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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND ENVIRONMENT

Computational Engineering and Design Group

Doctor of Philosophy

INVESTIGATION ON MESHFREE PARTICLE METHODS FOR FLUID

STRUCTURE INTERACTION PROBLEMS

by Ali Javed

The research aims to investigate the application of meshfree particle methods for compu-

tational modelling of the Fluid Structure Interaction problems with particular emphasis

on flow around cylindrical objects and aerofoils. For this purpose, a solution scheme has

been developed for solving incompressible, viscous Navier-Stokes (N-S) equations over

meshfree particles. Spatial derivatives appearing in N-S equations are dealt with using

radial basis functions in finite difference mode (RBF-FD). A comparative study has also

been conducted between implicit and explicit in time solution schemes for N-S equations

over meshfree nodes. Subsequently, a coupled meshfree and mesh-based solution scheme

is proposed, over hybrid fluid grid, for incompressible, viscous flow around stationary

as well as moving objects. The aim of this coupled solver is to provide efficiency and

flexibility by combining the advantages of both meshfree and mesh-based methods. The

coupled solution scheme suggests generating a body conformal meshfree nodal cloud

around the solid body in the near field. A static Cartesian grid surrounds the meshfree

cloud in the far field. The Meshfree nodes offer flexibility in dealing with solid motion

by moving along the solid boundary without necessitating re-meshing. The Cartesian

grid, on the other hand, provides improved performance by allowing faster computa-

tion owing to the use of efficient mesh based method. Flow equations, in Arbitrary

Lagrangian-Eulerian (ALE) formulation, are solved using RBF-FD based scheme over

moving meshfree nodes. Conventional finite differencing is used over static Cartesian

grid for flow equations in Eulerian formulation. The coupled solution scheme, on hybrid

grid, is employed for closely coupled Fluid Structure Interaction problems. The equa-

tions for solid motion are solved using classical Runge-Kutta method. Close coupling

between fluid and structural solvers is realized by a sub-iterative prediction-correction

algorithm. In order to reduce computational overhead due to sub-iterations, only near

field flow (in meshfree zone) is solved during inner iterations. Solution over full fluid

domain is sought during outer (time step) iterations only, when the convergence at fluid-

solid interface has already been reached. The solution scheme is also applied for high

Reynolds number problems. For this purpose, a stabilization term is included in the flow

equations to suppress the spurious oscillations. The stabilization term is derived using
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momentum balance equation over control volume and applying higher order Taylor se-

ries expansion of momentum flux and fluid forces. In order to avoid ill-conditioning and

accuracy problems related to RBF matrices in domains having varying nodal density,

use of shape adaptive RBFs are proposed. In that, the shape parameter of the radial

basis function is varied according to local nodal density. Moreover, adaptive sizing of

influence domain has also been introduced to maintain suitable number of neighbouring

particles. These adaptive techniques are found to be useful as they allow much finer

nodal distribution at regions of interest enabling accurate capturing of flow gradients

and leading to better results. The use of hybrid grid offers flexibility in dealing with

moving boundaries. Moreover, in addition to allowing faster computing over Carte-

sian grid, it also enables using the reduced fluid domain during inner FSI iterations and

therefore helps reduce the number of computations in the fluid domain during fluid-solid

coupling. The solution scheme was tested for problems relating to flows around static as

well as moving cylinders and aerofoils. Flow induced vibrations have been studied with

one and two degrees of freedom. The results are found to be in good agreement with

previous numerical work and experimental results.
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Chapter 1

Introduction

1.1 Motivation for research

Interaction between fluid flow and structural deflection plays vital role in a number

important applications such as aircraft industry (wings deformation), design of bladed

machines (turbines, compressors and pumps etc.), renewable energy (e.g flapping foil

energy harvesters), stability analysis of bridge structures and biomechanics (e.g. mod-

elling of elastic artillery for stent design, blood flow simulations in vessels and vocal fold

vibrations etc.). A good understanding of complex phenomena relating to fluid structure

interaction (FSI) would provide valuable information relating to flow induced vibrations

and dynamic stability of structure. Fluid structure interaction is therefore, the main

focus of research in aero-elasticity and hydro-elasticity (Farhat et al. (1998); Dowell and

Hall (2001); Feistauer et al. (2011)).

Analysis of flow around moving aerofoils or blunt bodies is one of the important ap-

plications of fluid structure interaction. The oscillations induced by flow around the

wing structure can lead to unpredicted aerodynamic response, dynamic stall or even

fatigue damage. Lately, the use of moving aerofoils has also been applied for flapping

foil flow energy harvesting (Xiao and Zhu (2014)). These bio-inspired techniques utilize

active and / or passive mechanical systems to extract renewable energy from flow in-

duced motion of foils. It is therefore important to simulate flow induced vibrations, for

various conditions, to evaluate the flow behaviour, identify the stability envelope and to

understand various factors affecting the system response.

Analytical methods, used for solution of FSI problems, are restricted to some special

cases only with simplified assumptions (Holmes and Marsden (1978)). The real life

problems are however, often more complex and diversified. For example, consideration

of viscous effects, transient response of fluid domain, non-linear structural deformation

and simultaneous evolution of fluid and vibrating structural models are the aspects
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of fluid-structure interaction which cannot be addressed using analytical approaches.

Many researchers therefore resort to numerical techniques for solution and analysis of

flow induced vibrations e.g. Duarte et al. (2004); Farhat et al. (2006); Badia and Codina

(2007); Badia et al. (2008); Feistauer et al. (2011).

FSI problems are encountered when deforming or moving solid structures interact with

the surrounding fluid. This movement changes boundary conditions for the fluid around

the structure affecting the fluid motion. In addition to the changing boundary conditions,

the phenomenon is often coupled with large deformation. A numerical solution scheme

thus requires adaptive refinement, re-meshing and ability to accurately capture large de-

formations. These are the areas where grid based methods start to show limitations in

terms of accuracy and flexibility of use. Traditional mesh based methods like the finite

element (FE), finite volume (FV), finite difference (FD) are widely accepted as main-

stream computational solution tools. However, despite their great success in numerical

modelling and wide acceptability, grid based methods suffer from inherent limitations

when applied to problems relating to moving boundaries (like FSI or Aero-elasticity).

Such limitations impede their utilization in various applications and scenarios.

In this respect, the usability of commercially available packages like NASTRAN and

ANSYS is limited. For example, in case of wing flutter analysis, NASTRAN can be

used to determine critical flow velocities but post-flutter behaviour cannot be evaluated.

Moreover, other non-linear phenomena associated with large amplitude of vibration

cannot be captured (Sváček et al. (2007); Sváček (2008)). Therefore, in the realm of

recent advancements in computational power, where numerical modelling has been made

more efficient, there is a strong need to investigate the challenging problem of interacting

fluid and structure using contemporary computational approaches.

Meshfree particle methods were developed as a result of efforts to find the solutions to

the difficulties faced by mesh based methods (like those experienced in large deformation,

complex geometries and free surface flow problems). The idea behind developing the

meshfree method is that a domain represented only by a set of node or particles (without

constraints of grid) would provide greater flexibility in dealing with the problems which

are difficult to be addressed by mesh-based methods. Using meshfree methods, the

connectivity constraints among the nodes are somehow eliminated which allows the nodes

to move and morph more flexibly. Meshfree particle methods are therefore considered to

be better suited for the problems involving moving boundaries, large deformations and

adaptive refinement. As these are the attributes which are required for any numerical

scheme dealing with FSI problems, use of meshfree particle methods is increasingly

becoming popular for such applications. In fact, Fluid Structure Interaction is amongst

the many areas where use of meshfree methods has proven be a better choice than

grid based methods (Rabczuk et al. (2010); Chew et al. (2006); Yeo et al. (2010); Li

et al. (2011)). However, despite their stated advantages, meshfree methods developed

so far, happen to be computationally more expensive compared with their mesh based
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counterparts (Chew et al. (2006)). Higher computational cost is stated to be a big

hindrance in their widespread applicability (Ding et al. (2004)).

For highly convective flows, stability is a major consideration for numerical solution

(Fornberg and Lehto (2011); Gu and Liu (2002); Shen (2010); Chan et al. (2014); Shu

et al. (2005a); Oñate (1998). This area has extensively been studied for mesh-based

methods and various stabilization techniques (like use of upwinding, inclusion of artificial

viscosity and flux limiter etc.) are well developed for FE, FV and FD methods. However,

stability of convection dominated flows solved over meshfree domain still needs to be

studied further.

FSI problems are often modelled using partitioned approaches which employ separate

solvers for flow and structural subsystems. The results of these solvers are coupled at

fluid-solid interface. Partitioned procedures offer flexibility in choosing different solvers

for fluid and structures but these cause coupling errors and instabilities at interface

boundaries. These errors can be reduced by using closely coupled algorithms. However,

computational cost is significantly increased with the use of closely coupled algorithms

due to several sub-iteration in a single time step (Farhat et al. (1995)).

In view of foregone, there is a strong need to work out a solution scheme for fluid-

structure interaction problem which can provide improved computational performance

by still ensuring required flexibility to deal with moving boundary. Moreover, there is

a need to investigate other areas like stabilized flow at high Reynolds number and well

conditioning of the problem while applying meshfree methods on flow problems.

1.2 Conventional mesh based methods and their limita-

tions

Since the advent of numerical simulations in early 1950s, FEM, FVM and FDM have

emerged as distinct methods which have widely been employed for a large number of

engineering applications. These are robust and well developed methods used commer-

cially worldwide. However, these so called grid based methods, rely on computational

nodes which are connected by a topological map called mesh. Presence of grid or mesh

enforces a pre-defined connectivity constraint over the nodes thus causing some inherent

limitations to these methods. These limitations are discussed below.

1.2.1 Grid generation around complex geometries

Generation of an efficient mesh, which could ensure accurate results, is generally a

tedious and time consuming task. Cartesian grids are generally considered to be much

more efficient to generate but their applications are limited to simpler geometry. In fact,
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grid generation is generally the most time consuming process during numerical solution

process (G. R. Liu (2003)) and is therefore expensive as it consumes operators time.

Composite grids and domain decomposition techniques have often been used for tra-

ditional mesh-based methods to overcome the difficulty posed by complex geometries

(Perng and Street (1991); Hinatsu and Ferziger (1991); Chow and Addison (2002)). Hi-

natsu and Ferziger (1991) proposed a multigrid method for geometrically complex flow

problems. Perng and Street (1991) used a domain decomposition technique for flow in

regions with complex geometries. The Momentum equation was solved separately in

each sub domain and pressure field was computed simultaneously in the entire domain.

However these methods rely on interpolation approximations at the grid interchanges

and suffer from inaccuracies especially when high gradients exist at these junctures.

Some researchers (Pember et al. (1995), Falcovitz et al. (1997), Calhoun (2002),Günther

et al. (2011),Schneiders et al. (2013),Örley et al. (2015)) have also proposed the use

of Cartesian grids on irregular shapes using boundary-fitted methods. However, these

methods necessitate special treatments close to the boundary and suffer from time step

restrictions due to small cut cell to accurately embed irregular boundaries in the Carte-

sian grid. Another approach is to use non-body conformal methods (Glowinski et al.

(1994)), Gilmanov et al. (2003),Gilmanov and Sotiropoulos (2005),Ge and Sotiropoulos

(2007),Wang et al. (2014),Wang et al. (2015)) in which a background structured mesh is

defined behind the solid boundary. The interface between fluid and solid is traced using

marker nodes. These schemes however suffer from inaccuracies coming from accurate

tracing of the boundary which is limited by the grid resolution.

1.2.2 Dealing with moving boundaries

Traditional mesh based methods (like FD, FV and FE) make use of computational grids

which have some sort of pre-defined connectivity amongst the grid nodes. This constraint

strongly inhibits the capability of mesh based methods to effectively deal with moving

boundaries. Therefore, use of traditional mesh based methods for FSI problems brings

in the cumbersome tasks of extensive re-meshing, and data interpolations. Adaptive

meshing is in fact, a challenging task for problems relating to Fluid Structure interaction,

explosion, fragmentation, impact and penetration (Li Shaofan (2007)).

1.2.3 Other issues

In addition to the aspects discussed above, grid based methods are also difficult to

be employed for problems involving free surface flows where domain of the fluid is not

predefined. Moreover, for high velocity impact (HVI) problems which involve phenomena

like large deformation, moving particle interfaces and free surface flow, it becomes very

difficult to handle the solution using grid based methods (G. R. Liu (2003)). Also in
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computational failure mechanics, grid based methods cannot accurately predict crack

growth behaviour in solids (Zhuang et al. (2014)).

1.3 Meshfree methods as an Alternative to Grid Based

Methods

Since the 1970s, efforts have been underway to seek better alternatives to overcome the

limitations of grid based systems for various problems. In this regard, early efforts were

devoted to modifying the existing grid based methods to render them less susceptible

to the afore mentioned shortcomings. Development of auto-meshers, use of automated

adaptive meshing techniques and development of the Arbitrary Lagrangian Eulerian

(ALE) method are the prominent examples of such efforts. However, these modifications

were unable to completely eliminate the limitations inherent in the use of mesh-based

methods. In fact, connectivity of nodes in mesh based methods was seen as the biggest

contributor to these limitations.

Meshfree methods refer to the class of computational techniques in which, at least,

the structure of the mesh is eliminated and the solution is approximated over a set

of arbitrarily distributed data points (or nodes). In the absence of pre-specified grid

connectivity constraint, computational nodes can be moved, added or removed more

flexibly, from computational domain, during the simulation. Owing to these features,

meshfree methods are considered to be better suited for problems involving large de-

formation, moving boundaries and complex geometries (Chew et al. (2006)). Meshfree

methods therefore, offer a good alternative for the limitations experienced during grid

based analyses. Some the advantages are listed below (Li Shaofan (2007)):

1. Meshfree methods can easily handle the problems with large deformations Ding

et al. (2004). Unlike the grid based methods, nodes are not connected to each

other. Therefore, any displacement of nodes (followed by deformation of domain)

is not restricted by inter-node connectivity constrained (as in FEA).

2. Significant design effort is saved due to the fact that the meshing is not required.

It makes the analysis process much simpler and faster.

3. Unlike mesh based methods, it is very easy to add or remove data points during the

analysis. This makes the adaptive refinement very flexible, simple and accurate

during analysis. The computational accuracy and efficiency can be controlled by

adding the particles to the areas where more refinement is required. Such flexibility

is not provided by mesh based methods.
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4. Boundary fitted nodal meshfree nodal cloud can follow the movement of deformable

boundary without element shape distortion restrictions. Therefore, accurate ge-

ometric representation is possible using meshfree methods. Moreover, the data

can be transferred to CAD database more efficiently as the requirement for mesh

generation is eliminated.

5. Meshfree methods have been found to be extremely useful in accurately determin-

ing the behaviour of free surface flows (Monaghan (1994)).

6. For structural applications, one of the prominent applications of meshfree methods

is accurate determination of damage, crack growth and disintegration behaviour

of the continuum (Zhuang et al. (2014)). The methods are implicitly adaptive to

topological changes in the structure. Hence, they are proving useful in computa-

tional failure mechanics.

7. Meshfree methods have the ability to effectively incorporate the enrichment pro-

vided by features of fine scale solutions into coarse scale solutions. This means that

there is no restriction on adaptive refinement in different regions of computational

domain as coarse and refined distributions of nodes can easily work together.

Owing to these features, application of meshfree methods has extensively been investi-

gated for fluid flow problems. For example, Shu et al. (2005b) used Local RBF based

differential quadrature method for incompressible flow around single and a pair of stag-

gered cylinders. Later Shan et al. (2008) extended the method for curved 3-D problems

with simple geometries. Shadloo et al. (2012) presented a solution scheme for flow around

aerofoil and square obstacle using compressible and incompressible SPH methods. They

proposed an artificial particle displacement method to overcome inhomogeneous parti-

cle distribution when Lagrangian schemes are used for for such problems. Shen (2010)

presented collocation based meshfree method for boundary layer problems. Chan et al.

(2014) proposed a method for solving convection dominated flows using upwind radial

basis functions. Wu et al. (2010) proposed a method for solving incompressible flow

problems, in primitive variables, using meshless local Petrov-Galerkin Method (MLPG).

Later, Najafi et al. (2012) extended MLPG method for high Reynolds number flow

problems using characteristic-based split (CBS) scheme.

1.3.1 Higher computational cost - Limiting factor of meshfree methods

Despite above stated advantages, meshfree methods developed so far, are, in general,

computationally more expensive than conventional mesh based methods. This is mainly

because, meshfree methods require more number of data points to achieve desired level

of accuracy than conventional mesh based methods (Wright and Fornberg (2006)). This

leads to overall lesser computational efficiency compared with traditional mesh based
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methods (Chew et al. (2006)). For example in RBF based methods, calculation of RBF

weights corresponding to the neighbouring particles of a data point requires expensive

square root and matrix inversion processes. Moreover, calculation of derivative approxi-

mation at a given order of accuracy usually requires much more number of neighbouring

particles (or nodes) for meshfree methods on an irregular grid than for finite difference

methods on Cartesian grid. As a result, the bandwidth of matrices representing the

governing algebraic equations greatly expands in case of meshfree methods (Ding et al.

(2004)). Therefore, the iteration process is slowed down due to relatively dense matrix

equations and the computational efficiency is reduced.

Efforts are under way to overcome this limitation using different novel techniques. For ex-

ample, Hamed Meraji et al. (2012) presented a point pressure-velocity iteration method

to work out an efficient solution scheme for N-S equations in primitive variables using

local RBFs. Bollig et al. (2012) presented a parallelization strategy for radial basis

function in a finite difference method using multiple GPUs. They used message passing

interface (MPI) for inter-processor communication and synchronization to have faster

computing using the meshfree method. Some researchers have proposed the use of

coupled mehsfree/mesh-based methods to overcome the computational efficiency issue.

Fries and Matthies (2006a) and Fries and Matthies (2006b) coupled mesfhree Galerkin

method with conventional FEA over a composite grid using Chimera technique (Steger

and Benek (1987)). Chew et al. (2006) and Ding et al. (2004) coupled generalized finite

difference with conventional finite difference scheme using a meshfree nodal grid was su-

perimposed by a background Cartesian mesh grid. It is considered that composite grid

schemes can be highly useful in overcoming the performance related issues of meshfree

methods.

Today, meshless methods are one of the hottest areas of research which have promising

applications for different problems pertaining to Computational Fluid Dynamics (CFD)

and Computational Structure Mechanics (CSM). Particularly, for fluid structure inter-

action problems, where large deformations and interface problems limit the accuracy

of conventional numerical methods, meshfree methods can prove to be extremely ac-

curate and efficient. However, their higher computational cost is one of the biggest

limitations which impedes their wide applicability (Ding et al. (2004)). Therefore, mesh

based methods are outclassed by their meshfree counterparts in terms of flexibility and

handling of moving boundaries and complex geometries. However, mesh based methods

are well developed and offer better computational performance compared with existing

meshfree methods. None of the methods can therefore, be termed as ’superior’ to the

other especially for modelling the flow problems.
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1.4 Partitioned methods for FSI and their limitations

Partitioned procedures are more commonly used for FSI problems in general and non-

linear aero-elastic problems in particular (Park (1980); Farhat et al. (1995, 1998); De Ro-

sis et al. (2013); Dowell and Hall (2001); Ii et al. (2011); Piperno et al. (1995); Kamakoti

and Shyy (2004)). These methods employ different time integration schemes for fluid and

structure subsystems. Partitioned procedures use three field formulation, constituting

fluid and structure subsystems and the moving grid. They provide flexibility in choosing

different solvers for fluid and structure subsystems. However, coupling errors, at fluid-

structure interface of these solvers, is often advocated as a limitation to this approach.

Such inaccuracies are more pronounced in loosely coupled systems where solutions from

fluid and structural subsystems are not necessarily converged at the interface boundary

before marching to the next time step (De Rosis et al. (2013)). This deficiency of parti-

tioned problems is overcome by the use of strongly coupled systems. In this approach,

several inner or sub-iterations are run of fluid and structure solvers, within a single time

step, to reach convergence at the interface before moving on to the next time iteration.

These inner iteration cause significantly high computational overheads which affect the

overall efficiency of the solution scheme. In fact, closely coupled systems attempt to

improve accuracy and stability in exchange of increased computational cost caused by

a higher number of computations in each time step (Farhat et al. (2006)).

1.5 Stabilization of convection-diffusion problems

Viscous flow equations are primarily the convection-diffusion equations. It is well known

that dealing with the convection terms often becomes a challenging task, in view of nu-

merical simulations, especially for high Reynolds number problems. Increased convection

causes spurious oscillations in the solution which leads to inaccuracies and instabili-

ties. In this regard, significant work has been conducted to overcome the instabilities

caused by convection when approaching the flow problems using FEM, FVM and FDM.

Presently, well developed stabilization techniques exist for mesh based methods. For

meshfree methods, Gu and Liu (2002) have proposed several techniques to deal with

instabilities of numerical solutions. These techniques include nodal refinement, support

domain enlargement and use of upwind domains. Fornberg and Lehto (2011) introduced

a filter mechanism to overcome stabilization issues related to purely convective PDEs

when solved using RBF-FD method. Shen (2010) and Chan et al. (2014) introduced

upwind schemes for using RBF differential quadrature methods. However these schemes

require constant reshaping of local support domains in accordance with flow velocities

to ensure larger number of neighbouring particles in the upwind direction. Shu et al.

(2005a) presented an upwind RBF Differential Quadrature (DQ) method for compress-

ible flows. An effective stabilization scheme was presented by Oñate et al. in their work
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(Oñate (1998); Oñate et al. (1996)). They worked out stabilized momentum equations

by introducing higher order approximations in the derivation of governing equations.

Nevertheless, flow stabilization techniques still require significant research as far as their

application to meshfree methods is concerned.

1.6 Scope of Research

The current research effort focuses on benefiting from the strengths of meshfree par-

ticle methods for simulating flow around moving solid objects. The aim is to suggest

a solution scheme which provides flexibility in dealing with moving boundaries as well

as offering better computational performance compared with current techniques using

meshfree methods. For this purpose, problems relating to 2-D incompressible, viscous,

laminar flows are considered. Airfoils and cylindrically shaped solid objects are mod-

elled as flexibly supported rigid bodies allowing translational and rotational movements.

Such models sufficiently demonstrate flutter behaviour, flapping foils used in energy

harvesters, offshore cylindrical structures and underwater flexibly mounted pipelines.

The ambit of research was confined to collocation based meshfree methods since the

beginning. In this regard, after a comparative study of various candidate methods,

local radial basis functions in finite difference mode (RBF-FD) is chosen for spatial

discretization of flow equation in meshfree domain. Application of RBF-FD method

is investigated for solution of flow equations, in vorticity-stream function as well as

pressure-velocity formulations. Ill-conditioning effects, experienced by RBF matrices,

are addressed by using adaptive shape parameters over non-uniform nodal distribution.

It is well known that meshfree methods are computationally expensive compared with

their mesh based counterparts. In order to overcome this limitation, the research has

been focused on developing a coupled meshfree and mesh-based solution scheme on

hybrid fluid grid which could benefit from flexibility of meshfree methods as well as

from computational efficiency of mesh based methods. The solution scheme couples

RBF-FD on meshfree nodes with conventional finite difference on Cartesian mesh in the

fluid domain.

A partitioned method is used with loose / closed coupling models at fluid-solid inter-

face. Efforts are made to reduce the computational cost associated with closed coupling

algorithms. For this purpose, a scheme is worked out to reduce computational effort

involved in fluid solution during inner FSI iterations.

The research efforts are also directed to developing stabilized solution schemes over hy-

brid meshfree-Cartesian grid for high Reynolds number problems. At such conditions,

increased convection in the flow causes spurious fluctuations which needs to be sup-

pressed to maintain stability and accuracy. The aim is to develop an efficient, accurate
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and stable FSI solution scheme which could provide insightful information about flow

behaviour around moving boundaries with an emphasis on flow induced vibration.



