher-order
derivatives, e.g. the second derivative, can then be obtained by recursion, i.e.

D
(p),Fourier
N = D

(1),Fourier
N ·D(1),Fourier

N · . . .︸ ︷︷ ︸
p times

(3.20)

Recall that this method requires an equispaced grid, such that the coordinates of the
numerical grid in z-direction are set to

zk =
k − 1

Nz
Lz , where k = 1, . . . ,Nz . (3.21)

Note that, since the differentiation matrices introduced before assume a grid on the
interval z ∈ [0, 2π) instead of z ∈ [0,Lz), the elements of matrices D(p),Fourier

N need to
be multiplied by (Lz/(2π))

p.

In the wall-normal direction no periodicity can be assumed and two different differ-
entiation methods are implemented: the Chebyshev pseudo-spectral method and
the high-order finite-difference method (FD-q) of Hermanns and Hernández (2008).

3.2.1.2 Chebyshev pseudo-spectral method

In case no periodicity can be assumed but one would like to exploit the advantage that
spectral methods have regarding convergence behaviour, a differentiation method
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3.2. Implementation of the stability code COMPASS

based on Chebyshev polynomials can be applied (Don and Solomonoff, 1997). On in-
terval ξ ∈ [−1, 1], a continuous function f(ξ) can be be approximated as a Chebyshev
series at N discrete Chebyshev-Gauss-Lobatto (CGL) points ξn = cos(nπN ):

f(ξn) ≡ fn =

N∑
k=0

akTk(ξn) (3.22)

with Chebyshev coefficients ak and Chebyshev polynomial of degree k

Tk(ξ) = cos(k cos−1(ξ)) . (3.23)

The first derivative f ′(ξ) can then be approximated by

f ′(ξn) =
N∑
k=0

akT
′
k(ξn) . (3.24)

Using Equation (3.22), a discrete Fourier transform can be applied to express the
Chebyshev coefficients ak as a function of the function values at the CGL points xn:

ak =
2

ckN

N∑
n=0

1

cn
f(ξn) cos(

nkπ

N
) (3.25)

in which c1 = cN = 2 and cn = 1 for n = 1, 2, . . . ,N − 1.

Also the operation in Equation (3.24) can then be expressed as a matrix multiplication,
for which the resulting differentiation matrix D

(1),Chebyshev
N will have elements

d
(1)
i,j =


ci
cj

(−1)i+j

ξi−ξj
for i 6= j, 0 ≤ i, j ≤ N

− ξi
2(1−ξ2i )

for i = j, 1 ≤ i, j ≤ N − 1

1N2+1
6 for i = j = 1 or i = j = N

(3.26)

Higher-order differentiation matrices can be easily computed using recursion, i.e.

D
(p),Chebyshev
N = D

(1),Chebyshev
N ·D(1),Chebyshev

N · . . .︸ ︷︷ ︸
p times

(3.27)

3.2.1.3 FD-q method

The disadvantage of the spectral methods introduced in this chapter is that the
resulting matrix multiplication will yield full matrices. When a large number of grid
points (and thus matrix elements) is required, for example in the case of bi-local
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3. COMPASS: Compressible Stability Analysis

or tri-global stability analysis, full matrices will result in very high computational
memory usage. Therefore methods that result in sparse or banded matrices, such
as finite difference (FD) methods, are desired, since they are computationally much
cheaper and can reduce the computational requirements significantly.

For this reason, Hermanns and Hernández (2008) developed a high-order finite
difference method FD-q, that uses the sparsity advantage of finite difference methods
and allows for the construction of FD stencils of arbitrary order q, which minimises
interpolation errors and for which spectral-like convergence behaviour is reached
as q → N . A very brief explanation of the method is given here. For the full details
of the method, the reader is advised to consult the original work of Hermanns and
Hernández.

The FD-q method approximates the derivative of a continuous function f(ξ) by con-
structing a piecewise polynomial interpolant, consisting of individual interpolants
In(ξ) of polynomial degree q, that match the function values f(ξn) at a series of
discrete grid points ξn in the interval ξ ∈ [−1, 1]. The derivative of this function
f ′(ξn) is then found by computing the derivative of the interpolants In at these points.
A typical value of q used in this work is q = 8.

The individual polynomial interpolants In(x) are defined using Lagrange interpola-
tion as

In(x) =

sn+q∑
m=sn

`n,m(ξ)fm , `n,m =

q∏
j=0

sn+j 6=m

ξ − ξsn+j

ξm − ξsn+j
(3.28)

where the seed sn denotes the index of the lower limit grid point ξn of the stencil
used for the construction of the interpolant, defined as

s = {0, . . . , 0︸ ︷︷ ︸
q/2 times

, 0, 1, . . . ,N − q,N − q, . . . ,N − q︸ ︷︷ ︸
q/2 times

} . (3.29)

This approach results in a centred FD stencil away from the domain boundaries and
stencils biased towards the inner grid points near the domain boundaries.

A key characteristic of the FD-q method is that it uses Chebyshev roots (or Chebyshev-
Gauss quadrature points) as grid points ξn in the limit of q → N in order to suppress
the Runge phenomenon, characterised by oscillations near the ends of the interpola-
tion interval, that accompanies high-order polynomial interpolation on equispaced
grids (Platte et al., 2011). For q < N the grid points will be non-uniformly distributed
and are obtained by a non-linear optimisation problem that minimises the pointwise
interpolation error on the resulting grid.
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3.2. Implementation of the stability code COMPASS

3.2.1.4 Mapping to physical coordinates

Both Chebyshev’s pseudo-spectral method and the FD-q method are defined on
bounded interval ξ ∈ [−1, 1]. In order to map the computational coordinates ξ to
physical coordinates in interval y ∈ [0, ymax], the algebraic mapping proposed by
Malik (1990) is used:

y = a
1 + ξ

b+ ξ
(3.30)

with
a = yi

ymax
ymax − 2 yi

, b = 1 + 2
a

ymax
. (3.31)

In these equations the constant yi can be chosen freely to cluster points together,
such that half of the grid points are located in interval [0, yi].

3.2.2 Base flow

After the initialisation, a steady base flow is loaded into memory. This can either
be done from an external data file, e.g. computed from a precursor LES or DNS,
or by calling a function that computes the base flow directly. The latter method
is used to obtain simple base flows like a Blasius boundary layer, for which the
theoretical solution can easily be computed. The base flow is then mapped onto the
numerical grid, and the spatial derivatives of the base flow are computed using the
differentiation matrices resulting from one of the methods discussed previously.

3.2.3 Populating of matrices

Once the base flow and its derivatives are computed, the matrices A and B (or M,
C, K) of the relevant eigenvalue problem are populated. For each grid point (i, j, k)
a call is made to a function that returns the linearised Navier-Stokes operators, based
on the base flow at that point and the chosen differentiation method.

3.2.4 Boundary Conditions

Appropriate conditions for the perturbations need to be prescribed at the domain
boundaries. In general, various types of boundary conditions can be applied, but in
the current work only two different conditions are prescribed.

At the domain boundaries in the y-direction, it is assumed that perturbations vanish,
since the current work is only concerned with flows that are wall-bounded and/or
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3. COMPASS: Compressible Stability Analysis

bound by an undisturbed freestream far away. Therefore, fluctuating quantities ũ
and T̃ are set to zero at these boundaries, while the density ρ̃ is allowed to vary, i.e.

ũi,1,k = ũi,Ny ,k = 0 (3.32a)

ṽi,1,k = ṽi,Ny ,k = 0 (3.32b)

w̃i,1,k = w̃i,Ny ,k = 0 (3.32c)

T̃i,1,k = T̃i,Ny ,k = 0 (3.32d)

with i = 1, . . . ,Nx and k = 1, . . . ,Nz .

Whenever the spanwise direction is not taken to be homogeneous, e.g. for bi-local or
tri-global stability analysis, periodicity is always assumed in this direction. Because
a Fourier differentiation method is used in this direction, as discussed previously in
this chapter, boundary conditions do not need to be explicitly applied at the spanwise
boundaries (k = 1, k = Nz).

3.2.5 Solver

After applying the boundary conditions, the matrices of the eigenvalue system are
complete, and the system can be solved. Two different solvers can be used.

3.2.5.1 MATLAB eigensolver

For cases where not a lot of computational memory and power is required, such as
local or small bi-local cases, the eigenvalue problem can be solved directly by the
internal MATLAB eigensolver eigs or polyeig.

3.2.5.2 COMPASS PAR(Q)ES

For larger problems where the memory requirements are too high to solve the system
on a single workstation, the generated matrices of the eigenvalue problem can be
exported and solved by COMPASS PAR(Q)ES or Parallel (Quadratic) Eigenvalue Solver.
This solver is programmed in Fortran and is built around the high-performance
libraries SLEPc [1], PETSc [2] and MUMPS[3]. The solver is fully parallelised and can
run on computational clusters.

[1]SLEPc - http://www.grycap.upv.es/slepc/
[2]PETSc - http://www.mcs.anl.gov/petsc/
[3]MUMPS - http://mumps.enseeiht.fr/
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3.2. Implementation of the stability code COMPASS

COMPASS PAR(Q)ES uses a Krylov-Schur technique, implemented in SLEPc, to itera-
tively solve the eigenvalue system. This method is essentially a modified Arnoldi
iteration with an improved restarting technique, which overcomes some of the prob-
lems of the traditional implicitly restarted Arnoldi algorithm (Stewart, 2002). Full
details on this technique and its implementation in SLEPc can be found in Hernan-
dez et al. (2005). Note that COMPASS PAR(Q)ES reads in either matrices A and B

or M, C and K, depending on whether the matrices originate from a temporal or
spatial stability problem respectively. In the case where the matrices M, C and K of
the quadratic eigenvalue problem are given, the problem is linearised internally by
SLEPc.

The Krylov-Schur method (and related methods) is very effective at finding eigen-
values near the extremes of the spectrum, i.e. largest/smallest eigenvalues. In order
to efficiently compute eigenvalues that are not located near the extremes of the
spectrum, a shift-and-invert spectral transformation technique is used to improve
the convergence of eigenvalues near a certain region of interest. Essentially, the
generalised eigenvalue problem of Equation (3.9) is transformed into

(A− σB)−1Bq̂ = θq̂ (3.33)

such that the largest eigenvalues θ of the transformed system correspond to the
eigenvalues ω of the original system that are closest to a certain shift σ. After using
the Krylov-Schur method to find the eigenvalues of the transformed system, the
original eigenvalues can be retrieved by

ω = σ + 1/θ . (3.34)

The shift σ can be a complex number such that the target eigenvalues, i.e. the region of
interest, can lie in the whole complex plane, as long as the resulting matrix (A−σB)

is not singular.

3.2.5.3 Parallel scaling of COMPASS PAR(Q)ES

The ability of COMPASS to run very large problems can be assessed by the effectiveness
of the parallel scaling. If the code has good scalability characteristics, larger problems
can be run on a larger number of processors to reduce the overall runtime and the
memory requirements per computational processor. The code speed-up is defined
as the ratio of the serial runtime, run on a single processor, to the runtime of the
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Figure 3.2. Strong scaling of COMPASS PAR(Q)ES.

code run on a specific number of processors:

S(n) =
t(n = 1)

t(n)
(3.35)

Two different types of scaling can be considered: weak and strong. Weak scaling
is concerned with the speed-up when the number of processors and the size of the
problem increases such that the problem size per processor remains the same. For
strong scaling, the number of processors increases while the total size of the problem
remains the same. Analysis of the strong scaling characteristics essentially yields the
number of processors that can be used to efficiently solve a problem with a specific
size. The optimal strong scaling is linear speed-up, i.e. the computational time halves
for a doubling of the number of processors (Sopt(n) = n).

The strong scaling behaviour of COMPASS PAR(Q)ES is shown in Figure 3.2. The
speed-up curve in this figure is for a typical bi-local stability computation of a
roughness wake, as will be discussed in Chapter 6 (Stability Analysis of Roughness
Wakes). This case has Ny = 301 grid points in the wall-normal direction, discretised
using the FD-q method of order q = 8, and Nz = 140 grid points in the spanwise
direction, using Fourier spectral differentiation. The case was run for 30 Arnoldi
iterations on the Iridis 4[4] high performance computing facility from the University
of Southampton, after which approximately 30-35 eigenvalues are found.

From Figure 3.2 it can be seen that there is an initial penalty to running the code
in parallel, and the runtime on 2 processors is actually longer than running the

[4]Iridis, University of Southampton, http://cmg.soton.ac.uk/iridis
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3.3. Validation of COMPASS

code in a serial way. This is due to the necessary internal communication between
the different processors, which adds to the runtime. After this initial penalty the
scaling behaviour is relatively linear. It should be noted that the parallel scaling
capability and its associated behaviour should be completely attributed to the high
performance library MUMPS.

However, the scaling behaviour is far from being optimal. For example, the com-
putation on 32 processors took approximately 4.4 longer than the optimal runtime
based on the serial code and 1.5 times longer than the optimal time if the initial
penalty is neglected. This might be due to the fact that Fourier discretisation is used
in the spanwise direction, which yields dense differentiation matrices and thus not
a fully sparse eigenvalue problem. The Krylov-Schur technique used to solve the
eigenvalue problem is optimised for sparse matrices, such that better scaling might
be achieved if the FD-q method is also used in the spanwise direction.

3.3 Validation of COMPASS

COMPASS has been extensively validated for subsonic to hypersonic flows, both for
temporal/spatial and local/bi-local stability analysis. In this section some of the
validation cases are discussed.

3.3.1 Blasius boundary layers

The first validation cases that are investigated are temporally and spatially growing
disturbances in Blasius boundary layers at a variety of Mach numbers. The results
computed by COMPASS are compared with the original published results and/or
cross-validated with the local stability analysis and PSE code NoSTRANA, developed
completely independently from COMPASS by Andrea Sansica at the University of
Southampton. The flow parameters of the investigated cases are listed in Table 3.2
and Table 3.3 for respectively the temporal and spatial stability analyses.

Since the base flows of these cases are one-dimensional boundary layer profiles,
COMPASS was run in local stability mode. The code was run with Chebyshev differ-
entiation in the wall-normal direction and an increasing number of grid points to
ensure a grid-converged solution.

The sensitivity of the full spectrum to the number of grid points for case MAL-2.5
can be seen in Figure 3.3. From this figure it is clear that the most unstable mode
and the discrete modes for cph < 0.5, which are the actual modes of interest, agree
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3. COMPASS: Compressible Stability Analysis

Table 3.2. Parameters of the Blasius boundary layer validation cases for temporal
stability analysis. References specified in the table are Malik (1990), Macaraeg (1988)
and Sandham and Lüdeke (2009).

Case Reference M Re α β Csuth

MAL-0 Malik 0 580 0.179 0.0 198.6/500
MAL-0.5 Malik 0.5 2000 0.1 0.0 198.6/476.19
MAL-2.5 Malik 2.5 3000 0.06 0.01 198.6/266.67
MAC-0 Macaraeg 0 2200 0.2 0.0 198.6/520
MAC-4.5 Macaraeg 4.5 10 000 0.6 1.0392 198.6/520
SAN-6 S & L 6.0 20 000 2/3π 0.0 110.4/216.65

Table 3.3. Parameters of the Blasius boundary layer validation case for spatial
stability analysis, based on Danabasoglu and Biringen (1990).

Case Reference M Re ω β Csuth

DAN-0 Danabasoglu 0 580 0.0652 0.0 198.6/600
& Biringen
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Figure 3.3. Grid sensitivity of the COMPASS results for the Mach 2.5 temporal stability
case MAL-2.5.

perfectly for grid sizes above Ny > 100. The branches on the right (cph > 0.5) are
discrete representations of a continuous branch, a characteristic resulting from the
truncated semi-infinite domain.

A more quantitative representation of the grid sensitivity and convergence behaviour
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Table 3.4. Eigenvalue of the most unstable mode of the Mach 2.5 Blasius boundary
layer validation case MAL-2.5 for different grid sizes.

Ny ωr ωi

41 0.038 152 117 548 121 0.002 770 150 953 887
61 0.036 481 149 482 166 0.000 604 402 715 123
81 0.036 734 273 813 152 0.000 591 163 112 862
101 0.036 733 849 945 214 0.000 584 595 468 103
121 0.036 733 747 334 344 0.000 584 468 170 743
141 0.036 733 746 024 881 0.000 584 464 471 315
161 0.036 733 746 083 224 0.000 584 464 402 815
181 0.036 733 746 087 597 0.000 584 464 403 179
201 0.036 733 746 089 944 0.000 584 464 402 666

of case MAL-2.5 is given in Table 3.4, which shows the eigenvalue of the most unstable
mode computed for different grids. From this table, it is evident that the first six
significant digits are converged already at Ny = 141. This explains the excellent
agreement between the results on the different grids in Figure 3.3, which had many
more grid points.

Table 3.5 (temporal) and Table 3.6 (spatial) show the grid-converged values of the
computed most unstable (or least stable) eigenvalues for the Blasius boundary layer
validation cases. In these tables the results computed with COMPASS and NoSTRANA

are listed and a comparison is made between COMPASS, NoSTRANA and the original
reference (or original code in case of SAN-6.0). The difference between COMPASS and
the other results, listed in these tables, is computed as

φDiff. =
φCOMPASS − φr

φr
(3.36)

with φCOMPASS and φr respectively the eigenvalue computed by COMPASS and the
reference value.

It can be seen that the agreement between the results from COMPASS and the original
reference (or the independent code NoSTRANA) is excellent. For the temporal stability
analyses, the only difference occurs for the growth rate (the imaginary part of the
eigenvalue) of case MAL-0 (=(φDiff.) = 0.77%) and case SAN-6.0 (=(φDiff.) = 0.11%).
For all other temporal stability cases, there is no difference between the results, up
to six significant digits. For the spatial case DAN-0, the difference with the original
results is slightly larger for the growth rate, i.e. =(φDiff.) = 1.18%, but the comparison
between COMPASS and NoSTRANA reduces to =(φDiff.) = 0.09%.
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Figure 3.4. Temporal evolution of the streamwise velocity fluctuations for case
SAN-6.0, computed by Lin. SBLI and SBLI.

Table 3.7. Comparison of the largest growth rate of case SAN-6.0.

Case COMPASS Lin. SBLI Diff. (%) SBLI Diff. (%)

SAN-6.0 0.015733 0.015626 −0.68 0.016099 2.33

The instability of case SAN-6.0 has also been computed using the non-linear and
linearised version of SBLI, as introduced in Chapter 2 (Direct Numerical Simulation
Code). In the non-linear computation, the base flow is kept constant by an appropriate
forcing in the Navier-Stokes equations. A streamwise periodic domain with a stream-
wise parallel base flow is used in the SBLI computations. The streamwise extent is
taken to be the wavelength of the most unstable mode computed by COMPASS, and
the flow fields are sampled at regular time intervals such that the temporal growth
of this mode can be computed. The growth rate is computed from the streamwise ve-
locity fluctuation integrated over the numerical domain, as shown by Figure 3.4. The
resulting growth rates are summarised in Table 3.7, which shows a good agreement
(less than 1%) between COMPASS and the linearised version of SBLI. The non-linear
version of SBLI shows a slightly larger difference, i.e. 2.3%.

From the comparisons between COMPASS, the original references, NoSTRANA and SBLI,
summarised in Tables 3.5 to 3.7, it can be concluded that the linear stability of Blasius
boundary layers at a variety of Mach numbers is accurately computed by COMPASS.
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Table 3.8. Parameters of the incompressible streaky Couette flow validation case of
Reddy et al. (1998).

Case Reference M Re α β

REDDY Reddy et al. 0 500 1.0 2.0

3.3.2 Streaky Couette flow

The validation cases in the previous section were performed using local stability
analysis, i.e. the flow in the spanwise direction was taken to be homogeneous and not
resolved by the analysis. In order to validate the bi-local analysis, a two-dimensional
base flow and disturbances with two non-homogeneous directions needs to be
considered. Bi-local analysis has been performed of the Blasius boundary layer cases
of the previous section, for which no significant difference was observed between the
local and bi-local results. However, since these boundary layer flows are constant in
the spanwise direction, the spanwise differencing portion of COMPASS cannot be fully
tested by these cases. A well-prescribed base flow is thus required which varies both
in the wall-normal and spanwise direction. The case that was used to validate the
bi-local stability analysis is the streaky Couette flow of Reddy et al. (1998), termed
REDDY from here onwards.

An incompressible Couette flow is assumed between two walls at y = −1 and y = 1.
The walls are assumed infinite, so periodic boundary conditions can be applied at
the spanwise boundaries (i.e. the z-direction). The Reynolds number of the flow is
set to Re = 500 and the base flow has only a streamwise velocity component, and is
prescribed by

ū(y, z) = Sy + 2Ast cos(βz) (3.37)

with shear S. In this equation, Ast is the amplitude of a prescribed streak that has
spanwise wavenumber β. The case that will be used for comparison has β = 2.0.
The disturbances that will be analysed will have streamwise wavenumber α = 1.0.
A summary of the parameters of the REDDY validation case is given in Table 3.8.

The stability characteristics of a wide range of base flows have been computed by
varying shear S and streak amplitude Ast. A visualisation of the base flows with
and without the presence of a streak is shown in Figure 3.5.

A map showing the growth rate (the imaginary part of the eigenvalue) of the most
unstable (or least stable) modes for a range of S and Ast is given in Figure 3.6. In
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Figure 3.5. Contours of streamwise velocity of the Couette base flow with shear
S = 1.0, and without and with streaks of amplitude Ast. The contour levels range
from −1 to 1 in increments of 0.2.

this map the black contours represent the results of Reddy et al. (1998), while the
solid red contours show the results obtained by COMPASS. Note that the apparent
discrepancy for Ast > 0.12 and S < 0.2 is due to the lack of resolution in the original
map of Reddy et al. (1998), who used only 11 data points for each parameter. The
dashed red contours in Figure 3.6 indicate results by COMPASS if only those points
are used. An excellent agreement is evident between the results. A quantitative
comparison is shown in Table 3.9 for a selected number of base flows: S = [0, 0.5, 1.0]

and Ast = [0.00, 0.07, 0.14]. Note that the reference values reported in this table are
taken from Pook (2013), who also performed bi-local stability analysis of the REDDY
case as validation.

From the eigenvalue map in Figure 3.6 and the comparison of eigenvalues in Ta-
ble 3.9, it can be concluded that the agreement with the original results is excellent
and the (temporal) bi-local stability analysis by COMPASS yields correct results for
incompressible flow. In the next section, spatial bi-local stability of a compressible
flow will be performed to complete the validation campaign of COMPASS.

