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ABSTRACT
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Physics

Doctor of Philosophy

HADRONIC KAON DECAYS FROM LATTICE QCD

by Tadeusz Janowski

We present the most recent results for the Al = 3/2 K — 77 scattering amplitude
calculated directly at physical kinematics using two lattice ensembles with Iwasaki gauge
action and Mo6bius Domain Wall Fermion action with the Mobius parameter @ = 2.
The ensembles have dimension 483 x 96 x 24 and 643 x 128 x 12 respectively with
inverse lattice spacings of 1.728(4) GeV and 2.357(7) GeV respectively. We find that the
continuum value of the K — 7 AI = 3/2 decay amplitude is ReAy = 1.50(4)(14) x 10~8
GeV and ImAs = —6.99(20)(84) x 10~ GeV, which are consistent with the both the
experiment and the previous lattice calculation. This is the first calculation of this
quantity which involves the continuum extrapolation, which keeps the discretisation
errors under control and by doing so addresses the largest source of systematic error in
the previous calculation. The new dominant source of systematic error is due to Wilson

coefficient calculation.

We also confirm our previous observation about the cancellation of contraction within
the ReAs amplitude. We believe that this cancellation gives the significant contribution
to the AT = 1/2 rule.

Finally, we present the results of K7 scattering lengths calculated using the same en-
sembles. The results are ag/2m7T = —0.06(1) in the I=3/2 channel and a,é/Qm7r = 0.16(2)
in the I=1/2 channel. These results agree with both the dispersive calculations and
previous lattice findings. Unlike previous lattice computations, ours is the first calcula-
tion of these quantities directly at a physical point, making it independent of the chiral

perturbation theory.
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Chapter 1

Introduction

Combined charge conjugation and parity symmetry (CP) violation is one of the require-
ments for large matter-antimatter asymmetry in the Universe that we observe today.
First of all, there is a possibility of CP-violation in the strong sector, where the inclu-
sion of the so-called 6 term would induce explicit breaking of CP symmetry, however
studies of electric dipole moment of the neutron show that this term is negligibly small.
This is known as the strong CP problem and will not be discussed here. This leaves weak
interactions as the only source of CP-violation in the Standard Model. At low energies
the relevant parameters are the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix in
the lepton sector and the Cabibbo-Kobayashi-Maskawa matrix in the quark sector. The
CKM matrix is discussed in more detail in Chapter 2. By studying weak interactions we
can hope to find out where the large matter-antimatter symmetry comes from as well

as improving constraints on the Standard Model with hope of finding new physics.

In this thesis I will focus on CP violation in neutral kaon decays, specifically in K — &
processes. As discussed in Chapter 3 these can be classified as indirect CP-violation
which is a result of physical neutral kaon states not being CP-eigenstates, direct CP
violation referring to the possibility of CP-even state decaying into a CP-odd state or
vice versa, and interference CP violation, which can arise from a difference between
indirect and direct CP phases. Historically, indirect CP violation in K — w7 decay was

first observed in [5] and direct CP-violation was discovered later in [6; 7; 8; 9].

As will be discussed in Chapter 3, there are several interesting measurable quantities.
Two of them are the parameters € and €/, the former being associated to the indirect and
interference CP violation and the latter to direct CP violation. The ratio of the two has
been determined experimentally to be Re(¢’/¢) = 1.65(26) x 1073, The third quantity
is the ratio of the real parts of the decay amplitude to two pions in the isospin O state
(Ap) to the decay amplitude to two pions in the isospin 2 state (Az). Experimentally the

ratio ReAg/ReAs ~ 22.5. This is a surprisingly large number, as naively one may expect
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only a factor of 2 enhancement [10; 11]. This observation, known as the Al = 1/2 rule

has been an unresolved issue for almost fifty years.

From the theory side until recently we did not have any predictions. This is because
the calculation of strong matrix elements is non-perturbative, which means that it can
be done most reliably with lattice QCD. Thanks to both hardware and theoretical de-
velopments this calculation can now be done directly at physical kinematics. The two
most important calculations prior to the one which is the subject of this thesis are the
calculation of both ReAp and ReAy at threshold (myx ~ 2m;) at two different pion
masses [2] and the calculation of ReAs directly at the physical point [12]. The threshold
calculation is interesting because it gave us the first insight into the reason behind the
Al = 1/2 enhancement, which appears to be significantly affected by a cancellation of
contraction in the ReAs amplitude. The physical point calculation of the ReAs was the
first calculation of this type and it gave results which could be compared directly to
the experiment. The major weakness of this calculation however was that it was done
using a single lattice spacing, which meant that the discretisation errors were not well

controlled and a conservative estimate of 15 % was used.

The work described in this thesis follows [3] and attempts to address this issue by
repeating the measurement of the A, amplitude using two physical-point ensembles
which have the same volume but different lattice spacings. This allows us to take the

continuum extrapolation and thus get a handle on the size of systematic errors.

The calculation of Ag at physical kinematics is significantly more challenging. The main
difficulty comes from ensuring that the pions have equal and opposite momenta, which
requires the introduction of G-parity boundary conditions. The first calculation of Ay

at physical kinematics has recently been completed [13].

A separate calculation described in this thesis which we used the same ensembles for
is the calculation of K'm scattering lengths. While conceptually the calculation is iden-
tical to 7w scattering, we found significant contribution from finite time effects in this

calculation.

This thesis is structured as follows. Chapter 2 gives an introduction to the Standard
Model explaining in particular where the CKM matrix comes from and how it gives rise
to CP-violation, gives a brief summary of C, P and T symmetries. This is followed by the
description of Fermi effective theory, which is a useful description for studying the low-
energy flavour-changing processes such as K — nww. The last section in chapter 2 gives
a brief introduction to the chiral perturbation theory and explains how it can be used
to study K — 7m decays. Chapter 3 explains the phenomenology of K — 7m decays,
defining various types of CP violation (direct, indirect and interference), introduces the
measurable quantities which can be used to parametrise CP violation and quotes some
experimental results. The last section of this chapter describes the phenomenology of

two-particle scattering, which is important in understanding the finite volume effects.
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Chapter 4 introduces lattice QCD describing both concepts and computational tools
used for this analysis. Section 4.1 describes our choice of gauge field and fermion field
formulation, section 4.2 describes how the rotational symmetry is broken to the cubic
symmetry and the effect of this breaking on particle states. Section 4.3 and 4.4 introduce
the Euclidean correlation functions, describing the calculation from the path integral and
their spectral decomposition respectively. Section 4.5 introduces propagator smearing
which can be used to improve the overlap of interpolating operators with physical states.
Section 4.6 and 4.7 describe the correlation functions used in K — 7w projects, which
are 7m — ww and K — 77 correlation functions respectively. Section 4.8 describes the
technique of all mode averaging, which can be used to significantly reduce statistical
error at a cost increasing the computational time. Section 4.9 describes how the fitting
procedure used to fit the correlation functions works. Section 4.10 describes the Maiani-
Testa no-go theorem, which states that matrix elements of multi-particle states can not
be extracted from infinite volume Euclidean correlation functions. This restriction is
lifted in the finite volume. Section 4.11 discusses the continuum scaling and explains
why K — 77 matrix elements are O(a) improved. Section 4.12 describes the finite
volume effects and explains how phase shifts can be calculated and how finite volume
matrix elements are related to the infinite volume ones by the Lellouch-Liischer factor.
Section 4.13 discusses the nonperturbative renormalisation, in particular how matrix
elements calculated on the lattice can be related to MS matrix elements. Finally,
section 4.14 outlines the main differences between AT = 3/2 and Al = 1/2 calculations.
Chapter 5 discusses the ensembles which are used for this project and gives results.
Finally, Chapter 6 summarises and concludes this thesis. There is one appendix, which
contains transformation matrices corresponding to transformations of a 3-vector under
cubic symmetry transformations sorted by their conjugacy classes. This is relevant for

section 4.2.






Chapter 2

The Standard Model

The Standard Model of particle physics is a very successful theory, which explains all
fundamental interactions (except gravity) and is consistent with all experimental obser-
vations (with the exception of neutrino masses). While there are slight tensions between
theory and experiment such as the measurement of the anomalous magnetic moment of
the muon [14] or the discrepancy in B — K*u™p~ [15] which may point towards new
physics at high energies, the Standard Model remains an excellent tool for describing
low energy physics, such as kaon decays. When working at low energies it is convenient
to ‘integrate out’ the high-energy degrees of freedom and work with an effective theory.
In section 2.1 I will introduce the Standard Model Lagrangian, then in section 2.2 I will
describe how going below the electroweak symmetry breaking scale leads to flavour mix-
ing and CP violation by means of the Cabibbo-Kobayashi-Maskawa matrix. I will then
proceed to remove the heavy vector boson degrees of freedom which results in Fermi
effective theory and describe how to renormalise the theory at a desired scale. This will
be the subject of section 2.4. Section 2.3 describes the symmetries of QCD which will be
useful throughout the thesis. Finally, section 2.5 introduces chiral perturbation theory,

which is a useful tool for studying low energy QCD.

2.1 Matter content of the Standard Model

The Standard Model has an SU(3) x SU(2) x U(1) gauge structure, with the particle

content shown in Table 2.1. The most general Lorentz invariant, gauge invariant and
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Field SU@3) | SU(2) | U(1) | spin
G (gluon) 8 1 0 1
W (W, Z and photon) 1 3 0 1
B (Z and photon) 1 1 0 1
H (Higgs) 1 2 1/2 |0
L; (left-handed lepton) 1 2 -1/2 | 1/2
Q; (left-handed quark) 3 2 1/6 | 1/2
e; (right-handed electron) 1 1 -1 1/2
u; (right handed up-type quark) 3 1 2/3 | 1/2
d; (right handed down-type quark) | 3 1 -1/3 | 1/2

Table 2.1: Matter content of the Standard Model: fields and their representa-
tions under gauge and spin groups.

renormalisable Lagrangian than can be built of out these fields is:

L= £gauge + Efermion + £Higgs + £Yukawa> (21)
1 4
Loauge = Y — P F (2.2)
aeEB,W,G
Efermion = Z @Z_}a (ZlDa) (L (23)
a€L;,Qq,ei,ui,d;
Lo mipe 27t trr)?
Litiggs = 3DuH'D"H — 12 HH = A (H H) , (2.4)
Lyukawa = —Y;LiHe; — Y{iQ:Hd; — Y4Qi(io®) H*uj + h.c., (2.5)

where i and j are the family indices, ‘ h.c.” stands for ‘ hermitian conjugate terms’
which are required to make the Lagrangian real. Explicitly, u; = (v ¢ )T and d; =
(d s b)T.

2.2 Electroweak symmetry breaking

Although the Standard Model is a very successful theory, for the purpose of studying
kaon physics it is more convenient to use the low energy approximation to the Standard

Model. In this section I will show the steps we use to achieve a convenient approximation.

2.2.1 Higgs vacuum expectation value

The most important feature of the Higgs sector is the spontaneous symmetry breaking

mechanism. The Higgs potential can be read off from Lp;44s to be:

V(H) =\ (HTH>2 v 2HTH. (2.6)
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2

When A > 0 and p? < 0, this potential is minimised for |H| = \/ %4 = %. Without

S

loss of generality, we may choose the vacuum state to be Hyqc = (U /(2/5). The Higgs

field can then be rewritten in terms of four scalar fields:

in®(x)o® 0
H=c¢ v ( v + M ) 5 (27)
V2 V2

where o are the Pauli matrices. The coefficients here were chosen such that the fields
m and h are canonically normalised, i.e. the kinetic terms are %(77“)2 and %hQ. The
7% fields correspond to the Goldstone bosons (which should not be confused with QCD
pions) while the h field corresponds to the Higgs boson. The change in the 7% fields
acts on this doublet like an SU(2) gauge transformation. We can therefore choose the
gauge such that 7%(xz) = 0, known as the unitary gauge. As will become apparent in
the following section, the choice of unitary gauge gives masses to W and Z bosons. The
original four degrees of freedom of the Higgs doublet then become a Higgs boson and
longitudinal polarisations of W+, W~ and Z bosons (recall that massless bosons have

only two transverse polarisations).

2.2.2 Masses of vector bosons

Above the electroweak scale all gauge bosons are massless and therefore have two spin
degrees of freedom. In the unitary gauge, the degrees of freedom of Goldstone bosons
combine with degrees of freedom of gauge bosons. As a result, the gauge bosons gain
mass (massive spin 1 particles have 3 degrees of freedom). Their masses can be found

from the (DFH )TDMH term, where the covariant derivative is in this case:

9 a a9
D”:a”+Z§WMU —'—?B‘u (28)

% (Wl + ’iWQ) 8# — %WS + %BH
In the unitary gauge the (D*H )TDMH term contains the following contributions to the

gauge boson mass:

2,2 2,2 /1 2
g -, 9v (g 3

1 WHW— + <gBM - WM> : (2.10)
where W = % (W1 £iWs). The first term can be compared with the mass term for
charged vector field m%,VWJFW* to give my = %, The second term mixes W3 and B

fields, so the mass can not be read off directly. Instead we can remove the mixing by

Wﬁ’ B cosby  sinfy Zy, (2.11)
B, B —sinfy  cos By A, ' ‘

making the rotation:
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This rotation results in kinetic terms for A and Z, which are canonically normalised.

Choosing
g/
tan fyy = = (2.12)
g
gives for the second term:
92U2 VA 2 m2
e e =/ (2.13)
8 cos Oy 2

Ow is known as Weinberg angle. As a result, we have a massless field A corresponding

to a photon, and a massive Z boson with mass

gv mw
= = . 2.14
2cosby  cosOw ( )

mz

2.2.3 Charged and neutral currents

The interactions of electroweak gauge bosons with fermions can be read off from £ fermion-

This term can be written as:

i Ipp = ipy" (8, — igTEWS — igtan Y By,) ¢ (2.15)
= iy (O — igTE W, —igTy W,T — igsin 0w (Ti + Y) A,
ig(T3 cos 0 Y%)Z " (2.16)
LR EOSTW cosby ~H) T '

where T]j{[ = %(T}i +iT3) and T, are the generators of SU(2) in representation R. The
right-handed fields in the Standard Model are in the trivial representation of SU(2),
so for these fields 7+ = T— = T3 = 0. These fields can’t couple to the W bosons
and their coupling to photon is given by igsin Ay YA and to the Z boson is given
by igtan 6y Y1 Z1. Comparing the former with the electron-photon coupling in QED
(e Avp) we have:

e = gsinfy . (2.17)

Left-handed fields transform under the fundamental representation of SU(2) with T% =

o'/2. The couplings are as follows:

ole'

ie 00
2.18
V2 sin Oy ( 10 > ( )

ie 0 1
2.19
V2 sin Oy ( 0 0 > ( )
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° AM
Y+31 0
ie i ) (2.20)
0o v-1
° ZM
1
Lcot Oy + Y tan6 0
je [ 2OOMOW T T tantw (2.21)
0 —5 cot Oy + Y tan Oy

2.2.4 Quark masses and mixings

Now consider the Yukawa sector, Ly ykawa- Below the electroweak scale, the term giving
mass to the down-type quarks (ignoring the fermion-Higgs interaction coming from the
same term) is:
ViAQiHd; + h.c. = M{dpdg; + h.c., (2.22)
with
v

d _

v, (2.23)
Similarly, for the up type quarks we get:
YQi(io?) H*dj + h.c. — Magup; + h.c., (2.24)
with
v
V2

To find the (tree-level bare) fermion masses, we change the basis as follows:

MY = -V, (2.25)

UL /Ri — UE/RZ]UL/RJ (226)

dr/ri — Ug/RijdL/Rj (2.27)
mu/d 0 0

MY o 0 om0 | (2.28)

0 0 mt/b

This is known as the mass basis. Changing to the mass basis has no effect on the kinetic

and neutral current interactions, but the charged interactions become:

© aLiW+dLi + h.c. — ﬂLiW+Vz’jdLj + h.c. (2.29)

ie
V2 cos Oy V2 cos Oy

with
Vi = UMUY. (2.30)

Vi; is the Cabibbo-Kobayashi-Maskawa (CKM) matrix and it is the source of CP viola-

tion in the weak sector as discussed below.
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With these results, the Standard Model Lagrangian below the electroweak scale can be

written as

L=Lqcp+ Lw (2.:31)
1 a ura (i
Locp = ZG’“’G + Z Y(iDgop — my)Y (2.32)
Peu,d,s,c,b,t
1 prayyra 1 uv m’2Z o 2 o
LW Vdr, + he (2.34)
ﬂCOS HW Li ijU Ly -C. .

While the following section describes in more detail the CP transformations of asymp-
totic states, in order to examine the effect of the CKM matrix on CP violation I will

introduce the CP transformations of fermion fields now. Under CP, the fields transform

as:
¥ — YT, (2.35)
b = T2, (2.36)
WH — —TW,. (2.37)
where

v = ( —?ﬂ' T)Z ) (2.38)

and o° are the Pauli matrices. Using these relation in Eq. (2.29) shows that the La-
grangian will be CP invariant only if V* = V| i.e. if the CKM matrix is real.

The CKM matrix, being a 3 x 3 unitary matrix, has 32 = 9 real parameters. Five of these
parameters can be absorbed into quark field phases (there are 6 phases corresponding
to the 6 fields, but an overall phase doesn’t change the form of the CKM matrix). This
leaves 9—5 = 4 independent parameters. If the CKM matrix were real (so that there is no
CP violation) and orthogonal (unitary and real), it would have (3—1)3/2 = 3 parameters
(recall than an orthogonal matrix of size N has N(N-1)/2 independent parameters). This

means that one of the CKM matrix parameters must be CP-violating.

Using the PDG parametrisation of the CKM matrix we have

i
€12€13 512€13 s13€’
_ i i
Vorkm = | —s12¢23 — c12523513€%  c12C23 — S12523513€™°  S23C13 (2.39)
i i
512823 — C12€23513€"°  —C12523 — $12C23513€"  C23C13

where the following shorthand notation is used

¢ij = cos b;; Sij = sin b (2.40)
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and 012,013, 23 and J are four independent parameters of the CKM matrix. In particular,
the values of the CKM matrix elements I'll be using in this thesis are ([16]):

Via = 0.2252 (2.41)
Vs = 0.97425 (2.42)
ViV,
r=——t 00014148 — 0.0005558. (2.43)
VJSVUd

2.3 Symmetries of QCD

Other than Lorentz and gauge invariance, the QCD Lagrangian exhibits a number of

useful symmetries, which will be the topic of this section.

231 C,Pand T

C and P are the charge conjugation and parity transformations respectively. C is defined
as the transformation that changes the particle to a corresponding particle with opposite
charge (i.e. its antiparticle), while leaving its four-momentum and spin unchanged.
Therefore, if we write our single-particle states as | p, s., @, n) with quantum numbers
corresponding to the momentum, component of the spin in z-direction, charge (which
can refer to any conserved charge, not necessarily electromagnetic) and particle species

(e.g. electron, positron etc.) respectively, the action of the operator C on this state will
be:

C|p,s:Q,n) = e'éc | p,s.,—Q,n). (2.44)

The charge conjugation changes the particle n into its antiparticle n. The phase £¢ is
the charge conjugation phase and, if the particle is not its own antiparticle, it can be
absorbed by redefinition of the anti-particle state (states differing by an overall phase
correspond to the same physics). The £c phase has therefore no physical meaning in
this case. On the other hand, if the particle is its own antiparticle, it is an eigenstate
of C and such a redefinition can not take place. The charge conjugation phase then

becomes a real physical quantity.

P is the parity symmetry which corresponds to the spatial reflection x — —x. The effect

of this symmetry on single-particle states is:

P ‘ p7 327 Q7 TL> - eifp | _p7 827 Q7n> (245)

for massive particles. Unlike C, the phases of P operator are always physical (strictly
speaking, the parity operator can always be modified by multiplying it by a global U(1)
phase, which in QCD are the electric charge, baryon number or lepton number; choosing

parities of proton, neutron and electron to be +1 fixes the parities of all the remaining
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particles). This is because any state can be written as a Lorentz boost acing on a
momentum 0 state, and it is clear from the above equation that momentum 0 states are

eigenstates of P operator.

Combined C and P transformations gives a CP transformation:
CP|p,s:,Q.n) =€ | —p,sz, —Q ). (2.46)

For brevity, from now on I am going to use the notation where CP transformed states

are denoted with a bar, e.g.:
CP|a) = e | a). (2.47)

If CP is the symmetry of the system, the S-matrix must satisfy:
(CP)S(CP)™' =5, (2.48)

which implies that
(f18]i)=e@ED(f|5]7). (2.49)

It follows from there that decay rates for particles are the same as decay rates for

antiparticles:

(i — f) = / (F| S| )2dLIPS = / (71 S|P dLIPS =TG- ), (2.50)
where dLIPS denotes the Lorentz-invariant phase space volume element.

The third useful discrete symmetry is the time reversal symmetry, defined as the operator
that switches the time direction ¢t — —t. What makes the time reversal operator unique

is that, unlike other operators, it’s antiunitary and antilinear, meaning that:

1oyl f), (2.51)
T(a|¢1)+ 8] o) =a*T | 1) + BT | do). (2.52)

This is necessary to ensure that the energy spectrum of the theory is bounded from

below. Time reversal has the following effect on massive particle states:

T ’ p7 827 Q’ n> = eZ£T(—1)S_SZ ‘ p7 _821 Q? n)? (2'53)

where s is the total spin of the particle. Unlike C and P, the phase &7 is never physical.

This is a direct consequence of antilinearity of T:
T | p, s) = 2160 (1) =5 | p, ). (2.54)

This shows that simply rephasing the state (which has no effect on physics) changes the
value of the T phase.
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An important property of any field theory is that, if we assume Lorentz invariance, the
combined CPT transformation is a symmetry of the theory. One of the consequences
of CPT is that CP violation (as observed in weak decays) also implies T violation.
This is one of the reasons why CP violation is necessary to generate matter-antimatter
asymmetry in the Universe - without it by, time reversal symmetry, all processes would

have the same rates as the reverse processes.

2.3.2 Chiral symmetry

Chiral symmetry is an approximate flavour symmetry. One can see that if we exclude
the mass terms of up, down and strange quarks, the QCD Lagrangian 2.32 will not mix
left and right-handed fields of these quarks with each other. This is because 1Py =
W, IDwr, + 1 rIPYR, while the inclusion of the mass term would spoil this relation because
Y1) = Yrbr + Yripr. This approximation is reasonable, because by ignoring these
three quark masses we'’re introducing an error of order my/Agcp < 1. Furthermore,
if we ignore electric charges of these three quarks (which is reasonable for low energies
where the electromagnetic interactions are much weaker than the strong interactions),
the covariant derivatives acting on all three light flavours will become equal and the

Lagrangian will remain invariant under the following transformation:

u u
d — UL/R d s (255)
57 L/Rr 5/ L/

with Ur/r € U(3). Even though the Lagrangian is invariant under U (3)z, x U (3)g, the S-
matrix is not. This is a consequence of the axial anomaly - the QCD action in the chiral
limit is invariant under ¢ — ¢”% but the integration measure in the path integral is not.
As a consequence, U(1)4 does not satisfy Ward identities and is not a valid symmetry

transformation. The full chiral symmetry group is SU(3)r, x SU(3)r x U(1)p.

2.3.3 Isospin

A very useful subgroup of the chiral symmetry group is SU(2)y relating up and down
quarks to each other. This symmetry is valid in the limit where m, = mg and electro-

magnetic effects can be neglected as before.

Isospin is a quantum number associated with up and down quarks and antiquarks which
form isospin doublets (I = 1/2) with the value of the 3rd component of the isospin I3
given by:
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Quark I3
wand d | +1/2
dand u | -1/2

I will use the convention where both quark and antiquark fields transform under the

fundamental representation of SU(2)y:

o = (Z) (2.56)

T — (‘_d). (257)

A light quark and antiquark can form a bound state which can be either an isospin

singlet or a triplet. An example of mesons forming such an isospin triplet are the pions,

which have the following flavour composition:

Pion

Tt
70

I3 | Flavour content
+1 —du
L _
0 7 (uu — dd)
-1 ud

Kaons consist of one strange quark/antiquark (with strangeness -1/41 and isospin 0)

and one light antiquark/quark, and

therefore form isospin doublets

I3 | Flavour content

Kaon S
Kt | +1
KY +1
K° -1
K~ -1

+1/2 su
1/2 5d
+1/2 ds

-1/2 us
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A pair of pions, which are isospin 1 particles, can form an =2, I=1 or I=0 state, which

| 1=213=2) = |=x"x") (2.58)
| I=2I3=1) = 12 (| 7t 7%+ | 707 ) (2.59)
[=21,—0) — 16 (| wta ) | o) + 2 | 700)) (2.60)
T=2T=—1) = \}5 (| 72+ | 7077)) (2.61)
T=2T=—2) = |= ) (2.62)
T=1I=1) = \2 | 7 %)~ | 207 t)) (2.63)
| I=1,I3=0) = 12 (|mtr=)— |7~ o)) (2.64)
I=1T=-1) = — (2% )~ |7 =% (2.65)

| 1=0,I3=0) =

All kaons are pions are spin 0 particles, which means that in K — 77 decays, the
resultant pions will have total angular momentum [ = 0 (i.e. they form an s-wave).
Such a state must be even under parity transformation. This means that I = 1 two pion
states, which are odd under parity, can not contribute to the overall decay amplitude.

Consequently, in the isospin limit, there are only two possible K — 77 channels:

o Al = 3/2 where the two-pion final state is in I = 2 state.

o A] =1/2 where the two-pion final state is in I = 0 state.

2.3.4 G-parity

G-parity is a combination of charge conjugation and isospin rotation by 7:
G = ™2, (2.67)

It has the following effect on the light quarks:

uwS —od, (2.68)
4% cal. (2.69)

where C is the charge conjugation matrix 4942, Taking m,, = mg, the QCD Lagrangian

preserves both the isospin and charge conjugation symmetries, so G-parity must be the

symmetry of QCD as well.
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All pions are G-parity odd. This will be useful for two reasons. First, it forbids 2 — 37
scattering, which means that a two-pion system at centre-of-mass energy given by the
kaon mass will scatter elastically, which is a necessary condition for calculating the two-
pion phase shift as will be discussed in section 4.12.1. Second, this property will be
very useful for construction of boundary conditions that result in a moving pion in the

ground state in AI = 1/2 K — 7 decay. For details see section 4.14.3.