Chapter 2

Fundamentals of incompressible,

viscous flow and its interaction

with rigid solids

In this chapter, fundamental aspects relating to viscous flow modelling and fluid-solid

interaction have been discussed. These aspects include Eulerian and Lagrangian descrip-

tions of continuum, mathematical formulation of incompressible and viscous flows and

their time discretization methods, coupling of fluid and structures, treatment of highly

convex boundaries and dealing with moving boundaries in flow. The detail is given in

the subsequent sections.

2.1 Eulerian, Lagrangian and ALE descriptions

Numerical simulations of fluid dynamics and solid mechanics problems often require cop-

ing with large deformation of the continuum. The problems relating to Fluid-Structure

Interaction particularly entail clear delineation of fluid and structure interfaces during

continuum distortion. Therefore, the choice of an appropriate kinematic description

of the continuum is highly important for defining relationship between the deforming

continuum and the finite grid of the computational domain. Such description of the

continuum enables the numerical scheme to provide an accurate resolution of material

interfaces and mobile boundaries as well as dealing with large deformations. Models in

continuum mechanics may be formulated using two classical descriptions of motion:

1. Lagrangian description

2. Eulerian description

11
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The Lagrangian approach allows each node of the computational mesh to follow the

associated material particle as shown in Figure 2.1(a). This approach facilitates the

treatment of materials with history dependent constitutive relations as well as allowing

easy tracking of free surfaces and interfaces between different materials (Sarrate et al.

(2001)). However, Lagrangian description cannot accurately deal with large distortions

without incorporating frequent re-meshing. On the contrary, the Eulerian approach does

not allow movement of nodal points at all. Therefore, continuum distortion is calculated

from a stationary view point and grid retains its original shape as shown in Figure 2.1(b).

However, it cannot incorporate moving boundaries for boundary fitted grids.

(a) Lagrangian description (b) Eulerian description

(c) ALE description

Figure 2.1: Lagrangian, Eulerian and ALE descriptions

Arbitrary Lagrangian Eulerian (ALE) description combines the features of both classical

descriptions and minimizes their limitations (Hirt et al. (1974)). In ALE description,

the grid points are not completely fixed. However, they are neither bound to exactly

follow the material particles. Therefore, the material particles are tracked from a moving

reference frame. Figure 2.1 depicts these three descriptions of motion.

2.1.1 ALE Formulation

Consider a material domain ΩX ε Rd, where d is the dimension of space. Image of ΩX

at time t is represented by the spatial domain Ωx. The motion of material domain can

be mapped as φ : Ωx × (0, T ) → Rd. The reference (or ALE) domain is represented as
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Figure 2.2: Motion of ALE reference domain independent to material motion

ΩX and its motion is defined by the mapping ϕ : ΩX × (0, T )→ Rd. Another mapping

ψ : ΩX × (0, T )→ Rd can also be introduced such that ψ = ϕ−1 ◦φ exists for sufficiently

smooth, bijective functions φ and ϕ. An overview of different domains along with the

mapping is shown in Figure 2.2.

Let us assume three coordinates x, X and X such that

x ε Ωx, X ε ΩX , X ε ΩX

So, we can show that:

x = φ(X, t), x = ϕ(X , t), X = ψ(X, t)

dφ = x−X, dϕ = x−X , dψ = X −X

Now, realizing that dX/dt = 0 , we can deduce the following time derivatives:

ḋφ =
∂dφ
∂t

∣∣∣∣
X

=
∂x

∂t

∣∣∣∣
X

= φ̇, ḋψ =
∂dψ
∂t

∣∣∣∣
X

=
∂X
∂t

∣∣∣∣
X

= ψ̇

In practice ḋφ may be taken as real advection velocity with respect to spatial domain

and ḋψ as relative velocity of mesh with respect to real advection velocity. dϕ is the
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mesh (nodal) velocity of ALE mesh. Any function defined in one of the three domains

implies the definition of two other functions defined in other domains. That is to say,

f(X , t)︸ ︷︷ ︸
Referential ALE

= g(x, t)︸ ︷︷ ︸
Spatial Eulerian

= h(X, t)︸ ︷︷ ︸
Material Lagrangian

(2.1)

Time derivative of each function can be expressed using chain rule as:

∂f

∂X
ḋψ +

∂f

∂t
=
∂g

∂x
ḋφ +

∂g

∂t
=
∂h

∂t
(2.2)

Variable x can be expressed as x = ϕ(ψ(X, t), t). Therefore, the time derivative of

x = ϕ(ψ(X, t), t) leads to:

dx

dt
= ḋφ =

∂ϕ

∂ψ
ḋψ + ḋϕ (2.3)

ḋψ =
∂X
∂x

(ḋφ − ḋϕ) (2.4)

Substituting the value of ḋψ into Eq. (2.2):

∂f

∂X
(ḋφ − ḋϕ)︸ ︷︷ ︸

Referential ALE

=
∂g

∂x
ḋφ +

∂g

∂t︸ ︷︷ ︸
Spatial Eulerian

=
∂h

∂t︸︷︷︸
Material Lagrangian

(2.5)

Therefore, any time derivative in Eulerian or Lagrangian formulation may directly be

transferred to ALE (reference) formulation using Eq. (2.5).

2.2 Flow equations in pressure-velocity formulation

The time dependant, incompressible and viscous Navier-Stokes equations in non-dimensional

primitive (pressure-velocity) variable form are expressed as:

Continuity equation : ∇.~u(x, t) = 0 (2.6)

Momentum equation :
∂~u(x, t)

∂t
= −∇P − (~u(x, t).∇)~u(x, t) +

1

Re
∇2 ~u(x, t) (2.7)
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Figure 2.3: ALE mapping of reference configuration Ω0 over current configura-
tion Ωt

with boundary condition:

~u(x, t)|∂Ω = ~u(x, t)|Γ (2.8)

where Ω is the domain bounded by Γ, x is the spatial coordinate vector, t is the time,

~u(x, t) is the velocity vector and P is the pressure. ∇ is the spatial differential operator.

Re is the Reynolds number (Re = UL/ν, where U is the free stream velocity, L is the

characteristic length and ν is the kinematic flow viscosity)

In case of non-stationary computational domain, the flow equations can be expressed in

Arbitrary Lagrangian Eulerian (ALE) description to account for the nodal movement. In

this case, the computational domain at initial time t0 is taken as a reference configuration

Ω0 as shown in Figure 2.3. At any arbitrary time t, the reference configuration Ω0 can

be mapped over the current configuration Ωt using mapping At as (Hirt et al. (1974)):

At : Ω0 → Ωt (2.9)

X→ x(X, t) = At(X) (2.10)

ALE velocity is calculated as ~v = ∂At/∂t. Flow momentum Eq. (2.6) is written, in ALE

formulation, as follows (Takashi and Hughes (1992)):

∂t~u(x, t) = −∇P − (~u(x, t)−~v)).(∇~u(x, t)) + (1/Re)∇2~u(x, t) (2.11)

The continuity equation remains unchanged in ALE form. ALE velocity is set equal to

the velocity of the computational domain at each point. For static domain, ALE velocity

~v becomes zero and the momentum Eq. (2.11) transforms to its corresponding Eulerain

form Takashi and Hughes (1992).
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2.3 Time discretization methods for Navier Stokes equa-

tions

One of the major difficulties faced during numerical solution of transient Navier-Stokes

equations in primitive variable form is that the continuity equation does not contain a

time derivative. In order to address this problem, the constraint of mass conservation

is achieved by coupling the pressure term with continuity equation. For this purpose,

an intermediate velocity term ~u∗ is introduced, between two consecutive time steps, to

decouple pressure term from momentum equation. Momentum equation is advanced to

determine the intermediate velocity ~u∗. Then an elliptic equation is solved that enforces

the divergence free constraint on velocity field at the next time step. The method

is called fractional step method. Following is the general procedure for this method

(Guermond et al. (2006)):

1. Solve for intermediate velocity field ~u∗:

~u∗ − ~un

∂t
= −∇q − [(~u.∇)~u]n+1 +

1

2Re
∇2(~un + ~u∗) (2.12)

and B(~u∗) = 0 (2.13)

where q is a function of pressure P and B(~u∗) is the boundary condition for

intermediate velocity. n is the current time step.

2. Project divergence free constraint:

~u∗ = ~un+1 + ∆t∇φn+1 (2.14)

∇.~un+1 = 0 (2.15)

~u|∂Ω = ~uΓ (2.16)

where φ is an auxiliary variable which has some correlation with pressure defined

by a function L(φ)

3. Finally, update the pressure field:

Pn+1/2 = q + L(φn+1) (2.17)

In general, the intermediate velocity field ~u∗ does not satisfy divergence free constraint

after being evaluated from the momentum equation. However, continuity conditions are

fulfilled at the end of time step.

Various researchers have presented different variants of these methods (Kim and Moin

(1985); Van Kan (1986); Bell et al. (1989, 1991)). The difference lies in the selection of
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pressure approximation in momentum equation (q), the boundary conditions for inter-

mediate velocity B(~u∗) and the function L(φn+1). A brief description of some of these

methods is given here.

2.3.1 Method of Kim and Moin

Kim and Moin (1985) first introduced the relationship between auxiliary variable and

pressure. They used the following expression for this purpose:

∇Pn+1/2 = φn+1 − ν∆t

2
∇2(φn+1) (2.18)

It can be observed that variable q is missing in Eq. (2.18). The reason for this is that

the pressure does not appear, at all, in the momentum equation for ~u∗ (i.e. q = 0 in

Eq. (2.12)). By using this procedure, Kim and Moin (1985) avoided the contribution

of errors from the pressure terms in the momentum equation. However, intermediate

velocity ~u∗ does not remain equal to ~un+1 within O(∆t2). Therefore, ~u∗ is related to

~un+1 using the relation ~u∗ = ~un+1 + ∆t∇φn at the boundary. A later investigation by

Brown et al. (2001) showed that this was, in fact, a necessary condition to obtain second

order accuracy for solution in this approach.

2.3.2 Method of Bell, Colella and Glaz

This is a well-known projection method which has been presented by Bell et al. (1989)

and Bell et al. (1991) and has been implemented to various complex physical problems

(Brown et al. (2001)). It is an incremental pressure update method which includes

pressure update in intermediate momentum equation for ~u∗. This method uses the

pressure value calculated in previous iteration in momentum equation as q = Pn−1/2.

The boundary condition for intermediate velocity is applied as (~u∗− ~un+1)|∂Ω = 0. The

boundary condition on intermediate velocity leads to the boundary condition on φn+1

while solving the elliptic equation as n̂.∇φn+1|∂Ω = 0. The method offers second order

accuracy (O(∆t2)) for velocity field and first order accuracy (O(∆t)) for pressure field.

Pressure is related to φ as:

∇Pn+1/2 = φn+1 −∇(φn+1) (2.19)

However, unlike the method of Kim and Moin (1985), the term ∇2φ does not appear

in the expression for time centred pressure Pn+1/2 here. This results in inaccuracies

in pressure calculations around the boundary and generation of a numerical boundary

layer (Temam (1991)).
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2.3.3 Other fractional step methods

There are various other variants of fractional step methods. For example, Perot (1995)

proposed a method in which truncation error associated with calculation of pressure gra-

dient ∇P was reduced by adding a correction term. So, the pressure update expression

became:

(1 +
ν∆t

2
)Pn+1/2 = φn+1 (2.20)

At the boundaries, n̂.∇P = 0 is used for elliptic pressure equation which results in first

order accuracy for the method. This is a non-incremental pressure update method and

therefore q = 0.

Botella (1997) introduced a third order integration equation for intermediate velocity

evaluation in the momentum equation. They used the following expression for q:

q = Pn−1/2 + φn (2.21)

The intermediate velocity was related to velocity at the next time step as:

~un+1 = ~u∗ −∆t(φn+1 − φn) (2.22)

with boundary condition:

n̂.∇φ = 0 (2.23)

The pressure was updated using the following equation:

Pn+1/2 = Pn−1/2 + φn+1 (2.24)

Botella (1997) demonstrated higher convergence rates for both velocity and pressure in

L2-norm. However, Brown et al. (2001) remarked that the method was inaccurate at

the boundaries as n̂.∇P must stay constant due to the pressure update formula.

There are numerous other modifications and variations proposed by different researchers.

However, the discussion here is restricted to the famous methods only.
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2.4 Flow equations in vorticity-stream function formula-

tion

Non-dimensionalized flow equations in 2-D coordinate plane x = (x, y) can be expressed

in vorticity-stream function formulation as:

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
(2.25)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω (2.26)

where ω is the vorticity, ψ is the stream function and u, v are the components of flow

velocity along x and y directions respectively (~u(x, t) = (u, v)). Vorticity (ω) is expressed

as:

ω =
∂u

∂y
− ∂v

∂x
(2.27)

The components of velocity vector ~u(x, t) = (u, v) can be obtained from derivatives of

stream function (ψ) as:

u =
∂ψ

∂y
, v = −∂ψ

∂x
(2.28)

The vorticity-stream function formulation of Navier Stokes equations offers simpler rep-

resentation of flow equations. However, there are certain limitations which inhibit the

use of this formulation for various types of problems. The limitations are:

1. The formulation cannot be extended to 3-D (Except for axi-symmetric cases).

2. Vorticity boundary conditions are relatively complicated and are difficult to use

on complex boundaries.

3. Physical parameters (velocity and pressure) are not directly calculated.

4. Problem cannot be extended to compressible flow.

The pressure-velocity formulation, on the other hand, offers generalized set of equations

for flow problems. Nevertheless, vorticity stream-function still provides an efficient way

of solving incompressible flow problems in 2-D.
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2.4.1 Solid equations

The problems considered for current study include flow around spring mounted airfoil

and cylindrical objects which are able to vibrate due to fluid forces. Cylindrical objects

can perform translational oscillation in horizontal and vertical directions as shown in

Figure 2.4(a). The equations of motion for cylindrical vibration are given by:

mẍ+ dxẋ+ kxx = D(t) (2.29)

mÿ + dyẏ + kyy = L(t) (2.30)

where m is the mass of cylinder (in kg), dx, dy are damping constants (N.s/m) and kx,

ky are spring stiffness values (N/m) along x and y directions respectively. L(t) and D(t)

are time dependant lift and drag values.

The airfoil is able to vibrate vertically as well as rotate about its elastic axis as depicted

in Figure 2.4(b). The motion of airfoil, along translational axis y and rotational direction

α, is therefore described by a set of coupled non-linear differential equations as follows

(Dubcová et al. (2009)):

mÿ + Sαα̈ cosα− Sαα̇2 sinα+ dyẏ + kyy = L(t) (2.31)

Sαÿ cosα+ Iαα̈+ kαα+ dαα̇ = M(t) (2.32)

Here Sα and Iα represent first moment (kg.m) and second moment (kg.m2) of inertia of

airfoil about the elastic axis respectively. The terms kα and dα are the rotational stiffness

(N.m) and rotational damping constants (N.m.s). M(t) is the time dependant pitching

moment about the elastic axis. For small vibrational amplitudes, the non-linear terms

appearing in Eqs. (2.31) and (2.32) can be ignored resulting in the following system of

linear equations:

mÿ + Sαα̈+ dyẏ + kyy = L(t) (2.33)

Sαÿ + Iαα̈+ kαα+ dαα̇ = M(t) (2.34)

External forces and moment appearing in Eqs. (2.29) - (2.34) can be evaluated by

integrating fluid stresses (τij) and their corresponding moments about elastic axis over

the entire solid surface Ωt. For a unit thickness of solid, the fluid forces and moments

acting on solid objects can be expressed as (Sváček et al. (2007)):
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Drag = D =

∫
ΓWt

 2∑
j=1

τ1jnj

 ∂Ωt (2.35)

Lift = L =

∫
ΓWt

 2∑
j=1

τ2jnj

 ∂Ωt (2.36)

M =

∫
ΓWt

 2∑
i,j=1

τijnjri

 ∂Ωt (2.37)

Here, ni is the component along xi, of unit vector n̂ towards outward normal to the

surface ∂Ωt on ΓWt . ri is the moment arm of force defined as ri = −(Xi − XEOi),

where Xi is the coordinate of point on surface and XEOi is the coordinate of elastic

axis. Differential equations for motion of solid are solved using explicit Runge Kutta-4

method to get displacements at next time step.

2.5 Computational modelling of Fluid-Structure Interac-

tion problems

Implementation of coupled fluid-structure interaction problems in computational envi-

ronment can be realized using two different approaches. The monolithic approach refers

to the fully coupled method which attempts to find simultaneous solution of the prob-

lem. In monolithic schemes, fluid and structural equations are reformulated, combined

and then solved simultaneously using single time integration method (Kamakoti and

Shyy (2004)). The method sounds appealing as it provides a single set of equations for

mathematical analysis and does not pose inaccuracies at fluid-structure interface. How-

ever, difference in mathematical properties of fluid and solid subsystems, issues related

to software modularities and loss of generalization of solution scheme strictly limit their

widespread application (Farhat et al. (1995)).

The other way to solve FSI problems is through partitioned approach. Partitioned

method treats fluid and solid as different entities during solution process and attempts

to seek a coupling methodology to model the interaction of the two solutions. This

has traditionally been achieved by coupling the high level computational fluid dynam-

ics (CFD) and Computational Structural Dynamics (CSD) approaches. Usually, CFD

approach employs Eulerian or spatially fixed coordinate system whereas Lagrangian or

material fixed coordinate system is used by CSD approach. Therefore, coupling of the

two modules using suitable interfacing techniques is necessitated (Kamakoti and Shyy

(2004)) to ensure accuracy and stability.
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2.6 Categories of FSI models

FSI problems can be classified into three major categories based on fluid-structure cou-

pling. These are

1. Fully coupled models

2. Closely coupled models

3. Loosely coupled models

A short description of each model is outlined below.

2.6.1 Fully coupled models

In this approach, the governing equations for fluid and structure domains are reformu-

lated and a single set of equations is worked out. The new set of equations is applicable

to both solid and fluid phases. The equations are then solved simultaneously to get the

solution. The approach is also called monolithic approach. Guruswamy and Byun (1995)

coupled an Euler flow equation with plate structure in finite element formulation. Later

similar approach was extended to couple Navier Stokes equations with shell FE structure

(Guruswamy and Byun (1995)). Garcia and Guruswamy (1999) performed aeroelastic

analysis of transonic wing by coupling Navier Stokes equations and nonlinear beam FE

model. Fully coupled approach provides a unified solution to system of equations for

both solid and fluid domains. They have minimum coupling errors. However, this comes

with several limitations. The fluid and structure equations are written in Eulerian and

Lagrangian formulations respectively. This makes the order of magnitude of the matri-

ces stiffer for structure system as compared to fluid. Therefore, a monolithic approach

to solve the system does not remain possible for complex systems. The application of

such methods is therefore limited to simple and 2D problems only (Kamakoti and Shyy

(2004)).

2.6.2 Loosely coupled models

Loosely coupled approach refers to the models in which fluid and solid domains are

solved separately using separate set of equations in separate solvers. Both domains have

different computational grids which may not coincide at fluid-solid boundaries. Exchange

of information takes place at the boundary nodes using some interfacing technique.

Loosely coupled models allow the flexibility of choosing solvers from a range of available

fluid and structural solution packages. Therefore, the requirement of generating an
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exclusive solver for a particular set of problems is alleviated. This allows the use of well-

established and tested solver packages which enhance the confidence level in results. For

example, Siegel Jr et al. (1998) developed a multidisciplinary computing environment

which allows various modules to communicate over a distributed network of computers

in a user-defined simulation environment. The model was used to study steady and

transient flow behaviour over AGARD 445 and delta wing structures. Loosely coupled

models provide only external interaction between fluid and solid modules. Therefore,

exchange of information takes place only after partial or full convergence is achieved

in a particular time step (Smith et al. (1996)). This leads to loss of accuracy at the

grid interface. Loosely coupled models are therefore used for problems with moderate

nonlinearity and small perturbations (Kamakoti and Shyy (2004)).

2.6.3 Closely coupled models

Closely coupled models take a step forward from loosely coupled models by introducing

the interface between fluid and structural solver modules during the process of conver-

gence. In this approach, fluid and structure equations are solved separately but the two

solvers are tightly coupled at interface or boundary through interface module. Interface

ensures that both the modules reach mutually converged results after every time step. At

the interface, surface loads are mapped from CFD grid to structural grid and displace-

ment field is mapped from structural grid to CFD grid (Kamakoti and Shyy (2004)).

Liu et al. (2002) presented a fully implicit model to couple an unsteady CFD solver

and CSD solver based time integration model dynamic equations. Parallel, multiblock

moving mesh algorithm with finite volume was used to solve Navier Stokes equations.

The coupled system was used to study stability of aeroelastic system in time domain.

Farhat et al. (1995) presented a three field formulation for mixed implicit / explicit

time integration of coupled aeroelastic problem. Arbitrary Lagrangian Eulerian (ALE)

approach was used for solution of equation on moving grids. The solution of the coupled

governing equations was obtained with explicit fluid and implicit structure solver.

Closely coupled approach offers a way for generating more complex non-linear problems.

Selection of fluid, structure and interface model depends upon the type of problem,

accuracy requirements and computational resources available. However, this algorithm

runs several iterations of fluid and structural solver, within a single time step, in an

attempt to attain mutual convergence at fluid-solid boundary. These inner iteration

cause significantly high computational overheads which affects the overall efficiency of

the solution scheme. This in fact, is the major limitation of closely coupled models

(Farhat et al. (2006)).
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2.7 Time coupling algorithms for FSI problems

As described earlier, loosely coupled and closely coupled models require an interface

module to exchange information during solution process. Stability of solution and loose

/ tight behaviour of coupling strongly depends upon the coupling algorithm. Coupling

is carried out to map pressure forces, calculated by solving fluid equations, over struc-

tural grid and to map structural deformation to move fluid grid after every time step.

Loosely coupled models usually perform only one (or few in some cases) iteration (of

data transfer) in each time step. On the contrary, closely coupled models iteratively

perform the data transfer, in each time step, until convergence is reached. Carlos et al.

(2001) presented an analysis of various coupled systems. The simple staggering approach

for loosely coupled presented by Carlos et al. (2001) is reproduced in Figure 2.5.

Marching process of the two field solution is carried out in the following manner:

1. Structural displacement Wn+1 is predicted at time tn+1, and mapped over the

fluid grid.

2. Fluid grid is displaced according to predicted structure displacement and fluid

equations are solved to get pressure values Pn+1 at time tn+1.

3. Pressure field obtained by fluid solver is mapped over structural grid to get applied

loads at tn+1.

4. Structural solver uses these applied forces to get the corrected structural deflection

Wn+1 at tn+1.

This type of staggered marching corresponds to a loosely coupled system because struc-

ture and fluid variables do not achieve mutual convergence prior to moving to the next

time step. De Rosis et al. (2013) presented three different partitioned coupling strate-

gies and worked out the accuracy and convergence properties of resulting algorithms

along with their computational efficiency. They suggested two explicit and one implicit

schemes. Staggering diagrams of explicit scheme are shown in Figure 2.6(a). The stag-

gering of implicit scheme is the same as the explicit scheme shown in Figure 2.6(b).

However, for implicit scheme, the iterations are repeated until fluid and structure pa-

rameters are converged to specific values. This practice is computationally expansive but

leads to a closely coupled solution which is more robust, stable and accurate (De Rosis

et al. (2013)).

2.8 Treatment of discontinuities

Presence of strong non-convex boundaries in the domain requires special attention while

dealing with meshless methods. If a sharp concave corner exists in the domain, then the
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influence domain of any node near the concave boundary may extend to the opposite

side of the corner. The situation is illustrated in Figure 2.7(a) where a sharp concave

boundary cuts the support domain of node xI . In this case, node xJ falls in the influence

domain of node xI . If special treatment is not applied, the shape function of node xI

may be non-zero at node xJ and field variables at node xJ will influence the approximant

variables at node xI . However, in reality, field parameters at node xI should not be

affected by those at node xJ due to presence of discontinuity between these nodes.

Therefore, use of globally continuous shape function would cause undesirable results.

For example, for flow around aerofoil, the situation is particularly important for nodes

close to the trailing edge of the aerofoil. The flow variables at one side of the aerofoil can

unrealistically influence the flow patterns at the nodes on the other sides which would

lead to errors in the solution. Therefore, special treatment is required to suppress these

numerically generated effects.