3.3.3 Supersonic roughness wake (M=2.5)

In order to validate the (spatial) bi-local stability analysis of flows where compress-
ibility is important, the wake behind a sharp-edged roughness element at Mach
2.5 is investigated. The base flow was obtained from DNS performed by De Tullio
et al. (2013). The analysis was performed at a streamwise location of x = 93.66
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Figure 3.6. Map showing the growth rate of the most unstable (or least stable) modes
of case REDDY with shear S and streak amplitude Ast. Black contours show the
original results of Reddy et al. (1998); red contours indicate results computed by
COMPASS.

Table 3.9. Comparison of computed most unstable eigenvalues ω = ωr + iωi of some
of the Reddy et al. (1998) cases. Note that the values have been taken from Pook
(2013).

S Ast COMPASS Reference Diff. (%)

0 0.00 0.000000− i0.006935 0.000000− i0.006935 0.00 + i0.00
0.07 0.000000 + i0.058070 0.000000 + i0.058070 0.00 + i0.00
0.14 0.000000 + i0.127541 0.000000 + i0.127542 0.00 + i0.00

0.5 0.00 0.339288− i0.094793 0.339287− i0.094788 0.00 + i0.00
0.07 0.362114− i0.043439 0.362109− i0.043454 0.00 + i0.00
0.14 0.342285− i0.016698 0.342280− i0.016690 0.00 + i0.00

1.0 0.00 0.744887− i0.149290 0.744884− i0.149292 0.00 + i0.00
0.07 0.775942− i0.079444 0.775942− i0.079436 0.00 + i0.00
0.14 0.788792− i0.065234 0.788793− i0.065234 0.00 + i0.00

and for a disturbance with frequency ω = 0.08× 2π, so that a comparison with the
bi-local stability results computed by De Tullio et al. is possible. A summary of the
parameters of this validation case, termed DT-2.5, is given in Table 3.10.

The base flow under investigation is visualised in Figure 3.7 using contours of
streamwise velocity. It clearly shows the mushroom-shaped low-velocity streak
induced by the roughness element, which is located at the centreline of the domain
and has width W = 6.0 and height h = 1.0, and a relatively undisturbed boundary
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3.3. Validation of COMPASS

Table 3.10. Parameters of the supersonic roughness wake validation case of De Tullio
et al. (2013).

Case Reference M Re ω Csuth

DT-2.5 De Tullio et al. 2.5 3300 0.08× 2π 110.4/273.15

0 2 4 6 8 10 12 14 16 18 20
0

2

4

z

y

Figure 3.7. Contours of streamwise velocity of the base flow De Tullio et al. (2013) at
x = 93.66.

layer further away from the roughness. The domain size is Lz = 20 in the spanwise
direction, in which periodic boundary conditions are assumed, and Ly = 16 in the
wall-normal direction, bounded by a solid wall at y = 0 and a quiet freestream at
y = 16. Note that the full wall-normal extent is not shown in Figure 3.7. The analysis
was performed with Nz = 140 grid points in the spanwise direction and Ny = 121

points in the wall-normal direction. The high-order FD method FD-q was used
with order q = 8 in the wall-normal direction, similar to De Tullio et al. (2013), to
reproduce their set-up as accurately as possible.

The spatial stability spectrum for ω = 0.08× 2π computed by COMPASS is shown in
Figure 3.8. In this figure also the digitised results reported in De Tullio et al. (2013)
are shown. Note that COMPASS finds a number of eigenvalues in a certain (specified)
region of interest and that only a single run was performed, with the region of
interest set near the most unstable eigenvalue. Therefore, the eigenvalues close to
the neutral line αi = 0 found by De Tullio et al. (2013) were not looked for, because
for the purpose of this validation only the most unstable eigenvalues are of interest.

It can be seen from Figure 3.8 that the two most unstable eigenvalues found by
COMPASS agree very well with the results of De Tullio et al. (2013). In fact, the most
unstable eigenvalue is found to have −αCOMPASSi = 0.148, compared to −αDT-2.5

i =

0.149 reported in the reference. This gives a relative difference of about 0.67%.
Also the two wake modes near (αr,−αi) ≈ (0.6, 0.06) that were reported by De
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Figure 3.8. Spectrum at x = 93.66 for F = 0.08. Black triangles are the digitised
results of De Tullio et al. (2013); red circles show the eigenvalues computed by
COMPASS.

Tullio et al. (2013) are found and accurately predicted by COMPASS. However, the
two modes near (αr,−αi) ≈ (1.6, 0.07), which were found to be Mack modes active
in the undisturbed boundary layer away from the roughness wake, seem to have
a relatively large difference between the computed growth rates. Why exactly the
growth rate of these two modes do not match between COMPASS and De Tullio et al.
(2013) is not known. Since the results presented here are grid-converged, this gives
an indication that there is a difference between the codes.

A comparison of the most unstable mode shapes shown in Figure 3.9, which shows
the velocity component mode shapes computed by COMPASS (Figures 3.9a, 3.9c and
3.9e) and the original work (Figures 3.9b, 3.9d and 3.9f). Note that the latter figures
show the mode shapes obtained using bi-local stability analysis as shaded contours
and mode shapes from DNS as black contour lines. It can be seen that the comparison
between the results from COMPASS and De Tullio et al. (2013) (the shaded contours)
is excellent.

From the comparison of the computed spectrum in Figure 3.8 and the mode shapes
in Figure 3.9, it can be concluded that COMPASS can accurately predict the bi-local
stability of the Mach 2.5 roughness wake of case DT-2.5.

42



3.3. Validation of COMPASS

8 10 12
0

1

2

3

4

z

y

(a)

8 10 12
0

1

2

3

4

z
y

(b)

8 10 12
0

1

2

3

4

z

y

(c)

8 10 12
0

1

2

3

4

z

y

(d)

8 10 12
0

1

2

3

4

z

y

(e)

8 10 12
0

1

2

3

4

z

y

(f)

Figure 3.9. Mode shapes of the three velocity components at x = 93.66 for
F = 0.08 (a,c,e), compared with the results of De Tullio et al. (2013, Fig. 12) (b,d,f).

43



3. COMPASS: Compressible Stability Analysis

Table 3.11. Parameters of the hypersonic roughness wake validation case of De
Tullio and Sandham (2015).

Case Reference M Re ω Csuth

DT-6.0-F0.06 De Tullio (2015) 6.0 8200 0.06× 2π 110.4/273.15
DT-6.0-F0.14 De Tullio (2015) 6.0 8200 0.14× 2π 110.4/273.15

Table 3.12. Comparison of the temporal growth rate of the most unstable mode,
computed by COMPASS and the linearised version of SBLI.

Case COMPASS Lin. SBLI Diff. (%)

DT-6.0-F0.06 0.01017 0.01021 −0.39
DT-6.0-F0.14 0.01349 0.01341 −0.60

3.3.4 Hypersonic roughness wake (M=6.0)

Another validation case of a compressible roughness wake case is performed to
increase the confidence in the code to accurately compute the stability of a highly
compressible flow. The base flow was obtained from DNS performed by De Tullio and
Sandham (2015). The analysis was performed at a streamwise location of x = 142.55

and for disturbances with frequencies ω = 0.06× 2π and ω = 0.14× 2π. A summary
of the parameters of this validation case, termed DT-6.0-F0.06 and DT-6.0-F0.14, is
given in Table 3.11. Besides the flow parameters, the set-up of the stability analysis
for cases DT-6.0-F0.06 and DT-6.0-F0.14, e.g. the domain size and differentiation
method, is the same as DT-2.5.

Comparisons are made between the results computed by COMPASS and computed by
the linearised version of SBLI, as mentioned earlier. The temporal evolution of the
streamwise velocity fluctuations and the associated growth rate for case DT-6.0-F0.06
is shown by Figure 3.10. Table 3.12 gives the temporal growth rate of the most
unstable mode for the two cases (DT-6.0-F0.06 and DT-6.0-F0.14) obtained with
COMPASS and the linearised version of SBLI. These results shows that the difference
between the growth rates computed with the two methods is well below 1% for both
cases.

The mode shapes of the streamwise velocity disturbances are shown in Figures 3.11
and 3.12, for which a good agreement can be observed. The excellent comparison
between the stability code COMPASS and the linearised version of SBLI, both for the
growth rate and the mode shapes, shows that COMPASS can be used to accurately
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|〉

Figure 3.10. Temporal evolution of the streamwise velocity fluctuations in the domain
for case DT-6.0-F0.06.
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Figure 3.11. Mode shapes of the streamwise velocity component at x = 142.55 for
F = 0.06, compared with the results computed by the linearised version of SBLI.

predict the linear instability at Mach numbers in the hypersonic regime.
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Figure 3.12. Mode shapes of the streamwise velocity component at x = 142.55 for
F = 0.14, compared with the results computed by the linearised version of SBLI.
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Chapter 4

Problem Definition
& Numerical Set-up

In this chapter the problem and numerical set-up of the following three chapters
will be discussed in detail. These three chapters — Chapter 5 (Roughness Receptivity
& Wake Instability), Chapter 6 (Stability Analysis of Roughness Wakes) and Chapter 7
(Roughness-induced Transition) — essentially share the same problem set-up, i.e. an
isolated roughness element at a certain distance from the leading edge of a flat plate
in a Mach 6 flow.

4.1 Geometry of the problem

A diagram of the geometry under consideration is shown in Figure 4.1. This figure
presents the (sharp) flat plate with an isolated roughness element, and shows the
extent of the two numerical domains that are used in the next chapters. Note that
this sketch is not to scale.

4.1.1 Numerical domain

Two different domains are used because of the nature of the simulations that have
been performed. In Chapter 5 (Roughness Receptivity & Wake Instability), boundary
layer receptivity and the initial linear growth of instabilities in the wake behind
a roughness element are investigated. Since these investigations are performed
in the near-field of the roughness element, a relatively small numerical domain
(domain B) around the element can be used. Chapter 6 (Stability Analysis of Roughness
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4. Problem Definition & Numerical Set-up

Wakes) is also concerned with the linear growth of instabilities in the wake near
the roughness element and will make use of the results computed in Chapter 5. It
will therefore also use domain B. Chapter 7 (Roughness-induced Transition) will deal
with the non-linear interactions and the eventual breakdown to turbulence of the
wake behind a roughness element. Because the full transition process is computed,
a longer numerical domain and a finer grid is required. This chapter will therefore
use domain A.

Domain A is the largest domain and has dimensions Lx × Ly × Lz = 300× 20× 50.
It is placed downstream of the leading edge of the plate, and does not encompass
the leading edge shock. The normalisation is such that the laminar boundary layer
profile at the inflow of this domain has a non-dimensional displacement thickness
δ0 of unity. Recall that the inflow displacement thickness is used as reference length
in the non-dimensionalisation. Domain B is much smaller and is essentially a subset
of domain A. Its dimensions are Lx × Ly × Lz = 150× 16× 20 and it is placed at a
streamwise distance of 16δ∗0 from the inflow of domain A. The resulting boundary
layer profile at the inlet of domain B has a displacement thickness of δ∗0 = 9.07. It
is noted that the numerical set-up of the current work is the same as the set-up
of De Tullio and Sandham (2012). They chose the wall-normal dimensions of the
two domains such that any reflection from the top boundary would hit the outflow
boundary without affecting the boundary layer inside the domain, and the spanwise
dimensions to allow for the development of a number of unstable smooth flat plate
first and second mode instabilities (De Tullio and Sandham, 2012).

4.1.2 Roughness element

An isolated roughness element is placed at the domain centreline at a streamwise
distance xr = x∗r/δ

∗
0 = 53.0 from the inflow of domain A or xr = 37.0 from the inflow

of domain B. The roughness elements investigated are continuous, i.e. described by
a smooth analytical function, such that a single-block body-fitted grid can be used,
and a variety of different roughness element shapes are considered.

Two elemental roughness shapes are considered: the smooth bump used in the work
of Redford et al. (2010) and a roughness shape with a more flattened top, using a
definition very similar to the roughness of Marxen and Iaccarino (2008). The former
roughness element is defined as

y0(x̃, z̃) = c1

(
tanh

(
r̃

c2
+ 1

)
− tanh

(
r̃

c2
− 1

))
, (4.1)

48



4.1. Geometry of the problem

D
om

ai
n

A

D
om

ai
n

B

k

x
r

L
z
/
2

δ∗ 0

y
x

z

is
ot

he
rm

al
w

al
l

ch
ar

ac
te

ri
st

ic
b.

c.

ex
tr

ap
ol

at
io

n
b.

c.

ch
ar

ac
te

ri
st

ic
b.

c.

Fi
gu

re
4.

1.
Pr

ob
le

m
se

t-u
p

an
d

co
m

pu
ta

tio
na

ld
om

ai
ns

us
ed

in
th

e
cu

rr
en

tw
or

k.

49



4. Problem Definition & Numerical Set-up

where y0 is the y-coordinate of the grid point at the wall. In this equation r̃ =√
x̃2 + z̃2, and x̃ and z̃ are the coordinates relative to the roughness centre. In these

equations c1 and c2 are defined as

c1 =
c3
2

(
1 + cos

(
j

Ny
π

))
(4.2a)

c2 =c4

(
1 + c5

j − 1

Ny − 1

)
, (4.2b)

with Ny the number of grid points in the wall-normal direction, j = 1, 2, ...,Ny and
the constants c3 = 0.6565, c4 = 2.28478 and c5 = 6. The constants are defined so as
to have a roughness height k = 1.0 and a frontal area Syz = 6.0.

The other roughness element shape is defined using a different function, that gives
direct control on the slope of the roughness element’s sides, its width and maximum
height. This function is:

y0(x̃) =
−k

2 tanh(SW
k )

[
tanh

(
S

k
(2x̃−W )

)
+tanh

(
S

k
(−2x̃−W )

)]
, (4.3)

where k is the roughness height at x̃ = 0 and W is defined as the distance between
the spanwise locations with the maximum slope. S is defined as S = cot (S∗)with S∗

in the range 0 < S∗ < π/2. The variable S∗ can be seen as a smoothness factor, which
controls the slope of the roughness sides. In the limit of S∗ → 0 the roughness will
become a sharp-edged element with 90◦ sides, such as the “pizza-box” roughness
element of De Tullio (2013), while for increasingly large values of S∗ the roughness
will become more smooth and bump-like. In the current work the smoothness factor
is set to S∗ = π/4 and W = 6.0, except where mentioned otherwise. Note that the
roughness type that follows from this formula will be called a flat-top roughness
element hereafter.

The effect of the parameters k, S and W in the flat-top roughness definition on the
shape of the roughness is evident in Figure 4.2. From this figure it is evident that
the three parameters have an almost independent effect on the roughness profile:
parameter k has an effect on the maximum height of the roughness, but does not
significantly change the angle of the roughness sides; parameter S∗ changes the
smoothness, i.e. the angle of the roughness sides, but not the maximum height or
width; parameter W changes the width of the roughness element without affecting
the height or smoothness.

Flat-top roughness elements with different planform shapes can be obtained by
combination or modification of this roughness function. For example, y0(r̃) with the
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Figure 4.2. Effect of parameters k, S and W in the flat-top roughness definition on
roughness shape.

radius from the roughness centre r̃ =
√
x̃2 + ỹ2 will result in a cylindrical roughness

element. The product of y0(x̃) and y0(z̃), with x̃ and z̃ being the streamwise and
spanwise coordinates relative to the roughness centre, will yield a roughness element
with a square planform. Rotating the flat-top square 45◦ and scaling its width
by a factor of

√
2 yields the flat-top roughness element with a diamond-shaped

planform. Cylindrical flat-top roughness elements with height k = 1.0 and k = 0.5

are visualised in Figure 4.3.

An additional type of roughness element, namely ramped up or ramped down, has
also been investigated. These roughness elements are a combination of the smooth
bump and flat-top definition in the streamwise direction, while the flat-top definition
is used in the spanwise direction. The ramp-up case is defined as a smooth bump
element (with c4 = 6.85434) for x̃ ≤ 0 and flat-top element for x̃ > 0, and vice versa
for the ramp-down case.
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4. Problem Definition & Numerical Set-up

Three-dimensional visualisations of the different roughness elements introduced in
this section are shown in Figure 4.3.

4.2 Numerical set-up

4.2.1 Boundary conditions

The boundary conditions that are used in the current work are indicated in the sketch
in Figure 4.1. Isothermal no-slip boundary conditions are set at the wall in domain
A and B. The temperature is fixed to the adiabatic wall temperature Tad unless stated
otherwise. In the spanwise direction periodic boundary conditions are applied. At
the top and outflow boundaries, characteristic boundary conditions (Sandhu and
Sandham, 1994) are applied to minimise unwanted reflections into the domain.

At the inlet of domain A, the flow is initialised with a compressible laminar boundary
layer similarity solution and a pressure extrapolation boundary condition is applied.
In the subsonic region of the boundary layer, this boundary condition computes the
conservative flow variables by linearly extrapolating the pressure from within the
domain, while in the supersonic region the inflow is fixed. The inflow boundary
condition of domain B is the same as the inlet of domain A, but the initial compressible
boundary layer profile is different, since boundary layer growth is accounted for.

The growth of the laminar displacement thickness (δ∗) and the boundary layer thick-
ness (δ99) in the streamwise direction is derived using the Illingworth transformation
in White (1991):

δ∗(x∗)

δ∗0
=∆

√
2

Rex̄∗

(
Reδ∗0
2∆2

+
x∗

δ∗0

)
, (4.4a)

δ99(x
∗)

δ∗(x∗)
=
∆99

∆
, (4.4b)

where

Rex̄∗ =
1

2

(
Reδ∗0
∆

)2

+Reδ∗0
x∗

δ∗0
. (4.5)

Note that x̄∗ is the dimensional streamwise coordinate in a reference frame positioned
at the flat plate leading edge. The scaling factors ∆ and ∆99 vary with Mach number
and wall temperature, and are set to ∆ = 9.071 and ∆99 = 11.858 for the hot-wall
cases (with adiabiatic wall temperature Tw = 7.02), and ∆ = 6.183 and ∆99 = 9.037

for the cooled-wall (Tw = 3.50) case in the current work.
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Figure 4.3. Three-dimensional visualisations of the roughness elements in the nu-
merical simulations: (a) smooth bump; (b) flat-top; (c) flat-top with k = 0.5; (d)
ramp-up; (e) ramp-down; (f) flat-top with width W = 3.0.
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4.2.2 Freestream and boundary layer disturbances

In Chapter 5 (Roughness Receptivity & Wake Instability) the receptivity of the boundary
layer near a roughness element is investigated. To analyse how different upstream
perturbations influence the receptivity process, three different types of inflow dis-
turbances are considered: acoustic (type A), vortical (type V) and entropy (type Æ)
disturbances.

The different types of disturbances are defined as variations of the following generic
function:

ψ(x, t) = a
(
1− e

(
−yp/gl

)) M∑
m=0

N∑
n=1

cos (βmz + φm) cos (ωnt+ φn) , (4.6)

where a is the amplitude of the perturbation, andM = 6 andN = 16 are the number
of spanwise modes and temporal frequencies respectively. Random phases φ are
introduced to avoid spurious high amplitude peaks in the forcing signal which
might trigger undesired local non-linearities. The term fd := 1 − exp

(
−yp/gl

)
,

with coefficients g, p and l, is a damping function to control the location where the
disturbances are introduced. The coefficients in the damping function are set to
g = 1.0, p = 3.0 and l = 1.0 such that disturbances are imposed inside the boundary
layer. Note that an additional damping function is employed near the top boundary
of the domain to drive the forcing function to zero.

The three types of disturbances are then formed obtained from the forcing function
ψ as follows:

Type A ρ′(x, t) = ψ(x, t); u′=v′= w′=T ′=0

Type V v′(x, t) = −∂ψ(x, t)/∂z; w′(x, t) = ∂ψ(x, t)/∂y; u′=ρ′=T ′=0

Type Æ T ′(x, t) = ψ(x, t); u′=v′=w′=ρ′=0

Note that disturbance type V results in a divergence free velocity disturbance field
at the inflow boundary. In Chapter 5 (Roughness Receptivity & Wake Instability) these
disturbances are applied at the inlet boundary of domain B by superimposing them
onto the specified inflow profile.

In Chapter 7 (Roughness-induced Transition) the effect of the roughness element on the
transition behaviour is investigated. For these cases a different upstream forcing is
used in the freestream that mimics freestream acoustic noise. Acoustic disturbances
are placed far outside of the boundary layer, upstream of the roughness element,
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and have the following form:

ρ′(x, t) = ψ(x, t) = a e−r2f

M∑
m=0

N∑
n=1

cos (βm z + φm) sin (ωn t+ φn) (4.7)

with amplitude a and rf =
√

(x− xf )
2 + (y − yf )

2. The forcing function is essen-
tially a line source with forcing radius rf , placed at a streamwise and wall-normal
position xf = 12.0 and yf = 6.0. The acoustic source is of broadband nature with
M = 20 spanwise modes and N = 20 temporal modes. Contrary to the type A, V,
Æ disturbances used in Chapter 5 (Roughness Receptivity & Wake Instability), that are
applied as boundary conditions at the domain inflow, the acoustic disturbances in
Chapter 7 (Roughness-induced Transition) are generated by adding the forcing term ρ′

to the continuity equation in the DNS code.

Note that in the forcing functions given by Equation (4.6) and Equation (4.7), the
spanwise wavelength is defined as βm = 2πm/Lz and frequency ωn = 2π nF0 with
F0 = 0.02.

4.2.3 Computational grid

In order to ensure sufficient grid points at specific regions of the flow, e.g. near
the roughness element or the point of transition, while keeping the computational
expense at a minimum, the numerical grids in the current work are stretched in
the streamwise and spanwise directions. The stretched grids consist of regions of
constant grid spacing that are connected by ninth-order polynomials, such that the
overall stretching function is at leastC4 continuous and the fourth-order differencing
routine in the DNS code does not encounter any difficulties with discontinuities.
This polynomial stretching approach is illustrated in Figure 4.4.

To ensure that the boundary layer is sufficiently resolved, the grid is also stretched
in the wall-normal direction. The stretching function between the computational
uniform grid (0 < η < 1) and the physical non-uniform grid (y0 < y < Ly) is given
by

y = y0 + (Ly − y0)
sinh (byη)

sinh (by)
, (4.8)

where by is a stretching factor. In this equation, y0 is the coordinate of the first grid
point at the wall.

The grid stretching in the streamwise and wall-normal direction employed for the
transition study can be seen Figure 4.5, which shows a portion of the numerical grid
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Figure 4.4. High-order polynomial grid stretching between regions of constant grid
spacing. (Diagram reproduced from De Tullio (2013))
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Figure 4.5. Numerical grid used in the transition study (shown every 10th grid line),
indicating the streamwise and wall-normal grid stretching.

of domain A. It demonstrates that the grid in the vicinity of the roughness element
is considerably finer. Note that only every 10th grid line is shown in this figure.

