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Abstract

In the present work the investigations of non linear effects, in the

context of potential flow theory, are investigated. These effects are

caused by three main reasons, namely: the changes of the wetted

geometry of the floating body, the water line dynamics and the fully

non linear nature of the free surface boundary conditions. In order to

understand the importance of tackling the non linear effects, a three

dimensional frequency study of the S175 conteinership is carried out,

at different Froude numbers, using linear frequency domain methods

and a partly non linear time domain method.

A time domain analysis, with the aid of an unstructured mixed Eule-

rian Lagrangian (MEL) description of the fluid flow, is implemented

aiming in exploring potential flow non linear effects. In this frame-

work, the mixed boundary value problem of the Eulerian phase of the

MEL scheme is tackled by means of a Boundary Element Method us-

ing constant elements (or a direct Rankine panel method). At given

time step, on Neumann boundaries the impervious boundary condi-

tion is specified whereas, on Dirichlet boundaries, the potential on the

free surface is prescribed. The solution of the Boundary Value prob-

lem yields the potential on the Neumann boundaries and its normal

derivative on Dirichlet boundaries. In the Lagrangian phase, the free

surface boundary conditions are then integrated in time. This method

was used to solve the linear time domain radiation, i.e by applying

linearized free surface boundary conditions on the exact free surface

and solving the mixed boundary value problem on the mean undis-

turbed free surface, for the case of forced motions of a hemisphere

and a Wigley hull. In addition, the linear time domain method is



also extended to the unified hydroelastic analysis in time domain for

the cases of 2 and 3 nodes bending. Results are presented for the the

Wigley hull, undergoing prescribed forced oscillations for both rigid

and flexible mode shapes.

The extension of the MEL scheme to a numerical tool capable of ad-

dressing several degrees of non linearities (from body nonlinear to

fully nonlinear) is also discussed. In this context, two numerical for-

mulations to calculate the time derivative of the velocity potential are

implemented, namely: a backward finite scheme and an exact calcu-

lation based in the time harmonic property of the velocity potential.

In latter case, a second boundary value problem is constructed and

solved for the time derivative of the potential on Neumann boundaries

and for the normal acceleration on Dirichlet boundaries. Results of

both approaches are compared for the case of a sphere undergoing

force oscillations in heave are compared to results obtained by other

time domain methods. Moreover, after the boundary value problem

is solved, a radial basis function representation of the velocity poten-

tial and free surface elevation is constructed, this approach allows for

the estimation of the gradient of the velocity potential (body nonlin-

ear and fully nonlinear simulations) and free surface steepness (fully

nonlinear simulations). The results of the body non linear analysis,

for large amplitude of oscillation in heave, are presented for the both

the sphere and Wigley hull. For the latter, body non linear results

of the coupling between heave into the first distortion mode (2-node)

are also presented. The results of the fully non linear simulations are

presented for the case of a sphere.

An investigation of the suitability of two unstructured meshing li-

braries is also performed in the context of the MEL simulation scheme.

Practical issues related to (re)meshing at each time step, the repre-

sentation of ship like geometries, free surface evolution and numerical

stability are highlighted for both libraries.
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Chapter 1

Introduction

1.1 Problem Motivation

The present work addresses hydrodynamic problems based on potential flow the-

ory in which the effects of lift can be neglected. This formulation has been used

since the 70’s on a wide range of ship hydrodynamic problems, e.g seakeeping

analysis, wave resistance prediction, hydroelasticity, impact problems and so on.

More specifically, efforts focused in developing tools that allow for the analysis of

effects that cannot be addressed by the so called linear frequency domain analysis,

these effects are usually called ”potential flow non linear effects” or ”geometric

non linearities”.

There are, basically, three sources of non linear effects when it comes to po-

tential flow analysis, namely: the submerged geometry of the floating body, the

water line dynamics and the exact free surface boundary conditions.

In order to gain some intuition on how the submerged geometry can create non

linear effects in the hydrodynamic context, a parallel with the hydrostatic case can

be made. For instance, when a cylindrical column oscillates on a flat free surface,

the hydrostatic force it experiences is proportional to its submerged depth, z, and

its cross sectional area As, i.e: F = −zgAs, which is in fact proportional to the

vertical coordinate. On the other hand, if the cross sectional area of the geometry

is not constant, then even in the context of a constant pressure field (hydrostatic

pressure field is p = −gz) the hydrostatic force will actually have a non linear
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behaviour with respect to the vertical coordinate. The question that naturally

rises here is what sort of influence does the body geometry has when it comes to

more complex pressure fields, say the hydrodynamic pressure field ? Moreover,

of particular interest to the hydrodynamic analysis is how the components of the

hydrodynamic force proportional to velocity and acceleration vary as the body

submerged geometry is taken into account exactly. The effect of change in the

submerged body surface has led to formulations of the partly non linear methods

and body non linear methods, as discussed in chapters 3 and 7, respectively.

One of the main consequences of the assumptions made in the linear potential

flow theory is that the free surface boundary conditions can be linearized. If the

time domain perspective is taken, the linearization assumes a simpler dynamic

for the evolution of the free surface and, hence, the potential field in time. In

particular, the linearized free surface avoids problems of wave breaking that have

been causing numerical issues and limitations on the applications of the exact free

surface conditions (Beck et al. [1994]). From an implementation point of view, the

linearized free surface assumption is handy, to the extent that the computational

mesh on the free surface does not need to be deformed and hence the domain does

not change in time. That said, since the boundary value problem is coupled by

the free surface evolution and the potential on the floating body, it can be the case

that using the exact free surface boundary conditions, a different hydrodynamic

pressure field can arise, and, therefore, change the hydrodynamic force.

The effect of water line dynamic is somewhat more challenging to describe

since it seems to be a combination of both the geometry of the body and the

velocity field surrounding the intersection of the body and the free surface. The

velocity field is intimately associated with the free surface boundary conditions,

so that a linearized free surface formulation will probably yield a smaller potential

gradient on the free surface body intersection, hence, contribute less to changes

on the wetted surface. Note that this effect is enhanced in the case of incident

wave potential and diffraction. Furthermore, the intersection of the free surface

and body is a region where there is discontinuity of the normals of geometries,

which actually brings more complexity into the water line dynamics evolution

(Liu et al. [2001]).

From the perspective of the designer it is clear that a more accurate eval-
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uation of the hydrodynamic pressure field is of great importance, as it allows

for accurate loads to be predicted and therefore a more comprehensively struc-

tural assessment using either a quasi-dynamic or hydroelasticity analysis. In the

quasi- dynamic analysis, the loads on the vessel are estimated solving the rigid

body seakeeping problem and are then applied to the vessel structural model (

e.g beam or finite element model), the implicit assumption is that fluid structure

interaction coupling is reasonably small.

In situations where the fluid structure interaction coupling is not reasonably

small, the analysis can be made more consistent by means of the theory of hy-

droelasticity (Bishop and Price [1979] and Bishop et al. [1986]). In this context,

the interaction between the flexible floating structure and the fluid are tackled

together, combining the hydrodynamic effects with a dynamic structural anal-

ysis (e.g using beam or FE models). The hydroelastic approach has the main

advantage of being more general and capable of tackling the coupling between

seakeeping and global strength analysis. This is accomplished by accounting for

the flexible nature of the structure (as opposed to the rigid body conditions) in

the boundary conditions of the hydrodynamic problem.

Obviously either in the quasi-dynamic analysis or in the hydroelastic one,

the hydrodynamic pressure field plays a paramount role. In order to incorporate

different degrees of non linearity in the evaluation of the hydrodynamic forces,

several extensions have been developed. In the context of seakeeping analysis,

the partly linear method of Ballard et al. [2003] is probably the most natural

extension of the linear frequency domain analysis. Under the partly non linear

framework, the frequency domain results of linear analysis are mapped to time

domain by the use of Impulsive Response Functions (IRFs). These, although

still in a linear sense, provide a suitable way to estimate memory effects and the

influence of non-periodic forces in time domain by means of inverse Fourier trans-

forms and convolution integrals. This way, hydrostatics and incident wave actions

(Froude -Krylov forces) are calculated on the instantaneous wetted surface and

the hydrodynamic forces are estimated by their corresponding IRFs calculated

on the mean wetted surface.

The limitations of the partly nonlinear approach is that, although arguably

pitch and heave motions are dominated by nonlinear hydrostatic and inertia
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(Zhang et al. [2007]), the nonlinear effects on the radiation and diffraction po-

tentials are being neglected. In order to incorporate the non linear effects as-

sociated with radiation, the body non linear approach has been formulated in

time domain. Under this framework, the hydrodynamic problem is solved on the

instantaneous wetted surface, so that the changes in the submerged part of the

body are accounted for in both hydrostatics and hydrodynamic forces. Although

simple in theory, the extension from partly non linear to body non linear requires

considerable efforts, and several avenues of implementations can be pursued. In

this method, the free surface boundary conditions are linearized, but interest-

ingly Bernoulli’s equation can be used exactly on the body surface, showing that

the quadratic term is responsible for higher frequency force. However, the fact

the body wetted surface now changes bring considerable numerical challenges in

the evalution of potential time derivative, especially when the amplitude of the

motion is large.

The fully non linear potential flow problem has also been tackled in order

to evaluate the non linear effects under several different problems. These meth-

ods are usually built upon the Mixed Eulerian Lagrange scheme, or MEL for

short. Within this numerical framework, several non linear effects have been in-

vestigated, but numerical challenges and the need for computational algorithms

means that more investigations are required in this context.

It is also worth to point out that, in the context of potential flow, even if

simulations are carried out using the fully non linear free surface boundary con-

ditions, some of the problems are likely to be be poorly modeled. For instance,

it can be argued that during violent slamming flow separation occurs. Therefore,

the pressure field and its corresponding hydrodynamic forces need to be modeled

more precisely by Navier Stokes equations. Moreover, the wave breaking problem

is a natural limitation on fully non linear potential flow simulations and at, the

same time, a physical phenomenon that needs to be dealt with. One alternative

is to couple potential flow and volume of fluid simulations, so that the dynamics

of the breaking waves can be taken into account (Lachaume et al. [2003]) .
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1.2 Aims and Objectives

The aim of the present work is to try to address the effects, in the context

of potential flow, of relaxing some of the assumptions made by linear theory,

focusing on the solution of the radiation problem. Concretely, the efforts have

focused on the development of a methodology that is capable of tackling problems

of forced oscillations in either rigid or flexible modes and problems related to the

evolution of the free surface in time, using either the linear (linear and body non

linear simulations) and the non linear free surface boundary conditions. This

way, the problem of free motions in waves (which accounts for both the incident

wave and diffraction problems) is left out of the present scope.

That said, a numerical tool of this kind, not only generalizes the linear theory

predictions, but also allows the analysis of the variations of the amplitude of

the oscillatory motion, so that the so called large amplitude added mass and

damping coefficients can be investigated. These effects can be analysed in the

context of rigid bodies oscillations as well as elastic bodies with relatively small

deflections, so that the hydroelastic analysis of the radiation effects of the flexible

modes can also be investigated in time domain. The applicability of the current

methodology is limited to problems where the viscous effects play a small a role

and no separation of the flow is observed.

Therefore, a multi-problem approach is adopted synthesizing and building

upon simplified problems. This way, problems with an increasing degree of com-

plexity were tackled, in the following order:

1. Linear Analysis of Rigid Bodies;

2. Linear Hydroelastic Analysis;

3. Body non Linear Analysis;

4. Fully non Linear Analysis.

For all cases described above, the simulations are implemented in time domain

with the aid of a Mixed Euler Lagrange (MEL) scheme that is used to march the

solution of Boundary Value Problem in time.
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The task is by no means easy because problems associated with numerical

accuracy, mesh generation and, to a large extent computation time, are daunting

when linear theory assumptions start to be relaxed. For instance, a major benefit

of linear theory is the frequency domain representation in which the steady state

hydrodynamic force can be obtained for several frequencies by solving a linear

system once for each frequency of oscillation. On the other hand, the time domain

implementation, even in the linear case, calls for a time marching scheme where

the free surface boundary conditions are integrated in time and a time history of

the hydrodynamic force for each frequency is calculated.

1.3 Achievements and Contributions

The efforts of the present work have been concentrated in basically two fronts,

namely: the implementation of a hydrodynamic model capable of incorporating

some of the so called non linear potential flow effects and the investigation of

suitable meshing techniques that can be applied to mesh (remesh) the evolving

free surface as well as the floating body every time step. Note that these two

fronts are connected, since a mesh is needed for the implementation of the Euler

phase. In order to try to accomplish these tasks several algorithms are proposed

throughout the present work. More specifically, in the time domain context, the

structure of the MEL simulation, and the place where each developed algorithm

fits in, are summarized in figure 1.1.

In the first front, the equations that describe the evolution of the potential

flow in time domain are well understood from both mathematical and physical

perspectives. However, algorithmic and numerical challenges still remain, limiting

the applicability of tackling this problem through numerical simulations. The

contributions and achievements of the present work try to address some of these

issues.

As pointed out by Yan [2010] the main limitations of three-dimensional po-

tential flow time domain simulations rely in modeling multi scale variations on

the velocity potential function. This implies that a larger number of elements per

wave lengths are needed to approximate the velocity potential with a reasonable

accuracy in regions of steep gradients. On the other hand, for N elements, the
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Figure 1.1: Schematic view of the general structure of potential flow simulations
in time domain.

running time, for assembling and solving the linear systems that arise in this ap-

plication, scale as O(N2), limiting its practical use. In order to tackle this issue,

the present work has concentrated its efforts on the use of unstructured trian-

gle meshes, which are usually harder to build (compared to structured meshes)

but are able to describe the domain using fewer elements. Moreover, unstruc-

tured meshes can be made more dense (have more elements per area) in parts

of the domain where the velocity potential has a complex behaviour (near the

water line, for instance) and more coarser in other regions. Therefore, one of

the achievements of the present work has been in developing a methodology that

incorporates the MEL scheme with unstructured meshes, for linear, body non

linear and fully non linear problems in the context of forced oscillations. For the

linear case, the methodology is summarized in algorithm 3, for rigid body forced

motions simulations, and algorithm 4, for the unified hydroelastic simulations.

It is also important to point out that in order to extend the linear time domain

constant panel method to account for body non linear and fully non linear effects,

several numerical challenges had to be addressed. Among them, three problems

stand out, namely:
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1. The estimation of the velocity potential time derivative by a finite difference

scheme and the solution of a second boundary value problem.

2. The estimation of the spatial derivatives of the velocity potential by intro-

ducing an RBF representation;

3. Avoid spurious modes of oscillation on the time series of the hydrodynamic

force by introducing a regularization factor on the RBF representation;

The estimation of the velocity potential time derivative is very important (it

corresponds to the inertia term in Bernoulli’s equation) and, at the same time, its

evaluation is not straightforward when the boundary value problem is solved at

the instantaneous body surface. In the present work, two algorithms are proposed

to estimate it (Algorithms 5 and 6). The results are compared for the case of a

sphere undergoing forced oscillations to other numerical procedures.

By the same token, the spatial derivatives of the velocity potential can con-

tribute to second order effects in the hydrodynamic force. Moreover, their approx-

imation is needed as a boundary condition to solve the second boundary value

problem for the velocity potential time derivative, which is then solved exactly

(Algorithm 6). In this case, once the spatial derivative is available, the boundary

condition derived by Battistin and Iafrati [2003] can be imposed on the body

surface in a straightforward fashion, still using a constant panel method.

As it will be seen later on, inaccuracies of the constant panel method on the

estimation of the normal velocity on the free surface (solution of the Dirichlet

problem) can induce spurious modes of oscillations in the hydrodynamic force.

In order to deal with this effect, a regularization term is introduced on the radial

basis function representation. A parallel with the problem of supervised learning

is also briefly explored.

In order to to cope with fully non linear free surface boundary conditions for

the case of the sphere undergoing forced motions in heave, algorithm 5 is extended,

yielding algorithm 7. In this simulation, a great deal of numerical diffusion is

observed. In order to filter these modes, hence the Hilbert-Huang Transform

(Huang et al. [1998]) is used and its parallel with the Fourier decomposition is

also briefly outlined in the appendix.
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The investigation of suitable meshing techniques, to enable the generation of

unstructured non uniform grids, was also performed. One of the investigated

algorithm was developed by Persson [2005], and builds heavily on the concept

of signed distance functions and iterative Delaunay triangulations. For simple

geometries (those which the signed distance function is analytic) the use of this

algorithm is straightforward. On the other hand, for ship like geometries and

for the free surface, the signed distance function needs to be estimated before

the meshing scheme is called. In order to estimate the signed distance functions

numerically two more algorithms 1 and 2 are proposed. Their suitability for the

problem of hydrodynamic simulations is discussed as well.

Alternatively, a second meshing algorithm Geuzaine and Remacle [2009], that

is built on a more conventional hierarchical meshing techniques is also analysed

in the context of hydrodynamic simulations. Finally, the pros and cons of each

methodology (Persson [2005] and Geuzaine and Remacle [2009]) are investigated

and highlighted.

In a nutshell, the present methodology can be regarded as hybrid numerical

method whereby the solution of a mesh based constant panel method is coupled

with a radial basis function representaion, which is meshless. This last step brings

differentiability to the CPM solution allowing spatial derivatives to be estimated.

1.4 Thesis Outline

The present work is organized as follows: in chapter 2, the relevant publications,

regarding the formulation of the hydrodynamic problem are briefly outlined and

discussed for the cases of rigid and flexible floating bodies. In chapter 3, the

importance of the modeling the non linear effects is highlighted by investigating

the influence of forward speed on the dynamic behaviour of an S175 conteinership

under frequency domain and partly non linear methods. The mathematical for-

mulation of the time domain problem is introduced in chapter 4, where departing

from Laplace’s equation an integral formulation for the problem is derived.

In chapter 5, the investigation of two unstructured meshing libraries for the

purpose of hydrodynamic simulations is performed. In this sense, the necessary

modifications/inputs needed to each library to account for the change of domain
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in time are detailed. In particular, since the input for the meshing technique de-

veloped by Persson [2005] is a signed distance function, the problem of estimating

signed distance functions for ship like shapes and the free surface evolution was

tackled. It is also highlighted how the heuristic techniques used by Persson [2005]

to generate high quality meshes can also naturally induce numerical diffusion in

the hydrodynamic simulation. The meshing library developed by Geuzaine and

Remacle [2009] was also investigated and used to create the meshes of the Wigley

hull, for both linear and body non linear simulations.

The linear radiation problem is then solved in chapter 6, for a simple hemi-

sphere and Wigley hull undergoing forced harmonic motions. The linear time

domain algorithm is then extended for the unified hydroelastic case, so that the

Wigley hull is idealized as an Euler beam. The results for the rigid modes are then

compared to analytical solutions (for the hemi sphere ) and available experimental

data for the case of the Wigley hull. The results for the hydroelastic analysis is

compared with 2D strip theory and 3D frequency domain analysis.

The extension of the linear problem for the Body non linear and fully non

linear cases is done on chapter 7. For these cases, due to the nodes movement and

inaccuracies of the CPM method in estimating the free surface normal velocity,

the regularized rbf representation was introduced. Furthermore, the problem of

estimating the time derivative of the potential was tackled using two formulations,

namely: one based on a backward finite difference scheme and another that solves

an auxiliary boundary value problem for the potential time derivative exactly.

Results of the body non linear approach for rigid body heave mode are presented

for the sphere and Wigley hull and compared to other numerical methods as well

as experimental results when available.

Finally, chapter 8 concludes the work, discusses future avenues and extensions

of the present numerical method.
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Chapter 2

Literature Review

In this chapter, the relevant publications for the current project are presented

and discussed. The review is organized in two major sections as follows: the

first one covers a review of the fluid-structure interaction problem of rigid bodies,

whereas the second section relates to the discussion associated with fluid-structure

interaction problems that account for the body flexibility. In addition, the rele-

vant methods available to extend the linear problem of rigid or flexible bodies to

account for partial non-linear and fully non linear effects are also discussed.

2.1 Rigid Body

In Inglis [1980] a three dimensional theory of a floating structure traveling in

waves is developed. In this work the fluid is regarded as inviscid and the sea-

keeping problem is solved in the frequency domain. This way, the free surface

boundary conditions are linearized allowing the implementation of the pulsating

Green function source distribution. The resulting integral equation is then solved

by the constant panel method. Predicted results for a series 60 hull showed bet-

ter agreement to experimental data than the previous predictions provided by

two-dimensional strip theory. In addition, the effect of shallow water and the

influence of the forward speed in the motions of ships traveling in waves are also

investigated.

In Sclavounos and Huang [1993], the boundary value problem is treated using
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a linear potential flow framework (linearized free surface and body boundary

conditions are applied) and solved on the frequency domain through the use of

Rankine Panel Method (RPM), with quadrilateral panels distributed over the

ship hull and free surface. In addition, a bi-quadratic spline variation of the

velocity potential over the surface of each panel is assumed and a Kutta type

condition to enforce smooth detachment of the steady and unsteady flow at the

stern is also applied. The results present the Kelvin wake of a transom stern ship

in steady flow, the hydrodynamic coefficients, heave and pitch motions and wave

induced structural loads in time harmonic flow for three vessels: SL7, S-175 hulls

and an IACC yacht. Heave and pitch motions show good agreement with the

experimental data whereas the structural loads (bending moments and vertical

shear forces at amidships for the SL7 and S-175) showed great dependence upon

the amplitude of heave and pitch motions and the account of waterline terms

in the definition of the loads. The major drawback of the RPM is that the far

field closure is not satisfied by the corresponding Green function, and, therefore,

additional conditions need to be imposed in order to guarantee the uniqueness of

the solution of the integral equations in an unbounded domain.

A linear time domain analysis of the seakeeping problem is carried out by

Zhang et al. [2010] using double body basis flows. In this approach, the desin-

gularized panel method is used to collocate the sources above the free surface

whereas panels with constant strength are distributed over the hull surface. The

free surface boundary condition is applied on the calm water, whereas the body

boundary condition is applied on the mean wetted hull surface (linear approach).

A MEL algorithm is used for the time marching scheme of the free surface. Re-

sults for the Wigley Hull and Series 60 show good agreement with experimental

data Gerristma et al. [1974] and improvements when compared against the pre-

dictions of the following methods: Neuman -Kelvin approximation with simplified

m terms, linearized free surface conditions with double-body m terms and time

domain body exact strip theory Bandyk [2009]. On the other hand, the method

needs to be extended to take into account non linear effects as well as more

realistic hull forms.

A large amplitude 3D non linear methodology for the assessment of large am-

plitude motions and wave loads on a ship traveling on the seaway was developed
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by Lin et al. [1994]. Their approach consists of satisfying the body boundary con-

ditions on the instantaneous water line whilst the free surface boundary condition

is linearized, thus allowing the use of a time domain transient Green’s function.

This way, the Froude Krylov forces and the nonlinear hydrostatic restoring ac-

tions are calculated accurately, whereas the hydrodynamic radiation and diffrac-

tion forces are approximated at each time step. The approximation is done by

using the local free surface elevation to transform the body geometry into a com-

putational domain with a deformed body and a flat free surface. Predictions of

heave and pitch motions as well as vertical bending moment at midship using the

large 3 D non linear method (Large Amplitude Motion Program version 4, LAMP

4) are then compared against measured data and three other models: linear strip

theory, the 3D linearized time domain method (LAMP 1) and the approximate

large amplitude 3D nonlinear method (LAMP 2). Results are then presented for

a series 60 model and for the S175 container ship. The predictions of the LAMP 4

model, for heave and pitch motions of the series 60 model, show better agreement

with experimental data than the predictions of LAMP 2 and also predict higher

vertical bending moment at midships. Furthermore for the S175 container ship,

LAMP 4 predictions for heave motions are in good agreement with experimental

data and show a substantial gain from the previous methodology implemented

in LAMP 2; however, results for the pitch mode have shown only a reasonable

agreement with measured data. Further methods and numerical issues leading

forward a fully non linear method are discussed as well.

The partly non linear rigid body problem was also addressed by Bailey et al.

[1998] where the authors proposed a general mathematical model to address the

problem of manoeuvring and seakeeping for a ship moving in a seaway using three-

dimensional potential flow analysis. The equations of motions for both seakeep-

ing and ship manoeuvring problems are formulated with respect to two different

frames of reference (equilibrium frame and body fixed frame respectively) and

relations between the slow motion and oscillatory derivatives (manoeuvring the-

ory variables) are derived in terms of the hydrodynamic coefficients ( seakeeping

theory variables). In this approach, the non linear Froude-Krylov and hydrostatic

forces are calculated at each time step considering the instantaneous under water

portion of the hull, whereas the wave diffraction contributions are estimated by
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their respective impulse response function referenced to both equilibrium frame

and body fixed frame. Furthermore, within the bounds of linear theory, a convo-

lution integral representation of a general fluid action is also presented allowing

the evaluation of either the hydrodynamics coefficients or slow motion and os-

cillatory derivatives. This way, integro - differential equations of motion can be

constructed either using the manoeuvring theory variables or the seakeeping the-

ory variables. The methodology is then validated against the experimental data

available for a Mariner ship. At lower frequencies predicted hydrodynamic coef-

ficients show some differences, however, after the introduction of a linear viscous

ramp damping effect, a good agreement is then achieved between the theoretical

and experimental data over a wide frequency range.

In Bailey et al. [2002], the time domain method on Bailey et al. [1998] is further

developed and applied to the prediction of heave and pitch motions in regular

waves. The method considers both linear and partly non linear 3D models. In the

linear frequency domain model, the fluid forces and moments acting on a ship are

evaluated using a pulsating source distribution over the mean wetted surface of the

hull (Inglis [1980]). For the partly nonlinear model the methodology proposed by

Bailey et al. [1998] was used. Predicted heave and pitch RAOs by both methods,

are compared against experimental results for a Series 60 hull and for the S175

container ship and, where available results from the LAMP (Lin et al. [1994])

family programs. In addition, the presented model provides results in line with

the predictions of LAMP 2 program.

Methods that, in theory, should be able to account for the non linearities of

the free surface exactly have also been developed for three dimensional wave sim-

ulations and for fully non linear wave body interactions. These methods basically

rely on the Mixed Eulerian Lagrangian (MEL) and the Arbitrary Eulerian La-

grangian (ALE) formulations. Basically, the idea of a MEL scheme is to capture

the time domain evolution of the linear or non linear free surface boundary con-

ditions by integrating them in time. Therefore, the problem is usually splitted

in a Eulerian and Lagrangian phase. The MEL is often used within the context

of potential flow problems, but it can also, in theory, be used to tackle fluid flow

being governed by Euler or Navier Stokes equations. The main drawback in the

two latter cases is due to the complexity of velocity field Lagrangian nodes move-
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ments distorts the domain too much, raising problems related to meshing the fluid

domain. One way to overcome the disadvantages of the MEL scheme, but keep-

ing its good features, is to introduce ALE framework; the ALE is, in a sense, a

generalization of the MEL scheme (i.e the Lagrangian and Eulerian descriptions

can be recovered as particular cases) and its applicability is usually related to

solvers of the Navier Stokes Equation for problems where the domain is changing

in time. Another way to overcome problems related to mesh distorion is to pursue

mesh free formulations, where the Eulerian phase is not necessary anymore, this

idea is the starting point of smooth particle hydrodynamics formulations, see for

instance Cossins [2010].

The main feature of both MEL and ALE scheme is to try to combine the

advantages of using Eulerian and Lagrangian descriptions of flow, in order to

minimize mesh distortions so that calculations can still be performed. In the ALE,

the governing equations are formulated in an arbitrary domain, this means that a

suitable grid velocity is introduced in order to simplify the modeling of convection

terms and minimize mesh distortions; its main drawback is the introduction of

the mesh governing equation which also needs to be solved on the fluid domain.

MEL schemes formulate the problem in two main phases a Lagrangian and and

an Eulerian phase, this way convection terms are avoided and the particles of the

fluid are followed throughout their motion. Hence a MEL scheme can be viewed

as an ALE scheme where the grid velocity is precisely the same as velocity of the

fluid particles.

In Huerta and Liu [1988], the ALE method is applied to model the two dimen-

sional free surface evolution of viscous flow. In this publication, the description of

the ALE approach is presented and the governing equations of the fluid motion

are developed in this framework. Three methods for mesh rezoning algorithm

(Mesh motion described a priori, Lagrange-Euler matrix method and the mixed

formulation) are introduced to update the mesh and map the moving domain.

Using the mixed formulation, the mesh updating equation is solved by the stream

line upwind Petrov-Galerkin finite element method. Results show progress in the

modeling of a tsunami wave, large amplitude sloshing example and a dam break

problem.

Another application of the ALE to two dimensional free surface flows was
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carried out by Masud and Hughes [1997], where a space time Galerkin/least

squares FEM formulation of the Navier Stokes equations is implemented for the

analysis of deforming fluid structure interfaces. Numerical results are presented

for a circular cylinder moving in a stationary viscous flow field, a solitary wave

propagation without viscosity and missile launch from a submarine. A complete

summary of ALE formulation can be found in Stein et al. [2004].

The foundation of the MEL method was established originally to simulate the

dynamics in time domain of steep waves in two dimensions by Longuet-Higgins

and Cokelet [1976]. In this work it is shown that under the assumptions of po-

tential and irrotational flow the fully non linear free surface boundary conditions

can be integrated explicitly when the Lagrangian description of the flow is used.

This way, at each time step, the simulation can be split in two main steps. In the

first step (Eulerian phase), the conventional boundary integral equations (BIE)

are solved; in this case, given an initial potential for the velocity the Dirichlet

problem is solved by the BIE formulation to obtain the normal components the

velocity field. In the second step (Lagrangian phase), the kinematic and dynamic

boundary condition of the free surface are integrated resulting in a new free sur-

face position and an updated velocity potential . The process is then repeated.

Their method was then tested on a free, steady wave of finite amplitude and

compared against independent calculations based on Stokes’ series, showing good

agreement.

In Beck et al. [1994] non linear computations of ship motions are presented

for 2 and 3 dimensional cases using the Rankine panel method (RPM). Exciting

forces acting on a wedge and the free motions of a box barge are tackled using

the two dimensional approach. The added mass and damping coefficients of a

Wigley hull, in heave and pitch motions, are calculated for the three dimensional

case. MEL was used to solve the mixed boundary value problem at each time

step. In addition, a desingularized boundary integral method, in which the solu-

tion is constructed by integrating a distribution of fundamental singularities over

the integration surface outside the fluid domain, is implemented. The results

show good agreement with experimental data, however, the method needs to be

extended to more realistic hull forms.

A MEL scheme is combined with a higher order BEM in Liu et al. [2001]
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in order to simulate the fully nonlinear wave body interactions for two prob-

lems: the generation of three dimensional ship bow waves (for a flared wedge,

Wigley and Series 60 hulls) and the prediction of high frequency ringing loads

on a vertical cylinder in regular waves. This way, quadratic isoparametric panels

are distributed over the domain and a double node technique is developed to

treat the confluence of different types of boundary conditions (Dirichlet bound-

ary conditions for the free surface and Neumann type for the body). In addition,

a method is developed to update the free surface intersection and cubic splines

in both parametric directions are used for grid regeneration purposes. The far

field closure problem is tackled by the introduction of a numerical sponge layer

on the perimeter of the computational domain. In the first problem, the bow

wave profiles obtained from MEL are compared with quasi two dimensional sim-

ulations and linearized slender body theory. In addition, results for the Wigley

hull and Series 60 bow wave profile are compared with experimental data show-

ing good agreement. Good agreement is also achieved between the results for

the predictions of high frequency ringing loads and available experimental data.