In order to overcome this problem, some researchers have suggested incorporating discon-

tinuous approximations as enrichment to the basis function (Krongauz and Belytschko

(1998); Belytschko et al. (2001); Belytschko (2002)). For example Belytschko et al.

(2001) have proposed a technique for modelling arbitrary discontinuities in function and

derivative approximations. Other set of approaches suggests modifying the shape func-

tion approximation to preclude (or suppress) the weight of those nodes which actually

have no (or reduced) effects due to the presence of a concave boundary. Following is the

description of three such methods which are found interesting in this respect.

2.8.1 Visibility Method

Visibility method (Belytschko et al. (1994)) is based on line-of-sight criterion. The

method suggests that, in the vicinity of a non-convex boundary, only those nodes should

fall in the influence domain of node xI , which can be linked with node xJ through a

straight line without intersecting the boundary. This can be understood by considering

the discontinuity as opaque and a ray of light originating from node xI . The influence

domain of node xI will be truncated to exclude that portion where the ray of light cannot

reach due to opaque obstruction (the discontinuity) as shown in Figure 2.7(b).

Application of visibility method is limited by the resulting artificial discontinuity in

the influence domain due to the truncation introduced by the opaqueness of concave

boundary. The truncated domain can still have same order of accuracy, however accuracy

of the results is compromised especially for larger dilatation parameters (Belytschko

(2002)).
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2.8.2 Diffraction Method

Diffraction method proposes an improvement in visibility method by introducing diffrac-

tion of rays of light around the tip of the discontinuous boundary (Belytschko (2002)).

In this manner, the artificial discontinuity in the influence domain is somewhat circum-

vented and smoothed truncation of domain is possible as shown in Figure 2.7(c). For this

purpose, the shape function φ|(|x− xI |)| at point x with respect to point xI is modified

to make φ|(|x−xI |)| = φ|(|dI |)|. The parameter dI is called wrap-around distance which

defined by distances s0 = |(|x − xI |)|, s1 = |(|xc − xI |)| and s2 = |(|xc − x|)| where xc is

the node at tip of the discontinuous boundary as shown in Figure 2.7(c). Parameter dI

is calculated as (Organ et al. (1996)):

dI =

(
s1 + s2

s0

)γ
s0 (2.38)

The exponent γ is used to limit the domain behind the concave boundary. The reasonable

choices for its numerical values are γ = 1 or 2 (Organ et al. (1996)). This method can

easily be implemented for 2-D problems.

2.8.3 Transparency method

Transparency method is also introduced to smooth the influence domain around the tip

of discontinuous boundary. The method was presented as an alternative to diffraction

method as it is easily applicable to 3-D problems (Organ et al. (1996)). Underlying

concept behind this method is that the boundary of concave object is made transparent

near the tip and degree of transparency depends upon the distance from the tip. This

method wraps the boundary of influence domain around the concave solid boundary

where the wrap-around parameter dI is calculated as:

dI = s0 + dmI

(
sc
s̄c

)γ
γ ≥ 2 (2.39)

where s0 is the same as for diffraction method, dmI is the radius of influence domain of

node xI , sc is the distance from tip to the intersection point and (s̄c) is the distance from

tip to the point where the boundary is completely opaque. An illustration of transparent

method is presented in Figure 2.7(d).

2.9 Treatment with moving boundaries

Selection of appropriate approach for grid generation around moving objects is im-

perative for problems relating to Fluid Structure Interaction. Various methods have
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been devised to accommodate moving boundaries in a meshed domain. Grid generation

methods for simulating moving boundaries can be classified as Boundary fitted and Non-

boundary fitted methods. This classification is characterized by the manner in which

the grid interacts with the moving boundary. An overview of these methods is presented

in the following.

2.9.1 Boundary fitted grid methods

Grids generated using these methods are also called Body conformal grids. The nodes

(or grid points) of this type of grids exactly coincide with the boundary (or interface).

Therefore, the boundary is clearly demarcated by the location of grid points. The bound-

ary conditions can directly be applied to the grid points and motion of the boundary

is explicitly tracked by the movement of grid points. Elements near the solid boundary

move and morph with the moving interface. Boundary fitted grid methods can further be

classified into those which employ finite difference schemes and those which are suitable

for finite volume and finite element schemes.

Boundary fitted grids which are suitable for finite difference schemes are commonly

known as composite grids (Chesshire and Henshaw (1990); Tang et al. (2003)). In this

approach, a main mesh is generated within the entire domain. However, sub-meshes are

generated around the embedded bodies which interact with the main mesh close to their

outer boundary. The schematic of such composite grids is shown in Figure 2.8. Sub

meshes are generated using orthogonal or algebraic grid generation algorithms. Each

sub mesh uses a separate local coordinate frame. These methods use finite difference

approach which offers simple mathematical modelling and efficient computing. How-

ever, information exchange over the grid interfaces is carried out using computationally

expansive interpolation techniques. Moreover, morphing of sub meshes is limited due to

the use of generalized coordinates.

Unstructured Boundary fitted grids are suitable for finite element and finite volume

schemes. These schemes are usually applied in an Arbitrary Lagrangian Eulerian (ALE)

formulation (Hu et al. (2001); Sarrate et al. (2001)). The grid points coinciding with the

moving boundaries exactly follow the movement of the interface. Movement of nodes

away from the moving boundaries is progressively decayed using some mathematical al-

gorithm. ALE offers an elegant approach to incorporate motion in the grid points. The

movement of the interface is accurately tracked and boundary conditions are directly

imposed. Grid resolution can be controlled to achieve to accurately capture the flow

behaviour. However, excessive smearing of grid may necessitate re-meshing during the

computational process. Computational overheads caused by constant re-meshing and

inaccuracies introduced during data transfer to new grid points are the major disadvan-

tages of these methods.
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2.9.2 Non-boundary fitted grid methods

These methods are also known as ’Non-body-conformal methods’. These methods em-

ploy a background mesh which may be structured or non-structured. The solid body

is embedded in the background mesh and the background grid does not conform to the

solid boundary. These methods are further classified as Cartesian and Immersed bound-

ary methods. Cartesian method can be called as a simplified version of non-body fitted

Methods which was proposed by Clarke et al. (1986) and De Zeeuw and Powell (1991).

This method used a standard Cartesian grid to solve inviscid flows around complex em-

bedded solid boundaries. Distinguishing features Cartesian grid method are (Ye et al.

(1999)):

1. Grid generation process is greatly simplified.

2. Grid distortion is not experienced near the boundaries of complex shapes.

3. Governing equations can be retained in simple Cartesian coordinate form.

4. Requirement of re-meshing is alleviated for problems pertaining to moving bound-

aries.

However, complications are experienced during imposition of boundary conditions at

the immersed boundaries. Moreover, the immersed boundary may cut the background

cells in an arbitrary manner which could adversely affect the accuracy and conservation

properties of numerical solver (Mittal and Kumar (2001)). Especially for viscous flow

simulations, the resolution of boundary layer along the immersed boundary may be

compromised resulting in lower fidelity of the solution. Therefore, use of Cartesian grid

methods is restricted to Euler flows. Udaykumar et al. (1996) and Ye et al. (1999) has

however proposed extension of this method to viscous unsteady flows.

Immersed boundary methods (Peskin (1977); Glowinski et al. (1994)) employ force term

as a source term in the governing equations (mass conservation equations, no-slip con-

ditions etc) to cater for the effect of boundary. The boundary topology is identified

through interpolation from background cells. This class of methods is useful for viscous

flows. However, one of the limitations of these methods is that the boundary is smeared

over the scale of a few cell-width due to representation of point-force on finite mesh

(Ye et al. (1999)). Inaccuracies generated by this smearing effect are typically large if

solid boundary is closely coupled with flow field evolutions (Udaykumar et al. (1996)).

Another limitation associated with non-body conformal methods is that the grid has

limited control over flow resolution. This is due to the fact that they solely rely on

background grid for flow calculations. However, these method are able to better manage

the phase jumps and deforming interfaces and therefore are well suited for FSI problems

encountered in biological applications (Chew et al. (2006)).
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2.10 Conclusion

Coupled fluid-structure interaction problems can be modelled using various algorithms,

each having its own strengths and limitations. For problems relating to flow induced

vibrations, a partitioned approach seems more appealing due to its underlying flexibility

and generality. Also for these problems, closely coupled models offer higher accuracy

but consume more computational resources in bargain. Choice of any particular FSI

algorithm is therefore based on required accuracy, system behaviour and available com-

putational resources.

For treatment of moving boundaries, both body conformal and non-body conformal

methods have their own pros and cons. However, with the use of meshfree methods, re-

quirement for a structured grid is somehow relaxed and dealing with moving boundaries

becomes simpler. Therefore, use of body conformal grid appears to a better option. Var-

ious methods were considered to modify influence domain near sharp concave boundary.

Line of sight method is found to provide the simplest way of dealing with the sharp

discontinuity in the domain.
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(a) Spring mounted cylinder with two degrees of freedom

(b) Airfoil with two degrees of freedom

Figure 2.4: Schematic of elastically mounted solid objects in fluid
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Figure 2.5: Marching of two field staggered solutions (conceived from Carlos
et al. (2001))
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(a) 1st Explicit scheme

(b) 2nd Explicit scheme

Figure 2.6: Partitioned system coupling Algorithms presented by De Rosis et al.
(2013)
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(a) Unmodified domain (b) Visibility criterion

(c) Diffraction method (d) Transperancy method

Figure 2.7: Criteria for modifying influence domain near line of discontinuity

Figure 2.8: A typical composite mesh around 2D wing and flap (Henshaw and
Chesshire (1987))





Chapter 3

Fundamentals of meshfree

methods and their comparison

3.1 Evolution of meshfree particle methods

3.1.1 Early developments

Development of meshfree methods can be traced back to the advent of collocation meth-

ods in 1930s. Slater (1934) used a collocation method for problems relating to electronic

energy bands in metals. Frazer and Skan (1937) studied the approximation of functions

and solutions of differential equations using collocation methods. Lanczos (1938) studied

trigonometric interpolation of various functions. However, the evolution of contempo-

rary meshless methods started in 1970s when they were studied as an alternative to

FDM and FEM. Chorin (1973) suggested a vortex method while performing numerical

studies on mildly viscous flows. Later, Piperno et al. (1995) extended the concept by

applying it to boundary layer flow. Pavlin and Perrone (1979) used energy concepts to

show the ability to use arbitrary and irregular meshes within the framework of FDM. In

the same context, Liszka and Orkisz (1980) demonstrated the use of FDM on irregular

meshes. Snell et al. (1981) studied the application of general finite difference methods

(GFDM) on boundary value problems having complex geometries.

3.1.2 Research since 1990

From the early 90s, there has been an increased interest by the researchers in meshfree

methods. The reason for this was the increased dependency on simulations to solve engi-

neering design problems and limitations of mesh based methods started to be felt more

prominently. That was the time when two separate classes of meshfree methods namely

Meshfree Weak-form and Strong-form methods started to emerge. Nayroles et al. (1992)

35



36 Chapter 3 Fundamentals of meshfree methods and their comparison

introduced a method of smooth approximation of function by generalizing the widely

used finite element method. The method was termed as the Diffuse Element Method

(DEM) and it was aimed to remove the limitations of FEM pertaining to regularity of

approximated function and requirement of mesh generation. Belytschko et al. (1994)

introduced Element Free Galerkin (EFGM) Method which was based on moving least

square (MLS) approximation of the weak form of differential equations. Later, motivated

by the theory of wavelets, Wing Kam et al. (1995) proposed reproducing kernel particle

method (RKPM). The method possessed the desirable attributes of previously developed

meshfree methods like SPH (Smoothed Particle Hydrodynamics), DEM and EFGM and

was claimed to be more accurate than SPH and computationally more efficient than

DEM and EFGM. Later, Liu et al. (1997) presented moving least square reproducing

kernal methd (MLSRK) by formulating moving least square interpolation scheme in

the framework of reproducing kernal method. Recently, generalization of MLSRK has

been proposed as moving least square radial reproducing polynomial (MLSRRP) by

Salehi and Dehghan (2013) which is shown to provide better accuracy compared with

the previous method. Moreover, complex variable reproducing kernel particle method

(CVRKPM) has been presented by Chen and Cheng (2010) to overcome the high compu-

tational cost associated with conventional RKPM. A hybrid CVRKPM-FE method was

also presented by Li et al. (2013) for transient heat conduction problems. The hybrid

method aims to lower the computational cost as well as improve the implementation of

essential boundary conditions by combining meshfree and meshed methods.

3.1.2.1 Development of Smoothed Particle Hydrodynamic

Smoothed Particle Hydrodynamic is another widely used meshless method which was

originally proposed by Gingold and Monaghan (1977) for astrophysical applications and

later applied to free surface flows by Monaghan (1994). G. R. Liu (2003) presented a

general approach to construct an analytical smoothing function for SPH approximation.

The scheme is extensively being used for fluid mechanics problems with particular appli-

cations to free surface flows. Ferrari et al. (2009) suggested a time varying diminishing

(TVD) Runge Kutta scheme for time marching of the problem. Dehnen and Aly (2012)

presented a generalized smoothed kernel to overcome instabilities induced by particle

disorder in SPH. Moreover, various researchers have also suggested different techniques

to overcome artificial surface tension effects associated with SPH (e.g. Price (2008),

Read et al. (2010), Hopkins (2013), Saitoh and Makino (2013)).

3.1.2.2 Moving Particle Semi-implicit method

The MPS (Moving Particle Semi-implicit) is a Lagrangian mesh-free method which was

originally proposed by Koshizuka and Oka (1996) for viscous incompressible flows. The

method was found effective especially for free surface flows. However, it may suffer from



Chapter 3 Fundamentals of meshfree methods and their comparison 37

instabilities caused by non-uniform particle distribution (Tsuruta et al. (2013)). Various

improvements and modifications have been proposed in the original method since its

inception. For example, Khayyer and Gotoh (2009) proposed a modified MPS method

by introducing new formulation of pressure gradient and allowing slight compressibility.

Lee et al. (2011) suggested improvements to overcome the shortcomings related to non-

optimal source term, gradient and collision models and free surface particle search.

Tsuruta et al. (2013) proposed a method to introduce sufficient repulsive forces between

colliding particles to avoid inter-particle penetration. More recently, Sun et al. (2014)

has suggested a technique for particle position shifting and collision handling for MPS

which is found to be effective in suppressing the pressure fluctuations.

3.1.2.3 Polynomial Interpolation methods

In 2002, Liu and Gu (2001b) proposed polynomial interpolation on set of arbitrarily

distributed points using a method called Point Interpolation method (PIM). The poly-

nomials having delta function property were used as approximating shape functions

which means that the interpolation function will passes through each data point in the

influence domain. However, the method showed some singularity problems due to ill

conditioning of moment matrices. These issues relating to PIM were later removed

by proposing Point Interpolation methods based on radial basis function by Wang and

Liu (2002b). The method benefits from excellent interpolation stability characteris-

tics of RBFs which makes the method very robust at randomly distributed particles

(G. R. Liu (2005)). Atluri and Zhu (1998) suggested meshless local petrov Galerkin

Method (MLPGM) which employed local symmetric weak form (LSWF) to solve the

differential equations using least square method. The method does not require a mesh

either for variable interpolation or for integration of energy. Other methods developed

in this regard are Boundary node method (Mukherjee and Mukherjee (1997)), Bound-

ary point interpolation method (Gu and Liu (2002)), radial point interpolation method

(RPIM) (Liu and Gu (2001a)) and meshfree weak-strong form method (Liu and Gu

(2003)). Recently, Shivanian (2014) has applied radial point interpolation method for

3-D non-linear wave equations. They proposed a variation in current method and intro-

duced spectral meshless radial point interpolation method (SMRPI) which is shown to

possess better convergence rate compared with the conventional method. Zhuang et al.

(2014) has proposed a mixed sub-region radial point interpolation method (MS-RPIM)

for analysing crack tip fields. The suggested approach coupled Williams expansion with

classical RPIM to accurately perform fracture analysis near crack tip.

3.1.2.4 RBF based techniques

During the same period, the so called Radial Basis Function (RBF) interpolation based

meshfree methods were also emerging as another class of meshless methods. RBFs are
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primarily the tools for multivariate data and function interpolating in higher dimensional

problems (Driscoll and Fornberg (2002). They however find an important application in

meshless methods where global solution of a PDE can be evaluated by translating the

space spanned RBFs to a set of RBF centres.

In 1971, Hardy (1971) first used RBFs to generate topographic surfaces through sparse

set of data points. However, in 1990, Kansa (1990) proposed application of RBFs for

solving PDEs. The method was later found highly useful for solution of flow problem

with irregular (or scattered) computational nodes arrangement (Sanyasiraju and Chand-

hini (2008); Wang and Liu (2002a); Shu et al. (2003, 2005b)). Franke and Schaback

(1998) proposed Hermite type interpolation using RBFs. This method guarantees the

solution of linear equations. Larsson and Fornberg (2005) investigated the behaviour

of increasingly flat RBFs. Other significant contributions in this area were made by

Chen and Brebbia (1998),Hon et al. (2015), Mai-Duy and Tran-Cong (2001), Driscoll

and Fornberg (2002), Wang and Liu (2002a) and Chen and Tanaka (2002).

One approach of employing RBFs is the direct approximation of function for PDEs like in

the work of Driscoll and Fornberg (2002); Hon et al. (2015); Franke and Schaback (1998))

and Chen and Tanaka (2002). Another approach is to approximate the derivatives

appearing in PDEs rather than the function approximation. This approach simplifies

the procedure especially for non-linear problems. RBF direct quadrature (DQ) method

by Shu et al. (2003) and RBF finite difference method by Tolstykh and Shirobokov

(2003) are the examples where derivative approximation is achieved using RBFs.

RBF based meshfree methods are collocation methods which are truly meshfree and

spectrally accurate. However, they suffers from the problem of ill-conditioned set of

equations. Various researchers have suggested use of local RBFs to cope with ill-

conditioning effect (Shu et al. (2003), Tolstykh and Shirobokov (2003), Wright and

Fornberg (2006)). These local RBF methods compromise on spectral accuracy and come

up with a sparse, well-conditioned linear system which is also more flexible in handling

non-linearity. Among these, RBF-FD has been independently proposed by Tolstykh and

Shirobokov (2003) and Wright and Fornberg (2006) for different types of applications.

The technique provides a better conditioned spectrally accurate and sparse linear sys-

tem with more flexibility to handle non-linearities. The idea is to generalize the use

of finite difference on a grid containing arbitrary / random nodes instead of a regular

grid. Subsequent contribution in RBF-FD were made by Fornberg and Lehto (2011),

Chinchapatnam et al. (2007), Chinchapatnam et al. (2009) and Bayona et al. (2010).

Wang and Liu (2002a) discussed the effect of shape parameter of RBF-FD and RBF-

HFD type formulation. Chinchapatnam et al. (2007) demonstrated solution of Navier

Stokes Equations using RBF-FD technique. Bayona et al. (2010) discussed the conver-

gence properties of RBF-FD formulas. Javed et al. (2013a) and Javed et al. (2014b)

proposed adaptive shape parameters for local RBFs to overcome the inaccuracies in

domains having large variation of nodal density. The scheme was used for solution of
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flow equations in primitive variable form. In order to overcome high computational cost

associated with the meshfree scheme, hybrid grid methods were proposed which coupled

RBF based schemes with and conventional finite differencing. The methods were ap-

plied to flow problems around stationary as well as moving solid objects by Javed et al.

(2013b) and Javed et al. (2014a).A comparison of global and local RBFs was presented,

by Waters and Pepper (2015), for solving incompressible flow with heat transfer. Local

RBFs were also applied for the solution of coupled heat transfer and free surface flow

problems by Hon et al. (2015).

3.2 Classification of meshfree methods

There are different ways to classify the meshfree methods. However the following three

are the most common manner of classifying these:

1. Classification according to formulation procedure

2. Classification according to function approximation

3. Classification according to domain representation

3.2.1 Classification according to formulation procedure

Formulation procedure appears to be the most effective way of categorizing the meshfree

methods. These methods can be classified into two different categories based on the

formulation procedures.

3.2.1.1 Meshfree weak form methods

These methods make use of the governing differential equations and corresponding

derivative boundary conditions in their respective weak form. The integral equations

in their weak forms are then worked to get a system of algebraic equations over the

background cells in the domain. Due to the requirement of background mesh, these

methods may not be termed as truly meshfree. However, weak form methods show

excellent numerical stability. Moreover, Neumann boundary conditions are naturally

satisfied by weak form (G. R. Liu (2003)). Meshfree weak form methods started getting

interest of researchers since early 90s when Nayroles et al. (1992) devised Diffused Ele-

ment Method (DEM) by employing Moving Least Square (MLS) method, proposed by

Lancaster and Salkauskas (1981), to Galerkin weak form. Subsequently, the popularity

of these techniques increased even more when Belytschko et al. (1994) proposed Element

Free Galerkin method (which was actually based on DEM) and made significant contri-

butions by employing it to many mechanics problems. Atluri and Zhu (1998) presented
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meshfree local Petrov-Gaerkin (MLPG) method which employed shape functions in local

weak form of differential equations using moving least square (MLS). The method was

later extended for solving flow equations in primitive variable form by Wu et al. (2010).

3.2.1.2 Meshfree collocation methods

Meshfree collocation methods are based on strong form of governing equations and

boundary conditions. The system of equations is obtained by discretizing the differential

equations over the finite number of nodes using collocation techniques. Collocation

methods refer to truly meshfree in nature, as these do not require any background mesh

for integral evaluation. These methods offer relatively simpler computational modelling

and are generally faster than weak form methods (Liu and Gu (2003)). However, special

treatment may be required for implementation of Neumann Boundary conditions while

using strong form methods. Meshfree Strong form methods have a long history. The

general finite difference method (GFDM) was developed in 1970s (Girault (1974), Pavlin

and Perrone (1979), Snell et al. (1981)). A common collocation method is the Smoothed

Particle Hydrodynamics (SPH) in which state of the system is represented by finite

number of particles arbitrarily distributed inside the domain. SPH has been successfully

implemented for free surface flows (Monaghan (1994)) incompressible flows (Liu et al.

(2003)), gravity currents, elastic flow problems, heat transfer (Cleary and Monaghan

(1999)) and high velocity impact problems (Libersky et al. (1997)). In order to simulate

discontinuities at the front of shock waves, discontinuous SPH has been suggested by

Lam et al (G. R. Liu (2003)).

Another important class of such methods uses radial basis functions for collocation meth-

ods. Radial basis functions (RBFs) are multivariate interpolation functions. In early 90s,

Kansa (1990) proposed their use for the solution of differential equations over scattered

data points. Further, improvements in these methods have been made by suggesting lo-

cal RBF methods (Shu et al. (2003); Fornberg and Lehto (2011); Chinchapatnam et al.

(2006, 2007); Javed et al. (2013a, 2014b); Hon et al. (2015); Waters and Pepper (2015))

which improve the accuracy by making the coefficient matrices better conditioned.

3.2.2 Classification according to function approximation

Function approximation is very important during solution of problem. Therefore, mesh-

less methods are often categorized according to the approximation function used at the

nodes. Some of the common categories in this regard are as follows:

1. Methods based on moving least square approximations like in diffuse element

method (DEM) (Nayroles et al. (1992)), Element Free Galerkin (EFG) method
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(Belytschko et al. (1994)) and meshless local Petrov Galerkin (MLPG) (Atluri

and Zhu (1998)).

2. Methods based on integral representation of function like in smooth particle hy-

drodynamics (SPH) (Gingold and Monaghan (1977); Price (2008); Read et al.

(2010); Hopkins (2013); Saitoh and Makino (2013)) and reproducing kernel par-

ticle method (RKPM) (Wing Kam et al. (1995); Chen and Cheng (2010); Salehi

and Dehghan (2013); Li et al. (2013)).

