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Abstract

In the present work the investigations of non linear effects, in the
context of potential flow theory, are investigated. These effects are
caused by three main reasons, namely: the changes of the wetted
geometry of the floating body, the water line dynamics and the fully
non linear nature of the free surface boundary conditions. In order to
understand the importance of tackling the non linear effects, a three
dimensional frequency study of the S175 conteinership is carried out,
at different Froude numbers, using linear frequency domain methods

and a partly non linear time domain method.

A time domain analysis, with the aid of an unstructured mixed Eule-
rian Lagrangian (MEL) description of the fluid flow, is implemented
aiming in exploring potential flow non linear effects. In this frame-
work, the mixed boundary value problem of the Eulerian phase of the
MEL scheme is tackled by means of a Boundary Element Method us-
ing constant elements (or a direct Rankine panel method). At given
time step, on Neumann boundaries the impervious boundary condi-
tion is specified whereas, on Dirichlet boundaries, the potential on the
free surface is prescribed. The solution of the Boundary Value prob-
lem yields the potential on the Neumann boundaries and its normal
derivative on Dirichlet boundaries. In the Lagrangian phase, the free
surface boundary conditions are then integrated in time. This method
was used to solve the linear time domain radiation, i.e by applying
linearized free surface boundary conditions on the exact free surface
and solving the mixed boundary value problem on the mean undis-
turbed free surface, for the case of forced motions of a hemisphere

and a Wigley hull. In addition, the linear time domain method is



also extended to the unified hydroelastic analysis in time domain for
the cases of 2 and 3 nodes bending. Results are presented for the the
Wigley hull, undergoing prescribed forced oscillations for both rigid

and flexible mode shapes.

The extension of the MEL scheme to a numerical tool capable of ad-
dressing several degrees of non linearities (from body nonlinear to
fully nonlinear) is also discussed. In this context, two numerical for-
mulations to calculate the time derivative of the velocity potential are
implemented, namely: a backward finite scheme and an exact calcu-
lation based in the time harmonic property of the velocity potential.
In latter case, a second boundary value problem is constructed and
solved for the time derivative of the potential on Neumann boundaries
and for the normal acceleration on Dirichlet boundaries. Results of
both approaches are compared for the case of a sphere undergoing
force oscillations in heave are compared to results obtained by other
time domain methods. Moreover, after the boundary value problem
is solved, a radial basis function representation of the velocity poten-
tial and free surface elevation is constructed, this approach allows for
the estimation of the gradient of the velocity potential (body nonlin-
ear and fully nonlinear simulations) and free surface steepness (fully
nonlinear simulations). The results of the body non linear analysis,
for large amplitude of oscillation in heave, are presented for the both
the sphere and Wigley hull. For the latter, body non linear results
of the coupling between heave into the first distortion mode (2-node)
are also presented. The results of the fully non linear simulations are

presented for the case of a sphere.

An investigation of the suitability of two unstructured meshing li-
braries is also performed in the context of the MEL simulation scheme.
Practical issues related to (re)meshing at each time step, the repre-
sentation of ship like geometries, free surface evolution and numerical
stability are highlighted for both libraries.
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Chapter 1

Introduction

1.1 Problem Motivation

The present work addresses hydrodynamic problems based on potential flow the-
ory in which the effects of lift can be neglected. This formulation has been used
since the 70’s on a wide range of ship hydrodynamic problems, e.g seakeeping
analysis, wave resistance prediction, hydroelasticity, impact problems and so on.
More specifically, efforts focused in developing tools that allow for the analysis of
effects that cannot be addressed by the so called linear frequency domain analysis,
these effects are usually called "potential low non linear effects” or ”geometric
non linearities”.

There are, basically, three sources of non linear effects when it comes to po-
tential flow analysis, namely: the submerged geometry of the floating body, the
water line dynamics and the exact free surface boundary conditions.

In order to gain some intuition on how the submerged geometry can create non
linear effects in the hydrodynamic context, a parallel with the hydrostatic case can
be made. For instance, when a cylindrical column oscillates on a flat free surface,
the hydrostatic force it experiences is proportional to its submerged depth, z, and
its cross sectional area Ay, i.e: F' = —zgA,, which is in fact proportional to the
vertical coordinate. On the other hand, if the cross sectional area of the geometry
is not constant, then even in the context of a constant pressure field (hydrostatic

pressure field is p = —gz) the hydrostatic force will actually have a non linear



behaviour with respect to the vertical coordinate. The question that naturally
rises here is what sort of influence does the body geometry has when it comes to
more complex pressure fields, say the hydrodynamic pressure field 7 Moreover,
of particular interest to the hydrodynamic analysis is how the components of the
hydrodynamic force proportional to velocity and acceleration vary as the body
submerged geometry is taken into account exactly. The effect of change in the
submerged body surface has led to formulations of the partly non linear methods
and body non linear methods, as discussed in chapters 3 and 7, respectively.

One of the main consequences of the assumptions made in the linear potential
flow theory is that the free surface boundary conditions can be linearized. If the
time domain perspective is taken, the linearization assumes a simpler dynamic
for the evolution of the free surface and, hence, the potential field in time. In
particular, the linearized free surface avoids problems of wave breaking that have
been causing numerical issues and limitations on the applications of the exact free
surface conditions (Beck et al. [1994]). From an implementation point of view, the
linearized free surface assumption is handy, to the extent that the computational
mesh on the free surface does not need to be deformed and hence the domain does
not change in time. That said, since the boundary value problem is coupled by
the free surface evolution and the potential on the floating body, it can be the case
that using the exact free surface boundary conditions, a different hydrodynamic
pressure field can arise, and, therefore, change the hydrodynamic force.

The effect of water line dynamic is somewhat more challenging to describe
since it seems to be a combination of both the geometry of the body and the
velocity field surrounding the intersection of the body and the free surface. The
velocity field is intimately associated with the free surface boundary conditions,
so that a linearized free surface formulation will probably yield a smaller potential
gradient on the free surface body intersection, hence, contribute less to changes
on the wetted surface. Note that this effect is enhanced in the case of incident
wave potential and diffraction. Furthermore, the intersection of the free surface
and body is a region where there is discontinuity of the normals of geometries,
which actually brings more complexity into the water line dynamics evolution
(Liu et al. [2001]).

From the perspective of the designer it is clear that a more accurate eval-



uation of the hydrodynamic pressure field is of great importance, as it allows
for accurate loads to be predicted and therefore a more comprehensively struc-
tural assessment using either a quasi-dynamic or hydroelasticity analysis. In the
quasi- dynamic analysis, the loads on the vessel are estimated solving the rigid
body seakeeping problem and are then applied to the vessel structural model (
e.g beam or finite element model), the implicit assumption is that fluid structure
interaction coupling is reasonably small.

In situations where the fluid structure interaction coupling is not reasonably
small, the analysis can be made more consistent by means of the theory of hy-
droelasticity (Bishop and Price [1979] and Bishop et al. [1986]). In this context,
the interaction between the flexible floating structure and the fluid are tackled
together, combining the hydrodynamic effects with a dynamic structural anal-
ysis (e.g using beam or FE models). The hydroelastic approach has the main
advantage of being more general and capable of tackling the coupling between
seakeeping and global strength analysis. This is accomplished by accounting for
the flexible nature of the structure (as opposed to the rigid body conditions) in
the boundary conditions of the hydrodynamic problem.

Obviously either in the quasi-dynamic analysis or in the hydroelastic one,
the hydrodynamic pressure field plays a paramount role. In order to incorporate
different degrees of non linearity in the evaluation of the hydrodynamic forces,
several extensions have been developed. In the context of seakeeping analysis,
the partly linear method of Ballard et al. [2003] is probably the most natural
extension of the linear frequency domain analysis. Under the partly non linear
framework, the frequency domain results of linear analysis are mapped to time
domain by the use of Impulsive Response Functions (IRFs). These, although
still in a linear sense, provide a suitable way to estimate memory effects and the
influence of non-periodic forces in time domain by means of inverse Fourier trans-
forms and convolution integrals. This way, hydrostatics and incident wave actions
(Froude -Krylov forces) are calculated on the instantaneous wetted surface and
the hydrodynamic forces are estimated by their corresponding IRFs calculated
on the mean wetted surface.

The limitations of the partly nonlinear approach is that, although arguably

pitch and heave motions are dominated by nonlinear hydrostatic and inertia



(Zhang et al. [2007]), the nonlinear effects on the radiation and diffraction po-
tentials are being neglected. In order to incorporate the non linear effects as-
sociated with radiation, the body non linear approach has been formulated in
time domain. Under this framework, the hydrodynamic problem is solved on the
instantaneous wetted surface, so that the changes in the submerged part of the
body are accounted for in both hydrostatics and hydrodynamic forces. Although
simple in theory, the extension from partly non linear to body non linear requires
considerable efforts, and several avenues of implementations can be pursued. In
this method, the free surface boundary conditions are linearized, but interest-
ingly Bernoulli’s equation can be used exactly on the body surface, showing that
the quadratic term is responsible for higher frequency force. However, the fact
the body wetted surface now changes bring considerable numerical challenges in
the evalution of potential time derivative, especially when the amplitude of the
motion is large.

The fully non linear potential flow problem has also been tackled in order
to evaluate the non linear effects under several different problems. These meth-
ods are usually built upon the Mixed Eulerian Lagrange scheme, or MEL for
short. Within this numerical framework, several non linear effects have been in-
vestigated, but numerical challenges and the need for computational algorithms
means that more investigations are required in this context.

It is also worth to point out that, in the context of potential flow, even if
simulations are carried out using the fully non linear free surface boundary con-
ditions, some of the problems are likely to be be poorly modeled. For instance,
it can be argued that during violent slamming flow separation occurs. Therefore,
the pressure field and its corresponding hydrodynamic forces need to be modeled
more precisely by Navier Stokes equations. Moreover, the wave breaking problem
is a natural limitation on fully non linear potential flow simulations and at, the
same time, a physical phenomenon that needs to be dealt with. One alternative
is to couple potential flow and volume of fluid simulations, so that the dynamics

of the breaking waves can be taken into account (Lachaume et al. [2003]) .



1.2 Aims and Objectives

The aim of the present work is to try to address the effects, in the context
of potential flow, of relaxing some of the assumptions made by linear theory,
focusing on the solution of the radiation problem. Concretely, the efforts have
focused on the development of a methodology that is capable of tackling problems
of forced oscillations in either rigid or flexible modes and problems related to the
evolution of the free surface in time, using either the linear (linear and body non
linear simulations) and the non linear free surface boundary conditions. This
way, the problem of free motions in waves (which accounts for both the incident
wave and diffraction problems) is left out of the present scope.

That said, a numerical tool of this kind, not only generalizes the linear theory
predictions, but also allows the analysis of the variations of the amplitude of
the oscillatory motion, so that the so called large amplitude added mass and
damping coefficients can be investigated. These effects can be analysed in the
context of rigid bodies oscillations as well as elastic bodies with relatively small
deflections, so that the hydroelastic analysis of the radiation effects of the flexible
modes can also be investigated in time domain. The applicability of the current
methodology is limited to problems where the viscous effects play a small a role
and no separation of the flow is observed.

Therefore, a multi-problem approach is adopted synthesizing and building
upon simplified problems. This way, problems with an increasing degree of com-

plexity were tackled, in the following order:
1. Linear Analysis of Rigid Bodies;
2. Linear Hydroelastic Analysis;
3. Body non Linear Analysis;
4. Fully non Linear Analysis.

For all cases described above, the simulations are implemented in time domain
with the aid of a Mixed Euler Lagrange (MEL) scheme that is used to march the

solution of Boundary Value Problem in time.



The task is by no means easy because problems associated with numerical
accuracy, mesh generation and, to a large extent computation time, are daunting
when linear theory assumptions start to be relaxed. For instance, a major benefit
of linear theory is the frequency domain representation in which the steady state
hydrodynamic force can be obtained for several frequencies by solving a linear
system once for each frequency of oscillation. On the other hand, the time domain
implementation, even in the linear case, calls for a time marching scheme where
the free surface boundary conditions are integrated in time and a time history of

the hydrodynamic force for each frequency is calculated.

1.3 Achievements and Contributions

The efforts of the present work have been concentrated in basically two fronts,
namely: the implementation of a hydrodynamic model capable of incorporating
some of the so called non linear potential flow effects and the investigation of
suitable meshing techniques that can be applied to mesh (remesh) the evolving
free surface as well as the floating body every time step. Note that these two
fronts are connected, since a mesh is needed for the implementation of the Euler
phase. In order to try to accomplish these tasks several algorithms are proposed
throughout the present work. More specifically, in the time domain context, the
structure of the MEL simulation, and the place where each developed algorithm
fits in, are summarized in figure 1.1.

In the first front, the equations that describe the evolution of the potential
flow in time domain are well understood from both mathematical and physical
perspectives. However, algorithmic and numerical challenges still remain, limiting
the applicability of tackling this problem through numerical simulations. The
contributions and achievements of the present work try to address some of these
issues.

As pointed out by Yan [2010] the main limitations of three-dimensional po-
tential low time domain simulations rely in modeling multi scale variations on
the velocity potential function. This implies that a larger number of elements per
wave lengths are needed to approximate the velocity potential with a reasonable

accuracy in regions of steep gradients. On the other hand, for N elements, the
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Figure 1.1: Schematic view of the general structure of potential flow simulations
in time domain.

running time, for assembling and solving the linear systems that arise in this ap-
plication, scale as O(N?), limiting its practical use. In order to tackle this issue,
the present work has concentrated its efforts on the use of unstructured trian-
gle meshes, which are usually harder to build (compared to structured meshes)
but are able to describe the domain using fewer elements. Moreover, unstruc-
tured meshes can be made more dense (have more elements per area) in parts
of the domain where the velocity potential has a complex behaviour (near the
water line, for instance) and more coarser in other regions. Therefore, one of
the achievements of the present work has been in developing a methodology that
incorporates the MEL scheme with unstructured meshes, for linear, body non
linear and fully non linear problems in the context of forced oscillations. For the
linear case, the methodology is summarized in algorithm 3, for rigid body forced
motions simulations, and algorithm 4, for the unified hydroelastic simulations.
It is also important to point out that in order to extend the linear time domain
constant panel method to account for body non linear and fully non linear effects,
several numerical challenges had to be addressed. Among them, three problems

stand out, namely:



1. The estimation of the velocity potential time derivative by a finite difference

scheme and the solution of a second boundary value problem.

2. The estimation of the spatial derivatives of the velocity potential by intro-

ducing an RBF representation;

3. Avoid spurious modes of oscillation on the time series of the hydrodynamic

force by introducing a regularization factor on the RBF representation;

The estimation of the velocity potential time derivative is very important (it
corresponds to the inertia term in Bernoulli’s equation) and, at the same time, its
evaluation is not straightforward when the boundary value problem is solved at
the instantaneous body surface. In the present work, two algorithms are proposed
to estimate it (Algorithms 5 and 6). The results are compared for the case of a
sphere undergoing forced oscillations to other numerical procedures.

By the same token, the spatial derivatives of the velocity potential can con-
tribute to second order effects in the hydrodynamic force. Moreover, their approx-
imation is needed as a boundary condition to solve the second boundary value
problem for the velocity potential time derivative, which is then solved exactly
(Algorithm 6). In this case, once the spatial derivative is available, the boundary
condition derived by Battistin and lafrati [2003] can be imposed on the body
surface in a straightforward fashion, still using a constant panel method.

As it will be seen later on, inaccuracies of the constant panel method on the
estimation of the normal velocity on the free surface (solution of the Dirichlet
problem) can induce spurious modes of oscillations in the hydrodynamic force.
In order to deal with this effect, a regularization term is introduced on the radial
basis function representation. A parallel with the problem of supervised learning
is also briefly explored.

In order to to cope with fully non linear free surface boundary conditions for
the case of the sphere undergoing forced motions in heave, algorithm 5 is extended,
yielding algorithm 7. In this simulation, a great deal of numerical diffusion is
observed. In order to filter these modes, hence the Hilbert-Huang Transform
(Huang et al. [1998]) is used and its parallel with the Fourier decomposition is

also briefly outlined in the appendix.



The investigation of suitable meshing techniques, to enable the generation of
unstructured non uniform grids, was also performed. One of the investigated
algorithm was developed by Persson [2005], and builds heavily on the concept
of signed distance functions and iterative Delaunay triangulations. For simple
geometries (those which the signed distance function is analytic) the use of this
algorithm is straightforward. On the other hand, for ship like geometries and
for the free surface, the signed distance function needs to be estimated before
the meshing scheme is called. In order to estimate the signed distance functions
numerically two more algorithms 1 and 2 are proposed. Their suitability for the
problem of hydrodynamic simulations is discussed as well.

Alternatively, a second meshing algorithm Geuzaine and Remacle [2009], that
is built on a more conventional hierarchical meshing techniques is also analysed
in the context of hydrodynamic simulations. Finally, the pros and cons of each
methodology (Persson [2005] and Geuzaine and Remacle [2009]) are investigated
and highlighted.

In a nutshell, the present methodology can be regarded as hybrid numerical
method whereby the solution of a mesh based constant panel method is coupled
with a radial basis function representaion, which is meshless. This last step brings

differentiability to the CPM solution allowing spatial derivatives to be estimated.

1.4 Thesis Outline

The present work is organized as follows: in chapter 2, the relevant publications,
regarding the formulation of the hydrodynamic problem are briefly outlined and
discussed for the cases of rigid and flexible floating bodies. In chapter 3, the
importance of the modeling the non linear effects is highlighted by investigating
the influence of forward speed on the dynamic behaviour of an S175 conteinership
under frequency domain and partly non linear methods. The mathematical for-
mulation of the time domain problem is introduced in chapter 4, where departing
from Laplace’s equation an integral formulation for the problem is derived.

In chapter 5, the investigation of two unstructured meshing libraries for the
purpose of hydrodynamic simulations is performed. In this sense, the necessary

modifications/inputs needed to each library to account for the change of domain



in time are detailed. In particular, since the input for the meshing technique de-
veloped by Persson [2005] is a signed distance function, the problem of estimating
signed distance functions for ship like shapes and the free surface evolution was
tackled. It is also highlighted how the heuristic techniques used by Persson [2005]
to generate high quality meshes can also naturally induce numerical diffusion in
the hydrodynamic simulation. The meshing library developed by Geuzaine and
Remacle [2009] was also investigated and used to create the meshes of the Wigley
hull, for both linear and body non linear simulations.

The linear radiation problem is then solved in chapter 6, for a simple hemi-
sphere and Wigley hull undergoing forced harmonic motions. The linear time
domain algorithm is then extended for the unified hydroelastic case, so that the
Wigley hull is idealized as an Fuler beam. The results for the rigid modes are then
compared to analytical solutions (for the hemi sphere ) and available experimental
data for the case of the Wigley hull. The results for the hydroelastic analysis is
compared with 2D strip theory and 3D frequency domain analysis.

The extension of the linear problem for the Body non linear and fully non
linear cases is done on chapter 7. For these cases, due to the nodes movement and
inaccuracies of the CPM method in estimating the free surface normal velocity,
the regularized rbf representation was introduced. Furthermore, the problem of
estimating the time derivative of the potential was tackled using two formulations,
namely: one based on a backward finite difference scheme and another that solves
an auxiliary boundary value problem for the potential time derivative exactly.
Results of the body non linear approach for rigid body heave mode are presented
for the sphere and Wigley hull and compared to other numerical methods as well
as experimental results when available.

Finally, chapter 8 concludes the work, discusses future avenues and extensions

of the present numerical method.

10



Chapter 2
Literature Review

In this chapter, the relevant publications for the current project are presented
and discussed. The review is organized in two major sections as follows: the
first one covers a review of the fluid-structure interaction problem of rigid bodies,
whereas the second section relates to the discussion associated with fluid-structure
interaction problems that account for the body flexibility. In addition, the rele-
vant methods available to extend the linear problem of rigid or flexible bodies to

account for partial non-linear and fully non linear effects are also discussed.

2.1 Rigid Body

In Inglis [1980] a three dimensional theory of a floating structure traveling in
waves is developed. In this work the fluid is regarded as inviscid and the sea-
keeping problem is solved in the frequency domain. This way, the free surface
boundary conditions are linearized allowing the implementation of the pulsating
Green function source distribution. The resulting integral equation is then solved
by the constant panel method. Predicted results for a series 60 hull showed bet-
ter agreement to experimental data than the previous predictions provided by
two-dimensional strip theory. In addition, the effect of shallow water and the
influence of the forward speed in the motions of ships traveling in waves are also
investigated.

In Sclavounos and Huang [1993], the boundary value problem is treated using

11



a linear potential flow framework (linearized free surface and body boundary
conditions are applied) and solved on the frequency domain through the use of
Rankine Panel Method (RPM), with quadrilateral panels distributed over the
ship hull and free surface. In addition, a bi-quadratic spline variation of the
velocity potential over the surface of each panel is assumed and a Kutta type
condition to enforce smooth detachment of the steady and unsteady flow at the
stern is also applied. The results present the Kelvin wake of a transom stern ship
in steady flow, the hydrodynamic coefficients, heave and pitch motions and wave
induced structural loads in time harmonic flow for three vessels: SL7, S-175 hulls
and an TACC yacht. Heave and pitch motions show good agreement with the
experimental data whereas the structural loads (bending moments and vertical
shear forces at amidships for the SL7 and S-175) showed great dependence upon
the amplitude of heave and pitch motions and the account of waterline terms
in the definition of the loads. The major drawback of the RPM is that the far
field closure is not satisfied by the corresponding Green function, and, therefore,
additional conditions need to be imposed in order to guarantee the uniqueness of
the solution of the integral equations in an unbounded domain.

A linear time domain analysis of the seakeeping problem is carried out by
Zhang et al. [2010] using double body basis flows. In this approach, the desin-
gularized panel method is used to collocate the sources above the free surface
whereas panels with constant strength are distributed over the hull surface. The
free surface boundary condition is applied on the calm water, whereas the body
boundary condition is applied on the mean wetted hull surface (linear approach).
A MEL algorithm is used for the time marching scheme of the free surface. Re-
sults for the Wigley Hull and Series 60 show good agreement with experimental
data Gerristma et al. [1974] and improvements when compared against the pre-
dictions of the following methods: Neuman -Kelvin approximation with simplified
m terms, linearized free surface conditions with double-body m terms and time
domain body exact strip theory Bandyk [2009]. On the other hand, the method
needs to be extended to take into account non linear effects as well as more
realistic hull forms.

A large amplitude 3D non linear methodology for the assessment of large am-

plitude motions and wave loads on a ship traveling on the seaway was developed
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by Lin et al. [1994]. Their approach consists of satisfying the body boundary con-
ditions on the instantaneous water line whilst the free surface boundary condition
is linearized, thus allowing the use of a time domain transient Green’s function.
This way, the Froude Krylov forces and the nonlinear hydrostatic restoring ac-
tions are calculated accurately, whereas the hydrodynamic radiation and diffrac-
tion forces are approximated at each time step. The approximation is done by
using the local free surface elevation to transform the body geometry into a com-
putational domain with a deformed body and a flat free surface. Predictions of
heave and pitch motions as well as vertical bending moment at midship using the
large 3 D non linear method (Large Amplitude Motion Program version 4, LAMP
4) are then compared against measured data and three other models: linear strip
theory, the 3D linearized time domain method (LAMP 1) and the approximate
large amplitude 3D nonlinear method (LAMP 2). Results are then presented for
a series 60 model and for the S175 container ship. The predictions of the LAMP 4
model, for heave and pitch motions of the series 60 model, show better agreement
with experimental data than the predictions of LAMP 2 and also predict higher
vertical bending moment at midships. Furthermore for the S175 container ship,
LAMP 4 predictions for heave motions are in good agreement with experimental
data and show a substantial gain from the previous methodology implemented
in LAMP 2:; however, results for the pitch mode have shown only a reasonable
agreement with measured data. Further methods and numerical issues leading
forward a fully non linear method are discussed as well.

The partly non linear rigid body problem was also addressed by Bailey et al.
[1998] where the authors proposed a general mathematical model to address the
problem of manoeuvring and seakeeping for a ship moving in a seaway using three-
dimensional potential flow analysis. The equations of motions for both seakeep-
ing and ship manoeuvring problems are formulated with respect to two different
frames of reference (equilibrium frame and body fixed frame respectively) and
relations between the slow motion and oscillatory derivatives (manoeuvring the-
ory variables) are derived in terms of the hydrodynamic coefficients ( seakeeping
theory variables). In this approach, the non linear Froude-Krylov and hydrostatic
forces are calculated at each time step considering the instantaneous under water

portion of the hull, whereas the wave diffraction contributions are estimated by
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their respective impulse response function referenced to both equilibrium frame
and body fixed frame. Furthermore, within the bounds of linear theory, a convo-
lution integral representation of a general fluid action is also presented allowing
the evaluation of either the hydrodynamics coefficients or slow motion and os-
cillatory derivatives. This way, integro - differential equations of motion can be
constructed either using the manoeuvring theory variables or the seakeeping the-
ory variables. The methodology is then validated against the experimental data
available for a Mariner ship. At lower frequencies predicted hydrodynamic coef-
ficients show some differences, however, after the introduction of a linear viscous
ramp damping effect, a good agreement is then achieved between the theoretical
and experimental data over a wide frequency range.

In Bailey et al. [2002], the time domain method on Bailey et al. [1998] is further
developed and applied to the prediction of heave and pitch motions in regular
waves. The method considers both linear and partly non linear 3D models. In the
linear frequency domain model, the fluid forces and moments acting on a ship are
evaluated using a pulsating source distribution over the mean wetted surface of the
hull (Inglis [1980]). For the partly nonlinear model the methodology proposed by
Bailey et al. [1998] was used. Predicted heave and pitch RAOs by both methods,
are compared against experimental results for a Series 60 hull and for the S175
container ship and, where available results from the LAMP (Lin et al. [1994])
family programs. In addition, the presented model provides results in line with
the predictions of LAMP 2 program.

Methods that, in theory, should be able to account for the non linearities of
the free surface exactly have also been developed for three dimensional wave sim-
ulations and for fully non linear wave body interactions. These methods basically
rely on the Mixed Eulerian Lagrangian (MEL) and the Arbitrary FEulerian La-
grangian (ALE) formulations. Basically, the idea of a MEL scheme is to capture
the time domain evolution of the linear or non linear free surface boundary con-
ditions by integrating them in time. Therefore, the problem is usually splitted
in a Eulerian and Lagrangian phase. The MEL is often used within the context
of potential flow problems, but it can also, in theory, be used to tackle fluid flow
being governed by Euler or Navier Stokes equations. The main drawback in the

two latter cases is due to the complexity of velocity field Lagrangian nodes move-
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ments distorts the domain too much, raising problems related to meshing the fluid
domain. One way to overcome the disadvantages of the MEL scheme, but keep-
ing its good features, is to introduce ALE framework; the ALE is, in a sense, a
generalization of the MEL scheme (i.e the Lagrangian and Eulerian descriptions
can be recovered as particular cases) and its applicability is usually related to
solvers of the Navier Stokes Equation for problems where the domain is changing
in time. Another way to overcome problems related to mesh distorion is to pursue
mesh free formulations, where the Eulerian phase is not necessary anymore, this
idea is the starting point of smooth particle hydrodynamics formulations, see for
instance Cossins [2010].

The main feature of both MEL and ALE scheme is to try to combine the
advantages of using Eulerian and Lagrangian descriptions of flow, in order to
minimize mesh distortions so that calculations can still be performed. In the ALE,
the governing equations are formulated in an arbitrary domain, this means that a
suitable grid velocity is introduced in order to simplify the modeling of convection
terms and minimize mesh distortions; its main drawback is the introduction of
the mesh governing equation which also needs to be solved on the fluid domain.
MEL schemes formulate the problem in two main phases a Lagrangian and and
an Eulerian phase, this way convection terms are avoided and the particles of the
fluid are followed throughout their motion. Hence a MEL scheme can be viewed
as an ALE scheme where the grid velocity is precisely the same as velocity of the
fluid particles.

In Huerta and Liu [1988], the ALE method is applied to model the two dimen-
sional free surface evolution of viscous flow. In this publication, the description of
the ALE approach is presented and the governing equations of the fluid motion
are developed in this framework. Three methods for mesh rezoning algorithm
(Mesh motion described a priori, Lagrange-Euler matrix method and the mixed
formulation) are introduced to update the mesh and map the moving domain.
Using the mixed formulation, the mesh updating equation is solved by the stream
line upwind Petrov-Galerkin finite element method. Results show progress in the
modeling of a tsunami wave, large amplitude sloshing example and a dam break
problem.

Another application of the ALE to two dimensional free surface flows was
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carried out by Masud and Hughes [1997], where a space time Galerkin/least
squares FEM formulation of the Navier Stokes equations is implemented for the
analysis of deforming fluid structure interfaces. Numerical results are presented
for a circular cylinder moving in a stationary viscous flow field, a solitary wave
propagation without viscosity and missile launch from a submarine. A complete
summary of ALE formulation can be found in Stein et al. [2004].

The foundation of the MEL method was established originally to simulate the
dynamics in time domain of steep waves in two dimensions by Longuet-Higgins
and Cokelet [1976]. In this work it is shown that under the assumptions of po-
tential and irrotational flow the fully non linear free surface boundary conditions
can be integrated explicitly when the Lagrangian description of the flow is used.
This way, at each time step, the simulation can be split in two main steps. In the
first step (Eulerian phase), the conventional boundary integral equations (BIE)
are solved; in this case, given an initial potential for the velocity the Dirichlet
problem is solved by the BIE formulation to obtain the normal components the
velocity field. In the second step (Lagrangian phase), the kinematic and dynamic
boundary condition of the free surface are integrated resulting in a new free sur-
face position and an updated velocity potential . The process is then repeated.
Their method was then tested on a free, steady wave of finite amplitude and
compared against independent calculations based on Stokes’ series, showing good
agreement.

In Beck et al. [1994] non linear computations of ship motions are presented
for 2 and 3 dimensional cases using the Rankine panel method (RPM). Exciting
forces acting on a wedge and the free motions of a box barge are tackled using
the two dimensional approach. The added mass and damping coefficients of a
Wigley hull, in heave and pitch motions, are calculated for the three dimensional
case. MEL was used to solve the mixed boundary value problem at each time
step. In addition, a desingularized boundary integral method, in which the solu-
tion is constructed by integrating a distribution of fundamental singularities over
the integration surface outside the fluid domain, is implemented. The results
show good agreement with experimental data, however, the method needs to be
extended to more realistic hull forms.

A MEL scheme is combined with a higher order BEM in Liu et al. [2001]
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in order to simulate the fully nonlinear wave body interactions for two prob-
lems: the generation of three dimensional ship bow waves (for a flared wedge,
Wigley and Series 60 hulls) and the prediction of high frequency ringing loads
on a vertical cylinder in regular waves. This way, quadratic isoparametric panels
are distributed over the domain and a double node technique is developed to
treat the confluence of different types of boundary conditions (Dirichlet bound-
ary conditions for the free surface and Neumann type for the body). In addition,
a method is developed to update the free surface intersection and cubic splines
in both parametric directions are used for grid regeneration purposes. The far
field closure problem is tackled by the introduction of a numerical sponge layer
on the perimeter of the computational domain. In the first problem, the bow
wave profiles obtained from MEL are compared with quasi two dimensional sim-
ulations and linearized slender body theory. In addition, results for the Wigley
hull and Series 60 bow wave profile are compared with experimental data show-
ing good agreement. Good agreement is also achieved between the results for
the predictions of high frequency ringing loads and available experimental data.
Some limitations of the MEL such as breaking waves and the consequences of
the clustering of Lagrangian particles in regions of high flows gradients are also
discussed.