Some limitations of the MEL such as breaking waves and the consequences of

the clustering of Lagrangian particles in regions of high flows gradients are also

discussed.

In Zhang et al. [2007] the MEL scheme developed by Liu et al. [2001] is com-

bined in the LAMP program to obtain a three dimensional time domain poten-

tial flow solution of the body wave interaction problems using linear free surface

boundary conditions. For a flared axisymmetric body, a comparison between the

constant panel method (CPM) , available experimental data and the QBEM is

presented. Although it is shown that the QBEM is more accurate than the CPM

when the same number of panels are used and can represent more accurately

edges and corners of complex geometries, results for vertical motions (heave and

pitch) have not shown a significant difference. Relevant numerical issues are dis-

cussed, in particular, in order to keep the free surface stable, a linearized version

of the dynamic boundary condition, taking into account linearized components

of the velocity field, is used to update the potential on the free surface.

The work of Battistin and Iafrati [2003] considered the problem of calculating

hydrodynamic loads, in two dimensions, during water impact. Interestingly, to
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address this problem accurately, two boundary value problems are formulated.

On the first one, the potential on the free surface is imposed together with a im-

pervious boundary condition on the floating body. This problem is then solved for

the potential on the floating body and normal velocity on the free surface. Next,

on the second boundary value problem, the time derivative of the potential is im-

posed on the free surface and the its normal derivative (i.e the normal derivative

of the time derivative of the velocity potential) is imposed on the floating body.

The solution of the second boundary value problem yields the normal acceleration

on the free surface and the time derivative of the potential on the floating body,

so that the pressure can be evaluated directly after the second boundary value

problem is solved. Furthermore, using techniques form differential manifolds an

approximation is derived for the the normal derivative of the time derivative of

the velocity potential on the floating body.

A MEL/BEM scheme was also used by Kara et al. [2007] to solve the steady

three dimensional wave generation problem of a ship traveling with constant for-

ward speed in calm water. At each time step, the algorithm solves the boundary

value problem in an Eulerian frame by the indirect desingularized boundary inte-

gral method. Then, a Lagrangian frame is used to integrate the exact free surface

conditions with respect to time by an explicit fourth order Runge Kutta method.

In this second step, the kinematic free surface condition integration yields the

free surface movement whereas the dynamic free surface condition is used to up-

date the free surface potential. The intersection line between the free surface

and body surface (Dirichlet and Neumann boundaries respectively) is described

by the panel vertices at the edge of the surfaces. Furthermore, a computational

window and a node shifting scheme are also developed to satisfy the far field

boundary condition. Numerical results (wave resistance and wave elevation) are

compared with existing linear theory, experimental measurements for Series 60

hull and other nonlinear numerical computation.

More recently, the higher order BEM developed by Liu et al. [2001] was ex-

tended by Yan [2010]. This implementation is very efficient from a computational

perspective as it uses the pre-corrected fast Fourier transform to accelerate the

calculation of the far field influences. The computational efficiency of this scheme

is comparable to the fast multipole implementations (see for instance Liu [2009]),
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in which, for N unknows, the computational time becomes proportional to NlogN

(or O(NlogN)). Three dimensional fully non linear simulations are then carried

out for heaving sphere and to the problem of ringging loads in a vertical cylinder.

For ship like forms the wave resistance problem, also solved by Liu et al. [2001],

is recasted using the pre-corrected Fourier Transform BEM. Next, two dimen-

sional water entry problems for low Froude numbers and impact problems are

addressed. Finally, the three dimensional problem of large spar floating structure

(i.e a large vertical cylindrical floating body) is also investigated.

2.2 Flexible Body

The three dimensional linear theory of hydroelasticity in the frequency domain

was developed by Bishop et al. [1986]. In their analysis the seakeeping problem

of a rigid body moving on irregular waves is generalized, so that distortions (in-

cluding rigid modes) and their interactions with the fluid are taken into account.

The three- dimensional structure is consider to be in vacuo and is represented

by a finite element model. The three- dimensional hydrodynamic analysis of

the fluid actions is carried out using the linear free surface boundary conditions.

Generalized hydrodynamic and hydrostatics forces are then calculated with the

aid of the modal analysis of the structure. Comparisons between the results

obtained from the three- dimensional theory and the two dimensional hydroelas-

ticity strip-beam theory are presented for a uniform box beam like ship showing

good agreement. In addition, a hydroelasticity analysis of a small water-plane

area twin hull (SWATH) is performed.

The non linear three dimensional hydroelastic response of a SWATH vessel

traveling in regular and irregular waves is investigated using the second order

hydroelasticity theory developed by Wu et al. [1997]. The hydrodynamic actions

are evaluated using pulsating and translating Green source functions. This way,

the influences of the forward speed and the steady wave flow are taken into ac-

count on the hydroelastic response of the hull. More specifically, the translating

and pulsating Green function source was applied in conjunction with uniform

flow, double body flow and the steady Kelvin wave flow. Furthermore, the hy-

drodynamic actions induced by the rigid body motions and variations of the
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instantaneous wetted surface area are also included in the analysis. Comparisons

between linear (frequency domain) heave and pitch RAOs against model tests are

presented for the pulsating and translating source Green functions. It is found out

that the results obtained using the translating and pulsating Green function in

conjunction with the Kelvin wave flow agree better with the experimental data.

Results for the non linear and linear hydroelastic responses are also compared

and presented in time domain for heave and pitch motions, horizontal and ver-

tical deflections and Von Mises stress at relevant points of the structure. These

data highlights the increase in the stress predicted by the second order hydroelas-

tic theory especially when the variation of the instantaneous wetted surface area

is included.

In Park and Temarel [2007], the nonlinear two dimensional hydroelasticity

response in regular head waves is obtained. The main concept lies in separat-

ing the principal coordinates into linear and nonlinear parts. In this sense, two

methods are used: convolution and direct integration techniques. In the convolu-

tion method, linear and nonlinear solutions are combined, meaning that the time

domain response is estimated by IRFs (calculated from the frequency domain

analysis by inverse Fourier Transforms) convoluted with linear and non linear

force components. The second method evaluates hydrostatics and hydrodynamic

effects on the instantaneous wetted surface and integrates the equations of mo-

tion directly in time domain. Results of nonlinear symmetric responses, heave

and pitch motions as well as bending moments and shear forces, are presented

for a range of speeds and wave length and steepness values for the S175 container

ship moving in regular head waves. Comparisons between linear theory and the

presented results are made, pointing out the significance of non linear effects in

the prediction of sagging and hogging bending moments. In addition, the pre-

sented results are in agreement with available experimental data of the bending

moment loads of the S175 container ship.

The fluid structure interaction of a nonlinear / non-periodic incident wave over

a vertical elastic plate is studied by He and Kashiwagi [2009]. Two-dimensional

simulations are carried out in time domain. The free surface flow is modeled by

a MEL scheme which is solved by a higher order BEM. On the other hand, FEM

is used to address the structural problem. The coupled motions are then solved
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as single system in a monolithic way using a fourth order uniform time step with

Rungge Kutta integrator. Comparisons of the results showed that the hydroe-

lasticity behaviour depends, as should be expected, on the plate stiffness and on

the edge conditions of the plate. Linear analytical solutions of the wave elevation

are also compared with nonlinear calculations showing a similar behaviour but

flatter troughs.

2.3 Conclusive Remarks

From the above, it is clear that up to now the afore mentioned drawbacks of

the MEL scheme have, to a certain extent, limited its applicability to the fully

non linear seakeeping problem of more realistic hull forms. For a fully nonlinear

computation it seems that the major problems to overcome are related to wave

breaking and the mesh distortions caused by the clustering of Lagrangian parti-

cles in regions of high velocity gradients (Longuet-Higgins and Cokelet [1976]);

both problems leads to a simulation break up. Alternatives are currently be-

ing tried and evaluated. For instance, in Zhang et al. [2007] it is argued that

the clustering of Lagrangian particles can be circumvented by the desingularized

boundary element method, placing the sources above the free surface and keep-

ing them fixed throughout the simulation.They also use a linear form of the free

surface boundary conditions , that in theory , should prevent or at least delay

the breaking wave phenomenon.

However, some developments did take place, especially in what concerns the

run time of the algorithms. For instance, Liu et al. [2001] used a generalized min-

imum residual algorithm (GMRES) and a symmetric successive over relaxation

(SSOR) pre-conditioning;tin this method the computational effort required was

at most O(N2.3). On the other hand, iterative methods for the calculation of far

field influences, such as the Fast Multipole Method Boundary Element Method

Liu [2009] or the pre-corrected fast Fourier transform can reduce the computa-

tional effort to at most O(NlogN), hence allowing large scale problems to be

tackled at the cost of daunting numerical implementation.
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Chapter 3

Frequency Domain and partly

non linear Seakeeping Analysis

The aim of this chapter is to compare the heave and pitch motions for the S175

containership, travelling in head regular waves, obtained from existing frequency

domain linear and time domain partly nonlinear potential flow analyses. The

frequency domain methods comprise the pulsating and the translating, pulsating

Greens function methods, with the relevant source distribution over the mean

wetted surface of the hull. The time domain method uses the radiation and

diffraction potentials related to the mean wetted surface, implemented using Im-

pulse Response Functions (IRF), whilst the incident wave and restoring actions

are evaluated on the instantaneous wetted surface. The calculations are carried

out for a range of Froude numbers, and in the case of the partly nonlinear method

for different wave steepness values. Comparisons are made with available exper-

imental measurements. The analysis of the results highlights the necessity of a

more accurate nonlinear approach for predicting the radiation potential.

3.1 Linear Analysis in Frequency Domain

In this section a brief description of the main features of linear frequency domain

theory is given. A more detailed description can be found in Inglis [1980]. The

aim of linear frequency domain analysis is to solve Laplace’s equation in the fluid
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domain, subject to the so called linearised boundary conditions. In the boundary

element context this gives rise to an exterior Neumann problem, where the singu-

larities (in this case the pulsating or translating pulsating Green’s function) are

distributed on the wetted mean surface of the hull, satisfying both free surface

boundary conditions and the radiation condition at infinity. The boundary value

problem is then solved for the potential on the hull surface, which is then used to

estimate the hydrodynamic coefficients and the exciting forces acting on the ship.

Subsequently the equations of motion, for each encounter frequency, are solved

yielding transfer functions, or Response Amplitude Operators (RAOs) over the

whole frequency range.

In this approach the velocity potential is assumed to decouple into two parts

namely, steady and unsteady. In addition, the unsteady potential is also de-

composed into components relating to incident wave excitation, diffraction and

radiation. Furthermore, if the ship is in the presence of plane progressive waves,

both fluid and rigid body motions can be considered to be time harmonic Newman

[1977]. Hence, denoting φ̂, φ0 and φ7 the steady, incident wave and diffraction

potentials respectively. In addition, letting φj , j=1,..,6 , be the radiation poten-

tials and ξj, j=1, ...,6 be the amplitude of the motions that body experiences in

surge, sway, heave, roll, pitch and yaw respectively, the total velocity potential

can be written in the following form Newman [1977]:

Φ(~x, t) = Uφ̂+ <(exp(iωet)(φ0 + φ7 +
6∑
j=1

ξjφj)). (3.1)

In equation 3.1, ~x is expressed at the equilibrium axis along the ship, with

the equilibrium axis system typically being right handed, situated at the mean

water line with its origin aligned with the longitudinal position of the center of

gravit and pointing upwards. U denotes forward speed and ωe is the encounter

frequency, evaluated in deep water, i.e:

ωe = ω + Ukcos(χ), (3.2)

where, ω is the wave frequency, and in deep water, k = ω2/g. χ is incident wave

angle, measured from the bow, counterclockwise.
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Denoting the normal direction of the mean wetted surface of the hull by ~n,

the boundary conditions for the incident wave and diffraction potentials, i.e the

impervious boundary condition on the hull (or Neumann boundary conditions)

are imposed on the mean wetted surface, S, of the hull, namely:

∂(φ0 + φ7)

∂n
= 0. (3.3)

Phisically, the radiation boundary condition states that the normal velocity of

the fluid is the same as the normal velocity of the hull on its (mean) wetted surface.

Its treatment is more subtle because, in the presence of forward speed, it accounts

for contributions not only of the radiation potentials but also the steady potential.

It is in order to simplify the treatment of the radiation boundary condition that

some simplifications in the form of the steady flow are made. Neglecting second

order terms the steady flow velocity, in the equilibrium axis system, is expressed

as ~W = U∇(φ − x1) . The boundary condition for the radiation potentials, on

the mean surface S, then becomes Olgilvie and Tuck [1969]:

∂φj
∂n

= iωenj + Umj, (3.4)

where nj denote the components of the normal vector and the termsmj involve

the influence of the steady flow Inglis [1980]. If it is assumed that the perturbation

of the flow due to steady forward motion can be neglected, then the mj terms

can be further simplified to mj=0 for j=1,2,3,4 and m5 = n3, m6 = −n2 by

uncoupling steady and unsteady flow effects, namely ~W = (−U, 0, 0).

Under these considerations, the free surface can be linearised Newman [1977].

Therefore, the boundary conditions for the unsteady potentials are given by:

∂φ2

∂t2
− 2U

∂φ2

∂t∂x
+ U2∂φ

2

∂x2
+ g

∂φ2

∂x2
= 0. (3.5)

Equation 3.5 further simplifies for simple harmonic variation with time, with

the pulsating source satisfying the zero forward speed and the translating, pul-

sating source the forward speed dependent free surface condition, respectively

Newman [1977]. The remaining far field boundary condition is satisfied by both

the pulsating and translating, pulsating Green’s functions. Therefore, Laplace’s
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equation together with the boundary conditions specified by equations 3.3, 3.4,

3.5 and the far field radiation condition constitutes an exterior Neumann problem,

which is solved for the potential on the hull.

It is also important to point out that since the potential 3.1 is harmonic in

time, the value of its time derivative (needed to calculate the pressure acting on

the hull) can be easily derived from the potential value itself analytically.

Once the incident wave potential is given and the radiation and diffraction

potentials are known one can estimate exciting forces and hydrodynamic coeffi-

cients at each encounter frequency. Therefore, the equations of motion for the

ship in regular waves can be written as Salvensen et al. [1970]:

6∑
j=1

ξj(−ω2
e(Mij + Aij) + iωeBij + Cij = aFi (3.6)

Equation 3.6 is a system of six simultaneous linear equations which are solved

for the ship motions ξj. The coefficients Mij refer to the mass and inertia prop-

erties of the ship. Aij and Bij are hydrodynamic added mass and damping coeffi-

cients obtained from the radiation potentials Inglis [1980]. Cij are the hydrostatic

restoring coefficients, a is the wave amplitude of the regular wave and Fi, i=1 to

3, corresponds to the forces in surge, sway, heave and moments (i=4 to 6) in roll,

pitch and yaw, respectively. The quantities of interest in the present analysis are

the heave and pitch motions, namely ξ3 and ξ5.

3.2 Time domain Partly non Linear Method

In this section a summary of the main features of the partly nonlinear method,

Bailey et al. [1998] and Ballard et al. [2003], is provided. The main goal is not to

explain the method in detail, but rather describe the basic equations and link the

impulse response functions to the estimation of the coefficients for the system of

differential equations to be solved.

In this chapter when using the partly nonlinear method the ship motions are

referenced to the body (fixed) axes. The body axes comprise an upright right

handed coordinate axes Cxyz with the origin C at the centre of gravity of the

hull, and Cxz in its longitudinal plane of symmetry.
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In the case of symmetric motions, ignoring the effects of surge, it can be

shown that heave and pitch accelerations, ẇ and q̇ (adopting the conventional

manoeuvring nomenclature) , can be written as a function of the heave and pitch

velocities, w and q, the displacement of the ship centre of gravity, zC , the Euler

pitch angle, θ and time t. That is to say:(
fw(w, q, zC , θ, t)

fq(w, q, zC , θ, t)

)
=

(
m− Z̃ẇ(∞) −Z̃q̇(∞)

−M̃ẇ(∞) Iyy − M̃q̇(∞)

)(
ẇ(t)

q̇(t),

)
(3.7)

where the matrix in the right hand side of equation 3.7 contains the ship mass, m,

the pitch moment of inertia Iyy, as well the infinite frequency value of the accel-

eration oscillatory coefficients. It is interesting to point out the analogy between

Z̃w and A33, Z̃q and A35,M̃w and A53 and M̃q and A55, namely the acceleration

oscillatory coefficients in the body axes and the added mass coefficients in the

equilibrium axes. The relationships between these coefficients are given in Bailey

et al. [1998].

The functions fw and fq physically represent the forces (for heave) and mo-

ments (for pitch) acting on the ship . For the heave mode, it can be written as

Bailey et al. [1998]:

fw = Zτ + Zαr + Z̃w(∞)w + Z̃q(∞)q +mqU, (3.8)

and for pitch as:

fq = Mτ +Mαr + M̃w(∞)w + M̃q(∞)q. (3.9)

In equations 3.8 and 3.9 the terms Z̃w , Z̃q ,M̃w and M̃q contain the infinite

values of the velocity oscillatory coefficients. These are analogous to the damping

coefficients B33, B35, B53 and B55 used in the conventional seakeeping analysis

and relationships between them and the oscillatory coefficients are given byBailey

et al. [1998]. The main difference is that the former are defined with reference to

the body axes whereas the latter are, by definition, expressed in the equilibrium

axes. In equations 3.8 and 3.9, Zτ and Mτ are the forces and moments due to
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radiation potentials. These are expressed in terms of convolution integrals, ie:

Zτ =

∫ t

0

zw ∗ (τ)w(t− τ)dτ +

∫ t

0

zq ∗ (τ)q(t− τ)dτ, (3.10)

Mτ =

∫ t

0

mw ∗ (τ)w(t− τ)dτ +

∫ t

0

mq ∗ (τ)q(t− τ)dτ, (3.11)

where z∗w and z∗q represent the heave- heave and heave-pitch IRFs, whereas m∗w

and m∗q are the pitch-heave and pitch-pitch IRFs. In the present work these IRFs

are obtained from the frequency domain hydrodynamic data (i.e. hydrodynamic

damping coefficients) through the use of discrete Fourier transforms. Thus, it can

be seen that these hydrodynamic forces and moments are with reference to the

mean wetted surface.

The terms Zαr and Mαr in equations 3.8 and 3.9 account for the wave dis-

turbance (incident and diffraction) and restoring actions. The Froude-Krylov

(incident wave) and restoring actions are evaluated over the instantaneous wet-

ted surface. This requires discretisation (i.e. panelling) of the entire surface of

the ship, up to the main deck, and identification of the instantaneous attitude of

the ship with respect to the incident wave. Subsequently the pressures over the

instantaneous underwater portion of the hull are summed up to provide relevant

forces and moments. On the other hand the diffraction actions are evaluated in

a manner similar to equation 3.10 or 3.11. That is to say the frequency domain

diffraction force (or moment) provides an IRF, through discrete Fourier trans-

form, and the diffraction actions (with respect to the mean wetted surface) are

expressed as convolution integrals Ballard et al. [2003].

Finally, the time domain evaluation of the vessel’s motions is carried out using

a fourth order Runge-Kutta method in which the velocities are calculated for a

set of time steps of fixed increments, i.e solving equation 3.7 . At the start of

a simulation, the calm water equilibrium position of the vessel is determined.

The subsequent motions are then calculated with reference to this initial position

Ballard et al. [2003].
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3.3 Results

The methods outlined in sections 3.1 and 3.2 are applied to the prediction of the

motions of the S175 container ship travelling in regular head waves. The main

particulars of the containership are shown in table 3.1. The body plan of the

S175 container ship is shown in Figure 3.1.

Table 3.1: Main particulars of the S175 container ship
Length between perpendiculars(m), L 175

Beam(m) 25.4
Depth (m) 15.4

Draught (m) 9.5
Displacement (tonnes) 24860

Figure 3.1: Body plan of the S175 container ship.

The first step is to identify a suitable idealization of the mean wetted surface,

in terms of obtaining a converged solution with the number of panels used. To this

end panel numbers between 288 and 2358 were used to idealise the mean wetted

surface, ensuring an adequate panel aspect ratio of 2:1 Bailey et al. [2002]. The

crudest and finest mean wetted surface idealizations are shown in figure 3.2.
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Figure 3.2: Idealization of the surface of the S175 containership; top 588 and
middle 2358 panel idealizations of mean wetted surface; bottom 2880 panel ide-
alization of the whole surface up to deck for the partly nonlinear method.
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As an example the variation of heave and pitch non-dimensional damping

coefficients, obtained from the pulsating source method, for different mean wetted

surface idealizations are shown in figure 3.3 for Fn=0.2.

Figure 3.3: Non-dimensional heave and pitch damping coefficients (Fn=0.2) ob-
tained using the pulsating source (various panel numbers on the mean wetted
surface) and the translating, pulsating source (TP-1058 panels on mean wetted
surface).

Examining the dependence of all the hydrodynamic coefficients on number

of panels used, it was concluded that use of 288 panels showed large differences

compared to other idealizations. Furthermore, the results using 1058, 1450 and

2358 panels showed negligible differences, indicating that convergence has been

achieved. This is confirmed by the heave (heave/wave amplitude) and pitch

(pitch/wave amplitude) RAOs shown in figure 3.4 for Fn=0.2. Based on this

results the mesh with 1058 panels was selected to perform the remainder of the

linear seakeeping analysis.

In addition, for the mesh up to the deck used for the partly non linear method,

the panel size was held as close as possible to the panel size of the mean wetted

surface idealization with 1058 panels. This resulted in a mesh of the S175 model

up to deck line with 2880 panels, shown in figure 3.2. It should be noted that

although the range of encounter frequencies shown in figure 3.3 is limited, when

the pulsating source frequency domain method was used, the hydrodynamic co-

efficients were evaluated for a larger range of encounter frequencies, so that an
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Figure 3.4: Illustration of convergence for the heave and pitch RAOs, with various
panel numbers on the mean wetted surface, obtained using the pulsating source
method for the S175 containership travelling in head regular waves, Fn=0.2.
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accurate discrete Fourier transform could be used to estimate the IRFs Ballard

et al. [2003].

There are two sets of results. The first set comprises variation of heave and

pitch RAOs with encounter frequency for a range of Froude numbers; Fn=0.2,

0.25 and 0.275 when using the pulsating source and partly nonlinear methods,

Fn=0.2 and 0.275 when using the translating, pulsating source method. In the

case of the partly nonlinear analysis three wave amplitudes are investigated, i.e.

a=1, 3 and 5 m. These results are shown in figures 3.5, 3.6 and 3.7 for Froude

numbers Fn= 0.2, 0.25 and 0.275, respectively. Note that p3 and p5 denote xi3

and xi5, respectively. It should be noted that the pitch RAO is in the form of

pitch amplitude (rads)/wave amplitude.

First let us focus on the trends of the predictions obtained by the partly

nonlinear method. The differences in predicted RAOs due to different wave am-

plitudes become notable in the vicinities of the peaks. For both heave and pitch

RAOs and all Froude numbers investigated a decrease is observed, in general,

in the RAO with increasing wave amplitude. A notable exception to this trend

relates to the heave RAOs at ωe = 1 rad/s for all Fn values. In fact for Fn=0.275

the heave RAO predicted in 5m amplitude waves is nearly zero and out of line

with the general trends observed. It should be noted that a wave amplitude a=5m

corresponds to a rather steep wave, i.e. wave steepness values ka in excess of 0.12,

as can be seen from Table 3.1. The predicted pitch RAO, at the same frequency

also shows mixed trends with the pitch RAO for a=3m being larger or same as

that for a=1m, at Fn=0.25 and 0.275, respectively. The rate of decreases in the

heave RAOs with increasing wave amplitude remains more or less unchanged with

increasing Froude number. On the other hand this rate increases with increasing

Froude number for the pitch RAOs, as can be seen by comparing figures 3.5, 3.6

and 3.7. In general the rate of change in the RAOs is larger from 1m to 3m

wave amplitude and smaller from 3m to 5m wave amplitude. The question that

is arising here requires further investigation to establish whether it is a real trend

or due to the partly nonlinear method reaching the limits of its validity.

It is important to compare the differences between the RAOs predicted by

the linear pulsating source method and the partly nonlinear method. For the

lowest of forward speeds (Fn=0.2) the linear heave RAO is smaller than the
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Figure 3.5: Heave and pitch transfer functions for the S175 containership travel-
ling in head regular waves, Fn=0.2; comparison of linear (pulsating and translat-
ing, pulsating source) and partly nonlinear (PNL) methods.
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partly nonlinear prediction for a=1m. The heave RAOs predicted by the partly

nonlinear method for a=1m are the same and smaller than the linear predictions

for Fn=0.25 and 0.275, respectively. The trend observed for Fn=0.2 is contrary

to expectations of the behaviour of nonlinear methods. As this effect seems

to be more pronounced at low speeds it may be linked to the differences in the

hydrostatic restoring actions between the linear method based on the mean wetted

surface and the partly nonlinear method using the instantaneous wetted surface.

Thus it may be possible to argue that at higher Froude numbers the hydrodynamic

actions have a more pronounced effect, hence decreasing the influence of the

differences in the hydrostatic restoring coefficient. On the other hand the pitch

RAOs predicted by the pulsating source method are, in general, larger than the

partly nonlinear predictions for all Froude numbers. Nevertheless for Fn=0.275

the pitch RAO predicted by the partly nonlinear method for a=1m is very close

to the linear (pulsating source) prediction. The aforementioned reasoning on the

differences of the hydrostatic coefficients may also explain the trends observed

when comparing linear and partly nonlinear pitch predictions.

The RAO predictions obtained from the translating pulsating source method

are shown in figures 3.5 and 3.7, for Fn=0.2 and 0.275, respectively. The heave

RAOs predicted by the pulsating and the translating, pulsating source methods

are comparable for both Froude numbers. At the highest speed (Fn=0.275) the

pitch RAOs predicted by the translating, pulsating source are much higher than

the pulsating source predictions, peak values approximately 3.5 times higher.

Examining the pitch damping coefficient B55, shown in figure 3.3, it can be seen

that the value predicted by the translating, pulsating source method is much lower

than that of the pulsating source method in the frequency range where the pitch

RAO peaks. Similar trends between pulsating and translating, pulsating source

predictions, at relatively high Froude numbers were observed for a NPL hull form

Bailey et al. [1999]. This is an important issue in terms of the applicability of the

translating, pulsating source method, especially at higher speeds. The influence

of the steady flow and its effect on the body boundary conditions (rather than

using the simplified conditions given by 3.4) may provide an explanation of the

differences observed.

The second set of results compares predicted heave and pitch RAOs against
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Figure 3.6: Heave and pitch transfer functions for the S175 containership travel-
ling in head regular waves, Fn=0.25; comparison of linear (pulsating source) and
partly nonlinear (PNL) methods.

the available experimental data. In this case, due to the limited number of ex-

perimental measures available and also bearing in mind the importance of wave

steepness fin this particular experiment, the results are presented in a slightly

different format, i.e as function of the wave steepness. Moreover, the pitch am-

plitude p5, is now normalized by the wave steepness, ka, as well.

That said, the RAOs in heave and pitch, for three different wave to ship length

ratios, a range of wave steepness values ka and two Froude numbers Fn=0.2 and

0.275 are shown in figure 3.8. The results predicted by the partly nonlinear

method are compared with the experimental measurements of Powers and Zs-

elecsky [1992]. The corresponding linear pulsating source predictions are also

shown, in the form of constant lines for each λ/L value. The relationships be-

tween various wave properties for this second set of results are shown in table

3.2.

The basic trend displayed by the experimental results, namely a decrease in

RAOs with increasing wave steepness ka is observed in all predictions by the

partly nonlinear method, except for λ/L = 1.0 and Fn=0.275 where the predic-

tions show a small increase with increasing ka values. It can be seen from table
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Table 3.2: Relationship between wave length, wave frequency and wave slope;
encounter frequency in regular head waves

λ
L

= 1.4 λ
L

= 1.2 λ
L

= 1.0

ω (rad/s) 0.5 0.54 0.59
ωe (rad/s) and Fn=0.20 0.71 0.79 0.89
ωe (rad/s) and Fn=0.275 0.79 0.88 1.01

k (1/m) 0.025 0.030 0.036

3.2 that this corresponds to ωe = 1 in figure 3.7 and was discussed above. It is

interesting to note that both heave and pitch RAOs in figure 3.7 show a decrease

when a=5m, tying up with the experimental trends for ka values in excess of 0.12.

Heave RAOs predicted by the partly nonlinear method are higher than the exper-

imental measurements, as well as the linear predictions by the pulsating source

method, for Fn=0.2. Pitch RAOs predicted by the partly nonlinear method are a

little higher than the experimental measurements, and the pulsating source pre-

diction, forλ/L = 1.0 and Fn=0.2. For the same Fn=0.2, pitch RAOs predicted

by the partly nonlinear method are lower than the experimental measurements,

and closer to these measurements than the linear prediction, for λ/L = 1.2 and

λ/L = 1.4. Heave RAOs predicted by the partly nonlinear method are closer to

the experimental measurements, though a little higher, than the linear pulsating

source prediction for λ/L = 1.2 and λ/L = 1.4 and Fn=0.275. Pitch RAOs

predicted by the partly nonlinear method for Fn=0.275 and for λ/L = 1.2 and

λ/L = 1.4 are close to each other, as are the linear predictions, and close to the

experimental measurements for λ/L = 1.4, but higher than the measurements for

λ/L = 1.2 . Overall it can be said that the partly nonlinear method offers im-

provement in predictions with reference to trends with increasing wave steepness.

The quantitative agreement, based on the limited set of measurements used here,

is reasonably good, although it can be patchy on occasion.

In the context of non linear effects, the reasonably good qualitative agreement

pointed out in figure 3.8 can be explained by the ability of the partly nonlinear

method in accounting for the changes in the submerged geometry of the body

and the effects of the water line dynamics. Although their contribution is ap-

proximated, since only Froude Krylov and hydrostatic forces are being calculated
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exactly, the incorporation of these effects deviates the results considerably from

the predictions of linear theory as a function of the wave steepness. In fact, this

suggests that modelling these two sources more accurately can yield a better qual-

itative agreement against experimental data (say a time domain body non linear

approach for instance). That said, there is still non linear contributions that can

come from the exact free surface boundary conditions whose effects cannot be

addressed in the partly non linear analysis.

3.4 Conclusive Remarks

An investigation has been carried out comparing predictions obtained from three-

dimensional linear, pulsating and translating, pulsating source, and partly non-

linear methods, together with comparisons with available experimental measure-

ments. The S175 containership, travelling regular head waves at a range of Froude

numbers and wave amplitudes, was used as an example for this investigation.

Based on this limited investigation it can be concluded that the partly nonlin-

ear method offers, in general, improvements in predicting heave and pitch RAOs.

Nevertheless, more comparisons with experimental measurements are necessary

in order to establish the range of validity of this method.

In the case of linear methods, the pulsating source method produces better

predictions, by comparison to the translating, pulsating source method at rea-

sonably high Froude numbers. The influence of steady flow on the translating,

pulsating source method needs further investigation.

The quality of the agreement with experimental measurements tends to em-

phasize the need for development of nonlinear methods, still within the potential

flow domain, accounting for nonlinearities in radiation and diffraction potentials.