3. Methods based on point interpolation method like the one used by Liu and Gu

(2001b), Wang and Liu (2002b), and methods employing Radial Basis Function

(RBFs) (Franke and Schaback (1998); Liu et al. (2002); Mai-Duy and Tran-Cong

(2001); Liu and Gu (2001a); Shu et al. (2003); Tolstykh and Shirobokov (2003);

Shivanian (2014); Zhuang et al. (2014)

3.2.3 Classification according to domain representation

Another way of classification of meshfree method is the domain representation. The

meshless methods can be categorized in domain type and boundary type methods. In

domain type representation, the domain as well as the boundary is represented by the

field nodes. However, for boundary type methods, the boundary integral equations

are setup by the field nodes at the boundary only. No nodes are present inside the

domain. Boundary node method proposed by Mukherjee and Mukherjee (1997) Galerkin

boundary node method by Li and Zhu (2009) are the example of boundary type meshfree

methods. More recently these methods have been applied for magnet-hydrodynamics

(MHD) (Tatari and Ghasemi (2014)) and for 3-D problems (Li (2011)).

3.3 A comparative study of different meshfree methods

Navier Stokes equations are non-linear partial differential equations and any numerical

technique used for their solution should be able to provide accurate approximation of

the underlying derivatives at grid points. Meshfree methods are no exception to this.

Therefore, prior to moving towards the actual solution of Navier Stokes equations using

meshfree methods, a study has been conducted to compare the accuracy of some candi-

date methods. As mentioned earlier, the scope of current research has been restricted to

collocation based methods. These methods are truly mehsfree as they do not require any

background mesh for function approximation or numerical integration. Moreover, they

offer relatively straightforward solution algorithm. Following three meshfree methods

are therefore chosen for their comparison of accuracy:

1. Smoothed Particle Hydrodynamics (SPH) method
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2. Moving Particle Semi Implicit (MPS) method

3. Radial Basis Functions in Finite Difference Mode (RBF-FD)

For the purpose of analysis, 1st and 2nd derivatives and Laplacian (∇2) of a pre-defined

function were approximated using above mentioned meshfree methods. Accuracy of

derivative approximation was worked out by comparing the results from respective

method with true values obtained by evaluating the analytical expressions. The for-

mulation of gradients, using each method, is however important before performing the

actual comparison. Therefore, the formulation of expressions for gradients and Lapla-

cian, using each meshfree method considered in this study, is outlined in the following

subsections.

3.3.1 Smoothed Particle Hydrodynamics (SPH)

Let us consider a domain represented by finite number of particles. The approximation

of any field variable φ at a particle i in the domain can be expressed, using SPH, in

terms of the neighbouring particles j as follows (G. R. Liu (2003)):

φi =
∑
j 6=i

mj

ρj
φjωij (3.1)

Where, mj and ρj are the mass and density values of neighbouring particle, ωij is the

kernel for particle i with respect to particle j and φj is the evaluation of φ at particle j.

Similarly, the gradient and Laplacian of φi can be approximated as:

∇φi =
∑
j 6=i

mj

ρj
φj .∇iωij (3.2)

∇
(

1

ρ
∇φ
)
i

=
∑
j 6=i

mj
8

(ρi + ρj)2
.
(φi − φj)Xij∇iωij

r2
ij + δ2

(3.3)

Here, δ used as a parameter to avoid singularity. Usually δ = 0.01re is set (where re is

the radius of influence domain). For these calculations, a B-Spline Kernel Function is

used for SPH and MPS formulation. It is a cubic spline function suggested by Monaghan

and Lattanzio (1985) and is expressed as:

ω =
15

7πh2

{ 2/3−R2 + 1/2R3 0 ≤ R ≤ 1

1/6(2−R)3 1 ≤ R < 2

0 R ≥ 2

(3.4)
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where, R = rij/h, h is the smoothing particle length and

rij =
√

(xi − xj)2 + (yi − yj)2 (3.5)

h is set as 2.1 times the nodal displacement in this case. Derivative of kernel function

are expressed as:

∇ωij =
Xi −Xj

rij

∂ωij
∂rij

(3.6)

here, Xk is the coordinate value of x or y of point k in a particular direction. Therefore,

∂ω

∂x
=

(
xi − xj
rij

)
15

7πh2


−2rij

h2
+ 3

2

(
r2ij
h3

)
0 ≤ R ≤ 1

−1
2

(
2− rij

h

)2
. 1h 0 ≤ R < 2

0 R ≥ 2

(3.7)

∂ω

∂y
=

(
yi − yj
rij

)
15

7πh2


−2rij

h2
+ 3

2

(
r2ij
h3

)
0 ≤ R ≤ 1

−1
2

(
2− rij

h

)2
. 1h 0 ≤ R < 2

0 R ≥ 2

(3.8)

3.3.2 Moving Particle Semi Implicit (MPS)

Gradient of parameter φ (defined by Eq (3.1)) at point i is expressed using MPS method

as (Koh et al. (2012)):

∇φi =
D

n0

∑
j 6=i

(φj − φi)(~rj − ~ri)
|~rj − ~ri|2

ωij (3.9)

Similarly, Laplacian of φi is expressed as:

(
∇2φ

)
i

=
2D

n0λ

∑
j 6=i

(φj − φi)ωij (3.10)

where D is the dimension number (2 in case of two dimensional domain). n0 and λ are

expressed as:
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Table 3.1: Commonly used radial basis functions ϕ(r), where r is the radial
distance from point of interest. σ is the shape parameter

Type of radial basis function Expression of ϕ(r)

Multi-quadratic (MQ) ϕ(r) =
√
r2 + σ2

Inverse Multi-quadratic (IMQ) ϕ(r) = 1/
√
r2 + σ2

Inverse Quadratic (IQ) ϕ(r) = 1/(r2 + σ2)
Gaussian (GA) ϕ(r) = exp(−(σr)2)

n0 =
∑
j 6=i

ωij (3.11)

λ =

∑
j 6=i

(rij)
2ωij∑

j 6=i
ωij

(3.12)

3.3.3 Formulation of Radial Basis Function

For N scattered data points (xi ε Rd+1, 1 ≤ i ≤ N), the approximation ψ̄(x) to a real

valued function ψ(x) using Radial Basis Function (RBF) is written as:

ψ̄(x) =
N∑
i=1

λiϕ(‖x− xi‖), xεRd (3.13)

where ϕ (‖x− xi‖) is a radial basis function, ‖.‖ is a standard Euclidean norm and λi

is the expansion coefficient. d is the number of dimensions. Some of the common radial

basis functions have been defined in table 3.1. The unknown parameter λi = 1, 2, . . . N

can be obtained by setting ψ̄(xi) = ψi, i = 1, 2, . . . N . This leads to the system of linear

equations:

Aλ = U (3.14)

where, λ = {λ1, λ2, ...λN}T , U = {u1, u2, ...uN}T and Ai,j = ϕ (‖xj − xi‖)

3.3.4 RBF in Finite Difference mode (RBF-FD)

As mentioned before, local RBFs have been proposed to overcome the shortcomings of

global RBFs. One of the local RBF techniques suggests using RBF in Finite Difference

Mode (the so called RBF-FD method). RBF-FD is the generalization of classical finite

difference method over scattered data points. The scheme has particularly been found

highly effective in solving lid driven cavity flow problems (Chinchapatnam et al. (2009)).
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Figure 3.1: Support domain of a reference node

RBF-FD method directly approximates the spatial derivative of field variables to be used

in differential equations.

The essence of RBF-FD is that derivative of any dependant variable, at a spatial location

i, can be expressed as a weighted linear sum of same variable values at surrounding

data points in the support domain (Chinchapatnam et al. (2007)). For this purpose,

the interior and boundary of domain is represented by a set of scattered data points. A

supporting stencil is identified for each data point by choosing N neighbouring particles.

RBF-FD weights are then calculated for any differential operator L , at each data point,

by setting up local RBF interpolation.

Using classical finite difference approach, the derivative of any parameter ψ at any node,

say x1, can be expressed as

Lψ(x1) =
N∑
j=1

W
(L)
1,j ψ(xj) (3.15)

where N is the number of nodes in the support domain of node x1, ψ(xj) is the value of

parameter ψ at node xj and W
(L)
1,j is the weight of corresponding differential operator

L at node xj for node x1 as shown in figure 3.1.

Recall that the standard RBF interpolation for a set of distinct points xjεR
d, j =

1, 2, ...N is given by (Wright and Fornberg (2006)):

ψ(x) ≈ s(x) =

N∑
j=1

λjϕ(‖x− xj‖) + β (3.16)

where λj and β are the expansion coefficients. Eq. (3.16) can be written in Lagrange

form as:

s̄(x) =

N∑
j=1

X (‖x− xj‖)ψ (xj) (3.17)
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where X (‖x− xj‖) satisfies the cardinal conditions as

X (‖xk − xj‖) =

{
1, if k = j

0, if k 6= j
k = 1, 2, ...N (3.18)

Applying the differential operator L on Eq. (3.17) at node x1 we have:

Lψ (x1) ≈ Ls̄ (x1) =

N∑
j=1

LX (‖x1 − xj‖)ψ (xj) (3.19)

Using Eqs. (3.15) and (3.19), RBF-FD weights W
(L)
1,j are given by

W
(L)
1,j = LX (‖x1 − xj‖) (3.20)

The weights can be computed by solving the following linear system (Chinchapatnam

et al. (2009)): [
Φ e

eT 0

][
W

µ

]
=

[
LΦ1

0

]
(3.21)

where Φi,j = ϕ (‖xj − xi‖) , i, j = 1, 2, . . . , N , ei = 1, 2, . . . , N , LΦ1 represents the col-

umn vector LΦ1 = [Lϕ‖x− x1‖Lϕ‖x− x2‖ . . .Lϕ‖x− xN‖]T evaluated at node x1 and

µ is a scalar parameter which enforces the condition:

N∑
j=1

W
(L)
1,j = 0 (3.22)

Eq. (3.21) can be written in matrix form as:

[A] {W} = {LΦ} (3.23)

Evaluation of Eq. (3.23) at each node x1 gives weights W
(L)
1,j of all the nodes in the

support domain for particular differential operator L. Corresponding weights and loca-

tion of nodes in support domains are then used to approximate the complete differential

equation at node x1. However, solution of Eq. (3.23) requires that coefficient matrix [A]

be non-singular. Moreover, the matrix [A] needs to be well-conditioned so as to avoid

inaccuracies resulting from loss of precision from arithmetic methods. The possibility

of having a non-singular and well-conditioned coefficient matrix [A] depends upon the

type of radial basis function and corresponding value of shape parameter used for the

problem (Rippa (1999)).

The derivative of parameter φ can be expressed in RBF-FD as under (Chinchapatnam

et al. (2007)):
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∇φi =

n∑
j=i

W
(x)
ij φj +

n∑
j=i

W
(y)
ij φj (3.24)

where n is the number of neighbouring particles in influence domain and Wy
ij and Wx

ij

are RBF weights for node i with respect to neighbouring node j for partial derivatives

∂/∂x and ∂/∂y respectively. Laplacian of a parameter φ can similarly be expressed as :

(
∇2φ

)
i

=
n∑
j=i

W∇2

ij φj (3.25)

In two dimensional space, Eq (3.25) can be expressed as:

(
∇2φ

)
i

=
n∑
j=i

W
(xx)
ij φj +

n∑
j=i

W
(yy)
ij φj (3.26)

Where Wxx
ij and Wyy

ij are RBF-FD weights for node i with respect to node j for deriva-

tives ∂2/∂x2 and ∂2/∂y2 respectively. A Multi-Quadratic (MQ) basis function is used

for evaluating RBF-FD weights.

3.3.5 Calculation of gradients and Laplacians

In order to compare the accuracy of derivatives obtained from three different methods,

the gradients and Laplacians of a known function are calculated over 2-D rectangular

domain. Following function is used for this purpose:

φ(x, y) = sin(xy) (3.27)

Derivatives and Laplacian of φ(x, y) is expressed as:

∂φ

∂x
= y cos(xy) (3.28)

∂φ

∂y
= x cos(xy) (3.29)

∂2φ

∂x2
= −y2 sin(xy) (3.30)

∂2φ

∂y2
= −x2 sin(xy) (3.31)

∇2(φ(x, y)) = −(x2 + y2) sin(xy) (3.32)
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(a) Uniform grid

(b) Randomized grid

Figure 3.2: Nodal distribution in 2-D computational domain
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(a) For uniform grid

(b) For randomized grid

Figure 3.3: Norm-2 of error with changing number of nodes

Derivatives of Eq. (3.27) are calculated using SPH, MPS and RBF-FD methods over

a domain [0.5, 4.5] × [0.5, 4.5]. Computational domain is represented by finite num-

ber of particles (nodes) distributed over the domain. The test is carried out on both

uniform and random particle distribution over the domain. Uniform grid is shown in

Figure 3.2(a). Randomness is introduced by adding a noise of the order of 0.1L0 in

the coordinate locations of nodes (L0 is the grid spacing). Resultant non-uniform nodal

distribution is shown in Figure 3.2(b). Influence domain for each particle was chosen to

be 2.1 times the grid spacing.

Grid sensitivity study was conducted to find out the behaviour of results from each ap-

proach by reducing the grid spacing. For this purpose, the resultant values of Laplacian,

from each method (SPH, MPS and RBF-FD), are compared with corresponding ana-

lytical value at every node. Norm-2 of the error has thus been obtained at each tested
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grid size. The plots of norm-2 of error against total number of computational nodes are

shown in Figure 3.3(a) and 3.3(b) for uniform and random grids respectively. It can be

observed that the derivative approximations using RBF are more accurate than those

from MPS and SPH. Although the solutions are more accurate for uniform grid, the

convergence behaviour is similar on both (random and uniform) particle distribution

and grid independence is achieved at a grid spacing L0 = 0.1 (corresponding to 1600

nodes). Therefore, further comparative study is performed at the same grid size.

Plots of Laplacians obtained from all the three methods (SPH, MPS and RBF-FD) along

with analytically obtained plots, for uniform grid of size L0 = 0.1, are shown in Figure

3.4. Similar plots on random grid are shown in Figure 3.5. On uniform grid all the three

methods (SPH, MPS and RBF-FD) produce reasonably smooth surfaces for Laplacian

of function defined in Eq. (3.28). However, norm-2 of error obtained from RBF-FD is

the smallest amongst the all at this grid size as shown in Figure 3.3(a). For randomized

particle distribution, significant loss of smoothness is experienced for both SPH and

MPS methods as shown in Laplacian surfaces in Figures 3.5(b) and 3.5(c). Similar

behaviour (loss of smoothness of Laplacian surfaces on irregular particle distribution) of

MPS and SPH method was observed by Koh et al. (2012) during a comparative study of

different methods. This loss of smoothness is translated into increased error as depicted

in Figure 3.3(b). However, resultant Laplacian surface obtained from RBF-FD method

is still smooth even on randomized particle distribution. The error values do not increase

with randomization (see corresponding curve in Figure 3.3(b)).

Similar behaviour is observed in the values of first derivatives (∂φ/∂x and ∂φ/∂x) of

the given function φ. The values of derivatives, obtained on uniform and randomized

grids, are plotted and compared and shown in Figures 3.6 and 3.7, respectively. Values

of ∂φ/∂x are plotted at mid height (y = 2.5) and those of ∂φ/∂x were plotted at mid

span (x = 2.5). The resultant profiles from RBF-FD method are found to closely match

the analytical curve in all the cases. Spurious fluctuations are observed in the profiles

from SPH and MPS at randomized grid. The fluctuations are more pronounced for SPH

curves.

3.4 Conclusion

The comparative study carried out in this chapter has shown that RBF-FD is able to

provide more accurate derivative approximations especially at random particle distri-

bution. Loss of accuracy in SPH and MPS is mainly attributed to the generation of

spurious oscillations. This observation is in agreement with a previous study from Koh

et al. (2012). Moreover, SPH and MPS are fully Lagrangian methods which are known

for producing nodal clustering and domain fracturing for flows around bluff bodies even

at low Reynolds numbers (Shadloo et al. (2011, 2012)) as the nodes tend to follow the
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(a) From analytical approach (b) From SPH

(c) From MPS (d) From RBF-FD

Figure 3.4: Plots of Laplacian surfaces on uniform nodal arrangement. Smooth
surfaces are obtained for SPH, MPS and RBF-FD

streamlines. Special treatment of nodes is therefore necessitated to maintain grid uni-

formity in such cases. Nevertheless, these Lagrangian methods are highly effective in

dealing with free surface flows where boundary of the domain cannot be pre-specified.

However, the problems where domain boundaries are pre-defined (like the ones used for

flow around bluff bodies), can be well treated by RBF-FD method.
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(a) From analytical approach (b) From SPH

(c) From MPS (d) From RBF-FD

Figure 3.5: Plots of Laplacian surfaces on randomized nodal arrangement. Sur-
face for SPH and MPS are not smooth. Surface from RBF-FD is smooth
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(a) ∂φ/∂x at y = 2.5

(b) ∂φ/∂y at x = 2.5

Figure 3.6: Comparison of derivatives using SPH, MPS and RBF-FD on uniform
nodal arrangement. Curves from RBF-FD are more accurate compared with
those from SPH and MPS
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(a) ∂φ/∂x at y = 2.5

(b) ∂φ/∂y at x = 2.5

Figure 3.7: Comparison of derivatives using SPH, MPS and RBF-FD on ran-
domized nodal arrangement. Curves from RBF-FD are smoother and more
accurate compared with those from SPH and MPS



Chapter 4

Shape Adaptive RBFs for flow

problems

In this chapter, Radial basis functions in finite difference mode (RBF-FD) method is used

for solving flow problems. Since Kansa (1990) proposed the use of RBFs for solution of

partial differential equations (PDEs) over scattered data points, there has been a growing

interest of researchers to use RBFs for solution of flow problems on irregular domains by

collocation approach (Sanyasiraju and Chandhini (2008); Wang and Liu (2002a); Shu

et al. (2003, 2005b)). On the other hand, it is well known that the coefficient matrices for

RBF collocation methods become dense, large sized and ill-conditioned when the number

of nodes increases. Various researchers have suggested use of local RBF methods to cope

with ill-conditioning problem (Wright and Fornberg (2006); Shu et al. (2003); Tolstykh

and Shirobokov (2003)).

Local RBFs compromise on spectral accuracy and produce well-conditioned and sparse

linear systems which are capable of efficiently handling the non-linearities (Shu et al.

(2003)). These methods are therefore considered well suited for fluid dynamics problems

which involve a large number of data points in meshfree domains. RBF in Finite Dif-

ference Mode (RBF-FD) is a local RBF method which was independently proposed by

Tolstykh and Shirobokov (2003) and Wright and Fornberg (2006) for different set of ap-

plications. RBF-FD allows the use of Finite Difference method on randomly distributed

data points (or nodes). The method has been successfully applied to lid driven cavity

flow problems by Shu et al. (2003), Chinchapatnam et al. (2007) and Chinchapatnam

et al. (2009).

55
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4.1 Adaptive Shape Parameter (ASP) for RBF

Accuracy of RBF interpolation mainly depends upon the ”flatness” of basis function.

Huang et al. (2007) suggested that accuracy of interpolation can be improved by mak-

ing the basis function flatter. On the other hand, an increased flatness of basis function

results in higher condition number of coefficient matrix. Large condition number of

coefficient matrix of RBF weights causes inaccuracies in the solution for expansion co-

efficients coefficient (Kansa (1990)). Therefore, choice of basis function should be a

balance between flatness and conditioning of coefficient matrices.

It has been known that the behaviour of basis functions (especially for Multi-quadratic

and inverse multi-quadratic) depends heavily on th choice of shape parameter. Wang

and Liu (2002a) stated that the sensitivity of results with choice of shape parameter

was one of the biggest limitation of RBF. Various researchers (Huang et al. (2007);

Wang and Liu (2002a); Gherlone et al. (2012); Rippa (1999)) have presented different

methodologies to find the optimum values of shape parameters for RBFs. Franke and

Schaback (1998) suggested optimal value of shape parameter based on total number of

neighbouring particles and minimum diameter enclosing all the neighbouring particles

around the data point. Rippa (1999) studied the selection of optimal shape parameter

for RBFs and concluded that a scheme for determining good value of shape parameter

should take the number and distribution of data points, radial basis function, condi-

tion number of coefficient matrix and precision of computation into account. For any

particular interpolation problem, the radial basis function and precision of computation

remains similar throughout the domain. However, if the distribution of data points is

not uniform, the optimal value of shape parameter will differ for each data point in local

RBFs and would depend upon the number and distribution of data points within its

own influence domain.

During flow simulations, nodal distribution within the domain is varied to achieve op-

timal nodal density. Moreover, use of randomly distributed nodes is necessitated in

many cases. In such situations, each data point will have different node distribution

patterns within its influence domain. Therefore, use of a globally similar value shape

parameter, for all the particles within the entire domain, will adversely affect the well

conditioning of the coefficient matrix. Figure 4.1 depicts the trend of condition number

of coefficient matrix with varying value of shape parameter (σ) for various RBFs. The

plots are obtained on 41 × 41 pseudo random grid where node locations are disturbed

slightly from their corresponding uniform grid positions. It can be observed that, ir-

respective of the basis function used, the range of shape parameter, corresponding to

lower condition numbers of coefficient matrix, varies with the nodal spacing. Hence the

accuracy of the solution would vary by changing the number and distribution of nodes

for a constant shape parameter. For such domains, if fixed values are used, the round
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Figure 4.1: Variation of condition number of coefficient matrix with shape pa-
rameter

off errors caused by ill-conditioning sometimes dominates and the matrix solution be-

comes unstable hence causing breakdown of the solution process Gherlone et al. (2012).

This puts severe limitations on the use of non-uniform or random particle distribution

within the domain. Therefore, for the problems where same RBF function is used for

the entire domain, choosing shape parameter value based on number and distribution of

neighbouring data points could keep the condition number of coefficient matrix to the

minimum.

The choice of the good value of shape parameter is still a hot topic in research and

various authors have suggested different methods of finding an optimum shape value

for different problems (Franke (1982); Rippa (1999); Wang and Liu (2002a); Huang

et al. (2007); Gherlone et al. (2012)). However, for present study, a commonly used

scheme, presented by Franke (1982), has been used which suggests the shape parameter

as σi = 1.25D/
√
N (Where N is the number of data points in the influence domain of

the particle i and D is the diameter of the minimal circle enclosing all the data point).

The method suggested by Franke (1982) is straightforward and has extensively been

used. Other schemes for calculating optimum shape parameters can also be tested to

further validate the concept.

For the adaptive shape parameter concept, the value of (σ) is calculated exclusively
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for each data point and its value is decided based on the number and distribution

of neighbouring particles in the influence domain. Besides ensuring accuracy and a

well-conditioned coefficient matrix, use of adaptive shape parameter also allows larger

variation of nodal density within the domain.

4.2 Comparison of accuracy between fixed and adaptive

shape parameters

Accuracy of adaptively shaped radial basis functions in finite difference mode, has been

tested by calculating 1st and 2nd derivatives and Laplacian of a known function over

meshfree domain. For this purpose, a function has been chosen which results in vary-

ing values of first and second derivatives over different spatial regions. Following test

function is used over a 2D domain with dimensions [0.5, 4.5]× [0.5 4.5]:

f(x, y) = sin [3(x− 2.5)(y − 2.5)] (4.1)

The function f(x, y), its first derivative (∂f/∂x) and Laplacian (∇2f = ∂2f/∂x2 +

∂2f/∂x2) have been plotted in Figures 4.2(a) to 4.2(c), respectively. Variation of (∂f/∂y)

is similar to that of (∂f/∂x). Therefore, plots for (∂f/∂y) are not included here. It

can be observed that the gradients and Laplacian values of function are rather uniform

in the middle of the domain. However, towards the edges and corners, sharp gradients

are encountered. Therefore, an efficient meshing strategy should consider having higher

nodal density towards corners which gradually coarsens while moving towards the middle

of the domain. Hence, a 60×60 non-uniform particle distribution (as shown in Figure 4.3)

has been chosen for the calculation of gradients using RBF-FD method.

Figure 4.4 shows the optimum values of σ over the entire domain using the criterion

(σi = 1.25D/
√
N) proposed by Franke and Schaback (1998). This figure indicates that

optimum values change by almost 400 percent across various regions of the domain.