In Zhang et al. [2007] the MEL scheme developed by Liu et al. [2001] is com-
bined in the LAMP program to obtain a three dimensional time domain poten-
tial flow solution of the body wave interaction problems using linear free surface
boundary conditions. For a flared axisymmetric body, a comparison between the
constant panel method (CPM) , available experimental data and the QBEM is
presented. Although it is shown that the QBEM is more accurate than the CPM
when the same number of panels are used and can represent more accurately
edges and corners of complex geometries, results for vertical motions (heave and
pitch) have not shown a significant difference. Relevant numerical issues are dis-
cussed, in particular, in order to keep the free surface stable, a linearized version
of the dynamic boundary condition, taking into account linearized components
of the velocity field, is used to update the potential on the free surface.

The work of Battistin and lafrati [2003] considered the problem of calculating

hydrodynamic loads, in two dimensions, during water impact. Interestingly, to
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address this problem accurately, two boundary value problems are formulated.
On the first one, the potential on the free surface is imposed together with a im-
pervious boundary condition on the floating body. This problem is then solved for
the potential on the floating body and normal velocity on the free surface. Next,
on the second boundary value problem, the time derivative of the potential is im-
posed on the free surface and the its normal derivative (i.e the normal derivative
of the time derivative of the velocity potential) is imposed on the floating body.
The solution of the second boundary value problem yields the normal acceleration
on the free surface and the time derivative of the potential on the floating body,
so that the pressure can be evaluated directly after the second boundary value
problem is solved. Furthermore, using techniques form differential manifolds an
approximation is derived for the the normal derivative of the time derivative of
the velocity potential on the floating body.

A MEL/BEM scheme was also used by Kara et al. [2007] to solve the steady
three dimensional wave generation problem of a ship traveling with constant for-
ward speed in calm water. At each time step, the algorithm solves the boundary
value problem in an Eulerian frame by the indirect desingularized boundary inte-
gral method. Then, a Lagrangian frame is used to integrate the exact free surface
conditions with respect to time by an explicit fourth order Runge Kutta method.
In this second step, the kinematic free surface condition integration yields the
free surface movement whereas the dynamic free surface condition is used to up-
date the free surface potential. The intersection line between the free surface
and body surface (Dirichlet and Neumann boundaries respectively) is described
by the panel vertices at the edge of the surfaces. Furthermore, a computational
window and a node shifting scheme are also developed to satisfy the far field
boundary condition. Numerical results (wave resistance and wave elevation) are
compared with existing linear theory, experimental measurements for Series 60
hull and other nonlinear numerical computation.

More recently, the higher order BEM developed by Liu et al. [2001] was ex-
tended by Yan [2010]. This implementation is very efficient from a computational
perspective as it uses the pre-corrected fast Fourier transform to accelerate the
calculation of the far field influences. The computational efficiency of this scheme

is comparable to the fast multipole implementations (see for instance Liu [2009]),
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in which, for N unknows, the computational time becomes proportional to NlogN
(or O(NlogN)). Three dimensional fully non linear simulations are then carried
out for heaving sphere and to the problem of ringging loads in a vertical cylinder.
For ship like forms the wave resistance problem, also solved by Liu et al. [2001],
is recasted using the pre-corrected Fourier Transform BEM. Next, two dimen-
sional water entry problems for low Froude numbers and impact problems are
addressed. Finally, the three dimensional problem of large spar floating structure

(i.e a large vertical cylindrical floating body) is also investigated.

2.2 Flexible Body

The three dimensional linear theory of hydroelasticity in the frequency domain
was developed by Bishop et al. [1986]. In their analysis the seakeeping problem
of a rigid body moving on irregular waves is generalized, so that distortions (in-
cluding rigid modes) and their interactions with the fluid are taken into account.
The three- dimensional structure is consider to be in vacuo and is represented
by a finite element model. The three- dimensional hydrodynamic analysis of
the fluid actions is carried out using the linear free surface boundary conditions.
Generalized hydrodynamic and hydrostatics forces are then calculated with the
aid of the modal analysis of the structure. Comparisons between the results
obtained from the three- dimensional theory and the two dimensional hydroelas-
ticity strip-beam theory are presented for a uniform box beam like ship showing
good agreement. In addition, a hydroelasticity analysis of a small water-plane
area twin hull (SWATH) is performed.

The non linear three dimensional hydroelastic response of a SWATH vessel
traveling in regular and irregular waves is investigated using the second order
hydroelasticity theory developed by Wu et al. [1997]. The hydrodynamic actions
are evaluated using pulsating and translating Green source functions. This way,
the influences of the forward speed and the steady wave flow are taken into ac-
count on the hydroelastic response of the hull. More specifically, the translating
and pulsating Green function source was applied in conjunction with uniform
flow, double body flow and the steady Kelvin wave flow. Furthermore, the hy-

drodynamic actions induced by the rigid body motions and variations of the
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instantaneous wetted surface area are also included in the analysis. Comparisons
between linear (frequency domain) heave and pitch RAOs against model tests are
presented for the pulsating and translating source Green functions. It is found out
that the results obtained using the translating and pulsating Green function in
conjunction with the Kelvin wave flow agree better with the experimental data.
Results for the non linear and linear hydroelastic responses are also compared
and presented in time domain for heave and pitch motions, horizontal and ver-
tical deflections and Von Mises stress at relevant points of the structure. These
data highlights the increase in the stress predicted by the second order hydroelas-
tic theory especially when the variation of the instantaneous wetted surface area
is included.

In Park and Temarel [2007], the nonlinear two dimensional hydroelasticity
response in regular head waves is obtained. The main concept lies in separat-
ing the principal coordinates into linear and nonlinear parts. In this sense, two
methods are used: convolution and direct integration techniques. In the convolu-
tion method, linear and nonlinear solutions are combined, meaning that the time
domain response is estimated by IRFs (calculated from the frequency domain
analysis by inverse Fourier Transforms) convoluted with linear and non linear
force components. The second method evaluates hydrostatics and hydrodynamic
effects on the instantaneous wetted surface and integrates the equations of mo-
tion directly in time domain. Results of nonlinear symmetric responses, heave
and pitch motions as well as bending moments and shear forces, are presented
for a range of speeds and wave length and steepness values for the S175 container
ship moving in regular head waves. Comparisons between linear theory and the
presented results are made, pointing out the significance of non linear effects in
the prediction of sagging and hogging bending moments. In addition, the pre-
sented results are in agreement with available experimental data of the bending
moment loads of the S175 container ship.

The fluid structure interaction of a nonlinear / non-periodic incident wave over
a vertical elastic plate is studied by He and Kashiwagi [2009]. Two-dimensional
simulations are carried out in time domain. The free surface flow is modeled by
a MEL scheme which is solved by a higher order BEM. On the other hand, FEM

is used to address the structural problem. The coupled motions are then solved
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as single system in a monolithic way using a fourth order uniform time step with
Rungge Kutta integrator. Comparisons of the results showed that the hydroe-
lasticity behaviour depends, as should be expected, on the plate stiffness and on
the edge conditions of the plate. Linear analytical solutions of the wave elevation
are also compared with nonlinear calculations showing a similar behaviour but

flatter troughs.

2.3 Conclusive Remarks

From the above, it is clear that up to now the afore mentioned drawbacks of
the MEL scheme have, to a certain extent, limited its applicability to the fully
non linear seakeeping problem of more realistic hull forms. For a fully nonlinear
computation it seems that the major problems to overcome are related to wave
breaking and the mesh distortions caused by the clustering of Lagrangian parti-
cles in regions of high velocity gradients (Longuet-Higgins and Cokelet [1976]);
both problems leads to a simulation break up. Alternatives are currently be-
ing tried and evaluated. For instance, in Zhang et al. [2007] it is argued that
the clustering of Lagrangian particles can be circumvented by the desingularized
boundary element method, placing the sources above the free surface and keep-
ing them fixed throughout the simulation.They also use a linear form of the free
surface boundary conditions , that in theory , should prevent or at least delay
the breaking wave phenomenon.

However, some developments did take place, especially in what concerns the
run time of the algorithms. For instance, Liu et al. [2001] used a generalized min-
imum residual algorithm (GMRES) and a symmetric successive over relaxation
(SSOR) pre-conditioning;tin this method the computational effort required was
at most O(N?3). On the other hand, iterative methods for the calculation of far
field influences, such as the Fast Multipole Method Boundary Element Method
Liu [2009] or the pre-corrected fast Fourier transform can reduce the computa-
tional effort to at most O(NlogN), hence allowing large scale problems to be

tackled at the cost of daunting numerical implementation.
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Chapter 3

Frequency Domain and partly

non linear Seakeeping Analysis

The aim of this chapter is to compare the heave and pitch motions for the S175
containership, travelling in head regular waves, obtained from existing frequency
domain linear and time domain partly nonlinear potential flow analyses. The
frequency domain methods comprise the pulsating and the translating, pulsating
Greens function methods, with the relevant source distribution over the mean
wetted surface of the hull. The time domain method uses the radiation and
diffraction potentials related to the mean wetted surface, implemented using Im-
pulse Response Functions (IRF), whilst the incident wave and restoring actions
are evaluated on the instantaneous wetted surface. The calculations are carried
out for a range of Froude numbers, and in the case of the partly nonlinear method
for different wave steepness values. Comparisons are made with available exper-
imental measurements. The analysis of the results highlights the necessity of a

more accurate nonlinear approach for predicting the radiation potential.

3.1 Linear Analysis in Frequency Domain

In this section a brief description of the main features of linear frequency domain
theory is given. A more detailed description can be found in Inglis [1980]. The

aim of linear frequency domain analysis is to solve Laplace’s equation in the fluid
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domain, subject to the so called linearised boundary conditions. In the boundary
element context this gives rise to an exterior Neumann problem, where the singu-
larities (in this case the pulsating or translating pulsating Green’s function) are
distributed on the wetted mean surface of the hull, satisfying both free surface
boundary conditions and the radiation condition at infinity. The boundary value
problem is then solved for the potential on the hull surface, which is then used to
estimate the hydrodynamic coefficients and the exciting forces acting on the ship.
Subsequently the equations of motion, for each encounter frequency, are solved
yielding transfer functions, or Response Amplitude Operators (RAOs) over the
whole frequency range.

In this approach the velocity potential is assumed to decouple into two parts
namely, steady and unsteady. In addition, the unsteady potential is also de-
composed into components relating to incident wave excitation, diffraction and
radiation. Furthermore, if the ship is in the presence of plane progressive waves,
both fluid and rigid body motions can be considered to be time harmonic Newman
[1977]. Hence, denoting qg, o and ¢7 the steady, incident wave and diffraction
potentials respectively. In addition, letting ¢; , j=1,..,6 , be the radiation poten-
tials and ¢;, j=1, ...,6 be the amplitude of the motions that body experiences in
surge, sway, heave, roll, pitch and yaw respectively, the total velocity potential

can be written in the following form Newman [1977]:

BT, t) = U+ R(exp(iwet) (do + ¢7 + Y _ &6)))- (3.1)

j=1

In equation 3.1, ¥ is expressed at the equilibrium axis along the ship, with
the equilibrium axis system typically being right handed, situated at the mean
water line with its origin aligned with the longitudinal position of the center of
gravit and pointing upwards. U denotes forward speed and w, is the encounter

frequency, evaluated in deep water, i.e:

we = w + Ukcos(x), (3.2)

where, w is the wave frequency, and in deep water, k = w?/g. x is incident wave

angle, measured from the bow, counterclockwise.
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Denoting the normal direction of the mean wetted surface of the hull by 7,
the boundary conditions for the incident wave and diffraction potentials, i.e the
impervious boundary condition on the hull (or Neumann boundary conditions)

are imposed on the mean wetted surface, S, of the hull, namely:

(o + ¢7)
on

Phisically, the radiation boundary condition states that the normal velocity of

= 0. (3.3)

the fluid is the same as the normal velocity of the hull on its (mean) wetted surface.
Its treatment is more subtle because, in the presence of forward speed, it accounts
for contributions not only of the radiation potentials but also the steady potential.
It is in order to simplify the treatment of the radiation boundary condition that
some simplifications in the form of the steady flow are made. Neglecting second
order terms the steady flow velocity, in the equilibrium axis system, is expressed
as W =U V(¢ — x1) . The boundary condition for the radiation potentials, on
the mean surface S, then becomes Olgilvie and Tuck [1969]:
% = 1wenj + Umy, (3.4)

where n; denote the components of the normal vector and the terms m; involve
the influence of the steady flow Inglis [1980]. If it is assumed that the perturbation
of the flow due to steady forward motion can be neglected, then the m; terms
can be further simplified to m;=0 for j=1,2,3,4 and ms = n3, mg = —ny by
uncoupling steady and unsteady flow effects, namely W= (=U,0,0).

Under these considerations, the free surface can be linearised Newman [1977].
Therefore, the boundary conditions for the unsteady potentials are given by:
2 2 2 2
aaj; - 2U§gm + U2% + g% =0. (3.5)

Equation 3.5 further simplifies for simple harmonic variation with time, with

the pulsating source satisfying the zero forward speed and the translating, pul-
sating source the forward speed dependent free surface condition, respectively
Newman [1977]. The remaining far field boundary condition is satisfied by both

the pulsating and translating, pulsating Green’s functions. Therefore, Laplace’s
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equation together with the boundary conditions specified by equations 3.3, 3.4,
3.5 and the far field radiation condition constitutes an exterior Neumann problem,
which is solved for the potential on the hull.

It is also important to point out that since the potential 3.1 is harmonic in
time, the value of its time derivative (needed to calculate the pressure acting on
the hull) can be easily derived from the potential value itself analytically.

Once the incident wave potential is given and the radiation and diffraction
potentials are known one can estimate exciting forces and hydrodynamic coeffi-
cients at each encounter frequency. Therefore, the equations of motion for the

ship in regular waves can be written as Salvensen et al. [1970]:

6
D &G(—wl(Mij + Ay) + iw By + Cyj = aF, (3.6)
j=1

Equation 3.6 is a system of six simultaneous linear equations which are solved
for the ship motions §;. The coefficients M;; refer to the mass and inertia prop-
erties of the ship. A;; and B;; are hydrodynamic added mass and damping coeffi-
cients obtained from the radiation potentials Inglis [1980]. Cj; are the hydrostatic
restoring coefficients, a is the wave amplitude of the regular wave and Fj, i=1 to

3, corresponds to the forces in surge, sway, heave and moments (i=4 to 6) in roll,

pitch and yaw, respectively. The quantities of interest in the present analysis are

the heave and pitch motions, namely &3 and &5.

3.2 Time domain Partly non Linear Method

In this section a summary of the main features of the partly nonlinear method,
Bailey et al. [1998] and Ballard et al. [2003], is provided. The main goal is not to
explain the method in detail, but rather describe the basic equations and link the
impulse response functions to the estimation of the coefficients for the system of
differential equations to be solved.

In this chapter when using the partly nonlinear method the ship motions are
referenced to the body (fixed) axes. The body axes comprise an upright right
handed coordinate axes Cxyz with the origin C at the centre of gravity of the

hull, and Cxz in its longitudinal plane of symmetry.
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In the case of symmetric motions, ignoring the effects of surge, it can be
shown that heave and pitch accelerations, @ and ¢ (adopting the conventional
manoeuvring nomenclature) , can be written as a function of the heave and pitch
velocities, w and ¢, the displacement of the ship centre of gravity, z¢, the Euler

pitch angle, 6 and time t. That is to say:

<fw(w,q,zc,0,t)> _ (m ~ Za(00)  —Z(o0) ) (w@)) 57)
fo(w, q,20,0,1) —Mgy(o0) Iy — My(o0) q(t),

where the matrix in the right hand side of equation 3.7 contains the ship mass, m,

the pitch moment of inertia I, as well the infinite frequency value of the accel-

vy
eration oscillatory coefficients. It is interesting to point out the analogy between
Zw and Ass, Zq and Ass,M,, and As; and ]\qu and Ass, namely the acceleration
oscillatory coefficients in the body axes and the added mass coefficients in the
equilibrium axes. The relationships between these coefficients are given in Bailey
et al. [1998].

The functions f,, and f, physically represent the forces (for heave) and mo-
ments (for pitch) acting on the ship . For the heave mode, it can be written as
Bailey et al. [1998]:

fo="24+ Zar + Zw(oo)w + Z,(00)q + mqU, (3.8)

and for pitch as:

fo =M + My, + My (c0)w + M,(00)q. (3.9)

In equations 3.8 and 3.9 the terms Zw , Zq ,Mw and J\qu contain the infinite
values of the velocity oscillatory coefficients. These are analogous to the damping
coefficients Bsz, Bss, Bsz and Bss used in the conventional seakeeping analysis
and relationships between them and the oscillatory coefficients are given byBailey
et al. [1998]. The main difference is that the former are defined with reference to
the body axes whereas the latter are, by definition, expressed in the equilibrium

axes. In equations 3.8 and 3.9, Z, and M, are the forces and moments due to
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radiation potentials. These are expressed in terms of convolution integrals, ie:

ZT:/O zw*(T)w(t—T)dT—i—/o 2% (P)q(t — 7)dr, (3.10)

M, = /0 My * (T)w(t — 7)dT + /0 mg * (7)q(t — 7)dr, (3.11)

where z7, and 27 represent the heave- heave and heave-pitch IRFs, whereas m;,
and m; are the pitch-heave and pitch-pitch IRFs. In the present work these IRF's
are obtained from the frequency domain hydrodynamic data (i.e. hydrodynamic
damping coefficients) through the use of discrete Fourier transforms. Thus, it can
be seen that these hydrodynamic forces and moments are with reference to the
mean wetted surface.

The terms Z,, and M,, in equations 3.8 and 3.9 account for the wave dis-
turbance (incident and diffraction) and restoring actions. The Froude-Krylov
(incident wave) and restoring actions are evaluated over the instantaneous wet-
ted surface. This requires discretisation (i.e. panelling) of the entire surface of
the ship, up to the main deck, and identification of the instantaneous attitude of
the ship with respect to the incident wave. Subsequently the pressures over the
instantaneous underwater portion of the hull are summed up to provide relevant
forces and moments. On the other hand the diffraction actions are evaluated in
a manner similar to equation 3.10 or 3.11. That is to say the frequency domain
diffraction force (or moment) provides an IRF, through discrete Fourier trans-
form, and the diffraction actions (with respect to the mean wetted surface) are
expressed as convolution integrals Ballard et al. [2003].

Finally, the time domain evaluation of the vessel’s motions is carried out using
a fourth order Runge-Kutta method in which the velocities are calculated for a
set of time steps of fixed increments, i.e solving equation 3.7 . At the start of
a simulation, the calm water equilibrium position of the vessel is determined.

The subsequent motions are then calculated with reference to this initial position
Ballard et al. [2003].
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3.3 Results

The methods outlined in sections 3.1 and 3.2 are applied to the prediction of the
motions of the S175 container ship travelling in regular head waves. The main
particulars of the containership are shown in table 3.1. The body plan of the

S175 container ship is shown in Figure 3.1.

Table 3.1: Main particulars of the S175 container ship
Length between perpendiculars(m), L~ 175

Beam(m) 25.4
Depth (m) 154
Draught (m) 9.5

Displacement (tonnes) 24860

-15

Figure 3.1: Body plan of the S175 container ship.

The first step is to identify a suitable idealization of the mean wetted surface,
in terms of obtaining a converged solution with the number of panels used. To this
end panel numbers between 288 and 2358 were used to idealise the mean wetted
surface, ensuring an adequate panel aspect ratio of 2:1 Bailey et al. [2002]. The

crudest and finest mean wetted surface idealizations are shown in figure 3.2.
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Figure 3.2: Idealization of the surface of the S175 containership; top 588 and
middle 2358 panel idealizations of mean wetted surface; bottom 2880 panel ide-
alization of the whole surface up to deck for the partly nonlinear method.
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As an example the variation of heave and pitch non-dimensional damping
coefficients, obtained from the pulsating source method, for different mean wetted

surface idealizations are shown in figure 3.3 for Fn=0.2.
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Figure 3.3: Non-dimensional heave and pitch damping coefficients (Fn=0.2) ob-
tained using the pulsating source (various panel numbers on the mean wetted
surface) and the translating, pulsating source (TP-1058 panels on mean wetted
surface).

Examining the dependence of all the hydrodynamic coefficients on number
of panels used, it was concluded that use of 288 panels showed large differences
compared to other idealizations. Furthermore, the results using 1058, 1450 and
2358 panels showed negligible differences, indicating that convergence has been
achieved. This is confirmed by the heave (heave/wave amplitude) and pitch
(pitch/wave amplitude) RAOs shown in figure 3.4 for Fn=0.2. Based on this
results the mesh with 1058 panels was selected to perform the remainder of the
linear seakeeping analysis.

In addition, for the mesh up to the deck used for the partly non linear method,
the panel size was held as close as possible to the panel size of the mean wetted
surface idealization with 1058 panels. This resulted in a mesh of the S175 model
up to deck line with 2880 panels, shown in figure 3.2. It should be noted that
although the range of encounter frequencies shown in figure 3.3 is limited, when
the pulsating source frequency domain method was used, the hydrodynamic co-

efficients were evaluated for a larger range of encounter frequencies, so that an
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Figure 3.4: Illustration of convergence for the heave and pitch RAOs, with various
panel numbers on the mean wetted surface, obtained using the pulsating source
method for the S175 containership travelling in head regular waves, Fn=0.2.
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accurate discrete Fourier transform could be used to estimate the IRFs Ballard
et al. [2003].

There are two sets of results. The first set comprises variation of heave and
pitch RAOs with encounter frequency for a range of Froude numbers; Fn=0.2,
0.25 and 0.275 when using the pulsating source and partly nonlinear methods,
Fn=0.2 and 0.275 when using the translating, pulsating source method. In the
case of the partly nonlinear analysis three wave amplitudes are investigated, i.e.
a=1, 3 and 5 m. These results are shown in figures 3.5, 3.6 and 3.7 for Froude
numbers Fn= 0.2, 0.25 and 0.275, respectively. Note that p3 and p5 denote wis
and wis, respectively. It should be noted that the pitch RAO is in the form of
pitch amplitude (rads)/wave amplitude.

First let us focus on the trends of the predictions obtained by the partly
nonlinear method. The differences in predicted RAOs due to different wave am-
plitudes become notable in the vicinities of the peaks. For both heave and pitch
RAOs and all Froude numbers investigated a decrease is observed, in general,
in the RAO with increasing wave amplitude. A notable exception to this trend
relates to the heave RAOs at w. = 1 rad/s for all Fn values. In fact for Fn=0.275
the heave RAO predicted in 5m amplitude waves is nearly zero and out of line
with the general trends observed. It should be noted that a wave amplitude a=5m
corresponds to a rather steep wave, i.e. wave steepness values ka in excess of 0.12,
as can be seen from Table 3.1. The predicted pitch RAO, at the same frequency
also shows mixed trends with the pitch RAO for a=3m being larger or same as
that for a=1m, at Fn=0.25 and 0.275, respectively. The rate of decreases in the
heave RAOs with increasing wave amplitude remains more or less unchanged with
increasing Froude number. On the other hand this rate increases with increasing
Froude number for the pitch RAOs, as can be seen by comparing figures 3.5, 3.6
and 3.7. In general the rate of change in the RAOs is larger from 1m to 3m
wave amplitude and smaller from 3m to 5m wave amplitude. The question that
is arising here requires further investigation to establish whether it is a real trend
or due to the partly nonlinear method reaching the limits of its validity.

It is important to compare the differences between the RAOs predicted by
the linear pulsating source method and the partly nonlinear method. For the

lowest of forward speeds (Fn=0.2) the linear heave RAO is smaller than the
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Figure 3.5: Heave and pitch transfer functions for the S175 containership travel-
ling in head regular waves, Fn=0.2; comparison of linear (pulsating and translat-
ing, pulsating source) and partly nonlinear (PNL) methods.
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partly nonlinear prediction for a=1m. The heave RAOs predicted by the partly
nonlinear method for a=1m are the same and smaller than the linear predictions
for Fn=0.25 and 0.275, respectively. The trend observed for Fn=0.2 is contrary
to expectations of the behaviour of nonlinear methods. As this effect seems
to be more pronounced at low speeds it may be linked to the differences in the
hydrostatic restoring actions between the linear method based on the mean wetted
surface and the partly nonlinear method using the instantaneous wetted surface.
Thus it may be possible to argue that at higher Froude numbers the hydrodynamic
actions have a more pronounced effect, hence decreasing the influence of the
differences in the hydrostatic restoring coefficient. On the other hand the pitch
RAOs predicted by the pulsating source method are, in general, larger than the
partly nonlinear predictions for all Froude numbers. Nevertheless for Fn=0.275
the pitch RAO predicted by the partly nonlinear method for a=1m is very close
to the linear (pulsating source) prediction. The aforementioned reasoning on the
differences of the hydrostatic coefficients may also explain the trends observed
when comparing linear and partly nonlinear pitch predictions.

The RAO predictions obtained from the translating pulsating source method
are shown in figures 3.5 and 3.7, for Fn=0.2 and 0.275, respectively. The heave
RAOs predicted by the pulsating and the translating, pulsating source methods
are comparable for both Froude numbers. At the highest speed (Fn=0.275) the
pitch RAOs predicted by the translating, pulsating source are much higher than
the pulsating source predictions, peak values approximately 3.5 times higher.
Examining the pitch damping coefficient Bss, shown in figure 3.3, it can be seen
that the value predicted by the translating, pulsating source method is much lower
than that of the pulsating source method in the frequency range where the pitch
RAOQO peaks. Similar trends between pulsating and translating, pulsating source
predictions, at relatively high Froude numbers were observed for a NPL hull form
Bailey et al. [1999]. This is an important issue in terms of the applicability of the
translating, pulsating source method, especially at higher speeds. The influence
of the steady flow and its effect on the body boundary conditions (rather than
using the simplified conditions given by 3.4) may provide an explanation of the
differences observed.

The second set of results compares predicted heave and pitch RAOs against
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Figure 3.6: Heave and pitch transfer functions for the S175 containership travel-
ling in head regular waves, Fn=0.25; comparison of linear (pulsating source) and
partly nonlinear (PNL) methods.

the available experimental data. In this case, due to the limited number of ex-
perimental measures available and also bearing in mind the importance of wave
steepness fin this particular experiment, the results are presented in a slightly
different format, i.e as function of the wave steepness. Moreover, the pitch am-
plitude ps, is now normalized by the wave steepness, ka, as well.

That said, the RAOs in heave and pitch, for three different wave to ship length
ratios, a range of wave steepness values ka and two Froude numbers Fn=0.2 and
0.275 are shown in figure 3.8. The results predicted by the partly nonlinear
method are compared with the experimental measurements of Powers and Zs-
elecsky [1992]. The corresponding linear pulsating source predictions are also
shown, in the form of constant lines for each A/L value. The relationships be-
tween various wave properties for this second set of results are shown in table
3.2.

The basic trend displayed by the experimental results, namely a decrease in
RAOs with increasing wave steepness ka is observed in all predictions by the
partly nonlinear method, except for A/L = 1.0 and Fn=0.275 where the predic-

tions show a small increase with increasing ka values. It can be seen from table
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Table 3.2: Relationship between wave length, wave frequency and wave slope;
encounter frequency in regular head waves
=14 2=12 2=10
w (rad/s) 0.5 0.54 0.59
we (rad/s) and Fn=0.20 0.71 0.79 0.89
we (rad/s) and Fn=0.275  0.79 0.88 1.01
k (1/m) 0.025 0.030 0.036

3.2 that this corresponds to w, = 1 in figure 3.7 and was discussed above. It is
interesting to note that both heave and pitch RAOs in figure 3.7 show a decrease
when a=bm, tying up with the experimental trends for ka values in excess of 0.12.
Heave RAOs predicted by the partly nonlinear method are higher than the exper-
imental measurements, as well as the linear predictions by the pulsating source
method, for Fn=0.2. Pitch RAOs predicted by the partly nonlinear method are a
little higher than the experimental measurements, and the pulsating source pre-
diction, forA/L = 1.0 and Fn=0.2. For the same Fn=0.2, pitch RAOs predicted
by the partly nonlinear method are lower than the experimental measurements,
and closer to these measurements than the linear prediction, for A/L = 1.2 and
A/L = 1.4. Heave RAOs predicted by the partly nonlinear method are closer to
the experimental measurements, though a little higher, than the linear pulsating
source prediction for A/L = 1.2 and A\/L = 1.4 and Fn=0.275. Pitch RAOs
predicted by the partly nonlinear method for Fn=0.275 and for \/L = 1.2 and
A/L = 1.4 are close to each other, as are the linear predictions, and close to the
experimental measurements for \/L = 1.4, but higher than the measurements for
A/L = 1.2 . Overall it can be said that the partly nonlinear method offers im-
provement in predictions with reference to trends with increasing wave steepness.
The quantitative agreement, based on the limited set of measurements used here,
is reasonably good, although it can be patchy on occasion.

In the context of non linear effects, the reasonably good qualitative agreement
pointed out in figure 3.8 can be explained by the ability of the partly nonlinear
method in accounting for the changes in the submerged geometry of the body
and the effects of the water line dynamics. Although their contribution is ap-

proximated, since only Froude Krylov and hydrostatic forces are being calculated
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exactly, the incorporation of these effects deviates the results considerably from
the predictions of linear theory as a function of the wave steepness. In fact, this
suggests that modelling these two sources more accurately can yield a better qual-
itative agreement against experimental data (say a time domain body non linear
approach for instance). That said, there is still non linear contributions that can
come from the exact free surface boundary conditions whose effects cannot be

addressed in the partly non linear analysis.

3.4 Conclusive Remarks

An investigation has been carried out comparing predictions obtained from three-
dimensional linear, pulsating and translating, pulsating source, and partly non-
linear methods, together with comparisons with available experimental measure-
ments. The S175 containership, travelling regular head waves at a range of Froude
numbers and wave amplitudes, was used as an example for this investigation.

Based on this limited investigation it can be concluded that the partly nonlin-
ear method offers, in general, improvements in predicting heave and pitch RAOs.
Nevertheless, more comparisons with experimental measurements are necessary
in order to establish the range of validity of this method.

In the case of linear methods, the pulsating source method produces better
predictions, by comparison to the translating, pulsating source method at rea-
sonably high Froude numbers. The influence of steady flow on the translating,
pulsating source method needs further investigation.

The quality of the agreement with experimental measurements tends to em-
phasize the need for development of nonlinear methods, still within the potential
flow domain, accounting for nonlinearities in radiation and diffraction potentials.
In what follows of the present work, efforts will be concentrating in the problem
of addressing the non linear effects related to the radiation potential. In order to
address this issue, the boundary value problem needs to be formulated in time
domain and the time harmonic representation of the potential (equation 3.1),
does not hold true anymore. In particular, instead of solving a exterior Neumann
boundary value problem, a mixed interior boundary value problem formulation

will be derived.
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In this context, the linear time domain problem will be addressed first, for
both rigid and flexible forced oscillations motions. Subsequently, the non linear

effects will be introduced in chapter 7.
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Chapter 4

Problem Formulation in Time

Domain

The Mixed Eulerian Lagrange description of the fluid flow has essentially two
stages: in the first one for a potential given on the Dirichlet boundary (free
surface) and a given normal velocity on Neumann boundaries (floating body or
fixed walls), the mixed boundary value problem is solved yielding the the normal
velocity on the free surface and the potential on the floating body, this is the
Eulerian phase. In the second step, Lagrangian phase, the kinematic and dynamic
boundary conditions are integrated in time so that the the position of the free
surface and its potential are updated. The process is then repeated in time. In the
first section of this chapter, the integral equations of the boundary value problem
(Eulerian phase) are derived. Next, the boundary value problem is combined with
the kinematic and dynamic boundary conditions on the free surface so that the
MEL scheme is completed. Finally, the time marching scheme adopted is briefly

discussed.

4.1 The Mixed Boundary Value Problem

It is interesting to start, in a slightly more general context, by formulating the
weak form of Laplace’s equation using the method of weighted residuals and then

project the solution using the Dirac measure in order to obtain the collocation
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(or conventional) Boundary Element formulation. This approach draws a par-
allel between the Finite Element and Boundary Element methods. Furthermore
this structure allows for the introduction of different types of Boundary Element
Methods, like Galerkin Boundary Element Methods, see for instance Sutradhar
et al. [2008] and Steinbach [2008].