2.4 Fermi effective theory

When studying kaon decays, we are working at energy scales which are much lower
than the W boson mass. This means that the W boson will never appear on-shell, so
Green functions with an external W boson can be ignored and any internal W lines
can be replaced with effective operators. This replacement can be understood in two

(equivalent) ways:

Operator product expansion Operator product expansion is a technique which
allows us to separate long-distance and short distance contributions in a product of two
operators. In the regime where the two operators come close together, they can be
replaced with series of local operators with (Wilson) coefficients, which can be worked
out from perturbation theory. In the case of W-boson, we have a product of two left-

handed currents

_ Pubv

m%v 4 . ipT TH v
72—y + e / d xe™ Ty (x) JE(0) =Zi:Oi(p)Oi (2.70)

Nuv

= C(p®) + Cgq(p*)miq + - --
+ C1(p?) (5idy) 1 (Ujus), + - - (2.71)

We have thus separated the long-distance contribution (O;) from the short-distance
contribution Cj(p). Not all of these operators will be relevant for K — 7m scattering
and in the remainder of this thesis I will focus only on the relevant ones, such as the

four-quark operator in the last line.

Effective field theory The second approach is more straightforward - write down
the effective field theory Lagrangian for energies below the W mass, which will include
higher-dimension operators, and choose the low energy coefficients by matching to the
full theory at myy scale. This approach is equivalent to the operator product expansion,
in particular the momentum (scale) dependence of Wilson coefficients is recovered by

renormalisation as shown in section 2.4.3.2.
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Figure 2.1: Lowest order short distance contributions to current-current opera-
tors with and without colour mixing

An important restriction on the operators mediating the K — 7x transition is that
they must be parity odd PO(z#)P~! = —O(x,). To see this consider a matrix element
(m(p1)m(p2) | O(x*) | K(pk)). Under parity it transforms as

(m(p1)7(p2) | O(z") | K(pk)) = (r(p1)7(p2) | P PO(z*)P~'P | K(pk))  (2.72)
= nznkno(m(—p1)w(—p2) | O(z,) | K(—pk)) (2.73)

where 1, = nxg = —1 are the intrinsic parities of pion and kaon respectively and 7o is to
be determined. The matrix element (7(p1)m(p2) | O(z") | K(pk)) is a Lorentz scalar
and the above equation says that under simultaneous exchange of all upper and lower
Lorentz indices (p' <> p;;,) it picks up a phase (—no). However, there is no way of con-
structing a Lorentz scalar with a phase —1 using only p/', p§ and p’I‘{ (the simplest object
with this property is €up0p) Pypip], which requires four independent four-momenta).
The conclusion is that no = —1 and only parity-odd operators contribute to K — 77

decays.

2.4.1 Dimension-6 operators

Consider a four quark Green function:

(8(p1)u(p2)u(ps)d(pa))- (2.74)

Various contributions to this diagram are shown in Figs. 2.1,2.2 and 2.3. The contribu-
tions from various diagrams can be replaced in an effective field theory by a four-quark

operators explicitly given by:

Y
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Figure 2.2: Lowest order short distance contributions to QCD penguin operators

W

v/Z

Y

» » »
> > >

Figure 2.3: Lowest order short distance contributions to electroweak penguin
operators

Q1 = (8idi) f, (wjuj) (2.75)
QQ = (gidj)L (ﬁjui)L (276)
Qs = (5idi), Z (@a5)p, (2.77)
ge{u,d,s}
Q=) Y. (Ga), (2.78)
ge{u,d,s}
Qs = (sidi), Y, (Gaj)g (2.79)
q€{u,d,s}
Qe = (5:dj) Z (T59:) 5 (2.80)
qe{u,d,s}
3
Qr =3 (5idi)p Y e@ay)g (2.81)
qe{u,d,s}
3
Qg = 5 (gidj)L Z €q (gqu')R (2.82)
qe{u,d,s}
3
Qo = 5 (5idi) > e@ay), (2.83)
qe{u,d,s}
3
Qio = 5 (5idy) . > e@a)y, (2.84)

qc{u,d,s}
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In these expressions, lower case Roman letters denote colours, while the spins are
contracted within each pair of brackets, which either have the left-chiral structure
(G9)r. = qy*(1 — 7%)q or right-chiral structure (gq)g = gy*(1 + 7°)q and the Lorentz
indices p are contracted between the brackets. For example, the explicit expression for
Q1 is (Eify“(l — 75)di) (ﬂjfyu(l - ’}/5)Uj). In this basis, operators (1 and (o correspond
to the current-current diagrams in Fig. 2.1, operators Q3 to Qg correspond to the QCD
penguin operators in Fig. 2.2 (the structure }_ (gq)v with V=L+R mimics the cou-
pling of a gluon to fermions) and operators Q7 to Q1 correspond to electroweak penguin

operators in Fig. 2.3 (3 q €9q comes from coupling of the photon to external quarks).

Because of the left-left Fierz identity

(@™ (1 — ) ao;] [Ty (1 — 7°)qu] =[G (1 — ) qu] [ (1 —°)a2;]  (2.85)

only 7 of these operators will be linearly independent. Indeed, we have:

Q1= —Q1+ Q2+ s, (2.86)
Qo = ;Ql - %Q:s, (2.87)
Qu= @1+ @ Qs (289)

2.4.2 Dimension 6 operators in chiral basis

It is convenient to express the remaining seven dimension-six operators in a basis that
transform as irreducible representations of SU(3)r x SU(3)g chiral symmetry group. A

generic four quark operator has the form:

Oap =T (00, a(@5) 5 (2.89)

where Greek indices label flavours, A and B label spin structure (either left or right
handed current). The colour structure of the operator is irrelevant for the following
argument and so the colour indices will be suppressed. The lower indices transform
according to 3 (i.e. fundamental) representation of SU(3) while upper indices transform

according to 3 (antifundamental) representation.

We need to consider two cases here: LL and LR spin structures (RR is forbidden, since
flavour changing is mediated by the W-boson which only couples to left-handed fields;
on the other hand LR operators are allowed because of penguin diagrams in Figs. 2.2
and 2.3).

Recall that for SU(N) groups, one can construct a general irreducible representation from
the fundamental representation by either symmetrising or antisymmetrising the group

indices. For example, if ¢, and x, both transform under the fundamental representation
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of SU(N), then ¢oxs + ¢pXa and ¢aXxs — ¢gXa are the irreducible representations of
SU(N) with dimensions N(N+1)/2 and N(N-1)/2 respectively. Similarly, one can create
the irreducible representations from fundamental and antifundamental representations
by taking either a trace or a traceless combination. For example if ¢; transforms under
the fundamental representation and x? transforms under antifundamental representa-

tion, we can have a singlet representation x’¢; and an N2 —1 dimensional representation

Xbp — N X" 0405

e Case 1: LR operator
By using
33=8a1 (2.90)

This means that the two possibilities for AS = 1 LR operators are (8,1) and (8,8).
Again, left handed singlets are forbidden, since they cannot contribute to flavour
changing processes. We can write them explicitly by taking a trace and traceless

component of the right handed current:

Q%Y = (500 (@as)r (2.91)
[
Qfl’%g)g'y = (5¢a)L ((QBQV)R_;5§Z(Q6QJ)R> (2.92)
4

From here one can immediately identify that Q5 and Qg operators are in the (8,1)
representation while 7 and Qg operators are in the (8,8) representation. It should
be noted that the (8,1) operators can only contribute to AI = 1/2 channel (since
the only non-singlet contribution to the isospin comes from a single light quark,
meaning these operators transform as isospin doublets). (8,8) operators contribute

to both kaon decay channels.

e Case 2: LL operator
The LL case is significantly more complicated. The irreducible representations
can be obtained by (anti)symmetrising the upper/lower indices and taking traces/-
traceless components between upper and lower indices of tensor T in equation 2.89.
Noting that T is symmetric under simultaneous exchange of a <+ 8 and v < ¢ it
is clear that we either need to simultaneously symmetrise or antisymmetrise upper
and lower indices. Furthermore, the singlet representations can again be ignored
by flavour changing argument. Note that completely antisymmetric representation

can be rewritten in terms of a two-index tensor using:
T = e 5ecPITS (2.93)

and, as argued above, a tensor with one lower and one upper index can be in either

a singlet or an octet representation. This leaves the following representations:
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— Symmetric traceless - (27,1)

(27,1)(@B) _ @B) _ L (sam) 1 (a8 e
0 () = Olre) 5 (57 Ol T 3perm) + 20 (57 550, + 1perm> (2.94)

4

In this equation ¢ perm’ refers to other permutations of indices o <> § and

v > 0. The factors of 1/5 and 1/20 are chosen so that traces over all pairs

of upper and lower indices vanish (in 3 flavour theory).

The operator we are interested in contains (Sd)r(au)r and thus the above

expression simplifies to:
0" = 9(5d)(wu) f, + 2(5u) 1 (ud), — (5d)1(dd);, — (5d).(5s)r,  (2.95)

— Symmetric one trace - (8,1)g

The only operator of this form containing sd is:
0% = (sd)(uu) + (su)(ud) + 2(5d)(dd) + 2(5d)(5s) (2.96)
— Antisymmetric one trace (8,1)4 This operator takes the form:

0BV = (sd)(au) — (su)(ud) (2.97)

A generic left-left (8,1) operator can be any linear combination of Qg&l) and Qf’l).

The complete set of seven linearly-independent operators in the chiral basis is then:

Q1 =3Q1+2Q2— Q3 (2.98)
Q= %(2621 —2Q2 + Qs3) (2.99)
Qs = é(_3Q1 +3Q2 + Q3) (2.100)
Qs/6/7/s = Qs/6/7/ (2.101)

It is worth noting that all (8,1) operators are isospin doublets. This can be seen easily
by noting that sd is an isospin doublet and the remaining part of each (8,1) operator is
an isospin singlet (which should be obvious given that it is a singlet of chiral symmetry
group of which isospin is a subgroup). This means that (8,1) operators can only change
the isospin by 1/2.

In the AT = 3/2 decay only (27,1) and two (8,8) operators contribute and because (27,1)
is left-left and (8,8) are left-right operators, they will be automatically in the chiral basis,
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without the need to invoke Egs. (2.99)-(2.101). Explicitly, the operators are given by:

AI=3/2 _ _ 7 _ _
Q(27’1)/ = (Sidz‘)L (ujuj — djdj)L -+ (siui)L(ujdj)L, (2.102)
Qé{53/2 = (gidi)L (’ijUj — dej)R + (Eiui)L(ﬂjdj)Ra (2103)
Qé{;i{f = (gidj)L (Hjui — de,’)R + (§in)L(’l_Ljdi)R.. (2.104)

This is the operator basis which we used for AI = 3/2 operators. It is related to the

chiral basis (which was used for all AI = 1/2 calculations) by the relations

AI=3/2 3
Qory) = Q) (2.105)
Q(Agf;)?’/ 220 (2.106)
Qs =2Q%. (2.107)

2.4.3 Renormalisation

Loop integrals that arise in quantum field theory are often divergent. On the other
hand, Green functions (which are related to scattering matrix elements) must be finite.
This can be achieved by choosing parameters in the Lagrangian to be infinite in such a
way that the divergences cancel with the divergences coming from loop diagrams. The

procedure that achieves this is renormalisation. It consists of two steps:

e Regularisation - a procedure which introduces a regulator, which makes the loop
integrals convergent. Examples of regulators which are used here are the lattice

spacing and € in dimensional regularisation.

e Subtraction - regulated Green functions will contain a piece which depends on the
cutoff (and is divergent as the cutoff is removed) and a finite piece. It is clear that
the divergent piece must be removed, but this procedure is not unique - any part
of finite piece can be removed as well. Two common subtraction prescriptions are
the minimal subtraction scheme which just removes the divergent piece, and the
on-shell subtraction scheme, where the subtraction is defined by demanding that

the Green function satisfies a given condition.
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2.4.3.1 Renormalisation of QCD

As an example of the above procedure, consider the QCD Lagrangian, Eq. 2.32. We

can rewrite it in terms or renormalised quantities:

mo = ZmMmR (2.108)
bo = \/Z4¥r (2.109)
AbS = \/Z AR (2.110)
90 = Zggrp (2.111)

where the factor p® arises in dimensional regularisation and is needed to correct the

mass dimension of the interaction term.

Then the QCD Lagrangian can be written as:

L=Lr+ Lo (2.112)

The counterterm Lagrangian, L., contains additional interactions, which depend on

renormalisation constants Z.

I will now illustrate this approach by considering the renormalisation of the strong

coupling constant g. Consider the three-point amputated Green’s function

(VrRYRAR ) amp = /D¢i¢R¢RA’§aeifd4xﬁR+£“ (2.113)

amp

where ’amp’ denotes removing the external propagators. For example, the tree-level
formula for this Green function, which arises from g7y, A% 41 in the renormalised

Lagrangian would be
_ A\@
(YRR AR oo = A+ -

The counterterm depends on the renormalisation constants, which are chosen such

(2.114)

that the counterterm cancels the divergence arising from loops in the renormalised La-
grangian. This fixes the value of the product Z,Z;v/Z4. To extract Z;, we can calculate

Zy and Z4 from quark and gluon two-point functions respectively.

Taking the derivative of Eq. (2.111) with respect to In u gives

1 07
Blu) = ———=—Lgr —eg 2.115
(1) =~ i — o (2115)
where the 5(u) function is defined by
0
Bu) = 528 (2.116)

Oy’
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Figure 2.4: Example of processes corresponding to the threshold corrections at
b/c scale.
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Figure 2.5: Comparison of a current-current operator with the corresponding
effective four fermion operator

The B function can be calculated in perturbation theory and the renormalised coupling
can be obtained by integrating the above equation. The advantage of this approach is

that it results in summation of logarithmic contributions to the coupling constant.

I will now describe the procedure of obtaining the renormalised coupling at a given scale
. The value of the coupling constant at the scale of the Z-boson mass in the M S scheme
has been determined using experimental and lattice input to be a(mz) = 0.1185(6) [16].
We then use the 5-flavour running to go down to the b-quark scale, then c-quark scale
and finally to the desired scale u applying threshold corrections at each quark mass
scale. The threshold corrections are calculated by comparing Z,(x) in (n+1)-flavour
theory with Z4(y) in n-flavour theory. These will differ, as the former will contain more
quark loops, the divergent parts of which will have to be absorbed by Z,. An example

of such a loop is shown in Fig. 2.4.

Following this procedure we find the value of a5 at 3 GeV in a three-flavour theory to
be
as(3GeV) = 0.24544. (2.117)

2.4.3.2 Renormalisation of four-fermion operators

If we add the electroweak sector to the above considerations in the form of Fermi effec-
tive theory, we will find that the conditions (2.108)-(2.111) are no longer sufficient to
renormalise the theory. To see this, consider the contribution to the four-point Green

function shown in figure 2.5. Explicitly, they can be written as
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(1) (22) Y (23)10(24)) amp = /Déf)ﬂf_)(wl)1#(»”62)@5($3)¢($4)6i(SQCD+SW) (2.118)

amp

_ / Depith (1)t (2) () () <1 v / Hothy (x)> iSacn

(2.119)
—z/dx 2B (as)b (o) Hy ()35 (2.120)
= Gu[Hw). (2.121)

where Y1) are four fields corresponding to external legs of an unamputated Green’s
function, which in our case will consist of one strange antiquark field and three light (up
or down) quark fields. I introduced a shorthand notation G4[Hyy| for future convenience.
The diagram in the full theory (left) is convergent (counting powers of loop momentum
gives d*p from the loop itself,1/p for each internal fermion line and 1/p? for each internal

boson line so it behaves like [ ‘f—ﬁp), while the corresponding diagram in the effective

theory is logarithmically divergent (goes like [ %). The additional divergence can only

be absorbed by the coefficients in multiplying the operators, so we have:
= 3" G Gal0i () (2.122)
i

The coefficients C; are called Wilson coefficients and depend on both the renormalisation
scheme and scale. The index i runs over all relevant operators in the theory. If we are
considering transitions that change isospin by 3/2 there are 3 such operators: one (27,1)
and two (8,8). Transitions that change the isospin by 1/2 have the index i running over
7 operators: one (27,1), four (8,1) and two (8,8).

The operator (or equivalently Wilson coefficient) renormalisation works just like renor-
malisation in full theory, i.e. define the renormalised Wilson coefficient in terms of the

bare one in the effective Hamiltonian as
CY = Cj(1) Zji(n), (2.123)
so the effective Hamiltonian can be written as
Hepp = CPO) = Ci(w)Oi + (Zji(p) 2 — 6i5) 05, (2.124)

where Z, factors come from renormalisation of quark fields in the four-quark operator.
The second term is the counterterm, which is later tuned to remove the divergences from
Green functions. Then the renormalisation matrix can be absorbed into the amputated

Green function

GalHw] =) _ CG4[0]] = Z C;( 1) Z2G4[0Y] . (2.125)

Ga[O;(p)]

amp



26 Chapter 2 The Standard Model

This is equivalent to the operator renormalisation

Oi = Zij(n)Oy. (2.126)
The additional factor of Zg comes from the fact that we’re considering the amputated

Green functions.

Note that in general operators will mix under renormalisation. This can be seen most
easily by considering the diagrams in Figs. 2.7, 2.8. The gluon exchange diagram in Fig.
2.7 will mix colour unmixed and colour mixed operators ¢;I'¢;q;I'q; <> ¢;I'qjq;I'q;. This
is because the additional gluon line will introduce a factor TZ‘;TI?I = —ﬁ@jékl + %51‘19531-
The first term of this expression preserves the colour structure, but the second one
does not. This introduces mixings between operators Q2,1 and O, in the original ten
operator basis (2.75-2.84).

A different mixing is introduced by QCD penguin diagrams (also called ‘eye’ diagrams
in the literature) as shown in Fig. 2.8. These diagrams will have the flavour structure
sy (1—~%)d Zun,d,s q7Yuq, which will mix any operator with @3 to Qg in the ten-operator

basis (or equivalently with (8,8) operators in the chiral basis).

If we assume chiral symmetry then the basis of seven linearly independent dimension-six
operators in Eq. (2.99)-(2.101) is complete - no new operators will arise as a result of
renormalisation procedure. To see this, first consider the symmetry which combines CP
with simultaneous exchange of d and s flavours (CPS symmetry). This is a symmetry of
the QCD Lagrangian and hence it will forbid mixings between operators with different
CPS parity. All six-fermion operators considered so far have CPS= +1. This puts a
strong constraint on the operator mixing. Other operators that we may have to consider

are:

1. dim-6 pseudoscalar-scalar operators of the form

(5d)(dd — 3s)ps+sp = (5d)p(dd — 3s)s + (5d)s(dd — 5s)p (2.127)

where
(7162)s = q192, (2.128)
(12) P = 117’ o- (2.129)

2. dim-5 operators (dim-6 including the mass factor) of the form

(
(

— mg)50" Fl, (1 —4°)d (2.130)
— mq)5ot” G, T (1 —7°)d (2.131)

ms
mg

O,
Oy
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Figure 2.6: Loop diagrams which give rise to the 5y°d counterterm.

3. dim-3 (dim-4 including mass factor) operator
Op = (ms — mq)5y°d (2.132)

I will now argue that given chiral symmetry none of these operators can contribute to

the weak Hamiltonian.

1. (a) PS+SP These operators arise as a parity odd component of (5p.dr)(Spsr —
drdg) (or a similar operator with L <+ R). In the chiral limit, such an
operator can not be constructed in the Standard Model and therefore will
not contribute to the operator product expansion. In practice we do not have
an exact chiral symmetry, but chiral symmetry breaking effects will have an
additional mass dependence. Because construction of these operators requires
two mass insertions, the chiral symmetry breaking term will appear as a

dimension-8 operator and can be neglected for our purposes.

(b) PS-SP These operators can be related to VA-AV operators by Fierz identity
[17].
1
(71i92i)(q35945) Ps—spP = 5(@11‘6123‘)((?3]'(]41‘),4\/—\/,4- (2.133)
Because VA-AV operators are already included in the analysis, adding PS-SP

operators will not add any new information to the theory.

2. In principle the dim-5 electromagnetic and chromomagnetic penguin operators
should be included, however their Wilson coefficients are known to be small (pro-
portional to m2/m? in chiral perturbation theory) [18] and as a first approxima-

tion can be neglected.

3. The dim-3 operator can arise from the diagram shown in figure 2.6. The function
of the additional §y°d operator is to act as a counterterm for the quadratic diver-
gence in these diagrams. It is useful to notice that the operator 5vy°d satisfies the

partially-conserved axial current (PCAC) relation
Oy (57,7°d) = (ms +mq)sy°d (2.134)

and is therefore proportional to a total derivative.
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Figure 2.7: An example of a gluon exchange diagram

As a consequence, any on-shell matrix element of this operator must vanish because

(f10,0"(@) [ i) = 0u(f | "2 O™ " | 4) (2.135)
= i(ps — pi)ulf | O | i)e'Pr—r) o (2.136)

where P* is the four-momentum operator. Because on-shell matrix elements con-
serve energy and momentum, this additional contribution will vanish identically.

This statement does not hold on the lattice, as will be discussed in section 4.14.2.

2.4.3.3 Dimension-6 operators without chiral symmetry

It is interesting to note that even without full chiral symmetry, if the flavour SU(3)y
symmetry is present the parity-odd four-fermion operators exhibit the same mixing
pattern as in the case where the chiral symmetry is present. This was pointed out in

[19] and their discussion is summarised in the remainder of this section.

The proof is split in two parts corresponding to two types of diagrams that enter the
renormalisation procedure: gluon exchange diagrams (see Fig. 2.7) and penguin dia-

grams (Fig. 2.8).

For the choice of operators, most of the discussion from the previous section applies,

however without chiral symmetry we need to include the PS+SP operators:

Ox = (§idi)(62jdj — §j8j)ps+5p (2.137)
Oy = <§idj)(cijdi — §j8i)p5+5p. (2.138)
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Figure 2.8: Penguin diagrams

Gluon-exchange diagrams In SU(3)y limit, the u, d and s quarks all have the same
masses, which means that the gluon exchange diagrams will all contribute the same way
regardless of the flavours of the external quark lines. This allows us to use a clever trick
by [20], which is to work in a four-flavour theory with flavours labelled 1, 12, ¥3, 14,

which has the following symmetries:

S™ | b1 <> P, P3 <> Yy
S” | h1 <> Pa, ho < 13

The four-fermion operators of the form (112)(¢314) have the following transformation
properties under CPS’ and CPS”:

CpPS’ | CPS”
VA+AV | +1 +1
VA-AV | +1 -1
PS+SP | -1 -1

This means that these 3 types of operators cannot mix under renormalisation. Because
gluon exchange diagrams are flavour-blind, the same conclusion will hold for any choice

of flavours.

Consider an (8,8) operator, which is a LR operator, with parity-odd component VA-
AV. The above considerations forbid mixings to LL (parity-odd component VA+AV)
operators (27,1) and (8,1)rz, but leave the possibility of mixing with (8,1);z. However,
these two types of operators have different flavour structure - see Eq. (2.101) and (2.75-
2.84).
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Because gluon exchange diagrams preserve flavours, they won’t mix the above two op-
erators. As a consequence, there is no mixing between (8,8) operators and any other

operators.

This leaves the mixing (27,1) and (8,1) operators. These operators transform as 27 and
8 representations of SU(3)y respectively, and since SU(3)y is an approximate symmetry
broken by terms of order ms — mg, we conclude that there is no mixing between these

operators at dimension 6.

To conclude, gluon exchange diagrams won’t induce mixings between any of the four
types of operators: (27,1), (8,1)rr, (8,1)Lr, (8,8).

Penguin diagrams We can’t use the CPS’ and CPS” trick here, because we need to
work in a 3-flavour theory (u,d and s quarks going in a loop). Penguin operators can,
in principle, mix any operator with an (8,1) operator. There are two types of penguin

diagrams shown in figure 2.8.

e Fig. 2.8 (left) diagram In the (8,8) operator case, the self contraction gives (in
terms of propagators) 2U-D-S, which in the isospin limit reduces to D-S. Similarly,

the () x,y operators are proportional to D-S.

e Fig. 2.8 (right) diagram Here we use the fact that the (8,8) operator has a LR
structure, so its parity-odd component has the VA-AV chiral structure. In the
following I will label the penguin contractions P‘%f AV where the superscript de-
notes the quark going inside the loop and the chiral structure is defined such that
the first label is the coupling to the external strange quark and the second is to

the external down quark.

For example the contribution from (5d)y (dd) is P¢, and the contribution from
(3d)v(8s)a is P4y,. The contractions to the VA operator give P, + Pj;,, while
the contractions to the AV operator give leW + P 4. The contribution to the
full operator is then P“f A~ Poa+ Phy — Pﬁv. Similarly, the PS+SP operator is
proportional to Pd, — Pip — Pig + Pls.

In both cases the penguin contractions are proportional to the difference between s and
d penguins, which means that the mixing with (8,1) operators must be proportional to
ms — my, resulting in a scale suppression. The above argument forbids mixing between
(8,1) and (8,8) and Q) x/y operators. The mixing of (27,1) and (8,8) operators is again

suppressed by SU(3)y symmetry, just like in the case of gluon exchange diagrams.

The above arguments show that the mixing pattern of dimension-6 operators is the same
with SU(3)y symmetry as with the full chiral symmetry. Before we mark chiral sym-

metry as redundant, it is worth noting that it prevents mixings at dimension 7, arising
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both from (ms; — mg) times the dimension-6 operator terms mentioned above as well
as additional dimension-7 operators such as (5(1 —v°)d)(gIP(1 — +°)q) (these operators
can have (15, 3), (6,3) or (3,3) chiral structure). The magnitude of these higher-order

effects (and in lattice calculations their effect on scaling) is currently unknown.

2.4.3.4 Calculation of Wilson coefficients

All the discussion so far has been valid for three-flavour theory. The calculation of Wilson
coefficient will depend on running from myy scale down to the charm quark scale, which
will depend on 5- and 4-flavour theories as well. There are three main differences with

respect to three-flavour theory:

e All the flavour sums in Eq. (2.75)-(2.84) run over all available flavours: u,d,s,c,b

in 5-flavour and u,d,s,c in 4-flavour theory.

e There are two additional operators:

QT = (5id;)(Cjcj) L (2.139)
Q5 = (5id;)L(Cjci) L (2.140)

e There are no penguin contributions proportional to V., V,,4 due to GIM mechanism.