Because body-fitted grids are used in the current work, grid lines around the rough-
ness elements will not be perpendicular to each other and will introduce skewed cells.
These skewed grid lines can introduce a locally non-physical solution or numerical
grid-to-grid point oscillations that can affect the rest of the flow and invalidate the
computed results. It is therefore important that the roughness elements, introduced
earlier in this chapter, are smooth and have a relatively slow-varying geometry,
i.e. the slopes of the roughness elements are not too steep. It has been found that the
DNS code used in the current work can correctly handle grids with angles at least
down to 30 deg[1], with 90 deg being a standard Cartesian grid. The slopes of the
roughness elements have been limited to maximum 45 deg by the choice of an ap-
propriate smoothness factor S∗ in Equation (4.3). A close-up of a typical body-fitted
grid near a flat-top roughness element is shown in Figure 4.6.

[1]Chris Tyson, University of Southampton (private communication, 2013)
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Figure 4.6. Close-up of the centreline body-fitted grid around a flat-top roughness
element used in the transition study.

Table 4.1. Details of the computational grids. The values of ∆x for the cases with
roughness indicate the grid spacing upstream, near the roughness and downstream.
The values of ∆z indicate the grid spacing near the roughness centreline and the
domain edges.

Case Nx Ny Nz by ∆x ∆z

Domain A 2415 205 468 3.40 [0.15, 0.05, 0.135] [0.04, 0.15]
Domain B 949 205 209 3.19 [0.20, 0.06, 0.20] [0.05, 0.20]

Domains A and B in Figure 4.1 are used for investigating different phenomena,
respectively transition to turbulence and receptivity of a laminar boundary layer,
and therefore are discretised using different grids. The study of transition and the
eventual breakdown to turbulence in Chapter 7 is performed at a higher Reynolds
number than the receptivity study in Chapter 5 and thus requires a much finer grid.
The details on the grid spacing and resulting number of grid points in domain A
and B are given in Table 4.1

The grid spacing used in the current work, and given in Table 4.1, is taken to be
at least as fine as the simulations of De Tullio (2013), who used a very similar
numerical set-up (except the roughness element shape) and performed an extensive
grid convergence study. In order to increase the confidence in the current set of
simulations, another grid convergence study has been performed to confirm that the
results are grid-independent.

The flow around the cylindrical flat-top element is simulated in Domain B, i.e. case
Cyl in Chapter 5 (Roughness Receptivity & Wake Instability), on the reference grid
given in Table 4.1 and on a finer grid with

(∆x)fine = 75% (∆x)ref. = [0.15, 0.045, 0.15] (4.9a)
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Figure 4.7. Comparison of the recirculation regions computed on the reference and
fine grid.
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Figure 4.8. Comparison of the roughness wake structure at x = 120.0, visualised by
contours of wall-normal shear stress, computed on the reference and fine grid.

(∆z)fine = 75% (∆z)ref. = [0.0375, 0.15] . (4.9b)

Also the number of wall-normal grid points was increased from 205 to 240, resulting
in a fine grid with [Nx,Ny,Nz] = [1264, 240, 278] grid points.

Figure 4.7 shows the recirculation regions near the cylindrical flat-top roughness ele-
ment for both the reference and fine cases. This figure shows the excellent agreement
of the flow near the roughness element. Also further downstream the agreement
is excellent between the results on the reference and fine grid, as demonstrated by
Figure 4.8 which shows contours of wall-normal shear stress at x = 120.0. These
two figures prove that the reference grid can accurately resolve the flow and yield
grid-independent results.

4.2.4 Flow parameters

The flow parameters, like Mach numberM and Reynolds numberRe, for the different
simulations in Chapter 5 (Roughness Receptivity & Wake Instability) and Chapter 7
(Roughness-induced Transition) will be defined at the beginning of those chapters.
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4.2.5 Sensitivity to the viscosity law

Throughout this work, Sutherland’s law (see Equation (2.8)) is used to compute the
dynamic viscosity. By this definition, the viscosity of the fluid is assumed to be
solely dependent on the local temperature and Sutherland’s law constant S∗, in the
form of a temperature. This reference temperature is taken to be S∗ = 110.4K and is
non-dimensionalised using the reference temperature in the freestream (in this work
taken to be T ∗

r = 273.15K). The reference values used in the current work are taken
to match previous numerical simulations, but do not correspond to any wind tunnel
experiment, for which the freestream temperature would generally be much lower.
Since Kimmel and Poggie (2000) noted that the stability of a compressible boundary
layer is dependent on the absolute (total) temperature, the computations and results
in this work might be expected to be dependent on the particular choice of T ∗

r . The
sensitivity of numerical computations of high-speed boundary layer instability and
transition to the non-dimensional Sutherland’s law constant S = S∗/T ∗

r has not yet
been quantified to the author’s knowledge.

The sensitivity of the instability growth of the two-dimensional Mack mode in a
Mach 6.0 boundary layer with Reδ∗0 = 20000 and hot-wall conditions has been
studied using COMPASS for a range of values of the non-dimensional Sutherland’s law
constant S by keeping S∗ = 110.4K constant and varying the freestream reference
temperature T ∗

r . Note that this case is similar to case SAN-6 in Chapter 3 (COMPASS:
Compressible Stability Analysis), but not the same due to a differently chosen adiabatic
wall-temperature, and should thus not be compared to each other.

Figure 4.9 shows the resulting boundary layer mean profiles of streamwise velocity
and temperature, and clearly shows that they are not very sensitive to the reference
temperature. Figure 4.9 also shows the streamwise velocity profile of the resulting
Mack mode, which is the most unstable two-dimensional instability mode. From this
figure it can be clearly seen that the resulting Mack mode profile is highly dependent
on the freestream reference temperature. For lower temperatures the near-wall peak
becomes fuller and the secondary peaks near y ≈ 1.0 and y ≈ 1.3 become stronger.

The change in reference temperature also has a significant effect on the growth rate
of the Mack mode, as indicated by Figure 4.10. For temperatures T ∗

r > 200K the
difference in growth rate is limited to a few percent. However, for colder reference
temperatures, the growth rate rapidly increases with decreasing temperature. For
example, the Mack mode growth rate at a freestream temperature of 55.2K, which
is a realistic value for hypersonic wind tunnel experiments, is approximately 43%

59



4. Problem Definition & Numerical Set-up

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

u

y

0 2 4 6 8
0

0.5

1

1.5

2

2.5

T

y

T ∗
r = 273.15 K

T ∗
r = 216.65 K

T ∗
r = 110.40 K

T ∗
r = 73.60 K

T ∗
r = 55.20 K

Figure 4.9. Sensitivity of the Mach 6.0 boundary layer profile (dashed) of streamwise
velocity (left) and temperature (right), and the Mack mode streamwise velocity profile
(solid; left) to the absolute reference temperature T ∗
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Figure 4.10. Sensitivity of the Mack mode temporal growth rate to the absolute
reference temperature T ∗

r .

higher than at the reference temperature used in the current work, i.e. 273.15K.
Therefore, one should be careful in comparing results from wind tunnel experiments
with data extracted from the current work.
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4.3 Provision of DNS data

The data obtained from the DNS, used for the analysis of the results in the current
work, has been made publicly available. The access procedure, the complete descrip-
tion of the structure of the database and the specifications of the data formats are
discussed in Appendix B (DNS Database).
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Chapter 5

Roughness Receptivity
& Wake Instability

In this chapter the receptivity of a boundary layer near roughness elements and
the linear instability of the resulting roughness wake is investigated. The effect of
different freestream disturbance types, roughness shape and wall temperature is
studied. A similar study was performed by De Tullio and Sandham (2012) using
a single sharp-edged roughness element. In this work a large number of different
roughness element shapes are used.

5.1 Case details

The details of the different cases carried out for the current study on roughness re-
ceptivity and wake instability are provided in Table 5.1. A single naming convention
is used in both the current chapter and Chapter 6 (Stability Analysis of Roughness
Wakes) since they deal with the same simulations. The naming convention is centred
around the type of roughness element, as it is the primary aspect that distinguishes
the different cases. Six different roughness elements, characterised in Chapter 4
(Problem Definition & Numerical Set-up), are investigated: a smooth bump (Bump),
three flat-top elements with cylindrical (Cyl), square (Square) and diamond-shaped
(Diam) planform shapes, and roughness elements with an upward (R-Up) and down-
ward (R-Down) ramp. A flat plate case without roughness element (Plate) is used
as a baseline case for comparisons.

The effect of the freestream disturbance type on the roughness receptivity is investi-
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Table 5.1. Cases details of the simulations in the roughness receptivity and wake
instability study.

Case M Re Rek Tw Disturbance Geometry

Bump 6.0 8200 331 7.02 type A smooth bump
Cyl (-A) 6.0 8200 331 7.02 type A flat-top (cyl.)
Cyl-V 6.0 8200 331 7.02 type V flat-top (cyl.)
Cyl-Æ 6.0 8200 331 7.02 type Æ flat-top (cyl.)
Cyl-T0.5 6.0 4135 331 3.50 type A flat-top (cyl.)
Square 6.0 8200 331 7.02 type A flat-top (square)
Diam 6.0 8200 331 7.02 type A flat-top (diamond)
R-Up 6.0 8200 331 7.02 type A ramp-up
R-Down 6.0 8200 331 7.02 type A ramp-down
Plate 6.0 8200 – 7.02 type A flat plate

gated by comparing the results of the cylindrical flat-top cases with disturbances of
type A (Cyl-A), type V (Cyl-V) and type Æ(Cyl-Æ). Note that in all other cases type
A disturbances were introduced. As explained in Chapter 4 (Problem Definition &
Numerical Set-up), the disturbances are imposed at the inflow boundary and have
an amplitude of a = 2 × 10−6 in the current chapter, which is small enough to
yield linear disturbance growth. The baseline wall temperature is set to a hot wall,
i.e. adiabatic wall temperature Tw = Tad. A cylindrical flat-top roughness case with
a reduced wall temperature (Tw = 0.5Tad = 3.5) is included (Cyl-T0.5) to study the
effect of a cold wall condition on the receptivity and wake instability.

For all of the hot-wall simulations, the Mach number is M = 6.0 and the Reynolds
number, based on the displacement thickness of the laminar boundary layer at the
inflow, is Re = 8200. For the cold-wall case the Reynolds number based on inflow
displacement thickness is set toRe = 4135, such that the roughness Reynolds number
Rek, based on the roughness height and computed using the flow parameters in
the surrounding laminar boundary layer at this height, is the same for the hot-wall
and cold-wall cases. The height of the roughness elements in the current chapter
is set to k = 1.0. Since the height of all roughness elements is the same, also the
roughness Reynolds numbers are identical (Rek = 331). The details of the grid used
in the simulations of the current chapter is given in Table 4.1 (Domain B).
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5.2 Analysis of the roughness-modified base flow

To study the effect of the roughness element on boundary layer receptivity and the
instability of its wake, the differences between the flat plate boundary layer and
roughness-induced modifications of the base flow should be understood. In order to
highlight the modifications induced by the roughness element, which will determine
the stability characteristics of the laminar flow, the steady-state laminar base flow
around the roughness elements is analysed and compared with the flow over a
smooth flat plate without roughness.

5.2.1 Effect of roughness shape

One of the primary effects of an obstacle, like a roughness element, encountering a
supersonic flow is the formation of shock waves, which are not present in the case
of a flat plate boundary layer. Figure 5.1 shows the boundary layer, visualised by
streamwise velocity at the roughness centreline, over the six different roughness
elements (with hot wall conditions). Black contours of negative ∇ · u show shock
waves that are generated by the coalescence of compression waves originating from
the roughness element. Except in the case of cases R-Up and R-Down, two oblique
shock waves can be seen to be present: one originating from the front of the rough-
ness and another originating from the aft section. The slowly-varying geometry
of the upward and downward ramps prevent the generation of a rapid succession
of compression waves and the subsequent coalescence into shocks. In cases R-Up
and R-Down, a single shock is present originating from the aft and front section
respectively. It can be seen that the angles of the shocks are similar for all cases. This
is because the height of the roughness elements are the same and only the top part
of the different roughness elements (which are quasi shape-independent) encounter
supersonic flow, so that the planform shape of the roughness elements does not play
a large role in the shock patterns. The Mach number at the roughness element height
in the undisturbed boundary layer is Mk = 1.78.

A closer view of the flow around the different roughness elements, and in partic-
ular of the induced recirculation/separation regions, is shown in Figure 5.2 using
contours of wall-normal velocity and of small negative velocity to indicate the flow
recirculation. A table with the lengths of these regions is shown in Table 5.2, from
which a more quantitative comparison can be drawn.

The generation of recirculation regions and their lengths can be seen to be highly
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Figure 5.1. Contours of streamwise velocity u for the different roughness elements.
Recirculation regions are shown as red contours of u = −10−4 and and the separation
and reattachment shocks are visualised using black contours of negative ∇ · u.
(a) Bump; (b) Cyl; (c) Square; (d) Diam; (d) R-Up; (f) R-Down
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Figure 5.2. Contours of wall-normal velocity v around the different roughness
elements. Recirculation regions are shown as red contours of u = −10−4. (a) Bump;
(b) Cyl; (c) Square; (d) Diam; (d) R-Up; (f) R-Down
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Table 5.2. Length of the front and aft recirculation regions around the different
roughness elements.

Case Lfront
sep Laft

sep

Bump 1.6 5.6
Cyl 3.9 9.7
Square 4.8 10.1
Diam 2.8 8.4
R-Up – 9.6
R-Down 4.9 –
Cyl-T0.5 3.4 7.5

dependent on the roughness element shape. The recirculation regions around the
smooth bump are considerably smaller than in the case of the flat-top roughness
elements. The upstream region is approximately 59% smaller and the downstream
region approximately 42% smaller than the regions around the cylindrical flat-top
element. These regions are also much thinner than in the case of the flat-top element,
as illustrated by Figure 5.2. This behaviour is expected, since the flow around the
smooth bump does not encounter an abrupt change in geometry. The recirculation
zones around the cylindrical, square and diamond-shaped flat-top roughness el-
ements are qualitatively similar and have approximately the same thickness, but
varying separation lengths. Between these three roughness elements, case Diam has
the shortest recirculation zones, both upstream and downstream. The cylindrical
element has regions of separation that are 39% (upstream) and 15% (downstream)
larger, while case Square has the largest upstream and downstream separation
lengths, i.e. respectively 71% and 20% larger than for case Diam. The ramps in cases
R-Up and R-Down can be seen to completely prevent flow separation due to the
slowly-varying ramp geometry. They do not have a significant impact on the recircu-
lation lengths on the opposite side of the ramp, i.e. the separation length upstream
of roughness element with downward ramp (case R-Down) is approximately the
same as the no-ramp case Square and the recirculation region downstream of the
ramped-up element (case R-Up) has roughly the same length as case Square.

Pairs of counter-rotating streamwise vortices are generated by the roughness ele-
ments, which generate a wake consisting of a low-speed streak at the centreline
flanked by a pair of high-speed streaks due to the lift-up mechanism (Landahl,
1980). The vortices transport low-momentum fluid away from the wall and high-
momentum fluid towards the wall, yielding the low-speed and high-speed streaks
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respectively. Regions of high shear stress, both wall-normal and spanwise shear, are
generated in the roughness wake. Figure 5.3 shows contours of wall-normal shear
∂u/∂y (left) and spanwise shear ∂u/∂z (right) at x = 60. It shows that the structure of
the shear layers generated behind the different roughness elements is essentially the
same in all cases. High levels of wall-normal shear are present away from the wall
(y ≈ 1.5− 2.0) at the roughness centreline as a detached shear layer, and close to the
wall away from the centreline (at approximately z = zr ± 7.5− 8.0). High levels of
spanwise shear can be observed away from the centreline. The spanwise position of
these high-shear regions is dependent on the location of the generated streamwise
vortices and therefore the shape of the roughness elements.

Besides the location of the high-shear regions, the strength is highly dependent on
the roughness element. As can be seen in Figure 5.3, the smooth bump roughness ele-
ment generates considerably weaker shear layers than the other roughness elements.
The flat-top roughness elements with cylindrical, square and diamond planform
shapes have very similar levels of shear stress, with only the spanwise position of the
shear stress different: closest to the centreline for case Diam, and furthest away for
case Square. The case with an upward ramp case R-Up has a very similar structure
of the shear layers than the no-ramp case Square, both in position and shape of the
high-shear regions. However, the level of the shear stress behind this ramped-up
roughness element is lower than the element without ramp. It has been observed that
the upward ramp yields considerably lower levels of streamwise vorticity, resulting
in lower levels of shear and thus a weaker roughness wake. The roughness element
of case R-Down generates considerably lower levels of wall-normal shear stress and
the detached shear layer is weaker. The levels of spanwise shear are comparable to
case R-Up however, although these high-shear regions are differently shaped and
seem to be located further away from the roughness centreline.

This behaviour is also observed in more detail in Figure 5.4, which shows the max-
imum shear stress along the domain for all the hot-wall cases. For x ≥ 60 the
wall-normal shear stress, shown in Figure 5.4a, is similar for cases Cyl, Square and
Diam, although the former has a value that is approximately 10% higher (computed
at x = 60.0) than the latter two. Both the ramp-up and ramp-down cases reach much
lower shear stress values, even though the differences between these cases decrease
further downstream. The smooth bump generates significantly lower values of
wall-normal shear stress. The spanwise shear stress, shown in Figure 5.4b, generally
follows the same trend. However, the spanwise shear stress behind case Diam now
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Figure 5.3. Contours of wall normal shear ∂u/∂y (left) and spanwise shear ∂u/∂z
(right) at x = 60 for the hot-wall roughness cases. Contour levels are plotted every
∆∂u

∂y = 0.10 and ∆∂u
∂z = 0.05 starting from zero. (a) Bump; (b) Cyl; (c) Square;

(d) Diam; (d) R-Up; (f) R-Down
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Figure 5.4. Maximum shear stress along the domain for the hot-wall roughness
cases.

follows case Cyl, while the square flat-top element has slightly lower values. Both
the upward and downward ramps decrease the generated spanwise shear, and also
the smooth bump has a considerably weaker wake.

In summary, the different flat-top roughness elements have fairly similar levels of
(wall-normal) shear stress in the roughness wake, and the change in planform has
mainly an influence of the spanwise location of the high-shear regions. The upward
ramp slightly reduces the creation of streamwise vorticity and results in a slightly
weaker roughness wake compared to the no-ramp case. The downward ramp allows
the detached shear layer to weaken considerably, while minimally affecting the
generated spanwise shear stress compared to the ramped-up case. Both the ramp-up
and ramp-down cases result in lower levels of shear stress. The smooth bump does
not yield a very strong roughness wake, and the levels of shear are considerably
lower than for the other roughness elements.

5.2.2 Effect of wall cooling

The effect of wall cooling on receptivity near a roughness element is studied by
considering case Cyl-T0.5 and comparing it to the corresponding hot wall baseline
case Cyl. The effects of wall cooling on the laminar base flow need to be understood
to correctly interpret its effect on the stability characteristics of the roughness wake.

Figure 5.5 shows the recirculation regions as red contour lines around the cold-wall
cylindrical flat-top roughness element on top of contours of wall-normal velocity.
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Figure 5.5. Contours of wall-normal velocity v around the cold-wall flat-top rough-
ness case Cyl-T0.5. Recirculation regions are shown as red contours of u = −10−4.
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Figure 5.6. Contours of wall normal shear ∂u
∂y (left) and spanwise shear ∂u

∂z (right) at
x = 60 for the cold-wall roughness case Cyl-T0.5. Contour levels are plotted every
∆∂u

∂y = 0.10 and ∆∂u
∂z = 0.05 starting from zero.

By comparing this figure with its hot-wall counterpart in Figure 5.2, it can be seen
that the separation lengths are considerably smaller. The lengths of the front and aft
recirculation lengths, computed at the roughness centreline and given in Table 5.2,
are respectively 13% and 23% smaller for the cold-wall case. This can be understood
as the increased resistance to separation of a boundary layer with increased shear
stress.

Contours of wall-normal and spanwise shear stress behind cylindrical flat-top ele-
ment with a cooled wall are shown Figure 5.6. By comparison to Figure 5.3, it can be
seen that the structure of the high-shear regions is very similar, but that the levels of
shear stress generated by the roughness element with wall cooling are lower than in
the case with hot-wall conditions, in particular for the detached shear layer at the
roughness centreline away from the wall. Wall cooling seems to have a stabilising
effect on the shear layers of the roughness wake.
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5.3 Boundary layer receptivity

In this section the growth of boundary layer instabilities in the vicinity of the rough-
ness elements is investigated.

5.3.1 Characterisation of disturbances

The post-processing method used to characterise the boundary layer disturbances in
this section is the same as De Tullio and Sandham (2012, 2015) and full details can
be found in that reference. A very short summary is given here.

The behaviour of disturbances in the flow field is dependent on their frequency.
The time-dependent flow fields, computed by the DNS, are therefore transformed
from the temporal space into Fourier space using the discrete Fourier transform
algorithm. The flow field is thus decomposed into its frequency components with
non-dimensional frequencies F = f∗δ∗0/U

∗
∞. The flow is also Fourier transformed

in the spanwise spatial direction, resulting in a collection of spanwise modes with
spanwise wavenumbers kz . The discrete Fourier transform equation that is used for
the transformation from physical to Fourier space is:

ŝη,ξ(x, y) :=
2

LJ

J−1∑
j=0

L−1∑
l=0

s(x, y, zl, tj)e
−2πi η

J
je−2πi ξ

L
l, (5.1)

η = 0, 1, . . . , J − 1 and ξ = 0, 1, . . . ,L− 1,

where J and L are the total temporal and spatial samples and s = [ρ,u, v,w,T ].
The indices η and ξ represent respectively the discretised frequencies and spanwise
wavenumbers.

The amplitude of a disturbance of a certain frequency in the boundary layer is
obtained by summing the amplitude of the spanwise Fourier modes |ŝη,ξ|(x, y), and
the overall boundary layer response is given by integrating this amplitude over the
wall-normal extent of the boundary layer, defined by the boundary layer thickness
δ99, i.e.

〈|ŝ|〉(x) :=
∫ δ99

0

+M∑
ξ=−M

|ŝη,ξ|(x, y) dy. (5.2)

5.3.2 Flat plate stability

Before investigating the instability of the roughness wake cases, the linear stability of
the flat-plate boundary layer is analysed using COMPASS and DNS. The base profiles
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Figure 5.7. Temporal stability map of the flat plate at x = 0.0, depending on spanwise
and streamwise wavenumber, shown by contours of temporal growth rate.

used for the linear stability analysis are taken from the DNS results of case Plate.

Figure 5.7 shows the temporal stability map of the Mach 6.0 flat plate boundary layer
with Reynolds number Re = 8200, computed by COMPASS, and gives an indication
of the most unstable boundary layer modes. Two distinct peaks in the temporal
growth rate can be observed: a two-dimensional disturbance with a high streamwise
wavenumber (α = 1.87, β = 0.0) and a three-dimensional disturbance at a lower
streamwise wavenumber (α = 0.36, β = 0.74). The temporal growth rate of this
two-dimensional mode is ω2D

i = 0.0238, while the three-dimensional oblique mode
has a growth rate that is approximately three times lower, i.e. ω3D

i = 0.0083. The
boundary layer can be seen to be stable for two-dimensional disturbances with
streamwise wavenumbers of 1.0 / α / 1.5 and α ' 2.2.

