HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

System-Level Design Automation and Optimisation of
Network-on-Chips in Terms of Timing and Energy

by

Ji Qi

Thesis for the degree of Doctor of Philosophy

September 2015

mailto:jq2e09@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

SYSTEM-LEVEL DESIGN AUTOMATION AND OPTIMISATION OF
NETWORK-ON-CHIPS IN TERMS OF TIMING AND ENERGY

by Ji Qi

As system complexity constantly increases, traditional bus-based architectures are less
adaptable to the increasing design demands. Specifically in on-chip digital system
designs, Network-on-Chip (NoC) architectures are promising platforms that have
distributed multi-core co-operation and inter-communication. Since the design cost
and time cycles of NoC systems are growing rapidly with higher integration, system-
level Design Automation (DA) techniques are used to abstract models at early design
stages for functional validation and performance prediction. Yet precise abstractions
and efficient simulations are critical challenges for modern DA techniques to improve the

design efficiency. This thesis makes several contributions to address these challenges.

We have firstly extended a backbone simulator, NIRGAM, to offer accurate system-level
models and performance estimates. A case study of developing a one-to-one transmission
system using asynchronous FIFOs as buffers in both the NIRGAM simulator and a
synthesised gate-level design is given to validate the model accuracy by comparing their

power and timing performance.

Then we have made a second contribution to improve DA techniques by proposing
a novel method to efficiently emulate non-rectangular NoC topologies in NIRGAM
and generating accurate energy and timing performance. Our proposed method uses
time-regulated models to emulate virtual non-rectangular topologies based on a regular
Mesh. The performance accuracy of virtual topologies is validated by comparing with

corresponding real NoC topologies.

The third contribution of our research is a novel task-mapping scheme that generates
optimal mappings to tile-based NoC networks with accurate performance prediction and
increased execution speed. A novel Non-Linear Programming (NLP) based mapping
problem has been formulated and solved by a modified Branch and Bound (BB)
algorithm. The proposed method predicts the performance of optimised mappings and

compares it with NIRGAM simulations for accuracy validation.

mailto:jq2e09@ecs.soton.ac.uk

Contents

Declaration of Authorship
Acknowledgements
Nomenclature
Abbreviations

1 Introduction

1.1 Introduction
1.1.1 On-chip Network Architectures
1.1.2 Design Methodology of NoC Architectures
1.1.3 Design Space Exploration of Current Methodology

1.2 Research Objectives

1.3 Research Contributions

1.4 Thesis Structure

2 Literature Review

2.1 Network on Chip Basics
2.1.1 Basic Concepts
2.1.1.1 Direct and Indirect Networks

2.1.1.2 Development of Network on Chip

2.1.1.3 NoC Architectures

2.1.2 NoC Topology
2.1.2.1 Popular Direct Network Topologies

2.1.2.2 Popular Indirect Network Topologies

2.1.3 Flow Control
2.1.3.1 Basic Concepts

2.1.3.2 Switching Techniques

2.1.3.3 Virtual Channels
2.1.3.4 Quality of Service

2.1.4 Routing Algorithms
2.1.4.1 Basic Concepts

2.1.4.2 Deadlock, Livelock and Starvation
2.1.4.3 Typical Classification of Routing Algorithms

2.1.4.4 Deterministic and Adaptive Routing Algorithms

2.1.4.5 Source and Distributed Routing Algorithms.
2.1.4.6 Minimal and Non-minimal Routing Algorithms . . .

vi CONTENTS
2.1.5 Commercial Employment, 38

2.2 System-level Design Automation 40
2.2.1 Current Opinions o o 40
2.2.2 Major Performance Concerns in NoC Systems 43
2.22.1 Energy 43

2222 Timing 44

2.2.2.3 Other Factors 45

2.3 A Survey of NoC Application Mapping Techniques 47
2.3.1 The Classification of Mapping Techniques 47
2.3.2 Dynamic Mapping Techniques 49

2.3.3 Static Mapping Techniques 51
2.3.3.1 Exact Mapping 51

2.3.3.2 Search Based Mapping 54

2.4 A Survey of Current Network Simulators 61
2.4.1 Emergence and Current Classification of Network Simulators 61
2.4.2 Regular Network Simulators 63
2.4.3 Dedicated NoC Simulators. 64
2.4.4 Full-system Simulators 65
2.4.5 Other Models and Tools for Specific NoC Simulations 65

2.5 SUMMATY « . v v v v e vt e e e e e e e 66
3 System-Level Modelling of Networks on Chip 69
3.1 Necessity of High-level Model Abstraction to NoC 69
3.2 Extended NIRGAM Simulator 71
3.2.1 Introduction to NIRGAM 71
3.22 Extended Work 73

3.3 Case Study: Asynchronous FIFO for NoC Buffer 75
3.3.1 Necessity and Motivation 76
3.3.2 Asynchronous FIFO Structure 7
3.3.3 FIFO High-Level Modelling 78
3.3.4 FIFO Gate-Level Implementation 79

3.4 Model Accuracy Analysiso L 81
3.4.1 Gate-level Asynchronous FIFO 81
3.4.1.1 Experimental Setup 81

3.4.1.2 Result Analysis 82

3.4.2 Data Transmission System 84
3.4.2.1 Experimental Setup 84

3.4.2.2 Result Analysis 87

3.4.3 Result Analysis of Case Study 89

3.5 SUMMATY .« . o v v et e e e e e e 90
4 Efficient Modelling of Non-rectangular Topologies 91
4.1 Introduction and Motivation. oL oo 92
4.2 Non-rectangular NoC Architectures 94
4.2.1 Significance of Non-rectangular Topological Modelling 94
4.2.2 Conventional Formation of Honeycomb Hexagonal Network 97
4.2.3 Conventional Formation of Sparse-Octagonal Network 98

CONTENTS vii

4.3 Proposed Design Methodology, 99
4.3.1 Proposed Time Regulated Model 100
4.3.2 Example Topological Formation: Honeycomb Hexagon 101
4.3.3 Example Topological Formation: Sparse-Octagon 104

4.4 Experimental Results.o oo 106
4.4.1 Specific Routings: Hexagonal and Irregular Routings 107

4.4.1.1 Experimental Setup 107

4.4.1.2 Theoretical Calculation 108

4.4.1.3 Result Analysis L. 110

4.4.2 Specific Routings: Octagonal Routing 114
4.4.2.1 Experimental Setupo 114

4.4.2.2 Result Analysiso 115

4.4.3 Synthetic Traffic: Uniform Random 116
4.4.3.1 Experimental Setup 116

4.43.2 Result Analysiso 117

4.4.4 Synthetic Traffic: Hotspot 120
4.44.1 Experimental Setup 120

4.4.4.2 Result Analysis oo 121

4.4.5 Model Accuracy Discussion 123
4.4.6 Specific Application: MPEG-4 Decoder 125
4.4.6.1 Software Implementation 125

4.4.6.2 Experimental Setup 126

4.4.6.3 Result Analysis o oL 128

4.4.7 Superiority of Our Method for Topological Modelling 129

4.5 Summaryo e e 130
5 Application Mapping and Performance Prediction 133

5.1 Introduction and Necessity 134

5.2 Proposed Mapping Method and Performance Prediction 137
5.2.1 Preliminaries o 137

5.2.1.1 The Architecture 137
5.2.1.2 Energy and Timing Models 139
5.2.2 Problem Formulation of NLP Based Mapping 141
5.2.2.1 Problem Definition. 141
5.2.2.2 Parameters and Variables 142
5.2.2.3 Objective Function 143
5.2.2.4 Constraints 146
5.2.2.5 Extension of Mapping Problem onto More Tile-based NoCs148
5.2.3 Efficient Mapping 150
5.2.3.1 Modified Branch and Bound Algorithm 150
5.2.3.2 Performance Prediction, 156
5.2.3.3 Statement 158

5.3 Experimental Results. L 159

5.3.1 Synthetic Applications 160
5.3.1.1 Experimental Setup 160
5.3.1.2 Functional Verification Analysis 161

5.3.1.3 Execution Efficiency Analysis 162

viii CONTENTS
5.3.1.4 Performance Accuracy Analysis 163
5.3.2 Real-World Media Application 164
5.3.2.1 Experimental Setup 164
5.3.2.2 Functional Verification Analysis 166
5.3.2.3 Execution Efficiency Analysis 166
5.3.2.4 Performance Accuracy Analysis 166
5.4 SUmMmMAary . ..o e e e 167
6 Conclusions and Future Work 169
6.1 Summary of the thesis L 169
6.1.1 Accurate Model Abstraction of System-Level NoC Architectures . 170
6.1.2 Efficient Design Method of Application-Specific Network Topologies170
6.1.3 Efficient Optimisation of Task-Mapping Performance Trade-offs in
Terms of Timing and Energy 171
6.2 Future Work 172
A Technology Parameters Used by Orion 175
References 185

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10
3.11
3.12

3.13

Explore Design Space in Phase 1 of State-of-the-art Design Flow [1]
Research Objectives

Four Classifications of Interconnection Networks [2]
A Typical Architecture of NoC [3]
Mesh and Torus Topologies [4]
Unbalanced and Balanced Binary Trees [5] [6]
An N by M Crossbar Topology [7] [8]
A Simple Fat Tree Architecture [9]
A 2 —ary, 3 — fly Butterfly Architecture [10]
Butterfly Fat Tree Architecture with N=64 PE Blocks [5]
Virtual Channels [8] Lo
Example of a Typical Network Deadlock [3]
Example of a Typical Network Livelock [10]
XY Routing Algorithm for 2D-Mesh - X First [11]
Example Turn Model for Adaptive Routing [12]
Examples of OE Routing in 9 by 9 2D-Mesh [3]
PROM Example: Randomly Choose the Minimal Routing Path [13] .
Typical High-Level System Design Process [14]
The Classification of Mapping Algorithms [15]
The Classification of Current Network Simulators for NoC Simulations . .

Basic Digital Design Process.
The System Architecture of NIRGAM Simulator
Typical Mesh Network with Homogeneous Node Architecture
The Extended NIRGAM Simulator
The Applied Asynchronous FIFO Structure [16]
System-Level Modelling of Asynchronous FIFO as NoC router Channel
buffers in NIRGAM
Gate-Level Synthesis and Power Analysis Flow of Asynchronous FIFO . .
Verilog Code for Jitter Insertion in Test Bench
Functional Verification of Asynchronous FIFO.
Functional Verification of Asynchronous FIFO with full memory
Functional Verification of Asynchronous FIFO with Clock Jitter
Functional Verification of Asynchronous FIFO with Clock Jitter and Full
Memoryo
High-Level Asynchronous Transmission System designed in NIRGAM

ix

12
16
18
18
20
20
21
21
26
30
30
34
35
35
38
41
48
62

70
71
72
73
78

79
80
82
82
83
83

84
85

LIST OF FIGURES

3.14 Gate-Level Asynchronous Transmission System for Performance Compar-
510 0

3.15 Functional Verification and Power Cost of Gate-Level Asynchronous
Transmission System Lo o

3.16 Power Cost of System-Level Asynchronous Transmission System in
NIRGAM . . . o e

4.1 The Exemplified Honeycomb and Sparse-octagon Topologies

95

4.2 Network Cost Comparisons between Mesh and Non-rectangular Topologies 96

4.3 Brick-Shape Transformations of Non-rectangular Topologies
4.4 Conventional Formation of Honeycomb Topology
4.5 Conventional Formation of Sparse-Octagon Topology
4.6 The Node Architecture with Time-regulated Model Attached
4.7 Construction of Mesh-based Hexagonal Topology
4.8 Mesh-based Octagon Topology
4.9 Experimental Designs for Data Routing in Hexagonal and Mesh Networks
4.10 Experimental Designs for Data Routing in Irregular Networks
4.11 Performance Comparison of Hexagon Topology and 2D-Mesh in terms of
Overall Transmission Latency based on 9 by 9 Mesh.
4.12 Performance Comparison of Hexagon Topology and 2D-Mesh in terms of
Energy Consumption based on 9 by 9 Mesh
4.13 Timing and Energy Comparisons of Data Routings in Virtual and Real
Hexagonal Networks oo
4.14 Timing and Energy Comparisons of Data Routings in Virtual and Real
Irregular 1 Networkso oo
4.15 Timing and Energy Comparisons of Data Routings in Virtual and Real
Irregular 2 Networks oo o
4.16 Experimental Designs for Comparing Octagonal and 2D-Mesh Networks .
4.17 Latency Comparisons of Virtual and Real Non-rectangular Networks
under Random Uniform Traffic
4.18 Throughput Comparisons of Virtual and Real Non-rectangular Networks
under Random Uniform Traffic
4.19 Energy Comparisons of Virtual and Real Non-rectangular Networks under
Random Uniform Traffic
4.20 Hotspot Traffic Settings for Virtual and Real Non-rectangular Networks .
4.21 Latency Comparisons of Virtual and Real Non-rectangular Networks
under Hotspot Traffic
4.22 Throughput Comparisons of Virtual and Real Non-rectangular Networks
under Hotspot Traffic
4.23 Energy Comparisons of Virtual and Real Non-rectangular Networks under
Hotspot Traffic
4.24 MPEG-4 Decoder e
4.25 Module placement of MPEG-4 Decoder for Irregular Routing
4.26 Implementation of the Irregular Placement of MPEG-4 Decoder

5.1 Design Flow of Most Application-specific NoCs
5.2 Typical Structure of a 2D-Mesh Network Tile and Its Router Switch . . .
5.3 Coordinate Systems for Mesh and Torus Topologies

96

109
110

LIST OF FIGURES xi

5.4
5.5
5.6
5.7
5.8

5.9

5.10
5.11

5.12

Coordinate Systems for Hexagon and Octagon Topologies 149
Search Tree Example 152
Pseudo Code of Proposed Mapping Algorithm 155
Proposed Method of Performance Prediction 157
Comparisons of Calculated Results by Different Algorithms for Synthetic

Applications 162
Comparisons of Simulated Results by Different Algorithms for Synthetic

Applications 162
Run Time Comparisons 163
Error Comparisons Between Calculated and Simulated Results of Differ-

ent Mapping Algorithms oL 164

Task Graph of MPEG-4 Decoder 165

List of Tables

2.1

3.1

4.1
4.2
4.3
4.4

5.1
5.2

5.3
5.4

Overview of Popular Routing Algorithms in NoC Design [4] 33
Comparison of Power Costs of Both Levels of Designs for 100, 000-cycle

Data Transmission e 89
Comparisons of Octagonal and Mesh Routings 115
Comparisons of Virtual and Real Octagonal Routings 115
Performance Comparisons of MPEG-4 Decoding 128
Comparison of Topology Design in Custom Way and by Our Method . . . 130
Synthetic Benchmarks and Network Sizes 161
Runtime Records of Synthetic Applications Cost by Different Mapping

Algorithms e 163
Number of Tasks for Each Link 165
Performance Results of Different Mapping Algorithms for MPEG-4

Decodingo 165

xiii

Declaration of Authorship

I, Ji Qi , declare that the thesis entitled System-Level Design Automation and
Optimisation of Network-on-Chips in Terms of Timing and Energy and the work
presented in the thesis are both my own, and have been generated by me as the result

of my own original research. I confirm that:

e this work was done wholly or mainly while in candidature for a research degree at

this University;

e where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

e where I have consulted the published work of others, this is always clearly
attributed;

e where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;
e I have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

e parts of this work have been published as: Section 1.3

XV

mailto:jq2e09@ecs.soton.ac.uk

Acknowledgements

I would like to sincerely appreciate my supervisor, Prof. Mark Zwolinski, for his patient

and helpful guidance, support and supervision throughout my Ph.D research.

I am also grateful for the research facilities and environmental support provided by
the School of Electronics and Computer Science (ECS), University of Southampton,
throughout my time at Southampton. In addition, I wish to thank the people of the
Electrical and Electronic Engineering (EEE) Group, including Yang, Wei, Alex, Ime,
Kier and Fang, who have made Bay 1 such a memorable place to work in the past four

years.

Finally, T would like to express my particular thanks to my parents and my girlfriend
Lin, for their continuous love, support and encouragement. This thesis is dedicated to

them, without whom none of this would be possible.

Xvii

To my parents, and beloved Lin...

xix

Nomenclature

b(es ;) Minimum Bandwidth of Communication from Tasks ¢; to t; [bit/sec]
bw(l; ;) Available Link Bandwidth Capacity of Nodes n; to n; [bit/sec]
comm(e; ;) Communication Volume from ¢; to t; [bit]

Byt Bit Energy [J]

Ep,, Buffer Bit Energy [J]

B Bit Energy from Nodes n; to n; [J]

Ecpi Bit Energy between IP Core and Switch [J]

Egsi—cuit Bit Energy between Switch and IP Core of Destination Node [J]
€, Communication from Tasks ¢; to t;

Er,, Link Bit Energy [J]

e(l;) Communication Bit Energy from Nodes n; to n; [J]

Es,, Switch Bit Energy [J]

Egre_cpit Bit Energy between IP Core and Switch of Source Node [J]
Ew,,, Wire Bit Energy [J]

hopn,; n; Hop Counts between Nodes ¢ and j

L j Link Routing Communication from Nodes n; to n;

Ndst Destination Node of a Communication Routing Path

7 Selected Network Node 7

Ngre Source Node of a Communication Routing Path

Dij Potential Minimal Routing Path from Nodes n; to n;

P; Communication Volume from Nodes n; to n; [bit]

tast Destination Task of a Communication Flow

t; Selected IP Task 4

(L) Bit Timing Cost from Nodes n; to n; [sec]

tsre Source Task of a Communication Flow

T, Bit Timing Consumption from Nodes n; to n; [sec]

xxi

Abbreviations

ACO Ant Colony Optimisation

ASIC Application-Specific Integrated Circuit
BB Branch and Bound

BBN Bayesian’s Belief Network

BC Best Case

BE Best Effort

BFT Butterfly Fat Tree

BLS Binary Level Simulation

CHMAP Chain Mapping
CMAP Constructive Mapping

CMP Chip Multi-Processors

CPU Central Processing Unit

CSM Core-Switching Mapping

DA Design Automation

DC Design Compiler

DCS Distributed Computing System
DOR Dimension Order Routing

DRSI Double-Router to Single-1P
DSM Dynamic Spiral Mapping

DSP Digital Signal Processing

DyAD Dynamic Adaptive Deterministic
ECS Electronic and Computer Science
EDA Electronic Design Automation
EEE Electrical and Electronic Engineering
EM Euclidean Minimum

EPAM Energy- and Performance-Aware Mapping
ESL Electronic System Level

FC Fixed Centre

FDSM Full Dynamic Spiral Mapping
FF First Free

FIFO First-In First-Out

flits flow control digits

xxiii

XxXiv ABBREVIATIONS
GA Genetic Algorithm
GS Guaranteed Service
HDL Hardware Description Language
HOL Head-Of-Line
IC Integrated Circuit
IDCT Inverse Discreet Cosine Transform
ILP Integer Linear Programming
inout input/output
IQuant Inverse Quantisation
ISS Instruction Set Simulation
LBMAP Link Based Mapping
LEC-DN Lower Energy Consumption based on Dependencies-Neighbourhood
LP Linear Programming
LTS Legal Turn Set
MAC Minimum Average Channel
MaXY Minimally Adaptive XY
MB Macroblock
mCSM many-to-many Core-Switching Mapping
MILP Mixed Integer Linear Programming
MMC Minimum Maximum Channel
MPSoC Multi-Processor System on Chip
MSB Most Significant Bit
MV Motion Vector
NF Neighbour-aware Frontier
NI Network Interface
NIRGAM Network-on-chip Interconnect Routing and Application Modelling
NLP Non-Linear Programming
NN Nearest Neighbour
NoC Network on Chip
NoWs Networks of Workstations
OE Odd-Even
PBB Performance-aware Branch and Bound
PDSM Partial Dynamic Spiral Mapping
PE Processing Element
PL Path Load
PMAP Physical Mapping
PSO Particle Swarm Optimisation
PT PrimeTime
QoS Quality of Service
RC Random Frontier
RISC Reduced Instruction Set Computing

ABBREVIATIONS

XXV

RTL

SA

SAF
SA-TA
SBMAP
SLS

SoC
SRMI
SRSI
SSM
TBMAP
UMA
vC
VCD
VLD
VOL
VOP
WwWC
WSN
WSNsim

Register-Transistor Level
Simulation Annealing
Store-And-Forward

Simulated Annealing with Timing Adjustment

Sort Based Mapping
Source Level Simulation
System on Chip
Single-Router to Multiple-IP
Single-Router to Single-IP
Static Spiral Mapping
Traffic-Balance Mapping
Uniform Memory Access
Virtual Channel

Value Change Dump
Variable Length Decoder
Video Object Layer
Video Object Plane
Worst Case

Wireless Sensor Network

Wireless Sensor Network simulator

Chapter 1

Introduction

1.1 Introduction

1.1.1 On-chip Network Architectures

As the integration of digital electronic circuits continues to scale up, an increasing
number of transistors have been encapsulated on a single chip to build up larger and
more complex systems. This higher systematic complexity brings about new design
challenges that used to be ignored or given minor concern in the design process. For
example, the consideration of leakage power cost becomes more essential in designing
such highly complex on-chip systems. These new design challenges require researchers

and designers to investigate effective solutions.

Moreover, the growing integration of digital systems also enables fast development of
new patterns for data processing and mutual communication. Since the functionality and
amount of processing data in these highly integrated systems has increased dramatically,
the traditional bus-based architecture is hardly adaptable to tackle the enormous data
requests with sufficient utilisation of available resources. Consequently, new patterns
and architectures have been investigated to improve the efficiency and effectiveness
of data processing in such systems. Multi-core processing and intercommunication is
one promising pattern that processes data tasks in a parallel manner and implements
functional systems as an interconnection network. This distributed pattern can
better utilise available resources to process data more efficiently than traditional bus-
based architectures, which leads to revolutionary improvements in system performance.
It also prompts the advent of novel microprocessor structures that are applied in
many computer fields, including on-chip systems, which can be named as Distributed

Computing Systems (DCS) in general.

DCS architectures simultaneously distribute tasks onto many cores or functional

modules, and collaboratively process them with frequent mutual communications. In

1

2 Chapter 1 Introduction

particular, such characteristics enable DCS to fulfil the huge amounts of data requests
and high complexity of functional implementation in modern on-chip systems. However,
researchers and developers have faced many new problems to take full advantage of DCS
architectures and make full use of available resources for optimised system performance.
A major challenge is the implementation of intercommunications in DCS architectures.
Specifically, complex computations can be split and co-processed on many DCS sub-
system units in a distributed or parallel mode, which alleviates the processing workload
of each single unit. But the computational results at each unit have to be communicated
with others for further processing and task accomplishment, which raises the data
communication overheads in DCS. Compared to traditional bus-based architectures,
it suggests a shift of modern on-chip architectural designs from a computation-centric
to a communication-centric basis [6]. Hence, the intercommunications among DCS sub-
systems has become very influential on overall system performance, which requires huge

efforts to increase the efficiency.

Multi-Processor Systems on Chip (MPSoC) [17] and Networks on Chip (NoC) [18] are
typical on-chip DCS architectures that are widely accepted as the potential solution to
the problem of costly interconnection communications. In particular, NoC is considered
as a central platform to suitably accommodate the communication requirements of
future complex System-on-Chip (SoC) designs. This on-chip network paradigm employs
routers interconnected by communication channels between pre-designed building blocks
such as programmable RISC (Reduced Instruction Set Computing) cores, DSP (Digital
Signal Processor) and memory blocks. The network holds a large number of functional
components that tackle the high system complexity to perform versatile network
functions while consuming tolerable production cost and design time cycles. Typical NoC
architectures have received high research interest from researchers since the beginning of
the last decade, to explore their potential for implementing complex on-chip systems with
efficient network communications, high system performance and tolerable production

costs.

1.1.2 Design Methodology of NoC Architectures

With the proposal of novel NoC architectures for highly integrated on-chip systems,
their implementation methodology also needs to update for the fulfilment of efficient
design flow. Due to the increased circuit integration, the RTL (Register-Transistor-
Level) synthesis design flow no longer satisfied the demands of design productivity
growth for complex on-chip systems. It is also proving increasingly difficult to bridge
this productivity gap by simply increasing system abstractions for the design automation
community [19]. This is because of the integration of transistors as well as the number
of factors that must be considered are increased for NoC systems. Hence, researchers

started to subsume behavioural synthesis into existing RTL synthesis and to tightly

Chapter 1 Introduction 3

couple the fresh synthesis flow with physical design to improve the design productivity.

As per [20], such a classic design flow is as follows:

1. Investigate behavioural models for each link of the application design process.

2. Simulate applications on a test bench for testing the functional performance and

environmental impact on developed models.
3. Validate the model performance and functionality on prototypes.

4. Deploy the application in a realistic environment and examine its practical

performance.

This design method was believed to be a plausible solution for efficient development of
NoC architectures and applications at the beginning of the last decade. However, as com-
plex applications that required large-scale network resources with busy communications
were implemented on NoC systems, potential demerits of this design flow for testing
performance emerged. The tremendous costs of production overheads and overlong
design cycles of iterative refinement for optimised NoC applications seemed formidable
in this classic design flow, which led to low design productivity and tight time-to-market
budget. Specifically, the cost for prototyping certain networks with complex applications
by using the design flow was increasingly expensive but essentially needed by modern
on-chip products. Additionally, the difficulty in making full use of available network
resources for processing complex NoC applications is also growing and thus results in

unaffordable design time cycles.

To overcome such demerits and further promote the design efficiency, alternative design
methodologies started to investigate replacement of the classic design flow. New design
methods are in demand not only to refine the design flow but also to balance the design
cost and productivity for optimised system acquisitions. A new method that abstracts
high-level behavioural models and establishes network platforms to emulate system
performance at early design stages is a constructive attempt. This method introduced
a higher level of functional modelling into the classic RTL design flow, which decides
the suitable NoC components from a system perspective to avoid overmuch iterative
refinement in subsequent levels of design flow and thus save design cycles. Apparently,
the accuracy of captured high-level models will fundamentally determine the method’s
usefulness. As few existing Design Automation (DA) techniques were able to precisely
simulate the entire performance of practical circumstances at this level during the last
decade, the generated simulation results often showed large deviations to cause fatal
errors in realistic scenarios, which led to this high-level method not being applicable
enough for further implementation and manufacturing. But this system-level model
abstraction was such a promising idea that it was believed to be the alternative design

methodology for efficient NoC designs if more advanced DA techniques can be developed.

4 Chapter 1 Introduction

Researchers in [19] had detailed the major tasks and challenges of this new methodology

for NoC implementation:

e In the initial step, an executable functional system specification needs to be derived
to clarify what exactly the designed system needs to do. Simulation may be a

significant tool to specify the main system functions.

e In the next step, a task graph of concurrent tasks has to be developed. Decisions
on intercommunication requirements between those tasks are also necessary. This

step is important to determine the specific resources needed for implementation.

e Once the task graph is produced, mapping the tasks onto NoC platforms is a
must. In this step many boundary constraints, component resources and system

problems are required to be tackled for an optimised architecture.

e If each task has been bound to a specific component resource, the system-level
model abstraction is assembled and the model codes must be generated for

functional validation and performance simulation.

e For an optimised NoC design, all these steps have to be considered together
with functions and performance validated iteratively. The deployment of accurate
estimation techniques is essential to help make design decisions and simulate model

performance, which ensures an applicable design methodology.

As the technology of Computer-Aided Design (CAD) has advanced, it seems feasible to
move the design process to higher abstraction levels [14] and precisely optimise system
performance via software implementation. Accordingly, several research groups, such
as [21] and [1], have gradually developed the refined design flow of NoC interconnects
from system level to physical layout-level implementation in an automated way. Their
work suggested that suitable high-level design and synthesis tools for NoC designs is
a key element to benefit from NoC-based systems in nanometer-scale technologies [1].
Near the end of the last decade, such a design flow that applying advanced design
automation techniques for NoCs started from system-level modelling to accelerate the
design flow has been accepted by various researchers as a promising design methodology.
Exploring the implications of the NoC paradigm at different levels for efficient synthesis
designs of NoC interconnects are continually proposed [22], [23], [24]. In [1], a typical
state-of-the-art design methodology of NoC systems from system-level modelling to
physical-level implementation is given. The complete NoC design flow consists of three

main phases:

1. In the first phase or Front-End Phase, key architectural features of NoC systems
like network topology, traffic flow control and routing tables are determined.
Design automation techniques are required in this phase to improve design

efficiency.

Chapter 1 Introduction 5

2. In the second phase or Architectural Design Phase, the RTL codes of target NoC
architectures are instantiated based on determined models, design specifications

and parametric constraints.

3. In the third phase or Back-End Phase, the layout of generated NoC architectures
is synthesised, placed and routed, and implemented. A number of simulations and

emulations are given to validate system performance like clock, power and area.

1.1.3 Design Space Exploration of Current Methodology

The state-of-the-art design methodology of NoC systems introduced in [1] merely
proved that it is currently feasible to completely automate NoC systems from high-level
specification to physical-level implementation. The whole design methodology is far
from perfect to efficiently customise desirable NoC systems. A wide design space has

been left open at almost every step of the design flow for further exploration.

Specifically in the first phase of the given state-of-the-art design methodology, design
objectives and resource constraints to desired NoC systems are initially specified,
followed by the task allocation of NoC applications. The system-level modelling of
candidate NoC architectures in which key network characteristics and parameters satisfy
those conditions is then generated. In the topology generation, iterative analysis to all
candidate networks with concerned metrics are performed based on pre-defined settings.
Various traffic flows are routed on those network architectures for performance estimates
in order to choose one particular architecture that optimises design objectives while
satisfying all the constraints. The design steps of the front-end phase are given in

Figure 1.1.

Since the accuracy and efficiency of system-level model abstraction are the most funda-
mental cornerstones in producing efficient and reliable NoC designs for contemporary
complex applications, in this thesis we will explore potential design space at system
level to carefully balance the modelling for improving the productivity of design flow.
To be more specific, each step of Design Phase 1 in Figure 1.1 explores its design space,
investigating better design methods by utilising advanced modern design automation
techniques. If the efficiency of all steps in design phase 1 is increased, a fully optimised
system-level NoC model can be generated quickly with accurate performance and
characteristic estimates, which will accelerate subsequent design phases to improve
design cycles of the whole design flow. Moreover, as the design complexity of NoC
systems grows to tackle the increasing computation requirements of various applications,
finding optimised high-level models from a number of NoC candidates is more difficult
and time-consuming. Design improvement in Phase 1 steps also enables a much faster

searching process that saves more design cycles for the entire system implementation.

6 Chapter 1 Introduction

‘ Design Specification ‘ Constaints
(area, power...)

Design|Phase 1

_ 4 Task Allocation |
- [
- v
System-level Models of
Candidate NoC

Design Space S Architectures
Exploration (topology, frequency,

= bandwidth...)

~

\

T~
~

Improve——» ~. " l .
‘~._| Analysis and Estimates

i T of System Metrics

Optimised NoC
Model

Design Phase 2
‘ Code Generation ‘

[

(:Subsequent Design Phase)

Figure 1.1: Explore Design Space in Phase 1 of State-of-the-art Design Flow [1]

Design space exploration in high-level modelling steps of the state-of-the-art design
methodology raises several questions that further investigation will be conducted to

solve them in this thesis:

e In the analysis step, are the performance estimates of system-level NoC models
accurate enough to produce reliable optimised candidates for further design and

implementation?

e In the high-level modelling step, are the NoC architectural and parametric models

efficiently abstracted and flexible to represent desirable design specifications?

e In the task allocation step, can the current application tasks have better
mapping schemes to balance the utilisation of available resources and optimised

performance, such that both design efficiency and productivity are improved?

1.2 Research Objectives

Motivated by the fact that system level of the NoC design methodology has left wide

design space open, this doctoral project aims to investigate advanced Electronic Design

Chapter 1 Introduction 7

Automation (EDA) techniques for efficiently developing accurate system-level models
of NoC systems and optimised performance trade-offs in terms of energy and timing.
The design space of each step in the initial phase of the state-of-the-art NoC design
methodology is explored potential improvements to increase efficiency of the whole
design flow. A better balance between model accuracy and design productivity is also
considered. An extended simulator NIRGAM [25] is used in some design steps to help

generate optimised models of NoC systems.

The expected improvements to current design methodology include to provide feasible
task allocation schemes for versatile application requirements, accurate system-level
behavioural models for efficient NoC design flow and reliable performance estimates
in terms of energy and timing issues for optimised network candidates at early design
stages. The developed techniques and methods at different design steps should be jointly
applied to improve current design methodology for complex NoC applications. Figure 1.2

demonstrates the exact design space expected to explore at each step in the thesis.

‘ Design Specification ‘
Constaints

|
|
[A
|
i

i Intelllgent.Mappmg —»—Improve—b‘ Task Allocation ‘
————» Algorithm }
iChapterS i A
oo e ; v NIRGAM |
. 3 Efficient Topology i Improv System-level Modelling simulator i
Design | Modelling e of NoC Architectures !
Space ——» | l
Exploration 3 Functional Extension H !
i Chapter 4 } i
l Improve Model | Analysis and Estimates i
I r——Improv !
! Accuracy } of System Performance \
L 5 R I '
3 \ Functional Extension —
: Chapter 3 | ‘ Optimised NoC ‘

System

Figure 1.2: Research Objectives

As shown from the figure, the detailed research objectives of the research project are

categorised as follows:

1. Accurate Model Abstraction of System-Level NoC Architectures:
Before utilising EDA techniques for advanced NoC system designs and further
performance evaluation, the accuracy of high-level behavioural models needs to be
validated in Chapter 3 of the thesis. Functional and performance comparisons
between high-level modelling and RTL synthesised designs using a traditional
design method are helpful to improve the model accuracy. Since high-level models

are developed in the NIRGAM simulator for accurate performance estimates, its

8 Chapter 1 Introduction

performance models need to be carefully calibrated with RTL synthesis technology

library. Functional extension to the simulator is also expected if necessary.

2. Efficient Modelling of Various NoC Topologies:
After the accuracy of system-level models is improved, offering more candidate
NoC architectures with optimised performance while meeting design requirements
are considered to explore potential design space. Most existing NoC design
methodologies merely abstract basic NoC network architectures at the system
level owing to the easy implementation of modular structures in such topologies.
High-level abstractions of other NoC architectures used in specific applications
may be achievable in the current design methodology but lack efficient modelling
method due to the difficulty and expensive design cost of their architectural
implementation. Hence, in Chapter 4 we will explore an efficient method to
model non-rectangular and irregular NoC architectures at system level. Again,
the NIRGAM simulator will be used as a platform for such modelling, which may

require extra functionality.

3. Optimised Task Mapping and Performance Trade-offs:
If both model accuracy and availability of system-level NoC architectures are im-
proved, developing intelligent task mapping schemes for fast matching of optimised
NoC systems is another space for improving the whole design methodology. Proper
task mapping techniques with the optimisation of multiple design objectives are
feasible to offer optimal trade-off performance for specific NoC applications. Due
to the intrinsic nature of multi-objective problems, the optimisation techniques
in high-level NoC designs are supposed to be application-specific, which leaves
a large design space for performance improvement. Moreover, implementing
specific task mappings for available NoC architectures may maximise the system
performance, which offers optimal NoC matchings for various applications. Hence,
we will explore potential design space of more intelligent and generalised mapping

algorithms in Chapter 5.

1.3 Research Contributions

The contributions of this thesis are listed as follows:

e J. Qi, and M. Zwolinski, ”Efficient Simulation and Modelling of Non-rectangular

)

NoC Topologies,” Design, Automation and Test in Furope Conference and

Ezhibition (DATE), pp. 1-4, 2014.

e J. Qi, M. Zwolinskil, V. Laxmi, and M.S. Gaur, ” Area-efficient, Load-balancing,
Non-rectangular Architectures for Networks on Chip,” Frontiers of Information

Technology and Electronic Engineering, (Under review).

Chapter 1 Introduction 9

e J. Qi, and M. Zwolinski, "NLP-based Application Mapping and Performance
Prediction for Tile-based NoC Architectures,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, (Submitted).

1.4 Thesis Structure

Chapter 1 introduces background information for subsequent chapters. The concepts
of on-chip networks and the development of its design methodology are included in the

chapter. The motivation, research objectives and contributions of this project are given.

Chapter 2 discusses related research fields. Four areas of knowledge are mainly reviewed.
The network on chip basics are initially proposed, followed by the opinions and concerns
to current system-level designs of on-chip systems with advanced design automation
techniques. Next, a survey of existing task mapping techniques for NoC systems is

conducted. Finally a review of modern simulators for NoC designs is reported.

The next three chapters discuss the main contributions of this thesis. Chapter 3 presents
research on the first objective, exploring the design space of improving high-level model
accuracy for reliable system optimisation. A case study of developing asynchronous
FIFOs as NoC router port buffers is undertaken to compare the performance accuracy
of system-level abstract models with RTL synthesised designs. Models in the NIRGAM
simulator are calibrated to achieve reliable simulation results. Other extensions and

modifications to the simulator are also demonstrated.

Chapter 4 gives research towards the second objective, proposing an efficient method to
emulate non-rectangular and irregular topologies at system level. This method models
topological characteristics of different NoC architectures on a mesh network to accelerate
the efficiency at this design step. A number of network topologies are supported by
the proposed method, which enhances the functionality of the current NoC design

methodology.

Chapter 5 introduces investigation of the third objective, exploring the design techniques
for optimised task mapping allocation of specific applications to different networks
under certain performance trade-offs. The proposed mapping algorithm provides better
balance between the execution efficiency and mapping performance on various NoC
architectures, improving the task allocation step with a more generalised and intelligent
mapping algorithm that facilitates the yield of optimised NoC systems for further

implementation.

The final Chapter 6 concludes the report and outlines plans for future work.

Chapter 2

Literature Review

Interconnection networks, like Multi-Processor System-on-Chip (MPSoC) or Network-
on-Chip (NoC) systems, are increasingly popular in modern on-chip system designs for
highly distributed communication demands. The efficient parallel computing and shared
communication resources in such networks make them suitable to design complex on-
chip systems with desirable performance. While enjoying these advanced features, a set
of new problems such as data routing, flow control and topology [8] are also brought
in and need to be tackled. Moreover, efficient and proper designs of such complex
systems under tolerable time to market is harder to accomplish, which has also left large
space for further exploration. In this case, comprehensive understandings of the NoCs
and interconnection networks are an essential prerequisite for chip designers, which are
initially introduced in this chapter from basic concepts to crucial characteristics. Next,
investigation into existing opinions about system-level NoC modelling for performance
estimation and optimisation at early design stages is conducted. Then, popular task
mapping techniques for trade-off performance optimisation of NoC systems are surveyed
to manifest current research progress at the task-allocation stage. Finally, a brief survey
of modern network simulators for high-level modelling and performance estimation
is presented in terms of their characteristics and extensibility, such that a backbone

platform can be chosen for our further research.

2.1 Network on Chip Basics

2.1.1 Basic Concepts
As the chip feature size is continuously scaled down, more functional components are

integrated onto a single die. Traditional bus-based architectures with a single processing

unit are no longer scalable to task computing requirements since the bus structure

11

12 Chapter 2 Literature Review

becomes the performance bottleneck when more processors and functional units are inte-
grated. The concept of network architectures is thus introduced and extensively adopted
to loosen the bottleneck [2]. In modern chip design industries, multiprocessors dominate
the parallel computing market and their architectures implement the interconnection
networks with distributed control. According to [8] and [2], a network classification
scheme is offered to categorise currently known interconnection networks into 4 major
classes based mainly on the network topology, which are shared-medium networks, direct
networks, indirect networks and hybrid networks (Figure 2.1). It is noteworthy that
this classification focuses on existing networks and is not exhaustive. Other novel and
innovative interconnection networks may constantly emerge as the technology further

advances.

Interconnection
Networks

v

Shared-Medium
Networks

v

Direct Networks
(Router based)

v

v

Indirect Networks
(Switch based)

Hybrid Networks

Local Area Backplane Strictly Other Regular Irregular
Networks Bus Orthogonal Topologies Topologies Topologies
Topologies (Trees,Star,etc) (DEC autonet,
ServerNet,etc)
' lJ ! { l
Multistage
Mesh Torus Hypercube Crossbar T
Networks

Figure 2.1: Four Classifications of Interconnection Networks [2]

As shown in Figure 2.1, the transmission medium in shared-medium networks is shared
by all communicating components. An alternative to this approach, known as a direct
network, has point-to-point links directly connecting each communicating unit to a
subset of other communicating units in the network. In this case, any communication
between non-neighbouring devices transmits data through several intermediate units.
Instead, indirect networks connect those components by one or more switches that have
point-to-point links to connect with each other. In this case, any communication between
communicating units transmit data through switches. Finally, hybrid approaches are

possible.

Since the primary investigation in this thesis focuses on improving NoC designs where
low-power and efficient communications between wired-connection multiprocessors are
mainly considered, concepts of direct, indirect and hybrid networks are reviewed later.
The shared-medium network has a structural resemblance to a traditional bus structure

and cannot mitigate the performance bottleneck of complex systems [8]. Most popular

Chapter 2 Literature Review 13

existing network topologies for MPSoC and NoC systems stem from direct and indirect
network classes. Network topologies and their characteristics currently evaluated in this

thesis are introduced subsequently.

2.1.1.1 Direct and Indirect Networks

In the beginning, several network concepts are introduced based on the graph presenta-

tion used in [8].

e Node Degree is the number of connecting channels from one node to its

neighbours.

e Network Diameter is the maximum distance between any two nodes in the

network.
e Regularity: means all the nodes in a regular network have the same degree.

e Network Symmetry: means a network is symmetric if it looks the same from

each node.

As per the classification in [8], a direct network is a kind of networks that each network
node directly connects to other nodes. A node in a direct network normally contain
independent processors, memories/buffers and other functional components. These
components can be designed programmable and reusable, making the direct network
scales well when the network size increases [8]. A router is a common component in
each node of direct networks. It is used to handle data communication among nodes
[8]. For this reason, a direct network is also called a router-based network. Each router
has a number of port channels to directly connect to neighbouring node routers. In an
indirect network, data communication between each node pair is via switches. Thus,
an indirect networks is also called a switch-based network [2]. Each switch also has a
number of port channels that either remain open or connected for data transmission.
These ports of different switches are interconnected with each other to communicate

different processors [8].

A direct networks can be characterised by its topology, routing, and switching mechanism
[11]. The network topology indicates how nodes are interconnected by router channels
and are modelled by a graph [10]. An ideal direct network topology connects every
node directly to each other. But the cost of such a topology will be too high if the
network size gets large. Hardware limitations also lead to a constrained number of
physical connections that a direct network node may have [8]. Hence, most of existing
direct networks connect each of their nodes via hopping among intermediate nodes. A
network Routing algorithm determines the network path by which a data packet reaches

its destination from its source on a network topology [10]. A data packet is a data

14 Chapter 2 Literature Review

exchange unit for data transmission [8]. When a packet header reaches a node channel
port, a switching mechanism is used to decide how and when the router should be set
to forward the incoming data to its destination [8]. Buffer allocation and flow control
techniques are important for an efficient switching mechanism. Enough available buffer
space is needed to prevent drops of transmited data. A flow control technique establishes
a conversation between the source and destination nodes to arrange a data flow [10].

Both techniques are significant to the network performance.

Indirect networks can be modelled by a graph G(S, L), where S is the set of switches
and L is the set of unidirectional or bi-directional links between the switches [3]. The
switches that connect to processors can be the source or destination for data routings
[26]. Data transmission between a node pair in an indirect network needs to cross the
link between the source and its connected switch, and the link between the last switch on
the routing path and the destination [8]. An indirect networks can also be characterised
by its topology, routing, and switching mechanisms [11]. The topology determines how
the node switches are interconnected by link channels and are modelled by a graph.
Hardware limitations like the number of available pins and the available wiring area also
constrain the number of physical connections an indirect network switch may have [10].
A suitable indirect network topology, routing or switching mechanism usually depends

on specific hardware wiring and packaging constraints.

In modern chip design, researchers and developers usually consider direct and indirect
networks as two different classes. However, recent developments in router architectures,
algorithms, and switch designs have suggested a unified view of direct and indirect
networks [8] [10]. In this view, direct networks can be considered as each switch in the
network connecting to a node, while the switches of indirect networks can be considered
as point-to-point links interconnected with one or more nodes. Hence, this unified view
allows network design techniques, such as deadlock-free techniques, for one network class
to be applicable to the other class. It is manifest that not all techniques can be directly
used for both network classes. But such a unified view is a good attempt to properly
describe some currently existing network topologies which have the characteristics of

both network classes.

2.1.1.2 Development of Network on Chip

Before the emergence of Network on Chip concepts, Systems on Chip (SoC) are proposed
as a typical kind of complex Integrated Circuit (ICs) which integrate major functional
blocks of a digital electronic system onto a chip. Compared to traditional circuits, SoC
implements a whole system on a chip to substantially improve the system performance
and communication efficiency. However, its limitations are found as the IC technology
continues to develop. One typical problem is the non-scalable global wire delay [6]. In

former electronic circuits that the circuit scale is relatively small and the clock frequency

Chapter 2 Literature Review 15

is not as high as in modern SoC integrated circuits, wires carry signals through the
whole chip and all timing restraints are met. But in modern complex SoC systems, the
wire delay increases linearly or even exponentially with the scaling of transistor size,
which may cause the wire delays to exceed an entire clock cycle. Although First-In
First-Out (FIFO) structures like Bi-FIFO, Global bus 1 and 2 and Crossbar Switch bus
architectures have been developed to solve this wire delay problem [27], other problems
such as ad-hoc hardware/software co-designs, functional validation of complex systems
and the inconsistency between digital and analogue circuits still remain in SoC systems

and are left for researchers and product developers to investigate their solutions.

Several SoC systems, integrated with separated processing cores to co-operate in
increasingly complex and diverse tasks, promote the advent of new architectures. One
popular new architecture is called Multi-Processor System on Chip (MP-SoC) [28]
[29]. Tt greatly improves the system performance compared to a SoC system with
a single processing core. Moreover, new communication architectures for efficient
mutual interconnection of SoCs are investigated with increasingly massive SoC cores.
Among all the potential solutions, Network-on-chip (NoC) [18], in which the chip-level
communication interconnects tens to hundreds of sub-systems, is a very promising
and effective architecture based on MP-SoC. It forms a subclass of distributed
interconnection systems and a special type of MP-SoC, wherein each processor has
independent functions and mutually interconnects a network instead of top-level wiring
to improve the architecture, performance and modularity. It can process specific
application tasks with heavy workloads or tight time budgets that a single processor
may not be able to afford. It is a promising architecture for fulfilling demands on large
data and mutually independent operations like audio/video processing and network
protocol processing [27]. Many proposals and discussions of Network-on-Chip (NoC)
have been made since the beginning of the 21st century [18] [19] [30] [31] [32]. As shown
in Figure 2.2, a typical NoC involves SoC sub-systems that have their independent
microprocessors, buffers/caches, buses and other function units. One such sub-system
in NoCs, usually denoted as a Processing Element (PE), communicates with other PEs
via routers through the whole on-chip network. The Network Interface (NI) in each PE,
acts on as a bridge, conveys data between the local sub-system and the interconnection

network.

NoC has regular and well-controlled topologies constructed from multiple point-to-
point links by switches or routers that can reduce the design complexity [3]. A high-
level parallelism of data processing has been developed in NoC systems such that one
complicated big task is disassembled into several less-complex sub-tasks and deployed
to different node PEs to be simultaneously processed, which considerably increases
processing efficiency. Moreover, designers may also design the parallelism of data
processing at other levels to improve system performance. Three levels of design

parallelism are usually categorised: the bit-level parallelism, operation-level parallelism

16 Chapter 2 Literature Review

r - PE PE

| | Processor | | Buffer | | \.-— \/—_,

| | u@i;\ R3
| | PE PE

| IPs/ | Y xf"“

| Network | R R4 \
| |

Functional Interface
PE N FE N

Blocks

Figure 2.2: A Typical Architecture of NoC [3]

and task-level parallelism [27]. Among them, the task-level parallelism is most important
to NoC architectures since it can be abstracted from a serial task and directly contributes
to the performance improvement. Specifically, full usage of available network resources
to implement proper task-level parallelism for complex and enormous data tasks can
reduce design time cost. Besides, to the best of our knowledge, there is no a general
tool that can properly abstract different levels of data-processing parallelism in NoC

systems, leaving an open issue for further development of NoC modelling tools.

2.1.1.3 NoC Architectures

Modern NoC architectures basically consist of IP cores like microprocessors or Digital
Signal Processors (DSP), on-chip memory and other functional blocks. Such PEs
connected with routers, link the IP cores to neighbouring nodes to construct an NoC
system [33]. Depending on different PE architectures, an NoC can be categorised
into two classifications: homogeneous NoCs and heterogeneous NoCs. All the PEs
in homogeneous NoCs have an identical internal structure, giving the same size of
PE units and a symmetric chip, whereas the PEs in heterogeneous NoCs may have
different unit structures. The size of its PE units is therefore diverse and the chip
is asymmetric. Chip multi-processors may be homogeneous NoCs, as every PE is a
processor [34]. Oppositely, MPSoCs may be designed to be heterogeneous because PEs
may need different functions [35]. Each of these two kinds of NoC architecture has
its merits and demerits [10]. A homogeneous NoC network has higher applicability and
scalability for generic applications but less optimal performance for specific applications,
while a heterogeneous NoC network performs optimal functions at the cost of prolonged

design cycles for ad-hoc module designs.

According to a layer division proposed in [8], a network architecture can be divided into
a physical layer, a switching layer and a routing layer from bottom to top. The physical

layer describes how PEs are interconnected to each other. The switching layer decides

Chapter 2 Literature Review 17

how data messages are packaged and delivered, as well as how functional resources
such as buffers, interfaces and links are allocated. The routing layer determines
routing paths for data messages to traverse. In subsequent sections, major NoC design
considerations and characteristics are stressed based on this layer division. In the
physical layer, network topological structures are introduced. In the switching layer,
flow control mechanisms will be mentioned. Different popular routing algorithms are

finally elaborated in the routing layer.

2.1.2 NoC Topology

Network topology refers to the static allocation of channels and nodes in an interconnec-
tion network as the roads for packet transmission [3]. The NoC topology is one significant
issue that substantially affects the layout strategies of the physical layer and performance
of other layers. It is the fundamental step, also an essential step, of designing an NoC

system.

If a node router connects to one or more PEs, such an NoC is a direct network like Mesh,
Torus [36] and Tree [37] networks. Otherwise, it will be an indirect network if some node
routers in the network are solely connected with other routers. Crossbar [7], Fat tree
[9], Butterfly [38] and Butterfly Fat Tree (BFT) [5] network topologies are examples.
There are also other special-use topological architectures like Nostrum, SPIN, CLICHE
and Octagon, introduced in [39] and [6], that are application-specific NoC architectures.

2.1.2.1 Popular Direct Network Topologies

Mesh and Torus are the most popular topologies in direct on-chip networks [40]. The
mesh topology is extensively used in recent research of NoC topologies. It is a two-
dimensional orthogonal topology in which every node in the centre of a network has 4
neighbouring links, with 3 neighbouring links at border nodes and 2 neighbouring links
at corner nodes. Torus is another commonly-used orthogonal topology and its structure
is derived from the mesh topology. Its centre nodes have the same characteristics as
in the mesh. The border and corner nodes have additional links to their opposite side
nodes via wrap-around channels. This feature results in the increased interconnecting
complexity and decreased power dissipation since the average side-to-side traversing
distance of data packets is shortened. Classic topological structures of the Mesh and

Torus are shown in Figure 2.3 [4].

The tree topology [37] [9] is another popular direct network topology that has also been
proposed in the last decade for minimising the network diameter with a given number of
nodes and node degree. This network has a root node at the top (the parent node)

that connects to a group of nodes (the descendant nodes). Each descendant node is

18 Chapter 2 Literature Review

:’/?H—.ﬁ f.: \I I M\\
—H RO —H R3 {R6
-/ [\

e

B

d

B
) 3
l

N |

&

o\ | ()

i/ <

X

G
3

(a) Mesh Topology (b) Torus Topology

Figure 2.3: Mesh and Torus Topologies [4]

also connecting to a disjoint group (maybe empty) of descendant nodes. A node without
descendant nodes is a leaf node. Hence in tree networks, one characteristic property is
that every node has a single parent node except the root node, which means no cycles
in trees. One network node can only reach another node at the same level as itself via
their parent nodes (higher level nodes) instead of via their descendant nodes (lower level
nodes). Additionally, if the distance from any leaf node to the root node is the same,
that is, all the branches in the tree network have the same length, it is deemed a balanced
tree topology. If the distances between leaf nodes and the root node are different, it is an
unbalanced tree. There is also an indirect tree topology, fat tree, which will be introduced

later. Figure 2.4 shows the balanced and unbalanced binary tree networks.