GIM cancellation in this case works as follows. From the unitarity of CKM-matrix we
have V:Viq = 0s¢ = 0. Then, labelling the penguin diagrams with quark ¢ inside the loop
by P, we can conclude that the penguin diagram contribution to any Green’s function

will be proportional to

S ViViaP, = ViVaa(Pu — Po) + ViiVia(P: — Po). (2.141)

The V,,V,q coeflicient is proportional to the difference of charm and up penguin dia-
grams. If up and charm quarks were both massless, the difference would be zero. At
the scale ;4 = myy the up and charm quark masses are small and we can think of up and
charm penguins as a massless quark penguins with two mass term insertions (we require
two insertions because the mass term changes chirality and the W boson only couples
to left-handed fields). The difference P, — P, at myy scale is therefore proportional to
(me — my)?/mi,, which we can neglect in our approach, because we're only expanding
up to order 1/myy. Furthermore, working in a massless renormalisation scheme (see
below) the renormalisation group running will preserve this difference for all scales all
the way down to u = m,, at which point threshold corrections will re-introduce the

penguin diagrams.
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We can calculate the (renormalised) Wilson coefficients as well as the renormalisation
matrices Z;;(p) at = my scale by calculating amputated Green functions both in full

QCD theory and in the effective five-flavour theory and comparing the results:
(O) putt = <O>S}‘)f7 (2.142)

where the angle brackets denote the amputated Green functions:

(O) futijeff = /D@Oeisf“”/eff , (2.143)

amp

where the integral runs over all the fields in the theory. This must be true for any

operator O.

Just like in the case of the running coupling, Wilson coefficients will contain terms of
the form In (p/mw ), which become large when the difference in scales my — p becomes

large and have to be resummed as before. Acting with ,u% on both sides of Eq. (2.123)

gives
dC; dZ;
0=—2Z;+C;—2. 2.144
du Jt + J dH ( )
Defining the anomalous dimension matrix v as
i = Z, . 2.145
Yij dlog 1 kj ( )
gives
dC;
= —Cjvji- 2.146
dlog u i ( )
This expression can be integrated using Dyson’s formula:
Y
Ulpg. i) = Tt bl 401210 (2.147)
. palpg) (
= TgeZ fg(wf) dgg(izg (2.148)

In a mass-independent renormalisation scheme the coefficients Z;; do not depend on
mass and therefore the anomalous dimension matrices (and hence the running) will not
depend on quark masses either. This means that we have the same running for operators
proportional to V,5,V,q as for the operators proportional to V;iV;4s. Another advantage
of mass-independent schemes is that because the anomalous dimension matrices do not
depend on masses, they must be identical to the anomalous dimension matrices in a
massless theory. In a massless theory the chiral symmetry is exact, which means that
the anomalous dimension matrices (and hence operator mixing) will preserve exact chiral
symmetry, even though it is only an approximate symmetry of the Lagrangian. This
argument does not apply to threshold corrections however, which can re-introduce the

mass dependence.
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Figure 2.9: Example diagrams that are relevant for threshold matching at char-
m/bottom scale.

Because M S scheme does not satisfy the decoupling theorem, we need to apply threshold
corrections by hand. This is done by comparing Green functions in n-flavour theory with

the ones in (n+1)-flavour theory
n n+1
) = ()", (2.149)

which can be done because the Wilson coefficients in (n+1)-flavour theory are known
from the running. An example of diagrams which need to be integrated for threshold

matching are shown in figure 2.9.

Above the charm scale it is convenient exploit the GIM mechanism by parametrising

the weak Hamiltonian in the following way:

10
Hy = ?/gv;svud 1-7) Y 50— 09 + 73 ui(wO; (2.150)
i=1,2 i—1

with 7 = —VVia/V,,\Vua and operators defined in Eqgs. (2.75) - (2.84) and (2.139) -

(2.140) . The coefficient proportional to VV.; does not appear because of the CKM

matrix unitarity relation:
VasVua + VigVea + VigVia = 0. (2.151)

The first sum runs only over the current-current operators due to GIM suppression.
Matching to three-flavour theory reintroduces the penguin diagrams via processes with
charm quark loop in figure 2.9. In a three-flavour theory the weak Hamiltonian is instead
parametrised as:

10
Hy = —=V,Vud (Z(Zz‘(u) + T%(M))Oz) (2.152)

i=1



34 Chapter 2 The Standard Model

zi | 3GeV LO 3GeV NLO yi | 3GeV LO 3GeV NLO
1 |-0.391608 -0.241415 1 1]0 0

2 | 1.19262 1.11228 2 |0 0

3 | -0.00590226 -0.00392423 3 10.0245797 0.0211096

4 | 0.0227256 0.0169695 4 |-0.0592354 | -0.0558734
5 1-0.00818322 -0.00349963 5 | 0.0180197 0.0117843

6 | 0.0199481 0.0120747 6 |-0.0698914 | -0.0610235
7 1 -0.0000852011 | 0.0000940198 || 7 | 0.000405289 | -0.000161911
8 1 0.000020126 -0.000104478 || 8 | 0.000489482 | 0.000652032
9 | -0.0000708857 | 0.0000275290 || 9 | -0.0103101 -0.0103828
10 | -0.0000233252 | 0.0000798557 || 10 | 0.00327317 | 0.00243775

Table 2.2: Wilson coefficients at 3 GeV in MS scheme calculated at leading
(LO) and next-to-leading(NLO) order in a; and «.

with
yi(me) = vi(me) — zi(me). (2.153)

As a final step, we can calculate the running in a three-flavour theory up to a desired

scale.

The anomalous dimension matrices (including QED corrections) as well as the threshold

matching matrices are given in [21].

Wilson coefficients calculated by running down to 3 GeV using LO and NLO running

are shown in table 2.2.

2.5 Chiral perturbation theory

A popular way of studying low energy QCD is by means of chiral perturbation theory
(ChPT). In this approach the spontaneous breaking of flavour SU(Ny) axial symmetry
by the chiral condensate, which gives rise to N]% — 1 Goldstone bosons, which are treated
as fundamental degrees of freedom. Chiral perturbation theory can be done either for
Ny = 2 flavours, in which case the theory describes pions, or Ny = 3 flavours, in which

case the Goldstone bosons are 3 pions, 4 kaons and an eta meson.
The importance of chiral perturbation theory for this project is twofold:
1. It is used for a (short) chiral extrapolation to correct for the differences in observ-

ables arising from small differences in physical and simulated meson masses. See

section 5.6.1.

2. It is used to evaluate the magnitude of finite volume effects - see section 4.12.
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Specifically, the theory is formulated in terms of SU(Ny) fields ¥(z), which transform
under SU(Ny)r, x SU(Ny)r as

S(z) = UpS(z)Uf,. (2.154)
Furthermore, ¥(z) can be written in terms of elementary (Goldstone boson) fields as

2
24 ENf_l ¢ (2)T?
a=1

Y(z)=e fo (2.155)

where T are the generators of SU(Ny) and fy is a constant, which turns out to be the

tree-level approximation of the pion decay constant. For example, taking Ny = 3 we

have
3 ™+ %7] V2rt V2K*
Sooa=| Ve -+ Jm VKO (2.156)
a=1 V2KT V2K -2

where A* are the Gell-Mann matrices, which are the generators of the fundamental

representation of SU(3).

Chiral symmetry forbids quark masses, but the chiral symmetry breaking effects due
to the mass terms can be included by using the following trick. First, note that in
the QCD Lagrangian the mass term has the form M1, where ¢ = (u d s)” and
M=diag(m,,, mg, ms). This term is not invariant under chiral transformations, but if we
upgrade M to a field x (‘spurion’), which transforms as x — Up, XU}; then the term would
be invariant. In a similar way, we can use y in the effective field theory to construct
all possible terms which are invariant under chiral symmetry and replace them with M

matrices later.

The leading order (O(p?)) ChPT Lagrangian can then be written as:

2 2
o _ I~ tu Bof” o (4 f
£O = 8Tr<i3u282>+ > Tr(x Ny X). (2.157)

To study K — 7m transitions, we need to add operators corresponding to AS = 1
transitions. As we have seen in section 2.4.2, such operators can be in a (27,1), (8,1)
or (8,8) representation of SU(3);, x SU(3)g. In ChPT the O(p?) contributions to the

Lagrangian coming from these operators are ([22], [23]):
La71) = aortiy (20,51 (29,5HF + hee. (2.158)
£(8,1) =oqIr </\68u2(‘~)#2T> + a92ByTr </\6(XEJr + EXT)> (2.159)

L) = assTr (ATQx) (2.160)
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Where tkl is a completely symmetric and traceless tensor with 13 = 1,t33 = 1/2 and

= —-3/2, Q = diag(2/3,—1/3,—1/3) and X\¢ (not to be confused with the Gell-Mann
matrix \%) is given by (X6)ij = 0i30j2. The matrix \g was introduced because we are
interested in AS = 1 transitions. It can be easily verified that (8,1) and (8,8) operators
transform in the desired way by recalling the discussion in section 2.4.2 and noting that
@ and \g are traceless. Similarly the (27,1) operators transforms as desired, because

the t;gl tensor is symmetric and traceless.

This Lagrangian can be used to derive the K — 77 matrix elements. For the AT = 3/2
transitions only the (27,1) and (8,8) operators contribute. Their matrix elements have
been calculated to next-to-leading order of ChPT in [24; 25]. The result is:

4’i0&27

M%7o =<7r+7r_|(9(27’1)’3/2|K0>Lo _ (m% —m2), (2.161)

Mlog < +7.‘_7|O(27,1),3/2|K0>

dicor 1 1 m? 5mé
|: 1o 4 <1_7nlg( ﬁ(mi,m%,m%)%—m%{ —

fo2 IZA T 2 4 m2
——mK—i-Zm > 2 m¥,m2) + (m} — 3m2m% + 2ml)
1m 1 1 —m
x B(mF, m2,m2) + <—4m§ - Em%( + 3m3r> ((my) + < m%K
2 2 2 5mK 45 4 2 2
—4mi + 4m3) L(my) + Tmz —mi + 11mZ ) {(m32) |, (2.162)
_ dic
MG =(mta  |[OEIPK) 0 = 7 ;S , (2.163)
KJrn
Mlog <+W_|O(8’8)’3/2’K0>log
4ia88 1 om
= 20 (32— ami ) Bt i) + (i — 2m2)
1m4 1 m?
2 2 2 K 2 2 2 K 2
- —(44+=—5 )7
X/B(mK’mW?mTF)+4m72r6(m7r7mK7m7]) ( +2m%> (mK)
5 m? 3 m?
+ <K — > ((m?2) — Kﬁ(mZ)] : (2.164)
4 m2 4mz 7

At this order m,, is given by the Gell-Mann-Okubo relation: 3m727 = 4m3. — m2. The

functions ¢(m?) and B(q?,m2,m2) correspond to diagrams with one and two pseudo

Goldstone boson propagators respectively as illustrated in Fig. 2.10.
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(a) (b)

Figure 2.10: Loop diagrams which contribute to K — 77 matrix elements

in ChPT: (a) ¢(m?), where m is the mass of the boson in the loop and (b)

,8((]2, m%? m%)






Chapter 3

Phenomenology of hadronic kaon

decays

3.1 Review of CP-violation

One of the biggest puzzles in modern physics is the abundance of matter over antimatter
in the Universe. This means that there must be a fundamental law which generates
matter-antimatter asymmetry. The conditions necessary for this asymmetry to arise are

the Sakharov conditions:

1. Baryon number violation
2. Out of thermal equilibrium

3. CP violation

Condition 1 is self-explanatory - we start in a symmetric phase with baryon number equal
to 0 and end in a phase with a large baryon number corresponding (approximately) to
the sum of the numbers of all protons and neutrons in the Universe. This can only be
achieved if the baryon number is violated. In the Standard Model the baryon number
violation is present because the baryon number is anomalous, which can lead to baryon

number violation via sphaleron processes.

Condition 2 is necessary, because in thermal equilibrium the rate of any process A — B
is the same as the rate of the reverse process B — A. This means that in equilibrium

the total numbers of particles and antiparticles will, on average, remain constant.

Condition 3, CP-violation, as discussed in section 2.3.1, generates the matter-antimatter

asymmetry and it will be the topic of the remainder of this chapter.
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3.2 Neutral kaon mixing

Experimentally, CP violation was first discovered in the neutral kaons. Neutral kaon
has an interesting property that it is the lightest neutral meson, which is not its own

antiparticle, which makes it an ideal candidate for studying CP-violation at low energies.

Neutral kaon flavour eigenstates are | K°) and | K°) with flavour content of 3d and ds
respectively. Because these states have the same conserved quantum numbers they can

be thought of as components of some state | 1) such that
| 6(t) = a(t) | KO) +ha(t) | KO) + D enlt) | m) (3.1)

where the sum runs over all states with the same quantum numbers as K% and K°, such

as e.g. | mTm~), | mtev) etc. The state | ¢(t)) satisfies the Schrodinger equation

H | 9(1)) = i | 6(0) (32

To proceed we need to restrict ourselves to states | KY) and | KY). This pair of states

R( i (1) ) _.d < Y(t) ) | 53)
Pa(t) dt \ o(t)

The main difference between this equation and the Schrodinger equation is that the

satisfies a similar equation

matrix R is not required to be Hermitian. Indeed, we find for the probability density

SR OF + Wa(0P) = ~@HEU3E)T ( " ) (3.4)

where I' = i(R — RT). Because kaons decay, the rate of change of the probability density

is negative, and I is a Hermitian, positive-definite matrix. R can then be written as
)
R=M - 51“. (3.5)

We can write explicit expression for the matrices M and I' using second order time-

independent perturbation theory

i | Hy [ n)(n | Hw | j)
mO_En

M;j =modi; + (i | Hw ]j>+ZP<

Lij = 2%257710 — En(i | Hw | n)(n | Hw | j). (3.7)

where Hyy is the weak Hamiltonian and the states now exclude weak interactions.
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Now consider CP and CPT transformations of neutral kaon states:

CP| K% = ¢* | K9,

CP| K% =e | K%,
CPT | K% = ¢ | K°),
CPT | K% = €™ | KY).

The states | KY) and | K°) have opposite CP phases because we require that (CP)? = 1
and equal CPT phases because (CPT)? = 1 and CPT is antilinear. As before, the
phases e’ are unphysical and can be absorbed by redefinition of | K°). Without loss of

generality we can choose the phase to be £ = 0.

For the remainder of the chapter I will assume that CPT is conserved so that (CPT)Hy (CPT)~! =
Hyy. Then we have from Eqs. (3.6)-(3.7) it follows that Mj; = Mag and I'1; = I'eo.

From Eq. (3.3) we can infer the masses and mixings between | K°) and | K) states by
calculating the eigenvalues and eigenvectors of the matrix R. Assuming CPT invariance,
the eigenvectors are of the form (p +¢)T with ¢/p = Ra1/vRi12R21. We also choose
the overall normalisation so that [p|? 4 |¢|> = 1. Then the physical states | K1) and
| Kg) are given by

| K1) =p | Ko) +q | Ko), (3.8)
| Ks) =p | Ko) — q | Ko). (3.9)

If on top of that we assume CP invariance, (CP)~'Hy (CP) = Hy, we will have an

additional condition on the off-diagonal matrix elements:

My = Mype®™, (3.10)
%, = ['pe?e, (3.11)

This allows us to construct a CP-violating quantity

_ |Raz| — [Ran|

S B e A 3.12
|R12| + |Ro1] (312)

which quantifies the amount of CP-violation in the mixing. Finally, § can be rewritten
in terms of [p| and |g/:
§ = [p]* — laI* = (KL | Ks). (3.13)

Using |p|? + |¢|?> = 1 we can rewrite

1+6
2
1-4
2

Ipl? = (3.14)

g = (3.15)
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Another useful consequence of CP-symmetry is

p_ M- il (3.16)
q My — il
= +¢ (3.17)
or in terms of magnitudes
q
=1, 3.18
; @19

which will be used in defining the interference CP violation below.

3.3 Direct CP violation

Another possible source of CP violation can arise in kaon interactions. Suppose that
CP is conserved. Then, for any process, the transition matrix (related to the S-matrix
by S =1+1T) will satisfy:

(CP)"'T(CP)=T. (3.19)

Consider a system with two possible final states, (f |, (g | which are CP-eigenstates so
that:

CP|fy=nr|f),CP|g)=m4]9)- (3.20)

The phase factors ny and 7y can not be removed by rephasing | f) or | g) and are
therefore physical quantities. Furthermore, the condition (CP)? = 1 constrains them to

be 1. The matrix elements will transform as:

(FIT i) =e mp(f | T ), (3.21)
(91T i) =englg|T]d). (3.22)

This is a system of two equations with one unphysical phase £, which can be solved to

give the following constraints on the matrix elements:

[T D= IT]D)] (3.23)
g 1 T [ i) =g [T |4 (3.24)
¢ =(fITi)g T |d) —npng(f T |i)g | T]i)=0. (3.25)

The first two equations can not be used to measure CP violation, because they are also
a consequence of CPT. The third equation on the other hand defines ¢, which is the
measure of direct CP violation. Note that in order to define it, at least two possible

finite state interactions are needed.
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3.4 Interference CP-violation

We can define a parameter Ay, which mixes direct and indirect CP-violation

Asq
Ap= 212 3.26
1= A (3.26)
where
(f1T| K =V2Ase®s (3.27)
(f 1 T| K =V2A.e"s (3.28)

where 0y are the phase shifts associated with the final state | f) defined as usual (f |
frin) = €27 where | f;in) is the ‘in’ state corresponding to the ‘out’ state | f). This is
explained in more detail in section 3.7. For example, if the final state is the I=2 or I=0
two-pion state, then the phase will be the two-pion phase shift in I=2 (d2) or I=0 (o)

channel respectively.

The reason for excluding the phase shifts from the definitions of Ay and A ¢ is that, if
time reversal invariance holds, one can show that Ay and A ¢ become purely real. This
is known as Watson’s theorem, which I will now prove. Starting from the definition in
Eq. (3.28) we have:

V245 = (f| T | K°) (3.29)
= (frin | T | KO)*e'€ ) (3.30)
= (F | T | KO) el et (3:31)
_ ﬂA}ei(§?_§£+5.f) ( )

where in the second line I used time reversal invariance of the transfer matrix combined
with the fact that time reversal changes the outgoing partial waves | f) into incoming
partial waves | f;in) and in the third line T used | f;in) = €*9s | f). Recalling that
the time-reversal phases are unphysical, we can choose the phase convention such that
f}r = ¢& = 0. This gives Ap = A;Z, which is the statement of Watson’s theorem.
In practice time reversal (and equivalently CP) is not conserved, but because the the

amount of CP-violation is small we still have |A¢| ~ ReAy.

If CP were conserved, we would have from Eq. (3.17) and (3.21):

=1 (3.33)
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On the other hand, treating direct and indirect CP violation separately only imposes
constraints Eq. (3.18) and (3.23) which give

Al =1. (3.34)

This means that even if [A¢| = 1, if ImAs # O there is still a CP-violation, which is
a consequence of a mismatch between direct and indirect CP phases. Hence ImAy (or

equivalently ArgA¢) is the measure of interference CP-violation.

3.5 Measurable CP-violating parameters in the kaon sys-

tem

We can define the following measurable (up to a phase) amplitudes:

(rm;0 | T | Kp.)
= 3.35
= im0 | T | Kg) (3:35)
(rm;2 | T | Kp)
= 3.36
2= 1m0 T | Ks) (3.36)
(rm;2 | T | Kg)
= 3.37
Y= om0 | T Ky) (3:37)
I will focus on each of these quantities in turn.
€ can be written as L
+ Ao
= 3.38
=1 (3.38)
" (20| T | K)
;0| T | KY)q
Ao = ! . 3.39
"= (om0 | T | KO (339)
We can write \g as
=4/ ——— 4
Ao |\/1+6A06 (3.40)
1-6

_ if
=\ 135¢ (3.41)

We can then rewrite € as:

2Ree

2Ime .
TP =/1-462siné. (3.43)

Hence € # 0 implies either indirect CP violation (6 # 0) or interference CP violation

(sinf # 0).
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Next, I'll discuss €. It is actually convenient to re-express it in terms of another quantity
called, with the benefit of hindsight, ¢’ defined as

’ €9 — WE

V2
_ (mm2 [T Kp)(rm; 0| T'| Ks) — (7m; 2 | T | K) (s 0 | T'| K1) (3.45)
V2(rm; 0| T | Ks)? '

((mm; 2| T | K 7m0 | T | K% — (zm;0 | T | KO (zm;2 | T | KO)) .

€ (3.44)

_ 2q
~ pA3(1— No)?
(3.46)

The final line is of the form of Eq. (3.25), which identifies it as a measure of direct CP
violation. It will also be useful to define the quantity €¢’/e which can be written in terms

of the K — 7 amplitudes

€ w (ImAg ImA0> . (3.47)

; - \/5‘5‘ R,eAQ B Rer

Finally, the quantity w is experimentally known to be small, 1/|w| &~ 22.5. This is known
as the AT = 1/2 rule, which states that the kaon will decay predominantly into two I=0
pions. The theoretical explanation of this observation is still unknown, but recent lattice
studies, including the one this thesis is based on, have shed some light on origin of the

Al =1/2 rule. For further discussion, see section 5.7.

3.6 Experimental results

Experimentally we can not determine the amplitudes (which are phase dependent) di-
rectly and we are limited to the determination of their magnitudes. The magnitudes of

K¢ — 7w decay amplitudes can be calculated from the decay rates given by:

1 4m2 \F \F
(K ) = 1— —"\\/=(mm 2| T| K 0| T K
(Kg—»7min) o . 3<7T7T, | T | Ks) + 3<TF7T, | T | Ks)|
(3.48)
1 am2 | 2 1 ?
(K 0,0y — 1—m”\/>~2TK—\/> 0T K
(Kg —»m'm) ED— 2. 3<7T7T, | T'| Ks) 3<TF7T, |T| Kg)| ,
(3.49)

mfﬁ + mio)/2 + (mio - mfr+)2/4m§<+

2
My /4= (
(KT —at70) = \/ t 5 (rm;2 | T | K1)
drmi.

(3.50)
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Using the set of experimental results ([16]) shown in Table 3.1 (recalling that I'(A —
B) = Br(A — B)/7a) together with Eqs. (3.48-3.50) and definitions (3.28) gives the

following predictions for the decay amplitudes:

|Ao| =~ ReAg = 3.3197(14) x 107" GeV, (3.51)
|Ag| ~ Reds = 1.570(53) x 107 8GeV, (3.52)

3 3
\/g |AT| ~ \gReA; = 1.4787(31) x 107 8GeV. (3.53)

The rather large difference between ReAs and \/gReA; is a consequence of isospin

breaking. These results verify than indeed 1/|w| &~ 22.5.

The ratio €' /e can be measured by defining the quantities

(mm; f | T'| K1)
= 3.54
" = G £ T Ks) 320
which give
Ni_=€+e€, (3.55)
Moo = € — 2€, (3.56)
and hence (using the result that € /e is approximately real)
oo |* ¢
R (3.57)
- €

The left-hand side of this equation can be determined experimentally by calculating the

ratio
no |°  BR(K[ — n°7°) BR(Kg — nt7) (3.58)
ny_| BR(Kg— m19)BR(Kp — mtn—) '
An experimental value of € /e is ([16])
6/
— = 1.65(26) x 1073, (3.59)

3.7 Two-particle scattering

As an added bonus, we are also able to calculate the two-pion scattering phase shift. The
phase shift is the only quantity that the two (pseudo-)scalar meson scattering matrix
depends on. To see this, consider the states | E, p,l, m) where E is the total energy, p is

the total momentum, [ is the total orbital angular momentum and m is the component
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Myt 493.667(16) MeV
M 0 497.614(24) MeV
Myt 139.57018(35) MeV
M 0 134.9766(6) MeV
TK, 0.89530(5) x 10719 s
T+ 1.2380(21) x 1078 s
Br(Kgs — n%70) 30.69(5) %
Br(Kg — nm™) 69.20(5) %
Br(K+ — nt7%) 20.66(8) %
8o — do 47.7°

Table 3.1: Experimental input used to calculate Ag and As.

of the angular momentum in the z-direction. Then, the S-matrix in the centre-of-mass

frame can be written as
(E,p,l',m'| S| E*,0,1,m) = 6(E — E*)6®) (p) iy Sy €77 (3.60)

where the function §;(E*) is called the phase shift. The structure of this equation
is motivated as follows. The Kronecker and Dirac deltas arise as a consequence of

translational and rotational invariance of the S-operator
[P*,S] = [J3,5] = [J%,8] = 0. (3.61)
The remaining function can only be a phase because of the unitarity of the S-matrix
(E,p,I',m' | S| E*,0,l,m)|* = 1. (3.62)

Finally, the phase §;( E*) does not depend on m, because rotational invariance implies
that the S-operator commutes with the angular momentum raising and lowering opera-
tors

[J+,S] =0 (3.63)

which results in the condition 0y, (E*) = 041 (E*) for I — 1 < m < [. This argument is

a special case of the Wigner-Eckart theorem, which will be introduced in section SEC.

Using S = 1 + i7" shows that the matrix elements of these states behave as

2i0; _ 1
(E,p,l,m|T|E*0,I',m) = %5”,5%,5(;))5@ — EY). (3.64)

This relation will be useful in deriving the Liischer quantisation condition in section
4.12.

The phase shifts §; have the following limiting behaviour in the low momentum limit

8i(p) o< p' (3.65)
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where p is the magnitude of the momentum of a single particle in the centre-of-mass
frame. This means that at low energies the s-wave (I = 0) state will dominate. The s-
wave phase shift can be further parametrised in terms of the scattering length ag defined
by

ao = lim 2000() (3.66)
p—0 p

The scattering length therefore is a constant which contains information about low-

energy particle scattering.
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Lattice QCD

Calculation involving hadrons depend on strong interactions, which are difficult to cal-
culate in perturbation theory at low energies. This is because the expansion parameter
as is of order 1, so the perturbative series does not converge very quickly, if at all. The
most promising alternative to perturbation theory in this regime is provided by lattice
gauge theories, which are the topic of this chapter. I will discuss the lattice formula-
tion and how quantities calculated on a lattice can be related to physical observables,

focusing on the K — mm AI = 3/2 calculation.