In what follows of the present work, efforts will be concentrating in the problem

of addressing the non linear effects related to the radiation potential. In order to

address this issue, the boundary value problem needs to be formulated in time

domain and the time harmonic representation of the potential (equation 3.1),

does not hold true anymore. In particular, instead of solving a exterior Neumann

boundary value problem, a mixed interior boundary value problem formulation

will be derived.
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In this context, the linear time domain problem will be addressed first, for

both rigid and flexible forced oscillations motions. Subsequently, the non linear

effects will be introduced in chapter 7.
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Chapter 4

Problem Formulation in Time

Domain

The Mixed Eulerian Lagrange description of the fluid flow has essentially two

stages: in the first one for a potential given on the Dirichlet boundary (free

surface) and a given normal velocity on Neumann boundaries (floating body or

fixed walls), the mixed boundary value problem is solved yielding the the normal

velocity on the free surface and the potential on the floating body, this is the

Eulerian phase. In the second step, Lagrangian phase, the kinematic and dynamic

boundary conditions are integrated in time so that the the position of the free

surface and its potential are updated. The process is then repeated in time. In the

first section of this chapter, the integral equations of the boundary value problem

(Eulerian phase) are derived. Next, the boundary value problem is combined with

the kinematic and dynamic boundary conditions on the free surface so that the

MEL scheme is completed. Finally, the time marching scheme adopted is briefly

discussed.

4.1 The Mixed Boundary Value Problem

It is interesting to start, in a slightly more general context, by formulating the

weak form of Laplace’s equation using the method of weighted residuals and then

project the solution using the Dirac measure in order to obtain the collocation
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(or conventional) Boundary Element formulation. This approach draws a par-

allel between the Finite Element and Boundary Element methods. Furthermore

this structure allows for the introduction of different types of Boundary Element

Methods, like Galerkin Boundary Element Methods, see for instance Sutradhar

et al. [2008] and Steinbach [2008].

Hence, in order to describe the flow field a fixed three dimensional orthonor-

mal, right handed, Cartesian system Oxyz is used in the fluid domain Ω at the

undisturbed free surface. This way, under the assumptions of ideal and irrota-

tional flow, the equation governing the fluid motion on Ω reduces to the continuity

equation, which can be equivalently expressed as the Laplacian of the flow po-

tential:

∇2φ(~x, t) = 0, ~x ∈ Ω. (4.1)

Consider now a very special weight function G(~x, ~y) which, for ~x and ~y in Ω,

is fundamental solution of Poisson’s equation, that is to say:

∇2G = −δ(~x− ~y), ∀~x, ~y ∈ R3. (4.2)

If the weak form of equation 4.1 is multiplied by the weight function G(~x, ~y)

and integrated over the domain, one has from Gauss’ theorem and the properties

of the divergence operator (see Apostol [1969] p. 446) that :∫
Ω

∇2φ ·GdΩ =

∫
∂Ω

G∇φ · ~ndΓ−
∫

Ω

∇φ · ∇GdΩ = 0. (4.3)

Regarding the notation, note that the surface integrals evaluated on the domain

boundary, ∂Ω, are represented by dΓ whereas dΩ is used for the evaluation of

volume integrals.

Using Gauss theorem again on the last integral of 4.3 and equation 4.2 the

weak form of Laplace equation using the fundamental solution as weight function

becomes: ∫
∂Ω

G∇φ · ~ndΓ−
∫
∂Ω

φ∇G · ~ndΓ−
∫

Ω

δ(~x− ~y)φdΩ = 0. (4.4)
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Using the Dirac Delta function definition one has that:

φ(~x) =

∫
∂Ω

G(~x, ~y)∇φ(~y) · ~ndΓ−
∫
∂Ω

φ(~y)∇G(~x, ~y) · ~ndΓ. (4.5)

Equation 4.5 is valid in Ω and it can be extended to boundary (∂Ω) by taking

the limit to yield the following boundary integral equation Liu [2009]:

c(~x)φ(~x) =

∫
∂Ω

G(~x, ~y)∇φ(~y) · ~ndΓ−
∫
∂Ω

φ(~y)∇G(~x, ~y) · ~ndΓ; (4.6)

where c(~x) is the interior solid angle at ~x. By its definition, c(~x) is equal to the

area of the projection of the domain surface, ∂Ω, onto a unit sphere centred at

~x. Physically this equation reflects the mass conservation in the region enclosed

by ∂Ω and the unit sphere centered at ~x Liu et al. [2001].

In addition, the boundary ∂Ω can be decomposed into N piecewise elements

such that, ∂Ω =
⋃N
j=1Ej. This leads to:

c(~x)φ(~x) =
N∑
j=1

∫
Ej

G(~x, ~yj)∇φ(~yj) · ~ndEj −
N∑
j=1

∫
Ej

φ(~yj)∇G(~x, ~yj) · ~ndEj. (4.7)

In the context of the method of weighted residuals, the collocation method

can be used to obtain the discrete version of the integral equation 4.7. The main

idea of the collocation method is to take the projection of 4.7 using the Dirac

measure and impose that at the collocation points, (or source points, Ei). The

approximate solution has the same value as the unknown potential Karniadakis

and Sherwin [2005]. In order to do this, in a non rigorous framework, one can

define an integral operator L(~x) as:

L(~x) = −c(~x)φ(~x)+
N∑
j=1

∫
Ej

G(~x, ~yj)∇φ(~yj) ·~ndEj−
N∑
j=1

∫
Ej

φ(~yj)∇G(~x, ~yj) ·~ndEj;

(4.8)

and note that when L(~x) = 0 equation 4.7 is satisfied. Next, in order to impose

that at collocation points the approximate solution satisfies equation 4.7, at each

source point Ei, using the Dirac measure in a weighted residual sense, one has
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that: ∫
Ei

δ(~x− ~xi)L(~x)dEi = L(~xi) = 0. (4.9)

Using equation 4.9 in equation 4.7 for each source point i=1 to N, yields the

following discrete version of 4.7:

c(~xi)φ(~xi) =
N∑
j=1

∫
Ej

G(~xi, ~yj)∇φ(~yj) · ~ndEj −
N∑
j=1

∫
Ej

φ(~yj)∇G(~xi, ~yj) · ~ndEj

(4.10)

It is worth pointing out that although equations 4.6 and 4.7 are equivalent,

equation 4.10 is an approximation which exactly satisfies equation 4.6 (or 4.7)

only at collocation points (or source points in the BEM terminology).

Since equation 4.10 holds for every i from 1 to N, it can also be written as

linear system whose solution is an approximate solution of the integral equation

4.6 which is equivalent to solving Laplace’s equation in a weak sense. In equation

4.10, the function G(~xi, ~yi) is the so called single layer potential operator, whereas

∇G(~xi, ~yj) · ~n is the double layer potential operator. Both of them can be seen

as a basis in which the potential φ(~xi) is being approximated.

In fact, there are several different formulations that can be ensivaged in light

of the Boundary Element theory. The approach used here simply discretize the

integral equation 4.6, in the same fashion of Xu [1992]. Furthermore, since the

problem is being solved directly for the potential of the fluid flow, the approach

is called direct. Still in the context of direct boundary element method other

approximations can be obtained. For instance it can be shown Steinbach [2008]

that the potential can also be approximated not only by the single layer and the

double layer potential operators, but also with the self adjoint and the hypersin-

gular operators. The advantages or disadvantages of pursuing such alternatives

formulations in the context of hydrodynamic simulations can be an interesting

avenue for future research.

The main advantage of BEM over FEM is that the problem is formulated on

the boundary, having a lower dimensionality. However the integrals that arise in

BEM formulations are usually singular and often require special numerical treat-
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ment for the assembly of the influence matrix. In this work, when the source point

and the field point are not on the same element standard Gaussian quadrature

are used. For the singular case, i.e when source and field points lie on the same

element, the integrand is first desingularized using the polar mapping technique,

before being integrated. The details regarding the calculation of the influence

matrices and the assemblage of the linear system are detailed in the Appendix A

Numerical Techniques. In addition, for the problem to be well posed, a suitable

set of boundary conditions need to be applied. These are going to be dealt with

in the following section.

4.2 Boundary Conditions

Equation 4.10 admit two kinds of boundary conditions namely: Neumann (or nat-

ural) and Dirichlet (or essential) boundary conditions. In the context of potential

flow simulations, Neumann boundary conditions are the impervious boundary

conditions which are imposed on the surface of the floating body or in other

impervious surfaces, whereas Dirichlet boundary conditions are associated with

the potential value on the free surface. In addition to the essential and natural

boundary conditions, in order to account for the presence of the free surface the

kinematic and dynamic boundary conditions need also to be satisfied. At last, a

radiation boundary condition also needs to be imposed. The radiation condition

physically implies that there is no wave reflection at the boundaries of the free

surface, i.e the waves travel to ”infinity”.

More precisely, on the body surface, SN , the impervious boundary condition

states that the normal velocity of the flow should equal the body velocity, ~V (~x, t);

this can be written as:

∇φ(~x, t) · ~n = ~V (~x, t) · ~n. (4.11)

At the free surface, SD, the kinematic boundary conditions states that the

velocity of a particle equals the gradient of the velocity potential. Hence if ~x(t)

denotes the position of a fluid particle in R3 its velocity can be expressed as
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Longuet-Higgins and Cokelet [1976]:

D~x(t)

Dt
= ∇φ, (4.12)

where D~x(t)
Dt

is the material derivative (or Lagrangian derivative) and denotes

differentiation following a given particle.

The dynamic boundary condition is derived from Bernoulli’s equation. In

Lagrangian coordinates Bernoulli equation is written as Newman [1977]:

Dφ

Dt
=

1

2
∇φ · ∇φ− gz (4.13)

It should be clear that boundary conditions 4.12 and 4.13 are the so called

fully non linear free surface boundary conditions. For instance, in the context of

linear analysis it was shown by Newman [1977] that equations 4.12 and 4.13 can

be simplified, respectively, to:

∂z

∂t
=
∂φ

∂z
; (4.14)

z = −1

g

∂φ

∂t
. (4.15)

Therefore, in order to perform time domain simulations using linearized free

surface boundary conditions, equations 4.14 and 4.15 can be imposed on the exact

free surface, which differs from the frequency domain approach, and the mixed

boundary value problem is solved on the undisturbed mean free surface (z = 0).

This approximation is resonable as long as kA << 1.

On the other hand, if non linear free surface boundary conditions are going

to be imposed to time march the simulation, then equations 4.12 and 4.13 need

to be used. In fact, it is also possible to formulate equations 4.12 and 4.13 to a

semi-Lagragian version Beck et al. [1994], that tries to minimize the distortions

on the mesh. An example would be to allow free surface movement only on the

vertical direction, more details of which can be found in Chapter 7.

In order to satisfy the radiation boundary condition, i.e neglect the contribu-

tion from the far field boundaries of the free surface, the approach used by Liu
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[2010] is adopted. Therefore, a strip of sponge layer is added near the boundaries

to absorb all wave disturbances which travelled to the boundary. This scheme

relies on adding artificial damping terms to the free surface boundary conditions,

requiring a damping function to be defined.

The damping rate function, ν(ω, r, rL, rD) depends on the frequency of the

wave to be damped, ω, the distance from the origin where the damping zone

starts rD and the distance where the zone ends, rL. Therefore, the actual size of

the damping zone is given by rL−rD. In addition, a couple of function forms can

be chosen (quadratic, polynomial etc); Nevertheless, still according to Liu [2010]

a simple and efficient damping zone can be defined by:

ν(ω, r, rL, rD) =

{
0 if r < rD

ω( r−rD
rL−rD

)2 if rD < r < rL.
(4.16)

Hence, the damping rate function defined in 4.16 can be used on the free sur-

face boundary conditions. This way the potential satisfies the radiation condition

at infinity and wave reflections are hopefully avoided. For the case of linear time

domain simulations, equations 4.14 and 4.15 can be rewritten as:

∂z

∂t
=
∂φ

∂z
− νz (4.17)

∂φ

∂t
= −gz − νφ. (4.18)

The case of non linear free surface boundary conditions can be dealt in the

same fashion, if the free surface boundary conditions are used on Lagrangian

coordinates (i.e equations 4.12 and 4.13). For the case tackled in this work, the

full formulation of the non linear free surface boundary conditions can be found

in chapter 7.

4.3 Time Marching Scheme

The main idea of the MEL scheme is to solve equation 4.10, and update the

potential value on the free surface using the kinematic and dynamic boundary

conditions, taking into account the presence of damping zone at a suitable dis-
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tance of the body.

An initial potential value, φ0, is usually applied on the free surface, this can

be an undisturbed free surface condition (initial potential is zero) or an incident

wave potential; an initial velocity ~V (~x, 0) is also prescribed on the floating body.

This way equation 4.10 can be solved for unknown potentials on the body and

the unknown normal velocity on the free surface (Eulerian phase). In the second

phase (Lagrangian phase), an explicit integration of equation 4.17 (or 4.12 in the

general case) updates the free surface position and another explicit integration

of equation 4.18 (or 4.13 for fully nonlinear simulations) updates the free surface

position and the potential value. Depending on the problem, the body velocity

will either be prescribed (forced motion problem) or calculated from the equations

of motion. Therefore equation 4.10 can be solved again with updated boundary

conditions. The process is then repeated in time. This way, both the initial

boundary value (IVP) problem for the evolution of the free surface potential and

the BVP problem that governs the derivative of the IVP are coupled. At this

point it is also interesting to highlight that although the process is simple, the

BVP-IVP coupling implies that if there are inaccuracies, say on the free surface

elevation for instance, it will corrupt the solution of the boundary value problem

and so on.

From a numerical perspective, in order to integrate the free surface boundary

conditions two methods have been used: a simple Euler method and second

order Runge-Kutta method. Both are described in the Appendix A Numerical

Techniques.

It is worth pointing out that the flexibility provided by the MEL scheme

comes at the cost that the domain is moved (in the sense that the nodes of the

free surface are displaced according to the velocity field). In linear analysis, be-

cause the wave stepness is small, ka << 1, the free surface boundary conditions

are applied on the free surface but equation 4.10 is computed on the undisturbed

free surface, allowing the same mesh to be used every time step. From a nu-

merical/implementation point of view this is a great simplification. Furthermore,

since the domain does not change, the influence matrices of the system are kept

the same in linear analysis. However, in order to tackle nonlinearities in the free

surface boundary conditions it is necessary to update the free surface and remesh
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it every time step. The methods used to tackle this problem are described in

chapter 7.
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Chapter 5

The coupling of meshing schemes
and hydrodynamics simulations

This chapter tackles a couple of practical implementations issues that will allow a

link between the generation of unstructured mesh grids and its applications to hy-

drodynamic simulations in time domain. The main feature that differ the present

approach from the current practice lies in the need to generate an unstructured

mesh at every time step, for the case of body non linear and fully non linear

simulations, taking into account the instantaneous changes on the floating body

wetted surface. To the best of our knowledge, there is no well defined current

practice for this problem in the potential flow context in time domain and the

meshing scheme employed is usually structured and intimately associated to the

BEM solver used in the problem (Xu [1992], Xue [1997] and Liu et al. [2001]).

On the other hand, recent developments of viscous fluid flow simulations have

focused on algorithms capable of simulating the 2 phase fluid flow problem (air

and water) by means of convecting the free surface on an Eulerian mesh (so no

remeshing is actually required) using, for instance, a coupling between volume

of fluid formulations and the level set methods, see Lachaume et al. [2003] and

Sethian [1999].

In order to tackle this issue, two unstructured mesh frameworks were investi-

gated: the framework developed by Persson [2005] and the framework developed

by Geuzaine and Remacle [2009]. Both approaches can generate unstructured

triangle meshes, although the algorithms are different. Signed distance functions

representations of the geometry (or geometries) that compose the fluid domain
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are the key inputs of the algorithm developed by Persson [2005]. Once signed

distance functions are available, they can be manipulated by simple operations

such as intersections, differences and unions, allowing for the construction of more

complex geometries. In the context of hydrodynamic simulations, natural ques-

tions arise, such as: Can a signed distance function can be estimated accurately

to mesh ship like forms and the free surface ? Furthermore, could this repre-

sentation be evolved in time in order to tackle the evolution of the free surface

and the movements (forced or freely floating) of the ship ? On the other hand

the framework developed by Geuzaine and Remacle [2009] is built on hierarchical

geometry entities, i.e points, lines, surfaces and volumes and the meshing scheme

is heuristic. In this context, the problem of representing an underwater geom-

etry that changes in time and needs to be remeshed at every time step is not

straigthforward as well.

In this chapter, both frameworks are going to be surveyed and the pros/cons

will be highlighted in the context of the present MEL simulation scheme. Sec-

tion 5.1 highlights the main reasons on the choice of an unstructured mesh. In

sections 5.2 and 5.3 both algorithms (distmesh from Persson [2005] and Gmsh

from Geuzaine and Remacle [2009]) are presented together with applications of

interest from a hydrodynamic perspective. Finally section 5.4, highlights the ad-

vantages and disadvantages of each approach from both a numerical stability and

implementation perspective.

5.1 The choice of the mesh type

In this section, the importance of choosing an unstructured grid to keep the size

of the boundary value problem practical is highlighted in the context of potential

flow simulations. When a solution of Laplace equation is sought, it can be shown

Cordaro and Kawano [2002], by means of a Fourier transformation, that the

solution of equation 4.2 is formally the free space Green’s function. This way,

denoting the Euclidean distance between a source point, ~x, and a field point, ~y
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by r, the free space Green’s function is:

G(~x, ~y) =
1

4πr
. (5.1)

Equation 5.1 is the simplest form of the Green’s function that can be envis-

aged. On the other hand, it has the major drawback that when it is used in

the integral equation 4.10 it does not allow any simplification on the boundaries.

So there is clear trade off here: on the one hand a more complicated form of

Green’s function will allow for a great reduction in the domain size; however, it

will be much more time consuming to evaluate and calculate the influence matrix.

Therefore different approaches have been pursued, for instance: in the context

of free surface flows, Xu [1992] made use of the doubly periodic Green’s function

which allowed for the discretization of only the free surface (Dirichlet boundary

condition), the remainder boundaries (Neumann boundaries) actually vanished

from equation 4.10, reducing the computational size of the problem significantly

but, at the cost of a more complex Green’s function which is more expensive to

evaluate, approximately 12 times slower than 5.1 still according to Xu [1992].

In the present, the option to work with the free space Green’s function was

made due to its flexibility to handle free surface boundary conditions with several

degrees of linearity/non linearity. This implies, from a numerical perspective, that

the whole domain boundary needs to be represented by a mesh (or meshed). The

simplest mesh that can be built is a structured mesh. The major drawback of

structured meshes is that too many elements may be needed in order to achieve

a good representation of the domain boundary data.

More concretely, one of the main attractiveness of BEM lies on the fact that

only O(Nd−1) unknowns are sought (where d is the dimension of the domain),

because only a discretization of the boundary is needed; whereas on numerical

methods that require a discretization of the whole domain (e.g FEM) the prob-

lem size is of the order O(Nd). However, there are also some disadvantages,

specifically in the context of the mixed boundary value problem, namely:

• in BEM the influence Matrix computation involves integrals that are sin-

gular, hence more costly to evaluate;

52



• the linear system that arises from BEM is usually neither symmetric nor

sparse.

In addition, recall that for hydrodynamic problems the waves lengths gener-

ated by an oscillating body, λ, with circular frequency, ω, are of the order λ = 2πg
ω2 .

Hence, the use of structured meshes is actually restricted to higher frequencies

(i.e shorter wave lengths). In lower frequency range, the computational cost of

structured meshes could become be too high introducing the need for more pow-

erful numerical techniques like the Fast Multipole Boundary Element Method Liu

[2009].

Combining these facts with the need of large domains, which usually have

different scale, since the wave length dimension can differ, by orders of magnitude,

of the dimensions of the floating body, the application of standard BEM in the

context of practical ship hydrodynamics problems is still limited, in the sense

that domain sizes needed are still too big Yan [2010].

One way to try to alleviate these issues is to adopt an unstructured mesh

representation of the domain boundary. In particular, for its relative user sim-

plicity and good mesh quality, two approaches have been tested in the context

of the present work: the algorithm developed by Persson [2005], called distmesh,

and mesh -visualization library, Gmsh from Geuzaine and Remacle [2009]. Both

meshing methods have their pros/cons, for instance:

• Gmsh adopts an heuristic/classical approach to meshing. Its data struc-

ture is hierarchical, composed of points, lines, surfaces and volumes. To

mesh surfaces it uses Delaunay triangulations and parametric based map-

ping schemes; it is efficient, runs fast, memory usage is light and mesh

quality is good. Compared to distmesh it is not straightforward to evolve

the domain in time (in the distmesh framework the signed distance func-

tions can be made time dependent, or evolved as will be seen in the next

sections), whereas in gmsh an heuristic approach is needed.

• Distmesh does not have a data structure representation which yields a sim-

ple implementation and shorter , easier to understand, code. The mesh

generation is an iterative force-based procedure which is built upon the
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concept of signed distance functions and Delaunay triangulations. The core

update of the algorithm is very closely related to the gradient ascent opti-

mization algorithms. Compared to Gmsh, the memory usage is more intense

due to the background grid, hence its runtime is slower, since Delaunay tri-

angulations are iteratively performed. On the other hand, the fact that

the background grid is already in place makes distmesh integration to level

set and fast marching methods straightforward. In particular in order to

perform BEM-VoF coupled simulations (see for instance Lachaume et al.

[2003]) the approach is appealing. The quality of the mesh elements is also

very good.

In the present work, as a general rule, the distmesh algorithm has been used

for the simulation of the hemisphere and sphere presented in chapters 6 and 7,

using the linear, body non linear and fully non linear methods. On the other hand,

the Gmsh library was used for the simulations presented for the Wigley hull. In

case of any exception, the context shall make clear which meshing algorithm was

used.

5.2 DistMesh-MEL coupling

In particular, methodology from Persson [2005] makes extensive use of distance

functions to represent the computational domain which can be an alternative way

to locate nodes on the floating body, on the free surface or on the outer boundary

of the domain to set the corresponding boundary conditions as this surfaces evolve

in time. Furthermore, a distance function representation of the free surface can

be used to model their evolution in time, which in turn can be used to mesh the

domain on the subsequent time step. In this context, the domain one is interested

in meshing (obtain a triangulation and a connectivity matrix) is embedded in a

larger grid, the background grid. This allows for a description of the domain to

be meshed, in the present case the fluid domain Ω and its boundary ∂Ω, by means

of a signed distance function representation.

More formally, denoting the three-dimensional Euclidean norm by ||.|| the

signed distance function, d(~xg, ~x), from a fixed point on the background grid ~xg
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to a point ~x is defined as:

d(~xg, ~x) =


||~xg − ~x|| if ~x /∈ Ω

−||~xg − ~x|| if ~x ∈ Ω

0 if ~x ∈ ∂Ω

(5.2)

From the above defintion it also follows that |∇xgd(~xg, ~x)| = 1 which is an impor-

tant property of distance functions and is intimately associated with the mesh

generation algorithm.

Typical inputs to create a mesh are the following:

• the distance function d(~xg, ~x) for the domain Ω;

• a relative element size function h(~x);

• a desired triangle edge size h0.

5.2.1 Analytical Signed Distance Functions

As an example, the distance functions of two spheres with radii equal to 0.25 (in-

ner) and 4.0 (outer) units are combined in order to generate the mesh in figure 5.1.

In this case since the distance function is prescribed analitically it becomes a func-

tion only of the background grid points. Both spheres are centered at the origin so

that their distance functions can be simplified to d1(~xg) =
√
x2
g + y2

g + z2
g − 0.25

and d2(~xg) =
√
x2
g + y2

g + z2
g − 4.00. The mesh in figure 5.1 is then obtained by

taking the difference, d3, between d1 and d2, d3 = max(d2,−d1), and then inter-

secting d3 with the plane z = 0, so that, d4 = max(−z, d3), is actually the final

distance function. The relative element size function used in this case is given

by h(~xg) = 0.08 + 0.1d1(~xg) which increases neighbour element edges by a factor

1.1 moving away from the smaller sphere. In addition, in this case h0 = 0.07

units. The meshing scheme developed by Persson [2005] uses a background grid

in which the signed distance functions are calculated. In fact, the background

grid is just a collection of nodes and there is some freedom in its choice. For

instance: uniform, octree or Delaunay based grids are in theory all allowed. In

this example, a uniform background grid was chosen, with a size of a bounding

55



box with dimensions [-4.5 -4.5 -4.5] x [4.5 4.5 0.5] units in the x, y and z directions

respectively.

One of the typical metrics to investigate mesh quality is measured by twice

the ratio of the radii of inscribed to circumscribed circles of the triangles, see fig-

ure 5.2. Ideally this ratio should be as close as possible to one, meaning that the

triangles are as close as possible to equilateral triangles. In the present applica-

tion, mesh quality is important because the singular integrals in equation 4.6 are

numerically evaluated (see Appendix A Numerical Techniques for more details),

using either the polar desingularization Pozrikidis [2002] or the triangle mapping

technique Zhang and Xu [1989] so it is important that the elements have a good

quality in order to avoid a vanishing Jacobian.

Once the boundary mesh is available, it is possible to solve the hydrody-

namic problem developed in chapter 3 for the case of forced motions using linear

boundary conditions. In this case, since the free surface boundary conditions are

linearized and the boundary value problem is solved at the mean undisturbed

water level, then the process of mesh creation is performed only once, at the

beginning of the simulation. The results of these simulations, for the case of the

linear radiation problem were presented in chapter 6.

On the other hand, for non linear or body non linear formulations the meshing

scheme needs to be extended. The extension to both realistic ship forms, as well

as to the time domain remeshing problem (this is needed in a situation where the

underwater profile of the floating body changes in time) is going to be detailed

in the sections that follow, which comprise but are not limited to the remeshing

schemes used in chapter 7.

5.2.2 Simple Geometries undergoing prescribed movements

For the case of simple geometries undergoing forced oscillations, it is actually

straightforward to generate unstructured meshes for different positions of the

floating. For the case of the heaving sphere tackled in the body non linear simu-

lations, two distance functions are considered: one to represent the geometry of

the cylinder and another to represent the geometry of sphere. The distance func-

tion of the cylinder of height, hc, and of radiis rc, is constructed by intersecting
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Figure 5.1: Mesh Generated for linear simulation (2758 triangles) using the
distance function of two spheres.
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Figure 5.2: Element quality of the mesh with 2758 triangles
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the lower and upper plane with an infinite cylinder. So if d5, d6 and d7 represent

signed distance functions, respectively, for the cylinder, lower plane and upper

plane (free surface), one can write that:

d5(~xg) =
√
x2
g + y2

g − rc,
d6(~xg) = −zg − hc,

d7(~xg) = zg.

(5.3)

Next the in order to incorporate the forced oscillation of the sphere in the

heave mode, the distance function d1(~xg) =
√
x2
g + y2

g + z2
g − 0.25 is extended

to d1(~xg, t) =
√
x2
g + y2

g + (zg − zc(t))2 − 0.25, where zc = Asin(ωt). Note first

that d1 assumes that sphere is centered at (0, 0, zc(t)). This way as zc(t) changes

the center of sphere changes and the movement implies a new distance function

d1(~xg, t) . The new distance function is then fed to the distmesh algorithm,

generating a mesh at every time step. Figure 5.3 shows a sequence of plots of the

sphere for ωt = 0, π/2and3π/2, as well as a typical mesh discretization used on

the body non linear simulations. For this mesh the size function, h, prescribed

is given by h = 1.5 + 5d1(~xg, t), so that for grid points away from the sphere

geometry the edge size increases isotropically on all directions.

5.2.3 Estimating Distance Signed Functions for Ship like

shapes

Using the distmesh library, once signed distance functions are available analiti-

cally an unstructured mesh could be created. However, for most ship like forms

the signed distance function that correspond to their geometry is not known a

priori, i.e in closed form. In this section a simple algorithm is proposed to esti-

mate the signed distance function of more general ship like forms and is used to

mesh a Wigley hull. The input that is required for the algorithm is a triangulated

representation of the ship surface geometry (i.e its nodes and a connectivity ma-

trix), the mesh representation of the surface geometry is usually available from

commercial CAD based systems, like Rhinoceros, Delfship, Maxsurf etc.

Before the algorithm is presented, let’s try to understand it from an intuitive

58



Figure 5.3: Sequence of sphere meshes for A=0.375 R. On the top left is the
sphere at its lowest draught zc = 0.375R; on the top right the sphere is at its
mean waterline, i.e zc = 0; bottom left is a typical mesh with h = 1.5 + 5d1 with
5826 triangles; bottom right is the sphere at its highest draught zc = −0.375R.
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Figure 5.4: Wigley hull triangulation used as input to create the signed distance
function, 1232 elements.

perspective. Recall that by its definition a signed distance function (equation 5.3)

measures the distance between grid points ~xg and the points that describe the

geometry, ~x. This distance is then multiplied by a sign (+1 or -1) corresponding

to whether the grid point, ~xg, lies outside or inside the domain respectively.

Multiplying by the sign guarantees a key property for the gradient of the distance

function, i.e |∇xgd(~xg, ~x)| = 1, which the meshing scheme is build upon.

So, once the representation of figure 5.4 is available and a grid point is given,

the distance from the grid point to all triangles on the surface is calculated and

the closest point on the surface to that grid point is found. Then in order to find

the value of the signed distance function between those two points, ~xg and ~x, the

normal direction on the surface is then used. Summarizing what has been said,

an algorithm that estimates the distance function from a generic triangulated

surface is described on Algorithm 1.

It is worth noting that for each grid point Algorithm 1 needs to pass through

all the points of the triangulated surface, therefore is runtime is of O(mn), m and

n being the number of points on the background grid and the size of triangulated
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Algorithm 1 Signed Distance Function Estimation from triangulated Geometry

1: procedure function(dtri = signdist(~xg))
2: distmin:=inf;
3: p:=nodes; . Load nodes and connectivity.
4: t:=conectivity;
5: while t =!EOF do . Loop on the triangulated surface.
6: triangle:=t(i);
7: [distaux,~x]:=pointTriDist(trip,~xg); . Distance of ~xg to triangle.
8: if distaux < distmin then . Save closest point to ~xg.
9: distmin:=distaux;

10: dotp:=(~xg − ~x) · ~n . Use ortogonal projection to determine the
sign.

11: dtri := sign(dotp)||~xg − ~x|| . Signed distance function estimation.
12: end if
13: end while
14: end procedure

surface respectively. So the evaluation, although straightforward, can be time

consuming and often limit the applicability of the method when tackling problems

where a signed distance function needs to be evaluated at every time step (free

floating bodies for instance). In order to make the approach applicable, a couple

of alternatives are available, e.g: one can define a small band on the background

grid where the triangulated geometry is embedded (this tries to keep m small)

and run Algorithm 1 on this band. Next, the value of the signed distance function

can be extrapolated to the other points on the background grid using the fast

marching method of Sethian [1999].

It is also important to mention that, for some hydrodynamics simulations, i.e

forced motions problems in time domain, it can be the case that the distance

function of the hull needs to be evaluated only once, which can make the ap-

proach interesting. For instance, the distance function of the floating body can

be specified with respect to its body fixed axis, then the forced oscillations can

be prescribed on the remainder of the domain, which can be built upon analyt-

ical signed distance functions. In this context, for the case of body non linear

simulations all the available signed distance functions would be readly available.