(a) Unbalanced (b) Balanced Tree Topology
Tree Topology

Figure 2.4: Unbalanced and Balanced Binary Trees [5] [6]

For the NoC design, one major critical drawback for tree networks as general-purpose
network platforms is that the root node and the nodes close to it may participate in most
of the data transmission paths, which makes it become a severe transmission bottleneck
especially when a lot of data is transmitted [5]. Once the paths near the root node are
blocked or congested due to a large amount of data transmission, the overall network

throughput will experience a dramatic drop and the traversing delays may become

Chapter 2 Literature Review 19

intolerably long. Besides, there are no alternative paths between any node pairs [6]. For
a specific source-destination node pair, the link or connection of the node pair is fixed and
unique. Therefore, if any segment of the traversal path is disconnected, a tree network
will fail to transmit any data between the source and destination nodes. Such properties
of unstable performance and low tolerance to disconnections make tree topologies not
sufficiently adaptable to the constantly increasing data transmission requirements in

modern chip designs.

2.1.2.2 Popular Indirect Network Topologies

Indirect network topologies have distinctive network architectures. Switches are designed
to carry data communications between nodes, instead of the direct connections of nodes
in direct network topologies. Such switch-based networks have evolved substantially
over time so that a great number of topologies has been proposed, ranging from regular
topologies for array processors and shared-memory UMA (Uniform Memory Access)
multiprocessors to irregular topologies for Networks of Workstations (NoWs) [8]. In
regular topologies, regular connection patterns are designed between network switches.
While in irregular topologies, non-predefined patterns are built inside. According to
the number of switches that data needs to traverse, both regular and irregular indirect

networks can be further classified.

A crossbar network is one of the simplest indirect networks [7]. It enables a
microprocessor in the network to connect to any other processor or memory unit
so that multiple processors can be interconnected and communicate simultaneously
with contention avoidance. Any new connection can be built up at any time if the
requested ports/channels are available. It can be used for high-performance, small-scale,
shared-memory multiprocessor designs; router designs of direct networks; and as basic
components for large-scale indirect network designs. Figure 2.5 shows the architecture
of an N by M crossbar network. The cost of a typical crossbar network is O(NM) [7],
which will be prohibitively high if the numbers of N and M get large. Modern VLSI
techniques only support definite numbers of pins on a single chip, which limits the size of
large-scale crossbar networks integrated in a chip. For large-scale designs, partitioning
one large crossbar network into smaller ones and implementing each smaller part on one
chip is a feasible solution. Moreover, once two or more processors contend for the same
memory access, an arbitration scheme will take effect to determine the proceeding order
for each processor. The arbitration scheme can be less complex in this architecture than
the one for a bus since conflicts in a crossbar are exceptional so that they are easier to

resolve [8].

The Fat Tree [9] network is another indirect network. It is a multi-stage indirect network.
Nodes in this network topology are only connected to the leaf nodes of the tree. As

discussed, the root node in a tree topology and its close neighbouring nodes may easily

20 Chapter 2 Literature Review

Switch
N Point

Inputs

M Outputs

Figure 2.5: An N by M Crossbar Topology [7] [8]

experience high traffic load, which lowers the overall system throughput and causes
traffic congestion. However, in the fat tree topology such a problem can be essentially
alleviated by increasing the number of links at adjacent node switches near the root
node. The closer those neighbouring nodes get to the root node, the more links are
assigned to those nodes. This results in more channel bandwidth on those nodes that

can tolerate higher traffic load. A simple fat tree topology is depicted in Figure 2.6.

Figure 2.6: A Simple Fat Tree Architecture [9]

The Butterfly topology [38] is one popular multi-stage indirect network. As an example,
Figure 2.7 shows a 2 — ary, 3 — fly butterfly network in which the PE blocks of the left
column have the same structures as the PE blocks of the right column. All the PE blocks
in butterfly networks are connected via deterministic paths with equal transmission
delays. The network between PEs in a butterfly topology can be replaced with other
switching networks like crossbars. Thus, a k —ary, n — fly butterfly network will consist
of k™ nodes and n stages of k"' k by k crossbar switching networks. All of these
switching networks offer fixed communication delays among all pairs of PE blocks. For
such a network structure, one should also be aware that once contention occurs during

data transmission, data may be blocked or even dropped.

The Butterfly Fat Tree (BFT) [5] network also belongs to indirect networks. It is a
popular topology specifically designed for NoC applications. A typical BFT architecture

is shown in Figure 2.8. In general, a pair of coordinates (I, p) is used to label every node

Chapter 2 Literature Review 21

Figure 2.7: A 2 — ary, 3 — fly Butterfly Architecture [10]

in BFT networks, where [denotes the level of a node and p denotes its position at
the level. At the lowest level (N = 0 in the figure), N PE blocks are allocated, their
addresses ranging from 0 to N — 1 (N = 64 in the figure). The pair of coordinates
(0, N) denotes the locations of PE blocks at level 0. Each switch in BFT networks has
four child ports and two parent ports, denoted as S(I,p). The PE blocks will connect
to N/4 switches at level N = 1. For N PE blocks, the number of levels will be logsN.
Hence, there will be N/2/ switches at the jth level. The number of switches in the
BFT architecture converges to a constant, independent number of levels [5]. Consider
the 4 — ary tree as shown in Figure 2.8. The total number of switches at level 1 is 16
(N/4). At next levels, the numbers of required switches are reduced by a factor of 2

consecutively. The total number of required switches, S in the limit, will go to N/2.

Level

A LA B
PRI RN P RN

Figure 2.8: Butterfly Fat Tree Architecture with N=6/ PE Blocks [5]

Compared with direct networks, all the indirect networks can have equal minimal
communication delays between all PE blocks. Yet the routers and channels of indirect
networks need to be carefully calibrated to ensure equal delays and reasonable resource
allocation [10]. Moreover, their network implementation is not as modularised as direct
networks, which reveals high difficulties and complexity in designing properly applicable

networks. In other words, the hardware implementation cost of indirect networks is

22 Chapter 2 Literature Review

normally higher than direct networks due to the more complicated network structures. In
return, the performance of indirect networks may be more desirable for specific designs.
Some particular irregular networks may offer perfectly matching features and ad-hoc

performance for certain applications.

2.1.3 Flow Control
2.1.3.1 Basic Concepts

As per the theory in [8], the network communication could be deemed a service hierarchy
starting from the physical layer that synchronises data transfers to higher level layers
that perform diverse functions. It is helpful to distinguish operations of the NoC
communication among three major layers: the physical layer, the switching layer,
and the routing layer. Routing protocols that provide feasible routing properties are
mostly implemented in the switching layer [11]. The switching techniques determine
the ways internal switches are set to connect router port channels and the time when
the data should be sent along the routing paths. Such switching techniques are tightly
coupled with flow control mechanisms for synchronous inter-router data transmission

and effective overall data forwarding, which is mainly introduced in this section.

Flow control is a synchronisation protocol for transceiving data [10]. It is closely
coupled with buffer management techniques to decide how the router buffers work to
respond to data requests, release their space, and decide how the blocked or waiting
data is tackled in a network. In NoC designs, multiple communications are usually
established concurrently and their routing paths are individually provided by the
network. Contention will often occur as a result when more than one communication
needs a single router or other network resource on their routing paths simultaneously.
In this case, specific algorithms will be used to allocate available network resources for
one specific communication, while others are forced to wait for further serving. The
algorithms can allocate resources dynamically and considerably influence the router
structure. Therefore, flow control methods are such algorithms to resolve resource

allocation for contention.

A request/acknowledgment communicating mechanism is often used in flow control to
ensure successful transfer and buffer space availability at the receiver. Commonly,
the smallest data unit is divided to enable itself to be requested by the sender and
acknowledged by the receiver. It is also worth clarifying the data levels delivered in
on-chip networks, as used in this thesis. Flow control methods are normally needed at
two levels. One is message flow control that occurs in packet-level data transfer. The
other is physical channel flow control to forward a data unit through the physical link
routers [8]. Switching techniques for the two levels of flow control differ due to the sizes

of the physical and message flow control units. A complete data message need to be

Chapter 2 Literature Review 23

partitioned into several data packets for PE blocks of the network nodes to generate.
Each data packet has a header containing destination node information and a payload
that has the contents to be transferred. Yet a packet is still too large for physically
routing in the network. So it can further be divided into flits (flow control digits [10],
especially used in wormhole packet switching networks that mostly apply in this thesis),

which can be transferred via physical link channels or switches at one time.

2.1.3.2 Switching Techniques

Flow control methods include two main categories: circuit switching and packet switching
[10]. In circuit switching [41], a physical path from the source to destination nodes is
allocated before data transmission. The initialisation of a routing path is implemented
by injecting the header flit into the network which contains the destination address and
some additional control information. When the header flit reaches the destination, a
complete path is set up and an acknowledgment is sent back to the source. The message
contents may now be transmitted under the full bandwidth constraint. The circuit of
the routing path is released by the acknowledgement of the tail flit or the last few bits

of the message reaching the destination.

As the routing path is set up in circuit switching networks, path service is guaranteed
for the complete message transfer, which enables circuit switching techniques to be
generally advantageous when data messages are infrequently transferred and request
long transmission times compared to the path setup time. Yet the disadvantage is that
once the path is set up, it will be reserved for the whole time duration of the message
transfer and may block other messages that also request service. This substantially
reduces the available data throughput of the network and the efficiency of the physical
link usage. It may also cause circuit switching networks to suffer from intolerably long
waiting times and significant power overheads for the path reservation especially when
the network is experiencing heavy workloads [41]. Moreover, the base latency in circuit-
switched message transfers is between the setup time of a routing path and the processing
time the path needs for transmitting data. The transfer time of each flit from the source
to destination nodes is based on the clock speed of the synchronous circuit or signalling
speed of the asynchronous handshake lines [8]. The signalling or clock period need to
be greater than the propagation delay of the routing path circuit. This implies that the

speed limit of circuit switching networks may not function well as the system scales.

Apart from circuit switching, packet switching [42] transfers data immediately once
generated by the PE blocks of network nodes. Omne message is partitioned and
transmitted via several packets and routing paths for each packet are individually
configured from the source to destination nodes. This dynamic routing configuration
stores the data packets at each intermediate node before forwarding to the next node.

Hence, it is also called store-and-forward (SAF) switching [43]. The header information

24 Chapter 2 Literature Review

of data packets is extracted by the intermediate node routers and used to arbitrate

output directions for further forwarding.

Packet switching is advantageous if data messages are short and frequently transferred.
Unlike circuit switching, where a partially reserved routing path may be idle for a
significantly long time period, the physical links for communication between the source
and destination nodes are fully utilised for data transmission in packet switching [8].
Several data packets for elaborating the same message may be transferred through the
network concurrently even if the header packet has not yet reached the destination.
Negatively, splitting one message into several packets for parallel transmission produces
a data overhead for re-ordering at the destination node [11]. In addition, each packet
must be routed at each intermediate node. If packets are routed adaptively through the
network, packets from the same message may arrive at the destination out of order. In
this case, the information sequence should also be contained in each packet header to

correctly re-order the complete message at the destination.

Packet switching requires higher energy and more area than circuit switching since its
data routing needs to be analysed dynamically and its switching configuration is more
complicated [10]. Moreover, packet switching is more expensive because more buffer
and storage area are used due to the extra information sequence contained in packet
headers and the resource allocation contention of concurrently transmitted packets for
one message at the intermediate nodes of a routing path. To solve the allocation
contention, packet switching temporarily allocates network resources to one flit and
reserves some buffer area for the blocked data. Depending on the buffer and storage
reserved in each allocating process, packet switching networks can be divided into three
types: a store-and-forward network [43] whose buffers are reserved in packet units, a
wormhole network [44] whose buffers are reserved in flit units, and a virtual cut-through
network [45] whose buffers are reserved in flit units but with sufficient buffer space

ensured to store one whole packet.

Assume two packets arrive at two separate input ports and both request the same output
port in each of these three types of packet switching networks. Contention in allocating
the same resource (output port) to multiple data packets will occur. In the store-
and-forward network [43], a packet is transmitted only if all flits have been received.
Hence, the output port will be reserved for the earlier packet to send all its flits. The
other packet has to be stored in buffers while waiting this reservation even if the output

port is allocated but idle. This causes a long transmission delay and idleness of resources.

A virtual cut-through network [45] allows packets to be cut through to the input
port of the next node router before the complete packet has been buffered at the current
output port. So the output port of this type network starts transmission immediately
once the header flit of the earlier packet is buffered. Due to the absence of blocking, the

latency of header flits at each node consists of the routing latency and the propagation

Chapter 2 Literature Review 25

delay. The packet can be effectively pipelined through successive switches to reduce
transmission delay. However, the buffer space cannot be reduced. Sufficient buffer space
is required to allocate the complete packet in order to ensure the packet is stored in
only one router instead of several if its header flit is blocked. In some cases, a flit can
be exceedingly long and the area overhead used for storage will be intolerable if it is
blocked.

In a wormbhole network [44], packets are pipelined through the network and the buffer
requirements within the routers can be substantially reduced compared with the virtual
cut-through network, which keeps the required buffer space for one flit to the minimum.
Buffers at a router are typically large enough to store a few flits of a partial packet.
The complete packet is too large to be completely buffered within one router. Thus, at
any instant time a blocked message occupies buffers in several routers. For two arriving
packets requesting the same output, the output port in such networks is served for the
earlier packet and only the head flit of the later packet is stored in the current router.
Other flits of the later packet will be blocked in previous routers until the resources are
allocated to serve them. This is the primary difference between wormhole and virtual
cut-through networks. This reduced buffer space requirement for wormhole networks
significantly reduces the average data transmission delay and enables the use of smaller

and faster router structures.

2.1.3.3 Virtual Channels

Packet switching techniques assumed that (partial) data packets were buffered at port
channels of network nodes. Buffers used in these cases are generally operated as FIFO
queues. Thus, if one packet takes up a buffer for a port channel, no other packets can
access it concurrently since the packet is blocked. Take the wormhole flow control method
for example. Although it significantly reduces the required buffer space, however, the
head-of-line (HOL) issue [46] may still introduce a long data transmission delay if the
network experiences heavy workloads. A basic head-of-line issue is: When a data packet
is blocked at an NoC node router, the router does not have enough buffer space to store
the complete packet. As a result, parts of the blocked packet are stored in other routers
that occupy their corresponding switches and port channels. These occupied resources
then block other packets who request the same resources concurrently. In other words,
the HOL issue is a deadlock issue in that a network state emerges where no packets can

further advance because of the channel occupation contention of different packets.

To alleviate such an issue in wormhole networks, virtual channels (VCs) are introduced
[47]. The basic idea is to share physical channels among multiple packets. When one
packet is blocked, it will not occupy all the channels reserved for itself. Therefore,
other packets can utilise the channels in the meantime. However, the unsent flits of

the blocked packet cannot be dropped while other packets are using the same channel.

26 Chapter 2 Literature Review

Extra buffers are needed and divided into several groups that connect to every port
channel. Each such division is called a virtual channel (VCs) and is used to stores flits
of one individual packet. One physical port channel can be partitioned into several VCs
multiplexed across the physical channel. Each unidirectional VC is implemented by an
independently managed pair of buffers as shown in Figure 2.9: Two unidirectional VCs
in each direction cross the whole physical channel so that packets can share the physical
channel at flit level concurrently, which can be considered as each VC uses a distinct

physical channel operating at half the speed of the original channel.

Virtual Channel

<
Virtual Channel Buffer Physical Channel

Figure 2.9: Virtual Channels [8]

Virtual channels can improve data packet latency and network throughput [4]. If packets
are able to share a physical channel, they can be still in progress even when they are
retained as blocked. The use of VCs decouples the physical channels, allowing multiple
packets to share one physical channel concurrently in the same manner as multiple
instructions shared one CPU (Central Processing Unit). The overall waiting time for a
blocked packet to spend at a router for an allocated channel can be manifestly reduced,

rendering an overall reduction in packet transmission latency.

Although each virtual channel can improve systematic performance by a small amount,
the increased channel multiplexing will reduce the packet rate, which increases the
latency. This increase may overwhelm the latency reduction due to blocking, resulting in
an overall increase of average packet latency [8]. The increased number of VCs directly
impacts on router and network performance. Besides, the VC arbitrator and allocator
are also desirable to be integrated for better use of VCs, which complicates the router
structure. Such structural complexity may cause further net increases in flow control
latency of data transmission. Hence, the trade-off between efficient usage of virtual

channels and packet transmission delay should be carefully balanced.

Chapter 2 Literature Review 27

2.1.3.4 Quality of Service

A widely accepted concept of Quality of service (QoS) is the overall performance of
a network, particularly the performance experienced by the users, namely the service
the network provides to the users [10]. It is critically significant for data transmission
under specific requirements. In the fields of distributed interconnection networks, QoS
refers to the ability to offer different priorities for specific applications and data flows,
or refers to the guarantee of certain performance to the data flows. It is crucially
important especially when the network capacity is insufficient. To quantitatively assess
the QoS, several related aspects of the network services are commonly considered, such
as communication error rates, channel bandwidth, network throughput, transmission

delay, resource availability and clock jitter.

Specifically in NoC systems, QoS is also an important factor. The network traffic
communications usually have diverse requirements such as delay or throughput to
fulfil, which is requested certain guaranteed services (GS) to manage the fulfilment for
ensuring the network properly worked or functioned [25]. For instance, certain traffic
communications may need operation targets to be attained before some deadlines such as
the interrupt signals used in some real-time systems. The group of networks that support
this type of service are generally deemed delay-guaranteed networks [8]. Circuit switching
techniques can be used to implement hard delay-guaranteed networks in which various
network traffic can always achieve the goals before deadlines. Other flow control methods
such as Virtual Channels, are able to provide soft delay-guaranteed services in which
the certain probability of traffic communications achieving the targets before deadlines
can be guaranteed. Besides, many NoC traffic communications like multimedia can
tolerate particular delay variance but are sensitive to overall throughput. The networks
that satisfy this requirement are called throughput-guaranteed networks [25]. Nearly all
modern popular flow control methods are able to provide such services by assigning high

priorities to the throughput impact factor over others to the data transmission.

Most network traffic communications do not have extra specific performance require-
ments when a network is fast enough. It is always beneficial to transmit data as soon as
possible but the failure of data transmission should not break the whole network. These
traffic communications are called best-effort (BE) traffic [25]. Both wormhole and virtual
channel flow control techniques can provide this service. However, an alterative concept
to the service is also adopted, which regards it not as a type of QoS but as an alternative
to complex QoS control mechanisms. By offering the BE service, a network can provide
high-quality traffic communications by over-provisioning the capacity. Hence, it has
sufficient resource allocation for the expected peak traffic workload, which should result

in the absence of network congestion and finally eliminate this need for QoS control.

28 Chapter 2 Literature Review

2.1.4 Routing Algorithms
2.1.4.1 Basic Concepts

In the routing layer of NoC architectures, routing algorithms essentially impact on the
system performance by determining the routing path through which a data packet
traverses a network of a certain topology [10]. There are many routing algorithms
designed for fulfilling various specific and distinctive requirements. However, if a routing
algorithm is not adaptive, either overloaded resource use or idle resource waste or even
both may cause network congestion. This adaptivity problem is complex and difficult
so that no general routing algorithm can perfectly fit any type of traffic communication.
Customising specific routing algorithms to meet various design specifications is necessary

to obtain desirable performance.

Moreover, it is noteworthy that although distinctive routing algorithms that fulfil certain
requirements may not be adaptive, they can be used in some other traffic communications
with totally different specifications [3]. In other words, one specific routing algorithm
may be suitable for many communication cases. But only in a few of these cases it
could provide optimal or desirable performance. For this reason, comprehending a
representative set of routing algorithms proposed for typical modern NoCs is helpful
to categorise the spectrum of existing algorithms, and facilitating designs of suitable
algorithms to various network topologies. Many properties of NoC networks are a direct
consequence of their adopted routing algorithms, the parts of which that are of particular

concern in contemporary industrial chip designs are listed below [48] [4]:

e Connectivity. This property is the ability of the algorithm to route data packets

from the source node to the destination node in a network.

e Adaptivity. This property is the ability of the algorithm to route data packets
via alternative traversal paths if contentions or malfunctioning components occur

in a network, that results in a block or disconnection at specific traversal paths.

e Deadlock and livelock freedom. This property is the ability of the algorithm to
guarantee that data packets will not block or wander through the network traversal

path ceaselessly in a network. These issues are explained in next section.

e Fault tolerance. This property is the ability of the algorithm to route data
packets when faulty, malfunctioning components or unexpected disconnections
occur in a network. The fault tolerance of an algorithm seems like to imply its
adaptivity. Yet it can also be achieved without adaptivity by routing a packet in
multiple phases and storing in some intermediate nodes. Extra hardware may be

needed in the network for implementing this property.

Chapter 2 Literature Review 29

A routing algorithm that is adaptive to one special traffic communication over a network
may not fit the same network with alternative traffic patterns [25]. More specific, the
traffic communication in real-world networks may not always be predictable or foreseen
at the early design stages. It could vary dynamically during run-time operations so
that a currently adaptive routing algorithm may no longer be adaptive at another time.
Furthermore, if a fault or malfunctioning components occur in a network, the network
topology would be changed temporarily or permanently [8]. This unintended topological
change may make the adopted routing algorithm no longer adaptive, deadlock-free or
feasible. Consequently, both the adaptivity to design requirements and the effectiveness
during the whole operation process should be considered to design a proper routing

algorithm for a specific application.

2.1.4.2 Deadlock, Livelock and Starvation

Intermediate nodes may be unavoidable for data routing across the whole network before
arriving at the destination. Specifically in switch-based networks, the data will also reach
the destination node by routing through intermediate nodes. In practice, failure of
arrivals in data packet routings may occur even if the network supplies fault-free routing
paths. Given a routing algorithm that is capable of utilising the supplied routing paths

in networks, there still exist certain reasons that may prevent successful data traversal.

Deadlock is one typical reason. It may occur in a network when packets are no longer
able to make further progress because they are waiting for one another to release the
resources held or blocked by themselves, which are usually buffers or channels [3]. If a
sequence of such waiting packets forms a closed cycle, the network will be deadlocked.
Since buffer capacity is finite in networks, a deadlocked situation has a chance to happen
when each packet whose header is on its way to the destination requests buffers of
intermediate nodes who are keeping themselves fully storing packets so that not a single
packet can advance toward its destination. All the packets involved in the ceaselessly
waiting cycle are blocked forever, which stops the data transmission and paralyses
network operation. Figure 2.10 demonstrates a simple yet classic example of network
deadlock [11]. A grid network consisting of four nodes is given. At each node there
is a data packet that is ready to route forward to the subsequent node in a clockwise
direction. However, these four packets can never make forward progress since they are

waiting for the network links other packets are occupying.

Livelock is another reason that may cause the network transmission failure. It is
related to the network pathology of deadlock. In livelock, data packets continuously
route across the network but are not able to arrive at their destination even if they
are not blocked permanently at intermediate nodes. Livelocked data packets may occur
because the destination channels they request are held by other packets or even a faulty

routing decision has been made and kept. Livelock commonly occurs in non-minimal

30 Chapter 2 Literature Review

>)

D c
__ —

Figure 2.10: Example of a Typical Network Deadlock [3]

data routings since data packets may be easily misrouted away from their destination.
Strictly limited misrouting times to the data packets in non-minimal routing networks
are necessarily guaranteed [3]. Figure 2.11 explains one example of livelock [10]. In a
close cycle four-node grid network, one data packet is continuously circulating around
the network targeting a nonexistent destination node PFE(4). This fault may possibly
occur in a transient way, such as the drop of a packet header due to unexpected fault

attacks or a permanent network disconnection.

PE(0) PE(1)

PE(3) PE(2)

Figure 2.11: Example of a Typical Network Livelock [10]

Starvation is another potential reason for network communication failure. Starvation is
a situation in which a data packet is permanently stopped from forwarding due to intense
network traffic or constant resource allocation to other packets who are requesting the
same resource in the meantime with the stopped packet. Starvation usually occurs when
an faulty resource allocation is continuously used in arbitrating the conflict of resource

requests [8].

The occurrence of deadlocks, livelocks, and starvation is attributed to the finite number

of available resources in networks [8]. For NoC designs, it is extremely significant to

Chapter 2 Literature Review 31

remove deadlocks, livelocks, and starvation, or at least to be able to recover from these
issues. In other words, either avoidance, prevention or recovery schemes are necessary

no matter what routing algorithm is used in NoCs.

Starvation is relatively easier to resolve compared with the other two. Since faulty
resource allocation is the root of starvation, guaranteeing a correct resource allocation
scheme should be a feasible solution [3]. For instance, when different priorities to packets
are used, a proper starvation prevention would be reserving certain channel bandwidth
for low-priority packet routings. This can be achieved by the throughput limit of high-
priority packets or assured reservation of virtual channels or buffers for low-priority

packets.

The easiest way of avoiding livelock in NoC design is using minimal routings only [11].
Using minimal routings instead of non-minimal ones could improve the throughput
performance especially in wormhole switching networks as the data packets will no
longer consume extra network resources other than strictly necessary ones for their
source-destination routings. To introduce fault tolerance to the network is the essential
motivation of using non-minimal routings. In the cases where high fault tolerance is
necessarily demanded, so that non-minimal routings have been used, strictly limiting

the numbers of misrouting operations to data packets is also effective to prevent livelock.

Deadlock may be the most difficult to solve. Three strategies may be derived for deadlock
handling: deadlock prevention, deadlock avoidance, and deadlock recovery [49]. In
deadlock prevention, network resources such as communication channels or router buffers
can be completely reserved before the data transmission starts if they are needed by data
packets [8]. Such a resource reservation scheme helps prevent the resource requests of the
packets that cause a deadlock. In deadlock avoidance, network resources are successfully
allocated to the requested data packets that advance along their routing path only if
the resulting network state is safe. This strategy should avoid the update of network
state caused by sending additional packets. Moreover, deadlock can be avoided by
eliminating cycles in the resource dependence graph [3]. Specifically, deadlock freedom
can be guaranteed if routing cycles generated in the routing algorithm are avoided, or the
buffer occupied in a cyclic manner in the flow control protocol. In deadlock recovery, a
detection mechanism becomes a must if network resources are allocated without checks.
Once a deadlock is detected, a deadlock recovery mechanism is necessary to enable the
deallocation of network resources from original requests and granted to others. Packet
abortion at occupied network resources or even a temporary halt of the overall network

may be demanded in order to re-allocate resources.

Deadlocks, livelocks and starvation paralyse a part or even the whole network [10]. A
practical NoC system must either ensure that its routing algorithm is deadlock-free or
livelock-free, or supply effective recovery schemes if deadlock or livelock occur. Adaptive

routing algorithms may be prone to produce deadlock because they usually have routing

32 Chapter 2 Literature Review

cycles in the extended channel dependency graph [50]. Such unintended routing cycles
can be eliminated by restricting the turn model [51] or adding extra virtual channels
[52]. Note that even a deadlock-free routing algorithm may still produce deadlocks if
permanent change of network topology occurs and fault-tolerant adaptation is missing.
Instead of deadlock-avoidance design, a deadlock recovery scheme should be concerned,

though such schemes may degrade network throughput performance significantly [53].

2.1.4.3 Typical Classification of Routing Algorithms

In the last decade, many deadlock-free routing algorithms have been proposed for
multiprocessing systems [51] [12] [54]. Some of them are designed for the NoC domain like
the Odd-Even [12] and DyAD [55] routing algorithms. Others have inspired the design
of new routing algorithms for NoC systems [56]. For instance, the turn-prohibition
algorithm [57] has been proposed based upon the turn model [51]. Routing algorithms
for NoC systems can be classified in many ways. In general, the classification can be

determined according to 3 different criteria [48]:

1. how a routing path is defined: deterministic and non-deterministic routings
can be classified as per this criterion. A single routing path is completely
supplied between the source and destination in deterministic routings while in
non-deterministic routings, the routing path is a function of the instantaneous
network traffic [58]. The adaptivity of non-deterministic routing algorithms is
supported by practical network status, so they are also considered as adaptive
routing algorithms. Non-deterministic routings supply multiple possible routing
paths that can be used by a packet to reach its destination. However, deadlock

and livelock may occur when the full adaptivity is provided by the algorithm [59].

2. where the routing decisions are taken: source and distributed routings are
classified by this criterion. Source routings determine the whole routing path
at the source node prior to the data transmission. The calculated routing path is
stored completely in the packet header [60], which may cause packet size overhead.
While in distributed routings, a distributed manner is used to determine the
packet route direction at each intermediate node. Since each next hop direction
is made based on local network knowledge, the packet header could be very
compact. Distributed routings may be very cheap and simple to implement in
regular network topologies because one routing decision is applicable to all the
network nodes. Besides, distributed routings can also detect and avoid faulty or

disconnected paths, resulting in increased fault tolerance.

3. the length of the routing path: routing algorithms can be categorised as
minimal or non-minimal routings [59] [60] due to this criterion. Minimal routing

algorithms only supply routing paths that carry the data packets closer to the

Chapter 2 Literature Review 33

destination node, which guarantees the possibly shortest routing paths. In non-
minimal routings, routing paths that may take the data packets away from their
destination can be supplied, which offers higher flexibility that allows any available
routing path between the source and destination nodes. This is practical when fault
tolerant routings are desired, since such routings support alternative routing paths
even when all possible minimal routing paths are faulty or disconnected. However,
non-minimal routing algorithms may suffer from livelock issues and usually cost

more network resources.

Table 2.1 [4] lists the popular routing algorithms currently proposed for NoC systems
according to the discussed classification. The detailed formation and properties of these

routing algorithm will be introduced in the subsequent sections.

Table 2.1: Overview of Popular Routing Algorithms in NoC Design [4]

Routing Algorithm | Path Definition | Routing Decision | Path Length
XY/YX Deterministic Distributed Minimal
OE Adaptive Distributed Minimal
Source Deterministic Source Non-Minimal
Q Adaptive Distributed Non-Minimal
MaXY Adaptive Distributed Minimal
PROM Oblivious Distributed Minimal
DyAD Adaptive Distributed Non-Minimal

2.1.4.4 Deterministic and Adaptive Routing Algorithms

The evident advantage of deterministic routing algorithms is their simplicity of hardware
implementation due to less-complex routing module requirements. They are also
suitable for routing in irregular networks where non-deterministic routings may not work.
However, the lack of flexibility in selecting proper routing paths in deterministic routings
easily causes network congestion especially when heavy workloads are undertaken and
multiple communications request the same resources at the same time. Moreover, when
the network topology is slightly changed due to faulty components, deadlock issues
may occur if deterministic routing is used [61]. Thus, using non-deterministic routing

algorithms is better in networks with high demands for fault tolerance.

A special kind of routing algorithm called dimension order routing (DOR) [52] [8] are
extensively used in regular NoC topologies. They do not carry information of the
whole routing path but only the destination address. Data packets are routed via the
rectangle edges of such topologies between the source and destination. Consider the

distance between the current node and destination node calculated as the sum of offsets

34 Chapter 2 Literature Review

in all network dimensions. DOR algorithms will route data across dimensions in strictly
increasing or decreasing order. The distance offset in one particular dimension will be
reduced to zero firstly, then routing data at another dimension to reduce its dimensional
distance offset subsequently. DOR algorithms will produce deadlock-free algorithms
when used for n-dimensional mesh networks. Specifically in 2D-mesh, they are well
known as XY routing algorithms. Many modified NoC routing algorithms are directly
derived from XY algorithm for various specific designs. In Figure 2.12, an X-first XY

routing algorithm is shown through the four different routing examples [11].

0.0 O O0Ogdd
0o HRERE
0O O OO O
004 0O 4

@ O Oong [

O oong [
1O amn

Figure 2.12: XY Routing Algorithm for 2D-Mesh - X First [11]

DOR algorithms are regarded as source routings that can achieve an extremely low area
overhead. They are also considered as distributed routings since the routing decisions can
be made by routers at intermediate nodes in the routing path. When the network is not
experiencing heavily traffic load, DOR algorithms can always ensure minimal routing
paths, leading to the best transmission delay performance. Due to these advantages,
DOR algorithms have been used in many NoC designs [62] [63] [64].

A major disadvantage of deterministic routing algorithms is the lack of path flexibility
that may lead to network congestion and worse data transmission delay when network
traffic is under a heavy workload. Non-deterministic or adaptive routing algorithms,
however, can overcome this disadvantage by routing data along alternative paths and
distribute the traffic to all network resources based on network states. Algorithms with
no restrictions are called fully adaptive, otherwise they are called partially adaptive.

Fully adaptive routing algorithms are subject to deadlock conditions [48].

Different adaptive algorithms forward data packets driven by various motivations. Glass
and Ni in [51] have proposed a turn model, as shown in Figure 2.13, for designing
wormbhole routing algorithms for mesh and hypercube network topologies with deadlock

and livelock freedom by prohibiting certain turns to avoid the formation of any cycle.

Chapter 2 Literature Review 35

The Odd-Even (OE) algorithm proposed by Chiu in [12] and the Dynamic Adaptive
Deterministic switching algorithm (DyAD) [55] attempt to balance the traffic load in the
network and improve overall throughput. The OE model avoids deadlock by restricting
the locations where certain turns can be taken. The determination of its routing path
is governed by the following rules: for any data packet routed by OE algorithm, the

following turns are not allowed (column starting from 0):

1. East-to-North or East-to-South at even columns.

2. North-to-West or South-to-West at odd columns.

T

A
|
|
! |
‘_—J — e o

Figure 2.13: Example Turn Model for Adaptive Routing [12]

Figure 2.14 illustrates the examples of allowable data routings in a 9 by 9 2D-mesh
network using the OE routing algorithm [3]. In the figure, East-to-North turns at even
columns and North-to-West turn at odd columns are not forbidden. Four different

routings in which § and D denote the source and destination nodes.

N LN Y ™ N
0.8 QEC }?,\\ \—O\I/ S ‘T/ SJ}
2) ™ N Ny v
LANS L (AR -/ﬁ:[)_k"/l
, P
' O
o, 1
4 Y

AN A

©0) (10) 50 60 70 (60

e -
‘\) : source node . : destination node

Figure 2.14: Examples of OE Routing in 9 by 9 2D-Mesh [3]

Some other algorithms like [65] and [66] have a fault tolerance property by re-
transmitting data packets when a broken communication link is detected. Yet it is
usually expensive to apply such adaptive algorithms since considerable area, energy or
transmission delay overheads may be needed for gathering precise desirable network

states like network congestion and faulty nodes.

36 Chapter 2 Literature Review

2.1.4.5 Source and Distributed Routing Algorithms

Most deterministic routing algorithms are source routing based [10]. The data sender
at the source node attains the knowledge of destination address and thus specifies the
routing path in advance. The selected routing path is usually recorded in the packet
header to implement source routing. Each intermediate node on the selected routing
path analyses the heading information carried by the packet header, firstly deciding the
output direction, then removing the turn from the recorded information, and eventually

forwarding the modified packet header to the next node.

Source routing has been used in many NoC designs [67] [68] [69] [34] since it can be used
in both regular and irregular topologies with very low hardware overheads. However,
the complete routing path is recorded in the packet header. This may cause substantial
size overheads especially when the routing path is extremely long and a large amount
of routing information is recorded. In this case, extra transmission delay and energy

consumption will result.

Q-routing [70] is a distributed routing algorithm based on machine learning. With this
algorithm, each router at the intermediate nodes of the routing path acts as an agent
that collects local information and routes along the direction in which the minimal
real-time routing cost from the current node to the destination node can be retained.
Each router of the intermediate nodes maintains the estimated routing cost of a packet
to its destination via each neighbouring direction of the node. When a router sends
a packet to one of its neighbouring nodes, the neighbouring node sends its estimated
cost back. With this real-time local information, the router updates its estimated cost
and arbitrates the most cost-efficient routing direction. This property helps to adapt
to congestion through an updated real-time direction that has the least estimated cost.

The overall routing path may not be minimal.

2.1.4.6 Minimal and Non-minimal Routing Algorithms

One typical minimal routing algorithm is the QoS-aware Minimally Adaptive XY
routing algorithm (MaXY) [71]. MaXY is a variation of the XY routing algorithm that
retains the advantage of XY routing simplicity, and also has the capability of adapting
to the network traffic. MaXY algorithm ensures that minimal routing path and livelock
freedom are always given by determining the next routing direction only from the 2
path-length reducing directions at any stage. Besides, the algorithm is adaptive and

decisions on hop directions are made at crucial node positions.

In the MaXY algorithm, data routing aims to equalise the absolute difference between
the distance offsets of the current and destination nodes along the X and Y dimensions.

So firstly data will be routed along the dimension which helps to reduce the absolute

Chapter 2 Literature Review 37

difference of distance offsets between the X and Y dimensions [71]. Once they are
equal, packets are routed along the dimension which has more buffer space. If the paths
have the same buffer space along both dimensions, then a random selection of routing
dimension is made. It is clear that the next node of the routing path in MaXY algorithm
is always closer to the destination node than the current node, which indicates a minimal
routing path is adopted while also having a certain adaptivity to distribute the traffic
load [25].

Oblivious routings can be either minimal or non-minimal, but should be distinguished
from deterministic routing although they are considered to be identical in some cases [8].
Generally speaking, routing decisions made by oblivious routing may be independent
of, namely oblivious to, the network states. Yet, it does not necessarily mean that
such routing decisions are deterministic. For example, at one intermediate node on the
routing path, the next routing direction may be determined among several candidate
choices based on some certain fashions that are irrelevant to network states. In this case,
a deterministic routing will always make the same specific choice from those candidates
every time. But oblivious routing may choose alternative choices from the candidates

at different times.

Oblivious routing algorithms route data without regarding the states of the network
[18]. Two Valiant’s randomised routing algorithm [72] is a non-minimal routing that
can balance the traffic load in nearly any network topology. An intermediate node is
randomly selected for each data packet to relay and then forwarded to the destination
node. The stochastic routing algorithm [73] [74] is another oblivious non-minimal
routing algorithm in which a data packet is forwarded to multiple output ports in each
intermediate node of the routing path. This results in flooded data from the source
to the whole network. This algorithm has strong fault tolerance and guarantees the
successful delivery of a data packet to the destination as long as the destination node
is reachable, though such a data flood may severely waste network resources and cause

extremely low overall network throughput.

One oblivious and minimal routing algorithm used in NoC design is the Path-Based,
Randomised, Oblivious, Minimal Routing algorithm (PROM) [13]. It is suitable for NoC
applications with n by n mesh geometry and is deadlock-free when the network routers
have at least two virtual channels. The PROM makes the same decision progressively
via efficient, locally randomised directional arbitrations at each intermediate node of
the routing path. The routing decision of the PROM algorithm is made randomly and
only for the next hop conforming to the minimal-path constraint. A PROM example is
given in Figure 2.15 to illustrate the random choice scheme of the PROM algorithm. At
each intermediate node, the next hop is chosen by a fair coin toss. Note that each hop
choice in PROM routing is oblivious and computed locally [4]. This property may not be

guaranteed to obtain the optimal routing performance but to give a competitive network

38 Chapter 2 Literature Review

throughput under various traffic situations. The packet header used in the algorithm

could be compacted without a size overhead.

1 1
B > » D
A
0.5
0.5
A -2
' N
0.5
0.5
S ———»

Figure 2.15: PROM Example: Randomly Choose the Minimal Routing Path
[13]

Hu and Marculescu in [55] proposed the Dynamic Adaptive Deterministic switching
algorithm (DyAD), which combines the advantages of both deterministic and adaptive
routing algorithms in order to better-distribute traffic load and improve the network
throughput performance. The routing algorithm works in a deterministic mode when the
network load is not heavy enough to cause network congestion. It judiciously switches to
adaptive mode when the network becomes congested. The DyAD algorithm is a typical
routing algorithm that supplies non-minimal routing decisions [4]. Providing a minimal
routing path between the source and destination is not the most significant concern in
this algorithm. The purpose of designing DyAD is to propose a routing scheme that
balances the traffic load with overall network throughput performance. Hence, using
alterative, non-minimal routing paths to route data away from the destination node is

allowed in DyAD when all possible minimal routing paths are congested.

2.1.5 Commercial Employment

Since NoC networks have a number of advantages in performance optimisation, design
area and power consumption compared to the traditional bus-based SoC systems,
commercial employment of NoC products is attractive to SoC makers and chip-design
industries. Two main companies, Arteris [75] and Sonics [76], provide industrial NoC
products and IP interconnection solutions to semiconductor products in many fields.

Other companies also propose multicore chips for different uses.

Arteris [75] is an NoC company that addresses increasing design and performance com-
plexity of modern SoC industrial products by providing Network-on-Chip Interconnect
IPs for any System-on-Chip. It claims to have pioneered the first commercial NoC

solution for over 50 tapeouts of SoC products. Its patented NoC interconnect IPs provide

Chapter 2 Literature Review 39

flexible and scalable solutions that allow designers to optimise and achieve the specific
design goals like improved performance, reduced timing closure, smaller area or higher
scalability for their particular products. Its main NoC products contribute to IPs for
SoCs with different functions such as faster timing closure, high performance, critical
mission and small area. These Arteris NoC solutions are extensively integrated in many
SoC systems for new ultra-HD Televisions, servers for next-generation cloud data centres,
high-end consumer electronics, portable Internet multimedia terminals, ultra-low power

wireless connectivity for the Internet of Things (IoTs), G.fast-based modems and so on.

Sonics [76] is another company selling on-chip network products. As per its claim,
Sonics has produced the industry’s first GHz network-on-chip. Other its current
products include complex multi-core cloud-scale SoCs, industry’s highest frequency
NoC, consumer-friendly multi-subsystem SoC infrastructure, configurable system IP
blocks and low-latency communication NoC. Similar to Arteris, Sonics also cooperates
with a number of other semiconductor and consumer electronic companies to integrate
its own NoC products to a wide range of other SoC products. Their collaborative
system products include new application processors for smart appliances with high
speeds, secure sound and image communications, integrates NoC IP cores for advanced
satellite modem SoC, integrated customer-specific application processors for EDA tool

and manufacturing flows, NoC IP for heterogeneous multi-core devices and so on.

Besides, other semiconductor companies have also launched their NoC processors for
commercial and research uses. IBM CoreConnect architecture [77] was proposed in
the beginning of the last decade. It enables the integration and reuse of up to
8 synchronous master processors for standard and custom SoC designs. The Intel
Teraflops research processor chip (also called Polaris) [34] is another NoC product
launched in 2007. It connects 80 simple cores by using a tiny, non-IA (Intel Information
architecture) instruction set [78]. This multi-core processor is the first chip developed
by Intel Corporation’s TeraScale Computing Research Program to explore tiled, 2D-
mesh architectures for tackling cache coherence in scalable, next-generation processors.
The second NoC product of Intel TeraScale Research Program is the Intel Single-Chip
Cloud (SCC) Computer [79] launched three years after the Teraflops chip. SCC uses
a mainstream x86 instruction set to connect 48 Pentium class IA-32 cores [80] on a
6 by 4 2D-mesh network. It explores the scalability of many-core architectures for not
using a cache-coherent shared address space. TILE-Gx line of processors [81] are NoC
products of a multicore processor family developed by Tilera Corporation (which was
acquired by EZchip in 2014) [82]. The TILE-Gx multicore processors consist of a mesh
network connecting up to 100 processing cores, which provide high-performance network

processing for a wide range of applications.

40 Chapter 2 Literature Review

2.2 System-level Design Automation

2.2.1 Current Opinions

Due to the increased demands on new design techniques in modern chip industries,
high-level design automation is needed to emulate behaviours and performance of highly-
integrated embedded systems [32]. The design trends have gradually moved from RTL
to ESL (Electronic System Level), abstracting high-level models in terms of architectural
design, algorithm development, hardware /software partitioning and co-design, prototype

establishment and feasibility verification to specific architectures [27].

As per the high integration of NoC architectures, new design methodology and
simulation tools are desirable for global system design and performance analysis in
order to shorten product life cycles and fulfil customisations [83]. In this case, high-
level abstraction models and system performance estimations based on fast and accurate
hardware/software co-simulation platforms are considered as one possible solution [84].
Yet this solution also brings a new design challenge, which is the difficulty in developing
accurate and efficient behavioural models and performance estimates without low-level
implementation and long experimental time. To meet the challenge and hence improve
the productivity of NoC designs, development of advanced design automation techniques
are necessary to abstract accurate-enough system-level architectural models, integrate

application-specific modules, and optimise task mappings for limited resources.

A typical system-level design flow that is widely accepted by modern chip developers
is the Y-chart process shown in Figure 2.16 and advocated by [14]. With custom
specifications the required applications and available platform resources are determined.
Then those applications are mapped and scheduled onto the systems modelled by the
supplied resources. Relevant performance metrics are evaluated based on the generated
mapping schedule. The design space for specific functions are also explored in this
stage. After this, the system architecture will be implemented and iteratively refined
until design specifications are entirely fulfilled [20]. More design space exploration will
also be developed to determine low-level design specifications. Finally, a set of executable

tasks and system architecture will be abstracted for the subsequent design stages.

In all system-level design characteristics, performance estimation is usually a
significant factor that needs to be carefully considered [83]. Many design decisions
need to be particularly made to meet special design specifications in order to avoid
unsatisfactory system functions. Moreover, it can be very resource-costly and time-
consuming to iteratively refine complex system designs if the high-level models are
inaccurate and inefficient. As a result, the accurate model abstraction and performance
estimation of system-level design automation is requisite to reduce design errors and
shorten design time cycles, which increases the design productivity. Correspondingly,

critical designs in simulation models would focus on the ability to capture real workload

Chapter 2 Literature Review 41

ﬁ Specification j

- Platform
l» Application Resources . |
| l Mapping |
| Scheduling |
| | |
| Performance Evaluation/ | |
| Design Space Exploration | |
| | |
| Implementation I A —— J

Figure 2.16: Typical High-Level System Design Process [14]

scenarios of applications [14]. Applying a time-based simulation methodology is necessary
and effective to gain the dynamic simulation statistics such as instruction execution
delays and interconnection delays. Once achieved, the system architecture and its
accurate performance estimation can be iteratively refined based upon those results. Fast
simulation is another important factor for high-level performance estimates since it is
helpful to mitigate time-to-market pressure and facilitate the further design stages. Due
to the conflict between high time-to-market pressure and large time cost for capturing
realistic and accurate performance, developing more precise high-level system models and

performance evaluation techniques may be a potential solution to weaken the conflict.

For digital system design simulations, Instruction Set Simulation (ISS) is used for
software design of digital electronic systems to obtain the execution impact and real-
time simulation data by its support of cycle-accurate simulations [27]. Yet this
kind of simulator has the disadvantages of low simulation speed and high model
complexity, which is unaffordable for system-level design automation at the early design
stages. Moreover, ISS provides excessive and dispensable details for high-level model
abstraction. The simulation speed and model complexity are sacrificed at the cost of
accuracy improvement, which cannot fulfil the accuracy demand on system-level NoC

designs.

Therefore, to meet the demands on modern early-stage design automation for high-
level design flexibility, a simulation method based on native software execution to
achieve system performance evaluations has been proposed and widely accepted [85].
A native simulation methodology indicates that the simulation models compile and
execute each program of the design directly on a host machine instead of the target
processor used in ISS. Several issues need to be dealt with to develop such models,
such as timing, module function interpretations and coupling of function interpretations
with performance models. For timing analysis, the native simulation method would

execute binary code on the target processor with performance models to get important

42 Chapter 2 Literature Review

and accurate timing effects. The choices of current native-based simulation methods
for functional interpretation level classify their techniques. Usually, their functional
interpretations would be binary level, intermediate representation level and
source level. The coupling of function interpretation and performance models can

be realised by annotating interpretation with timing information [14].

At different functional interpretation levels, Binary Level Simulation (BLS) translates
binary codes while compiling to gain functional interpretation that could provide
faster simulation speed than ISS because the fetching and decoding of time-consuming
instructions are implemented prior to simulation. Source Level Simulation (SLS)
interprets timing analysis of system like software execution delays on the target processor
by source code following the mapping of source code and machine code [14], which leads
to high simulation speed and low design complexity that is suited to high-level designs.
Yet one of its shortcomings is its low accuracy of estimation results due to the trade-off
on speed improvement. Besides, SLS cannot precisely estimate optimally-compiled codes
as the accurate timing statistics depend on mapping between source and binary codes,
which may be destroyed by optimisations of the compiler [27]. While most current system
designs need to compile their programs with a compiler, this disadvantage will strongly
hinder the adoption of SLS. Thus, a middle-level methodology using intermediate
representation level techniques is proposed in order to achieve accurate timing analysis
that transforms source code of programs at lower levels, such that its structure will be
close to binary code [84]. The current simulators for distributed interconnection systems

need to improve their models.

Generally, system performance estimation can be divided into two groups: static and
dynamic simulation [14]. Dynamic simulation can capture real workload scenarios of
system design to estimate dynamic executions and real-time behaviours which the static
simulation is not able to do. Hence, dynamic simulation is widely adopted by software
simulators with models of other specific modules to develop high-level abstractions for
system performance estimations. Additionally, the system models also consist of two
categories: functional models and performance models. Functional models emulate the
functionality of different programs in a system while performance models interpret real-
time behaviours of system components and give relative dynamic performance statistics.
Usually, performance models are built up on the functional ones, called execution-based
simulations, but the correctness of both kinds of models decides the results accuracy.
All the native execution-based methodologies introduced above belong to the class of

execution-based simulation.

Specifically in this thesis, accurate NoC behavioural models and performance estimates
have been developed using advanced modern design automation techniques to generate
fast, accurate and reliable system-level modelling at the early design stages. In the

subsequent sections, specific factors of simulation performance will be introduced to

Chapter 2 Literature Review 43

expose their significance and impact on NoC system designs, which helps determine

major relevant metrics for further research.

2.2.2 Major Performance Concerns in NoC Systems

To accurately develop high-level network behaviours and precisely simulate concerned
system performance, it is important to figure out which factors may influence NoC
architectures and are of particular interest to designers. How to present these factors
using DA techniques in system-level evaluations to fulfil specific requirements is another
question that needs to be considered. In this thesis, energy and timing issues and
their trade-off balance are of a special concern for their substantial impact on system
performance [20] [32] and thus discussed in next sections. Other factors like fault

tolerance and scalability are also investigated in Section 2.2.2.3.

2.2.2.1 Energy

Energy consumption has become one of the most significant factors in modern NoC
design due to the increasingly severe bottleneck of power supply systems [20]. Tt
is manifest that the energy issue influences network design greatly and limits other
performance since each part of system is an electronic component driven by electricity.
Even where other auxiliary supplies are investigated, like that introduced in [86], for
attempting to improve the power supply system itself, stability problems still hinder
such the introduced method becoming a prior design choice. As per the contradiction
between incremental power demands on the network communication and limited progress
in power supply improvement, low-power design turns out to be of the highest concern

in all aspects of distributed interconnection systems [27].

Energy consumed by the activities of interconnection networks has a cost in three main
domains: data generation, data communication and data processing [20]. Of all three, the
communication domain usually consumes the most energy because data transfer through
node networking leads to most switching activities and the communication complexity
linearly increases with the network complexity. Even in short-range communications,

frequently sending and receiving data will cost substantial energy.

In major chip designs, various functional units are interconnected in the chip network and
the power resource may be strictly limited. In this case, the completeness of the network
topology strongly impacts on energy performance. In particular, it has a significant effect
on network communication efficiency since the topological changes due to disconnected
network parts may cause severe re-routing and re-organisation of the network. Besides,
a precise detection on energy cost of network activities is of great help in emulating

realistic performance of applications in a simulator [27].

44 Chapter 2 Literature Review

In view of the importance of power savings in distributed network simulation, much
research on low-power design is dedicated to either give possible solutions to mitigating
traversal cost, like low-power routing protocols, or developing accurate energy evaluation
models, like in [87]. In [88], current approaches to power management and conservation
of distributed systems have been conducted in 3 main categories: duty cycle, data-driven
and mobility. Duty cycle indicates the active time fraction of nodes during their lifetime.
This approach puts nodes into sleep mode when there is no data incoming and wakes up
nodes as soon as outside communication is needed. It ensures the most energy-expensive
parts of network activities are activated for the shortest period to save the most energy.
Data driven aims to reduce the total amount of data processed in order to lower the
energy cost of the data-process part. The mobility approach reduces the total hops of
data traversed from one node to its destination node by making partial relaying nodes

movable.

These aforementioned approaches can greatly simplify the communication complexity of
networks and thus lower the energy cost of traversed data in different ways. Nonetheless,
choosing suitable power-saving design approaches and energy-detection models on the

basis of specific design and application requirements should not be overlooked.

2.2.2.2 Timing

Timing is another important factor for distributed network designs. Since quicker
response to applications is always the pursuit of network simulations, precise dynamic
time statistics of network activities is very significant and necessary for custom designs.
It can also greatly help establish network models with accurate descriptions of system
performance [85]. Additionally, step-by-step timing records enable designers to diagnose
simulation problems and trace detailed activities. Yet it is not easy to accomplish since
too many detailed timing traces may cause redundant transmissions and consume extra

energy.

Time synchronisation of different devices is highly demanded of many distributed
computing systems [27]. It is not only an indispensable condition for normal running
of networks but also a guarantee of the quality and precision of other metrics like the
accuracy of duty cycling. Especially for ultra VLSI designs, partial modules in a network
operating asynchronously to other modules may lead to unexpected simulation errors,
module malfunction and system failure. However, as the complexity of components
integrated into a single system continuously increases, global time synchronisation of
the whole network becomes a bigger challenge to designers in terms of feasibility,

applicability and energy cost issues.