4.1 Lattice formulation

4.1.1 Gauge fields

On the lattice derivatives are replaced with finite differences, which are non-local. As
an example, consider an arbitrary field ¢. Then the continuum derivative of this field is

replaced by (for example) a forward derivative:

0"6(z) — Npo(w) = - (Bl +at) — 6(2)). (a.1)

Now suppose that ¢ transforms under the fundamental representation of SU(3): ¢(z) —
Q(x)p(z), where Q(x) € SU(3). We are looking for a discrete equivalent of a covariant

derivative:

DI9() = © (9l + aft) — Ular + oft 2)(z) 4.2

where U is an SU(3) matrix. We require both terms of the discretised covariant to

transform the same way, which imposes the following transformation on U:

Uz + afi, z) — Qz + ap)U(z + afi, 2)Q (). (4.3)

49
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v

L.

Figure 4.1: Plaquette

Objects transforming in such way are the Wilson lines, defined by:
Up(x,y) = €9 /r 4d"E, (44)

where the integral is defined along a path P from x to y. The lattice version of the

Wilson line (often referred to as the link variable) is:
Uz + pa, z) = 994" (@), (4.5)
There are two ways of constructing gauge-invariant quantities:
e Connecting quark and antiquark fields with a Wilson line constructed out of link
variables
e Traces of closed loops constructed out of link variables

To construct a pure gauge action we only require the latter. The simplest object that

has this property is the plaquette operator:
PY = (U(z,x + av)U(z + av,z + afi + av)U(x + afp + a?)U(z + afi, x)), (4.6)

illustrated in Fig. 4.1.

The simplest gauge action can be written as:

4
Splaq = % > D ReTr(1—P¥(x)) = — / Fo,Fra 4 O(ad), (4.7)

xr pu<v

where N is the number of colours and 8 = 2N/g? where ¢? is the strong coupling

constant. We can see that this action reproduces the continuum Yang-Mills action in

6

the continuum up to terms of order a®. This can be further improved by considering

additional gauge-invariant operators, such as the rectangle R* as shown in figure 4.2.
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v

Figure 4.2: Correction to a Wilson plaquette action.

The class of actions improved with the rectangle loop is given by

B

Sr="5{(1=8c) > (ReTrP*™)+c; > ReTrR™ |. (4.8)
{L‘”U,<l/ x?l"‘#”
The Iwasaki action is defined by the choice ¢; = —0.331, which was determined from

the renormalisation group analysis in reference [26].

4.1.2 Gauge fixing

It is often convenient to work in a fixed gauge. In our case, the gauge fixing allows us
to:

e use non-local (and therefore gauge-dependent) interpolating operators

e use a gauge-dependent (but BRST-invariant) renormalisation scheme (RI-SMOM)

and match it to the M S scheme

While for the former application any gauge will suffice, the latter forces us to use the
same gauge as the one we use for the perturbative RI-SMOM to M .S matching, i.e. the

Landau gauge.

The Landau gauge is defined in the continuum by the condition 9,A* = 0. It will be

helpful to notice that this condition is satisfied at the stationary points of the functional

4
WI[A] = / d'z > TrA,(z)A(x). (4.9)

p=1

This is easily verified by recalling that A, transforms as

SA, = _;aue 1 (A, 0] (4.10)
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where § = 0°T° is the gauge parameter. On the lattice, this is equivalent to choosing

the gauge parameter matrices 2 such that the functional

4
w=33 T (U#(Jc) + Ug(x)) (4.11)

is extremised (recall that U transforms as QTUQ).

Similarly, to achieve the Coulomb gauge fixing condition V - A = 0, one can extremise

3
w=33 T (Uu(:n) + Ug(:c)) : (4.12)

r p=1
where the sum over p runs only over spatial indices.

In K — 77 calculation we used Coulomb gauge fixing for the kaon and pion interpolating

operators and Landau gauge fixing for renormalisation.

4.1.3 Fermion fields
4.1.3.1 Naive fermion discretisation

Using the prescription for the covariant derivative given by Eq. 4.2, one might expect

that the correct lattice prescription for the fermion fields in the Lagrangian would be:

DY = d(x) (Y(x) = Ule, 2 — ajup(z — ajt)) . (4.13)
Unfortunately, this choice suffers from the infamous fermion doubling problem.

To see this, note that the there is a one-to-one correspondence between the poles in
momentum space Green’s functions and states in the Hilbert space. I am going to show

this on an example of a two-point fermion Green’s function given by
G(p) = [ da(0 | Ti()(0) |o)e, (114
In this equation T is the time-ordering operator defined by
T(O01(x)0a(y)) = 0(z" = y")01(2)O2(y) + 0(y” = 2")Os(y) O1 (), (4.15)

where 0(x) is the Heaviside step function, which gives +1 if its argument is positive, +1/2

if it is 0 and O otherwise. The step function has the following Fourier representation:

0(z) = lim — / 25" (4.16)

; S ;
e—0 278 5+ i€’
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which can be easily verified by contour integration. Inserting this representation into

Eq. (4.14) as well as the complete set of states gives:

- Z/ o [ 5201 5(0) | | 6(0) | )PPz’ —1 (@

S+ 1€
i(2m)? ow )\n><n|¢()\0>
*Z p—p + 1€

) (p—pa)+.... (4.18)
It is clear that the two-point function will have a pole for every state in the Hilbert
space that has the same quantum numbers as .

G(p) can be most easily derived using functional methods (4.3):

1 0 9 -

=ML (4.20)
Z[J,J] = /D D, 1, U)e SVl Tyt (4.21)

In continuum free theory with massless fermions, the matrix M in the above expression
is simply i), which can be inverted by going to the momentum space to give p/ p?. Hence

the continuum Green’s function has only one pole at p? = 0.

We now turn to naive lattice fermion discretisation. The matrix M can be expressed,
for example, as the following difference of Kronecker deltas: i > u Y (6ztap — Oz—ap),
with the inverse given by m,
—m/a < p < 7/a. This expression has zeroes when all components of p are either equal

where p is restricted to the first Brillouin zone

to zero or 7/a - 16 solution in total.

The additional solutions correspond to additional states in the Hilbert space and are
referred to in the literature as ‘doublers’. Removing doublers requires a different choice

of fermion action. An example is the Wilson action defined by:
1 _
; - — — [l —H [l . (4.22
Switson = Zw (m W(fﬁ) +5 ;%Z}(:L‘ +ap)(r =" U(z +afi, z)(z). (4.22)

The additional term proportional to r is an irrelevant dimension-5 operator. In practical

applications the value of r is typically set to 1. The Fourier space Dirac matrix is:

{ _ r
Mwiison = m + Z E'Y“ Sln(ap,u) + a Z(l - cos(apﬂ)). (423)
© W

The third term is the new one in comparison to naive fermions. Now even in the zero
fermion mass limit, the operator has only one zero at p* = (0,0,0,0), just like in the

physical case.
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The downside is that the additional Wilson term, ariy D2 mixes the left and right-chiral

fermion fields and hence explicitly breaks chiral symmetry.

4.1.3.2 Domain wall fermions
In the previous section I described Wilson fermions, which remove fermion doublers at

the expense of chiral symmetry. According to Nielsen-Ninomiya no-go theorem [27], the

following conditions can not be simultaneously satisfied:

1. Absence of doublers

[\)

. Chiral symmetry

w

. Locality
4. Even number of dimensions
Wilson fermions are an example of giving up chiral symmetry to ensure the absence of

doublers. While the exact chiral symmetry can not be satisfied given other conditions,

a lattice version of chiral symmetry defined by the Ginsparg-Wilson relation
5 5 _ 5
v’ D + Dv° = aD~°D (4.24)

where D is the Dirac operator and a is the lattice spacing, can be satisfied ensuring

chiral symmetry in the continuum limit.

An action which satisfies this property is the overlap fermion action [28].

1 H
Doy =~ (1+7° 4.25
(147 7m) 429

where H = v° Dy, and Dy, is the kernel which is °-hermitian lattice Dirac operator,

such as the Wilson operator. While the overlap fermion maintain the exact chiral sym-
metry in the Ginsparg-Wilson sense, the calculation of v H? is particularly expensive

making it an unattractive choice for practical purposes.

An alternative proposed by [29] and developed by [30; 31] is to maintain an approximate
chiral symmetry by extending the number of dimensions to five. This formulation is
known as domain wall fermions (DWF) and it is the formulation used for the calculations

in this thesis.
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The DWF operator is given by

Dpwr = 8w D) (Ms) + 8,0 DL/ (m) (4.26)
4
1
D!az’(ME’) = 5 Z <(1 - ’YM)UM('Z.)(s%-HAL,I' + (1 + VV)U;JE(:C/)(SJT—[L,:E’) + (M5 + 4)6wm’
p=1
(4.27)
1-5755181 — mfl_%(SLs_lsl — 50 s=0
Di—s/ (mf) _ 1-275 5S+15/ + 1_%55715/ — gy l1<s< Lg—2 (4.28)

14 1—
—my 2~/5 608’ + 275 5L5—2s’ - 5Ls—15’ s = Ls -1

The 5-dimensional fermion fields constructed using this prescription have the property
that, up to terms exponentially suppressed in Lg, their s = 0 component contains only
the right-handed modes while the s = Ly — 1 component contains only the left-handed
modes. The 4-dimensional quark operators can then be constructed from 5-dimensional

fields using

1 5 1— 5

q= +27 U(2,0) + —W(z, Ly — 1), (4.29)
_ 1 5 _ 1— 5

G=U(z,Ls—1) 27 + B (z,0) 27 . (4.30)

As already mentioned, the contamination of left-chiral modes with right-chiral modes
and vice versa is exponentially suppressed in Lg, which means that the (lattice) chiral
symmetry is restored in the limit Ly — oo. In practice, we are limited to finite Lg, so
there will be some residual chiral symmetry breaking, which can be parametrised with

residual mass M ¢s.

Mé6bius Domain Wall Fermions (MDWF) [32] is a variation of the standard (Shamir)
DWF formulation above. The generalisation can be made by introducing parameters b

and ¢ so that the 5D component of the DWF operator is

D -P. 0 0  msPy
-P. D —-P. -~ 0 0
0 LT 0 0
Dpwp = . ' (4.31)
0 0 o - D -P_
myP_ 0 0 -P. D

where Py = #, D = (1 —eD)=1(bD! 4+ 1) and DIl is the Wilson kernel as before.

The choice b =1 and ¢ = 0 recovers the original Shamir DWF described by Eq. (4.27).

The inclusion of additional parameters has no effect on the physical results, which can
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be most easily seen from the mapping between DWF and overlap fermions

1+4m 1—m
D,, = 5 + 5 yseLs (75DM) (4.32)
(b+c)Dl
_ . 4.33
M= S b= oD (433)

In the above equation, €1, (x) = x/|z| is the sign function. From this equation it is clear
that we are allowed to change b and c freely so long as the sign of Dj; does not change.

In particular, choosing b — ¢ = 1 gives an action equivalent to Shamir DWF, because
er.(ay’ DY) = e, (DY) (4.34)

for any o > 0 and o = b+ ¢. The additional parameter o can be tuned to reduce the
chiral symmetry breaking effects. The Mobius DWF formulation used in this project
hasb—c=1land a=b+c=2.

4.2 Rotational symmetry

Partial wave states are eigenstates of rotational symmetry, which is broken on the lattice.

This section describes the effect of this breaking on two-pion states.

On the lattice the full rotational symmetry is broken to a subgroup which is the symme-
try group of a cube. This group consists of 24 transformations (48 with parity) which

can be arranged in 5 conjugacy classes:

The identity (E)

6 rotations by /2 rotating along the line parallel to the edge of the cube (6Cy)

3 rotations by 7 rotating along the line parallel to the edge of the cube (3C3)

8 rotations by 27/3 rotating along the long diagonal (8C'3)

6 rotations by 7 rotating along the diagonal of one of the sides (6C53)

parity transformed versions of the above

Now consider interpolating operators in the momentum space of the form O (p)Or(—p)
with p = (£1,+1,£1). Since these operators are all parity even (by Bose symmetry)
we only need to consider the 24 transformations without parity. There are 5 irreducible

representations, which are given in the rows of the character table:



Chapter 4 Lattice QCD 57

O | E |60 | 3Cy | 8C3 | 6Cy
A |1 |1 1 1 1
Ay |1 | -1 1 1 -1
E 1210 2 -1 0
T |3 -1 0 -1
T | 3 | -1 -1 0 1

As an example, a 3-vector, such as the momentum, transforms according to matrices
shown in the appendix. Calculating traces (to get the characters) shows that vectors

transform under the 77 representation.

4.2.1 Representation of 77 interpolating operators

We can construct a vector out of our 4 operators: ((+++),(++-),(+-+),(-++)), where
I use the shorthand notation for the signs of each of the components of p. For example
(4+-+) denotes an operator Or(p)Ox(—p) with p, = p. = +1 and p, = —1. This vector
will transform under a 4D representation of cubic symmetry group. The strategy is to
work out the characters of this representation and then use the character orthogonality

relation:

S AN ) = b (4:35)
g

where g are the group elements, R; and Ry are irreducible representations, x are the

characters and [g] is the number of elements in the group (24).

The characters are defined as traces of the representation matrices, so only the operators
which transform to themselves under cubic symmetry transformations will contribute.
(To be more precise an operator O; — j ¢;;0; will contribute ¢;; to the trace. Then
the trace will be equal to ), ¢;;.) As an example, let’s calculate the character of 6Cs.
We can pick any matrix from the 6Cs section of the appendix and have the momenta

transform accordingly. For the purpose of illustration, let’s take:

01 0
10 0
0 0 -1

We find that under this transformation, exactly two operators remain invariant: (4-+)
and (-++), other two operators transform into each other and therefore don’t contribute
to the trace. The character of Cy is therefore 2. If we chose a different matrix from 6Cy
equivalence class, we’d find different operators remaining invariant, but the trace would
still be the same (this follows from the definition of an equivalence class and the relation
Tr(h)=Tr(g~" hg)).

Repeating this procedure for other conjugacy classes gives the following table:
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0 E | 6Cy | 3Cy | 8C3 | 60y
{0z} |4 ]0 0 1 2

Finally, using the orthogonality theorem for characters we can see that this representa-

tion decomposes into Aj + 1.

To see which partial waves are contained in these representations, we can repeat the
same procedure with spherical harmonics Y,\. The representations contained in first

three even [ (odd values of [ are forbidden by parity) are

0— A1 (4.36)
2 B+ Ty (4.37)

Inverting this relation shows that the s-wave is contained only in A; representation and
that the next lowest partial wave in A; is the g-wave (I = 4). Interpolating operators de-
scribed so far in this section will also contain an unwanted d-wave contribution, because
of the presence of Th representation. It is much better to construct an interpolating

operator that is directly in the Ay representation, which is given by

OfP)= Y. Ox(p)O«(-p). (4.39)
|ple+1,£1,+1

4.3 Path integral formulation

While the canonical formalism discussed above has the nice property of manifestly pre-
serving unitarity, it is not very useful for numerical calculation because of the presence
of position and momentum operators. It is much more useful to express everything in

terms of real numbers and this is what the path integral formulation can achieve.

First, it will be convenient to define the field eigenstates | ¢(¢)) and the field conjugate
eigenstates | 7(t)) such that:

w(t) [ 7(t)) = | m(t)), (4.41)

where ¢(t) and 7 (t) are the Heisenberg picture operators and ¢ and 7 are their respective

eigenvalues. We can choose them such that they are orthonormal:

(01(2) [ 92(1)) = 0(¢1 — ¢2), (4.42)
(m1(t) | ma(t)) = 0(m1 — ma). (4.43)
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Also, as a consequence of canonical commutation relations, we have:

(<(1) | 9(0) = e FIEED), (4.44)

It will also be useful to define the Schrodinger picture operators and their eigenstates
by:

o(t) = efltpe 1 (4.45)
7(t) = efllze Ht (4.46)
¢l o) =¢10), (4.47)
#|m)=m |7, (4.48)

where I used the notation that operators and states with explicit time dependence are
understood to be in the Heisenberg picture, while the ones without the explicit time
dependence are in the Schrodinger picture. It follows that, up to normalisation, the

Heisenberg and Schrédinger picture states are related by:

(B(t) [ = (¢ e ™, (4.49)
| 6(t)) = e | ¢). (4.50)
(4.51)

Note that in Euclidean space, these state vectors are not related to their duals by
complex conjugation. Finally, notice that the completeness relation for Schrédinger

picture operators is given by:

1= [ao]ool= [dn|mix]. (4.52)

Consider the matrix element between Heisenberg picture ¢ states at times ¢t and ¢ + 6t
with 0t small:

(¢'(t+6t) | o)) = (¢'(t) | e | 4(1)) (4.53)
= /dﬂ(t)<¢'(t) | w(6))(m(t) | e~ | o(1)). (4.54)

Taking the Hamiltonian to be order such that all canonical conjugate fields are to the

left, the field operators in the Hamiltonian can replaced by their eigenvalues in the
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matrix element, resulting in:

(¢/(t+0t) | o(t)) = / dr () (@' (¢) | m () (m(t) | (t))e HImEoO9 (4.55)
_ / dﬂ(t)%G*H(ﬂ(t),¢(t))5t*i(¢/(t)*cb(t))ﬂ(t) (4.56)
(4.57)

Assuming that the Hamiltonian is quadratic in 7 (t), i.e.:
H(m, ¢) = miM;j(¢)m; + V (o), (4.58)

where the matrix M is symmetric and nonsingular, we can integrate over the fields

resulting in:

/ __ N eemns
(o400 ol = , (4.59)
where I defined ” .
Q(o.7) = 1w (D), 0(1)) +i 72O 2 (4.60)
%,—/
o(t)

N is an overall constant, whose exact value is immaterial, and 7 are the fields which

minimise the exponent, i.e.:

(A, o) +idnt)| o (4.61)
g = S H(x(0),60)| (1.62)

This means that 7 can be interpreted as the momentum conjugate to —i¢ and hence

the function @ can be identified with the Euclidean space Lagrangian:

(& (t+5) | (1)) = \/C;:We—w»@&. (4.63)

The factor of detM is, in the case of QCD, field independent, which means it can be
treated as a constant. Similarly, for infinitesimally time separated matrix elements

involving operators, which are independent of canonical momenta, gives:

N
vdetM

A general matrix element can be calculated from the above by inserting complete sets
of field states:

(@'(t+t) | O(e(1)) | ¢(t)) = O(@(t))e OO, (4.64)

(@(tg) | Or(to1) - - Onton | 6(t:)) = /d[dn - Okl(¢ () | O(8:)) (4.65)

_ N / DGO1 (11)Os(ts) . .. On(b)e=S,  (4.66)
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where S is the Euclidean action given by:

S = / dtL. (4.67)

The normalisation constant N’ can be removed by considering the ratio:

(@' (tf) | O1(to1) - .. On(ton) | o(t:)) _ [ DpO1(t1)Os(t2) . '-On(tn)efs'

(@/(t) | (1)) [ Dge (4.68)

The left-hand side of the above equation can be rewritten in terms of Schrédinger picture
operators and their corresponding eigenstates:

(@/(ty) | Ortor) .- Onlton) | 8(t:)) _ (¢ | e =0 e #Hli=52) . O, Hinmt) | ¢)

(@'(tr) | ¢(t:)) (@ | e 1T [ §)

(4.69)

When a time extent is finite, 0 < ¢t < T, we can choose ¢; = 0 and t; = T. We also
need to choose the boundary condition in the time direction. In this work we will be
using periodic boundary conditions, which means that, instead of choosing a fixed value
for initial and final states, we demand these states to be equal and integrate over all

possible field configurations:

) . fd¢<¢ | e_H(tf—tl)Ole—H(h—tz) . .One_H(t"_t'i) | ¢>

C(t1,tz,. .. tn dop(p | e=HT | ¢)

. (4.70)

To relate these correlation functions to Green’s functions (and hence the S-matrix), we
need to re-express them in terms of matrix elements of physical (unitary) states. This
can be done by inserting the complete set of unitary states 1 =¥ | n)(n | (the symbol
¥ denotes summation over discrete degrees of freedom and an integral over continuous

ones) and using the completeness relation 4.52 and the orthonormality :

Jdo ¥, (& m)im | e HT-00e=HE=:)  0pe=HE) | n)in | ¢)

Cllistay. s te) A6 F (@ Tm)m | e 77 [ny(n | 6)
(4.71)
_ ¥, (n| e HI-0 e Hti=t2) | OpeHte) | p) (4.72)
X, (n|e T | n) '
_ X, (n| Ore=Hti=t2) Oy | n)e*En(T*“*t’v). (4.73)

This sum contains the desired Green’s function contribution (0 | O1(t1)O2(t2) . . . On(tn) |
0), which will furthermore be the dominant contribution provided that T — t; + ¢, is

large.

Some comments:
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e Fermionic contributions

The above derivation is only valid for bosonic degrees of freedom. It can be shown
that the path integral result for fermions is similar but with two main differences.
The first one is that that the eigenvalues of field operators must be anticommuting
(Grassmann) numbers. The second difference is that in equation 4.64 the factor
of detM—1/2 is replaced by detM. Again, in QCD this factor is field independent

and will cancel between the numerator and the denominator.

Vacuum energy
We can insert complete sets of states between each pair of operators in Eq. 4.73

and divide by the lowest energy state, which is the vacuum energy FEyq.:

In Moy M1 <n | Ol | n1> ce <nk—1 | Ok | n>ei(EniEmc)(Titlthk)imi(Ekil7Evac)(tk71)

1 + In;évac e_(En_EMC)T
(4.74)
It is clear that the correlation function only depends on differences of energies and

the vacuum energy. Hence we can, without loss of generality, take E,q. = 0.

Boundary conditions

In the above derivation I assumed periodic boundary conditions in time direction,
so that | ¢(0)) has the same eigenvalues as | ¢(7")). I will now describe how
antiperiodic and periodic 4+ antiperiodic boundary conditions fit this picture. For

antiperiodic boundary conditions we have instead of Eq. (4.70)

= Jdslop | e MU0 M-t 0, 1t | g)

C(ty,ta, ...ty dop(—¢ | e=HT | )

. (4.75)
We can define an operator P, which flips the sign of the field ¢, i.e. Py | phi) =]|
—¢). Because the Hamiltonian is quadratic in ¢, the operator Py commutes with
the Hamiltonian and because P(g = 1 we have Py | n) = n, | n) = & | n), which

gives

In@l | 77n01e_H(t1_t2) ...0 ’ n)e_En(T—t1+tk)

in e EnT

The effect of 0, has no effect on the time dependence of the correlation function,

(4.76)

but it does affect the matrix elements.

More interestingly, we can use P+A boundary conditions in the time direction. In

this case for any field ¢ we have

p(t+T) =)+ (—o(t) =0 (4.77)
o(t + 2T) = ¢(t). (4.78)
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Then, between T and 2T, Eq. (4.63) tells us that (¢(t + 6t | ¢(¢)) is constant in

this interval. Hence

(@p+a(T) | O1(t1) ... On(tn) | #P+4(0)) = (¢p+a(2T) [ O1(t1) ... On(tn) | #p+(0))
(4.79)
where the right hand side satisfies periodic boundary conditions by Eq. (4.78) and

hence

inm ‘ O Hti=t2) O, ’ n>efEn(2T7t1+tk)
¥ e—2E.T

C(ti,te, ..., tk)pra = (4.80)

The conclusion is that P+A boundary condition have the effect of doubling the

time extent and hence suppressing the finite-time effects.

As an example, let’s consider a kaon two-point function, defined as:

Ck(t) = (0% (1)0k(0)), (4.81)

where Ok is a pseudoscalar operator which have the same quantum numbers as K, i.e.:
(K" | Ok (t) | 0) # 0. (4.82)
Applying Eq. 4.73, the dominant contributions are:

Cr(t) = (0| Of | K°)(K" | O | 0)e ™" + (K | Of | 0)(0 | Ogc | KO)e ("0,
(4.83)
All other contributions are suppressed by a factor smaller than e~™T. The second

matrix element can be related to the first one by charge conjugation symmetry:

(K°| O | 0) = (K% | Ol | 0)ei(ér+é0), (4.84)
(0] 0k | K% = (0] 0% | K e "&+é0), (4.85)

The C-phases cancel in the product of matrix elements and, assuming that the operator

transforms as O% = OI(, the correlation function becomes:
Cc(t) = [(K° | O | 0] (e—mKt n e—mﬂT—t)) (4.86)
An example of an interpolating operator with this property is

Ok = 8(x, )7 u(y,1). (4.87)
Xy

Similarly, a two-pion correlation function behaves as

Crr(t) = |Nug ? (e Bt 4 = BreT-0) 1 (4.88)
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where the constants are explicitly given by

Npn = (77 | Ogr | 0) (4.89)
C=(r| Onn | )P e ™. (4.90)

4.4 Correlation functions

The correlation functions discussed in the previous section can be written as:

(OW..6)) = [ Vv ab] oW, b, e (1.91)

for some function of the fields O. The normalisation Z is chosen such that (1) = 1. The
action can be split into a fermionic part and a gauge field part S = Sterm + Sgauge- The
fermionic part has the form )" &iaDijawja, where i and j are combined spin and colour

indices and « is a flavour index. Integrating out the fermionic degrees of freedom gives:

!

(O, 4,)) =

/ dU) [ detDyya(U)O' (U, D1 U))e~Somwse (4.92)

where O’ denotes an operator which consists of the sum of all the possible Wick contrac-
tions of fermion and antifermion using D~'(U) as a propagator. This means that, to
proceed with the calculation, we need to invert the fermion matrix D as well as calculate
the the fermionic determinant detD. Unfortunately, the latter tends to be prohibitively
expensive to calculate. In the early days of lattice QCD, a common technique was to set
the fermionic determinant to 1 (known as ‘quenched approximation’). This has an effect
of neglecting all the fermion loops in the sea. We can do better by defining a probability

density function, which includes the fermionic determinants:

1
P(U) =~ [[ detDo(U)e Soause (4.93)

which can be interpreted as a probability assuming that the product of fermionic de-
terminants is positive definite. Gauge configurations can be generated according to the

desired probability distribution by using a Markov chain Monte Carlo (MCMC) process.