For the non linear case, however, the signed distance function of the free surface,

with respect to the body fixed axes would need to calculated by Algorithm 1.
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This was not explored in the present work, but is indeed an interesting area for

future research.

The implemention in this work also tries to keep m small on the background

grid, but does not make use of the fast marching method. Instead, Algorithm

1 is run on a box shaped background grid, in which the triangulated surface is

embedded. The size of the box shaped background grid is chosen to be very close

to the dimensions of the triangulated surface, again to keep m as small as possible.

Once this run is completed the signed distance function is defined on the small

box shaped background grid. However, this not sufficient, as in order to build

a suitable mesh for hydrodynamic applications a larger domain, hence a much

larger background grid is required. Therefore, in order to extend the value of

the signed distance function, fd, on the larger background grid, a simple scheme

is introduced, namely: if the point on the larger background grid lies inside the

box shaped domain (say the boundaries of the smaller background grid where

Algorithm 1 was run) the signed distance function calculated by Algorithm 1 is

linearly interpolated, otherwise a simple, analytically prescribed, form of signed

distance is used, which is faster to evaluate. Note that in fact, the signed distance

function estimated in Algorithm 1, dtri, is actually an input to Algorithm 2.

In particular, turning to the problem of meshing the wigley hull, the signed

distance function fd is generated by algorithm 2. At this point, fd can be called

by the distmesh algorithm of Persson [2005] and the mesh can be created. As a

preliminar step, i.e , to check if algorithms 1 and 2 are working as expected, it

is useful to check the zero level set contour of the signed distance function fd,

because it corresponds to the boundary of the domain. Its isosurface level set is

plotted in figure5.5 and the result of this approach is the mesh created in figure

5.6.

Another point of interest is to ask under what conditions Algorithm 1 fails

to converge to the signed distance function representation of the geometry. Not

very surprising, issues arise when the curvature of the triangulated body is too

pronounced. More specifically, in the cases when the normal vector is orthogonal

to distance between the ~xg and ~x (sharp corners), the dot product is zero. In

this pathological cases Algorithm 1 is prone to problems 1. In order to avoid this

1In fact, it should be possible, although out of the scope of the present work, to formulate
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Algorithm 2 Signed Distance Function Estimation Assembly

1: procedure function(d = signdistAssembly(~p, ~xg, dtri))

2: desf:=
√
p2

1 + p2
2 + p2

3 − 1.75; . Sphere signed dist function.
3: daux:=max(besf, p3); . Intersect with z=0.
4: d:=daux; . In case p is far from the box shaped background grid, the job

is done.
5: if |p1| < 0.7 and |p2| < 0.15 and |p3| < 0.10 then . Does the point p lie

inside the smaller the background grid?
6: dwig:=interp(~xg,dtri,~p); . Linear Interpolation.
7: d:=max(−dwig, d1) . Take the difference between d1 and dwig.
8: end if
9: end procedure

behaviour, the triangulated surface representation needs to be refined in points

where the curvature is pronounced.

Instead of using algorithm 1, an alternative approach to estimate the signed

distance function of ship like forms would be to start from the zero level set

contour of the surface. Since the geometry is defined on R3, the coordinates

of its points, say ~xj, j=1 to m, are all known. Because those points lie on the

surface, it follows that the signed distance function, dw(~xj) = 0 for all of them.

In addition, if on every point ~xj there is a corresponding normal vector ~nj, an

additional set of points located at ~xj + ε~nj, j=m+1 to 2m, can also be gathered.

At these particular set of points, one can set dw(xj + ε~nj) = ε McCallum and

Evans [2001], so that the value of the signed distance function are also known as

well. The last step is then to build a global functional approximation for dw(~xj),

this can be done with the aid of radial basis functions, so that dw(~x) is expanded

as Buhmann [2004] :

dw(~x) =
2m∑
j=1

cjf(rj) + r0, (5.4)

where rj =
√

(x− xj)2 + (y − yj)2 + (z − zj)2, f(rj) is the RBF centered at

the point ~xj = (xj, yj, zj), r0 is a constant and cj are constant coefficients. By

more precisely under what conditions the signed distance function from 1 converges to the true
signed distance function that describes the geometry.
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Figure 5.5: Isosurface of fd created using algorithms 1 and 2.

imposing dw(~xj) = 0, for j=1 to m and dw(xj + ε~nj) = ε, this scheme leads to

a symmetric linear system which is solved by LU decomposition in the present

implementation.

Once the signed distance function is available, the meshing scheme is called

and the mesh can be generated. Figure 5.7 shows the resulting mesh obtained by

approximating the distance function of the Wigley hull by a family of RBFs. A

quick inspection of figure 5.7 reveals the development of kinks, not surprisingly

in the regions of high curvature of the Wigley hull.

A possible reason for this poor estimation lies in the fact that the meshing

algorithm Persson [2005] uses a force equilibrium approach to move the nodes

of the mesh iteratively. After the nodes are moved, some of them are naturally

moved outside the boundaries (i.e zero-level iso-contour of the signed distance

function). In order, to project these nodes back to boundary the key property
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Figure 5.6: Wigley hull mesh created from using the distance function estimation
from Algorithm 2. Perspective view on top and half side view on the bottom.

of signed distance functions is explored, ||∇fd|| = 1, so that the projection ~x :=

~x−∇fdfd(~xg, ~x), brings the points outside the boundary exactly to the boundary.

However, if the radial basis approximation of equation 5.4 violates this property,
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the projected nodes will not lie on the boundary anymore, and therefore, the

mesh will not describe the geometry accurately. This suggests that it is very

likely that the radial basis function approximation has not converged to the true

signed distance function of the Wigley hull, which although not very efficient,

algorithm 1 calculates more accurately.

Figure 5.7: Domain mesh using a signed distance function of the Wigley hull
(L=0.5, B=0.10 and T=0.0625 units ) estimated by RBF intersected with a
hemisphere of radius 0.5 units.
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5.2.4 Free Surface Evolution

A direct approach to update the free surface position is to move the nodes ex-

plicitly using the Lagrangian formulation or a ”quasi Lagrangian” free surface

boundary condition. This actually means to integrate the kinematic boundary

condition, equation 4.12, in time updating the nodes position. Explicit time in-

tegration is a simple method to evolve the free surface since it does not involve

convection. Once the integration is done the updated signed distance function

needs to be recalculated after the free surface is moved.

One way to accomplish this, is to interpolate the new free surface elevation on a

pre triangulated mesh and then calculate the signed distance function explicitly by

finding the closest point on the background grid to the triangles, using Algorithm

1.

In this context, once the new position of the nodes of the free surface are

known from the integration step the wave elevation at a given point ζ(x, y, t) is

approximated in terms of a family of two dimensional radial basis function (RBF)

as:

ζ(x, y, t) =
n∑
i=1

cif(ρi) + r0. (5.5)

In equation 5.5 ρi is the two dimensional euclidean distance function, namely

ρi =
√

(x− xi)2 + (y − yi)2, (5.6)

f(ρi) is the RBF centered at the point (xi, yi), r0 is a constant and ci are constant

coefficients which are calculated by imposing ζ(xj, yj, t) = ζj for j=1 to n; ζj is

the current elevation of the free surface, which in a test case can be prescribed

or, ideally, calculated from the integration of the kinematic boundary condition.

This procedure leads to a linear system which is solved by LU decomposition.

The wave elevation, ζ, is then interpolated on a given triangular mesh (this step

is important because it brings orientation to the free surface) and the signed

distance function is then explicitly calculated by Algorithm 1.

In order to ilustrate the current methodology, assume a cloud of points in

three dimensional represent the free surface position (in this ilustration case
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ζ(x, y, t) = 0.1 · sin(2πx) ). These are shown in the upper part of figure 5.8.

Next, interpolate their elevation on a triangulated grid (lower part of figure 5.8).

Use the triangulated surface to estimate the signed distance function representing

the free surface and compute the union of this signed function with the signed

distance function corresponding to the intersection of 5 planes (zg = −2, xg =

2, xg = −2, yg = 2, yg = −2 units, for the example presented) , that is to say:

dΩ(~xg, ~x, t) = Max(d(~xg, ~x, t), dBox), (5.7)

where dBox is the uncapped box, without the plane z = 0 on its top, given by:

dBox(~xg) = −Min(2 + zg; 2 + xg;−2 + xg, 2 + yg;−2 + yg). (5.8)

It is worth point out that both dBox and dΩ are defined on the whole back-

ground grid, not only on the boundary of the fluid domain ∂Ω or in the fluid

domain itself Ω.

The final mesh, resulting from the distance function in equation 5.8 is shown

on figure 5.9.

To investigate the quality of the mesh generated in figure 5.9, ∂Ω is decom-

posed into Neumann and Dirichlet boundaries, the free surface nodes are then

projected as function of only x and z and compared with the prescribed free

surface elevation ζ(x, y, t) = 0.1 · sin(2πx), as shown in figure 5.10.

Hence, looking at comparison between the obtained free surface profile on the

mesh and ζ(x, y, t) on the right side of figure 5.10, it turns out that the calculation

of signed distance function using Algorithm 1 yields a good approximation of the

geometry one wants to represent. In addition, a strong point of this mesh is that

element quality is very high as can be seen in figure 7.32. On the other hand,

a major drawback of this simple approach is that the calculation of the signed

distance function of the free surface it is not efficient from a run time point of

view.
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Figure 5.8: Interpolating the free surface position given by a cloud of points
(upper part) in a prescribed triangulated mesh (lower part) using the RBF rep-
resentation of ζ(x, y, t).

5.3 Gmsh-MEL coupling

In the previous section a couple of approaches were proposed in order to apply

the concept of signed distance functions to the present MEL simulations. In

particular, armed with the distmesh algorithm, from a signed distance function

representation of the domain it is possible to generate a reasonably good mesh.

Even for the cases of more ship shaped forms, Algorithm 1 can estimate signed

distance functions with an acceptable degree of accuracy. There is however a

couple of drawbacks on the distmesh framework that are important to bear in
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Figure 5.9: Mesh of the fluid domain boundary, ∂Ω, with 4336 triangles resulting
from the distance function dΩ using a uniform element size function, h0 = 0.08.

mind. First, the estimation of signed distance functions has runtime problem, i.e

Algorithm 1 can be too slow for a time domain application (this can be overcome

by using a parallel architecture in the future applications). Second, and perhaps

most importantly, the meshing algorithm of distmesh tends to induce numerical

diffusion into the system; interestingly the main reason for this lies on the fact

that at each iteration, distmesh moves the points according to an heuristic update

rule, which is prescribed at the mesh nodes, ~p, as: ~p := ~p : +αF (~p) (see Persson

[2005] for more details). The problem that is faced at the implementation is

that the nodes displacement, for a meshes at different time instants, can induce
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Figure 5.10: Decomposition of ∂Ω in Dirichlet (free surface) and Neumann bound-
aries (impervious boundaries) on the left and, on the right, comparison of the
obtained free surface profile between the mesh (blue) and the imposed elevation
(red).
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Figure 5.11: Element quality of the mesh representing ∂Ω measured by twice the
ratio of the radii of inscribed to circumscribred circles of the triangles.

spurious numerical diffusion on the simulation.
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These two reasons, for the case of Wigley hull simulations, turned out to

be daunting obstacles to couple the distmesh framework with the current MEL

scheme. As an alternative, the gmsh library (Geuzaine and Remacle [2009]) capa-

bilities were investigated. Gmsh relies on more conventional meshing techniques

for the generation of unstructured meshes (Delaunay triagulations and paramet-

ric mappings) and it represents the domain entities on a hierarchical level, i.e

points, lines, surfaces and volumes. This allows for either surface meshing or

volume meshing (in contrast, distmesh only allowed for volume meshing, hence

memory usage turned out to be a problem too). This way, the domain of interest

for the hydrodynamic simulations is now expressed as geometric entities, whose

unions and intersections form the the respective Neumann and Dirichlet surfaces.

In order to perform linear simulations, the Wigley hull points corresponding

to three water lines (z = −0.0625, z = −0.03125 and z = 0 units) are inserted

and interpolated in the longitudinal direction using splines. Next, the splines are

used to describe the hull surface, which is finally meshed. The resulting Wigley

hull mesh was shown in chapter 6, in figure 6.8, while the corresponding domain

mesh, a box like domain of dimensions [-4 -4 -1] x [ 4 4 0] units containing the

Wigley hull, was also shown in figure ??. For those two meshes, their element

quality is given in figures 5.12 and 5.13.
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Figure 5.12: Element quality of the mesh of the whole boundary (Wigley hull,
free surface and boundaries) with 3298 triangles.

For the case of body non linear analysis investigated n chapter 7 the position
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Figure 5.13: Element quality of the mesh of the Wigley hull with 206 triangles.

of the points in the domain are updated. This implies a different position for

the lines and surfaces, which are remeshed at every time step. Note that the

choice of working with the points (the most basic geometry entities of gmsh)

avoids typical cirurgical meshing operations, e.g the problem of which panel (or

triangle) is coming in or out of the water as well as possible changes in the

connectivity matrix.

For the case of the Wigley hull, undergoing forced oscillations in heave it is

relatively straightforward to prescribe a heave velocity on the nodes of the keel

and from there imply changes on the underwater surface of the hull. In order to

accomplish this, it is useful to consider two coordinate systems: Obf is a body

fixed system, placed at the midship of the Wigley hull; OFS is fixed coordinate

system, placed on the undisturbed free surface, zFS = 0. The systems coincide

when the Wigley hull draught is exactly equal to T 1. So if the body fixed

axis is undergoing prescribed motions in the heave mode, with a displacement,

dz(t) = A + Asin(ωt), the points of the system OFS can be expressed in the

system Obf by a translation in the z direction, therefore:xFSyFS

zFS

 =

xbfybf
zbf

+

 0

0

dz(t)

 . (5.9)

1In the general case, for motions in the 6 degrees of freedom the translations are taken ino
account in the same fashion whereas the rotations can be modeled using the Euler angles.
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After a displacement is imposed on the system Obf , the undisturbed water line is

still fixed at zFS = 0, so zbf = −dz(t). Note that xbf is not only fixed a priori but

is also equal to xFS. Thus, the corresponding beam of the Wigley hull is given

by:

ybf = ±B
2

(
1− (

2xbf
L

)2
)(

1− (
zbf
T

)2
)
. (5.10)

This way, as the points on keel are oscillated by zKbf = T + dz(t), the inter-

section between the points on the undisturbed free surface and the Wigley hull

changes. For the points on the second waterline, a similar approach to equation

5.10 is applied, with the value of zbf substituted by zMbf := zKbf/2 (i.e the second

water line is placed between the free surface intersection and the keel, in the mid-

dle point). The results of the procedure described above are shown in the figure

5.14.

Figure 5.14: Left hand side: mesh of wigley hull at draught T=-0.0625 units , .i.e
dz(t) = 0. Right hand side: mesh of wigley hull at T=- 0.0292 (i.e dz(t) = 2A
where A = 0.27T ).

The procedure described in this section is then encoded on a simple script.

For the body non linear simulations of the Wigley hull, this script is called by

the function CreateMesh(.), in line 3 of Algorithm 6. Hence, the problem of
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estimating signed distance functions for the Wigley hull is avoided.

5.4 Conclusions

In the context of hydrodynamics simulations, two meshing libraries were investi-

gated to (re)mesh the domain. The distance function approach (distmesh algo-

rithm from Persson [2005]) is able to create meshes with very good quality. The

key input for this algorithm is a signed distance function representation of the

domain and for geometries that are well defined mathematically, like the sphere,

the results obtained were reasonable. In order to extend this approach to the

wigley hull, the first step lies in estimating its signed distance function. In this

context, given a surface mesh of the hull geometry, algorithm 1 estimates signed

distance function numerically. The estimated the signed distance function is then

used as input in algorithm 2, which combines individual signed distance functions

into one signed distance function that represents the whole domain. This final

distance function is the used by distmesh to create the simulation mesh. Although

algorithm 1 can approximate signed distance functions for the free surface and

the Wigley hull, its use, on the present implementation, is not viable due to run-

time constraints. In fact, both distmesh and algorithm 1 have runtime issues

when it comes to hydrodynamic simulations, since it needs to mesh the whole

fluid domain and extract the boundary. This operation is costly when the size

of the domain is large. in addition, a tendency to induce spurrious modes on the

numerical stability was also identified with the distmesh algorithm. The reasons

related to this issue can be linked to the node movement update prescribed by

distmesh algorithm, which needs further investigations.

As an alternative, for the case of ship shaped geometries, the gmsh library

developed by Geuzaine and Remacle [2009] was investigated. Its algorithm is

based on heuristic meshing strategies. Compared to distmesh, gmsh runtime

and implementation are more efficient. On the other hand, the fact that the

domain is not described by signed distance functions requires a strategy to find

the intersection between the floating body and the free surface. For the case of

the Wigley hull undergoing forced oscillations in the heave mode, a simple script,
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based on coordinate changes between the body fixed system and the earth fixed

system, was implemented to perform this task.
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Chapter 6

Linear Time Domain Analysis

In this chapter, the numerical implementation of the theoretical framework devel-

oped in chapter 4 is combined with the meshing techniques explained in chapter

5 to tackle the radiation problem, using constant boundary element solver. The

main feature of this problem is to perform forced oscillations of the floating body

in a initially undisturbed free surface. In this context, the kinematic and dy-

namic boundary conditions are imposed on the exact free surface (equations 4.17

and 4.18 ), hence updating the free surface position and potential respectively.

The mixed boundary value problem is solved, at each time step, on the mean

undisturbed water level (z = 0). From its solution (namely, the potential on the

Neumann boundaries and the normal velocity on the Dirichlet boundaries) the

hydrodynamic pressure on the body surface and, hence the hydrodynamic force

can be estimated. In order to translate the results from time domain to the fre-

quency domain, a Fourier decomposition of the hydrodynamic force is performed,

giving the corresponding added mass and damping coefficients. The numerical

implementation assumes the domain is discretized into a number of small ele-

ments (a mesh, with nodes and connectivities) so that in the limit, as the size

of the elements tend to zero, the representation of domain becomes, hopefully,

exact. In the present work, triangles are used to approximate the domain, so

that a mesh with triangular elements is constructed. Once the mesh is available

a method to locate nodes on the boundary is developed. This way, Neumann or
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Dirichlet boundary conditions are imposed at the center node of each triangle.

Next, the boundary value problem is solved, so that both the hydrodynamic force

acting on the floating body and the new position/potential on the free surface are

calculated. Comprehensive discussion on the mesh generation algorithms used in

the present work can be found in chapter 5.

6.1 Forced Motions

In order to test the numerical implementation of the current methodology, two

forced motions problems are tackled namely: the heaving and swaying body

(hemisphere and Wigley hull) on the free surface. In addition, in the context

of potential flow using linear free surface boundary conditions, both of these

problems have been solved analytically for the hemisphere by Hulme [1982] and,

therefore, added mass and damping coefficients are available for comparison. For

the case of the Wigley hull the calculated results are compared against the ex-

perimental data from Journée [1992].

For heave, the forced oscilation with amplitude, A, and circular frequency, ω,

is prescribed as:

z(t) = A sin(ωt); (6.1)

and for sway it is written as:

y(t) = A sin(ωt). (6.2)

From Equations 6.1 and 6.2, the velocity of oscilation of the floating body can be

derived and used in equation 4.11 yielding, therefore, the impervious boundary

conditions on the body.

In the radiation problem the free surface is initially undisturbed hence, its

initial potential, φ(~x, t0) = 0. Schematically, in pseudo-code language, the algo-

rithm that summarizes the steps of the linear time domain simulation is described

below as algorithm 3. The procedure is simple and the points worth pointing out
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are the following:

1. Line 1 creates the mesh on which the simulation is going to be carried out,

that is to say that the function CreateMesh(fd,fh,h0) returns the nodes

matrix p and connectivity matrix t, where fd is the distance function, fh

relative edge function and h0 is scalar, the edge size. For the linear time

domain problem this mesh is created only once either using the algorithm

from Persson [2005] or Geuzaine and Remacle [2009].

2. Since the mesh is created for the whole domain, the boundary is extracted

using the function FindBoundaryNodes(p,t). This function basically finds

surface triangles from the tetrahedra mesh.

3. Line 5: impose the potential at time t (it is set to zero at t=0) on the free

surface, this is a Dirichlet Boundary condition, which is imposed after the

integration of 4.15.

4. Impose the impervious boundary condition using equation 4.11 (Neumann

Boundary condition) on the floating body (line 6) and on the other Neu-

mann boundaries (line 7).

5. Solve equation 4.10 (a linear system) on the undisturbed water surface for

the normal velocity on the free surface and for the potential values on the

floating body. The assembling of the linear system is described in the appdx

A.

6. From the potential on the body surface calculate the hydrodynamic pressure

and the corresponding force on the body according to 6.15. This is done in

line 9; the time derivative of the potential, in this case, is calculated by a

simple backward first order difference scheme.

7. Lines 10 and 11 update the instantaneous free surface vertical position

and the free surface potential by integrating equations 4.17 and 4.18. The

update is shown schematically as first order numerical scheme, however,

both Euler scheme and second order schemes (Rungee Kutta method) have

been used depending on the context.
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Algorithm 3 Linear Time Domain Simulation

1: procedure Main( )
2: [p,t]=CreateMesh(fd,fh,h0); . Create a mesh of the domain
3: [xFS, yFS, xB, yB, zB]:=FindBoundaryNodes(p,t);
4: while t < T do
5: φFS:=Φi(xFS,yFS,t) . Set BC Value on the of the FS triangles
6: ∇φ · ~nB := ~v(t)B · ~nB . Set BC Value on the Floating Body
7: ∇φ · ~nB := 0 . Set BC Value on other Neumann Boundaries
8: [φB;∇φ · ~nFS] := [GFS;GnB]−1[∇φ · ~nB;φFS] . Solve the BVP at
zFS = 0

9: ~F := −ρ
∫
∂B

∂φ
∂t
~nBdS . Calculate the force on B

10: zFS := zFS + (∂φ
∂z
− νzFS)dt . Update the FS elevation

11: φFS := φFS + (−zFSg − νφFS)dt . Update the FS potential
12: t := t+ dt
13: end while
14: end procedure

6.2 Hydrodynamic Coefficients

In the case of forced oscillation in a single degree of freedom, neglecting the hy-

drostatic restoring force (i.e assuming the oscillations are sufficiently small so that

the draught of the floating body can be considered constant), the hydrodynamic

force 1 has basically two main components: one proportional to the acceleration

of the body, added mass, and one component proportional to the normal veloc-

ity which the body oscillates, damping. The coefficients, Aij and Bij, refer to

the added mass and damping respectively on jth degree of freedom induced by a

motion in the ith degree of freedom.

That said, the heave hydrodynamic force in the heave mode one can be written

as:

Fh(t) = A33z̈ −B33ż. (6.3)

Using equation 6.1 in 6.3 it follows that:

Fh(t) = −ω2AA33 sin(ωt) + ωAB33 cos(ωt). (6.4)

1Because the interest rely on the hydrodynamic force component, the hydrostatic force was
neglected throughout this chapter, i.e the pressure was calculated by: p = −ρ∂φ∂t .
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Multiplying equation 6.4 by sin(ωt) and integrating this equation over one period,

T, the added mass coefficient A33 is given by:

A33 =
1

πAω

∫ t+T
2

t−T
2

Fh sin(ωt) dt. (6.5)

By the same token, multiplying 6.4 by cos(ωt) and integrating yields the damping

coefficient, B33:

B33 =
1

πA

∫ t+T
2

t−T
2

Fh cos(ωt) dt. (6.6)

Once the time series of the hydrodynamic force is available, equations 6.5

and 6.6 are used to calculate the hydrodynamic coefficients for a given time

instant, t. This way, the time window of the Fourier Transform is moved by T
2

before and after each time step (taking into account a period T of the force),

producing a time series of the hydrodynamic coefficients. These corresponding

values of A33 and B33 for each t are then averaged to obtain the final values. It

is also worth pointing out that equations 6.5 and 6.6 can only be applied once

the hydrodynamic force has reached its steady state. For forced motions in sway

mode, the decomposition is performed in the same fashion, using the sway force

FS(t), as the hydrodynamic force in equations 6.5 and 6.6.

6.3 Rigid Body Analysis

In this section the results obtained for the radiation problem are presented. The

radiation problem plays a paramount role in seakeeping analysis. In addition,

a numerical solution of the radiation problem in time domain, opens a door to

investigate body non linear and fully non linear radiation effects in both rigid

and elastic modes settings. This way, forced motion problems are of particular

interest.

On one hand, they allow for the estimation of the hydrodynamic coefficients

and on the other they keep the problem numerically simple, so that the there is no

incident wave potential, nor diffraction potential to be accounted for. Moreover,
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in order to try estimate how the hydrodynamic coefficients change as a function

of the amplitude of oscillation (this problem is tackled in the next chapter), it

can be helpful to solve a second boundary value problem for the time derivative

of the potential. In this case, the body boundary condition to be imposed is also

a function of the acceleration of the body, which is known for the case of forced

motions.

Conversely, for the case of free floating bodies, the estimation of the body

boundary condition is more difficult, it requires knowledge of the pressure field

(or say, the time derivative of the potential) which in turn requires an estima-

tion of the body acceleration itself. The solution of this problem leads either to

an iterating scheme (this is costly from a computational perspective) or to the

approach of Wu and Eatock Taylor [1996], which lies outside the scope of the

present work.

For the half submerged hemisphere, the heave and sway forced motion prob-

lems are simulated and the results are compared against the analytical calcu-

lations of Hulme [1982]. In addition, the forced heave radiation problem of a

more ship like form, a Wigley hull (model IV of Journée [1992]), without forward

speed is also simulated and its the analysis is extended to the unified hydroelastic

approach, so that forced oscillations in pitch, sway and flexible modes are also

addressed.

With respect to the computational time, each of the simulations in this chapter

were carried out in one 2.6 GHz Intel Sandybridge processor and the average

runtime for each one was 48 hours.

6.3.1 Forced motions of a submerged hemisphere

Once a circular frequency ω is fixed for the forced motion, the wave number k is

also fixed. For the numerical simulations two meshes are used, namely a coarse

mesh with 3217 ( figure 6.1) triangles and a refined mesh with 5380 triangles (fig-

ure 6.2).The results of the hydrodynamic vertical forces for heave forced motions

of a sphere with radius R can then be compared with the calculations made by

Hulme [1982], using equation 6.4. These are shown in figure 6.3, for the circular

frequencies corresponding to kR=0.5,1,2,3,4 and 5.
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In figure 6.3, the time series of the heave hydrodynamic force is plotted against

time, note that one oscillation cycle is usually enough for the system to reach

steady state. In addition, it can be seen that as domain representation is refined

the numerical hydrodynamic force approaches the analytical forces predicted by

Hulme [1982], which is an indication of convergence in h-sense Karniadakis and

Sherwin [2005].

For forced motions in sway the scheme is the same as the one outlined for

forced heave oscillations (i.e algo 3). In fact the only change is the boundary

conditions imposed on the floating body, which, for sway, is given by equation

6.2. In addition, only the more refined mesh (5380 triangles) is used to carry out

the sway simulations for kR = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0. The time series of the

hydrodynamic sway force, FS(t), is presented in figure 6.4.

In order to express the results obtained in the time domain to the frequency

domain, equations 6.5 and 6.6 are used to estimate the added mass and damping

coefficients respectively, which are shown in figures 6.5 and 6.6 for heave and

sway respectively. An interesting point can be drawn from the data in figure 6.5 .

Although the numerical values of A33, calculated using the refined the mesh, are a

closer to the analytical values, B33 does not have the same agreement. In fact, the

values of B33 obtained for the coarser mesh are sometimes in better agreement

than the ones obtained by the refined mesh. The numerical limitations of the

CPM (constant panel method) when applied to mixed boundary value problems

have been extensively described by Xu [1992], Yan [2010] and Xue [1997]. The

error is more pronounced in solving Dirichlet problems, that is estimating the

normal velocity of the free surface when an initial potential is prescribed. In this

case, the potential value on the free surface is marched in time with an error which

is going to affect the solution of the problem in the next time step and probably

propagate by numerical diffusion. Due to this effect, a time domain approach

usually needs to rely on a more accurate solver than the frequency domain ap-

proach. This point is well investigated by Karniadakis and Sherwin [2005] in the

context of the numerical simulation of transient flow, highlighting the importance

of higher order methods in time domain simulations of fluid flow, in order to avoid

error propagation as time is marched. It is also worth pointing out that, although

a CPM method can fail to converge (or converge very slowly) to the solution of
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a mixed boundary value problem, simple modifications, like linear extrapolation

schemes near the the intersection of Neumann and Dirichlet boundaries, can ac-

tually improve the convergence of a crude CPM implementation in the estimation

of the normal velocity Xue [1997].

That said, the primary aim of the present work is to demonstrate that the

relatively simple numerical method provides a good qualitative agreement with

analytical (numerical or experimental data, when available) in situations where

the hypothesis of potential flow holds true. The accuracy of the predictions can be

improved by refining the numerical approximations (i.e using higher order BEM,

desingularised CPM or Galerkin based BEM). This way, the implementation is

more on the lines of trying to increase the accuracy of the CPM when needed,

rather than implementing a higher order numerical solver . For instance, by

extrapolating the numerical solution at collocation points to intersection points

by means of a radial basis function interpolation (see chapter 7).

By this token, it is interesting to compare the results obtained here, for the

hemisphere undergoing small amplitude forced oscillations motions, against the

ones from Lin and Yue [1991], where a transient Green function function was

used. More specifically, the hydrodynamic coefficients obtained by the SAMP

code (Small Motion Amplitude Program), show a tendency to oscillate around

the analytical values predicted by Hulme [1982]. There is an indication that,

as the number of panels on the floating body increases, the oscillations tend

to vanish. In the present work, using a simpler form of Green function, but

at the cost of discretizing the whole domain and solving the problem in time

domain, such oscillations did not occur, either for heave or sway. In addition, the

qualitative agreement of the results calculated in the present work against the

analytical results from Hulme [1982] is reasonably good.

Therefore, despite the aforementioned drawbacks of the present methodology,

figures 6.5 and 6.6 also show that a good qualitative behaviour can be achieved

using a CPM solver in linear time domain analysis of the radiation problem.

Furthermore, the use of unstructured meshes allows for an efficient discretization

of the whole boundary, so that the size of problem can be kept suitable for simple

numerical techniques, such as the conventional BEM used in this work, to be

applied.

84



Figure 6.1: Crude mesh 3127 triangles

Figure 6.2: Refined Mesh 5380 triangles
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Figure 6.3: Comparison of the heave hydrodynamic force for the hemisphere for
KR=0.5,1,2,3,4 and 5 against numerical calculations for a coarse and a refined
mesh.
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Figure 6.4: Time series of the sway force, FS(t), compared with the analitycal
results for the swaying hemisphere, for kR=0.5, 1, 2, 3, 4 and 5.
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Figure 6.5: Comparison of the heave hydrodynamic coefficients for the hemi-
sphere for kR=0.5,1,2,3,4 and 5 against numerical calculations using different
mesh refinements .
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6.3.2 Heave forced motions of a Wigley Hull form

In this section, the problem of forced oscillations in heave of a Wigley hull form

is tackled. In this context, the Wigley hull model IV of Journée [1992] is chosen.