The eigenfunctions of the streamwise velocity and temperature disturbance of these
two most unstable modes are given in Figure 5.8. From Figure 5.8a, which shows
the three-dimensional mode, it can be seen that the peak fluctuations occur near
the edge of the boundary layer and a second lower-amplitude peak occurs close
to the wall. This mode is an oblique first-mode. The phase speed of this mode is
cph = 0.84, which is near the slow acoustic mode travelling at cph = 1− 1

M = 0.83̄.
The eigenfunctions shown in Figure 5.8b demonstrate that the most unstable mode is
a two-dimensional Mack mode, and has a phase speed of cph = 0.93. The frequency
(or in this case the streamwise wavenumber) of the Mack mode is dependent on the
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Figure 5.8. Eigenfunction of the most unstable flat-plate instability modes, nor-
malised by its maximum value. Dashed lines show the streamwise velocity profile
of the boundary layer.

boundary layer thickness, illustrated by Figure 5.9. This figure shows the stability
map for two-dimensional modes (i.e. β = 0.0) along the flat plate. The streamwise
wavenumber of the most unstable two-dimensional Mack mode ranges fromα = 1.87

near the beginning of the domain and α = 1.02 near the end, while the neutral line
for the first mode does not show such a strong decay.

Gaster’s transform (Gaster, 1962) yields a relation between spatial and temporal
instabilities in the limit of small growth rates, and can thus be used to compute the
temporal frequency of the neutral curve, which gives information on the frequencies
expected to be unstable in the spatial DNS. Gaster states that within the neutral curve,
the real part of the spatial wavenumbers and temporal frequencies are approximately
the same, i.e.

ω
spatial
r ≈ ω

temporal
r (5.3a)

α
spatial
r ≈ α

temporal
r (5.3b)

At x = 0.0 and for two-dimensional modes, this would result in the first mode having
an unstable envelope up to ωr ≈ 0.77 (or F ≈ 0.12), while the two-dimensional Mack
mode is unstable between ωr ≈ 1.40 (or F ≈ 0.22) and ωr = 2.02 (or F ≈ 0.32).
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Figure 5.9. Temporal stability map, showing contours of ωi, of two-dimensional
modes along the flat plate.

The spatial growth of disturbances in the flat-plate boundary layer computed from
the DNS, i.e. the results from case Plate, are shown in Figure 5.10. It shows that
the disturbances with low frequencies have the largest disturbance amplitude in
the boundary layer. Up to x ≈ 20, the boundary layer instabilities are developing
from the imposed inflow disturbances, and from that point onwards, exponential
instability growth is obtained for most of the frequencies. At x ≈ 20, the frequencies
up to F = 0.14 are unstable, while the disturbances with F = 0.16 − 0.20 are
stable and decay. This is in agreement with the linear stability predictions discussed
in the previous paragraph. The small discrepancy between the envelope limit of
the first mode instability is most likely due to non-parallel effects which are not
taken into account by the linear stability analysis. While the disturbances with
low frequencies remain stable throughout the domain, the instabilities with higher
frequencies, i.e. F = 0.16− 0.20, go through a region of strong instability grow and
subsequent decay along the domain. This is consistent with the instabilities at these
frequencies being Mack modes, which were shown in Figure 5.9 to have narrow
unstable envelope that moves from high spatial wavenumbers to lower wavenumbers
along the domain.

5.3.3 Receptivity near roughness elements

Interaction of different disturbance types Cases with different disturbance types
have been run to see how the interaction of these disturbances with the roughness
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|〉

F = 0.02

F = 0.04

F = 0.06

F = 0.08

F = 0.10

F = 0.12

F = 0.14

F = 0.16

F = 0.18

F = 0.20

Figure 5.10. Amplitudes of the full spectrum of u′ disturbances inside the boundary
layer for the flat-plate case Plate.

element and the resulting roughness wake differs from each other. Figure 5.11 shows
the evolution of u′ disturbances in the boundary layer of cases with type A (Cyl-A),
V (Cyl-V) and Æ (Cyl-Æ) disturbances for F = 0.06 and F = 0.16.

Upstream of the roughness element, slight disturbance growth occurs at both fre-
quencies when type A disturbances are imposed. For type Æ disturbances, no
disturbance growth occurs inside the boundary layer at F = 0.06, while the dis-
turbances experience initial decay (x / 20) and subsequent growth (20 / x / xr)
at F = 0.16. Downstream of the roughness element the behaviour of cases Cyl-A
and Cyl-Æ is qualitatively the same, and the boundary layer disturbances grow at a
similar rate at both frequencies. The amplitudes of the disturbances are one order of
magnitude lower for type Æ disturbances however. When type V perturbations are
imposed (case Cyl-V) the behaviour is completely different, and another receptivity
mechanism seems to be active. Initially, upstream of the roughness element, the
boundary layer disturbances grow rapidly when type V perturbations are imposed.
Downstream of the roughness element, this growth is weakened and disturbances
are quasi-neutral (minor growth at F = 0.06 and minor decay at F = 0.16) up to
x ≈ 80. Further downstream, disturbance growth occurs again for F = 0.06, while
disturbances at the higher frequency seem marginally unstable. Overall, the growth
rate of the boundary layer disturbances is much smaller when type V disturbances
are imposed, and type A perturbations seem the most efficient in exciting unstable
boundary layer instabilities. Therefore type A perturbations are imposed in all the
other cases of the current chapter. It should be noted that De Tullio and Sandham
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Figure 5.11. Amplitude of u′ disturbances inside the boundary layer for cases Cyl-A,
Cyl-V and Cyl-Æ, showing the effect of different disturbance types. (a) F = 0.06,
(b) F = 0.16.

(2012) reported similar results for their sharp-edged roughness element, which in-
dicates that the receptivity mechanisms and the interaction between the different
disturbance types and the roughness wake is independent of the structure of the
wake, and by extension the shape of the roughness element.

Effect of wall temperature The effect of wall temperature on the disturbances de-
veloping behind the cylindrical flat-top roughness element is analysed by comparing
the hot wall and cold wall cases Cyl and Cyl-T0.5. The wall temperature in the for-
mer case is set to Tw = 3.5 and type A disturbances were introduced. In Figure 5.12
disturbances of both the hot and cold wall cases, respectively Cyl and Cyl-T0.5, are
shown for frequencies F = 0.02, F = 0.06, F = 0.14 and F = 0.18.

Upstream of the roughness element the amplitude of the disturbances in the cold
wall case is lower than those of the hot wall case for F = 0.02 and F = 0.06 and
higher for F = 0.14 and F = 0.18. Exactly the same behaviour was seen for the cold
wall sharp-edged roughness case of De Tullio and Sandham (2012). This is expected
since the presence of the roughness element is not felt that far upstream, and this
behaviour is thus not dependent on the type or shape of the roughness element.

Downstream of the roughness element, the behaviour between the hot wall and cold
wall case of the disturbances is very different. It can be seen that wall cooling has a
stabilising influence on the disturbances with a lower frequency, i.e. F = 0.02 and
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Figure 5.12. Amplitude ofu′ disturbances inside the boundary layer for cases Cyl and
Cyl-T0.5, showing the effect of wall cooling. (a) F = 0.02, (b) F = 0.06, (c) F = 0.14,
(d) F = 0.18.

F = 0.06. The disturbance with F = 0.02 is still unstable, but grows much more
slowly than its hot wall counterpart. For F = 0.06 it can be seen that the disturbance
is unstable initially, albeit less so than the hot wall case, but becomes neutrally stable
near the end of the domain.

For F = 0.14 there is not a large qualitative difference between the two cases up
to x ≈ 80. The growth rate downstream of the roughness element is lower for the
cold wall case, but the disturbance amplitude for the hot wall and cold wall cases
is approximately the same at x ≈ 80. After this point however, cooling leads to
damping of the disturbances with F = 0.14, while the disturbances are unstable
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throughout the domain for the case with a hot wall. Upstream of the roughness
element, wall cooling leads to a strong increase in the instability growth rate for
F = 0.18. After interaction with the roughness element, strong disturbance damping
occurs however.

Effect of roughness shape It has been noted that there are some differences be-
tween the receptivity and wake instability behaviour of the cylindrical flat-top rough-
ness element presented here and the sharp-edged roughness element of De Tullio
and Sandham (2012). The roughness element shape can have a significant effect on
the behaviour of instabilities downstream, owing to the distinct roughness wake
structure and corresponding stability characteristics. The effect of the roughness
element shape on the disturbance growth in the wake is discussed in more detail in
the next section.

5.4 Effect of roughness shape on wake instability

In this section the influence of the shape of the roughness on the behaviour of
disturbances growing in the wake is investigated by considering the wakes behind
the various roughness elements, i.e. smooth bump (Bump), cylindrical flat-top (Cyl),
square flat-top (Square), diamond-shaped flat-top (Diam), ramp-up (R-Up) and
ramp-down (R-Down). Only the response to acoustic disturbances (type A) and
cases with hot-wall conditions are considered in the study of the effect of roughness
shape on wake instability. Note that the roughness height and the frontal projected
area are the same for all roughness elements.

5.4.1 Disturbance growth in the roughness wake

The boundary layer response to disturbances of type A for the frequencies F =

0.02 − 0.20 is shown in Figure 5.13 for all the different roughness elements. This
figure shows the streamwise evolution of fluctuating u′ disturbances with frequencies
F , and gives an immediate overview of the largest differences between the cases.

From Figure 5.13 it can be seen that the largest amplitudes of disturbances at the end
of the domain are of similar order for case Square, Diam, R-Up and R-Down (〈|û|〉 ≈
3− 5× 10−5), while case Bump has considerably lower amplitudes of disturbances
in the wake and none of the modes show any large amplification. Case Cyl has the
largest amplitudes at the end of the domain (〈|û|〉 ≈ 8×10−5), but qualitatively looks
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Figure 5.13. Amplitudes of the full spectrum of u′ disturbances inside the bound-
ary layer for all hot-wall cases. (a) Bump, (b) Cyl, (c) Square, (d) Diam, (e) R-Up,
(f) R-Down.
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very similar to cases Square and Diam, for which the modes with F = 0.06 are the
most amplified. For the rest of the cases, it generally holds that the amplitude at the
end of the domain reduces with increasing frequency F . The mode with F = 0.20 is
stable after a short unstable region up to x ≈ 75.

In the next sections, these results will be discussed in more detail.

Effect of roughness frontal profile Figure 5.14 shows the amplitude of u′ distur-
bances with F = 0.02, F = 0.06, F = 0.14 and F = 0.18 inside the boundary layer
for cases Cyl and Bump, and shows the effect of the roughness frontal shape on the
disturbance behaviour in the wake. In this figure, also the flat plate case Plate is
shown as grey dashed lines. From Figure 5.14 it is evident that the roughness frontal
profile has a large impact on the behaviour of disturbances in the wake. This is as
expected, since it has a large influence on the strength and structure of the roughness
wake, as was shown earlier, and thus its stability characteristics.

The cylindrical flat-top roughness element induces a large disturbance amplification
across the element relative to the smooth bump, as can be seen by comparing the
disturbance amplitude at x ≈ 50. At this location behind the smooth bump, the
amplitude is only slightly larger than in the no-roughness flat-plate case (shown as
dashed lines). This behaviour is independent of the disturbance frequency. Further
downstream of the smooth bump, the rate at which the disturbances grow is compa-
rable to the growth rate in the flat-plate case and the amplitude of disturbances near
the end of the domain is only slightly larger than without a roughness element. This
shows that the smooth bump in case Bump acts mainly as a disturbance amplifier
instead of yielding a roughness wake that considerably increases the disturbance
growth rate. The flat-top roughness element in case Cyl can be seen to generate a
wake that does strongly alter the growth rate of instabilities, and the disturbance
amplitude at the end of the domain is much larger than for the smooth bump or
flat-plate case.

Figure 5.15 shows the growth rate of the u′ disturbances, computed as

σ :=
d[ln 〈|û|〉(x)]

dx
(5.4)

for these two cases. Note that the differentiation might introduce oscillations in this
metric. In particular near the end of the domain, where a one-sided differencing
scheme is used to compute the derivative, some oscillations have occasionally been
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Figure 5.14. Amplitude of u′ disturbances inside the boundary layer for cases Cyl
and Bump, showing the effect of roughness frontal shape. (a) F = 0.02, (b) F = 0.06,
(c) F = 0.14, (d) F = 0.18.

observed. It is important to make clear that these oscillations are not grid-to-grid-
point oscillations that originate from under-resolved DNS data.

From Figure 5.15 it can be seen that at F = 0.02 the behaviour is qualitatively the
same for both cases, i.e. an increasing growth rate up to x ≈ 80, after which the
growth rate decays and roughly stabilises. Initially Cyl is much more unstable than
Bump, with a growth rate three times as high, but near the end of the domain that
difference has reduced and the growth rate behind the cylindrical flat-top is about
70% higher than behind the smooth bump.

A completely different situation occurs at F = 0.06, for which case Bump has a
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Figure 5.15. Growth rate of u′ disturbances inside the boundary layer for cases Bump
and Cyl, showing the effect of roughness frontal shape. (a) F = 0.02, (b) F = 0.06,
(c) F = 0.14, (d) F = 0.18.
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relatively constant and small growth rate while Cyl is very unstable throughout.
The growth rate for Cyl experiences a large and abrupt increase between x ≈ 70 and
x ≈ 90, with a peak instability growth rate that is more than four times larger than
case Bump, after which it slowly and monotonically decreases further downstream.
The disturbance with this frequency has the largest growth rate.

At a frequency of F = 0.14, the behaviour between the two cases is qualitatively
the same. Between x ≈ 60 − 70 and x ≈ 90 the wake is stabilising with a rapidly
decreasing growth rate and even a short stable region for which the growth rate
becomes negative. After x ≈ 100, the disturbances with F = 0.14 are unstable again.
The growth rate for case Cyl is slightly larger than for case Bump, although this
difference strongly decreases near the end of the domain, where the disturbances
seem to be stabilising. At F = 0.18 both cases have a growth rate peak at x ≈ 70, after
which the growth rate decays. Behind the flat-top in Cyl this decay is monotonic and
a constant, approximately neutral state, is reached at x ≈ 110. Behind the smooth
bump in Bump the wake experiences a stabilising-destabilising pocket between x ≈ 70

and x ≈ 95, after which monotonic decay takes place and the growth rate stabilises
at x ≈ 140.

The different behaviour of the disturbances can be explained by investigating the
modes that are active at the specific frequencies. Figures 5.16 and 5.17 show the
different mode shapes behind the smooth bump of Bump and flat-top roughness
element of Cyl at a streamwise location of x = 96.4, visualised by contours of
|u′|-velocity and the real part of the u′-velocity respectively. In the case Bump, the
modes of F = 0.02, F = 0.06 and F = 0.14 are not clearly defined and have the
largest amplitude away from the roughness wake in the undisturbed boundary layer.
This shows that the roughness wake behind the smooth bump is not very unstable
and explains why the behaviour of case Bump seen in Figure 5.14 is very similar to
the flat-plate behaviour.

In this work, the nomenclature introduced by De Tullio and Sandham (2015) will be
used to classify the different wake mode types: sinuous-lateral (SL) for an asymmetric
mode with the largest amplitude in the lateral shear layers; varicose-lateral (VL) for
the symmetric mode with the largest amplitude in the top and lateral shear layers;
varicose-centre (VC) for the symmetric mode active near the wall at the roughness
centreline.

The modes (with F = 0.02, F = 0.06 and F = 0.14) behind the flat-top roughness
element have the largest amplitude in the roughness wake. At F = 0.02 and F = 0.06
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Figure 5.16. Mode shapes at F = 0.02 (a-b), F = 0.06 (c-d), F = 0.14 (e-f) and
F = 0.18 (g-h) behind the smooth bump (a,c,e,g) and cylindrical flat-top (b,d,f,h)
roughness element, visualised by contours of |u′|-velocity at x = 96.4. Dashed
contour lines, drawn every ∆u = 0.1, show the mean streamwise velocity.
86



5.4. Effect of roughness shape on wake instability

6 8 10 12 14
0

1

2

3

4

z

y

(a)

6 8 10 12 14
0

1

2

3

4

z

y

(b)

6 8 10 12 14
0

1

2

3

4

z

y

(c)

6 8 10 12 14
0

1

2

3

4

z
y

(d)

6 8 10 12 14
0

1

2

3

4

z

y

(e)

6 8 10 12 14
0

1

2

3

4

z

y

(f)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

z

y

(g)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

z

y

(h)

Figure 5.17. Mode shapes at F = 0.02 (a-b), F = 0.06 (c-d), F = 0.14 (e-f) and
F = 0.18 (g-h) behind the smooth bump (a,c,e,g) and cylindrical flat-top (b,d,f,h)
roughness element, visualised by contours (black (negative) - blue (positive)) of the
real part of u′-velocity at x = 96.4.
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the modes are varicose-lateral, with an amplitude largest in the top and lateral shear
layers, while at F = 0.14 the mode is concentrated in the lateral shear layers, and
close to the wall at the roughness centre, i.e. a varicose-centre mode. The latter mode
also has a relatively large amplitude outside the roughness wake in the undisturbed
boundary layer, i.e. a Mack mode, similar to case Bump. There are clearly two different
modes, the varicose-centre and Mack mode, at work at this frequency. At F = 0.18

the modes can be seen to be Mack modes active in the undisturbed boundary layer
behind both the smooth bump and flat-top element. This explains the qualitatively
similar behaviour of the two cases, as shown in Figure 5.14. Since the roughness
wake is very weak behind the smooth bump and the boundary layer profile at the
roughness centreline is similar to the undisturbed boundary layer profile, the Mack
mode is also active at this location. The wake of the flat-top roughness element is
much stronger, resulting in the absence of the Mack mode at the roughness centreline.

Effect of planform shape In Figure 5.18 the amplitude of u′ disturbances is shown
for cases Cyl, Square and Diam to evaluate the effect of the roughness planform
shape. This figure shows that the behaviour of disturbances in the wake is very
similar for the roughness elements with cylindrical, square and diamond-shaped
planform. At F = 0.02 and F = 0.14 the evolution of the amplitude is almost
identical downstream of the different roughness elements. Only at F = 0.06 and
F = 0.14 some minor quantitative differences in the growth rates can be observed.

Figure 5.19 shows the growth rate of the u′ disturbances discussed before, and
confirms that the growth rates at F = 0.02 and F = 0.18 are effectively independent
of the roughness planform shape. This is as expected for F = 0.18, since it was
shown in the previous section that the most unstable mode at this frequency is a
Mack mode, active in the undisturbed boundary layer and therefore not associated
with the strength or shape of the roughness wake.

At F = 0.06 the behaviour of the disturbances is qualitatively the same. The dis-
turbance growth rate increases between x ≈ 70 and x ≈ 90 − 95, after which it
reaches a peak and decays monotonically further downstream. Quantitatively the
growth rates differ slightly, as noted before. The wake behind the cylindrical flat-top
element of case Cyl has the largest growth rate at this frequency and is generally
the most unstable. Up to x ≈ 100 the growth rate of case Diam is the second largest
with a peak growth rate that is approximately 10% lower than Cyl, while the case
Square is the least unstable with a peak growth rate that is about 23% lower. Further
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Figure 5.18. Amplitude of u′ disturbances inside the boundary layer for cases Cyl,
Square and Diam, showing the effect of roughness planform. (a) F = 0.02, (b) F =
0.06, (c) F = 0.14, (d) F = 0.18.

downstream, for x > 100, case Square is more unstable than case Diam and has a
growth rate that is roughly the same as that of case Cyl.

At F = 0.14 there are also some quantitative differences between cases Cyl, Square
and Diam, while the behaviour is qualitatively the same. Between x ≈ 70 and
x ≈ 100−110 the growth rate strongly decays and increases again for all cases. Cases
Cyl and Diam experience a small region where the growth rate is negative, i.e. a
stable region, while the case Square is unstable throughout. Further downstream
(x > 110) cases Cyl and Diam have approximately the same growth rate, which is
considerably larger than the growth rate for Square. At x = 130, the growth rate for
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Figure 5.19. Growth rate of u′ disturbances inside the boundary layer for cases
Cyl, Square and Diam, showing the effect of roughness planform. (a) F = 0.02,
(b) F = 0.06, (c) F = 0.14, (d) F = 0.18.
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Figure 5.20. Mode shapes at F = 0.06 (a,c,e) and F = 0.14 (b,d,f) behind the
cylindrical (a-b), square (c-d) and diamond-shaped (e-f) flat-top roughness element,
visualised by contours of |u′|-velocity at x = 96.4. Dashed contour lines, drawn
every ∆u = 0.1, show the mean streamwise velocity.

case Square is about 47% smaller than for Cyl and Diam.

The similar behaviour between the roughness cases with different planform shapes
can also be observed in the mode shapes. The mode shapes for F = 0.02 and
F = 0.18 (not shown) are remarkably similar between the different cases, which
explains the behaviour seen in Figure 5.18 and Figure 5.19.

Figures 5.20 and 5.21 show the mode shapes for F = 0.06 and F = 0.14. These
figures shows that at F = 0.06 the modes are of a varicose-lateral type and are
similar for all three roughness cases. At F = 0.14 there are large differences between
the different cases however. As mentioned previously, multiple modes seem to be
active at this frequency and evidence of both a varicose-centre and Mack mode has
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Figure 5.21. Mode shapes at F = 0.06 (a,c,e) and F = 0.14 (b,d,f) behind the
cylindrical (a-b), square (c-d) and diamond-shaped (e-f) flat-top roughness element,
visualised by contours (black (negative) - blue (positive)) of the real part of u′-velocity
at x = 96.4.

been seen behind the flat-top of case Cyl. Also for case Square these two modes can
be observed in Figures 5.20 and 5.21, but the varicose-centre mode is much stronger
and more clearly defined than for Cyl, for which the largest amplitude is actually
concentrated in the lateral shear layer away from the wall. Case Diam does not show
any evidence of the varicose-centre mode. The largest amplitude is mainly located
in the lateral shear layer and further in the undisturbed boundary layer, i.e. a Mack
mode. From these results, it can be concluded that the varicose-centre mode behind
the square roughness element at F = 0.14 is responsible for the unstable disturbance
growth observed for 70 < x < 110, for which the other roughness elements showed
a large decay in growth rate and even momentary stabilising behaviour.
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Figure 5.22. Amplitude of u′ disturbances inside the boundary layer for cases R-
Down, Square and R-Down, showing the effect of ramps. (a) F = 0.02, (b) F = 0.06,
(c) F = 0.14, (d) F = 0.18.