Therefore, use of globally similar values of σ will likely cause inaccuracies. The deriva-

tives of given function have been calculated using globally similar values of σ as well as

using ASP technique. The absolute error has been calculated for each approach by com-

paring the results with known values of derivatives of the function f(x, y). Figures 4.5

and 4.6 show the error values of ∂f/∂x and ∇2f respectively, along the diagonal line

(shown as thick line in figure 4.3) through the domain. Calculations have been done

using Multiquadratic and Inverse Multiquadratic radial basis functions. For constant

values of σ the results have been obtained using three different values (σ = 0.5,σ = 1.0

and σ = 2.0) and compared with ASP results to have better understanding of how

results behave with varying the value of shape parameter.
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(a) Function f(x,y)

(b) First derivative ∂f/∂x

(c) Laplacian ∇2f

Figure 4.2: Plot of Pre assumed function, first derivative and Laplacian
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Figure 4.3: 60× 60 Non-uniform Nodal Distribution within the Domain

Figure 4.4: Profile of Optimum Values of Shape Parameter (σ)
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Figure 4.3 shows that density of nodes varies along the diagonal from maximum (at

bottom left corner) to minimum (in the middle) and then again to maximum (at top

right corner). Therefore, optimum value of σ should vary accordingly. The plots in

figures 4.5 and 4.6 show that, for fixed value of shape parameter (σ), the results are

accurate only on partial range of the diagonal. Therefore, global accuracy is not achieved.

However, adaptively varying the shape parameters (using ASP technique) results in good

agreement with the analytical values throughout the range. For example, fixed value of

σ = 0.5 provides good accuracy close to corners but the results tend to become erroneous

in the middle of the domain. As the fixed value of σ is increased from 0.5 to 2.0, the

large error region tends to shift towards the corners. This is due to the deviation from

the suggested optimum value of shape parameter at various regions (Figure 4.4) that

causes these errors.

In order to further explain the situation, curve of ∇2f has been plotted in Figure 4.7.

It can be observed, in closed views, that RBF curve with fixed shape parameter tends

to deviate from analytical values near the central part of the domain. However, the

curve obtained by adaptively changing the shape parameter tends to closely follow the

analytical value curve. Therefore, globally accurate results are achieved with adaptively

changing the shape of the basis function according to the arrangement of neighbouring

particles around the data points.

4.3 RBF-FD for flow equations in vorticity-stream func-

tion formulation

The applicability of shape adaptive RBFs has been studied for the solution of transient,

incompressible and viscous flow equations in vorticity-stream function formulation. For

this purpose, solution of Eqs. (2.25) - (2.28) has been sought using RBF based spa-

tial derivatives. Time descritization is achieved using Crank-Nicolson scheme. Spatial

derivatives appearing in Eqs. (2.25) and (2.26) can be approximated using RBF-FD as:

∂ωi
∂t

+ ui

N∑
j=1

W
(x)
i,j ωj + vi

N∑
j=1

W
(y)
i,j ωj =

1

Re

 N∑
j=1

W
(xx)
i,j ωj +

N∑
j=1

W
(yy)
i,j ωj

 (4.2)

N∑
j=1

W
(xx)
i,j ψj +

N∑
j=1

W
(yy)
i,j ψj = −ωi (4.3)
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(a) IMQ RBF

(b) MQ RBF

Figure 4.5: Error Plots of ∂f/∂x along Diagonal Line through the Domain for
MQ and IMQ RBFs (Fixed and Adaptively Changing Values of shape parameter
σ)
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(a) IMQ RBF

(b) MQ RBF

Figure 4.6: Error Plots of ∇2f along Diagonal Line through the Domain for MQ
and IMQ RBFs (Fixed and Adaptively Changing Values of shape parameter σ)
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Figure 4.7: Comparison of Laplacian (∇2f) Curves along the diagonal

Temporal discretization of Eq. (4.2) can be obtained using Crank Nicolson scheme as

follows (Hirsch (2002)):
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where ωnj and ωn+1
j are the values of ω at node j at nth and (n+ 1)th time step respec-

tively. After rearrangement, Eq. (4.4) can be expressed in matrix form as:
a1,1 + 1 a1,2 . . . a1,N
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. . . . . .

...
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. . .
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where
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Similarly, Eq. (4.3) can be written in matrix form as:
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Velocity components at each node can be evaluated as:

ui =

N∑
j=1

W
(y)
i,j ψj , vi = −

N∑
j=1

W
(x)
i,j ψj (4.7)

Starting from initial conditions, values of vorticity at next time step can be determined

by solving linear system of Eqs. (4.5). During each iteration, Eq. (4.6) can be solved to

find the values of stream function (ψ) at each node. The values of stream function can

then be used to find velocity components using Eqs. (4.7).

4.3.1 Lid driven cavity flow

Lid driven cavity flow constitutes complex flow features like primary, secondary and

tertiary eddies despite the fact that it has very simple geometry. The flow problem is

therefore widely used to validate new computational techniques and novel schemes for

flow simulations. Therefore, application of shape adaptive RBF-FD has been validated

by simulating lid driven cavity flow in a square domain and comparing the results with
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the benchmark solutions by Ghia and Shin (1982). Reynolds number (Re = U0L/ν,

where U0 is the velocity of moving lid, L is the length of domain side and ν is the

kinematic flow viscosity) is set as 400 and 1000 for the flow simulations. The fluid

domain has been represented by 81 × 81 and 101 × 101 nodal grids for for Re = 400

and Re = 1000 cases respectively. The solutions have been obtained for constant as well

as adaptively shaped radial basis functions. Non-uniform particle distribution has been

introduced to capture higher gradients expected near solid walls and corners.

On all the four wall boundaries Γ, velocity components normal to boundary are assumed

to be zero. This non-penetration flow boundary condition leads to ~un = ∂ψ/∂~t = 0 or

ψ = C1 at x ε Γ, where ~un is the velocity component in the outward normal direction

to the boundary (Γ) , n and t are normal and tangential directions to the boundary

and C1 is a constant. No slip boundary condition at the walls implies that tangential

component of flow velocity along the boundary Γ remains constant and equal to the

speed of the boundary itself. Therefore, ~ut = ∂ψ/∂~n = C2 at x ε Γ, where ~ut is the

velocity component parallel to the boundary (Γ) and C2 is a constant. The values of

stream function (ψ) near the boundary can be used to define the boundary conditions

for vorticity (ω). Following higher order finite difference expressions for vorticity at the

four boundaries, as suggested by Spotz and Carey (1995), are used here:
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For lid driven cavity flow, all the boundaries are stationary except the top boundary

which moves with a velocity U0 in horizontal direction. Implementation of boundary

conditions using Eqs. (4.8) - (4.11) necessitates the presence of locally orthogonal grid

near the boundary. For uniform particle distribution, condition of locally orthogonal

grid is naturally satisfied. However, for random particle distribution, inner particles

may not remain orthogonal to the boundary. Therefore, special care has to be taken

to ensure locally orthogonal grid near the boundary. In order to capture high flow

gradients near the corners of the domain, refined grid is required. Therefore, non-

uniform grid spacing with finer grid near the walls will improve the accuracy. In case

of constant value of shape parameter (σ), the ratio of nodal spacing between corner-to-

centre nodes is limited due to ill-conditioning effect of coefficient matrix for RBF weights

in Eqs. (3.23) as discussed in Section 4.2. However, with introduction of adaptively

shaped radial basis functions, the ratio of nodal spacing between corner-to-centre nodes
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(a) For fixed shape parameter σ (b) For adaptive shape parameter σ

Figure 4.8: Arrangement of nodes for lid driven cavity flow problem

can be increased without producing ill-conditioning effect. The grid can therefore be

made much more refined, close to the walls, than same sized grid used for fixed shape

parameter approach. The results are therefore more accurate for same number of nodes

within the domain. Figures 4.8(a) and 4.8(b) show the nodal distributions for fixed

and adaptive shape parameter cases for Re = 400. Due to the ill-conditioning effect

with the use of fixed shape parameters, the ratio of nodal spacing between corner-to-

centre nodes was limited to 4.0 only. Further refinement near the walls and corners

resulted in inaccurate RBF-FD weights leading to erroneous solutions with the use of

conventional RBF-FD approach. However, ratio of nodal spacing between corner-to-

centre nodes could be increased to 8.0 with the use of adaptively shaped basis functions.

Therefore much refined nodal distribution was obtained close to the corners as shown

in figure 4.8(b). Finer grids were able to capture the gradients of field variables more

accurately. Moreover, with the use of shape adaptive RBFs, optimized shape of basis

function was maintained throughout the domain thus reducing the error. As a result,

an improved accuracy was achieved. Figures 4.9(a) and 4.9(b) show profile of horizontal

velocity component (vx) at mid span and vertical velocity component (vy) at mid plane

respectively, for Re = 400 case. The results have been obtained using adaptively shaped

RBF-FD. Similar velocity profiles have been calculated for Re = 1000 are shown in

Figures 4.10(a) and 4.10(b), respectively. Contour plots of stream function (ψ) and

vorticity (ω), obtained at Re = 400 using current method, have been compared with

results from previous studies in Figure 4.11. Similar comparison, at Re = 1000 has

been shown in Figure 4.12. At both Reynolds numbers, a primary vortex appears in

the middle of the rectangular domain along with two opposite secondary vortices near

bottom corners. The shape and strength values of these vortices agree well with previous

solutions.

A comparison of results obtained from fixed and adaptively shaped RBF-FD has been

presented, in Table 4.1. The error values are evaluated using standard results from
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(a) vx at mid span (b) vy at mid plane

Figure 4.9: Velocity profiles for lid driven cavity flow at Re = 400 solved with
adaptively shaped RBF-FD method

(a) vx at mid span (b) vy at mid plane

Figure 4.10: Velocity profiles for lid driven cavity flow at Re = 1000 solved with
adaptively shaped RBF-FD method

Ghia and Shin (1982). Maximum relative error and norm of relative error for fixed and

adaptive shape parameter cases have been shown. A significant reduction in error is

achieved with the use of adaptively shaped basis functions. This is due to the possibility

of having finer grids at critical regions and accurate approximation of gradients due to

optimized shape of basis functions.

4.4 Conclusion

The concept of adaptive shape parameters (ASP) is found to be useful for flow problems

where solutions are sought through local RBFs and nodal density is required to be

varied significantly within the domain to capture high flow gradients. Adaptively shaped

basis functions provide greater flexibility to change the nodal density thus enabling
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(a) Stream function (ψ) plot from present work (b) Stream function (ψ) plot from Chin-
chapatnam et al. (2007)

(c) Vorticity (ω) plot from present work (d) Vorticity (ω) plot from Shu et al.
(2004)

Figure 4.11: Stream function (ψ) and vorticity (ω) contour plots for lid driven
cavity flow at Re = 400

Table 4.1: Maximum error and norm of error for Re 400 and Re 1000 with fixed
and adaptively shaped basis functions

Case Fixed RBF-FD Adaptive RBF-FD

Results for vx at mid span

Max relative error (Re 400) 0.0372 0.0150
Norm of relative error (Re 400) 0.0787 0.0203
Max relative error (Re 1000) 0.0459 0.0250
Norm of relative error (Re 1000) 0.2071 0.1104

Results for vy at mid plane

Max relative error (Re 400) 0.0404 0.0089
Norm of relative error (Re 400) 0.1121 0.0556
Max relative error (Re 1000) 0.0439 0.0156
Norm of relative error (Re 1000) 0.1190 0.0549
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(a) Stream function (ψ) plot from present work (b) Stream function (ψ) plot from Chin-
chapatnam et al. (2007)

(c) Vorticity (ω) plot from present work (d) Vorticity (ω) plot from
Hamed Meraji et al. (2012)

Figure 4.12: Stream function (ψ) and vorticity (ω) contour plots for lid driven
cavity flow at Re = 1000

an improved accuracy. Moreover, the basis functions can retain their optimum shape

throughout the domain and produce accurate approximations of differential operators.

On the contrary, the conventional approach of using fixed shaped basis functions results

in ill-conditioning effect when large variation of nodal density is introduced within the

domain. Therefore, grid refinement is required to be introduced over the entire domain so

as to avoid large variation in nodal spacing at different locations. This practice increases

the total number of data points (or nodes) thus making the solutions computationally

expensive. Therefore, use of ASP with local RBFs helps improve the computational

efficiency and accuracy in these cases. Adaptive shape parameter technique for flow

equations in vorticity-stream function formulation has also been presented in Javed

et al. (2013a).



Chapter 5

RBF-FD for incompressible,

viscous N-S equation in primitive

variables

A scheme for solving incompressible and viscous Navier Stokes equation in vorticity

streamfunction formulation using RBF-FD based meshfree method was presented in

Chapter 4. Due to its ”localized” characteristic, RBF-FD was found to provide accurate

derivative approximations with large number of computational nodes. However, there

are certain limitations associated with vorticity-stream function formulation as discussed

in Section 2.4. These may inhibit its applications for more advanced problems.

It is therefore considered logical to investigate the application of RBF-FD for N-S equa-

tions in their primitive variable form. A method of solution of Navier-Stokes equations

in their primitive variable form is therefore presented using RBF-FD based spatial dis-

cretization technique. Pressure-Velocity decoupling, in N-S equations, has been achieved

by fractional step method proposed by Chorin (1973). Time discretization of resultant

momentum equation after decoupling the pressure term has been achieved using follow-

ing two methods:

1. Explicit approach: The explicit approach employs a first order Euler method

for temporal discretization of momentum equations.

2. Implicit approach: For implicit approach, a second order Crank-Nicolson scheme

has been used for viscous term whereas the convective term is discretized using a

second order Adams-Bashforth scheme.

The solution schemes are tested for uniform, non-uniform and random particle distri-

butions and have been validated by the benchmark solutions of lid driven cavity flow

71
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problems provided by Ghia and Shin (1982). Accuracy of Implicit and explicit schemes

has been compared. Subsequently, further tests are conducted to investigate the appli-

cation of implicit RBF-FD scheme for steady and unsteady laminar flow around circular

cylinder at different Reynolds numbers.

5.1 RBF-FD for Incompressible N-S Equations

RBF-FD scheme is used for spatial descritization of non-dimensionalized, time depen-

dant, incompressible and viscous Navier-Stokes equations in pressure-velocity form. The

set of governing equations are shown in Eqs. (2.6) and (2.7). The chosen solution scheme,

for the equations, uses the algorithm suggested by Chorin (1973). The algorithm is based

on the non-incremental pressure correction which provides a simple method of time dis-

cretization using fractional step approach. Using this approach, the momentum Eq. (2.7)

can be written as:

~u∗ − ~un

∆t
= − (~u.∇) ~u + (1/Re)∇2~u (5.1)

the pressure term in momentum equation can then be linked with velocity as:

~un+1 − ~u∗

∆t
= −∇Pn+1 (5.2)

where ~un and ~un+1 are the velocity values at nth and (n + 1)th time step respectively

and Pn+1 is the pressure value at (n + 1)th time step. Intermediate velocity field at

boundary Γ is evaluated using the following equation:

~u∗|Γ = ~u|Γ + ∆t∇Pn+1 (5.3)

Now, from continuity Eq. (2.6):

∇.~un+1 = 0 (5.4)

Substituting the value of ~un+1 from Eq. (5.2) into (5.4) leads to,

∇2Pn+1 = (1/∆t)∇.~u∗ (5.5)

subject to following boundary condition:

n.∇Pn+1|Γ =
1

∆t
[n.(~u∗ − ~un+1)Γ] (5.6)
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where n is the unit vector towards outward normal direction to boundary Γ. Eq. (5.4)

is called pressure Poisson equation. By incorporating pressure term into continuity

equation, the continuity is satisfied in the process of solution of transient flow problem.

5.1.1 Space splitting

RBF-FD scheme is used to approximate spatial derivatives appearing in Eqs. (5.1), (5.2)

and (5.5). Detailed explanation of formulation for RBF-FD scheme has been given in

Chapter 4. RBF-FD approximation of spatial derivatives appearing in Eqs. (5.5) and

(5.2), in 2-D Cartesian component form, with velocity vector ~u = (u, v), can be written

as:

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
Pn+1
j =

1

∆t

 N∑
j=1

W
(x)
i,j u

∗
j +

N∑
j=1

W
(y)
i,j v

∗
j

 (5.7)

un+1
i − u∗i

∆t
= −

N∑
j=1

W
(x)
i,j P

n+1
j (5.8)

vn+1
i − v∗i

∆t
= −

N∑
j=1

W
(y)
i,j P

n+1
j (5.9)

where, ui and vi are the Cartesian of velocity components at node i, N is the total

number of interior and boundary nodes which lie in the supporting region/stencil for

the node i and W
(x)
i,j , W

(y)
i,j , W

(xx)
i,j and W

(yy)
i,j are the RBF-FD weights corresponding

to the differential operator ∂/∂x, ∂/∂y, ∂2/∂x2 and ∂2/∂y2 respectively. These weights

are obtained by solving the system of Eq. (3.21) for corresponding differential operators

applied to the basis functions.

5.1.2 Time splitting

Explicit and implicit discretization schemes are used to approximate time derivatives

appearing in Eq. (5.1). Description of each approach has been detailed below:

5.1.2.1 Explicit approach

Explicit Euler discretization of time derivative appearing in Eq. (5.1) can be written as

~u∗ − ~un

∂t
= − (~un.∇) ~un + (1/Re)∇2~un (5.10)
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At the end of each time step, continuity condition is satisfied by Poisson Eq. (5.5) with

non-zero source term. However, intermediate velocity field may not satisfy continuity

(Xia and Leung (2003); Perot (1995)). RBF-FD approximation of spatial derivatives of

Eq. (5.10), in 2D Cartesian form, can be written as:

u∗i − unj
∆t

= −uni
N∑
j=1

W
(x)
i,j u

n
j − vni

N∑
j=1

W
(y)
i,j u

n
j

+
1

Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
unj (5.11)

v∗i − vnj
∆t

= −uni
N∑
j=1

W
(x)
i,j v

n
j − vni

N∑
j=1

W
(y)
i,j v

n
j

+
1

Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
vnj (5.12)

Intermediate velocity components can be determined from velocity field values of nth

time iteration using Eqs. (5.11) and (5.12). The pressure field values for next time

step (Pn+1) are then calculated by solving Poisson Eq. (5.7) using intermediate velocity

values. Velocity field for next iteration (~un+1 = (un+1, vn+1)) can then be evaluated

using Eqs. (5.8) and (5.9).

Although explicit methods are known to be computationally efficient and are low on

memory consumption; their stability is subjected to strict stability requirements known

as the CFL condition. This condition is defined as:

|~u|∆t
∆x

≤ C (5.13)

where ∆t is time step, ∆x is minimum space step, ~u is magnitude of flow velocity and C

is a dimensionless number (known as Courant number). For an explicit time marching

scheme, C = 1 is typically used Hirsch (2002). For implicit time marching schemes,

relatively larger values of C can however be used. Therefore, the limitations put on

the nodal spacing and time step value, by CFL conditions, are relatively relaxed for

the implicit schemes compared with the explicit time marching schemes. Moreover, the

Euler explicit scheme is only first order accurate in time. Therefore, accuracy of the

solution is compromised, especially at regions of high gradients, unless very small time

step is used which will slow down the time step marching process.

5.1.2.2 Implicit approach

The following approach has been used to achieve time implicit marching scheme for

velocity momentum Eq. (5.1):
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1. Second order explicit Adams-Bashforth scheme is used for the convective term

appearing in Eq. (5.1). The descritized form of convective equation is written as:

(~un.∇) ~un =
1

2

[
3 (~un.∇) ~un −

(
~un−1.∇

)
~un−1

]
(5.14)

2. Second order implicit Crank-Nicolson scheme is used for viscous term appearing

in Eq. (5.1) as shown below:

1

Re
∇2~un =

1

2Re

[
∇2 (~un + ~u∗)

]
(5.15)

Due to explicit treatment of convective term, the scheme may not be termed as ”fully-

implicit” in true sense. The fractional step methods in which convective term is treated

with explicit time stepping are called ”semi-implicit” methods (Ryoichi Amano (2011)).

Fully-implicit methods refer to the techniques in which both convective and viscous

terms are treated with implicit time stepping. However, the scheme used in this work

(Adams-Bahsforth for convective and Crank-Nicolson for viscous terms) will be called

’implicit method’ for simplicity.

The time splitting schemes for convective as well as viscous terms are second order

accurate. This helps reduce time discretization error of the overall equation. However,

as viscous term is treated with implicit method, the overall treatment of time splitting

becomes implicit. Although Adams-Bahsforth scheme is explicit in time and is somehow

affected by CFL stability conditions; the restrictions are more relaxed than for Euler

Explicit scheme (Deriaz (2010)). Moreover, numerical viscous stability restrictions are

eliminated due to implicit treatment of viscous term (Kim and Moin (1985)). Therefore,

larger time steps values can be chosen to enable faster marching in time. Intermediate

velocity momentum Eq. (5.1) can now be expressed as:

~u∗ − ~un

∆t
= −1

2

[
3 (~un.∇) ~un −

(
~un−1.∇

)
~un−1

]
+

1

2Re

[
∇2 (~un + ~u∗)

]
(5.16)

Eq. (5.16) can be rearranged to bring all intermediate velocity terms on one side of the

equation. Resulting form is written as:

~u∗ − ∆t

2Re
∇2~u∗ = ~un − ∆t

2

[
3 (~un.∇) ~un −

(
~un−1.∇

)
~un−1

]
+

∆t

2Re
∇2~un (5.17)
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Spatial derivatives appearing in Eq. (5.17) are evaluated using RBF-FD approximation.

Spatial descritization of convective and viscous terms appearing in Eq. (5.17) for u

component of velocity ~u = (u, v), are shown bellow:

(~un.∇)un = uni

N∑
j=1

(
W

(x)
i,j + W

(y)
i,j

)
unj (5.18)

∇2un =
N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
unj (5.19)

Similar expressions can be written for v component of velocity ~u = (u, v). RBF-FD

approximation of complete Eq. (5.17), in 2-D Cartesian domain, can therefore, be

expressed as

u∗i −
∆t

2Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
u∗j = uni +

∆t

[
− 1

2

{
3
(
uni

N∑
j=1

W
(x)
i,j u

n
j + vni

N∑
j=1

W
(y)
i,j u

n
j

)

−
(
un−1
i

N∑
j=1

W
(x)
i,j u

n−1
j + vn−1

i

N∑
j=1

W
(y)
i,j u

n−1
j

)}

+
1

2Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
unj

]
(5.20)

v∗i −
∆t

2Re
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)
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− 1
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(
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2Re
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(
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(xx)
i,j + W

(yy)
i,j

)
vnj

]
(5.21)

Eqs. (5.20) and (5.20) can be written in more concise form as:
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[A]{u∗} = [B]{un}+ [C]{un−1} (5.22)

[A]{v∗} = [B]{vn}+ [C]{vn−1} (5.23)

where

Ai,j =

{
1−∆t/2 ((visc)i,j) (i = j)

−∆t/2 ((visc)i,j) (i 6= j)

Bi,j =

{
1 + ∆t/2

(
−3(conv)ni,j + (visc)i,j

)
(i = j)

∆t/2
(
−3(conv)ni,j + (visc)i,j

)
(i 6= j)

Ci,j = ∆t/2
(

(conv)n−1
i,j

)
(conv)ni,j = uni W

(x)
i,j + vni W

(y)
i,j

(conv)n−1
i,j = un−1

i W
(x)
i,j + vn−1

i W
(y)
i,j

(visc)i,j = 1/Re
(
W

(xx)
i,j + W

(yy)
i,j

)
Intermediate velocity components are therefore, calculated by solving matrix Eqs. (5.22)

and (5.23). Subsequently, Eqs. (5.7) to (5.9) are used to calculate pressure and velocity

values for next time step. The process requires simultaneous solution of matrix equations

which is computationally expensive. However due to local feature of RBF-FD, sparse

coefficient matrices are generated which make the solution process fast and are low on

memory. The larger time steps allowed by the implicit treatment make the convergence

process faster. Therefore, overall computational efficiency improves for Implicit RBF-

FD.

5.2 Solution algorithm

After representing the domain with finite number of particles (or nodes) and applying

initial conditions, the following numerical procedure is used:

1. At any time step n, components of intermediate velocity vector ~u∗ = (u∗, v∗) are

calculated at each node.