The length,L in units, of the Wigley Hull as well as its non dimensional main

data and block coefficient, Cb, are summarized in the Table 6.1. As it will be

discussed in later chapters, the problem of estimating a signed distance function

for ship like forms can be numerically daunting due to the different scales and

curvature of ship like geometries. Consequently, for the simulation of the forced

oscillation problem in this section, the Wigley hull is meshed using the algorithm

developed by Geuzaine and Remacle [2009]. Therefore, points corresponding to

three water lines (z = −0.0625, z = −0.03125 and z = 0 units) are inserted and

interpolated using splines. Next, the splines are used to describe the hull surface,

which is finally meshed.

The coarser mesh generated by this procedure and its corresponding domain

mesh, a box like domain of dimensions [-4 -4 -1] x [ 4 4 0] units containing the

Wigley hull, are shown in figure 6.8. In addition, element quality of both meshes

are given in figures 5.12 and 5.13. Moreover, a refined mesh was also built in

order to check the convergence properties of algorithm 3.

In the context of the numerical simulation, the primary concern is on element

quality, because bad elements can actually break up the whole numerical scheme.

This way, the problem of how close the geometry of the mesh fits the original

geometry is left as secondary issue. However, in order to estimate the goodness

of the fit to the original geometry, the still water displacements of both coarser

and refined meshes (∇1 and ∇2 respectively) are compared against the exact

value of the still water displacement of the original geometry (∇Model), in units3,

in table 6.2.

Table 6.1: Wigley Hull Data
L 1.0
L
B

5.0
B
T

3.2

Cb 0.46
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Table 6.2: Still Water Displacement
∇Model 0.0058
∇1 0.0051

∇2 0.0051

Once a mesh is available for the Wigley hull, the problem of forced oscillations

in heave can be solved using the formulation described in sections 6.1 and 6.2, for

the zero forward speed case. The time series of the hydrodynamic force is shown

on the figure 6.9 for different frequencies of oscillations, showing that the steady

state is reached quickly. The usual Fourier decomposition, equations 6.5 and 6.6,

is then used to calculate the added mass and damping coefficients.

The results obtained for the hydrodynamic coefficients are then compared

with the experimental data of Journée [1992] in table 6.10, for the case with the

lowest Froude number, i.e Fn = 0.2. At ranges of frequency where the assump-

tions of linear theory holds this comparison makes sense, because, in this case,

the hydrodynamic coefficients are a function of only the frequency of oscillation

Newman [1977] 1. In addition, in the lower frequency range, the experimental

data obtained showed a considerable velocity dependence. It can be argued, that

this sort of effect is probably associated with viscous phenomena where the low

speed of oscillation allows for a thick boundary layer to be formed around the

floating body. Unfortunately, this sort of behaviour can be only be addressed by

either tackling Navier-Stokes equations or by adding viscous corrections to the

present code.

It is important to note that the data in figure 6.10 is non dimensionalized in

following fashion:

ω̂ =
ω√
g/L

(6.7)

Â33 =
A33

ρ∇
(6.8)

1In fact, effects due to the forward speed will also change the hydrodynamic coefficients.
However, if the coupling between heave and pitch motions is small, the changes due to foward
speed can also be shown to be small Newman [1977].
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B̂33 =
B33

ρ∇
√
g/L

(6.9)

Figure 6.7: Top: Coarser mesh of the whole domain (box like domain) used to
carry out forced heave oscilations of the wigley hull, 3298 triangles. Bottom:
Wigley hull (L=1 unit, L/B=5 and B/T=3.20) mesh used to perform forced
heave motions with 206 triangles.

The results in figure 6.10 indicate a reasonable agreement, for ŵ > 1.63, with

the experimental results, for both the coarser and the refined meshes. In partic-

ular, algorithm 3 seems to have a small tendency to overestimate the damping

coefficient and to underestimate the added mass coefficients, still the qualitative

behaviour is reasonably good.
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Figure 6.8: Top: Refined mesh of the whole domain (box like domain) used to
carry out forced heave oscilations of the wigley hull, 6684 triangles. Bottom:
Wigley hull (L=1 unit, L/B=5 and B/T=3.20) mesh used to perform forced
heave motions with 796 triangles.
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Figure 6.9: Time series of the Wigley hull heave force FH(t) for ω=5.11, 7.80,
10.81, 13.81 and 17.29 rad/s .
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In order to go beyond the qualitative agreement two avenues could be pursued.

First, note that the hydrodynamic coefficients are intimately associated with the

actual geometry of the body and table 6.2 suggests that there is room to improve

the fit to the original geometry, since the deviation of the volume estimated from

the meshes to the original geometry is of the order of 0.13 per cent. Secondly,

the accuracy of the BEM solver can certainly be improved, by the use of higher

order methods or Garlekin based approaches. On the other hand, the cost of

such improvements are higher from a computational runtime perspective, in the

sense that they can easily lead to the fast multipole influence computation, GPU

based linear system solvers and curved elements representations (see Xu [1992],

Yan [2010] and Liu [2009]).

However, in the context of the present work, one of the main objectives lies in

the development of a methodology that is capable of tackling problems of forced

oscillations (radiation problems) in either rigid or flexible modes and problems re-

lated to the evolution of the free surface in time. This way, qualitative agreement

is sought and improvements in either the numerical accuracy of the algorithms

or in the geometry representation of the floating body are going to be discussed

in the context of future work. By this token, in the next section algorithm 3 is

extended to tackle the unified problem which takes into account rigid and flexible

modes. Furthermore, since the qualitative behaviour of both coarser and refined

meshes of the Wigley hull are reasonable, the coarser mesh will be used in the

unified framework unless mentioned otherwise.

6.4 Hydroelasticity Analysis

In this section the formulation of the unified problem Bishop et al. [1986] is used

to extend the problem of forced oscillations of rigid bodies to the case of flexible

bodies. Essentially, in the MEL framework, in order to extend the analysis to

tackle flexible floating structures undergoing forced oscillations, the crucial step

is to formulate a structural model of the floating structure, so that distortion

modes and their respective mode shapes are known. To this end, the Wigley hull

is modeled as uniform Euler beam that undergoes forced rigid motions and dis-
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tortions. In the boundary element context, a consequence of the unified approach

is that the Neumann boundary conditions, imposed on the floating structure, are

generalized, allowing to the introduction of the mode shapes of the beam model.

The remainder of the boundary conditions remain unchanged, as in the rigid

body problem. Once the boundary conditions are imposed, the problem is solved

in time domain using the previous MEL scheme.

6.4.1 Boundary Conditions for the Flexible Case

For the unified 3D hydroelasticity radiation problem the forced motions of the

floating structure are defined using the approach developed by Bishop et al. [1986].

Therefore, the forced oscillation motion with amplitude A, and circular frequency

ω, imposed in the ith mode of the structure, is written as follows:

~ui(t) = pi(t) ~Wi(~x) = A sin(ωt) ~Wi(~x); (6.10)

where ~Wi(~x) is the displacement vector associated with the mode shape corre-

sponding to the ith distortion mode. Therefore, if the six conventional rigid body

motions (surge, sway, heave, roll, pitch and yaw) are denoted by the indexes

i=1,2,3,4,5,6 respectively, then for translations (i=1 to 3) ~Wi(~x) is actually equal

to the unit vector and the oscillation is performed in the corresponding direc-

tion (x,y,z respectively). In addition, for rigid rotations about the origin of the

reference system (i=4 to 6) the mode shape is calculated by the vector product
~Wi(~x) = ~Wi−3(~x) × ~x. For the flexible modes (i > 6), a subtle simplification is

introduced which is reasonable if the deflections are assumed to be small. That

is to say, it is assumed that the flexible mode shapes, in the vertical direction,

are given by ~Wi(~x) = Wi(~x)~k, where ~k is unit vector along the vertical (z) di-

rection. By the same token, in the horizontal direction, it is assumed that the

flexible mode shapes are given by ~Wi(~x) = Wi(~x)~j, where ~j is unit vector along

the horizontal direction, pointing to starboard. These approximations can take

into account both vertical and horizontal bending, but they cannot be applied

for the case of twisting.

In addition, assuming that the structure can be idealized as an Euler beam
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leads to a simple expression for the displacement vector ~Wi(~x) :

Wi(x) = Ri(cosh(qi
x

L
) + cos(qi

x

L
)) + (sinh(qi

x

L
) + sin(qi

x

L
)). (6.11)

The qis are the constants eigen-solutions of the Euler beam. L is the length of

the floating body and:

Ri =
sinh(qi)− sin(qi)

cos(qi)− cosh(qi)
. (6.12)

Given this framework, from 6.10 it is straightforward to derive the impervi-

ous boundary condition on the floating body surface. Therefore the generalized

version of 4.11 can be expressed, for motions in the vertical direction, as:

∇φ(~x, t) · ~n = u̇i(t)~k · ~n; (6.13)

likewise, for motions in the horizontal direction, the generalized version of 4.11

can be expressed as:

∇φ(~x, t) · ~n = u̇i(t)~j · ~n. (6.14)

Note that equations 6.13 and 6.14 are approximate versions of the impervious

boundary condition for flexible modes. In fact, they neglect terms of the order

A2 and higher once the normal vector of the floating structure is assumed not to

change when the body is subject to oscillations defined by the distortion modes

(Bishop et al. [1986] actually derives a more general condition correct up to

terms of order A2). However, this boundary condition does make sense for small

deflections of the flexible body and turns out to be a good approximation for the

current purposes (i.e linearized free surface assumptions).

Once equation 4.10 is solved and under the assumptions of linear theory, the

pressure acting on the floating body oscillating in the ith mode can be greatly

simplified. Therefore, the hydrodynamic force in the jth direction is calculated

for a rigid body, according to Newman [1977], by integrating the time derivative
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of the potential on the floating body surface, ∂B; that is to say:

Fij(t) = −ρ
∫
∂B

∂φ

∂t
nidB. (6.15)

Although equation 6.15 is valid only for rigid modes, it can be extended to

account for unified mode shapes Bishop and Price [1979], yielding a generalized

expression for the hydrodynamic force, as follows:

Fij(t) = −ρ
∫
∂B

Wj(~x)
∂φ

∂t
nidB. (6.16)

From the hydrodynamic force the added mass and damping coefficients are

calculated by performing a Fourier decomposition of the force in the usual fashion,

which leads to an estimation of hydrodynamic coefficients corresponding to both

rigid and flexible modes.

Algorithm 4 summarizes the time domain simulation, under the assumptions

of the unified hydroelastic theory applied to the problem of forced oscillations.

Algorithm 4 Unified Linear Time Domain Simulation

1: procedure Main( )
2: [p,t]=CreateMesh(fd,fh,h0); . Create a mesh of the domain
3: [xFS, yFS, xB, yB, zB]:=FindBoundaryNodes(p,t);
4: while t < T do
5: φFS:=Φi(xFS,yFS,t) . Set BC Value on the of the FS triangles
6: ∇φ · ~nB := ~̇u(t) · ~nB . Set BC Value on the Floating Body
7: ∇φ · ~nB := 0 . Set BC Value on other Neumann Boundaries
8: [φB;∇φ · ~nFS] := [GFS;GnB]−1[∇φ · ~nB;φFS] . Solve the BVP at
zFS = 0

9: Fij(t) := −ρ
∫
∂B
Wj(~x)∂φ

∂t
nidB. . Calculate the force on B

10: zFS := zFS + (∂φ
∂z
− νzFS)dt . Update the FS elevation

11: φFS := φFS + (−zFSg − νφFS)dt . Update the FS potential
12: t := t+ dt
13: end while
14: end procedure

At this point, it is interesting to compare both algorithms 3 and 4. In fact,

just lines 6 (i.e the boundary condition imposed on the floating body) and line

9 (the integration of the pressure around the body surface) actually change due
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to the unified formulation. Using this algorithm results, for both symmetric and

antisymmetric modes, were obtained, The next sections presents these results and

compare them against other numerical methods.

6.4.2 Results for Symmetric Modes

In this section the problem of forced motions of the Wigley hull model IV, shown

in Table 6.1,is investigated. In this context, the symmetric rigid modes of heave

(i=3) and pitch (i=5) together with two flexible modes for i=7 (2-node) and 8

(3-node) are considered.

For the Wigley hull, it was found empirically that the size of the damping

zone has a more pronounced effect than for the hemisphere, especially in the

lower frequency range (higher wavelengths) where reflection has been observed.

In order to overcome this problem two meshes were created with different free

surface sizes, whereas the mesh on the floating body surface remained the same,

i.e. 206 triangles.

The smaller mesh comprised 3298 triangles with a range between [-4, -4, -1]

and [4, 4, 0] units, shown in 6.8. The larger mesh 5318 triangles with a range be-

tween [-5, -5, -1] and [5, 5, 0] units. The non-dimensional added mass Aii/(∆L
2)

and and damping Bii/(∆L
2
√
gL) coefficients shown in figures 6.11, 6.12, 6.13 and

6.14. These are plotted against non-dimensional frequency ω
√
g/L. The larger

of the meshes is used for the two smaller frequencies, whilst the smaller mesh is

used for the remainder. The predicted values are compared with experimental

measurements by Journée [1992] (rigid body motions only), 2D hydroelasticity

predictions by Bishop and Price [1979] (using 20 sections along the hull, denoted

by mars) and 3D hydroelasticity predictions by Bishop et al. [1986] (pulsating

source method using 350 panels on the mean wetted surface, denoted by flxbd).

The predictions of the current method, i.e algorithm 4 are denoted by time do-

main.

The non-dimensional (generalized) heave and pitch added mass and damp-

ing coefficients (no coupling due to fore-aft symmetry) are shown in figure 6.11.

There is good agreement between the current predictions and Journees experi-

mental measurements, except for the relatively small frequencies. The agreement
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is also good between the current predictions and the 3D analysis. In some cases

the current prediction is closer to the experimental results than the 3D analysis,

e.g. for B33. The predictions from the 2D analysis are smaller than all other re-

sults. The non-dimensional (generalized) added mass and damping coefficients for

the distortion modes i=7 and 8 are shown in figure 6.12 The comparison between

3D hydroelasticity and the current predictions show good overall agreement, with

the results by the current method in general larger than the 3D frequency domain

hydroelasticity. There is poor correlation between the 2D and 3D hydroelasticity

results. It should be noted that there is no coupling between i=7 and i=8 modes

due to the fore-aft symmetry. The coupled hydrodynamic coefficients are illus-

trated using i=3 (heave) and i=7, and i=5 (pitch) and i=8, these are shown in

figures 6.13 and 6.14. The agreement is good between the 3D frequency and time

domain methods, although the latter is larger for the B37 damping coefficient for

relatively large frequencies of oscillation. The predictions from the 2D hydroelas-

ticity theory are smaller than either 3D prediction, especially for the added mass

A37 and do not show good agreement for the damping coefficient B85.

The experience with the Wigley hull shows the complexities of the problem

even when comparing simple geometries, such as the hemisphere and Wigley

Hull. Although the domain is relatively large, the body or mean wetted surface

is still relatively crude. Differences were observed for relatively small and large

frequencies of oscillation. The former can be dealt with at the expense of a larger

domain. The latter is likely to require more refinement on the body, implying

a much finer free surface mesh in the vicinity of the body, hence, a much larger

overall mesh, which again calls for a parallel linear system solver.

6.4.3 Results for Anti-Symetric Motions

In the context of anti-symmetric motions, the problem to be addressed is the one

of a floating structure undergoing sway and roll forced oscillations. For sway, in

framework currently adopted, the boundary condition, equation 6.14, needs to be

imposed on the body surface. By using this impervious boundary condition, the

assumptions of Euler beam and its respective mode shape are assumed to hold

true, since ~ui actually depends on the mode shapes of the beam by equation 6.10.
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Figure 6.11: Comparison of model test results, MARS (2d strip theory ) and the
model developed by Bishop et al. [1986] (3d frequency domain model , flxbd)
against the current calculations for the wigley hull undergoing forced motions in
mode 3 (heave) and 5 (pitch).
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Figure 6.12: Comparison of MARS (2d strip theory ) and the model developed
by Bishop et al. [1986] (3d frequency domain model , flxbd) against the current
calculations for the wigley hull idealised as an Euler Beam model undergoing
forced motions in modes 7 (2-node) and 8 (3-node).
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Figure 6.13: Comparison of MARS (2d strip theory ) and the model developed
by Bishop et al. [1986] (3d frequency domain model , flxbd) against the current
calculations for the wigley hull idealised as an Euler Beam model undergoing
forced motions for cross couple modes 3 (heave) and 7 (2-node).

Using the same meshes described in the previous section the simulation is then

carried on. Note that, since the hull is now being oscillated on the y direction

we are interested in three sets of hydrodynamic coefficients, namely: sway into

sway, sway into roll and sway in the first distortion mode (i.e 2-node) in the

horizontal plane, which is called here mode 7 as well. Unfortunately the notation

is overloaded because mode 7 in this section refers to first distortion mode in

the horizontal plane, whereas mode 7 in the previous section referred to the first

distortion mode in the vertical plane.

The hydrodynamic coefficients obtained are then compared against the nu-

merical calculations from Bishop et al. [1986] , i.e 3d frequency domain analysis

(referred as flxbd in the plots). The hydrodynamic coefficients are plotted in

figures 6.15, 6.16 and 6.17 for sway into sway, sway into roll and sway into the

first distortion in the horizontal plane (2-node , denoted by mode 7 throughout
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Figure 6.14: Comparison of MARS (2d strip theory ) and the model developed
by Bishop et al. [1986] (3d frequency domain model , flxbd) against the current
calculations for the wigley hull idealised as an Euler Beam model undergoing
forced motions for cross couple modes 5 (pitch) and 8 (3-node).

this section).

At this point a couple of remarks can be highlighted. First, it can actually be

seen that the agreement, compared to what was obtained in heave and pitch, has

worsened, although the overall qualitative behaviour is resonable. In addition, by

looking at the cross coupled hydrodynamic coefficients the agreement is somewhat

poor.

In a attempt to improve the numerical accuracy of the simulations, the inte-

gration method of the free surface boundary condition was refined. This way, a

second order Rungee Kutta scheme (RK2) was implemented (its description and

implementation are detailed in the Appendix A Numerical Techniques) and some

of the frequencies for the sway forced motions were run again and compared to

the former results obtained by the Euler scheme (green circles in figures 6.15, 6.16

and 6.17 ). A comparison between the results suggest that, although the use of
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Figure 6.15: Comparison of the model developed by Bishop et al. [1986] (3d
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sway.Green circles denote the RK2 scheme, red crosses Euler method.
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the second order integration scheme allows the simulation to run at larger time

steps, the comparison of the hydrodynamic coefficients using an Euler scheme and

the second order method, suggest that for the range of time steps where the Euler

scheme is stable, the accuracy of both integrators are very close. In addition, to

investigate further the occurence of wave reflection in the lower frequency range

a third mesh [-6,-6,-1] x [-6,6,0] was also used together with the RK2 scheme,

this result plotted in figure 6.16 as black dots. This results indicates that, for

the present purposes, convergence has been achieved with the [-5,-5,-1] x [-5,5,0]

mesh, hence, there is no need to use a bigger domain or damping beaches in this

case.

Therefore, the bottleneck is not actually in the free surface integration. Other

possible reasons rely on relatively crude mesh representation of the geometry (this

can be investigated further by a convergence estimation of the numerical algo-

rithm in the h-sense Karniadakis and Sherwin [2005], at the cost of much bigger

domain) or in inacuracies relating to the estimation of the potential derivative

around the floating body (i.e ∂φ
∂t

), which is actually being estimated by simple

backward difference scheme in algorithm 4. For a more comprehensive discussion

on the evaluation of ∂φ
∂t

please refer to the next chapter.

Despite some drawbacks relating to accuracy issues, a methodology that en-

compasses the simulation of potential flow and gives a qualitative good agreement

with other methods based on potential flow theory has been developed and shown

to work in the context of the unified linear time domain problem. Once this is

achieved, it is possible to then work out refinements, like the accuracy of the

Boundary Value problem solver for instance, and improve the methodology fur-

ther.

6.5 Conclusions

In this chapter, the problem formulated in chapter 4 was implemented numeri-

cally. Under the assumptions of linearized potential flow theory, forced oscilla-

tions problems for a rigid body were tackled and the results compared against

exact potential flow solutions (for the hemisphere) and experimental data (for the
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wigley hull, when available), showing a good qualitative behaviour on the rigid

modes simulated.

An extension of the boundary conditions for the case of a floating struc-

ture undergoing forced distortion motions was also derived and implemented,

accomplished by formulating the problem using the unified theory of hydroelas-

ticity. The approach used for the unified problem was then validated through

comparisons with 3D and 2D hydroelasticity predictions for symmetric and anti-

symmetric (bending) modes. For the symmetric modes the results a good quali-

tative agreement was obtained. For the case of anti-symmetric modes the hydro-

dynamic coefficients obtained showed a reasonable qualitative agreement, but the

numerical results were not as accurate as the ones obtained for symmetric modes.

In order to tackle this issues a RK2 scheme was also implemented and the results

were compared with the coefficients obtained using the Euler method. Although

RK2 allowed the simulation to march with larger time steps, the hydrodynamic

coefficients were basically unchanged. This suggests that the discrete domain

(mesh of the geometry) could still be too crude. Finer meshes would require a

parallel implementation of a linear system solver, which was left out of the scope

of the present work. Nonetheless, this is indeed an avenue for future research.

Issues related to problems of accuracy of the constant panel method solver

as well as possible issues related to the accuracy of the geometry representation

of the floating body have been outlined. In addition, issues have been identified

with reference to the size of the domain, in particular at relatively low frequencies

of oscillation. A brief analysis of influence of the free surface size suggests that

for the Wigley hull simulations on the lower frequency range, the mesh [-5, 5,

0]x[-5, 5, -1] has a suitable size, whereas, with [-4, 4, 0]x[-4, 4, -1] mesh, wave

reflection has been observed.

Despite of the drawbacks mentioned above the results obtained showed a

qualitative good/resonable agreement for the present purposes, i.e developing a

methodology to simulate three dimensional potential flow structure interactions

using an unstructured grid. Accordingly, in the next chapter, an extension of the

algorithms presented in this chapter, to include body non linear and non fully

linear effects, will be carried out.
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Chapter 7

Time Domain Non Linear

Analysis

This chapter discusses how the methodology developed in chapters 4 and 5 can

be extended to carry out potential flow simulations using the body non linear and

fully non linear formulations, still in the context of forced motions. As pointed

out earlier, the problem of free motions in waves is out of the scope of the present

work and the efforts will focus in trying to model the changes in the hydrodynamic

coefficients as a function of the amplitude of the forced oscillation.

Under the assumptions of potential flow theory, in time domain, there are

basically three sources of nonlinearities that can change the hydrodynamic co-

efficients of a floating structure. The first source of non linearity is caused by

the changes in the submerged geometry of the floating body. The second source

is caused by the time evolution of water line, i.e, as the body enters and exits

the water not only its submerged geometry changes, but also, the instantaneous

water line evolves in time. In this process, it turns out that not only changes in

hydrostatic forces are observed, but also hydrodynamic components, neglected by

the linearized theory, arise. The third source of non linearity is the non linear free

surface boundary conditions, so that on the free surface, as opposed to the lin-

ear case, the Bernoulli equation cannot be linearised anymore, thus a quadratic
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term, i.e, the velocity of the fluid, needs to be computed as well. In order to

tackle this these issues, a couple of changes in the algorithm that was used in

the last chapter are required. In particular, one of the most difficult numerical

challenges is that the domain now changes in time, therefore a new mesh and a

new influence matrix will have to be computed at each time step. In addition, in

the context of the fully non linear theory, the free surface position also changes

in time. Therefore a numerical scheme to deal with not only its movements but

also with the interpolation of the free surface potential needs to be implemented.

In section 7.1 the body non linear is approach is introduced. The numerical

techniques used to estimate the derivatives of the velocity potential are also de-

scribed and two algorithms are proposed to solve the body non linear problem.

Section 7.2 presents the results of the BNL analysis for the case of a sphere un-

dergoing forced oscillations in the heave mode, for a range amplitudes; the results

are compared to other numerical predictions. Moreover, the results of the Wigley

hull undergoing forced oscillations in heave are computed and compared against

available experimental data. Section 7.3.1 formulates the non linear free surface

bondary conditions by allowing motions only on the vertical direction.

The results of the non linear analysis are presented in section 7.3.2 and com-

pared to other numerical predictions available. Finally, section 7.4 concludes the

analysis developed in this chapter.

7.1 Body Non Linear

The body non linear approach aims to capture effects caused by the changes of

the wetted surface of the floating body. From a hydrodynamic perspective, in

order to gain some intuition on this behaviour, a parallel to hydrostatics can be

helpful, for instance: when a body undergoes small oscillations about its mean

free surface position, the variation of its immersed volume can be linearized with

respect to its draught (actually this depends on the geometry, but this holds true

for small curvatures along the longitudinal and transversal directions); in that

sense the hydrostatic force is written as linear function of the draught. As the

amplitude of the oscillation increases, this approximation no longer holds true
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and the immersed volume has to be calculated by integration. When it comes

to hydrodynamic coefficients the behaviour turns out to be similar, but the de-

pendence on the immersed volume is not as straightforward as in the hydrostatic

case because the pressure field is more complex.

In order to investigate this dependence, the model used in the last chapter

needs to be extended to account for the changes on the wetted surface of the float-

ing body. From an implementation perspective, this brings problems associated

with the model used here, namely:

1. Due to the amplitude of the body motions, the distance function of the

floating body now varies with time;

2. As the domain changes through time, a new mesh needs to be generated at

each time step so that the changes of the position of the floating body are

accounted for;

3. The evaluation of the derivative of the potential function with respect to

time becomes harder to evaluate (see He and Kashiwagi [2009] for instance)

, since now the potential scalar field is defined in a specific mesh at each

time step and its temporal derivative needs to be calculated;

4. As pointed out by Lin and Yue [1991] , even when the free surface boundary

conditions are linearized, the quadratic term on Bernoulli’s equation (i.e the

pressure) can have a considerable contribution to the hydrodynamic force on

the floating body. Therefore, the potential gradient needs to be estimated

as well.

Issues 1 and 2 are straightforward to deal with. Actually, given the correct

distance function at a given time step the mesh generator can be called and output

a new mesh. This new mesh then represents the idealization of the domain at

that given time step. However, in order to accomplish this, one still has to make

the signed distance function of the floating body, hence of the whole domain,

fd(t), time dependent. Recall that the signed distance function of a sphere, with

radius r, centered at a point ~xc = (xc, yc, zc), can be easily described analytically,
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on a grid point ~x, by:

desf (~x, ~xc) =
√

(x− xc)2 + (y − yc)2 + (z − zc)2 − r. (7.1)

So, if the sphere undergoes an oscillatory motion in heave with amplitude A

and frequency ω, then zc(t) = Asin(ωt) gives the position of its center. Thus, the

time dependence of the distance function can be made by a direct substitution

on the equation above; more details on how to estimate and propagate signed

distance functions in time can be found in the next chapter.

7.1.1 Estimation of the potential time derivative

The estimation of the time derivative of the potential, in the body non linear (and

fully non linear) framework, is much more involved than in the linear case. Under

the assumptions of linear theory the geometry of the domain does not change,

therefore the same mesh can be used every time step. This implies that the total

time derivative is equal to partial derivative of the potential at each point (i.e

the grid has zero velocity, so the convection terms vanishes). On the other hand,

when the submerged geometry of the floating body is changing in time a different

approach is needed.

There are two avenues to tackle this problem. The first one, is to adopt a

grid tracking scheme, where the nodes on the floating body are tracked at every

time step. Since the position of nodes are known in subsequent time steps their

velocities can be calculated. This way, the material derivative of the potential

can be approximated using a finite difference scheme and, since the velocity of

the nodes of the floating body, Vg, is also known, ∂φ
∂t

can be estimated as Lin and

Yue [1991]:

∂φ

∂t
=
Dφ

Dt
− Vg · ∇φ, (7.2)

where Dφ
Dt

is evaluated by an upwind scheme, between t=t and t=t-dt, i.e:

Dφ

Dt
=
φ(x, y, z, t)− φ(x, y, z, t− dt)

dt
, (7.3)

114



and Vg is the grid velocity.

Since the meshes t=t and t=t-dt are not the same, the potential needs to be

interpolated at the points of time t=t, but at the instant t=t-dt. In order to

accomplish this, at every time step, a radial basis function representation of the

potential is found, as follows:

φ(x, y, z, t) =
n∑
i=1

bif(
√

(x− xi)2 + (y − yi)2 − (z − zi)2) + b0, (7.4)

where a solution of the linear system will lead to the values of the coefficients b′is,

see proposition 7.1.2 for case where λ = 0. In equation 7.2, note that if the grid

velocity equals the floating body velocity, the fully Lagrangian particle tracking

scheme is recovered.

Once the rbf representations are available, the runtime of encoding equation

7.2 is proportional to the number of nodes on the floating body, so it is com-

putationally efficient (linear run time). In addition, according to Yan [2010] a

reasonable estimation of the pressure field for problems with zero or small am-

plitude body motions can be attained. On the other hand, issues related to non

physical oscillations when the body discretization is modified have also been re-

ported by ( Battistin and Iafrati [2003] and Wu and Eatock Taylor [1996]). In

fact, the results obtained by the body non linear approach suggest that these non

physical oscillations are associated with interpolation innacuracies. This happens

because as the domain is remeshed the points on the new mesh are not same as

the ones on the old mesh, so if the interpolation has a lower accuracy it induces

spurious oscillations.

Alternatively, the boundary value problem can be solved directly for ∂φ
∂t

, in

theory avoiding the instabilities inherent from the finite difference scheme. This

can be achived by taking partial derivatives with respect to time of equation 4.10,

i.e:

c(~xi)φt(~xi, t) =
N∑
j=1

∫
Ej

G(~xi, ~yj)
∂(∇φ(~yj, t) · ~n)

∂t
dEj−

N∑
j=1

∫
Ej

φt(~yj)∇G(~xi, ~yj)·~ndEj.

(7.5)
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In this second BVP, equation 7.5 is solved for φt on the floating body and for
∂2φ
∂t∂n

(the normal acceleration) on the free surface.

This way, on the free surface, the Dirichlet boundary condition is prescribed

on φt, which is actually the dynamic boundary condition of the free surface. In

the context of body non linear simulations it is written simply as:

∂φ

∂t
= −gz. (7.6)

The Neumann boundary condition imposed on the floating body is the time

derivative of the impervious boundary condition, i.e ∂2φ
∂t∂n

. For a rigid body with

no heel angle, it can shown (Wu and Eatock Taylor [1996], Battistin and Iafrati

[2003]) that it is given by :

∂2φ

∂t∂n
= ~nB · ~aB − ~nB · (~vB · ∇)∇φ, (7.7)

where ~nB is normal vector of the floating body, ~aB its acceleration and ~vB its

velocity.

Under this framework, it is worth pointing out the dependence of the first

and second BVPs. On the first one the potential on the floating body φ is found.

Once φ is known its spatial gradient ∇φ can be calculated at the corresponding

time step to enter the last term in equation 7.7. Actually, the terms in equation

7.7 can be difficult to evaluate, specially in the context of free floating bodies

when the body acceleration ~aB is not known a priori, but instead depends on

the pressure field itself, in this situation, an iterative scheme is needed. Further-

more, under free motions, the velocity potential is more complex since it now has

also components corresponding to the diffraction problem, making its estimation

numerically daunting.