Consider a sequence of gauge configurations U,, constructed in a stochastic way so that
the probability that U,, = U’ given that U,,_; = U is given by T(U — U’), which depends
on the initial and final configuration, but not on the index n. The transition probability
satisfies Y ., T(U — U’) = 1. Starting from an arbitrary gauge configuration, this

procedure will eventually reach equilibrium state, where the probability of reaching any
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gauge configuration U’ is equal to the probability of going out of it:
Y T(U - U)PU) =Y TU —U)PU) (4.94)
U U
= P(U’), (4.95)

where P(U) is the probability that U,_; = U. This equation indicates that at equi-
librium the probability distribution is fixed at P(U). Our objective now is to find the
transition probability T (U — U’), which corresponds to the correct probability dis-
tribution P(U). One way of achieving this is by noting that 4.94 can be satisfied by
demanding that

TU - UYPU)=TU — U)PU") (4.96)

which is known as the detailed balance condition, which can be satisfied by choosing

T(U = U’) = min <1, gg;) . (4.97)

To summarise, the MCMC procedure is as follows:

1. Start with an arbitrary gauge configuration Uj.

2. Propose a change to some other gauge configuration Uj.

3. Accept the change with probability min (1, %;g) with P(U) given by Eq. (4.93).

Repeat this step until acceptance is reached.
4. Repeat this procedure to obtain Us,Us,--- ,U,.

5. After a sufficiently large number of steps this procedure will reach equilibrium

(‘thermalise’) at which point we can start to take measurements.

There are several options available for choosing an update in step 2, the most common
being the Hybrid Monte Carlo approach [33].

For future reference, I will introduce some nomenclature. The quantity measured by in-
dex n is the Monte Carlo time measured in Molecular Dynamics (MD) units. The gauge
configurations generated in the MCMC procedure are referred to as ‘trajectories’. Not
all trajectories are used for the measurements and ones that are are referred to as ‘con-
figurations’. For example, 80 configurations measured every 20 MD units corresponds

to 1600 trajectories in addition to any trajectories used for thermalisation.
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4.5 Propagator sources

The evaluation of Eq. (4.93) requires the knowledge of the inverse Dirac operator, which
is a square matrix with the side L3 x T x Nspins X Neolours- Performing such an inversion
for every quark field on every gauge configuration would be too expensive. However in

practice we rarely need the value of the inverse Dirac matrix.

Suppose we choose our interpolating operators such that their dependence on the fermion

fields comes through linear combinations of the form
> () (x,1). (4.98)
Then Wick contracting will give contributions of the form

Di'(t) =Y n(x)D7'(x,1). (4.99)

Hence it is sufficient to only calculate contributions of this form. This can be done by
inverting

> D(x—y)D;(t) = n(x). (4.100)

The matrix D;l(t) is & Napins X Neolours DY L3 X T X Nipins X Neolours Tectangular matrix,
which is much cheaper to calculate and store than the full D~! matrix. The choice of
the source function n(x) is non-unique and different choices will correspond to different
overlaps of the interpolating operators with physical states. Some of the common choices

for the source function are:

e Point sources 7(x) = §(x — xq)
e Wall sources n(x) =1

e Momentum wall sources 7(x) = eP*

e Stochastic (‘noise’) wall sources, where 7(x) is a random number satisfying (n*(z)n(y)),

d(x—y), where the angle brackets denote an average over different random number

configurations. An example is a Zy X Zy wall source with n(z) = %(:tl +1).

It is not known a priori what choice of propagator sources will give the best overlap
with the desired physical state. A good guideline is to use the interpolating operators
which are the creation operators for the desired states in the free theory. For example,

to create a | 77 (p)7 T (—p)) state in the free theory we would use:

Ot (1) = (dpy u) (d—p7°w), (4.101)
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where u fields are summed with wall source and d, are summed with the momentum
wall source with momentum ¢q. At first sight this approach requires three inversions:
one for the u field and one for each of the d fields. We can save one inversion by using

cosine wall sources for the d quarks defined by

Neos(t) = cos(pgx) cos(pyy) cos(p,z) (4.102)

Noting that cosz = (e + e~™)/2 we can see that this source will contain all 8 pos-
sible momentum combinations of the form (£1,+1,+1). Using two such sources and

projecting the zero total momentum at the sink results in an operator of the form

Optrt = Z (dpy°u)(d_py°u). (4.103)
pe{£1,+1,+1}

Comparing with Eq. (4.39) we can see that this operator is in the A irreducible
representation of the cubic group, which is convenient for extracting the s-wave phase
shift.

4.6 Two pion correlation function

The two-pion correlation is defined as
Crn(t) = (0L (1) Oz (0)). (4.104)

The O, (t) operators in our case are the two-meson operators of the form [Iv>I][I7°1](t)
and the correct isospin projection is achieved by choosing the correct linear combination
of contractions, as shown below. In the case of I = 2 scattering we use the two-pion
interpolating operator constructed out of two pseudoscalar operators with the same

quantum numbers as the 7+ meson (the reson will become clear in the following section)
Orr(t) = [J’y5u] [CZ’y5u] (t) (4.105)

with the d fields multipled by the cosine source described in the previous section.

We only need to use cosine source operator at the source time slice. This is because Eq.

(4.103) combined with hypercubic symmetry imply that

(Ox(p, 1)Ox (=P, 1) 077 (. 0)) (4.106)

with Ox(p,t) = 1y5dp(t) and O denotes the cosine source interpolator is equivalent

to the correlation function with cosine source and cosine sink.
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Figure 4.3: Contractions contributing to two pion correlation function

The two pion correlation function has therefore the following time behaviour:
Cran(t) = Nypp(e Frnt 4 7 Enn(T=0y 4 ¢ (4.107)

There is an additional complication related to extracting two pion energy. Consider for

example the following time ordering:

(0] OF(1)0rr(0) | 0) === 3 (0| OL | n) (1 | O | O (4.108)
Taking a large t limit gives:

e For (77) =2 the lowest energy state corresponds to two pions with total momentum
0, which is not a physical contribution. A solution to this problem is discussed in

section 4.7.

e (7m)r—o state has the same quantum numbers as the vacuum, which means that in
order to obtain the state with the desired energy and normalisation constant, we
first need to subtract the vacuum state. This can be done by subtracting appro-
priate diagrams from vacuum contractions as discussed below. After subtraction,
the problem of zero momentum pions persists and remains the major limitation in

determining the Re(Ag) amplitude at physical kinematics.

To calculate Cr)1—2/0 which will be used to extract the corresponding two pion energies,
we consider the states given by equations 2.59 and 2.66 Next we calculate the Wick
contractions that contribute to the amplitude. There are 4 different types of contractions

as shown in figure 4.3.
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Contributions to each of the amplitudes can be shown to be:

smtn |7t r)s=D—-2R+V (4.109)
st | 7%7% = -C+2R-V (4.110)
(7970 | 7% =2D - C - 2R+ V (4.111)

The index ‘s’ means that the state has been symmetrised:

o1 _ _
|7 =5 (I7*(P)r~ (=p))+ | 7~ (P)7" (~P))) (4.112)
This leads to:
cl=2 = 2p-2C (4.113)
Cl=0 = 2D+ C—-6R+3V (4.114)

Note that the R and V contractions do not contribute to the I=2 scattering, which is

required by the isospin symmetry.

Presence of the intermediate vacuum state in the V diagram leads to the following
complication. Consider insertion of the complete set of vacuum (i.e. gluon) energy
states.

Vo= (0] Ok [ n){(n | Onx | 0) == (0| Orr | 0)? (4.115)

n

The lowest energy contribution corresponds to the product of two non-interacting pieces.
This is not the contribution that we are interested in, and therefore it has to be sub-

tracted explicitly:

V=Vo— (0] Oxr | 0)? (4.116)

This is a difference of two large numbers, which results in large error bars that introduce

significant uncertainty to I=0 measurement.

4.7 K — 7w three point correlation functions

The three point correlation function is defined as:

Ci (0, top: t7r7r) = <O7r7r (tww)Qi (topOK(O»a (4‘117)
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where Ok and Oy, are the kaon and pion interpolating operators and @Q; are the four-
fermion operators in the operator product expansion. This correlation function has the

time dependence (assuming trr — top, top and T' — tr, are large enough):

Ci(0,topitan) = (771(ters0) | Qiltop) | K1(0,0)) (4.118)
= Ny NgM;e™ (mx=Erm)lop o= Brntrr (4.119)
with
Npz = (0| Oz | 7m) (4.120)
Nk = (0| Ok | K). (4.121)

In 4.119 we have inserted the complete sets of energy eigenstates of two pion and kaon and
took the large time limit. The ‘around the world’ contributions (i.e. terms proportional
to e EnT for n other than vacuum in Eq. 4.70) was ignored for simplicity. The phases
of Ng, Ny and M; are chosen so that all these quantities are real. The energies E
and mg as well as the normalisation constants Ng and N, can be obtained from their
respective correlation functions in Eq. (4.86) and Eq. (4.107). The matrix elements can

then be calculated by taking an appropriate exponential fit.

The major difficulty of this calculation is obtaining pions in a final state with physical
momenta. The two pion energy E . in equation 4.119 corresponds to the lowest energy
state where two pions have a total momentum 0, i.e. a state where both pions are at
rest. Naively one might think of calculating the two pion energy by simply subtracting
the unphysical ground state. The main limitation of this approach is that in order to
reach physical pion momenta a lattice of size aL = ]20—: ~ 6fm is required, which is larger
than any of our ensembles generated so far. Furthermore, extraction of excited states
tends to be more noisy than calculating the energy of the ground state. We can avoid the
necessity of multi-exponential fits to extract the excited state contribution by utilising
the technique suggested in [34; 35] and applied successfully in our original calculation
of As [36; 12] and described below.

In AI = 3/2 there is an elegant solution to the above problem. Consider twisted

boundary condition defined as:
d(z+ L) = e¢(x) (4.122)
Taking a Fourier transform we find that:

d(p)ePHL) = g(p)ei@+rr) (4.123)
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This condition can be satisfied for arbitrary fields provided that

_9+27Tn
=7 ,

nez (4.124)

Since we are interested in the centre-of-mass frame, the most suitable choice of twist
angle 6 is m corresponding to antiperiodic boundary conditions. Our objective is to
construct pions that can have a momentum of +7/L eliminating the problem of pions

at rest and making it possible to study the decay on lattices as small as 3fm.

To do this we impose periodic boundary conditions on u and s quarks and antiperiodic
boundary conditions on d quarks. As a consequence, both 7™ and 7~ mesons can gain
the desired momenta, but ¥ in its lowest energy state will be at rest. In Al = 3/2
case this problem can be solved elegantly by applying the Wigner-Eckart theorem. The
Wigner-Eckart theorem relates the SU(2) matrix elements of a tensor operator to reduced
matrix elements

(LM | O, | j',m') = C(Jjj', Mmm') Ny (4.125)

where | j,m) are in the usual representation of SU(2) where m is the eigenvalue of the J3
operator which in a given representation is within range —j < m < j, C(J, M;jj'mm’)
are the Clebsch-Gordan coefficients and Ny;; is a constant. The proof is standard
[37; 38] and relies on the observation that O%, | j'm’) transforms under the direct product

representation and therefore must satisfy

| J,M) = Ny > C(Jj5', Mmm')OJ, | j'm) (4.126)

mm/’

The proportionality constant Ny;j» can not depend on the values of m and m’, because
that would spoil the transformation properties when both sides of the equation are acted
on with a raising or lowering operator. The above equation can be inverted by using the

orthogonality property of Clebsch-Gordan coefficients

> C(T45', Mmama)C(J 35, Mmhmb) = byt Smgm, (4.127)
J,M

and contracted with (J, M | to recover the Wigner-Eckart theorem.

In our case, we can use the Wigner-Eckart theorem for the isospin to relate K — (77) =2

matrix elements with different values of I3 to each other. Specifically:

— AI=3/2 3 - AI=3/2
(rm)i21 | Qanitres | KT = SAEmE2 | Qanlis [ K. (4128)
%((W*ﬂolﬂwowﬂ) (mhmt]

We can therefore relate the physical correlation functions to unphysical ones which are
easy to compute on a lattice. One can be worried that imposing different boundary

conditions on each of the quarks breaks the isospin symmetry and as a consequence the
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outgoing two pion state will be a mixture of states with different isospins. Fortunately,

the only isospin state that includes 7™ 7t is | I = 2,13 = 2), so it can not mix with

AT=3/2

Al= 3/2

other states even if the isospin is broken. The @'\ Ly—3/ Can be obtained from @y, "} /2

by applying an isospin raising operator. They are of the form Q = v/3Q’" with Q’ glven

by:

Q/(27,1) = (§idi)L(ﬁjdj)L
QY = (5idy)p(ud))r
Q/(&S)mﬂc — (§idj)L(ajdi>R

(4.129)
(4.130)
(4.131)

In AT = 3/2 case, we calculate the (777" | O’ | K) matrix elements which can be

related to the K — (77)7—o matrix elements by:

MR = ()i | Qi | K0) = \/§<w+w+\szK+> (4.132)

Contractions contributing to the above matrix elements are shown in figure 4.4. In this
figure, the four-fermion operator is represented by a pair of points to make the spin
contractions explicit. The Roman letters indicate colours of quarks entering the four-
fermion operator. In the figure contractions C1,C5,C5 and C7 have the LL operator
structure and the remaining ones have the LR structure. Note that because of the
left-left Fierz identity Eq. (2.85) we have Cy = —Cg and Cy = —Cs.

Explicitly we have:

AI=3/2

Mo = 2(Cr - Cs) (4.133)
Al=

Migg®? = 2(Cs—Cr) (4.134)
Al=

Mg = 2(Cy— Cy) (4.135)

We can now write the expressions for the A, amplitude in terms of KO — (77)7—o
(ME"), K+ = 7tn= (MEX") and Kt — otxt (M;) matrix elements:

Ay = \f Vi ZC < MK0> (4.136)
KT
f uqusZC < fM, ) (4.137)
_ Gryay > Cilw) EM» (4.138)
\/5 ud Y us i VY 2 i - .
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C1/Cs Ca/Cy

L/R

T

Figure 4.4: Al =3/2 K — 77 contractions

with

0 — AI=3/2
ME® = ((an) 52 | QA0 | K°)

N _ AI=3/2
MET = (em)2 | QA 1K)
_ AT=3/2
M; = {(nm) b2 | Qs | K ).

(4.139)
(4.140)
(4.141)

The relative factor between the two expressions is due to the different Clebsch-Gordan

coefficients.

4.8 All mode averaging

All mode averaging (AMA) is a procedure which allows use to extract maximum amount

of information in reasonable computing time. This is achieved by averaging each cor-

relation function over all source and sink times. Normally this procedure would be

prohibitively expensive, since it would involve propagator inversions at each time slice.

We can avoid this problem by doing the inversions on a selected subset of time slices
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(‘exact’ solves) and calculating an estimate on all time slices (‘sloppy’ solve). A residual
is then calculated on time slices that contain exact solves, and is subsequently used to

correct the remaining sloppy solves. This procedure is described in [39].

All mode averaging takes about 3 times longer than non-AMA calculation, but results

in an error reduction by a factor of 4-5. [40]

4.9 Statistical analysis

In this section we describe main tools used in statistical analysis of the data.

4.9.1 Fitting

As described in chapters 4.6 and 4.7 we often need to fit the data to fit some curve, in
our case it is typically a cosh fit. To do this we need to define a notion of a ‘quality’ of

a fit. For an uncorrelated fit such quantity is the y?:

w= S o A (4.142)
i i

where y is the dependent variable (in our case the correlation function function), z is

the independent variable (in our case the time), o; is the standard deviation of the ith

measurement and f is the function we are fitting to.

Clearly, the better the data agrees with the prediction given by function f the lower the

value of x? will be.

In our case, the function f is determined up to some number of parameters (e.g. Ny
and m, for pion 2-point function). We are interested in values of these parameters that

minimise x?. The problem is therefore reduced to the least squares fitting.

Typically one expects the value of x? to be equal to the number of degrees of freedom
of the theory. A higher value means that the data does not fit the expected curve very

well and a lower value indicates that the size of the error bars has been overestimated.

The above analysis does not take into account correlations between values y; (i.e. the
values of correlation function at different time slices). To take them into account we can

do a correlated fit.

To do this, we start by evaluating the covariance matrix:

Covij = (yi — (W) (y; — (¥5)) (4.143)

where angle brackets denote the gauge average.
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The correlated x? is then given by:

Xeorr = (yi — f (i) Covy;! (y; — f(z)) (4.144)

In this project we used exclusively uncorrelated fits, because practice shows that the

difference between the two approaches tends to be small.

4.9.2 FError calculation

To get a reliable estimate on the error of any gauge averaged value, we need to take cor-
relations between gauge configurations into account. There are two common procedures

which are used to achieve that: bootstrap and jackknife.

In bootstrap the resampling is done by averaging over sets of configurations randomly
chosen (with replacement) from the original set of configurations. Using this procedure
we can generate a large number of resampled values, which can then be used to calculate

the errors using:

Np—1

2 B ~B2 ~B\2

0B = Ng (<l/z ) — (i) ) (4.145)
where g8 = ﬁg iWB rand(y;). In these equations Np is the number of bootstrap

samples, Mp is bootstrap sample size and the rand function chooses a random gauge
configuration. Bootstrap resampling can be used to calculate the errors, but it is rather

slow.

The jackknife procedure provides a faster alternative to the bootstrap resampling. In
jackknife resampling we calculate averages over subsets of gauge configurations, typically
consisting of the set of all configurations with one configuration removed. Each quantity

is evaluated for each subset of gauge configurations, and the error is given by:

oF = (N —1) (7)) — (m)?) (4.146)
where )
Ui =~ D i (4.147)
i

4.10 Analytic continuation to Minkowski spacetime

The correlation functions calculated so far were all in Euclidean space-time. However
the real-world physics is all in Minkowski spacetime. We therefore need to analytically
continue our results. It was shown by Osterwalder and Schrader [41] that, given a cer-

tain set of assumptions (namely smoothness, Euclidean covariance, reflection positivity,
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permutation symmetry and cluster decomposition) then knowing the correlation func-
tion in Euclidean space it is always possible to reconstruct the corresponding Minkowski
space correlation function. Unfortunately this is not the case in lattice simulations,
where the Fuclidean correlation function is known only at a discrete set of points. An
alternative approach is to extract physical quantities directly from the Euclidean space
correlation functions. Single-particle states are well-described in this approach by the

Kéllen-Lehmann spectral representation.

A problem arises for multi-particle states. As we have seen in section 3.7, the phase shift
can be defined in terms of difference of phases between the initial and final states in two-
particle scattering. However, in Fuclidean space the distinction between initial and final
states can not be made. To see how initial and final states separate in Minkowski

spacetime, consider Lippman-Schwinger equation

| 6E) =] da) + / af | 65) (4.148)

E =+ i€

where | 1),) are eigenstates of the full Hamiltonian, | ¢,) are eigenstates of the free
Hamiltonian and Tgq = (¢35 | Hint | o). In Minkowski space we can define the states

at a given time t by taking a superposition of the energy eigenstates

/dae iBaty(q) | ) (4.149)
(1)) = / dae™Folg() | do) (4.150)

where g(«) is some smooth function of a. Then the Lippmann-Schwinger equation can

be written as

| B(t)E) =| 6() + / ABTE() | 6) (4.151)
with Bt v
TF(t) = / das B _géj)iﬁi‘f. (4.152)

When ¢t > 0 (¢t < 0), Eq. (4.152) can be calculated by contour integration by closing the
contour along the semicircle in the lower (upper) part of the complex plane. If Vﬁia has
poles of its own, their residues will be exponentially suppressed in time by the imaginary
part of the pole. As a consequence, 7, g (t) will vanish at t = —oo, while 7, 5 (t) will vanish
at t = +00. Eq. (4.151) shows that

Jim | 4t) = lim | 6(1)) (4.153)
Jim [ 7) = lim | o() (4.154)

which are the definitions of ‘in’ and ‘out’ states respectively.
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In the Euclidean spacetime the situation is different, because the Eq. (4.152) becomes
—Eat
+ e g(a)vﬁai
t)= | da————— 4.155
Ig (1) /aEaEB:I:Z'e’ (4.155)
which does not vanish regardless of the sign of ¢. This means that we can not, for

example, calculate the w7 phase shift defined as (77; out | wm;in) (see sec. 3.7).

Another issue of (infinite volume) Euclidean space is that it is only possible to extract the
ground states from the spectral decomposition of correlation functions. As an example,

consider the two-point function of w7 interpolating operators

d’p1 d°pa
(2m)32Ep, J (2m)%2Ep,

(0] O1 | p1,P2)(P1,P2 | O2 | O)e™ Erreat,

(4.156)

(0] 01(2)05(0) | 0) = /

For large t, the dominant contribution will come from the lowest energy level and it is in
fact impossible to extract higher energy levels from the spectrum. These two restrictions

are collectively known as the Maiani-Testa no go theorem [42].

The solution of both of these problems is provided by the finite volume. The phase shifts
can be calculated by using Liischer’s method, which is described in section 4.12. The
solution of the excited states problem is also trivially solved, because the energy levels

in the finite volume are discrete.

4.11 Discretisation effects - Symanzik effective theory

In lattice simulations we work with finite lattice spacing a. To relate the lattice results
to physical observables, we need to perform measurements at several values of lattice
spacing and subsequently extrapolate to a = 0 limit. A useful tool which helps in the
understanding of the continuum extrapolation is the Symanzik effective theory. It is an

effective theory expansion where the order parameter is the lattice spacing i.e.
SS’ymanzik = SQCD + aS1 + a252 + - (4157)

In the above equation, Sgcp is the usual QCD action and S,, are corrections which
contain dimension 4 +n operators. Because the observable quantities can not depend on
the cutoff (lattice spacing), the coefficient of every operator must have an explicit lattice
spacing dependence. The evolution of these coefficients can be described by Wilsonian
renormalisation group, but it is difficult to do in practice. As an example take some
dimension-6 operator Og. It will contribute to the Symanzik action as a?>Cg(a)Og. But
Cg must be dimensionless, so it can only depend on dimensionless quantities. In 241

flavour case, they will have the form Cg(amy, ams,aAgcp). Assuming the lattice spacing
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is small enough so that am;,ams, aAgep < 1 we can Taylor expand the coefficients
Cs(amy, ams, ahgop) = C(0,0,0) + a(cymy + csms + eahgep) + O(a?) (4.158)

where C4(0,0,0) is the continuum value of the coefficient. Calculating our quantities
at two different values of lattice spacing allows us to take the continuum limit by ex-
trapolating in a (or, if the coefficient proportional to a is zero, by extrapolating in a?).
Continuum limit of more complicated quantities such as Green’s functions can be found

in the same way.

In the remainder of this section I will argue that for our choice of fermion action (M6bius

DWF) the K — 7w matrix elements will scale as a®.

Gauge action There is no pure gauge term of dimension 5 in the Symanzik effective

action, so the gauge action is automatically O(a) improved.

Fermion action Imposing the equations of motion for the fermion field and ignoring
operators which were present at order 4 (such as m?y1), which will renormalises the

quark mass) there is only one new dimension-five operator
Ly = CSW&UJWG;Wwa (4'159)

which is known as the Sheikholeslami-Wohlert term or Pauli term or clover term in the

literature.

This term however is absent in chiral fermion formulations, because the Ginsparg-
Wilson relation 4.24 will not be satisfied at order a if the Dirac operator is shifted
by acswo" G, It may seem that the mass term will break the chiral symmetry (and
so the Ginsparg-Wilson relation) as well, invalidating the above argument. However,
we can use the trick introduced in section 2.5, i.e. replace the mass term with a spu-
rious field. Then the action will preserve the Ginsparg-Wilson relation forbidding the
Sheikholeslami-Wohlert term, which has no mass dependence. This shows that chiral
fermions in general and domain wall fermions in particular are automatically order a

improved.

Pseudoscalar operators To ensure the correct scaling we need to improve not only
the action but also the interpolating operators. The pseudoscalar bilinear %1 is a
dimension 3 operator, so the order a corrections will have to come from the dimen-
sion 4 operators. The only dimension-4 operator that can contribute to the process is
mapy>1h, which just gives corrections to the operator renormalisation and hence is not a
new operator in the Symanzik expansion. Hence, the pseudoscalar operators are O(a)

improved.
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Four-fermion operators The four-fermion operators are dimension-6 operators and
will receive O(a) corrections from dimension-7 operators. These dimension-7 operators
will necessarily have to contain four fermion fields and the remaining mass dimension
can come from either a covariant derivative or a mass factor. The operators containing a
derivative such as (5(1—~°)d)(7P(1 —~°)q) or (57*(1 —~°)d)(go,w D" q) have a different
chiral structure than the dimension-6 ones. Explicitly, they contain one left-chiral and
three right-chiral fields, which means they will be in either (3,15), (3,6) or (3,3) rep-
resentations, which are different from representations of dimension-6 operators. Other
dimension-7 operators containing the derivative can be in (15,3), (6,3) and (15,3), but
there are no operators in the same chiral representations as the dimension-6 operators.
Similarly, the operators with an explicit mass dependence will correspond to chiral op-
erators with a single mass insertion. However, the mass term term will mix the right
and left handed fields resulting in operators which can not mix with dimension-6 oper-
ators for the same reason as above (in fact, using equations of motion one can see that

IDy = map, so the mass operators do not need to be considered separately).

The above reasoning applies only if the chiral symmetry holds. Using a non-chiral
formulation, such as Wilson fermions, will reintroduce the O(a) effects in K — nm
matrix elements even if the action itself is O(a) improved. For example, as we have
seen in sec. 2.4.3.3, we can expect a(ms; — mgy) mixing between QX/Y operators and
other operators in the theory, which means that these operators will contribute at O(a)
even though they are absent in the leading order mixing. Furthermore, there is nothing

protecting us from mixing with dimension-7 operators such as (5(1—~°)d)(glP(1—~°)q).

4.12 Finite volume effects

4.12.1 Luscher’s method

In this section I will describe Liischer’s method which relates the power-like finite volume
corrections to the scattering phase shifts, therefore bypassing the Maiani-Testa no go
theorem. I will start by describing the differences between finite and infinite volume
particle scattering and show how the phase shift comes into play. The discussion in this

chapter follows closely [43].