Hence, in order to describe the flow field a fixed three dimensional orthonor-
mal, right handed, Cartesian system Oxyz is used in the fluid domain ) at the
undisturbed free surface. This way, under the assumptions of ideal and irrota-
tional flow, the equation governing the fluid motion on €2 reduces to the continuity
equation, which can be equivalently expressed as the Laplacian of the flow po-
tential:

V2p(7,t) =0, &€ (4.1)

Consider now a very special weight function G(&,¢) which, for & and 7 in €,

is fundamental solution of Poisson’s equation, that is to say:
V3G = —6(Z — 1), V%, 7€ R>. (4.2)

If the weak form of equation 4.1 is multiplied by the weight function G(Z, %)
and integrated over the domain, one has from Gauss’ theorem and the properties
of the divergence operator (see Apostol [1969] p. 446) that :

/V2¢~Gd§2:/ Gng-ﬁdF—/ng-VGdQ:O. (4.3)
Q oN Q

Regarding the notation, note that the surface integrals evaluated on the domain
boundary, 0f2, are represented by dI' whereas df2 is used for the evaluation of
volume integrals.

Using Gauss theorem again on the last integral of 4.3 and equation 4.2 the
weak form of Laplace equation using the fundamental solution as weight function
becomes:

/ GV¢-iidl — [ ¢VG - 7dl — / (% — §)pdQ = 0. (4.4)
o0

o0N Q
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Using the Dirac Delta function definition one has that:

o(7) = /6 G@PT 7ar | VG AT (45

Equation 4.5 is valid in €2 and it can be extended to boundary (0f2) by taking
the limit to yield the following boundary integral equation Liu [2009]:

(D)(7) = /8 GEDVH A~ [ S@OVCER A (46

where ¢(Z) is the interior solid angle at Z. By its definition, ¢(Z) is equal to the
area of the projection of the domain surface, 9€), onto a unit sphere centred at
Z. Physically this equation reflects the mass conservation in the region enclosed
by 02 and the unit sphere centered at & Liu et al. [2001].

In addition, the boundary 9€) can be decomposed into N piecewise elements
such that, 0Q = Ujvzl E;. This leads to:

7 :Z/E.G(f,y}) - fdE; — Z/ () VG(Z, ;) - AdE;. (4.7)

In the context of the method of weighted residuals, the collocation method
can be used to obtain the discrete version of the integral equation 4.7. The main
idea of the collocation method is to take the projection of 4.7 using the Dirac
measure and impose that at the collocation points, (or source points, E;). The
approximate solution has the same value as the unknown potential Karniadakis
and Sherwin [2005]. In order to do this, in a non rigorous framework, one can

define an integral operator L(Z) as:

L(Z) = —¢(Z) :E’+Z/G Vo) - idE; Z/(b VWVG(Z,7;)-AdE;;

(4.8)
and note that when L(Z) = 0 equation 4.7 is satisfied. Next, in order to impose
that at collocation points the approximate solution satisfies equation 4.7, at each

source point F;, using the Dirac measure in a weighted residual sense, one has
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that:

/E 8T~ T)L(T)AE; = L(T;) = 0. (4.9)

Using equation 4.9 in equation 4.7 for each source point i=1 to N, yields the

following discrete version of 4.7:

N N
(@)o(@) = 3 [ Gl i)vo)  wk; - Y- [ o) V6. 5) - 7k
j=17E; j=17E;
(4.10)

It is worth pointing out that although equations 4.6 and 4.7 are equivalent,
equation 4.10 is an approximation which exactly satisfies equation 4.6 (or 4.7)
only at collocation points (or source points in the BEM terminology).

Since equation 4.10 holds for every i from 1 to N, it can also be written as
linear system whose solution is an approximate solution of the integral equation
4.6 which is equivalent to solving Laplace’s equation in a weak sense. In equation
4.10, the function G(Z;, ¥;) is the so called single layer potential operator, whereas
VG(z;,y;) - 7i is the double layer potential operator. Both of them can be seen
as a basis in which the potential ¢(Z;) is being approximated.

In fact, there are several different formulations that can be ensivaged in light
of the Boundary Element theory. The approach used here simply discretize the
integral equation 4.6, in the same fashion of Xu [1992]. Furthermore, since the
problem is being solved directly for the potential of the fluid flow, the approach
is called direct. Still in the context of direct boundary element method other
approximations can be obtained. For instance it can be shown Steinbach [2008]
that the potential can also be approximated not only by the single layer and the
double layer potential operators, but also with the self adjoint and the hypersin-
gular operators. The advantages or disadvantages of pursuing such alternatives
formulations in the context of hydrodynamic simulations can be an interesting
avenue for future research.

The main advantage of BEM over FEM is that the problem is formulated on
the boundary, having a lower dimensionality. However the integrals that arise in

BEM formulations are usually singular and often require special numerical treat-
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ment for the assembly of the influence matrix. In this work, when the source point
and the field point are not on the same element standard Gaussian quadrature
are used. For the singular case, i.e when source and field points lie on the same
element, the integrand is first desingularized using the polar mapping technique,
before being integrated. The details regarding the calculation of the influence
matrices and the assemblage of the linear system are detailed in the Appendix A
Numerical Techniques. In addition, for the problem to be well posed, a suitable
set of boundary conditions need to be applied. These are going to be dealt with

in the following section.

4.2 Boundary Conditions

Equation 4.10 admit two kinds of boundary conditions namely: Neumann (or nat-
ural) and Dirichlet (or essential) boundary conditions. In the context of potential
flow simulations, Neumann boundary conditions are the impervious boundary
conditions which are imposed on the surface of the floating body or in other
impervious surfaces, whereas Dirichlet boundary conditions are associated with
the potential value on the free surface. In addition to the essential and natural
boundary conditions, in order to account for the presence of the free surface the
kinematic and dynamic boundary conditions need also to be satisfied. At last, a
radiation boundary condition also needs to be imposed. The radiation condition
physically implies that there is no wave reflection at the boundaries of the free
surface, i.e the waves travel to ”infinity”.

More precisely, on the body surface, Sy, the impervious boundary condition
states that the normal velocity of the flow should equal the body velocity, \7(5, t);

this can be written as:

Vo(i,t)-ii = V(T t)- . (4.11)

At the free surface, Sp, the kinematic boundary conditions states that the
velocity of a particle equals the gradient of the velocity potential. Hence if Z(¢)

denotes the position of a fluid particle in R? its velocity can be expressed as
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Longuet-Higgins and Cokelet [1976]:

Dx(t)
=V 4.12
S =V (112
where Dggt) is the material derivative (or Lagrangian derivative) and denotes

differentiation following a given particle.
The dynamic boundary condition is derived from Bernoulli’s equation. In
Lagrangian coordinates Bernoulli equation is written as Newman [1977]:
D¢ 1

T = 3V0 Vo g2 (4.13)

It should be clear that boundary conditions 4.12 and 4.13 are the so called
fully non linear free surface boundary conditions. For instance, in the context of
linear analysis it was shown by Newman [1977] that equations 4.12 and 4.13 can

be simplified, respectively, to:

0z  0¢
%= 85 (4.14)
106

Therefore, in order to perform time domain simulations using linearized free
surface boundary conditions, equations 4.14 and 4.15 can be imposed on the exact
free surface, which differs from the frequency domain approach, and the mixed
boundary value problem is solved on the undisturbed mean free surface (z = 0).
This approximation is resonable as long as kA << 1.

On the other hand, if non linear free surface boundary conditions are going
to be imposed to time march the simulation, then equations 4.12 and 4.13 need
to be used. In fact, it is also possible to formulate equations 4.12 and 4.13 to a
semi-Lagragian version Beck et al. [1994], that tries to minimize the distortions
on the mesh. An example would be to allow free surface movement only on the
vertical direction, more details of which can be found in Chapter 7.

In order to satisfy the radiation boundary condition, i.e neglect the contribu-

tion from the far field boundaries of the free surface, the approach used by Liu
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[2010] is adopted. Therefore, a strip of sponge layer is added near the boundaries
to absorb all wave disturbances which travelled to the boundary. This scheme
relies on adding artificial damping terms to the free surface boundary conditions,
requiring a damping function to be defined.

The damping rate function, v(w,r,7r,7p) depends on the frequency of the
wave to be damped, w, the distance from the origin where the damping zone
starts rp and the distance where the zone ends, r;. Therefore, the actual size of
the damping zone is given by r; —rp. In addition, a couple of function forms can
be chosen (quadratic, polynomial etc); Nevertheless, still according to Liu [2010]

a simple and efficient damping zone can be defined by:

0 ifr<rp

viw,r,rp,rp) = { (4.16)

w(—r’:f?f;)Q ifrp<r<rp.
Hence, the damping rate function defined in 4.16 can be used on the free sur-
face boundary conditions. This way the potential satisfies the radiation condition

at infinity and wave reflections are hopefully avoided. For the case of linear time

domain simulations, equations 4.14 and 4.15 can be rewritten as:

0z  0¢

oo (4.17)
0
_af — —gr— v (4.18)

The case of non linear free surface boundary conditions can be dealt in the
same fashion, if the free surface boundary conditions are used on Lagrangian
coordinates (i.e equations 4.12 and 4.13). For the case tackled in this work, the
full formulation of the non linear free surface boundary conditions can be found

in chapter 7.

4.3 Time Marching Scheme

The main idea of the MEL scheme is to solve equation 4.10, and update the
potential value on the free surface using the kinematic and dynamic boundary

conditions, taking into account the presence of damping zone at a suitable dis-
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tance of the body.

An initial potential value, ¢y, is usually applied on the free surface, this can
be an undisturbed free surface condition (initial potential is zero) or an incident
wave potential; an initial velocity V(f, 0) is also prescribed on the floating body.
This way equation 4.10 can be solved for unknown potentials on the body and
the unknown normal velocity on the free surface (Eulerian phase). In the second
phase (Lagrangian phase), an explicit integration of equation 4.17 (or 4.12 in the
general case) updates the free surface position and another explicit integration
of equation 4.18 (or 4.13 for fully nonlinear simulations) updates the free surface
position and the potential value. Depending on the problem, the body velocity
will either be prescribed (forced motion problem) or calculated from the equations
of motion. Therefore equation 4.10 can be solved again with updated boundary
conditions. The process is then repeated in time. This way, both the initial
boundary value (IVP) problem for the evolution of the free surface potential and
the BVP problem that governs the derivative of the IVP are coupled. At this
point it is also interesting to highlight that although the process is simple, the
BVP-IVP coupling implies that if there are inaccuracies, say on the free surface
elevation for instance, it will corrupt the solution of the boundary value problem
and so on.

From a numerical perspective, in order to integrate the free surface boundary
conditions two methods have been used: a simple Euler method and second
order Runge-Kutta method. Both are described in the Appendix A Numerical
Techniques.

It is worth pointing out that the flexibility provided by the MEL scheme
comes at the cost that the domain is moved (in the sense that the nodes of the
free surface are displaced according to the velocity field). In linear analysis, be-
cause the wave stepness is small, ka << 1, the free surface boundary conditions
are applied on the free surface but equation 4.10 is computed on the undisturbed
free surface, allowing the same mesh to be used every time step. From a nu-
merical /implementation point of view this is a great simplification. Furthermore,
since the domain does not change, the influence matrices of the system are kept
the same in linear analysis. However, in order to tackle nonlinearities in the free

surface boundary conditions it is necessary to update the free surface and remesh
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it every time step. The methods used to tackle this problem are described in

chapter 7.
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Chapter 5

The coupling of meshing schemes
and hydrodynamics simulations

This chapter tackles a couple of practical implementations issues that will allow a
link between the generation of unstructured mesh grids and its applications to hy-
drodynamic simulations in time domain. The main feature that differ the present
approach from the current practice lies in the need to generate an unstructured
mesh at every time step, for the case of body non linear and fully non linear
simulations, taking into account the instantaneous changes on the floating body
wetted surface. To the best of our knowledge, there is no well defined current
practice for this problem in the potential flow context in time domain and the
meshing scheme employed is usually structured and intimately associated to the
BEM solver used in the problem (Xu [1992], Xue [1997] and Liu et al. [2001]).
On the other hand, recent developments of viscous fluid flow simulations have
focused on algorithms capable of simulating the 2 phase fluid flow problem (air
and water) by means of convecting the free surface on an Eulerian mesh (so no
remeshing is actually required) using, for instance, a coupling between volume
of fluid formulations and the level set methods, see Lachaume et al. [2003] and
Sethian [1999].

In order to tackle this issue, two unstructured mesh frameworks were investi-
gated: the framework developed by Persson [2005] and the framework developed
by Geuzaine and Remacle [2009]. Both approaches can generate unstructured
triangle meshes, although the algorithms are different. Signed distance functions

representations of the geometry (or geometries) that compose the fluid domain
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are the key inputs of the algorithm developed by Persson [2005]. Once signed
distance functions are available, they can be manipulated by simple operations
such as intersections, differences and unions, allowing for the construction of more
complex geometries. In the context of hydrodynamic simulations, natural ques-
tions arise, such as: Can a signed distance function can be estimated accurately
to mesh ship like forms and the free surface ? Furthermore, could this repre-
sentation be evolved in time in order to tackle the evolution of the free surface
and the movements (forced or freely floating) of the ship ? On the other hand
the framework developed by Geuzaine and Remacle [2009] is built on hierarchical
geometry entities, i.e points, lines, surfaces and volumes and the meshing scheme
is heuristic. In this context, the problem of representing an underwater geom-
etry that changes in time and needs to be remeshed at every time step is not
straigthforward as well.

In this chapter, both frameworks are going to be surveyed and the pros/cons
will be highlighted in the context of the present MEL simulation scheme. Sec-
tion 5.1 highlights the main reasons on the choice of an unstructured mesh. In
sections 5.2 and 5.3 both algorithms (distmesh from Persson [2005] and Gmsh
from Geuzaine and Remacle [2009]) are presented together with applications of
interest from a hydrodynamic perspective. Finally section 5.4, highlights the ad-
vantages and disadvantages of each approach from both a numerical stability and

implementation perspective.

5.1 The choice of the mesh type

In this section, the importance of choosing an unstructured grid to keep the size
of the boundary value problem practical is highlighted in the context of potential
flow simulations. When a solution of Laplace equation is sought, it can be shown
Cordaro and Kawano [2002], by means of a Fourier transformation, that the
solution of equation 4.2 is formally the free space Green’s function. This way,

denoting the FEuclidean distance between a source point, &, and a field point, ¥
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by r, the free space Green’s function is:

oL 1
G(Z,y) = yy— (5.1)

Equation 5.1 is the simplest form of the Green’s function that can be envis-
aged. On the other hand, it has the major drawback that when it is used in
the integral equation 4.10 it does not allow any simplification on the boundaries.
So there is clear trade off here: on the one hand a more complicated form of
Green’s function will allow for a great reduction in the domain size; however, it
will be much more time consuming to evaluate and calculate the influence matrix.
Therefore different approaches have been pursued, for instance: in the context
of free surface flows, Xu [1992] made use of the doubly periodic Green’s function
which allowed for the discretization of only the free surface (Dirichlet boundary
condition), the remainder boundaries (Neumann boundaries) actually vanished
from equation 4.10, reducing the computational size of the problem significantly
but, at the cost of a more complex Green’s function which is more expensive to
evaluate, approximately 12 times slower than 5.1 still according to Xu [1992].

In the present, the option to work with the free space Green’s function was
made due to its flexibility to handle free surface boundary conditions with several
degrees of linearity /non linearity. This implies, from a numerical perspective, that
the whole domain boundary needs to be represented by a mesh (or meshed). The
simplest mesh that can be built is a structured mesh. The major drawback of
structured meshes is that too many elements may be needed in order to achieve
a good representation of the domain boundary data.

More concretely, one of the main attractiveness of BEM lies on the fact that
only O(N ') unknowns are sought (where d is the dimension of the domain),
because only a discretization of the boundary is needed; whereas on numerical
methods that require a discretization of the whole domain (e.g FEM) the prob-
lem size is of the order O(N?). However, there are also some disadvantages,

specifically in the context of the mixed boundary value problem, namely:

e in BEM the influence Matrix computation involves integrals that are sin-

gular, hence more costly to evaluate;
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e the linear system that arises from BEM is usually neither symmetric nor

sparse.

In addition, recall that for hydrodynamic problems the waves lengths gener-
ated by an oscillating body, A\, with circular frequency, w, are of the order A\ = %:’—29.
Hence, the use of structured meshes is actually restricted to higher frequencies
(i.e shorter wave lengths). In lower frequency range, the computational cost of
structured meshes could become be too high introducing the need for more pow-
erful numerical techniques like the Fast Multipole Boundary Element Method Liu
[2009].

Combining these facts with the need of large domains, which usually have
different scale, since the wave length dimension can differ, by orders of magnitude,
of the dimensions of the floating body, the application of standard BEM in the
context of practical ship hydrodynamics problems is still limited, in the sense
that domain sizes needed are still too big Yan [2010].

One way to try to alleviate these issues is to adopt an unstructured mesh
representation of the domain boundary. In particular, for its relative user sim-
plicity and good mesh quality, two approaches have been tested in the context
of the present work: the algorithm developed by Persson [2005], called distmesh,
and mesh -visualization library, Gmsh from Geuzaine and Remacle [2009]. Both

meshing methods have their pros/cons, for instance:

e Gmsh adopts an heuristic/classical approach to meshing. Its data struc-
ture is hierarchical, composed of points, lines, surfaces and volumes. To
mesh surfaces it uses Delaunay triangulations and parametric based map-
ping schemes; it is efficient, runs fast, memory usage is light and mesh
quality is good. Compared to distmesh it is not straightforward to evolve
the domain in time (in the distmesh framework the signed distance func-
tions can be made time dependent, or evolved as will be seen in the next

sections), whereas in gmsh an heuristic approach is needed.

e Distmesh does not have a data structure representation which yields a sim-
ple implementation and shorter , easier to understand, code. The mesh

generation is an iterative force-based procedure which is built upon the
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concept of signed distance functions and Delaunay triangulations. The core
update of the algorithm is very closely related to the gradient ascent opti-
mization algorithms. Compared to Gmsh, the memory usage is more intense
due to the background grid, hence its runtime is slower, since Delaunay tri-
angulations are iteratively performed. On the other hand, the fact that
the background grid is already in place makes distmesh integration to level
set and fast marching methods straightforward. In particular in order to
perform BEM-VoF coupled simulations (see for instance Lachaume et al.
[2003]) the approach is appealing. The quality of the mesh elements is also

very good.

In the present work, as a general rule, the distmesh algorithm has been used
for the simulation of the hemisphere and sphere presented in chapters 6 and 7,
using the linear, body non linear and fully non linear methods. On the other hand,
the Gmsh library was used for the simulations presented for the Wigley hull. In
case of any exception, the context shall make clear which meshing algorithm was

used.

5.2 DistMesh-MEL coupling

In particular, methodology from Persson [2005] makes extensive use of distance
functions to represent the computational domain which can be an alternative way
to locate nodes on the floating body, on the free surface or on the outer boundary
of the domain to set the corresponding boundary conditions as this surfaces evolve
in time. Furthermore, a distance function representation of the free surface can
be used to model their evolution in time, which in turn can be used to mesh the
domain on the subsequent time step. In this context, the domain one is interested
in meshing (obtain a triangulation and a connectivity matrix) is embedded in a
larger grid, the background grid. This allows for a description of the domain to
be meshed, in the present case the fluid domain €2 and its boundary 0€), by means
of a signed distance function representation.

More formally, denoting the three-dimensional Euclidean norm by ||.|| the

signed distance function, d(Z,, Z), from a fixed point on the background grid z;

o4



to a point 7 is defined as:

|Z, —Z|| ifZ¢Q
d(Zy, 7) = § —||7, — || HTe (5.2)
0 ifxe o

From the above defintion it also follows that |V, d(Zy, Z)| = 1 which is an impor-
tant property of distance functions and is intimately associated with the mesh
generation algorithm.

Typical inputs to create a mesh are the following:

e the distance function d(Z,, ¥) for the domain ;
e a relative element size function h(Z);

e a desired triangle edge size hg.

5.2.1 Analytical Signed Distance Functions

As an example, the distance functions of two spheres with radii equal to 0.25 (in-
ner) and 4.0 (outer) units are combined in order to generate the mesh in figure 5.1.
In this case since the distance function is prescribed analitically it becomes a func-
tion only of the background grid points. Both spheres are centered at the origin so
that their distance functions can be simplified to di(7y) = /22 + y2 + 22 — 0.25
and da(7y) = /22 + y2 + 22 — 4.00. The mesh in figure 5.1 is then obtained by
taking the difference, ds3, between d; and dy, ds = max(ds, —d;), and then inter-
secting d3 with the plane z = 0, so that, dy = maz(—z,ds), is actually the final
distance function. The relative element size function used in this case is given
by h(Z,) = 0.08 + 0.1d; (#,) which increases neighbour element edges by a factor
1.1 moving away from the smaller sphere. In addition, in this case hg = 0.07
units. The meshing scheme developed by Persson [2005] uses a background grid
in which the signed distance functions are calculated. In fact, the background
grid is just a collection of nodes and there is some freedom in its choice. For
instance: uniform, octree or Delaunay based grids are in theory all allowed. In

this example, a uniform background grid was chosen, with a size of a bounding
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box with dimensions [-4.5 -4.5 -4.5] x [4.5 4.5 0.5] units in the x, y and z directions
respectively.

One of the typical metrics to investigate mesh quality is measured by twice
the ratio of the radii of inscribed to circumscribed circles of the triangles, see fig-
ure 5.2. Ideally this ratio should be as close as possible to one, meaning that the
triangles are as close as possible to equilateral triangles. In the present applica-
tion, mesh quality is important because the singular integrals in equation 4.6 are
numerically evaluated (see Appendix A Numerical Techniques for more details),
using either the polar desingularization Pozrikidis [2002] or the triangle mapping
technique Zhang and Xu [1989] so it is important that the elements have a good
quality in order to avoid a vanishing Jacobian.

Once the boundary mesh is available, it is possible to solve the hydrody-
namic problem developed in chapter 3 for the case of forced motions using linear
boundary conditions. In this case, since the free surface boundary conditions are
linearized and the boundary value problem is solved at the mean undisturbed
water level, then the process of mesh creation is performed only once, at the
beginning of the simulation. The results of these simulations, for the case of the
linear radiation problem were presented in chapter 6.

On the other hand, for non linear or body non linear formulations the meshing
scheme needs to be extended. The extension to both realistic ship forms, as well
as to the time domain remeshing problem (this is needed in a situation where the
underwater profile of the floating body changes in time) is going to be detailed
in the sections that follow, which comprise but are not limited to the remeshing

schemes used in chapter 7.

5.2.2 Simple Geometries undergoing prescribed movements

For the case of simple geometries undergoing forced oscillations, it is actually
straightforward to generate unstructured meshes for different positions of the
floating. For the case of the heaving sphere tackled in the body non linear simu-
lations, two distance functions are considered: one to represent the geometry of
the cylinder and another to represent the geometry of sphere. The distance func-

tion of the cylinder of height, h., and of radiis r., is constructed by intersecting
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Figure 5.1:  Mesh Generated for linear simulation (2758 triangles) using the
distance function of two spheres.
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Figure 5.2: Element quality of the mesh with 2758 triangles
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the lower and upper plane with an infinite cylinder. So if d5, dg and d; represent
signed distance functions, respectively, for the cylinder, lower plane and upper

plane (free surface), one can write that:

do(@,) = 2 — he. (5.3)

Next the in order to incorporate the forced oscillation of the sphere in the
heave mode, the distance function di(%,) = /22 4 y2 + 22 — 0.25 is extended
to dq(Z,,t) = \/xg + Y2 + (29 — 2e(t))* — 0.25, where 2. = Asin(wt). Note first
that d; assumes that sphere is centered at (0,0, z.(¢)). This way as z.(t) changes

the center of sphere changes and the movement implies a new distance function
di(Zy,t) . The new distance function is then fed to the distmesh algorithm,
generating a mesh at every time step. Figure 5.3 shows a sequence of plots of the
sphere for wt = 0,7/2and3m /2, as well as a typical mesh discretization used on
the body non linear simulations. For this mesh the size function, h, prescribed
is given by h = 1.5 + 5d;(Z,,t), so that for grid points away from the sphere

geometry the edge size increases isotropically on all directions.

5.2.3 Estimating Distance Signed Functions for Ship like

shapes

Using the distmesh library, once signed distance functions are available analiti-
cally an unstructured mesh could be created. However, for most ship like forms
the signed distance function that correspond to their geometry is not known a
priori, i.e in closed form. In this section a simple algorithm is proposed to esti-
mate the signed distance function of more general ship like forms and is used to
mesh a Wigley hull. The input that is required for the algorithm is a triangulated
representation of the ship surface geometry (i.e its nodes and a connectivity ma-
trix), the mesh representation of the surface geometry is usually available from
commercial CAD based systems, like Rhinoceros, Delfship, Maxsurf etc.

Before the algorithm is presented, let’s try to understand it from an intuitive
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Figure 5.4: Wigley hull triangulation used as input to create the signed distance
function, 1232 elements.

perspective. Recall that by its definition a signed distance function (equation 5.3)
measures the distance between grid points &, and the points that describe the
geometry, . This distance is then multiplied by a sign (41 or -1) corresponding
to whether the grid point, Z,, lies outside or inside the domain respectively.
Multiplying by the sign guarantees a key property for the gradient of the distance
function, i.e |V, d(Z,, )| = 1, which the meshing scheme is build upon.

So, once the representation of figure 5.4 is available and a grid point is given,
the distance from the grid point to all triangles on the surface is calculated and
the closest point on the surface to that grid point is found. Then in order to find
the value of the signed distance function between those two points, 2, and Z, the
normal direction on the surface is then used. Summarizing what has been said,
an algorithm that estimates the distance function from a generic triangulated
surface is described on Algorithm 1.

It is worth noting that for each grid point Algorithm 1 needs to pass through
all the points of the triangulated surface, therefore is runtime is of O(mn), m and

n being the number of points on the background grid and the size of triangulated
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Algorithm 1 Signed Distance Function Estimation from triangulated Geometry

1: procedure FUNCTION(dy,; = signdist(Z,))
2 distmin:=inf;
3 p:=nodes; > Load nodes and connectivity.
4: t:=conectivity;
5: while t =!EOF do > Loop on the triangulated surface.
6 triangle:=t(i);
7 [distaux,z]:=point TriDist (trip,, ); > Distance of Z, to triangle.
8 if distaux < distmin then > Save closest point to Z.
9 distmin:=distaux;
10: dotp:=(Z, — %) -7 > Use ortogonal projection to determine the
sign.
11: dyyi := sign(dotp)||Z, — Z|| > Signed distance function estimation.
12: end if

13: end while
14: end procedure

surface respectively. So the evaluation, although straightforward, can be time
consuming and often limit the applicability of the method when tackling problems
where a signed distance function needs to be evaluated at every time step (free
floating bodies for instance). In order to make the approach applicable, a couple
of alternatives are available, e.g: one can define a small band on the background
grid where the triangulated geometry is embedded (this tries to keep m small)
and run Algorithm 1 on this band. Next, the value of the signed distance function
can be extrapolated to the other points on the background grid using the fast
marching method of Sethian [1999].

It is also important to mention that, for some hydrodynamics simulations, i.e
forced motions problems in time domain, it can be the case that the distance
function of the hull needs to be evaluated only once, which can make the ap-
proach interesting. For instance, the distance function of the floating body can
be specified with respect to its body fixed axis, then the forced oscillations can
be prescribed on the remainder of the domain, which can be built upon analyt-
ical signed distance functions. In this context, for the case of body non linear
simulations all the available signed distance functions would be readly available.
For the non linear case, however, the signed distance function of the free surface,

with respect to the body fixed axes would need to calculated by Algorithm 1.
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This was not explored in the present work, but is indeed an interesting area for
future research.

The implemention in this work also tries to keep m small on the background
grid, but does not make use of the fast marching method. Instead, Algorithm
1 is run on a box shaped background grid, in which the triangulated surface is
embedded. The size of the box shaped background grid is chosen to be very close
to the dimensions of the triangulated surface, again to keep m as small as possible.
Once this run is completed the signed distance function is defined on the small
box shaped background grid. However, this not sufficient, as in order to build
a suitable mesh for hydrodynamic applications a larger domain, hence a much
larger background grid is required. Therefore, in order to extend the value of
the signed distance function, f;, on the larger background grid, a simple scheme
is introduced, namely: if the point on the larger background grid lies inside the
box shaped domain (say the boundaries of the smaller background grid where
Algorithm 1 was run) the signed distance function calculated by Algorithm 1 is
linearly interpolated, otherwise a simple, analytically prescribed, form of signed
distance is used, which is faster to evaluate. Note that in fact, the signed distance
function estimated in Algorithm 1, d;,;, is actually an input to Algorithm 2.

In particular, turning to the problem of meshing the wigley hull, the signed
distance function f; is generated by algorithm 2. At this point, f; can be called
by the distmesh algorithm of Persson [2005] and the mesh can be created. As a
preliminar step, i.e , to check if algorithms 1 and 2 are working as expected, it
is useful to check the zero level set contour of the signed distance function fy,
because it corresponds to the boundary of the domain. Its isosurface level set is
plotted in figure5.5 and the result of this approach is the mesh created in figure
5.6.

Another point of interest is to ask under what conditions Algorithm 1 fails
to converge to the signed distance function representation of the geometry. Not
very surprising, issues arise when the curvature of the triangulated body is too
pronounced. More specifically, in the cases when the normal vector is orthogonal
to distance between the Z; and & (sharp corners), the dot product is zero. In

this pathological cases Algorithm 1 is prone to problems !. In order to avoid this

In fact, it should be possible, although out of the scope of the present work, to formulate
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Algorithm 2 Signed Distance Function Estimation Assembly
1: procedure FUNCTION(d = signdist Assembly(p, Zy, diy;))

2: desf:=+/p? + p3 + p3 — 1.75; > Sphere signed dist function.

3: daux:=mazx(besf, ps); > Intersect with z=0.

4: d:=daux; > In case p is far from the box shaped background grid, the job
is done.

5: if [p1] < 0.7 and |p2| < 0.15 and |p3| < 0.10 then © Does the point p lie
inside the smaller the background grid?

6: dwig:=interp(Z,,di,p); > Linear Interpolation.

7: d:=max(—dwig, dl) > Take the difference between d1 and dwig.

8 end if

9: end procedure

behaviour, the triangulated surface representation needs to be refined in points
where the curvature is pronounced.

Instead of using algorithm 1, an alternative approach to estimate the signed
distance function of ship like forms would be to start from the zero level set
contour of the surface. Since the geometry is defined on R?, the coordinates
of its points, say Z;, j=1 to m, are all known. Because those points lie on the
surface, it follows that the signed distance function, d,,(Z;) = 0 for all of them.
In addition, if on every point Z; there is a corresponding normal vector 7i;, an
additional set of points located at &; + en;, j=m+1 to 2m, can also be gathered.
At these particular set of points, one can set d,(z; + €ii;) = € McCallum and
Evans [2001], so that the value of the signed distance function are also known as
well. The last step is then to build a global functional approximation for d,,(Z;),
this can be done with the aid of radial basis functions, so that d,,(¥) is expanded
as Buhmann [2004] :

4u(@) = eif (1) + 7o (5.4

where r; = \/(z — 2;)> + (y — y;)® + (= — z;)2, f(r;) is the RBF centered at

the point ¥; = (x;,y;,2;), ro is a constant and ¢; are constant coefficients. By

more precisely under what conditions the signed distance function from 1 converges to the true
signed distance function that describes the geometry.
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Figure 5.5: Isosurface of f; created using algorithms 1 and 2.

imposing d,,(Z;) = 0, for j=1 to m and d,(z; + €7;) = €, this scheme leads to
a symmetric linear system which is solved by LU decomposition in the present
implementation.