In this case, asynchronous timing designs for different groups of devices in one network

have gradually aroused attention from researchers in recent interconnection network

Chapter 2 Literature Review 45

designs [20] [14]. As tremendous numbers of modules integrated into a single chip may
make global time synchronisation unfit or extremely difficult to realise, conditional or
partial insertion of two or more sub clocks to drive different groups of modules under
one global system clock has been investigated and considered to be a promising solution

to fulfil timing requirements of distinctive applications.

This method can synchronise intra-group modules and eliminate potential clock jitter for
those module groups because all the sub clocks are derived from single global clock. On
the other side, it may also need new timing protocols to coordinate the inter-group sub-
clocks with a global clock for eliminating potential clock skews. To our best knowledge,
a general design approach to distinguish and adopt precise global time synchronisation
and appropriate asynchronous sub-timing division would be highly desirable but still

remains absent.

2.2.2.3 Other Factors

In many cases network processors may fail to work due to lack of power, environmental
damage, component malfunction, software disability or sabotage [27]. The ability of
a network to sustain data transfer and processing in the presence of failures is called

reliability or fault tolerance.

The fault tolerant design of distributed systems requires three main aspects for
consideration: fault model, repair mechanism, fault detection and diagnosis [20].
Furthermore, three levels of faults occurring in interconnection networks are component-
level, node-level and network-level faults, which need to be considered from a whole
viewpoint. According to [89], the fault models could be divided into four groups: stuck-
at-value faults, calibration faults, additive faults and random noise faults. Current
approaches of component-level fault detection and diagnosis could be geometric based,
non-geometric based and Bayesian’s belief network (BBN-based). Node-level detection
and diagnosis approaches are divided into centralised-based and distributed-based
detection. Connect-based and convergence-based fault repairs have already been

developed by researchers [20].

The fault tolerance of networks can also be boosted by software methods particularly
in failures due to hardware disconnection or damage [8] [83]. Research on self-adaptive
routing algorithms like PROM [13] has been proposed to investigate such a possibility.
This sort of algorithm could automatically re-route or re-organise data traversal paths
in a network when a hardware failure or disconnection is detected. Yet such algorithms
may compromise transmitting efficiency for reliability improvement, since the path
selection mechanism is oblivious and at each node of a traversal path they randomly
select the next hop direction. Although this mechanism may cost more time and energy

than normal routing algorithms, it is still very suitable for specific applications where

46 Chapter 2 Literature Review

network stability is in high demand. In general, the optimised fault-tolerant solution to
common interconnection networks is still undiscovered. The significance of reliability to

a distributed system is beyond doubt and drives researchers for further investigation.

Despite the aforementioned design factors, there are still other important factors that
may have a large influence on interconnection network designs and need to be considered.
Based on the relevant factors listed in [4], [8] and [32], we have concluded other factors

for NoC designs in the following:

Scalability: New schemes are needed to fully utilise such a large number of network

processors and remain open for potential functional extensions [90].

Production cost: It is important to lower the cost of each module to keep the total

cost of the network designs at an acceptable level.

Network topology: It is a challenging task to keep the network topology quasi-static
and reduce its change frequency in NoC architectures in order to reduce the possibility of
node failure and increase network service efficiency. Besides, different topologies adopted

for various applications could influence system performance.

Security: In many cases, the network security, not only the information security but
also the device security, is very important. Yet this service is usually at the cost of other

services.

Quality of Service (QoS): This feature is at an early research stage since most
research still focuses on low-cost and small-size designs. But properties such as network
availability, transfer latency, throughput, and packet loss have shown high research

values and promising application prospects.

From the above discussion, it is clear that low-power design is the most significant
research position for designers. In NoC designs, the communication energy cost has
increasingly important impact on global energy performance and then forces other
modules to put low-power design as their first priority. However, other services like
timing, security or reliability may be of the same significance as energy performance
depending on specific applications and design requirements. Thus, the preferred plan
for distributed network designs should evaluate all required characteristics, making
trade-offs on them and offering optimal products according to specific applications.
Although developing such models for system-level timing, power and other performance
is very challenging, it is still necessary, since it will provide sufficiently accurate system
estimations to explore the design space at a very early design stage, such that the global

productivity is improved.

Chapter 2 Literature Review 47

2.3 A Survey of NoC Application Mapping Techniques

Intelligent task allocation of various applications for specific NoC architectures is
significant for achieving desirable system performance of target designs. As technology
develops, more complicated tasks need to be dealt with in modern applications, requiring
larger network size and more cores to process increasingly huge amounts of data. The
more the network cores are collaboratively used for complicated tasks, the higher the
computational complexity will be. Such an increase in computational complexity gives
rise to longer search time because the total feasible possibilities of task allocation rises
exponentially along with the core number, which may cause unacceptably long processing
time for finding the optimal allocation. Consequently, the more processing cores a
complex application requires, the less likely its optimal task mapping can be found
within a tolerable time period. This long search makes the application mapping problem
an instance of constrained quadratic assignment problem [91], which is known to be an
NP-hard optimisation problem [91] [92] [93].

2.3.1 The Classification of Mapping Techniques

The application mapping techniques in NoC design cannot produce the generalised
optimal task allocation that is suitable for any application since the various and specific
design requirements may not be achievable concurrently or even contradict each other.
Moreover, it is also hard to obtain the optimal task allocation to one specific application
or application set if it is so complicated that the time cost for seeking the optimal solution
is intolerable. However, finding the optimal allocation solution for specific applications
is indeed essential to acquire advanced performance especially relating to energy- or
timing-constrained issues. As a result, many different task mapping techniques have
been developed in the past decade for optimal task allocations to specific applications
in diverse NoC architectures. If the optimal task allocation is impossible to find within
a tolerable processing time by the task mapping techniques, near-optimal or limited-
optimal task allocations will be developed to asymptotically achieve as good as possible

system performance.

For all the exact-optimal or near-optimal task allocations, the proposed mapping
techniques can be classified as follows. Normally task mapping problems can be
performed either on-line or off-line. As per [93], they can be classified as dynamic
mapping and static mapping depending on the time at which the tasks are assigned to
the IP functional blocks for data processing. Based on this division, a more detailed and
specific classification of modern mapping algorithms under these two main categories is
elaborated in [15] and listed in Figure 2.17.

As per the figure, dynamic mapping can be called on-line mapping [93]. By using it,

the assignment and ordering of tasks are performed during the run time for executing

48 Chapter 2 Literature Review

| MNoC Mapping Algorithm |

I

| Dynamic Mapping | Static Mapping |
+ h 4
| Exact Mapping I Search Based Mapping ‘
Math ti i i inisti
athematical Prog.rammmg Svstematlc/De.termlmstlc Heuristic Search based
Based Mapping Mapping Mabbin
(ILP,MILP,NLP,etc) (EPAM,PBB,TBMAP) HADE
* Y
Transformative Heuristic Constructive Heuristic
(GA,PSO,ACO)
¢ h 4
Constructive without Constructive with
Iterative Improvement Iterative Improvement
(PMAP,SMAP,BMAP,etc) (NMAP,Onyx,Crinkle,etc)

Figure 2.17: The Classification of Mapping Algorithms [15]

applications. Dynamic mapping always tries to detect the emerging performance
bottleneck of network traffic and distributes the real-time workloads to those lightly-load
processing cores. Since this sort of application mapping depends on the current load of
the processors, it ought to result in a better task distribution and network performance.
However, the computational overheads this mapping technique causes may considerably
increase the delay and energy cost of applications at run-time. On the other hand, the
mapping of tasks in static mapping is generally decided off-line before the application
starts running. For a given application and a target NoC architecture, static mapping
always tries to define the best placement of tasks at design time. As the mapping is
completed before execution, the mapping algorithm is executed only once. To map
tasks onto NoCs, static mapping is highly recommended, since excess communication
overheads in dynamic mapping will significantly affect the NoC system performance,

which thus increases the overall system delay.

Since the application mapping and scheduling problems in NoC design are NP-hard,
different mapping techniques have been developed depending on different practical scales
of task-allocation problems. In static task mapping techniques, exact mapping has been
developed using mathematical programming methods. Mathematical Programming
minimises or maximises the objective functions by fulfilling multiple constraints of
various problem variables. Currently popular Mathematical Programming methods
include Integer Linear Programming (ILP), Non-Linear Programming (NLP) and Mixed
Integer Linear Programming (MILP) [93]. The objective functions and constraints of
ILP and MILP methods are linear and their full or partial variables are integers. An
NLP method has non-linear objective functions or constraints. The MILP method is

NP-complete while the mapping algorithms of ILP and NLP methods have polynomial

Chapter 2 Literature Review 49

complexity [94]. Another class of static mapping techniques is called search based

mapping.

Two subclasses of search based mapping techniques are further given as systematic/de-
termanistic search mapping and heuristic search mapping according to the distinctive
search types and results. Smaller-size application mappings could use the deterministic
search method to produce the optimal task allocation. Deterministic search mapping
could exhaustively explore the whole search space of the solution set and then return the
theoretically optimal allocation. One extensively used example of this search mapping
is the Branch-and-Bound (BB) algorithm [92]. Heuristic search mappings are used
in larger-size application tasks whose search time for the optimal mappings grows
exponentially with the increase of task size, such that exhaustive search and deterministic
search techniques are inefficient to be used. Heuristic search mappings support pseudo-
random search in the exploration space of solution set, based on learned experience
to produce the optimum. The generated optimum is only a reasonable task allocation

obtained within a tolerably short time period.

Heuristic search mappings can be either application-specific or general-purpose to solve
different-size task-mapping problems using transformative heuristics or constructive
heur-istics. Transformative heuristics like Genetic Algorithms (GA) [95] transform
some existing solutions to obtain better task allocation by attempting to explore an
enlarged search space of solution set. Constructive heuristics produce partial solutions
sequentially until the final complete solution is reached. If there is no position change
of cores selected based on certain pre-defined standards, it is a constructive heuristic
without iterative improvement. If the iterative improvement of core positions is
performed upon an initial core allocation based on pre-defined standards, constructive
heuristics with iterative improvement are obtained. The detailed previous work of these

proposed mapping techniques will be discussed below.

2.3.2 Dynamic Mapping Techniques

As introduced, dynamic mapping is an on-line mapping technique that executes the
application tasks during run time. The task placement on NoC cores is altered during
the task execution to ease the performance bottleneck caused by heavy traffic loads
while fulfilling other specifications such as congestion-aware, communication-aware and

energy-aware requirements.

Chou et al.[96] have proposed an efficient technique for run-time application mapping
onto an NoC with multiple voltage levels. It minimises the communication energy cost as
much as 50% compared to arbitrary mapping solutions while still fulfilling the required

performance. Moreover, this heuristic can be easily scaled for large-size applications.

50 Chapter 2 Literature Review

Based on it, Chou and his colleagues have proposed an energy- and performance-aware
heuristic in [97] for incremental application mapping onto NoC Networks with multiple
voltage levels. It targets real-time applications that dynamically map on NoC platforms

and connected resources with multiple voltage levels.

Additionally, Chou also proposed an user-aware dynamic task allocation in [98]. It
is a run-time task mapping strategy in homogeneous NoC platforms with the user
behaviour information incorporated in the resource allocation. This strategy provides
good dynamic response and adaptivity of task mapping upon user needs. Experimental
results have shown about 60% communication energy savings of this dynamic task

mapping compared to random task mapping.

A heuristic Dynamic Spiral Mapping (DSM) algorithm for 2-D mesh NoC topologies has
been proposed in [99]. It comprises of two different approaches: Full Dynamic Spiral
Mapping (FDSM) and Partial Dynamic Spiral Mapping (PDSM). The heuristic places
application tasks on to different network cores following a spiral path from central cores
to boundary cores of the mesh topology. The task mapping at design time is executed
by the Static Spiral Mapping (SSM) [100] during run time. Experimental results have
shown the PDSM has less reconfiguration time than FDSM in 82% of the simulation

cases.

A set of heuristics for dynamic application task mapping has been presented in [101]
and [102]. The work targets minimising the network congestion by investigating the
performance of task mapping heuristics on NoC platforms with dynamic workloads.
The heuristics firstly set an initial task mapping and then dynamically map new tasks
upon communication requests by using one of the following techniques: First Free (FF),
Nearest Neighbour (NN), Minimum Maximum Channel load (MMC), Minimum Average
Channel load (MAC) and Path Load (PL). Experiments show congestion reduction are
achieved when congestion-aware mapping heuristics are employed. The PL mapping
results in better optimal solutions than MMC and MAC heuristics.

In [103] and [104], a group of communication-aware real-time mapping heuristics for the
efficient mapping of multiple applications onto an heterogeneous NoC platform have been
proposed. The heuristics support more than one task mapped onto one single processing
element (PE) by checking the available resources in advance. If the unmapped tasks
exceed available PE resources, adjacent communicating tasks are recommended to be
mapped onto the same PE. The proposed heuristics can be deemed the extended work
of [101] and [102], which employs a packing dynamic mapping strategy for minimising
the communication overhead and algorithm execution time in the same NoC platform.
Experimental results show the heuristics can obtain a reduction in overall algorithm
execution time, energy consumption, average link load and latency compared to other

contemporary dynamic mapping heuristics.

Chapter 2 Literature Review 51

An energy-aware heuristic for dynamic application task mapping has been proposed in
[105], named Lower Energy Consumption based on Dependencies-Neighbourhood (LEC-
DN). The LEC-DN heuristic executes the task mapping in a real RTL-modelled NoC
platform, giving rise to accurate evaluation results. Real applications are evaluated as
benchmarks, showing the proposed LEC-DN heuristic may reduce the communication

energy up to 22.8% compared to other dynamic mapping heuristics.

Mandelli et al.[106] have extended the work, allowing multiple tasks assigned to one
single processing element instead of single-task mapping. Experiments present 51%
energy savings on average and 18% algorithm execution time overhead on average for

the multi-task mapping over single-task mapping.

2.3.3 Static Mapping Techniques

Static mapping techniques allocate network resources to various application tasks before
the task execution starts. The determined task mapping scheme is not going to be
changed or modified thereafter. Compared to dynamic mapping, static mapping is an
off-line mapping such that all the allocations of network cores and routers to different
application tasks are given at design time. Various techniques have been developed
to look for the optimal or near-optimal/suboptimal solutions while fulfilling other

performance constraints or design specifications.

2.3.3.1 Exact Mapping

Ezxact mapping uses mathematical programming methods to produce the optimal
mapping of application tasks. Mathematical programming methods minimise or
maximise the objective functions by fulfilling various constraints of distinct and specific
problems. Previously proposed mathematical programming methods for optimal task

mapping mainly use Mixed Integer Linear Programming (MILP) techniques.

In [107], a MILP model has been proposed that decides a task mapping optimising the
trade offs between algorithm execution time, processor resource and communication
cost for heterogeneous multiprocessor systems. It may be the the first to propose
a mathematical programming-based task mapping for multiprocessor systems. It is
a hardware/software co-design and total communication delays are met. A media
application of H.261 processing is used as the practical experiments to successfully show

a correct task and schedule allocation by the proposed MILP model and constraints.

A many-to-many Core-Switching Mapping (mCSM) has been proposed in [108] to
investigate the Core-Switching Mapping (CSM) problem. It optimally maps cores of
an NoC architecture for some real and random application tasks to minimise both the

energy consumption and the network congestion during task execution. The proposed

52 Chapter 2 Literature Review

mapping, as stated, was the first to offer an MILP formulation for the complex CSM
problem, encompassing the suboptimal solutions of core placement, switches for cores
and communication traffic. The experiments compared the proposed mapping with
previous one-to-one mappings, indicating a 81.2% energy saving and 2.5% bandwidth

saving.

The authors of [23] have presented an integrated design methodology to automate all
design steps of application-specific NoCs including core mapping onto NoC topologies,
physical planning (computing core position and size), topology selection, topology
optimisation and instantiation. They have also presented a design methodology to
guarantee Quality-of-Service (QoS) for the application by fulfilling delay and real-time
constraints of the network traffic in the physical planning process. A greedy mapping
is initially used to obtain core mapping onto a specific topology, then compute the
traffic routing between cores to improve the core and switch positions by iteratively
using a robust tabu search. An MILP-based algorithm has been developed to refine the
design area and power as well as satisfying the application QoS. Experimental results
have shown up to 2 times area savings, up to 5 times bandwidth savings and from 1.6
times (switches) to 3.8 times (number of wires) network resource savings of the proposed

method compared to traditional approaches.

A novel MILP formulation for synthesis of custom NoC architectures has been presented
in [109]. Its optimisation objective is minimising the power consumption of custom NoCs
subject to specific performance constraints. The custom NoC synthesis problem has been
addressed by using a two-stage MILP formulation that is split into two subproblems:
system-level floorplanning with the objective of power cost minimisation subject to the
layout constraints, and custom NoC topology generation with the objective of power
cost minimisation subject to the performance constraints. Since the optimal MILP
formulations for the two stages have timed out for quite a few benchmarks, there has
also been a clustering-based heuristic technique designed in this stage to reduce the
unacceptable execution speed caused by the MILP formulation. On average, experiments
have produced 15% energy savings and 4% resource savings of clustering-based heuristics

compared to original optimal MILP formulations.

Since energy issues are becoming critical in modern chip design industry, much work
focusing on energy-aware mappings has been presented. Representative exact mappings
for energy are introduced below. The work in [110] presents an ILP (Integer Linear
Programming) based formulation of the problem for minimising the communication
energy in NoC based CMPs (Chip Multi-Processors) since it is increasingly important to
manage high-level communication and power control. The presented formulations can
select the optimum link set as well as the voltage and frequency of these links, such that
the problem objective of minimising energy consumption can be achieved. Experimental

results have shown that the ILP based solutions produce impressive energy reductions.

Chapter 2 Literature Review 53

An unified approach utilising a Mixed Integer Linear Program (MILP) formulation
for the optimal solution and MILP relaxation as well as randomised rounding for
the heuristic to map application tasks onto heterogeneous NoCs with multiple voltage
operation has been presented in [111]. The proposed mapping aims to minimise
energy costs subject to performance constraints. It involves a unified solution of
several subproblems without compromising the solution time and proposed techniques
for optimal and heuristic solutions. Experiments based on E3S benchmarks and real
media applications have resulted in the near-optimal solutions produced by the proposed

heuristic in a fraction of time required by the optimal solution.

Based on the work in [111], Huang et al.[112] have extended the former existing
Integer Linear Programming (ILP) formulation to consider both processing and
communication energy consumption, exploring the trade off between these two major
energy consumers to seek the optimal mapping from a system point of view. Thereafter,
a Simulated Annealing with Timing Adjustment (SA-TA) heuristic has been proposed
to accelerate the extended ILP optimisation process. The work has reached the goal of
developing efficient algorithms for computing system-wide energy-aware task mapping
onto heterogeneous MPSoC systems. Experiments have proved the extended ILP
formulation has considered the trade off between processing and communication energy
cost but has a slow execution speed to yield the system-level optimal mapping. The SA-
TA heuristic has then been validated to give a considerable improvement in the execution

speed while producing near-optimal solutions, very close to the global optimum.

A novel 0 — 1 Integer Linear Programming (ILP) formulation for application task
mapping onto Mesh based NoCs has been proposed in [113], aiming to obtain optimal
results for the system with the minimisation of energy consumption in a tolerable
execution speed. The proposed method has been tested on six different multimedia
application benchmarks to achieve optimal or near-optimal results within the given
time limit. It is manifest that, however, the network link bandwidth constraint is
not considered in the work. The reported CPU execution speed for different application

benchmarks is too slow to obtain the optimum by using the proposed method.

To overcome the high algorithm execution time problem, the same author has proposed
another work with the introduction of a clustering-based ILP relaxation [114]. The
proposed method uses the previous 0 — 1 ILP formulation to establish optimal task
mapping. If the size of application tasks is too large to achieve the optimum
with tolerable execution speed, the proposed method represents the application by
partitioning original task graph and mesh network into smaller sub-graphs and sub-
meshes to decompose the solution space into smaller polyhedrals. The partition schemes

are either mesh cut partitioning or graph clustering as in [109].

Traffic contention in networks during task execution has become more common as the

amount of processing data has increased dramatically in current industrial designs. The

54 Chapter 2 Literature Review

work in [115] is one typical example of exact mapping concentrating on this issue. In this
work, the impact of network traffic contention on the application task mapping for tile-
based NoC architectures has been analysed using an ILP formulation of the contention-
aware task mapping problem. This mapping technique has obtained the optimal solution
to application tasks with minimisation of the inter-tile network traffic contention. The
ILP approach followed by a mapping heuristic have been proposed together to produce
the near-optimum while satisfying the runtime of application execution. Experiments
have shown the proposed mapping technique gives a considerable decrease in packet

latency with a negligible communication energy overhead.

As observed from the above discussion, the common computational bottleneck of exact
mapping (in particular, the Linear-Programming (LP) based mathematical methods) is
the scalability problem such that the overall algorithm execution time of generating
the optimum of large-size application tasks is intolerable. To alleviate it, many
techniques have been used at the cost of result accuracy reduction (near-optimal or
suboptimal solutions) and other resource overheads such as energy, area, network

resources, communication latency and so on.

2.3.3.2 Search Based Mapping

Another type of static mapping technique is search based mapping, in which various
searching techniques are adopted in the possible solution set to find the optimum. For
the systematic/deterministic search based mappings, the specific searching technique
is that the whole search space in the possible solution set is exhaustively explored to
reach the theoretical optimum. Heuristic search based mappings utilise pseudo-random
searching techniques in exploring the potential solution set based on learned experience
but may return reasonably optimal, near-optimal or suboptimal solutions due to the

limited algorithm execution time for large-size applications.

Systematic/Deterministic Search based Mappings:

Branch and bound algorithms are usually used in systematic/deterministic search
based mapping techniques. They systematically search each option of all potential
topological mappings in tree branches while bounding the unallowable choices to seek the
theoretical optimum. In [92], [22] and [116], the authors have proposed a set of energy-
and performance-aware task mapping techniques using the branch and bound algorithm
for tile-based regular NoC architectures under specified performance constraints through

bandwidth reservation.

In [92], an energy-aware topological mapping algorithm has been developed for generic
regular NoC architectures. It minimises the total communication energy cost while
satisfying specific system performance through bandwidth reservation. The algorithm

firstly formulates the task mapping problem in a topological way, then solves it using

Chapter 2 Literature Review 55

an efficiently modified Performance-aware Branch and Bound (PBB) algorithm. Several
speed-up techniques have also been designed for accelerating the searching process. Some
real-world media experiments have shown the proposed Energy- and Performance-Aware
Mapping (EPAM or GMAP) algorithm combined with PBB algorithm resulting in an

average 60.4% energy savings compared to an ad-hoc implementation.

Besides the proposed EPAM algorithm, the authors have also expanded the search
space and improved the solution quality by exploiting the routing flexibility in regular
NoC architectures in [22]. After the EPAM problem is formulated, a novel routing
path allocation scheme has been produced for the upcoming solving by PBB algorithm
with the objective of efficiently finding out deadlock-free, minimal routing paths while
balancing the network traffic [22]. The scheme has constructed a Legal Turn Set (LTS)
including west-first and odd-even adaptive routings, and XY deterministic routing to
allocate flexible routing paths within reasonable computational time period. The EPAM
algorithm and flexible routing path allocation scheme have been summarised together in
[116]. Moreover, two extensions based on previous work have been proposed to enable
the EPAM or GMAP techniques associated with the PBB algorithm applicable to the

specific NoC architectures with irregular-size regions or pre-mapping IPs.

The above mappings are designed for NoC architectures with a single IP core connected
to a single router, which may cause heavy traffic loads in networks when IPs have
large communication volumes. This may further result in chip reliability problems
due to the high power density of those traffic hotspots. [117] has proposed a novel
mapping to solve this problem. In the work, new Network Interfaces (NIs) have been
proposed, initially comprising several new styles of NIs. Furthermore, a Traffic-Balanced
Mapping algorithm (TBMAP) has also been proposed based on the new NIs. TBMAP
uses a modified branch-and-bound searching algorithm as given in [92], [22] and [116],
mapping tasks with various types of NIs onto 2D-mesh NoCs. The TBMAP has a short
algorithm execution time to obtain more balanced, decentralised traffic loads without
sacrificing the network performance. Instead, non-minimal data routing paths in some

cases become the trade-off for more balanced traffic loads.

The authors in [118] have presented a fast power- and performance-aware task mapping
technique, Elixir, targeted at computing the lowest communication cost with minimum
average latency and power cost. The mapping combines both the bandwidth-constrained
mapping [119] (NMAP, which will be introduced in later section Constructive Heuristics
with Iterative Improvement) and branch and bound search algorithm as stated in [92],
[22] and [116]. Elixir mapping initialises the NMAP mapping to produce solutions, then
proposes a 2-step algorithm to refine the results. Experiments have shown the Elixir
mapping algorithm generates better mapping solutions of real-world media applications
than EPAM and NMAP in terms of average latency, power cost and communication

cost.

56 Chapter 2 Literature Review

From the aforementioned examples, the branch and bound search based techniques
could reduce the overall algorithm execution time of task mappings significantly while
producing the theoretical mapping optimum, compared to exact mappings. Yet these
algorithms may need large buffers and long CPU execution time for searching for the

optimal solution of large-size application mappings.

Heuristic Search Based Mappings:
Many heuristic methods have been presented to solve complex application mapping
problems. They can be roughly divided in Transformative Heuristics and Constructive

Heuristics.

Transformative Heuristics:

Transformative Heuristics usually transform and refine certain existing mapping al-
gorithms in order to acquire better mapping solutions. Several typical evolutionary
techniques such as Genetic algorithm (GA), Particle Swarm Optimisation (PSO) and
Ant Colony Optimisation (ACO) have been reported.

Genetic Algorithm (GA) based Heuristics

A genetic algorithm is a stochastic search algorithm derived from natural processes. By
using natural selection, a certain population of chromosomes has evolved for several
generations, such that the offsprings contain new features caused by either crossover
from two parent chromosomes or mutation from random portion changes from the parent
chromosomes. For evolving the desired optimal results, both the crossover and mutation
operate at controlled rates. The termination criterion of evolution using GA algorithm
is also set upon specific baselines, such as after a certain number of generations or no

improving evolution in the latest several generations.

A 2-step GA based mapping technique for Mesh-based NoCs has been reported in
[95]. It builds a specific communication delay model to minimise the system delay
and overall algorithm execution time especially for large task graphs. By using the
proposed techniques, near optimal solutions to heterogeneous application tasks can be
derived in a short execution time. Specifically, system delay models are initially setup,
followed by a two-step genetic algorithm to solve the vertex mapping problem. Two

genetic algorithms are designed, one for each step.

In [120], a delay computing-model has been presented with a genetic algorithm for
application mapping in 2D-mesh NoC architectures. The GA-based algorithm achieves
near optimal solutions to core mapping with a minimum average delay. In this work,
the delay-computing model captures different data routing probabilities and traffic
contention. Then a genetic algorithm is utilised, based on the proposed average delay
model to obtain optimal solutions within a reasonable time. Experiments with random
traffic in various-sized NoCs have shown an average 20% execution time reduction for

the proposed algorithm compared to random mappings.

Chapter 2 Literature Review 57

A GA-based multi-objective approach to optimise application mappings in Mesh-based
NoC architectures has been proposed in [121]. It is an efficient and accurate approach
based on evolutionary computing techniques, specifically genetic algorithms (GA-based),
to achieve an approximation of the Pareto mapping set that maximises the performance
and minimises the power cost. As the authors state, the work is the first to address the
task mapping problem by using a Pareto-based multi-objective optimal approximation.
With the integration of an exploration framework, including the kernel of an event-
driven, trace-based simulator, the proposed technique requires a very limited number of
configurations to provide an accurate Pareto approximation from the optimal solution

set.

Additionally in [122], the same authors have compared the work with two widely-used,
extended mapping approaches (Branch and Bound and NMAP) in terms of the accuracy
and efficiency of their results, in order to explore the mapping space under a multi-criteria
consideration. In particular, they have extended the Pareto-based branch and bound
approach and the Pareto-based NMAP approach for multi-objective optimisation and
the generation of Pareto-optimal solutions. Another extension of the previous work has
emerged for taking account of dynamic effects in task mapping and evaluation of their

simulating framework.

MOGA, a Multi-Objective Genetic Algorithms based technique has been presented
in[123] to find the optimum from the Pareto-optimal solution set for application mapping
on regular tile-based NoC architectures. MOGA is an energy- and bandwidth-aware
topological mapping technique aiming to minimise the energy cost and link bandwidth
requirements. One-one as well as many-many switch and task mappings have been used
in the proposed technique. Random benchmarks and real-world applications have been
experimented with to evaluate MOGA techniques and demonstrated 70% energy savings

and 20% link bandwidth savings for the proposed work.

CGMAP, a GA based application mapping technique has been presented in [124] and
[125] for Mesh-based NoC architectures. This technique has used a novel Chaos-
Genetic algorithm for mapping IP cores with the objective of Quality of Service
(QoS) improvement in NoCs. Chaotic behaviours are none-periodic, long-term and
sensitively dependent on initial conditions in deterministic systems. They also have
important dynamic characteristics like pseudo-randomness and ergodicity [124], where
the latter characteristic guarantees a chaotic variable to traverse ergodically over the
whole exploration space. This intrinsic feature of a chaotic process makes it promising
to replace the random-based optimisation process in genetic algorithms. Experiments
with both synthetic traffic and real-life applications have shown the proposed CGMAP
technique performs as well as other existing mapping techniques in terms of hop distance,

latency and energy [125].

58 Chapter 2 Literature Review

The GA-based mapping algorithms may suffer from slow convergence as they evolve a
large group of generations to reach the optimal solution. Besides, since the final offspring
in the evolving solution set is often deemed the optimal one, it is quite easy for genetic
algorithms to achieve a locally optimal solution instead of a global optimum, which

impairs the accuracy of the techniques.

PSO based Heuristics

Another transformative heuristic search based mapping is the Particle Swarm Optimi-
sation (PSO) heuristic [126], which is a population-based stochastic search technique
inspired by social behaviours of bird flocks. In a PSO heuristic, each candidate solution
is a particle containing a fitness value in the search space. Many particles coexist and
collaboratively evolve in search space based on the experience of tracking and memorising
the best encountered positions from their own and their neighbours until optimum is

reached. The fitness value of particles determines the solution quality.

PLBMR is a PSO-based mapping and routing technique for Mesh-based NoCs [127]. Tt
aims to minimise the communication energy and normalised worst link load. Two phases
are involved in the proposed PLBMR mapping. PSO has been used in both phases by
building the particle structure and initialising particle generations where the particle
configurations are derived from GA-based models introduced in [120]. Experiments have
compared the proposed PLBMR with random mappings, branch and bound mapping
and GA-based mapping, indicating a variable technique of PLBMR, in mapping problem

solved with balanced traffic load and minimum communication energy.

ACO based Heuristics

The Ant Colony Optimisation (ACO) based heuristic mapping is also a class of
transformative heuristic search based mappings. The ACO technique [128] is a
population based probabilistic technique inspired by the cooperative behaviour of ants
to establish highly-structured routing paths from their colony to a food source based on
low-level information interactions. Once an ant has found a path to a food source from
their colony, other ants, though having very limited interactions with others, are highly
likely to follow the same path. This process is characterised by a positive feedback loop
such that the probability of the same path chosen by other ants after one ant has chosen
it increases with the number of other ants, which is eventually managed by the ants to

establish shortest (optimal) paths.

An ACO-based algorithm has been used in [129] to map application tasks onto 2D-mesh
based NoCs, such that the bandwidth requirement is minimised. This algorithm is a
quadratic assignment problem to figure out near-optimal solutions to the formulated
mapping problem. Certain numbers of ants, generations (iterations) and the probability
between tasks and cores have been initialised to randomly map tasks to cores based on
probability and tabu search. When all ants have been distributed, the one with the most

optimised mapping solution will be updated until a near optimal result is achieved after

Chapter 2 Literature Review 59

predefined iterations. Simulation results have shown the proposed method reduces the

bandwidth usage by 48% compared to random mappings.

Lately, some evolutionary techniques of Hybrid GA, PSO or ACO heuristic mappings
have been researched on complex NoC applications. An Energy- and Buffer-Aware
Mapping (EBAM) [130] gives a GA-based algorithm with a self similar traffic to jointly
minimise energy and buffer on Mesh. A hybrid mapping algorithm [131] based on
PSO-GA and PAO-SA (Simulated Annealing) is proposed on 2D-mesh NoCs for pareto

optimisation of performance and reliability.

Constructive Heuristics:

Constructive heuristics are another kind of heuristic search based mapping that
generate partial solutions to an application task mapping problem consecutively. They
try to constructively yield near-optimal solutions through carefully considering most
characteristics of a mapping problem. Two types of constructive heuristics have been

used for solving application mapping problems.

Constructive Heuristics without Iterative Improvement

This type of constructive heuristics produces an application mapping sequentially based
on pre-defined configurations. It maps the core graph onto NoC topologies. Once the
mapping is placed, there is no change to the core positions. In other words, there will

be no iterative refinement included in this type of mapping heuristic.

Physical Mapping algorithm (PMAP) [132] is a two-phase application mapping algorith-
m for NoC based architectures. The algorithm divides a task graph into clusters and
places them onto processors sequentially without backtracking to lower computational
complexity. Experiments have tested the PMAP algorithm in producing mappings with

efficient communication delays.

SMAP [133] is a simulation environment to address the optimal application mapping
and task routing for 2D-mesh NoCs. The objectives of this mapping technique focus on
minimising average hop distance and link bandwidth of the NoC architectures. In this
algorithm, the core placement of the remaining tasks follows a spiral fashion from the
centre to the boundaries of the mesh platform. Experiments have compared the SMAP
algorithm with a GA-based algorithm and random mappings in execution speed, energy

cost and algorithmic complexity.

BMAP [134], a binomial IP mapping and optimisation algorithm has been proposed
for efficient hardware design of NoC infrastructures. The proposed BMAP mapping
aims to minimise network traffic, hop distance and hardware cost. In the algorithm, a
traffic model used for task mapping has been extracted using a greedy algorithm. Then
three main operations are composed: binomial merging iterations, traffic surface creation

and hardware cost optimisation. Experimental results have shown a 37% reduction of

60 Chapter 2 Literature Review

network traffic load, a 46% reduction of average hop distance and 51% to 85% reduction
of hardware cost in BMAP compared to NMAP [119].

Chain-Mapping (CHMAP) has been presented in [135] as an efficient mapping algorithm
for Mesh-based NoCs. It produces chains of connected cores to help prioritise IP core
mappings. CHMAP considers the communication volume of a serial core instead of a
single IP and generates specifically prioritised core mappings. The algorithm has been
divided into four phases. Experiments with real-world media applications have found
the performance of bandwidth cost by CHMARP is acceptable in comparison with other

mapping algorithms.

Constructive MAP (CMAP) is a fast constructive heuristic algorithm that has been
proposed in [136] for core mapping onto NoC architectures. It aims to minimise the
total communication cost and energy consumption of application tasks. This algorithm
can be used in any size of NoCs as well as many topologies other than the given mesh
network by modifying its evaluation function. CMAP is a hybrid algorithm combining
two mapping algorithms: Link Based Mapping (LBMAP) and Sort Based Mapping
(SBMAP). The solutions from these two mapping algorithms are always compared to
select the best one as the near optimal solution. The accuracy, efficiency and scalability

of proposed CMAP algorithm has been validated using real media applications.

Constructive Heuristics with Iterative Improvement
In this type of constructive heuristics, an initial mapping solution is constructed from
the core graph each at a time based on pre-defined configurations. Then an iterative

refinement is implemented upon the initial solution.

NMAP [119] is a fast application mapping algorithm for Mesh /Torus based NoC architec-
tures, minimising the average communication delay under bandwidth constraints. It has
been presented for mapping with single minimum-path routing and split traffic routing.
Three phases are involved to obtain the near optimal solution by heuristics. Video
processing benchmarks have been tried on a self-built simulation framework to validate
significant savings of NMAP in bandwidth usage and communication cost compared to

other existing algorithms.

Onyx, presented in [137], is a new bandwidth-constrained heuristic method for mapping
cores onto Mesh-based NoC platforms. It minimises the hop counts between IP cores
with less complexity, leading to an improved energy consumption. In Onyx mapping,
unmapped cores are ranked upon their communication bandwidth. Cores with higher
communication bandwidth have been mapped earlier, i.e. they have higher priorities for
mapping. Real-life applications have validated the Onyx algorithm outperform other

existing algorithms in communication cost.

Crinkle [138] is a heuristic task mapping algorithm that also aims to minimise the hop

numbers between IP cores. The name ’crinkle’ is derived from the crinkle moving pattern

Chapter 2 Literature Review 61

this algorithm uses for lowering the algorithm complexity. Priority lists including three
task priority lists and one platform priority list have also been proposed to optimise the
core mappings. Both synthetic and real applications have reported the Crinkle algorithm
performs competitively in execution speed, energy cost and hop counts compared to other

existing algorithms.

A two-step novel and efficient mapping algorithm, called Citrine, has been introduced
in [139]. It produces optimal mappings with the objective of minimising communication
cost and improving the fault-tolerance. A criterion called the vulnerability index has
been defined to evaluate the routing fault tolerance in this algorithm. Citrine combines
the work of Onyx routing path selection in [137] and Branch-and-Bound searching in
[116] to form an efficient and accurate mapping algorithm. A total cost function for
communication cost minimisation and fault-tolerance improvement of Citrine algorithm

has been used to validate these features.

As observed, heuristic search based mapping techniques can always achieve acceptable,
near-optimal or suboptimal solutions to various application task mappings in a
reasonably short algorithm execution time while fulfilling other design specifications.
Compared with other types of mapping techniques, the heuristic search based mappings
have tackled the scalability problem of large-size application tasks at the cost of tolerable

result accuracy.

2.4 A Survey of Current Network Simulators

A common problem of research on network simulations is that the types of interconnec-
tion networks are various and application-specific, such that there is not a generalised
software platform to construct all those systems [85]. For instance, several generations of
simulation platforms for Wireless Sensor Networks or Mobile Networks like SmartDust
[140], Mica [141] and Telos [142] have been developed, but all of them are designed for
modelling and simulation of specific types of networks, which causes high production
costs and a very limited experimental range. NoC simulators have similar problems. To
solve this, a brief overview of modern network simulators is initially presented as the
prerequisite knowledge to subsequent research. After the review, a candidate simulator
is chosen as the backbone platform to extend its functions for further research in the

thesis.

2.4.1 Emergence and Current Classification of Network Simulators

As the technology has advanced, Electronic Design Automation (EDA) has developed
rapidly [27]. Software and hardware co-design in most fields of interconnection network

systems has become feasible and desirable since the fast rise of integration complexity

62 Chapter 2 Literature Review

in interconnected network devices has increased the cost of hardware. This requires
improved automation techniques [14]. Whether current EDA techniques can emulate
network activities and performance precisely enough for industrial product designs has
received high research interest. Using software based design procedures to replace
hardware design methods means that the total production cost and time to market

can both be greatly lowered.

Research attempts have started to investigate this potential technical revolution. As a
result, several simulators at different levels of architectural modelling prior to physical
implementation for modern NoCs have been proposed [143]. With the proposed
concept of NoC architectures, researchers have developed network simulators with on-
chip interconnection models for evaluating NoC system performance. Those network
simulators may originate from various sources. Typically, three main categories of
simulators for NoC designs can be differentiated as per [144]: regular network simulators,
dedicated NoC' simulators and full-system simulators. Some models and tools are also
proposed recently for specific NoC systems for emulating certain metrics or types of
NoC applications. The classification of network simulators for NoC system designs is

illustrated in Figure 2.18.

Network Simulators for NoC |

h J v A4 v

Regul Other Model
e Dedicated NoC Full-System er Vioce’s
Network)) and Tools for
. Simulators Simulators .
Simulators Specific NoCs
h 4) 4) 4 ¥
Nust . Orion,
NS-2, OPNET, ustrum GARNET, GemS5, | oren,
OMNeT++, etc Noxim, e XpipesCompiler,
S NIRGAM, etc.) etc.

Figure 2.18: The Classification of Current Network Simulators for NoC
Simulations

Regular network simulators are not normally designed specifically for NoC systems.
They borrowed concepts from computer and communication networks, such as wireless
sensor networks, mobile networks and server clusters, to simulate NoC systems by
making use of the similarities between general networks and on-chip interconnection
networks. Dedicated NoC simulators are typically designed for NoC simulations.
They mostly abstract high-level models of NoC architectures to emulate data routings
and processing at message level. Certain metrics, like latency, throughput, power and

area of NoC applications, are popularly evaluated their performance by this kind of

Chapter 2 Literature Review 63

simulators with some chosen traffic patterns, topologies and routing algorithms. Full-
system simulators model not only the network characteristics but also details of other
layers like processing cores, cache hierarchy, cache coherence and memory systems. Such
simulators enable the evaluations of exact technical applications on the entire NoC

system, offering system-level optimisation and accurate simulation results.

2.4.2 Regular Network Simulators

Besides previously introduced simulators, some more simulators developed for WSN
or Mobile Networks like TOSSIM [145] and WSNsim [146] are also feasible for NoC
simulations. It is because the NoC architecture is similar to WSN [20]. The codes in
these simulators for specific network formations, various routing algorithms and even
the fault-tolerance models, such as the stuck-at-value model, could be well-suited for
NoCs with a suitable modification to communication module modelling and routing
mechanisms. Moreover, the development language for WSN simulations is the dominant
high-level language in embedded system programming [83], which is also fit to high-level

model extractions of NoC systems.

Network Simulator-2, or NS-2, has been widely used for network simulations [147].
It provides a large variety of models for network modules, topologies, communication
protocols and traffic patterns. It also supports large numbers of network simulations with
respect to simple power models. But the trace file for dynamic behaviour statisticsin NS-
2 is overloaded and over-detailed. Moreover, its energy models are too simple to achieve
accurate result, especially the dynamic power loss in ultra VLSI network designs. NS-
2 uses the C++ language to develop its detailed protocol implementations with high
switch speed [148]. The original version was designed for on-chip networks and a project
called Sensorsim [149] was conducted to extend the NS-2 framework to support sensor

network simulations.

OPNET [150] can generate an optimised hierarchical methodology automatically for
application-specific NoC systems. It provides statistics of on-chip communication
for cycle-accurate analysis and power estimations based on a standard library. It
also leverages the existing tool to adapt to industrial-grade network modelling. The
OMNeT++ [151] simulator can be used to on-chip networks. It supports irregular
topology construction and fast performance results in terms of average throughput and

latency.

Regular network simulators may support flexible and custom NoC designs due to a huge
variety of available protocols and topologies. But their simulation results are often less-
accurate since many of them are not developed specially for on-chip interconnection

networks. Some NoC characteristic models may be absent in these tools.

64 Chapter 2 Literature Review

2.4.3 Dedicated NoC Simulators

Due to the limits of existing regular network simulators in NoC designs, researchers have
been motivated to propose several dedicated NoC simulators. The NoC simulation tool
proposed in [143] presents a SystemC-based NoC simulation environment. It supports
dynamic trace information statistics for accurate behaviour modelling, which enables
irregular network generation. Yet it has no energy models and only provides the

wormbhole routing method.

Another NoC simulator, Nostrum [39], gives a concrete packet-switched communication
protocol stack for offering designers the possibility to customise the functionality of
different structural layers from physical to transport layer with respect to specific

applications. But the simulator lacks a precise energy model too.

A generic, modular and extensible simulator: Network-on-chip Interconnect Routing and
Application Modelling (NIRGAM) is proposed in [25]. It is a discrete-event and cycle-
accurate simulator specifically designed for NoCs. It provides substantial support for
application-specific experiments on modular NoC platforms in terms of latency, energy
and throughput performance. Various options at almost every stage of the NoC design
process are available to be evaluated, which enables the simulator to be easily extended to
include user-specific applications, routing algorithms, switching techniques and network
topologies. On the other side, the NIRGAM simulator needs to improve its functionality

on network simulations of irregular topologies.

Noxim [152] is another NoC simulator developed in SystemC/C++. It provides a
number of user-customised parameters for application-specific simulations. The network
metrics in terms of throughput, delay and power can be evaluated by the simulator. A

special tool called Noxim Explorer is integrated for the design space exploration.

A dedicated NoC simulator written in Java [153] is proposed to offer message processing
at flit level in mesh interconnection networks. It provides simulations with several
popular routing policies, flow control methods and data collection ways. This simulator,
as authors claimed, has the advantage of portability brought by Java in its NoC

simulations.

NoCSEP [154], a framework called NoC centric System Exploration Platform uses a
quasi-formal description language PACMDL to drive its application traffic generator,
which configures the task-graph characteristics of any parallel application. This feature

makes the simulator suitable to optimise application-specific NoC designs.

Dedicated NoC simulators can provide better simulation results of NoC designs than
regular simulators due to their more sophisticated network modelling. But the system

architectures other than network part may be less accurate since only high-level network

Chapter 2 Literature Review 65

models are parameterised, which negatively affects its practicability for full-system

implementation.

2.4.4 Full-system Simulators

To accurately evaluate the NoC system performance, it is important to analyse the
impact of NoC optimisation techniques on full system behaviours because not only
network characteristics but also other micro architectures like memory inside the network
impact the system performance. This fact urges the demand of detailed and accurate

interconnection network models within a full-system framework.

GARNET [155] is such a full-system simulation framework that has a group of micro
architectural modelling like five-stage pipelined routers with virtual channel allocation,
a detailed timing model, a shared and private L2 memory system and other common
network components. GARNET enables system-level optimisation as well as component
modelling of other levels in detail, evaluating the application performance on an entire
system instead of just the network. It can obtain correct simulation results of popular

performance metrics such as timing and power.

Gemb [156] is a flexible, modular full-system platform that can evaluate a wide range of
computer systems. This infrastructure offers diverse models of CPUs, ISAs (Instruction
Set Architectures) and memory systems with multiple execution modes. Currently Gem5
can support most commercial ISAs and capture detailed aspects of processing cores,
cache hierarchy, cache coherence, and memory systems, making it widely used in both
industry and academia. Its appealing features include high flexibility, wide availability

and great utility.

Full-system simulators can give the most accurate simulation results of NoC systems
amongst all kinds of simulators. Yet the operating efficiency of such simulators are
normally the lowest due to their high-complex and thorough system models that are
difficult to accurately implement with fast execution of realistic workloads. Therefore,
the balance between model complexity and simulation accuracy should be carefully

considered for appropriate NoC designs.

2.4.5 Other Models and Tools for Specific NoC Simulations

Besides those general-purpose simulators, there are also several special-purpose models
and tools for NoC system simulations or parametric measurement. ORION [87] [157] is
a power and area model for high-level NoC designs. It is a popular model for performance
estimation of NoC systems at early design stages. Its detailed high-level parametric
abstractions of power cost in major network components help obtain accurate estimation,

which leads to the model being integrated in many modern simulators. For example,

66 Chapter 2 Literature Review

the dedicated NoC simulator, NIRGAM, and the full-system simulator, GARNET, both

use the Orion model for their power evaluation.

XpipesCompiler [158] is a tool to automatically instantiate application-specific NoCs
for heterogeneous Multi-Processor SoC systems. Used in the particular range of
heterogenous CMPs, this cycle-accurate tool is written in SystemC to support reliable,
latency-sensitive operations on optimised network components. All the designed
components in Xpipes are optimised to the custom communication needs of specific
NoC architectures. The XpipesCompiler tool can emulate area, power and delay of NoC

systems.

DSENT [159] (Design Space Exploration of Networks Tool) is a tool connecting
emerging photonic components with existing electronic devices for modelling Opto-
electronic NoCs. It is a unified framework that enables rapid design space exploration
of cross-level network models and inherent interactions between photonic and electronic
components. Such interactions impact on NoC system performance is quantified in
this tool to emulate Opto-electronic NoCs in terms of timing, area and power metrics.
The technology scaling, photonic parameters and thermal tuning of such NoCs are

particularly modelled.

In this thesis, we focus on NoC designs cross a wide range. So the general-purpose
simulators would be of higher utility for the research. Moreover, as our major objectives
are exploring design space at the early design stages, balance between model accuracy
and design productivity is of high concern, which spotlights the fitness of dedicated NoC
simulators as the candidate platform for functional extensions. As per [33], the research
areas of NoC design could be categorised into 4 domains: application modelling, network
interconnection architecture analysis, network interconnection architecture evaluation
and NoC design validation and synthesis. The NIRGAM simulator supports the
realisation of first three domains, which shows the extensibility for requirements of high-
level modelling: fast, sufficient accuracy and suitable complexity. Hence, NIRGAM
is chosen as the candidate simulation platform used in this thesis for implementing

experiments and extending new functions.

2.5 Summary

For designs of interconnection networks, large computations have become an increasingly
demanding task. Parallel and distributed data processing have evolved rapidly, which
introduces novel challenges in network characteristics that need to be tackled. Thus,
the Network-on-Chip (NoC) related issues are firstly reviewed due to their critical
role in future communication-centric system designs. Intolerably large design time
and cost overheads in modern complex interconnection networks have boosted the

fast development of high-level automation techniques to alleviate the design cycles of

Chapter 2 Literature Review 67

prototyping and time to market. This chapter secondly discussed system-level DA
techniques for NoC designs with accurate and efficient modelling of highly concerned
performance metrics. Moreover, partitioning various applications into computational
tasks and mapping them onto various network architectures is significant to the overall
system performance. A survey on current task-mapping techniques in NoC designs was
thirdly conducted to investigate current progress for potential improvement. Finally,
establishing a suitable framework to evaluate system-level models of NoC systems with
a careful balance between accuracy and efficiency is an obvious open issue, such that a

survey on modern simulators for system-level design automation of NoCs was given.

Chapter 3

System-Level Modelling of
Networks on Chip

In this chapter, we firstly introduce the necessity of system-level design automation in
complex NoC system designs. Then, the backbone simulator, NIRGAM, is introduced
and the extended work based on it for most of our subsequent research is discussed.
Next a case study is given to develop a simple one-to-one data transmission system
using an asynchronous FIFO as channel port buffers in the NIRGAM simulator. The
case study inspects the functional feasibility and accuracy of the NIRGAM simulator for
high-level model abstraction and performance evaluation by comparing the power cost
of the same system between its system-level behavioural model in the NIRGAM and
gate-level design in the traditional synthesis design flow under a certain time period of

transmission.

3.1 Necessity of High-level Model Abstraction to NoC

In traditional synthesis design flow of ASIC (Application-Specific Integrated Circuit)
systems, functional behavioural models are firstly developed at RTL (Register-Transistor
Level) and described by popular Hardware Description Languages (HDLs) like Verilog,
SystemVerilog and VHDL based on specific design requirements. The HDL descriptions
of system designs are validated their functionality by introducing a testbench to simulate
the desirable behaviours. Then the functionally correct designs are synthesised to
produce structural models. The generated gate-level netlist of designs are again validated
with extra timing analysis, before being sent to the layout design stage for placing and
routing on a chip. These steps so far are well-known as ’front end’ design flow of ASIC
systems. The 'Back-end’ design flow normally starts from place and route phase. Once

all modules of a complex system design are functionally validated and spatially placed,

69

70 Chapter 3 System-Level Modelling of Networks on Chip

the design will be sent for manufacturing. The whole end-to-end process represents a

popular design flow of digital electronic systems in Figure 3.1 [160].

RTL | o RTL R
Description | " Simulation > Testbench
RTL Synthesis S_t"-' ctu -ral
Simulation

. SDF Timing Timing
Netlist . > . <
Information Simulation

|

Place & Route

Implementation

Figure 3.1: Basic Digital Design Process

For the design stages of simulating, validating and synthesising digital systems, as
shown in the figure, many mature industrial tools like ModelSim [161], Design Compiler
(DC) [162], Synopsys and Cadence products have been developed for years and widely
used. Thanks to these tools, many steps in those design stages have been automatically
implemented or a major part of design workloads has been undertaken, which greatly
improves the design productivity. In particular, the place and route part was the first
to be processed automatically, freeing developers and designers from the heavy repeat
labour of layout drawing. Instead, they can spend more time on designing system

specifications, which is the unavoidable and valuable stage that needs creativity.

However, this popular RTL design flow has faced a severe design challenge with the
increasing complexity of on-chip systems that have more functional units integrated.
The more modules that are integrated in a system, the more complex such a system
will be. This increasing design complexity may lead to intolerably long design cycles
for iterative module refinement and unacceptably heavy workloads of full manual
prototyping, debugging and functional verification, which heavily exacerbate the design

efficiency, productivity and time-to-market pressures.

Chapter 3 System-Level Modelling of Networks on Chip 71

In this case, figuring out new design methods becomes necessary to alleviate such a
conflict between design complexity and design productivity. Developing more accurate
system-level behavioural models of NoC architectures and functional modules using
modern design automation techniques seems a promising candidate to accelerate the
decision of proper design specifications and the simulation of desirable functional
behaviours. It is necessary to validate the model accuracy to obtain intuitive perceptions
of developing advanced and useful DA techniques. Specifically in this thesis, the
backbone simulator, NIRGAM, is examined in terms of its model abstraction for NoC
architectural and functional designs. Existing models and abstractions will be refined to
meet the accuracy requirements. Moreover, extended models will be developed if certain

functions or performance metrics are of a particular concern in the research.