On the other hand, in the context of forced oscillations problems both ~aB and

~vB are known a priori, making equation 7.7 more straightforward to apply.

More concretely, when we are concerned with forced oscillations in the heave

mode, ~vb = (0, 0, Aωcos(ωt)) and ~ab = (0, 0,−Aω2sin(ωt)). Furthermore, it can

be shown (see Appendix A Numerical Techniques ), that for the case of heave
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forced motions equation 7.7 reduces to:

∂2φ

∂t∂n
= ~nB · ~aB − v3~nB · ∇

∂φ

∂z
, (7.8)

v3 being the velocity on the vertical direction, i.e v3 = Aωcos(ωt)).

The major drawback of this method is that instead of solving one boundary

value problem, two boundary value problems need to be solved so that the solution

of the first is the boundary condition for the second one (i.e ∇∂φ
∂z

term in equation

7.8). At this point it is important to point out that before estimating ∇∂φ
∂z

, one

needs to estimate the spatial derivatives of the velocity potential, this problem is

tackled in the next section.

7.1.2 Estimation of the Potential Spatial Derivatives

From what was presented in the last section, the question of how to calculate

∇∂φ
∂z

, when the value of φ is known only on the body surface still needs to be

addressed. In fact, in the context of constant panel methods even the estimation

of ∂φ
∂z

is not straightfoward. Since the potential is calculated at the element

centers and assumed to be constant over them, it is not continuous (therefore

not differentiable) from element to element (or panel to panel), therefore it is not

possible to estimate ∂φ
∂z

directly.

One option is to treat the body surface on the element (panel) level, work out

the derivatives on the local coordinates and map them back to the global coor-

dinate system. In order to achieve this, higher order boundary element methods

have been developed and the so called double node boundary conditions have

also been introduced to remove the singularity on the water line (intersection of

Dirichlet and Neumann surfaces) Liu et al. [2001]. Under this framework the

spatial derivatives are calculated on the element basis and then mapped back to

the global coordinate system Xu [1992].

In this work, another path, novel to the best of our knowledge in the context of

hydrodynamic simulations, is pursued. The motivation to introduce this method

comes from the problem of interpolating scatter data, which is a useful tool in the

context of unstructured grids. However, one seeks here not only interpolation but
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to impose the conditions in order to obtain a good approximation, in the sense

that it captures the ”essence” or ”learns” 1 the function been modeled, even in

the presence of noise or inaccuracies (say from the CPM for instance). In this

context a couple of properties are important, namely:

1. the interpolation needs to ”generalize well” (in a sense that if the test error

is small then the generalization error will also be small Vapnik [2000]) for

points other than the ones for which the interpolator was fit (say, training

data, features or examples) ; otherwise once the grid is remeshed and the

centers of the new triangles are in different positions the interpolation error

can become high. As it will be seen in the next section, this was precisely

the main reason in the body non linear simulations for the spurious picks

in the hydrodynamic force of the heaving sphere.

2. Since the spatial derivatives are sought, the interpolator needs to be differ-

entiable at least up to second order.

3. Once a global approximation is being pursed, it is important to have some

guarantee about its ability approximate complex functions.

Due its suitability on scatter data sets, radial basis function were chosen as

functions approximators in the present context. They are used to obtain repre-

sentations for the velocity potential on the floating body and on the free surface,

as well as for the free surface elevation when needed. Moreover, radial basis

function are differentiable and can be used to calculate the spatial derivatives, in

fact, the problem of solving a partial differential equation can be formulated in a

meshless manner using radial basis functions Buhmann [2004]. Furthermore, the

universal approximation theorem for radial basis functions networks from Park

and Sandberg [1991] states the following:

1The idea of capturing the essence of the model is being used here in the sense of statis-
tical learning theory, i.e small generalization error. Intuitively, in the present context, small
generalization error means that in a neighborhood of point where the interpolation was fit the
difference betwwen the true value and the prediction is kept small (i.e there are no spurious
oscillations)
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Theorem 7.1.1 Universal Approximation Theorem for Radial Basis Functions

Networks Park and Sandberg [1991]: Let f(x) : Rn → R be an integrable bounded

continous function and assume that

∫
Rn

f(x) 6= 0. (7.9)

Then for any continuous function g(x), ε > 0 and a > 0 there is an RBF Network

with N neurons a set of centers CN
i=1, and a common width σ > 0

ĝ(x) =
N∑
i=1

wif(
x− Ci
σ

) (7.10)

such that ∫
||x||≤a

(g(x)− ĝ(x))2dx ≤ ε = O(N
−1
n )

Theorem 7.1.1 implies that the rate of an approximation of an RBF network

is O(N
−1
2n ). For instance if one wants to approximate the free surface elevation,

ζ(x, y, t) at a fixed time instant, on a region where ||~x|| ≤ a, then n = 2 (two

dimensions), with a precision ε = 10−3, the number of RBF centers is of the order

of 106. Moreover, if one wants to approximate the potential the potential, then

n = 3, and the number of centers required, for the same precision grows by a

factor of 1.5, i.e 109. Hence, the number of centers required for the rbf network

to generalize well is clearly not feasible for the present purposes. In order to

try to overcome this difficult the idea of a regularized rbf network regression will

be explored with the hope that one can achieve generalization with less training

data. Actually the results for the free surface elevation, presented in the next

section, confirm the fact that the regularization term allows for the rbf network

to generalize better in points that are not the same as the rbf centers, C ′is.

More generally, the problem of finding a function approximator (or a hypoth-

esis) can be recast as supervised learning problem, as follows: given a set of input

vectors (or features) ~x1, ~x2,.., ~xm in Rd (d=2 or 3 for the present purposes) and
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a set of scalar labels y1, y2 ,.., ym one searches for a map h(~x : RN → R) that is

”close” to y for any given ~x and y. Since the radial basis functions representations

were chosen the approximator h(~x) is parameterized by weights wi, i.e hw(~x), and

is given by:

hw(~x) =
m∑
i=1

wif(||~x− ~xi||) + w0, (7.11)

where ||.|| refers to the Euclidian metric and f is the radial basis function centered

at ~xi.

There are several possible choices for f . For instance, denoting the Euclidian

distance by r typical choices of radial basis function, parametrized by σ, include

Buhmann [2004]:

• Gaussian: f = exp(− r2

σ2 ),

• Mutiquadratic: f =
√
σ2 + r2,

• Inverse multiquadratic: f = 1√
σ2+r2

.

Motivated by the results presented in Chinchapatnam [2006], a multiquadratic

rbf was selected.

Once the radial basis function f is chosen and both the features, ~xi, and scalar

labels yi are given, the parameters of rbf, wi need to be found. If the idea is to

set an rbf interpolator, one could impose on equation 7.11, that hw(~xj) = yj,

for all j=1 to m. This procedure will yield a linear system of equations, whose

influence matrix is A(i, j) = f(||~xj − ~xi||), which is solved for the unknowns wi.

This scheme ensures that the interpolation is exact on the ~xj points. However,

the solution can present spurious oscillations on the vicinities of the points ~xi

(unless there is enough centers available so that theorem 7.1.1 can be applied).

In other words, it can be easily to ”memorize” the inputs ~xi leading to overfitting

and possible inaccuracies, specially when dealing with noisy observations.

In order to make the interpolator more robust or, to put it in another way,

make its generalization error smaller, a regularization is introduced in the radial

basis function interpolator. More specifically, the regularization is imposed on

the l2 norm (i.e the sum of squares of the vector components), but other norms,
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like l1 (i.e the absolute value) are also possible Murphy [2012]. In this work this

carried out by seeking w∗ that minimize the regularized mean square deviation

between hw(~xi) and yi, that is to say:

w∗ = argmin
w

1

2

m∑
i=1

(hw(~xi)− yi)2 +
λ

2
||w2||. (7.12)

Equation 7.12 can be recast as a quadratic optimization problem where w∗,
its solution, are given by a simple closed form expression. A simple way to do

this is to write the objective function, Fobj, in a vector form, as follows:

FObj =
1

2
(Aw − y)T (Aw − y) +

λ

2
wTw. (7.13)

Therefore, the problem of finding w∗, is equivalent to minimize equation 7.13.

Since it is a convex function, all that is needed is to calculate the gradient of FObj

with respect to the vector w, ∇wFObj, and set it to zero.

Proposition 7.1.2 Let FObj be a convex function given by equation 7.13, then

the vector w∗ that minimizes FObj is given by:

w∗ = (ATA+ λI)−1ATy. (7.14)

Proof Due to the convexity property, to find w∗, it suffices to calculate ∇wFObj

and set it to zero, this yields:

∇wFObj =
1

2
∇w(wTATAw − yTAw − wTATy + yTy + λwTw)

=
1

2
(2ATAw − 2ATy + 2λw)

= (ATAw − ATy + λIw)
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So, setting ∇wFObj =0 and solving for w, yields:

w∗ = (ATA+ λI)−1ATy.

Moreover, from a probabilistic perspective, equation 7.14 has an interesting

Bayesian interpretation. It corresponds to the maximum a posteriori (MAP) es-

timation Bishop [2007], where instead of finding w by maximizing the likehood

probability function, w is found as the vector that maximizes the posterior prob-

ability density function.

Once the coefficients of the radial basis functions are found, it is straightfoward

to calculate its spatial derivates. Specifically, let ~x = (x, y, z), then one can write:

∂hw(~x)

∂x
=

m∑
i=1

wi
∂f(||~x− ~xi||)

∂x
,

∂hw(~x

∂y
) =

m∑
i=1

wi
∂f(||~x− ~xi||)

∂y
, (7.15)

∂hw(~x

∂z
) =

m∑
i=1

wi
∂f(||~x− ~xi||)

∂z
,

in particular, chosing f as a multiquadratic function yields the following:

∂f(||~x− ~xi||)
∂x

=
x− xi√
σ2 + r2

;

∂f(||~y − ~yi||)
∂y

=
y − yi√
σ2 + r2

; (7.16)

∂f(||~z − ~zi||)
∂z

=
z − zi√
σ2 + r2

.

This way the spatial derivatives can be estimated, both with the aid of the ra-

dial basis function and their respective coefficients given by equation 7.14. More-

over, with the aid of the rbf approximation some innacuracies and possibly noise

of the constant panel method can be reduced, hopefully making it applicable to

problems where only higher order methods have been employed. From a learning
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theory perspective one can interpret the coupling between rbf representations and

the constant panel method as solution reconstruction problem, whereby the CPM

provides labels that are then used to build the solution by the rbf approxima-

tor; hence, the method is in way a hybrid numerical tool somewhere in between

meshfree methods and Eulerian based solvers.

7.1.3 Body Non Linear Model

In the last two sections, it was highlighted that the move from linear time domain

analysis to body non linear analysis, requires spatial and time derivatives of

the potential to be evaluated. In order to estimate the time derivatives two

approaches were proposed: one based on equation 7.2, i.e a finite difference scheme

and a second approach is based on the solution of a second boundary value

problem. The spatial derivatives are estimated with the aid of a regularized

radial basis function representation according to equations 7.15, 7.15 and 7.16.

Once spatial derivatives of the velocity potential are estimated, the contribution

of the square of the velocity gradient can be accounted for in Bernoulli’s equation,

i.e:

p =
∂φ

∂t
+∇φ2. (7.17)

The force contribution of ∇φ2 is typically a second order harmonic contribu-

tion to the time series of hydrodynamic force. The results of this contribution

are shown in the next section.

Armed with these new tools the linear time domain algorithm can be extended

to the body non linear case. In fact, the structure of the algorithm used to

simulate the body non linear problem is similar to the one presented in the last

chapter, i.e Algorithm 3 . The main differences are related to the changes of the

influence matrix of the boundary value problem as time is evolved and with the

estimations of the spatial and time derivatives of the potential function. In what

follows, both Body Non Linear algorithms are going to be presented and their

differences highlighted.

The Body Non Linear Algorithm based on the finite difference approximation
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for the potential time derivative, equation 7.2, is summarized in Algorithm 5.

Algorithm 5 Finite Difference Body Non Linear

1: procedure Main( )
2: while t < T do
3: [p,t]=CreateMesh(fd(t),fh,h0); . Create a mesh of the domain
4: [xFS, yFS, xB, yB, zB]:=FindBoundaryNodes(p,t);
5: φFS:=Φi(xFS,yFS,t) . Set BC Value on the of the FS triangles
6: ∇φ · ~nB := ~v(t)B · ~nB . Set BC Value on the Floating Body
7: ∇φ · ~nB := 0 . Set BC Value on other Neumann Boundaries
8: [φB;∇φ · ~nFS] := [GFS;GnB]−1[∇φ · ~nB;φFS] . Solve the BVP at
zFS = 0

9: ∇φ = (∇φ · ~tb)~tb + (∇φ · ~nb)~nb . Compose ∇φ on the body surface

10: p := ∂φ
∂t

+ ∇φ2
2

. Equation 7.2 is used for ∂φ
∂t

11: ~F := −ρ
∫
∂B(t)

p~nB(t)dS . Calculate the force on B(t)

12: zFS := zFS + (∂φ
∂z
− νzFS)dt . Update the FS elevation

13: φFS := φFS + (−zFSg − νφFS)dt . Update the FS potential
14: t := t+ dt
15: end while
16: end procedure

Comparing Algorithms 3 and 5, note that the lines 2 and 3 of Algorithm 3

have come into the while loop because the domain is meshed every time step.

Furthermore the integral of the force at line 9 of Algorithm 5 is now evaluated at

the instantanous body surface, ∂B(t) instead of the mean body surface ∂B, and

the pressure now takes into account the full form of Bernoulli’s equation. The

BVP is still solved on the mean free surface, which is the essence of the Body

Non Linear approach.

Different from Algorithm 5, Algorithm 6 evaluate the time derivative of the

potential exactly. As mentioned before, this is accomplished by solving a second

boundary value problem (line 12). It is worth pointing out that the influence

matrix of the first and second boundary value problems is the same, and what

changes in fact are only the boundary conditions.
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Algorithm 6 φt Exact Body Non Linear

1: procedure Main( )
2: while t < T do
3: [p,t]:=CreateMesh(fd(t),fh,h0); . Create a mesh of the domain
4: [xFS, yFS, xB, yB, zB]:=FindBoundaryNodes(p,t);
5: φFS:=Φi(xFS,yFS,t) . Set 1st BC Value on the of the FS triangles
6: ∇φ · ~nB := ~v(t)B · ~nB . Set 1st BC Value on the Floating Body
7: ∇φ · ~nB := 0 . Set 1st BC Value on other Neumann Boundaries
8: [φB;∇φ · ~nFS] := [GFS;GnB]−1[∇φ · ~nB;φFS] . Solve the BVP at
zFS = 0

9:
∂φ
∂t FS

:= −zFSg . Set BC Value on the FS for the 2ond BVP

10:
∂2φ
∂t∂nB

:= ~nB · ~aB − v3~nB · ∇∂φ
∂z

. Set BC on Body for the 2ond BVP

11:
∂2φ
∂t∂n

:= 0 . Set BC on other Neumann Boundaries

12: [∂φ
∂t

; ∂2φ
∂t∂n

] := [GFS;GnB]−1][ ∂
2φ

∂t∂nB
; ∂φ
∂t FS

] . Solve the 2ond BVP at
zFS = 0

13: ∇φ = (∇φ · ~tb)~tb + (∇φ · ~nb)~nb . Compose ∇φ on the body surface

14: p := ∂φ
∂t

+ ∇φ2
2

. 2ond BVP is solved for ∂φ
∂t

15: ~F := −ρ
∫
∂B(t)

p~nB(t)dS . Calculate the force on B(t)

16: zFS := zFS + (∂φ
∂z
− νzFS)dt . Update the FS elevation

17: φFS := φFS + (−zFSg − νφFS)dt . Update the FS potential
18: t := t+ dt
19: end while
20: end procedure
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7.2 Results of the Body Non Linear Analysis

7.2.1 Forced oscillations of a Sphere

In this section the body non linear problem of a sphere undergoing forced mo-

tions in the heave mode will be considered. As it was highlighted in the previous

section, the key point in this simulation lies on the estimation of the time deriva-

tive of the potential function around the floating body; for this purpose, two

algorithms were presented, namely: Algorithm 5 approximates ∂φ
∂t

by an up wind

scheme, whereas Algorithm 6 solves for ∂φ
∂t

exactly. The approximation of the

spatial gradient of φ is done using the radial basis functions approach described

in the previous section.

More specifically, in either the body non linear or non linear analysis, new

terms arise when the time series of the hydrodynamic force is decomposed in the

frequency domain. This means that by performing a Fourier decomposition of the

hydrodynamic time series not only component proportional to the first harmonic

are relevant (say, frequency of oscillation), but also components proportional to

higher order harmonics, as well as a mean term, should be taken into account

Lin and Yue [1991]. In the context of forced oscillatory motions in the heave

mode, A(t) = Asin(ωt), the hydrodynamic force can be decomposed, by means

of a Fourier decomposition, as follows:

f̂0 =
1

T

∫ t+T/2

t−T/2
Fh(t)dt; (7.18)

A33 =
2

T

∫ t+T/2

t−T/2
Fh(t)sin(ωt)dt; (7.19)

B33 =
2

T

∫ t+T/2

t−T/2
Fh(t)cos(ωt)dt; (7.20)

A
(2)
33 =

2

T

∫ t+T/2

t−T/2
Fh(t)sin(2ωt)dt; (7.21)
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B
(2)
33 =

2

T

∫ t+T/2

t−T/2
Fh(t)cos(2ωt)dt; (7.22)

where Fh(t) is the time series of the hydrodynamic force in the heave mode.

From equations 7.19 and 7.20, the norm of first harmonic,f̂1 is calculated as

‖f̂1‖ =
√

(A33)2 + (B33)2. The norm of the second harmonic, f̂2, is calculated in

the same fashion from the values of A
(2)
33 and B

(2)
33 .

In the context of the BNL simulations a mesh is created each time step.

The mesh topology, and the size functions used are described in figure 7.1. The

damping zone, in this simulation, is kept circular and its dimesion is a strip of

length 1.0 (i.e in equation 4.16, rD = 3.0 and rL = 4.0).
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Figure 7.1: Mesh topology used on the BNL simulations: on average a total of
8926 triangles of which 300 are on the floating body. The distance function is
the difference of the cylinder and sphere, the relative size distribution is given by:
fh = 1 + 5

√
x2 + y2 + z2 and h0 = 0.04.

In figure 7.2, the hydrodynamics term obtained from the Fourier decompo-

sition of the hydrodynamic force time series are plotted as a function of the

amplitude of oscillation in heave. These harmonics are non dimensionalised as
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follows:

f0 =
f̂0

ρgπRA2
; (7.23)

f1 =
|f̂1|

ρgπR2A
; (7.24)

f2 =
|f̂2|

ρgπRA2
. (7.25)

In addition in figure 7.2, an analysis of the effect of different terms in pressure

evaluation was carried out. The blue dot line is the pressure field resulting only

from ∂φt, so that ∇φ2 is considered to be negligible. The red line evaluates

∇φ using only the tangential velocity components to the floating body; finally

the green line calculate ∇φ by combining both tangential and normal velocities

components (i.e the Neumann data prescribed as a boundary condition on the

floating body ∇φ · ~n is combined with the tangential derivate of φ, calculated

using the rbf representation, i.e equations 7.16 ). Interestingly, the effect of the

∇φ2 term is more pronounced on the evaluation of f0 and |f2|. The results suggest

that the magnitude of the normal gradient component is of great importance in

comparison with the tangential potential component, since it changes the values

of both f0 and |f2| when it is accounted for. In fact, compared to the results

obtained by Lin and Yue [1991], there is some indication that the value of f0

is being overestimated by time the present simulation 1. That said, there is

also evidence that, the tangential gradient has not a considerable contribution

to the pressure field, once its addition does not change significantly the values

of f0 and |f2| across the amplitudes range. In addition, when comparing the

harmonics calculated by algorithm 5 (FD BNL) against the body non linear

results from Lin and Yue [1991], it can be seen that the trends are qualitatively

in line, but algorithm 5 has a tendency to over/underestimate the harmonics.

More concretely, looking at the components of |f1| in phase with velocity and

1Since the sphere is undergoing forced oscillations, the normal velocity is given by the
impervious boundary condition, which is exact. However, the values of f0 are consistently
below the ones obtained by Lin and Yue [1991].
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acceleration (damping and added mass respectively), one can see from figure 7.4,

that the values of the the BNL case, even for small amplitudes of oscillations, are

far from the linear prediction when it comes to the added mass coefficients. On

the other hand, the agreement for damping is reasonably good, as compared to the

QBEM results from Yan [2010]. The exact reason for this particular behaviour is

something that needs further investigation as it could be linked to the accuracy of

the approximation of the time derivative of the potential by the finite difference

scheme of equation 7.3.
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Figure 7.2: Harmonics obtained from a Fourier decomposition of the force time
series using the BNL approach described in Algorithm 5 .

In order to investigate this further, algorithm 6 (φt Exact BNL) is used to

solve the same forced oscillation problem. A comparison of the force time series

generated from φt Exact BNL and FDBNL are plotted in figure 7.5 for the am-

plitudes of oscillations A = 0.30R and A = 0.25R. Note how the results from
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FDBNL overshoots when compared to φt and this is more pronounced on the

troughs, which correspond to the phase where more than half of the sphere is

submerged. Coming to the harmonics extracted from the φt Exact BNL (figure

7.3), the quantitative agreement is more in line as compared to the results of Lin

and Yue [1991]. Specifically, the trend for |f1| is in line, although its value decay

faster with the amplitude than the values obtained by Lin and Yue [1991]. This

can be seen in more detail in figure 7.4, which shows that the step decline of |f1|
is linked to the damping coefficient and the agreement of added mass coefficient

is reasonably good, except for the higher amplitude, where more investigations

are needed. In fact, the agreement of added mass has been better compared to

the linear simulations. It is also interesting to highlight that there is no jump

of the hydrodynamic coefficients in smaller amplitude range, which is actually

expected and suggests a reasonable behaviour of algorithm 6. In addition, there

is also tendency in overestimating the value of |f2| as compared to Lin and Yue

[1991].

That said, turning back to figure 7.5, it can be seen that the there are some

spurious high frequency oscillations on both force time series, but they are more

pronounced on the red line (i.e φt Exact BNL) and have a tendency to increase as

with the amplitude. In particular, these oscillations are more pronounced when

the sphere is on its way down whereas the flow speed on the free surface is still

on its way up. This effect turns out to be related with the jagged free surface

profile that is created by inaccurate normal velocity calculation of the constant

panel method.

What happens is that on the φt Exact BNL approach, the free surface elevation

is the boundary condition applied on the free surface (the time derivative of the

potential on the free surface in this context is −g ∗ z). Once the boundary value

problem is solved, this spurrious fluctuations are then being propagated to ∂φ/∂t

on the body surface. Here, the introduction of the regularization parameter on

the rbf approximation (λ) plays a key role, since it allows for a more accurate

approximation of the free surface position. This effect, although between different

time instants, can be seen in figure 7.8 where the jagged profile of the free surface

can be seen on the left hand side part of the figure and the resulting free surface

approximation using (λ = 0.1) is shown on the right hand side.
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Figure 7.3: Harmonics obtained from a Fourier decomposition of the force time
series using the BNL approach described in Algorithm 6 .
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The effect of the regularization term also influences the hydrodynamic coeffi-

cients. Figure 7.3, compares the harmonics obtained by the φt Exact BNL, with

and without regularization. The results suggest improvements on the estimation

|f2|, as compared to Lin and Yue [1991]. However, the agreement for |f0| is worse

in the presence of the regularization term. The precise effect that is causing this

issue is something that needs future investigations. The agreement for the first

harmonic, |f1|, is reasonable, but as the amplitude increases some deterioration

of the accuracy is observed. Looking at the time force series of the φt Exact BNL,

with λ = 0.1, i.e figure 7.7, the force time series for A = 0.375R suggests that the

effects of the quadratic pressure term are starting to cancel out the component

of the potential derivative. This could be either linked to a inaccuracies in the

estimation of the potential gradient around the body or with inaccuracies associ-

ated with the body boundary condition for the second boundary value problem.

The evidence points to the latter, since the agreement for the second harmonic,

for the case of A = 0.375R, is in line with the results of Lin and Yue [1991]. This

is also a subject that needs further exploitation.

Looking at the added mass and damping coefficients, the φt Exact BNL, with

λ = 0.1, produces an overall better agreement, specifically on the prediction

of the damping coefficient. These results, together with a comparison of other

numerical predictions for the same problem are shown in figure 7.4.

7.2.2 Forced oscillations of the Wigley hull

Encouraged by the results obtained for the sphere undergoing forced motions in

the heave mode, Algorithm 6 is used in this section to tackle the problem of a

Wigley hull undergoing forced oscillations in the heave mode. Due to numerical

issues of generating a signed distance function for the Wigley hull, the gmsh

(Geuzaine and Remacle [2009]) library was linked against the BEM solver, more

details of the implementation as well as on the numerical issues that were faced

can be found in the next chapter.

The dimensions of the Wigley hull are the same as in chapter 5 (table 6.1). The

initial domain is also similar to the one used in chapter 5, i.e a box like domain,

extended on the free surface, [-5 -5 0] x [5 5 -1] units, in order to mitigate issues
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Figure 7.5: Comparison of the force time series between FD BNL and and Φt

Exact for amplitudes A=0.25 R and A=0.30 R.

related to wave reflexion.

The numerical analysis performed consists of two amplitudes A = 0.053T and

A = 0.27T and three frequencies, ω̂ = 2.49, 3.45 and 4.41. For the lower ampli-

tude a single mesh, named mesh 1 (figure 7.9), was used for all the frequencies.

This case can be seen as sanity check of algorithm 6, since, for small amplitudes,

one would actually expects the body non linear solution to be reduced to the

linear solution.

The higher amplitude case, i.e A = 0.27T , turned out to be more delicate from

a numerical perspective. For this numerical analysis, four meshes, mesh 1, mesh

2, mesh 3 and mesh 4 were used. These meshes are shown in figures 7.9, 7.10,

7.11 and 7.12 respectively. In addition, the comparison between the still water

displacements of these meshes and the exact value of the model is essentially the

same as the one presented in table 6.2.

For the lower frequency, ω̂ = 2.49, Meshes 1 and 2 were used. Mesh 2 was

obtained by halving the edge size of the triangles on the surface of the Wigley

hull. The edge size of the elements on the walls remained the same while the
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Figure 7.6: Hydrodynamic force time series obtained from Algorithm 6 . In blue
the total force and in red the contribution from the gradient squared term of
Bernoulli’s equation with λ = 0.
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the total force and in red the contribution from the gradient squared term of
Bernoulli’s equation with λ = 0.1.
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Figure 7.8: The left hand side shows the free surface profile when λ = 0 whereas
the right hand side shows the free surface profile for λ = 0.1.

edge size of the elements between the Wigley hull and the walls were linearly

interpolated. Thus, the refinement is locally placed on the Wigley hull and on

the free surface in its vicinity 1.

The force time series for ω̂ = 2.49 (or ω = 7.81 rad/s) are shown in figure

7.13 using both meshes 1 and 2 and the respective value of the hydrodynamic

coefficients are shown in table 7.1 . In this context, both force time series are

close to each other, suggesting that for this frequency the method has converged

(or is very close to converge). Note, however, that there is a tendency for the

force time series simulated by mesh 2 to peak before the one generated by mesh

1. In addition, mesh 1 has also a snall tendency to overestimate the quadratic

component.

For ω̂ = 3.45, three meshes were used, namely mesh 1, mesh 2 and mesh 3. For

meshes 1 and 2, it can be seen in figure 7.14 that the issues are more pronounced

. The force time series peak predicted by mesh 1 is delayed in comparison to

the peak predicted by mesh 2. In addition, the difference between the quadratic

terms is also pronounced, close to a factor of 2. The free surface profile brings

more insight on why a more refined mesh is needed for the case of ω̂ = 3.45.

1In fact, this flexibility of the unstructured grid reduces the consequences of the so called
curse of dimensionality, since, on structured grids, halving the edge size in two dimensions
would result in a mesh four times larger.
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Figure 7.9: Mesh topology 1 (Mesh 1) used for the Wigley Hull forced oscillations
in heave. On average the mesh has a total of 4300 triangles of which 300 are on
the floating body surface.
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Figure 7.10: Mesh topology 2 (Mesh 2) used for the Wigley Hull forced oscillations
in heave. On average the mesh has a total of 6800 triangles of which 600 are on
the floating body surface.
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Figure 7.11: Mesh topology 3 (Mesh 3) used for the Wigley Hull forced oscillations
in heave when ω̂ = 3.45 . On average the mesh has a total of 10800 triangles, of
which 1000 are on the floating body surface.
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Figure 7.12: Mesh topology 4 (Mesh 4) used for the Wigley Hull forced oscillations
in heave when ω̂ = 4.41 . On average the mesh has a total of 11484 triangles, of
which 3216 are on the floating body surface.
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The profile for both frequencies are given in figure 7.19. Note that the higher

frequency induces a more pronounced gradient of the free surface elevation near

the Wigley hull, so, in order to model this more accurately, smaller edges would

be needed. So in order to check for convergence, mesh 2 is refined further. The

resulting mesh, mesh 3, is shown in figure 7.11.

Mesh 3 is created by adjusting the edges of the elements of mesh 2 by the

corresponding wave length of the higher frequency, i.e the ratio edge/λ 1 is kept

constant on the vicinity of the Wigley hull. The damping zone and free surface

dimensions are also adjusted accordingly. More concretely, since λ = 2πg
ω2 , the

edge size of mesh 3, l3, is l3 = l2/1.7, say two times smaller for implementation

purposes. Note that the domain dimensions were scaled in the same fashion, mesh

2 domain size is [-5.0 -5.0 -1.0] x [5.0 5.0 0.0] , whereas mesh 3 domain size is

[-2.5 -2.5 -1.0] x [2.5 2.5 0.0]. The damping and undamped zone free surface sizes

were also rescaled in terms of wave lengths, kept at 1.8λ and 3.25λ respectively,

approximately same dimensions used on mesh 2. The results obtained by the

three meshes are presented in table 7.2 and compared to the experimental data.

As the refinement is carried out, there more improvement in going from mesh 1

to mesh 2 , than from mesh 2 to mesh 3. This suggests convergence has been

achieved.

In order to investigate the behaviour on the higher frequency, i.e ω̂ = 4.41,

Mesh 4 was created using the same rational of mesh 3. Since the frequency is

higher, the wave lengths are shorter. Rescaling according to the corresponding

wavelength, the box domain was reduced to [-1.8 -1.8 0] x [1.8 1.8 -1] units and

the edge length on hull, l4, was further refined, yielding l4 = (2/3)l3. The free

surface damped/undamped zones were kept in the same size, with respect to the

wave length generated, i.e 1.8λ and 3.25λ respectively. It is interesting to point

out that the simulation using mesh 3 leads to an overestimation of the quadratic

force contribution. As it can be seen in figure 7.18 the effect of refining from

mesh 3 to mesh 4 has an important effect on the behaviour of the hydrodynamic

force time series. The hydrodynamic coefficients obtained from figure 7.18 are

1Unfortunately the notation is overloaded as λ here denotes the wave length. In contrast,
λ was also used to denote the rbf regularization parameter. These quantities are by no means
related, and the context shall make clear what λ refers to.
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shown in table 7.3. The set of results presented in tables 7.1, 7.2 and 7.3 is also

summarized in figure 7.17 .