Once the signed distance function is available, the meshing scheme is called
and the mesh can be generated. Figure 5.7 shows the resulting mesh obtained by
approximating the distance function of the Wigley hull by a family of RBFs. A
quick inspection of figure 5.7 reveals the development of kinks, not surprisingly
in the regions of high curvature of the Wigley hull.

A possible reason for this poor estimation lies in the fact that the meshing
algorithm Persson [2005] uses a force equilibrium approach to move the nodes
of the mesh iteratively. After the nodes are moved, some of them are naturally
moved outside the boundaries (i.e zero-level iso-contour of the signed distance

function). In order, to project these nodes back to boundary the key property
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Figure 5.6: Wigley hull mesh created from using the distance function estimation
from Algorithm 2. Perspective view on top and half side view on the bottom.

of signed distance functions is explored, ||V f4|| = 1, so that the projection & :=
T—V fafa(Z,, T), brings the points outside the boundary exactly to the boundary.

However, if the radial basis approximation of equation 5.4 violates this property,
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the projected nodes will not lie on the boundary anymore, and therefore, the
mesh will not describe the geometry accurately. This suggests that it is very
likely that the radial basis function approximation has not converged to the true
signed distance function of the Wigley hull, which although not very efficient,

algorithm 1 calculates more accurately.

7 RV AV
4mvm‘vx?iéx¢{%

Figure 5.7: Domain mesh using a signed distance function of the Wigley hull
(L=0.5, B=0.10 and T=0.0625 units ) estimated by RBF intersected with a
hemisphere of radius 0.5 units.
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5.2.4 Free Surface Evolution

A direct approach to update the free surface position is to move the nodes ex-
plicitly using the Lagrangian formulation or a "quasi Lagrangian” free surface
boundary condition. This actually means to integrate the kinematic boundary
condition, equation 4.12, in time updating the nodes position. Explicit time in-
tegration is a simple method to evolve the free surface since it does not involve
convection. Once the integration is done the updated signed distance function
needs to be recalculated after the free surface is moved.

One way to accomplish this, is to interpolate the new free surface elevation on a
pre triangulated mesh and then calculate the signed distance function explicitly by
finding the closest point on the background grid to the triangles, using Algorithm
1.

In this context, once the new position of the nodes of the free surface are
known from the integration step the wave elevation at a given point ((x,y,t) is
approximated in terms of a family of two dimensional radial basis function (RBF)

as:

n

C(Iv y7t) = chf(pl> + To. (55)

=1

In equation 5.5 p; is the two dimensional euclidean distance function, namely

pi = (T — )2+ (y — )2, (5.6)

f(pi) is the RBF centered at the point (x;,y;), ro is a constant and ¢; are constant
coefficients which are calculated by imposing ((x;,y;,t) = (; for j=1 to n; (; is
the current elevation of the free surface, which in a test case can be prescribed
or, ideally, calculated from the integration of the kinematic boundary condition.
This procedure leads to a linear system which is solved by LU decomposition.
The wave elevation, (, is then interpolated on a given triangular mesh (this step
is important because it brings orientation to the free surface) and the signed
distance function is then explicitly calculated by Algorithm 1.

In order to ilustrate the current methodology, assume a cloud of points in

three dimensional represent the free surface position (in this ilustration case
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((z,y,t) = 0.1 sin(2mz) ). These are shown in the upper part of figure 5.8.
Next, interpolate their elevation on a triangulated grid (lower part of figure 5.8).
Use the triangulated surface to estimate the signed distance function representing
the free surface and compute the union of this signed function with the signed
distance function corresponding to the intersection of 5 planes (2, = —2,2, =

2,2, =—2,y, = 2,y, = —2 units, for the example presented) , that is to say:

do(Z,, 7,t) = Maz(d(Z,, 7,1), dpes), (5.7)

where dp,, is the uncapped box, without the plane z = 0 on its top, given by:

ABox(ZTg) = —Min(2 + 24;2 + 253 =2 + 24,2 + yg; —2 + ). (5.8)

It is worth point out that both dpg,, and dq are defined on the whole back-
ground grid, not only on the boundary of the fluid domain OS2 or in the fluid
domain itself 2.

The final mesh, resulting from the distance function in equation 5.8 is shown
on figure 5.9.

To investigate the quality of the mesh generated in figure 5.9, 0€) is decom-
posed into Neumann and Dirichlet boundaries, the free surface nodes are then
projected as function of only z and z and compared with the prescribed free
surface elevation ((z,y,t) = 0.1 - sin(27x), as shown in figure 5.10.

Hence, looking at comparison between the obtained free surface profile on the
mesh and (z,y, t) on the right side of figure 5.10, it turns out that the calculation
of signed distance function using Algorithm 1 yields a good approximation of the
geometry one wants to represent. In addition, a strong point of this mesh is that
element quality is very high as can be seen in figure 7.32. On the other hand,
a major drawback of this simple approach is that the calculation of the signed
distance function of the free surface it is not efficient from a run time point of

view.
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Figure 5.8: Interpolating the free surface position given by a cloud of points
(upper part) in a prescribed triangulated mesh (lower part) using the RBF rep-
resentation of {(z,y,t).

5.3 Gmsh-MEL coupling

In the previous section a couple of approaches were proposed in order to apply
the concept of signed distance functions to the present MEL simulations. In
particular, armed with the distmesh algorithm, from a signed distance function
representation of the domain it is possible to generate a reasonably good mesh.
Even for the cases of more ship shaped forms, Algorithm 1 can estimate signed
distance functions with an acceptable degree of accuracy. There is however a

couple of drawbacks on the distmesh framework that are important to bear in
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Figure 5.9: Mesh of the fluid domain boundary, 0f2, with 4336 triangles resulting
from the distance function dg using a uniform element size function, hy = 0.08.

mind. First, the estimation of signed distance functions has runtime problem, i.e
Algorithm 1 can be too slow for a time domain application (this can be overcome
by using a parallel architecture in the future applications). Second, and perhaps
most importantly, the meshing algorithm of distmesh tends to induce numerical
diffusion into the system; interestingly the main reason for this lies on the fact
that at each iteration, distmesh moves the points according to an heuristic update
rule, which is prescribed at the mesh nodes, p, as: p':= p': +aF(p) (see Persson
[2005] for more details). The problem that is faced at the implementation is

that the nodes displacement, for a meshes at different time instants, can induce
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Figure 5.10: Decomposition of 02 in Dirichlet (free surface) and Neumann bound-
aries (impervious boundaries) on the left and, on the right, comparison of the

obtained free surface profile between the mesh (blue) and the imposed elevation
(red).
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Figure 5.11: Element quality of the mesh representing 9€) measured by twice the
ratio of the radii of inscribed to circumscribred circles of the triangles.

spurious numerical diffusion on the simulation.
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These two reasons, for the case of Wigley hull simulations, turned out to
be daunting obstacles to couple the distmesh framework with the current MEL
scheme. As an alternative, the gmsh library (Geuzaine and Remacle [2009]) capa-
bilities were investigated. Gmsh relies on more conventional meshing techniques
for the generation of unstructured meshes (Delaunay triagulations and paramet-
ric mappings) and it represents the domain entities on a hierarchical level, i.e
points, lines, surfaces and volumes. This allows for either surface meshing or
volume meshing (in contrast, distmesh only allowed for volume meshing, hence
memory usage turned out to be a problem too). This way, the domain of interest
for the hydrodynamic simulations is now expressed as geometric entities, whose
unions and intersections form the the respective Neumann and Dirichlet surfaces.

In order to perform linear simulations, the Wigley hull points corresponding
to three water lines (z = —0.0625, z = —0.03125 and z = 0 units) are inserted
and interpolated in the longitudinal direction using splines. Next, the splines are
used to describe the hull surface, which is finally meshed. The resulting Wigley
hull mesh was shown in chapter 6, in figure 6.8, while the corresponding domain
mesh, a box like domain of dimensions [-4 -4 -1] x [ 4 4 0] units containing the
Wigley hull, was also shown in figure ?7. For those two meshes, their element

quality is given in figures 5.12 and 5.13.
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Figure 5.12: Element quality of the mesh of the whole boundary (Wigley hull,
free surface and boundaries) with 3298 triangles.

For the case of body non linear analysis investigated n chapter 7 the position
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Figure 5.13: Element quality of the mesh of the Wigley hull with 206 triangles.

of the points in the domain are updated. This implies a different position for
the lines and surfaces, which are remeshed at every time step. Note that the
choice of working with the points (the most basic geometry entities of gmsh)
avoids typical cirurgical meshing operations, e.g the problem of which panel (or
triangle) is coming in or out of the water as well as possible changes in the
connectivity matrix.

For the case of the Wigley hull, undergoing forced oscillations in heave it is
relatively straightforward to prescribe a heave velocity on the nodes of the keel
and from there imply changes on the underwater surface of the hull. In order to
accomplish this, it is useful to consider two coordinate systems: Ops is a body
fixed system, placed at the midship of the Wigley hull; Opg is fixed coordinate
system, placed on the undisturbed free surface, zpg = 0. The systems coincide
when the Wigley hull draught is exactly equal to T' '. So if the body fixed
axis is undergoing prescribed motions in the heave mode, with a displacement,
dz(t) = A + Asin(wt), the points of the system Opg can be expressed in the

system Oy by a translation in the 2z direction, therefore:

TFs Ty f
yrs | = | Yoy | + 0 : (5.9)
ZFS be dZ(t)

'In the general case, for motions in the 6 degrees of freedom the translations are taken ino
account in the same fashion whereas the rotations can be modeled using the Euler angles.
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(5.10)

in the mid-

)

i.e the second

'

by /2

T + dz(t), the inter-
water line is placed between the free surface intersection and the keel

section between the points on the undisturbed free surface and the Wigley hull

= Z

)%)-
-

bf

T

be

Yof
with the value of 2,y substituted by z

)

The results of the procedure described above are shown in the figure

).

This way, as the points on keel are oscillated by z

5.10 is applied

After a displacement is imposed on the system Oy, the undisturbed water line is
still fixed at zpg = 0, so 2,y = —dz(t). Note that z}; is not only fixed a priori but

is also equal to zpg. Thus, the corresponding beam of the Wigley hull is given

by:
changes. For the points on the second waterline, a similar approach to equation
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0. Right hand side: mesh of wigley hull at T

The procedure described in this section is then encoded on a simple script.

For the body non linear simulations of the Wigley hull, this script is called by
the function CreateMesh(.), in line 3 of Algorithm 6. Hence, the problem of

Figure 5.14: Left hand side: mesh of wigley hull at draught T

dz(t)

where A = 0.27T).



estimating signed distance functions for the Wigley hull is avoided.

5.4 Conclusions

In the context of hydrodynamics simulations, two meshing libraries were investi-
gated to (re)mesh the domain. The distance function approach (distmesh algo-
rithm from Persson [2005]) is able to create meshes with very good quality. The
key input for this algorithm is a signed distance function representation of the
domain and for geometries that are well defined mathematically, like the sphere,
the results obtained were reasonable. In order to extend this approach to the
wigley hull, the first step lies in estimating its signed distance function. In this
context, given a surface mesh of the hull geometry, algorithm 1 estimates signed
distance function numerically. The estimated the signed distance function is then
used as input in algorithm 2, which combines individual signed distance functions
into one signed distance function that represents the whole domain. This final
distance function is the used by distmesh to create the simulation mesh. Although
algorithm 1 can approximate signed distance functions for the free surface and
the Wigley hull, its use, on the present implementation, is not viable due to run-
time constraints. In fact, both distmesh and algorithm 1 have runtime issues
when it comes to hydrodynamic simulations, since it needs to mesh the whole
fluid domain and extract the boundary. This operation is costly when the size
of the domain is large. in addition, a tendency to induce spurrious modes on the
numerical stability was also identified with the distmesh algorithm. The reasons
related to this issue can be linked to the node movement update prescribed by
distmesh algorithm, which needs further investigations.

As an alternative, for the case of ship shaped geometries, the gmsh library
developed by Geuzaine and Remacle [2009] was investigated. Its algorithm is
based on heuristic meshing strategies. Compared to distmesh, gmsh runtime
and implementation are more efficient. On the other hand, the fact that the
domain is not described by signed distance functions requires a strategy to find
the intersection between the floating body and the free surface. For the case of

the Wigley hull undergoing forced oscillations in the heave mode, a simple script,
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based on coordinate changes between the body fixed system and the earth fixed

system, was implemented to perform this task.

76



Chapter 6

Linear Time Domain Analysis

In this chapter, the numerical implementation of the theoretical framework devel-
oped in chapter 4 is combined with the meshing techniques explained in chapter
5 to tackle the radiation problem, using constant boundary element solver. The
main feature of this problem is to perform forced oscillations of the floating body
in a initially undisturbed free surface. In this context, the kinematic and dy-
namic boundary conditions are imposed on the exact free surface (equations 4.17
and 4.18 ), hence updating the free surface position and potential respectively.
The mixed boundary value problem is solved, at each time step, on the mean
undisturbed water level (z = 0). From its solution (namely, the potential on the
Neumann boundaries and the normal velocity on the Dirichlet boundaries) the
hydrodynamic pressure on the body surface and, hence the hydrodynamic force
can be estimated. In order to translate the results from time domain to the fre-
quency domain, a Fourier decomposition of the hydrodynamic force is performed,
giving the corresponding added mass and damping coefficients. The numerical
implementation assumes the domain is discretized into a number of small ele-
ments (a mesh, with nodes and connectivities) so that in the limit, as the size
of the elements tend to zero, the representation of domain becomes, hopefully,
exact. In the present work, triangles are used to approximate the domain, so
that a mesh with triangular elements is constructed. Once the mesh is available

a method to locate nodes on the boundary is developed. This way, Neumann or
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Dirichlet boundary conditions are imposed at the center node of each triangle.
Next, the boundary value problem is solved, so that both the hydrodynamic force
acting on the floating body and the new position/potential on the free surface are
calculated. Comprehensive discussion on the mesh generation algorithms used in

the present work can be found in chapter 5.

6.1 Forced Motions

In order to test the numerical implementation of the current methodology, two
forced motions problems are tackled namely: the heaving and swaying body
(hemisphere and Wigley hull) on the free surface. In addition, in the context
of potential flow using linear free surface boundary conditions, both of these
problems have been solved analytically for the hemisphere by Hulme [1982] and,
therefore, added mass and damping coefficients are available for comparison. For
the case of the Wigley hull the calculated results are compared against the ex-
perimental data from Journée [1992].

For heave, the forced oscilation with amplitude, A, and circular frequency, w,

is prescribed as:

z(t) = Asin(wt); (6.1)

and for sway it is written as:

y(t) = Asin(wt). (6.2)

From Equations 6.1 and 6.2, the velocity of oscilation of the floating body can be
derived and used in equation 4.11 yielding, therefore, the impervious boundary
conditions on the body.

In the radiation problem the free surface is initially undisturbed hence, its
initial potential, ¢(Z,ty) = 0. Schematically, in pseudo-code language, the algo-
rithm that summarizes the steps of the linear time domain simulation is described

below as algorithm 3. The procedure is simple and the points worth pointing out

78



are the following:

1.

Line 1 creates the mesh on which the simulation is going to be carried out,
that is to say that the function CreateMesh(fd,fh,h0) returns the nodes
matrix p and connectivity matrix t, where fd is the distance function, fh
relative edge function and hO is scalar, the edge size. For the linear time
domain problem this mesh is created only once either using the algorithm

from Persson [2005] or Geuzaine and Remacle [2009].

. Since the mesh is created for the whole domain, the boundary is extracted

using the function FindBoundaryNodes(p,t). This function basically finds

surface triangles from the tetrahedra mesh.

Line 5: impose the potential at time t (it is set to zero at t=0) on the free
surface, this is a Dirichlet Boundary condition, which is imposed after the

integration of 4.15.

. Impose the impervious boundary condition using equation 4.11 (Neumann

Boundary condition) on the floating body (line 6) and on the other Neu-

mann boundaries (line 7).

Solve equation 4.10 (a linear system) on the undisturbed water surface for
the normal velocity on the free surface and for the potential values on the
floating body. The assembling of the linear system is described in the appdx
A.

From the potential on the body surface calculate the hydrodynamic pressure
and the corresponding force on the body according to 6.15. This is done in
line 9; the time derivative of the potential, in this case, is calculated by a

simple backward first order difference scheme.

Lines 10 and 11 update the instantaneous free surface vertical position
and the free surface potential by integrating equations 4.17 and 4.18. The
update is shown schematically as first order numerical scheme, however,
both Euler scheme and second order schemes (Rungee Kutta method) have

been used depending on the context.
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Algorithm 3 Linear Time Domain Simulation

1: procedure MAIN( )
2 [p,t|=CreateMesh(fd,th,h0); > Create a mesh of the domain
3 [TFs, Yrs, B, Yp, zp]:=FindBoundaryNodes(p,t);
4 while t < T do
5: Ors:=Pi(xps,yrs,t) > Set BC Value on the of the FS triangles
6 Vo -iig:=9(t)p-np > Set BC Value on the Floating Body
7 Vo -1pg:=0 > Set BC Value on other Neumann Boundaries
8 [(bB; Vo - ﬁps] = [GFS; GnB]_l[V¢ - 1p; QZ5F5] > Solve the BVP at
ZFSs = 0
o F = —p faB %ﬁBdS > Calculate the force on B
10: 2ps 1= zZps + (% — vzpg)dt > Update the FS elevation
11: Ops = Ops + (—zpsg — Vors)dt > Update the FS potential
12: t:=t+dt

13: end while
14: end procedure

6.2 Hydrodynamic Coefficients

In the case of forced oscillation in a single degree of freedom, neglecting the hy-
drostatic restoring force (i.e assuming the oscillations are sufficiently small so that
the draught of the floating body can be considered constant), the hydrodynamic
force ' has basically two main components: one proportional to the acceleration
of the body, added mass, and one component proportional to the normal veloc-
ity which the body oscillates, damping. The coefficients, A;; and B;;, refer to
the added mass and damping respectively on jth degree of freedom induced by a
motion in the ith degree of freedom.

That said, the heave hydrodynamic force in the heave mode one can be written

as:
Fh<t) - Aggé - 3332. (63)

Using equation 6.1 in 6.3 it follows that:

Fi(t) = —w?AAss sin(wt) 4+ wABss cos(wt). (6.4)

!Because the interest rely on the hydrodynamic force component, the hydrostatic force was
neglected throughout this chapter, i.e the pressure was calculated by: p = —p%‘f.
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Multiplying equation 6.4 by sin(wt) and integrating this equation over one period,
T, the added mass coefficient Asz is given by:

1 t+%
Azz = —— Fj, sin(wt) dt. (6.5)

TAw J,_ T
By the same token, multiplying 6.4 by cos(wt) and integrating yields the damping

coefficient, Bss:

T
1 t+7

5= — L Fj, cos(wt) dt. (6.6)

Once the time series of the hydrodynamic force is available, equations 6.5
and 6.6 are used to calculate the hydrodynamic coefficients for a given time
instant, ¢. This way, the time window of the Fourier Transform is moved by %
before and after each time step (taking into account a period T' of the force),
producing a time series of the hydrodynamic coefficients. These corresponding
values of A3z and Bsz for each t are then averaged to obtain the final values. It
is also worth pointing out that equations 6.5 and 6.6 can only be applied once
the hydrodynamic force has reached its steady state. For forced motions in sway
mode, the decomposition is performed in the same fashion, using the sway force

Fs(t), as the hydrodynamic force in equations 6.5 and 6.6.

6.3 Rigid Body Analysis

In this section the results obtained for the radiation problem are presented. The
radiation problem plays a paramount role in seakeeping analysis. In addition,
a numerical solution of the radiation problem in time domain, opens a door to
investigate body non linear and fully non linear radiation effects in both rigid
and elastic modes settings. This way, forced motion problems are of particular
interest.

On one hand, they allow for the estimation of the hydrodynamic coefficients
and on the other they keep the problem numerically simple, so that the there is no

incident wave potential, nor diffraction potential to be accounted for. Moreover,
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in order to try estimate how the hydrodynamic coefficients change as a function
of the amplitude of oscillation (this problem is tackled in the next chapter), it
can be helpful to solve a second boundary value problem for the time derivative
of the potential. In this case, the body boundary condition to be imposed is also
a function of the acceleration of the body, which is known for the case of forced
motions.

Conversely, for the case of free floating bodies, the estimation of the body
boundary condition is more difficult, it requires knowledge of the pressure field
(or say, the time derivative of the potential) which in turn requires an estima-
tion of the body acceleration itself. The solution of this problem leads either to
an iterating scheme (this is costly from a computational perspective) or to the
approach of Wu and Eatock Taylor [1996], which lies outside the scope of the
present work.

For the half submerged hemisphere, the heave and sway forced motion prob-
lems are simulated and the results are compared against the analytical calcu-
lations of Hulme [1982]. In addition, the forced heave radiation problem of a
more ship like form, a Wigley hull (model IV of Journée [1992]), without forward
speed is also simulated and its the analysis is extended to the unified hydroelastic
approach, so that forced oscillations in pitch, sway and flexible modes are also
addressed.

With respect to the computational time, each of the simulations in this chapter
were carried out in one 2.6 GHz Intel Sandybridge processor and the average

runtime for each one was 48 hours.

6.3.1 Forced motions of a submerged hemisphere

Once a circular frequency w is fixed for the forced motion, the wave number k is
also fixed. For the numerical simulations two meshes are used, namely a coarse
mesh with 3217 ( figure 6.1) triangles and a refined mesh with 5380 triangles (fig-
ure 6.2).The results of the hydrodynamic vertical forces for heave forced motions
of a sphere with radius R can then be compared with the calculations made by
Hulme [1982], using equation 6.4. These are shown in figure 6.3, for the circular

frequencies corresponding to kR=0.5,1,2,3,4 and 5.
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In figure 6.3, the time series of the heave hydrodynamic force is plotted against
time, note that one oscillation cycle is usually enough for the system to reach
steady state. In addition, it can be seen that as domain representation is refined
the numerical hydrodynamic force approaches the analytical forces predicted by
Hulme [1982], which is an indication of convergence in h-sense Karniadakis and
Sherwin [2005].

For forced motions in sway the scheme is the same as the one outlined for
forced heave oscillations (i.e algo 3). In fact the only change is the boundary
conditions imposed on the floating body, which, for sway, is given by equation
6.2. In addition, only the more refined mesh (5380 triangles) is used to carry out
the sway simulations for kR = 0.5,1.0, 2.0, 3.0,4.0 and 5.0. The time series of the
hydrodynamic sway force, Fs(t), is presented in figure 6.4.

In order to express the results obtained in the time domain to the frequency
domain, equations 6.5 and 6.6 are used to estimate the added mass and damping
coefficients respectively, which are shown in figures 6.5 and 6.6 for heave and
sway respectively. An interesting point can be drawn from the data in figure 6.5 .
Although the numerical values of Ass, calculated using the refined the mesh, are a
closer to the analytical values, B33 does not have the same agreement. In fact, the
values of B33 obtained for the coarser mesh are sometimes in better agreement
than the ones obtained by the refined mesh. The numerical limitations of the
CPM (constant panel method) when applied to mixed boundary value problems
have been extensively described by Xu [1992], Yan [2010] and Xue [1997]. The
error is more pronounced in solving Dirichlet problems, that is estimating the
normal velocity of the free surface when an initial potential is prescribed. In this
case, the potential value on the free surface is marched in time with an error which
is going to affect the solution of the problem in the next time step and probably
propagate by numerical diffusion. Due to this effect, a time domain approach
usually needs to rely on a more accurate solver than the frequency domain ap-
proach. This point is well investigated by Karniadakis and Sherwin [2005] in the
context of the numerical simulation of transient flow, highlighting the importance
of higher order methods in time domain simulations of fluid flow, in order to avoid
error propagation as time is marched. It is also worth pointing out that, although

a CPM method can fail to converge (or converge very slowly) to the solution of
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a mixed boundary value problem, simple modifications, like linear extrapolation
schemes near the the intersection of Neumann and Dirichlet boundaries, can ac-
tually improve the convergence of a crude CPM implementation in the estimation
of the normal velocity Xue [1997].

That said, the primary aim of the present work is to demonstrate that the
relatively simple numerical method provides a good qualitative agreement with
analytical (numerical or experimental data, when available) in situations where
the hypothesis of potential flow holds true. The accuracy of the predictions can be
improved by refining the numerical approximations (i.e using higher order BEM,
desingularised CPM or Galerkin based BEM). This way, the implementation is
more on the lines of trying to increase the accuracy of the CPM when needed,
rather than implementing a higher order numerical solver . For instance, by
extrapolating the numerical solution at collocation points to intersection points
by means of a radial basis function interpolation (see chapter 7).

By this token, it is interesting to compare the results obtained here, for the
hemisphere undergoing small amplitude forced oscillations motions, against the
ones from Lin and Yue [1991], where a transient Green function function was
used. More specifically, the hydrodynamic coefficients obtained by the SAMP
code (Small Motion Amplitude Program), show a tendency to oscillate around
the analytical values predicted by Hulme [1982]. There is an indication that,
as the number of panels on the floating body increases, the oscillations tend
to vanish. In the present work, using a simpler form of Green function, but
at the cost of discretizing the whole domain and solving the problem in time
domain, such oscillations did not occur, either for heave or sway. In addition, the
qualitative agreement of the results calculated in the present work against the
analytical results from Hulme [1982] is reasonably good.

Therefore, despite the aforementioned drawbacks of the present methodology,
figures 6.5 and 6.6 also show that a good qualitative behaviour can be achieved
using a CPM solver in linear time domain analysis of the radiation problem.
Furthermore, the use of unstructured meshes allows for an efficient discretization
of the whole boundary, so that the size of problem can be kept suitable for simple
numerical techniques, such as the conventional BEM used in this work, to be

applied.
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Figure 6.2: Refined Mesh 5380 triangles
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Figure 6.3: Comparison of the heave hydrodynamic force for the hemisphere for

KR=0.5,1,2,3,4 and 5 against numerical calculations for a coarse and a refined
mesh.
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Figure 6.4: Time series of the sway force, Fg(t), compared with the analitycal
results for the swaying hemisphere, for kR=0.5, 1, 2, 3, 4 and 5.
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sphere for kR=0.5,1,2,3,4 and 5 against numerical calculations using different
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6.3.2 Heave forced motions of a Wigley Hull form

In this section, the problem of forced oscillations in heave of a Wigley hull form
is tackled. In this context, the Wigley hull model IV of Journée [1992] is chosen.
The length,L in units, of the Wigley Hull as well as its non dimensional main
data and block coefficient, (', are summarized in the Table 6.1. As it will be
discussed in later chapters, the problem of estimating a signed distance function
for ship like forms can be numerically daunting due to the different scales and
curvature of ship like geometries. Consequently, for the simulation of the forced
oscillation problem in this section, the Wigley hull is meshed using the algorithm
developed by Geuzaine and Remacle [2009]. Therefore, points corresponding to
three water lines (z = —0.0625, z = —0.03125 and z = 0 units) are inserted and
interpolated using splines. Next, the splines are used to describe the hull surface,
which is finally meshed.

The coarser mesh generated by this procedure and its corresponding domain
mesh, a box like domain of dimensions [-4 -4 -1] x [ 4 4 0] units containing the
Wigley hull, are shown in figure 6.8. In addition, element quality of both meshes
are given in figures 5.12 and 5.13. Moreover, a refined mesh was also built in
order to check the convergence properties of algorithm 3.

In the context of the numerical simulation, the primary concern is on element
quality, because bad elements can actually break up the whole numerical scheme.
This way, the problem of how close the geometry of the mesh fits the original
geometry is left as secondary issue. However, in order to estimate the goodness
of the fit to the original geometry, the still water displacements of both coarser
and refined meshes (V; and Vs, respectively) are compared against the exact
value of the still water displacement of the original geometry (V so4e1), in units?,
in table 6.2.

Table 6.1: Wigley Hull Data

L 1.0
L 50
532
C, 0.46
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Table 6.2: Still Water Displacement
Vroder  0.0058
Vi 0.0051

Vs 0.0051

Once a mesh is available for the Wigley hull, the problem of forced oscillations
in heave can be solved using the formulation described in sections 6.1 and 6.2, for
the zero forward speed case. The time series of the hydrodynamic force is shown
on the figure 6.9 for different frequencies of oscillations, showing that the steady
state is reached quickly. The usual Fourier decomposition, equations 6.5 and 6.6,
is then used to calculate the added mass and damping coefficients.

The results obtained for the hydrodynamic coefficients are then compared
with the experimental data of Journée [1992] in table 6.10, for the case with the
lowest Froude number, i.e F;,, = 0.2. At ranges of frequency where the assump-
tions of linear theory holds this comparison makes sense, because, in this case,
the hydrodynamic coefficients are a function of only the frequency of oscillation
Newman [1977] !. In addition, in the lower frequency range, the experimental
data obtained showed a considerable velocity dependence. It can be argued, that
this sort of effect is probably associated with viscous phenomena where the low
speed of oscillation allows for a thick boundary layer to be formed around the
floating body. Unfortunately, this sort of behaviour can be only be addressed by
either tackling Navier-Stokes equations or by adding viscous corrections to the
present code.

It is important to note that the data in figure 6.10 is non dimensionalized in

following fashion:

&= N (6.7)
Asz = % (6.8)

'In fact, effects due to the forward speed will also change the hydrodynamic coefficients.
However, if the coupling between heave and pitch motions is small, the changes due to foward
speed can also be shown to be small Newman [1977].
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Figure 6.7: Top: Coarser mesh of the whole domain (box like domain) used to
carry out forced heave oscilations of the wigley hull, 3298 triangles. Bottom:
Wigley hull (L=1 unit, L/B=5 and B/T=3.20) mesh used to perform forced
heave motions with 206 triangles.

The results in figure 6.10 indicate a reasonable agreement, for w > 1.63, with
the experimental results, for both the coarser and the refined meshes. In partic-
ular, algorithm 3 seems to have a small tendency to overestimate the damping
coefficient and to underestimate the added mass coefficients, still the qualitative

behaviour is reasonably good.






w=5.11 rad/s w=7.80 rad/s

FyN)
)

w=10.81 rad/s

w=13.81 radfs

F L (N)
FN)

=Ty R R i ] -
0 05 1 s 15 2 25 3

w=17.29 rad/s

Fl, (N)

Figure 6.9: Time series of the Wigley hull heave force Fy(t) for w=>5.11, 7.80,
10.81, 13.81 and 17.29 rad/s .
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coarser and refined meshes and the experimental data from Journée [1992] for the
Wigley hull undergoing forced oscillations in heave.

95




In order to go beyond the qualitative agreement two avenues could be pursued.
First, note that the hydrodynamic coefficients are intimately associated with the
actual geometry of the body and table 6.2 suggests that there is room to improve
the fit to the original geometry, since the deviation of the volume estimated from
the meshes to the original geometry is of the order of 0.13 per cent. Secondly,
the accuracy of the BEM solver can certainly be improved, by the use of higher
order methods or Garlekin based approaches. On the other hand, the cost of
such improvements are higher from a computational runtime perspective, in the
sense that they can easily lead to the fast multipole influence computation, GPU
based linear system solvers and curved elements representations (see Xu [1992],
Yan [2010] and Liu [2009]).

However, in the context of the present work, one of the main objectives lies in
the development of a methodology that is capable of tackling problems of forced
oscillations (radiation problems) in either rigid or flexible modes and problems re-
lated to the evolution of the free surface in time. This way, qualitative agreement
is sought and improvements in either the numerical accuracy of the algorithms
or in the geometry representation of the floating body are going to be discussed
in the context of future work. By this token, in the next section algorithm 3 is
extended to tackle the unified problem which takes into account rigid and flexible
modes. Furthermore, since the qualitative behaviour of both coarser and refined
meshes of the Wigley hull are reasonable, the coarser mesh will be used in the

unified framework unless mentioned otherwise.