(a) For Euler explicit approach, Eqs. (5.11) and (5.12) are used.

(b) For implicit approach, system of equations formed by evaluating Eqs. (5.22)

and (5.23) at each node is solved to obtain (~u∗).

The boundary conditions for intermediate velocity are calculated using Eq. 5.3.

2. Eq. (5.7) is solved using known values of intermediate velocities (~u∗) at the time

step to find the values of pressure at each node. The Pressure values on the

boundaries are obtained using Eq. (5.6).
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3. Finally, Eqs. (5.8) and (5.9) are used to update the velocity components for next

time step.

4. Convergence is monitored by calculating the norm of difference in velocity vectors

between two consecutive time steps. The process (Step 1 - 3) is repeated until

desired convergence is achieved.

As RBF-FD generates a sparse matrix, Generalized Minimum Residual (GMRES) method

with incomplete LU decomposition for preconditioning, as presented by Saad and Schultz

(1986), is used for solution of matrix Eqs. (5.7), (5.22) and (5.23). The sparse matrix

equation greatly reduces the computational load and memory requirement of the pro-

gram.

5.2.1 Computer Program

The solution algorithms discussed in Section 5.2 are used to write computer programs

for flow solvers using C-program. The flow chart of the program for implicit RBF-FD

scheme is shown in Figure 5.1. The program first performs the preliminary calculations

which are carried out to prepare for the iterative steps. The process starts by finding

the total number of computational nodes needed to produce the grid with required size.

Subsequently, the dynamic memory is allocated to the different pointer variables. The

grid points are then generated and initial values of field variables are assigned. The non-

dimensionalization of variables is then carried out before calculating the RBF weights

at each data point. These RBF weights are used to formulate the coefficient matrices

for pressure and velocity equations. Formulation of coefficient matrices is not needed

for explicit time marching.

After the preliminary calculations, iterative calculations are carried out. During these,

the values of pressure and velocity fields are calculated at each time step by solving the

respective matrix equations. For explicit time marching, solution of matrix equations is

not needed for velocity field. The detail of the process has been mentioned in Section

5.2. The flow charts for preliminary and iterative calculations are shown in Figures

5.1(a) and 5.1(b) respectively.

5.3 Order of convergence tests

Convergence tests have been conducted for Implicit RBF-FD method to establish spatial

and temporal order of convergence. For this purpose, decaying vortex problem has been

selected. The problem has a known analytical solution and is often used to verify the

accuracy of new methods (Kim and Moin (1985); Kim and Choi (2000); Chew et al.
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(a) Preliminary Calculations

(b) Iterative Steps

Figure 5.1: Flow chart of computer program for flow solver based on implicit
RBF-FD solution scheme
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(a) Uniform nodal arrangement (b) Random nodal arrangement

Figure 5.2: Uniform and random nodal arrangement over square domain
[−0.5, 0.5]× [−0.5, 0.5] with grid spacing h = 0.05

(2006)). Followings are the theoretical expressions for time varying pressure and velocity

fields (u(x, y, t), v(x, y, t), p(x, y, t)) :

u(x, y, t) = − cos(πx) sin(πy) exp[−(2π2t)/Re] (5.24)

v(x, y, t) = sin(πx) cos(πy) exp[(−2π2t)/Re] (5.25)

p(x, y, t) = −0.25 [cos(2πx) + cos(2πy)] exp[(−4π2t)/Re] (5.26)

The flow Reynolds number is defined as Re = ρUL/µ, where ρ is the fluid density, U is

maximum initial flow velocity, L is the length of vortex and µ is the dynamic viscosity.

Numerical solution of the problem has been obtained over a square domain which spans

[−0.5, 0.5]× [−0.5, 0.5]. The domain is represented by uniform as well as pseudo random

nodal arrangement. Uniform and random grid with grid spacing h = 0.05 are shown in

Figure 5.2. Randomness has been introduced by perturbing the nodes from their original

positions over uniform grid. This Random perturbation is however restricted to 20%

of the grid spacing to avoid excessive clustering of nodes. The initial conditions have

been defined by using analytical solutions of velocity and pressure (Eqs. (5.24) - (5.26))

on respective nodal coordinates at t = 0. Dirichlet boundary conditions have also been

defined at all the four boundaries using theoretical expressions for velocity and pressure

at time instant t.

In order to evaluate spatial order of convergence, numerical solutions are obtained at

t = 0.4 sec for different values of nodal spacing. Flow Reynolds number has been set

as 10 and time step value has been chosen to be 10−4 sec. Error has been calculated,

for each case, by evaluating norm-2 of the difference between values of velocity and

pressure evaluated using flow solver and their analytical values obtained from Eq. (5.24)

- (5.26). Logarithmic values of Norm-2 of error (log10(‖ε‖2)) have been plotted against

logarithmic values of grid spacing (log10(h)) for uniform grid in Figure 5.3(a) and for

random grid in Figure 5.3(b). Linear fitting curves are then drawn, for each type of
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Table 5.1: Spatial Order of convergence for Implicit RBF-FD

Grid Size ‖ε‖2 for u-velocity ‖ε‖2 for Pressure
(h) Uniform Grid Random Grid Uniform Grid Random Grid

0.05 4.44E-4 2.82E-4 3.56E-4 3.40E-4
0.04 2.93E-4 1.74E-4 2.19E-4 2.41E-4
0.025 9.09E-5 5.90E-5 5.80E-5 6.60E-5
0.02 4.56E-5 3.48E-5 2.72E-5 3.76E-5
0.01 3.53E-6 3.51E-6 3.53E-6 4.57E-6

Order of
convergence 3.16 2.096 2.85 2.38

error, using least square data fitting. Orders of convergence have been calculated as

slopes of these error curves on logarithmic scale. Numerical values of error for pressure

and velocity have also been shown in Table 5.1. Results for v-component of velocity have

not been shown because these are similar to those of u-component of velocity. Spatial

order of convergence for velocity field is found to be 3.16 on a uniform grid. However,

this order of convergence reduces to 2.096 on a random grid. The orders of convergence

for pressure are 2.85 and 2.38 on uniform and random grids respectively.

The order of convergence in time has been calculated by running similar test cases at

different time step values but keeping same grid size (h). The tests are conducted on

a 51 × 51 uniform grid which corresponds to grid spacing h = 0.02. Time step values

are varied from 5 × 10−2 to 10−3. Resulting values of log10(‖ε‖2) are plotted against

logarithmic values of time step (log10(∆t)) in Figure 5.4 along with the linear fitting

curve. The slope for velocity curve is 1.3 and that for pressure curve is 1.27. The

order of convergence in time for both velocity and pressure is lower than spatial order of

convergence. These results are consistent with the observation of Brown et al. (2001) and

Guermond et al. (2006). Brown et al. (2001) suggests that order of convergence in time

can be improved further by incorporating strict divergence constraints on intermediate

velocity field. Guermond et al. (2006) has suggested an improvement in temporal order

of convergence by introducing incremental pressure correction in fractional step schemes,

such as proposed by Goda (1979). The scope of current research is however restricted to

same formulation which has been presented above. Further improvements can be made

by using more accurate solution schemes.

5.4 Lid driven cavity flow problem

Explicit and implicit solution schemes have been used to solve Lid Driven Cavity Flow

problem at various Reynolds Numbers (Re = UL/ν, where U is the velocity of moving

lid, L is the length of side and ν is the kinematic viscosity of flow). The results are

compared with benchmark solutions by Ghia and Shin (1982). Applicability of schemes
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(a) On uniform grid

(b) On random grid

Figure 5.3: Variation of Norm-2 error for velocity and pressure with changing
grid size (h) on logarithmic scale. Reynolds number is Re = 10 and Time step
value is ∆t = 10−4
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Figure 5.4: Variation of Norm-2 error for velocity and pressure with changing
time step (∆t) on logarithmic scale. Solutions are sought on a uniform grid
with grid spacing h = 0.01 and Re = 10.

has been verified on uniform, non-uniform and random nodal distribution. For uniform

grid (or nodal distribution), the nodal spacing has been kept constant throughout the

domain as shown in Figure 5.5(a). For non-uniform grid, nodal spacing has been varied

in a controlled manner, as shown in Figure 5.5(b), in order to keep a higher the nodal

density at regions where large gradients of field variables are expected. This has been

done to optimize the computational effort so as to achieve greater accuracy with less

number of nodes. Random grid corresponds to the domain where nodes have been

distributed randomly as shown in Figure 5.5(c). The random distribution of nodes has

been achieved by incorporating Sobol sequence in coordinate location of the nodes. Low

discrepancy Sobol sequence randomizes the nodal spacing while still maintaining an

overall uniformity in distribution of nodes.

During solution of N-S equations in primitive formulation, the velocity boundary con-

ditions are directly obtained from physical constraints. On all the four walls, velocity

component normal to boundary is zero. This ensures that there is no penetration of

flow across the boundary. Moreover, no-slip boundary conditions dictate that tangen-

tial component of velocity of flow along the boundary Γ remains constant and equal to

the speed of the boundary itself. So, (~un) = 0 and (~ut) = C2 at boundary Γ where,

(~un) and (~ut) are the velocity components in outward normal and tangent direction of

boundary respectively and C2 is a constant. For pressure, Neumann boundary condi-

tions are introduced as per Eq. (5.6). Implementation of Neumann boundary condition

for pressure has been achieved through locally orthogonal grid near the boundary. For

uniform and non-uniform particle distribution, condition of locally orthogonal grid is
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(a) Uniform distribution (b) Non-uniform distribution

(c) Random Distribution (for interior nodes)

Figure 5.5: Various configurations of particle distribution

naturally satisfied. However, for random particle distribution, inner particles may not

remain orthogonal to the boundary. Therefore, special care has to be taken to ensure

locally orthogonal grid near the boundary. Implementation of locally orthogonal grid

for random nodal distribution has been shown in Figure 5.5(c).

5.4.0.1 Comparison of Implicit and Explicit RBF-FD schemes

The results for Lid Driven cavity flow have been obtained at Re = 100, 400 and 1000,

respectively. For Explicit RBF-FD approach, the time step has been kept at 5 × 10−4

whereas for implicit approach, a time step of 10−3 has been chosen. Grid configuration

has been kept similar for all the cases to ensure a valid comparison. Therefore, non-

uniform grid, with nodal spacing ratio of 2.5 between corner-to-centre nodes, has been

used for all the cases. Constant values of shape parameters have been used here.

At higher Reynolds numbers, finer nodal grids are required to accurately capture flow

gradients. Therefore, at every Reynolds number, the solutions are sought at different

grid sizes and results are compared with standard solutions from Ghia and Shin (1982).

The aim is to work out the optimum grid size at each Reynolds number, both for explicit

and implicit approach, which provides good solutions. Resultant velocity plots, at all

three Reynolds numbers, obtained from explicit RBF-FD solution are shown in Figures
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Table 5.2: Required grid sizes for each test case (Lid driven cavity flow)

Reynolds number Required grid size
(Re) Explicit RBF-FD Implicit RBF-FD

100 91× 91 71× 71
400 121× 121 71× 71
1000 151× 151 101× 101

5.6(a) - 5.6(c). Similar plots for implicit RBF-FD approach are shown in Figures 5.7(a) -

5.7(c). The optimum grid sizes, which give accurate solution in each case, are tabulated

in Table 5.2.

It can be observed that for implicit solutions, required accuracy can be achieved with

relatively coarser grid compared to the explicit solution. This is due to higher order of

accuracy achieved during time splitting of governing equations which suffer from less

discretization error. Moreover, implicit treatment also eliminates the numerical viscous

stability restrictions. These restrictions are particularly sever at low Reynolds numbers

and near the boundaries, as mentioned by Kim and Choi (2000). Therefore, implicit

schemes work well even for larger time step values. Significant improvement in CPU

time was observed during numerical tests while using implicit scheme. For example, the

computation times, to reach steady state solutions using explicit and implicit approach

at Re 100, were compared on a 91 × 91 grid. For implicit scheme, the steady state

solutions were reached for CPU time of 7114 sec on Intel R© 3.1 GHz Processor. On

the other hand, computation time for similar case was recorded as 36306 sec on same

machine using explicit scheme. Therefore, the computation time was reduced by a factor

of 5 using implicit scheme. Possibility of using larger time step and higher accuracy at

relatively coarser grids makes the implicit RBF-FD computationally more efficient and

stable technique for solution of Navier-Stokes equations in primitive variable form.

5.4.0.2 Effect of nodal distribution

In order to study the effect of changing nodal distribution within the domain, a compar-

ison of results from uniform and non-uniform grids has been presented. The test cases

have been run at Reynolds Numbers 100 and 400 on 71 × 71 grids using implicit ap-

proach. The results obtained on both uniform and non-uniform grids have been plotted

together in Figure 5.8. It can be observed that non-uniform grid was able to capture the

velocity gradients more accurately due to higher nodal density at critical areas. There-

fore, selectively distributing the particles in the domain to achieve the nodal density

according to expected flow characteristics and gradient of field variables; helps achieve

accurate results even for less number of nodes.



86 Chapter 5 RBF-FD for incompressible, viscous N-S equation in primitive variables

(a) Re 100

(b) Re 400

(c) Re 1000

Figure 5.6: Velocity profiles for lid driven cavity flow (results for explicit ap-
proach). Vx plots are obtained at mid span (x = L/2) and Vy plots are obtained
at mid height (y = H/2).
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(a) Re 100

(b) Re 400

(c) Re 1000

Figure 5.7: Velocity profiles for lid driven cavity flow (results for implicit ap-
proach). Vx plots are obtained at mid span (x = L/2) and Vy plots are obtained
at mid height (y = H/2).



88 Chapter 5 RBF-FD for incompressible, viscous N-S equation in primitive variables

(a) Re = 100

(b) Re = 400

Figure 5.8: Comparison of velocity profiles on uniform and non-uniform 71×71
grids. Vx plots are obtained at mid span (x = L/2) and Vy plots are obtained
at mid height (y = H/2).

Meshless particle methods often employ random particle distribution. Therefore, im-

plicit scheme has been used to solve the flow case over random particle distribution at

Re 100. Grid size of 51× 51 was chosen. Resultant velocity profiles in Figure 5.9, show

good agreement with benchmark solution which validates the application of suggested

scheme on random grid.

5.4.0.3 Comparison of constant and adaptive shape parameters

It can be observed from Figure 5.5(b) that the nodal spacing, and thus the distribu-

tion of nodes, varies considerably within the domain. Therefore, the condition number

of coefficient matrix can go higher for certain data points thus affecting the accuracy
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Figure 5.9: Velocity profiles on a random 51 × 51 grid at Re = 100. Vx plots
are obtained at mid span (x = L/2) and Vy plots are obtained at mid height
(y = H/2).

of solution. In order to avoid the possible ill-conditioning of coefficient matrix shape

adaptive RBF-FD can be used.

The results of lid driven cavity flow problem at Re 400 and 1000 with fixed and adaptive

shape parameter using implicit RBF-FD technique have been compared. Non-uniform

grid size of 51 × 51 is used at Re = 400 whereas 101 × 101 sized grid is used for

Re = 1000. For non-uniform grid, if a constant value of shape parameter (σ) is used,

the ratio of nodal spacing between corner-to-centre nodes is limited to 2.5. Any value

higher than 2.5 will cause ill-conditioning and solution will break down without reaching

convergence. However, when adaptive shape parameter technique is used, the ratio

of nodal spacing between corner-to-centre nodes can be increased up to 4.0 without

introducing ill-conditioning. The grid can therefore be made much more refined close

to the walls than for fixed shape parameter approach. The results are therefore, more

accurate for same number of nodes within the domain. The velocity plots at Re = 400

and Re = 1000 are shown in Figures 5.10 and 5.11, respectively (for fixed and adaptive

RBF shape parameters). Significant improvement in results is observed with the use of

adaptive shape parameters.

As the implicit RBF-FD scheme is found to be more accurate and stable compared

with its explicit counterpart scheme, subsequent works for this research employ implicit

RBF-FD scheme. Moreover, shape adaptive RBF-FD are used to circumvent the ill-

conditioning effects while using variable nodal density.
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Figure 5.10: Results for fixed and adaptive RBF shape parameter (σ)at Re =
400 on a 51×51 grid. Vx plots are obtained at mid span (x = L/2) and Vy plots
are obtained at mid height (y = H/2).

5.5 Flow past static circular cylinder

In this work, implicit RBF-FD scheme with adaptive shape parameter has been used to

simulate laminar flow over a circular cylinder. The flow problem has extensively been

studied by previous researchers (Tuann and Olson (1978), Takami and Keller (1969),

Fornberg (1980), Dennis and Chang (1970), Liu et al. (1998), Belov et al. (1995), Braza

et al. (1986)) and is often used as benchmark problem to examine the performance of

new numerical techniques. Flow Reynolds number has been defined as Re = (U∞D)/ν

for this problem, where U∞ is the free stream velocity, D is the diameter of cylinder

and ν is the kinematic flow viscosity. Flow around cylinder demonstrates a periodically

unsteady pattern when its Reynolds number is larger than the critical value (Re > 49)

(Shu et al. (2003)). For low Reynolds numbers (Re < 50), steady flow field is obtained

around cylinder. However at moderate range of Reynolds numbers (50 < Re < 190),

the flow remains laminar but a vortex shedding phenomenon (also known as Karman

Vortex Street) is observed. In the present work, flow around circular cylinder has been

solved at Re = 10, 20, 40, 100 and 200 to simulate both steady and unsteady flow

patterns. Configuration of domain geometry is shown in Figure 5.12. Total length of

the rectangular domain is kept 30 times the diameter of the cylinder. Inlet is placed

5 times the diameter away from the centre of cylinder. Top and bottom boundaries

are located at a transversal distance of 6 times the cylindrical diameter. Free Stream

velocity U∞ has been specified at inlet boundary to correspond to Reynolds number

of flow. Boundary conditions at top and bottom boundaries are the same as inflow

boundary. No slip boundary conditions are specified at cylinder surface (u = v = 0,

where u and v are Cartesian components of velocity) and zero velocity gradient condition

(∂u/∂x = ∂v/∂x = 0) has been applied at outflow boundary. Pressure at outflow

boundary has been obtained by the use of Eq. (5.6).
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(a) vx

(b) vy

Figure 5.11: Velocity profiles for fixed and adaptive RBF shape parameter (σ)
at Re = 1000 on a 101×101 grid. . Vx plots are obtained at mid span (x = L/2)
and Vy plots are obtained at mid height (y = H/2).
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The nodal distributions have been shown in Figure 5.13 for steady and unsteady flow

cases. For unsteady flow cases, a finer grid is used near the cylinder to accurately

capture time varying flow. A total of 16061 and 17758 nodes have been used to represent

the domain for steady and unsteady flow cases, respectively. A total of 60 nodes are

placed on the cylindrical surface for steady flow cases. Number of boundary nodes

on solid boundary is increased to 80 for unsteady cases. The nodal arrangement is

somewhat like a polar mesh close to the cylinder. However in the far field (about 1.5

times the diameter from the centre of cylinder), the nodal arrangement switches to

resemble regular Cartesian stencil. The particles are closely spaced in the region where

wake is expected. However in the far field and outside the expected wake region, density

of particle has progressively been reduced. In order to implement Neumann pressure

boundary condition at solid boundary, first two layers of nodes around the solid are

arranged orthogonally with the boundary nodes as shown in Figure 5.14. The condition

of orthogonal grid at the outlet boundary is naturally satisfied due to Cartesian grid.

Non-dimensional time step value has been chosen to be 5× 10−3.

Lift and drag forces at the solid boundary are evaluated by summing up vertical and

horizontal components of pressure and viscous forces at all the boundary nodes as shown

in Figure 5.15. Lift (FL) and drag (FD) forces can therefore be expressed as:

Lift Force = FL = ρU2
∞

(
Ns∑
i=1

(
−Pi sin θir +

1

Re
ωi cos θi

)
dθ

)
(5.27)

Drag Force = FD = ρU2
∞

(
Ns∑
i=1

(
−Pi cos θir −

1

Re
ωi sin θi

)
dθ

)
(5.28)

Where ρ is the flow density, Pi and ωi are the pressure and vorticity values at boundary

node i, Ns is the number of nodes at solid boundary, r is the radius of circle, θi is

the angular position of the node i from horizontal (as shown in Figure 5.15) and dθ is

the angular displacement between two consecutive boundary nodes. The lift and drag

coefficients (CD and CL) around the solid boundary are then evaluated using following

expressions:

Lift coefficient = CL =
FL
ρU2
∞

(5.29)

Drag coefficient = CD =
FD
ρU2
∞

(5.30)
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Figure 5.12: Geometric configuration for flow around Circular Cylinder

Table 5.3: Comparison of length of recirculating region (Lsep) and drag coeffi-
cient (CD) for Re 10, 20 and 40

Source Re=10 Re=20 Re=40
Lsep CD Lsep CD Lsep CD

Dennis and Chang (1970) 0.252 2.85 0.94 2.05 2.35 1.52
Takami and Keller (1969) 0.249 2.80 0.935 2.01 2.32 1.54
Tuann and Olson (1978) 0.25 3.18 0.90 2.25 2.10 1.68
Fornberg (1980) - - 0.91 2.00 2.24 1.50
Present Study 0.25 2.86 0.90 2.06 2.40 1.60

5.5.0.4 Steady laminar flow around static cylinder

Vortex plots for steady flow cases (Re = 10, 20 and 40) have been illustrated in Figure

5.16(a) - 5.16(c). In all the three cases, a pair of perfectly aligned vortices forms behind

the cylinder which is consistent with the results from Tuann and Olson (1978), Takami

and Keller (1969), Fornberg (1980), Dennis and Chang (1970), Braza et al. (1986) and

Firoozjaee and Afshar (2011). The length of the vortex behind the cylinder increases

with increasing the flow Reynolds number. This increases the length of recirculating

region (Lsep) also which is the distance from rearmost point of the cylinder to the end

of the wake. The quantitative values of length of recirculating region (Lsep) and drag

coefficient (CD) have been compared with the results obtained during previous studies

by Tuann and Olson (1978), Takami and Keller (1969), Fornberg (1980), Dennis and

Chang (1970) and Braza et al. (1986) in Table 5.3. The drag values tend to reduce

with increasing Reynolds numbers. This is due to reduced viscous effects at high Re

flows. The flow parameters obtained are in good agreement with the results of previous

researchers for the three Reynolds numbers.
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(a) For steady flow (Re < 50) cases

(b) For unsteady flow (Re > 50) cases

Figure 5.13: Nodal distribution for flow around circular cylinder
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Figure 5.14: Orthogonal nodal arrangement around solid boundary

Figure 5.15: Calculation of lift and drag forces on solid boundary

5.5.0.5 Unsteady laminar flow around static cylinder

Unsteady behaviour of flow behind the cylinder is studied at Re = 100 and 200. The

resulting instantaneous vortex plots, at Re = 100, during complete oscillation cycle of

flow have been shown in Figure 5.17. Similar vortex plots were obtained by Placzek

et al. (2009) during study of incompressible flow around cylinders. The plots obtained

by Placzek et al. (2009) are shown in Figure 5.18. Vortex plots obtained during current

study at Re = 200 are shown in Figure 5.19. These plots are similar to those obtained

by Liu et al. (1998) as shown in Figure 5.20.
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(a) Re=10

(b) Re=20

(c) Re=40

Figure 5.16: Vorticity plots for steady flow at different Reynolds numbers
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Table 5.4: Comparison of Strouhal Number (St), mean drag coefficient (C̄D)
and maximum lift coefficient (CLmax) for Re 100 and 200

Source St C̄D CLmax
Re=100

Braza et al. (1986) 0.160 1.364 ± 0.015 ± 0.25
Liu et al. (1998) 0.164 1.350 ± 0.012 ± 0.34
Belov et al. (1995) - - -
Present Study 0.1646 1.344 ± 0.011 ± 0.32

Re=200

Braza et al. (1986) 0.200 1.40 ± 0.05 ± 0.75
Liu et al. (1998) 0.192 1.31 ± 0.005 ± 0.69
Belov et al. (1995) 0.193 1.19 ± 0.042 ± 0.64
Present Study 0.200 1.3945 ± 0.07 ± 0.77

Oscillating flow pattern also affects the lift and drag coefficients (CL and CD) with

changing time. Frequency of oscillation of lift profile can be represented in terms of

Strouhal number (St = fD/U , where f is vortex shedding frequency) which is equal to

the vortex shedding frequency in case of non-dimensionalized length and time param-

eters (as non-dimensionalized values of D and U are equal to 1.0). Peak values of lift

coefficients (CLmax), mean values of drag coefficients (C̄D) and Strouhal number (St)

values are tabulated in Table 5.4. The solutions are compared with the results from

previous studies by Liu et al. (1998), Belov et al. (1995) and Braza et al. (1986) and

are found to be in good agreement with these. The vortex shedding frequency increases

with increase in Reynolds number. Moreover, oscillation profile of flow is followed by

similar pattern of variation in lift and drag coefficients. These observations are also in

agreement with the results of previous researchers.