Concerning the hydrodynamic coefficients in heave, the results obtained in

the present simulations, as well as the results of linear analysis performed in the

last chapter, are compared against the experimental data from Journée [1992] in

figure 7.20. For the lower amplitude (A = 0.053T ), the results from Algorithms

4 (Linear) and 6 (Φt BNL), compare relatively well. In fact, the agreement of the

added mass is good, whereas for damping, Φt BNL, despite the good qualitative

agreement, shows a tendency to overestimate it, even for small amplitudes. For

the higher amplitude (A = 0.27T ) the agreement of Φt BNL against experimental

data is good on the lower frequency, but deteriorates as kA increases. The dete-

rioration is more pronounced in the damping coefficient as it increases with the

frequency of forced oscillation. For the added mass the effect of increasing the

amplitude of oscillation is less pronounced. This effect reduces the magnitude of

the added mass coefficients as a function of the amplitude of oscillation.

The deterioration on the predictions of the damping coefficients (as compared

to Linear analysis and experimental data) as kA increases is a point that clearly

needs further investigation. It can be linked to inaccuracies either on the rbf

approximation of ∇∂φ
∂z

or in the estimation of ∇φ2 on the Wigley hull surface,

which alters the pressure field. In particular, the use of rbfs in the so called finite

difference mode can be an alternative approach Chinchapatnam [2006], since it

tries to approximate the derivatives of the function locally instead of seeking a

global approximator.

Moreover, on a overall basis, as the amplitude increases the experimental mea-

sures imply a slightly higher added mass in the lower and higher frequency range

with no appreciable change in the mid frequency range. The variations on the

damping coefficient implied by the experimental measures is similar to the added

mass behaviour on the lower and higher frequencies, but in the mid frequency

range the damping coefficient decreases with the amplitude of oscillation.

From a hydroelastic perspective, the behaviour of the coupling coefficients,

heave into to the first distortion mode (2-node) turns out be very similar to the

predictions for the heave hydrodynamic coefficients. Figure 7.15 shows the force

time series of heave into the first distortion mode, for two frequencies, ω̂ = 2.49

143



0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

t(s)

F
H

D
 (

N
)

ω=7.81 rad/s

 

 total force: mesh 2

−∇ Φ 
2
/2: mesh 2

total force mesh 1

−∇ Φ 
2
/2: mesh 1
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(ω = 7.81 rad/s) and ω̂ = 3.45 (ω = 10.81 rad/s), for meshes and 1 and 2. The

effects of refinement are the same as the ones metioned before, for the case of

heave into heave. Figure 7.16 compares the value of the cross coupled coefficients

obtained from the body non linear analysis to the ones obtained from the linear

analysis of chapter 6.
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Figure 7.15: The left hand side shows the hydrodynamic force component of
heave into the first distortion mode (2 node) for the lower frequency whereas the
right hand side shows the hydrodynamic force for the higher frequency for meshes
1 and 2.

Table 7.1: Wigley Hull Hydrodynamic coefficients in heave calculated by Al-
gorithm 6, for ω̂ = 2.49, compared against the experimental data obtained by
Journée [1992].

Mesh Â33 B̂33

mesh 1 1.10 3.55
mesh 2 1.17 3.34

experiment 1.23 3.21

Another point worth pointing out is that the force time series obtained in this

section are less prone to numerical diffusion as compared to the sphere simulations

of the last section. As it will be seen in chapter 7, there are indications that,
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Figure 7.16: Comparison of the cross coupled coefficients of the heave mode into
the 2-node distortion mode. The green triangles were obtained from frequency
domain analysis; the blue dots are the results calculated by algorithm 4 from
chapter 6; the red crosses are obtained from 2D strip theory and the black squares
were calculated by 6.

under some circumstances, the node displacement updates used by Persson [2005]

meshing algorithm can increase the numerical diffusion of the simulation. In this

sense, the meshing library from Geuzaine and Remacle [2009] seems to be less

prone to this sort of effect.

7.3 Fully Non Linear Analysis

The body non linear model can be extended to take into account the fully non lin-

ear nature of the free surface boundary conditions. This can be done by extending

algorithms 5 or 6, depending on the way the pressure is going to be evaulated

at the floating body. In order to achieve this, the formulation of the free surface

boundary condition needs to be taken into account exactly. Accordingly, the free

surface movement also needs to be taken into account, so that the boundary value

problem is solved on the exact free surface. In contrast, in the body non linear

analysis, the BVP is solved at the mean undisturbed free surface, i.e ζ = 0.
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Figure 7.19: Free surface profile of Wigley hull body non linear simulations: left
hand side ω̂ = 3.45 and right hand side ω̂ = 2.49 .
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Table 7.2: Wigley Hull Hydrodynamic coefficients in heave calculated by Al-
gorithm 6, for ω̂ = 3.45, compared against the experimental data obtained by
Journée [1992].

Mesh Â33 B̂33

mesh 1 0.57 3.88
mesh 2 0.81 3.56
mesh 3 0.78 3.50

experiment 1.00 2.84

Table 7.3: Wigley Hull Hydrodynamic coefficients in heave calculated by Al-
gorithm 6, for ω̂ = 4.41, compared against the experimental data obtained by
Journée [1992].

Mesh Â33 B̂33

mesh 3 0.32 2.49
mesh 4 0.70 3.02

experiment 0.93 2.19

7.3.1 Free Surface Boundary Conditions

In order to account for nonlinear effects, the linear assumption on the free surface

boundary conditions need to be relaxed. This means that instead of using equa-

tions 4.14 and 4.15, equations 4.12 and 4.13 are going to be used. This brings

new numerical problems because, since equation 4.12 is written in Lagrangian

coordinates, it is implied that fluid particles are being followed along their mo-

tion. Moreover, the motion of the fluid particles change the fluid domain (i.e the

distance between collocation and field points change) so that a new mesh needs

to be constructed every time step in order to calculate the influence matrix and

solve the Eulerian phase. There are a couple of different formulations of the free

surface boundary conditions that can be explored to tackle this issue see for in-

stance Liu et al. [2001], Kara et al. [2007] and Yan [2010]. In the present work,

the free surface boundary conditions are modified from the fully Lagrangian de-

scription of the fluid flow to a pseudo Eulerian description, where the grid points

are allowed to move only on the vertical direction. The intuition that motivated

this idea is that a a good mesh with a flat free surface is still a good mesh after
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the points on free surface are mapped to their actual z = ζ(x, y) position 1. The

derivation details are on the appendix 8.2, the final form of the kinematic free

surface boundary conditions can then be written as:

δζ

δt
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
=
∂φ

∂z
, (7.26)

whereas the dynamic free surface conditions is given by:

dφ

dt
− ∂φ

∂z

∂ζ

∂t
+

1

2
∇φ2 + gz = 0. (7.27)

As in chapter 4 , the damping zone described by equation 4.16 is used so that

the radiation condition at infinity can be met on both dynamic and kinematic

boundary conditions, i.e:

δζ

δt
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
=
∂φ

∂z
− νζ, (7.28)

dφ

dt
− ∂φ

∂z

∂ζ

∂t
+

1

2
∇φ2 + gz = −νφ. (7.29)

Equations 7.28, 7.29 and 4.10 form the core of the nonlinear hydrodynamic

solver developed so far. In order to implement them numerically, account for

the changes in boundary domain and calculate the time derivatives of the fluid

potential on the surface of the floating body some numerical techiniques were

introduced. These numerical techniques, together with the algorithm that was

implemented are described in the next section.

7.3.2 Fully Non Linear Model

Once the boundary conditions of the free surface are formulated, algorithm 5

can be extended to perform non linear simulations. Besides the free surface

boundary condition, the mesh is now deformed on the vertical direction to take

into account the exact position of the free surface. Thus, the boundary value

1More precisely this ”intuition” assumes that: 1- the free surface is single valued in x and
y; 2-the elevation is ”reasonably” small in the z direction so that a triangle with vertices on the
plane z = 0, will still be a good triangle at z = ζ(x, y).
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problem is solved at the exact free surface position. In addition, at this point,

there is no special treatment for the water line dynamics, i.e , it is assumed that

the rbf representation of the free surface generalizes well enough to extrapolate

the position of the water line given the position of the nodes in its vicinity. That

said, the finite difference non linear algorithm, FDNL, is shown below.

Algorithm 7 Finite Difference Non Linear

1: procedure Main( )
2: while t < T do
3: [p,t]=CreateMesh(fd(t),fh,h0); . Create a mesh of the domain
4: [xFS, yFS, xB, yB, zB]:=FindBoundaryNodes(p,t);
5: φFS:=Φi(xFS,yFS,t) . Set BC Value on the of the FS triangles
6: ∇φ · ~nB := ~v(t)B · ~nB . Set BC Value on the Floating Body
7: ∇φ · ~nB := 0 . Set BC Value on other Neumann Boundaries
8: zFS:=ζ(xFS, yFS) . Move the free surface on the z direction.
9: [φB;∇φ · ~nFS] := [GFS;GnB]−1[∇φ · ~nB;φFS] . Solve the BVP at
zFS = ζ

10: ∇φ := (∇φ · ~tb)~tb + (∇φ · ~nb)~nb . Compose ∇φ on the body surface

11: p := ∂φ
∂t

+ ∇φ2
2

. Equation 7.2 is used for ∂φ
∂t

12: ~F := −ρ
∫
∂B(t)

p~nB(t)dS . Calculate the force on B(t)

13: ζt := ζt−1 + dt(−∂φ
∂x

∂ζ
∂x
− ∂φ

∂y
∂ζ
∂y

+ ∂φ
∂z
− νζ) . Update the FS elevation

14: φt := φt−1 + dt(∂φ
∂z

∂ζ
∂t
− 1

2
∇φ2 − gz − νφ) . Update the FS potential

15: t := t+ dt
16: end while
17: end procedure

As compared to Algorithm 5, note that the changes are in line 8, where the

mesh is deformed and in lines 14 and 15, where the exact free surface boundary

conditions replace the linearized versions.

7.3.3 Analysis of the Rigid Body Results

In this section the analysis of the hydrodynamics coefficients presented in section

6.2 is revisited and extended to the purpose of non-linear analysis.

A natural question that arises when applying Fourier decomposition is how

many harmonics one should use to approximate ”well” the signal that is being de-
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composed. In addition, in the presence of noisy data 1 , there is only an heuristic

framework (up to our knowledge) of investigating the significance of each har-

monic component. Thus, it is not entirely clear which harmonic component is

more likely to be noise or not. Lastly, although the problem at hand is in theory

stationary 2, the numerical results from the simulations turn out to present lo-

calized numerical diffusion effects, questioning the assumption of stationarity. In

addition, other problems of great interest from a hydrodynamic perspective (such

as water impact problems and transient phenomena) don’t share the stationary

property.

In order to overcome some of these issues, the Empirical Mode Decomposition

and the Hilbert Huang transform developed by Huang et al. [1998] is a valuable

tool. Furthermore, its filtering properties yield an empirical framework where

noisy components of the data can be filtered out Wu and Huang [2004]. In fact,

since Hilbert Huang transform generalizes the Fourier transform to non stationary

data. This new tool turns out to so powerful that even an alternative definition of

hydrodynamic coefficients (in the time-frequency-energy distribution as opposed

to the frequency-energy distribution from Fourier analysis) can be envisaged.

This is an embrionary idea that is very briefly discussed in the Appendix B.

As it will be seen in due course, the results of the non linear simulations have

a great deal of noise, so the properties of the EMD, as filter, become very handy.

Therefore, they are going to be used to filter the time series of the hydrodynamic

forces before performing the usual Fourier decomposition. Actually, there is no

harm in using the Hilbert Huang Transform, since it can seen as a generalization

of the Fourier decomposition Huang et al. [1998].

The filtering scheme employed to analyse the time series of the hydrodynamic

force is the same as the one proposed by Wu and Huang [2004]. The basic idea is

to decompose the the time series in its intrisic mode functions (IMFs, which are

defined in Appendix B) and then apply the empirical statistical test in order to

1Noise can come from variety of sources, the focus on this work is on noise generated from
numerical instabilities and inaccuracies associated with CPM.

2By definition stationary means that the properties of the signal do not change when they
are shifted in time. More precisely, a signal Xt is strongly stationary if its cumulative prob-
ability function is invariant in time. Let Fx(Xt1 , Xt2 , ..., Xtn) be the cumulative probabil-
ity density function of Xt, then Xt is stationary if, for all τ , Fx(Xt1+τ , Xt2+τ , ..., Xtn+τ ) =
Fx(Xt1 , Xt2 , ..., Xtn).
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select which IMFs are different from white noise. The filtered time series is then

reconstructed as the sum of the relevant IMFs plus the residual term. This is

done for the three cases of the sphere undergoing forced motions in heave mode,

at a frequency corresponding to KR = 1, and amplitudes A equal to 0.04R, 0.25R

and 0.375R.

Figures 7.21 , 7.25 and 7.28 show how the original time series is decomposed

into series of IMFs, C ′is and a residual term R1. The IMFs are then compared to

white noise by plotting the logarithm of its energy density, log(E), against the

logarithm of its period, log(T ). For white noise this relation was investigated by

Wu and Huang [2004] and the the results therein, for 0.95 confidence level, are

summarized on the solid blue lines in figures 7.22, 7.26 and 7.29. Interestingly,

the IMFs that are the most relevant are usually the 4th,5th and 6th depending

on the time series. These IMFs are then used to reconstruct a filtered version

of the signal and compared against the original time series of the hydrodynamic

forces (figures 7.23 , 7.27 and 7.30. By doing so, it is clear that some higher

frequency components on the time series of the hydrodynamic force are removed,

these components don’t have a physical meaning wih high probability. In fact,

these non physical oscillations could be linked to the numerical innacuracies and

numerical diffusion of the CPM, i.e body discretization and the poor estimation

of the time derivative of the potential field (Yan [2010] and Battistin and Iafrati

[2003]).

Once the filtered time series of the hydrodynamic force is available, equations

7.23 to 7.20 can be applied and the components of interest, from hydrodynamic

perspective, can all be evaluated. Tables 7.4 and 7.5 compare, as function of the

amplitude of oscillations, these components, for both filtered and raw time series

of hydrodynamic force. The results obtained by Yan [2010] are shown in table

7.6.

The corresponding force time series of the two higher amplitudes (A = 0.25R

and A = 0.375R) tackled by algorithm 7 are shown in figures 7.27 and 7.30. In

these plots, both raw force and filtered versions are shown.

Figures 7.31 and 7.32 compare both added mass and damping coefficients

calculated by Algorithm 7 against the fully non linear simulations of Yan [2010]

and the body non linear results of Lin and Yue [1991]. At this point, it is worth
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Figure 7.21: Decomposition of the force time series into IMFs using the EMD
method for A = 0.04R. The top plot shows the original time series of the hydro-
dynamic force. C1 to C8 are the IMFs obtained from the decomposition and R1

is the residual term.
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Figure 7.22: IMFs Statistical Test for A = 0.04R: the blue line displays the 0.95
confidence interval threshold of white noise energy density log(E) as a function of
its period log(T ). IMFs whose energy are above this line are keept in the filtering
process.

Figure 7.23: Time series of the sphere undergoing heave oscillations with A =
0.04R and the filtered version of the series, i.e the sum of the relevant IMFs (in
this case 4, 5 and 6) from figure 7.21 plus the residual term.
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Table 7.4: Harmonics of the non filtered time series of hydrodynamic forces
A
R

f0
ρπgRA2

f1
ρπgR2A

f2
ρπgRA2

Linear (analytical) 0.0 0.3298 0.0
Linear (calculated) −5.4 · 10−6 0.3340 −3.95 · 10−6

0.04 -0.0147 0.365 0.046
0.25 -0.1145 0.375 0.127
0.375 -0.0844 0.3899 0.126

Table 7.5: Harmonics of the filtered time series of hydrodynamic forces using
EMD.

A
R

f0
ρπgRA2

f1
ρπgR2A

f2
ρπgRA2

Linear (calculated) −5.4 · 10−6 0.3340 −3.95 · 10−6

0.04 -0.137 0.366 0.079
0.25 -0.110 0.375 0.128
0.375 -0.117 0.3877 0.142

highlighting the resonable qualitative agreement of the harmonics, as compared

to the QBEM method of Yan [2010]. Theae resuts are showns in tables 7.4, 7.5

and 7.6 and are also summarized in figure 7.24. In fact, for the three harmonics

one can spot a jump in small amplitude range. This behaviour is actually linked

to the innacuracy of algorithm 7 when it comes to the estimation of the time

derivative of the velocity potential. That said, the qualitative behaviour of the

f̂0, f̂1 and f̂2 are resonable from a qualitative perspective.

Besides that, the agreement between the hydrodynamics coefficients is rather

poor. It is hard to identify an agreement in the qualitative behaviour of the hy-

drodynamic coefficients. There is a similar trend as the one observed in section

6.2 of overestimating the added mass coefficients. Furthermore, for A = 0.25R,

the algorithm 7 overshoots the added mass and underestimates the damping coef-

ficient, basically breaking the qualitative agreement between the lowest amplitude

A = 0.04R and the higher amplitude A = 0.375R. This issues are clearly related

to the low accuracy of the numerical simulations of the constant panel method. In

particular, an accurate solution of the Dirichlet problem, which yields the normal

velocity on the free surface in the present work, is an important building block

to depart and develop a more accurate BEM solver.
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Table 7.6: Results from Yan [2010], obtained using the quadratic boundary ele-
ment method.

A
R

f0
ρπgRA2

f1
ρπgR2A

f2
ρπgRA2

0.125 -0.0864 0.3328 0.174
0.25 -0.0808 0.3338 0.179
0.30 -0.0789 0.3392 0.187
0.375 -0.0768 0.3449 0.193

In this context, the extension to fully non linear problems is a subject that

needs future investigations. In particular, based on the results obtained by Yan

[2010], the use of Higher Order Boundary Element Methods (HOBEM) and higher

order Galerkin BEM approaches are promising avenues of future research.

7.4 Conclusions

In this chapter, the hypothesis of linear theory were relaxed progressively. First,

the body non linear problem was addressed for the sphere and for the Wigley

hull undergoing forced oscillations in the heave mode. The results were com-

pared to other numerical techniques and experimental data when available. For

the sphere simulations, the results from the FDBNL algorithm suggests a reason-

able agreement for the estimation of the damping coefficient and overestimation

of the added mass coefficient, as compared to the body non linear results obtained

by Yan [2010]. The Φt Exact BNL algorithm, in contrast, suggest a better agree-

ment for added mass coefficient and f2. The agreement obtained in the damping

coefficient is good, without taking into account the higher amplitude of oscillation

A = 0.375R. At this amplitude, there are issues that need further investigations.

These issues are probably linked with a poor estimation of the boundary condi-

tion of the second boundary value problem (i.e the normal derivative of the time

derivative of the velocity potential). This quantity is intimately associated with

m3, see appendix A, and its numerical estimation is usually cumbersome.

The body nonlinear results of the Wigley hull under heave forced oscillations

brought more insight on the behaviour of the Φt Exact BNL algorithm. For a
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Figure 7.24: Comparison between harmonics, f̂0, f̂1 and f̂2, obtained from the un-
filtered/filtered time series, the results obtained by Yan [2010] and the analytical
values from Linear analysis.

low amplitude, the agreement is in line with the predictions made by the linear

algorithm. On the other hand, using a higher amplitude, A = 0.27T , the results

showed considerable deterioration as the frequency is increased, as compared to
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Figure 7.25: Decomposition of the force time series into IMFs using the EMD
method for A = 0.25R. The top plot shows the original time series of the hydro-
dynamic force. C1 to C7 are the IMFs obtained from the decomposition and R1

is the residual term.
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Figure 7.26: IMFs Statistical Test for A = 0.25R: the blue line displays the 0.95
confidence interval threshold of white noise energy density log(E) as a function of
its period log(T ). IMFs whose energy are above this line are keept in the filtering
process.

Figure 7.27: Time series of the sphere undergoing heave oscillations with A =
0.25R and the filtered version of the series, i.e the sum of the relevant IMFs (in
this case 4 and 5) plus the residual term from figure 7.25 .
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Figure 7.28: Decomposition of the force time series into IMFs using the EMD
method for A = 0.375R. The top plot shows the original time series of the
hydrodynamic force. C1 to C7 are the IMFs obtained from the decomposition
and R1 is the residual term.
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Figure 7.29: IMFs Statistical Test for A = 0.375R: the blue line displays the 0.95
confidence interval threshold of white noise energy density log(E) as a function of
its period log(T ). IMFs whose energy are above this line are keept in the filtering
process.
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Figure 7.30: Time series of the sphere undergoing heave oscillations with A =
0.375R and the filtered version of the series, i.e the sum of the relevant IMFs (in
this case 4 and 5) plus the residual term.

both linear and experimental results. Yet, the general behaviour of body non

linear predictions, i.e lower added masses and higher damping coefficients as the

amplitude of oscillation increases, was observed. This raises an interesting point

regarding the applicability of the Body non Linear analysis, namely that it can

improve the results from linear theory only in a region where the wave steepness,

kA, is kept small.

On the fully non linear front, the results for sphere undergoing forced oscilla-

tions in heave achieved a reasonable agreement in terms of f1 and f2, after the

time series was filtered using the EMD algorithm. However, a deeper analysis of

the components of f1, the added mass and damping coefficients, indicates that

more investigations are needed in this front. More specifically, the spurious modes

observed in the force time series, indicates that a more robust boundary element

solver (higher order boundary element methods, or HOBEM) could be beneficial

and improve the predictions made by the algorithm.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The main feature of the present work has focused on the modeling of the three

dimensional radiation problem in time domain using an unstructured mesh by

means of the constant direct Rankine panel method (or direct Boundary Element

Method) . In that context, algorithms have been proposed to solve the following

problems in time domain: (i) the linear radiation problem of a hemisphere under-

going forced heave and sway oscillations. (ii) The unified hydroelastic problem

of a Wigley hull undergoing forced rigid, symmetric and anti-symmetric bending

distortion motions. (iii) The body non linear problem of a sphere and Wigley

hull undergoing large amplitude of oscillations in the heave mode. (iv) The fully

nonlinear problem of a sphere undergoing forced oscillations in the heave mode.

In addition, the coupling between meshing libraries and hydrodynamic simula-

tions was also investigated. In this context, two algorithms were proposed in

order to estimate signed distance functions for the free surface evolution and for

ship like shapes. With these algorithms, the meshing scheme based on signed

distance functions could be linked against the BEM solver. However, for these

algorithms to be used in the context of the present MEL simulation a parallel

implementation is needed, otherwise the runtime is still an obstacle to perform

the required tests. This implementation was left out of the scope of the present

work. Alternatively, a simpler meshing library Geuzaine and Remacle [2009] was

linked against the MEL scheme and used to remesh the domain of the body non
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linear Wigley hull simulations. Both approaches, as well as their pros/cons were

discussed in chapter 5.

The results of the linear time domain analysis agree qualitatively well with

analytical predictions for the hemisphere, with available experimental data and

with other computational models for the Wigley hull for symmetrical distortion

modes. For the motion in the sway mode, the agreement achieved, compared to

other numerical methods, was resonable, but a deterioration in the accuracy has

been observed. This deterioration was again observed on the coupling of sway

into the first horizontal bending distortion mode (2-node).

In the body non linear analysis, two different numerical algorithms have been

proposed to evaluate the time derivative of the velocity potential: FDBNL and

Φt Exact BNL. In addition, the difficulties associated with the estimation of the

spatial derivatives in the context of constant panel method solver (i.e a C0(Ω)

method) were tackled by the introduction of radial basis function representations

for both potential and free surface elevations. More concretely, due to inaccura-

cies in the estimation of the normal velocity, the resulting free surface position

was not being estimated accurately enough for the purposes of the numerical

simulations. Remeshing combined with a high generalization error of the Radial

Basis Functions representation, were bringing even more inaccuracies to the free

surface position, resulting in spurious oscillations of the hydrodynamic force time

series. Two numerical methods were proposed to deal with these effects, increas-

ing the accuracy of CPM solver, i.e: the first method introduced a regularization

parameter on the RBF representations. From a statiscal perspective the regu-

larization parameter reduces the complexity of the hypothesis, in this case the

RBF’s coefficients, improving the generalization error of the RBF representation,

allowing for an accurate estimation of the m3 term (see Appendix A Numerical

Techniques for more details). The second method uses the Ensemble Mode De-

composition (EMD) and its empirical results to represent the time series of the

force time series as a sum of intrisic mode functions (IMF’s) . Assuming the

spurious modes of oscillations of the hydrodynamic force time series are white

noise, the IMF’s with energy close to white noise are extracted from the hydro-

dynamic time series. The sum of the IMF’s that were not rejected corresponds

to the filtered hydrodynamic force. The results of the body non linear analysis
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compared the predictions from both FDBNL and Φt Exact BNL methods againist

other numerical predictions for the sphere with resonable agreement, with the Φt

Exact BNL method resulting in better overall accuracy. Using the Φt Exact BNL

method, results for the Wigley hull, undergoing high amplitude forced motions

in the heave mode, show good agreement against experimental data on the lower

frequency range, but, a deterioration was observed for higher values of kA. Re-

sults of the fully non linear simulations for the sphere, using the FDBNL method

and EMD decomposition technique, overestimate of the order of 10%, the hydro-

dynamic coefficients compared to other non linear methods. These comparisons

suggest that further research is required to improve the accuracy of this method.

One of the main objectives of the present work was to develop a methodology

in time domain capable of tackling problems of forced oscillations in either rigid

or flexible modes and problems related to the evolution of the free surface in

time, using either the linear (linear and body non linear simulations) and the non

linear free surface boundary conditions. To this extent, the objective has been

achieved.

However, during this whole process the main limitations of the current method-

ology and algorithms have also become clear. In a way, this can be seen as good

news since it can certainly help in guiding future research and improvements in

the present algorithms. More specifically, the major points that have limited the

applicability of the present work are: the accuracy of the constant panel method

and the accuracy of the geometric definition of the floating body.

Regarding the accuracy of the constant panel method, the indications are

that the accuracy of this particular numerical scheme, in the context of mixed

boundary value problems in unstructured meshes, can be poor. This has been

highlighted in chapters 6 and 7, when performing either linear, body non linear

and fully non linear simulations. In particular, the main concern lies in the

estimation of the normal velocity on the free surface (i.e the solution of the

Dirichlet problem). Since the MEL scheme evolves the free surface boundary

conditions in time and its values are used as boundary conditions to the Eulerian

phase, it can be the case that errors in the estimation of the normal velocity

on the free surface are being propagated in time through the Lagrangian phase.

This issue is more pronounced as the free surface distortions increase, i.e higher
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amplitude motions of the both the Wigley hull and sphere.

The hydrodynamic coefficients of a floating body are in fact a function of its

geometry. Therefore, it is important for the numerical mesh not only to have a

good element quality, but also to be close to the geometry of the floating body

itself. The problem of element quality was addressed in the present work but the

investigation of how accurate the mesh is, as compared to the floating body one is

trying to represent was not performed. In fact, because the aim was in the design

of a methodology, qualitative agreement was sought. Hence, it can be the case

that a more accurate representation the Wigley hull or instance, can yield more

accurate results, still using the constant panel method, than the ones obtained in

chapters 6 and 7.

In the context of the design of offshore structures and ships, the proposed

methodology can be viewed as a small step towards a tool that can be integrated,

in the future, to a virtual simulator, whereby the hydrodynamic problem is solved

in real time by a three dimensional potential flow method. To this date, from

the hydrodynamic side, such virtual environments can be powered by a two di-

mensional time domain strip theory approach and, in the next few years, the

extension to three dimensional potential flow methods will certainly bring more

improvements. In fact, it will happen probably much sooner than RANS be-

comes a feasible tool for this task. The impact of these virtual environments for

both industry and researches in naval architecture is promising as it will allow

for not only more reliable designs but also open the door to the incorporation of

more optimization methods, culminating in a faster evolution from one vessel to

another.

8.2 Future Work

In order to extend the present work, the following research topics are suggested:

1. In the context of time domain simulations:

• The influence of forward speed in the hydrodynamic force can be inves-

tigated by changing the impervious boundary condition on the floating
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body. In this case, even in the context of forced motions, the effects

of the Froude number,Fn, can be investigated further. In particular,

the wave resistance problem can also be solved in this context. This

problem can be formulated under the three frameworks, i.e: linear,

body non linear and fully non linear simulations.

• The boundary conditions can also be modified in order to impose the

potential corresponding to a incident sinusoidal wave. In this con-

text, instead of imposing a prescribed forced oscillation motion, the

structure is freely floating. The solution of the Euler phase, i.e, the

hydrodynamic forces are then integrated in time, together with the free

surface boundary conditions, to yield the motions of the floating body.

Furthermore, in this case the hydrodynamic force comprises both the

diffraction and radiation force components. Because the velocity po-

tential has components due to diffraction and radiation, it needs a

more detailed description from the numerical perspective. For the lin-

ear case, the superposition principle implies that the radiation and

diffraction effects can be modeled separately and then added together,

simplifying the numerical analysis. For the case of non linear simu-

lations the numerical analysis is more subtle and probably requires a

higher order element representation.

2. As was highlighted in the present work, the extension from linear to body

non linear and fully non linear time domain simulations, involve a series

of numerical/algorithms challenges, spanning from runtime issues to the

accurate approximation of spatial and temporal derivatives of the velocity

potential. The numerical problems become more complex, because the

domain configuration changes in time as the remesh procedure is performed.

In this context a couple of topics arise naturally, namely:

• Efficient calculations of the influence matrix, ideally performed using

a parallel architecture with the aid of a fast multipole method.

• The use of higher order boundary element methods is an important

subject, since, in theory, a more accurate estimation of the solution
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of the Dirichlet problem can be achieved. They also allow the spa-

tial derivatives of the velocity potential to be estimated locally, on a

element wise basis. This provides an alternative to the radial basis

function representation introduced in the present work. Still concern-

ing the solution of the boundary value problem, which sort of boundary

element method to use, i.e collocation or Garlekin based, is also an in-

teresting research topic, in the context of hydrodynamic applications.

• The solution of the linear system of the boundary value problem can

also be optimized by the use of the generalized minimal residual method

(GMRES) or the biconjugate gradient stabilized method (BiCGSTAB),

since the linear system is not symmetric, nor sparse. In this context,

the solution of the linear system arising from the rbf representation is

symmetric, hence, a iterative solution, based on gradient descent (say

conjugate gradient method) , is faster and scalable than the current

implementation based on LU decomposition.
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Appendix A Numerical

Techniques

”There is much less practice in theory than in practice.”

The relevant numerical techniques associated with the mixed boundary value

problem and its corresponding time marching scheme are briefly outlined. These

techniques were implemented in the C++,matlab and Python and were used to

produce all the results in this work. Once the MEL concept has been adopted,

the numerical techniques used in the Eulerian and in the Lagrangian phase are

going to be discussed separately, in the first two sections. Next the derivation

of the boundary condition, for the second boundary value problem described in

chapter 7 is derived. On the last section, the free surface boundary condition

used in the simulations of the fully non linear case is also described in detail.