3.2 Extended NIRGAM Simulator

3.2.1 Introduction to NIRGAM

Network-on-chip Interconnect Routing and Application Modelling (NIRGAM) [163] is
a discrete-event, cycle-accurate simulator developed for Network on Chip research. It is
written in SystemC with extensible modules. The NIRGAM simulator supports various
user-designed topologies, routing algorithms and applications that are inserted into the
simulator. Its performance evaluation of simulation results in terms of throughput,
packet latency and power consumption can be generated explicitly by plotting graphs
in Gnuplot or Matlab. Figure 3.2 shows the global architecture of the simulator used in

this chapter.

Orion Power
Model
Configuration - Topology . A4 s
e | ey] gl
NIRGAM
o3 Core Engine Simulation
Application » R |2 [_ g Resultsa‘nd
Library - ore 13 2 g A Analysis
o=
= ~+
Router

Routing Algorithm

Figure 3.2: The System Architecture of NIRGAM Simulator

72 Chapter 3 System-Level Modelling of Networks on Chip

In the figure, configuration files set specific parameters like node attached applications,
network topology, network size, simulation cycles and routing algorithms. The settings
ensures specific network topology from available ones in the topology library and deliver
it to the core engine module. The application library stores user-designed applications
and functional units that will be attached to IP core models of network nodes. The

attached applications are processed and implemented as IP cores when the network is
established.

Once the processed data needs to communicate with other IP cores, the data packets
will be sent to the packet flit converter module for further traversal across the network.
The simulator uses wormhole switching flow-control method for data transmission. Each
packet is split into arbitrary numbers of flits (flow control units) in which a head flit
with destination information, intermediate flits with data and a tail flit are categorised.
The converted data flits transmit across the network via certain router models based on

specific patterns that are decided by the routing algorithm.

The core engine models networks with a number of homogeneous nodes interconnected
in specific patterns. The node structure of regular networks is demonstrated on a typical
3 by 3 mesh topology shown in Figure 3.3. Each node in the network shares the same
structure containing switch router connected by buffers and IP Processing core. The
switcher includes input /output channel controllers, an arbiter, a virtual channel allocator

and a crossbar.

- Ve N
C — —)=
i /

‘ Router Switch Fast”
/ Jd/0
(—() Buffer
| 3 ‘ o
<3
\

IP Core

[1 1

P

\
7 / A"
|)—
N s _/

Figure 3.3: Typical Mesh Network with Homogeneous Node Architecture

In the router, input/output channel controllers manage all input/output channels that
match four neighbour directions of the node plus one direction to the IP core. Buffers
offer store-and-forward functions to incoming or self-generated flit data. If there is no
processing request or data is being processed already by the IP core, the upcoming
traversal direction of flit data will be arbitrated by the arbiter based on routing
algorithms and system configuration. Then the crossbar allocates flit data to relative
output channels. Both data receiving and sending processes depend on the system clock,

which is also configurable.

Chapter 3 System-Level Modelling of Networks on Chip 73

If quality of service is expected to apply in some cases, the capacity of input/output
channels can be altered by the virtual channel allocator to achieve a specific performance.
The virtual channel allocator can divide physical channels into virtual channels to alter
the channel bandwidth based upon the users’ requirements. Once an NoC platform is
established, various user designed applications can be implemented by the core engine
and routed based on selected routing algorithms. NIRGAM can provide versatile
performance metrics in terms of trace-based packet latency, network throughput and
power consumption. In particular, trace-based timing analysis and the Orion power
model are integrated to estimate the application performance in terms of timing and

power.

3.2.2 Extended Work

The extended functional modules and modified models in the NIRGAM simulator for our

research are shown in the red areas of Figure 3.4. The explanation of those modifications

(Hexagon, S

Octagon, Orion Power (Orion-based
8 e——

_ Irregular... Model Energy Model

i

Y

Configuration N Topology N Y o
e » Library > N Testabllfty
Analysis
NIRGAM
0w Core Engine Simulation
o
Applicati 5 0 »| Results and
pL'?Ica on > IP Core »58 > Analysi
ibrary ad ysts
g2 ?
A A = F
Router

(Matrix Multiplication, (Aw,,c FIFO
Time-regulate Model,

MPEG-4 Decoder,
\ Synthetic MSCL ...

/ New algo for B
Hexagon, Octagon,
Irregular;
XY for BB ...

Routing Algorithm

Figure 3.4: The Extended NIRGAM Simulator

are listed below:

e Asynchronous FIFO:
As per the research objectives given in Section 1.2 and Figure 1.2, we firstly explore
the potential improvements in accurate analysis and estimates of system-level NoC
modelling. The accuracy of abstract models in this step has direct performance
influence on the design productivity of subsequent stages. To inspect the model
accuracy at system level, a case study of designing an asynchronous dual-clocked
FIFO as the buffer of router port channels in NoC nodes for data transmission
is given. The FIFO structure is developed at both system level in the NIRGAM

74

Chapter 3 System-Level Modelling of Networks on Chip

simulator and at gate level in a synthesised design flow. The power model in
NIRGAM, Orion, is also extended and refined based on parameters from an
industrial cell library. Both system-level and gate-level FIFO designs are mutually
compared to estimate the performance accuracy of NIRGAM models in terms of
power and timing. The reason for designing asynchronous FIFO in NoC systems

is also explained later in Section 3.3.1.

Orion-based Energy Model:

The energy performance metric is often paid more concern than the power metric
in large-size or long-term simulations of NoC systems. It is because the energy
is tied to specific tasks and the time required for those tasks, which represents
the execution efficiency of systems for given tasks [164]. Thus, to better evaluate
the performance of NoCs for specific applications, we have modified the original
Orion power model in the NIRGAM simulator to offer energy estimates. In
particular, power metrics of data transmitted across core buffers, router switches,
channel ports, channel wires and physical links between node pairs in networks
are transferred into energy metrics. Both dynamic switching and leakage energy
of those network behaviours are included. In Chapter 5, we also add a new energy
metric between the IP core and core buffers to construct a more precise energy

model for performance prediction.

Time-regulated Model:

The time-regulated model is developed in the research of Chapter 4 for efficient
topology emulation. As per the research objectives shown in Figure 1.2, system-
level modelling of NoC architectures is significant to find optimised NoC platforms
for specific applications. The architectural diversity and modelling efficiency of
NoC systems are essential for high-efficiency searching of optimal NoC candidates,
which improves the design productivity in subsequent stages. Hence, we explore
the design space of the second research objective in Chapter 4, proposing an
efficient method to emulate virtual NoC topologies in NIRGAM by attaching a
time-regulated model to existing, reusable mesh nodes. More details of the model

functionality and the emulation method will be discussed in that chapter.

New Non-rectangular and Irregular Topologies:

Several new topologies, including non-rectangular topologies (a honeycomb hexagon
and a sparse-octagon) and relevant irregular topologies, are integrated in the
topology library module of NIRGAM simulator in Figure 3.4. These new topologies
are modelled at system level as a comparison for functional validation of virtual
topologies emulated by our proposed method in that chapter. This functional
extension is to provide design automation of more diverse NoC architectures
at early design stages to improve existing network simulators. The reason for

modelling non-rectangular NoC topologies is explained in Chapter 4.

Chapter 3 System-Level Modelling of Networks on Chip 75

e New Routing Algorithms:
New deadlock-free routing algorithms specifically designed for given non-rectangular
and irregular networks are developed in the routing algorithm module of NIRGAM
simulator in Figure 3.4. This is to ensure fair performance comparisons of those
NoC architectures with the virtual topologies emulated by our method proposed
in Chapter 4. In addition, a modified XY routing algorithm is also developed in
Chapter 5 to adapt to a modified branch and bound mapping algorithm proposed
by our method in that chapter. Detailed explanation of these algorithms and the

experiments they are used for are given in those two chapters, respectively.

e Synthetic and Real-Media Applications:
In all the research of this thesis, it is required to evaluate many applications for
functional validation and performance comparisons. Some of them are synthetic
applications with simple structure and less complexity. The others are real-world
applications with highly complex structure and contents that reflects realistic
scenarios. These applications are designed and stored in the application library
module of NIRGAM simulator in Figure 3.4. In later sections of this chapter, a
pseudo-random number generator is developed to represent classic communication
in NoC systems. In Chapter 4, both synthetic and real-media applications
have been proposed for performance comparisons between different virtual and
real network topologies along various routings. In Chapter 5, synthetic random
benchmarks are further developed for comparative simulations and performance

analysis. Details of these modifications will be introduced in each chapter.

3.3 Case Study: Asynchronous FIFO for NoC Buffer

In this section, comparative experiments between the synthesised gate-level design
flow as shown in Figure 3.1 and system-level behaviour abstractions in the NIRGAM
simulator are used as a case study to inspect the performance accuracy of high-
level modelling in NIRGAM. A simple asynchronous FIFO has been developed in the
NIRGAM simulator to extend the functionality. Based on it, the case study establishes
a small one-to-one data transmission system, which consists of one sender, one buffer
and one receiver, to represent a typical router interconnection in NoC systems. A long
sequence of data traffic will be generated at one node and routed to the other. The

performance and power costs for such data routings is evaluated in NTIRGAM.

As a comparison, our case study also includes a similar data transmission system
implemented by conventional RTL synthesis design flow at gate level. Verilog HDL
is used for initial modelling and functional elaboration. After simulating its behaviours
in ModelSim for functional verification, the designed system has been synthesised in

Design Compiler to generate the netlist of structural models. The gate-level netlist is

76 Chapter 3 System-Level Modelling of Networks on Chip

re-validated the functionality with timing simulations recorded. Power performance of
the synthesised design has been evaluated using Synopsys PrimeTime (PT) tool with the
recorded timing simulations. The same library for power analysis of gate-level design
is used to extract the cell parameters that are imported into NIRGAM Orion power
model. The power costs of both levels of simulations are compared to investigate the

model accuracy of system-level abstractions in NIRGAM.

3.3.1 Necessity and Motivation

Most of the current NoCs are synchronous where all the network components are driven
by one global clock. The synchronous NoCs are fast and area efficient. However, there
are several design challenges in synchronous NoCs that researchers have discovered

to be difficult to resolve.

e Support for heterogeneous networks

Unlike most multi-processor chip networks in which each node is a homogeneous
processor, an MP-SoC is generally a heterogeneous network where the different
IP functional blocks have different functions and hardware structures. These
IP blocks may be designed and validated with different clock frequencies, area
sizes and driven by various working voltages. The IP design and validation
differences increase the design complexity of network topology, compromise the
latency performance of whole networks and make the timing closure of NoC system
difficult [10].

e Low power/energy consumption
As aforementioned, low power/energy cost is one of the most significant factors
in modern NoC designs. Network power/energy consumption determines the
maximum stand-by time of a mobile electronic device. The clock tree of
synchronous NoC systems will consume a significant amount of energy. Thus,
partially asynchronous or globally asynchronous locally synchronous (GALS)
system structure [165] may be one potential solution to mitigate the energy cost,

which requires asynchronous component designs in NoC systems.

e Tolerance to variation
In deep sub-micron/nano VLSI designs, variations of process, temperature and
voltage become significant impact factors on the performance of digital systems.
The variation-caused delay uncertainty in sign-off timing closure will be more
than 30% in 2024 according to the analysis of the International Technology
Roadmap for Semiconductors [166]. Hence, traditional static timing analysis
will be replaced by statistical timing analysis methods to tackle dropping yield
rates and over-conservative timing estimates. Synchronous on-chip networks can

mitigate such uncertainty by considering variations among the task mapping

Chapter 3 System-Level Modelling of Networks on Chip 77

procedure. However, this may work only in homogeneous networks instead of

all network structures and the routers may have to work at the worst-case speed.

To tackle these design challenges, asynchronous functional design in NoCs may be a
useful proposal especially in the communication part of NoC systems. Such designs
are built with clock-less asynchronous circuits using handshake protocols, which are
insensitive to delay. The interface between IP blocks and the network can be unified by
the same synchronous to/from asynchronous interface due to such delay insensitivity.
All synchronous blocks will be isolated by the interface, which enables substantially
simpler chip-level timing closure. Furthermore, the asynchronous design components are
intrinsically tolerant to variations because the communicating handshake protocols they
use are delay-insensitive. Besides, zero dynamic power will be consumed in asynchronous

NoC components if there is no data transmission.

Since asynchronous designs in NoC components are naturally slower and more area-
consuming than the synchronous NoC components that have similar structures, potential
asynchronous designs in high-level extraction simulators need to be carefully considered
for accurate performance estimates. Based on the characteristics of asynchronous
components, an asynchronous FIFO as the input/output buffer in NoC router structures
is a good starting point. Such a FIFO mechanism is one of the most efficient and widely
used methods to synchronise the communication interface of a GALS NoC [167]. An
simple FIFO structure can largely mitigate the speed and area overheads, which may

less degrade the performance.

To our best knowledge, few existing simulators have supported system-level modelling
and performance simulations of asynchronous components. To fill this gap, we are
motivated to implement a system-level dual-clocked FIFO model in the NIRGAM
simulator as the input/output buffers of node routers for design automation of NoC

architectures. More detailed explanations are given in the subsequent sections.

3.3.2 Asynchronous FIFO Structure

Normally, an asynchronous FIFO indicates a FIFO structural design that has the data
values written into it in one clock domain, then read from it in another clock domain. The
two basic clock domains are asynchronous with respect to each other. This structure
is commonly used in many digital IC designs due to its structural simplicity. The
proposed asynchronous FIFO component for NoC design is developed from the design
structure introduced in [16]. As shown in Figure 3.5, the FIFO implements asynchronous
transmission by using Gray code counters as write and read pointers, comparing them

to generate asynchronous control signal for full and empty signal indications.

The full and empty signal generating process is of the highest significance for

asynchronous transmission as well as buffer fetch-and-store activities. Besides, the

78 Chapter 3 System-Level Modelling of Networks on Chip

wdata rdata
» wdata rdata >
FIFO Memory
FIFO FIFO
wptr& winc m rptr&
»| wclken
full wptr rptr empty
wptr » waddr raddr < rptr
. }). .
WICl ,lwinc ring lene
wifull rempt
wptr > rptr pty
wrst_n cmp Ik
——=(rc
~ wrst_n - rrst_n Ge—
(¢
K afull_n aempty_n)
welk
' rrst_n
t
wrstn Asynchronous
Compare

Figure 3.5: The Applied Asynchronous FIFO Structure [16]

correct implementation of the full and empty signals are usually the hardest design
part. The traditional way to correctly implement full and empty signals is to append
one extra bit onto both pointers and to compare them. The approach used in [16] gives
a improved solution with less area. It compares the write and read signals stemming
from two different asynchronous clocks in the comparator unit (shown as CMP in the
figure), dividing the address into four quadrants and determining full or empty status
according to the two MSB (Most Significant Bit) of the counters.

Moreover, the Gray count sequence only changes one bit at one time in order to eliminate
potentially unreliable decoding spikes caused by simultaneous changes on more than one
bit of two asynchronous pointers. The drawback of such modifications is the cost of extra

clock cycles to execute all the operations.

3.3.3 FIFO High-Level Modelling

In this chapter, we test the behavioural and performance accuracy of system-level design
automation by comparing with gate-level synthesised design. Specifically, this is achieved
by implementing the asynchronous FIFO using both the RTL synthesis design flow
and high-level functional modelling in the NIRGAM simulator. For high-level design
automation, the asynchronous FIFO is designed in NIRGAM. More precisely, we simply

develop the asynchronous FIFO structure as a functional extension of network node

Chapter 3 System-Level Modelling of Networks on Chip 79

buffers to replace the default ones, such that the asynchronous data reading and writing
processes are constructed when applications are processed and the NoC topology has
been built up. The asynchronous read and write signals operate based on different clock

domains but both are extracted from the same global clocks.

In NIRGAM, the asynchronous FIFO is used as the input/output channel buffer of node
routers. As shown in Figure 3.6, the network node and router structures are given in
black. Components in red are where the replacement occurs. A normal channel buffer
is replaced by the asynchronous FIFO, providing two clock domains for its two buffer
ports. The operations at the port side that connect to the local node router run under
clock domain 1, which can be asynchronous to clock domain 2 which operates the other

buffer port that connect to the eastern neighbouring node router.

/’ ort
R4 I/O
y Buffer
// . lock Clock

Router Switch | | Wes?'&.
t i |do-@
Buffer
SN
IP Core AN

Figure 3.6: System-Level Modelling of Asynchronous FIFO as NoC router
Channel buffers in NIRGAM

3.3.4 FIFO Gate-Level Implementation

As per the current popular RTL synthesis design process, we initially design the
asynchronous FIFO structure at RTL using Verilog HDL [16]. The functionality of
behavioural FIFO models are validated by writing and simulating a proper test bench
in the ModelSim simulator. The validated design is then synthesised in Design Compiler
(DC). This gate-level design is re-validated its functionality by simulating again in
ModelSim. With the time delay information of the netlist, stored as a Standard Delay
Format file (.sdf file), the FIFO design generates VCD (Value Change Dump) file of

80 Chapter 3 System-Level Modelling of Networks on Chip

the simulation. The VCD file with its timing simulation and the netlist file with its
structural description are imported into Synopsys PrimeTime (PT) for power analysis.

The whole design, synthesis and implementation flow is elaborated in Figure 3.7.

Behavioural Models
of Asyn FIFO

Into Modelsim ‘ Test Bench ‘

|

Functional
Validation

r»
No /{k

~ Correct?

Cell Library,
Constraint
Yes Settings, etc
Into DC
A 4
Design
Synthesis

—>

No l Cell Library,
_— T Parameter

ﬂ:}ec‘/ Settings, etc

Yes

v L 4

Structural models |
and SDF file

| A

Into Modelsim

v
Functional Test Bench with
Validation VCD recording
No v

- —
— e
~ Correct? =

Into PT—| Power Analysis

'

Yes
X Into PT
‘ Gate-level Netlist |

with VCD file

Figure 3.7: Gate-Level Synthesis and Power Analysis Flow of Asynchronous
FIFO

Chapter 3 System-Level Modelling of Networks on Chip 81

3.4 Model Accuracy Analysis

In this section, the performance of the system-level system in NIRGAM is compared with
the gate-level design. In Subsection 3.4.1, functionality of the given asynchronous FIFO
is validated at gate level. In Subsection 3.4.2, a one-to-one transmission system using
this asynchronous FIFO is designed at both levels. Their performance are compared to

inspect the accuracy of system-level models.

3.4.1 Gate-level Asynchronous FIFO
3.4.1.1 Experimental Setup

In this subsection, the synthesisable gate-level FIFO structure given in Figure 3.5 is
verified for proper data storage and fetching under different clock cycles. A test bench
is developed for the functional validation. The asynchronous FIFO at both gate level
and system level has 32-bit data size and 8-bit address size. The FIFO memory is 256
x 32 (Memory Depth x Memory Width, the memory has 2249rsiz¢ — 28 — 956 entries
and each entry is 32-bit wide). The proposed gate-level designs, including FIFO and
transmission system, are all implemented by using the cell library of TSMC (Taiwan

Semiconductor Manufacturing Company) 90-nm technology.

As per [10], asynchronous designs often cost more area and operates at lower speed in
NoC designs. The operating frequencies applied in state-of-the-art asynchronous FIFOs
for GALS NoC routers are around 340 Mhz [167] to 1.13 Ghz [168]. Hence, the write
clock frequency (wclk in Figure 3.5) for both levels of designs in our case are all set to 1
Ghz (1 ns/cycle). In the gate-level FIFO, the read clock frequency is set to 625 Mhz (1.6
ns/cycle). The read clock is initiated a little later (about 0.3 cycle delay) than the write
clock, which enabled staggered writing and reading behaviours to be observed. Clock
jitter is also designed in the test bench for the rclk signal. The jitter insertion is set in
test bench file to have floating small values ranging from —0.2 to +0.2 ns/cycle adding
to each cycle of read clock, making its values between 1.4 ns/clock to 1.8 ns/cycle. The

verilog codes for inserting the jitter to the clock signal is shown in Figure 3.8

The warm-up simulation period in both gate-level and system-level designs is set to 5
cycles. The total length of simulation time period is 100,000 cycles. After the warm-up
period till the end of simulations, a pseudo-random number generator is given in the test
bench to feed continuous random unsigned numbers with 32-bit width and ranging from
0 to 232 — 1 as the input data. This traffic represents common network communication
behaviours in NoC systems. The functions of the asynchronous FIFO for validation in
our case include correct data transmission under different clock domains and/or jitter
insertion, correct stop reading/writing data from/to FIFO memory when FIFO address

is empty /full. All situations are tested under post-synthesis netlist simulations.

82 Chapter 3 System-Level Modelling of Networks on Chip

‘timescale 100ps / 1ps // time unit/time precision

//define the time scales

//welk: 1000Mhz = 16 = 1 ns/cycle && rclk: 625Mhz = 0.625G = 1.6 ns/cycle
“define WCLK 10

“define RCLK 16 //with jitter

//rclk with jitter

initial
begin
rclk = 1'b0;
forever
begin
//give jitter wvalues between -0.1 and 0.1 ns per half cycle
rclk = 1'b0;
("RCLK/2 + Sdist uniform(seed,0,1));
rclk = 1'b1;
#("RCLE/2 + Sdist uniform(seed,0,1));
end
end

Figure 3.8: Verilog Code for Jitter Insertion in Test Bench

3.4.1.2 Result Analysis

For functional validation, the asynchronous FIFO is firstly simulated for basic, normal
write and read operations in Figure 3.9. Arrows in this figure, as well as in subsequent
figures in this section, indicate each relevant signal of the simulations, rather than one
specific number of the sequence. From the arrow indicators, it is seen that a sequence
of random numbers is fed into the FIFO as inputs on each write clock cycle. Once the
read enable signal goes high, the FIFO starts to output the stored numbers based on
the read clock cycles. The write and read clock signals are of the same frequency but
fed to the FIFO with staggered time stamps. This netlist simulation result shows the

correct functionality of an asynchronous FIFO.

£ FIFO Input (Decimal
-4 ffifol_th/wdata |32'd112818957EFIAN) 'd303..-32'd10... [-32'd0.. [-32'd)3.. 1320112 J32'd

18.. J32diz.. J32dis..

. 132'dﬂ§§... 132'd1na.. I3

+) 4 ffifol_tb/rdata | 32'd303379748 32140 I 32

4 fiifol _tb/wiull 1'b0

ffifol_tb/rempty |[1'b0 nput (Binary 1

o4 ffifol_tb/wdata |32'b000001 I —_[32%5000._)321 mmf }gg‘ggﬁgrrrlzmm J32b101_ 326100
fiifol_tb/welk | | I [S I N e Y

ffifol_tb/winc
fifol_tbiwrst.n |11 Write Clock #ﬁo Output (Binary]
'b000... 3.

ffifol_tb/rdata S 35500000000000000000300000000000000 '110... J32'b100... 326101 |3
fifol _tb/rclk '
fiifol_tb/rinc f ! Read Enable

I S g S Iy —
fifol_tb/rrst_n
Read Clock

!

2'b000... [32'b010... |

seabvvrrrnren borvrrerenberrrcceenbevrrcreecbrrorornon bovrnnna i
Now | 100000000 ps FRRY 6000 ps 8000 ps 10000 ps

8 cusor1| 9800ps 9800 ps

il '
12000 ps 14000 ps

>

Figure 3.9: Functional Verification of Asynchronous FIFO

Without changing clock settings, we set the test bench to let the asynchronous FIFO

only write data into the memory until the addresses are fully occupied. Then the read

Chapter 3 System-Level Modelling of Networks on Chip 83

operation is allowed to output data from FIFO memory. Figure 3.10 shows the correct
behaviours of the asynchronous FIFO under this scenario. Those arrows shown in the
figure represent signals that are used in this simulation. It is observed that the write
full signal goes high when the memory is full. After that, the FIFO stops writing data
into the memory. Once the read enable signal goes high, the FIFO starts to output the
stored data. When the memory addresses are released due to the output operations,
the write full signal goes low again and the generated random numbers continues to be
input into the FIFO.

[LZ°H FIFO Input (Decimal 1
ffifol_tb/wdata |32'd902676331 EINE EX-M E1NE E1NE = | EINREIN 1:3; dqngg'lsaa I 131 N
ffifol_tbjrdata [32'd0 32'd0) EFIN EET EET= ECTN 7T £ 710 £ EETW T
ffifol_th/wiull [1'b1 Memory Eull FIFO Output (Decimal) |
ffifol_tb/rempty [1'b0 FIFO Input (Binary

4 _ [fifol_tb/wdata |32'b001101.. 1321321321320 r..132...[32/b00110101110011011011111101101011 132103232 3af
fifol_thwclk |11 Sy Sy Iy o Ny Sy O L1 riririririr
ffifol_tbjwinc 1'h1 Nrite Clack 1 [
ffifol_tbwrst n |11 Q FIFO Output (Binary)

SR G ICTCEER EPL ISR 32'h0000000000000000 00000 3232 132732 2...1(%'2-,,,):‘521,,:(23
fifol_tb/rclk 1ho LT LT L T LT LT LT T H)
ffifol_tb/rinc 1'ho Read Clock Read Enable
ffifol tbjrrst n |11

ool a1 I [[o [[o b o [
Now |100000000 ps EPEPRILE 256000 ps 260000 ps 264000 ps 268000 ps 272000 ps
260500 ps 260500 ps.

Figure 3.10: Functional Verification of Asynchronous FIFO with full memory

To test the FIFO functionality with jitter insertion, different write and read clocks (1
ns/cycle and 1.6 ns/cycle) are configured. The jitter is inserted at the read clock signal
as Figure 3.8 shows. The simulation result is given in Figure 3.11 with arrows indicating
As illustrated, the fed data inputs are successfully stored in the FIFO

memory and correctly output under separated clock signals. It is observable that the

each signal.

write and read clocks are not only fed at staggered time stamps but also with different
cycle length. The clock jitter arrow indicator presents the unequal length between a
pair of read clock cycles, suggesting the successful jitter insertion. As the write and read

operations function correctly, the FIFO under asynchronous clocks with jitter insertion

is validated.

(I FIFO Input (Decimal
ffifol_tb/wdata [32'd15983361 PEFIGL] 32d303._[52'd10- I-zz’%n 52415 |5zdiie. (320118 \-32dl2. J-32d10.. |32d 55 " _3zds12. |
ffifol_tb/rdata |32'd3033797 48PN] 132'd303379748 32'd1064739199 |)-3...
fifol_th/wiull |1'b0 | [| imal
ffifol_tb/rempty |1'b0 FIFO Input (Bin: 1 |
-4 ffifol_tb/wdata |32'b000000.. 32'600000... [32'b000. . m,,l(az'h!lim,,hz'b 01.. 132'bd00... {32'b010... J32'b101... 132'b100... [32'bG00.. Izz'btj_ﬁn,,, hz-hd:m, [32'hdoo. .
ffifol_tb/wclk 1b1 L I [S (S) S
ffifol_tbjwinc 1'h1 Write Clock
ffifol tbiwrst n |1'b1 _? FIFO Output (Binary)
SRS ESE EFLG T 32'b00000000000000000000000000000000 [32'b0001001000...]32'b1100000010...}32...
fifol _th/rclk 1h1 1 | 1 [1 [1 I
ffifol_th/rinc T'h1 Read Clocdl Read Enable
ffifol_tb/rrst n
Clock Jitter
||||||| Tovvnnrvnabevennnibviniinenn b R R N R N e N N N N
Now |100000000 ps 6000 ps 8000 ps 10000 ps 12000 ps. 14000 ps 16000 ps
13500 ps
[- >l

Figure 3.11: Functional Verification of Asynchronous FIFO with Clock Jitter

84 Chapter 3 System-Level Modelling of Networks on Chip

Figure 3.12 shows the functional validation of the asynchronous FIFO with full memory
and jitter insertion. In the figure, the clock jitter is again inserted into the read clock
signal. The memory full signal goes high and the FIFO stops writing when the FIFO
memory is full with the continuous random numbers. Then the read enable signal is set
to high so that the data stream is output sequentially to release the memory addresses.
As shown, the FIFO starts to input data and the memory full signal goes low after the
read operations start. All the mentioned signals are given by the arrows in the figure.

This process validates the expected functions achieved by the asynchronous FIFO.

1FO Inpu lDe:ima-u%)
[Bl SWCIVEEIC EPRSETRGERS | (3] (3], [3). 32! [32}..1-3]. J-3] [32!d902476331 I 132] X—srdsszﬁnosab 132
B-“ ffifol_tb/rdata 32'do 32'd0 1324 J-32'd1o,.. [-32'd207]. J-32°d13.] [32'd11
3 ffifol_thiwiull femory Ful ﬁ_l [Tl
4 ffifol_tb/rempty |1'b0 FIFO/Inp i FIFO Output (Decimal|
B4 ffifol_tb/wdata |32'b001101..] - e 2 [5101110011011011111101101011 323211 0111,?3
4 fifol_tbwek [1b1 L rirr e e riereri LI r1ri L
4 ffifol_tb/winc 1'hl te Clo [
4 ffifol_tbjwrst n |1'b1 MPFFIFO Output (Binary)
o4 ffifol_tb/rdata 32'b000000... JFFE 90000000000 000000000000000] 1320000 [32'b110... | 32/b1000... 1 32'b10L... [32'B00...
“ ffifol_tb/rclk 1ho | [yl | N I | | Sy U1 8 S Iy O Ny N [
4 ffifol_tb/rinc 1'ho :k’ ’ Read Enable
#_ ffifol_tb/rrst_n 1hl }
Clock Jitter
Now 100000000 ps [N ‘zslsolou'psg R ‘za‘ooloolps' " Seaooops ' besooops e 272000ps e 276000ps_

Cursor 1 260500 ps 260500 ps

TSET 1 SIET =

Figure 3.12: Functional Verification of Asynchronous FIFO with Clock Jitter
and Full Memory

From the above simulations, it is notable that the designed gate-level asynchronous
FIFO performs correctly under various circumstances. In particular, the clock jitter has
not disturbed the performance. This feature is useful for comparing to the system-level
design because the FIFO in NIRGAM has no clock jitter model. Hence, to obtain a
fair performance comparison, no clock jitter is inserted in both system-level and gate-
level system designs given in the next subsection. Similarly, NIRGAM has different
clock signals but both are derived from the same global clock, which results in the same
cycles for both clocks. Therefore, the write and read clocks of the one-to-one system
designed at both levels in the next subsection have equal cycles and the same staggered

initialisations for the fair comparison.

3.4.2 Data Transmission System

3.4.2.1 Experimental Setup

In this subsection, one-to-one transmission system using the given asynchronous FIFO
is designed at both gate level and system level for performance comparison. For the
system-level design automation and modelling in NIRGAM, the transmission system is
used with the asynchronous FIFO as one router port buffer. A 2-by-2 2D-mesh network,
which is the smallest network available in NIRGAM, is given in Figure 3.13. A sender

and a receiver of the asynchronous system are implemented onto specific network nodes

Chapter 3 System-Level Modelling of Networks on Chip 85

(RO and R2) as attached applications. The other two nodes are used just for the topology
formation and thus excluded from the experiment. Each network node consists of an
IP core and a router that connects to other nodes by linking channel ports on their
routers. Each router has five directional ports for data communication in the network
and each port has a buffer constructed by a synchronous FIFO. The FIFO size used for
port buffers in NIRGAM NoCs are the same as the RTL asynchronous FIFO used in
the last subsection (32-bit data size, 8-bit address size, 256-bit FIFO memory depth).

Domain 2 i

>
East West §
«—

Router

———

/f =, e
Figure 3.13: High-Level Asynchronous Transmission System designed in
NIRGAM

In our comparative experiment, the eastern port buffer of router on the sender node R0
is replaced with the proposed asynchronous FIFO. A pseudo-random number generator
with the same settings (32 bits/flit, 1 cycle/flit) as in the last subsection is modelled in
the TP core of the sender node. Its generated data stream is stored to the core buffer
under the write clock (clock domain 1, the same as the input clock of asynchronous buffer
in Figure 3.13) for feeding a data sequence to the asynchronous port buffer as the traffic
flow. The simulated traffic transmission process in the system-level asynchronous system
is shown as the red line in Figure 3.13. Once the random numbers are fed as data flits to
the asynchronous port buffer, the FIFO memory stores data under the write clock and
fetches data from the memory under the read clock (clock domain 2). Data flits out of
the asynchronous port buffer leave the sender node R0 and are routed to the input port
at the receiver node R2. Under the same read clock, the input port buffer synchronously
stores the incoming data to its memory. Hence, this transmission process separates the
working frequencies for network communication part (R0 node router to R2 node router)

and in-node processing part (R0 IP core to R0 router), performing asynchronous data

86 Chapter 3 System-Level Modelling of Networks on Chip

transmission across different functional blocks. The power cost of the asynchronous
FIFO at the RO router is measured. Specifically, the transmission behaviours of sending
data from the RO core buffer to the asynchronous FIFO, and outputting data from the

asynchronous FIFO at RO router buffer to the R2 router buffer are exercised.

As mentioned at the end of the last section, the clock settings in the transmission
system designed at both levels are the same. (It is noted that the the clock settings for
the transmission systems designed at both levels in this subsection are different from
the settings of the gate-level asynchronous FIFO given in the last subsection.) So in
the high-level design, both write and read clocks are set to 1 ns/cycle with about 0.3
ns staggered initialisation time stamps for clear observation. The total simulation time
lasts 100, 000 cycles with the first 5 cycles as warm-up period, which is the same as the
RTL simulations. The power performance of the data transmission is simulated by the
integrated Orion power model [87] [157]. All the high-level models of the asynchronous
system in NIRGAM for power performance emulations are based on the same cell
library used for the RTL asynchronous FIFO and transmission system designs (that is,
TSMC-90nm library). We have extracted the cell parameters of the library to replace
the original settings in Orion models to ensure the accurate measurement of power
performance at system level. In our experiments, the power measurement of the entire
transmission process in NIRGAM starts from the generated random numbers inputting
to the asynchronous port buffer of the sender node router as the data transmission, and
ends at the storage of the final data of random numbers at the port buffer memory of
the receiver node router. The average power cost of transmitting those random numbers

is simulated for result comparison.

In a gate-level asynchronous data transmission system, one sender, one receiver and one
asynchronous FIFO as their buffer are involved for data communications. The structure
of the whole system is depicted in Figure 3.14. Design processes of synthesis, simulation
and power analysis to this gate-level system is implemented according to the design
flow given in Figure 3.7. All the simulation configuration and settings are the same as
the high-level system design in NIRGAM. The power cost of data traffic simulation is

reported in PrimeTime.

As shown in the figure, the sender and FIFO are in one clock domain, which is write clock
(wclk), while the receiver is in the other clock domain, which is read clock (rclk). Since
the power cost of generating a data stream at IP core and transmitting to the core buffer
in the system-level design is not measured in NIRGAM, the gate-level asynchronous
transmission system should also exclude the hardware of random number generator to
maintain the consistency. Hence, as in the FIFO experiment in Subsection 3.4.1, the
data of random numbers comes from the test bench. The whole process where the
average power cost of transmitting all the generated random numbers is measured at
gate level consists of sending the random numbers from the sender to the asynchronous

FIFO (corresponding to the data sending from core buffer to asynchronous port buffer of

Chapter 3 System-Level Modelling of Networks on Chip 87

send ‘ ‘ [32:0] calresult
‘ Top-Level ‘:
Write | .| Read
welk Clock | "I Clock rclk
rst
vy l rst A J rsti h 4
[31:0] wdata [31:0] rdata
Sender I P Receiver
| winc .| Asynchronous | rinc |
- FIFO
wiull rempty
welk »> e relk

Figure 3.14: Gate-Level Asynchronous Transmission System for Performance
Comparison

sender node in the high-level design), fetching data from the asynchronous FIFO memory
to the receiver (corresponding to the data output from sender port buffer to the input
port buffer of receiver node in the NIRGAM design) and receiving these numbers at
the receiver (corresponding to the data stored to the input port buffer of receiver node
in the NIRGAM design). This transmission process is similar to the simulation in the

high-level NoC design for measuring the average power costs.

3.4.2.2 Result Analysis

Figure 3.15 demonstrates experimental results of the gate-level synthesised asynchronous
transmission system. The functionality of the system after synthesis is validated in
Figure 3.15(a). Arrows in the figure indicate all the signals used in the experiment.
As shown, the system can correctly input a continuous number sequence fed from test
bench under the write clock and output them from the system under the read clock. It
is seen that the whole simulation process lasts 100,000 cycles with two clocks both at
frequency 1 Ghz and staggered by 0.3 cycle. No jitter is inserted. The power cost by
this gate-level system during such a simulation process is shown in Figure 3.15(b). The

result unit is Watt and the report is generated in PrimeTime after a power analysis.

For the NIRGAM high-level asynchronous system shown in Figure 3.13, a similar
simulation process is implemented based on the same settings as the gate-level system.
The power performance of the system-level system is measured by the modified Orion
power model. The performance result is generated and automatically saved in the

simulator, which is illustrated in Figure 3.16.

To explicitly analyse the performance comparison, Table 3.1 lists the power results of the

asynchronous transmission system designed at both levels. It is observable that both

88 Chapter 3 System-Level Modelling of Networks on Chip

L= System Input (Decimal)

o4 ffifo2_tb/wrdata " s 1 [32'd . |-32'd10647. [-32'920716... [32'

B4 [fifo2_tb/calresult \ g0 | %j:\lhih l
4 [fifo2_tb/wclk 1 nput (Bihary

-4 [fifo2_tb/wrdata 0 0
4 [fifo2_tb/rclk

B4 [fifo2_tb/calresult d 32'b0000000000000000000000000300000!
4 [fifo2_tb/rst
4 [fifo2_tb/send

£ [fifo2_tb/inst uywrdata |32'b010001101 'b00000000000__. [32'b00010... lszmiﬁnn,, 32-b1qlpnn,,, 3210110]32'500) 3201000 32510110 [32'610001.

B-“~ [fifo2_tb/inst_ul/calres... |32'b000000000.. 00000000000000000000000000000000 1 [32'boo01 1321100 132'b1000 T

[fifo2_tbfinst_uliwdata |[32'b000001101 32'b00000000000000000000000... i ... }32'b11000. 32'b10000... [32'b10110. 32'b00000... 32'bDlEDD... 32":10&10... 32'..
/ffifo2_tb/inst_ulrdata [32'b000100100.. g j00000000000A00000! 132'b0001 [32'b1100 132'b1000 132'b1011 T

G o
14000 ps 160¢

Vo ['
8000 ps 10000 ps 12000 ps
12500 ps

=

(a) Functional Verification of Gate-Level Asynchronous Transmission System

Attributes

1 - Including register clock pin internal power
u - User defined power group

Internal Switching Leakage Total

Power Group Power Power Power Power (%) Attrs
io pad 0.0000 0.0000 0.0000 0.0000 (0.00%)

memo ry 0.0000 0.0000 0.0000 0.0000 (0.00%)
black_box 0.0000 0.0000 0.0000 0.0000 (0.00%)
clock_network 0.0000 0.0000 0.0000 0.0000 (0.00%) i
register 0.0000 0.0080 0.0000 0.0000 (0.00%)
combinational 7.362e-04 5.652e-83 1.304e-05 6.401e-03 (4.69%)
sequential 0.1287 1.230e-03 5.751e-05 0.1300 (95.31%)

6.882e-03 { 5.04%)
0.1295 (94.90%)
7.055e-05 (0.05%)

0.1364 (100.00%)

Net Switching Power
Cell Internal Power
Cell Leakage Power

Total Power

(b) Power Cost of Gate-Level Asynchronous Transmission System in PrimeTime

Figure 3.15: Functional Verification and Power Cost of Gate-Level
Asynchronous Transmission System

1hile 1D Power estimation
2

30 0.0620325

41 0

52 0.0618104

63 (6]

7

8

9 Total Network Power(In Watt):®.1238429

Figure 3.16: Power Cost of System-Level Asynchronous Transmission System
in NIRGAM

results are so close that less than 10% error is achieved. More specific, the power
simulation of high-level system design in NIRGAM is merely 9.24% short in result
measurement with respect to the power analysis of RTL synthesis system, indicating
high model accuracy in the NIRGAM simulator for automating the asynchronous

transmission at system level.

Chapter 3 System-Level Modelling of Networks on Chip 89

Total Power (W) | Result Error
System-Level Design in NIRGAM 0.1238 9.94%
Synthesised Gate-Level Design 0.1364 R

Table 3.1: Comparison of Power Costs of Both Levels of Designs for 100, 000-
cycle Data Transmission

3.4.3 Result Analysis of Case Study

By launching this case study, several conclusions can be drawn as follows:

1. Compared the simulation results of system-level modelling in NIRGAM to the
RTL design, the performance error in terms of power cost along a long-term
experimental time is small, indicating high accuracy of the system-level models
in NTIRGAM. This high accuracy of high-level models comes from the thorough
abstraction of the system behaviours and structures. High consistency of the
modified Orion model and the RTL cell library also contributes to this accurate
comparison. However, although most of the cell parameters used in Orion model
(cell width, length, capacitance, transistor types etc) have been unified with the
RTL cell library, some cell settings in the library (parametric settings under various
temperatures and noises) are still unmatched within the Orion model, which causes
this trivial error in simulation results. Besides, since the average power costs of
transmitting random numbers are measured in the simulations at both levels, the
slight difference of total switching activities achieved in the high-level NIRGAM
simulation and the gate-level simulation also impact on the error between their
measured results. A potential solution to those potential reasons that cause the
result error is extracting more parametric and environmental settings into high-

level models.

2. In the FIFO experiments of Subsection 3.4.1, it is observed the clock jitter insertion
has not disturbed the functional performance. But the power performance may
vary since many components of an on-chip network (like crystal oscillator, PLL
(Phase-Locked Loop), clock buffers, wire coupling and so on) may cause clock
jitter. But it is unfortunate that NIRGAM cannot implement clock jitter since
the high-level model of relevant components like crystal oscillator is absent in
the simulator. This lack makes it unable to measure the influence of clock
jitter to the performance of system-level designs. A possible solution is to
improve the high-level automation in NIRGAM with extra models that includes

description/abstraction of more realistic scenarios.

3. The asynchronous FIFO structure used in our case study is derived from previous
work in [16], which is a good starting point to develop high-level models of GALS

NoCs. Yet it is also witnessed in our case that larger memory space is allocated to

90 Chapter 3 System-Level Modelling of Networks on Chip

the asynchronous buffer rather than synchronous ones in NIRGAM, which is one
trade off for the asynchronous function. Recent research [167] has suggested that
the large area cost of the FIFO memory may make this kind of FIFO start to be
less suitable as network routers due to the tightening area budget in modern NoC
designs. Advanced asynchronous FIFO structures may need to investigate. Hence,
finding more suitable asynchronous NoC components and accurately modelling

their system-level design automation would be the further research.

3.5 Summary

For the contributions of this chapter to the thesis, we have extended the functionality
of the NIRGAM NoC simulator. The performance estimate models in NIRGAM are
modified to enable evaluations of either power or energy performance. A new FIFO
functional module is developed to enable an asynchronous buffer at specific network
nodes for system-level modelling. Based on the asynchronous FIFO, a case study
of asynchronous data transmission system has been built up at both system level
in NIRGAM and gate level. The performance simulations in terms of power cost
within a certain time period are compared to validate the accuracy of system-level
models. The Orion power model integrated in NIRGAM has been modified with the cell
parameters derived from RTL synthesis technology library to calibrate the performance

measurement.

The power result of the asynchronous transmission system simulated by system-level
modelling in NIRGAM is close (less than 10% error) to the gate-level post-synthesis
system, indicating high accuracy of our system-level models developed in the simulator.
Through the error in our case is small, its possible solution is also discussed, which

suggests two potential directions for improving the high-level design automation:
e refining the abstract models with higher accuracy and more detailed features;
e and constructing more generalised and representative models that cover more

realistic scenarios.

These two potential directions have underpinned our ongoing research in subsequent
chapters. Specifically, the research in Chapter 4 is based on the first direction and the

work in Chapter 5 is based on the second direction.

Chapter 4

Efficient Modelling of

Non-rectangular Topologies

A proper network topology has great influence on system performance [3]. For
instance, hexagonal topology is used in cellular networks for maximal coverage area
of communication, and irregular topologies are used in Wireless Sensor Networks to
make full use of the 3-dimensional space. In designing these different kinds of networks,
finding proper network architectures to specific applications is usually an important
stage to optimise since the total number of design cycles can be reduced if proper
network topologies can be quickly found and accurately verified at system level. Thus,
efficiently simulating the performance of different network topologies at system level
could facilitate the search of a proper network for a specific application. However, most
current high-level simulators only provide performance simulations to Manhattan-based
topologies due to the easy implementation. It is difficult to automate non-Manhattan
and theoretical non-rectangular networks which have different configuration and are used
in various industrial fields. These network topologies have to be specifically developed
in simulators. If there more such custom network topologies are to be developed, more
time is needed to find a proper one. Hence, to accelerate the process of searching
proper networks, we propose a technique to enable a quick check of the energy and time
performance of non-Manhattan and theoretical non-rectangular topologies for specific
applications by emulating data transmission of those topologies on a regular mesh instead
of developing the networks one by one. Our technique models non-Manhattan and non-
rectangular topologies on a grid-based NoC simulator NIRGAM to reduce the design

cycles of simulating these different topologies.

As per [25], [169] and [6], a topology with a small diameter, small node degree and
large bisection width is generally preferred to offer high throughput, low latency and
energy performance, which is ideal to most applications. Yet such an ideal topology

is hard to implement since trade-offs between hardware design cost and performance

91

92 Chapter 4 Efficient Modelling of Non-rectangular Topologies

always exist. For example, a higher network degree refers to more channel links in a
network node that leads to higher network throughput. But the design complexity of the
more complex router structure and the extra area required for the router is increased.
For this reason, a two-dimensional mesh is one of the most common topologies used
by many automation frameworks for performance simulations due to its modularity
and straight-forward layout. Other topologies, especially application-specific ones, are
often customised for given applications, resulting in more desirable performance of the

networks under specific scenarios.

To reduce the long design cycle, current researchers create different networks at system
level and evaluate their performance in simulators for fast selection. However, modern
simulators only support the automation of several popular architectures (like Mesh,
Crossbar and Torus), leaving many custom topologies to be developed specifically.
Considering this, we are motivated in this chapter to alleviate this gap between
demands and simulator supports by using modern design automation techniques. As a
result, high-efficiency modelling for virtual topologies is developed based on a modular
mesh network, offering a fast emulation of specific custom topologies and routings
with precise timing and energy performance simulations. Such a fast emulation is
achieved by allocating different packet sending intervals and waiting time spans at
different Mesh nodes to emulate the performance of different network topologies. The
topological emulation reduces the design cycles in selecting custom topologies for specific
applications. To validate our approach, two non-rectangular topologies, a honeycomb
hexagon and a sparse-octagon, and two irregular topologies are explored by using our
method as the examples. Their performance is also compared with the real networks for

functional validation.

4.1 Introduction and Motivation

Modelling appropriate NoC network topologies for different applications greatly impacts
on system performance and design cost [3]. In modern design automation tools, two
methods of NoC architectural design are commonly used. One is using homogeneous
building blocks to construct regular network architectures, which facilitates module
reuse to reduce design complexity and cycles. The other is designing ad-hoc topologies
with diverse specifically-designed modules that results in highly custom and irregular
architectures with better performance and longer design cycles than the previous
method.

However, due to the increased performance demands and design complexity of various
NoC topologies, a conflict between network design for performance and design for
productivity has emerged in modern topological automation techniques. Automatic

generation of generic rectangular topologies like Mesh and Torus [36] are supported

Chapter 4 Efficient Modelling of Non-rectangular Topologies 93

by many mainstream NoC simulators due to the architectural simplicity and reusable
module generation. But these topologies can no longer fully satisfy the performance
demands of more complex applications. Instead, non-rectangular topologies (like
hexagon, octagon and spidergon) and irregular geometries are increasingly needed and
expected to offer desirable performance and functionality for specific designs. Hence, the
increase in architectural diversity and performance demands of NoC topologies for more
specific and complex applications is at the cost of the decrease in topological automation

and design efficiency of specific modules.

Several modern design automation tools have proposed techniques to support the
construction of specific network topologies. Chen et al.[170] advocated a heterogeneous
design methodology that provides a trade off between regular and irregular topologies in
homogeneous networks with 3 sub-topologies: Ring, Octagon and 2-hop. Neeb et al.[171]
proposed a customised irregular network-on-chip, INoC, tailored to specific applications.
Choudhary et al.[169] proposed a solution to generate irregular topologies by making
distributed table-based routing algorithms adaptive to irregular networks. Yet this
previous work offers uniquely designed modules with highly specific functionality for
the automatic generation of certain non-rectangular and irregular topologies. These
specific modules are separated from regular schemes, requiring extra time to the module
design with low reusability. So these simulation tools provide design automation of more
custom modules for meeting performance requirements of certain topologies, without
considering much for the reusability and consumed design cycles of those unique modules.
To our best knowledge, a compromise solution of modelling non-rectangular and other
specific topologies with satisfied performance while considering their module reusability
is still absent. To fill the gap, combining the merits of those two common methods
while overcoming their shortages, we are motivated to develop a new method to provide

topological automation designs with both reusable modules and precise performance.

To utilise our proposed automation technique in practice, as the design flow shown
in Figure 1.1, Chapter 1, we could rapidly emulate custom topologies and evaluate
their energy and timing performance on a specific application. By using a modular
Mesh network, our method could attach time-regulated models onto different Mesh
nodes to change the packet waiting time spans and sending time intervals of these
nodes. The timing cost of data routing through these channels can thus be manually
altered, which can emulate similar performance of the same data on different topologies.
In a design flow of NoC architectures for specific applications like in Figure 1.1, our
method can quickly emulate a number of candidate NoC architectures on a mesh network
instead of developing each network and evaluating their performance step by step, which
enables efficient performance analysis of those candidate networks at early design stages.
Such efficient analysis and estimation may save considerable design cycles in finding the

optimised NoC topology for a specific application.

94 Chapter 4 Efficient Modelling of Non-rectangular Topologies

It is noteworthy that our proposed method only emulates different NoC architectures
virtually and generates fast simulations of energy and time for performance estimation,
rather than developing those networks physically. Hence the generated virtual topologies
cannot be used for the physical implementation phase. Omnce an optimised NoC
architecture is decided, it still needs to be developed following common design process

from RTL to physical implementation.

The remainder of this chapter is organised as follows: The significance of modelling non-
rectangular NoC architectures is firstly briefed, followed by the system-level development
of two example topologies, honeycomb hexagon and sparse-octagon, in NIRGAM in the
custom way. Then the proposed method is introduced by virtually modelling those
two example topologies with our time-regulated models in the simulator. The specific
routing schemes and model configuration for these networks are also given. After
that, specific applications like data routings in both virtual and real non-rectangular
and irregular geometries are experimented with the comparison of their timing and
energy performance. For functional validation of the two virtual example topologies,
experiments under random and hotspot traffic scenarios with a number of injection rates
are also implemented to compare the timing, throughput and energy performance with
real networks. The advantages and limits of our time-regulated models and topological
emulation method are thus explored based on those simulation results. Next, an MPEG-
4 decoder application is applied for operating on mesh with irregular routings built by
both our method and the custom way are explored the potential of our method for
multimedia applications. Finally, the superiority of our emulation method for the high-
level modelling of various NoC architectures is summarised. Some conclusions are drawn
at the end.

4.2 Non-rectangular NoC Architectures

Before showing our method of time-regulated models for the efficient architectural
emulation in NIRGAM, the significance of system-level design automation of non-
rectangular NoC topologies is firstly explained in this section. Then the conventional way
of customising these two non-rectangular NoC architectures in NIRGAM is developed

for comparative experiments in subsequent sections.

4.2.1 Significance of Non-rectangular Topological Modelling

Specifically, NoC architectures of a honeycomb hexagon and a sparse-octagon are shown
in Figure 4.1. The reasons why non-rectangular topologies are of strong interests
are worth clarifying. The first reason is these two example topologies represent non-

rectangular topologies with competitive potential compared to rectangular networks

Chapter 4 Efficient Modelling of Non-rectangular Topologies 95

like mesh topology. As per [3] and [172], a number of characteristics are considered to
be desirable for a network topology such as high throughput, low latency, low power
consumption, low area and high implementation feasibility. These characteristics often
mutually contradict. A trade off, called the network cost between network degree and
network diameter, is common in NoC topology designs for measuring the implementation

feasibility. Its equation is introduced in [3] and shown below.

NetworkCost = Degree x Diameter (4.1)

(a) Honeycomb Hexagon (b) Sparse-octagon

Figure 4.1: The Exemplified Honeycomb and Sparse-octagon Topologies

The network cost parameter multiplies degree, which refers to the number of channels
each node has (that impacts on hardware cost), with diameter, which is the longest
minimal node hops of network routings (that impacts on data transmission time) [173].
Non-rectangular topologies have good network cost compared to rectangular ones like
Mesh. For the two example topologies, this parameter is even better than Mesh, as
shown in Figure 4.2. In particular, honeycomb hexagon and sparse-octagon topologies
have an average of 36.59% and 20.03% savings in network cost compared to the Mesh,

suggesting the competitive potential for NoC designs.

Another reason why we have interests on these two topologies is that they can be
transformed to rectangular shapes. As shown in Figure 4.3, such brick shapes of
honeycomb and sparse-octagon topologies not only keep their architectural and charac-
teristic advantages, but also offer good implementation feasibility. As mesh/rectangular
based layout, implementation and placements are dominant in modern IC fabrication
industries, applying brick-shaped non-rectangular topologies for implementation would
be highly efficient usage of existing resources, compared to those special designs for

specific custom NoC architectures.