Effect of ramps To study the effect of a ramp at the upstream (R-Up) or down-
stream (R-Down) side of the roughness element, these cases can be compared to a
corresponding no-ramp roughness element, i.e. case Square. The amplitude of u′

disturbances in the boundary layer for these cases is shown in Figure 5.22.

It can be observed the R-Up element has a noticeable influence on the flow upstream
of the roughness element, while there is essentially no difference between the other
roughness elements and the flat plate results up to x ≈ 25. The disturbances grow
faster far upstream of the roughness element for case R-Up, although they decay
again and the amplitudes at the roughness centre (xr = 37.0) are approximately the

93



5. Roughness Receptivity & Wake Instability

same (at F = 0.02 and F = 0.06) or lower (at F = 0.14 and F = 0.18) than for cases
Square and R-Down.

From Figure 5.22 it can be seen that the upstream ramp in case R-Up does not
significantly alter the behaviour of the disturbances downstream compared to the
roughness element without ramp (Square) at F = 0.02, F = 0.06 and F = 0.18. Both
qualitatively and quantitatively the disturbances grow in a similar way for these two
cases. The amplitudes for case R-Up are slightly smaller immediately downstream
of the element, which persists further downstream. Only at F = 0.14 the wake
behind the ramp-up element shows a significant difference with case Square. At this
frequency, case R-Up has the most unstable wake and disturbances in its wake reach
the highest amplitude. The behaviour for case R-Down is considerably different
than for case Square at F = 0.02 and F = 0.06 and the downward ramp seems to
have a large influence on the wake instabilities at these frequencies. At F = 0.14

and F = 0.18 there are large qualitative similarities between cases R-Down and
Square. Only at F = 0.18 the disturbances in the wake of R-Down have a comparable
amplitude than those behind Square. At all other frequencies, the amplitudes near
the end of the numerical domain are considerably lower than the two other cases.

The growth rates of these disturbances are given in Figure 5.23. This figure confirms
that at F = 0.02 there is almost no difference between the upward ramp case R-Up
and the no-ramp square roughness case Square. The growth rate behind R-Down
qualitatively follows the behaviour of cases R-Up and Square very closely, but is
roughly 40% lower (computed at x = 130). Also at F = 0.06, the behaviour of cases
R-Up and Square is qualitatively very similar. The growth rate of case Square is larger
for 80 < x < 120, after which the growth rate becomes comparable to case R-Up. The
growth rate of the boundary layer disturbances behind the ramp-down element is
considerably lower at this frequency and can be seen to be oscillating around a mean
value. This oscillatory behaviour (beating) is also present in the disturbances with
higher frequencies, i.e. F = 0.14 and F = 0.18, and is an indication that multiple
distinct modes with the same frequency but different phase speeds are present. At
F = 0.14 the behaviour of cases R-Up, Square and R-Down is considerably different
from each other. While case Square has the largest growth rates at frequencies
F = 0.02 and F = 0.06, the ramp-up case R-Up is considerably more unstable at
F = 0.14. The strong momentary drop in growth rate between 70 < x < 100 that
has been seen for all the previous cases, and is clearly present for case R-Down
(see Figure 5.23c), does not occur. Also further downstream, near the end of the
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Figure 5.23. Growth rate of u′ disturbances inside the boundary layer for cases
R-Down, Square and R-Down, showing the effect of ramps. (a) F = 0.02, (b) F =
0.06, (c) F = 0.14, (d) F = 0.18.
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Figure 5.24. Mode shapes at F = 0.06 (a,c,e) and F = 0.14 (b,d,f) behind the ramp-
up (a-b), square (c-d) flat-top and ramp-down (e-f) roughness element, visualised
by contours of |u′|-velocity at x = 96.4. Dashed contour lines, drawn every ∆u = 0.1,
show the mean streamwise velocity.

domain, the growth rate is significantly larger. At x = 130, the growth rate behind
the ramp-up case is more than 50% larger than the growth rate behind the square
roughness element without the upward ramp. The downward ramp does not have a
large influence on the disturbance growth rate at this frequency. Downstream of the
large growth rate dip (x > 110), the disturbances grow — in a mean sense — at a
similar rate as the disturbances for case Square. Large oscillations in growth rate
are present however. At F = 0.18 the behaviour is relatively independent on the
roughness element and thus the presence of a ramp. It has already been shown that
this is also true for the roughness elements with different planform shapes, as was
seen in Figure 5.19d.

Figures 5.24 and 5.25 show the mode shapes for F = 0.06 and F = 0.14 at x = 96.4
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Figure 5.25. Mode shapes at F = 0.06 (a,c,e) and F = 0.14 (b,d,f) behind the ramp-
up (a-b), square (c-d) flat-top and ramp-down (e-f) roughness element, visualised by
contours (black (negative) - blue (positive)) of the real part of u′-velocity at x = 96.4.

downstream of the cases R-Up, Square and R-Down, visualised by contours of
|u′|-velocity and the real part of the u′-velocity. It shows that the mode shapes
for cases R-Up and Square are very similar at both frequencies: a varicose-lateral
mode is active at F = 0.06, while the mode at F = 0.14 is of a clearly-defined
varicose-centred nature. This strengthens the assumption, proposed in the previous
subsection, that the varicose-centre modes are responsible for the unstable region
at 70 < x < 100, where the other roughness elements showed stabilising behaviour.
Behind the ramp-down roughness element, the largest disturbance amplitude at a
frequency F = 0.06 is not located in the roughness wake, but in the shear layer away
from the wake, i.e. in the undisturbed boundary layer. The most unstable mode at
this frequency is thus not a wake mode, explaining the relatively low growth rate
observed in Figure 5.23b. However, it can be seen that also in the lateral shear layers
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of the roughness wake there is a slightly elevated disturbance amplitude, indicating
the presence of multiple instability modes. For F = 0.14 the largest amplitude is
found in the lateral shear layers of the wake, although a relatively high amplitude
can also be found at the roughness centreline. Also at this frequency multiple modes
are active and contribute to the overall disturbance amplitude shown in Figure 5.22.

An overview of the growth rates of the different disturbances is shown at three
distinct locations downstream of the various roughness elements in Figure 5.26.
It confirms the strong instability growth near F = 0.06 for all cases except Bump,
for which a disturbance with F = 0.02 has a larger growth rate throughout the
domain. A second peak of strong instability growth occurs at higher frequencies,
i.e. F = 0.14 − 0.18, corresponding to the Mack mode (or Mack-like VC mode)
instability.

5.4.2 Most amplified mode

A measure of the overall boundary layer response to exponentially growing instabil-
ities is the N-factor, defined as the natural logarithm of the ratio of a disturbance
amplitude at a specific streamwise position x to a reference amplitude at position
xref, i.e.

N := ln

(
〈|û|〉(x)
〈|û|〉xref

)
. (5.5)

The N-factor is often used as a predictive tool for boundary layer transition and
can give an indication of the most dangerous roughness element in the current work,
i.e. the roughness element that induces the largest overall amplitude amplification
and would be most likely to trigger transition the earliest.

The largest N-factor, and its associated frequency, obtained downstream of each
roughness element is listed in Table 5.3. The maximum N-factor occurs behind the
cylindrical flat-top element of case Cyl, closely followed by the diamond-shaped
and square flat-top elements of cases Diam and Square. As was already earlier in
this chapter, there is not a large difference between the roughness elements with
different planform shapes. The frequency that leads to the highest growth behind
these elements is F = 0.06. Slightly lower amplitudes are found downstream of case
R-Up with the upstream ramp, and this case has an N-factor that is approximately
20% lower than the corresponding no-ramp case Square. Both the disturbances with
F = 0.06 andF = 0.14 reach this maximum N-factor near the end of the domain, and
therefore both the varicose-lateral mode at F = 0.06 and the varicose-centre mode
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Figure 5.26. Disturbance growth rate of the disturbances in the roughness wakes at
(a) x = 79.6, (b) x = 113.2 and (c) x = 142.6. 99
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Table 5.3. Maximum N-factors, computed at the end of the numerical domain, and
their corresponding frequency, using roughness centre (xref = 37.0) as reference
location.

Case Nmax F(Nmax)

Bump 1.3 0.02
Cyl 2.9 0.06
Square 2.6 0.06
Diam 2.8 0.06
R-Up 2.3 0.06/0.14
R-Down 1.9 0.02
Plate 0.9 0.16

at F = 0.14 could play an important role in the eventual transition process further
downstream. Both the smooth bump of case Bump and ramped-down element of
R-Down behave differently: the N-factors at the end of the domain are considerably
smaller and the frequency which yields the largest amplitudes is F = 0.02 instead
of F = 0.06 for the other cases. The downward ramp or slowly-varying geometry
at the aft section of the smooth bump seems to strongly stabilise the most unstable
wake mode at F = 0.06. The case Plate without roughness element has the lowest
N-factor at the end of the domain, which is as expected due to the absence of unstable
wake modes. The frequency of the largest amplitude disturbance is F = 0.16,
corresponding to a two-dimensional Mack mode.

5.5 Summary of results

In this chapter the Mach 6.0 boundary layer receptivity and linear instability growth
of the wake behind various roughness elements has been studied using direct nu-
merical simulations.

In the initial receptivity study, the effect of the external forcing type, i.e. acoustic
(type-A), vortical (type-V) and entropy (type-Æ), was investigated. The disturbance
growth in the wake of a cylindrical flat-top roughness element was found to be
qualitatively the same for the type-A and type-Æ forcing. The disturbances in the case
of the acoustic forcing are one order of magnitude larger, however, making it more
effective at exciting unstable wake modes. The boundary layer and wake instabilities
induced by the vortical forcing of type-V are much less unstable and a different
receptivity mechanism seems to be active. Similar results were reported by De Tullio
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and Sandham (2012) for a sharp-edged square roughness element, demonstrating
that the interaction between the different disturbances and the roughness wake is
independent of the structure of the wake, and in extension the shape of the roughness
element.

The main interest of this chapter is the effect of the three-dimensional roughness
shape on the wake instability behaviour. It was found that the frontal profile is
a critical parameter in the generation of an unstable wake. While unstable wake
modes are found in the wake of a flat-top element, a smooth bump (with the same
maximum height) was found to act mainly as a disturbance amplifier and does not
significantly increase the disturbance growth rate in the wake.

The planform shape was found to have only a weak effect on the wake instability. The
cylindrical, square and diamond-shaped flat-top elements generate similar wakes
in which the same instability modes grow. A varicose-lateral mode with frequency
F = 0.06 was found to be the most unstable. The growth rates of the unstable
wake modes are very similar for the roughness elements with different planform
shapes, and also the overall disturbance growth, i.e. the N-factor obtained at the
end of the domain, is of comparable magnitude. The cylindrical element has the
most unstable wake, closely followed by the diamond-shaped element and finally
the square element.

The presence of an upward ramp does not seem to generate a much more unstable
wake than the corresponding roughness element without ramp, and in general the
behaviour is similar. Although the varicose-centre mode, which has similarities with
a Mack mode, is more unstable behind the ramp-up and has a larger unstable enve-
lope along the domain, the most unstable varicose-lateral mode is slightly damped.
This results in an N-factor at the end of the domain that is approximately 10% lower
for the case with an upward ramp. A downward ramp at the aft section of the rough-
ness element has been found to strongly damp the wake modes and the generated
wake is much less unstable. The N-factor reached by the wake instabilities behind
the ramp-down element is approximately 70% of the N-factor reached behind the
corresponding no-ramp roughness element. A down-ward ramp or slowly-varying
geometry at the aft section, such as for the smooth bump, seems to strongly stabilise
the resulting roughness wake.
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Chapter 6

Stability Analysis
of Roughness Wakes

In this chapter the stability of the wake behind the various roughness elements are
studied using linear stability analysis. The goal of this work is to investigate if linear
stability analysis can accurately predict the stability characteristics of roughness
wakes and the overall growth of wake and boundary layer instabilities.

6.1 Case details & set-up

The stability of the wake behind the isolated roughness elements, studied using
DNS in Chapter 5 (Roughness Receptivity & Wake Instability), is investigated using
the linear stability code COMPASS. The same naming of the cases is used as in the
previous chapter, e.g. Bump, Cyl, Square, Diam.

6.1.1 Base flows

Accurate and time-converged base flows of the roughness wakes are needed, from
which the linear stability can be computed using bi-local stability analysis. These
base flows are extracted as cross-flow slices at distinct streamwise positions from
the direct numerical simulations presented in Chapter 5 (Roughness Receptivity &
Wake Instability). Since the bi-local stability analysis assumes parallel flow in the
streamwise direction, the base flows should be extracted at locations far enough
downstream of the roughness elements, where non-parallel effects are expected to
be small, or at least smaller than in the near-wake region.

103



6. Stability Analysis of Roughness Wakes

Table 6.1. Details of the numerical grids used in the grid study of the wake instability
analysis.

Grid Nz Ny q

Coarse 120 81 8
Ref. 160 121 8
Fine 220 161 8

In total five base flow slices are extracted from each of the different roughness
simulations. The cross-flow slices are taken at x = [79.6, 96.4, 113.2, 125.8, 142.6], so
that they span the streamwise length of the domain, downstream of the roughness
elements, without including the immediate near-wake region. At these locations the
conservative flow variables are extracted from the DNS results, transformed into
primitive flow variables and written out into a format that can be read by the linear
stability code COMPASS.

The bi-local stability analysis in the current chapter is performed in the spatial
instability framework, i.e. spatially developing instabilities of a specified temporal
frequency are sought. The frequencies that are investigated using bi-local stability
correspond to the frequencies that were resolved in the DNS results of Chapter 5
(Roughness Receptivity & Wake Instability), so that a direct comparison between the
results of the direct numerical simulations and the stability analysis is possible.

6.1.2 Grid study

A grid study is performed to ensure that the results of the stability analysis are
converged and independent of the number of grid points. In the spanwise direction
the Fourier spectral method is used for discretisation, while in the wall-normal
direction the high-order finite-difference FD-q method of Hermanns and Hernández
(2008) is applied, presented in Chapter 3 (COMPASS: Compressible Stability Analysis).
The order of the FD-q method is set to q = 8 in this chapter. The algebraic mapping
of Malik (1990), introduced in Chapter 3, is used to cluster half of the wall-normal
grid points below y = 2.5. The grid study is performed for a single roughness case
and frequency, i.e. case Cyl with frequency F = 0.14. This case is run on three
different grids, each with an increased level of grid refinement. The details of these
grids are summarised in Table 6.1.

A portion of the computed spectrum for case Cyl with frequency F = 0.14 is shown
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Figure 6.1. Part of the spectrum computed on three increasingly refined grids.

Table 6.2. Eigenvalues of two distinct modes computed on three increasingly refined
grids.

Mode (1) Mode (3)
Grid αr αi αr αi

Coarse 0.939 075 0 −0.018 756 6 0.916 812 7 0.000 471 7
Ref. 0.939 111 7 −0.018 760 0 0.917 825 3 −0.000 608 9
Fine 0.939 111 0 −0.018 762 7 0.917 824 1 −0.000 616 3

in Figure 6.1, computed on the three grids in Table 6.1. The five most unstable (or
least stable) modes are shown and annotated. It can be seen from this figure that
the two most unstable modes, modes (1) and (2), are resolved by the three grids to
have very similar eigenvalues. The eigenvalue of the most unstable mode is given in
Table 6.2 for the three different grids, which shows that the difference between the
growth rate computed on the coarse and fine grid is about 0.03%.

There is a large difference between the coarse grid and the finer grids for modes
(3)-(5) however. The eigenvalues of these modes are very similar for the reference grid
and the fine grid, but the coarse grid does not yield the same eigenvalues. Mode
(3) is even stable on the coarse grid, while it is slightly unstable on the other two
grids. The eigenvalues for this mode are also given in Table 6.2, which shows that
the relative difference between the growth rate computed on the reference grid and
the fine grid is approximately 1%. This is sufficiently accurate such that the results
on the reference grid can be considered grid-converged.
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The eigenfunctions for modes (1) and (3) are shown in Figures 6.2 and 6.3, and
indicate that they are respectively a two-dimensional Mack mode in the undisturbed
boundary layer and a varicose-centre (VC) wake mode. The two-dimensional Mack
mode has a very limited spanwise dependency and slowly-varying wall-normal
structure, which explains why it is fairly well resolved on the coarse grid. The VC
mode (mode (3)) is a wake mode with a complex structure, i.e. high wall-normal and
spanwise gradients, of its eigenfunction. More grid points are required to adequately
resolve this mode shape, which is why the coarse grid solution is poor compared to
the reference grid solution.

6.2 Stability analysis of the wake

Of interest in the current chapter is the comparison between the results from the
direct numerical simulations, presented in Chapter 5 (Roughness Receptivity & Wake
Instability), and bi-local stability analysis of the roughness wakes. The first question
to be answered is whether or not bi-local stability analysis can accurately resolve the
instability modes growing in the wake behind roughness elements. Both an accurate
computation of the growth rate and the type of the instability mode, e.g. varicose
or sinuous, is of interest. Due to the parallel flow assumption in the linear stability
analysis, it is expected that the accuracy of the comparison is dependent on the
structure of the wake, in particular the streamwise dependency of the wake, and thus
the streamwise position. The second question that will be investigated is whether the
streamwise evolution of the instability modes can be resolved using bi-local stability
and if the main trends of growth and decay can be predicted.

6.2.1 Instability modes and mode growth rate

Figure 6.4 shows a map of the unstable and least stable modes found in the wake
(at x = 96.4) behind the cylindrical flat-top roughness element in Cyl. For each
frequency F , the growth rate of the computed modes is given and the type of mode
(sinuous-lateral, varicose-lateral, varicose-centre or Mack mode) is indicated. The
growth rates from the DNS results are also given in this figure as dashed lines, such
that it gives a clear overview of the qualitative and quantitative accuracy of the
bi-local stability analysis of the roughness wakes.

Multiple instability modes are found at different frequencies, as indicated by the
stability results shown in Figure 6.4. For the frequency band F = 0.02 − 0.14,
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Figure 6.2. Mode shape of mode (1), visualised by contours of absolute u′-velocity,
computed on the coarse and reference grid.
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Figure 6.3. Mode shape of mode (3), visualised by contours of absolute u′-velocity,
computed on the coarse and reference grid.
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Figure 6.4. Unstable modes in the roughness wake, resulting from bi-local stability
analysis, at x = 96.4 behind roughness case Cyl.

both sinuous and varicose wake modes are found, while Mack modes become the
dominant modes at higher frequencies, i.e. F ≥ 0.16 − 0.18. The general trend
across the spectrum is that the growth rates are greatly underpredicted by the linear
stability analysis. However, qualitatively the results seem to agree relatively well.
From the DNS results the most unstable mode can be seen to have a frequency
of F = 0.06 at x = 96.4. This peak at F = 0.06 is also captured by the bi-local
stability analysis. Also the local peak in growth rate at F = 0.16 is captured by the
stability analysis, although the linear stability analysis overpredicts the growth of
these modes.

The mode shapes of the three most unstable modes resolved by the bi-local stability
(BLS) analysis for F = 0.06 are shown in Figures 6.5a to 6.5c, and can be compared
to the mode computed by the DNS, shown in Figure 6.5d. Figure 6.5a demonstrates
the varicose-lateral (VL) nature of the most unstable mode (as was already shown in
Figures 5.16 and 5.17) and shows that a fair agreement is found between the BLS and
DNS results regarding the mode shape. The growth rate of the most unstable wake
mode is approximately 49% lower for the stability analysis compared to the DNS
results, i.e. −αi = 0.01815 compared to σDNS = 0.03569. The second most unstable
mode is of a sinuous-lateral (SL) nature and has a growth rate that is roughly 25%
lower than the dominant varicose mode, as indicated in Figure 6.5b. A second
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6.2. Stability analysis of the wake

unstable varicose-lateral mode has also been observed, shown in Figure 6.5c, that is
mainly active in the lateral shear layers and much less in the top detached shear layer
at the wake centreline. Its growth rate is almost one order of magnitude lower than
the most unstable varicose mode, and would thus have essentially no contribution
to the overall wake instability. It is therefore unlikely that the existence of this mode
would have been observed in for example DNS results.

From Figure 6.4 it can be observed that the most unstable mode, computed by bi-local
stability analysis, is not always of a varicose-lateral nature. For F = 0.02 only an
unstable sinuous mode has been found, while for F = 0.10 − 0.12 both unstable
varicose and sinuous modes have been observed, for which the sinuous-lateral mode
has the largest growth rate. This does not agree with the DNS however, for which the
most unstable mode is varicose-lateral, as shown in Figure 6.6d. Figures 6.6a to 6.6c
show the three unstable modes, a single sinuous-lateral and two varicose-lateral
modes, computed by the bi-local stability analysis forF = 0.10. At this frequency, the
agreement between the DNS and the most unstable BLS mode, which is a sinuous-
lateral mode, can be seen to be weaker. The DNS mode seems to correspond to a
combination of both the SL and VL modes. The largest growth rate predicted by the
stability analysis, corresponding to the sinuous-lateral mode, is roughly four times
too low, i.e. −αi = 0.005158 compared to σDNS = 0.02262.

Figure 6.4 showed that there is another growth rate peak for a frequency of F = 0.16.
The instabilities active at this higher frequencies correspond to Mack modes in
the undisturbed boundary layer or varicose-centre wake modes, as was shown in
Chapter 5 (Roughness Receptivity & Wake Instability). In Figure 6.4 it was indicated that
four unstable modes were found using bi-local stability analysis, and that the growth
rate of the most unstable mode overpredicts the growth rate from the DNS. The
mode shapes corresponding to these four unstable modes are shown in Figures 6.7
and 6.8.