6.4 Hydroelasticity Analysis

In this section the formulation of the unified problem Bishop et al. [1986] is used
to extend the problem of forced oscillations of rigid bodies to the case of flexible
bodies. Essentially, in the MEL framework, in order to extend the analysis to
tackle flexible floating structures undergoing forced oscillations, the crucial step
is to formulate a structural model of the floating structure, so that distortion
modes and their respective mode shapes are known. To this end, the Wigley hull

is modeled as uniform Euler beam that undergoes forced rigid motions and dis-
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tortions. In the boundary element context, a consequence of the unified approach
is that the Neumann boundary conditions, imposed on the floating structure, are
generalized, allowing to the introduction of the mode shapes of the beam model.
The remainder of the boundary conditions remain unchanged, as in the rigid
body problem. Once the boundary conditions are imposed, the problem is solved

in time domain using the previous MEL scheme.

6.4.1 Boundary Conditions for the Flexible Case

For the unified 3D hydroelasticity radiation problem the forced motions of the
floating structure are defined using the approach developed by Bishop et al. [1986].
Therefore, the forced oscillation motion with amplitude A, and circular frequency

w, imposed in the ¥ mode of the structure, is written as follows:

i0;(t) = ps(O)Wi(T) = Asin(wt)W;(7); (6.10)
where Wz(f) is the displacement vector associated with the mode shape corre-
sponding to the " distortion mode. Therefore, if the six conventional rigid body
motions (surge, sway, heave, roll, pitch and yaw) are denoted by the indexes
i=1,2,3,4,5,6 respectively, then for translations (i=1 to 3) VT/Z(f) is actually equal
to the unit vector and the oscillation is performed in the corresponding direc-
tion (x,y,z respectively). In addition, for rigid rotations about the origin of the
reference system (i=4 to 6) the mode shape is calculated by the vector product
W;i(Z) = W,_3(Z) x Z. For the flexible modes (i > 6), a subtle simplification is
introduced which is reasonable if the deflections are assumed to be small. That
is to say, it is assumed that the flexible mode shapes, in the vertical direction,

—

are given by W;(Z) = W;(Z)k, where k is unit vector along the vertical (z) di-
rection. By the same token, in the horizontal direction, it is assumed that the
flexible mode shapes are given by I/T/,(f) = VVZ(f)j, where j is unit vector along
the horizontal direction, pointing to starboard. These approximations can take
into account both vertical and horizontal bending, but they cannot be applied
for the case of twisting.

In addition, assuming that the structure can be idealized as an Euler beam
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leads to a simple expression for the displacement vector WZ(JT:) :

Wi(z) = Ri(cosh(qi%) + Cos(qi%)) + (sinh(qi%) + sin(qi%)). (6.11)

The ¢;s are the constants eigen-solutions of the Euler beam. L is the length of

the floating body and:

o sinh(g;) — sin(g;)
* cos(q;) — cosh(q)

(6.12)

Given this framework, from 6.10 it is straightforward to derive the impervi-
ous boundary condition on the floating body surface. Therefore the generalized

version of 4.11 can be expressed, for motions in the vertical direction, as:

V(T 1) -7t = w;(t)k - 7; (6.13)

likewise, for motions in the horizontal direction, the generalized version of 4.11

can be expressed as:

Vo(Z,t) -7t = (1)) - 7. (6.14)

Note that equations 6.13 and 6.14 are approximate versions of the impervious
boundary condition for flexible modes. In fact, they neglect terms of the order
A? and higher once the normal vector of the floating structure is assumed not to
change when the body is subject to oscillations defined by the distortion modes
(Bishop et al. [1986] actually derives a more general condition correct up to
terms of order A?). However, this boundary condition does make sense for small
deflections of the flexible body and turns out to be a good approximation for the
current purposes (i.e linearized free surface assumptions).

Once equation 4.10 is solved and under the assumptions of linear theory, the
pressure acting on the floating body oscillating in the i** mode can be greatly
simplified. Therefore, the hydrodynamic force in the j* direction is calculated

for a rigid body, according to Newman [1977], by integrating the time derivative
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of the potential on the floating body surface, 0B; that is to say:

99

Ejt)=—=p | — m
ap Ot

dB. (6.15)

Although equation 6.15 is valid only for rigid modes, it can be extended to
account for unified mode shapes Bishop and Price [1979], yielding a generalized
expression for the hydrodynamic force, as follows:

.09
Fijit)=—p [ W;(@)—=ndB. (6.16)
OB ot

From the hydrodynamic force the added mass and damping coefficients are
calculated by performing a Fourier decomposition of the force in the usual fashion,
which leads to an estimation of hydrodynamic coefficients corresponding to both
rigid and flexible modes.

Algorithm 4 summarizes the time domain simulation, under the assumptions

of the unified hydroelastic theory applied to the problem of forced oscillations.

Algorithm 4 Unified Linear Time Domain Simulation

1: procedure MAIN( )
2 [p,t|=CreateMesh(fd,th,h0); > Create a mesh of the domain
3 [*Fs, Yrs, B, ys, zg]:=FindBoundaryNodes(p,t);
4 while ¢t <T do
5: brs:=Pi(rrs,yrs,t) > Set BC Value on the of the F'S triangles
6 Vo-iip:=ut) fip > Set BC Value on the Floating Body
7 Vo-iig:=0 > Set BC Value on other Neumann Boundaries
8 (65; V- 1ips] = [Grs; Gnp) [V - 1ig; drs] > Solve the BVP at
ZFSs = 0
9: Fji(t) :==—p [z W; (ﬁ)%nidB. > Calculate the force on B
10: Zrs ‘= Zrs + (% — vzpg)dt > Update the FS elevation
11: Ors = Ops + (—2rpsg — Vopg)dt > Update the FS potential
12: t:=t+dt

13: end while
14: end procedure

At this point, it is interesting to compare both algorithms 3 and 4. In fact,
just lines 6 (i.e the boundary condition imposed on the floating body) and line

9 (the integration of the pressure around the body surface) actually change due
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to the unified formulation. Using this algorithm results, for both symmetric and
antisymmetric modes, were obtained, The next sections presents these results and

compare them against other numerical methods.

6.4.2 Results for Symmetric Modes

In this section the problem of forced motions of the Wigley hull model IV, shown
in Table 6.1,is investigated. In this context, the symmetric rigid modes of heave
(i=3) and pitch (i=5) together with two flexible modes for i=7 (2-node) and 8
(3-node) are considered.

For the Wigley hull, it was found empirically that the size of the damping
zone has a more pronounced effect than for the hemisphere, especially in the
lower frequency range (higher wavelengths) where reflection has been observed.
In order to overcome this problem two meshes were created with different free
surface sizes, whereas the mesh on the floating body surface remained the same,
i.e. 206 triangles.

The smaller mesh comprised 3298 triangles with a range between [-4, -4, -1]
and [4, 4, 0] units, shown in 6.8. The larger mesh 5318 triangles with a range be-
tween [-5, -5, -1] and [5, 5, 0] units. The non-dimensional added mass A;;/(AL?)
and and damping B;;/(AL?*\/gL) coefficients shown in figures 6.11, 6.12, 6.13 and
6.14. These are plotted against non-dimensional frequency w\/g/_L. The larger
of the meshes is used for the two smaller frequencies, whilst the smaller mesh is
used for the remainder. The predicted values are compared with experimental
measurements by Journée [1992] (rigid body motions only), 2D hydroelasticity
predictions by Bishop and Price [1979] (using 20 sections along the hull, denoted
by mars) and 3D hydroelasticity predictions by Bishop et al. [1986] (pulsating
source method using 350 panels on the mean wetted surface, denoted by flxbd).
The predictions of the current method, i.e algorithm 4 are denoted by time do-
main.

The non-dimensional (generalized) heave and pitch added mass and damp-
ing coefficients (no coupling due to fore-aft symmetry) are shown in figure 6.11.
There is good agreement between the current predictions and Journees experi-

mental measurements, except for the relatively small frequencies. The agreement
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is also good between the current predictions and the 3D analysis. In some cases
the current prediction is closer to the experimental results than the 3D analysis,
e.g. for Bssz. The predictions from the 2D analysis are smaller than all other re-
sults. The non-dimensional (generalized) added mass and damping coefficients for
the distortion modes i=7 and 8 are shown in figure 6.12 The comparison between
3D hydroelasticity and the current predictions show good overall agreement, with
the results by the current method in general larger than the 3D frequency domain
hydroelasticity. There is poor correlation between the 2D and 3D hydroelasticity
results. It should be noted that there is no coupling between i=7 and i=8 modes
due to the fore-aft symmetry. The coupled hydrodynamic coefficients are illus-
trated using i=3 (heave) and i=7, and i=5 (pitch) and i=8, these are shown in
figures 6.13 and 6.14. The agreement is good between the 3D frequency and time
domain methods, although the latter is larger for the B37 damping coefficient for
relatively large frequencies of oscillation. The predictions from the 2D hydroelas-
ticity theory are smaller than either 3D prediction, especially for the added mass
A37 and do not show good agreement for the damping coefficient B85.

The experience with the Wigley hull shows the complexities of the problem
even when comparing simple geometries, such as the hemisphere and Wigley
Hull. Although the domain is relatively large, the body or mean wetted surface
is still relatively crude. Differences were observed for relatively small and large
frequencies of oscillation. The former can be dealt with at the expense of a larger
domain. The latter is likely to require more refinement on the body, implying
a much finer free surface mesh in the vicinity of the body, hence, a much larger

overall mesh, which again calls for a parallel linear system solver.

6.4.3 Results for Anti-Symetric Motions

In the context of anti-symmetric motions, the problem to be addressed is the one
of a floating structure undergoing sway and roll forced oscillations. For sway, in
framework currently adopted, the boundary condition, equation 6.14, needs to be
imposed on the body surface. By using this impervious boundary condition, the
assumptions of Euler beam and its respective mode shape are assumed to hold

true, since u; actually depends on the mode shapes of the beam by equation 6.10.
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Figure 6.11: Comparison of model test results, MARS (2d strip theory ) and the
model developed by Bishop et al. [1986] (3d frequency domain model , flxbd)
against the current calculations for the wigley hull undergoing forced motions in
mode 3 (heave) and 5 (pitch).
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Figure 6.12: Comparison of MARS (2d strip theory ) and the model developed
by Bishop et al. [1986] (3d frequency domain model , flxbd) against the current
calculations for the wigley hull idealised as an Euler Beam model undergoing
forced motions in modes 7 (2-node) and 8 (3-node).
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Figure 6.13: Comparison of MARS (2d strip theory ) and the model developed
by Bishop et al. [1986] (3d frequency domain model , flxbd) against the current
calculations for the wigley hull idealised as an Euler Beam model undergoing
forced motions for cross couple modes 3 (heave) and 7 (2-node).

Using the same meshes described in the previous section the simulation is then
carried on. Note that, since the hull is now being oscillated on the y direction
we are interested in three sets of hydrodynamic coefficients, namely: sway into
sway, sway into roll and sway in the first distortion mode (i.e 2-node) in the
horizontal plane, which is called here mode 7 as well. Unfortunately the notation
is overloaded because mode 7 in this section refers to first distortion mode in
the horizontal plane, whereas mode 7 in the previous section referred to the first
distortion mode in the vertical plane.

The hydrodynamic coefficients obtained are then compared against the nu-
merical calculations from Bishop et al. [1986] , i.e 3d frequency domain analysis
(referred as flxbd in the plots). The hydrodynamic coefficients are plotted in
figures 6.15, 6.16 and 6.17 for sway into sway, sway into roll and sway into the

first distortion in the horizontal plane (2-node , denoted by mode 7 throughout
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Figure 6.14: Comparison of MARS (2d strip theory ) and the model developed
by Bishop et al. [1986] (3d frequency domain model , flxbd) against the current
calculations for the wigley hull idealised as an Euler Beam model undergoing
forced motions for cross couple modes 5 (pitch) and 8 (3-node).

this section).

At this point a couple of remarks can be highlighted. First, it can actually be
seen that the agreement, compared to what was obtained in heave and pitch, has
worsened, although the overall qualitative behaviour is resonable. In addition, by
looking at the cross coupled hydrodynamic coefficients the agreement is somewhat
poor.

In a attempt to improve the numerical accuracy of the simulations, the inte-
gration method of the free surface boundary condition was refined. This way, a
second order Rungee Kutta scheme (RK2) was implemented (its description and
implementation are detailed in the Appendix A Numerical Techniques) and some
of the frequencies for the sway forced motions were run again and compared to
the former results obtained by the Euler scheme (green circles in figures 6.15, 6.16

and 6.17 ). A comparison between the results suggest that, although the use of
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Figure 6.15: Comparison of the model developed by Bishop et al. [1986] (3d
frequency domain model , flxbd) against the current calculations for the wigley
hull idealised as an Euler Beam model undergoing forced motions of sway into
sway.Green circles denote the RK2 scheme, red crosses Euler method.
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Figure 6.16: Comparison of the model developed by Bishop et al. [1986] (3d
frequency domain model , flxbd) against the current calculations for the wigley
hull idealised as an Euler Beam model undergoing forced motions of sway into
roll. Green circles denote the RK2 scheme, red crosses Euler method.
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Figure 6.17: Comparison of the model developed by Bishop et al. [1986] (3d
frequency domain model , flxbd) against the current calculations for the wigley
hull idealised as an Euler Beam model undergoing forced motions of sway into
the first distortion mode in the horizontal plane, 7 mode (2-node).Green circles
denote the RK2 scheme, red crosses Euler method and black circles are calculated
on the mesh with a bigger damping zone [-6,-6,-1] x [-6,6,0] free surface using RK2.
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the second order integration scheme allows the simulation to run at larger time
steps, the comparison of the hydrodynamic coefficients using an Euler scheme and
the second order method, suggest that for the range of time steps where the Euler
scheme is stable, the accuracy of both integrators are very close. In addition, to
investigate further the occurence of wave reflection in the lower frequency range
a third mesh [-6,-6,-1] x [-6,6,0] was also used together with the RK2 scheme,
this result plotted in figure 6.16 as black dots. This results indicates that, for
the present purposes, convergence has been achieved with the [-5.-5,-1] x [-5,5,0]
mesh, hence, there is no need to use a bigger domain or damping beaches in this
case.

Therefore, the bottleneck is not actually in the free surface integration. Other
possible reasons rely on relatively crude mesh representation of the geometry (this
can be investigated further by a convergence estimation of the numerical algo-
rithm in the h-sense Karniadakis and Sherwin [2005], at the cost of much bigger

domain) or in inacuracies relating to the estimation of the potential derivative

¢
ot

backward difference scheme in algorithm 4. For a more comprehensive discussion

around the floating body (i.e %7), which is actually being estimated by simple
on the evaluation of % please refer to the next chapter.

Despite some drawbacks relating to accuracy issues, a methodology that en-
compasses the simulation of potential flow and gives a qualitative good agreement
with other methods based on potential flow theory has been developed and shown
to work in the context of the unified linear time domain problem. Once this is
achieved, it is possible to then work out refinements, like the accuracy of the
Boundary Value problem solver for instance, and improve the methodology fur-
ther.

6.5 Conclusions

In this chapter, the problem formulated in chapter 4 was implemented numeri-
cally. Under the assumptions of linearized potential flow theory, forced oscilla-
tions problems for a rigid body were tackled and the results compared against

exact potential flow solutions (for the hemisphere) and experimental data (for the
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wigley hull, when available), showing a good qualitative behaviour on the rigid
modes simulated.

An extension of the boundary conditions for the case of a floating struc-
ture undergoing forced distortion motions was also derived and implemented,
accomplished by formulating the problem using the unified theory of hydroelas-
ticity. The approach used for the unified problem was then validated through
comparisons with 3D and 2D hydroelasticity predictions for symmetric and anti-
symmetric (bending) modes. For the symmetric modes the results a good quali-
tative agreement was obtained. For the case of anti-symmetric modes the hydro-
dynamic coefficients obtained showed a reasonable qualitative agreement, but the
numerical results were not as accurate as the ones obtained for symmetric modes.
In order to tackle this issues a RK2 scheme was also implemented and the results
were compared with the coefficients obtained using the Euler method. Although
RK2 allowed the simulation to march with larger time steps, the hydrodynamic
coefficients were basically unchanged. This suggests that the discrete domain
(mesh of the geometry) could still be too crude. Finer meshes would require a
parallel implementation of a linear system solver, which was left out of the scope
of the present work. Nonetheless, this is indeed an avenue for future research.

Issues related to problems of accuracy of the constant panel method solver
as well as possible issues related to the accuracy of the geometry representation
of the floating body have been outlined. In addition, issues have been identified
with reference to the size of the domain, in particular at relatively low frequencies
of oscillation. A brief analysis of influence of the free surface size suggests that
for the Wigley hull simulations on the lower frequency range, the mesh [-5, 5,
0]x[-5, 5, -1] has a suitable size, whereas, with [-4, 4, 0]x[-4, 4, -1] mesh, wave
reflection has been observed.

Despite of the drawbacks mentioned above the results obtained showed a
qualitative good/resonable agreement for the present purposes, i.e developing a
methodology to simulate three dimensional potential flow structure interactions
using an unstructured grid. Accordingly, in the next chapter, an extension of the
algorithms presented in this chapter, to include body non linear and non fully

linear effects, will be carried out.
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Chapter 7

Time Domain Non Linear

Analysis

This chapter discusses how the methodology developed in chapters 4 and 5 can
be extended to carry out potential flow simulations using the body non linear and
fully non linear formulations, still in the context of forced motions. As pointed
out earlier, the problem of free motions in waves is out of the scope of the present
work and the efforts will focus in trying to model the changes in the hydrodynamic
coefficients as a function of the amplitude of the forced oscillation.

Under the assumptions of potential flow theory, in time domain, there are
basically three sources of nonlinearities that can change the hydrodynamic co-
efficients of a floating structure. The first source of non linearity is caused by
the changes in the submerged geometry of the floating body. The second source
is caused by the time evolution of water line, i.e, as the body enters and exits
the water not only its submerged geometry changes, but also, the instantaneous
water line evolves in time. In this process, it turns out that not only changes in
hydrostatic forces are observed, but also hydrodynamic components, neglected by
the linearized theory, arise. The third source of non linearity is the non linear free
surface boundary conditions, so that on the free surface, as opposed to the lin-

ear case, the Bernoulli equation cannot be linearised anymore, thus a quadratic
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term, i.e, the velocity of the fluid, needs to be computed as well. In order to
tackle this these issues, a couple of changes in the algorithm that was used in
the last chapter are required. In particular, one of the most difficult numerical
challenges is that the domain now changes in time, therefore a new mesh and a
new influence matrix will have to be computed at each time step. In addition, in
the context of the fully non linear theory, the free surface position also changes
in time. Therefore a numerical scheme to deal with not only its movements but
also with the interpolation of the free surface potential needs to be implemented.

In section 7.1 the body non linear is approach is introduced. The numerical
techniques used to estimate the derivatives of the velocity potential are also de-
scribed and two algorithms are proposed to solve the body non linear problem.
Section 7.2 presents the results of the BNL analysis for the case of a sphere un-
dergoing forced oscillations in the heave mode, for a range amplitudes; the results
are compared to other numerical predictions. Moreover, the results of the Wigley
hull undergoing forced oscillations in heave are computed and compared against
available experimental data. Section 7.3.1 formulates the non linear free surface
bondary conditions by allowing motions only on the vertical direction.

The results of the non linear analysis are presented in section 7.3.2 and com-
pared to other numerical predictions available. Finally, section 7.4 concludes the

analysis developed in this chapter.

7.1 Body Non Linear

The body non linear approach aims to capture effects caused by the changes of
the wetted surface of the floating body. From a hydrodynamic perspective, in
order to gain some intuition on this behaviour, a parallel to hydrostatics can be
helpful, for instance: when a body undergoes small oscillations about its mean
free surface position, the variation of its immersed volume can be linearized with
respect to its draught (actually this depends on the geometry, but this holds true
for small curvatures along the longitudinal and transversal directions); in that
sense the hydrostatic force is written as linear function of the draught. As the

amplitude of the oscillation increases, this approximation no longer holds true
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and the immersed volume has to be calculated by integration. When it comes
to hydrodynamic coefficients the behaviour turns out to be similar, but the de-
pendence on the immersed volume is not as straightforward as in the hydrostatic
case because the pressure field is more complex.

In order to investigate this dependence, the model used in the last chapter
needs to be extended to account for the changes on the wetted surface of the float-
ing body. From an implementation perspective, this brings problems associated

with the model used here, namely:

1. Due to the amplitude of the body motions, the distance function of the

floating body now varies with time;

2. As the domain changes through time, a new mesh needs to be generated at
each time step so that the changes of the position of the floating body are

accounted for;

3. The evaluation of the derivative of the potential function with respect to
time becomes harder to evaluate (see He and Kashiwagi [2009] for instance)
, since now the potential scalar field is defined in a specific mesh at each

time step and its temporal derivative needs to be calculated;

4. As pointed out by Lin and Yue [1991] , even when the free surface boundary
conditions are linearized, the quadratic term on Bernoulli’s equation (i.e the
pressure) can have a considerable contribution to the hydrodynamic force on
the floating body. Therefore, the potential gradient needs to be estimated

as well.

Issues 1 and 2 are straightforward to deal with. Actually, given the correct
distance function at a given time step the mesh generator can be called and output
a new mesh. This new mesh then represents the idealization of the domain at
that given time step. However, in order to accomplish this, one still has to make
the signed distance function of the floating body, hence of the whole domain,
fd(t), time dependent. Recall that the signed distance function of a sphere, with

radius 7, centered at a point Z. = (x., Ye, 2¢), can be easily described analytically,
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on a grid point &, by:

desf(fa fc) = \/(ZL‘ - xc)z + (y - yc)2 + (2 - Zc)2 - T (71)

So, if the sphere undergoes an oscillatory motion in heave with amplitude A
and frequency w, then z.(t) = Asin(wt) gives the position of its center. Thus, the
time dependence of the distance function can be made by a direct substitution
on the equation above; more details on how to estimate and propagate signed

distance functions in time can be found in the next chapter.

7.1.1 Estimation of the potential time derivative

The estimation of the time derivative of the potential, in the body non linear (and
fully non linear) framework, is much more involved than in the linear case. Under
the assumptions of linear theory the geometry of the domain does not change,
therefore the same mesh can be used every time step. This implies that the total
time derivative is equal to partial derivative of the potential at each point (i.e
the grid has zero velocity, so the convection terms vanishes). On the other hand,
when the submerged geometry of the floating body is changing in time a different
approach is needed.

There are two avenues to tackle this problem. The first one, is to adopt a
grid tracking scheme, where the nodes on the floating body are tracked at every
time step. Since the position of nodes are known in subsequent time steps their
velocities can be calculated. This way, the material derivative of the potential

can be approximated using a finite difference scheme and, since the velocity of

the nodes of the floating body, V,, is also known, % can be estimated as Lin and
Yue [1991]:
9¢ _ D¢
=" _V .V, 7.2
where % is evaluated by an upwind scheme, between t=t and t=t-dt, i.e:

Do _ ¢z, y,2,t) — ¢(x,y, 2, t — dt)
Dt dt ’

(7.3)

114



and Vj, is the grid velocity.

Since the meshes t=t and t=t-dt are not the same, the potential needs to be
interpolated at the points of time t=t, but at the instant t=t-dt. In order to
accomplish this, at every time step, a radial basis function representation of the

potential is found, as follows:

o(z,y, z,t) Z bif(\(x —x)2+ (y — )2 — (2 — 2)2) + bo, (7.4)

where a solution of the linear system will lead to the values of the coefficients bs,
see proposition 7.1.2 for case where A = 0. In equation 7.2, note that if the grid
velocity equals the floating body velocity, the fully Lagrangian particle tracking
scheme is recovered.

Once the rbf representations are available, the runtime of encoding equation
7.2 is proportional to the number of nodes on the floating body, so it is com-
putationally efficient (linear run time). In addition, according to Yan [2010] a
reasonable estimation of the pressure field for problems with zero or small am-
plitude body motions can be attained. On the other hand, issues related to non
physical oscillations when the body discretization is modified have also been re-
ported by ( Battistin and Iafrati [2003] and Wu and Eatock Taylor [1996]). In
fact, the results obtained by the body non linear approach suggest that these non
physical oscillations are associated with interpolation innacuracies. This happens
because as the domain is remeshed the points on the new mesh are not same as
the ones on the old mesh, so if the interpolation has a lower accuracy it induces
spurious oscillations.

Alternatively, the boundary value problem can be solved directly for 22, in

8t g
theory avoiding the instabilities inherent from the finite difference scheme. This
can be achived by taking partial derivatives with respect to time of equation 4.10,

1.e:

(VS(F;,t) - 7 - v
(@) i (3, 1) Z/ G (i, 4;) ¢(th J n)dEj—;/Ej ¢ (95)VG(T3, y5)-ndE;.
(7.5)
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In this second BVP, equation 7.5 is solved for ¢; on the floating body and for

02
oton

This way, on the free surface, the Dirichlet boundary condition is prescribed

(the normal acceleration) on the free surface.

on ¢;, which is actually the dynamic boundary condition of the free surface. In

the context of body non linear simulations it is written simply as:

o¢
— = —gz. 7.6
5 = Y (7.6)
The Neumann boundary condition imposed on the floating body is the time
derivative of the impervious boundary condition, i.e %' For a rigid body with

no heel angle, it can shown (Wu and Eatock Taylor [1996], Battistin and lafrati

[2003]) that it is given by :
0?¢
aton

where 775 is normal vector of the floating body, dg its acceleration and vp its

=il dp —iip - (U5 - V)V, (7.7)

velocity.

Under this framework, it is worth pointing out the dependence of the first
and second BVPs. On the first one the potential on the floating body ¢ is found.
Once ¢ is known its spatial gradient V¢ can be calculated at the corresponding
time step to enter the last term in equation 7.7. Actually, the terms in equation
7.7 can be difficult to evaluate, specially in the context of free floating bodies
when the body acceleration dg is not known a priori, but instead depends on
the pressure field itself, in this situation, an iterative scheme is needed. Further-
more, under free motions, the velocity potential is more complex since it now has
also components corresponding to the diffraction problem, making its estimation
numerically daunting.

On the other hand, in the context of forced oscillations problems both @ and
Up are known a priori, making equation 7.7 more straightforward to apply.

More concretely, when we are concerned with forced oscillations in the heave
mode, 0, = (0,0, Awcos(wt)) and @, = (0,0, —Aw?sin(wt)). Furthermore, it can

be shown (see Appendix A Numerical Techniques ), that for the case of heave
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forced motions equation 7.7 reduces to:

(7.8)

vg being the velocity on the vertical direction, i.e vy = Awcos(wt)).

The major drawback of this method is that instead of solving one boundary
value problem, two boundary value problems need to be solved so that the solution
of the first is the boundary condition for the second one (i.e V% term in equation
7.8). At this point it is important to point out that before estimating Vg—f, one
needs to estimate the spatial derivatives of the velocity potential, this problem is

tackled in the next section.

7.1.2 Estimation of the Potential Spatial Derivatives

From what was presented in the last section, the question of how to calculate

9¢
Yt

addressed. In fact, in the context of constant panel methods even the estimation

when the value of ¢ is known only on the body surface still needs to be

of % is not straightfoward. Since the potential is calculated at the element
centers and assumed to be constant over them, it is not continuous (therefore
not differentiable) from element to element (or panel to panel), therefore it is not
possible to estimate % directly.

One option is to treat the body surface on the element (panel) level, work out
the derivatives on the local coordinates and map them back to the global coor-
dinate system. In order to achieve this, higher order boundary element methods
have been developed and the so called double node boundary conditions have
also been introduced to remove the singularity on the water line (intersection of
Dirichlet and Neumann surfaces) Liu et al. [2001]. Under this framework the
spatial derivatives are calculated on the element basis and then mapped back to
the global coordinate system Xu [1992].

In this work, another path, novel to the best of our knowledge in the context of
hydrodynamic simulations, is pursued. The motivation to introduce this method
comes from the problem of interpolating scatter data, which is a useful tool in the

context of unstructured grids. However, one seeks here not only interpolation but
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to impose the conditions in order to obtain a good approximation, in the sense
that it captures the "essence” or "learns” ! the function been modeled, even in
the presence of noise or inaccuracies (say from the CPM for instance). In this

context a couple of properties are important, namely:

1. the interpolation needs to ”generalize well” (in a sense that if the test error
is small then the generalization error will also be small Vapnik [2000]) for
points other than the ones for which the interpolator was fit (say, training
data, features or examples) ; otherwise once the grid is remeshed and the
centers of the new triangles are in different positions the interpolation error
can become high. As it will be seen in the next section, this was precisely
the main reason in the body non linear simulations for the spurious picks

in the hydrodynamic force of the heaving sphere.

2. Since the spatial derivatives are sought, the interpolator needs to be differ-

entiable at least up to second order.

3. Once a global approximation is being pursed, it is important to have some

guarantee about its ability approximate complex functions.

Due its suitability on scatter data sets, radial basis function were chosen as
functions approximators in the present context. They are used to obtain repre-
sentations for the velocity potential on the floating body and on the free surface,
as well as for the free surface elevation when needed. Moreover, radial basis
function are differentiable and can be used to calculate the spatial derivatives, in
fact, the problem of solving a partial differential equation can be formulated in a
meshless manner using radial basis functions Buhmann [2004]. Furthermore, the
universal approximation theorem for radial basis functions networks from Park

and Sandberg [1991] states the following:

'The idea of capturing the essence of the model is being used here in the sense of statis-
tical learning theory, i.e small generalization error. Intuitively, in the present context, small
generalization error means that in a neighborhood of point where the interpolation was fit the
difference betwwen the true value and the prediction is kept small (i.e there are no spurious
oscillations)
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Theorem 7.1.1 Universal Approximation Theorem for Radial Basis Functions
Networks Park and Sandberg [1991]: Let f(z) : R™ — R be an integrable bounded

continous function and assume that

f(z) #0. (7.9)

R”

Then for any continuous function g(z), € > 0 and a > 0 there is an RBF Network

with N neurons a set of centers C¥,, and a common width o > 0

{L‘—Ci

o

glw) =D wif(—=) (7.10)

such that

-1

/ < (g(x) — g(2))?dx < e =O(N=)

Theorem 7.1.1 implies that the rate of an approximation of an RBF network
is O(N 5%) For instance if one wants to approximate the free surface elevation,
((z,y,t) at a fixed time instant, on a region where ||Z|| < a, then n = 2 (two
dimensions), with a precision ¢ = 1073, the number of RBF centers is of the order
of 10%. Moreover, if one wants to approximate the potential the potential, then
n = 3, and the number of centers required, for the same precision grows by a
factor of 1.5, i.e 10°. Hence, the number of centers required for the rbf network
to generalize well is clearly not feasible for the present purposes. In order to
try to overcome this difficult the idea of a regularized rbf network regression will
be explored with the hope that one can achieve generalization with less training
data. Actually the results for the free surface elevation, presented in the next
section, confirm the fact that the regularization term allows for the rbf network
to generalize better in points that are not the same as the rbf centers, C/s.

More generally, the problem of finding a function approximator (or a hypoth-
esis) can be recast as supervised learning problem, as follows: given a set of input

vectors (or features) Ty, Ts,.., T, in R? (d=2 or 3 for the present purposes) and
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a set of scalar labels yi, 42 ,.., ¥ one searches for a map h(Z: R — R) that is
”close” to y for any given ¥ and y. Since the radial basis functions representations

were chosen the approximator h(Z) is parameterized by weights w;, i.e h,(Z), and

is given by:
ha(@) = Y wif (1|17 = &l|) + wo, (7.11)
i=1
where [|.|| refers to the Euclidian metric and f is the radial basis function centered
at fz

There are several possible choices for f. For instance, denoting the Euclidian
distance by r typical choices of radial basis function, parametrized by o, include
Buhmann [2004]:

e Gaussian: f = exp(—;—z)y
e Mutiquadratic: f = vo? + 12,

e Inverse multiquadratic: f = \/al’lﬁ

Motivated by the results presented in Chinchapatnam [2006], a multiquadratic
rbf was selected.