5.6 Conclusion

The RBF-FD implicit scheme shows better accuracy and stability, and is able to ac-

curately capture higher gradients of field variables even with coarser grids; unlike the

RBF-FD explicit scheme where loss of accuracy was especially prominent at places with

larger gradients. Excellent numerical results are obtained on non-uniform node distri-

bution using the implicit RBF-FD method. Findings of this study have been published

in Javed et al. (2014b).
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Figure 5.17: Instantaneous vortex plots around static cylinder during single
oscillatory period (Re = 100)

Figure 5.18: Instantaneous vortex plots around static cylinder at Re = 100
obtained by Placzek et al. (2009)
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Figure 5.19: Instantaneous vortex plots around static cylinder during single
oscillatory period (Re = 200)

Figure 5.20: Instantaneous vortex plots around static cylinder at Re = 100
obtained by Liu et al. (1998)





Chapter 6

A coupled meshfree-mesh based

solution scheme on hybrid fluid

grids

6.1 Background

Traditional mesh-based methods (Finite Element, Finite Volume, and Finite Difference)

have widely been employed for solving flow problems since the advent of Computational

Fluid Dynamics (CFD). These methods have therefore evolved as well-developed and

robust flow simulation techniques and are commercially employed worldwide. On the

other hand meshfree methods have evolved, over past two decades, as a class of promis-

ing computational techniques which can overcome various limitations experienced by

traditional mesh based methods. Meshfree methods have the potential to alleviate the

mesh generation complexities arising in traditional methods. They can therefore, signif-

icantly reduce the time, effort and cost associated with grid generation. Moreover, they

can easily handle flow problems around moving boundaries and deforming structures.

However, their higher computational cost is a major limitation for their widespread

applicability for such problems.

Recently, coupled solution schemes have been proposed by Chew et al. (2006) and Ding

et al. (2004), over hybrid meshfree and mesh-based grids, to minimize the computational

overheads caused by the use of meshfree methods. These techniques introduce composite

meshes comprising of meshfree and meshed zones in different parts of fluid domains.

Ding et al. (2004) proposed a hybrid grid consisting of body conformal meshfree cloud

embedded over a background Cartesian grid for static problems. In that, a coupled

solution scheme employing moving least square finite difference (MLSFD) on meshfree

cloud and central differencing on Cartesian grid was used. Chew et al. (2006) extended

101
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similar approach to moving objects. They used generalized finite difference (GFD)

approximation in weighted least square (WLS) form over meshfree zone.

6.2 Hybrid Meshfree-Cartesian grid scheme

In view of the foregone, a solution scheme has been proposed which combines the inher-

ent strengths of both meshfree and mesh-based methods. The scheme couples RBF-FD

based meshfree solver and conventional finite difference based solver for viscous, incom-

pressible flow around arbitrarily shaped moving objects. The solution is sought over a

hybrid meshfree-Cartesian grid in fluid domain. For this purpose, the fluid domain is

divided into two zones. A boundary fitted meshfree nodal cloud is generated around the

solid object. On the outer side, the meshfree cloud is surrounded and partially over-

lapped by a static Cartesian grid. The aim is to optimize the performance and flexibility

of the solver by limiting the use of computationally expensive meshfree method only to

the regions where it can actually outclass mesh-based method in dealing with moving

boundaries or complex geometries. Schematic of the hybrid grid around cylindrically

shaped objects and airfoils are shown in Figures 6.1(a) and 6.1(b) respectively.

The proposed technique couples RBF-FD method on meshfree zone around the solid

body and conventional Finite difference method applied to the Cartesian grid zone in

rest of the domain. Meshfree nodes efficiently adapt to the irregular shaped boundaries

and effectively deal with movement of solid by moving during simulation. Computation-

ally expensive RBF-FD method is therefore limited to only small meshfree zone of the

computational domain where it is required to deal with irregularly shaped moving solid

boundaries. The remaining computational domain is dealt with conventional finite dif-

ference method on a static Cartesian grid which enjoys computational efficiency over its

meshfree counterpart. Values of field variables at collocation points on meshfree bound-

ary serve as boundary conditions for Cartesian grid zone. Therefore, an overall efficient

solution scheme is achieved which can effectively handle arbitrarily shaped moving solid

boundaries.

6.3 Treatment of computational domain in hybrid grid

Configuration of meshfree and Cartesian zones are shown in Figure 6.1 for flow around

moving objects. As mentioned before, the fluid domain is represented by a hybrid grid

comprising of meshfree nodal cloud and Cartesian mesh. The near field flow region,

around the solid, is represented by a body conformal meshfree nodal cloud. These

meshfree nodes follow the movement of solid boundary during the simulation. In the far

field, static Cartesian grid is used which surrounds the meshfree nodal cloud. Moreover,
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(a) For cylindrically shapped objects

(b) For airfoil

Figure 6.1: Hybrid grid configuration in fluid domain

some parts of meshfree cloud are overlapped by surrounding Cartesian mesh. The fluid

grid can therefore be divided into following three zones:

1. Cartesian zone: This comprises of Cartesian mesh. Conventional finite difference

scheme is here used for spatial discretization of flow equations

2. Active meshfree zone: This zone consists of meshfree nodes which are not over-

lapped by Cartesian mesh. RBF-FD scheme is used here for evaluation of spatial

derivative.
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3. Shadowed (or inactive) meshfree zone: This zone represents the meshfree nodes

which are overlapped by Cartesian mesh. This zone is treated as inactive and

solution is not computed on nodes falling in this zone.

Different zones of typical hybrid grid generated around cylinder and airfoil are shown in

Figures 6.2(a) and 6.2(b) respectively. The computational nodes falling in meshfree and

Cartesian zones are treated differently. Therefore, in order to apply respective spatial

treatment in meshfree and Cartesian zones, the computational nodes are classified in

five different categories according to the regions they fall in. This classification of nodes

is depicted in Figure 6.3. Detail of nodes falling in each category is given below:

• Category-I nodes: These are the nodes which lie on Cartesian stencil and are

sufficiently away from meshfree zone. These nodes are stationary and spatial

derivatives at these nodes are calculated using five points central difference scheme.

• Category-II nodes: These nodes also lie on Cartesian stencil and are treated with

central difference scheme. However, they are located close to the meshfree zone

and can directly influence the results on neighbouring meshfree nodes. Category-II

nodes can therefore fall in the influence domain of nearby meshfree nodes. These

nodes are also included in the neighbourhood particle search for meshfree nodes.

• Category-III nodes: These nodes fall exactly at the boundary of meshfree-

Cartesian zones. Category-III nodes are stationary and aligned with Cartesian

stencil. However, these are part of active meshfree zone and are treated with RBF-

FD method. Although these are meshfree nodes but they also act as boundary

nodes for Cartesian grid. During solution over Cartesian zone, the values of field

variables at category-III nodes are taken as boundary condition.

• Category-IV nodes: These nodes fall in active meshfree zone. These nodes are

part of moving grid which are treated with RBF-FD method and ALE formulation

of N-S equations.

• Category-V nodes: These are the nodes which fall in inactive meshfree zone.

These are part of meshfree grid but are overshadowed by superimposing Cartesian

grid. The nodes are therefore treated as inactive and do not participate in current

time step computations.

A summary of different categories of nodes and their computational treatment is outlined

in Table 6.1. During the simulation, the two way exchange of data between Cartesian

and meshfree zones takes place in the following manner:

• Information from meshfree to Cartesian grid is transferred through Category-III

nodes. These nodes are treated with RBF-FD method. However, they are static
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and fall exactly on Cartesian stencil. Therefore, these nodes can act as boundary

nodes for Cartesian grid. During simulation process, the most updated values of

field parameters at Category-III nodes are taken as Dirichlet boundary conditions

for surrounding Cartesian nodes.

• Transfer of data from Cartesian to meshfree zone takes place through Category-II

nodes. These nodes fall in the influence domain of neighbouring meshfree nodes.

Therefore, the flow parameters at Category-II nodes affect the derivative approx-

imations at respective meshfree nodes through corresponding RBF weights. As a

result, flow parameters values at meshfree nodes are influenced by the results at

Category-II nodes.

During the simulation, the movement of solid is accommodated in fluid grid by allowing

the meshfree (Category-IV and V) nodes to move along the solid boundary. Relative

positions of these moving nodes are however kept unchanged during the cloud motion.

Figure 6.4 shows the movement of meshfree grid surrounded by static Cartesian grid

between time instance t0 to t1. A case for vertically vibrating cylinder is shown in Figure

6.4(a). Similarly, movement grid around pitching airfoil is shown in Figure 6.4(b). As the

grid position changes, some inactive (category-V) nodes may come out of the shadowed

region and appear in the active meshfree zone (see group-A nodes, for example, in

Figures 6.4(a) and 6.4(b)). These nodes will be activated and put in Category-IV for

subsequent calculations. These fresh nodes are assigned the values of field variable

by averaging the data from surrounding nodes. Movement of meshfree grid will also

pushes some other nodes behind the Cartesian grid (for example group-B nodes shown

in Figures 6.4(a) and 6.4(b)). These nodes are put in Category-V and do not participate

in further calculations unless they reappear in the active meshfree zone.

Using this treatment of moving meshfree grid, the number and location of nodes in

Cartesian zone do not change during the simulation. This has a computational advantage

as the matrix Eqs. (5.7), (5.22) and (5.23), for solving the flow in Cartesian zone, remain

unchanged and are required to be formulated only once (at the start of iteration process).

Moreover, as the relative positions of meshfree nodes are not varied, the arrangement

of neighbourhood particles of meshfree nodes do not change unless these neighbouring

particles include some stationary nodes (Category-II or III nodes). Therefore, RBF

weights of only those meshfree nodes are re-calculated during simulation which have

category-II or category-III nodes in their influence domain. Coefficient Matrices for

solving Eqs. (5.7), (5.22) and (5.23) in meshfree zone are however needed to be updated

regularly as the number and location of active meshfree nodes changes.
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(a) For cylindrically shapped objects

(b) For airfoil

Figure 6.2: Hybrid grid generated around cylinder and airfoil. Meshfree nodal
cloud is surrounded and partially overlapped by Cartesian grid
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Figure 6.3: Classification of computational nodes in hybrid fluid grid

Table 6.1: Categorization of computational nodes in hybrid grid

Category Zone Method Stationary / Moving Remarks

Cat-I Cartesian FD Stationary

Cat-II Cartesian FD Stationary Fall in the influence domain
of neighbouring mesfhree par-
ticles

Cat-III Meshfree RBF-FD Stationary Act as boundary particles for
Cartesian grid

Cat-IV Meshfree RBF-FD Moving Active meshfree nodes

Cat-V Meshfree RBF-FD Moving Inactive meshfree nodes

6.4 Solution of 1-D Convection-Diffusion equation

Before moving on to the solution of incompressible Navier Stokes equation over two

dimensional fluid domain, the applicability of hybrid grid is verified on one dimensional

domain. For this purpose, following convection diffusion equation has been solved over

1-D nodal arrangement:

∂u

∂t
= −u∂u

∂x
+

1

Re

∂2u

∂x2
(6.1)

The equation is in non-dimensionalized form. u(x, t) is the normalized velocity, x is

non-dimensionalized spatial coordinate and Re is the Reynolds number defined as Re =

UL/ν (where U is the maximum velocity at t0, L is half the length of velocity step at t0

and ν is the kinematic flow viscosity). The equation is solved over domain 0 ≤ x ≤ 10.
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(a) For cylindrically shapped objects

(b) For airfoil

Figure 6.4: Activation and deactivation of meshfree nodes during movement of
meshfree grid
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Figure 6.5: One dimensional hybrid nodal array used for solution of convection
diffusion equation.

Initial velocity field u(0, x) is defined by two step functions with opposite signs. So, the

initial conditions are:

u(x, 0) = 1 for 2 ≤ x ≤ 3

u(x, 0) = −1 for 7 ≤ x ≤ 8

u(x, 0) = 0 elsewhere

At both ends of domain, Neumann boundary conditions are applied with ∂u/∂x = 0.

Time marching for transient variable u(x, t) is carried out using Euler explicit method.

So, at every time step tn, velocity at next time iteration un+1, at any node, are calculated

as:

un+1 = un + ∆t

[
−un∂u

n

∂x
+

1

Re

∂2un

∂x2

]
(6.2)

Solution are sought over 1-D array of nodes with uniform space step dx = 0.1 as shown

in Figure 6.5. Three different test cases are run for spatial derivatives calculated using

three different approaches:

• Case-1: Applies central difference scheme on all the computational nodes (for

0 ≤ x ≤ 10)

• Case-2: Applies RBF-FD scheme on all the computational nodes (for 0 ≤ x ≤ 10)

• Case-3: Applies RBF-FD scheme for spatial derivatives on nodes falling within

4.0 ≤ x ≤ 6.0. Central difference scheme is used on remaining nodes (x < 4.0 and

x > 6.0).

Distinction between FD and RBF-FD nodes, as depicted in Figure 6.5, is therefore

required only for Case-3. For Case-1 or 2 where central differencing or RBF-FD scheme is

used over the entire domain, all the nodes are treated equally according to the respective

method being employed. The solutions are obtained at Re = 10, 20 and 40. Figures

6.6(a) to 6.6(c) show velocity profiles at t = 0 and t = 2 for Re = 10, 20 and 40
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(a) Re = 10

(b) Re = 20

(c) Re = 40

Figure 6.6: Solution of 1-D convective-diffusive equation for domain 0 ≤ x ≤ 10
at t=2. u(x, 0) is defined by two unit step functions in opposite directions.
Solutions are obtained using central differencing (-), RBF-FD (O) and hybrid
approach (*).
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respectively. Resultant velocity profiles at t = 2, obtained from all the three cases, are

co-plotted for comparison. The results are found to be in good agreement with each

other. Particularly for hybrid grid approach, the transition of velocity profile at grid

juncture (x = 4.0 and x = 6.0) is fairly smooth which indicates effective transfer of data

between the two sets of nodes. The error for RBF-FD (Case-2) and hybrid grid scheme

(Case-3) are calculated by taking root mean square (rms) of the difference between

respective velocity profile obtained from central differencing method (Case-1). The

error values are shown in Table 6.2. RMS error for Case-3 is lower than that for Case-2

because in Case-3, computational domain is partially treated with central differencing

and therefore error from full central difference scheme (Case-1) is reduced. There is

a growing trend in error with increasing Reynolds number. This is due to increased

spurious fluctuations in the solution caused by greater contribution of convective term.

Table 6.2: rms of error values for RBF-FD and hybrid approaches. Error values,
calculated using central difference results, are standard

rms of error
Reynolds number Full RBF-FD scheme Hybrid grid scheme

(Re) (Case-2) (Case-3)

10 0.0019343 0.00053235

20 0.0055908 0.0027456

40 0.017558 0.017969

Figure 6.7: Hybrid grid in rectangular domain [−0.5, 0.5] × [−0.5, 0.5] with
randomized meshfree particles. Meshfree zone spans [−0.1, 0.1] × [−0.1, 0.1].
Grid size is h = 0.01.
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(a) u-velocity profile

(b) v-velocity profile

(c) Pressure profile

Figure 6.8: Solutions of velocity ~u = (u, v) and pressure at t = 0.5 sec in
rectangular domain [−0.5, 0.5] × [−0.5, 0.5] with hybrid fluid grid. Meshfree
zone spans [−0.1, 0.1]× [−0.1, 0.1]. Grid size is h = 0.01.
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(a) Error for u-velocity

(b) Error for v-velocity

(c) Error for Pressure

Figure 6.9: Contours of error for velocity ~u = (u, v) and pressure at t = 0.5 sec
in rectangular domain with hybrid fluid grid. Grid size is h = 0.01.
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6.5 Order of convergence over 2-D domain

This section deals with convergence and accuracy analysis of hybrid grid scheme. Time

implicit solution scheme (as mentioned in Section 5.1.2.2) has been used for incom-

pressible N-S equations over 2-dimensional rectangular domain. Validation has been

done by solving decaying vortex case as described in Section 5.3 and comparing the

calculated solutions with true solutions from Eqs. (5.24) - (5.26). However, this time,

order of convergence studies are conducted over hybrid fluid grid. Computational do-

main is rectangular with dimensions [−0.5, 0.5]× [−0.5, 0.5]. Central region, spanning

[−0.1, 0.1] × [−0.1, 0.1], is set as meshfree zone and remaining region is meshed with

Cartesian grid. Convergence tests are run for uniform as well as random meshfree nodal

arrangement. For random nodal arrangement, randomness is introduced in meshfree

nodes by disturbing their position from corresponding locations on a uniform lattice

using a random function of the order of 0.4h (where h is space step). Figure 6.7 shows

the hybrid mesh with space step h = 0.1 and randomized meshfree nodes. The order

of convergence tests have been performed with different settings in order to study the

effects of following factors on accuracy:

• Changing grid size

• Changing time step

• Dirichlet and Neumann Pressure boundary conditions

• Randomness of meshfree particles

• Speed of moving meshfree particles

• Grid update frequency for moving grid case

For this purpose, six different test cases are run. Detail of each test case is summarized

in Table 6.3. Flow Reynolds number is set as 10 for all tests. For each test case, initial

conditions for pressure, velocity and boundary conditions for velocity are introduced

using Eqs. (5.24) - (5.26) at given time and space coordinates (t, x, y).

6.5.1 Convergence over static grid

Static test cases are run for evaluating spatial and temporal orders of convergence and

determining the effects of pressure boundary conditions and randomness of grid. Test

Case-1 is run for evaluating rate of convergence with changing space step (h). This has

been achieved by running different solutions at a constant time step value of 10−5 but

with varying grid sizes. Smaller value of time step has been chosen to keep temporal er-

rors to minimum. At boundaries, Dirichlet pressure boundary conditions are introduced
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which means that pressure values, at boundary nodes, are directly evaluated using Eq

(5.26). The solutions are run for t = 0.5. Resultant solutions of velocity and pressure

for grid spacing h = 0.01 are shown in Figure 6.8. It can be observed that the profiles

of velocities and pressure vary smoothly across meshfree and Cartesian zones in hybrid

grid. This indicates efficient transfer of data across zone boundaries. Accuracy of the

solution is established by comparing these calculated profiles with true solutions at the

same time instant t (using (Eqs (5.24) - (5.26)). Contour plots of error for velocities

and pressure obtained at hybrid grid, with h = 0.01, are shown in Figures 6.9(a) - 6.9(c)

respectively. The error values remain significantly low over the domain and behaviour

of variation of error remains unchanged irrespective of meshfree and Cartesian zone.

Subsequently, RMS (root mean square) and maximum error values over the entire do-

main are worked out. Logarithmic values of error (log10(ε)) for u-velocity and pressure

are plotted against logarithms of space step (log10(h)) in Figures 6.10(a) and 6.10(b)

respectively. Error profiles for v-velocity are the same as for u-velocity and are not in-

cluded. The error plots show that RMS error values are always lower than corresponding

maximum error values which is logical as RMS values give overall effect of the entire

domain and should always be lower than the maximum values. However, the two curves

(for RMS and maximum error) are not very far apart. This indicates that order of error

did not vary significantly within the domain and remained generally uniform. Slope of

velocity error curves tend to increase as the grid becomes coarser. However, this trend

is not very prominent with pressure error curves.

Test Case-2 has been run to determine spatial order of convergence with Neumann

boundary conditions for pressure. In this case, pressure values, at boundaries, are ob-

tained from velocity field using Eq (5.6) instead of being directly evaluated by equation

(5.26). Therefore, flow is constrained only by velocity at the boundaries. u-velocity and

pressure error plots for this case are shown in Figures 6.10(c) and 6.10(d) respectively.

No significant change in velocity error profile is observed with Neumann pressure bound-

ary conditions. This is primarily because velocity values at boundary remain unaffected

as these are being calculated as before. On the other hand, slight increase in pressure

error is observed. However, this increase does not seem to be very significant and overall

trend remains the same. Test Case-3 has been run to find spatial order of convergence

over random meshfree nodal arrangement. The error plots are shown in Figures 6.10(e)

and 6.10(f). Randomization of meshfree nodal grid has altered the shape of error curve

but overall change in the error values, within the test range of space step values, is the

same. This indicates that convergence behaviour of the solution might be affected on

random grid, but overall convergence rate does not suffer much variation.

Similarly, temporal convergence is studied by keeping grid size constant at dx = 0.005

and changing the time step values. Test cases-4 and 5 are run for Dirichlet and Neumann

pressure boundary conditions respectively on uniform grids. Simulation time is kept the

same (t = 0.5). Plots of log10(ε) versus log10(∆t) are shown in Figures 6.11(a) and
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Table 6.3: Spatial order of convergence for static tests

Test Case Moving / Static Type of test Distribution of Pressure
No case (Spatial / Time) mesfhree nodes B.Cs

Case-1 static Spatial Uniform Dirichlet

Case-2 static Spatial Uniform Neumann

Case-3 static Spatial Random Dirichlet

Case-4 static Time Uniform Dirichlet

Case-5 static Time Uniform Neumann

Case-6 moving - Uniform Dirichlet

(a) Case-1 (u-error) (b) Case-1 (P-error)

(c) Case-2 (u-error) (d) Case-2 (P-error)

(e) Case-3 (u-error) (f) Case-3 (P-error)

Figure 6.10: Spatial convergence tests. Error Plots at t=0.5, for changing grid
sizes and constant time step (∆t = 10−5) ( *-RMS error, o-Max error)

6.11(b) for Dirichlet and in Figures 6.11(c) and 6.11(d) for Neumann pressure boundary

conditions. On logarithmic scale, convergence rates fall uniformly with reducing time

step values. At larger time steps, the error values are higher for Neumann pressure B.Cs.

However, the error remains unaffected by change in type of pressure B.Cs at lower time

steps.

After having error plots on logarithmic scales, spatial and temporal orders of convergence
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(a) Case-4 (u-error) (b) Case-4 (P-error)

(c) Case-5 (u-error) (d) Case-5 (P-error)

Figure 6.11: Temporal convergence tests. Error Plots at t=0.5, for changing
time step and constant grid size (h = 5× 10−3) ( *-RMS error, o-Max error)

Table 6.4: Spatial order of convergence for static tests

Test case Description Spatial Order of convergence
No / Time u-velocity pressure

Case-1 Uniform meshfree grid, Spatial 2.56 2.7
Dirichlet pressure B.Cs

Case-2 Uniform meshfree grid, Spatial 2.59 2.49
Neumann pressure B.Cs

Case-3 Random meshfree grid, Spatial 2.66 2.58
Dirichlet pressure B.Cs

Case-4 Uniform meshfree grid, Time 0.99 0.9135
Dirichlet pressure B.Cs

Case-5 Uniform meshfree grid, Time 1.22 1.8
Neumann pressure B.Cs

have been calculated. The order of convergence is defined as the slope of linear curve

obtained by least square fit on RMS error data points shown in Figures 6.10 and 6.11.

Order of convergence values, calculated using this approach, are tabulated in Table

6.4. It can be observed that spatial order of convergence for both velocity and pressure

remains close to 2.5. Order of convergence in time is found to be around 1.0 for both

pressure and velocity field with known pressure boundary conditions. Use of Neumann

boundary conditions however tends to increase the convergence rate especially for the

pressure field.