96 Chapter 4 Efficient Modelling of Non-rectangular Topologies

180 100.00%
Mesh
160 Honeycomb Hexagon 90.00%
= = Octagon

140 - & 80.00% 5
= === Hex Saving over Mesh —_ i
. —— 70.00% 2
120 Octa Saving over Mesh - s
- H
4 - 60.00% 8
8§ 100 £
H s0.00% §
2 a0 g
Z | e aoo% 2
60 | L= %
30.00% 8§
=
“ T 2000% 3
I
z

0y 10.00%

0 ' ; ‘ ‘ 0.00%
10 60 110 160 210 260 310 360 410 460

Total Number of Network Nodes

Figure 4.2: Network Cost Comparisons between Mesh and Non-rectangular
Topologies

o—0 O—=0 o O0—0 O
o O0—0 O o—0 O—0
—C —C

(a) Brick-Shape Honeycomb (b) Brick-Shape Octagon

Figure 4.3: Brick-Shape Transformations of Non-rectangular Topologies

For above reasons, although there are not yet too many applications for such type
of NoC architectures, non-rectangular topologies are still competitive in achieving
desirable network performance and hence worth implementing in system-level design
automation. Moreover, since only a few modern simulation tools provide custom
topological construction for the non-rectangular networks, long design cycles are required
for designing those unique modules. It would be meaningful to use our method to

efficiently emulate such networks and achieve their performance for massive applications.

Chapter 4 Efficient Modelling of Non-rectangular Topologies 97

Besides, the regular interconnection and competitive network characteristics make non-
rectangular topologies easy to emulate by the reusable modules of a mesh network.
However, it is worth pointing out that non-rectangular topologies only demonstrate part
of the functionality and usage our model can provide. Custom irregular routings can also
be virtually emulated by our models for certain applications and design requirements.
Both regular and irregular routings are experimented with in subsequent sections to

display the full functionality of our method.

4.2.2 Conventional Formation of Honeycomb Hexagonal Network

As a reference for later comparative experiments in Section 4.4, a real honeycomb
hexagonal topology is modelled at system level via the conventional method. Specific
modules and links from the mesh network built in the NIRGAM simulator are used as
the reference network. Referring to a rectangular coordinate system, we re-design the
homogeneous nodes of a default mesh network in NIRGAM in terms of their router
structure, I/O ports and network interface module. Two types of hexagonal nodes that
have 3 directional links instead of the default 4 links (North, South, West and East) to

neighbouring nodes are developed, which are:

e Type 1 nodes: 60° North of East, 60° South of East, West;

e and Type 2 nodes: 60° North of West, 60° South of West and East.

Other unused mesh nodes are disconnected and removed from the honeycomb architec-
ture. The channel capacity of all hexagonal node links are set to be equal to default

mesh nodes in NIRGAM configuration files for the same network scale.

Figure 4.4 outlines a 24-node honeycomb topology constructed by the conventional
method. Solid-line network nodes represent the used mesh nodes for the two types
of hexagonal nodes. It is obvious that both types of hexagonal nodes have 4 channel
links including 3 neighbouring directions (different in each type) and 1 IP core link,
which is one link less than normal mesh nodes. The dash-line network nodes in the
figure represent the unused nodes of the mesh network, which are thus disconnected and
removed from the architecture. Since the arbitrary mechanism of hexagon is different for
Mesh, designs of new routing algorithms are required to fully utilise this non-rectangular
topology. Particularly in our case, an XY-like routing algorithm that is similar to
traditional dimension order routings in the mesh network is developed based on previous

work in [174] for deadlock-free routings on the honeycomb hexagon.

98 Chapter 4 Efficient Modelling of Non-rectangular Topologies

* = .
e —
|
Router Switch

Router Switch

East

Figure 4.4: Conventional Formation of Honeycomb Topology

4.2.3 Conventional Formation of Sparse-Octagonal Network

To validate the functionality of our emulation method, a physical sparse-octagon network
is constructed in NIRGAM by using modules with the same parameter settings as default
mesh nodes. This architecture has a lower network cost than Mesh. Compared to the
initial octagon architecture given in [175], our proposed octagon has no crossing links
inside the loop to save area and to lower the design complexity. The topology is thus
sparser than for a normal octagon and so is called sparse-octagon. Unlike hexagonal
nodes, the octagonal nodes have 2 out of their 3 neighbouring links equal to the links
mesh nodes possessed, leaving only one neighbouring link differing from normal mesh

neighbouring links. The specific 4 types of octagonal nodes are:

e type 1 nodes have East, South, North West and Centre directions;
e type 2 nodes have West, South, North East and Centre directions;
e type 3 nodes have East, North, South West and Centre directions;

e type 4 nodes have West, North, South East and Centre directions.

The four types of octagonal nodes including their specific router structures, network
interfaces and I/O ports are demonstrated in Figure 4.5. As observed, a 32-node
sparse-octagon topology is constructed using a referenced mesh network. Solid-
line nodes represent the octagonal nodes with specially designed modules, links and
structures. Dash-line nodes indicate the unused mesh network nodes that are completely
disconnected and removed. An adaptive routing algorithm with integrated deadlock

recovery mechanism is derived from [176] for our sparse-octagon topology.

Chapter 4 Efficient Modelling of Non-rectangular Topologies 99

{ Router Switch I ‘ Router Switch ‘

Router Switch
Buffer

0 ;
[~ v
% | Crossbar | [£| Centre
< o B ——

Router Switch

S
S

SouthWest

Figure 4.5: Conventional Formation of Sparse-Octagon Topology

4.3 Proposed Design Methodology

In this section, a time-regulated model is designed and seamlessly attached to the
homogeneous mesh nodes in the NIRGAM simulator. The model can regulate the data
sending time and injection rate at the output ports of attached nodes. A buffer is
included in the model and its read pointer can be flexibly called to configure the output
clocks, making it asynchronous to the input clocks. Thus, the data processing time span
at nodes can be manually adjusted to accurately regulate the transmission times between
adjacent node pairs. If the global transmitting time is regulated in a specific manner,
data routing will be emulated as specific topological shapes, which then virtually forms

the expected network topologies.

The two non-rectangular NoC architectures, honeycomb hexagon and sparse-octagon,
are virtually emulated using our time-regulated model in this section. Moreover,
functional validation of the virtual non-rectangular topologies is important to estimate
the usability of the proposed method. In particular, energy and timing performance
estimates of the emulated topologies are considered in our case. Hence, we have
applied the modified Orion models integrated in NIRGAM for energy estimates.
Subsequently, the principle of using a time-regulated model for the topological emulation
and architectural modelling is explained in the honeycomb hexagon and sparse-octagon

examples.

100 Chapter 4 Efficient Modelling of Non-rectangular Topologies

4.3.1 Proposed Time Regulated Model

The first step of the proposed method is to attach time-regulated models to specific
nodes for precisely regulating sent data clocks. The values of sent time stamps can be
adjusted by users in configuration files and all the different sending timers are derived

from a global system clock to avoid clock jitter.

—————— = ——————Time Span - — = —— = — = === >
r—_————------—-- | —————————— !
| 1 1 |
I Clock Domain 1 Arbiter Clock Domain 2 |
| I
| Request signal : Sele¢ct :signal :
1
Input Channel : Crossbar — Output Channel
. | [e— I»
| Flit_in Flit data | | Flit dataR d Flit_out
| _Write pointer vy | ' ca [
poimter |
: * Circulate Asynchronous + I
I ! Buffer ! I
| v v I
I I I |
—— e — — — J — — = 7
IP core

Figure 4.6: The Node Architecture with Time-regulated Model Attached

Figure 4.6 shows the detailed architecture of the time-regulated model. When a
flit arrives at the input channels of heterogeneous nodes (mesh nodes whose time
configuration is adjusted by the attached time-regulated model), a request signal is
firstly sent to the router to ask for arbitration of the next-hop direction. The arbiter
decides the direction depending on the destination identifier information contained in
the flit and initiates a select signal to the crossbar for the directional indication. Flit
data stored in the asynchronous circular buffer takes up 3 addresses for 1 flit indicated
by buffer pointers, which are the packet identifier (pkt ID), flit identifier (flit ID) and

flit content for each buffer address, respectively.

This whole process, except the read pointer, is controlled by the receiving clock, shown
as clock domain 1 in Figure 4.6, which is also the same sending clock of the previous
node. The buffer read pointer and select signal sent from the crossbar to output channels
both operate under an asynchronous clock shown as clock domain 2. Clock 2 can be

defined and modified in configuration files.

Once an asynchronous clock 2 is given, the time span between a flit travelling in and out
of node is adjustable. In homogeneous nodes (mesh nodes whose time configuration is
unchanged), the time span depends on the flit injection rate since the buffer read pointer

needs to wait until the next clock cycle for sending a flit to the output channel, while

Chapter 4 Efficient Modelling of Non-rectangular Topologies 101

in heterogeneous nodes the asynchronous buffer can reset the clock cycle immediately
and initiate a sending process. If a specific time delay is inserted in front of the sending
process, a larger or smaller time span will be represented as a time delay or time advance

in the time line of flit traverse.

One step in establishing a non-rectangular topology based on a regular mesh network
is attaching such functional models to network nodes and precisely regulate the time
stamps for injecting sent data from specific node output ports. In such a heterogeneous
node, the input clock cycle is equivalent to the sending clock cycle of the previous node,
while its sending clock cycle is asynchronous. In other words, the received time and
sent time at all node ports have the same length as a clock cycle, but adjusted to the
different time stamps at which data starts to send from node outputs. The modified
values can be adjusted in configuration files for accurate change of time spans at routers.
Additionally, it is worth pointing out that all the node sending timers are derived from

a global system clock to avoid clock jitter.

The values of the time delay or advance plus configurable sending cycles will then help
regulate the flit traversal time between a node pair. In subsequent sections, examples
of emulating two different non-rectangular topologies, honeycomb hexagon and sparse-

octagon, by using this time-regulated model are given.

4.3.2 Example Topological Formation: Honeycomb Hexagon

In this subsection, the modelling of a virtual honeycomb hexagonal topology [177] using
the proposed models is introduced as an example. In NoC data routings as per [3],
several performance metrics are considered to measure the network between any node
pair:

Throughput, Latency and Power(Energy)

where Throughput indicates the number of flit bits successfully traversing between node
pairs over a particular time duration; Latency indicates the time consumed between
first bit of a flit leaving one node and the last bit of the flit leaving the second. Power

indicates the power consumption of all the bits of a flit traversing in the network.

Throughput is often controlled by the available bandwidth of the network and hardware
limits. Once the network channel bandwidth is fixed, the maximally possible number
of bits traversing within one second is constant along channel links between node pairs.
The latency of flit data bits between a node pair may consist of multiple parts in packet-
switched NoC networks. One part is the speed or velocity of a flit data bit which is
limited by the speed of light, giving a minimum propagation delay in all medium that
cannot be reduced any more. The transmission time on channel links between node pairs
are often caused by such a propagation delay. Other parts of the delay commonly occur

at the intermediate nodes of a routing path, including queueing delays at port buffers

102 Chapter 4 Efficient Modelling of Non-rectangular Topologies

for directional arbitration, clock triggering and port usage. Such delays often occur at
node routers, forming another significant part of latency that can be precisely adjusted

by our time-regulated model.

Since a mesh network contains the same switching mechanism in both homogeneous
and heterogeneous nodes, the channel capacity (link bandwidth) of the whole network
is fixed, indicating the same maximal amounts of flits (throughput) routed over the
whole network. Hence, by attaching time-regulated models onto network nodes and
quantatively setting the transmission time delayed at intermediate routers, our method
could adjust (reduce or increase) the latency of data routings in a network without

affecting its throughput performance.

Figure 4.7 shows the detailed process of modelling a virtual hexagonal topology on a
mesh network using the proposed method. Figure 4.7(a) shows how the hexagonal shapes
are virtually emulated. Assume each hexagonal side has an equal length of units (for
data traversal). Taking the hexagonal sides R0 — R2 and R2 — R3, for example, flits
travelling between R0 — R2 are expected to cost the same time delay as between R2— R3.
If we denote the flit traversal time duration between node pairs R0O—R1, R1—R2, R2—R3
and R0 — R2 in hexagon as t1,t2,t3 and t4 respectively, the expected hexagonal flit
traversal time relation is:

b+ by =ty = t3. (4.2)

To implement this, time-regulated models are inserted at nodes RO, R2 and R3 of a
mesh network. Accurate values of the time delay or advance are configured at each
of the node buffers to reset send time stamps for equivalent flit traversal time spans
between node pair R0 — R2 and R2 — R3. In other words, the transmission latency at
node pair R0 — R2 is halved by reducing intermediate routing delays to make it equal
to the transmission time cost at node pair R2 — R3, modelling such two routing paths

to emulate a pair of hexagonal sides in a mesh topology.

Figure 4.7(b) gives the configuration process. In a regular mesh network, the flit traversal
time between node pairs R0— R1 and R1— R2 is double that between R2— R3 (t;+ty =
2t3 > t3), and their in-node processing time spans are equal (51 4 ts2 = ts3). To adjust
the processing time, a smaller time delay is set to shorten the time span at node R1
(t'4 < ts1), which causes a send time advance and reduces the value of ¢; in the time line
(t) < t1). Moreover, another smaller time delay is set to reduce the time span at node
R2 (tl, < ts2), which causes a send time advance and reduce the value of ¢y (t, < t2).
The latency between nodes R2 — R3 remains unchanged. Thus, the latency at respective
node pairs R0 — R2 and R2 — R3 has been equalised (¢} + t, = t5) that costs two-hop
transmission time as in a hexagon while a normal mesh will cost three-hop time delays
for data traversing from node R0 to R3. Similarly, values of flit traversal time in node
pairs R3 — R4, R4 — R5, R5 — R6 and R6 — RO are also adjusted to be equivalent.

Chapter 4 Efficient Modelling of Non-rectangular Topologies 103

MESHp—fh— L [—

Time LineI ; | : !
RO: f. | | : :
R1: fx les | '
) Is1 4 : :
- (t, + 1,)¢ Je fs Je | l
R o S, /.

HEXAGONp 7"ty -t

RO: i | i

R1: f. 1 |

Rz: Lf\sﬁ fR ‘ ‘f];
fs2 ;

3 (f1+f2)=f3 f‘ﬁ— ‘

.

(b) Flowchart of Flit Traverse Task

Figure 4.7: Construction of Mesh-based Hexagonal Topology

The respective flit traversal latency in those node pairs are mutually equal, which
emulates a directional loop in a virtual hexagonal topology. To make bidirectional loops
both emulate hexagonal topology, proper routing schemes are designed to cooperate
with relevant routing algorithms. Specifically for the honeycomb hexagon modelled
by our method, two types of network nodes are identified, as shown in Figure 4.7(a),
with hexagonal nodes (solid-line nodes) and mesh nodes (hash-line nodes). The special
routing scheme on these two types of nodes are developed in order to suitably use

deterministic mesh routing algorithms for the virtual hexagon topology, which is shown

104 Chapter 4 Efficient Modelling of Non-rectangular Topologies

below:

e For time-regulated models attached to virtual hexagonal nodes,

— the output time configuration is set to be equal to normal mesh nodes if the

next hop of the data traversal is also a virtual hexagonal node;

— the output time configuration is set to reduce the time span to half the routing

delay of mesh nodes if the next hop is a mesh node.
e For time-regulated models attached to normal mesh nodes,

— the next hop direction cannot be in the same direction as its current hop

direction;
— the next hop must be a virtual hexagonal node;

— the output time configuration is always set to reduce the time span to half

the routing delay of normal mesh nodes.

It is noteworthy that without developing specific router structures and functional
modules for each different topology, a specially designed routing scheme combined with
existing mesh routing algorithms is required by our method for correctly configuring
the time-regulated models and thus properly routing data on the virtually modelled
networks. This is the only extra element that is needed by our method compared to the

custom way of constructing specific topologies, as described in the last row of Table 4.4.

Using the same principle, many other non-rectangular and irregular routing patterns
can also be virtually emulated. Furthermore, if we employ an arbitrary number
of heterogeneous node pairs, a virtual pseudo-irregular network topology could be
achieved. If set the latency between heterogeneous node pairs and physical intervals
between homogeneous node pairs to conform to regular patterns, some well known non-
rectangular networks like SPIN [178], Spidergon [179], Hexagon [180], Octagon [175]
[181] and Fat Tree [9] can be virtually formed.

4.3.3 Example Topological Formation: Sparse-Octagon

Another example of non-rectangular topologies, Sparse-Octagon, is also virtually
emulated its topology on a mesh network by using our modelling method. As shown
in Figure 4.8, time-regulated models are inserted to normal mesh nodes. Similarly to
the virtual hexagonal emulation, the eight virtual sides of the octagonal network could
be divided into 4S identical groups for regulating the equal traversal time of flits. Take
node pairs R0 — R1 and R1 — R2 for example, the realistic flit traversal path goes from
RO to R1 then reaches R2 and R3 in order.

Chapter 4 Efficient Modelling of Non-rectangular Topologies 105

L:‘I Homogeneouz node —— Hexagon edze

O Heterogeneous node —-— Mesh edze

Figure 4.8: Mesh-based Octagon Topology

Giving the reduced time spans at node RO and R1, the traversal time cost between
node pairs R0 — R1 and R1 — R2 is configured to be equal to node pair R2 — R3
(t1 + t2 = t3). Thus the latency between node pairs R0 — R2 equals that of node pair
R2 — R3 (t4 = t1 + to = t3), emulating a virtual side of one-quarter basic unit of the
octagonal topology. The other three groups of node pairs can configure their router
time spans in similar ways to model the unidirectional octagon network. It is worth
pointing out that the area occupied by one basic virtual octagonal unit (16 nodes, 4 x 4
mesh network) is larger than that of a virtual hexagonal unit (12 nodes, 4 x 3 mesh
network), which implies a potentially smaller scale of topological emulations by using
the proposed method for some large-size applications. A potential solution to fold the
this specific non-rectangular topology may be to emulate the brick-shape transformation
of the network. A generalised method to control the emulation area cost of the mesh

network for various NoC architectures is still absent and required future research.

Similar to the modelling of the virtual honeycomb topology, bidirectional loops in the
virtual octagonal architecture also need cooperation between the specifically designed
routing scheme and modified mesh routing algorithms to function correctly. But the
octagonal topology has 4 types of nodes with different neighbouring links instead of the
2 in honeycomb. As shown in Figure 4.8, solid-line and dash-line nodes again represent

octagonal and mesh nodes respectively. Each octagonal node contains 4 total direction

106 Chapter 4 Efficient Modelling of Non-rectangular Topologies

links including 3 neighbouring links and one IP core link as well. The special routing

scheme for virtual octagon is similar to honeycomb, which is:

e For time-regulated models attached to all types of virtual octagonal nodes,

— the output time configuration is set to be equal to normal mesh nodes if the

next hop of data traversal is also a virtual octagonal node;

— the output time configuration is set to reduce the time span to half the routing

delay of mesh nodes if next hop of data traversal is a mesh node.
e For time-regulated models attached to normal mesh nodes,

— the next hop direction cannot be in the same direction as its current hop

direction;
— the next hop must be a virtual octagonal node;

— the output time configuration is always set to reduce the time span to half

the routing delay of normal mesh nodes.

Although the routing schemes of octagon and hexagon are similar, it should be pointed
out that configuring time spans of intermediate mesh nodes to half of normal mesh
nodes is only proper for such types of topological emulations. It is because in both
honeycomb and sparse-octagon architectural emulations we model two mesh hops to
cost equal time delays as one hop along non-rectangular network sides. Other topologies
especially irregular routing patterns may require different value settings of time span
configuration, resulting in shorter or longer delay performance rather than half of the
normal mesh routing delay. The quantative adjustment is determined via the careful
learning of network characteristics, which is in correspondence with the first row of

requirements inTable 4.4.

4.4 Experimental Results

The functionality of our proposed time-regulated model needs to be validated under
different scenarios. Firstly, since non-rectangular NoC topologies of honeycomb and
sparse-octagon have been virtually emulated by our method as examples, they are used
for the validation. Moreover, irregular routings are also designed and emulated by our
method to test the functionality. Specifically, given a pair of source and destination
with a fixed Euclidean distance, both exemplified non-rectangular routings (honeycomb
and octagon) and the two irregular routings are deployed to connect the source and
destination nodes in different topological geometries. The transmission time between
the source and destination nodes are both theoretically calculated and experimentally

implemented to inspect their result consistency. As a baseline, these virtual routings

Chapter 4 Efficient Modelling of Non-rectangular Topologies 107

(non-rectangular and irregular) are compared with a mesh rectangular routing (deployed
on the same source-destination pair). Besides, the network performance of those virtual
topologies and geometries in terms of latency and energy are also compared with the
real networks constructed in the custom way. In a word, a fixed source-destination pair
under the Mesh, two non-rectangular and two irregular geometries are constructed in
a custom way and by our emulation method. Their routing performance are mutually

compared to validate the results of virtual routings emulated by our method.

Two commonly used traffic patterns, uniform random and hotspot, are designed for the
two exemplified virtual non-rectangular topologies to test if their network characteristics
(energy and time) are consistent with the real ones. Moreover, based on the experimental
results, the performance accuracy and limits of our proposed time-regulated model are
summarised. Then, an MPEG-4 decoding application is implemented as a test case
to explore the potential of our virtual topological modelling in real-world multimedia
applications. The MPEG application is split into several IP tasks that are mapped onto
a real irregular network in the custom way and onto a Mesh network with an virtual
irregular routing emulated by our method. The energy and timing simulation results
of the real irregular routing and the virtual irregular routing are compared. Finally,
the superiority of our virtual emulation method over the conventional custom method

is discussed based on all the case experiments.

4.4.1 Specific Routings: Hexagonal and Irregular Routings
4.4.1.1 Experimental Setup

Since the proposed method aims to provide emulations of non-rectangular and irregular
geometries based on the mesh network, the potential performance difference of a fixed
data routing simulated on those geometries is experimented and compared to the
performance in a Manhattan geometry (i.e. Mesh). Assume a pair of nodes with the
same Euclidean distance between the source and destination co-ordinates, data routings
between the node pair along hexagonal, irregular and mesh geometries are given to
validate the performance difference in terms of timing and energy. Theoretical distances
of different topological routings between the fixed-length node pair are firstly calculated.
Then these virtual routings emulated by our method are simulated in NIRGAM. If the
simulation performance is consistent with theoretical results, the functional accuracy

and applicability of our method can be verified.

The environment for subsequent experiments is implemented on a 9 by 9 mesh network.
4 virtual channels are created in each physical channel in all experiments to avoid
performance degradation caused by head-of-line blocking problems. In all experiments,
initial packet injection rate is given at one packet every 20 clock cycles, that is, the

initial flit interval at the source node is kept as 20 clock cycles. The intermediate

108 Chapter 4 Efficient Modelling of Non-rectangular Topologies

injection rate in all other nodes are all set at one flit every 100 clock cycles to avoid
potential transmission interrupts and packet drops (In this case the injection rate is
fixed for hexagonal routing, so there are no packet drops. But for other circumstances
especially irregular routings, different intermediate nodes may have different injection
rates which may incur packet drops if the injection rate at one node is too high to that
data saturates the node buffer before sending). For each experiment, a different amount
of data packets is generated at the source at the initial packet injection rate and sent
to the destination node via different routing geometries at the intermediate injection
rate. The amount of data packets ranges from 120 to 200 with 1-flit per packet for
each different experiment. It is worth pointing out that the time spans cost at different
network nodes in one network for each directional routing can be independently regulated
to different values depending on specific design requirements. Thus it is easy to emulate
transmission times at each node pair of an irregular routing path. As all the routings
are of certain geometries, source routing algorithm is used to given certain routing path

for experiments.

4.4.1.2 Theoretical Calculation

Data routings between a fixed-length node pair along the hexagonal, two irregular and
the mesh network geometries are developed and shown in Figure 4.9 and Figure 4.10.
These non-rectangular or irregular routings are implemented on both virtual and real
topologies for performance comparisons. Figure 4.9(a) and Figure 4.9(b) show the
hexagonal and mesh routings on virtual topologies emulated by the proposed method as
well as on real topologies constructed in the custom way. In a virtual hexagonal network,
the side length (radius) is set equal to r units. Based on the backbone mesh network, the
coordinates of the source and destination nodes are set to [0, 1] and [8, 5] respectively.
Thus, the theoretical hexagonal routing distance from the source to destination node
can be derived as:

S — Dihezagon) = 47+ 4r = 8r units (4.3)

Considering the same coordinate system in an orthogonal mesh network, flits need to
travel @r units vertically and %r units horizontally to reach the first Euclidean point in
a hexagon. Then they need to traverse another r units horizontally to reach the second
relative Euclidean point. The flits will arrive at the destination node after the above
process repeats 4 times. Consequently, the theoretical Manhattan distance from the

source node to destination node is:

V3 1
S = D[manhattan] = 4(77“ + 57" + T)

~ 9.5r wunits

(4.4)

Chapter 4 Efficient Modelling of Non-rectangular Topologies 109

(a) Data Routings in Virtual Hexagon (b) Data Routings in 2D-Mesh Network
Network

Figure 4.9: Experimental Designs for Data Routing in Hexagonal and Mesh
Networks

It can be seen that the data routing distance in a mesh is longer than in a hexagon.
Based on the same coordinate system, the unique Euclidean distance, i.e. the straight

line between the source and destination, which is also the shortest routing path is:

V3 1

— . — Y 7)2 _ 2
S D[euclzdean} 4 x \/(2) + (2T + 7“) (45)

~ 6.9r units

Additionally, Figure 4.10(a) and Figure 4.10(b) show two irregular routings using
the same nodes as in the hexagon and mesh. The node ID and data routing hops
are intentionally set equal to the hexagonal routing for comparing the proportional
differences of experimental performance with their theoretical calculations. The node
coordinates and data routing time to their neighbour nodes are configured by the
time-regulated model as shown in the figure. In both irregular networks, black dash
lines, red dot lines and red solid lines indicate the Euclidean distance between the
source and destination node, hexagonal routing path and virtual irregular routing paths,

respectively.

It is observed that the irregular 1 path routes data more closely to the Euclidean straight
line than the hexagonal geometry, while the irregular 2 path is less close, which suggests
a shorter traversal distance for irregular 1 and a longer traversal distance for irregular
2 than the hexagonal distance. Based on the mesh coordinate system, their calculated

traversal distances are:

S — Dy :3ﬁr+3\/ﬁr+m7"+\/mr
lirregularl] 4 4 20 20 (4.6)

~ 7.5r units

110 Chapter 4 Efficient Modelling of Non-rectangular Topologies

s1)
(2,1.8)

goooooooo 0 0000 0 0O
(0

(a) Data Routings in Irregularl Network (b) Data Routings in Irregular2 Network

Figure 4.10: Experimental Designs for Data Routing in Irregular Networks

31 7 13 907

V1987 732 V2021
+ 50 r+ 20 T+ 20 r+1.3r (4.7)

~ 11.6r wunits

As per the calculated distances, flit routing in the virtual irregular 1 network is expected
to have the least traversal time cost, followed by the virtual hexagon, mesh and virtual
irregular 2 routings sequentially. To validate the emulated accuracy of the proposed
method, all the virtual routings are compared with the same routings on real topologies
constructed by the custom way in terms of timing and energy performance. Clearly,
data routing in a mesh network should consume more energy and larger latency than
in the hexagonal network due to its longer Manhattan routing distance. Given a fixed
numbers of data messages, the difference in performance will be observed in terms of
total communication energy and traversal time cost from the source to destination in

both hexagonal and mesh networks.

4.4.1.3 Result Analysis

Figure 4.11 summarises the timing comparison of data routings in the virtual hexagon,
mesh and the two virtual irregular geometries. The cycle time is 1 ns. The X-axis gives
the total packets injected at each experiment and transmitted in the networks under
different routing geometries. The Y-axis shows different performance metrics measured
for the transmission of all those packets from the source to the destination node. The
packets ranging from 120 to 200 are given for the result comparisons of different routings.
As the results show, the time cost of data in all four proposed topologies increases linearly

with the increase of transmission packets. The irregular 1 routing has the least time cost

Chapter 4 Efficient Modelling of Non-rectangular Topologies 111

in all flit injection situations, sequentially followed by hexagonal routing, mesh routing
and irregular 2 routing. The timing differences reflect their theoretical transmission time

compared with the above distance calculations.

2400

2300 = Virtuallrgl N
B virtualHex
2200

2100
2000
1900 _
1800
1700
1600
1500
1400'=

Transmit Time (ns)

Total Packets (flits)

Figure 4.11: Performance Comparison of Hexagon Topology and 2D-Mesh in
terms of Overall Transmission Latency based on 9 by 9 Mesh.

Figure 4.12 shows the energy results of four virtual routings over all flit injection cases.
These energy results show a slight difference from the timing performance. The virtual
irregular 1 routing consumes the smallest energy followed by virtual hexagonal, virtual
irregular 2 and mesh routings, respectively. But the virtual irregular 2 routing consumes
less energy than mesh routing which is inconsistent with the timing performance. The
extra energy consumption of mesh routing is due to its more average flit hops than the
other three.

As mentioned before, the two virtual irregular routings are intentionally constructed with
the same nodes used for hexagonal routing, giving the same flit hops that costs the same
dynamic energy for all three geometries. The energy differences between virtual irregular
and hexagonal routings are mainly determined by their static energy differences which
are proportional to their routing time differences. Consequently, although the irregular
2 routing consumes more static energy than the mesh routing due to its longer routing
time, the extra dynamic energy cost by mesh routing still offsets and overwhelms their

static energy difference.

The above experiments verify that virtual non-rectangular and irregular routings
emulated by the proposed method can present consistent timing differences as their
theoretical distance differences suggest. The following experiments are designed to
validate the performance accuracy of virtual routings. The same data routings are

compared on virtual topologies emulated by the proposed method and real networks

112 Chapter 4 Efficient Modelling of Non-rectangular Topologies

Virtuallrgl
g

35 B virtualHex
Virtuallrg2

MESH

> 2
= th

Energy Cost (pj)
o

120 130 140 150 160 170 180 190 200
Total Packets (flits)

Figure 4.12: Performance Comparison of Hexagon Topology and 2D-Mesh in
terms of Energy Consumption based on 9 by 9 Mesh

constructed in the custom way. Figure 4.13, Figure 4.14 and Figure 4.15 compare the
timing and energy performance of routing data in a virtual hexagonal and two irregular
geometries with in the real counterparts, respectively. As shown in Figure 4.13(a),
Figure 4.14(a) and Figure 4.15(a), the timing performance of the virtual hexagonal and
two irregular routings are, respectively, 0.7%, 0.8% and 0.3% different compared to the
real hexagonal and irregular topologies, which indicates the virtual routings emulated

by the proposed method could provide an accurate timing performance.

2400 : %3 40 7 %30
2300 L i;r:lL:L:ex 27 I VirtualHex 27
z 2200 ; - 24 =30 — RealHex 24
S 2100 TimeDifference 21 a EnergyDifference " ' 21
E 2000] I L 3 r 18
= 1900 15 S 20 15
£ 1800 12 & 12
§ 1700 . N 0.9 gL 9
= 1600 - 06 -6
o a NN NEER: N :
1400 = il 0 " T . . - . . v 0
120 130 140 150 160 170 18O 190 200 120 130 140 150 160 170 180 150 200
Total Packets (in Flits) Total Packets (in Flits)
(a) Virtual and Real Hexagon Timing Comparison (b) Virtual and Real Hexagon Energy Comparison

Figure 4.13: Timing and Energy Comparisons of Data Routings in Virtual and
Real Hexagonal Networks

As shown in Figure 4.13(b), Figure 4.14(b) and Figure 4.15(b), the energy performance of
the virtual hexagonal and two irregular routings are around 17%, 12% and 0.2% different
compared to the real hexagonal and irregular routings, respectively. The considerable

inaccuracy of energy performance in the hexagonal and irregular 1 routings is due to

Chapter 4 Efficient Modelling of Non-rectangular Topologies 113

2400 | e 1 %3 40 7 # 30
= Virtuallrgl —
L —— Virtuallrgl L
_ 230 e Realrg I 27 27
E. ;i% ~e==Time Difference gi =30 [Realirgl _ E | 24
@ . = “h~= EnergyDifference s B 21
E 2000 18 4 =P | 18
= — =
= 1900 15 S20 = =N - 15
Ele 1.2 55 -1z
5 1700 - 09 g = = - g
= 1600 g - 06 W10 g g L.
1500 r 03
3
1400 - a 0] _I T T T T T T T 0
120 130 140 150 160 170 180 180 200 70 130 140 150 160 170 180 190 200
Total Packets (in Flits) Total Packets (in Flits)

(a) Virtual and Real Irregular 1 Timing Comparison (b) Virtual and Real Irregular 1 Energy Comparison

Figure 4.14: Timing and Energy Comparisons of Data Routings in Virtual and
Real Irregular 1 Networks

§;$ I Virtuslirg2 Q_G :? 7 i virtuaieg2 -
Z2200 — R?alrg? 2:4 w30 I Reallrg2 2.5
-;2100 === TimeDifference - 21 _?!'__ === EnergyDifference 2
E2000 - 18 %
1200 - 15 Szu 15
1800 12 &
El?ﬂﬂ 09 510 1
=1600 - 06 L o5

1500 - 03 :

1400 -0 o _—

120 130 140 150 160 170 180 150 200 120 130 140 150 160 170 180 180 200
Total Packets (in Flits) Total Packets (in Flits)

(a) Virtual and Real Irregular 2 Timing Comparison (b) Virtual and Real Irregular 2 Energy Comparison

Figure 4.15: Timing and Energy Comparisons of Data Routings in Virtual and
Real Irregular 2 Networks

the different flit hops consumed in the virtual and real routings; that is, the proposed
method constructs these two virtual routings with more flit hops than the flit hops in
their real counterparts. The extra hops bring out more flit switching at nodes, which

costs more dynamic energy.

The irregular 1 routing comparison has less energy difference (12%) than the hexagonal
routing comparison has (17%) since the extra hops used in the virtual irregular 1 routing
are fewer than those used in the virtual hexagon. On the other hand, the hops of the
virtual irregular 2 routing can be manually adjusted to be the same as in the real
model, which causes the energy performance of the virtual irregular 2 routing to be very
close (about 0.2% difference) to the real routing. The experimental energy performance
indicates the virtual routings emulated by the proposed method can provide moderate
energy performance accuracy. The accuracy could be considerably improved if the flit
hops used by the virtual routings were close enough to the flit hops used in the real

counterparts.

To summarise, the above comparative experiments first verified that the timing and

114 Chapter 4 Efficient Modelling of Non-rectangular Topologies

energy differences among virtual hexagonal and irregular routings are consistent with
their theoretical performance differences. Then the direct timing comparisons of routings
in virtual and real geometries validated that the proposed method can provide accurate
timing emulations to non-rectangular and irregular geometries in the given experimental
scenarios. Finally, the energy comparisons between virtual and real routings suggest the
accurate energy emulation is achievable by our emulation method if the hops of virtual

routings can be emulated to approximate to the hops cost in real networks.

4.4.2 Specific Routings: Octagonal Routing
4.4.2.1 Experimental Setup

Besides hexagonal comparison experiments, a simple comparative experiment is also
implemented to show the proper use of our proposed model for sparse-octagonal topology
emulation. As shown in Figure 4.16, a 10-flit packet is transmitted circularly on an
octagonal unit constructed in the custom way. The transmission starts from node R4
back to R4 again after a counter-clockwise transmission, while in a mesh network an
equivalent traversal routing is implemented via our model to emulate the virtual octagon
along the same circulation but with 4 extra hops. Besides, the flit circulation running on
a normal mesh network that has the same numbers of hops as the virtual octagon is also
used for the energy comparison. The total time and energy cost for the flit circulation

in all three networks is recorded.

R4
(g N
T k)\
RN

A
J ! R13

AN

b

=

[¥N]

=
{VCE

ji:v

F T

T r l,' rT
P |{) F-\' 'f"h\
); { ,/3_ / R14 R2 1 _/ ./ R14
r\“ / L r r T
—_— | A ™ - f’)/ Y
E—r =) { (/—p‘b_—rpu—pu
R7 R11 R7 R11
(a) Octagonal Routing (b) Mesh Routing

Figure 4.16: Experimental Designs for Comparing Octagonal and 2D-Mesh
Networks

Chapter 4 Efficient Modelling of Non-rectangular Topologies 115

4.4.2.2 Result Analysis

The performance difference between the octagonal routing and the mesh routing is firstly
inspected to validate the functionality of the octagonal network. Then the modelling
accuracy of our virtual emulation method is examined by comparing the performance of

virtual and real octagonal routings.

Theoretically, the same routing circulation implemented on a mesh and a sparse-octagon
is expected to obtain different timing and energy costs. It is because if all other network
characteristics are equal, the octagon will consume only 8 hops while the mesh needs 12
hops to finish the same routing. This hop difference impacts on both energy and timing
performance, resulting in different performance between the two networks. Table 4.1
shows the performance comparison between octagonal and mesh routings in NIRGAM
simulations. As shown, the real octagonal network costs 11.73% less time and 15.32%

less energy than mesh, which is consistent to the theoretical inference.

Energy Cost (pJ) | Time Cost (ns)
Real-Octagon 166.32 346
Mesh 196.41 392
Difference (R-O vs M) 15.32% 11.73%

Table 4.1: Comparisons of Octagonal and Mesh Routings

Table 4.2 lists simulation results of the virtual octagonal routing emulated on a mesh
network and the real octagonal routing constructed by the custom way in terms of timing
and energy. The performance errors of the virtual routing over the real one is also given.
As seen, our virtual emulation consumes nearly the same routing time (merely 1.02%
error), revealing precise and satisfied accuracy of our model for non-rectangular routings.
The energy error is 14.96% due to the extra 4 hops consumed by virtual routing over

the real one.

Energy Cost (pJ) | Time Cost (ns)
Real-Octagon 166.32 346
Virtual-Octagon 195.575 342
Error (V-O vs R-O) 14.96% 1.02%

Table 4.2: Comparisons of Virtual and Real Octagonal Routings

So far the experimental results of these specific routings have displayed that both
non-rectangular topologies and irregular routing geometries virtually modelled by the
proposed emulation method could generates accurate energy and transmission time
performance if the configuration of network parameters in terms of injection rate and
routing hops are set properly. In next sections, the network characteristics of the two
virtual non-rectangular topologies emulated by our method will be experimented with

the comparison of real topologies in terms of time and energy.

116 Chapter 4 Efficient Modelling of Non-rectangular Topologies

4.4.3 Synthetic Traffic: Uniform Random
4.4.3.1 Experimental Setup

To validate our emulation method, the two non-rectangular NoC topologies modelled on
a mesh in NIRGAM are compared with the real networks. An uniform random traffic
scenario is firstly used. In this traffic, each node in the network generates a constant
bit stream of certain packets and flits at its IP core, sending each packet to randomly

chosen destination nodes with the same probability.

The network scale used for honeycomb hexagon has 24 nodes. A 24-node network
constructed via the custom way is given for the real hexagon. A 7 by 8 mesh topology
is built for emulating a virtual honeycomb by using our modelling method. As shown in
Figure 4.4, the solid-line nodes are real hexagon network while all nodes (solid-line nodes
plus dash-line nodes) represent the mesh network used for virtual hexagonal emulation.
The network scale of sparse-octagon has 32 nodes. As shown in Figure 4.5, a 32-
node real sparse-octagon is built on the solid-line nodes while an 8 by 8 mesh network
is used (both solid-line and dash-line nodes) for modelling a virtual octagon topology.
All the real and virtual non-rectangular networks are designed using the specific model

configuration, routing schemes and routing algorithms, which were introduced above.

For performance evaluation, a range of packet injection rates (pir) from 0.001 to 0.12
with 18 steps is used. The pir is the rate at which packets of a specific traffic are
injected into networks. A pir of 0.001 indicates 0.001 packets per clock cycle are
sent by each network node or, in other words, each node sends one packet per 1000
clock cycles. The main network performance characteristics in terms of average network
throughput (pkt/cycle), average network latency (cycle/pkt) and average network energy
cost (pJ/pkt) are considered in our experiments. The throughput metric refers to the
average number of packets successfully received by all network nodes per clock cycle.
Latency indicates the average time elapsed between the head flit of a packet injected
into the network from the source node and the tail flit of the packet received by the
destination node. Energy cost means the average communication energy consumed by

a packet traversing from the source to the destination node in networks.

The random bit source traffic at each node generates 5-flit packets with 13 bytes length
in each, containing one 1-byte head flit and three 4-byte data flits per packet. All kinds
of network nodes have one buffer at each of their directional ports that have 4 flits buffer
depth, which allows it to contain at least one flit (head or data). The clock frequency of
the whole networks is 1 GHz, meaning 1 nanosecond per clock cycle as the global clock
for the experiments. Each simulation is initially run for 3500 clock cycles as sampling
time [182] for traffic generation. The first 500 clock cycles of the sampling time are
used as warm-up time to stabilise network transient effects [183], which are not included

for performance simulations. A further 6500 clock cycles (until 10000 clock cycles) are

Chapter 4 Efficient Modelling of Non-rectangular Topologies 117

executed as drain time for ending traffic arriving at their destination nodes. The energy
consumed by flit traversal between the source and destination nodes is estimated by
the Orion-based energy model in NIRGAM. A trace-based timing method is used for

recording the latency performance of the simulations.

4.4.3.2 Result Analysis

200 4
180 -

160 ~—#— Honeycomb - Random

140 - Virtual-hexagon - Random
120 4

100
80

60 |

40

0

0 : |
0.001 0.01 0.014 0.018 0.03 0.05 0.07 0.09 0.11
Packet Injection Rate (packet/node/cycle)

Average Packet Latency (cycle)

(a) Latency of Virtual and Real Honeycomb Networks

250 —#&— Honeycomb - Hotspot

200 Virtual-hexagon - Hotspot

Average Packet Latency [cycle)
I
o

0.001 0.01 0.014 0.018 0.03 0.05 0.07 0.09 0.11
Packet Injection Rate (packet/node/cycle)

(b) Latency of Virtual and Real Sparse-Octagon Networks

Figure 4.17: Latency Comparisons of Virtual and Real Non-rectangular
Networks under Random Uniform Traffic

Figure 4.17 gives the latency performance comparisons of virtual non-rectangular net-
works over real ones. The green lines in both subfigures are non-rectangular topologies
emulated by our time-regulated models while the blue lines are the performance
implemented by real networks constructed in the custom way. As observed, both
honeycomb and sparse-octagon virtual topologies have precise latency emulations over
the range of injection rates before their saturation points. In particular, the virtual
honeycomb network emulated by our modelling has an average 5.27% error with the
real network before the saturation point (from pir = 0.001 to pir = 0.03) while the

virtual sparse-octagon modelling has an average 4.08% error before its saturation point

118 Chapter 4 Efficient Modelling of Non-rectangular Topologies

compared to the real octagon (from pir = 0.001 to pir = 0.02). This is because of the
precise configuration of time-regulated models and affordable network data injection in

the mesh network.

But from their saturation points onwards, the emulation results start to give increasing
errors from the real topological performance. The reason is that our method intrinsically
uses a mesh network with specific routing schemes to emulate non-rectangular routings
so that it is easier to cause network congestion, especially when large amounts of
traffic saturate the emulated node channels. Hence from their saturation points, the
virtual networks will experience heavier traffic congestion, though using larger scale
network, than real networks, which leads to worse latency performance on network data
transmission. Besides, the saturation points of virtual networks are earlier than the
real networks, suggesting more vulnerable ability of virtual topologies to resist heavy
traffic scenarios. This is due to the virtual non-rectangular nodes of mesh network
experiencing more data contention than the network nodes of real topologies, which

saturates the mesh nodes earlier.

9
#— Honeycomb - Random
5 8 "//—A—‘___‘__‘___-‘\
§ 7 Virtual-hexagon - Random _
3 ?5 /
4} -
=4 :
23 =
]
= a /
‘!E{ 2 /;"
a 1 ,-'
> /
< 0+ | I | 0 | 0 |
0.001 0.01 0014 0018 0.03 0.05 0.07 0.09 0.11

Packet Injection Rate (packet/node/cycle)

(a) Throughput of Virtual and Real Honeycomb Networks

~#&— Sparse-octagon - Random

10 Virtual-octagen - Random //r
8

6 /

4

) /

0 'r/

0.001 0.01 0.014 0.018 0.03 0.05 0.07 0.09 0.11
Packet Injection Rate (packet/node/cycle)

e
— e _—
e T A

Average Network Throughput
(packet/cycle)

(b) Throughput of Virtual and Real Sparse-Octagon Networks

Figure 4.18: Throughput Comparisons of Virtual and Real Non-rectangular
Networks under Random Uniform Traffic

Chapter 4 Efficient Modelling of Non-rectangular Topologies 119

Figure 4.18 displays the throughput performance comparisons of virtual and real
non-rectangular topologies. Again the green lines in both subfigures indicate virtual
topologies and the blue ones for real networks. From both subfigures, the average
network throughput of the virtual honeycomb and octagon networks before their
saturation points is similar but slightly larger than for their real counterparts. This
is because the mesh network scales we used for emulating virtual topologies are larger
than the network scales of real topologies, which can hold more data in the networks.
Although the specific virtual routings are carefully adjusted in time-regulated models,
such throughput differences may be enlarged along with the applied scale of mesh
networks for virtual emulation. Specifically, the virtual honeycomb hexagon is applied
to a 56-node mesh to emulate a 24-node hexagon, causing an average 4.68% performance
error. The virtual octagon is given with a 64-node mesh for a 32-node octagon topology,

leading to an average 12.02% throughput error.

The throughput performance of virtual topologies after their saturation points deviate
from the real network performance as the injection rates increases. The actual saturated
throughput of virtual non-rectangular topologies is also lower. This is caused by the
earlier node saturation of virtual networks than real ones for data transmission. Since
the mesh network nodes for virtual topologies are saturated at a lower injection rate than
real network nodes, traffic congestion occurs earlier and gives rise to the total available

amount of data reaching at a lower level in virtual networks.

Figure 4.19 shows the average packet energy cost by virtual and real topological routings.
As seen, energy fluctuates but has little variance, indicating the independence of energy
with the change of packet injection rates. This is meaningful since switching activities
needed by packets at routers of intermediate nodes from their sources to destinations, as
the main consumer of dynamic network energy, will not change with traffic congestion

or the time spent at network queues [182].

Moreover, it is observed that in both non-rectangular topologies the virtual emulation
networks consume more average energy than real networks (28.71% and 18.27%
respectively). This is because the main network energy consumer is the dynamic energy
cost of data routings that are largely determined by the average hops of routings. Since
the virtual networks are modelled by larger-scale mesh networks and non-rectangular
hops are emulated via extra mesh hops with less time spans at routers, the average hops
of data routings in virtual networks are obviously higher than in real networks, resulting
in the shown extra energy cost. For example, the hexagonal side shown in Figure 4.7(a)
(RO— R2) costs 1 hop in the real topology but 2 hops in the virtual mesh network, which

causes higher average hops of virtual networks for the same routings.

120 Chapter 4 Efficient Modelling of Non-rectangular Topologies

[y
w

~#&— Honeycomb - Random Virtual-hexagen - Random

2 R
(=T T

Average Network Energy
{0.01pl/packet)

| e
pe _7__,..-_,_‘_7_‘/"\.__4— =i —k— L__*_i__t__i_*i a—h

0.001 0.01 0.014 0.018 0.03 0.05 0.07 0.09 0.11
Packet Injection Rate (packet/node/cycle)

. o N o W

(a) Energy of Virtual and Real Honeycomb Networks

15

14 ~—&— Sparse-octagon - Random Virtual-octagon - Random

13

12

11

10 /\kf./av,_*_,,,_ /
5 9 N T

8

7

6 T 1 | .
0.001 0.01 0.014 0.018 0.03 0.05 Q.07 0.09 0.11
Packet Injection Rate (packet/node/cycle)

Average Network Energy
(0.01pJ/packet)

(b) Energy of Virtual and Real Sparse-Octagon Networks

Figure 4.19: Energy Comparisons of Virtual and Real Non-rectangular Networks
under Random Uniform Traffic

4.4.4 Synthetic Traffic: Hotspot
4.4.4.1 Experimental Setup

Uniform random traffic is a classic mode for measuring network performance of NoC
systems, through it is hardly seen in real scenarios [183]. Hotspot traffic is another
typical mode but is similar to many realistic scenarios like communications between
microprocessor and memory cores or data transfers via DMA (Direct Memory Access)
among various memory cores [163]. In this traffic scenario, if a network node is denoted
as a hotspot, it receives extra traffic from other node sources. Other nodes are sending
data traffic to random destinations as uniform random traffic. In NIRGAM, if a hotspot
node is set as 20% probability, it means the hotspot node will have 20% extra chance to

receive 20% additional traffic generated from other nodes.

For our experiments of non-rectangular networks, the hotspot settings are slightly more
complicated to inspect the impact on network performance. Figure 4.20 gives the

detailed hotspot configuration of both honeycomb hexagon and sparse-octagon networks

Chapter 4 Efficient Modelling of Non-rectangular Topologies 121

in terms of virtual and real topologies. One node is denoted as the hotspot node in the
two kinds of topologies, respectively, with four different hotspot probabilities. As shown,
in both virtual and real non-rectangular networks, red, green, orange and purple regions
are created in such topologies, setting the network nodes in those regions to have 20%,
30%, 40% and 50% extra chance to send packets to the hotspot, which also generates
20%, 30%, 40% and 50% extra packets, respectively, when the destination node is the
hotspot.

(a) Hotspot Settings for Honeycomb Networks (b) Hotspot Settings for Sparse-Octagon Networks

Figure 4.20: Hotspot Traffic Settings for Virtual and Real Non-rectangular
Networks

Other experimental settings including buffers, packet and flit length, clock cycle,
simulation cycles and range of pir are the same as the uniform random traffic scenario.
The performance metrics for measuring virtual and real networks under the hotspot

traffic scenario are also the average network latency, throughput and energy cost.

4.4.4.2 Result Analysis

Figure 4.21 demonstrates the latency performance comparisons of virtual and real non-
rectangular networks. It is manifest that the performance is similar to the uniform traffic
scenario. Before the saturation points of virtual networks, they have close latency costs
with only 6.29% and 5.03% errors in the virtual honeycomb hexagon and sparse-octagon
from their real counterparts. This indicates the successful and precise emulations of our
proposed models and configuration. After the saturation points of virtual networks,
the performance deviation rises sharply as the pir increases. Due to more total packets

generated and sent to specific node channels around the hotspot node, more severe

122 Chapter 4 Efficient Modelling of Non-rectangular Topologies

S}
w
(=]

[\
(=]
(=]

—#&— Sparse-octagon - Random

Virtual-octagon - Random

= =
(= w
(=) (=]

Average Packet Latency (cycle)
9,
(=]
|

0
0.001 0.01 0.014 0.018 0.03 0.05 0.07 0.09 0.11
Packet Injection Rate (packet/node/cycle)

(a) Latency of Virtual and Real Honeycomb Networks

400 4
350
300 —&— Sparse-octagon - Hotspot
250

Virtual-octagon - Hotspot
200 4
150

100 -+

Average Packet Latency [cycle)

50 &

0.001 0.01 0.014 0.018 0.03 0.05 0.07 0.09 0.11
Packet Injection Rate (packet/node/cycle)

(b) Latency of Virtual and Real Sparse-Octagon Networks

Figure 4.21: Latency Comparisons of Virtual and Real Non-rectangular
Networks under Hotspot Traffic

traffic congestion occurred in the virtual topologies, resulting in a sharper increase of

data transmission time in mesh-based virtual networks.

Figure 4.22 illustrates the average network throughput obtained by virtual and real non-
rectangular networks. Before the saturation points of virtual topological emulations, the
throughput performance is close with 11.29% and 13.32% errors, where virtual topologies
received slightly more packets than real ones due to the larger mesh network scales used
for modelling. The saturation points of virtual networks is earlier at a lower injection
rate as the virtual routings saturate certain mesh routing channels earlier than in real
networks. While after saturation points, though still lower, the saturated throughput of
virtual networks surprisingly approximate the real network throughput, causing more
precise performance emulations under hotspot traffic over uniform random traffic (4.32%
vs 18.36% in hexagon and 10.33% vs 16.60% in octagon). This may be because under
hotspot traffic, the real networks experience heavier traffic congestion around the hotspot
node than virtual networks due to smaller network scales and more packets transmitted

in networks.

Chapter 4 Efficient Modelling of Non-rectangular Topologies 123

#+— Honeycomb - Hotspot

5 Virtual-hexagon - Hotspot

(packet/cycle)

ag!