Once the radial basis function f is chosen and both the features, Z;, and scalar
labels y; are given, the parameters of rbf, w; need to be found. If the idea is to
set an rbf interpolator, one could impose on equation 7.11, that h,(z}) = y;,
for all j=1 to m. This procedure will yield a linear system of equations, whose
influence matrix is A(4, j) = f(||Z; — Z4||), which is solved for the unknowns w;.
This scheme ensures that the interpolation is exact on the Z; points. However,
the solution can present spurious oscillations on the vicinities of the points 7;
(unless there is enough centers available so that theorem 7.1.1 can be applied).
In other words, it can be easily to ”memorize” the inputs Z; leading to overfitting
and possible inaccuracies, specially when dealing with noisy observations.

In order to make the interpolator more robust or, to put it in another way;,
make its generalization error smaller, a regularization is introduced in the radial
basis function interpolator. More specifically, the regularization is imposed on

the Iy norm (i.e the sum of squares of the vector components), but other norms,
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like 1; (i.e the absolute value) are also possible Murphy [2012]. In this work this
carried out by seeking wx* that minimize the regularized mean square deviation
between h,,(z;) and y;, that is to say:

m

1 A
wx = argmin§ Z(hw(fl) —u)® + §Hw2H (7.12)

w i=1
Equation 7.12 can be recast as a quadratic optimization problem where wx,

its solution, are given by a simple closed form expression. A simple way to do

this is to write the objective function, Fy;, in a vector form, as follows:

1

A
Foy; = §(Aw — )" (Aw —y) + EwTw. (7.13)

Therefore, the problem of finding wx, is equivalent to minimize equation 7.13.
Since it is a convex function, all that is needed is to calculate the gradient of Foy;

with respect to the vector w, V,,Fopj, and set it to zero.

Proposition 7.1.2 Let Fop; be a convex function given by equation 7.13, then

the vector wx that minimizes Foy; is given by:

wx = (ATA+ N1 ATy, (7.14)

Proof Due to the convexity property, to find wx, it suffices to calculate V., Fop;

and set it to zero, this yields:

1
VLo = §Vw(wTATAw —yTAw —wT ATy + yTy + 2w’ w)
1
= 5(2ATAw — 24Ty + 2)w)

= (AT Aw — ATy + Mw)

121



So, setting V,,Fop; =0 and solving for w, yields:
wx = (ATA+ X)) ATy, |

Moreover, from a probabilistic perspective, equation 7.14 has an interesting
Bayesian interpretation. It corresponds to the maximum a posteriori (MAP) es-
timation Bishop [2007], where instead of finding w by maximizing the likehood
probability function, w is found as the vector that maximizes the posterior prob-
ability density function.

Once the coefficients of the radial basis functions are found, it is straightfoward

to calculate its spatial derivates. Specifically, let & = (x,y, z), then one can write:

T lel)
)

l

T H:U—SEZH)

?

Z
2

in particular, chosing f as a multiquadratic function yields the following:

(7.16)

This way the spatial derivatives can be estimated, both with the aid of the ra-
dial basis function and their respective coefficients given by equation 7.14. More-
over, with the aid of the rbf approximation some innacuracies and possibly noise
of the constant panel method can be reduced, hopefully making it applicable to

problems where only higher order methods have been employed. From a learning
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theory perspective one can interpret the coupling between rbf representations and
the constant panel method as solution reconstruction problem, whereby the CPM
provides labels that are then used to build the solution by the rbf approxima-
tor; hence, the method is in way a hybrid numerical tool somewhere in between

meshfree methods and Eulerian based solvers.

7.1.3 Body Non Linear Model

In the last two sections, it was highlighted that the move from linear time domain
analysis to body non linear analysis, requires spatial and time derivatives of
the potential to be evaluated. In order to estimate the time derivatives two
approaches were proposed: one based on equation 7.2, i.e a finite difference scheme
and a second approach is based on the solution of a second boundary value
problem. The spatial derivatives are estimated with the aid of a regularized
radial basis function representation according to equations 7.15, 7.15 and 7.16.
Once spatial derivatives of the velocity potential are estimated, the contribution
of the square of the velocity gradient can be accounted for in Bernoulli’s equation,
i.e:

p= %(f + V2. (7.17)

The force contribution of V¢? is typically a second order harmonic contribu-
tion to the time series of hydrodynamic force. The results of this contribution
are shown in the next section.

Armed with these new tools the linear time domain algorithm can be extended
to the body non linear case. In fact, the structure of the algorithm used to
simulate the body non linear problem is similar to the one presented in the last
chapter, i.e Algorithm 3 . The main differences are related to the changes of the
influence matrix of the boundary value problem as time is evolved and with the
estimations of the spatial and time derivatives of the potential function. In what
follows, both Body Non Linear algorithms are going to be presented and their
differences highlighted.

The Body Non Linear Algorithm based on the finite difference approximation
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for the potential time derivative, equation 7.2, is summarized in Algorithm 5.

Algorithm 5 Finite Difference Body Non Linear

1: procedure MAIN( )

2 while ¢t < T do

3 [p,t|=CreateMesh(fd(t),fh,h0); > Create a mesh of the domain

4: [zrs, Yrs, B, Y, z5):=FindBoundaryNodes(p,t);

5: Ors:=Pi(Trs,yrs,t) > Set BC Value on the of the FS triangles

6 Vo -iig:=9(t)p-np > Set BC Value on the Floating Body

7 Vo-ng:=0 > Set BC Value on other Neumann Boundaries

8 (65; V- Tips] = [Grs; Gnp) [V - 1ig; rs] > Solve the BVP at
ZFS — 0

9: Vo= (Vo -t)t,+ (Vo -iy)ily, > Compose V¢ on the body surface

10: p = %—f + Vf > Equation 7.2 is used for %

11: Fi=—p f@B(t) prip(t)dS > Calculate the force on B(t)

12: Zrs = Zps + (% — vzpg)dt > Update the FS elevation

13: Ors = Ops + (—2rpsg — Vopg)dt > Update the F'S potential

14: t:=t+dt

15: end while
16: end procedure

Comparing Algorithms 3 and 5, note that the lines 2 and 3 of Algorithm 3
have come into the while loop because the domain is meshed every time step.
Furthermore the integral of the force at line 9 of Algorithm 5 is now evaluated at
the instantanous body surface, dB(t) instead of the mean body surface B, and
the pressure now takes into account the full form of Bernoulli’'s equation. The
BVP is still solved on the mean free surface, which is the essence of the Body
Non Linear approach.

Different from Algorithm 5, Algorithm 6 evaluate the time derivative of the
potential exactly. As mentioned before, this is accomplished by solving a second
boundary value problem (line 12). It is worth pointing out that the influence
matrix of the first and second boundary value problems is the same, and what

changes in fact are only the boundary conditions.
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Algorithm 6 ¢; Exact Body Non Linear

1: procedure MAIN( )

2 while ¢t < T do

3 [p,t]:=CreateMesh(fd(t),th,h0); > Create a mesh of the domain
4: [Trs,Yrs, B, Y, z5):=FindBoundaryNodes(p,t);
5: Ors:=Pi(xps,yrs,t) > Set 1st BC Value on the of the FS triangles
6 Vo -iig:=9(t)p-np > Set 1st BC Value on the Floating Body
7 Voé-1ig:=0 > Set 1st BC Value on other Neumann Boundaries
8 [(ﬁg; qu . ﬁps] = [GFS; GHB]_l[V¢ . ﬁB; QZ5F5] > Solve the BVP at

ZFS = 0
9: %FS ‘= —2Zpsg > Set BC Value on the FS for the 2ond BVP
10: aa:_asz ‘=npg-dg — V3Npg - V% > Set BC on Body for the 2ond BVP
11: g;‘fl =0 > Set BC on other Neumann Boundaries
12: (99, 90 = [Grs: Gnp) N[22 ;% ] b Solve the 2ond BVP at
ZFS — 0

13: Vo= (Voé-tp)ty, + (Vo -iiy)ii, > Compose V¢ on the body surface
14: p = % + VT& > 2ond BVP is solved for %
15: F=—p f@B(t) prip(t)dS > Calculate the force on B(t)
16: Zrs = Zps + (% — vzpg)dt > Update the FS elevation
17: Ors = Ops + (—2rpsg — Vopg)dt > Update the F'S potential
18: t=t+dt

19: end while
20: end procedure
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7.2 Results of the Body Non Linear Analysis

7.2.1 Forced oscillations of a Sphere

In this section the body non linear problem of a sphere undergoing forced mo-
tions in the heave mode will be considered. As it was highlighted in the previous
section, the key point in this simulation lies on the estimation of the time deriva-
tive of the potential function around the floating body; for this purpose, two
algorithms were presented, namely: Algorithm 5 approximates %—‘f by an up wind
scheme, whereas Algorithm 6 solves for % exactly. The approximation of the
spatial gradient of ¢ is done using the radial basis functions approach described
in the previous section.

More specifically, in either the body non linear or non linear analysis, new
terms arise when the time series of the hydrodynamic force is decomposed in the
frequency domain. This means that by performing a Fourier decomposition of the
hydrodynamic time series not only component proportional to the first harmonic
are relevant (say, frequency of oscillation), but also components proportional to
higher order harmonics, as well as a mean term, should be taken into account
Lin and Yue [1991]. In the context of forced oscillatory motions in the heave
mode, A(t) = Asin(wt), the hydrodynamic force can be decomposed, by means

of a Fourier decomposition, as follows:

. 1 t+T/2
=7 [ R (7.18)
T Ji—7)
2 t+T/2
Ay = 2 / Fy(t)sin(wt)dt: (7.19)
T Ji—1)2
2 t+T/2
By — = / Fi(t)cos(wt)dt: (7.20)
T Ji—r)s
9 [tT/2
AY =2 / Fy(t)sin(2wt)dt: (7.21)
T Ji—r)s
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o 2 t+T/2
B3y = —/ Fy(t)cos(2wt)dt; (7.22)
t=T/2

where Fj,(t) is the time series of the hydrodynamic force in the heave mode.
From equations 7.19 and 7.20, the norm of first harmonic, fl is calculated as
| fl | = \/ (As3)? + (Bs3)?. The norm of the second harmonic, fg, is calculated in

the same fashion from the values of Ag? and Bé?.

In the context of the BNL simulations a mesh is created each time step.
The mesh topology, and the size functions used are described in figure 7.1. The
damping zone, in this simulation, is kept circular and its dimesion is a strip of
length 1.0 (i.e in equation 4.16, rp = 3.0 and r;, = 4.0).

Figure 7.1: Mesh topology used on the BNL simulations: on average a total of
8926 triangles of which 300 are on the floating body. The distance function is
the difference of the cylinder and sphere, the relative size distribution is given by:

fn=14+5/x2+y?+ 22 and hy = 0.04.

In figure 7.2, the hydrodynamics term obtained from the Fourier decompo-
sition of the hydrodynamic force time series are plotted as a function of the

amplitude of oscillation in heave. These harmonics are non dimensionalised as
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follows:

fo

fom s (723
Al
|/l

fy = e (7.25)

In addition in figure 7.2, an analysis of the effect of different terms in pressure
evaluation was carried out. The blue dot line is the pressure field resulting only
from O¢;, so that V¢? is considered to be negligible. The red line evaluates
V¢ using only the tangential velocity components to the floating body; finally
the green line calculate V¢ by combining both tangential and normal velocities
components (i.e the Neumann data prescribed as a boundary condition on the
floating body V¢ - i is combined with the tangential derivate of ¢, calculated
using the rbf representation, i.e equations 7.16 ). Interestingly, the effect of the
V¢? term is more pronounced on the evaluation of fy and | f]. The results suggest
that the magnitude of the normal gradient component is of great importance in
comparison with the tangential potential component, since it changes the values
of both fy and |f;] when it is accounted for. In fact, compared to the results
obtained by Lin and Yue [1991], there is some indication that the value of f
is being overestimated by time the present simulation !. That said, there is
also evidence that, the tangential gradient has not a considerable contribution
to the pressure field, once its addition does not change significantly the values
of fo and |fy| across the amplitudes range. In addition, when comparing the
harmonics calculated by algorithm 5 (FD BNL) against the body non linear
results from Lin and Yue [1991], it can be seen that the trends are qualitatively
in line, but algorithm 5 has a tendency to over/underestimate the harmonics.

More concretely, looking at the components of |fi| in phase with velocity and

!Since the sphere is undergoing forced oscillations, the normal velocity is given by the
impervious boundary condition, which is exact. However, the values of f; are consistently
below the ones obtained by Lin and Yue [1991].

128



acceleration (damping and added mass respectively), one can see from figure 7.4,
that the values of the the BNL case, even for small amplitudes of oscillations, are
far from the linear prediction when it comes to the added mass coefficients. On
the other hand, the agreement for damping is reasonably good, as compared to the
QBEM results from Yan [2010]. The exact reason for this particular behaviour is
something that needs further investigation as it could be linked to the accuracy of
the approximation of the time derivative of the potential by the finite difference

scheme of equation 7.3.
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Figure 7.2: Harmonics obtained from a Fourier decomposition of the force time
series using the BNL approach described in Algorithm 5 .

In order to investigate this further, algorithm 6 (¢; Exact BNL) is used to
solve the same forced oscillation problem. A comparison of the force time series
generated from ¢; Exact BNL and FDBNL are plotted in figure 7.5 for the am-
plitudes of oscillations A = 0.30R and A = 0.25R. Note how the results from
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FDBNL overshoots when compared to ¢; and this is more pronounced on the
troughs, which correspond to the phase where more than half of the sphere is
submerged. Coming to the harmonics extracted from the ¢, Exact BNL (figure
7.3), the quantitative agreement is more in line as compared to the results of Lin
and Yue [1991]. Specifically, the trend for |f| is in line, although its value decay
faster with the amplitude than the values obtained by Lin and Yue [1991]. This
can be seen in more detail in figure 7.4, which shows that the step decline of | fi]
is linked to the damping coefficient and the agreement of added mass coefficient
is reasonably good, except for the higher amplitude, where more investigations
are needed. In fact, the agreement of added mass has been better compared to
the linear simulations. It is also interesting to highlight that there is no jump
of the hydrodynamic coefficients in smaller amplitude range, which is actually
expected and suggests a reasonable behaviour of algorithm 6. In addition, there
is also tendency in overestimating the value of |f;| as compared to Lin and Yue
[1991].

That said, turning back to figure 7.5, it can be seen that the there are some
spurious high frequency oscillations on both force time series, but they are more
pronounced on the red line (i.e ¢; Exact BNL) and have a tendency to increase as
with the amplitude. In particular, these oscillations are more pronounced when
the sphere is on its way down whereas the flow speed on the free surface is still
on its way up. This effect turns out to be related with the jagged free surface
profile that is created by inaccurate normal velocity calculation of the constant
panel method.

What happens is that on the ¢, Exact BNL approach, the free surface elevation
is the boundary condition applied on the free surface (the time derivative of the
potential on the free surface in this context is —g * z). Once the boundary value
problem is solved, this spurrious fluctuations are then being propagated to d¢ /0t
on the body surface. Here, the introduction of the regularization parameter on
the rbf approximation (A) plays a key role, since it allows for a more accurate
approximation of the free surface position. This effect, although between different
time instants, can be seen in figure 7.8 where the jagged profile of the free surface
can be seen on the left hand side part of the figure and the resulting free surface

approximation using (A = 0.1) is shown on the right hand side.
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Figure 7.3: Harmonics obtained from a Fourier decomposition of the force time
series using the BNL approach described in Algorithm 6 .
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The effect of the regularization term also influences the hydrodynamic coeffi-
cients. Figure 7.3, compares the harmonics obtained by the ¢; Exact BNL, with
and without regularization. The results suggest improvements on the estimation
| f2|, as compared to Lin and Yue [1991]. However, the agreement for |fy| is worse
in the presence of the regularization term. The precise effect that is causing this
issue is something that needs future investigations. The agreement for the first
harmonic, |f;], is reasonable, but as the amplitude increases some deterioration
of the accuracy is observed. Looking at the time force series of the ¢, Exact BNL,
with A = 0.1, i.e figure 7.7, the force time series for A = 0.375R suggests that the
effects of the quadratic pressure term are starting to cancel out the component
of the potential derivative. This could be either linked to a inaccuracies in the
estimation of the potential gradient around the body or with inaccuracies associ-
ated with the body boundary condition for the second boundary value problem.
The evidence points to the latter, since the agreement for the second harmonic,
for the case of A = 0.375R, is in line with the results of Lin and Yue [1991]. This
is also a subject that needs further exploitation.

Looking at the added mass and damping coefficients, the ¢; Exact BNL, with
A = 0.1, produces an overall better agreement, specifically on the prediction
of the damping coefficient. These results, together with a comparison of other

numerical predictions for the same problem are shown in figure 7.4.

7.2.2 Forced oscillations of the Wigley hull

Encouraged by the results obtained for the sphere undergoing forced motions in
the heave mode, Algorithm 6 is used in this section to tackle the problem of a
Wigley hull undergoing forced oscillations in the heave mode. Due to numerical
issues of generating a signed distance function for the Wigley hull, the gmsh
(Geuzaine and Remacle [2009]) library was linked against the BEM solver, more
details of the implementation as well as on the numerical issues that were faced
can be found in the next chapter.

The dimensions of the Wigley hull are the same as in chapter 5 (table 6.1). The
initial domain is also similar to the one used in chapter 5, i.e a box like domain,

extended on the free surface, [-5 -5 0] x [5 5 -1] units, in order to mitigate issues
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Figure 7.4: Comparison of the components of |f;| using the two body non lin-
ear algorithms, Lin and Yue [1991] and Yan [2010]. ®; Exact is obtained from
algorithm 6 whreas FD BNL is obtained from algorithm 5.
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Figure 7.5: Comparison of the force time series between FD BNL and and &,
Exact for amplitudes A=0.25 R and A=0.30 R.

related to wave reflexion.

The numerical analysis performed consists of two amplitudes A = 0.0537" and
A = 0.27T and three frequencies, w = 2.49, 3.45 and 4.41. For the lower ampli-
tude a single mesh, named mesh 1 (figure 7.9), was used for all the frequencies.
This case can be seen as sanity check of algorithm 6, since, for small amplitudes,
one would actually expects the body non linear solution to be reduced to the
linear solution.

The higher amplitude case, i.e A = 0.277T, turned out to be more delicate from
a numerical perspective. For this numerical analysis, four meshes, mesh 1, mesh
2, mesh 3 and mesh 4 were used. These meshes are shown in figures 7.9, 7.10,
7.11 and 7.12 respectively. In addition, the comparison between the still water
displacements of these meshes and the exact value of the model is essentially the
same as the one presented in table 6.2.

For the lower frequency, w = 2.49, Meshes 1 and 2 were used. Mesh 2 was
obtained by halving the edge size of the triangles on the surface of the Wigley

hull. The edge size of the elements on the walls remained the same while the
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Figure 7.6: Hydrodynamic force time series obtained from Algorithm 6 . In blue
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Figure 7.7: Hydrodynamic force time series obtained from Algorithm 6 .
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Figure 7.8: The left hand side shows the free surface profile when A = 0 whereas
the right hand side shows the free surface profile for A = 0.1.

edge size of the elements between the Wigley hull and the walls were linearly
interpolated. Thus, the refinement is locally placed on the Wigley hull and on
the free surface in its vicinity .

The force time series for @ = 2.49 (or w = 7.81 rad/s) are shown in figure
7.13 using both meshes 1 and 2 and the respective value of the hydrodynamic
coefficients are shown in table 7.1 . In this context, both force time series are
close to each other, suggesting that for this frequency the method has converged
(or is very close to converge). Note, however, that there is a tendency for the
force time series simulated by mesh 2 to peak before the one generated by mesh
1. In addition, mesh 1 has also a snall tendency to overestimate the quadratic
component.

For w = 3.45, three meshes were used, namely mesh 1, mesh 2 and mesh 3. For
meshes 1 and 2, it can be seen in figure 7.14 that the issues are more pronounced

The force time series peak predicted by mesh 1 is delayed in comparison to
the peak predicted by mesh 2. In addition, the difference between the quadratic
terms is also pronounced, close to a factor of 2. The free surface profile brings

more insight on why a more refined mesh is needed for the case of @ = 3.45.

In fact, this flexibility of the unstructured grid reduces the consequences of the so called
curse of dimensionality, since, on structured grids, halving the edge size in two dimensions
would result in a mesh four times larger.
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Figure 7.9: Mesh topology 1 (Mesh 1) used for the Wigley Hull forced oscillations
in heave. On average the mesh has a total of 4300 triangles of which 300 are on

the floating body surface.
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Mesh topology 2 (Mesh 2) used for the Wigley Hull forced oscillat
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Figure 7.11: Mesh topology 3 (Mesh 3) used for the Wigley Hull forced oscillations
in heave when w = 3.45 . On average the mesh has a total of 10800 triangles, of
which 1000 are on the floating body surface.
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The profile for both frequencies are given in figure 7.19. Note that the higher
frequency induces a more pronounced gradient of the free surface elevation near
the Wigley hull, so, in order to model this more accurately, smaller edges would
be needed. So in order to check for convergence, mesh 2 is refined further. The
resulting mesh, mesh 3, is shown in figure 7.11.

Mesh 3 is created by adjusting the edges of the elements of mesh 2 by the
corresponding wave length of the higher frequency, i.e the ratio edge/\ ! is kept
constant on the vicinity of the Wigley hull. The damping zone and free surface
dimensions are also adjusted accordingly. More concretely, since A = zw%g, the
edge size of mesh 3, I3, is I3 = l5/1.7, say two times smaller for implementation
purposes. Note that the domain dimensions were scaled in the same fashion, mesh
2 domain size is [-5.0 -5.0 -1.0] x [5.0 5.0 0.0] , whereas mesh 3 domain size is
[-2.5-2.5-1.0] x [2.5 2.5 0.0]. The damping and undamped zone free surface sizes
were also rescaled in terms of wave lengths, kept at 1.8\ and 3.25\ respectively,
approximately same dimensions used on mesh 2. The results obtained by the
three meshes are presented in table 7.2 and compared to the experimental data.
As the refinement is carried out, there more improvement in going from mesh 1
to mesh 2 , than from mesh 2 to mesh 3. This suggests convergence has been
achieved.

In order to investigate the behaviour on the higher frequency, i.e @ = 4.41,
Mesh 4 was created using the same rational of mesh 3. Since the frequency is
higher, the wave lengths are shorter. Rescaling according to the corresponding
wavelength, the box domain was reduced to [-1.8 -1.8 0] x [1.8 1.8 -1] units and
the edge length on hull, Iy, was further refined, yielding I, = (2/3)l3. The free
surface damped /undamped zones were kept in the same size, with respect to the
wave length generated, i.e 1.8\ and 3.25)\ respectively. It is interesting to point
out that the simulation using mesh 3 leads to an overestimation of the quadratic
force contribution. As it can be seen in figure 7.18 the effect of refining from
mesh 3 to mesh 4 has an important effect on the behaviour of the hydrodynamic

force time series. The hydrodynamic coefficients obtained from figure 7.18 are

Unfortunately the notation is overloaded as A here denotes the wave length. In contrast,
A was also used to denote the rbf regularization parameter. These quantities are by no means
related, and the context shall make clear what \ refers to.
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shown in table 7.3. The set of results presented in tables 7.1, 7.2 and 7.3 is also
summarized in figure 7.17 .

Concerning the hydrodynamic coefficients in heave, the results obtained in
the present simulations, as well as the results of linear analysis performed in the
last chapter, are compared against the experimental data from Journée [1992] in
figure 7.20. For the lower amplitude (A = 0.0537"), the results from Algorithms
4 (Linear) and 6 (®; BNL), compare relatively well. In fact, the agreement of the
added mass is good, whereas for damping, ®; BNL, despite the good qualitative
agreement, shows a tendency to overestimate it, even for small amplitudes. For
the higher amplitude (A = 0.277) the agreement of ®; BNL against experimental
data is good on the lower frequency, but deteriorates as kA increases. The dete-
rioration is more pronounced in the damping coefficient as it increases with the
frequency of forced oscillation. For the added mass the effect of increasing the
amplitude of oscillation is less pronounced. This effect reduces the magnitude of
the added mass coefficients as a function of the amplitude of oscillation.

The deterioration on the predictions of the damping coefficients (as compared
to Linear analysis and experimental data) as kA increases is a point that clearly
needs further investigation. It can be linked to inaccuracies either on the rbf
approximation of V% or in the estimation of V¢? on the Wigley hull surface,
which alters the pressure field. In particular, the use of rbfs in the so called finite
difference mode can be an alternative approach Chinchapatnam [2006], since it
tries to approximate the derivatives of the function locally instead of seeking a
global approximator.

Moreover, on a overall basis, as the amplitude increases the experimental mea-
sures imply a slightly higher added mass in the lower and higher frequency range
with no appreciable change in the mid frequency range. The variations on the
damping coefficient implied by the experimental measures is similar to the added
mass behaviour on the lower and higher frequencies, but in the mid frequency
range the damping coefficient decreases with the amplitude of oscillation.

From a hydroelastic perspective, the behaviour of the coupling coefficients,
heave into to the first distortion mode (2-node) turns out be very similar to the
predictions for the heave hydrodynamic coefficients. Figure 7.15 shows the force

time series of heave into the first distortion mode, for two frequencies, w = 2.49
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Figure 7.13: Forces of the Wigley hull undergoing forced heave oscillations, w =
249, A = 0.27T and XA = 0.01. The total force and the force corresponding to
square of the gradient are shown for meshes 1 and 2.
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-V %2: mesh 2
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-V &%/2: mesh 3

Figure 7.14: Forces of the Wigley hull undergoing forced heave oscillations, w =
3.45, A = 0.27T and A = 0.01. The total force and the force corresponding to
square of the gradient are shown for meshes 1 and 2.
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(w=7.81 rad/s) and w = 3.45 (w = 10.81 rad/s), for meshes and 1 and 2. The
effects of refinement are the same as the ones metioned before, for the case of
heave into heave. Figure 7.16 compares the value of the cross coupled coefficients
obtained from the body non linear analysis to the ones obtained from the linear

analysis of chapter 6.

®=7.81rad/s

— — total force: mesh 1
-V &2 : mesh 1

®=10.81 rad/s

—— total force: mesh 2
-V @%/2 mesh 2

Figure 7.15: The left hand side shows the hydrodynamic force component of
heave into the first distortion mode (2 node) for the lower frequency whereas the
right hand side shows the hydrodynamic force for the higher frequency for meshes
1 and 2.

Table 7.1: Wigley Hull Hydrodynamic coefficients in heave calculated by Al-
gorithm 6, for @ = 2.49, compared against the experimental data obtained by
Journée [1992].

Mesh Agg 333
mesh 1 1.10 3.55
mesh 2 1.17 3.34

experiment 1.23 3.21

Another point worth pointing out is that the force time series obtained in this
section are less prone to numerical diffusion as compared to the sphere simulations

of the last section. As it will be seen in chapter 7, there are indications that,

146



O  Linear
TS A fixb o
+ -~ MARS- 20 sect 1F (2NN
0.81 A o @ BNL2=0.01 A o o
! A
= g
0.8 LR, SRR ¢}

8 * & * O +. A

0.6 2
~ A ~ + A ©
& i o 0.6 N
Q N

t +

0.4 ) A
A 0.4} A 4
+ + (D;X A @ A % A
toto4o4o4 D
0.2f 1
02} =
I
0 0
0 1 2 3 4 5 0 1 2 3 4 5
o (O]

Figure 7.16: Comparison of the cross coupled coefficients of the heave mode into
the 2-node distortion mode. The green triangles were obtained from frequency
domain analysis; the blue dots are the results calculated by algorithm 4 from
chapter 6; the red crosses are obtained from 2D strip theory and the black squares
were calculated by 6.

under some circumstances, the node displacement updates used by Persson [2005]
meshing algorithm can increase the numerical diffusion of the simulation. In this
sense, the meshing library from Geuzaine and Remacle [2009] seems to be less

prone to this sort of effect.

7.3 Fully Non Linear Analysis

The body non linear model can be extended to take into account the fully non lin-
ear nature of the free surface boundary conditions. This can be done by extending
algorithms 5 or 6, depending on the way the pressure is going to be evaulated
at the floating body. In order to achieve this, the formulation of the free surface
boundary condition needs to be taken into account exactly. Accordingly, the free
surface movement also needs to be taken into account, so that the boundary value
problem is solved on the exact free surface. In contrast, in the body non linear

analysis, the BVP is solved at the mean undisturbed free surface, i.e ¢ = 0.
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Figure 7.17: A comparison between the results presented in tables 7.1, 7.2 and

7.3 and the experimental measures of Journée [1992].
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Figure 7.18: Forces of the Wigley hull undergoing forced heave oscillations, w =
441, A = 0.27T and A = 0.01. The total force and the force corresponding to

square of the gradient are shown for meshes 3 and 4.
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Figure 7.19: Free surface profile of Wigley hull body non linear simulations: left
hand side @ = 3.45 and right hand side w = 2.49 .
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Figure 7.20: Comparison of heave hydrodynamic coefficients using Algorithms 4
(Linear), 6 (BNL) and experimental data, for a different ranges of frequencies
and amplitudes.
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Table 7.2: Wigley Hull Hydrodynamic coefficients in heave calculated by Al-
gorithm 6, for w = 3.45, compared against the experimental data obtained by
Journée [1992].

Mesh A33 333

mesh 1 0.57 3.88
mesh 2 0.81 3.56
mesh 3 0.78 3.50
experiment 1.00 2.84

Table 7.3: Wigley Hull Hydrodynamic coefficients in heave calculated by Al-
gorithm 6, for w = 4.41, compared against the experimental data obtained by
Journée [1992].

Mesh A33 ng

mesh 3 0.32 2.49
mesh 4 0.70 3.02
experiment 0.93 2.19

7.3.1 Free Surface Boundary Conditions

In order to account for nonlinear effects, the linear assumption on the free surface
boundary conditions need to be relaxed. This means that instead of using equa-
tions 4.14 and 4.15, equations 4.12 and 4.13 are going to be used. This brings
new numerical problems because, since equation 4.12 is written in Lagrangian
coordinates, it is implied that fluid particles are being followed along their mo-
tion. Moreover, the motion of the fluid particles change the fluid domain (i.e the
distance between collocation and field points change) so that a new mesh needs
to be constructed every time step in order to calculate the influence matrix and
solve the Eulerian phase. There are a couple of different formulations of the free
surface boundary conditions that can be explored to tackle this issue see for in-
stance Liu et al. [2001], Kara et al. [2007] and Yan [2010]. In the present work,
the free surface boundary conditions are modified from the fully Lagrangian de-
scription of the fluid flow to a pseudo Eulerian description, where the grid points
are allowed to move only on the vertical direction. The intuition that motivated

this idea is that a a good mesh with a flat free surface is still a good mesh after
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the points on free surface are mapped to their actual z = ((z,y) position '. The
derivation details are on the appendix 8.2, the final form of the kinematic free

surface boundary conditions can then be written as:

8 099C 990, D¢

— 7.26
5t Oxdxr  Oyoy 0z (7.26)
whereas the dynamic free surface conditions is given by:
do 09 9¢ 2
—_ - == = 2
9.0t + qu +gz=0. (7.27)

As in chapter 4 , the damping zone described by equation 4.16 is used so that
the radiation condition at infinity can be met on both dynamic and kinematic

boundary conditions, i.e:

8L 000C 060 _ 09

2
6t O0xdx  Oyody 0Oz Ve, (7.28)
dp 9 ¢ -
% - a—a + = ng + gz = V¢. (729)

Equations 7.28, 7.29 and 4.10 form the core of the nonlinear hydrodynamic
solver developed so far. In order to implement them numerically, account for
the changes in boundary domain and calculate the time derivatives of the fluid
potential on the surface of the floating body some numerical techiniques were
introduced. These numerical techniques, together with the algorithm that was

implemented are described in the next section.