Eulerian Phase

Numerically in the context of the MEL scheme the Eulerian phase consists of

solving equation 4.10. Therefore, from a numerical point of view, this phase has

the following steps:

1. Calculation of the influence Matrix coefficients for the Green function Gij =

G(~xi, ~yj) and the dipole Gij
n = ∇G(~xi, ~yj) · ~n.

2. Assembling the linear system corresponding to equation 4.10.
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3. Solution of the linear system.

Influence Matrix Computation

Using a short hand notation, equation 4.10, for i=1 to N, can be written in the

following form:

c(~xi)φ(~xi) =
N∑
j=1

∫
Ej

Gijφn(~y)dEj −
N∑
j=1

∫
Ej

Gij
n φ(~y)dEj, (1)

where ~xi and ~yi are, respectively, source and field points, φn(~y) = ∇φ(~y) · ~n and

~n is the normal on the field point ~y pointing out of the fluid domain.

Furthemore, in the context of the constant Boundary Element Method both

φn(~y) and φ(~y) are assumed to be constant in each element Ej, hence they can

be taken out of the integrals, yielding:

c(~xi)φ(~xi) +
N∑
j=1

∫
Ej

Gij
n dEjφ

j =
N∑
j=1

∫
Ej

GijdEjφ
j
n. (2)

Note that the equation above can be written in a matrix form. In fact it

is precisely the linear system one solves in the Eulerian phase. Therefore, let

gij =
∫
Ej
GijdEj and dij = c(~xi)δij +

∫
Ej
Gij
n dEj correspond to the influence of a

source point i on a field point j, then one can write:


d1,1 d1,2 · · · d1,N

d2,1 d2,2 · · · d2,N

...
...

. . .
...

dN,1 dN,2 · · · dN,N



φ1

φ2

...

φN

 =


g1,1 g1,2 · · · g1,N

g2,1 g2,2 · · · g2,N

...
...

. . .
...

gN,1 gN,2 · · · gN,N



φ1
n

φ2
n
...

φNn

 (3)

The Kronecker delta, δij, was used in the definition of dij in order to account for

the presence of the solid angle in the diagonal of this matrix when i = j.

In addition, if i 6= j all the integrands are non singular. In this case, the

off-diagonal coefficients are calculated using the element area, Arj, the Euclidean
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distance between the source point i and the field point j, ~rij, and the normal

vector of the jth field point, ~n, hence giving:

gij =
Arj

4πrij
, (4)

dij =
Arj(~rij · ~n)

4πr3
ij

. (5)

In the equations above, rij = ||~rij|| is the three dimensional distance between a

source point i and a field point j (or equivalently the norm of ~rij) and · denotes

the scalar product between two vectors.

In the case where i = j, gii becomes weakly singular and dii strongly singular

Liu [2009]. There are a couple of alternatives for dealing with the weakly singular

behaviour of gii. In this work, the triangle mapping technique is chosen because

of its flexibility in dealing with higher order BEM schemes Zhang and Xu [1989].

The basic premise of the mapping is to note that although Green’s function

is singular when the source and field point are the same, the integral is well

defined as long as the integration surface is sufficiently smooth, i.e the Jacobian

of the transformation does not vanish. A classic example is the integration of

the Green’s function over a circle. Thus, after the triangle mapping is performed

the integrand is no longer singular and can be evaluated using standard Gaussian

quadratures techniques.

Very briefly, the triangle mapping technique works as follows: let ~x1, ~x2 and

~x3 denote the three vertices of the Ej triangle, then the degenerate mapping is

introduced by the following transformation:

~x′ = (1− ρ1)~x1 + (1− ρ2)(ρ1)~x2 + ρ1ρ2~x3. (6)

Using this change of variables, the weakly singular integrand over an element

transforms to a non-singular integrand given by:

∫ ∫
Ej

1

||~rii||
dEj =

1

2

∫ 1

0

∫ 1

0

J(ρ1, ρ2)√
R2
x +R2

y +R2
z

dρ1dρ2 (7)
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Where, after some algebra, the Jacobian of the transformation, J(ρ1, ρ2), Rx, Ry

and Rz are given by:

J(ρ1, ρ2) =
√
v2

1 + v2
2 + v2

3,

Rx = (−x1 + (1− ρ2)x2 + ρ2x3)ρ1;

Ry = (−y1 + (1− ρ2)y2 + ρ2y3)ρ1;

Rz = (−z1 + (1− ρ2)z2 + ρ2z3)ρ1;

where:

v1 = ρ1((−y1 + (1−ρ2)y2 +ρ2y3)(−z2 + z3)− (−y2 +y3)(−z1 + (1−ρ2)z2) +ρ2z3);

v2 = ρ1((−z1 +(1−ρ2)z2 +ρ2z3)(−x2 +x3)− (−z2 +z3)(−x1 +(1−ρ2)x2)+ρ2x3);

v3 = ρ1((−x1 +(1−ρ2)x2 +ρ2x3)(−y2 +y3)−(−x2 +x3)(−y1 +(1−ρ2)y2)+ρ2y3).

Fortunately, in order to calculate the self influence coefficient associated with

the dipole matrix, dij, there is no need to evaluate any integral. It can be shown,

Pozrikidis [2002], that when i = j the integral part of dii = c(~xi) +
∫
Ei
Gii
ndEi

vanishes. This way, dii = c(~xi). Furthemore, the solid angle can be calculated by

summing the off diagonals elements of the ith row. Hence, for i=1 to N:

dii =
N∑
j=1

di 6=jij . (8)

At this point all the coefficients of the matrices in equation 3 are known. The

next steps are to assemble and solve the linear system.

Assembling and Solving the Linear System

In order to assemble the linear system, it is worth going back to equation 3

and note that N boundary conditions have to be imposed to obtain its solution.

Because the boundary value problem is mixed, the potential φ (Dirichlet problem)
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will be known at the free surface where φn is unknown. On the floating body,

however, the opposite condition follows φn is known (Neumann problem) but

φ is not known. Once these two sets are disjoint and their union comprises the

boundary of the whole domain, there are N boundary conditions to be imposed in

equation 3. The problem is that the Neumann boundary conditions are imposed

on the left hand side, while Dirichlet boundary conditions are placed on right

hand side. Therefore the standard linear system, Ax = b, is formed by applying

the corresponding boundary condition at each node (Neumann or Dirichlet) and

switching the columns in the two matrices dij and gij. This way, the matrix A is

usually dense and is nonsymmetric.

Once assembled the linear system is solved by LU decomposition, to this end

a direct solver from the LAPACK library is used.

Lagrangian Phase

Euler Method

This phase consists of the integration of the dynamic and kinematic free surface

boundary conditions in time. In the linearized case (say linear and body non

linear analysis), these boundary condtions are prescribed by equations 4.17 and

4.18. Usually, for this purpose, a second or fourth order Runge-Kutta scheme (Xu

[1992], Kara et al. [2007] and Liu [2010]) is adopted to guarantee the stability of

solution in time. The present results were obtained by integrating the kinematic

and dynamic boundary conditions using the Euler method and a second order

Runge-Kutta scheme (described in the next section). Therefore, the numerical

versions of equations 4.17 and 4.18 are, respectively, given by:

zt+δt = zt + δt(
∂φt

∂z
− νzt) (9)

φt+δt = φt + δt(−gzt − νφt) (10)

For the fully non linear case studied in chapter 7 the corresponding version
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of the kinematic and dynamic boundary conditions are given by equations 7.28

and 7.29 respectively. Their respective numerical versions is obtained in the same

fashion.

Second Order Runge-Kutta Method

A more accurate numerical approach would be to integrate equations 4.17 and

4.18 in time using a second order Runge-Kutta scheme. In a way, the Euler

method can be viewed as particular case of the second order Runge-Kutta scheme.

To see this, suppose we have a scalar the function y(t) , which is differentiable

in the domain of interest to us. Let its derivative dy/dt be given by the function

f(y, t). Then the problem is how to evaluate y(t+δ) at the subsequent time step.

A second order Runge-Kutta scheme performs this update as follows:

k1 = δf(y, t), (11)

k2 = δf(y + βk1, t+ αδ), (12)

y(t+ δ) = y(t) + ak1 + bk2. (13)

The constants α, β, a and b have to be evaluated in order to guarantee that

error is proportional to δ3, or O(δ3). In particular , note that if we set k2 = 0

and a=1, we recover the Euler method. Let’s now show under what choices of

constants α, β, a and b the integration error of O(δ3). In order to do this, Taylor

series is used to expand y(t) in its neighborhood of t correct to O(δ2). Hence,

y(t+ δ) = y(t) + δ
dy(t, y)

dt
+ δ2d

2y(t, y)

dt2
+O(δ3). (14)

In equation 14, d2y(t,y)
dt2

can be evaluated in terms of f(y, t), i.e:

d2y(t, y)

dt2
=
∂f

∂t
+
∂f

∂y

dy

dt
. (15)
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From 14 and 15, one has that:

y(t+ δ) = y(t) + δ
dy(t, y)

dt
+
δ2

2
(
∂f

∂t
+
∂f

∂y

dy

dt
). (16)

In equation 13, the k2 term can also be expanded to second order and the

result can be given in terms of the constants of interest, since k1 = hf(y, t);

hence, after some algebra, this yields :

y(t+ δ) = y(t) + (a+ b)δf(y, t) + bδ2(α
∂f

∂t
+ β

∂f

∂y
f(y, t)). (17)

By comparing the respective coefficients of equations 16 and 17, it is straight

forward to see that in order to achieve precision of O(δ3), the constants α, β, a

and b should satisfy:

a+ b = 1, (18)

αb = 1, (19)

βb = 1, (20)

A classical choice, the one adopted here, is α = β = 1 and a = b = 1
2
. A

second order Runge-Kutta (RK2) implementation in order to integrate the free

surface boundary conditions in time, this will comprise the Lagrangian phase of

the MEL scheme, is given below. Because the free surface boundary conditions are

coupled and there are two differential equations, the RK2 integration comprises

7 equations which can be written as follows:

kz1 = δt(
∂φt

∂z
− νzt); (21)

zt+δt = zt + kz1; (22)
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kφ1 = δt(−gzt − νφt); (23)

kz2 = δt(
∂φt+δ

∂z
− νzt+δ); (24)

zt+δt = zt + (kz1 + kz2)/2; (25)

kφ2 = δt(−gzt+δ − νφt+δ); (26)

φt+δt = φt + (kφ1 + kφ2 )/2. (27)

Equations 21, 22 and 23 comprise the first step of the RK2 scheme and they all

rely in solving the Euler phase at time t. Equation 21 calculates the change in the

free surface position, equation 22 updates the free surface position and equation

23 calculates the change in free the surface potential. Next, the Euler phase is

solved at time t+ δ, and the second phase of the RK2 starts; equations 24,25,26

do the same job as in the first phase whereas equation 27 , finally, updates the

potential on the free surface.

Boundary Conditons for the Second Boundary

value problem

In order to evaluate ∂φ
∂t

exactly, the time harmonic property of the potential can

be explored and a second boundary value problem can be solved on the Neumann

surface for ∂φ
∂t

directly. However, to accomplish this, a boundary condition on the

Neumann surface, for ∂2φ
∂t∂n

, needs to be imposed.

In this section, a simple case where a motion is considered only on the heave

mode, is going to be tackled, the general case can be found in Wu and Eatock Tay-

lor [1996]. The main assumption that is needed to go through the derivation is
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that the potential is C2, i.e it is differentiable up to order 2, with respect to its

field variables (x, y, z). That said, the Neumann condition on the body for second

boundary value problem can be written as:

∂2φ

∂t∂n
= ~nB · ~aB − ~nB · (~vB · ∇)∇φ. (28)

Expanding the last term gives:

~nB · (~vB · ∇)∇φ = ~nB · (V1
∂

∂x
+ V2

∂

∂y
+ V3

∂

∂z
)∇φ. (29)

For forced motions on the heave mode, V1 = V2 = 0 and V3 = Asin(ωt), hence

, after some algebra it can be shown that:

~nB · (~vB · ∇)∇φ = V3~nB · (
∂φx
∂z

~i+
∂φy
∂z

~j +
∂φz
∂z

~k). (30)

The last step is to interchange the order of differentiation with respect to φ

(i.e its assumed that the velocity potential is twice differentiable, φ ∈ C2(Ω)),

resulting in:

~nB · (~vB · ∇)∇φ = V3~nB · (
∂φz
∂x

~i+
∂φz
∂y

~j +
∂φz
∂z

~k) = V3~nB · ∇
∂φ

∂z
. (31)

It is also interesting to point out that V3~nB · ∇∂φ
∂z

has actually the same form

of the m terms, i.e −(~n · ∇)∇φ, described in Nakos [1990].

Free Surface Boundary Conditions

Under the potential flow framework, when a MEL scheme is used, the free surface

boundary conditions usually take a simpler form (see for instance Longuet-Higgins

and Cokelet [1976] or Liu et al. [2001] ). However, the fully Lagrangian formu-

lation considers that all fluid particles are moving with the same velocity as the

fluid field which leads to computational difficulties. The idea here is twofold:

first from the Lagrangian kinematic free surface boundary condition recover the

kinematic boundary condition of the free surface with respect to its elevation ζ;
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second, formulate both boundary conditions (kinematic and dynamic) when the

velocity field imposed on the free surface is not equal to the flow velocity. This

last issue is of more practical use since the mesh can be moved in a direction that

avoids remeshing but at the same time tries to mitigate the convection terms on

the free surface boundary condition. In particular, for the application at hand ,

imposing a velocity on the mesh on the vertical direction is of interest, since the

mesh distortions from this movement are small, the problem of remeshing the

free surface at every time step can, hopefully, be avoided.

The Lagrangian kinematic condition states that the velocity of the particles

on the free surface are equal to the gradient of the velocity potential. Since the

flow is potential, this condition holds throughout the domain , and in particular,

on the free surface. Assuming there is a coordinate system O(x,y,z), the kinematic

boundary condition is written as:

D(~r)

Dt
= ∇φ. (32)

In the equation above ~r = (x(t), y(t), z(t)) is the position of the surface node

and D
Dt

= ∂
∂t

+∇φ · ∇.

What happens, if instead of following the free surface particles, the points

x and y are fixed and the free surface elevation is expressed as ζ(x, y, t) ? In

this case the position vector of the free surface is ~r = (x, y, ζ(x, y, t)). Using

the Lagrangian kinematic boundary condition on ~r, the equality on x and y are

trivial, but on the z direction one has that:

D(ζ(x, y, t))

Dt
=
∂ζ

∂t
+∇φ · (∂ζ

∂x
,
∂ζ

∂y
, 0) =

∂φ

∂z
. (33)

Expanding one can recover another form of the kinematic boundary condition,

say an Eulerian representation of the free surface, Newman [1977], as:

∂ζ

∂t
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
=
∂φ

∂z
. (34)

Therefore the kinematic boundary condition in the Lagrangian form implies equa-

tion 34.

Assume that the free surface nodes are going to be moved along the vertical
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direction. So let ~vp = (0, 0, vz) be the mesh velocity and δζ
δt

the derivative of ζ

when its motion is followed in the vertical direction. The derivative of the free

surface with respect to time can be calculated as:

δζ

δt
=
∂ζ

∂t
+ (0, 0, vz) · (

∂ζ

∂x
,
∂ζ

∂x
, 0) =

∂ζ

∂t
, (35)

which does not depend on ~vp = (0, 0, vz), simplifying the numerical treatment.

Hence the kinematic boundary condition, equation 34, can be written in terms

of δζ
δt

as follows:

δζ

δt
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
=
∂φ

∂z
. (36)

It is also worth noting that if the steepness of the free surface is small in x and

y directions the linearized form of the kinematic boundary condition is recovered.

The dynamic boundary condition on the free surface, under potential flow

assumptions, can be derived from Bernoulli’s equation which can be written as,

Newman [1977]:

∂φ

∂t
+

1

2
∇φ2 + gz = 0 (37)

Assuming that x,y are fixed and that the free surface elevation is given by

ζ(x, y, t), the potential can be written as φ(x, y, ζ(x, y, t), t) . The derivative of

the potential with respect to time, by the chain rule, is therefore:

dφ

dt
=
∂φ

∂t
+
∂φ

∂ζ

∂ζ

∂t
, (38)

since z = ζ(x, y, t), ∂φ
∂ζ

= ∂φ
∂z

.

From equation 37 and 38, the dynamic boundary condition becomes:

dφ

dt
− ∂φ

∂z

∂ζ

∂t
+

1

2
∇φ2 + gz = 0 (39)

It is also interesting to note that if the particles are followed in a Lagragian

fashion (x,y and z are time dependent) then the fully Lagrangian formulation is

recovered . In this case the potential is φ(x(t), y(t), z(t), t) and its derivative, by
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the chain rule, becomes Dφ
Dt

= ∂φ
∂t

+∇φ2.
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Appendix B Time Series Analysis

of Hydrodynamic Forces

The results obtained in time domain simulations can be recast in the frequency

domain by performing a Fourier decomposition of the hydrodynamic force time

series. Assuming that the hydrodynamic force, Fh(t) admits a Fourier decompo-

sition (i.e it is square integrable), then its Fourier decomposition can be written

as:

Fh(t) =
A0

2
+

n∑
j=1

Ajsin(ωjt) +Bjcos(ωjt). (40)

In addition, in the context of forced oscillations, the Fourier coefficients can be

readly identified with the added mass and damping coefficients. For instance, in

the heave case, since zc(t) = Asin(ωt), A1 and B1 corresponds to the definition

of added mass (A33) and damping (B33) respectively. Looking at equation 40

the components due to the higher order harmonics (i.e j > 1) are also present,

in particular the coefficients A2
33 and B2

33 introduced in equations 7.21 and 7.22

respectively can also be identified to A2 and B2.

Sometimes it is also useful to write equation 40 in terms of the harmonics

instead of the Fourier coefficients. In order to achieve this, the coefficients fj’s

are defined as follows:

fj =

{
A0/2 if j = 0

Aj − iBj if j > 0
(41)
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where i refers to the imaginary unit in the complex plane.

Using the coefficients defined in equation 41, equation 40 can be rewritten in

terms of the harmonics as follows:

Fh(t) = <(
n∑
j=0

fje
iωjt), (42)

where <(.) denotes the real part. In order to see this, one can expand the fje
iωjt

term, using Euler’s formula and plug in equation 41:

<(fje
iωjt) = <((Aj − iBj)(sin(ωjt) + icos(ωjt)))

= <(Ajsin(ωjt) +Bjcos(ωjt) + i(Ajcos(ωjt)−Bjsin(ωjt)))

= Ajsin(ωjt) +Bjcos(ωjt).

For the case where j = 0, eiωjt = 0, which gives f0 = A0/2.

This way, the norm, for instance, of f1 is f1 =
√
A2

1 +B2
1 . In the particular

case of heave forced oscillations it then follows that f1 =
√
A2

33 +B2
33. Therefore,

the Fourier decomposition provides a link between frequency domain and time

domain analysis.

Note however that equation 40 (or equivalently equation 42) makes sense when

the signal (e.g the force time series) is stationary since the temporal information is

lost and the spectrum of the signal is a function of only the frequency. For station-

ary signals, the Fourier representation expand the signal on a orthogonal basis

with respect to the dot product defined by < g(x), h(x) >=
∫ t+T
t−T g(x)h(x)dx.

This follows from the orthogonality relations of sin(x) and cos(x) functions, i.e:

∫ t+T

t−T
sin(ωjt)sin(ωkt)dt =

{
π if j = k

0 otherwise,
(43)

∫ t+T

t−T
cos(ωjt)cos(ωkt)dt =

{
π if j = k

0 otherwise,
(44)
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∫ t+T

t−T
cos(ωjt)sin(ωkt)dt = 0. (45)

Since the temporal information lost, transient effects are not straightforward to

capture. Moreover, the question of what harmonics should be kept in the expan-

sion is also daunting. One usually drops the higher frequency components but

this procedure is rather heuristic.

Recently, an alternative approach to signal analysis, the Hilbert Huang trans-

form, has been developed by Huang et al. [1998]. This framework is comprised of

two parts: the empirical mode decomposition (EMD) and the Hilbert transform.

The final result of the Hilbert transform can then be represented on an energy-

frequency-time distribution (in contrast Fourier analysis results are represented

as an energy-frequency distribution), which is called Hilbert spectral analysis.

In fact, the key aspect of the Hilbert Huang transform lies in the observation

that, although the Hilbert transform is able to capture the local properties of

functions in the Lp class in time domain, its direct application to this class of

functions can yield negative frequencies that bear no relationship with the real

oscillation of the data Huang et al. [1998]. In order to overcome this issue, the

EMD technique is used to decompose the original signal time series into a finite

(usually small number) of intrinsic mode functions (IMFs). The IMFs enjoy a

well behaved Hilbert transform, and hence their Hilbert spectral analysis pro-

vide a energy-frequency-time distribution that brings insight into the oscillatory

behaviour of the data.

In chapter 6, the EMD decomposition was used in filtering mode, where the

IMFs that were statistically close to white noise were not kept in the force time se-

ries decomposition, this approach followed closely the empirical study performed

by Wu and Huang [2004] . In what follows the application of the Hilbert Huang

transform to the problem of a force time series decomposition is addressed and

compared to the conventional Fourier decomposition. To this end, a brief sum-

mary of the Hilbert Huang transform will be given. First, the Hilbert transform

will be introduced and next the EMD algorithm will be described. After intro-

ducing these concepts, a generalization of the Fourier decomposition in equation

42 will be naturally introduced. Next, this result of Huang et al. [1998], is brought
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to the context of time domain hydrodynamics as an alternative formulation of

the harmonics, now in terms of Hilbert transforms of IMFs.

The motivation behind the development of the Hilbert transform is the fol-

lowing: Given function, X in the Lp class that maps from R to R (i.e t to X(t)),

is it possible to find an imaginary part iY (t) such that the complex function,

Z(t), Z(t) = X(t) + iY (t), can be analytically extended from the real line to the

upper half of the complex plane?

The answer is the Hilbert transform (see for instance Hahn [1995]) and Y(t)

is given by the Cauchy principal value, PV , of the integral:

H(X(t)) = Y (t) =
1

π
PV

∫
X(t′)

t− t′
dt′. (46)

Since, Z(t) = X(t) + iY (t), is defined on the upper half complex plane, it can

also be written using Euler’s formula, namely:

Z(t) = X(t) + iY (t) = a(t)eiθ(t), (47)

where:

a(t) =
√
X2(t) + Y 2(t), (48)

and

θ(t) = tan−1 Y (t)

X(t)
. (49)

Since the phase angle, θ(t) is time dependent the instantaneous frequency can

be defined as:

ω(t) =
dθ(t)

dt
. (50)

For the case of the Fourier Decomposition defined in equation 42, θj(t) = ωjt

, so the instantaneous frequency is constant for each mode j and given by ωj.

Therefore, in this sense, equation 47 generalizes equation 42, with fj and ωj being

replaced by their time variants counterparts, a(t) and ω(t) respectively.

If all the functions in the Lp class enjoyed a well defined Hilbert transform
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(in the sense that the transform has a physical relationship with the signal), the

problem will be solved and it would suffice to substitute the Fourier decomposition

by the Hilbert transform. However, it was pointed out by Huang et al. [1998] that

this is not the case. In particular, in order to overcome this issue the Ensemble

Mode Decomposition was developed and it is used as pre-processing step.

The EMD is an empirical algorithm that decomposes a signal into its local

oscillations. The idea is to express each oscillation scale as separate component,

(this yields the Intrinsic Mode Function, or IMF) so that the sum of the IMFs,

plus a residual term will reconstruct the original signal. IMFs are functions that

satisfy the two following criteria Huang et al. [1998]:

• in the whole data set, the number of extrema and the number of zero-

crossings must either be equal or differ at most by one;

• at any point, the mean value of the envelope defined by local maxima and

local minima is zero.

That said, the EMD algorithm is summarized in algorithm 8. The output of

the algorithm are the IMFs and the residual term. This way, the initial signal,

say X(t), is decomposed as follows:

X(t) =

NIMFs∑
j=1

cj + r, (51)

in which, NIMFs is the number of IMFs used to decompose the signal. It depends

on the size of the signal as log2(size(signal)) Huang et al. [1998], which is usually

much smaller than the Fourier harmonics decomposition. At this point, since

IMFs behave well under Hilbert transformations, one can let X ′(t) = X(t) − r
and use equation 46. This result is summarized on the following proposition.

Proposition .0.1 Let cj’s be NIMFs ∈ N+ functions. Let X(t) be a continuous

real function mapping from t ∈ R+ to X(t) ∈ R, such that its corresponding EMD

decomposition is given by X(t) =
∑NIMFs

j=1 cj + r. If X ′(t) = X(t)− r, then X ′(t)
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can be represented by :

X ′(t) = <(

NIMFs∑
j=1

aj(t)e
i
∫
ωj(t)dt). (52)

Proof Since X ′(t) = X(t)−r, it follows from the EMD decomposition (equation

51 ) that X ′(t) =
∑NIMFs

j=1 cj. Denoting the Hilbert transform of X ′(t) by Y ′(t),

it follows from equation 47 and the fact that the Hilbert transform is a linear

operator that:

Z ′(t) = X ′(t) + iY ′(t)

=

NIMFs∑
j=1

cj + iH(

NIMFs∑
j=1

cj)

=

NIMFs∑
j=1

cj + i

NIMFs∑
j=1

H(cj)

=

NIMFs∑
j=1

(cj + iH(cj))

=

NIMFs∑
j=1

aj(t)e
i
∫
ωj(t)dt.

So, taking the real part of Z’(t) yields:

X ′(t) = <(Z ′(t)) = <(

NIMFs∑
j=1

aje
i
∫
ωj(t)dt).

Therefore, coming back to the context of analyzing time series of forces, it is

interesting to note how equation 52 is closely related to the Fourier harmonics

decomposition, equation 42. In fact, in the context of hydrodynamic analysis, all

that is needed to extend, the frequency-energy representation of the the harmonics

fj to the time-frequency-energy representation of the Hilbert Huang Transform,
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is to associate fj to aj(t) and wjt to
∫
ωj(t)dt in equations 42 and 52 respectively.

This way, the Hilbert transform of the jth IMF for instance, cj, will give rise

to ”added mass” and ”damping coefficients” that vary in time as well as in the

frequency domain. Furthermore, their respective phase and amplitude are given

by equations 49 and 48, respectively. One of the advantages of this approach

is that the IMFs representation is usually smaller than the Fourier expansion,

since the number of IMFs is of the order of log2(size(signal)). Moreover, by

definition, the IMFs form a base for the signal, which is adaptive, because the

spline construction depends of the signal data itself. What is striking is that this

base, in practice, turns out to be very close to a orthogonal base, this is actually

a topic of active research in adaptive time series analysis.

Algorithm 8 Ensemble Mode Decomposition

1: procedure function(IMFs=EMDecomp(signal))
2: aux:=signal; . lnitialize h(0) to be the signal itself.
3: NIMFs = log2(size(signal)) + 1
4: while j < NIMFs do
5: h(t):=aux
6: while Itersift < Nsift do
7: [extup, extdown] := extrema(signal) . Identify the extreme points

of the signal.
8: [envelopeup, envelopedown] := cubicspline(extup, extdown) . Fit

cubic splines to represent the upper and lower envelopes, respectively.
9: m(t) := median(envelopeup, envelopedown) . Compute the local

medians.
10: h(t):=h(t)-m(t); . Extract the spline mean.
11: Itersift := Itersift + 1
12: end while
13: aux:=aux-h(t) . After the inner while, h(t) has become an IMF, so

its extracted from the aux and the process is reiterated.
14: c(j):=h(t) . c(j) saves the jth IMF on jth column of c.
15: end while
16: r := aux . After the iterations r receives the residual of the last IMF, r.
17: IMFs := [c; r] . Output the the IMFs on vector c and the residual term.
18: end procedure
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Appendix C Sensitivity Analysis

of Sphere Simulations

In this appendix, a sensitivity analysis of the sphere undergoing forced heave

simulations is presented when the Φt Exact BNL algorithm is used. During this

analysis four parameters were varied on the Φt Exact BNL algorithm, namely:

• the regularization parameter, λ;

• the edge size of the element, h;

• the free surface size ;

• the time step dt.

The role that the regularization parameter, λ, plays was discussed in chap-

ter 7. The size of the element tries to measure the convergence in the h sense

Karniadakis and Sherwin [2005], since the mesh is unstructured h represents the

edge size of elements that are used to mesh the sphere. The domain topology

that was considered in chapter 7, i.e a cylindrical domain where the free surface

is circular (figure 7.1 ) , was kept the same during the sensitivity analysis, how-

ever the diameter of the free surface was changed. In what follows, the results of

the sensitivity analysis are presented in a tabulated form. The first table refers

to the value of the parameters used whereas the second table shows the results

obtained, in terms f0, f1, f2, A33 and B33, all of which were nondimensionalized

according to the framework presented in chapter 7. Unfortunately, due to runtime
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constraints, the analysis is rather limited and it was not possible to perform an

analysis where the value of the parameters were changed on a systematic fashion.

Table 1: First Set of Simulation Parameters Values

Parameter Value

λ 0.0
h 0.02 units

Free Surface Diameter 8.0 units
dt 0.0045 s

Table 2: Results of the first set

A/R f0 f1 f2 A33 B33

0.125 -0.0533 0.3425 0.2828 0.293 0.177
0.25 0 -0.0090 0.3226 0.2391 0.2871 0.147
0.300 -0.0225 0.3116 0.2978 0.2660 0.1622
0.375 -0.0243 0.3036 0.2847 0.2715 0.1360
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Table 3: Second Set of Simulation Parameters Values

Parameter Value

λ 0.0
h 0.02 units

Free Surface Diameter 8.0 units
dt 0.00225 s

Table 4: Results of the second set

A/R f0 f1 f2 A33 B33

0.125 -0.0370 0.3572 0.2883 0.296 0.199
0.250 -0.0010 0.3289 0.2803 0.281 0.170
0.300 -0.0225 0.3193 0.2570 0.269 0.171
0.375 -0.0020 0.3014 0.2373 0.272 0.128

Table 5: Third Set of Simulation Parameters Values

Parameter Value

λ 0.0
h 0.02 units

Free Surface Diameter 16.0 units
dt 0.0045 s

Table 6: Results of the third set

A/R f0 f1 f2 A33 B33

0.300 -0.066 0.3134 0.2053 0.267 0.163
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Table 7: Fourth Set of Simulation Parameters Values

Parameter Value

λ 0.0
h 0.02 units

Free Surface Diameter 10.0 units
dt 0.0045 s

Table 8: Results of the fourth set

A/R f0 f1 f2 A33 B33

0.300 -0.033 0.3122 0.2250 0.266 0.164

Table 9: Fith Set of Simulation Parameters Values

Parameter Value

λ 0.0
h 0.01 units

Free Surface Diameter 8.0 units
dt 0.0045 s

Table 10: Results of the fith set

A/R f0 f1 f2 A33 B33

0.300 -0.092 0.350 0.284 0.281 0.209
0.375 -0.096 0.331 0.276 0.280 0.176
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Table 11: Sixth Set of Simulation Parameters Values

Parameter Value

λ 0.01
h 0.02 units

Free Surface Diameter 8.0 units
dt 0.0045 s

Table 12: Results of the sixth set

A/R f0 f1 f2 A33 B33

0.250 -0.137 0.325 0.211 0.265 0.187
0.300 -0.135 0.318 0.226 0.252 0.195
0.375 -0.134 0.286 0.187 0.227 0.174
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