It can be seen that the mode in Figures 6.7c and 6.8c is a varicose-centre (VC) mode
active in the roughness wake, while the three other modes are active in the boundary
layer at the side of the wake. The eigenfunctions of these modes are compared to
the most unstable flat-plate boundary layer instability, i.e. a two-dimensional Mack
mode, as computed by local linear stability theory (LST) in Figure 6.9. The wall-
normal eigenfunctions are extracted at the spanwise positions where the amplitude
is approximately largest, i.e. z = 16.0 for modes (a) and (b), and z = 20.0 for mode
(d), and are normalised such that the maximum amplitude is unity and are rescaled

109



6. Stability Analysis of Roughness Wakes

6 8 10 12 14
0

1

2

3

4

z

y

6 8 10 12 14
0

1

2

3

4

z

y
(a) VL mode, (αr,αi) = (0.4193,−0.01815)
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(b) SL mode, (αr,αi) = (0.4181,−0.01344)
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(c) VL mode, (αr,αi) = (0.4195,−0.002153)
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(d) DNS mode, σDNS = 0.03569

Figure 6.5. Mode shape of the instability modes with F = 0.06 for case Cyl
from BLS (a-c) and DNS (d) results. Mode shapes are visualised by contours of
|u′|-velocity (left) and the real part of u′-velocity (right) at a streamwise location of
x = 96.4.
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(a) SL mode, (αr,αi) = (0.6850,−0.005158)
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(b) VL mode, (αr,αi) = (0.7104,−0.002568)
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(c) VL mode, (αr,αi) = (0.6850,−0.002250)
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Figure 6.6. Mode shape of the instability modes with F = 0.10 for case Cyl
from BLS (a-b) and DNS (c) results. Mode shapes are visualised by contours of
|u′|-velocity (left) and the real part of u′-velocity (right) at a streamwise location of
x = 96.4.
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(a) Mack mode, (αr,αi) = (1.0734,−0.01972)
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(b) Mack mode, (αr,αi) = (1.0731,−0.01650)
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(c) VC mode, (αr,αi) = (1.1150,−0.008125)
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(d) Mack mode, (αr,αi) = (1.0639,−0.005910)
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Figure 6.7. Mode shape of the instability modes with F = 0.16 for case Cyl from
BLS (a-d) and DNS (e) results. Mode shapes are visualised by contours of |u′|-velocity
at a streamwise location of x = 96.4.
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(d) Mack mode, (αr,αi) = (1.0639,−0.005910)

Figure 6.8. Mode shape of the instability modes with F = 0.16 for case Cyl from
BLS results, visualised by contours of the real part of u′-velocity at a streamwise
location of x = 96.4.
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Figure 6.9. Comparison of the eigenfunctions of the BLS modes with F = 0.16 (as
shown in Figure 6.7) with the eigenfunction of the most two-dimensional Mack
mode computed by local LST.

in the wall-normal direction to match the wall-normal location of the modes. The
main features of the BLS eigenfunctions are very well aligned with the Mack mode
computed by the LST, indicating that the modes shown in Figures 6.7a, 6.7b and 6.7d
are in fact two-dimensional and three-dimensional Mack modes in the undisturbed
boundary layer.

The most unstable BLS mode is the two-dimensional Mack mode (−αi = 0.01972,
cph = 0.9366), closely followed by a three-dimensional Mack mode (−αi = 0.01650,
cph = 0.9368) that is asymmetric across the roughness wake and has a spanwise
wavelength that is related or roughly equal to the spanwise extent of the domain, as
demonstrated by Figure 6.8b. A much less unstable three-dimensional Mack mode,
with a similar wavelength but symmetric across the wake, has also been observed
(−αi = 0.005910, cph = 0.9449) and is shown in Figure 6.8d. As mentioned earlier, the
results from the DNS show that the most unstable mode is a combination of a Mack
mode and a varicose-centre mode in the wake (see Figure 6.7e). This varicose-centre
mode was found by the bi-local stability analysis, as shown by Figures 6.7c and 6.8c,
and strongly resembles the VC mode from the DNS, but is not predicted to be the
most unstable. The growth of the VC mode as predicted by the BLS is−αi = 0.008125,
which is approximately 57% of the DNS growth rate (σDNS = 0.01437).

The overall comparison of the growth rates is better for the Mack modes in the
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6.2. Stability analysis of the wake

undisturbed boundary layer than for the wakes modes at lower frequencies, which
might be due to the non-parallel effects that are less significant for a boundary
layer than for a roughness wake. This raises the question how the comparison
between bi-local stability and DNS behaves further away from the roughness element
near-wake.

6.2.2 Influence of streamwise distance

While in the previous section a comparison was made between linear stability
analysis and the DNS results at a single streamwise position (x = 96.4), the growth
of the instability modes along the domain is studied here for a selected number of
frequencies. Figure 6.10 shows the growth rate of the instabilities with frequencies
F = 0.02, F = 0.06, F = 0.14 and F = 0.18 along the domain for case Cyl, both
from the DNS results (dashed lines) and computed using bi-local stability analysis
(markers and solid lines).

From this figure and the discussion in Chapter 5 (Roughness Receptivity & Wake
Instability), it is clear that the DNS growth rate is not constant along the domain and
varies highly with the streamwise distance. The growth rate of the instabilities with
frequency F = 0.02 increases up to x ≈ 80 after which it monotonically decreases
and reaches a quasi-steady value for x ' 105. The instabilities with frequencies
F = 0.06,F = 0.14 andF = 0.18 experience a growth rate trend of decay, growth and
subsequent monotonic decay. The growth rate peak occurs at different streamwise
locations: x ≈ 90 for F = 0.06, x ≈ 110 for F = 0.14 and x ≈ 70 for F = 0.18. While
the instabilities with F = 0.06 and F = 0.14 have a decaying growth rate throughout
the streamwise extent of the domain, a quasi-steady growth rate is reached for the
instabilities with F = 0.18 for x ' 110.

This strong streamwise-dependent behaviour of the disturbance growth is not accu-
rately captured by the bi-local stability analysis, as can be seen in Figure 6.10. Except
for the instabilities with F = 0.14, the bi-local stability results predict a monotonic
decrease going downstream and consistently underpredicts the growth rates. While
the growth rates of the DNS results for F = 0.02 and F = 0.06 is reduced more
than half from their peaks to the end of the domain, the difference between the
maximum and minimum BLS growth rates is considerably smaller. For F = 0.14

the bi-local stability analysis qualitatively predicts the behaviour, but underpredicts
the growth rate rate at x < 125 and overpredicts it at x > 125. Also for F = 0.18

the qualitative behaviour is captured by the stability analysis, but the actual growth
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Figure 6.10. Comparison of instability growth rates between DNS (dashed lines) and
bi-local stability (markers and solid lines) along the domain for case Cyl.

rate is severely underpredicted. The bi-local stability analysis even predicts these
instabilities to be stable, while they are uniformly unstable in the DNS. Near the
end of the domain at x = 142.6, the instability with F = 0.06 has the largest DNS
growth rate, i.e. σDNS = 0.01906. The linear stability growth rate is approximately
49% lower, i.e. −αi = −0.009738. This relative difference is the same as the difference
upstream at x = 96.4, as discussed in the previous section. The mode shapes of the
BLS modes and the DNS are shown in Figure 6.11, which demonstrates that there is
a fair agreement between the mode shape of the most unstable mode (Figure 6.11a)
and the DNS (Figure 6.11d).

In general the agreement between the DNS and the bi-local stability analysis does
not greatly improve further downstream, where non-parallel effects are expected
to be reduced. Although some of the mode shapes are in fair agreement between
the stability analysis results and DNS, the growth rates computed using the stability
analysis are inaccurate. It can thus be said that bi-local stability may not be the
appropriate tool to quantitatively predict the disturbance growth in the wake of
roughness elements, where non-parallel effects are not negligible. Stability analysis
tools that do not neglect the streamwise dependency and non-parallel flow, such as
three-dimensional PSE or tri-global stability analysis, could give better results. The
improved quantitative agreement that three-dimensional PSE can give, has earlier
been shown by De Tullio et al. (2013).
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(a) VL mode, (αr,αi) = (0.4202,−0.009738)
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(b) SL mode, (αr,αi) = (0.4084,−0.008296)
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Figure 6.11. Mode shape of the instability modes with F = 0.06 for case Cyl
from BLS (a-c) and DNS (d) results. Mode shapes are visualised by contours of
|u′|-velocity (left) and the real part of u′-velocity (right) at a streamwise location of
x = 142.6.
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Figure 6.12. Comparison of the spectrum of the instability with F = 0.06 at x = 96.4
behind the different roughness elements.

6.2.3 Dependency on roughness element

The results presented so far in this chapter are only for the cylindrical flat-top case
Cyl. In order to investigate whether bi-local stability analysis can predict the relative
instability of the different flat-top roughness element cases, the wake instability
behind cases Cyl, Square and Diam is discussed in this section. The bi-local stability
analysis has been performed at a single downstream position (x = 96.4) and for the
frequency at which the largest instability growth was observed, i.e. F = 0.06.

The spectrum of the unstable SL and VL wake modes found behind the various
cases is shown in Figure 6.12. In this figure the different modes are annotated with
their respective types. Two families of varicose-lateral modes and a sinuous-lateral
mode can be seen to be found behind the flat-top roughness elements by the bi-local
stability analysis. These unstable modes, i.e. two VL and one SL mode, have already
been shown behind the cylindrical flat-top element in Figure 6.5. The most dominant
mode at this frequency is a varicose-lateral mode for all the cases, followed by the
sinuous-lateral mode. The secondary VL mode has a growth rate that is almost an
order of magnitude smaller than the most unstable VL mode.

The mode shapes of the most unstable VL mode are given in Figure 6.13 for the three
flat-top roughness elements. It can be seen that the structure of this VL mode is
very similar for the roughness elements with the different planform shapes. This
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Figure 6.13. Mode shape of the instability modes with F = 0.06 for cases Cyl,
Square and Diam. Mode shapes are visualised by contours of |u′|-velocity (left) and
the real part of u′-velocity (right) at a streamwise location of x = 96.4.

behaviour was already observed in the DNS results presented in Chapter 5 (Roughness
Receptivity & Wake Instability).

It is interesting to note that the cylindrical flat-top element is predicted to be the
most unstable among the roughness elements, which agrees with the results from
the DNS. According to the BLS results, the square flat-top is more unstable than
the diamond-shaped roughness element at this frequency, which is contrary to the
DNS. However, near the streamwise position where the bi-local stability analysis is
performed, i.e. x = 96.4, the DNS growth rates for F = 0.06 are rapidly decreasing
and very streamwise-dependent. This results in the wake behind the square flat-top
element becoming more unstable shortly further downstream, i.e. at x ' 105, as was
shown by Figure 5.19b. Figure 6.14 shows the growth rate of the most unstable mode,
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Figure 6.14. Comparison of the largest growth rate of the instabilities with F = 0.06
at x = 96.4 behind the different roughness elements.

obtained from the DNS and BLS results, for the different roughness elements, ranked
by most unstable according to the DNS results. It gives an immediate overview of
the discrepancy between the DNS and BLS growth rate of the most unstable wake
mode.

6.3 Summary of results

A new linear stability analysis code (COMPASS) has been developed and validated in
Chapter 3 (COMPASS: Compressible Stability Analysis). In this chapter, the applicability
of bi-local stability analysis on roughness wakes has been investigated by comparison
with DNS.

It was found that the bi-local stability analysis is able to predict the most unstable
instability mode and its frequency active in the roughness wake. Also the mode
shapes can be accurately resolved in some cases. However, the growth rate predicted
by the stability theory is found to be inaccurate. For example, the largest growth rate
of the instabilities in the wake of a cylindrical flat-top roughness element, obtained
using DNS, is twice as large as the growth rate predicted by the stability analysis.
The comparison has been found to be better with boundary layer modes, e.g. Mack
modes, than with wake modes, hinting that the non-parallel effects, neglected by
the linear stability theory, are of great importance in the growth of instability modes.
Therefore, tri-global instability analysis or three-dimensional PSE could be needed
to give improved quantitative predictions of the instability of roughness wakes.
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Chapter 7

Roughness-induced Transition
Part of the work in this chapter has appeared in:
Van den Eynde & Sandham, ‘Numerical Simulations of Transition due to Isolated
Roughness Elements at Mach 6‘, AIAA Journal, 2015 (accepted), doi:10.2514/1.J054139

In this chapter the transition from a laminar to a turbulent boundary layer due to
the presence of an isolated roughness element is investigated. It deals with the (non-
linear) growth of instabilities in the roughness wake and the subsequent breakdown
to transition, making it a logical follow-up to Chapter 5 (Roughness Receptivity &
Wake Instability), in which the excitation and evolution of linear instabilities in the
roughness wake was studied.

7.1 Case details

In total ten different simulations have been run, looking at the roughness element
height, shape, and the amplitude of the freestream disturbance environment. The set-
up of the simulations is very similar to the cases in Chapter 5 (Roughness Receptivity &
Wake Instability), e.g. the same roughness elements, Mach number, wall temperature.
Note that two additional roughness elements are investigated in this chapter: a
cylindrical flat-top element with a smaller height, and a square roughness element
with a smaller width. The domain size was increased in the streamwise direction
to resolve a sufficiently large portion of the transition process, in the wall-normal
direction to avoid any shock reflection from the top boundary onto the boundary
layer, and in the spanwise direction to accommodate for the generation and growth
of a turbulent wedge. Also the number of grid points was increased in all directions
to accurately resolve the developing turbulence. Details of the domain and grid size
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Table 7.1. Case details of the simulations of roughness-induced transition study of
the current chapter.

Case M Re Tw k Dist. ampl. Geometry

H-⊗-1.0-Ae5 6.0 14 000 7.02 1.0 6× 10−5 smooth bump
H-⊗-1.0-Ae4 6.0 14 000 7.02 1.0 6× 10−4 smooth bump
H-◦-1.0-Ae5 6.0 14 000 7.02 1.0 6× 10−5 flat-top (cyl.)
H-◦-1.0-Ae4 6.0 14 000 7.02 1.0 6× 10−4 flat-top (cyl.)
H-�-1.0-Ae5 6.0 14 000 7.02 1.0 6× 10−5 flat-top (square)
H-�-1.0-Ae5 6.0 14 000 7.02 1.0 6× 10−5 flat-top (diamond)
H-4-1.0-Ae5 6.0 14 000 7.02 1.0 6× 10−5 ramp-up
H-5-1.0-Ae5 6.0 14 000 7.02 1.0 6× 10−5 ramp-down
H-  -0.5-Ae5 6.0 14 000 7.02 0.5 6× 10−5 flat-top (cyl.)
H-D-1.0-Ae5 6.0 14 000 7.02 1.0 6× 10−5 flat-top (sq.) (W = 3.0)

have been introduced in Chapter 4 (Problem Definition & Numerical Set-up) (Domain
A). In order to promote the transition process and resolve it without increasing the
length of the computational domain too much, the simulation Reynolds number,
still based on the displacement thickness of the laminar boundary layer at the inflow,
was increased from Re = 8200 to Re = 14000. Flow parameters and details of the
different cases in this chapter are given in Table 7.1.

The naming of the roughness cases is done according to the following convention.
The first letter signifies the wall temperature. It should be noted that in this chapter
only hot (H) wall cases are studied and that the wall temperature Tw is set to the
adiabatic wall temperature. The symbol after this first letter indicates the roughness
shape: smooth bump (⊗), cylindrical (◦), square (�) or diamond-shaped (�) flat-top
roughness elements, and the ramp-up and ramp-down elements are indicated by 4
and 5 respectively. The flat-top roughness element with height k = 0.5 is indicated
with the symbol  and the flat-top with width W = 3.0 with the symbol D. Note
that these symbols are also used as markers in the figures of this chapter, to allow
for an easy distinction between results of different cases. The number that follows
the roughness shape designation indicates the roughness height k. Except for the
case with small (k = 0.5) flat-top roughness element H-  -0.5-Ae5, all cases have a
roughness height of k = 1.0. The last part of the naming represents the amplitude
of imposed acoustic forcing introduced in Equation (4.7): Ae5 for an amplitude
a = 6× 10−5 and Ae4 for a = 6× 10−4.
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7.2 Roughness-induced base flow modifications

Similarly to Chapter 5 (Roughness Receptivity & Wake Instability), the main flow char-
acteristics and base flow modifications due to the presence of the roughness element
will be investigated first. Although the geometry of the roughness elements and
some of the main flow variables (e.g. Mach number, wall temperature) for the sim-
ulations of this chapter are the same as for the cases in Chapter 5, the simulation
Reynolds number (and thus roughness Reynolds number) has been increased sig-
nificantly. The flow around the roughness element, and thus the roughness wake
further downstream, will be affected by the increased local Reynolds number. Since
it has been observed that relatively small differences in the base flow can affect the
wake stability characteristics, it is important to gauge the differences between the
cases to better understand the transition behaviour and processes.

7.2.1 Shear layers & recirculation regions

From Chapter 5 (Roughness Receptivity & Wake Instability), it is known that the rough-
ness elements generate wakes that consist of a low-speed streak flanked by a pair of
high-speed streaks, resulting in increased levels of shear stress between the streaks,
and a detached shear layer generated over the top of the roughness elements. It is
these shear layers that sustain the growth of instabilities and are of primary impor-
tance to the wake instability and thus the subsequent transition process.

Figure 7.1 shows how the roughness shape and planform change the shear layers
around and behind the roughness element, using contours of wall-normal shear
∂u/∂y (left) and shear magnitude us (right), defined as

us :=

√(
∂u

∂y

)2

+

(
∂u

∂z

)2

. (7.1)

The recirculation regions around the roughness elements are indicated in Figure 7.1
using dashed red contour lines of small negative velocity, i.e. u = −1× 10−5. The
length of these recirculation regions, at the front and aft section of the roughness
elements, is summarised in Table 7.2. Note that the results presented in this section
are time-averaged over a single period of the imposed acoustic forcing function,
introduced in Chapter 4 (Problem Definition & Numerical Set-up).

Effect of frontal profile Figures 7.1a and 7.1b show the shear layers around the
smooth bump and cylindrical flat-top roughness elements respectively. It can be seen

123



7. Roughness-induced Transition

(a)

40 45 50 55 60 65 70 75 80
0

1

2

3

x

y

20 22 24 26 28 30
0

1

2

3

z

y

(b)

40 45 50 55 60 65 70 75 80
0

1

2

3

x

y

20 22 24 26 28 30
0

1

2

3

z

y

(c)

40 45 50 55 60 65 70 75 80
0

1

2

3

x

y

20 22 24 26 28 30
0

1

2

3

z

y
(d)

40 45 50 55 60 65 70 75 80
0

1

2

3

x

y

20 22 24 26 28 30
0

1

2

3

z

y

Figure 7.1. Wall-normal shear ∂u/∂y (left) at the domain centreline. Recircula-
tion bubbles are visualised by dashed red contour lines of infinitesimally small
negative streamwise velocity. Contours of shear magnitude us at x = 85.0 (right),
with the roughness shape superimposed as a shaded contour. (a) H-⊗-1.0-Ae5;
(b) H-◦-1.0-Ae5; (c) H-�-1.0-Ae5; (d) H-�-1.0-Ae5. (Continued on next page)

that the recirculation region upstream of the flat-top is larger, while the recirculation
region downstream is of the same length. This is different to the simulations at a
lower Reynolds number (Re = 8200) in Chapter 5, for which the aft recirculation
region was observed to be considerably smaller for the smooth bump. The increase
in in Reynolds number has also an effect on the shear layers. The value of the
wall-normal shear stress downstream of the roughness elements, e.g. at x = 80,
is similar between the smooth bump and flat-top, albeit thinner and further away
from the wall behind the flat-top. For the lower Reynolds number simulations, the
detached shear layer was much weaker behind the smooth bump element. The
shear stress away from the roughness centreline is still heavily dependent on the
roughness frontal shape, as can be seen in the right hand figures of Figures 7.1a
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Figure 7.1 (cont.). Wall-normal shear ∂u/∂y (left) at the domain centreline. Recircu-
lation bubbles are visualised by dashed red contour lines of infinitesimally small
negative streamwise velocity. Contours of shear magnitude us at x = 85.0 (right),
with the roughness shape superimposed as a shaded contour. (e) H-4-1.0-Ae5;
(g) H-5-1.0-Ae5; (g) H-  -0.5-Ae5; (h) H-D-1.0-Ae5

and 7.1b. The structure of the detached shear layer behind the flat-top can be seen
to be more curved and concentrated, and the high-shear regions close to the wall
(at z ≈ 23 and z ≈ 25), generated by streamwise vorticity induced by the roughness
elements, are considerably weaker behind the smooth bump.

Effect of planform shape The effect of the planform of the roughness element can
be observed by looking at Figures 7.1b to 7.1d, which shows the shear layers for the
cylindrical, square and diamond-shaped flat-top roughness elements respectively.
From these figures it can be seen that the difference between the cylindrical and
square roughness element is small, while the diamond-shaped flat-top generates
a slightly more curved detached shear layer and stronger wall-normal shear at the
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7. Roughness-induced Transition

roughness centreline. The recirculation regions downstream of the roughness ele-
ments can be seen to be dependent on the roughness planform: the diamond-shaped
roughness element has the shortest recirculation region, followed by the cylindrical
and finally the square flat-top roughness element. The separation lengths around
the cylindrical and square elements are respectively 42% and 87% larger upstream
and 15% and 37% larger downstream compared to the diamond-shaped roughness
element. Very similar behaviour, qualitatively, was observed at a lower Reynolds
number in Chapter 5.

Effect of ramps The effect of ramping up or ramping down the roughness element
is shown by Figures 7.1e and 7.1f, which should be compared with the square flat-top
case of Figure 7.1c. It can be seen that ramping up does not greatly modify the shear
layers downstream. The strength and wall-normal location of the wall-normal shear
at the centreline is roughly the same, although the shear regions off-centre and near
the wall are slightly weaker. The recirculation region downstream of the ramp-up
element is slightly larger, while upstream no recirculation region is present due to
the more gentle change in geometry.

In the case of the ramp-down element, the flow upstream of the roughness behaves
the same as the square flat-top element, while a large effect downstream can be
observed. The downstream recirculation region has disappeared completely, which
allows the detached shear layer to spread out and be brought closer to the wall,
resulting in lower levels of wall-normal shear. The off-centre near-wall high-shear
regions do not seem to be affected by the ramping up or down, which would indicate
that the streamwise vorticity generated by the roughness element is not weakened
by the ramped-down aft section of the roughness element.

Effect of roughness height The small flat-top roughness element (with k = 0.5)
of case H-  -0.5-Ae5 yields very weak shear layers compared to the flat-top element
with height k = 1.0, as can be seen by comparing Figures 7.1b and 7.1g. The strength
and structure of the detached shear layer is more similar to the smooth bump (with
k = 1.0), shown in Figure 7.1a, and therefore the effect of these two roughness
elements on the transition behavior is expected to be similar.

Effect of roughness width The effect of the roughness width or aspect ratio can
be seen Figure 7.1h, which shows the case with W = 3.0 and can be compared to
square flat-top element with W = 6.0 in Figure 7.1c. The detached shear layer at the
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7.2. Roughness-induced base flow modifications

Table 7.2. Lengths of the recirculation regions upstream and downstream of the
roughness elements.

Case Lfront
sep Laft

sep

H-⊗-1.0-Ae5 2.7 11.2
H-◦-1.0-Ae5 4.4 11.3
H-�-1.0-Ae5 5.8 13.4
H-�-1.0-Ae5 3.1 9.8
H-  -0.5-Ae5 1.7 4.8
H-4-1.0-Ae5 – 14.6
H-5-1.0-Ae5 5.8 –
H-D-1.0-Ae5 3.3 5.7

centreline downstream of the narrower roughness element is stronger, more concen-
trated and more curved in the cross-flow plane. The high-shear regions off-centre
and near the wall are weaker for the narrow roughness element, indicating that the
streamwise vorticity generated by this element is not as strong. The recirculation
regions around the W = 3.0 element are approximately 43% (upstream) and 57%

(downstream) shorter than those around the flat-top with W = 6.0.