7.3.2 Fully Non Linear Model

Once the boundary conditions of the free surface are formulated, algorithm 5
can be extended to perform non linear simulations. Besides the free surface
boundary condition, the mesh is now deformed on the vertical direction to take

into account the exact position of the free surface. Thus, the boundary value

IMore precisely this ”intuition” assumes that: 1- the free surface is single valued in x and
y; 2-the elevation is "reasonably” small in the z direction so that a triangle with vertices on the
plane z = 0, will still be a good triangle at z = {(z, y).

152



problem is solved at the exact free surface position. In addition, at this point,
there is no special treatment for the water line dynamics, i.e , it is assumed that
the rbf representation of the free surface generalizes well enough to extrapolate
the position of the water line given the position of the nodes in its vicinity. That

said, the finite difference non linear algorithm, FDNL, is shown below.

Algorithm 7 Finite Difference Non Linear

1: procedure MAIN( )

2 while ¢t <T do

3 [p,t|=CreateMesh(fd(t),th,h0); > Create a mesh of the domain

4: [zrs,Yrs, B, Y, 25):=FindBoundaryNodes(p,t);

5: Ors:=Pi(rrs,yrs,t) > Set BC Value on the of the FS triangles

6 Vo -iig:=19(t)p-Tip > Set BC Value on the Floating Body

7 Vo-iig:=0 > Set BC Value on other Neumann Boundaries

8 z2rs:=C(Trs, Yrs) > Move the free surface on the z direction.

9 (65; V- Tips] = [Grs; Gnp) [V - ip; rs] > Solve the BVP at
zrs = oo

10: Vo :=(Vo-ty)ty+ (Vo -iiy)i, > Compose V¢ on the body surface

11: p = % + VT& > Equation 7.2 is used for %

12: F=—p faB(t) prip(t)dS > Calculate the force on B(t)

13: G =G+ dt(—%% — g—ig—g + g—f —v() o Update the FS elevation

14: Gy 1= o1 + dt(32% — 1V ¢? — gz —v¢) > Update the FS potential

15: t:=t+dt

16: end while
17: end procedure

As compared to Algorithm 5, note that the changes are in line 8, where the
mesh is deformed and in lines 14 and 15, where the exact free surface boundary

conditions replace the linearized versions.

7.3.3 Analysis of the Rigid Body Results

In this section the analysis of the hydrodynamics coefficients presented in section
6.2 is revisited and extended to the purpose of non-linear analysis.
A natural question that arises when applying Fourier decomposition is how

many harmonics one should use to approximate ”well” the signal that is being de-
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composed. In addition, in the presence of noisy data ! , there is only an heuristic
framework (up to our knowledge) of investigating the significance of each har-
monic component. Thus, it is not entirely clear which harmonic component is
more likely to be noise or not. Lastly, although the problem at hand is in theory
stationary 2, the numerical results from the simulations turn out to present lo-
calized numerical diffusion effects, questioning the assumption of stationarity. In
addition, other problems of great interest from a hydrodynamic perspective (such
as water impact problems and transient phenomena) don’t share the stationary
property.

In order to overcome some of these issues, the Empirical Mode Decomposition
and the Hilbert Huang transform developed by Huang et al. [1998] is a valuable
tool. Furthermore, its filtering properties yield an empirical framework where
noisy components of the data can be filtered out Wu and Huang [2004]. In fact,
since Hilbert Huang transform generalizes the Fourier transform to non stationary
data. This new tool turns out to so powerful that even an alternative definition of
hydrodynamic coefficients (in the time-frequency-energy distribution as opposed
to the frequency-energy distribution from Fourier analysis) can be envisaged.
This is an embrionary idea that is very briefly discussed in the Appendix B.

As it will be seen in due course, the results of the non linear simulations have
a great deal of noise, so the properties of the EMD, as filter, become very handy.
Therefore, they are going to be used to filter the time series of the hydrodynamic
forces before performing the usual Fourier decomposition. Actually, there is no
harm in using the Hilbert Huang Transform, since it can seen as a generalization
of the Fourier decomposition Huang et al. [1998].

The filtering scheme employed to analyse the time series of the hydrodynamic
force is the same as the one proposed by Wu and Huang [2004]. The basic idea is
to decompose the the time series in its intrisic mode functions (IMFs, which are

defined in Appendix B) and then apply the empirical statistical test in order to

'Noise can come from variety of sources, the focus on this work is on noise generated from
numerical instabilities and inaccuracies associated with CPM.

2By definition stationary means that the properties of the signal do not change when they
are shifted in time. More precisely, a signal X; is strongly stationary if its cumulative prob-
ability function is invariant in time. Let F,(Xy ,Xi,,...,X:, ) be the cumulative probabil-
ity density function of X, then X; is stationary if, for all 7, F,(X¢, 17, Xtotry ooy Xt, +7) =
Fo(Xty, Xty ooy Xt,))-
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select which IMFs are different from white noise. The filtered time series is then
reconstructed as the sum of the relevant IMFs plus the residual term. This is
done for the three cases of the sphere undergoing forced motions in heave mode,
at a frequency corresponding to K R = 1, and amplitudes A equal to 0.04R, 0.25R
and 0.375R.

Figures 7.21 |, 7.25 and 7.28 show how the original time series is decomposed
into series of IMFs, C/s and a residual term R;. The IMFs are then compared to
white noise by plotting the logarithm of its energy density, log(E), against the
logarithm of its period, log(T"). For white noise this relation was investigated by
Wu and Huang [2004] and the the results therein, for 0.95 confidence level, are
summarized on the solid blue lines in figures 7.22, 7.26 and 7.29. Interestingly,
the IMF's that are the most relevant are usually the 4th,5th and 6th depending
on the time series. These IMFs are then used to reconstruct a filtered version
of the signal and compared against the original time series of the hydrodynamic
forces (figures 7.23 | 7.27 and 7.30. By doing so, it is clear that some higher
frequency components on the time series of the hydrodynamic force are removed,
these components don’t have a physical meaning wih high probability. In fact,
these non physical oscillations could be linked to the numerical innacuracies and
numerical diffusion of the CPM, i.e body discretization and the poor estimation
of the time derivative of the potential field (Yan [2010] and Battistin and Iafrati
[2003]).

Once the filtered time series of the hydrodynamic force is available, equations
7.23 to 7.20 can be applied and the components of interest, from hydrodynamic
perspective, can all be evaluated. Tables 7.4 and 7.5 compare, as function of the
amplitude of oscillations, these components, for both filtered and raw time series
of hydrodynamic force. The results obtained by Yan [2010] are shown in table
7.6.

The corresponding force time series of the two higher amplitudes (A = 0.25R
and A = 0.375R) tackled by algorithm 7 are shown in figures 7.27 and 7.30. In
these plots, both raw force and filtered versions are shown.

Figures 7.31 and 7.32 compare both added mass and damping coefficients
calculated by Algorithm 7 against the fully non linear simulations of Yan [2010]
and the body non linear results of Lin and Yue [1991]. At this point, it is worth
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Figure 7.21: Decomposition of the force time series into IMFs using the EMD
method for A = 0.04R. The top plot shows the original time series of the hydro-
dynamic force. C; to Cyg are the IMF's obtained from the decomposition and R,
is the residual term.
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Figure 7.22: IMFs Statistical Test for A = 0.04R: the blue line displays the 0.95
confidence interval threshold of white noise energy density log(E) as a function of
its period log(T). IMFs whose energy are above this line are keept in the filtering
process.
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Figure 7.23: Time series of the sphere undergoing heave oscillations with A =
0.04R and the filtered version of the series, i.e the sum of the relevant IMFs (in
this case 4, 5 and 6) from figure 7.21 plus the residual term.
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Table 7.4: Harmonics of the non filtered time series of hydrodynamic forces

A fo Il fo
R prgRA2 pgR2A prgRA2
Linear (analytical) 0.0 0.3298 0.0
Linear (calculated) —5.4-107% 0.3340 —3.95-107°
0.04 -0.0147 0.365 0.046
0.25 -0.1145 0.375 0.127
0.375 -0.0844 0.3899 0.126

Table 7.5: Harmonics of the filtered time series of hydrodynamic forces using
EMD.

A Jo fi 2
R prgRA2 pgR2A prgRA2
Linear (calculated) —5.4-107°% 0.3340 —3.95-107°
0.04 -0.137 0.366 0.079
0.25 -0.110 0.375 0.128
0.375 -0.117 0.3877 0.142

highlighting the resonable qualitative agreement of the harmonics, as compared
to the QBEM method of Yan [2010]. Theae resuts are showns in tables 7.4, 7.5
and 7.6 and are also summarized in figure 7.24. In fact, for the three harmonics
one can spot a jump in small amplitude range. This behaviour is actually linked
to the innacuracy of algorithm 7 when it comes to the estimation of the time
derivative of the velocity potential. That said, the qualitative behaviour of the
fo, fl and fg are resonable from a qualitative perspective.

Besides that, the agreement between the hydrodynamics coefficients is rather
poor. It is hard to identify an agreement in the qualitative behaviour of the hy-
drodynamic coefficients. There is a similar trend as the one observed in section
6.2 of overestimating the added mass coefficients. Furthermore, for A = 0.25R,
the algorithm 7 overshoots the added mass and underestimates the damping coef-
ficient, basically breaking the qualitative agreement between the lowest amplitude
A = 0.04R and the higher amplitude A = 0.375R. This issues are clearly related
to the low accuracy of the numerical simulations of the constant panel method. In
particular, an accurate solution of the Dirichlet problem, which yields the normal
velocity on the free surface in the present work, is an important building block

to depart and develop a more accurate BEM solver.
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Table 7.6: Results from Yan [2010], obtained using the quadratic boundary ele-
ment method.

A fo f1 fo

R prgRA? prgR2A  pmgRA?
0.125 -0.0864 0.3328 0.174
0.25 -0.0808 0.3338 0.179
0.30 -0.0789 0.3392 0.187
0.375 -0.0768 0.3449 0.193

In this context, the extension to fully non linear problems is a subject that
needs future investigations. In particular, based on the results obtained by Yan
[2010], the use of Higher Order Boundary Element Methods (HOBEM) and higher

order Galerkin BEM approaches are promising avenues of future research.

7.4 Conclusions

In this chapter, the hypothesis of linear theory were relaxed progressively. First,
the body non linear problem was addressed for the sphere and for the Wigley
hull undergoing forced oscillations in the heave mode. The results were com-
pared to other numerical techniques and experimental data when available. For
the sphere simulations, the results from the FDBNL algorithm suggests a reason-
able agreement for the estimation of the damping coefficient and overestimation
of the added mass coefficient, as compared to the body non linear results obtained
by Yan [2010]. The &, Exact BNL algorithm, in contrast, suggest a better agree-
ment for added mass coefficient and f,. The agreement obtained in the damping
coefficient is good, without taking into account the higher amplitude of oscillation
A = 0.375R. At this amplitude, there are issues that need further investigations.
These issues are probably linked with a poor estimation of the boundary condi-
tion of the second boundary value problem (i.e the normal derivative of the time
derivative of the velocity potential). This quantity is intimately associated with
mg, see appendix A, and its numerical estimation is usually cumbersome.

The body nonlinear results of the Wigley hull under heave forced oscillations

brought more insight on the behaviour of the &, Exact BNL algorithm. For a
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Figure 7.24: Comparison between harmonics, fo, f1 and fg, obtained from the un-
filtered/filtered time series, the results obtained by Yan [2010] and the analytical
values from Linear analysis.

low amplitude, the agreement is in line with the predictions made by the linear
algorithm. On the other hand, using a higher amplitude, A = 0.277", the results

showed considerable deterioration as the frequency is increased, as compared to
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Figure 7.25: Decomposition of the force time series into IMFs using the EMD
method for A = 0.25R. The top plot shows the original time series of the hydro-
dynamic force. C; to C7 are the IMF's obtained from the decomposition and Ry
is the residual term.
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Figure 7.26: IMFs Statistical Test for A = 0.25R: the blue line displays the 0.95
confidence interval threshold of white noise energy density log(FE) as a function of
its period log(T"). IMFs whose energy are above this line are keept in the filtering
process.
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Figure 7.27: Time series of the sphere undergoing heave oscillations with A =
0.25R and the filtered version of the series, i.e the sum of the relevant IMFs (in
this case 4 and 5) plus the residual term from figure 7.25 .
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Figure 7.28: Decomposition of the force time series into IMFs using the EMD
method for A = 0.375R. The top plot shows the original time series of the
hydrodynamic force. C; to C7 are the IMFs obtained from the decomposition

and R; is the residual term.

163



4t 4

-6

Figure 7.29: IMF's Statistical Test for A = 0.375R: the blue line displays the 0.95
confidence interval threshold of white noise energy density log(E) as a function of
its period log(T). IMFs whose energy are above this line are keept in the filtering
process.
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Figure 7.30: Time series of the sphere undergoing heave oscillations with A =
0.375R and the filtered version of the series, i.e the sum of the relevant IMFs (in
this case 4 and 5) plus the residual term.

both linear and experimental results. Yet, the general behaviour of body non
linear predictions, i.e lower added masses and higher damping coefficients as the
amplitude of oscillation increases, was observed. This raises an interesting point
regarding the applicability of the Body non Linear analysis, namely that it can
improve the results from linear theory only in a region where the wave steepness,
kA, is kept small.

On the fully non linear front, the results for sphere undergoing forced oscilla-
tions in heave achieved a reasonable agreement in terms of f; and fs, after the
time series was filtered using the EMD algorithm. However, a deeper analysis of
the components of f;, the added mass and damping coefficients, indicates that
more investigations are needed in this front. More specifically, the spurious modes
observed in the force time series, indicates that a more robust boundary element
solver (higher order boundary element methods, or HOBEM) could be beneficial

and improve the predictions made by the algorithm.
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Figure 7.31: Comparison of the added mass coefficients for the sphere under forced

oscillations motions , kR = 1, where the added mass is non dimensionalized as
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The main feature of the present work has focused on the modeling of the three
dimensional radiation problem in time domain using an unstructured mesh by
means of the constant direct Rankine panel method (or direct Boundary Element
Method) . In that context, algorithms have been proposed to solve the following
problems in time domain: (i) the linear radiation problem of a hemisphere under-
going forced heave and sway oscillations. (ii) The unified hydroelastic problem
of a Wigley hull undergoing forced rigid, symmetric and anti-symmetric bending
distortion motions. (iii) The body non linear problem of a sphere and Wigley
hull undergoing large amplitude of oscillations in the heave mode. (iv) The fully
nonlinear problem of a sphere undergoing forced oscillations in the heave mode.
In addition, the coupling between meshing libraries and hydrodynamic simula-
tions was also investigated. In this context, two algorithms were proposed in
order to estimate signed distance functions for the free surface evolution and for
ship like shapes. With these algorithms, the meshing scheme based on signed
distance functions could be linked against the BEM solver. However, for these
algorithms to be used in the context of the present MEL simulation a parallel
implementation is needed, otherwise the runtime is still an obstacle to perform
the required tests. This implementation was left out of the scope of the present
work. Alternatively, a simpler meshing library Geuzaine and Remacle [2009] was

linked against the MEL scheme and used to remesh the domain of the body non
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linear Wigley hull simulations. Both approaches, as well as their pros/cons were
discussed in chapter 5.

The results of the linear time domain analysis agree qualitatively well with
analytical predictions for the hemisphere, with available experimental data and
with other computational models for the Wigley hull for symmetrical distortion
modes. For the motion in the sway mode, the agreement achieved, compared to
other numerical methods, was resonable, but a deterioration in the accuracy has
been observed. This deterioration was again observed on the coupling of sway
into the first horizontal bending distortion mode (2-node).

In the body non linear analysis, two different numerical algorithms have been
proposed to evaluate the time derivative of the velocity potential: FDBNL and
®, Exact BNL. In addition, the difficulties associated with the estimation of the
spatial derivatives in the context of constant panel method solver (i.e a C°(Q)
method) were tackled by the introduction of radial basis function representations
for both potential and free surface elevations. More concretely, due to inaccura-
cies in the estimation of the normal velocity, the resulting free surface position
was not being estimated accurately enough for the purposes of the numerical
simulations. Remeshing combined with a high generalization error of the Radial
Basis Functions representation, were bringing even more inaccuracies to the free
surface position, resulting in spurious oscillations of the hydrodynamic force time
series. Two numerical methods were proposed to deal with these effects, increas-
ing the accuracy of CPM solver, i.e: the first method introduced a regularization
parameter on the RBF representations. From a statiscal perspective the regu-
larization parameter reduces the complexity of the hypothesis, in this case the
RBF’s coefficients, improving the generalization error of the RBF representation,
allowing for an accurate estimation of the ms term (see Appendix A Numerical
Techniques for more details). The second method uses the Ensemble Mode De-
composition (EMD) and its empirical results to represent the time series of the
force time series as a sum of intrisic mode functions (IMF’s) . Assuming the
spurious modes of oscillations of the hydrodynamic force time series are white
noise, the IMF’s with energy close to white noise are extracted from the hydro-
dynamic time series. The sum of the IMF’s that were not rejected corresponds

to the filtered hydrodynamic force. The results of the body non linear analysis
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compared the predictions from both FDBNL and ®; Exact BNL methods againist
other numerical predictions for the sphere with resonable agreement, with the &,
Exact BNL method resulting in better overall accuracy. Using the ®; Exact BNL
method, results for the Wigley hull, undergoing high amplitude forced motions
in the heave mode, show good agreement against experimental data on the lower
frequency range, but, a deterioration was observed for higher values of kKA. Re-
sults of the fully non linear simulations for the sphere, using the FDBNL method
and EMD decomposition technique, overestimate of the order of 10%, the hydro-
dynamic coefficients compared to other non linear methods. These comparisons
suggest that further research is required to improve the accuracy of this method.

One of the main objectives of the present work was to develop a methodology
in time domain capable of tackling problems of forced oscillations in either rigid
or flexible modes and problems related to the evolution of the free surface in
time, using either the linear (linear and body non linear simulations) and the non
linear free surface boundary conditions. To this extent, the objective has been
achieved.

However, during this whole process the main limitations of the current method-
ology and algorithms have also become clear. In a way, this can be seen as good
news since it can certainly help in guiding future research and improvements in
the present algorithms. More specifically, the major points that have limited the
applicability of the present work are: the accuracy of the constant panel method
and the accuracy of the geometric definition of the floating body.

Regarding the accuracy of the constant panel method, the indications are
that the accuracy of this particular numerical scheme, in the context of mixed
boundary value problems in unstructured meshes, can be poor. This has been
highlighted in chapters 6 and 7, when performing either linear, body non linear
and fully non linear simulations. In particular, the main concern lies in the
estimation of the normal velocity on the free surface (i.e the solution of the
Dirichlet problem). Since the MEL scheme evolves the free surface boundary
conditions in time and its values are used as boundary conditions to the Eulerian
phase, it can be the case that errors in the estimation of the normal velocity
on the free surface are being propagated in time through the Lagrangian phase.

This issue is more pronounced as the free surface distortions increase, i.e higher

170



amplitude motions of the both the Wigley hull and sphere.

The hydrodynamic coefficients of a floating body are in fact a function of its
geometry. Therefore, it is important for the numerical mesh not only to have a
good element quality, but also to be close to the geometry of the floating body
itself. The problem of element quality was addressed in the present work but the
investigation of how accurate the mesh is, as compared to the floating body one is
trying to represent was not performed. In fact, because the aim was in the design
of a methodology, qualitative agreement was sought. Hence, it can be the case
that a more accurate representation the Wigley hull or instance, can yield more
accurate results, still using the constant panel method, than the ones obtained in
chapters 6 and 7.

In the context of the design of offshore structures and ships, the proposed
methodology can be viewed as a small step towards a tool that can be integrated,
in the future, to a virtual simulator, whereby the hydrodynamic problem is solved
in real time by a three dimensional potential flow method. To this date, from
the hydrodynamic side, such virtual environments can be powered by a two di-
mensional time domain strip theory approach and, in the next few years, the
extension to three dimensional potential flow methods will certainly bring more
improvements. In fact, it will happen probably much sooner than RANS be-
comes a feasible tool for this task. The impact of these virtual environments for
both industry and researches in naval architecture is promising as it will allow
for not only more reliable designs but also open the door to the incorporation of
more optimization methods, culminating in a faster evolution from one vessel to

another.

8.2 Future Work

In order to extend the present work, the following research topics are suggested:

1. In the context of time domain simulations:

e The influence of forward speed in the hydrodynamic force can be inves-

tigated by changing the impervious boundary condition on the floating
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body. In this case, even in the context of forced motions, the effects
of the Froude number, F,,, can be investigated further. In particular,
the wave resistance problem can also be solved in this context. This
problem can be formulated under the three frameworks, i.e: linear,

body non linear and fully non linear simulations.

e The boundary conditions can also be modified in order to impose the
potential corresponding to a incident sinusoidal wave. In this con-
text, instead of imposing a prescribed forced oscillation motion, the
structure is freely floating. The solution of the Euler phase, i.e, the
hydrodynamic forces are then integrated in time, together with the free
surface boundary conditions, to yield the motions of the floating body.
Furthermore, in this case the hydrodynamic force comprises both the
diffraction and radiation force components. Because the velocity po-
tential has components due to diffraction and radiation, it needs a
more detailed description from the numerical perspective. For the lin-
ear case, the superposition principle implies that the radiation and
diffraction effects can be modeled separately and then added together,
simplifying the numerical analysis. For the case of non linear simu-
lations the numerical analysis is more subtle and probably requires a

higher order element representation.

2. As was highlighted in the present work, the extension from linear to body
non linear and fully non linear time domain simulations, involve a series
of numerical/algorithms challenges, spanning from runtime issues to the
accurate approximation of spatial and temporal derivatives of the velocity
potential. The numerical problems become more complex, because the
domain configuration changes in time as the remesh procedure is performed.

In this context a couple of topics arise naturally, namely:

e Efficient calculations of the influence matrix, ideally performed using

a parallel architecture with the aid of a fast multipole method.

e The use of higher order boundary element methods is an important

subject, since, in theory, a more accurate estimation of the solution
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of the Dirichlet problem can be achieved. They also allow the spa-
tial derivatives of the velocity potential to be estimated locally, on a
element wise basis. This provides an alternative to the radial basis
function representation introduced in the present work. Still concern-
ing the solution of the boundary value problem, which sort of boundary
element method to use, i.e collocation or Garlekin based, is also an in-

teresting research topic, in the context of hydrodynamic applications.

The solution of the linear system of the boundary value problem can
also be optimized by the use of the generalized minimal residual method
(GMRES) or the biconjugate gradient stabilized method (BiICGSTAB),
since the linear system is not symmetric, nor sparse. In this context,
the solution of the linear system arising from the rbf representation is
symmetric, hence, a iterative solution, based on gradient descent (say
conjugate gradient method) , is faster and scalable than the current

implementation based on LU decomposition.
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Appendix A Numerical

Techniques

"There is much less practice in theory than in practice.”

The relevant numerical techniques associated with the mixed boundary value
problem and its corresponding time marching scheme are briefly outlined. These
techniques were implemented in the C+4,matlab and Python and were used to
produce all the results in this work. Once the MEL concept has been adopted,
the numerical techniques used in the Eulerian and in the Lagrangian phase are
going to be discussed separately, in the first two sections. Next the derivation
of the boundary condition, for the second boundary value problem described in
chapter 7 is derived. On the last section, the free surface boundary condition

used in the simulations of the fully non linear case is also described in detail.

Eulerian Phase

Numerically in the context of the MEL scheme the Eulerian phase consists of
solving equation 4.10. Therefore, from a numerical point of view, this phase has

the following steps:

1. Calculation of the influence Matrix coefficients for the Green function G¥ =
G(Z;,7;) and the dipole G¥ = VG(Z;, ;) - 7.

2. Assembling the linear system corresponding to equation 4.10.
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3. Solution of the linear system.

Influence Matrix Computation

Using a short hand notation, equation 4.10, for i=1 to N, can be written in the

following form:

o) = [ G mae - Y [ Glowas, ()

where Z; and ¢; are, respectively, source and field points, ¢, (¢) = V(7)) - 77 and

77 is the normal on the field point ¢ pointing out of the fluid domain.
Furthemore, in the context of the constant Boundary Element Method both

on(y) and ¢(y) are assumed to be constant in each element E;, hence they can

be taken out of the integrals, yielding:

j=1 J j=1 J

Note that the equation above can be written in a matrix form. In fact it
is precisely the linear system one solves in the Eulerian phase. Therefore, let
9ij = [p GYdE; and d;; = ¢(T;)0;; + [, GZdE; correspond to the influence of a

J J

source point ¢ on a field point j, then one can write:

d1,1 d1,2 s dl,N ¢1 911 G12 - G1N ,11

d2,1 d2,2 ce d2,N ¢2 921 Gg22 - g2 N %
o =1 : (3)

dN,1 dN,2 ce dN,N ¢N gN1 9gN2 - gN,N (ﬁg

The Kronecker delta, d;;, was used in the definition of d;; in order to account for
the presence of the solid angle in the diagonal of this matrix when i = j.
In addition, if ¢ # j all the integrands are non singular. In this case, the

off-diagonal coefficients are calculated using the element area, A,;, the Euclidean
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distance between the source point ¢ and the field point j, 7;;, and the normal

vector of the jth field point, 7, hence giving:

A

rj
L A 4
Jig 47T7”ij ( )
A (7 - 1
di; = J(—Jg) (5)
dmrs;
In the equations above, r;; = ||75;]| is the three dimensional distance between a

source point ¢ and a field point j (or equivalently the norm of 7;) and - denotes
the scalar product between two vectors.

In the case where i = j, g; becomes weakly singular and d;; strongly singular
Liu [2009]. There are a couple of alternatives for dealing with the weakly singular
behaviour of g;. In this work, the triangle mapping technique is chosen because
of its flexibility in dealing with higher order BEM schemes Zhang and Xu [1989].

The basic premise of the mapping is to note that although Green’s function
is singular when the source and field point are the same, the integral is well
defined as long as the integration surface is sufficiently smooth, i.e the Jacobian
of the transformation does not vanish. A classic example is the integration of
the Green’s function over a circle. Thus, after the triangle mapping is performed
the integrand is no longer singular and can be evaluated using standard Gaussian
quadratures techniques.

Very briefly, the triangle mapping technique works as follows: let 1, #5 and
T3 denote the three vertices of the F; triangle, then the degenerate mapping is

introduced by the following transformation:

7= (1= p1)@1 + (1 = p2)(p1) T2 + p1p2s. (6)

Using this change of variables, the weakly singular integrand over an element

transforms to a non-singular integrand given by:

! L J(p1; p2)
——db; = — ’ dowd .
//Eij;iH ’ 2/0/0 CESTES A (7)
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Where, after some algebra, the Jacobian of the transformation, J(p1, p2), R, Ry
and R, are given by:

J(p1,p2) = \/ v} +v3 + v3,

R, = (—x1+ (1 — p2)xs + pax3)p1;
Ry = (=y1 + (1 = p2)y2 + pays)p1;
R, = (—2z1+ (1 — p2)za + paz3)pu;

where:
v1 = p1((=y1+ (1= p2)ya + p2ys) (=22 +23) — (—y2 +y3) (=21 + (1 — p2)22) + p223);

vy = p1((—21+ (1= p2)2a+ p2z3)(—2+23) — (=22 + 23) (=21 + (1 = p2)2) + pa3);
v3 = p1((=21+ (1= p2)r2+ paw3)(—y2 +y3) — (—22+23) (—y1 + (1= p2)ya) + pays).

Fortunately, in order to calculate the self influence coefficient associated with
the dipole matrix, d;;, there is no need to evaluate any integral. It can be shown,
Pozrikidis [2002], that when i = j the integral part of dy; = (%) + [, GildE;
vanishes. This way, d;; = ¢(#;). Furthemore, the solid angle can be calculated by

summing the off diagonals elements of the ith row. Hence, for i=1 to N:

N

dig =) d’. (8)

=1

At this point all the coefficients of the matrices in equation 3 are known. The

next steps are to assemble and solve the linear system.

Assembling and Solving the Linear System

In order to assemble the linear system, it is worth going back to equation 3
and note that N boundary conditions have to be imposed to obtain its solution.

Because the boundary value problem is mixed, the potential ¢ (Dirichlet problem)
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will be known at the free surface where ¢, is unknown. On the floating body,
however, the opposite condition follows ¢, is known (Neumann problem) but
¢ is not known. Once these two sets are disjoint and their union comprises the
boundary of the whole domain, there are N boundary conditions to be imposed in
equation 3. The problem is that the Neumann boundary conditions are imposed
on the left hand side, while Dirichlet boundary conditions are placed on right
hand side. Therefore the standard linear system, Az = b, is formed by applying
the corresponding boundary condition at each node (Neumann or Dirichlet) and
switching the columns in the two matrices d;; and g;;. This way, the matrix A is
usually dense and is nonsymmetric.

Once assembled the linear system is solved by LU decomposition, to this end
a direct solver from the LAPACK library is used.

Lagrangian Phase

Euler Method

This phase consists of the integration of the dynamic and kinematic free surface
boundary conditions in time. In the linearized case (say linear and body non
linear analysis), these boundary condtions are prescribed by equations 4.17 and
4.18. Usually, for this purpose, a second or fourth order Runge-Kutta scheme (Xu
[1992], Kara et al. [2007] and Liu [2010]) is adopted to guarantee the stability of
solution in time. The present results were obtained by integrating the kinematic
and dynamic boundary conditions using the Euler method and a second order
Runge-Kutta scheme (described in the next section). Therefore, the numerical

versions of equations 4.17 and 4.18 are, respectively, given by:

PARIELNE 5t(8a—it —v2') 9)
¢t+5t — ¢t + (5t(—gzt . I/¢t) (10)

For the fully non linear case studied in chapter 7 the corresponding version
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of the kinematic and dynamic boundary conditions are given by equations 7.28
and 7.29 respectively. Their respective numerical versions is obtained in the same

fashion.

Second Order Runge-Kutta Method

A more accurate numerical approach would be to integrate equations 4.17 and
4.18 in time using a second order Runge-Kutta scheme. In a way, the Euler
method can be viewed as particular case of the second order Runge-Kutta scheme.
To see this, suppose we have a scalar the function y(t) , which is differentiable
in the domain of interest to us. Let its derivative dy/dt be given by the function
f(y,t). Then the problem is how to evaluate y(t+¢) at the subsequent time step.