2

1

e
0% T T

0.0010.005 0.01 0.0120.0140.0160.018 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
Packet Injection Rate (packet/node/cycle)

(a) Throughput of Virtual and Real Honeycomb Networks

12
—&— Sparse-octagon - Hotspot

10 X .
Virtual-octagon - Hotspot —

——

=

Average Network Throughput
(packet/cyde)

2
—4

' 3
0 ‘ B

0.001 0.01 0.014 0.018 0.03 0.05 0.07 0.09 0.11
Packet Injection Rate (packet/node/cycle)

(b) Throughput of Virtual and Real Sparse-Octagon Networks

Figure 4.22: Throughput Comparisons of Virtual and Real Non-rectangular
Networks under Hotspot Traffic

Similar to the uniform random traffic scenario, Figure 4.23 shows that the energy cost by
virtual modelling is higher (19.54% and 20.62%) than real networks since the emulation
mechanism is not changed and more average routing hops are consumed in virtual
topologies. Such performance inaccuracy of energy cost need to be reduced via better
approximation of average hops of data routings on virtual networks over real ones.
Both virtual and real non-rectangular networks have stable energy cost under a range
of different pirs, indicating no obvious impact of heavier traffic congestion under the

hotspot traffic scenario on energy performance.

4.4.5 Model Accuracy Discussion

After implementing the comparative experiments of virtual and real non-rectangular
topologies, the proposed method using time-regulated models with proper configuration
to emulate irregular routings based on a mesh network is discussed in terms of its

advantages and limits:

124

Chapter 4 Efficient Modelling of Non-rectangular Topologies

=
w

—&— Honeycomb - Hotspot Virtual-hexagon - Hotspot

2o e
S B R

Y , ——1—7__.__7+___t/*==.‘
— “f——‘/‘* - "/\) “

Average Network Energy
[0.01p) fpacket)

v v N 00 W

0,001 0.01 0.014 0018 0.03 0.05 007 0.9 0.11
Packet Injection Rate (packet/node/cycle)

(a) Energy of Virtual and Real Honeycomb Networks

15 —&— Sparse-octagon - Hotspot Virtual-octagon - Hotspot

Average Network Energy
(0.01p)/packet)

0.001 0.01 0.014 0.018 0.03 0.05 0.07 0.09 011
Packet Injection Rate (packet/node/cycle)

(b) Energy of Virtual and Real Sparse-Octagon Networks

Figure 4.23: Energy Comparisons of Virtual and Real Non-rectangular Networks
under Hotspot Traffic

e The proposed model has a limited range wherein precise emulations of network

performance in terms of latency and throughput can be achieved. As observed,
before the saturation points, virtual topologies emulated by our model can achieve
close latency (around 5%) and throughput (around 10%) performance to the real
networks, whereas the energy cost has a large deviation (20% ~ 30%) due to the

extra average hops of data routings.

The virtual topologies and routing patterns can be modelled on a mesh network
with proper routing schemes and configuration. But such convenience in network

construction is at the cost of consuming more network resources and a larger scale

of mesh for topological emulations.

The virtual topological modelling is more vulnerable to traffic congestion, leading
to earlier saturation points and worse latency and throughput performance after
the network saturates. But under a heavy traffic scenario like hotspot, the
larger scale of emulated networks presents a closer performance to the real

networks, which suggests a smoother performance degradation to model more

Chapter 4 Efficient Modelling of Non-rectangular Topologies 125

precise networks under certain heavy traffic conditions, though at the cost of

sharper transmission delays.

It is worth pointing out that the non-rectangular topological modelling is just part
of the functionality our proposed emulation method can provide. Irregular and other
application-specific routing patterns are also achievable by using our time-regulated
models. The errors and deviations exposed in performance simulations of our virtual
networks can also be avoided or even remedied in other designs. For example, if
applications require packet injection rates in a proper range and specific routing patterns
are implemented, virtual topologies modelled by our method on a mesh network can have
equal (or close) routing hops to the real architectures. Thus, efficient emulations and
accurate performance in terms of latency, throughput and energy can both be achieved

by our method.

4.4.6 Specific Application: MPEG-4 Decoder

To evaluate the potential of our proposed method for real multimedia applications, an
MPEG-4 decoder was mapped onto a custom irregular network and on a mesh network
with virtual emulations of the same irregular routing with time-regulated models. Both
networks are constructed based on the framework of a 9 by 9 Mesh. Buffer depth
and width are set equal to the previous synthetic traffic experiments. Virtual channel
allocation is also configured to equalise the setting of specific routing experiments. The
source routing algorithm is used for regulating routing paths on both networks. The
timing and energy performance of the decoding process on both networks are compared

in the NIRGAM simulator to validate the accuracy of the proposed method.

4.4.6.1 Software Implementation

Figure 4.24 show the modules of an MPEG-4 decoder constructed in the NIRGAM
simulator. The numbers shown at the links of node pairs indicate the total tasks required
for mutual communications to decode a 1-second QCIF MPEG-4 video clip with 25fps
frame rate. The software implementation of MPEG-4 decoder is extracted from an
online open source Xvid codec [184], classifying specific IP cores which can be attached
to network nodes for the NIRGAM simulation. The modules given in the figure are split
from the original decoder source and behave as hardware modules instead of software
functions, so that its generated application placement is a baseline suitable for further

experiments and investigation.

In the decoder application, the decoding process is split into 8 different modules with
certain communications between each other that are placed onto 8 independent network

nodes. Each module takes charge of one particular part of tasks in decoding process

126 Chapter 4 Efficient Modelling of Non-rectangular Topologies

Inverse

Cruantisation

Kean
Prodiction

”

Iy]

1111

Figure 4.24: MPEG-4 Decoder

and have sequential input and output communications with other modules via network
routers. All the mutual communications require correspondent network channels for
data transmission in the network. The initial input of the decoder is the encoded video
data stream sent to the Variable Length Decoder (VLD) module initially and the output

is a set of decoded and restored YUV data generated at the Reconstruct module.

4.4.6.2 Experimental Setup

Although not normally used today, the use of 45° interconnects has been proposed
previously [185]. This example shows how such interconnects could be modelled in
NIRGAM. A real network customised in a conventional way and a virtual topology
emulated by our method are both used to implement the MPEG-4 multimedia
application. The decoding process starts by sending the encoded video bitstream
from the VLD core. Figure 4.25 gives the module placement of the MPEG-4 decoder
on custom network directly and on mesh network with virtual modelling of irregular
routings. Since the bandwidth requirements of mutual communications at each
pair exceed the available bandwidth between node channels, intermediate nodes are
introduced on both real and virtual networks for the irregular routing of MPEG-4
decoding, offering extra buffers at each node router and prolonged routing path to avoid
packet drop. Black solid-line circles indicate modules of the decoder, red solid lines
indicating routing path for the decoding process, and red dash-line circles suggesting the

intermediate nodes used in both network topologies for successful data transmission.

Specifically in Figure 4.25(a), a custom network is constructed based on the 9 by

9 mesh framework. Seven module pairs of the decoder have multi-hop routings which

Chapter 4 Efficient Modelling of Non-rectangular Topologies 127

are [VLD-Scan] (2 hops), [Scan-IQuant] (4 hops), [[Quant-IDCT] (3 hops), [IDCT-
VOP Rec] (3 hops), [Interp-VOP Rec] (2 hops), [VOP Rec-Mem] (2 hops) and [Interp-
Mem] (2 hops), respectively, attaching onto the normal mesh network nodes. Tt is
noteworthy that the module pair [Interp-Mem]| in the custom network has bi-directional
communications that transmit data with different bandwidth requirements. This
difference makes one direction ([Mem] to [Interp]) cost 2 hops and the other directional

communication ([Interp] to [Mem]) cost 1 hop for successful task transmission.

The MPEG-4 decoder is also mapped onto a mesh network with virtual emulations
to the irregular routings using time-regulated models. Red dash-line circles in
Figure 4.25(b) represent the nodes with the time-regulated model in the mesh. The
configuration of those models are carefully adjusted to make data routings on red solid
lines on the mesh network equal to on the custom network for precisely emulating
the irregular routings of MPEG-4 decoder. The number of red dash-line circles are
intentionally set to the same as used in the custom network to approximate the average
data hops in the network for accurate energy modelling. It is notable that the bi-
directional communications at module pair [Interp-Mem]| cannot be modelled with
different hops as in the custom network. This is because the virtual emulations route
data on the mesh network, which follows the Manhattan geometric rules and can only
allocate 2 hops to both directional links. This characteristic leads to one extra hop
consumed by the same bi-directional links in the virtual network than in the custom

network.

(a) Irregular Placement on a Custom Network (b) Virtual Irregular placement on Mesh

Figure 4.25: Module placement of MPEG-4 Decoder for Irregular Routing

To illustrate how the custom network shown in Figure 4.25(a) is implemented in
NIRGAM, a customised Mesh with 8-neighbour homogeneous nodes is firstly designed as
shown in Figure 4.26(a). Such network nodes have 8 instead of the default 4 directional

links to neighbouring nodes. Specifically, four new directional links (Northwest,

128 Chapter 4 Efficient Modelling of Non-rectangular Topologies

Northeast, Southwest and Southeast) are added to the node router. Since this custom
network is for comparative experiments in order to test our proposed method for real-
world multimedia applications, the network is synchronous and all the settings to these
8 link channels are the same as the default Mesh network. Hence, cores from the graph
in Figure 4.24 are mapped onto this custom network and intermediate hops between
those module pairs are also needed in order to meet the communication requirements.
The irregular placement given in Figure 4.25(a) are finally implemented as shown in
Figure 4.26(b). Module pairs of [VLD-Scan/, [Scan-IQuant/, [IQuant-IDCT], [IDCT-
VOP Rec], and [Interp-Mem] are implemented by using one of the four new directional
links the network node routers have been added. All other unused Mesh nodes and links

from the decoder mapping are disconnected to form the specific irregular topology.

IXIXIRIRIXIXL - 7 7 % 2 @
»NVV%&M& o

4
IIXIX
1]
XX

DX
DX AKX
IR DX
RZOOTZIION
O

BB

4

b

<JX]
<l

A

(a) Customised 8-neighbour Mesh Network (b) Implementation of the Irregular Placement

Figure 4.26: Implementation of the Irregular Placement of MPEG-4 Decoder

4.4.6.3 Result Analysis

Table 4.3 lists the performance comparisons of MPEG-4 decoding on the custom and
Mesh networks. It shows that by using our virtual modelling, the performance of
irregular routings on a mesh is emulated with 0.13% timing error and 3.07% energy

error compared to the performance on the custom network.

Table 4.3: Performance Comparisons of MPEG-4 Decoding

Performance | Mesh with Virtual Routings | Custom Network | Error (%)
Time (us) 4131.795 4137.157 0.13
Energy (pJ) 154.59 149,982 3.07

Chapter 4 Efficient Modelling of Non-rectangular Topologies 129

The accurate timing emulation of the MPEG-4 decoder given by the proposed method
is due to the precise timing configuration of the time-regulated models for irregular
routings. The 3% error of energy performance in the Mesh-based virtual irregular
routings is due to the 1 extra hop between the unidirectional communications at [Interp-

Rec] module pair.

4.4.7 Superiority of Our Method for Topological Modelling

Consequently, we have developed a novel method to resolve the conflict between design
performance and design productivity by considering both the module reusability and
high performance demands. The method uses the NIRGAM simulator as the backbone
framework, offering a fast and easy way to emulate virtual non-rectangular topologies
and irregular routing patterns based on a regular mesh network. The modules for design
automation of mesh network in the simulator are fully reused for other specific topologies.
Configurable time-regulated models are designed and attached on mesh network nodes
that adjust data transmission time at nodes pairs to form non-rectangular and irregular
routing geometries with precise timing and energy performance. In our method, efficient
topological emulations with precise performance simulations for many non-rectangular
networks and irregular geometries are achieved by reusable modules, which combines
merits of both former methods while overcoming their shortages. The conflict between
performance and productivity is alleviated by our method, while module reuse and

accurate performance modelling are both considered.

Our method does not construct the real topologies in the simulator with unique
and specially designed modules. Instead, the topological geometries are investigated
and emulated wvirtually by attaching the time-regulated model with different settings
onto a mesh network, which makes full use of the reusable modules that a simulator
has integrated for its default mesh network. Traditionally, modern simulators often
provide the platform and functionality for researchers to customise their specific
network topologies, including self-designed characteristic modules, structures and
routing schemes. The development process may be time-costly and the unique modules
may be not reusable. In our method, the reusability and modularity of applied modules
is guaranteed by the pre-designed mesh network. The heterogeneity required for specific
topologies is only presented by the time-regulated models with certain configuration,

which obviously saves time for custom module designs.

To explicitly demonstrate the superiority, a list of characteristic modules, simulator
modifications and environmental settings needed in designing custom topologies is given
to compare our method and the custom way. To make the comparison fair, all the
generation processes required by the two methods are given in the NIRGAM simulator.

The comparative results are shown in Table 4.4

130 Chapter 4 Efficient Modelling of Non-rectangular Topologies

Table 4.4: Comparison of Topology Design in Custom Way and by Our Method

Topology Designs need: Custom Way | Our Method
v

Learn characteristics of each topology
Design routers
Design network interfaces
Design 1/0O ports
Design crossbars
Develop routing schemes
Configure time-regulated models

SSRNENENENENEN

NN X X X X

From the table, it is observed that our method needs much less design than THE custom
way in NIRGAM to simulate a network topology. Several modules like routers, I/O ports
and network interfaces need to be customised specifically for each different topology. But
in our method, these designs can be completely saved since all these relevant modules
in the mesh topology are reused for different topologies. Such superiority in design
time savings can be amplified if multiple topologies are desired to be implemented for

performance simulation.

With the thorough study of candidate topologies, the time-regulated models are carefully
set in our method to force the mesh network routing data to be as similar to certain
geometric patterns, producing precise transmission time as routing on the specific real
topologies. The energy performance of such emulated routings is highly relevant with the
average data hops they consume, which can be precisely approximated to the cost by real
topologies as proven in former experiments. It is noteworthy that although the proposed
method has superiority in efficiently emulating and modelling specific topological routing
performance, limits like reduced range of applicable packet injection rate and vulnerable
tolerance to traffic congestion, which are discussed before, require cautious use of our

model.

4.5 Summary

In this chapter, we have proposed a novel method, instead of specifically constructing
each custom network architecture, using time-regulated models to emulate non-
rectangular and irregular NoC topologies on a regular mesh network in the NIRGAM
simulator. This provides a rapidly generated, easy-to-implement approach to emulate
multiple topologies and routing patterns with efficient module reuse and precise
performance modelling, which contributes to design space exploration of system-level
modelling step of current NoC design methodology as shown in Figure 1.2. This
method is practicable and needed at design-time for exploring different NoC topologies.
Honeycomb hexagon, Sparse-octagon and two irregular routings are developed by our
method to measure the performance in terms of latency, throughput and energy. Results

have verified the functionality of our method. Moreover, an MPEG-4 decoder is also

Chapter 4 Efficient Modelling of Non-rectangular Topologies 131

implemented with special irregular routings to evaluate the potential of our method for

modelling real-world multimedia applications.

Apart from the desirable experimental results, problems and limits of our method are
exposed as well. Potential remedies and solutions to those drawbacks are required.
Firstly the method is limited by fixed network degree of the mesh network. The
honeycomb and sparse-octagon virtual emulations both have lower network degree than
the mesh, which thus enables precise modelling. This limit may be alleviated via using

a high-degree network as the backbone for virtual emulations.

Secondly the applied range of packet injection rates is limited in the virtual topologies.
After the saturation points of the given virtual networks, which are earlier than real
networks due to heavier congestion at virtual nodes, the virtual routings may fail to
precisely emulate the network characteristics of real networks. This is due to the heavier
traffic loads caused by the model configuration and routing schemes. Hence, potential
remedies would be to design more advanced, load-balancing routing schemes and time
configuration to enlarge the applied range. It is adversely deducible that the virtual
modelling offers narrowed applied range for precise performance that is less likely to
saturate the target networks than real ones since the reduced range of unsaturated
as well as desirable network conditions will be considered in virtual topologies. This
limit of our model, however, restricts a more cautious usage of the virtual networks
for normal operations, which is not bad for those applications that require unsaturated

implementations.

Thirdly the average data routing hops and network scales of virtual networks modelled
by our method are higher than real ones, leading to more (inaccurate) energy and more
network resource cost. A promising potential solution to such a problem is to use
similar network resources (nodes) to model virtual networks with close average hops. For
example, the virtual 24-node honeycomb and 32-node sparse-octagon can be emulated
their brick shapes as shown in Figure 4.3 on the mesh network, rendering to the drops of
network scales from 56 and 64 nodes to 28 (7 by 4) and 32 (8 by 4) nodes, respectively.
Such mesh networks can also cause more close average routing hops for virtual modelling,

which alleviates the energy error.

Finally, virtual modelling and emulations are more vulnerable to traffic congestion,
which is a hard-core limit of our method that is hardly solved. It is because the applied
range of mesh nodes for virtual emulations are always narrower than real networks.
So the traffic load resistance is always limited in the virtual modelling. A possible
way to alleviate this situation would be to develop load-balancing routing algorithms
and routing schemes. But this will introduce extra performance errors. A generalised
balance between the routing applicability and error control is hard to find, though it is

still possible.

Chapter 5

Application Mapping and

Performance Prediction

Task mappings of various applications to network IP cores with certain interconnections
is a significant design stage in the Network-on-Chip (NoC) design methodology for
achieving desirable system performance. Normally one application will be split into
several tasks and mapped onto different nodes of an on-chip network. As the design
complexity of modern applications increases, efficient decision makings on proper task
mappings and network architectures are more desirable to produce efficient design cycles
and to alleviate the ever-severe time-to-market pressure. Hence, to balance the design
productivity and design performance of NoC systems, application mapping techniques

at early design stages have become a hot research topic.

In this chapter, developing a novel mapping strategy that balances design performance
and design productivity is our research focus. We expect the proposed strategy can
rapidly decide the optimal task mapping on various network topologies. Moreover,
obtaining a precise prediction of certain performance metrics (communication energy
and transmission latency) of a mapping for further design stages is expected to shorten
the design cycles. The reason to develop such a mapping strategy is not only because
of the impact application mapping techniques may have on the optimisation of network
system performance, but also because of the effective and useful performance prediction
such strategies may offer at the early design stages for high design efficiency. Besides,
less requirements in design cycles and more precise performance prediction can also lower

the design cost of prototyping of complex NoC systems.

133

134 Chapter 5 Application Mapping and Performance Prediction

5.1 Introduction and Necessity

In modern application-specific NoC designs, a popular NoC design flow has been widely
used (as given in Figure 5.1) [15]. An application is specified as a set of computational
tasks with certain communications with each other, which is known as an application
task graph. IP functional cores in NoC network nodes can process a subset of these
tasks. Hence, the initial step of the design flow is to select a set of available network
nodes and properly allocate the computational tasks to them. This gives rise to the
mapped node graph in the design flow in which the network nodes and communication
bandwidths needed by the channels between node pairs are labelled as nodes and edges
of the network topology, respectively. At the mapping stage, numerous techniques have
been developed to map the task graph onto a network topology graph with the fulfilment
of mapping objectives to specific design requirements. The mapped graph is passed to

the routing and scheduling stages to form and establish the target NoC network.

4 Specific
Application

Task Selection

4 ™
|\ Task Graph

- \
lr"/Network Node Mabbin
\ Graph pping
Ir”'{-FMapped Node
\ Graph

y

Routing

I./ Routes for '
_Communication
e

y

A

&

Scheduling

A 4
If'/Sy'nthesistaud NoC
| Network

Figure 5.1: Design Flow of Most Application-specific NoCs

Chapter 5 Application Mapping and Performance Prediction 135

From the design flow, it is clear that improvement and optimisation in developing task
mappings to node interconnection networks at the mapping stage is essential to improve
the NoC design performance, which requires advanced uses of modern EDA techniques
to determine optimal task mappings. But to serve our objectives, improving design
efficiency of NoC systems at early stages is also significant. For this reason, we expect
to efficiently produce optimal task mappings with precise and reliable performance
predictions on a range of different network topologies. The models for virtual topological
emulations introduced in the last chapter can be combined with such an ideal mapping
technique to improve the efficiency of NoC design methodology from task selection step

to routing step.

However, as more complicated tasks being processed in modern applications, total
feasible task mappings rise exponentially along with the processing core number, which
costs longer execution time to search the optimal mapping. This searching time may
become unacceptably long since the optimisation of application mapping problems
is an instance of constrained quadratic assignment problem, also known as an NP-
hard problem [91] [92] [93]. In this case, the difficulty of achieving optimal mappings
increases and the execution efficiency of mapping techniques to search optimal mappings
decreases, indicating a reduction in both design productivity and design performance
of task mappings to complicated NoC applications. Besides, a generalised optimal task
mapping suitable for all applications is hard to produce since their various and specific

design requirements may not be optimised concurrently or even contradict each other.

For this reason, many task mapping techniques have been developed to search
optimal mappings of specific applications with certain performance metrics such as
communication energy, transmission time, link bandwidth and traffic workloads [15].
Yet few of these previous mappings have balanced their mapping result accuracy and
execution efficiency. Some of them, like evolutionary computing techniques, trade
off execution efficiency with increased iterations for refining mapping performance,
while some constructive heuristics have a fast mapping construction in reduced
execution periods at the cost of acquiring near-optimal results without improvement.
For early-stage performance prediction, a mapping technique with a better balance
between execution efficiency and result accuracy is expected to improve the design
productivity while keeping the design performance. Moreover, most previous mappings
are designed on a mesh NoC architecture due to the easy problem formulation and
structural implementation, despite the fact that other NoC architectures can also process

applications with desirable performance like in [173] and last chapter.

In Chapter 2, we found that the mapping techniques that can apply to various NoC
architectures and have a good balance between execution efficiency and performance
accuracy are rare. Motivated by this, we have proposed a novel method to fill the gap,
developing a mapping technique that is extensible onto different regular NoC topologies

and produces globally optimal mappings with high execution efficiency and precisely

136 Chapter 5 Application Mapping and Performance Prediction

calculated performance for early-stage prediction. The major features included in our

mapping technique are listed below:

e The objective is to minimise the cost of communication energy and transmission
latency under link bandwidth and execution time constraints. The reason is
considering both metrics instead of either single one can better evaluate their
impact on system performance. Moreover, considering either metric only may
lead to inapplicable optimal results. For example, a mapping minimising energy
cost may place tasks in a compact area causing high traffic congestion while a
mapping minimising time cost may average network traffic loads and place tasks

widely costing high communication energy.

e A Non-Linear Programming (NLP) based technique is used in our problem
formulation to improve the method’s extensibility. Instead of depicting task
connections based on architectural features like node directional neighbours, a
coordinate system with certain coefficients representing the node intervals is
developed, which is easily extended for other regular tile-based NoCs in which

the node interrelations can be described by coordinates.

e A modified branch and bound (BB) algorithm is used to offer global optimality
to generated mappings with increased execution efficiency. The BB algorithm
explores the search space that covers all possible solutions and is compatible
with NLP based problem formulation. Our modification to original BB algorithm
improves its bounding mechanism by trimming more unlikely tree branches of the

solution set at early levels to accelerate the searching speed.

e Our proposed method develops a fast and efficient solution of producing optimal
task mappings with precise early-stage performance predictions. State-of-the-art
energy and timing models are modified to calculate accurate mapping performance.
An event-driven, cycle-accurate simulator, NIRGAM [25] [163], is integrated to
provide baseline metrics in the models for problem formulation. It also provides

performance simulations to check the accuracy of calculated results.

The organisation of this chapter is as follows: Basic network knowledge for the proposed
mapping technique is introduced firstly. The next section details the problem formation
and extensibility of our method, followed by the modified BB mapping algorithm and
process of performance prediction. Experiments are implemented and analysed finally

to validate our method.

Chapter 5 Application Mapping and Performance Prediction 137

5.2 Proposed Mapping Method and Performance Predic-

tion

In this section, our mapping technique is introduced. General knowledge of NoC
architectures and performance models used in our design is initially given, followed by
the details of NLP-based problem formulation. Then the extension of our formulation
technique onto various NoC architectures is elaborated. Modification to a Branch
and Bound mapping algorithm for increasing its searching efficiency is explained next.
Finally the design methodology to generate accurate performance prediction by our

method is illustrated.

5.2.1 Preliminaries
5.2.1.1 The Architecture

Topology:

In this section, an n-by-n 2D-mesh NoC topology is used to implement task mappings
due to its desirable properties like structural regularity, concurrent data transmission
and modular reusability [18]. As shown in Figure 5.2, an example 3-by-3 mesh network
is presented with 9 network tiles/nodes interconnected, where each tile consists of one
IP core, one buffer and one router switch. This NoC architecture is already given in
Figure 3.3, which is reproduced in this chapter for convenient explanations. Particularly,
since the coordinate system used in our method can be extended to other specific network
topologies, the Mesh-based topology is not the only platform suitable for our mapping
method. Other regular, tile-based topologies may also be suitable for the proposed

mathematical description if their node connections can be described by coordinates.

A |
North North
Output Input
h 4
P al TN
(R0 —(Rr3 —Re)
h o A . _West_}m East
‘ Router Switch nput” |C output
| Crossbar st
L —D < .
. /, ~ Ve ,\\ T ‘ Output |— Input
(R1)}—(ra)—(r7) ||__ Buffer |
1 h i) v Buﬂ’er \ gi/\
O
Duth outh
IP Core ‘ Tnput ;utput :js/* Core

Core Inpu
I R2 k R5 . | M Dulpull pt\
AN

Figure 5.2: Typical Structure of a 2D-Mesh Network Tile and Its Router Switch

Switch:

In a network node/tile, the router switch normally has five directional links connecting

138 Chapter 5 Application Mapping and Performance Prediction

to four neighbouring tiles and a local IP core via channels. Each channel is composed
of two opposite one-directional physical links with one end connecting to neighbouring
nodes and the other connecting to a crossbar via a small buffer. The buffers are designed
for registering waiting data since the contention of multiple data packets for occupying
one specific channel concurrently may cause packet drops. The physical link channels
can be multiply utilised by dividing into several virtual channels in the meantime. The
crossbar arbitrates which directional output to send a data packet to by reading the

destination or source information contained in the header.

Wormhole Routing:

The wormhole-based routing technique [36] has been used for NoC architectures since
it is well-coupled with the reduced buffering resources and strict timing requirements
desired by classic NoC applications [116]. In this routing technique, data packets are
divided into smaller units called flits (flow control units) and pipelined through the
network. All the routing and destination information are contained by the head flit
which is arbitrated by intermediate node routers, followed by other flits of the packet via
the same node. If the head flit is blocked or waiting at one node due to traffic congestion
or data contention, other trailing flits will stay at their local nodes instead of continuing
to the blocked node, which substantially reduces the buffering space requirement at each

node. This characteristic makes wormhole routing suitable for NoC architectures.

Deadlock- and Livelock-free Routing:

Deadlock-free and Livelock-free routings are critical in NoC architectures to prevent
severe performance impairment or even failure of the network traffic. As per [48] and
[116], two general classes of wormhole-based routing techniques have been presented
which are deterministic routings and adaptive routings. All deterministic routing
algorithms are livelock-free [51]. More details are given in Chapter 2. For the deadlock-
free algorithms in our mapping technique, a static XY deterministic routing algorithm
[40] is used for the mesh network and as the basis for other NoC tile-based architectures

for the following reasons:
e It is easy to design the structure and simple to implement with less consumption
of network resources compared to adaptive algorithms.
e It is deadlock-free and livelock-free [51].

e [ts routing mechanism avoids the reordering of arrived data flits at the destination

node.

e It needs very limited buffering space at intermediate routers, which substantially

reduces the possibility of resource overheads [108].

Chapter 5 Application Mapping and Performance Prediction 139

5.2.1.2 Energy and Timing Models

The trade-off cost of communication energy and transmission time is the major objective
in our mapping problem. Extracting accurate energy and timing models is essential
for precise performance predictions, which necessitates deriving the models accurately
before problem formulation. For the energy model, Ye et al. [186] firstly presented a bit
energy performance metric, which is defined as the energy cost when one single bit of

data travels through a router.

Eyit = Es,,, + Ep,;, + Ew,,, (5.1)

where Fy;; refers to the bit energy. Es, ,, Ep,, and Ey,,, represent the energy consumed
by a single bit of data routing through the router switch, buffers at channel ports and
interconnection switching wires, respectively. The energy model shown in Equation 5.1
has been modified in [116], adding a part of energy cost on channel links between network
node pairs. The new energy model of a single bit of data sent between a node pair is

given in Equation 5.2:

Eyit = Es,,;, + EB,,, + Ew,,, + ELyy, (5.2)

where E7, , indicates the energy consumed by a single bit of data traversing channel links
between an adjacent node pair. At this step, Hu et al. further modified the new model
in [116] to neglect the parts of energy cost by the buffering (Ep,,,) and internal switching
wires (Ew,,,) due to their minor influence. The simplified energy model thereafter was
widely used in many other works. Unlike the simplification, our energy model integrates
one more part to the complete model shown in Equation 5.2 to improve the result
accuracy. It is based on a modified energy model derived from a popular power model
Orion [87] [157], depicting the communication energy cost between IP core and router

switch:

Eyi = Es,,, + EB,;, + Ew,,;, + By + Esre—cyy + Edst—Cyy
= FEs,,, + EB,,, + Ew,,, + Er,,, +2 X Eg¢,,, (5.3)
Ecy,, = Esrc—Cyy = East—cyy,
where Ecpit, Esre—cvit and Egsi—copir represent the energy consumed between the IP core
and switch, by a single bit of data traversing from the IP core to the crossbar buffer at

the router switch of the source node, and from the crossbar buffer at the router switch

of the destination node to IP core, respectively.

Since each time a bit of data routing would start from the core of the source node and
end at the core of the destination node, the energy cost between the IP core and the

switch at both the source and destination nodes are equal. Moreover, it can be observed

140 Chapter 5 Application Mapping and Performance Prediction

that each time a bit of data traverse through a router switch, Fg,,,, E'p,,, and Ey,, are
always included and computed together. Besides, each data routing will always and only
contain one Eg.._cpit and one (Es,,, + Ep,,, + Ew,,,) at the source node, one Ejst—cpit
at the destination node as data will always route the path from the IP core to the router
switch at the source node, outputting from the source node switch and finally arriving
at the IP core buffer at the destination node. Hence, the term in Equation 5.3 can be

merged to simplify the equation:

ES{n.t = Es,;, + EBy,, + Ew,,,
ES’—Db“ = (Esrc—Sbn + Esrc—Bbit + Esrc—Wbit) =+ (Esrc—Cbit + Edsthbit) (54)
= EsrcfSl’)it +2 x Eg,,,

where sy, refers to the total energy consumed by data passing through a router switch.
Es_p,,, indicates the constant energy consumed by a data transmission at the source
and destination nodes, which contains the energy cost for routing from the IP core to the
switch of the source node ((Egpc—c,,;,), outputting from the router switch of the source
code (ESTC,SI/M = (Esre—8,;, + Esre—By;y + Esre—wy,;,), and to the IP core from the router
switch at the destination node (E4s—c,,,), respectively. Based on the simplification of
Equation 5.4, the new energy model for sending a single bit of data from node n; to n;

has been derived from Equation 5.3:

Ey;" = (hopij x By, + hopij x E,,) + Es-py, (55)
= hopij x (Eg; + EL,;,) + Es-p,

where hop; ; is the hop count between node i and j (switch 7 and j). It is noteworthy
that Equation 5.5 is a linear function of the variable hop;; and constants ES{,-t’ Er,.,
and Es_p,,,. The constant polynomials can be further simplified, which results in the

final form of our energy model:

Ey" = hopij x Es+ Ep

Ea=(Es + EL,,) (5.6)

Ep = Es_p,,

Providing the constant values are already known (the values of baseline references are
achieved from the simulation of a single data bit routing through NoC networks in
NIRGAM), the total communication energy cost can be optimised regardless of the
data routing model. By using Equation 5.6, the energy minimisation problem can be
replaced by determining the optimal Manhattan hopping distance between the data

routing path from node n; to n;.

Chapter 5 Application Mapping and Performance Prediction 141

The timing model can be derived in the same way since in all energy cost parts the
time is always consumed in the same way. Similar to F4 and Ep, corresponding timing
constant values of T4 and T can also be obtained from NIRGAM as the baseline

references. Hence the proposed timing model is:

Tg;?nj = hOpiJ‘ XTy+1Tp (57)

5.2.2 Problem Formulation of NLP Based Mapping

In this section, we present details of a Non-Linear Programming (NLP) based
formulation for application mapping problems. Several critical definitions about the
task graph and network graph are given first, followed by other variable configurations

needed for the problem formulation.

5.2.2.1 Problem Definition

Similar to many other mapping problem formulations like in [119], several critical

definitions are needed to formulate our mapping problem.

An application will be divided into a set of tasks according to their interconnections,
which forms a task graph to be mapped onto NoC architectures. The task graph is
defined below:

Definition 1: A task graph for an application is a directed graph, T = G(V, F), where
each vertex v; € V represents a selected IP task. A directed edge e;; € E represents
the communication from vertices v; to v;. For any vertex pair v;,v;, there can be two
directional arcs at most with each arc dedicated to one direction. For each directed edge

ei j, there are the following properties:

e comm(e; ;) denotes the arc volume from tasks v; to vj, representing the commu-

nication volume (data bits) from v; to v;.

e b(e; ;) denotes the weight of edge e;;, representing the minimum bandwidth
(data bits per second) of the communication from tasks v; to v; required by the

application tasks to fulfil performance constraints.

Definition 2: An NoC architecture graph for an application is a directed graph, T’ =
G(N, L), where each vertex n; € N represents a node in the network. A directed edge
l;;j € L represents the link routing communication from vertices n; to n;. For any
vertex pair n;, n;, there can be two directional arcs at most with each arc dedicated to

one direction. For each directed edge [; ;, there are following properties:

142 Chapter 5 Application Mapping and Performance Prediction

e P, ; denotes the set of potential minimal routing paths from nodes n; to nj,
representing the communication volume (data bits) from n; to n;. Vp;; € P,

Link(p; ;) denotes the channel links used by a specific p; ;.

e bw(l;;) denotes the weight of edge [; ;, representing the bandwidth (data bits
per second) available across the link channel from nodes n; to n; in the NoC

architecture.

e ¢(l; ;) denotes the edge energy cost, representing the communication energy cost

(joules) of sending one bit of data from nodes n; to n;, which is B,
e t(l; ;) denotes the edge timing cost, representing the transmitting time cost
(seconds) of sending one bit of data from nodes n; to n;, which is ng’nj .
Definition 3: For an NoC architecture graph T’ = G(N, L), a deterministic routing

algorithm, $: L — P, maps [; ; to one candidate routing path p; ; € P; ;.

Definition 4: For mapping a task graph T = G(V, E), onto an NoC architecture
graph T' = G(N, L), a function map : T — N is given, such that, map(v;) = n;j,
Y, €V, Hnj € N.

5.2.2.2 Parameters and Variables

Based on the former definitions, the parameters and variables listed below are used for
the problem formulation:
e An application task = v belongs to a task graph = V.

e The source task and the destination task of a communication flow = v, and v,

respectively.
e Communication volume of a task pair = comm(e; ;).
e Required bandwidth of a task pair = b(e; ;).
e A network node = n belongs to a node graph = N.

e The source node and the destination node of a communication routing path = ng..

and ngs, respectively.
e Communication volume of a node pair = comm(e; ;).
e Link capacity of a node pair in the network = bw(l; ;).
e Hop distance of a node pair n; and n; = hopn, n,-

e Energy cost of one bit data from node n; to nj = e(l; ;).

Chapter 5 Application Mapping and Performance Prediction 143

e Timing cost of one bit data from node n; to n; = t(l; ;).

e Number of tasks in an application = size(V).

Number of nodes in a network = size(N).

Coordinates of a node in a network: n; = (z;, ;).

The column number of a Network N = column(N).

The row number of a Network N = row(N).

5.2.2.3 Objective Function

The main objective of our mapping technique is to minimise the trade-off cost of the
communication energy and the transmission delay, which contains two parts to be
optimised as a whole. The objective function is constructed based on a Non-Linear

Programming (NLP) formulation:

Minimise : z = {Costg + Costp} (5.8)

By using above definitions, parameters and variables, the two polynomials in Equation

5.8 can be elaborated as follows:

Costp = 3 2 > commleis) - ellmap(un)map(v;) - hOPmap(w),map(e;)
Ve; ;€EE Vlmap(v,i),map(vx)EL Vv, v; €V
' (5.9)
Costp = Z Z Z Comm(eid) : t(lmap(vi),map(vj)) ' hapmap(vi),map(vj)

Vei i €E Vimap(v;),map(v;) €L Vi, v €V

The two polynomials present the communication energy cost and transmission timing
performance of the application task mappings, respectively. By summing the arithmetic
products of communication volume between any task pair, the bit energy or timing
between the corresponding node pairs to which each task pair has mapped times the
hop count of those mapped node pairs. From Definition 3, the mappings between the

task graph and the NoC architecture graph can be established:

if
vi,vj €V, are mapped to mny,n; € N, respectively,
then

map(v;) = ng, map(vj) = ny.

144 Chapter 5 Application Mapping and Performance Prediction

Then, Equation 5.9 is represented as shown in Equation 5.10:

Costg=»_ > > commlei;)-e(lis) - hopn,m,

Ve; €E Vi €L Vng,nmeN

Costr = Z Z Z comm(e; ;) - t(lg1) - hopp,

Veiy]' eFE Vlk’lEL Vng,n €N

(5.10)

Since the dimensions of communication energy and transmission time are different,
their results cannot be directly added to describe the minimal sum cost. Moreover,
simply adding the two performance results may cause different weighted proportions in
analysing the result optimality due to different orders of magnitude held by the result
values. Hence, to seek the optimal sum trade-off with equivalent significance, both
performance metrics are normalised to make their values convergent, eliminating the

impact of dimensions and magnitudes.

Several normalisation methods are commonly used in many engineering fields to remove
dimensions of different experimental results. The most popular one is rescaling,
establishing relations between the maximal and minimal answers to rescale all answers
at range (0,1). The others include logarithmic function and inverse tangent function.
We do not use the rescaling method due to the difficulty of finding an accurate maximal
answer to our mapping problem. The accurate worst case is hardly achieved unless all
possible solutions are experimented their ultimate results and mutually compared. But
this exhaustive searching is too expensive to be implemented in our case. Therefore,
for efficient execution, the maximal solution to our problem, which is also the worst
mapping, has been banned in early processing steps, which prohibits the use of the

rescaling method.

For the other two methods, a simple experiment to test their execution speeds for
solving our mapping problem shows that the logarithmic normalisation costs slightly
less execution time. Thus, it is adopted as the normalisation method in our formulated
problems for eliminating large magnitude differences of performance results. Moreover,
to ensure the logarithmic results of both energy and time to be located at the same range
for eliminating the dimensionality, the value units need to be clarified. Specifically in
our case, the units of communication energy and transmission time are set as nJ and ns.

The normalised objective function is clearly defined in Equation 5.11:

Minimise : z = {Norm_Costg + Norm_Costr}
where :

(5.11)
Norm_Costg =log;,(Costg (nJ))

Norm_Costr = logo(Costr (ns))

Chapter 5 Application Mapping and Performance Prediction 145

Thus, with the polynomials and pre-defined variables given in Equation 5.10, the

modified main objective function of the application mapping problem can be expressed:

Minimise : z = { logyo(Z Z Z comm(ei ;) - €(lx) - hopny.m;)
VeiijE Vlk’leL Vng,n €N (512)

b Y Y comm(ei,mak,o~hopnk,m>}

Ve; ;€E VI €L Yn,,n €N

For the polynomial hopy, », in Equation 5.12, the aforementioned mapping algorithms
like [119] and [15] usually calculate hop distance values by denoting a new parameter
(d¥ k =1,2,...,|E|) to present a single communication commodity between a node pair,
and summing the values of all the commodities (value(d*)) which are available along

the directional routing path for a specific communication flow:

| B
hopcount = Z Ualue(dk) - p(Ngre, Ndst), Ypij € Pij
k=1
This method needs an efficient and specific routing scheme adapted to certain NoC

topologies, such that the calculative results can be optimised.

As we intend to expand the usability of the problem formulation to more topologies other
than Mesh-based ones, a new method that calculates the hop count using a coordinate
system has been developed in this chapter to express the interrelations of task-mapped
nodes. Previous works often describe the node positions and their interrelations by
summing along directional routing paths, which requires the characteristics of specific
NoC topologies. This limits the use of such description methods for other NoC
architectures. Our method elaborates the interrelations of network nodes by using the
absolute coordinate values of node positions, which forms non-linear expressions. This
NLP-based method can be used in other NoC topologies since no specific network and

routing characteristics are involved, which improves the universality.

For those tile-based NoC architectures whose node interconnections can be depicted
by the binary coordinate system, like Mesh and Torus for example, their coordinating

interrelations can be expressed below:

146 Chapter 5 Application Mapping and Performance Prediction

if
the coordinates of a pair of task mapped NoC nodes are :
then

hopni,nj = |yj - yz| + |:Ej - xl‘

The method to elaborate node interrelations in other tile-based NoCs is similar. If more
complex architectures are needed to formulate the mapping problem by our method,
more complex coordinate systems (for example, ternary system) can be simply used.
Taking such non-linear assumptions into consideration, the expression of the objective

function in our mapping problems has finally be derived in Equation 5.14:

Minimise : z = {logw(Z Z Z comm(e; ;) - e(liy) - (lyi — yi| + |21 — z1]))

Ve; jEE Yk 1 EL Vg ,n €N

+logio(Y Y > commles) - tlka) - (v — il + | — xk))}

Ve; ;€EEVIlg ELVYng,n €N
(5.14)

5.2.2.4 Constraints

Besides the objective function, several constraints below are also significant to acquire

a proper and feasible formulation to our proposed application mapping problem.

1. Graph-size constraint:

given
a task graph T = G(V, E) and a NoC architecture graph T' = G(N, L),
satisfy

size(T) < size(T')
(5.15)

Equation 5.15 indicates the proper size of NoC architectures that have sufficient
size of nodes and links onto which the tasks of candidate application with certain
communications should be carefully mapped. It ensures that there are no tasks or
communications unable to be mapped onto a specific network. By considering this

constraint, the least available size of an NoC architecture can be determined.

Chapter 5 Application Mapping and Performance Prediction 147

2. Task-node corresponding constraint:

Vv, €V, map(vi) =n; € N (5.16)

Equation 5.16 enables any single application task belonging to a task graph to be mapped
onto a node belonging to the same specific NoC architecture graph. It ensures all the
tasks in the task graph are mapped onto the candidate network nodes, which is essential

to construct a complete communication flow in networks.

3. One-to-one mapping constraint:

Vo, #v; €V, map(vi) # map(v;), e n;#nj €N (5.17)

This equation ensures a one-to-one mapping in the proposed problem formulation, such
that each individual task in a task graph should be mapped onto an independent node
of the corresponding NoC network. Since each network node only has one single IP core
containing one individual task in our proposed problem, the feasible task routing in the
network is guaranteed to optimise its desired performance metrics. Considering the non-
linear coordinate expressions of hop counts used in our problem (Equation 5.13), the
following coordinate constraint of task-mapped nodes is derived based upon the given

constraints in Equation 5.15 and Equation 5.17:

- size(T) < size(T') and Vng,n; € N = n; = (xi,y5), nj = (T5,95);

(5.18)
SV, y) # ($j,yj), if n; #nj € N.

4. Bandwidth constraint:

Vig, € L, bw(lyy) > Z b(eij) - Z l;cjl (5.19)

Vei,]’GE Vng,n €N

where [} is defined:

llzj —

{ 1, if map(v;) = ny and map(v;) = n
kJl —

0, otherwise

The bandwidth constraint specified in Equation 5.19 is another critical factor for
formulating proper and feasible communication flows of application tasks on NoC
architectures. The available bandwidth of NoC channel links between a task-mapped

node pair should always be larger than or equal to the communication volume required

148 Chapter 5 Application Mapping and Performance Prediction

by the mapped task pair, which avoids potential communication overflow at this task

pair and network failure caused by heavy traffic workloads.

More precisely, this bandwidth constraint ensures that the communication traffic flow
of each task pair on the mapped network does not exceed the available channel link
bandwidth, satisfying the bandwidth requirements between each mapped node pair in
the network. The bandwidth performance parameter also implicitly impacts on the
data packet transmission time, which is one of the major objectives for performance

optimisation.

Heretofore, the proposed problem for application task mapping has been formulated
thoroughly for further performance optimisation, associated with a set of constraints
to ensure the feasible and proper elaboration. The completed problem formulation is

specified in Equation 5.20:

Min : {loglo(Yoo > D commlen) - ellig) - (g — yal + |z — wxl)

Vei ;EE VIl €LV, n €N

+logio(Y. >, > commieig) - (k) - (ly — yil + |z — $k|))}

Vei,; €E V€L Yy, €N
subject to:
size(T) < size(T')
Yo, €V, map(v;)) =n; € N
Yo £v; €V, map(vi) # map(vj), ie n;F#n; €N
V(i yi) # (z5,95), if ni#n; €N
Vi € L, bw(ley) > > bleiy) - > L

Veiy]‘GE Vng,n €N
(5.20)

5.2.2.5 Extension of Mapping Problem onto More Tile-based NoCs

By solving the minimisation problem formulated in Equation 5.20, an optimal mapping
of application tasks onto specific network nodes in a mesh architecture can be achieved.
The optimised sum trade-off of the normalised communication energy and the normalised
transmission time under constrained network bandwidth is also generated. An (z,y)
binary set of coordinates is used in the mesh topology to program the interrelations
of task-mapped nodes, which is extensible to elaborate node correlations of other tile-
based NoC topologies. In other words, any NoC architecture whose node connections are
capable of being illustrated in a non-linear way is suitable for the proposed non-linear

programming based problem formulation.

Chapter 5 Application Mapping and Performance Prediction 149

Specifically, such a way to elaborate the node correlations by using a coordinate system
is feasible for many popular regular and/or tile-based NoC topologies like Torus [36],
Hexagon [180] and Octagon [175] [181]. The only difference in the coordinate usage on
these topologies is the different coordinate systems needed to express their node system
positions, which may cause different complexity on the elaboration of node interrelations.
The Mesh (Figure 5.3(a)) and Torus (Figure 5.3(b)) topologies may need a binary set
of coordinates (z,y) (as shown in Equation 5.13) to present their node correlations and

mathematically formulate the relevant mapping problems.

(a) Coordinate System for Mesh(b) Coordinate System for Torus
Topology Topology

Figure 5.3: Coordinate Systems for Mesh and Torus Topologies

(a) Coordinate System for Hexago-(b) Coordinate System for Octago-
nal Topology nal Topology

Figure 5.4: Coordinate Systems for Hexagon and Octagon Topologies

However, such a set of coordinates may not be enough to thoroughly elaborate node
interrelations in Hexagon (Figure 5.4(a)) and Octagon (Figure 5.4(b)) topologies. More
complicated coordinate systems, ternary (z,y,z) and quaternary (z,y,z,p) sets of
coordinates specifically, are needed to program their interrelating positions with non-
linear expressions. To extend the proposed NLP formulation for Hexagon and Octagon

architectures, the mathematical polynomial in Equation 5.20 should be changed in

150 Chapter 5 Application Mapping and Performance Prediction

Equation 5.21. Other equations need to modify their relevant polynomials accordingly.

if
the coordinates of a task mapped node pair are :
n = (T4, Y5, 21), nj = (5,95, 2) in Hexagon,
n; = (i, ¥, 2, 0i), 1y = (x,Y;, 2, pi) in Octagon. (5.21)
then
hopni,nj = ly; — vl + |z; — 25| + |2 — 2| in Hexagon,

hopn; n; = lyj — yil + |z — x| + |25 — zi| + [pj — pi| in Octagon.

The main advantage of this NLP-based elaboration method is its extensibility for
expressing many NoC topologies other than Mesh in the same way, reducing the design
cycles for formulating various mapping problems on various NoC topologies. The cost of
this method is the different complexity in constructing NLP-based node interrelations,
which may lower the efficiency of solving the corresponding mapping problems. In this
thesis, in order to efficiently verify the functions and performance, the proposed method

is only used to elaborated the mesh topology in experiments.

5.2.3 Efficient Mapping

In this section, a modified Branch and Bound (BB) algorithm is developed to search
optimal mappings of our formulated problems with improved execution efficiency. The

methodology of generating early-stage accurate performance prediction is also given.

5.2.3.1 Modified Branch and Bound Algorithm

The NLP-based formulated mapping problems can be solved by linear programming
techniques for exact optimal mappings. However, the execution time cost of such
techniques is expensive since estimating the uncertainty of nonlinear constraints and the
objective function is difficult. The overhead of LP-based execution grows exponentially
with the increased complexity of formulated problems, giving rise to an intolerably long

time for solving target problems.

Previous popular mapping algorithms also cannot well tackle nonlinear optimisation due
to the hard convergence of uncertain nonlinear constraints, leading to low execution
efficiency for searching optimal mapping solutions and less-accurate search results.
For example, evolutionary techniques like GA, PSO, ACO and their hybrid work
cannot properly transform nonlinear constraints for existing algorithms to be refined.
This impairs the accuracy of mapping results. Constructive algorithms with iterative

improvement like NMAP, Onyx and Citrine may give near-optimal results, but at the

Chapter 5 Application Mapping and Performance Prediction 151

cost of long execution time and a large number of iterations. Constructive algorithms
without iterative improvement like PMAP, BMAP and CMAP may give less-accurate
optimisation results when used for nonlinear optimisation. It is because such algorithms
can hardly give reliable pre-configuration and construction from partial solutions of
nonlinear problems. Hence, the hope for resolving NLP problems with good balance
between performance and efficiency rests on deterministic mapping algorithms. The
Branch and Bound algorithm is one such algorithm that is compatible with constrained
nonlinear optimisation problems and can produce global optimality due to its tree
searching mechanism. If its searching efficiency can be improved, the desirable mapping

results and performance are achievable.

For such reasons, an original BB algorithm is modified in our method to accelerate the
execution speed, while ensuring the optimality of searching results. The proposed BB
algorithm is derived from previous work in [118] and [116]. It has two resolution steps.
In the first step, a set of candidate task mappings are computed using tree searching.
At each level of the search tree, the task mapping with the best performance is found by
alternative branch and bound operations. Once a mapping candidate with the best cost
is calculated at each level, it is further expanded along a deadlock-free XY routing path
until all the sorted tasks are mapped. In the second step, operations in the first step
are iteratively implemented until all the candidate mappings have been derived. The
normalised sum cost of communication energy and transmission time are evaluated and

the one with minimal value is chosen as the final optimal solution.

Specifically, we initially prioritise tasks depending on their maximum required bidi-
rectional communication volumes (v; for » .. {comm(e;;) + comm(e;;)}). Then
the remaining unmapped tasks are placed onto the network nodes with maximum
communications to the task or with the maximum number of neighbours. The searching
mechanism in this step alternately runs the branch and bound operations to compute

the optimal mapping result at each tree level:

e In the branch operation, firstly choose a mapped but unexpanded node from the
search tree as the root node (The root node indicates the mapped node used as
the base for expanding remaining unmapped nodes to unmapped tasks). Then the
unmapped task that has maximum communications with the already mapped task
on the chosen node is successively mapped to a set of remaining unoccupied nodes

in the network to generate a set of corresponding child nodes at the new level.

e In the bound operation, the newly generated child nodes at the same level are
inspected to see if they can generate descendant nodes with optimal performance.
The set of nodes are greedily searched (that is, to find the locally optimal choice
at each step) to compute the normalised sum cost of communication energy and
timing cost. Subsequently, the child node with legal minimum cost at this level is

specified as the optimum after cost comparisons. Nodes with higher calculated cost

152 Chapter 5 Application Mapping and Performance Prediction

are trimmed from further expansion. The legal condition indicates that the needed
communication of mapped tasks is no more than an available link bandwidth along

the routing path.

Figure 5.5 shows an example search tree structure used in our approach. The remaining
unmapped tasks are sorted initially. Denote one unexpanded mapped node as the root
node, then search its neighbouring nodes in the X-direction or Y-direction for mapping
the most correlated tasks. This branch operation generates child nodes at a new level,
and the normalised sum cost is computed in the bound operation to find the minimum
cost mapping (or maybe mappings) of this level. They are deemed promising mappings
for further expansions to the next levels. Other child nodes with higher costs will be
trimmed. After all the sorted tasks are mapped, the mappings at the lowest level form
the candidate mapping set. The optimal mapping will be produced from the set by

calculating and comparing their performance values.

Root_node 6XX...X 4—— Sorted tasks
1 hop.m hops , . .
X X Y X

y'd L A
Level 1 B5XX...X B7XX...X B10XX... X (T]

X ;
%uop... Wlhop vee

1hop, X P X

¥ x‘v x‘ x_‘r\
6101

Level 2 | g54X...X 651X...X 659X...X 6109X...X 1X..X | | 61014X..X

Candidate Mappings
(minsumcost) | 654812.. | | 6591014.. | | 6109548.. | e e @

Figure 5.5: Search Tree Example

The task sorting and early node mapping mechanism in our algorithm could help detect
and trim unpromising nodes earlier and reduce the number of expanded nodes, which
has a larger impact on the improvement of energy and timing costs. The generation of a
new child node (n;) from unoccupied node set (N’) for the unmapped task is improved.
The node search starts from adjacent neighbours of the root node (n,00t). For further
increasing the execution efficiency of our algorithm, the searching is set for candidate
child nodes whose hop distance to root node is no more than half of the network diagonal
hop distance, instead of searching the unmapped nodes with all distances. For example,

such a searching modification in a mesh is given in Equation 5.22, where column(N)

Chapter 5 Application Mapping and Performance Prediction 153

and row(NN) present the column number and row number of the network, respectively.