7.2.2 Vortical structures

The vortical flow structures generated around the roughness elements are shown
in Figures 7.2 and 7.2, visualised by isosurfaces of second invariant of the velocity
gradient tensor, i.e. the Q-criterion (Hunt et al., 1988), defined for compressible flow
as

Q =
1

2

[(
∂ui
∂xi

)2

− ∂ui
∂xj

∂uj
∂xi

]
, (7.2)

and coloured by the local streamwise velocity. The recirculation regions are shown
using black isosurfaces, which gives a better understanding of the three-dimensional
shape of the separation around the roughness elements.

From Figure 7.2a it can be seen that the smooth bump does not produce strong vortical
structures downstream of the roughness. This is consistent with the relatively low
spanwise shear stress in its wake, as observed in the previous section. A relatively
large high-speed structure can be seen on top of the smooth bump, but this does not
seem to have much influence on the downstream flow structures.

The planform does not seem to have a dramatic effect on the structures around the
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Figure 7.2. Top view of the flow structures around the roughness elements. Struc-
tures are shown by isosurfaces of Q = 0.003 coloured using the local stream-
wise velocity. Black isosurfaces indicate the recirculation regions. (a) H-⊗-1.0-Ae5;
(b) H-◦-1.0-Ae5; (c) H-�-1.0-Ae5; (d) H-�-1.0-Ae5. (Continued on next page)
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Figure 7.2 (cont.). Top view of the flow structures around the roughness elements.
Structures are shown by isosurfaces of Q = 0.003 coloured using the local stream-
wise velocity. Black isosurfaces indicate the recirculation regions. (e) H-4-1.0-Ae5;
(f) H-5-1.0-Ae5; (g) H-  -0.5-Ae5; (h) H-D-1.0-Ae5
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flat-top roughness elements, as shown in Figures 7.2b to 7.2d. Upstream of the rough-
ness, a low-speed horseshoe vortex can be seen to wrap itself around the elements.
Stronger vortices are generated at the aft section of the elements in a high speed flow
region. These structures initially follow the shape of the downstream recirculation re-
gions and become aligned in the streamwise direction further downstream. Because
of the much narrower recirculation region behind the diamond-shaped roughness
elements, this pair of streamwise-aligned vortices are located closer together than
in the case of the cylindrical or square flat-top roughness element. The high-speed
rollers generated on top, shown as red in Figures 7.2b to 7.2d, have a shape that
is planform-dependent, but this structure does not seem to have an effect on the
downstream flow structures.

In the case of the ramp-up element, shown in Figure 7.2e, no horseshoe vortex is
generated. Similarly to the flat-top element without a ramp, a strong streamwise-
aligned vortex pair is generated downstream with similar strength and spanwise
position. Therefore, the flow structures downstream do not seem to be affected very
much by the upstream ramp-up, and it is mainly the geometry of the roughness aft
section that governs the flow structures in the roughness wake. This is confirmed
by looking at the ramp-down element in Figure 7.2f. The flow structures at the
front of the ramp-down roughness (i.e. horseshoe vortex, high-speed roller on top)
are almost identical to the square flat-top element without a ramp, as shown in
Figure 7.2c. However, the structures downstream of the ramp-down are considerably
affected. The streamwise-aligned vortex pair seems to be thinner and have a higher
local streamwise velocity, indicating that the streamwise velocity deficit behind the
ramp-down roughness element is much lower than the flat-top element without
downward ramp.

The small roughness element of case H-  -0.5-Ae5 does not generate strong vorticity
downstream, as shown in Figure 7.2g. In that regard, the flow around the flat-top
roughness element with k = 0.5 is not very different from the flow around the
smooth bump element. For the case with a square flat-top element with k = 1.0 but
a width W = 3.0 (H-D-1.0-Ae5) the flow structures are very similar to the full-width
case H-�-1.0-Ae5, but the generated streamwise-aligned structures are located closer
to the centreline.
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7.3. Roughness effect on transition

7.3 Roughness effect on transition

Although it is known that surface roughness can promote early transition to turbu-
lence, the exact behaviour of the flow and the characteristics of the transition process
downstream of an isolated roughness element are hard to predict.

7.3.1 Prediction of roughness-induced transition

Traditionally a transition criterion based on roughness height has been used to
separate the transitional and non-transitional cases. One of the most commonly-used
roughness-induced transition criteria is the roughness Reynolds numberRekk (Reda,
2002) defined as

Rekk :=
ukρkk

µk
(7.3)

where uk, ρk and µk are respectively the streamwise velocity, density and dynamic
viscosity at the location and height k of the roughness in an unperturbed boundary
layer. This approach does not take into account the shape, planform or background
noise levels, yielding a range of critical Reynolds numbers Rekk reported in the
literature. Variations of Rekk, where variables are taken at different locations (either
at the wall or the roughness height) are occasionally used, such as

Rekw :=
ukρkk

µw
(7.4)

(Bernardini et al., 2012a), but neither of these solve the inherent limitations of this
type of transition criterion. More recently Bernardini et al. (2012b) proposed a new
transition criterion based on momentum deficit due to the roughness element, ReQ,
defined as

ReQ :=
QS

−1/2
yz

µw
(7.5)

for which they found the critical value for bypass transition to occur at ReQ >

200− 280 for a wide range of roughness shapes. In this formula

Q ≈ ρk kD uk F (shape) (7.6)

is the estimated momentum deficit, where

F (shape) =
∫ 1

0
η w∗(η) dη, (7.7)

with η = y/k, and w∗(η) = w(y)/D. In these equations Syz is the projected frontal
area, w(y) is the local width of the roughness element and D is the diameter of the
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Table 7.3. Computed roughness Reynolds numbersRekk, Rekw, ReQ of the different
cases.

Case Rekk Rekw ReQ

H-⊗-1.0-Ae5 984 728 618
H-◦-1.0-Ae5 984 728 793
H-�-1.0-Ae5 984 728 793
H-�-1.0-Ae5 984 728 758
H-4-1.0-Ae5 984 728 793
H-5-1.0-Ae5 984 728 793
H-  -0.5-Ae5 127 119 135
H-D-1.0-Ae5 984 728 516

roughness element. Equation (7.5) can also be expressed as

ReQ = Rekw (D/k)1/2 F (shape) , (7.8)

which is the equation used to computeReQ in the current work. This criterion, being
based on the (estimated) momentum deficit, takes into account to some degree the
frontal shape of the roughness element.

The values of Rekk , Rekw and ReQ for the cases currently under investigation are
given in Table 7.3. The values ofRekk andReQ are also placed in the transition maps
in Figure 7.3, proposed by Redford et al. (2010) and Bernardini et al. (2012b). Note
that the shaded region in these maps are the proposed supercritical regions, i.e. the
cases that lie in this region are expected to go through transition, while the others do
not. It can be seen that all cases, except the flat-top roughness element with smaller
height k = 0.5, are expected to trip the boundary layer and induce transition.

7.3.2 Transition onset location

The location at which transition is said to occur is not unambiguous. Different pa-
rameters can be looked at to determine the location of the point where the transition
process starts, such as the boundary layer intermittency or the skin friction coefficient
cf . It is commonly said that an abrupt rise in skin friction signifies the start of the
transition from a laminar to a turbulent boundary layer. However, how to quantify
this rise and how to set an appropriate threshold is not straightforward and changing
these parameters could result in significantly different computed transition onset
locations.
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Figure 7.3. Transition maps proposed by Redford et al. (2010) and Bernardini et al.
(2012b). The symbols in the maps denote the cases investigated in the current chapter.

In the current work, the transition onset location xtr is defined as the first streamwise
coordinate downstream of the roughness element such that the rate of increase of
the skin friction coefficient, c′f (x) = d (cf ) /dx, is larger than (or equal to) 2% of the
value of the local skin friction coefficient cf (x), i.e.

xtr := x

∣∣∣∣∣ c′f (x)cf (x)
≥ 0.02 , (7.9)

for which the values are computed at the roughness centreline. This definition
is chosen because it consistently gives a reasonable estimates for the start of the
skin friction rise, determined visually by the skin friction plots in this section. This
criterion does break down near the edges of flow reversal regions, where cf = 0,
however.

The skin friction coefficient along the domain centreline is plotted in Figure 7.4
for all cases with low (quiet) freestream disturbances (cases Ae5). The dashed line
in this figure shows the skin friction for a flat plate without a roughness element,
and the red diamond symbols indicate the transition onset location detected by the
criterion in Equation (7.9). From Figure 7.4 it can be seen that only cases H-◦-1.0-Ae5,
H-�-1.0-Ae5, H-�-1.0-Ae5, H-4-1.0-Ae5 and H-D-1.0-Ae5 trigger a clear transition to
turbulence, while cases H-⊗-1.0-Ae5, H-5-1.0-Ae5 and H-  -0.5-Ae5 remain laminar
within the computational domain. This is unexpected, since only roughness with
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Figure 7.4. Skin friction coefficient along the domain centreline. Dashed line indi-
cates the skin friction coefficient of a flat plate without roughness.

k = 0.5 (case H-  -0.5-Ae5) would be laminar according to the predictions based on
Rekk , Rekw and ReQ.

The transition to turbulence, or lack thereof, is also evident in Figure 7.5, which
shows contours of the instantaneous temperature field (increasing temperature from
yellow to red) at a location of y = 1.0 above the wall for all the quiet cases. From these
contours, the generation of a hot low-speed streak flanked by colder high-speed
streaks can be observed. Except for cases H-⊗-1.0-Ae5and H-  -0.5-Ae5, the streaks
can be seen to become unstable and modulated at a certain location downstream of
the roughness elements. Eventually the streaks break down and a turbulent wedge
can be observed for the cases that go through transition. By comparing Figure 7.4 and
Figure 7.5, it can be seen that the detected transition onset locations correspond to the
locations where large streak modulations are visible, shortly before the breakdown
to turbulence.

For the cases that go through transition, the transition onset location lies at approxi-
mately xtr = 180− 215, corresponding to 127− 162 inflow displacement thicknesses
downstream of the roughness. The computed transition onset locations for all cases
are summarised in Table 7.4. Although the difference between the different plan-
form shapes is small, the diamond-shaped roughness element seems to be the most
effective at inducing early transition, closely followed by the cylindrical flat-top
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Figure 7.5. Contours of the instantaneous temperature field at a wall-normal loca-
tion of y = 1.0. (a) H-⊗-1.0-Ae5; (b) H-◦-1.0-Ae5; (c) H-�-1.0-Ae5; (d) H-�-1.0-Ae5.
(Continued on next page)
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Figure 7.5 (cont.). Contours of the instantaneous temperature field at a wall-
normal location of y = 1.0. (e) H-4-1.0-Ae5; (f) H-5-1.0-Ae5; (g) H-  -0.5-Ae5;
(h) H-D-1.0-Ae5
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element. This seems to contradict the linear instability results presented in Chapter 5
(Roughness Receptivity & Wake Instability), where it was shown that the instability
growth rate behind the cylindrical roughness element was slightly larger than be-
hind the diamond-shaped element. This apparent discrepancy will be explained
in Section 7.4 further in this chapter. From Figure 7.4 it can be seen that the square
flat-top element is less effective than the cylindrical or diamond-shaped elements at
inducing early transition, which is in agreement with the linear instability results
from Chapter 5. It is interesting to note that between these three cases, the case with
the smallest aft recirculation region has the earliest transition point, while the case
with the largest aft recirculation region has the transition onset point furthest down-
stream. The aspect ratio does not seem to have a large effect on transition, since the
difference between transition onset locations of cases H-�-1.0-Ae5 and H-D-1.0-Ae5

is ∆xtr ≈ 3.3. This is a very small difference, considering the method used for the
transition detection. Ramping-up the square flat-top roughness element, i.e. as in
case H-4-1.0-Ae5, does not seem to promote earlier transition but shows a small
transition delay. However, even though the roughness element in case H-4-1.0-Ae5

is ramped-up, the recirculation region upstream of the square flat-top acts as an
effective ramp. The recirculation actually has a steeper effective ramp angle, as can
be deduced from Figure 7.1. Therefore, a ramped-up roughness element might still
be more effective at promoting transition, but the effect would be very dependent
on the actual shape and angle of the ramp.

As mentioned before, based on the transition criteria Rekk and ReQ, the smooth
bump and ramp-down roughness elements were not expected to remain laminar.
Even though the smooth bump has the same height and frontal projected area as the
flat-top roughness elements, the less abrupt change in geometry and the absence of
large recirculation regions yields a less unstable roughness wake and early transition
is not induced. This seems in slight contradiction to the Mach 6 smooth bump
simulations of Redford et al. (2010), who did see transition at a comparable Reynolds
number. However, the acoustic disturbances they introduced in the freestream had
an amplitude approximately 26 times larger than those in the current work. Since they
also found a slight dependency of the transition onset location on the disturbance
amplitude, the smooth bump in the current work might still induce transition within
the computational domain in the presence of disturbances with higher amplitude.
The effect of the freestream disturbance environment is investigated in the next
section.
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Table 7.4. Computed transition onset location xtr, maximum streak amplitude Amax
st

and growth rate σ downstream of the roughness elements.

Case xtr Amax
st σ100<x<140

H-⊗-1.0-Ae5 – 0.315 0.045
H-⊗-1.0-Ae4 267.3 0.314 0.043
H-◦-1.0-Ae5 187.4 0.585 0.111
H-◦-1.0-Ae4 142.1 0.575 0.108
H-�-1.0-Ae5 201.1 0.546 0.101
H-�-1.0-Ae5 179.9 0.561 0.106
H-  -0.5-Ae5 – 0.225 0.045
H-4-1.0-Ae5 215.6 0.548 0.092
H-5-1.0-Ae5 – 0.437 0.048
H-D-1.0-Ae5 204.4 0.474 0.071

Especially the aft part of the roughness seems to be of great importance, demon-
strated by the ramp-down case. The frontal profiles and the flow around the front
part of the ramp-down and square flat-top roughness elements are the same, as
demonstrated by Figures 7.1 and 7.2. However, the ramp-down at the aft section pro-
motes attached flow and allows for the detached shear layer to spread and weaken,
resulting in very different behavior of the roughness wake and subsequent transition.
This observation suggests that the streamwise profile, and in particular the geometry
of the aft section, is of significant importance in the prediction of roughness-induced
transition. However, this characteristic is not taken into consideration in any of the
commonly used engineering correlations.

7.3.3 Freestream disturbance environment

So far the effect of the freestream disturbance environment has not been discussed.
Cases H-⊗-1.0-Ae4 and H-◦-1.0-Ae4 have respectively a smooth bump and cylindrical
flat-top roughness element, but have higher amplitude disturbances imposed in the
freestream, i.e. a noisier freestream. The amplitude in these cases is one order of
magnitude greater than the reference cases H-⊗-1.0-Ae5and H-◦-1.0-Ae5.

By increasing the disturbance level in the freestream, the smooth bump does start
transition near the end of the numerical domain, as can be seen in Figure 7.6. In the
case of the flat-top roughness element, the transition onset location moves forward
approximately 45 inflow displacement thicknesses to xtr = 142.1. The amplitude of
the disturbances in the noisy cases is still small enough to yield initially linear dis-
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Figure 7.6. The effect of freestream disturbance level on the skin friction coefficient.
Solid lines: quiet (Ae5); dashed lines: noisy (Ae4).

turbances. The receptivity process is also linear, such that an increase of disturbance
amplitude in the freestream of one order of magnitude translates into an increase of
disturbance amplitude in the boundary layer of one order magnitude larger. This
can be seen in Figure 7.7, which shows the disturbance energy, defined as

e = u′u′ + v′v′ + w′w′ , (7.10)

integrated over the boundary layer 99% thickness, evaluated at the roughness centre-
line. Figure 7.7 shows that the growth rates of disturbances inside the boundary layer
are not greatly affected by the increased freestream amplitude. The disturbances
can be seen to grow exponentially and their growth rate is not greatly dependent
on the freestream disturbance environment. The growth of instabilities is however
very dependent on the roughness element, as the wake generated by the flat-top
roughness element is clearly more unstable than the wake behind the smooth bump.
After the region of exponential disturbance growth, the disturbance energy can be
seen to reach a saturation limit for the cases going through transition. This saturation
signifies the occurrence of non-linear interactions (De Tullio, 2013) which precede
the breakdown to turbulence. It can thus be said that the transition onset location is
shifted forward due to the linear receptivity process, and not due to a structurally
modified transition process.
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Figure 7.7. The effect of freestream disturbance level on the disturbance energy
growth. Solid lines: quiet (Ae5); dashed lines: noisy (Ae4).

7.4 Instability growth in the wake

In order to develop better predictions of roughness-induced transition, the mecha-
nisms governing the transition need to be better understood. A mechanism-based
approach would need to take into account the freestream flow conditions, distur-
bance environment, and roughness shape. Since it has been shown here that the
streamwise roughness profile, and in particular the aft section, can have a large in-
fluence on the transition process, the full three-dimensional roughness shape needs
to be considered, a characteristic not regarded in the commonly-used transition
prediction correlations. In this section the correlation of instability growth rate with
several measures of the lift-up effect due to the roughness elements are considered.

7.4.1 Instability growth rate

Table 7.4 lists the exponential growth rates σ of the integrated disturbance energy Ie.
It should be noted that the computation of the growth rate is sensitive to the choice
of evaluation location. The growth rate σ in Table 7.4 is computed as the average
growth rate in the range 100 < x < 140 in order to minimise this uncertainty.

It can be seen that the growth rates are highly dependent on the type of roughness
element, and that even roughness elements with the same frontal profile (and thus
the same values of Rekk, Rekw and ReQ) can have significantly different growth
rates. These roughness Reynolds numbers have been able to separate laminar and
turbulent cases for simplified roughness geometries with various degrees of success,
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Figure 7.8. Inverse of the transition onset location plotted against the Reynolds
number based on momentum deficit ReQ.

but have a very limited applicability for general fully three-dimensional roughness
shapes and cannot be used to predict the wake instability or subsequent location
of transition. This is also evidenced by Figure 7.8, which shows the inverse of the
transition length against ReQ, and gives no clear indication of a useful correlation
between the two.

From Table 7.4 it can be seen that the instability growth rate behind the cylindri-
cal flat-top element is slightly greater than behind the diamond-shaped element.
This confirms the linear instability growth results presented in Chapter 5 (Rough-
ness Receptivity & Wake Instability). The observation earlier in this chapter that the
diamond-shaped roughness element has an earlier transition onset location than
the cylindrical flat-top is explained by the fact that in the near-field of the diamond-
shaped roughness element, instabilities are more amplified than near the cylindrical
element.

7.4.2 Prediction of growth rate and transition

An important step in the development of a better roughness-induced transition
prediction tool would be if a relation could be found between the disturbance growth
rate and a macroscopic feature of the roughness element or the flow in the vicinity
of the roughness. All the empirical roughness Reynolds numbers fail this test, since
it has been shown that cases with the same value of Rekk, Rekw and ReQ can have

141



7. Roughness-induced Transition

entirely different instability growth rates and transition onset locations.

If a transient growth scenario is considered as the initial mechanism behind the
transition induced by a three-dimensional isolated roughness element, a relation
between the disturbance growth rate and transient growth characteristics is expected.
Counter-rotating vortices generated behind the roughness element transport low-
momentum fluid away from the wall at the centre and high-momentum fluid towards
the wall at the sides of the roughness wake. This lift-up mechanism, proposed by
Landahl (1980), generates streamwise streaks that initially grow algebraically in
strength followed by a slow decay due to viscous dissipation. This process is tran-
sient growth, and has been studied extensively in the context of optimal growth and
bypass transition, as reviewed by Reshotko (2001).

The generation of low- and high-momentum streaks has been observed behind the
roughness elements for all the cases presented in the current work. Figure 7.9a
shows the exponential disturbance growth rate plotted against the peak streamwise
vorticity downstream of the roughness centre, and shows that stronger streamwise
vorticity generated by the roughness element leads to a stronger lift-up effect and
subsequently a larger disturbance growth rate. The horizontal line separating the
shaded region in this figure indicates the linear growth rate for a flat plate boundary
layer without a roughness element. The effect of counter-rotating streamwise vortices
on lift-up is clearly dependent on the vorticity magnitude, but may also depend on
the distance between the vortices, which is linked to the roughness element width. In
contrast, the amplitude of the streak results directly from the lift-up mechanism and
therefore is a metric that might give a trend independent of the roughness element
geometry.

The amplitude of a streak may be defined, using the formulation of Andersson et al.
(2001), as

Ast :=
1

2

[
max
y,z

{u− ub} −min
y,z

{u− ub}
]
, (7.11)

where ub is the undisturbed laminar base flow. An alternative integral-based streak
amplitude definition can be used, similar to the definition by Shahinfar et al. (2013),
i.e.

Aint
st :=

1

W

∫ Lz

z=0

∫ Ly

y=0
|u− ub| dy dz . (7.12)

Shahinfar et al. (2013) studied spanwise periodic streaks generated by an array of
vortex generators. In their original definition, the integrated streak amplitude was
normalised by the spanwise wavelength such that the spanwise extent of the streaks
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has an effect on the integral streak amplitude. The notion behind this normalisation
is that the integral streak amplitude becomes related to the spanwise shear stress
between the streaks. By normalising the current integral streak amplitude definition
in (7.12) by the roughness width W , a distinction can be made between cases with
different roughness element widths.

It has been found that the latter definition does not work well for the non-periodic
roughness wakes in the current work. Due to the increasing spanwise extent of
the roughness wake going downstream, the integral streak amplitude increases
monotonically up to the point of streak breakdown, even when the velocity differ-
ence of the streaks (and the spanwise shear stress) decreases. Therefore, the streak
amplitude definition of Andersson et al. (2001) has been used.

Andersson et al. (2001) investigated secondary instabilities of streaks in an incom-
pressible boundary layer and found that streak instability occurs above a critical
streak amplitude. They also showed a direct relationship between streak amplitude
and growth rate of the streak instabilities (with non-zero streamwise wavenumber).
Table 7.4 lists the maximum streak amplitudes that are reached behind the rough-
ness elements for all cases, and the computed growth rates are plotted against these
values in Figure 7.9b. From this figure, it is clear that a direct relationship between
maximum streak amplitude and averaged growth rate σ can be observed, and that
this correlation (at streak amplitudes greater than 0.4) seems to be stronger than the
trend between streamwise vorticity and growth rate. A linear regression line of the
data points with Ast > 0.4 is plotted in Figure 7.9b, and is defined as

σ = 0.416Amax
st − 0.130 . (7.13)

A minor dependency of the peak streak amplitude on the freestream disturbance level
is apparent in Table 7.4 for cases H-◦-1.0-Ae4 and H-◦-1.0-Ae5. It can be observed
that the disturbance energy for noisy case H-◦-1.0-Ae4 reaches relatively high levels,
i.e. O (1%), at the location of peak streak amplitude in the corresponding quiet case
H-◦-1.0-Ae5. Non-linearities arise at these high levels and case the streak to break
down before the peak streak amplitude, obtained in the quiet case, is reached.