A second order Runge-Kutta scheme performs this update as follows:

ki =4f(y,1), (11)
ko = 0f(y + Bki,t + ad), (12)
y(t +9) = y(t) + aks + bks,. (13)

The constants «, 3, a and b have to be evaluated in order to guarantee that
error is proportional to §%, or O(63). In particular , note that if we set ky = 0
and a=1, we recover the Euler method. Let’s now show under what choices of
constants «, 3, a and b the integration error of O(6%). In order to do this, Taylor

series is used to expand y() in its neighborhood of ¢ correct to O(4?). Hence,

dy(t, y) d*y(t,y)

t+0)=yt)+0 & O(d%). 14
i+ 8) = y(t) + s U)o () (1)
In equation 14, % can be evaluated in terms of f(y,t), i.e:

Pylty) _0f  Of dy

= . 1
di? ot ' Oy dt (15)
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From 14 and 15, one has that:

dy(t.y) 0 Of  Ofdy

y(t+0) =y(t) +0— 5 (5 8ydt)'

(16)

In equation 13, the ks term can also be expanded to second order and the
result can be given in terms of the constants of interest, since k1 = hf(y,t);
hence, after some algebra, this yields :

of | ,of
y@+5%=MO+@HWWﬂ%ﬂ+ﬁyW5;+ﬁaﬁ@¢»- (17)
By comparing the respective coefficients of equations 16 and 17, it is straight

forward to see that in order to achieve precision of O(¢?), the constants «, 3, a
and b should satisfy:

atb=1, (18)
ab=1, (19)
Bb =1, (20)

A classical choice, the one adopted here, is a = § =1 and a = b = % A
second order Runge-Kutta (RK2) implementation in order to integrate the free
surface boundary conditions in time, this will comprise the Lagrangian phase of
the MEL scheme, is given below. Because the free surface boundary conditions are
coupled and there are two differential equations, the RK2 integration comprises

7 equations which can be written as follows:

: 0¢'
ki = 5t(§ —vz'); (21)
2O = 2tk (22)
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K = 5t(—g2" — v'); (23)

k2 = 51&(8?—? — vzt (24)
20 = o (kF 4 KZ)/2; (25)
kY = 6t(—g2"" — vg'™?); (26)
¢ = ¢+ (k) + k3)/2. (27)

Equations 21, 22 and 23 comprise the first step of the RK2 scheme and they all
rely in solving the FEuler phase at time t. Equation 21 calculates the change in the
free surface position, equation 22 updates the free surface position and equation
23 calculates the change in free the surface potential. Next, the Euler phase is
solved at time ¢ + §, and the second phase of the RK2 starts; equations 24,25,26
do the same job as in the first phase whereas equation 27 | finally, updates the

potential on the free surface.

Boundary Conditons for the Second Boundary

value problem

In order to evaluate aa—f exactly, the time harmonic property of the potential can
be explored and a second boundary value problem can be solved on the Neumann

surface for % directly. However, to accomplish this, a boundary condition on the
924

oton?
In this section, a simple case where a motion is considered only on the heave

Neumann surface, for needs to be imposed.

mode, is going to be tackled, the general case can be found in Wu and Eatock Tay-

lor [1996]. The main assumption that is needed to go through the derivation is
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that the potential is C?, i.e it is differentiable up to order 2, with respect to its
field variables (x,y, z). That said, the Neumann condition on the body for second

boundary value problem can be written as:

0%¢
oton

=1fp-dp —1ip- (Up-V)Vo. (28)
Expanding the last term gives:

. . N 0 0 0
iip- (U -V)Ve =riip- (Vl% + ‘/28_y + Vs@)v¢- (29)

For forced motions on the heave mode, V; = V5, = 0 and V3 = Asin(wt), hence

, after some algebra it can be shown that:

aqu? aqb i aqbz"
1j+ SR, (30)

ﬁB~(UB~V)V¢:V§,ﬁB~(azz+ 8z‘7+

The last step is to interchange the order of differentiation with respect to ¢
(i.e its assumed that the velocity potential is twice differentiable, ¢ € C?()),

resulting in:

) =ity V2 (31

0z

It is also interesting to point out that Virip - V% has actually the same form
of the m terms, i.e —(77 - V)V, described in Nakos [1990].

Free Surface Boundary Conditions

Under the potential flow framework, when a MEL scheme is used, the free surface
boundary conditions usually take a simpler form (see for instance Longuet-Higgins
and Cokelet [1976] or Liu et al. [2001] ). However, the fully Lagrangian formu-
lation considers that all fluid particles are moving with the same velocity as the
fluid field which leads to computational difficulties. The idea here is twofold:
first from the Lagrangian kinematic free surface boundary condition recover the

kinematic boundary condition of the free surface with respect to its elevation (;
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second, formulate both boundary conditions (kinematic and dynamic) when the
velocity field imposed on the free surface is not equal to the flow velocity. This
last issue is of more practical use since the mesh can be moved in a direction that
avoids remeshing but at the same time tries to mitigate the convection terms on
the free surface boundary condition. In particular, for the application at hand ,
imposing a velocity on the mesh on the vertical direction is of interest, since the
mesh distortions from this movement are small, the problem of remeshing the
free surface at every time step can, hopefully, be avoided.

The Lagrangian kinematic condition states that the velocity of the particles
on the free surface are equal to the gradient of the velocity potential. Since the
flow is potential, this condition holds throughout the domain , and in particular,
on the free surface. Assuming there is a coordinate system O(x,y,z), the kinematic

boundary condition is written as:

D(r)
Dt

= Vo (32)

In the equation above 7= (x(t),y(t), 2(t)) is the position of the surface node
and%z%—l—Vgﬁ-V.

What happens, if instead of following the free surface particles, the points
x and y are fixed and the free surface elevation is expressed as ((x,y,t) ? In
this case the position vector of the free surface is ¥ = (z,y,((z,y,t)). Using
the Lagrangian kinematic boundary condition on 7, the equality on x and y are

trivial, but on the z direction one has that:

D(C(w,y.t) _ ¢
Dt ot

o o 09

Expanding one can recover another form of the kinematic boundary condition,

say an Eulerian representation of the free surface, Newman [1977], as:

I I 9o
ot +£(‘9_x+8—y8_y_%' (34)

Therefore the kinematic boundary condition in the Lagrangian form implies equa-
tion 34.

Assume that the free surface nodes are going to be moved along the vertical
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direction. So let v, = (0,0,v,) be the mesh velocity and ‘;—g the derivative of
when its motion is followed in the vertical direction. The derivative of the free

surface with respect to time can be calculated as:

9¢C _ 9¢
ot ot

o oc o
ox’ ox’ ot

which does not depend on v, = (0,0, v,), simplifying the numerical treatment.

Hence the kinematic boundary condition, equation 34, can be written in terms
of fs—g as follows:
0¢ 09 9¢ L9 99 o¢ _ 09

ot o dx dx ' Oy dy T 0z (36)

It is also worth noting that if the steepness of the free surface is small in x and
y directions the linearized form of the kinematic boundary condition is recovered.
The dynamic boundary condition on the free surface, under potential flow

assumptions, can be derived from Bernoulli’s equation which can be written as,
Newman [1977]:

0
¢+ V¢2+gZ—0 (37)
ot
Assuming that x,y are fixed and that the free surface elevation is given by
((z,y,t), the potential can be written as ¢(z,y,((z,y,t),t) . The derivative of

the potential with respect to time, by the chain rule, is therefore:

do (9¢ 9¢ ¢
— 38
it ot Tacor (38)
since z = ((z,y, 1), g—‘é’ = %.
From equation 37 and 38, the dynamic boundary condition becomes:

do 09 9¢ 2

—_ - == =0 39

ait oot 2 3V 2 = (39)

It is also interesting to note that if the particles are followed in a Lagragian
fashion (x,y and z are time dependent) then the fully Lagrangian formulation is

recovered . In this case the potential is ¢(z(t), y(t), 2(¢),t) and its derivative, by
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the chain rule, becomes % = % + V2.
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Appendix B Time Series Analysis

of Hydrodynamic Forces

The results obtained in time domain simulations can be recast in the frequency
domain by performing a Fourier decomposition of the hydrodynamic force time
series. Assuming that the hydrodynamic force, Fj(t) admits a Fourier decompo-
sition (i.e it is square integrable), then its Fourier decomposition can be written
as:
A | o .
Fi(t) = 5 + Z A;sin(wjt) + Bjcos(wjt). (40)
j=1
In addition, in the context of forced oscillations, the Fourier coefficients can be
readly identified with the added mass and damping coefficients. For instance, in
the heave case, since z.(t) = Asin(wt), A; and B; corresponds to the definition
of added mass (As3) and damping (Bss) respectively. Looking at equation 40
the components due to the higher order harmonics (i.e j > 1) are also present,
in particular the coefficients A%, and B2, introduced in equations 7.21 and 7.22
respectively can also be identified to A; and Bs.
Sometimes it is also useful to write equation 40 in terms of the harmonics
instead of the Fourier coefficients. In order to achieve this, the coefficients f;’s

are defined as follows:

Ag/2 ifj=0
i = o/2 it (41)
Aj—ZBj 1fj>0
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where ¢ refers to the imaginary unit in the complex plane.
Using the coefficients defined in equation 41, equation 40 can be rewritten in

terms of the harmonics as follows:

Fi(t) = R(Y fie"), (12)

where R(.) denotes the real part. In order to see this, one can expand the f;e™7*

term, using Fuler’s formula and plug in equation 41:

R(fje™1') = R((A; — iBy)(sin(wit) + icos(wjt))
= R(A;sin(wjt) + Bjcos(wjt) + i(Ajcos(wjt) — Bjsin(wjt)))
= A;sin(wjt) + Bjcos(wjt).

For the case where j = 0, e = (0, which gives fy = Ag/2.

This way, the norm, for instance, of f is f; = \/m In the particular
case of heave forced oscillations it then follows that f; = \/A3; + B2Z;. Therefore,
the Fourier decomposition provides a link between frequency domain and time
domain analysis.

Note however that equation 40 (or equivalently equation 42) makes sense when
the signal (e.g the force time series) is stationary since the temporal information is
lost and the spectrum of the signal is a function of only the frequency. For station-

ary signals, the Fourier representation expand the signal on a orthogonal basis

with respect to the dot product defined by < g(x),h(z) >= tt_J}T g(x)h(z)dz.
This follows from the orthogonality relations of sin(x) and cos(z) functions, i.e:
t+T if j =k
/ sin(wjt)sin(wkt)dt = o (43)
t—T 0 otherwise,
t+T ifi=~FL
/ cos(wjt)cos(wkt)dt = T . (44)
t—T 0 otherwise,
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t+T
/ cos(wjt)sin(wkt)dt = 0. (45)
t

-7
Since the temporal information lost, transient effects are not straightforward to
capture. Moreover, the question of what harmonics should be kept in the expan-
sion is also daunting. One usually drops the higher frequency components but
this procedure is rather heuristic.

Recently, an alternative approach to signal analysis, the Hilbert Huang trans-
form, has been developed by Huang et al. [1998]. This framework is comprised of
two parts: the empirical mode decomposition (EMD) and the Hilbert transform.
The final result of the Hilbert transform can then be represented on an energy-
frequency-time distribution (in contrast Fourier analysis results are represented
as an energy-frequency distribution), which is called Hilbert spectral analysis.

In fact, the key aspect of the Hilbert Huang transform lies in the observation
that, although the Hilbert transform is able to capture the local properties of
functions in the LP class in time domain, its direct application to this class of
functions can yield negative frequencies that bear no relationship with the real
oscillation of the data Huang et al. [1998]. In order to overcome this issue, the
EMD technique is used to decompose the original signal time series into a finite
(usually small number) of intrinsic mode functions (IMFs). The IMFs enjoy a
well behaved Hilbert transform, and hence their Hilbert spectral analysis pro-
vide a energy-frequency-time distribution that brings insight into the oscillatory
behaviour of the data.

In chapter 6, the EMD decomposition was used in filtering mode, where the
IMF's that were statistically close to white noise were not kept in the force time se-
ries decomposition, this approach followed closely the empirical study performed
by Wu and Huang [2004] . In what follows the application of the Hilbert Huang
transform to the problem of a force time series decomposition is addressed and
compared to the conventional Fourier decomposition. To this end, a brief sum-
mary of the Hilbert Huang transform will be given. First, the Hilbert transform
will be introduced and next the EMD algorithm will be described. After intro-
ducing these concepts, a generalization of the Fourier decomposition in equation
42 will be naturally introduced. Next, this result of Huang et al. [1998], is brought
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to the context of time domain hydrodynamics as an alternative formulation of
the harmonics, now in terms of Hilbert transforms of IMF's.

The motivation behind the development of the Hilbert transform is the fol-
lowing: Given function, X in the LP class that maps from R to R (i.e t to X(t)),
is it possible to find an imaginary part ¢Y (¢) such that the complex function,
Z(t), Z(t) = X(t) +1iY (t), can be analytically extended from the real line to the
upper half of the complex plane?

The answer is the Hilbert transform (see for instance Hahn [1995]) and Y(t)

is given by the Cauchy principal value, PV, of the integral:

X(t')

t—t

H(X(8) = Y(t) = %PV i (46)

Since, Z(t) = X (t) +iY(t), is defined on the upper half complex plane, it can

also be written using Euler’s formula, namely:

Z(t) = X(t) + 1Y (t) = a(t)e®, (47)
where:
a(t) =/ X2(t) + Y2(t), (48)
and Vit
0(t) = ta —1%. (49)

Since the phase angle, 6(¢) is time dependent the instantaneous frequency can
be defined as:

de(t
w(t) = %. (50)
For the case of the Fourier Decomposition defined in equation 42, 0;(t) = w;t
, so the instantaneous frequency is constant for each mode j and given by w;.
Therefore, in this sense, equation 47 generalizes equation 42, with f; and w; being
replaced by their time variants counterparts, a(t) and w(t) respectively.

If all the functions in the L class enjoyed a well defined Hilbert transform
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(in the sense that the transform has a physical relationship with the signal), the
problem will be solved and it would suffice to substitute the Fourier decomposition
by the Hilbert transform. However, it was pointed out by Huang et al. [1998] that
this is not the case. In particular, in order to overcome this issue the Ensemble
Mode Decomposition was developed and it is used as pre-processing step.

The EMD is an empirical algorithm that decomposes a signal into its local
oscillations. The idea is to express each oscillation scale as separate component,
(this yields the Intrinsic Mode Function, or IMF) so that the sum of the IMFs,
plus a residual term will reconstruct the original signal. IMFs are functions that

satisfy the two following criteria Huang et al. [1998]:

e in the whole data set, the number of extrema and the number of zero-

crossings must either be equal or differ at most by one;

e at any point, the mean value of the envelope defined by local maxima and

local minima is zero.

That said, the EMD algorithm is summarized in algorithm 8. The output of
the algorithm are the IMFs and the residual term. This way, the initial signal,

say X (1), is decomposed as follows:

NrnvFs

X(t)= Y ¢+, (51)

in which, Nypsps is the number of IMF's used to decompose the signal. It depends
on the size of the signal as logs(size(signal)) Huang et al. [1998], which is usually
much smaller than the Fourier harmonics decomposition. At this point, since
IMFs behave well under Hilbert transformations, one can let X'(t) = X(¢t) — r

and use equation 46. This result is summarized on the following proposition.

Proposition .0.1 Let ¢;’s be Niyps € NT functions. Let X(t) be a continuous
real function mapping fromt € R* to X(t) € R, such that its corresponding EMD
decomposition is given by X (t) = SV e, If X'(t) = X (t) — 7, then X'(t)

7j=1
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can be represented by :

NrvFs

X'(t)=R( D a;(t)e’d 0, (52)

Jj=1

Proof Since X'(t) = X (t) —r, it follows from the EMD decomposition (equation
51 ) that X'(t) = Z?fz’f”s ¢;. Denoting the Hilbert transform of X'(¢) by Y'(¢),
it follows from equation 47 and the fact that the Hilbert transform is a linear

operator that:

Z'(t) = X'(t) +iY'(¢)

Nimrs Nimrs

= Z c; +iH( Z cj)
Jj=1 Jj=1
Nimrs Nimrs

= Z cj+1 Z H(c;)
=1 =1
NimrFs

= > (g +iH(¢)
j=1
Nimvrs

_ a; (t)eifw](t)dt
j=1

So, taking the real part of Z’(t) yields:

NivFs

X() = REZ(0) =R( Y ae[0m).

Therefore, coming back to the context of analyzing time series of forces, it is
interesting to note how equation 52 is closely related to the Fourier harmonics
decomposition, equation 42. In fact, in the context of hydrodynamic analysis, all
that is needed to extend, the frequency-energy representation of the the harmonics

f;j to the time-frequency-energy representation of the Hilbert Huang Transform,
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is to associate f; to a;(t) and w;t to [w;(t)dt in equations 42 and 52 respectively.
This way, the Hilbert transform of the jth IMF for instance, c¢;, will give rise
to "added mass” and "damping coefficients” that vary in time as well as in the
frequency domain. Furthermore, their respective phase and amplitude are given
by equations 49 and 48, respectively. One of the advantages of this approach
is that the IMFs representation is usually smaller than the Fourier expansion,
since the number of IMFs is of the order of logy(size(signal)). Moreover, by
definition, the IMFs form a base for the signal, which is adaptive, because the
spline construction depends of the signal data itself. What is striking is that this
base, in practice, turns out to be very close to a orthogonal base, this is actually

a topic of active research in adaptive time series analysis.

Algorithm 8 Ensemble Mode Decomposition
1: procedure FUNCTION(IMFs=EMDecomp(signal))
2 aux:=signal; > Initialize h(0) to be the signal itself.
3 Nivrs = loga(size(signal)) + 1
4: while ] < Niyrs do
5
6
7

h(t):=aux
while [terg; ;s < Ngipe do
lextyy, extioun| = extrema(signal) > Identify the extreme points
of the signal.
8: [envelope,,, envelope goun) = cubicspline(extup, extdown) > Fit
cubic splines to represent the upper and lower envelopes, respectively.
9: m(t) := median(envelope,,, envelopejo,) > Compute the local
medians.
10: h(t):=h(t)-m(t); > Extract the spline mean.
11: Itersp = Itergp + 1
12: end while
13: aux:=aux-h(t) > After the inner while, h(t) has become an IMF, so
its extracted from the aux and the process is reiterated.
14: c(j):=h(t) > ¢(j) saves the jth IMF on jth column of c.
15: end while
16: r:= aux > After the iterations r receives the residual of the last IMF, r.

17: IMFs := [c;r] > Output the the IMFs on vector ¢ and the residual term.
18: end procedure
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Appendix C Sensitivity Analysis

of Sphere Simulations

In this appendix, a sensitivity analysis of the sphere undergoing forced heave
simulations is presented when the ®;, Exact BNL algorithm is used. During this

analysis four parameters were varied on the ®; Exact BNL algorithm, namely:

e the regularization parameter, \;
e the edge size of the element, h;
e the free surface size ;

e the time step dt.

The role that the regularization parameter, X\, plays was discussed in chap-
ter 7. The size of the element tries to measure the convergence in the h sense
Karniadakis and Sherwin [2005], since the mesh is unstructured h represents the
edge size of elements that are used to mesh the sphere. The domain topology
that was considered in chapter 7, i.e a cylindrical domain where the free surface
is circular (figure 7.1 ) , was kept the same during the sensitivity analysis, how-
ever the diameter of the free surface was changed. In what follows, the results of
the sensitivity analysis are presented in a tabulated form. The first table refers
to the value of the parameters used whereas the second table shows the results
obtained, in terms fy, f1, f2, A3z and Bss, all of which were nondimensionalized

according to the framework presented in chapter 7. Unfortunately, due to runtime
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constraints, the analysis is rather limited and it was not possible to perform an

analysis where the value of the parameters were changed on a systematic fashion.

Table 1: First Set of Simulation Parameters Values

Parameter

Value

A
h

0.0

0.02 units

Free Surface Diameter

dt

8.0 units
0.0045 s

Table 2: Results of the first set

A/R fo fi f2 Aszs Bgs

0.125 -0.0533 0.3425 0.2828 0.293  0.177
0.250 -0.0090 0.3226 0.2391 0.2871 0.147
0.300 -0.0225 0.3116 0.2978 0.2660 0.1622
0.375 -0.0243 0.3036 0.2847 0.2715 0.1360
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Table 3: Second Set of Simulation Parameters Values

Parameter Value
A 0.0
h 0.02 units
Free Surface Diameter 8.0 units
dt 0.00225 s

Table 4: Results of the second set

A/R Jo fi f2 Ass Bss
0.125 -0.0370 0.3572 0.2883 0.296 0.199
0.250 -0.0010 0.3289 0.2803 0.281 0.170
0.300 -0.0225 0.3193 0.2570 0.269 0.171
0.375 -0.0020 0.3014 0.2373 0.272 0.128

Table 5: Third Set of Simulation Parameters Values

Parameter Value
A 0.0
h 0.02 units
Free Surface Diameter 16.0 units
dt 0.0045 s

Table 6: Results of the third set

A/R fO fl f2 A33 BSS
0.300 -0.066 0.3134 0.2053 0.267 0.163
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Table 7: Fourth Set of Simulation Parameters Values

Parameter Value
A 0.0
h 0.02 units
Free Surface Diameter 10.0 units
dt 0.0045 s

Table 8: Results of the fourth set

A/R fO fl f2 A33 B33
0.300 -0.033 0.3122 0.2250 0.266 0.164

Table 9: Fith Set of Simulation Parameters Values

Parameter Value
A 0.0
h 0.01 units
Free Surface Diameter 8.0 units
dt 0.0045 s

Table 10: Results of the fith set

A/R  fy fi 2 Azz Bss
0.300 -0.092 0.350 0.284 0.281 0.209
0.375 -0.096 0.331 0.276 0.280 0.176
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Table 11: Sixth Set of Simulation Parameters Values

Parameter Value

A 0.01
h 0.02 units
Free Surface Diameter 8.0 units
dt 0.0045 s

Table 12: Results of the sixth set

A/R Jo fi f2 Ass Bss

0.250 -0.137 0.325 0.211 0.265 0.187
0.300 -0.135 0.318 0.226 0.252 0.195
0.375 -0.134 0.286 0.187 0.227 0.174

197



References

Apostol, T. (1969). Calculus, volume Vol II. John Wiley and Sons. 42

Bailey, P., Hudson, D., Price, W., and Temarel, P. (1998). A unified mathematical
model describing the manouvering of a ship travelling in a seaway. In RINA
Transactions, volume 140. 13, 14, 25, 26

Bailey, P., Hudson, D., Price, W., and Temarel, P. (1999). Theoretical and
experimental validation of the seakeeping characteristics of high speed mono-
and multi-hulled vessels. In Proceedings of the 5th International Conference on
Fast Sea Transportation, Washington, USA,. 34

Bailey, P., Hudson, D., Price, W., and Temarel, P. (2002). A simple yet rational
approach to the panelling of hull surfaces. In RINA Transactions, volume 144.
14, 28

Ballard, E., Hudson, D., Price, W., and Temarel, P. (2003). Time domain simu-
lations of symetric ship motions in waves. In RINA Transactions, volume 145.

3, 25, 27, 32

Bandyk, P. (2009). A body ezact strip therory approach to ship motions compu-
tations. PhD thesis, University of Michigan. 12

Battistin, D. and lafrati, A. (2003). Hydrodynamic loads during water entry of
two dimensional and axisymmetric bodies. Journal of Fluids and Structures,
17:643-664. 8, 17, 115, 116, 155

198



REFERENCES

Beck, R. F., Cao, Y., Scorpio, S., and Schultz, W. (1994). Nonlinear ship motion
computations using the desingularized method. In 20th Symposium on Naval
Hydrodynamics, pages 227-247. 2, 16, 46

Bishop, C. M. (2007). Pattern Recognition and Machine Learning. Springer. 122

Bishop, R. and Price, W. (1979). Hydroelasticity of Ships. Cambridge University
Press. 3, 99, 100

Bishop, R., Price, W., and Wu, Y. (1986). A general linear hydroelasticity theory
of floating structures moving in a seaway. Philosophical Transactions of the
Royal Society of London, Series A:375-426. xiii, xiv, 3, 19, 96, 97, 98, 100, 102,
103, 104, 105, 106, 107, 108

Buhmann, M. (2004). Radial Basis Functions: Theory and Implementations.
Cambridge University Press. 63, 118, 120

Chinchapatnam, P. P. (2006). Radial Basis Function Based Meshless Methods for
Fluid Flow Problems. PhD thesis, University of Southampton. 120, 143

Cordaro, P. and Kawano, A. (2002). O Delta de Dirac. Instituto de Fisica da
Universidade de Sao Paulo. 51

Cossins, P. J.  (2010). Smoothed  particle  hydrodynamics.
http://arziv.org/abs/1007.1245. 15

Gerristma, J., Beukelman, W., and Glansdorp, C. (1974). The effect of beam on
the hydrodynamic characteristics of ship hulls. In 10 th Symposium on Naval
Hydrodynamics. 12

Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element
mesh generator with built-in pre- and post-processing facilities. International
Journal for Numerical Methods in Engineering, 79(11):1309-1331. 9, 10, 50,
b1, 53, 72, 75, 79, 90, 132, 147, 168

Hahn, S. L. (1995). Hilbert Transforms in Signal Processing. Artech House. 189

199



REFERENCES

He, G. and Kashiwagi, M. (2009). Full-nonlinear solution for vibration of ver-
tical elastic plate due to wave impact. In & th International Conference on
Hydroelasticity, Southampton, UK. 20, 113

Huang, N. E.; Shen, Z., Long, S. R., Wu, M. C.,; E. H, S., Zheng, Q., Tung,
C. C., and Liu, H. H. (1998). The empirical mode decomposition method and
the hilbert spectrum for non-stationary time series analysis,. Proc. Roy, Soc.
London, (A454):903-995. 8, 154, 188, 190

Huerta, A. and Liu, W. (1988). Viscous flow with large free-surface motion.
Comput. Methods Appl. Mech. Eng, 69(3):227-324. 15

Hulme, A. (1982). The wave forces acting on a floating hemisphere undergoing
forced periodic oscilations. J. Fluid Mech, 8:22-44. 78, 82, 83, 84

Inglis, R. (1980). A Three Dimensional Analysis of The Motion of a Rigid Ship
in Wawves. PhD thesis, University of London. 11, 14, 22, 24, 25

Journée, J. M. J. (1992). Experiments and calculations on four wigley hull forms.
Report 909, Delft. xiii, xvi, xviii, 78, 82, 90, 91, 95, 100, 143, 146, 148, 151

Kara, F., Tang, C., and Vassalos, D. (2007). Time domain three-dimensional
fully nonlinear computations of steady body-wave interaction problem. Ocean
Engineering, 34:776-789. 18, 151, 178

Karniadakis, G. and Sherwin, S. J. (2005). Spectral/hp Element Methods for
Computational Fluid Dynamics. Oxford University Press. 43, 83, 109, 193

Lachaume, C., Biausser, B., Grilli, S. T., Fraunié, P., and Guignard, S. (2003).
Modeling of breaking and post-breaking waves on slopes by coupling of bem
and vof methods. International Offshore and Polar Engineering Conference. 4,

50, 54

Lin, W., Meinhold, M., Salvesen, N., and Yue, D. (1994). Large-amplitude mo-
tions and wave loads for ship design. In 20th Symp. on Naval Hydrodynamics,
pages 205-226. 13, 14

200



REFERENCES

Lin, W. M. and Yue, D. (1991). Numerical solutions for large amplitude ship
motions in time domain. In Eighteenth Symposium on Naval Hydrodynamics.
xiv, 84, 113, 114, 126, 128, 130, 132, 133, 155

Liu, H. Y., editor (2010). Efficient Computations of Fully Nonlinear Wave Inter-
actions with Floating Structures, number 20412. OMAE. 46, 47, 178

Liu, Y. (2009). Fast Multipole Boundary Element Method. Cambridge University
Press. 18, 21, 43, 53, 96, 176

Liu, Y., Xue, M., and Yue, D. K. P. (2001). Computation of fully nonlinear
three-dimensional wave-wave and wave-body interactions. Journal of Fluid
Mech, 438. 2, 16, 17, 18, 19, 21, 43, 50, 117, 151, 182

Longuet-Higgins, M. and Cokelet, C. (1976). The deformation of steep surface
waves on water: A numerical method of computation. In Royal Society of
London, volume A350, pages 1-26. 16, 21, 46, 182

Masud, A. and Hughes, T. J. R. (1997). A space-time galerkin/least squares
finite element formulation of the navier -stokes equations for moving domain
problems. Comput. Methods Appl. Mech. Eng, 146:91-126. 16

McCallum, J. C. C. R. K. B. J. B. C. T. J. M. W. R. F. B. C. and Evans,
T. R. (2001). Reconstruction and representation of 3d objects with radial basis
functions. In Computer Graphics ACM SIGGRAPH, pages 67-76. 63

Murphy, K. P. (2012). Machine Learning A Probabilistic Perspective. MIT press.
121

Nakos, D. E. (1990). Ship Wave Patterns and Motions by a Three Dimensional
Panel Method. PhD thesis, MIT. 182

Newman, J. N. (1977). Marine Hydrodynamics. MIT press. 23, 24, 46, 91, 98,
183, 184

Olgilvie, F. and Tuck, E. (1969). A rational strip theory for ship motions. Report
013, University of Michigan. 24

201



REFERENCES

Park, J. and Sandberg, I. W. (1991). Universal approximation using radial-basis-
function networks. In Neural Computation, volume Vol 3, pages 246-257. 118,
119

Park, J. and Temarel, P. (2007). The influence of nonlinearities on wave-induced
motions and loads by two-dimensional hydroelasticity analysis. In of Shipping,

A. B, editor, 10 th International Symposium on Practical Design of Ships. 20

Persson, P. (2005). Mesh Generation for Implicit Geometries. PhD thesis, MIT.
9,10, 50, 51, 53, 54, 55, 62, 64, 70, 75, 79, 147

Powers, J. O. E. and Zselecsky, J. (1992). Theoretical and experimental study
of the non linearities in vertical plane ship motions. In Proceedings of the 19th

Symposium on Naval Hydrodynamics, pages 73-91. 35

Pozrikidis, C. (2002). A Practical Guide to Boundary Element Methods. Chapman
Hall. 56, 177

Salvensen, N., Tuck, E. O., and Faltinsen, O. (1970). Ship motions and sea loads.
The Society of Naval Architects and Marine Engineers. 25

Sclavounos, P.D; Nakos, D. and Huang, Y. (1993). Seakeeping and wave induced
loads on ships with flare by a rankine panel method. In Sizth International

Conference in Numerical Ship Hydrodynamics. 11

Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods. Cambridge
University Press. 50, 61

Stein, E., Borst, R., and Hughes, T. (2004). FEncyclopedia of Computational
Mechanics. John Wiley and Sons. 16

Steinbach, O. (2008). Numerical Approzimation Methods for Elliptic Boundary
Value Problems. Springer Verlag. 42, 44

Sutradhar, A., Paulino, G. H., and Gray, L. J. (2008). Symmetric Galerkin
Boundary Element Method. Springer. 42

202



REFERENCES

Vapnik, V. (2000). The Nature of Staistical Learning Theory. Springer-Verlag.
118

Wu, G.-X. and Eatock Taylor, R. (1996). Transient motion of a floating body
in steep water waves. In 11 th Internationl Workshop on Water Waves and
Floating Bodies. 82, 115, 116, 181

Wu, Y., Maeda, H., and Kinoshita, T. (1997). The second order hydrodynamic
actions on a flexible body. Journal of Institute of Industrial Science, 49(4):8-19.
19

Wu, Z. and Huang, N. E. (2004). A study of the characteristics of white noise
using the empirical mode decomposition method. Proc. Roy. Soc. London,
460(2046):1597-1611. 154, 155, 188

Xu, H. (1992). Numerical Study of Fully Nonlinear Water Waves in Three Di-
mensions. PhD thesis, MIT. 44, 50, 52, 83, 96, 117, 178

Xue, M. (1997). Three-dimensional fully-nonlinear simulations of waves and wave
body interactions. PhD thesis, MIT. 50, 83, 84

Yan, H. (2010). Computation of fully nonlinear three-dimensional wave-body in-
teractions. PhD thesis, MIT. xiv, xvi, xviii, 6, 18, 53, 83, 96, 115, 129, 133,
151, 155, 158, 159, 160

Zhang, S., Weems, K., Lin, W., Yan, H., and Liu‘, Y. (2007). Application of a
quadratic boundary element method to ship hydrodynamic problems. In 27th
Int. Conf. on Offshore Mechanics and Arctic Engineering. 4, 17, 21

Zhang, W. and Xu, H. R. (1989). A general and effective way for evaluating
the integrals with various orders of singularity in the direct boundary element
method. Journal of Numerical Methods in Engineering, 28:2059-2064. 56, 176

Zhang, X., Bandyk, P., and Beck, R. F. (2010). Seakeeping computations using
double-body basis flows. Applied Ocean Research, 32(4):461-482. 12

203