Vn; € unmapped node set N € the Network N,
1 (5.22)
1 < hopy,, < 5 [(column(N) — 1) + (row(N) — 1)]

Nroot —

The reason that the network diagonal hop distance is set as a searching boundary is
because we always start the sorted task mapping from the centre network nodes whose
hop distance to the corner and border nodes are normally no more than the network
diagonal hop distance even in the worst case. So although a rare chance exists that an
optimal mapping between a task pair is longer than this distance, in most cases there is
no need to search other candidates in the set that has more hops than this. Moreover,
placing one task onto a node with a longer hop distance than the diagonal one means
a long routing interval between the mapped task pair for data to traverse across more
than half a network. This may make the energy and time cost of such routings mostly
impossible to be optimised to the minimum since both the performance metrics are

closely correlated and severely affected by hop distance.

Based on Figure 5.5 and Equation 5.22, an example of generating the specific candidate
mapping 654812... from the leftmost trees in Figure 5.5 is given to illustrate our mapping

algorithm. The generation of other candidate mappings may also be mentioned.

e Firstly, a specific application is split into a number of tasks with communication
volumes to each other. Communication volumes are the data bits transmitted from
and to one given task. Among all these unsorted tasks, No.6 task has the maximal
communication volumes that is chosen to be mapped onto the central node of the
network. This mapped node is considered as the root node for expanding other

unmapped nodes to the remaining unmapped tasks.

o At the next level (Level 1) in Figure 5.5, tasks that have the maximal communica-
tion volumes to the No.6 task are mapped onto nodes that are adjacent to the root
node. The task expansion rule is based on the hops between the root node and the
candidate unmapped nodes, starting from one hop in the X direction to one hop in
the Y direction, two hops in the X direction, two hops in the Y direction and so on.
It is noted that more than one task may be valid for expansion. Particularly in this
figure, No.5 task and No.10 task both have the maximal communication volumes
to the No.6 task while No.7 task does not. Hence in this level, the branch operation
generates all the available task mappings. The bounding operation, depending on
whether the communication or hop-distance constraints are matched, reserves the
No.5 and No.10 tasks but trims the No.7 task. The remaining task mappings in
this level (node mappings of task pairs 6 — 5 and 6 — 10) are kept for subsequent

levels of node expansion.

154 Chapter 5 Application Mapping and Performance Prediction

e Focusing on the Level 2 of leftmost trees in Figure 5.5 (the node mapping of
task pair 6 — 5), the node mapped with task 5 is the new root node for further
expansion. By inspecting the remaining unmapped tasks, No.4 and No.9 tasks
have the maximal communication volumes to the No.5 task. Thus these tasks
are mapped onto adjacent nodes (from 1 hop along the X or Y directions) to the
node mapped with the No.5 task, constructing the valid node mappings of tasks
6 —5—4and 6 — 5 — 9 for subsequent levels of node expansion. Other task
mappings generated in the branch operation like tasks 6 — 5 —1, 6 — 10 — 11 and
6 — 10 — 14 in Figure 5.5 are eliminated in the bounding operation due to the
unmatched constraints. It is observable from the figure that the node mapping of
tasks 6 — 10 — 9 also satisfies the bounding conditions, which is also kept at this

level.

e At Level 3 and higher levels, the node mapping of tasks 6 —5—4 is kept expanding
with the branch and bound operations run at each level until all the tasks are
mapped onto network nodes. The final candidate mapping of tasks 6 — 5 — 4 —
8 — 12 — ... at the leftmost side in Figure 5.5 is therefore produced. Meanwhile,
other node mappings that satisfy the bounding constraints at each level, such as
tasks 6 —5—9—-10—-14—...and 6 —10—9 -5 —4 — 8 — ... in the figure, are
also kept and stored as the final candidate mappings. These remaining mappings
are all possible optimal ones for the specific application. Hence they are all stored
in the candidate pool. Once the pool of final candidate mappings is completely
produced, the whole algorithm stops. At this step, the normalised cost of energy
and time is calculated based on each candidate mapping to carefully compare their
results. The mapping with the minimal results is chosen as the optimal mapping

of the application for further operations.

As the cost of our modification, the proposed algorithm has a tiny optimality drop due to
a negligible chance of optimal mappings found beyond the distance limit. But deadlock
freedom is guaranteed by our algorithm with reduced search boundaries for candidate
mappings, resulting in fewer unpromising branches involved at each level needing to be
trimmed. Hence, the searching efficiency is substantially improved by spending less time
to search among a reduced candidate set. The pseudo code of our modified BB mapping

algorithm is given in Figure 5.6.

To summarise, two major modifications are given in our BB mapping algorithm for the

NLP problem resolving, comparing to other BB algorithms [187]:

e The first major modification is how the unmapped network nodes expand. In
our algorithm, once a task is mapped to a network node, the adjacent nodes to
this mapped node are explored first for the unmapped tasks that have the closest

communications to the mapped task. If all adjacent nodes (that is, nodes that have

Chapter 5 Application Mapping and Performance Prediction 155

Sort Tasks upon communication volume;
root_node = new Node(NULL)
sumcost = 0; hopp, n;, = 0; D = diagonal hop distance;
Maz_comm = Task.maxcomm(v;);
for each n; € N’
{ if (n;.neighbour = Maxcomm.neighbour) :
root_node = n;;
else
root_node = Node.Maxneighbour(n;);
}
Map.insert(root_node);
W hile(\Task.empty())
{ foreach n; € N’
{if (hopn,m; =1 available)
{ search along X —Y path;
cur_node = Task.Maxcomm(Map.Task);
}
else if (It hasn't found unmapped node hopp, root < D)
{ hopn,root + +; search along X —Y path;
cur_node = Task.Maxcomm(Map.Task);
}
generate child node nyew;
n;.sumcost = sumcost + sumcost. [cur_node x hopMap,Taskm] ;
sumcostlevel; = min(n;.sumcost);
i.f (N New-sSumcost = sumcostlevel;)
Map.insert(nyew)

}

OptimalMap = Map.FinalSet
Figure 5.6: Pseudo Code of Proposed Mapping Algorithm

only 1 hop from the mapped node) are occupied, the nodes that have two hops to
the mapped one will be explored. In a word, our algorithm expands unmapped
nodes based on the communication volumes (data bits) linked to the mapped task,
instead of the total communication volumes one unmapped task holds, as in other
BB algorithms.

This optimisation leads to a compact deployment of network nodes mapped to
tasks with close communications, leading to a fast branching of promising/un-

promising mappings to raise the execution efficiency.

156 Chapter 5 Application Mapping and Performance Prediction

e The second major modification is adding a distance constraint to the node
exploration. In our mapping algorithm, the unmapped network nodes that have a
specific hop distance (no longer than half of the network diagonal hop distance) to
the mapped node are considered for expanding to the unmapped tasks. Since the
hop distance is highly related to the communication energy and transmission time
tasks may consume, which are the major objectives we would like to optimise, this
modification constrains the hops between task pairs which reduces the total hops

for an application as much as possible.

This optimisation gives a smaller candidate pool for optimal mappings because a
large number of mappings (which dissatisfy this distance constraint) are already
trimmed away as unpromising results in the bounding operation at different levels.
The smaller candidate pool can accelerate the execution speed while reducing the

computational and storage overheads.

5.2.3.2 Performance Prediction

Optimised mappings to specific applications are the common outcomes of mapping
techniques. The result optimality and performance metrics of produced mappings are
diversely analysed in previous work based on various design aims. In our mapping
method, optimisation of energy and time performance on various NoC architectures
is considered, likewise a desirable balance between mapping performance and execution
productivity. So far, the NLP based formulation technique and a modified BB algorithm
are proposed to ensure extensibility and efficiency. Additionally, a method for calculating

the verified mapping performance for reliable early prediction is further developed.

Due to the contradictory metrics of performance and efficiency, trading efficiency for
performance improvement such as in a multi-stage result refinement and a large number
of iterations in many previous work is not feasible in our method. Instead, a balanced
trade off between mapping result precision and execution efficiency is established by
integrating more accurate models in the problem formulation stage and calculating
the performance results immediately after the optimal mappings are generated. In a
word, we ensure the accuracy without sacrificing efficiency by ’precisely’ predicting the
performance from formulated models rather than ’iteratively refining’ the results from

mappings.

Specifically, the exact values of communication energy and transmission time are
calculated directly after a mapping is produced. The accurate calculation uses baseline
references of our energy and timing models derived from the NIRGAM simulator.
According to the derived models in Equation 5.6 and Equation 5.7, values of variables
E 4, Ep, T4 and Tg are retrieved by sending one bit of data into NIRGAM mesh networks
and recording the simulation results. Such baseline values are substituted back into our

performance models to underpin the calculation of accurate mapping results.

Chapter 5 Application Mapping and Performance Prediction 157

The accuracy of the calculated performance is verified by importing the produced
mappings in NIRGAM and comparing with the simulation results. The whole process
of our mapping technique, as shown in Figure 5.7, combines the given NLP based
formulation and a modified BB mapping algorithm for mapping generation, then directly
calculating results upon accurate performance models for performance prediction. Based

on the flowchart, experiments are designed to validate our methodology.

: Setup:
| == = =) 1
Specific Applications
G) |
| I
—;—>| Task Division | |
: PR Z— :
! Target Task Graph |
| I
I

Noc e NLP Formulation |
o | N g |
—>|. Node Graph Energy and Time Models '«
Topology : | | l | Performance
I .
Basel
: | Design Space Exploration)+ aselines
i I
|- ‘* . +]
—;—N’ Cnnstraints) (NLP Problem Fnrmulatinn) :
: I I I
E— — 1
| NLP-BB Optimisation |
—:>| Sorted Unmapped Tasks :
I
i i
I
| | Map a New Task | Meodified !
:]ii Hop Distance <
- s S Constraint |
I _—TConstraints —. !
I
| atisfied? No !
| | NIRGAM
—
: Yes : Simulator
: Calculate Performance :
| of Current Mappings |
I
| 12 |
! T T
) ~ Optimal —_ |
| forman No | W
! Yes :
[| Save Valid Mappings | ¥ !
| ; |
\ Invalid I
- Mappings |
s I
I
i
| t Optimal !
| Calculate Performance I‘ [pof” _pma
Mappings I v

\

/ Perf
Optimal Mappings with Calculated Results }—:—) :re‘:inc:ia::e

g .

Figure 5.7: Proposed Method of Performance Prediction

158 Chapter 5 Application Mapping and Performance Prediction

5.2.3.3 Statement

To clarify how the differences between our proposed BB algorithm and previous work
using a revised BB algorithm like in [187] are made, several statements are made
in the following. Firstly, the initial settings for the branching phase are different.
The initial setting of the referenced work is different from ours. The authors in
[187] set the candidate tasks based on a descending order of communication volumes
held by each task, while our algorithm orders the tasks based on the communication
volumes held with the mapped task. So we map the tasks by concentrating more
on the interrelations of communications between task pairs, instead of concentrating
on the total communications one particular task has. The mappings applying our
task order to start branching will converge faster on the potential optimal mappings.
Moreover, by considering both the communication demands between task pairs and self
communication volumes in our algorithm, more unpromising mappings from all possible
solutions can be identified at earlier stages (higher levels), which leaves smaller candidate

mapping sets level by level. This mechanism increases the efficiency of our algorithm.

Secondly, the algorithmic mechanisms at the bounding phase are different. The
referenced work [187] maps one task to each of the available network nodes to calculate
and compare the mapping cost, eliminating only those that have dominant cost and
leaving a large amount of possible mappings in the candidate set. This keeps a large
part of mappings reserved in the candidate set for seeking the optimal result, such that an
user-defined threshold has to be made to restrain the set capacity. Extra non-dominant
mappings are randomly eliminated from the solution set. Such operations may not
only achieve nearly-optimal solutions (random elimination may cut off potential final
optimal solutions), but also causes a computation and storage overhead. On the other
hand, our modified BB algorithm has a smaller candidate set for the final optimum
after branching. It searches those mappings that match all the conditions given in
the formulated algorithm, ensuring the global optimality of solutions by searching all
possible mappings instead of all available mappings (Note that these are two different
kinds of mappings. For example, an available mapping may not be a possible mapping
due to the failure of meeting some conditions and constraints like bandwidth or hop
distance, while a possible mapping must be available). The smaller number of mappings

needed for bounding in our algorithm increases the execution efficiency.

Thirdly, the objectives and performance factors are different. The main contribution
of the referenced work in [187] is a dynamic mapping algorithm for optimising multi-
objectives. Their work can achieve accurate pareto-optimal solutions based on real-time
network conditions. Their focus is on dynamically-accurate, pareto-optimal mappings
and efficient implementation with multiple objectives. Our algorithm focuses on
providing statically-accurate, globally optimal mappings and efficient implementations

with high execution speed. Different objectives and concerns result in different solution

Chapter 5 Application Mapping and Performance Prediction 159

methods. The referenced work shown in [187] is not concerned much with execution
speed, global optimality and computation overhead but our algorithm do. Similarly, our
method is not concerned with the impact of dynamic network environment on mapping
results but their work does. Because our method is expected to be extended for other
NoC topologies, the NLP based formulation technique is developed. Because we want
to achieve globally optimal, accurate mapping results with fast execution speed (for
efficient performance prediction at early design stages), we have chosen the branch and
bound algorithm and modified it to solve the formulated problems. A simulator is used
in the referenced work to explore the mapping space for different algorithms. But in
our method, a simulator is used to verify the algorithmic results. A simulator is used
in [187] as a development tool and the simulator in our method is used as a verification
tool. All these differences make our algorithm differ substantially from the referenced

work.

Finally, compared to other state-of-the-art approaches, our method may also have
differences. These are due to the different objectives and developing purposes. The
reason is shown in our contributions: we developed a mapping method for extensible
NoC topologies (why develop NLP formulation) to achieve globally optimal mappings
within high-efficiency execution time (why develop modified BB algorithm for NLP
formulation), providing accurate and reliable performance prediction (why develop
simulation tool and prediction method) at the early NoC design stages. Our work

is different from previous work in their reports.

5.3 Experimental Results

In this section, experiments are implemented to validate our NLP-BB mapping technique

in the following respects:

e Functional verification: Our modified NLP-BB algorithm is expected to
generate optimal mappings with the minimal trade-off cost of communication
energy and transmission time. To verify this functionality, we compare the
performance results of mappings produced by our algorithm with results of other

algorithms.

e Algorithm execution efficiency: The efficiency of mapping algorithms to pro-
duce the optimal mappings is essential in our method for early-stage performance
prediction. In subsequent experiments, the execution time costs of all algorithms

to produce their optimal mappings are recorded and analysed.

e Performance accuracy: For accurate and reliable performance prediction, our

method calculates the performance results of produced mappings. The result

160 Chapter 5 Application Mapping and Performance Prediction

accuracy is examined by comparing calculated results with simulation results

generated by the same mapping in NIRGAM.

To meet these experimental objectives, a modern mapping algorithm, Interior Point
Method (IPM) [188], and the original Branch and Bound (BB) algorithm [116] are
introduced for mapping comparisons. The IPM is a class of algorithms designed for
solving constrained nonlinear optimisation problems. Due to the nonlinear constraints,
previous mapping algorithms like [108] are not compatible and their searching cannot
converge rapidly in our formulated problems, leading to intolerably long execution time
for mapping generation (A threshold of 1 day is set for manual termination of overtime

execution). Thus, the IPM is introduced for fair comparisons.

The TPM searches from an initial point and traverses the interior of the feasible region
until a nearest convergent point. Hence, it has fast convergence speed when optimising
nonlinear problems. But such searching can easily be trapped locally. To tackle this
in our experiments, we modified the IPM integrated in the MATLAB toolbox to let
it run from each initial point (that is, starting from each network node), generate all
local optimum and mutually compare them to produce a global optimum. Besides,
the maximal iteration number of IPM is limited to 10,000 for improving the searching

efficiency.

Both synthetic applications and a real-world media application are given in the
experiments and formulated using our NLP-based technique. All three algorithms
are implemented to search the optimal mapping of each application. Since smaller
logarithmic sum of energy and time can always be achieved by smaller values of both
energy and time metrics (which are positive real numbers), the resulting optimality of
all mapping algorithms is experimented via energy and time performance comparisons
of the produced mappings. For the same application, both calculated and simulation
mapping results generated by all algorithms are compared for functional verification.
For the same mapping of each algorithm, the calculated results are compared with the
simulation results for performance accuracy. The execution time cost of all algorithms

to generate optimal mappings for every application is recorded for execution efficiency.

5.3.1 Synthetic Applications
5.3.1.1 Experimental Setup

Synthetic traffic benchmarks are extracted from the MCSL NoC benchmark suite [189]
as applications for experiments on five different sizes of 2D-mesh networks (network
scales from 4 x 4 to 8 x 8). The task numbers and linked communications of extracted
benchmarks form application traffic that cover all network nodes, which are increased

along with the size of networks as shown in Table 5.1. For all applications, mapping

Chapter 5 Application Mapping and Performance Prediction 161

problems are formulated using the proposed NLP-based techniques. Three mapping
algorithms (modified IPM, original BB and our NLP-BB algorithm) are applied to search
the optimal mapping of each problem and calculate energy and time results of each
mapping. The execution time cost by each algorithm to generate the mapping is also
recorded. All the produced mappings are imported to the NIRGAM for performance
simulations. In each formulated problem, the IPM algorithm has been run 10 times and

the mapping with the best calculated results is selected for comparison.

Table 5.1: Synthetic Benchmarks and Network Sizes

Applications | No.of Tasks | Network Size
C1 62 4x4
C2 324 5% 5
C3 812 6 X6
C4 1378 7T
Ch 1891 8 X8

5.3.1.2 Functional Verification Analysis

Figure 5.8 and Figure 5.9 give performance comparisons of both calculated and
simulation results of the optimal mappings produced by the three algorithms. From
Figure 5.8(a) and Figure 5.8(b), the calculated energy and time cost of the mapping
generated by the original BB algorithm is the lowest in each case, closely followed by
our NLP-BB algorithm. The energy and time cost by IPM produced mappings are the
highest in all case applications, which suggests the limited number of iterations set for
IPM algorithm is inadequate to find better mappings. Our NLP-BB algorithm generates
less-optimal mappings with on average 3.61% more energy and 2.47% more time cost
than the original BB algorithm. This is due to the given hop-distance constraint causing
a reduced solution set for exploration, leading to a slight performance drop of produced
mappings. Compared to the IPM algorithm, our algorithm performs considerably better

with on average 16.7% less energy and 30.87% less time cost.

In Figure 5.9(a) and Figure 5.9(b), mappings generated by all algorithms are imported
to NIRGAM for simulating their energy and time cost, resulting in similar performance
outcomes as the calculated results. Our NLP-BB algorithm performs on average 3.93%
more energy and 1.9% more time than the original BB algorithm, and 16.23% less
energy and 31.06% less time than the IPM algorithm. In both the calculated and
simulation results of all case applications, our NLP-BB algorithm always generates
mappings with very close performance to the mappings of the original BB algorithm,
showing a competitive result optimality. Since the BB algorithm can produce global
optimum due to its exhaustive searching mechanism, our algorithm proves that it can

provide global optimality as well.

162 Chapter 5 Application Mapping and Performance Prediction

3000 50 40000 80
M 5 1PM
2500 NS NLP-BB 0 W NLVP-BB 70
z wmm Origin-88 z F30000 m?"?'"'afmp 55 over 1oV 0 E
2000 X ' £ £ avings (NLP-BB over
E :avrngs:gL_P_BBBcherIPV\;IEP o) 30 % £ ~®- Savings (Origin-BB over NLP-BB) {3 50 9
avings (Origin-BB over - E = o e
& 1500 @ Savings Origi 3 20000 ' w0l
o
& 0 B 5 0 ¥
3 1000 g 3 S
3 0 8 10000 w0 E
500
10
— S|
0 RN 0 0 | AN . — i 0
6by6 abya SbyS 6by6 Tby7 8by8
Network Size Network Size
(a) Calculated Energy Comparison (b) Calculated Time Comparison
Figure 5.8: Comparisons of Calculated Results by Different Algorithms for
Synthetic Applications
3500 | e iow 50 40000 | s ot 80
3000 S gLP-F BBB o o SSSSNLP-BB
= (I Origin- = [Origin-BB
£ 2500 Sav!ngs (NL_P'_BB over |PM) w _E, 30000 Savings (NLP-BB over IPM) &0 ES
=8 Savings {Origin-B8 over NLP-86) 30 g E & Savings (Origin-BB over NLP-BB) ez E
E 20000 e 0%
wf % g
& g E
£ 5
0 & 10000 20
E ‘ . o LB il R sl |,
aby4 SbyS 6by6 Tby7 8by8 abya Sbys Gby6 7hy7 8by8
Network Size Network Size
(a) Simulated Energy Comparison (b) Simulated Time Comparison

Figure 5.9: Comparisons of Simulated Results by Different Algorithms for
Synthetic Applications

5.3.1.3 Execution Efficiency Analysis

Algorithmic efficiency is an essential constraint in our method. Since our target is to
efficiently solve the small-size to medium-size applications by our mapping algorithm,
the execution time of mapping generation in all case applications could be recorded as
it is a crucial factor to evaluate the algorithm quality. Table 5.2 presents the runtime of
all three mapping algorithms for all case applications in seconds. The simulations are
run on a desktop with 8 Intel Xeon 2.67GHz core processors and a 12G'B memory. The
execution time of mapping generation by the IPM algorithm is always the highest in
experiments due to its costly iterative searching from different initial points. Comparing
two BB algorithms, our NLP-BB algorithm consumes much less execution time since our
searching solution set is smaller than the original BB algorithm. Moreover, the difference
of execution time between our algorithm and other two grows substantially along with
increased complexity of case applications. The superiority of our NLP-BB algorithm is

clearly presented in Figure 5.10.

From the figure, two execution time ratios between our NLP-BB algorithm over the

other two algorithms in all case applications are given, respectively. As the network size

Chapter 5 Application Mapping and Performance Prediction 163

Table 5.2: Runtime Records of Synthetic Applications Cost by Different
Mapping Algorithms

Applications | IPM (s) | Original BB (s) | NLP-BB (s)
C1 324.7 19.6 6.7
C2 478.3 53.4 9.2
C3 948.1 123.5 13.5
C4 1982.6 321.8 22.8
Ch 2889.2 583.6 29.3
120 | _g— RunTime Ratio (IPM over NLP-BB)
100 =#— RunTime Ratio (Origin-BB over NLP-BB)
2
5 &0
[
£ e
s
E 40
5 5 L
[=%
2 -~ . ¢

4byd S5by5 6by6 Tby7 8by8
Network Size

Figure 5.10: Run Time Comparisons

scales up, our NLP-BB algorithm runs from 48.46 times to 98.61 times faster than the
IPM algorithm, and from 2.93 times to 19.92 times faster than original BB algorithm
to produce the optimised mappings. On average, the original BB algorithm costs a
10.38-fold increase and the IPM algorithm has a 71.25-fold increase of execution time

than our algorithm, indicating notably superior efficiency of our NLP-BB algorithm.

5.3.1.4 Performance Accuracy Analysis

The proposed mapping technique not only produces optimal mappings but also calculates
their energy and time performance results as references for further design stages. To
ensure reliable prediction, the resulting accuracy of the calculated mapping performance
is analysed via comparisons with simulation results of the same mappings in NIRGAM.
Figure 5.11 shows the performance error comparisons between calculated and simulated
results in terms of energy and cost, covering every mapping generated by all three
algorithms in all case applications. As observed from the figure, there is no big
fluctuation among all performance metrics. All the kinds of errors are ranged from 2%
to 4%. Hence, the calculated performance results by our method are validated to have
little difference from simulation results, which displays accurate and reliable early-stage

performance prediction.

164 Chapter 5 Application Mapping and Performance Prediction

4.5
4 {
T 35
L —
E g 2.5 /
88 2
c
g8 15 —8—E-error (IPM) —d—T-error (IPM)
B
E E 1 —e—E-error (NLP-BB) =—T-error (NLP-BB)
E @ 05 —4— E-error (Origin-BB) —®—T-error (Origin-BB)
fir] 0 T
4by 4 Sby5 6by6 Tby7 8by8

Network Size

Figure 5.11: Error Comparisons Between Calculated and Simulated Results of
Different Mapping Algorithms

Potential reasons for the errors are also investigated. We calculate the performance
results based on baseline metrics E4, Eg, T4 and T of Equation 5.6 and Equation 5.7.
The values involved in referenced metrics may differ from real network simulations as
each time fluctuant simulation results are generated in NIRGAM due to various routing
delays at buffers or routers of intermediate nodes. The fixed values in models always

produce the same calculated results, leading to inevitable experimental errors.

To summarise, in synthetic applications our NLP-BB algorithm runs 10 times faster
than the original BB algorithm at the cost of only (2 ~ 4)% performance drops. Savings
of both performance and execution time by our algorithm over IPM are substantial,
which are (16 ~ 30)% and 71-fold, respectively.

5.3.2 Real-World Media Application
5.3.2.1 Experimental Setup

An MPEG-4 decoder is implemented to evaluate the potential of our method for real
multimedia applications. It has been divided into 8 sections with different functions
for successful simulations in NIRGAM. The input of the decoder is an encoded video
bitstream of a QCIF-format MPEG-4 video clip with 1-second of content and 25fps
frame rate. The output is YUV data of the reconstructed video clip. The MPEG-4
application has different communication volumes required by its sections, enabling our

NLP-based mapping problem to be formulated.

The task graph of MPEG-4 decoding is given in Figure 5.12. Symbols between different
sections in the figure represent total communication volumes (number of tasks) required
by each section pair, which is given in Table 5.3. By using our method, the NLP-based
mapping problem is formulated and solved by the IPM, original BB and our NLP-

BB algorithms, respectively. To make the comparison fair, all mapping algorithms are

Chapter 5 Application Mapping and Performance Prediction 165

running on a 4 X 4 2D-mesh network to explore the optimal mapping with minimal

trade-off cost of energy and time.

L6 Motion Vector "7—, .
Prediction —— Interpolation
re
L8
ﬁ L10
L9 A 4
Memory — - V?P o
Encoded . | 5 econstruction
Bit >
Stream e __ il
I
| "
I Variable Length S YUV
Decoder Data

il_l Texture Decoding T 3

Inverse
Quantisation

Scan Prediction -u—>

Figure 5.12: Task Graph of MPEG-4 Decoder

Table 5.3: Number of Tasks for Each Link

Communication Links | L1 L2 L3 L4 L5 L6 L7 | L8 L9 L10
Number of Tasks 833 | 2275 | 1724 | 1724 | 947 | 136 | 115 | 46 | 1111 | 933

Similar to synthetic applications, the generated optimal mappings of MPEG-4 decoding
have been calculated the performance in terms of energy and time. The execution time
of mapping generation by each algorithm is recorded and analysed. All the produced
mappings are imported to the NIRGAM simulator for performance simulations. Both

calculated and simulated results are listed in Table 5.4.

Table 5.4: Performance Results of Different Mapping Algorithms for MPEG-4
Decoding

Algorithms IPM Origin-BB Our NLP-BB
Metrics Calculated | Simulation | Calculated | Simulation | Calculated | Simulation
Energy (pJ) 175.65 180.63 152.73 156.13 154.61 158.53
E-error (%) 2.76 2.18 2.47
Time (us) 5592.8 [5549 5032.36 [5007 5074.05 | 5043
T-error (%) 0.78 0.5 0.61
Run Time (s) [9690.26 | - 1187.13 | - 94.33 -
Energy Improvement (%) over IPM 11.98 12.24
of our NLP-BB over Original BB -1.22 -1.51
Time Improvement (%) over IPM 9.28 9.19
of our NLP-BB over Original BB -0.82 -0.71
Run Time Improvement (X) over IPM 102.73 -
of our NLP-BB over Original BB 12.59 -

166 Chapter 5 Application Mapping and Performance Prediction

5.3.2.2 Functional Verification Analysis

From Table 5.4, the calculated performance results of the MPEG-4 decoding application
produced by the three mapping algorithms are given. The energy and time cost of the
mapping generated by our NLP-BB algorithm outperforms the IPM algorithm with
11.98% and 9.28%, respectively. The performance drops of energy and time metrics by
our algorithm over the original-BB algorithm are minor, which are merely 1.22% and

0.82%, respectively.

The simulation performance results show similar situations as the calculated ones except
that the values are slightly different. In NIRGAM simulations, the mapping produced
by our NLP-BB algorithm has 12.24% and 9.19% savings in energy and time cost,
respectively, compared to the IPM algorithm. The performance differences of our
algorithm over the original BB algorithm are also tiny, costing 1.51% more energy and

0.71% more time in produced mappings.

5.3.2.3 Execution Efficiency Analysis

The execution speed of our NLP-BB algorithm in generating the optimal mapping of
MPEG-4 decoding reveals great competitiveness, costing more than 102 (102.73 exactly)
times faster than the speed of the IPM algorithm. The IPM spends 9690 seconds to
produce a mapping that is less-optimal than ours whose time cost is only 94 seconds.
This enormous efficiency gap is caused by the limited iterations for IPM algorithm to
search such a complex application, suggesting a much longer time that the IPM needs

to find the mapping as good as ours.

Moreover, the original BB algorithm still generates the mapping with slightly better
performance than our NLP-BB algorithm, but at the cost of a vast increase (12.59-
fold) in execution time. The original BB generates a more-optimal mapping than
our algorithm due to a larger solution set available for searching. But its overhead
of searching time for the better mapping evidently overwhelms its performance
improvement, contrarily leading to a worse balance between result optimality and

execution efficiency than our algorithm.

5.3.2.4 Performance Accuracy Analysis

Since our method calculates the performance results for early-stage prediction, the
accuracy of calculated results are checked in synthetic applications by comparing their
result errors with simulation performance, likewise the real media application. Through
Table 5.4, energy performance errors between calculated and simulated results of the
IPM, original BB and our NLP-BB algorithm are 2.76%, 2.18% and 2.47%, respectively.

Chapter 5 Application Mapping and Performance Prediction 167

Their time performance errors are 0.78%, 0.5% and 0.61%, respectively. Performance
errors exist in all metrics but remain trivial, leading to accurate and reliable calculated

results of our method for early-stage performance prediction.

A new question is raised which is why in all cases the simulated results of the time metric
are less than the calculated results while the simulated results of the energy metric are
more than calculated results. It is because leakage energy is recorded in the simulated
results but not included in the calculated results. Since the baseline metrics in our
models involve more behaviours (like data storage to IP cores) than in the simulations,
larger calculated results should be given in both energy and time performance. But the
Orion model in NIRGAM records the leakage energy of the network during simulations
while our models do not. The leakage energy increases along with the simulation time,
which overwhelms the extra calculated values. Thus larger energy and smaller time
simulated results over calculated results are achieved, suggesting the potential solution

of adding a leakage model in our method to increase accuracy.

Compared to the synthetic application performance, our method solves the media
application with reduced performance improvements. This is because a small-size
network is chosen to provide a relatively small searching pool (potential solution set)
for the mapping generation of all algorithms. It is believed that as the network size and
application complexity increases, the IPM and original BB algorithms have a higher
chance to cost longer time for optimal mappings or performance drop with limited time
than our NLP-BB algorithm, indicating the superiority of our algorithm in balancing

the result optimality and execution efficiency.

5.4 Summary

Finding proper task mappings of complex applications with satisfactory performance
and high-efficiency execution is hard to balance. In this chapter we have proposed
a novel mapping method balancing the result optimality and execution efficiency
of produced mappings. This mapping technique contributes a more intelligent and
generalised mapping algorithm to the task allocation step of current NoC design
methodology as shown in Figure 1.2, which improves the feasibility of generating
optimised NoC systems for subsequent implementation. Non-Linear Programming
(NLP) based problem formulation and a modified branch and bound (BB) algorithm are
developed in the proposed task allocation method, providing topological extensibility,
global optimality and high-efficiency execution for mapping generation. More accurate
energy and timing models are designed for precise calculations. Experiments reveal that
the mappings produced by our method have competitive performance results in terms of
energy and time and superior execution efficiency, comparing to an exact NLP algorithm,

Interior Point Method (IPM), and the original BB algorithm. Specifically, our mapping

168 Chapter 5 Application Mapping and Performance Prediction

achieved around (9.28 ~ 30.87)% performance savings and about (48.46 ~ 102.73) times
faster execution speed than IPM, a slight performance drop of only about (1 ~ 4)% than
original BB but with a (3 ~ 20)-fold speedup in execution. The accuracy of calculated
performance results in our method also verified that minor errors (2% ~ 4%) are found

in comparison with simulated results.

Apart from offering a better balance between mapping performance and execution
efficiency, our work also reports potential directions for extension. The energy and timing
models used in our method can be more accurate by integrating the leakage energy part,
making the calculated performance results more precise. The buffer space overhead
of our modified BB algorithm is also expensive due to the large storage requirement
for candidate mappings at each level of the searching tree. This inspires the future
work of developing new policies to ease. The intrinsic exhaustive searching mechanism
prevents the BB algorithm from achieving high-efficiency execution to very large-scale
applications, also leaving design space of efficient mechanisms to balance the mapping

optimality and execution efficiency.

Chapter 6

Conclusions and Future Work

6.1 Summary of the thesis

Today, complex on-chip digital systems are extensively used in products of our daily lives.
New system architectures and functional modules are constantly updated to adapt to
the fast scaling of system feature size. Network on Chip is one promising architecture
for communication-centric system designs. It deploys many single processing units and
interconnects them with routers and switches to form a network for collaboratively
tackling extremely complex computations in a distributed way. Yet the traditional
gate-level synthesis design flow is less suitable to design such highly complex on-chip
systems with tolerable design time cycles and prototyping cost, which severely lowers the
design productivity. To alleviate the conflict between the reduced design productivity
and increased design complexity, electronic design automation techniques are used to
aid system designs at higher levels, such that accurate behavioural models of NoC
architectures and functional models of performance estimates are developed at system

level for achieving accurate early-stage performance and functional evaluations.

As an emerging technique, system-level design automation of NoC architectures leaves
many open space for further exploration. The accuracy of abstract high-level models
and performance models are a particularly significant issue that directly determines
the usefulness of the designs. High applicability of the automation techniques to
various specific NoC topologies has also drawn the interest of designers and developers
since many custom NoC architectures are needed to meet specific design requirements.
Besides, an intelligent task-mapping scheme plays a critically important role in dealing
with complex computational applications with a full use of available network resources
to generate optimised performance trade-offs. This thesis has addressed those issues to
improve the functionality of system-level design automation techniques. Through the
work introduced from Chapter 3 to Chapter 5, this thesis has fulfilled the main research
objectives listed in Chapter 1

169

170 Chapter 6 Conclusions and Future Work

6.1.1 Accurate Model Abstraction of System-Level NoC Architectures

As described in Chapter 3, we have proposed a case study to evaluate the model accuracy
of system-level NoC behavioural abstraction and performance estimates. A backbone
NoC simulator, NTIRGAM, is used for the system-level modelling. In the case study,
a system-level asynchronous FIFO architecture has been developed in NIRGAM. This
asynchronous FIFO not only extends the functionality of the simulator, but also provides
a basic functional test for modelling asynchronous behaviours at system level. Moreover,
a small one-to-one data transmission system using the asynchronous FIFO as a buffer is
constructed to implement a classic computational application both in NIRGAM and by
a RTL synthesis design flow. Comparative experiments have been given at both levels
to estimate the performance in terms of timing and power for functional validation of
system-level models. The measurement models in NIRGAM is also calibrated from the
RTL cell library to improve the performance accuracy. Potential directions of improving

the high-level abstract models are investigated based on the result analysis.

Results have shown that the high-level abstract models abstracted by advanced EDA
techniques have high precision (less than 4% error to the RTL design) and accurate
performance estimates with no jitter insertion, suggesting a superiority of such accurate
models to the RTL design in terms of design time cycles and prototyping cost. This
system-level modelling would significantly improve the design efficiency and lower the
overall design cost of complex on-chip systems. Results have also shown that the
NIRGAM simulator lack clock jitter models, which makes the simulator unable to
elaborate system behaviours under jitter insertion. Moreover, the power models in
NIRGAM is not as thorough as the RTL cell library, leading to a narrower evaluation
range. These functional deficiencies have indicated two potential directions of improving
the high-level modelling, which are developing more high-level abstractions of general

NoC components and developing more accurate model abstractions for current systems.

6.1.2 Efficient Design Method of Application-Specific Network Topolo-
gies

The default NoC topological platforms in the NIRGAM simulator are only Mesh and
Torus, though they are popular topologies widely used in the current NoC research.
Yet there are many other regular, non-rectangular or irregular network topologies which
are increasingly popular in various user-specific applications but lack supports from
modern system-level design automation. The conventional way of constructing such
networks requires custom and heterogenous designs of specific functional components,

which prolongs the design cycles and thus lowers the design efficiency.

To fill this gap, a novel method that efficiently emulates virtual non-rectangular and

irregular NoC topologies based on an regular mesh network in the NIRGAM simulator

Chapter 6 Conclusions and Future Work 171

has been developed and validated in Chapter 4. In the novel method, a time-regulated
model is designed and attached to certain nodes of the Mesh network, changing it to a
heterogeneous network. By using this model, the clocks at node output channels can
be configured by users to tune the time span of data packets cost at nodes, which then
regulates the data traversal time between certain node pairs to virtually form specific
routing patterns. Moreover, we have modified the original Orion power model integrated

in NIRGAM to provide energy performance estimation for functional validation.

Specifically, two typical non-rectangular example topologies: a honeycomb hexagon and
a sparse-octagon, and two irregular routing geometries are developed by our method.
Real networks of those non-rectangular and irregular topologies are also customised by
the conventional way for functional comparisons. Experiments with data routings along
specific geometries are implemented to validate the functionality of the proposed method.
Two synthetic traffic scenarios, Uniform Random and Hotspot, are implemented on
both virtual and real networks to evaluate the network characteristics and performance.
A typical multimedia application, an MPEG-4 decoder, is also given to exploit the
potential of our method for performing real-world applications. Limits and problems
of our emulation model are summarised based on the result analysis. Their potential

solutions are discussed at the end of Chapter 4.

6.1.3 Efficient Optimisation of Task-Mapping Performance Trade-offs
in Terms of Timing and Energy

In Chapter 5 we have designed an intelligent task mapping method to tackle complex
application tasks with full use of available NoC resources, and optimising the perfor-
mance trade-offs in terms of energy and timing issues. Besides, based on our proposed
mapping method, a performance prediction mechanism of NoC architectures in terms of
timing and energy has also been established to offer precise performance evaluations of
system-level abstract models. The prediction is expected as the reliable references for

the further design stages to help improve the design time cycles and productivity.

For the precise performance prediction, the design specification of our task-mapping
problems is to minimise the overall communication energy and timing performance of
complex computational applications running on various NoC topologies. The precision
and efficiency of the mapping results are significant for performance evaluations at
the early design stages. Since the optimisation of task mappings has proved to be
an NP-hard problem, it is hard to develop a generalised mapping algorithm that
is suitable for all different conditions and can give solutions within an acceptable
execution time. Hence, we are motivated develop a new mapping technique to meet our
own design specifications. Specifically, we have used a novel Non-linear programming
technique to formulate the mapping problem, and a modified branch and bound (BB)

algorithm to search the optimal mapping solution with increased execution speed. The

172 Chapter 6 Conclusions and Future Work

NLP mathematical technique formulates a mapping objective function based on the
coordinates of node interrelations instead of the connecting directions between tasks
that is limited to be used in certain architectures, which enhances the adaptability
of the proposed mapping method to more NoC architectures as long as the nodes of
those NoC architectures can be elaborated by a coordinate system. This presents the
better functionality of our proposed method than previous mapping algorithms that

were developed specifically for certain topologies.

We have also modified a BB algorithm with a refined searching mechanism. It searches
the optimal mapping in the more intelligent boundaries of possible mappings, such
that the execution time of the algorithm to solve complex computations is explicitly
reduced. This modification can remedy the deficiency of the BB algorithm in searching
the mapping optimum of large-scale applications with intolerable CPU execution time.
The reason for using the BB algorithm in our proposed method is due to its searching
mechanism that search the globally optimal mapping from a complete candidate
mapping set, which meets our demand for the accurate mapping optimum. Both
synthetic and real-world applications are evaluated to validate the functionality of our
proposed mapping method. Besides, baseline performance metrics in terms of energy
and timing are configured to automatically calculate the performance evaluations in
the proposed method. Since both system-level model abstraction and performance
prediction are implemented precisely at an early design stage, the proposed method has
indicated advanced design automation techniques to offer reliable performance references
of NoC applications for the subsequent NoC design stages, contributing to an efficient
design step. The precision of performance prediction provided by our proposed method

has also been validated in both synthetic and real-media applications.

6.2 Future Work

For the system-level abstract modelling, large design space is still remaining unexplored
though the energy and timing models are accurately developed in this thesis. Fault
tolerance of NoC applications is a typical concern in NoC architectures. As the system
complexity is increasing, more faults may occur for many reasons. Developing high-level
fault models for NoC architectures becomes highly meaningful to evaluate the network
behaviours. Moreover, detecting potential network faults at the early design stages
will dramatically save the design time and cost to revise them. It also supports the
mechanism development of fault tolerance and fault recovery. Hence, developing precise
system-level fault models in the NIRGAM simulator is part of our future work. Such
models can be integrated with existing models to collaboratively abstract precise network

failure at the early design stages, facilitating the further research for NoC architectures.

Chapter 6 Conclusions and Future Work 173

The efficient topology emulation proposed in this thesis needs more design exploration
since our proposed method only concerns two performance metrics in terms of energy
and timing, though they are of particular importance to on-chip systems. If fault
models or fault-tolerant functions can be built up at system-level NoC architectures, our
method needs to be modified and extended to emulate such topologies correctly. Specific
models for fault detection in our virtual modelling are also required for behavioural
research and performance estimates. Besides, more special but popular topologies can
be virtually emulated to enhance the functionality of our method. Popular topologies like
spidergon, fat tree and 3D networks are used more frequently in modern complex network
systems. But the supports of their high-level modelling and performance evaluations are

inadequate, which leaves design space to explore in the near future.

Our mapping technique has shown its superiority in the adaptability to diverse
NoC architectures and the guaranteed optimality from a global mapping set within
tolerable execution time. However, the execution efficiency of the mapping algorithm
is still insufficient for very large-scale applications due to the intrinsic exhaustive
searching mechanism of the Branch and Bound algorithm. Hence, more intelligent
searching mechanisms are needed to detect the potential solutions more efficiently,
or in a reasonably reduced range while ensuring the global optimality. Besides, a
new mechanism for deadlock-free task placing directions may also be needed since our
current XY routing mechanism may be less efficient and less intelligent in complex NoC
architectures that have more complex node relations (like 3D networks). An adaptive
routing mechanism may be more desirable than deterministic routing mechanism to
ensure sufficient use of available resources, if their algorithmic complexity is tolerable

for efficient searching and task placement in those complex NoC architectures.

Appendix A

Technology Parameters

Orion

Used by

//Parameters from SIM_technology.h

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

PARM_AF (5.000000e-01)

PARM_MAXN (8)

PARM_MAXSUBARRAYS (8)
PARM_MAXSPD (8)

PARM_VTHOUTDRNOR (4.310000e-01)
PARM_VTHCOMPINV (4.370000e-01)
PARM_BITOUT (64)
PARM_ruu_issue_width (4)
PARM_amp_Idsat (5.000000e-04)
PARM_VSINV (4.560000e-01)
PARM_GEN_POWER_FACTOR (1.310000e+00)
PARM_VTHNAND60x90 (5.610000e-01)
PARM_FUDGEFACTOR (1.000000e+00)
PARM_VTHOUTDRIVE (4.250000e-01)
PARM_VTHMUXDRV1 (4.370000e-01)
PARM_VTHMUXDRV2 (4.860000e-01)
PARM_NORMALIZE_SCALE (6.488730e-10)
PARM_VTHMUXDRV3 (4.370000e-01)
PARM_ADDRESS_BITS (64)
PARM_RUU_size (16)
PARM_VTHNOR12x4x1 (5.030000e-01)
PARM_VTHNOR12x4x2 (4.520000e-01)
PARM_VTHOUTDRINV (4.370000e-01)
PARM_VTHNOR12x4x3 (4.170000e-01)
PARM_VTHEVALINV (2.670000e-01)
PARM_VTHNOR12x4x4 (3.900000e-01)
PARM_res_ialu (4)
PARM_VTHOUTDRNAND (4.410000e-01)
PARM_VTHINV100x60 (4.380000e-01)

#if (PARM(TECH_POINT) <= 90)
#if (PARM(TRANSISTOR_TYPE) == LVT)

#define
#define
#define
#define

PARM_Cgatepass (1.5225000e-14)

PARM_Cpdiffarea (6.05520000e-15)
PARM_Cpdiffside (2.38380000e-15)
PARM_Cndiffside (2.8500000e-16)

175

176 Appendix A Technology Parameters Used by Orion

#define PARM_Cndiffarea (5.7420000e-15)
#define PARM_Cnoverlap (1.320000e-16)
#define PARM_Cpoverlap (1.210000e-16)
#define PARM_Cgate (7.8648000e-14)
#define PARM_Cpdiffovlp (1.420000e-16)
#define PARM_Cndiffovlp (1.420000e-16)
#define PARM_Cnoxideovlp (2.580000e-16)
#define PARM_Cpoxideovlp (3.460000e-16)

#elif (PARM(TRANSISTOR_TYPE) == NVT)
#define PARM_Cgatepass (8.32500e-15)
#define PARM_Cpdiffarea (3.330600e-15)
#define PARM_Cpdiffside (1.29940000e-15)
#define PARM_Cndiffside (2.5500000e-16)
#define PARM_Cndiffarea (2.9535000e-15)
#define PARM_Cnoverlap (1.270000e-16)
#define PARM_Cpoverlap (1.210000e-16)
#define PARM_Cgate (3.9664000e-14)
#define PARM_Cpdiffovlp (1.31000e-16)
#define PARM_Cndiffovlp (1.310000e-16)
#define PARM_Cnoxideovlp (2.410000e-16)
#define PARM_Cpoxideovlp (3.170000e-16)

#elif (PARM(TRANSISTOR_TYPE) == HVT)
#define PARM_Cgatepass (1.45000e-15)
#define PARM_Cpdiffarea (6.06000e-16)
#define PARM_Cpdiffside (2.150000e-16)
#define PARM_Cndiffside (2.25000e-16)
#define PARM_Cndiffarea (1.650000e-16)
#define PARM_Cnoverlap (1.220000e-16)
#define PARM_Cpoverlap (1.210000e-16)
#define PARM_Cgate (6.8000e-16)

#define PARM_Cpdiffovlp (1.20000e-16)
#define PARM_Cndiffovlp (1.20000e-16)
#define PARM_Cnoxideovlp (2.230000e-16)
#define PARM_Cpoxideovlp (2.880000e-16)

#endif /*PARM(TRANSISTOR_TYPE) */
#endif /*PARM(TECH_POINT) */

//Parameters from "SIM_technology.h

#define PARM_AF (5.000000e-01)

#define PARM_MAXN (8)

#define PARM_MAXSUBARRAYS (8)

#define PARM_MAXSPD (8)

#define PARM_VTHOUTDRNOR (4.310000e-01)
#define PARM_VTHCOMPINV (4.370000e-01)
#define PARM_BITOUT (64)

#define PARM_ruu_issue_width (4)

#define PARM_amp_Idsat (5.000000e-04)
#define PARM_VSINV (4.560000e-01)
#define PARM_GEN_POWER_FACTOR (1.310000e+00)
#define PARM_VTHNAND60x90 (5.610000e-01)
#define PARM_FUDGEFACTOR (1.000000e+00)
#define PARM_VTHOUTDRIVE (4.250000e-01)
#define PARM_VTHMUXDRV1 (4.370000e-01)
#define PARM_VTHMUXDRV2 (4.860000e-01)

Appendix A Technology Parameters Used by Orion

177

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

PARM_NORMALIZE_SCALE (6.488730e-10)
PARM_VTHMUXDRV3 (4.370000e-01)
PARM_ADDRESS_BITS (64)
PARM_RUU_size (16)
PARM_VTHNOR12x4x1 (5.030000e-01)
PARM_VTHNOR12x4x2 (4.520000e-01)
PARM_VTHOUTDRINV (4.370000e-01)
PARM_VTHNOR12x4x3 (4.170000e-01)
PARM_VTHEVALINV (2.670000e-01)
PARM_VTHNOR12x4x4 (3.900000e-01)
PARM_res_ialu (4)
PARM_VTHOUTDRNAND (4.410000e-01)
PARM_VTHINV100x60 (4.380000e-01)

#if (PARM(TECH_POINT) <= 90)
#if (PARM(TRANSISTOR_TYPE) == LVT)

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

PARM_Cgatepass (1.5225000e-14)
PARM_Cpdiffarea (6.05520000e-15)
PARM_Cpdiffside (2.38380000e-15)
PARM_Cndiffside (2.8500000e-16)
PARM_Cndiffarea (5.7420000e-15)
PARM_Cnoverlap (1.320000e-16)
PARM_Cpoverlap (1.210000e-16)
PARM_Cgate (7.8648000e-14)
PARM_Cpdiffovlp (1.420000e-16)
PARM_Cndiffovlp (1.420000e-16)
PARM_Cnoxideovlp (2.580000e-16)
PARM_Cpoxideovlp (3.460000e-16)

#elif (PARM(TRANSISTOR_TYPE) == NVT)

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#elif

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

PARM_Cgatepass (8.32500e-15)
PARM_Cpdiffarea (3.330600e-15)
PARM_Cpdiffside (1.29940000e-15)
PARM_Cndiffside (2.5500000e-16)
PARM_Cndiffarea (2.9535000e-15)
PARM_Cnoverlap (1.270000e-16)
PARM_Cpoverlap (1.210000e-16)
PARM_Cgate (3.9664000e-14)
PARM_Cpdiffovlp (1.31000e-16)
PARM_Cndiffovlp (1.310000e-16)
PARM_Cnoxideovlp (2.410000e-16)
PARM_Cpoxideovlp (3.170000e-16)

(PARM(TRANSISTOR_TYPE) == HVT)

PARM_Cgatepass (1.45000e-15)
PARM_Cpdiffarea (6.06000e-16)
PARM_Cpdiffside (2.150000e-16)
PARM_Cndiffside (2.25000e-16)
PARM_Cndiffarea (1.650000e-16)
PARM_Cnoverlap (1.220000e-16)
PARM_Cpoverlap (1.210000e-16)
PARM_Cgate (6.8000e-16)
PARM_Cpdiffovlp (1.20000e-16)
PARM_Cndiffovlp (1.20000e-16)
PARM_Cnoxideovlp (2.230000e-16)
PARM_Cpoxideovlp (2.880000e-16)

#endif /*PARM(TRANSISTOR_TYPE) %/
#endif /*PARM(TECH_POINT)*/

178 Appendix A Technology Parameters Used by Orion

//Parameters from SIM_technology_v2.h

#if (PARM(TECH_POINT) <= 90)

#define Vbitpre (vdd)

#define Vbitsense (0.08)

#define SensePowerfactor3 (CLK_FREQ * 1e9)*(Vbitsense)*(Vbitsense)

#define SensePowerfactor2 (CLK_FREQ * 1e9)*(Vbitpre-Vbitsense)*(Vbitpre-Vbitsense)
#define SensePowerfactor (CLK_FREQ * 1e9)*xVddx*(Vvdd/2)

#define SenseEnergyFactor (Vdd*Vdd/2)

#endif /* PARM(TECH_POINT) */

#if (PARM(TECH_POINT) == 90)

#define LSCALE 0.125

#define MSCALE (LSCALE * .624 / .2250)
/% bit width of RAM cell in um */
#define BitWidth (2.24)

/% bit height of RAM cell in um */
#define BitHeight (2.52)

#define Cout (6.25e-14)

#define BitlineSpacing 1.12

#define WordlineSpacing 1.12

#define RegCellHeight 2.8

#define RegCellWidth 1.9

#define Cwordmetal (1.936e-15)

#define Cbitmetal (3.872e-15)

#define Cmetal (Cbitmetal/16)

#define CM2metal (Cbitmetal/16)

#define CM3metal (Cbitmetal/16)

/% minimal spacing metal cap per unit length */
#define CCmetal (0.18608e-15)

#define CCM2metal (0.18608e-15)

#define CCM3metal (0.18608e-15)

/% 2z minimal spacing metal cap per unit length */
#define CC2metal (0.12529e-15)

#define CC2M2metal (0.12529e-15)

#define CC2M3metal (0.12529e-15)

/% 3z minimal spacing metal cap per unit length */
#define CC3metal (0.11059e-15)

#define CC3M2metal (0.11059e-15)

#define CC3M3metal (0.11059e-15)

/% corresponds to clock networkx*/
#define Clockwire (404.8e-12)
#define Reswire (36.66e3)

#define invCap (3.816e-14)
#define Resout (213.6)

/* um */

#define Leff (0.1)

/* length unit in um */

#define Lamda (Leff * 0.5)
/* fF/um */

#define Cpolywire (2.6317875e-15)
/% ohms*um of channel width */
#define Rnchannelstatic (3225)
/* ohms*um of channel width */
#define Rpchannelstatic (7650)

#if (PARM(TRANSISTOR_TYPE) == LVT)