The main difference between finite and infinite volumes is that in finite volume momenta
can only take certain discrete values. For example if we choose a box with periodic
boundary conditions in a given direction, the momenta in this direction can only assume
values which are integer multiples of 27 /L where L is the box size. This can be seen by

taking a Fourier transform of the wavefunction given the condition

Y(z) =p(z + L)
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As a consequence all momentum integrals have to be replaced with sums:

3
/ (Czlﬂl))3x1/_> ] (4.160)

Following [43], we can estimate the difference such difference by using the Poisson sum-

mation formula:

Y ) =) fl@) (4.161)

where f is the Fourier transform of f. This formula can be rewritten as:

1 d3k dgk X

If f has no singularities, then the sum on the right hand side vanishes (by contour
integration) and we can simply write that (up to exponential corrections which will be

neglected in this chapter):

3
10 = [ G (4163)

The 77 scattering will involve loop sums (integrals) of the form

_ [dd f(q)
Z{;I—/ 2m %(q2_m2+i€)((P+Q)2—m2+ie))' (4.164)

Working in the centre-of-mass frame with p = (£, 0) the integral over d¢® (which is an

integral both in finite and infinite volume) can be calculated by contour integration to

I:—i < f(wq=(1) + f(wq+E7q) ) , (4165)

2wy ((E —wg)? — wg)) 2wy ((E +wg)? — wg)

give

where wy = /|q|? + m?|. The second term has no pole and therefore does not contain
any power-like finite volume corrections. Defining a new ‘momentum’ variable k as
E = 2vk? + m2, the first term can be rewritten as

_Z.f(wtp q)(E + 2Wq)
8wyl (k% —|af?))

I = (4.166)

The conclusion is that the power-like corrections will arise then k2 = |q|?, i.e. when the

intermediate two-pion state goes on-shell.
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To calculate the finite volume corrections in pion scattering, we therefore need to evaluate

the sums (and integrals) of the form:

(4.167)

with ¢2 = |g|* and k2 = |k|* and f being some analytic function of k. To remove the

angular dependence, we can expand the function f in spherical harmonics
00 l
=> > fm)pv™ (4.168)
=0 m=-—I
Because we are interested in [ = 0 state, I will focus on the foy term only.

Now the consider the function

d*k k) —
= Z foo foo Q) _ / o fOO((qQ)_ kJ;O)Os(Q) (4.169)

which follows from the Poisson summation formula, because the integrand has no poles
(assuming foo is analytic). The exponent s requires further explanation. We want to
take s = 1, but that would make the integral and the sum containing foo(q) divergent.
The condition of convergence of this sum and integral is Re(s) > 3/2. Starting from
any s in this region, s = 1 can be reached by analytic continuation. This is a different
approach to e*(@~%) UV regulator introduced in [43]. The reason we chose to use
analytic continuation approach instead is that the resulting formulae result in a faster
numerical convergence. Using the principal value prescription for the integral, the finite

volume correction can be rewritten as
1 foo (k) / &’k foo(k)
_ = 4.1
3 Ek: (¢ — k2)* P (27)3 (¢% — k2)* = foo(a L3 Z (4.170)

The principal value prescription can be related to Feynman ie prescription by the identity

11
E  E +ie

+imd(E) (4.171)
resulting in the finite volume correction

_ Z foo(k _/ d*k foo(k) _ afoo(q) _ ifoolq Z
T3 k:2 (2m)3 (¢% — k2)% + ie 87TE 2EL3 p (¢® — k:2

(4.172)

So far we have considered the finite volume correction from a single 77 loop. Full
calculation requires the summation of loops shown in Fig. 4.5. By rewriting the finite

volume loop contribution as a sum of infinite volume contribution and the correction,
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Figure 4.5: Two pion rescattering
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Figure 4.6: Finite volume correction to two pion scattering correlation function

the correction to the mm — 77 correlation function can be rewritten as shown in figure
4.6.

Using geometric series, this correction can be rewritten as:

1

~NEV A
CTE) = AF1+iMF/2A

(4.173)

This correction has poles at det(1 +iMF/2) = 0. Assuming that A only couples to the
s-wave component of the two pion state the above simplifies to 1 + iMFs/2 = 0, which

can be rewritten in terms of the s-wave phase shift § as:

6(q) + ¢(q) = nm (4.174)
with
tan ¢(q) = — Zo‘f)i/;) (4.175)
Al )= g 2 e TR 1)
P’ = E: —m2, (4.177)
4= % (4.178)

The form of Zyy given above is valid for antiperiodic boundary conditions in all 3 di-

rections. The value of Zyy for s = 1 can be calculated using the method given in the
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Appendix A of [44]. This is the Liischer quantisation condition, first derived in [45]

We can compare the finite volume and infinite volume two pion wavefunctions by com-
paring the corresponding correlation functions and demanding that they are equal. In

infinite volume we have:

c) = / d*x(0 | o(x, £)5(0,0) | 0) (4.179)
— o [ / Py / P2 101 5(0,0) | Br,pi: B, po)|? e~ B+ B4 1805
2m)32E, | (21)32E, ’ P B2,
2dqu 2 iE
_ 1 B2 o—iBt 4.181
2/(2 )3E2\<ora<o,o>\ e (4.181)
~ 1o [AEL 101 0(0.0)| B} e (1.182)

where in second line we inserted a complete set of two particle states with 1/2 indis-
tinguishability factor and shifted the interpolating operators to the origin. In the third
line we used the expression for a Dirac delta function to integrate over x and po and
defined F = 2F = 2E5.

In finite volume we have:

CPV() = / Bx(0 | o(x,1)7(0,0) | 0) pv (4.183)
= VY [0]0(0,0) | nm)py|* e (4.184)
=V / dEp(E) (0] ¢(0,0) | 7r) py|* e E (4.185)

where p(F) is the density of states function, so that p(E)dE counts the number of states
between energies F and E + dE.

The density of states function can be derived from the quantisation condition (4.174).
To do this first note that both §(¢) and ¢(q) are equivalent to d(q) + 7 and ¢(q) + 7
respectively. This means that the constant n in 4.174 can not be a physical quantity
in this interpretation. However, if we restrict the phase shift to be in range —7/2 <
d(q) < m/2 and choose the value of ¢(q) to increase by m whenever ¢ crosses a pole, the
quantity n will count the number of states with energy below E(q). Then, the number

of states between energies F and E + JF is given by:

wpean e = L (LD 0D (0150 o) s

In the infinite volume limit the energy levels will get infinitely close together. Then

taking 0 F to be small the above equation reduces to

p(E) = % (8(q) + agg )) ot (4.187)
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By demanding both finite- and infinite-volume correlation functions to be equal we need

2F
| 770, E) oo = q\/WV (8(] g¢> | 77, E) pv . (4.188)
Similarly for the kaon:
| K, Ex)oo = V2EKV | K, Ex)Fv (4.189)

Using these results the K — 77 matrix elements can be related by
oo | M | K)oo = Fpy(nm | M; | K)pv (4.190)

where F' is the Lellouch-Liischer factor given by

E2 (95 06
F2 = gy 2t o (99 99 4.191
7V 7 9q + 9 ( 9 )

d is the two-pion s-wave phase shift, which can be calculated using the Liischer quanti-
sation condition, d(q) + ¢(q) = nm, but the calculation of the derivative in Eq. (4.191)

requires an approximation.

4.12.2 Exponential finite volume correction

Having calculated the power corrections we now return to the estimation of exponential
finite volume correction. We will rely on ChPT Eqgs. (2.161) - (2.164). To one-loop order
we write the systematic error associated with the finite-volume corrections in terms of
the ratios AMjeg/Mro. These are given by:

AMG 1 L4 M
O; I R A 2’ 2
Mih f2(my —m2) [ 2" ( 7r> Bloms mic )
5mi 13
+m3 <4m§ " m3 + 2m )Aﬁ(mi,m%,mi) +
(m 3m m2 + 2mi )Aﬂ(m m?2 m2)+ —}m—%{—inﬁﬂ —|—1m2 Ae(mQ)
K K 1 T i Am2 12 KTl "
—mj, 5mi 45
- ( mgK —4m?3 + 4m3r> Al(m3) + (4m§ - Zm%{ + 11m,%) Aé(mi)} (4.192)
and
Mlo 5m
et = (S i) A i m) + (e~ 2K m )
LO
1 % 1m3,
I MG e ) ~ (4+2m) Al(m)

+ (57;% - ) Al(m2) — Z%M( )} (4.193)
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The functions £(m?) and B(q?, m2, m3) correspond to diagrams with one and two pseudo-
Goldstone boson propagators respectively as illustrated in Fig. 2.10 and they are the only

sources of finite-volume corrections. They are given by (in Minkowski spacetime):

mz)zz/dko ! —i ! (4.194)
- o k2 —m?2 +ie */EQ—i—mQ, ‘

dk‘o i B w1 + wo
Bla, mr,ma) Z:/ —m?) ((g+k)2-md) Z: 2wiwa(gf — (w1 +w2)?)’
(4.195)

where the symbol ¥ denotes the summation over k in finite volume or the integration

in infinite volume. w; = 4/ k2 + m? and wy = /(7 — E)Q + m3. The difference between

the sum and the integral can be calculated using the Poisson summation formula:

o . 3
ngfk /dk3fk Z/dk R)elth, (4.196)

where the summation on the left-hand side is over all k = 2% 11, where 7 is a vector of

integers. If f is a function that has no singularities on the real axis, then the second
term on the right-hand side gives the exponential finite-volume corrections which we are

trying to evaluate.

4.12.2.1 Corrections to £(m?)

With periodic boundary conditions, applying the Poisson summation formula (4.196) to
£, writing k in spherical polar coordinates and integrating over the angles, we obtain for
the difference between the finite and infinite-volume values of £(m?) [46]

m? m K (|7tjmL)

5 (51 (mL) =

Al(m,L) = 62

(4.197)

where K7 is a modified Bessel function of the second kind, 77 is an vector of integers and
the sum is over all 7 # (0,0,0) € Z3.

Since our choice of boundary conditions breaks the isospin symmetry Eq. (4.197) does
not give the correct finite-volume corrections for all the instances of ¢ which appear in
Egs. (2.162) and (2.164). Specifically, 7°, K* and 7 satisfy periodic boundary conditions
(so that the corresponding finite-volume corrections are indeed given by Eq.(4.197))
whereas 7+ and K satisfy antiperiodic boundary conditions for which the finite-volume
corrections to £ are different. In the antiperiodic case, we replace f (E) in Eq. (4.196) by
f(k 4 @), where § = (£)(1,1,1). Shifting the integration variable from k to k+ q, we



86 Chapter 4 Lattice QCD

find that 0;(mL) in Eq. (4.197) is now replaced by:

5A mL = Z nz+ny+nz IQ(“TZ(HL) 7 (4.198)
n
n;éO

where the index A denotes that the correction is evaluated for a volume with antiperiodic
boundary conditions in all spatial directions. The difference from the periodic case is the
additional factor (—1)"*"*"= in the summands. The known formulae in Egs. (2.162)
and (2.164) do not differentiate between different isospin components, and therefore do
not specify which linear combination of periodic and antiperiodic corrections should be
used. Since we are only using these formulae for an approximate estimate of the size of
the error, we choose to be conservative and to include the larger corrections which are

those obtained with the periodic boundary conditions given in Eqgs. (4.197).

4.12.2.2 Corrections to B(my, mg, my) and B(my, mg, my)

We now consider the contributions from loops with two meson propagators and which are
proportional to the function 8. We start by discussing the corrections to 8(m, mg, m;)
and f(mzq, mg,my), for which in Minkowski space the external energy is below the cor-
responding two-particle cut; e.g. in B(mg, mg, m;) the external energy in the centre-
of-mass frame is m, which is clearly smaller than mg + m,. In such situations the
finite-volume corrections are exponentially small. We postpone the discussion of the con-
tribution which does contain the two-particle cut, that proportional to S(mg,mz, mz),

until the following subsection.

The corrections to B(mx, mg,mz) and B(my, mg, my) are proportional to

-

dgk etk (w1 + wg)
A 4.199
B(qa my, m2 7%:0/ 271'3 2w1w2< (w1 + w2)2) ( )
with
|2 2 2 S, 7 2
= k| +m] and wy = ‘q + k| +m5. (4.200)

Because of the angular dependence inside the integrals, we evaluate the integrals nu-
merically. With the boundary conditions which we are using the corrections with a K+
and 7~ are equal and opposite to those with the neutral mesons. In the estimate of
the uncertainty we conservatively do not exploit the cancellation but take the absolute

value in each case.

We note that care must be taken when using Egs. (71) and (73) for the finite-volume
corrections to 3 in Sec. VIII of [24]. In Eq. (4.199) above, the two terms in the factor in
the denominator of the integrand ¢? — (w1 + w2)? come with opposite signs. How this

arises in finite-volume Euclidean correlation functions is explained in Appendix 4.12.2.3



Chapter 4 Lattice QCD 87
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Figure 4.7: Contribution to the correlation function in which two pions are
produced by an operator at the origin (grey circle), and rescatter by the strong
interactions denoted by the filled circle.

following [47]. The corresponding terms in the denominator of Eq. (73) in [24] appear

(incorrectly) with the same sign.

4.12.2.3 B(mg, Mz, M)

Kinematically this case is simpler than the two [ integrals which were evaluated in
Sec.4.12.2.2 since the external particle (K) is now at rest which eliminates the angu-
lar dependence from the integral. Furthermore, both internal =+ propagators satisfy
antiperiodic boundary conditions. In this case however, the integral for 8 has a pole
at wy = mg /2, so the Poisson summation formula will give both the exponential and
power-like corrections. The power corrections are included as the Lellouch-Liischer factor
F in Eq. (4.190) and we do not include these in the estimate of the finite-volume uncer-
tainty. In the case with ¢ = (mg, 6) and m; = mg = my, f(mg, My, my) in Minkowski
space has an imaginary part which leads to finite-volume corrections in Euclidean space
which decrease only as inverse powers of the volume and not exponentially. These power
corrections are the one-loop chiral perturbation theory (NLO ChPT) contributions to
the Lellouch-Liischer factor F' in Egs. (4.190) and (4.191). This factor is included fully
in our analysis and so we must not include it again from NLO ChPT. A detailed study
of how the Lellouch-Liischer factor arises in one-loop ChPT was performed in [47], but

we hope that it will be useful to summarise the main points here.
In Minkowski space, performing the kg integration in the centre-of-mass frame we obtain

B3k 1
2m)% (k) [m% — 4w(k) + ie]

Blmg, My, mz) = / ( (4.201)
where w?(k) = ‘E‘Q

2
+ mz.

In finite-volume Euclidean space we evaluate the correlation function illustrated in
Fig.4.7. The kaon propagator is irrelevant for our discussion and so we amputate it, and
consider the two pions to be created at the origin, to rescatter and to be annihilated on
the timeslice at t,. After performing the integrals over ¢, 7> (with phase factors e

and e~ respectively) and Z and exploiting the resulting ¢ functions, we obtain for
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this contribution to the correlation function:

4

E, . .
I—/ dt/ E2d+w ei(B1—E2)t pi( Es—Ea)(t,—t) (4.202)

where in a finite volume the integral over k is replaced by the corresponding sum. Here
w%—wg—wQ( ’ ‘ +m2 and w? = W = W(§) = |§1* + m2 so that w34 are not

integration variables.
The energy integrals can now be performed by contour integration; there are 3 contri-
butions depending on the value of ¢.

1. The first contribution is from the interval —oco < t < 0 and gives

B e—20(D) ty Bk 1
32w2(Q) (2m)3 w2(E) (w(g) + w(q)) ‘

(4.203)

2. The second contribution comes from the region 0 < t < t,, and gives

2@ty [ g3 1
32w2(q) J (21)% W2(E) (w(k) — w(]))

I = (1 — e 2@R—w@tyy  (4.904)

3. Finally we have the contribution from the region ¢, <t < oo which gives

dSk e—2w(k )
= 32w2 (@ / W2(R) (w(F) + (@) (4.205)

The contribution to the amplitude is given by the coefficient of

e_2w(®ty

4w2(q)

In finite volume the integrals over k are replaced by the corresponding sums and we

obtain the following three contributions.

= 8L3Z E

(4.206)

??‘1*—‘

(F) +w(@)

from the region ¢ < 0.

vyt
T, = LY § , 4.207
’ ( L3 > G Emr ><w<k> —w(q)) o

from the region 0 < t < t,, where v, is the degeneracy of states with k= ¢. The term

proportional to t, is the F'V correction to the two-pion energy and it can be checked
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that this is correctly given by the Liischer quantisation condition [47]. Finally from the

region t, <t < oo we have

Ty = (%) 16(.ul3(q)' (4.208)

We now separate the terms with |k| = |¢| from those where |k| # |7]. When |k| = |7],

v, 1 1 1
P \om ) 20

where the first term in the braces corresponds to 77 and the second corresponds to T3.

we find a contribution

The contribution from T3 is cancelled by the F'V correction to the matrix element of the
two-pion interpolating operator at t, [47] whereas the one from T} is a contribution to
the FV effects in the amplitude.

The contributions from |k| # || come from T} and Ty and can be combined to give

1
= . 4.210
i g@ B) (@2(F) — (@) R

Thus in Euclidean finite volume we obtain

v,
S+ ngES : (4.211)
where it is convenient to define
w () 1
S, = - (4.212)
AL |k§q.1 () (2(E) - 2(@)
and the corresponding integrals by
1
g, = qu/ ﬂ . (4.213)
k) (w2 (k) — w(@)

Relating this sum to the corresponding integral gives the LL-factor [47]. We now make
this more specific and determine the exponentially small corrections. In the difference
S} —Sj there is no term with a pole at w(k) = w(q) so that this difference can be related to
the corresponding integral using the Poisson summation formula and the exponentially

small finite-volume corrections can be identified

1
S, -8, = L3w(D Z (4.214)
Rl

1 Vg
N ngq—»)z D@k +w(@) 8L

= Ji—Jo+ +e10- (4.215)

vy
8L3w3(q)
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Thus we see that the finite volume and infinite-volume results are related by

=+ €10, (4.216)

3V
/ ! q

Yq
16 L3E3

where eq o represent the exponentially small corrections,

1 1 /OO sin(nkL)
e1n— - kdk , 4.217
= TS@E 2yl P SE® o) 2
and n and k are |77 | and |k | respectively. It was shown in [47] that —Jo + S} + 716%‘1]53 is

precisely the one-loop contribution to the Lellouch-Liischer factor. The residual expo-
nentially small finite-volume effects are given by e 9. (The ultraviolet divergence cancels
in the difference Jy — Sj), but if the zeta function regularisation is used, as in [45], then
Jo=0.)

We have presented the above detailed discussion because we believe that there is a mis-
understanding in the literature. In Egs. (71) and (73) of [24], the authors take the finite-
volume corrections in S(mg,my, my) in Euclidean space to be the difference between
the momentum integral and the corresponding sum over the integrand in Eq. (4.201) but
with the replacement m?% — 4w?(k) — m2% + 4w?(k) in the denominator. Since there
would now be no singularity in the denominator, the finite-volume corrections would
be exponential and there would be no Lellouch-Liischer factor. The above derivation

demonstrates instead the origin of the power corrections in the volume.

Throughout the above discussion we assumed periodic boundary conditions in all three
spatial directions so that k; = n; x (27/L) where n; is an integer. In our determination

of As we use antiperiodic boundary conditions in all three directions so that

(—1)etnytns sin(nkL)

1 oo
€1,0 = T 8n2w(q) L Z n/o b dk w(k)(w(k)+w(q))

7,n#0

(4.218)

4.13 Nonperturbative renormalisation

The Wilson coefficients (C;(n)) and composite operators (Q;(¢)) appearing in Eq. (2.122)
are separately renormalisation scheme and scale () dependent. To obtain the physical
amplitudes they must be combined in the same scheme and at the same scale. The
C;i(u) are calculated in perturbation theory for which it is convenient to use the M'S -
NDR scheme (called MS in the following). The matrix elements whose calculation
is described in Sec. 4.7, on the other hand, are obtained using bare operators with the
lattice spacing as the ultraviolet regulator with the lattice discretisation of QCD. We

need to relate two different renormalisation schemes to each other. Using Eq. (2.126)
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we have
Qf =z Qf (4.219)
2 =2z"Q9 (4.220)
(4.221)
and hence
Qf =zln(zp)y QP =z, (4.222)

The matrix ZgQHRl can be calculated by imposing renormalisation conditions R; on the
Green’s functions of operators Q2. The operators can be renormalised non-perturbatively,
but only into schemes for which the renormalisation condition can be imposed on lattice
Green’s functions. The M'S scheme, which is based on dimensional regularisation can-
not be simulated in a lattice computation. Our procedure is to start by renormalising
the operators non-perturbatively into schemes which can be simulated, specifically the
RI-SMOM schemes [48] as described in detail in [12] and briefly summarised below. In
this case we have

QMS = ZHI->MSQRI (4.223)

1

QZRI _ ngt%RIQéat‘ (4.224)

The matching between the RI-SMOM and MS schemes is necessarily performed in
perturbation theory and is currently known at one-loop order. (In sec 5.3 we also present
the matrix elements in two RI-SMOM schemes so that if the perturbative coefficients
are calculated to higher order in the future, these matrix elements can be used to reduce

the systematic uncertainty in As due to the truncation of the perturbation series.)

We now briefly summarise the renormalisation procedure. We write the five-point ampu-
tated Green’s functions of the three operators in Eq. (4.129) as a three-component vector
A = (A7), Asg), As,8)mx) = (A1,A2,A3), and impose a renormalisation condition of
the form

P{A ()} =F, (4.225)

where P is a vector of projectors and F' the corresponding tree-level matrix. Denoting
the tree-level contribution by the superscript (0) and including explicitly the spinor and
colour labels, the matrix F' is given by

AB;CD

P {A‘p)} — [p]BADC [A(’O)Lma = F;. (4.226)

J Basdy J

Here Greek letters label spinor components, the upper-case Roman letters represent

colour indices and i, j = 1,2, 3 denote the operators and projectors. For illustration, the
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tree-level value of the Green’s function of Q1) is
0 AB;CD
M)y =[0Mas()s + (#95)as(115)6] 64757

— [(")as(¥)48 + (7*5)as (7 75) 5] 6P 55C (4.227)

For the renormalisation we only consider the parity-even component of the four-quark

operators.

The choice of projectors is not unique and we implement two different sets known as the

Y. and ¢-projectors, given explicitly by

JLLK () 5a(7")sy + (197 ga(7#797)5y] 671 82K
[P(W)} - [(7#),3&(’)’“)67 - (7“75)[3a(’}’“’y5)57} §IIgLE (4.228)

o (V)87 (V)50 — (F*7°) 3y (V27%) 50 ) 67K S
and
JLLK [(%)Ba(g)&y + (%75)6a(¢75)67] 5 gLE
[P (,1)} sager = | [@Waal@oy = (@7)5a(g)s,] 871655 ) (4.229)

[(%)IB’Y(ﬁ)éa - (%75)/3,},(%75)60[] SIK LI

The corresponding matrices F' read

128N(N+1) 0 0
FO") = 0 128N? 128N (4.230)
0 128N 128N?
and
32N(N+1) 0 0
Ff =g 0 32N2 32N |, (4.231)
0 32N  32N?

where N = 3 is the number of colours.

The final result for the amplitude is, of course, independent of the choice of intermedi-
ate scheme defined by P, but comparing the results obtained with different projection
operators gives us an estimate of the systematic uncertainty due to the truncation of
perturbation theory in relating the RI-SMOM schemes to the MS schemes.

The renormalised operators are related to the lattice ones by a matrix relation of the

form:
Qi (1) = Zij(pa) QF* (a). (4.232)

In order to extract the renormalisation constants we follow the standard procedure [49;
20] and compute numerically the amputated Green’s functions of the bare operators in

Eq. (4.129) with particular choices of external momenta (as discussed below) on Landau
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gauge-fixed configurations. We next solve equation (4.225) which we rewrite in the form

Zij(pa)
Z3(pa)

Py {(A]fare(a)} = Fik (4.233)

wr=p?

where /Z, is the quark field renormalisation constant and g is the renormalisation

scale, which we ultimately choose to be 3 GeV.

The choice of Z; is also not unique, and we use the following two cases:

() (V)
7 T Zim
TV = 12q2 TI'A!‘I}g, and ZV = ZST‘I'A'L‘; H, (4234)

where Af is the three-point amputated Green’s function of the local vector current and
Zy is the renormalisation constant of the local vector current. In practice, we multiply
each side of Eq.(4.233) by the square of the corresponding side of Eq.(4.234). This
eliminates Z; and after this multiplication the left-hand side of Eq. (4.233) contains the
ratio of renormalisation factors Z; /Z‘Q/ Zy is then calculated by imposing the Ward
identity Zy (P |V*| P) = 2mp, where V* is the local vector current and | P) is the state

of a pseudoscalar meson P at rest with mass mp; this is explained in detail in [50].

The choice of projection operator for the four-quark operator and Z; defines a renor-
malisation scheme, which we will label (a,b) with a,b € v*,¢ for the choice of pla)
and Z,gb) . In particular, we consider the (y*,7*) and (¢,4) schemes, having found in
earlier studies that the perturbative conversion to the MS scheme is more precise in
these schemes. This is based on the observation that the non-perturbative running is
generally closer to the perturbative one for these schemes for the four-quark operators
in Eq. (4.129) [12; 51]. We follow our previous practice and choose the (¢,¢) scheme for
our central value and the (v#,7#) scheme to estimate the error due to the perturbative

conversion to the MS scheme.

Chiral symmetry (or specifically its SU(3)y subgroup) suppresses mixing of operators
in different irreducible representations of the chiral symmetry group, so that if the
symmetry is exact, Z;; is a block diagonal matrix with a 1 x 1 block corresponding to
the renormalisation of the (27, 1) operator and 2 x 2 block corresponding to the mixing
of (8,8) and (8,8)mx operators. In a massless renormalisation scheme with a chiral
discretisation such as the Domain Wall action, we expect a mixing pattern very similar

to this, but with a small O((amyes)?) mixing between the blocks.

In order to suppress physical infrared chiral-symmetry breaking effects we choose to
impose the renormalisation conditions with the kinematics indicated in Fig.4.8 with
p? = p3 = (p1 — p2)? = % We compute the Green’s functions for several momenta and
interpolate to p = 3 GeV using a quadratic ansatz. Using partially twisted boundary
conditions, we have a good resolution around the targeted momentum. The momenta

in such RI-SMOM schemes are chosen so that there are no “exceptional” channels, i.e.
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Figure 4.8: Momentum flow defining a renormalisation condition of a four quark
operator in RI-SMOM scheme. The momenta are chosen so that p? = p3 =

(p1 — p2)? = p*.

no channels in which the square of the momenta is small [48]. (This is in contrast with
the original RI-MOM scheme [49; 20] in which p; = ps.) We have already checked
that with Domain-Wall fermions and this choice of kinematics the chirally forbidden
matrix elements are numerically negligible [12]. In the present computation, we use
the 482 and 64% ensembles which have physical light and strange sea-quark masses.
However, the light quark mass is used in all of the valence quarks propagators in the
five-point Green’s functions, including those for both light and strange quarks. We do
not extrapolate either the sea or valence quark masses to zero and, strictly speaking, do
not work in the chiral limit. In practice the light quark masses are sufficiently small that
their effects are negligible as is the non-zero mass of the strange sea quark. Comparing
our results with those of our previous work (with Shamir domain wall fermions) where

a chiral extrapolation was performed we find agreement at the per-mille level or better.