If the trend between peak streak amplitude and average growth rate holds for a large
range of roughness shapes and freestream parameters, the exponential growth rate
downstream of the roughness element could be predicted by accurately determining
the base flow and the resulting streak amplitude downstream. The transition onset
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Figure 7.9. Growth rate of integrated disturbance energy plotted against (a) the peak
streamwise vorticity and (b) the maximum streak amplitude reached downstream
of the roughness elements.
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7.5. Summary of results

location would then be able to be predicted using an N-factor-type estimation — sim-
ilar to the N-factor prediction of boundary layer transition based on stability analysis.
An accurate description of this relation would then provide a mechanism-based
prediction of roughness-induced transition without the need for stability analysis.

7.5 Summary of results

In this chapter the full transition process from a laminar to a turbulent boundary
layer due to the presence of an isolated roughness element has been investigated.
The effects of the different roughness shapes on the linear instability of the wake, as
discussed in Chapter 5 (Roughness Receptivity & Wake Instability), have been found
to extend to the non-linear instability growth and subsequent transition onset. The
frontal roughness profile has a large influence on the transition onset: the flat-top
elements induce transition while the smooth bump does not. The planform shape
has a weak effect however, and the location of transition does not differ greatly
between the cylindrical, square and diamond-shaped elements. The upward ramp
has a slight stabilising effect, similarly to the result in Chapter 5, but this might be
very dependent on the actual ramp angle. The downward ramp greatly stabilises
the transition process and no transition has been observed behind this roughness
element. It was found that the roughness width (or aspect ratio) has an insignificant
effect on the transition onset location for the case studied here.

The amplitude of the freestream disturbance environment has been varied to examine
its effect on the transition onset. The disturbance amplitude for the noisy environment
has been taken one order of magnitude greater than the corresponding baseline quiet
environment. The amplitude is still small enough to yield initially linear instabilities
however. Due to the linear receptivity process it has been found that an increase of
the disturbance amplitude in the freestream of one order of magnitude translates
into an increase of the disturbance amplitude in the boundary layer of one order
magnitude. An upstream shift of the transition onset location has been observed due
to the noisy freestream, although the growth rate of the boundary layer instabilities
is not greatly affected by the change in freestream disturbance amplitude. It can thus
be said that the transition is promoted due to the linear receptivity process, and not
due to a structurally modified transition process.

The engineering correlations commonly used to predict whether or not a roughness
element induces transition are mainly based on the roughness height and, only
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recently, the frontal profile. However, they do not take into account the full three-
dimensional roughness shape. As we have observed that transition can be delayed or
even suppressed by a downward ramp or slowly-varying aft geometry, the full three-
dimensional shape, including the streamwise profile, needs to be considered. Also
the disturbance environment needs to be taken into account if one wants to define a
solid transition criterion. In this chapter, a direct relation has been found between the
peak amplitude of the streamwise streaks generated behind the roughness element
and the averaged exponential growth rate of the disturbances in the wake, which
could be a first step towards a mechanism-based approach of roughness-induced
transition.
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Chapter 8

Conclusions & Future Work

8.1 Conclusions of the current work

In the current work the effects of isolated roughness elements on the instability and
subsequent transition behaviour of a Mach 6.0 boundary layer has been studied.
The principal focus has been on quantifying the influence of the three-dimensional
roughness shape, i.e. frontal profile, planform shape, upward/downward ramps, and
the external forcing on the stability of the roughness wake and the onset of transition
to turbulence. It is therefore a logical extension to the dissertation of De Tullio
(2013), who studied the transition induced by a single square roughness element
at the same Mach number. The investigations have been performed numerically
with direct numerical simulations, using the in-house DNS code SBLI, and linear
stability analysis. For this purpose and in the scope of this dissertation, a new code
(COMPASS - Compressible Analysis-of-Stability Suite) has been developed that is able to
perform local, bi-local and tri-global stability analysis of the compressible linearised
Navier-Stokes equations. The code has been validated extensively (for local and
bi-local stability analysis) from subsonic to hypersonic velocities.

This work comprises of three main results chapters: the receptivity of a boundary
layer near roughness elements and the instability of roughness wakes has been
discussed in Chapter 5 (Roughness Receptivity & Wake Instability); the applicability of
linear stability theory to roughness wakes has been examined in Chapter 6 (Stability
Analysis of Roughness Wakes); the full non-linear transition process, induced by dif-
ferent roughness elements, has been investigated in Chapter 7 (Roughness-induced
Transition).
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Receptivity to different forcing types From the results on the receptivity study
near a cylindrical flat-top roughness element, it has been found that acoustic distur-
bances are the most effective at exciting unstable boundary layer and wake modes.
The instability behaviour of the wake has been shown to be qualitatively the same
when imposing entropy fluctuations instead of acoustic forcing, but the amplitude
of the disturbances are one order of magnitude smaller. By introducing vortical
disturbances, the boundary layer instabilities were found to grow more slowly. A
different receptivity mechanism seems to be active for this type of forcing. De Tullio
(2013) reported similar results for a sharp-edged square roughness element, demon-
strating that the interaction between the different disturbances and the roughness
wake is independent of the structure of the wake, and in extension the shape of the
roughness element. In the other studies of this dissertation, acoustic disturbances
were chosen as forcing because of the enhanced receptivity compared to entropy
and vorticity fluctuations.

Roughness wake generation and instability The flow encountering a roughness
element is characterised by strong streamwise vorticity. The counter-rotating vortices
behind the roughness element transport low-momentum fluid away from the wall at
the roughness centreline and high-momentum fluid towards the wall away from the
roughness centreline. This process results in a low-velocity streak at the roughness
centreline flanked by high-velocity streaks, which comprise the roughness wake.
High shear stress is present between and on top of these streaks, which can sustain
convective wake instabilities.

The frontal profile of the roughness element has a large influence on this process
and the resulting wake instability. While a large spectrum of unstable wake modes
have been found in the wake of a flat-top element, a smooth bump (with the same
maximum height) was found to act mainly as a disturbance amplifier without sig-
nificantly increasing the growth rate of disturbances in the wake. The structure
and strength of the roughness wake was found to be only weakly affected by the
roughness planform shape. Both cylindrical, square and diamond-shaped roughness
elements were studied. It was concluded that the most unstable wake mode is the
same for all three cases, with similar growth rates. The most unstable wake mode
was observed to be of a varicose-lateral nature (using the terminology of De Tullio
and Sandham (2015), i.e. most active in the lateral and top shear layers between
the streamwise streaks. The cylindrical roughness element was found to have the
largest overall disturbance growth near the end of the domain, closely followed by
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the diamond-shaped and finally the square element. In order to study the effect of
the streamwise roughness profile, an upward or downward ramp was attached to the
square roughness element. The presence of the upward ramp was found to have a
relatively small effect on the roughness wake. The main effect of the upward ramp is
the prolonged instability region of the varicose-centre mode, a mode active near the
wall at the roughness centreline with strong similarities to the Mack mode. However,
only a small decrease in overall disturbance growth of approximately 10% has been
observed, due to the fact that the most unstable varicose-lateral mode is only slightly
damped. The downward ramp at the aft section of the roughness element has a
crucial effect on the resulting wake instability however. The slowly-varying geometry
of the ramp completely avoids downstream separation, which allows the detached
shear layer, generated over the top of the roughness element, to spread out and
weaken significantly. Even though the frontal profile shape and roughness height
are the same, the presence of the downward ramp results in a much less unstable
wake. The overall disturbance amplitude at the end of the domain is approximately
30% lower than in the case without the downward ramp.

Applicability of linear stability theory The direct numerical simulations that
were performed for this wake instability study are very computationally expen-
sive and are impossible to run without access to a supercomputing facility. The
applicability of linear stability analysis to predict the wake instability behaviour
has been investigated, since it would allow for much less expensive computations.
The stability analysis of a roughness wake has been performed using COMPASS by
running bi-local stability computations of cross-flow planes taken in the wake of a
roughness element from the direct numerical simulations. It was found that bi-local
stability analysis is able to predict the frequency at which the most unstable mode is
active, and also the instability mode shapes can be accurately resolved in most cases.
However, the growth rate of these instability modes is incorrectly computed and
generally strongly underpredicted. Therefore, bi-local stability analysis on its own
might not be the appropriate tool to estimate the instability of the roughness wake.
The results of the stability analysis demonstrate that non-parallel effects, which are
neglected by the bi-local stability analysis, are of crucial importance in the accurate
determination of the instability growth. It is therefore suggested that tools such as
tri-global stability analysis and/or three-dimensional PSE could give an improved
quantitative prediction of the wake instability.
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Effect of roughness shape on transition onset The full non-linear transition pro-
cess from a laminar to a turbulent boundary layer induced by roughness elements
has been studied using direct numerical simulations, with a main focus on the effect
of the three-dimensional roughness shape on the transition onset. Also the influence
of freestream disturbance environment, i.e. a quiet or noisy environment, on the
transition has been investigated. It has been found that the effects of the different
roughness shapes on the linear instability of the wake extend to the non-linear in-
stability growth and subsequent transition onset. The frontal profile has a large
influence on the transition onset. The smooth bump does not induce transition while
the cylindrical flat-top element with the same maximum height does. The planform
shape has a weak effect, but the streamwise roughness profile is of great importance.
While the upward ramp slightly delays the transition onset, behaviour which might
be dependent on the actual ramp angle, the downward ramp highly stabilises the
transition process and no transition is observed behind the ramp-down roughness
element. The amplitude of the freestream disturbance environment has been found
to have a significant effect on the transition onset location, with a noisy freestream
promoting early transition. It has been found that the upstream shift in transition
onset is due to the linear receptivity process, resulting in a higher initial amplitude
of the boundary layer disturbances for stronger freestream disturbances, and not
due to a structurally modified transition process.

Mechanism-based transition prediction Transition criteria based on simple en-
gineering correlations are commonly used to determine a priori whether or not a
roughness element will induce transition to turbulence. The commonly used criteria
are mainly based on the roughness height, but do not take into account the full three-
dimensional roughness shape or the freestream environment. Because it has been
shown that the three-dimensional shape and the freestream disturbance environment
can significantly influence the transition behaviour — promoting, delaying or even
suppressing — it needs to be considered in an exhaustive transition criterion. How-
ever, such a criterion would still be based on correlations and have no background in
the actual physical mechanisms of transition. Therefore a mechanism-based theory
of roughness-induced transition is highly desirable.

A direct relationship has been observed between the peak amplitude of the stream-
wise streaks generated behind the roughness elements and the averaged exponential
growth rate of the disturbances in the wake. Such a relationship has not been
observed with any of the transition criteria, roughness parameters or streamwise
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vorticity magnitude. Although this relationship, if confirmed for a larger number of
cases, does not provide an a priori tool to predict the transition behaviour, since it
needs the determination of the streak amplitude, it could prove to be an important
first step towards a mechanism-based approach.

8.2 Suggestions for future work

The current work has touched upon some of the important factors in the stability
of roughness wakes and subsequent roughness-induced transition, but some as-
pects remain unanswered. An extension and/or continuation of this work can be
performed in the following ways:

(i) Since it has been suggested that non-parallel effects are not negligible in the
instability of roughness wakes, the stability code COMPASS can be extended
to include (three-dimensional) PSE. Tri-global stability analysis is technically
already possible, but requires the implementation of suitable boundary con-
ditions in the streamwise direction. It would then be possible to perform
the stability analysis of roughness wakes without neglecting the non-parallel
effects and assess its accuracy and/or applicability.

(ii) An extensive assessment of the observed relationship between the peak streak
amplitude and the exponential growth rate of wake disturbances should be
performed to validate and/or correct it for a larger number of roughness cases
and flow parameters.

(iii) A mechanism-based approach of roughness-induced instability and transi-
tion, for example based on the observed relation, which takes into account
three-dimensional roughness shape and freestream disturbance environment,
is highly desirable .

(iv) The effects of compressibility and wall temperature of the instability of stream-
wise streaks could be investigated. Streak instability studies have been per-
formed for incompressible flow (Andersson et al., 2001; Brandt et al., 2003,
among others), but to the author’s knowledge no such studies exist for com-
pressible flows. This could support the development of such an approach.

(v) The global response of compressible boundary layers could be studied in the
framework of optimal growth, to investigate the effects of compressibility and
wall temperature on the generation of streamwise streaks by a transient growth
process. This could be performed with COMPASS by analysis of the linearised
Navier-Stokes equations.
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Appendix A

Linearised Compressible
Navier-Stokes Equations

The linearised form of the full three-dimensional compressible Navier-Stokes ex-
pressed in primitive variables, following the small amplitude ansatz of (3.2) discussed
in Chapter 3 (COMPASS: Compressible Stability Analysis), are given in this chapter.

For brevity and clarity, the variable arguments (x, y, z) and (x, y, z, t) are omitted in
the following equations, i.e.

•̃ := •̃(x, y, z, t)

•̄ := •̄(x, y, z) .

Continuity equation
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Streamwise momentum conservation
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Wall-normal momentum conservation
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∂ṽ
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Spanwise momentum conservation
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Energy equation
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∂ũ

∂x

∂v̄

∂y
+
∂w̄

∂z

∂ṽ
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∂ū

∂z

)2

+

(
∂v̄

∂z

)2

− 2

3

(
∂v̄

∂y

∂ū
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Appendix B

DNS Database

The raw data that was generated by the direct numerical simulation presented in
this work has been archived and made publicly available. This makes it possible
for the results presented here to be reproduced and allows for further and deeper
analysis of the data by the global research community. This chapter describes the
structure of the database, the nature of the data, and the specifications of the data
file formats.

When using any of this data or publishing results derived from analysis of this
database, please use the following citation

Van den Eynde, J. P. J. P. & Sandham, N. D. (2015), DNS Database of Roughness-
induced Instability & Transition at Mach 6

and the corresponding paper discussing the transition results:

Van den Eynde, J.P.J.P. & Sandham, N.D. (2015), Numerical Simulations of
Transition due to Isolated Roughness Elements at Mach 6. AIAA Journal, (ac-
cepted), doi:10.2514/1.J054139

Or use the following as BibTEX entries:

@misc{vandeneynde -2015- database ,

author = {{Van den Eynde}, J. P. J. P. and Sandham , N. D.},

title = {DNS Database of Roughness -induced Instability

\& Transition at Mach 6},

year = {2015}

}
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@article{vandeneynde -2015,

author = {{Van den Eynde}, J. P. J. P. and Sandham , N. D.},

title = {Numerical Simulations of Transition due to

Isolated Roughness Elements at Mach 6},

journal = {AIAA Journal},

year = {2015} ,

doi = {10.2514/1. J054139}

}

B.1 Access to the database

Access to the database is open to the public but needs to be requested to the University
of Southampton. Please contact Prof. Neil Sandham (n.sandham@soton.ac.uk) to
request access.

B.2 Structure of the database

The database contains the raw DNS data sets in two main directories, corresponding
to the data used in Chapter 5 (Roughness Receptivity & Wake Instability) and Chapter 7
(Roughness-induced Transition). These two main directories are respectively named:

/Van-den-Eynde 2015 M6 Re8200/ (Data from Chapter 5)
/Van-den-Eynde 2015 M6 Re14000/ (Data from Chapter 7)

Each of those directories contain sub-directories for the different roughness element
cases. For the results of the receptivity and linear instability growth study in Chap-
ter 5, the naming of these sub-directories are given in Table B.1. The data used for the
roughness-induced transition study in Chapter 7 can be found in the sub-directories
given in Table B.2.

Each of these sub-directories contain another two sub-directories,
./grid/ holding the grid-file,
./data/ containing the result files from the DNS code SBLI.

B.3 Data file formats

The directories described here contain a variety of different files, i.e. grid files, in-
stantaneous data files, and time-averaged statistics files. It is important to note that
each of these files are in a
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• little-endian
• binary

format. In this section the binary file format specifications of the different file formats
is described, such that the data in these files can be correctly read.

B.3.1 Grid files

The grid files, included in the ./grid/ directories, are named [casename].xyz

and contain the coordinates of the fully three-dimensional grids x(i, j, k), y(i, j, k),
z(i, j, k), with i = 1, 2, . . . ,Nx, j = 1, 2, . . . ,Ny and k = 1, 2, . . . ,Nz . The full specifi-
cations of the file format are given in Table B.3.

B.3.2 Instantaneous flow fields

Instantaneous flow fields in terms of the conservative variables (ρ, ρu, ρv, ρw, ρE)>

are written out in (single precision) multi-block plot3d files. These files are con-
sistently named plot3d q#.####, in which # signifies the block number and ####

signifies the simulation iteration number at which the flow variables are written out.

The data files for the results in Chapter 5 (Roughness Receptivity & Wake Instability),
i.e. in directory /Van-den-Eynde 2015 M6 Re8200/, use single-block flow fields.
Multi-block flow fields have been used in Chapter 7 (Roughness-induced Transition),
i.e. the data files in /Van-den-Eynde 2015 M6 Re14000/. These flow fields in this
directory have been divided in a number of blocks in the streamwise direction, such
that the complete flow field can be obtained by simply appending the different block
files in the streamwise direction.

Table B.1. Directories for the roughness cases in Chapter 5.

Case Directory

Bump /Van-den-Eynde 2015 M6 Re8200/Smooth Bump/

Cyl (-A) /Van-den-Eynde 2015 M6 Re8200/Flat Cyl A/

Cyl-V /Van-den-Eynde 2015 M6 Re8200/Flat Cyl V/

Cyl-Æ /Van-den-Eynde 2015 M6 Re8200/Flat Cyl E/

Cyl-T0.5 /Van-den-Eynde 2015 M6 Re8200/Flat Cyl T05/

Square /Van-den-Eynde 2015 M6 Re8200/Flat Square/

Diam /Van-den-Eynde 2015 M6 Re8200/Flat Diamond/

R-Up /Van-den-Eynde 2015 M6 Re8200/Ramp Up/

R-Down /Van-den-Eynde 2015 M6 Re8200/Ramp Down/
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Table B.2. Directories for the roughness cases in Chapter 7.

Case Directory

H-⊗-1.0-Ae5 /Van-den-Eynde 2015 M6 Re14000/Smooth Bump Ae5/

H-⊗-1.0-Ae4 /Van-den-Eynde 2015 M6 Re14000/Smooth Bump Ae4/

H-◦-1.0-Ae5 /Van-den-Eynde 2015 M6 Re14000/Flat Cyl Ae5/

H-◦-1.0-Ae4 /Van-den-Eynde 2015 M6 Re14000/Flat Cyl Ae4/

H-�-1.0-Ae5 /Van-den-Eynde 2015 M6 Re14000/Flat Square Ae5/

H-�-1.0-Ae5 /Van-den-Eynde 2015 M6 Re14000/Flat Diamond Ae5/

H-4-1.0-Ae5 /Van-den-Eynde 2015 M6 Re14000/Ramp Up Ae5/

H-5-1.0-Ae5 /Van-den-Eynde 2015 M6 Re14000/Ramp Down Ae5/

H-  -0.5-Ae5 /Van-den-Eynde 2015 M6 Re14000/Flat Cyl H05/

H-D-1.0-Ae5 /Van-den-Eynde 2015 M6 Re14000/Flat Square W3/

Table B.3. Specification of the binary grid file format.

Size (Bytes) Data Type Description

8 integer number of grid points in x-direction nx

8 integer number of grid points in y-direction ny

8 integer number of grid points in z-direction nz

8 null

8 float x-coordinate x(1, 1, 1)
8 float x-coordinate x(2, 1, 1)
...

...
...

8 float x-coordinate x(nx, 1, 1)
8 float x-coordinate x(1, 2, 1)
...

...
...

8 float x-coordinate x(nx, ny, 1)
8 float x-coordinate x(1, 1, 2)
...

...
...

8 float x-coordinate x(nx, ny, nz)
8 float y-coordinate y(1, 1, 1)
...

...
...

8 float y-coordinate y(nx, ny, nz)
8 float z-coordinate z(1, 1, 1)
...

...
...

8 float z-coordinate z(nx, ny, nz)
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The file format specification of the individual plot3d files is given in Table B.4.

B.3.3 Time-averaged flow field statistics

Time-averaged flow field statistics are written out in Statistics#.#### files, which
have a format similar to the plot3d file format but contain 27 statistical quantities
instead of the conservative flow variables. The exact specifications of the Statistics
files are given in Table B.5. The statistical quantities contained in these files are given
in Table B.6.
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Table B.4. Specification of the binary (single precision) plot3d format containing
instantaneous flow fields in conservative flow variables.

Size (Bytes) Data Type Description

4 integer number of grid points in x-direction nx

4 integer number of grid points in y-direction ny

4 integer number of grid points in z-direction nz

4 float Mach number M
4 float 0 (not in use)

4 float Reynolds number Re
4 float Time t
4 float density ρ(1, 1, 1)
4 float density ρ(2, 1, 1)
...

...
...

4 float density ρ(nx, ny, nz)
4 float streamwise momentum ρu(1, 1, 1)
...

...
...

4 float streamwise momentum ρu(nx, ny, nz)
4 float wall-normal momentum ρv(1, 1, 1)
...

...
...

4 float wall-normal momentum ρv(nx, ny, nz)
4 float spanwise momentum ρw(1, 1, 1)
...

...
...

4 float spanwise momentum ρw(nx, ny, nz)
4 float total energy ρE(1, 1, 1)
...

...
...

4 float total energy ρE(nx, ny, nz)
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Table B.5. Specification of the binary file format containing time-averaged flow field
statistics.

Size (Bytes) Data Type Description

4 integer number of grid points in x-direction nx

4 integer number of grid points in y-direction ny

4 integer number of grid points in z-direction nz

4 float Mach number M
4 float 0 (not in use)

4 float Reynolds number Re
4 float Time t
4 float statistical quantity 1, q1(1, 1, 1)
4 float statistical quantity 1, q1(2, 1, 1)
...

...
...

4 float statistical quantity 1, q1(nx, ny, nz)
4 float statistical quantity 2, q2(1, 1, 1)
...

...
...

4 float statistical quantity 2, q2(nx, ny, nz)

...
...

...
4 float statistical quantity 27, q27(1, 1, 1)
...

...
...

4 float statistical quantity 27, q27(nx, ny, nz)

Table B.6. Statistical quantities contained in the statistics files.

1 2 3 4 5 6 7 8 9 10

q# ρρ ρu ρv ρw ρρρ ρuu ρuv ρuw ρvv ρvw

11 12 13 14 15 16 17 18 19 20

q# ρww ρu ρv ρw uu uv uw vv vw ww

21 22 23 24 25 26 27

q# p T pp TT T0 T0T0 ρT
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