Appendix A Technology Parameters Used by Orion

179

#define Rnchannelon (1716)

#define Rpchannelon (4202)

#elif (PARM(TRANSISTOR_TYPE) == NVT)
#define Rnchannelon (4120)

#define Rpchannelon (10464)

#elif (PARM(TRANSISTOR_TYPE) == HVT)
#define Rnchannelon (4956)

#define Rpchannelon (12092)

#endif

#define Rbitmetal (1.38048)
#define Rwordmetal (0.945536)

#if (PARM(TRANSISTOR_TYPE) == LVT)
#define Vt 0.237

#elif (PARM(TRANSISTOR_TYPE) == NVT)
#define Vt 0.307

#elif (PARM(TRANSISTOR_TYPE) == HVT)
#define Vt 0.482

#endif

/* transistor widths in um */
#if (PARM(TRANSISTOR_TYPE) == LVT)
#define Wdecdrivep (12.50)
#define Wdecdriven (6.25)
#define Wdec3to8n (11.25)
#define Wdec3to8p (7.5)

#define WdecNORn (0.30)
#define WdecNORp (1.12)
#define Wdecinvn (0.84)
#define Wdecinvp (1.12)
#define Wdff (12.32)

#define Wworddrivemax (12.50)
#define Wmemcella (0.35)
#define Wmemcellr (0.50)
#define Wmemcellw (0.26)
#define Wmemcellbscale (2)
#define Wbitpreequ (1.25)
#define Wbitmuxn (1.25)
#define WsenseQilto4 (0.55)
#define Wcompinvpl (1.25)
#define Wcompinvnl (0.84)
#define Wcompinvp2 (2.24)
#define Wcompinvn2 (1.68)
#define Wcompinvp3 (5.15)
#define Wcompinvn3 (3.25)
#define Wevalinvp (2.24)
#define Wevalinvn (9.45)

#define Wcompn (1.25)
#define Wcompp (3.75)
#define Wcomppreequ (5.15)

#define Wmuxdrvi2n (3.75)
#define Wmuxdrvi2p (6.25)
#define WmuxdrvNANDn (2.52)
#define WmuxdrvNANDp (10.33)
#define WmuxdrvNORn (7.56)
#define WmuxdrvNORp (10.36)
#define Wmuxdrv3n (24.85)
#define Wmuxdrv3p (60.25)

180 Appendix A Technology Parameters Used by Orion
#define Woutdrvseln (1.55)
#define Woutdrvselp (2.33)
#define Woutdrvnandn (3.36)
#define Woutdrvnandp (1.4)
#define Woutdrvnorn (0.75)
#define Woutdrvnorp (5.32)
#define Woutdrivern (6.16)
#define Woutdriverp (9.77)
#define Wbusdrvn (6.16)
#define Wbusdrvp (10.57)
#define Wcompcellpd?2 (0.33)
#define Wcompdrivern (50.95)
#define Wcompdriverp (102.67)
#define Wcomparen?2 (5.13)
#define Wcomparenl (2.5)
#define Wmatchpchg (1.25)
#define Wmatchinvn (1.4)
#define Wmatchinvp (3.08)
#define Wmatchnandn (2.24)
#define Wmatchnandp (1.68)
#define Wmatchnorn (2.52)
#define Wmatchnorp (1.12)
#define WSelORn (1.4)
#define WSelORprequ (5.04)
#define WSelPn (1.86)
#define WSelPp (1.86)
#define WSelEnn (0.63)
#define WSelEnp (1.25)
#define Wsenseextdrvip (5.15)
#define Wsenseextdrvin (3.05)
#define Wsenseextdrv2p (25.20)
#define Wsenseextdrv2n (15.65)
#elif (PARM(TRANSISTOR_TYPE) == NVT)
#define Wdecdrivep (11.57)
#define Wdecdriven (5.74)
#define Wdec3to8n (10.31)
#define Wdec3to8p (6.87)
#define WdecNORn (0.28)
#define WdecNORp (1.4)
#define Wdecinvn (0.58)
#define Wdecinvp (1.12)
#define WdAff (6.72)
#define Wworddrivemax (11.57)
#define Wmemcella (0.33)
#define Wmemcellr (0.46)
#define Wmemcellw (0.24)
#define Wmemcellbscale (2)
#define Wbitpreequ (1.15)
#define Wbitmuxn (1.15)
#define WsenseQlto4 (0.49)
#define Wcompinvpl (1.12)
#define Wcompinvnl (0.84)
#define Wcompinvp2 (2.24)
#define Wcompinvn2 (1.38)
#define Wcompinvp3 (4.48)
#define Wcompinvn3 (2.88)
#define Wevalinvp (2.29)
#define Wevalinvn (8.89)

Appendix A Technology Parameters Used by Orion 181

#define Wcompn (1.15)
#define Wcompp (3.44)
#define Wcomppreequ (4.66)

#define Wmuxdrvi2n (3.44)
#define Wmuxdrvi2p (5.74)
#define WmuxdrvNANDn (2.52)
#define WmuxdrvNANDp (9.24)
#define WmuxdrvNORn (6.72)
#define WmuxdrvNORp (9.49)
#define Wmuxdrv3n (22.83)
#define Wmuxdrv3p (55.09)
#define Woutdrvseln (1.40)
#define Woutdrvselp (2.21)
#define Woutdrvnandn (2.80)
#define Woutdrvnandp (1.12)
#define Woutdrvmnorn (0.69)
#define Woutdrvnorp (4.76)
#define Woutdrivern (5.58)
#define Woutdriverp (9.05)

#define Wbusdrvn (5.58)

#define Wbusdrvp (9.45)

#define Wcompcellpd2 (0.29)
#define Wcompdrivern (46.28)
#define Wcompdriverp (92.94)
#define Wcomparen2 (4.65)
#define Wcomparenl (2.29)
#define Wmatchpchg (1.15)
#define Wmatchinvn (1.12)
#define Wmatchinvp (2.52)
#define Wmatchnandn (2.24)
#define Wmatchnandp (1.40)
#define Wmatchnorn (2.37)
#define Wmatchnorp (1.12)
#define WSelORn (1.15)
#define WSelORprequ (4.66)
#define WSelPn (1.45)
#define WSelPp (1.71)
#define WSelEnn (0.58)
#define WSelEnp (1.15)

#define Wsenseextdrvip (4.66)
#define Wsenseextdrvin (2.78)
#define Wsenseextdrv2p (23.02)
#define Wsenseextdrv2nm (14.07)

#elif (PARM(TRANSISTOR_TYPE) == HVT)
#define Wdecdrivep (10.64)
#define Wdecdriven (5.23)
#define Wdec3to8n (9.36)
#define Wdec3to8p (6.24)

#define WdecNORn (0.25)
#define WdecNORp (1.25)
#define Wdecinvn (0.52)
#define Wdecinvp (1.04)
#define Wdff (5.43)

#define Wworddrivemax (10.64)
#define Wmemcella (0.25)
#define Wmemcellr (0.42)
#define Wmemcellw (0.22)
#define Wmemcellbscale (2)

182 Appendix A Technology Parameters Used by Orion
#define Wbitpreequ (1.04)
#define Wbitmuxn (1.04)
#define WsenseQlto4 (0.42)
#define Wcompinvpl (1.08)
#define Wcompinvnl (0.62)
#define Wcompinvp2 (2.08)
#define Wcompinvn2 (1.25)
#define Wcompinvp3 (4.16)
#define Wcompinvn3 (2.52)
#define Wevalinvp (2.08)
#define Wevalinvn (8.32)
#define Wcompn (1.04)
#define Wcompp (3.12)
#define Wcomppreequ (4.16)
#define Wmuxdrvi2n (3.12)
#define Wmuxdrvi2p (5.23)
#define WmuxdrvNANDn (2.08)
#define WmuxdrvNANDp (8.40)
#define WmuxdrvNORn (6.16)
#define WmuxdrvNORp (8.12)
#define Wmuxdrv3n (20.80)
#define Wmuxdrv3p (49.92)
#define Woutdrvseln (1.25)
#define Woutdrvselp (2.08)
#define Woutdrvnandn (2.52)
#define Woutdrvnandp (1.04)
#define Woutdrvnorn (0.62)
#define Woutdrvnorp (4.16)
#define Woutdrivern (4.99)
#define Woutdriverp (8.32)
#define Wbusdrvn (4.99)
#define Wbusdrvp (8.32)
#define Wcompcellpd2 (0.25)
#define Wcompdrivern (41.60)
#define Wcompdriverp (83.20)
#define Wcomparen2 (4.16)
#define Wcomparenl (2.08)
#define Wmatchpchg (1.04)
#define Wmatchinvn (1.04)
#define Wmatchinvp (2.08)
#define Wmatchnandn (2.08)
#define Wmatchnandp (1.08)
#define Wmatchnorn (2.08)
#define Wmatchnorp (1.04)
#define WSelORn (1.04)
#define WSelORprequ (4.16)
#define WSelPn (1.04)
#define WSelPp (1.56)
#define WSelEnn (0.52)
#define WSelEnp (1.04)
#define Wsenseextdrvip (4.16)
#define Wsenseextdrvin (2.50)
#define Wsenseextdrv2p (20.83)
#define Wsenseextdrv2n (12.48)
#endif

#define CamCellHeight (4.095)
#define CamCellWidth (3.51)
#define MatchlineSpacing (0.75)

Appendix A Technology Parameters Used by Orion 183

#define TaglineSpacing (0.75)
#define CrsbarCellHeight 2.94
#define CrsbarCellWidth 2.94
#define krise (0.5e-10)
#define tsensedata (0.725e-10)
#define tsensetag (0.325e-10)
#define tfalldata (0.875e-10)
#define tfalltag (0.875e-10)

#endif /* PARM(TECH_POINT) <= 90 x*/

/#=============/Above are the parameters for 90nm ========================%/
/#¥=======================PARAMETERS for Link===========================x/
#if (PARM(TECH_POINT) == 90) /* PARAMETERS for Link at 90nm */

#if (WIRE_LAYER_TYPE == LOCAL)

#define WireMinWidth 214e-9

#define WireMinSpacing 214e-9

#define WireMetalThickness 363.8e-9

#define WireBarrierThickness 10e-9

#define WireDielectricThickness 363.8e-9

#define WireDielectricConstant 3.3

#elif (WIRE_LAYER_TYPE == INTERMEDIATE)
#define WireMinWidth 275e-9
#define WireMinSpacing 275e-9
#define WireMetalThickness 467 .5e-9
#define WireBarrierThickness 10e-9

#define WireDielectricThickness 412.5e-9
#define WireDielectricConstant 3.3

#elif (WIRE_LAYER_TYPE == GLOBAL)

#define WireMinWidth 410e-9
#define WireMinSpacing 410e-9
#define WireMetalThickness 861e-9
#define WireBarrierThickness 10e-9

#define WireDielectricThickness 779e-9
#define WireDielectricConstant 3.3
#endif /*WIRE_LAYER_TYPE for 90nm*/

#endif /* PARM(TECH_POINT) <= 90 */

/*parameters for insertion buffer for links at 90nm*/

#if (PARM(TECH_POINT) == 90)

#define BufferDriveResistance 5.12594e+03
#define BufferIntrinsicDelay 4.13985e-11
#if (PARM(TRANSISTOR_TYPE) == LVT)

#define BufferInputCapacitance 1.59e-15
#define BufferPMOSOffCurrent 116.2e-09
#define BufferNMOSOffCurrent 52.1e-09
#define ClockCap 2.7e-14
#elif (PARM(TRANSISTOR_TYPE) == NVT)

#define BufferInputCapacitance 4.7e-15
#define BufferPMOSOffCurrent 67.6e-09
#define BufferNMOSOffCurrent 31.1e-09

#define ClockCap 1.0e-14

184 Appendix A Technology Parameters Used by Orion

#elif (PARM(TRANSISTOR_TYPE) == HVT)

#define BufferInputCapacitance 156.0e-15//9.5e-15
#define BufferPMOSOffCurrent 19.2e-09

#define BufferNMOSOffCurrent 10.1e-09

#define ClockCap 0.3e-15

#endif

#endif /* PARM(TECH_POINT) <= 90 */

/*======================Pgrameters for Area==s=s=s=====================%/
#if (PARM(TECH_POINT) == 90)

#define ArealNOR (4.76)

#define ArealINV (2.24)

#define AreaAND (4.48)

#define AreaDFF (16.23)

#define AreaMUX2 (7.06)

#define AreaMUX3 (11.29)

#define AreaMUX4 (16.93)

#endif /% PARM(TECH_POINT) <= 90 */

References

1]

D. Atienza, F. Angiolini, S. Murali, A. Pullini, L. Benini, and G. De Micheli,
“Network-on-chip design and synthesis outlook,” INTEGRATION, the VLSI
journal, vol. 41, no. 3, pp. 340-359, 2008.

L. M. Ni, “Issues in Designing Truly Scalable Interconnection Networks,” Parallel
Processing, 1996. Proceedings of the 1996 ICPP Workshop on Challenges for, pp.
74-83, 1996.

W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers, Elsevier, 2004.

M. Gaur and V. Laxmi, “NIRGAM: A Versatile and Scalable Simulation
Environment for Network on Chip,” Preprint sumbitted to Journal of

Microprocessors and Microsystems, 2009.

P. P. Pande, C. Grecu, A. Ivanov, and R. Saleh, “Design of a Switch for Network
on Chip Applications,” Circuits and Systems, 2003. ISCAS’03. Proceedings of the
2008 International Symposium on, vol. 5, pp. 5-217, 2003.

P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance Evaluation
and Design Trade-offs for Network-on-Chip Interconnect Architectures,” IEEFE
Transactions on Computers, vol. 54, no. 8, pp. 1025-1040, 2005.

S. Pasricha and N. Dutt, On-chip Communication Architectures: System on Chip

Interconnect. Morgan Kaufmann Publishers, Elsevier, 2010.

J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Networks: An

Engineering Approach. Morgan Kaufmann Publishers, Elsevier, 2003.

C. E. Leiserson, “Fat-trees: Universal Networks for Hardware-efficient

Supercomputing,” IEEE Transactions on Computers, vol. 34, pp. 892-901, 1985.

W. Song and D. Edwards, “Spatial Parallelism in the Routers of Asynchronous On-
Chip Networks,” University of Manchester, Ph.D Thesis, 2011. [Online]. Available:
http://apt.cs.manchester.ac.uk/publications/thesis/W _Songl1_phd.php

185

http://apt.cs.manchester.ac.uk/publications/thesis/W_Song11_phd.php

186

REFERENCES

[11]

[12]

[13]

[15]

[16]

[22]

S. W. Keckler, O. A. Olukotun, and H. P. Hofstee, Multicore Processors and
Systems. Springer Science+Business Media, 2009.

G.-M. Chiu, “The Odd-Even Turn Model for Adaptive Routing,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 11, no. 7, pp. 729-738, 2000.

M. Cho, M. Lis, K. Shim, M. Kinsy, and S. Devadas, “Path-based, Randomized,
Oblivious, Minimal Routing,” Proceedings of the 2nd International Workshop on
Network on Chip Architectures, pp. 23-28, 2009.

Z. Wang and A. Herkersdorf, “Software Performance Simulation Strategies for
High-Level Embedded System Design,” Performance Evaluation, vol. 67, no. 8,
pp. 717-739, 2010.

P. K. Sahu and S. Chattopadhyay, “A Survey on Application Mapping Strategies
for Network-on-Chip Design,” Journal of Systems Architecture: the EUROMICRO
Journal, vol. 59, no. 1, pp. 60-76, 2013.

C. Cummings, “Simulation and Synthesis Techniques for Asynchronous FIFO
Design with Asynchronous Pointer Comparisons,” SNUG 2002 (Synopsys Users
Group Conference, San Jose, CA, 2002) User Papers, 2005.

A. Jerraya and W. Wolf, Multiprocessor Systems-on-Chips. Morgan Kaufmann
Publishers, Elsevier, 2004.

W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection
Networks,” Proceedings of Design Automation Conference, pp. 1025-1040, 2001.

A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and
D. Lindqvist, “Network on chip: An architecture for billion transistor era,”
Proceedings of the IEEE NorChip Conference, vol. 31, pp. 166-173, 2000.

X. Li and X. Xu, “Techniques for Wireless Sensor Networks,” Beijing Institute of
Technology Press, Chinese Version, 2007.

D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G. De Micheli, “Noc synthesis flow for customized domain specific multiprocessor

systems-on-chip,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 16, no. 2, pp. 113-129, 2005.

J. Hu and R. Marculescu, “Exploiting the Routing Flexibility for Energy /Perfor-
mance Aware Mapping of Regular NoC Architectures,” Design, Automation and
Test in Europe Conference and Ezhibition, 2003, pp. 688-693, 2003.

S. Murali, L. Benini, and G. De Micheli, “Mapping and Physical Planning
of Networks-on-Chip Architectures with Quality-of-Service Guarantees,” Design
Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South
Pacific, vol. 1, pp. 27-32, 2005.

REFERENCES 187

[24]

[25]

[26]

[27]

[28]

[29]

[32]

33]

[34]

F. Angiolini, P. Meloni, S. Carta, L. Benini, and L. Raffo, “Contrasting a noc
and a traditional interconnect fabric with layout awareness,” Proceedings of the
conference on Design, automation and test in Furope: Proceedings, pp. 124-129,
2006.

L. Jain, B. M. Al-Hashimi, M. S. Gaur, V. Laxmi, and A. Narayanan, “NIRGAM:
a Simulator for NoC Interconnect Routing and Application Modeling,” 2007.
[Online]. Available: www.date-conference.com/files/file/10-ubooth/ub-1.4-p04.
pdf

E. Cota, A. de Morais Amory, and M. S. Lubaszewski, Reliability, Availability and
Serviceability of Networks-on-chip. Springer Science & Business Media, 2011.

W. Guo, Z. Guo, and J. Xie, “System on Chip Design and Implementation
Methodology,” Beijing Publishing House of Electronic Industry, Chinese Version,
2008.

W. Wolf, “The Future of Multiprocessor Systems-on-Chips,” Design Automation
Conference, 2004. Proceedings. 41st, pp. 681-685, 2004.

W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor System-on-Chip (MPSoC)
Technology,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 27, no. 10, pp. 1701-1713, 2008.

L. Benini and G. De Micheli, “Networks on Chips: a New SoC Paradigm,”
Computer, vol. 35, no. 1, pp. 70-78, 2002.

J. Henkel, W. Wolf, and S. Chakradhar, “On-Chip Networks: A Scalable,
Communication-centric Embedded System Design Paradigm,” VLSI Design, 2004.
Proceedings. 17th International Conference on, pp. 845-851, 2004.

J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and C. R. Das, “Design
and Analysis of an NoC Architecture from Performance, Reliability and Energy
Perspective,” Proceedings of the 2005 ACM symposium on Architecture for

networking and communications systems, pp. 173-182, 2005.

R. Marculescu, U. Ogras, L. Peh, N. Jerger, and Y. Hoskote, “Outstanding
Research Problems in NoC Design: System, Microarchitecture, and Circuit
Perspectives,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 28, no. 1, pp. 3—21, 2009.

S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
A. Singh, T. Jacob, S. Jain et al., “An 80-Tile Sub-100-w TeraFlops Processor in
65-nm CMOS,” Solid-State Clircuits, IEEE Journal of, vol. 43, no. 1, pp. 2941,
2008.

www.date-conference.com/files/file/10-ubooth/ub-1.4-p04.pdf
www.date-conference.com/files/file/10-ubooth/ub-1.4-p04.pdf

188

REFERENCES

[35]

[36]

[37]

[39]

[41]

[44]

[45]

F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y. Thonnart,
P. Vivet, and N. Wehn., “A 477mW NoC-based Digital Baseband for MIMO 4G
SDR,” Proc. of IEEE International Solid-State Circuits Conference, pp. 278-279,
2010.

W. J. Dally and C. L. Seitz, “The Torus Routing Chip,” Distributed Computing,
vol. 1, no. 4, pp. 187-196, 1986.

F. T. Leighton, “New Lower Bound Techniques for VLSI,” Mathematical Systems
Theory, vol. 17, no. 1, pp. 47-70, 1984.

J. Kim, J. Balfour, and W. Dally, “Flattened Butterfly Topology for On-Chip
Networks,” Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 172—-182, 2007.

M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, “The Nostrum
Backbone - a Communication Protocol Stack for Networks on Chip,” VLSI Design,
2004. Proceedings. 17th International Conference on, pp. 693-696, 2004.

W. Zhang, L. Hou, J. Wang, S. Geng, and W. Wu, “Comparison Research between
XY and Odd-Even Routing Algorithm of a 2-Dimension 3X3 Mesh Topology
Network-on-Chip,” Intelligent Systems, 2009. GCI1S’09. WRI Global Congress on,
vol. 3, pp. 329-333, 2009.

D. Wiklund and D. Liu, “SoCBUS: Switched Network on Chip for Hard Real
Time Embedded Systems,” Parallel and Distributed Processing Symposium, 20083.
Proceedings. International, pp. 8—pp, 2003.

L. G. Roberts, “The Evolution of Packet Switching,” Proceedings of the IEEE,
vol. 66, no. 11, pp. 1307-1313, 1978.

L. Fratta, M. Gerla, and L. Kleinrock, “The Flow Deviation Method: An Approach
to Store-and-Forward Communication Network Design,” Networks, vol. 3, no. 2,
pp. 97-133, 1973.

J. Duato, A. Robles, F. Silla, and R. Beivide, “A Comparison of Router
Architectures for Virtual Cut-through and Wormhole Switching in a NOW
Environment,” Parallel Processing, 1999. 13th International and 10th Symposium
on Parallel and Distributed Processing, 1999. 1999 IPPS/SPDP. Proceedings, pp.
240-247, 1999.

P. Kermani and L. Kleinrock, “Virtual Cut-through: A New Computer
Communication Switching Technique,” Computer Networks (1976), vol. 3, no. 4,
pp. 267-286, 1979.

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100%
Throughput in an Input-queued Switch,” Communications, IEEE Transactions
on, vol. 47, no. 8, pp. 1260-1267, 1999.

REFERENCES 189

[47]

[53]

[54]

[57]

[58]

W. J. Dally, “Virtual-channel Flow Control,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 3, no. 2, pp. 194-205, 1992.

A. V. de Mello, L. C. Ost, F. G. Moraes, and N. L. V. Calazans, “Evaluation of
Routing Algorithms on Mesh based NoCs,” Technical Report, FACULDADE DE
INFORMATICA,, pp.- 3—-11, 2004.

M. Singhal, “Deadlock Detection in Distributed Systems,” Computer, vol. 22,
no. 11, pp. 37-48, 1989.

J. Duato, “A New Theory of Deadlock-free Adaptive Routing in Wormhole
Networks,” Parallel and Distributed Systems, IEEE Transactions on, vol. 4, no. 12,
pp. 1320-1331, 1993.

C. J. Glass and L. M. Ni, “The Turn Model for Adaptive Routing,” ACM
SIGARCH Computer Architecture News, vol. 20, no. 2, pp. 278-287, 1992.

W. J. Dally and C. L. Seitz, “Deadlock-free Message Routing in Multiprocessor
Interconnection Networks,” Computers, IEEE Transactions on, vol. 100, no. 5,
pp- 547-553, 1987.

A. Lankes, T. Wild, A. Herkersdorf, S. Sonntag, and H. Reinig, “Comparison of
Deadlock Recovery and Avoidance Mechanisms to Approach Message Dependent
Deadlocks in On-Chip Networks,” Networks-on-Chip (NOCS), 2010 Fourth
ACM/IEEE International Symposium on, pp. 17-24, 2010.

J. Upadhyay, V. Varavithya, and P. Mohapatra, “A Traffic-balanced Adaptive
Wormbhole Routing Ccheme for Two-Dimensional Meshes,” Computers, IEEE
Transactions on, vol. 46, no. 2, pp. 190-197, 1997.

J. Hu and R. Marculescu, “DyAD: Smart Routing for Networks-on-Chip,”
Proceedings of the 41st annual Design Automation Conference, pp. 260—263, 2004.

M. Palesi, R. Holsmark, S. Kumar, and V. Catania, “Application Specific Routing
Algorithms for Networks on Chip,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 3, p. 316, 2009.

A. Hansson, K. Goossens, and A. Radulescu, “A Unified Approach to Mapping
and Routing on a Network-on-Chip for Both Best-effort and Guaranteed Service
Traffic,” Proceedings of the 3rd IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pp. 75-80, 2005.

E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS Architecture and
Design Process for Network on Chip,” Journal of Systems Architecture, vol. 50,
no. 2, pp. 105-128, 2004.

190

REFERENCES

[59]

[62]

[63]

[66]

J. Liang, S. Swaminathan, and R. Tessier, “aSOC: A Scalable, Single-
chip Communications Architecture,” Parallel Architectures and Compilation

Techniques, 2000. Proceedings. International Conference on, pp. 37-46, 2000.

L. M. Ni and P. K. McKinley, “A Survey of Wormhole Routing Techniques in
Direct Networks,” Computer, vol. 26, no. 2, pp. 62-76, 1993.

W. J. Dally and H. Aoki, “Deadlock-free Adaptive Routing in Multicomputer
Networks using Virtual Channels,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 4, no. 4, pp. 466475, 1993.

F. Moraes, N. Calazans, A. Mello, L. Moller, and L. Ost, “HERMES: An
Infrastructure for Low Area Overhead Packet-Switching Networks on Chip,”
INTEGRATION, the VLSI journal, vol. 38, no. 1, pp. 69-93, 2004.

R. Mullins, A. West, and S. Moore, “Low-latency Virtual-Channel Routers for On-
Chip Networks,” ACM SIGARCH Computer Architecture News, vol. 32, no. 2, p.
188, 2004.

I. Miro-Panades, F. Clermidy, P. Vivet, and A. Greiner, “Physical Implementation
of the DSPIN Network-on-Chip in the FAUST Architecture,” Proceedings of the
Second ACM/IEEE International Symposium on Networks-on-Chip, pp. 139-148,
2008.

Z. Zhang, A. Greiner, and S. Taktak, “A Reconfigurable Routing Algorithm for a
Fault-Tolerant 2D-Mesh Network-on-Chip,” Design Automation Conference, 2008.
DAC 2008. 45th ACM/IEEE, pp. 441-446, 2008.

S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho,
F. Silla, and J. Duato, “Addressing Manufacturing Challenges with Cost-efficient
Fault Tolerant Routing,” Networks-on-Chip (NOCS), 2010 Fourth ACM/IEEE
International Symposium on, pp. 25-32, 2010.

D. Bertozzi and L. Benini, “Xpipes: a Network-on-Chip Architecture for Gigascale
Systems-on-Chip,” Circuits and Systems Magazine, IEEE, vol. 4, no. 2, pp. 18-31,
2004.

E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, “An
Asynchronous NoC Architecture Providing Low Latency Service and its Multi-
Level Design Framework,” Asynchronous Circuits and Systems, 2005. ASYNC
2005. Proceedings. 11th IEEE International Symposium on, pp. 54-63, 2005.

T. Bjerregaard and J. Sparso, “A Router Architecture for Connection-oriented
Service Guarantees in the MANGO Clockless Network-on-Chip,” Design,
Automation and Test in FEurope, 2005. Proceedings, pp. 1226-1231, 2005.

REFERENCES 191

[70]

[80]

[81]

[82]

K. K. Paliwal, J. S. George, N. Rameshan, V. Laxmi, M. S. Gaur, V. Janyani,
and R. Narasimhan, “Implementation of QoS Aware Q-Routing Algorithm for
Network-on-Chip,” Contemporary Computing, pp. 370-380, 2009.

N. Rameshan, A. Biyani, M. Gaur, V. Laxmi, and M. Ahmed, “Qos Aware
Minimally Adaptive XY Routing for NoC,” 17th International Conference on
Advanced Computing and Communication (ADCOM), Bangalore, India, 2009.

L. G. Valiant and G. J. Brebner, “Universal Schemes for Parallel Communication,”
Proceedings of the thirteenth annual ACM symposium on Theory of computing, pp.
263-277, 1981.

T. Dumitras and R. Marculescu, “On-Chip Stochastic Communication [SoC
Applications|,” Design, Automation and Test in Europe Conference and
Ezxhibition, 2003, pp. 790-795, 2003.

P. Bogdan and R. Marculescu, “A Theoretical Framework for On-Chip Stochastic
Communication Analysis,” Nano-Networks and Workshops, 2006. NanoNet’06.
1st International Conference on, pp. 1-5, 2006.

Arteris: The Network-on-Chip Interconnect IP Company. [Online]. Available:

http://www.arteris.com

Sonics: The Trusted Leader in On-Chip Networks. [Online]. Available:

http://sonicsinc.com

The IBM CoreConnect Bus Architecture. [Online]. Available: https://www-01.
ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture

T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard,
S. Vangal, N. Borkar, G. Ruhl et al., “The 48-core scc processor: the programmer’s
view,” Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1-11, 2010.

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins,
H. Wilson, N. Borkar, G. Schrom et al., “A 48-core ia-32 message-passing processor
with dvfs in 45nm cmos,” Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEFE International, pp. 108-109, 2010.

J. Schutz, “A 3.3v 0.6um bicmos superscalar microprocessor,” International Solid-
State Clircuits Conference (ISSCC), Digest of Technical Papers, pp. 202203, 1994.

C. Ramey, “Tile-gx100 manycore processor: Acceleration interfaces and
architecture,” Proceedings of the 23th Hot Chips Symposium, 2011.

EZchip Semiconductor. [Online]. Available: http://www.tilera.com

http://www.arteris.com
http://sonicsinc.com
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture
http://www.tilera.com

192

REFERENCES

[83]

[84]

[85]

[36]

[89]

[93]

J. Bammi, E. Harcourt, W. Kruitzer, L. Lavagno, and M. Lazarescu,
“Software Performance Estimation Strategies in a System-Level Design Tool,”
Hardware/Software Codesign, 2000. CODES 2000. Proceedings of the FEighth
International Workshop on, pp. 82—86, 2000.

M. Lazarescu, J. Bammi, E. Harcourt, L. Lavagno, and M. Lajolo, “Compilation-
based Software Performance Estimation for System Level Design,” High-Level
Design Validation and Test Workshop, 2000. Proceedings. IEEE International,
pp. 167-172, 2000.

P. Gerin, X. Guérin, and F. Pétrot, “Efficient Implementation of Native Software
Simulation for MPSoC,” Design, Automation and Test in Furope, 2008. DATE’08,
pp. 676-681, 2008.

D. Brunelli, L. Benini, C. Moser, and L. Thiele, “An Efficient Solar Energy
Harvester for Wireless Sensor Nodes,” Proceedings of the conference on Design,

automation and test in FEurope, pp. 104-109, 2008.

H. S. Wang, X. Zhu, L. S. Peh, and S. Malik, “Orion: a Pwer-performance
Simulator for Interconnection Networks,” MICRO-35, pp. 294-305, 2002.

G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy Sonservation
in Wireless Sensor Networks: A survey,” Ad Hoc Networks, vol. 7, no. 3, pp.
537-568, 2009.

C. Basile, M. Gupta, Z. Kalbarczyk, and R. Iyer, “An Approach for Detecting and
Distinguishing Errors versus Attacks in Sensor Networks,” Dependable Systems
and Networks, 2006. DSN 2006. International Conference on, pp. 473-484, 2006.

I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor

Networks: a Survey,” Computer networks, vol. 38, no. 4, pp. 393-422, 2002.

R. G. Michael and S. J. David, Computers and Intractability: A Guide to the
Theory of NP-Completeness. WH Freeman & Co., San Francisco, 1979.

J. Hu and R. Marculescu, “Energy-aware Mapping for Tile-based NoC
Architectures under Performance Constraints,” Proceedings of the 2003 Asia and
South Pacific Design Automation Conference, pp. 233239, 2003.

P. Ruxandra and K. Shashi, “A Survey of Techniques for Mapping and Scheduling
Applications to Network on Chip Systems,” Research Report of Jonkoping
University, School of Engineering, vol. 4, p. 4, 2004.

A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi, “Overhead-
conscious Voltage Selection for Dynamic and Leakage Energy Reduction of Time-
constrained Systems,” IEFE Proceedings, Computers and Digital Techniques, vol.
152, no. 1, pp. 28-38, 2005.

REFERENCES 193

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

T. Lei and S. Kumar, “A Two-step Genetic Algorithm for Mapping Task Graphs
to a Network on Chip Architecture,” Digital System Design, 2003. Proceedings.
Euromicro Symposium on, pp. 180-187, 2003.

C.-L. Chou and R. Marculescu, “Incremental Run-Time Application Mapping for
Homogeneous NoCs with Multiple Voltage Levels,” Hardware/Software Codesign
and System Synthesis (CODES+ ISSS), 2007 5th IEEE/ACM/IFIP International
Conference on, pp. 161-166, 2007.

C.-L. Chou, U. Y. Ogras, and R. Marculescu, “Energy-and Performance-aware
Incremental Mapping for Networks on Chip with Multiple Voltage Levels,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 27, no. 10, pp. 1866—1879, 2008.

C.-L. Chou and R. Marculescu, “User-aware Dynamic Task Allocation in
Networks-on-Chip,” Design, Automation and Test in Europe, 2008. DATE’08,
pp. 1232-1237, 2008.

A. Mehran, A. Khademzadeh, and S. Saeidi, “DSM: A Heuristic Dynamic Spiral
Mapping Algorithm for Network on Chip,” IEICE Flectronics Express, vol. 5,
no. 13, pp. 464-471, 2008.

A. Mehran, S. Saeidi, A. Khademzadeh, and A. Afzali-Kusha, “Spiral: A heuristic
Mapping Algorithm for Network on Chip,” IFICE Electronics Express, vol. 4,
no. 15, pp. 478-484, 2007.

E. Carvalho, N. Calazans, and F. Moraes, “Heuristics for Dynamic Task Mapping
in NoC-based Heterogeneous MPSoCs,” Rapid System Prototyping, 2007. RSP
2007. 18th IEEE/IFIP International Workshop on, pp. 34-40, 2007.

E. L. de Souza Carvalho, N. L. V. Calazans, and F. G. Moraes, “Dynamic Task
Mapping for MPSoCs,” Design & Test of Computers, IEEE, vol. 27, no. 5, pp.
26-35, 2010.

A. K. Singh, W. Jigang, A. Prakash, and T. Srikanthan, “Mapping Algorithms
for NoC-based Heterogeneous MPSoC Platforms,” Digital System Design,
Architectures, Methods and Tools, 2009. DSD’09. 12th Euromicro Conference on,
pp. 133-140, 2009.

A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-aware
Heuristics for Run-Time Task Mapping on NoC-based MPSoC Platforms,” Journal
of Systems Architecture, vol. 56, no. 7, pp. 242-255, 2010.

M. Mandelli, L. Ost, E. Carara, G. Guindani, T. Gouvea, G. Medeiros, and F. G.
Moraes, “Energy-aware Dynamic Task Mapping for NoC-based MPSoCs,” Clircuits
and Systems (ISCAS), 2011 IEEE International Symposium on, pp. 1676-1679,
2011.

194

REFERENCES

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

M. Mandelli, A. Amory, L. Ost, and F. G. Moraes, “Multi-task Dynamic Mapping
onto NoC-based MPSoCs,” Proceedings of the 24th symposium on Integrated
circuits and systems design, pp. 191-196, 2011.

A. Bender, “MILP based Task Mapping for Heterogeneous Multiprocessor
Systems,” Proceedings of Design Automation Conference with FURO-VHDL’96
and Ezhibition(EURO-DAC’96), pp. 190-197, 1996.

C.-E. Rhee, H.-Y. Jeong, and S. Ha, “Many-to-Many Core-Switch Mapping in 2-D
Mesh NoC Architectures,” Computer Design: VLSI in Computers and Processors,
2004. ICCD 2004. Proceedings. IEEE International Conference on, pp. 438-443,
2004.

K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear-Programming-based
Techniques for Synthesis of Network-on-Chip Architectures,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 14, no. 4, pp. 407-420,
2006.

O. Ogzturk, M. Kandemir, and S. W. Son, “An ILP Based Approach to Reducing
Energy Consumption in NoC Based CMPS,” Low Power Electronics and Design
(ISLPED), 2007 ACM/IEEE International Symposium on, pp. 411-414, 2007.

P. Ghosh, A. Sen, and A. Hall, “Energy Efficient Application Mapping to NoC
Processing Elements Operating at Multiple Voltage Levels,” Networks-on-Chip,
2009. NoCS 2009. 3rd ACM/IEEE International Symposium on, pp. 80-85, 2009.

J. Huang, C. Buckl, A. Raabe, and A. Knoll, “Energy-aware Task
Allocation for Network-on-Chip based Heterogeneous Multiprocessor Systems,”
Parallel, Distributed and Network-Based Processing (PDP), 2011 19th Euromicro
International Conference on, pp. 447-454, 2011.

S. Tosun, O. Ozturk, and M. Ozen, “An ILP Formulation for Application Mapping
onto Network-on-Chips,” Application of Information and Communication
Technologies, 2009. AICT 2009. International Conference on, pp. 1-5, 2009.

S. Tosun, “Cluster-based Application Mapping Method for Network-on-Chip,”
Advances in Engineering Software, vol. 42, no. 10, pp. 868-874, 2011.

C.-L. Chou and R. Marculescu, “Contention-aware Application Mapping for
Network-on-Chip Communication Architectures,” Computer Design, 2008. ICCD
2008. IEEFE International Conference on, pp. 164-169, 2008.

J. Hu and R. Marculescu, “Energy- and Performance-aware Mapping for Regular
NoC Architectures,” Computer-Aided Design of Integrated Circuits and Systems,
IEEFE Transactions on, vol. 24, no. 4, pp. 551-562, 2005.

REFERENCES 195

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

T.-J. Lin, S.-Y. Lin, and A.-Y. Wu, “Traffic-balanced IP Mapping Algorithm for
2D-Mesh On-Chip-Networks,” Signal Processing Systems, 2008. SiPS 2008. IEEE
Workshop on, pp. 200-203, 2008.

M. Reshadi, A. Khademzadeh, and A. Reza, “Elixir: A New Bandwidth-
constrained Mapping for Networks-on-Chip,” IEICE FElectronics Fxpress, vol. 7,
no. 2, pp. 73-79, 2010.

S. Murali and G. De Micheli, “Bandwidth-constrained Mapping of Cores onto NoC
Architectures,” Proceedings of the conference on Design, automation and test in
FEurope-Volume 2, p. 20896, 2004.

W. Zhou, Y. Zhang, and Z. Mao, “An Application Specific NoC Mapping for
Optimized Delay,” Design and Test of Integrated Systems in Nanoscale Technology,
2006. DTIS 2006. International Conference on, pp. 184188, 2006.

G. Ascia, V. Catania, and M. Palesi, “Multi-objective Mapping for Mesh-
based NoC Architectures,” Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pp. 182-187,
2004.

——, “A Multi-objective Genetic Approach to Mapping Problem on Network-on-
Chip,” Journal of Universal Computer Science, vol. 12, no. 4, pp. 370-394, 2006.

K. Bhardwaj and R. K. Jena, “Energy and Bandwidth Aware Mapping of IPs onto
Regular NoC Architectures using Multi-Objective Genetic Algorithms,” System-
on-Chip, 2009. SOC 2009. International Symposium on, pp. 027-031, 2009.

F. Moein-darbari, A. Khademzadeh, and G. Gharooni-fard, “Evaluating the
Performance of a Chaos Genetic Algorithm for Solving the Network on Chip
Mapping Problem,” Computational Science and Engineering, 2009. CSE’09.
International Conference on, vol. 2, pp. 366-373, 2009.

F. Moein-Darbari, A. Khademzade, and G. Gharooni-Fard, “Cgmap: A New
Approach to Network-on-Chip Mapping Problem,” IEICE Electronics Express,
vol. 6, no. 1, pp. 27-34, 2009.

J. Kennedy, “Particle Swarm Optimization,” Encyclopedia of Machine Learning,
pp. 760-766, 2010.

Z. Wenbiao, Y. Zhang, G. Shenzhen, Z. Mao, and H. Harbin, “Link-load Balance
Aware Mapping and Routing for NoC,” Architecture, vol. 4, no. 5, p. 6, 2007.

A. Colorni, M. Dorigo, V. Maniezzo et al., “Distributed Optimization by Ant
Colonies,” Proceedings of the first European conference on artificial life, vol. 142,
pp. 134-142, 1991.

196

REFERENCES

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139)]

J. Wang, Y. Li, S. Chai, and Q. Peng, “Bandwidth-aware Application Mapping
for NoC-based MPSoCs,” Journal of Computational Information Systems, vol. 7,
no. 1, pp. 152-159, 2011.

C. Celik and C. F. Bazlamacci, “Evaluation of energy and buffer aware application
mapping for networks-on-chip,” Microprocessors and Microsystems, vol. 38, no. 4,
pp- 325-336, 2014.

Q. Le, G. Yang, W. N. Hung, X. Song, and X. Zhang, “Pareto optimal mapping
for tile-based network-on-chip under reliability constraints,” International Journal
of Computer Mathematics, vol. 92, no. 1, pp. 41-58, 2015.

N. Koziris, M. Romesis, P. Tsanakas, and G. Papakonstantinou, “An Efficient
Algorithm for the Physical Mapping of Clustered Task Graphs onto Multiprocessor
Architectures,” Parallel and Distributed Processing, 2000. Proceedings. 8th
Euromicro Workshop on, pp. 406—413, 2000.

S. Saeidi, A. Khademzadeh, and A. Mehran, “SMAP: An Intelligent Mapping
Tool for Network on Chip,” Signals, Circuits and Systems, 2007. ISSCS 2007.
International Symposium on, vol. 1, pp. 1-4, 2007.

W.-T. Shen, C.-H. Chao, Y.-K. Lien, and A.-Y. A. Wu, “A New Binomial
Mapping and Optimization Algorithm for Reduced-Complexity Mesh-based On-
Chip Network,” Proceedings of the First International Symposium on Networks-
on-Chip, pp. 317-322, 2007.

M. Tavanpour, A. Khademzadeh, and M. Janidarmian, “Chain-Mapping for Mesh
based Network-on-Chip Architecture,” IEICE FElectronics Ezxpress, vol. 6, no. 22,
pp- 1535-1541, 2009.

Y. Chen, L. Xie, and J. Li, “An Energy-aware Heuristic Constructive

Mapping Algorithm for Network on Chip,” ASIC, 2009. ASICON’09. IEEFE 8th
International Conference on, pp. 101-104, 2009.

M. Janidarmian, A. Khademzadeh, and M. Tavanpour, “Onyx: A New Heuristic
Bandwidth-constrained Mapping of Cores onto Tile-based Network on Chip,”
IEICFE Electronics Fxpress, vol. 6, no. 1, pp. 1-7, 2009.

S. Saeidi, A. Khademzadeh, and F. Vardi, “Crinkle: A Heuristic Mapping
Algorithm for Network on Chip,” IEICE FElectronics FExpress, vol. 6, no. 24, pp.
1737-1744, 2009.

M. Janidarmian, A. Khademzadeh, A. R. Fekr, and V. S. Bokharaei, “Citrine: A
Methedology for Application-Specific Network-on-Chips Design,” Proceedings of
World Congress on Engineering and Computer Science, vol. 1, pp. 196-202, 2010.

REFERENCES 197

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

B. Warneke, M. Last, B. Liebowitz, and K. S. Pister, “Smart Dust:
Communicating with a Cubic-Millimeter Computer,” Computer, vol. 34, no. 1,
pp- 44-51, 2001.

J. L. Hill and D. E. Culler, “Mica: A Wireless Platform for Deeply Embedded
Networks,” Micro, IEEE, vol. 22, no. 6, pp. 12-24, 2002.

J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling Ultra-Low Power
Wireless Research,” Information Processing in Sensor Networks, 2005. IPSN 2005.
Fourth International Symposium on, pp. 364-369, 2005.

G. Khan and V. Dumitriu, “A Modeling Tool for Simulating and Design of On-
Chip Network Systems,” Microprocessors and Microsystems, vol. 34, no. 2-4, pp.
84-95, 2010.

H. Gu, “A review of research on network-on-chip simulator,” Communication

Systems and Information Technology, pp. 103—110, 2011.

M. Karl, “A Comparison of the Architecture of Network Simulators NS-2 and
Tossim,” Proceedings of Performance Simulation of Algorithms and Protocols
Seminar, Universit Stuttgart, pp. 1-15, 2005.

G. Merrett, “Energy-and Information-Managed Wireless Sensor Networks:
Modelling and Simulation,” University of Southampton, Ph.D Thesis, 2008.
[Online]. Available: http://eprints.soton.ac.uk/65002/

Y. Xue, H. Lee, M. Yang, P. Kumarawadu, H. Ghenniwa, and W. Shen,
“Performance Evaluation of NS-2 Simulator for Wireless Sensor Networks,”
Electrical and Computer Engineering, 2007. CCECE 2007. Canadian Conference
on, pp. 1372-1375, 2007.

I. Downard, Simulating sensor networks in ns-2. DTIC Document, Network and

Communication Systems, Information Technilogy Division, 2004.

S. Park, A. Savvides, and M. Srivastava, “SensorSim: A Simulation Framework
for Sensor Networks,” Proceedings of the 3rd ACM international workshop on
Modeling, analysis and simulation of wireless and mobile systems, pp. 104-111,
2000.

J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “A Design Methodology
for Application-Specific Networks-on-chip,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 5, no. 2, pp. 263-280, 2006.

L. Bononi and N. Concer, “Simulation and Analysis of Network on Chip
Architectures: Ring, Spidergon and 2D Mesh,” Proceedings of the conference on
Design, automation and test in Europe: Designers’ forum, pp. 154-159, 2006.

http://eprints.soton.ac.uk/65002/

198

REFERENCES

[152]

[153]

[154]

[155]

[156]

[157]

[158]

159

[160]

[161]

[162]

163

[164]

F. Fazzino, M. Palesi, and D. Patti, “Noxim: Network-on-chip simulator,” 2008.
[Online]. Available: http://sourceforge.net/projects/noxim

C. Grecu, A. Ivanov, R. Saleh, C. Rusu, L. Anghel, P. P. Pande, and
V. Nuca, “A flexible network-on-chip simulator for early design space exploration,”
Microsystems and Nanoelectronics Research Conference, 2008. MNRC 2008. 1st,
pp- 33-36, 2008.

C.-F. Chang and Y. Hsu, “A system exploration platform for network-on-chip,”
Parallel and Distributed Processing with Applications (ISPA), 2010 International
Symposium on, pp. 359-366, 2010.

N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A detailed on-chip
network model inside a full-system simulator,” Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEFE International Symposium on, pp. 33-42,
2009.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1-7, 2011.

A. Kahng, B. Li, L. Peh, and K. Samadi, “Orion 2.0: A Fast and Accurate NoC
Power and Area Model for Early-Stage Design Space Exploration,” Proceedings of
the conference on Design, Automation and Test in Furope, pp. 423428, 2009.

A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “x pipescompiler: A tool
for instantiating application specific networks on chip,” Design, Automation and
Test in Furope Conference and Ezxhibition, 2004. Proceedings, vol. 2, pp. 884-889,
2004.

C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, and
V. Stojanovic, “Dsent-a tool connecting emerging photonics with electronics for
opto-electronic networks-on-chip modeling,” Networks on Chip (NoCS), 2012 Sixth
IEEE/ACM International Symposium on, pp. 201-210, 2012.

M. Zwolinski, Digital System Design with SystemVerilog. Pearson Education,
2009.

ModelSim. [Online]. Available: http://www.mentor.com/products/fv/modelsim/

Design Compiler. [Online]. Available: http://www.synopsys.com/Tools/
Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx

L. Jain, “NIRGAM manual,” 2007. [Online|. Available: http://nirgam.ecs.soton.

ac.uk/Documentation.php

J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative

approach. Elsevier, 2011.

http://sourceforge.net/projects/noxim
http://www.mentor.com/products/fv/modelsim/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
http://nirgam.ecs.soton.ac.uk/Documentation.php
http://nirgam.ecs.soton.ac.uk/Documentation.php

REFERENCES 199

[165]

[166]

167]

168

169

[170]

[171]

[172]

[173]

[174]

[175]

176

[177]

M. Krsti¢, E. Grass, F. K. Giirkaynak, and P. Vivet, “Globally Asynchronous,
Locally Synchronous Circuits: Overview and Outlook,” IEEE Design and Test,
vol. 24, no. 5, pp. 430—441, 2007.

I. R. Committee, “International Technology Roadmap for Semiconductors,” pp.
12-13, 2009. [Online|. Available: www.itrs.net

T.-T. Nguyen and X.-T. Tran, “A novel asynchronous first-in-first-out adapting to
multi-synchronous network-on-chips,” Advanced Technologies for Communications
(ATC), 2014 International Conference on, pp. 365-370, 2014.

E. Kasapaki and J. Sparso, “Argo: A time-elastic time-division-multiplexed noc
using asynchronous routers,” Asynchronous Circuits and Systems (ASYNC), 2014
20th IEEE International Symposium on, pp. 4552, 2014.

N. Choudhary, M. Gaur, and V. Laxmi, “Irregular NoC Simulation Framework:
IrNIRGAM,” FEmerging Trends in Networks and Computer Communications
(ETNCC), 2011 International Conference on, pp. 1-5, 2011.

W. Chen, D. Jin, and L. Zeng, “Heterogeneous Design Methodology with
Configurable Regular Topology Set for Salable Network-on-Chip Designs,”
ASICON’07, pp. 12931296, 2007.

C. Neeb and N. Wehn, “Designing Efficient Irregular Networks for Heterogeneous
Systems-on-chip,” Journal of Systems Architecture, vol. 54, no. 3-4, pp. 384-396,
2008.

A.W.Yin, T. C. Xu, P. Liljeberg, and H. Tenhunen, “Explorations of Honeycomb
Topologies for Network-on-Chip,” NPC’09, pp. 73-79, 2009.

A. Yin, N. Chen, P. Liljeberg, and H. Tenhunen, “Comparison of mesh and
honeycomb network-on-chip architectures,” 7th IEEE Conference on Industrial
FElectronics and Applications (ICIEA), pp. 1716-1720, 2012.

R. Gao, F. Liu, H. Gu, and X. Fu, “A double-layer sparse honeycomb topology for
NoC,” 8rd International Conference on Computer Science and Network Technology

(ICCSNT), pp. 689-693, 2013.

F. Karim, A. Nguyen, and S. Dey, “An Interconnect Architecture for Networking
Systems on Chips,” IEEE micro, vol. 22, no. 5, pp. 3645, 2002.

M. F. A. Qasem and H. Gu, “Square-octagon interconnection architecture
for network-on-chips,” Signal Processing, Communications and Computing
(ICSPCC), 2014 IEEFE International Conference on, pp. 715-719, 2014.

I. Stojmenovic, “Honeycomb Networks: Topological Properties and Communica-
tion Algorithms,” IEEFE Transactions on Parallel and Distributed Systems, vol. 8,
no. 10, pp. 1036-1042, 1997.

www.itrs.net

200

REFERENCES

178

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)]

P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip Packet-Switched
Interconnections,” Proceedings of the Conference on Design, Automation and Test
. Europe, pp. 250-256, 2000.

M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra, “Spidergon:
a Novel On-chip Communication Network,” System-on-Chip, 2004. Proceedings.
2004 International Symposium on, p. 15, 2004.

M. Chen, K. Shin, and D. Kandlur, “Addressing, Routing, and Broadcasting in
Hexagonal Mesh Multiprocessors,” Computers, IEEE Transactions on, vol. 39,
no. 1, pp. 10-18, 1990.

F. Karim, A. Nguyen, S. Dey, and R. Rao, “On-Chip Communication Architecture
for OC-768 Network Processors,” Proceedings of the 38th Annual Design
Automation Conference, pp. 678-683, 2001.

A. Banerjee, P. T. Wolkotte, R. D. Mullins, S. W. Moore, and G. J. Smit, “An
energy and performance exploration of network-on-chip architectures,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 17, no. 3, pp. 319—
329, 2009.

G. Ascia, V. Catania, M. Palesi, and D. Patti, “Implementation and analysis of

9

a new selection strategy for adaptive routing in networks-on-chip,” Computers,

IEEE Transactions on, vol. 57, no. 6, pp. 809-820, 2008.
XviD codec. [Online]. Available: http://www.xvidmovies.com/codec/

M. Ahmed, M. Gaur, and V. Laxmi, “Adaptive routing over the 2d hexagonal
noc,” The International Conference on Embedded Systems (ICES 2010), pp. 1-5,
2010.

T. T. Ye, G. D. Micheli, and L. Benini, “Analysis of Power Consumption on Switch
Fabrics in Network Routers,” Proceedings of the 39th annual Design Automation
Conference, pp. 524-529, 2002.

G. Ascia, V. Catania, and M. Palesi, “Mapping cores on network-on-chip,”
International Journal of Computational Intelligence Research, vol. 1, no. 1, pp.
109-126, 2005.

F. A. Potra and S. J. Wright, “Interior-point methods,” Journal of Computational
and Applied Mathematics, vol. 124, no. 1, pp. 281-302, 2000.

W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, and Z. Wang,
“A NoC Traffic Suite based on Real Applications,” VLSI (ISVLSI), 2011 IEEE
Computer Society Annual Symposium on, pp. 66—71, 2011.

http://www.xvidmovies.com/codec/