4.13.1 Step scaling

The step scaling procedure is the lattice version of the renormalisation group methods
described in sec. 2.4.3.4. To see how it works, start with an RI operator renormalised

at a scale p and insert 1 = Z~1(ug, a,m)Z (o, a,m) so that

QRI(M) = Z(:uv m, G)QLAT(m7 CL) = Z(/.L, m, a)Z_l(M(b a, m)Z(:u07 a, m)QLAT(mv CL),
(4.235)
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where for conciseness of notation I kept the operator index implicit. Then, taking the

m — 0 and a — 0 limit, we can see that

Q™ () = o (1, 110) Q™ (110) (4.236)
with
o(p, po) = lirr_l)oZ(,u,, m,a)Z " (o, a,m). (4.237)

The matrix o, which can be calculated nonpertubarively, relates to each other the RI
matrix elements at two different scales. Although we did not use step scaling for this
particular project, it is one of the potential improvements which can be used to scale our
matrix elements to a higher renormalisation scale u, where the perturbative matching
to MS scheme is better behaved.

4.14 Differences between Al = 3/2 and Al = 1/2 calcula-

tions

The techniques described previously in this chapter can be used to find the Al = 3/2
amplitudes, but the calculation of AI = 1/2 proves to be more challenging. This is
not only due to an additional level of complication (inclusion of (8,1) operators in the
weak Hamiltonian, additional contractions etc.) but also due to more challenging issues
described in this section. AI =1/2 amplitudes have been calculated at threshold in [2]

and more recently at physical kinematics [13].

4.14.1 Vacuum subtraction

One of the main challenges comes from the fact is that the two-pion I=0 state with zero
total momentum has the same quantum numbers as the QCD vacuum. This means that

in the spectrum of K — (77)r—o correlation function will behave as

CRlTH? = (O (ter Hyw (1) Ok (0)) (4.238)
101 0420 [ 0)(0 | Hw | K)(K | Ok | 0) (4.239)
+(0] O | wm; I = 0)(mm; I =0 | Hw | K)(K | Ok | 0)e~ Frr(ten=temmict

(4.240)
T (4.241)

where the additional complication comes from the appearance of the first term, which
needs to be removed before K — 7 matrix elements can be extracted. This can be

done automatically, by noting that we can shift each of the four-fermion operators in
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type | type li
type if type iV

Figure 4.9: Wick contractions contributing to K — wm Al = 1/2 channel.

the weak Hamiltonian by a multiple of an irrelevant operator 57y°d (c.f. Eq. (2.136))
OF = O; + @;37°d in such a way that the shifted weak Hamiltonian H{/?/ satisfies

O Hf | K)=> Ci{0| Qi+ cisy’d | K) = 0. (4.242)

This condition will also be useful in the following section.

4.14.2 Dimension-3 operator subtraction

Al = 1/2 K — 7 decays involve contractions given by type 3 and type 4 diagrams
shown in Fig. 4.9. These contractions contain loops, which are superficially quadratically
divergent. This divergence can be absorbed by counterterms of the form 5v°d. Eq.
2.136 shows that these operators can not contribute to K — 77 matrix elements or
indeed to any on-shell matrix elements. The situation is different in lattice simulations
where the energies of initial and final states need to be tuned by hand, so in our case
myg — Errx # 0. This means that the matrix elements calculated on the lattice will
contain a real divergence of order my — F ., but enhanced by inverse powers of lattice
spacing. This divergent contribution needs to be renormalised and we can conveniently

use Eq. 4.242 as the renormalisation condition.
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4.14.3 G-parity

Even after subtracting the vacuum, the lowest energy contribution corresponds to two
pions at rest as argued in section 4.7. In the Al = 3/2 case we exploit the fact that
| mt7t) is an I=2 state, which with the help of Wigner-Eckart theorem allows us to
remove the 7° from the final state. This allowed us to break the isospin at the boundary
by giving up quarks periodic and down quarks antiperiodic boundary conditions. This

trick is no longer feasible for I=0 final state, which contains both 7% and 7#° particles.

Because we want all pions to have antiperiodic boundary conditions to induce non-zero
momenta, a reasonable choice is to use the G-parity boundary conditions, as mentioned
in section 2.3.4. This choice creates another difficulty, because kaon is not a G-parity
eigenstate. This problem is solved by introducing another flavour, s’, which is a G-parity

partner of the strange quark, so that

s(x+ L) = () (4.243)
s'(x + L) = —s(x). (4.244)

This allows us to construct a G-parity even state (which we want to keep the kaon
at rest) dySu + §y°u. To obtain physical results we must subsequently remove the
strange quark. In the valence sector there is no problem - the G-parity symmetric kaon
interpolator has to be contracted with the weak Hamiltonian, which contains the 5 field.
This means that the unphysical part of the kaon interpolator will only contract with
the weak Hamiltonian after crossing the boundary resulting in a volume suppression of
this contribution. The s’ quark will also introduce another sea quark flavour, which will
appear in loops. Because s and s’ quarks are degenerate, we can remove the additional

contribution by taking the square root of their determinants.






Chapter 5

Results

This chapter summarises the results of our calculations. Section 5.1 summarises the
ensembles we used in this analysis. Sections 5.2, 5.3 and 5.4 describe the results of the
fits, nonperturbative renormalisation and finite volume effects, all of which are neces-
sary ingredients in determining the value of Ay. Section 5.5 describes the breakdown
of systematic errors and section 5.6 shows the results of the continuum extrapolation.
Finally, section 5.7 contains discussion of the AT = 1/2 rule in the light of our results.
All the analysis presented in these sections with the exception of determination of renor-
malisation constants is my original work. The continuum extrapolation was performed
jointly with Dr. Chris Kelly. This includes fitting the correlation functions to extract

the matrix elements, the analysis of finite volume effects and the error budget.

The final section of this chapter contains a different calculation, which is the determi-
nation of K — 7 scattering lengths using our physical point ensembles. This calculation

was entirely my original work, including writing the contractions code and the analysis.

5.1 Ensemble parameters

The calculations described below have been performed on two new 2+1 flavour ensembles
generated with the Iwasaki gauge action and with M&bius domain wall fermions [50] .

The parameters of the ensembles are:
(i) 48 x 96 x 24 with 3 = 2.13 (a=! = 1.728(4) GeV);
(ii) 643 x 128 x 12 with 8 = 2.25 (a~! = 2.357(7) GeV).
These two ensembles use the Mobius variant of domain wall fermions [52] with a M&bius

scale factor o = 2. For compactness of notation we will refer to these ensembles as 483

and 643 respectively. The lattice spacing and quark masses were set by choosing the

99
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masses of the pion, kaon and the {2-baryon to be equal to their physical values. The
corresponding sea quark masses are am,q = 7.8 X 10~* and am, = 3.62 x 102, with
the residual mass amy.s = 6.19(6) x 10~% for the 483 ensemble and am,q = 6.78 x 1074,
ams = 2.661 x 1072 and amyes = 2.93(8) x 10~ for the 643 ensemble. The two ensembles
have approximately the same physical volume with spatial extent L ~ 5.5fm, enabling
the continuum extrapolation to be separated from finite-volume effects which we estimate
separately. For more details on these ensembles see [50] and we will return briefly to the
determination of the lattice spacings in the context of the continuum extrapolation in
Sec. 5.6.

The results presented below were obtained using 76 gauge configurations on the 483
ensemble and 40 on the 643 ensemble. The large statistical uncertainty one expects
with a relatively small number of gauge configurations can be significantly reduced if
we perform many measurements on each configuration in which the sources and sinks
are simply translated in space and time [50]. Performing multiple measurements on
the same configuration offers two important opportunities for increased efficiency. First
if we can use a low-mode deflation method such as eigCG [53] we will be able the
amortise the set-up costs of such an approach over a large number of inversions. Second
we can use the all mode averaging technique [39] and perform most of these many
inversions at reduced precision and use a relatively few accurate inversions to determine
a correction that guarantees systematic double precision but with an additional (usually
small) statistical error that reflects the small number of accurate solves. Specifically for
the 483 ensemble, the eigCG method was used in single precision with 600 approximate
low-lying eigenvectors and a stopping residual of 10~*. The approximate (wall source)
propagators were computed on all 96 time slices. The accurate solves used to correct
the approximation were computed on time slices 0, 76, 72, 68, 64, 60 and 56 with
CG stopping residual 1078, (This choice of time-slice separations is not related to the
K — 7 calculation presented here but to an accompanying calculation of Bk [50].) To
ensure that no bias results from the choice of inexact solves for which the correction is
calculated, this complete pattern of source time slices for the accurate solves was shifted
by a different random time displacement on each configuration. A similar procedure was
used on the 643 ensemble but with 1500 low-modes and a stopping residual of 10~ for
the approximate solves and accurate solves on time slices 0, 103, 98, 93, 88, 83, 78 and
73. On both the ensembles, the accurate CG solves were also computed using eigCG,

exploiting the approximate eigenvectors created during the inaccurate applications of
eigCG.

Measurements on the 48% and 64> ensembles are separated by 20 MD and 40 MD units
respectively. In order to study the effects of autocorrelations we bin the data. We find
that the effects are small, typically leading to a variation of the statistical errors of less
than 10%. The results presented below were obtained after binning the 76 configurations

of the 483 ensemble into 19 bins of 4 configurations and the 40 configurations of the 643
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my mg E7r7r mg — E7T7T
483 (lattice units) | 8.050(13) x 102 | 2.8867(15) x 10~1 | 2.873(13) x 10~ | 1.4(14) x 103
643 (lattice units) | 5.904(14) x 1072 | 2.1531(14) x 107! | 2.1512(68) x 10~ | 9(10) x 10~
483 (MeV) 139.1(2) 498.82(26) 496.5(16) 2.4(24)
643 (MeV) 139.2(3) 507.4(4) 507.0(16) 2.1(26)

Table 5.1: Pion and kaon masses and the I=2 two-pion energies in lattice and
physical units measured on the 483 and 643 ensembles. The momentum of each
of the final-state pions is £7/L in each of the three spatial directions.

ensemble into 8 bins of 5 configurations. The 40 configurations from the 643 ensemble
are precisely those used in the global analysis reported in [50]. The 76 configurations
from the 483 ensemble include 73 of the 80 used in [50]. We have however, repeated
the relevant analysis of [50], including the determination of the lattice spacings, using
precisely the 76 configurations for which we have computed A,. This makes it possible
to compute standard jackknife errors for our physical results which necessarily depend

upon the value of the lattice spacing.

The pion (m,) and kaon masses (mg) as well as the energies of the I = 2 two-pion state
(Err) obtained on the two ensembles are shown in Tab.5.1. The fitting ranges used
for pion and kaon masses as well as two pion energies were from 10 to 86 on the 483
ensemble and from 10 to 118 on the 643 ensemble. These choices were motivated by the
plateaus in the effective mass plots shown in figures 5.1-5.2. The effective mass of the

kaon, mﬁgf, is defined numerically by the ratio:

Cr(t+1)
Ck(t)

cosh(m$(t +1 —1T/2))
cosh(m$k(t —T/2)) ’

(5.1)

and the two-pion effective mass, Fef

o is found by inverting:

Con(t +2) — Crn(t +1) e Bk (t42) + e BSR(T—t=2) _ —ES%(t41) + e ESR(T—t-1)

C7r7r<t + 1) - C7r7r(t) -

e~ B (t+1) 4 o= ESE(T—t-1) _ o—Egft | o—E5T(T—1)

(5.2)
The two-point correlation functions Cx and Cr, are defined explicitly in Eq. (4.81) and
(4.104) and the differences in the numerator and denominator on the left-hand side of
Eq. (5.2) are introduced to eliminate the constant C' in Eq. (4.107).

The pion and kaon masses correspond closely to their physical values. We will explain
below that the pions are given a momentum 7/L in each of the three spatial directions
and from the table we see that with this choice E,r ~ mg and the K — 77w matrix
elements correspond to the on-shell (within statistical errors) decay of a kaon in the

centre-of-mass frame. We now discuss the evaluation of the matrix elements.



102 Chapter 5 Results

K effective mass — K effective mass — |

0.24 - I

0.23 - 1 I

[[] l [ ]
l]]]llll[[[]]]] Illlll[llllllllll]ﬁ

5 10 15 20 25 5 10 15 20 25

t t

K effective mass
K effective mass

Figure 5.1: Effective mass plots for the kaon correlation functions on the 483
ensemble (left) and 64 ensemble (right).
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Figure 5.2: Effective mass plots for the two-pion correlation functions on the
483 ensemble (left) and 643 ensemble (right).

5.2 Matrix elements

We have evaluated CX—=7"(t,,) given by Eq. (4.117 ) corresponding to K+ — 7tx+
process as discussed in section 4.7 for a range of values of the source-sink separations
trr. For the 483 (643) ensemble we performed the calculations for values of t,, between
24 and 39 (26 and 36). These separations were chosen to be large enough for the plateau
region to give a reliable fit and small enough for the around-the-world effects to be
small. The fitting ranges were chosen to be from 10 to ¢, — 10 for both ensembles.

These choices are motivated by the locations of plateau regions in Fig. 5.3.

For illustration, in Fig. 5.3 we plot CX 77 (t,,) computed on each of the two ensembles
for t,» = 26. The observed plateaus are a manifestation of the fact that the volumes
have been tuned so that Err ~ mg (cf. Eq. (4.119)).

As a check, we can also construct the time-independent ratio of the correlation functions:

Cl rn(t) M
Cr(t)CL=2(trr — 1) NanNg'

(5.3)
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Figure 5.4: Ratios of K — mm three-point correlation function to the two point
functions (Eq. (5.3)) on the 483 lattice (left) and the 643 lattice (right) with a
kaon-pion separation of t;, = 26.

This ratio is plotted for ¢, = 26 in Fig. 5.4. As anticipated, all three operators exhibit a
constant behaviour in the region where the contribution from excited states is negligible.
Eq. (5.3) is expected to hold in the region 0 < t < t;r < T, where T is the total time
extent of the lattice. In this region ‘around-the-world’ effects arising from different time

orderings of the operators can be neglected.

The values of the bare K+ — 777" matrix elements are shown in Tab. 5.2. The entries
have been obtained by performing weighted averages (under the jackknife) over the

values obtained for each choice of ., i.e.

_ Ztmf Mi(tﬂ'ﬂ')/éM(tﬂ'ﬂ')Q
- Ztﬁﬁ 1/5M(t7r7r)2

M; (5.4)

where M;(trr is the matrix element evaluated using source-sink separation ¢, and

OM;(trr is the corresponding statistical error.
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b b b
" METS) M @M
483 ensemble | 7.400(70) x 107> | 9.171(69) x 10~3 | 3.058(23) x 102

643 ensemble | 2.742(22) x 1075 | 3.942(39) x 1073 | 1.308(13) x 1072

Table 5.2: Results for the bare Kt — 77T matrix elements in lattice units.
Only statistical errors are shown.

5.3 NPR

In the calculation of Zf;-“f_)RI we find that all the chirally forbidden renormalisation
factors mixing (27,1) and (8,8) representations are smaller than 107, so we set the
corresponding matrix elements of P;{A;} to zero and finally obtain the lattice to RI-

SMOM renormalisation matrices:

0.4617(3) 0 0
Z" ) (0 =3GeV) = 0 0.5302(4) —0.07018(6) (5.5)
0 —0.0386(1)  0.4451(5)
0.4822(3) 0 0
289 (n=3GeV) = 0 0.5305(4) —0.07135(7) (5.6)
0 —0.0637(1)  0.5052(6)
for the 483 ensembles and
0.5194(2) 0 0
20 (n=3GeV) = 0 0.5774(2)  —0.0751(1) (5.7)
0 —0.02797(7)  0.4431(6)
0.5399(2) 0 0
280 (1 =3GeV) = 0 0.5782(2)  —0.0761(1) (5.8)
0 —0.05230(4)  0.4990(5)

for the 643 ensembles. With momentum sources [54], only few configurations are needed
to obtain an excellent statistical precision. The number of Landau gauge-fixed configu-
rations used to obtain these results varies between 5 and 15. The statistical errors were
estimated with 200 bootstrap samples. The matrices in Egs. (5.5) —(5.8) are the ones
used in Eq. (4.232) to obtain the operators renormalised in the RI-SMOM schemes at

the scale u = 3 GeV from the corresponding lattice bare operators.

The procedure described above enables us to calculate the matrix elements of the oper-
ators in Eq. (4.129) in the (continuum) RI-SMOM schemes with a very small systematic
uncertainty due to the renormalisation. The Wilson coefficients however, are computed
in the MS scheme and so we have to match the RI-SMOM schemes to the MS  one.
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483 Ensembles

643 Ensembles

Re(As) (7%, v*) | 1.346(11)stat(1)npr X 1078 GeV

1.4029(93)stat (11)npr X 1078 GeV
—6.143(73)stat (9)npPR X 10713 GeV
1.4386(95)stat (11)npR X 1078 GeV
—6.548(78)stat (10)NpR X 10712 GeV

Im(Az) (7*,9%) | —5.739(46)stat(8)xpR X 10713 GeV
Re(As) (d,d) | 1.386(12)stac(1)npr X 1075 GeV
Im(As) (¢, ) | —6.174(49)stat (9)xpr X 10713 GeV

Table 5.3: The amplitude Ay calculated using two different intermediate RI-
SMOM schemes. The two errors, labelled by “stat” and “NPR”, are the sta-
tistical uncertainties in the evaluation of the bare matrix elements and Z;; re-
spectively. Discrepancies in the results in the two schemes are attributed to the
truncation in the matching to the MS scheme.

We repeat that this matching is perturbative and at present is only known to one-loop
order [55]; this limitation amplifies the uncertainty due to the renormalisation. This un-
certainty could be reduced by extending the perturbative calculations to higher orders.
Future lattice calculations could also help here by using step scaling to run the renor-
malisation constants obtained in the RI-SMOM schemes non-perturbatively to larger
momentum scales. The perturbative matching to the MS scheme can then be per-
formed at these larger scales where the coupling constant is smaller, leading to smaller

uncertainties. We now estimate the current uncertainty due to the matching.

To estimate the uncertainty due to the truncation of the perturbative matching fac-
tors, we note that the matrix elements in the MS scheme should be independent of
the choice of intermediate RI-SMOM scheme. Differences in the results are observed
(see Table 5.3) and attributed to the truncation. Following the procedure in [36; 12]
we take the result obtained using the (¢, ¢) intermediate scheme as our central value
and the difference of the results obtained using the two schemes as an estimate of the

7

systematic error. This uncertainty is marked as “NPR (perturbative)” in the error bud-
gets presented in Tables 5.9 and 5.10 in Sec.5.5. The uncertainties marked as “NPR

(nonperturbative)” are the statistical errors in the evaluation of Z;;.

5.4 Two-meson phase shift and finite volume effects

We now proceed to discuss the calculation of the finite volume effects and the Lellouch-
Liischer factor given by Eq. (4.191). This requires the knowledge of the derivative of
the phase shift, while Liischer’s quantisation condition Eq. (4.174) gives only the the
value of the phase shift at a given momentum. The results presented in Table 5.4 were
obtained using the approximation that ¢ is a linear function of the momentum between
0 and p. Since the second term in the parentheses on the right-hand side of Eq. (4.191)
is much smaller than the first and given the remaining systematic uncertainties dis-

cussed in Sec. 5.5, this procedure gives an adequate approximation. In order to estimate
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Figure 5.5: Comparison of I = 2 two-pion s-wave phase shifts calculated using
Liischer’s formula with the phenomenological curve from Ref. [1]. The computed
results are consistent with the phenomenological curve.

the error due to this approximation we also evaluate the derivative g—g using the phe-

nomenological curve of Ref. [1] illustrated in Fig.5.5; we take the difference of the two
procedures as an estimate of the corresponding uncertainty. For our central value we use
the linear approximation for the derivative of the phase shift so that it is independent

of phenomenological estimates.

At the pion momentum which corresponds to the decay of a physical kaon to two pions
(p =207 MeV) the value of the derivative of the phase shift with respect to the momen-
tum obtained from the phenomenological curve is 9.53 x 10~ MeV~!. Converting this
to g—g gives —0.216 for the 48 and —0.221 for the 643 ensembles. While this makes a
significant difference to the derivative of the phase shift, it represents a relatively small
uncertainty in the Lellouch-Liischer factor F' o g—g + g—?. This sum is dominated by the
% term and thus the difference in the Lellouch-Liischer factor between both approaches

to calculating g—g amounts to 1.1% and 0.6% on the 483 and 643 ensembles respectively.

When quoting our central value we include the Lellouch-Liischer factor evaluated as
described in the preceding paragraph. In order to estimate the size of the remaining
exponential finite-volume effects we use chiral perturbation theory equations (4.192) and
(4.193) and include the corresponding effects in our systematic uncertainty. Since we are
only calculating an estimate, we do not use partially twisted chiral perturbation theory,
but take both the sea and valence d-quarks to satisfy antiperiodic boundary conditions.

The results are shown in table 5.5.

5.5 Error budget

In this section we discuss the two remaining systematic errors: those which arise because

the meson masses and the two-pion energy are not quite physical and those introduced
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Eqr ‘ q ‘  (radians) ‘ g—g ‘ g—?
487 | 0.2873(13) | 0.9087(61) | —0.158(22) | —0.174(24) | 3.7147(20)
643 | 0.21512(68) | 0.9157(43) | —0.184(16) | —0.201(17) | 3.7171(15)

Table 5.4: Contributions to the Lellouch-Liischer factor on the 483 and 643
ensembles. The rate of change of the phase shift was calculated by using a
linear approximation in momentum as explained in the text.

Quantity 483 lattice 64> lattice
L 5.48 fm 5.36 fm
Al(m2) 14.32 MeV? 16.39 MeV?
Al(m?%) (9.05 x 107 MeV? | (1.03 x 1073) MeV?
Al(m?) (1.32 x 107*) MeV? | (1.52 x 107*) MeV?
AB(mg, mi, my) 3.0x 1077 3.0 x 1077
AB(Mg, mg, my) 5.0 x 107° 5.2 x 107°
AB(my, my, my) 6.67 x 107° 6.97 x 107°
SMeny 0.022 0.024
N
T 0.024 0.026

Table 5.5: Contributions to our estimate of the exponentially suppressed finite-
volume errors.

by the perturbative Wilson coefficients. Finally all of the systematic errors in our results

for the real and imaginary parts of As are summarised Tables 5.9 and 5.10, respectively.

The volume, boundary conditions and quark masses have been chosen to enable simu-
lations of physical K — mw decays. Nevertheless, since the volume and quark masses
have to be chosen a priori, the output values of the meson masses and two-pion energies
will be a little different from the physical values (see Tab.5.1). In order to estimate
the corresponding uncertainty we follow the procedure described in [56; 12] and out-
lined below. We use measurements on 60 quenched configurations on a 243 lattice with
a~! = 1.31GeV performed with 3 values of the light-quark masses, 5 strange-quark
masses and the application of antiperiodic boundary conditions in nt, =0, 1, 2 and 3
directions. These measurements are used to determine the coefficients in the following

phenomenological formulae:

mZ, = Bo(my +my) + By, (5.9)
E?rﬂ(ntw) = Ao(ntW)ml + Al (ntw)v (510)
Ay = Co(new)ms + C1(npw)my + Co(new), (5.11)

where m; and m, are the masses of the light and strange quarks, mg, is the mass of the
meson consisting of x and y valence quarks (which can be either light or strange) and

Ntw 1S the number of directions in which the antiperiodic boundary conditions would
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Niw 0 1 2 3

A 17.53(16) 17.14(73) 14.9(2.3) 24.5(9.5)

Ay 0.0273(12) 0.1038(60) 0.202(18) 0.196(82)

By 2.124 2.124 2.124 2.124

By 0.00692 0.00692 0.00692 0.00692
ReCy(GeV) | 1.016(55) x 1077 1.43(11) x 1077 1.53(25) x 1077 1.78(54) x 1077
ReC(GeV) | 1.697(89) x 1076 1.29(18) x 1076 1.45(38) x 1075 | 4.22(97) x 107°
ReCy(GeV) | 2.53(51) x 107° 1.08(12) x 1078 1.68(25) x 1078 —2(67) x 10710
ImCy(GeV) | —1.06(31) x 10712 | —4.6(3.3) x 10713 | 4.4(7.4) x 10713 2(11) x 10713
ImC;(GeV) | 5.54(79) x 10711 3.39(91) x 10~ 2.1(1.6) x 1071 | —1.8(3.2) x 10711
ImCq(GeV) | —1.689(64) x 10712 | —1.392(66) x 10712 | —1.24(12) x 10712 | —=7.5(1.9) x 10713

Table 5.6: Parameters used for extrapolations on the 243 quenched ensembles.

have to be imposed on the quenched lattice to get the correct two-pion energy. Note
that ny, does not have to be an integer, and is given instead by p? = ny,72/L?, where
p is the centre-of-mass momentum of each pion. The full list of coefficients A, B and C
obtained from these quenched configurations was presented in [56] and is reproduced in
Tab. 5.6.

We can use the coefficients in Tab. 5.6 to determine Ay on the quenched ensembles for any
choice of {my, mg, Exr}. We exploit this possibility for three sets of parameters: (i) the
physical masses my = Eqr = 493.7MeV, m, = 139.6 MeV; (ii) the values from the 483
simulation given in the third row of Tab. 5.1 and (iii) the values from the 64% simulation
given in the fourth row of Tab.5.1. We denote the corresponding three estimates of Ao
by Ag;phys, Ag%g and Ag;64 respectively, where the superscript q reminds us that the

results were obtained on the quenched ensembles. We use the differences Ag;48 - Ag;phys

and AS;M - A%;phys as estimates of the systematic error due to unphysical kinematics.

The results are:

Re(AFPMS) =925 x 1078 GeV, Im(ATPMY) = —1.344 x 1072 GeV, (5.12)
Re(AT™) =229 x1078GeV, Im(A¥*®) = —-1.341x107"2CeV, (5.13)
Re(AT™) =236 x 1078 GeV, Im(A¥%) = -1.329x107"2CeV. (5.14)

The differences in Egs. (5.12)-(5.14) translate to an estimated 1.8% error on Re(As2)
and 0.2% error on Im(As) on the 483 ensemble and a 4.5% difference for Re(A4s) and
1.1% difference for Im(A3) on the 643 ensemble. These numbers are obtained from the
difference of the simulated results from those at the physical point (normalised by the
result at the physical point). These uncertainties are included in Tabs.5.9 and 5.10

under the label “unphysical kinematics”.

To estimate the error in the Wilson coefficients, we compare the results for A, using
We have

scheme at 3 GeV, which are shown

Wilson coefficients calculated at leading order and next to leading order.
used the set of coeflicients evaluated in the M.S
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(27,1) (8,8) (8, 8)mx

210 0.26696 4.260055 x 107° | —1.0063 x 10~°
ylO | —0.0035185 | —2.026445 x 107% | 2.447741 x 10~*
ZNLO | 0.290342 4.70099 x 1075 | —5.22390 x 10~°

yNEO | —0.00397252 | —8.09555 x 1075 | 3.26016 x 1074

Table 5.7: Wilson coefficients at 3GeV in the MS scheme at leading order
(LO) and next-to-leading order (NLO).

LO NLO
Re(Ap) 48 | 1.293(11) x 107 1.386(12) x 1078
Im(Ag) 483 | —5.551(45) x 10713 | —6.174(49) x 10713

(A2)
(A2)

Re(A) 643 | 1.3410(89) x 1078 | 1.4386(95) x 1078
(Ag) 643 | —6.037(71) x 10713 | —6.548(78) x 10713

Table 5.8: Comparison of matrix elements calculated with leading order (LO)
and next-to-leading order (NLO) Wilson coefficients.

ReAs systematic errors 483 643 | cont.
NPR (nonperturbative) 0.1% | 0.1% | 0.1%
NPR (perturbative) 2.9% | 2.5% | 2.9%
Finite volume corrections 2.2% | 2.4% | 2.4%
Unphysical kinematics 1.8% | 4.5% | 4.5%
Wilson coefficients 6.8% | 6.8% | 6.8%
Derivative of the phase shift | 1.1% | 0.6% | 1.1%
Total 8% | 9% 9%

Table 5.9: Systematic error breakdown for Re Ao

in table 5.7 [57], and the standard parametrisation of Wilson coefficients was used, i.e.
C; = z;+71y; where 7 is the ratio of CKM matrix coefficients 7 = —%. The results for
matrix elements calculated at leading and next-to-leading orders are shown in Tab. 5.8.
From the differences between the entries in the columns marked as LO and NLO we
estimate that the uncertainties are 6.8% for Re(As2) on both sets of ensembles and 10%

(8%) for Im(Asz) on the 483 (643) ensembles.

Tables 5.9 and 5.10 show our estimates of systematic errors associated with the results
for Re(Az) and Im(Asz) presented in this paper. The evaluation of the continuum limit
of Ay is discussed in following section. As will be seen, the systematic error associated
with this extrapolation is negligible with respect to the statistical errors. Consequently
no discretisation error is shown in Tables 5.9 and 5.10. The values in the column marked
“cont.” are the errors assigned to our continuum-extrapolated results, and are simply
the larger of the corresponding entries from the 48% and 642 columns. We can see that
the dominant contribution to the systematic error for both real and imaginary parts of

A on both ensembles comes from the uncertainty in Wilson coefficients.
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ImAj systematic errors 483 643 cont
NPR (nonperturbative) 0.1% | 0.1% | 0.1%
NPR (perturbative) 7.0% | 6.2% | 7.0%
Finite volume corrections 2.4% | 2.6% | 2.6%
Unphysical kinematics 0.2% | 1.1% | 1.1%
Wilson coefficients 10% | 8% 10%
Derivative of the phase shift | 1.1% | 0.6% | 1.1%
Total 12% | 10% | 12%

Table 5.10: Systematic error breakdown for Im Ao

| 481 | 64 [ phys.
mx/mg | 0.08296(17) | 0.08220(19) | 0.08073
mg /mq | 0.29740(32) | 0.29982(37) | 0.29643

Table 5.11: The ratios of the pion and kaon mass to the Omega baryon mass
on the 48 and 643 ensembles as well as the physical value.

5.6 Continuum extrapolation

In this section we discuss the extrapolation of the results obtained on the 482 and 643
ensembles to the continuum limit. We divide this discussion into two parts. In the first
we present the complete physical results for the complex amplitude As in the continuum
limit. As we will observe, the dominant error in our result comes from the perturbative
error assigned to the Wilson coefficients. This may be reduced in the future if higher
order perturbation theory results become available or if lattice step-scaling methods
are used to allow present perturbative results to be applied at a higher energy scale.
Therefore, in the second part we determine the continuum limit of the individual ma-
trix elements themselves, normalised in the regularisation-independent (¢, ¢) and (v,~)

schemes.

5.6.1 Continuum limit of Re(A;) and Im(A,)

As already mentioned in Sec. 5.5 the quark masses used in these ensembles are very
slightly larger than their physical values. This is illustrated in Tab.5.11, in which we
compare the physical and simulated values of the dimensionless quantities m,/mgq and
my /mgq, which are highly sensitive to the light and heavy quark masses respectively. In
order to determine the values of the lattice spacing we must therefore perform a short
chiral extrapolation; this is achieved using a simultaneous chiral and continuum ‘global
fit’ that incorporates data from both ensembles. Since the (renormalised) quark masses
on the two ensembles are very similar, we must include additional ensembles in order to
have a sufficient spread of masses for the determination of the chiral dependence. The

full set of ensembles and details of this procedure can be found in [50].
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The determination of Ay presented here was performed using 76 configurations of the
483 ensemble, whereas the lattice spacings in [50] were computed using 80. In order to
preserve the full correlations between the jackknife samples of A5 and the corresponding
superjackknife samples of the lattice spacing, we repeated the global fit analysis using the
same 76 configurations. The details of the binning are also different. In [50] we binned
the 483 data over 5 successive measurements (100 MD time units) in order to take into
account the observed autocorrelations in the data, whereas in the present calculation, we
construct 19 bins each of 4 configurations. These differences lead to determined values
of the lattice spacings in Eq. (5.15) below which are a little different from those in [50].
For the 643 ensembles we use the same set of 40 configurations for the evaluation of Ay

and the same binning as in the global fit in [50].

In order to estimate the systematic errors due to the chiral extrapolation and finite
volume in the determination of the lattice spacings, we have performed our fits using
three different chiral ansitze: NLO SU(2) chiral perturbation theory, with and without
finite-volume corrections (referred to as the ChPTFV and ChPT forms respectively),
and a linear ansatz (referred to as the ‘analytic’ form). In practice we found the lattice
spacings obtained from all three ansétze to be consistent to within a fraction of the
statistical error due to the dominance of the near-physical data, hence we treat these

systematic errors as negligible. The final results for the values of the lattice spacing are:
agl = 2.3584(70) GeV and agg = 1.7280(41) GeV, (5.15)

where the errors are statistical only.

The lattice matrix elements M; scale as a® and so small differences in the lattice spacing
become amplified. We have performed the continuum extrapolation of As using the
lattice spacings obtained with each of the three chiral ansétze; the extrapolated values
are given in Tab. 5.12. In figure 5.6 we show the continuum extrapolation in the (¢, ¢)
scheme using the lattice spacings obtained with the ChPTFV chiral ansatz. We use
results obtained with this ansatz as our central values for each lattice spacing and for

the extrapolated value in the continuum.

We obtain an estimate of the component of the chiral extrapolation error arising from
the lattice spacing determination by taking the difference between the continuum values
obtained using the ChPTFV and analytic lattice spacings. The full jackknife differences
are 0.3(2.6) x 10710 and 0.1(1.2) x 1074 for the real and imaginary parts respectively.
As with the lattice spacings, we cannot resolve these differences within the statistical
error, hence we set the chiral error to zero. On the other hand the jackknife differences
between the ChPTFV and ChPT ansétze are resolvable as they differ only in small
Bessel function corrections and are thus highly correlated: we obtain 3.4(1.0) x 10~
and 1.59(47) x 107! for the real and imaginary parts respectively. Nevertheless, these

errors are only 5-8% of the statistical error and can therefore also be neglected. This
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Figure 5.6: The continuum extrapolation of Re(Az) (left) and Im(Asz) (right).
The points at finite lattice spacing are taken from Tab.5.3 for the (¢, ¢) inter-
mediate renormalisation scheme.

Ansatz Re(As) (x1078 GeV) Im(As) (x10713 GeV)
ChPTFV 1.501(39) 26.99(20)
ChPT 1.494(38) -6.96(19)
analytic 1.494(43) -6.96(21)

Table 5.12: The continuum values of Re(Az) and Im(As) determined using the
lattice spacings obtained with each of the three chiral ansatze.

Systematic errors in ImAy/ReA, 483 643 cont
NPR (nonperturbative) 0.1% | 01% | 0.1%
NPR (perturbative) 76% | 6.7% | 7.6 %
Finite volume corrections 35% | 35% | 35 %
Unphysical kinematics 1.8% | 4.6% | 4.6%
Wilson coefficients 12.0 % | 10.5 % | 12.0%

Derivative of the phase shift 0 0 0
Total 14.7% | 13.7% | 15.3%

Table 5.13: Systematic error breakdown for ImAs/ReAs.

leads to the result:
Re(As) = 1.501(39) x 1078 GeV and  Im(Az) = —6.99(20) x 10713 GeV, (5.16)

where the errors are statistical.

Our final result for As is obtained by assigning the 9% and 12% systematic errors from
Tabs. 5.9 and 5.10 as the systematic errors to be associated with the values for Re(As)
and Im(As) given in Eq. (5.16):

Re(As) = 1.50(4)stat(14)syst X 107% GeV;  Tm(Ag) = —6.99(20)stat(84)syst x 10713 GeV .

(5.17)
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In order to estimate the unknown quantity ImAg, we combine our results for A, with the
experimental values of ReAg = 3.3201(18) x 10~ GeV and €’ /e = (1.6540.26) x 1073 [16].
To this end we start by evaluating the ratio ImAs/ReA,, taking account any statistical
correlations between the real and imaginary parts by performing the analysis within the

jackknife procedure. On the two ensembles we find

ImA2
RGAQ

<IH1A2

= —4.45(5)stat (65)syst X 1077 and

) = —4.55(5)stat (62)syst x 107°.
643

(5.18)
The systematic errors for this ratio are given in Table 5.13; they are generally com-
bined in quadrature except for that due to the derivative of the phase shift because
the Lellouch-Liischer factor cancels in the ratio. It is interesting to note that if instead
of adding the errors in the Wilson coefficients for Reds and ImAs in quadrature as
in Tab. 5.13, we had calculated the ratios with the coefficients at leading and next-to-
leading order respectively and taken the difference as a measure of the uncertainty we
would have obtained a much smaller answer (3.6% instead of 12%). Since the operators
which give the dominant contributions to the real and imaginary parts are different,
and in the absence of an understanding which might suggest a correlation between their
Wilson coefficients, we prefer to be cautious and take the larger uncertainty. We find a

similar feature in the NPR perturbative error.

The continuum extrapolation of the dimensionless ratio ReAs/ImAjs is milder than that

of ReAs and ImAjs separately and we obtain

IHIAQ) -5
= —4.67(72) x 10 °. 5.19
< ReA2 continuum ( ) ( )

Using this ratio, we can calculate the electroweak penguin contribution to €'/e, given

by:

€ w ImAs _4
€ = 2 6.6(10) x 1074, 5.20
(€>EWP V2 |e| Reds (10) (5:20)

where we have used the values w = ggﬁi = 0.04454(12) and || = 2.228(11) x 1073
from [12]. This value for (¢’/e)gwp is consistent with our previously quoted value
—6.25(44)(119) x 10~* [12]. Finally, for ImAg we find

ImA; V2]e|
R6A2 w

/
ImAp = ReAg ( Z) = —5.40(64) x 107" GeV . (5.21)

The results in Egs. (5.20) and (5.21) were obtained using our result for ImAs/ReAs in
Eq. (5.19). If instead we take ImAs from our calculation, Eq. (5.17), and combine it
with the experimental result Reds = 1.4787(31) x 107 GeV we obtain, ImAy/ReAy =
—4.73(58) x 1075, (¢'/e)gwp = —6.69(82) x 10~* and Im Ay = —5.42(63) x 10711 GeV.
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Ensemble | Scheme | M) [GeV?] | ME( [GeV] | ME( | [GeV?]
487 (4, ) | 0.04761(39)(133) | 0.7026(52)(183) | 3.892(28)(101)
643 (d,d) | 0.04848(32)(247) | 0.8412(88)(244) | 4.140(44)(120)
483 (7,7) | 0.04473(37)(128) | 0.7112(53)(185) | 3.471(26)(90)
643 (v,7) 0.04664(31)(238) | 0.8477(88)(246) | 3.724(40)(108)

Continuum (g, g) 0.0506(13)(26) 1.003(22)(30) 4.43(12)(13)

Continuum | (v,7) 0.0489(13)(25) 1.007(23)(30) 4.02(10)(12)

Table 5.14: Results for the KT — (77)7—o matrix elements M5 (defined in
Eq. (4.141)) in two non-exceptional RI-SMOM renormalisation schemes at the
scale 3 GeV. The first error is statistical, while the second one is the systematic
uncertainty estimated as described in the text.

5.6.2 Continuum limit of the RI-SMOM matrix elements

From the error budget in Tab. 5.13 we see that the dominant uncertainty is due to the
Wilson coefficients, which we take to be the difference between the leading and next-
to-leading order contributions as defined in [21], where the calculations were based on
[58; 59; 60]. In case the Wilson coefficients in the RI-SMOM schemes become known
with better precision in the future, we present in Tab.5.14 the K+ — 77 #? matrix
elements ]\JZ»K+ defined in Eq.(4.141), with the operators @); in Egs. (2.102)-(2.104)
renormalised in the (¢, ¢) and (7, ) renormalisation schemes at a renormalisation scale
of 3 GeV. These matrix elements together with the new Wilson coefficients would enable
an improved evaluation of Ay, without the need to recompute the matrix elements.
The systematic errors for the (27,1) operator are estimated using the entries in Tab. 5.9
with the NPR(perturbative) and Wilson coefficient errors set to zero. This gives the
errors of 2.8%, 5.1% and 5.2% for the 48> and 643 ensembles and in the continuum limit
respectively. For the (8,8) operators using the entries in Tab. 5.10, the same procedure
leads to systematic errors of 2.6%, 2.9% and 3.0% for the 483 and 643 ensembles and in

the continuum respectively.

5.7 Al =1/2rule

Before briefly summarising our results and discussing prospects for future calculations we
confirm our finding, first presented in [2], that there is a significant cancellation between
the two dominant contributions to Re A2. As explained above, Re(As2) is dominated
by the matrix element of the (27,1) operator and is proportional to the sum of the
two contractions C7 and C in Fig.4.4. While naive factorisation, frequently used for
phenomenological estimates, suggests that C7 = 3 C because of the colour suppression
in Cy, we find a strong cancellation between these two contributions. For the 482 and 643

ensembles studied in this paper, we illustrate this cancellation in Fig. 5.8. (In Sec. 5.2 we
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explain that the numerical results in this paper were obtained from correlation functions
with even values of ¢,,. The choice of t;, = 27 for the 48 ensembles in Fig. 5.8 is made
to ensure that the cancellation is illustrated at the same value of ¢,, in physical units
on the two sets of ensembles.) As explained in [2] we believe that this cancellation is a
significant component in explaining the Al = 1/2 rule. Although we have not completed
the calculation of Ay at this stage, we note that the contributions of the (27, 1) operator
all contribute with the same sign. A similar partial cancellation occurs between the
two corresponding contractions in the evaluation of the Bx parameter of neutral kaon

mixing as pointed out in [61] and subsequently confirmed in [2; 62].

Our ab initio determination of As shows clearly that phenomenological approaches based
on the dominance of naive factorisation are not consistent. We note however, that there
were non-lattice studies based on chiral perturbation theory and the 1/N expansion,
where N is the number of colours, which indicated that C'; may have the opposite
sign to C [63; 64]. Of course, as illustrated in our results above, the 1/N expansion
per se is not a good approximation; Cy is suppressed by 1/N and yet is comparable
to Cp. In different ways, the authors of [63; 64] combine the expansion with leading
short- and long-distance logarithms. In [63] the authors use an Ansatz for matching
the perturbative short-distance contributions and long-distance effects based on a chiral
Lagrangian for mesons. In [64] the authors compare the experimental value of ReAs
with the leading term of the expansion to deduce that Cy should be negative. For recent
discussions of these two early approaches, stimulated by our lattice QCD result [2; 12]

and written by subsets of their original authors, we refer the reader to [65; 66].

In order to have a fully quantitative understanding of the AI = 1/2 rule, to determine
¢ /e and to compare the result to the experimental value ¢ /e = (1.65 4 0.26) x 1073 we
need to perform the evaluation of Ay at physical kinematics. A key ingredient which
makes the calculation of As feasible is the use of the Wigner-Eckart theorem described
in Sec.5.2. Together with the choice of volume and the use of antiperiodic boundary
conditions for the d-quark in all three spatial directions, it ensures that the energy
of the two-pion ground state is equal to myg. Unfortunately this approach cannot be
directly applied to the calculation of Ag; in particular the breaking of isospin symmetry
by the boundary conditions invalidates the calculation. For example, the 7° remains at
rest with the antiperiodic boundary conditions, whereas the charged pions have nonzero
momentum. More sophisticated boundary conditions mixing quarks and antiquarks and
an isospin rotation, the so-called G-parity boundary conditions [67; 34; 68; 69; 70], must
therefore be used instead for both the valence and the sea quarks. The evaluation of Ay
with G-parity boundary conditions is well underway and exciting progress has recently
been reported in [71] and we anticipate the first complete calculation of Ay, albeit on a

single lattice spacing, within the next year.
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Figure 5.8: Cancellation of dominant contributions to Re(Az) on the 48 en-
sembles with a K - 77 separation of 27 and the 643 ensembles with separation
36.

5.8 K scattering

In this section I will describe a different calculation which was done using the same
483 and 643 ensembles, which is the calculation of K — 7 scattering lengths at physical
kinematics. This calculation has been described in [4]. While this calculation is not in
itself related to the K — 7w decays, the techniques used are the same as in the case of 77
scattering, exploiting mostly Liischer’s quantisation condition (4.174). However, it is an
interesting illustration of the effect of finite time extent (sometimes called ‘thermalisation

effects’ referring to finite temperature calculations).

For this calculation we use stochastic Z2 x Z2 sources with n(z) = +1 + i as described
in section 4.5 with point sinks. The inversions are done on every second timeslice on the

483 ensemble and every fourth on the 643 ensemble.

The K — 7 correlation functions are given by
Clen(t) = (K1(t + 2)7" (t)7(2) K (0)) (5.22)

where the operator 7(2)K(0) is understood to be taken in the correct isospin projection
- either 3/2 or 1/2.

The Wick contractions are shown in Figures 5.9, 5.10. For 'D’ and ’C’ contractions,

the propagator sources are all located on the meson source planes (e.g. t=0 and t=2).
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For the 'R’ contractions, the source planes correspond to the opposite vertices of the

rectangle. The correlation functions can be written in terms of these contractions as
ci=*?—p_c (5.23)

_ 1 3
cIZVr =Dy 50— 3R (5.24)

We can do this because in the limit of the large number of random source vectors, the

stochastic sources reduce to the meson point sources.

The time dependence of these functions follows from Eq. 4.73 and is given by

Clen(t)

(KT (t + 2)mt (£)m(2) K (0)) (5.25)
(K7 | 7(2)K(0) | 0)? e~ Frn(t42) (5.26)
0 | m(2)K(0) | K)[? e~ FrenlT=t72) (5.27)
(K | m(2)K(0) | m)[? 7= (T2 emmu(t42) (5.28)
[(r | m(2)K(0) | K)|? emmx(T—t=2)emma(t+2) (5.29)

+ o+ o+ o+
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For sufficiently large time extent, T, contributions from the terms given by Eqgs. (5.27-
5.29) will be negligible in comparison to the term given by Eq. (5.26). In this case the
correlation function has a time dependence given by a single exponential. Our experience
with 7-7 scattering shows that the most accurate estimate of the ground state energy
can be obtained by considering the ratio of the two-pion correlation function to the single

pion two-point functions [12]. In K-7 scattering case, the corresponding ratio would be:

Ckr (t)

2T~ Ae APt x A1 — AER), 5.30
o) Cr D) (1= A5 (530)

where AE = Eg, — mg — my; and A is a constant. The second approximation in the
above equations comes from assuming that AFE is small. We therefore expect the ratio
to be approximately linear for some 0 < t < T'/2. An example of such ratio plot is
shown in Fig. 5.11. We can see that the data points for the ratio do not match the
single exponential behaviour. From this observation we can conclude that ‘around-the-
world’ effects given by equations (5.27-5.29) should be included in the fitting procedure.
This requires a five-parameter fit, where the parameters are Ex, and four normalisation
constants which appear in terms given by equations (5.26-5.29). Such fit turns out to be
stable, but fitting five parameters simultaneously can result in a large statistical error.

We can extract K — 7 matrix elements from:

C(t) = (n(A)m(t + 2) K (£)K(0)) (5.31)
= (0] 7| m)(r | 7(2)K(0) | K)(K | K | 0)e (At emmut (5.32)
+(m | 7| 0)(0 | 7(2)K(0) | Kn)(K7 | K | m)e ™= (T=8) = Frcnt (5.33)
+...,

with other contributions negligible in comparison. The construction of these correlation

functions requires no additional inversions in our setup.

Table 5.15 shows K — 7 scattering lengths calculated using both approaches and their
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agmy, | 483 643 continuum
1=3/2 | -0.068(8) | -0.068(7) | -0.07(2)
I=1/2 | 0.16(1) 0.16(1) 0.16(3)
1=3/2 | -0.063(8) | -0.059(5) | -0.06(1)
I=1/2 | 0.178(9) | 0.170(9) | 0.16(2)

Table 5.15: K — 7 scattering lengths calculated using 5-parameter (top 2 rows)
and 3-parameter (bottom 2 rows) fits and their continuum extrapolation

ag 2m7r aé 2m7r
Biittiker et. al. [72] | -0.0448(77) 0.224(22)
O(p*) ChPT -0.05(2) 0.19(2)
NPLQCD [73] -0.0574(16) ( f;g ) 0.1725(13) ( f?g’(i )
Fu [74; 75] -0.0512(18) 0.1819(35)
PACS-CS [76] -0.0602(31)(26) 0.183(18)(35)
this work (5p) -0.07(2) 0.16(3)
this work (3p) -0.06(1) 0.16(2)

Table 5.16: Comparison of presented results for K scattering lengths (bottom
two rows) with experimental (top two rows) and lattice results.

continuum extrapolation. It can be seen that 3-parameter fit produces smaller statisti-
cal errors than the 5-parameter fit. The comparison of our results with previous ones
is shown in table 5.16. Our results are in good agreement with the previous ones. Fur-
thermore, our error in the I = 1/2 channel is comparable with other collaborations.
However, unlike others we did not rely on ChPT at any point during our calculation, so
we are free of any systematic errors associated with the chiral extrapolation. This is the

first calculation of this quantity directly at the physical point.
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Conclusions

This chapter summarises our findings from Chapter 5.

We have calculated the Al = 3/2 amplitude, which we found to be:

Re(A2) = 1.50(4)stat (14)syst ¥ 1072 GeV;  Im(As) = —6.99(20)stat(84)syst X 10712 GeV .

6.1)

This is consistent with both the previous continuum result [12], which was

ReAs = 1.381(46)stat (258)syst X 1078GeV;  TmAs = —6.54(46)star (120)syst X 102 GeV;

(6.2)

and is also in good agreement with the experimental result
|Ao| ~ ReAy = 3.3197(14) x 107" GeV, (6.3)
|Ay| ~ Reds = 1.570(53) x 1078GeV, (6.4)

\/gyA;\ ~ \/gReA; — 1.4787(31) x 1073GeV. (6.5)

The major improvement over the previous result is that the discretisation errors are well-
controlled and are no longer the dominant source of systematic error. The systematic
error is now instead dominated by the error on the Wilson coefficients, which can be
improved either by improving the perturbative calculation or by using the step scaling
procedure to move the renormalisation scale higher than 3 GeV, where the perturbation

theory is better behaved.

Another interesting conclusion is that we have reproduced the cancellation in the ReAs
amplitude first reported in [2]. We believe that this cancellation gives a significant con-
tribution to the Al = 1/2 rule. A more recent development is the first ever calculation of
Ag in [13]. The result is Re(Ag) = 3.3201(18)x 10~7 GeV and Im(Ag)=—1.90(123)(104) x

121
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107! GeV. This gives the first theoretical prediction for ¢ /e, which is
Re(€'/e) = 1.38(515)(443) x 10~* (6.6)

which is 2.1 smaller than the experimental value of 16.6(23) x 10~%. This discrepancy
may be the first sign of new physics, but we need to reduce the error before it becomes

significant.

Some of the future work to improve the error may include increasing statistics or gener-
ating finer (i.e. smaller lattice spacing) ensembles (for example 2+1+1 flavour physical
point). There is also a possibility of applying the aforementioned step scaling to higher
scale to reduce the perturbative error. A more challenging task would be to include
isospin breaking effects, which as can be seen from the experimental input, can be as
large as 10% (c.f. Eq. (6.4) and Eq. (6.5)).

We have also calculated the K scattering lengths using the same ensembles. In this
calculation we found significant contributions from finite time effects, which we control
using one of the two approaches: either by directly fitting the correlation function to a
5-parameter form or by using K — 7 and m — K correlation function (which we call a
3-parameter fit). We find that 3-parameter fit gives a considerably smaller errors, and

the scattering lengths calculated using this method are

a3 P, = —0.06(1);  al™*my = 0.16(2). (6.7)
These numbers are in agreement with both dispersive calculations based on the experi-
mental input, as well as the previous lattice calculations. While the error bars are larger
than those in the previous calculations due to limited statistics, we should emphasise
that this is the first calculation of this quantity performed directly at the physical point

and is therefore independent of chiral perturbation theory.
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Conjugacy classes of the cubic

symmetry group

This section contains matrices which correspond to the transformation of a vector under

cubic symmetry group, arranged by their conjugacy classes.

Al E

123
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A.4 8Cj

—1

A.5 60,

—1

0 0
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