118 Chapter 6 A coupled meshfree-mesh based solution scheme on hybrid fluid grids

(a) Configuration at t0 (b) Configuration at t1

Figure 6.12: Grid configuration at initial time t0 = 0 and at time t1 = 0.5
for rotating meshfree zone with angular orientation (Θ(t)) defined by Θ(t) =
0.3π[1− cos(πt/2)]

6.5.2 Convergence over moving meshfree grid

Moving grid cases are run by making the mesfhree grid rotate about its centre with

a variable angular velocity. Angular orientation (Θ(t)) of meshfree grid at any time

instant t is defined as:

Θ(t) = A

[
1− cos

(
πt

2

)]
(6.3)

Value of parameter A is set to control angular speed and total grid rotation in a given

time. Grid configuration at initial time t0 and at later time t1 = 0.5 are shown in Figures

6.12(a) and 6.12(b) respectively for A = 0.3π. Moving grid tests are run for different

values of A to get different nodal velocities. Space step is set as h = 0.005 and time

step is kept as ∆t = 10−4. Simulations are run for t = 0.5 and error values are obtained

by comparing the solutions with true values. Logarithmic (log10) values of RMS and

maximum error are plotted against the changing grid speeds in Figure 6.13. On the plot,

the point at A = 0 corresponds to static grid case. For moving grid, the error values

tend to increase with increasing grid speeds and are higher compared with static grid.

However, slope of the error curve reduces at higher speeds making error to stabilize and

not to increase with further increase in grid velocities.

During motion of mesfhree cloud, grid update calculations are required to be carried out

continuously during the simulation. Grid update step includes following operations:
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(a) u-error (b) p-error

Figure 6.13: Error Plots at different angular speeds of rotating meshfree grid at
t=0.5 ( *-RMS error, o-Max error)

1. Re-categorization of meshfree nodes according to their current location (in active

or inactive zone).

2. Reallocation of neighbouring particles.

3. Recalculation of RBF weights for meshfree particles which have static nodes in

their neighbourhood.

Grid update is particularly important for nodes laying close to meshfree-Cartesian zone

interface. However, this process requires extensive computational resources (in terms of

computer memory and time) and is not considered viable after every iteration. Instead

grid update can be performed after the grid has been displaced by a certain distance

(say, ∆dupdate). Grid movement can be monitored by motion of a reference node to find

out when grid update is necessary. For current test cases, the node at bottom left corner

of meshfree zone is considered as reference node. During simulation, displacement of a

this node is continuously monitored and grid update calculations are performed when

the reference node has been displaced by distance ∆dupdate. In order to determine the

effect of grid update distance on accuracy of solution, moving grid case with A = 0.3π

is run for two different values of ∆dupdate. First case is run for ∆dupdate = 0.5h and

second test is run for ∆dupdate = 0.05h, where h is the space step. Time profiles of RMS

error for pressure values are shown in Figure 6.14. A reference case is also run in which

grid was updated after every iteration. RMS error profile for reference is also co-plotted

as dotted line. For ∆dupdate = 0.05h and ∆dupdate = 0.5h, each grid update is followed

by a spike in the error profile. These spikes are caused by variation in RBF weights

for calculating spatial derivatives. The spikes are more pronounced for larger values

of ∆dupdate. When the grid is updated less frequently during simulation (as in case of

larger grid update distance), RBF weight values experience larger variation after update

and resulting spikes are more pronounced. A reasonable value of grid update distance is

therefore necessary as very high spike can even lead to instabilities. However, as long as

grid update distance is kept within reasonable range, changing its value is not found to

significantly affect time averaged error values.
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Figure 6.14: Time profiles of RMS error for pressure values at different grid
update distance ∆dupdate

6.6 Flow around cylinders

The solution scheme has been used for flow around cylindrical objects. For this purpose,

steady and unsteady flows around static cylinder and flow around vertically vibrating

cylinder have been studied. Flow Reynolds number is defined as Re = ρUD/µ, Where

ρ is the fluid density, U is the free stream velocity, D is the diameter of the cylinder and

µ is the dynamic viscosity of the fluid. The detail of each case is described below.

6.6.1 Flow around static cylinder

Flow around static cylinder has been solved using implicit RBF-FD solution scheme

over hybrid fluid grid. Steady flow cases are run at Re = 10, 20 and 40 and unsteady

cases are run at Re = 100 and 200. The results are compared with standard solutions

from previous studies (Dennis and Chang (1970); Takami and Keller (1969); Tuann and

Olson (1978); Braza et al. (1986); Ding et al. (2004); Liu et al. (1998)). The purpose of

running static cylinder cases is to establish the accuracy of presented solution scheme

over hybrid grid before moving on to moving boundary cases. For present work, a

rectangular fluid domain is chosen with dimensions 38D×12D. Center of the cylinder is

located at a distance of 8D from inlet and 6D from each of the side walls. This ensures
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(a) Full domain

(b) Closed up view of meshfree-Cartesian juncture

Figure 6.15: Computational domain around static cylinder. Hybrid fluid grid is
generated with meshfree cloud of size 3D × 3D around the cylinder

that the flow remains unaffected by any non-physical disturbance at domain boundary.

Meshfree cloud spans 3D× 3D around the cylinder. Remaining fluid domain is meshed

with a Cartesian grid. Therefore, meshfree zone constitutes only 1.974 percent of the

total domain area. Figure 6.15(a) shows the meshed domain around the cylinder. In

meshfree zone, nodes are arranged radially around the cylinder. A total of 140 nodes are

placed at solid boundary. There are total of 4122 meshfree nodes and 21500 Cartesian

nodes in the hybrid grid. A closed up view of juncture of meshfree and Cartesian zones

is shown in Figure 6.15(b). As this is a static problem, meshfree cloud is not required

to move during simulation. Therefore, overlapped part of meshfree zone is not needed

for this problem (though presence of overlapped inactive meshfree nodes will not make

any difference).

Boundary conditions are applied as mentioned in Section 5.5. In order to implement

Neumann pressure boundary conditions at solid boundary, orthogonal nodal arrange-

ment is required at least in two nodal layers immediately after the boundary. Therefore,

special care has been taken to ensure that nodes are arranged orthogonally in immediate
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Figure 6.16: Arrangement of meshfree nodes around circular solid

Table 6.5: Solution parameters (separation angle θsep, length of recirculation
region Lsep and drag coefficient CD) for steady flow around static cylinder at
Re =10, 20 and 40

Re 10 20 40

Source θsep Lsep CD θsep Lsep CD θsep Lsep CD

Dennis and Chang (1970) 29.6 0.265 2.85 43.7 0.94 2.05 53.8 2.35 1.52

Takami and Keller (1969) 29.3 0.249 2.80 43.7 0.935 2.01 53.6 2.32 1.54

Tuann and Olson (1978) 29.7 0.25 3.18 44.1 0.9 2.25 54.8 2.10 1.68

Present case (Hybrid) 28.6 0.280 3.09 44.1 0.95 2.19 53.13 2.18 1.63

Present case (Full meshfree) - 0.250 2.86 - 0.90 2.06 - 2.40 1.60

layers around the cylinder as shown in Figure 6.16. Time step is kept as 5 × 10−3 sec.

Lift and drag forces (FL and FD) are calculated by integrating vertical and horizontal

components of normal and shear stresses at the solid boundary using Eqs. (5.27) - (5.30).

Resultant velocity vector plots for steady flow cases are shown in Figure 6.17 for all

the three Reynolds numbers. These plots are used to calculate separation angle (θsep)

and length of recirculation region (Lsep). Figure 6.18 shows 3D plots of u-velocity

over the entire domain. Vorticity profiles for steady state cases are shown in Figure

6.19. Resultant Drag coefficient CD, separation angle (θsep) and length of recirculation

region (Lsep) are shown in Table 6.5 along with the results from previous researches by

Dennis and Chang (1970); Takami and Keller (1969) and Tuann and Olson (1978) at

each Reynolds number. Results from present work show good agreement with previous

solutions.

Unsteady flow cases are run at Reynolds numbers 100 and 200. Figure 6.20 shows

velocity vector plots captured during simulation. 3D plots of u-velocity at same time

instances are shown in Figure 6.21. However, these profiles keep changing as the flow

is oscillatory in nature. Figure 6.22 shows the oscillating vortex profiles captured at
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(a) Re = 10

(b) Re = 20

(c) Re = 40

Figure 6.17: Velocity vector plots around static cylinder for steady flow cases
(Re = 10, 20 and 40).
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(a) Re = 10

(b) Re = 20

(c) Re = 40

Figure 6.18: 3-D profiles of u-velocity for steady flow cases (Re = 10, 20 and
40).
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(a) Re = 10

(b) Re = 20

(c) Re = 40

Figure 6.19: Vorticity profiles for steady flow cases (Re = 10, 20 and 40).
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(a) Re = 100 (b) Re = 200

Figure 6.20: Velocity vector plots around static cylinder for unsteady flow cases
(Re = 100 and 200).

various time instances during a complete vortex shedding cycle at Re = 100. Similar

plots for Re = 200 are shown in Figure 6.23. The vortex profiles shown here are similar

to those obtained from previous studies by Placzek et al. (2009) (at Re = 100) and Liu

et al. (1998) (at Re = 200). The vortex plots from previous studies are shown in Figures

5.18 and 5.20 respectively.

The oscillatory flow results in corresponding fluctuation in lift and drag forces over time.

Variation of CL and CD has therefore been plotted against time in Figures 6.24 and 6.25

for Re = 100 and 200, respectively. It can be observed that magnitude of lift and drag

coefficients and frequency of oscillation tend to increase with the increase in Reynolds

number. At both Reynolds number, frequency of oscillation of drag coefficient is twice

the corresponding oscillation frequency of lift coefficient. Frequency of oscillation can

be represented in terms of Strouhal number (St = fD/U , where f is vortex shedding

frequency) which is equal to the vortex shedding frequency in case of non-dimensionalized

length and time parameters. Therefore, Strouhal number can directly be acquired by

frequency of oscillation of CL versus time plot. The numerical solutions have been

verified by comparing the resultant values of lift and drag coefficients and Strouhal

number with results of previous researchers, as shown in Table 6.6 and are found to be

in good agreement.

6.6.2 Computational performance test

It is understood that meshfree methods are computationally more expensive due to

several reasons which include calculation of weights or kernels (often necessitating square

root and matrix inversion operations) and requirement of larger number of neighbouring

particles to ensure required order of accuracy as discussed by Wright and Fornberg

(2006). Larger number of neighbouring particles results denser coefficient matrices which

require more number of calculation operations to be solved (Fornberg (1980)).
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(a) Re = 100

(b) Re = 200

Figure 6.21: 3-D profiles of u-velocity for unsteady flow cases (Re = 100 and
200).

Table 6.6: Solution parameters (lift coefficient CL, drag coefficient CD and
Strouhal number St ) for unsteady flow around static cylinder at Re =100 and
200

Re 100 200

Source CL CD St CL CD St

Braza et al. (1986) ±0.25 1.364±0.015 0.16 ±0.75 1.40±0.05 0.2

Ding et al. (2004) ±0.28 1.32±0.008 0.164 ±0.60 1.327±0.045 0.196

Liu et al. (1998) ±0.34 1.35±0.012 0.164 ±0.69 1.31±0.049 0.192

Present case (Hybrid) ±0.32 1.314±0.009 0.164 ±0.62 1.302±0.039 0.194

Present case (Full meshfree) ±0.32 1.344±0.011 0.165 ±0.77 1.395±0.07 0.20
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Figure 6.22: Screen-shots of oscillating vortex profiles behind static cylinder
captured at various time instances during a single cycle at Re = 100

Figure 6.23: Screen-shots of oscillating vortex profiles behind static cylinder
captured at various time instances during a single cycle at Re = 200
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Figure 6.24: Variation of lift and drag profiles with time at Re = 100

Figure 6.25: Variation of lift and drag profiles with time at Re = 200
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The tests have been conducted here to study the variation of computational time with

changing size of meshfree zone in hybrid grid. For this purpose, flow around static

cylinder has been solved at Re = 100 over hybrid grid. Various test cases are run with

different sizes of meshfree zone in fluid domain. The size of meshfree zone is gradually

increased for every subsequent test case to study the effect on computational performance

(calculation time) of the solver.

Computation time of first 500 iterations has been noted for different sizes of meshfree

domain. The size of active meshfree zone is varied from 2D × 2D (containing 2116

nodes) to 6D × 6D (containing 11011 nodes) for different test cases. Changing the size

of meshfree zone therefore varied the percentage number of meshfree nodes in the entire

computational domain. Variation of computation time with changing percentage of

meshfree nodes is plotted in Figure 6.26(a). Increasing the proportion of meshfree nodes

from 10.5% to 36.5% actually increased the computational cost by 2.3 times. However,

during this change, computation time of meshfree solver only, increased by as much as 9.5

times approximately. This increase in computation time is caused by increasing orders of

coefficient matrices which happen to be more resource intensive during solution process.

In order to find average increase in computational time for each node, a plot of average

calculation time by each computational node, in a single iteration, is shown in Figure

6.26(b). It can be observed that average computational time by each meshfree node

increases by enlarging the meshfree zone. On the contrary, average computation time of

Cartesian nodes stays constant and significantly lower than their meshfree counterparts.

Therefore, computationally efficient configuration would entail smaller sized meshfree

zone in the entire domain.

6.6.3 Flow around vertically oscillating cylinder

These test cases are run to solve flow around cylinder which is forced to vibrate vertically

with sinusoidal displacement profile over time. Vertical displacement y(t) of the solid

about its mean position is expressed as:

y(t) = Y sin 2πft (6.4)

where Y is the amplitude of vibration and f is the frequency of vibration. As the

cylinder vibrates, the body conformal meshfree nodal clouds also convects with it along

vertical axis. In order to allow cylindrical oscillation, length of meshfree zone along

vertical axis is extended. Therefore, the size of meshfree zone around the cylinder is

kept as 3D × 5D for this case. Flow Reynolds number is set as 100. As mentioned

before, periodic Kamran vortices are generated behind the cylinder at this Reynolds

number. Therefore, problem is often characterized by frequency ratio F = f/fs, where

fs is the vortex shedding frequency.
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(a) Total computation time

(b) Average computation time per node

Figure 6.26: Computational performance with changing size of meshfree zone.
Calculation time of first 500 iteration for flow around static cylinder at Re = 100
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An important characteristic of these test cases is the presence of lock-in zone which is

defined as the domain of frequency ratios (F) and displacement amplitudes (Y), where

vortex shedding frequency deviates from its original value and becomes equal to forced

frequency (Nobari and Naderan (2006)). Koopmann (1967) performed extensive exper-

iments for flow around vibrating cylinder at low Reynolds numbers and determined the

bounds of this lock-in region on a (Y,F) plane. In current work, the computations are

performed for vibration amplitude of Y = 0.25D and range of forced frequencies (f)

which correspond to different values of frequency ratios (F ). Presence of lock-in zone

can be identified by spectral analysis of time profile of lift coefficient. Time profiles of

lift coefficients and corresponding power spectral density (PSD) plots, for F = 0.90 and

Y/D = 0.25 are shown in Figure 6.27(a). Similar plots for F = 1.10 and Y/D = 0.25 are

shown in Figure 6.27(b). In both the cases, vortex frequency equalizes with frequency

of forced oscillation. As a result, Lift-time curves are purely sinusoidal and PSD plots

show single peaks. These cases are therefore classified as ’locked-in’ cases.

On the contrary, in unlocked configuration, vortex shedding frequency retains its iden-

tity. As a results, lift fluctuation profiles over time deviate from their pure sinusoidal

behaviour (Placzek et al. (2009)) due to presence of multiple frequencies. For such cases,

PSD plots of lift versus time curves also show two distinct peaks at frequencies f and fs

separately. The results for unlocked configurations are shown in Figure 6.28. Results for

F = 0.5 are shown in Figure 6.28(a) and those for F = 1.50 are shown in Figure 6.28(b).

Non-sinusoidal response of lift-time curves and separate peaks of forced as well as vortex

shedding frequency on PSD plots are clearly visible in both the cases. Similar PSD plots

were obtained by Placzek et al. (2009) during their study of flow around cylinders with

forced oscillation at same parameters. Resultant plots obtained by Placzek et al. (2009)

are shown in Figure 6.29. Presence of single and double peaks for locked and unlocked

configurations is visible in the plots.

The phase portraits for ’locked-in’ configuration are shown in Figures 6.30(a) and 6.30(b)

for F = 0.90 and F = 1.10 respectively. The pure sinusoids of lift versus time results

in regular elliptically shaped y(t) vs CL curve. Maximum lift coefficient is 0.4 in case

of F = 0.90. However, maximum value of lift increases significantly and reaches to 0.74

for F = 1.10. Similar behaviour was observed by Placzek et al. (2009). For ’unlocked’

configuration, lift-time profile no longer remains a sinusoid and a beating phenomenon

is observed due to two different frequencies. As a result, phase portraits for un-locked

configurations do not show a pattern with two absolute extremes. y(t) vs CL curves for

F = 0.50 and F = 1.50 are shown in Figures 6.30(c) and 6.30(d) respectively.

Results from present simulations are also shown on (Y,D) plane and compared with the

bounds of ’lock-in’ zone identified by Koopmann (1967) in Figure 6.31. Present results

agree well with experimental data of Koopmann (1967). Screen shots of vorticity profile

of the flow (Y = 0.25D, F = 0.50) at various time intervals are shown in Figure 6.32.

Similar vorticity profiles were obtained by Placzek et al. (2009) as shown in Figure 6.33.
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(a) Solution for F=0.90

(b) Solution for F=1.10

Figure 6.27: Time series of lift coefficient (CL) and Power spectral density
(PSD) plots of fluctuating lift (locked configurations) for flow around vibrating
cylinder with Y/D = 0.25 and Re = 100

(a) Solution for F=0.50

(b) Solution for F=1.50

Figure 6.28: Time series of lift coefficient (CL) and Power spectral density
(PSD) plots of fluctuating lift (unlocked configurations) for flow around vibrat-
ing cylinder with Y/D = 0.25 and Re = 100
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(a) F=0.90 (locked) (b) F=1.10 (locked)

(c) F=0.50 (unlocked) (d) F=1.50 (unlocked)

Figure 6.29: Power spectral density (PSD) plots of fluctuating lift (locked and
unlocked configurations) for flow around vibrating cylinder obtained by Placzek
et al. (2009) (at Y/D = 0.25 and Re = 100)

6.7 Flow around airfoil

The coupled solution scheme over hybrid grid is now used for solving flow around airfoil.

Flow Reynolds number, for these problems is defined as Re = ρUc/µ where ρ is the flow

density, U is free stream velocity, c is the chord length and µ is the dynamic viscosity.

Before moving for the solution of flow problems around airfoil, various aspects relating to

grid generation and RBF influence domain are needed to be discussed. The description

about these is given in Subsections 6.7.1, 6.7.2 and 6.7.3.

6.7.1 Generating hybrid grid around airfoil

For flow around airfoil, the movement of solid boundary is also accommodated using

hybrid fluid grid approach as before. However, the meshfree nodes are arranged in C-

mesh configuration around the airfoil. A typical hybrid grid around an airfoil is shown

in Figure 6.34(a). Grid resolution is kept high close to the airfoil surface to accurately

capture the boundary layer. For laminar flow, vortex characteristics near leading edge

is also of great importance. Therefore, the nodal spacing is kept small near leading

edge too. Nodal spacing is gradually increased as the distance from airfoil surface and
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(a) F=0.90 (b) F=1.10

(c) F=0.50 (d) F=1.50

Figure 6.30: Phase portraits (y(t) vs CL plots) for flow around vibrating cylinder
with Y/D = 0.25 and Re = 100.

Figure 6.31: Bounds of Lock-in zone at Re = 100 (.- Experimental data of
Koopmann (1967), o ’Unlocked’ results in present work, * ’Lock-in’ results in
present work)
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Figure 6.32: Vorticity profile at different time instances around vibrating cylin-
der at Re = 100 (Y=0.25D, F=1.50)

Figure 6.33: Vorticity profiles around cylinder oscillating at Re = 100, Y =
0.25D, F = 1.5 obtained by Placzek et al. (2009)

leading edge is increased. Moreover, in order to apply Neumann boundary conditions for

pressure, nodal layers next to the solid surface are kept orthogonal. Closed in views of

grid at leading and trailing edges are shown in Figures 6.34(b) and 6.34(c) respectively.

It can be observed in Figure 6.34(c) that the two layers of nodes originating from the tip

of the trailing edge are very close to each other compared to the other layers. This sudden

non-uniformity in nodal spacing may cause instabilities in the solution. Therefore, one

of the layers (shown with green colour) is de-activated. This means that the nodes in

that layer will be treated as the nodes of ’inactive zone’. This will ensure uniformity in

nodal distribution.
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(a) Full domain

(b) Leading edge (c) Trailing edge

Figure 6.34: Hybrid grid around airfoil

6.7.2 Adaptive sizing of RBF influence domain

Accuracy of RBF based schemes largely depends on the well conditioning of interpola-

tion matrix (Kansa (1990)). In fact, condition number of interpolation matrix for RBFs

grows with increasing the number of computational nodes participating in derivative

approximation at a certain point (Schaback (1995)). Larger number of particles, par-

ticipating in RBF interpolation, will also require more number of arithmetic operations

for single derivative approximation. Therefore in local RBF, the solution process tends

to be computationally intensive with more number of neighbouring particles taking part

in derivative approximation at point of interest. At the same time, requirement of suf-

ficient number of collocation data points in the influence domain cannot be subdued to

ensure accurate derivative approximation using local RBFs (De Rosis et al. (2013)). It

is therefore important to keep suitable number of particles in the influence domain of

every computational node. In practice, this is achieved by specifying size of the influ-

ence domain. However, for problems relating to flow around airfoil, the grid resolution

changes significantly to accurately capture flow parameters near the surface. Therefore,

a constant domain size will either place too many neighbouring particles in the influ-

ence domains closer to the airfoil or there will be too less neighbouring particles around

nodes in low nodal density region. In order to overcome this, adaptive sizing of influence

domain has been introduced. For this purpose, the size of influence (or neighbourhood)
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domain for each node is selected based on the nodal density around it. An iterative

algorithm is used to calculate the radius of influence domain around every node which

encompass 25 to 35 neighbouring particles. The aim is to make sure that every node has

enough number of neighbouring particles for accurate derivative approximation (using

local RBF) and, at the same time, number of neighbouring nodes is not too high to

render the interpolation matrix ill-conditioned or the process inefficient. This results

in smaller sized neighbourhood domains around the nodes lying in high nodal density

regions and vice versa. Adaptive domain sizing applied to a typical grid around airfoil

is shown in Figure 6.35. The domain size progressively becomes larger as we go away

from the airfoil to accommodate required number of neighbouring particles in coarser

grid zones.

Figure 6.35: Adaptive sizing of influence domain applied to grid around airfoil

Effect of changing the number of neighbouring particles on conditions number of RBF

matrix is investigated using one dimensional nodal arrangement. For this purpose, an

array of nodes located between 0 ≤ x ≤ 10 are considered. Nodal spacing is progressively

reduced from edges to centre (x = 5). Therefore, if RBF domain size is kept fixed,

number of neighbouring particles can vary significantly across the length. However,

if the domain size is varied corresponding to the nodal spacing, large variation in the

population of neighbouring particles can be avoided. Figure 6.36(a) shows variation in

number of neighbouring particles for fixed and adaptive domain sizes. At each point,

RBF matrix is formulated and its condition number is evaluated. Figure 6.36(b) shows

variation of condition number of RBF matrix at different spatial locations for both fixed

and adaptive domain sizing. Improvement in condition number of coefficient matrices is
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obvious with the use of adaptive sizing. With increasing nodal density, total number of

neighbouring particles increases for fixed domain sizing. This results in enormously high

condition number in refined grid region. On the contrary, adaptive domain sizing ensures

only the required number of neighbouring particles thus maintaining well conditioned

matrices all over the domain.

(a) Variation in number of neighbouring particles

(b) Variation of Condition Number

Figure 6.36: Fixed and Adaptive sizing applied to 1-dimensional non-uniform
particle distribution

6.7.3 Treatment of RBF influence domain near trailing edge

An important aspect to be considered here is the treatment of influence domain for

meshfree nodes near trailing edge of the airfoil. At trailing edge, the airfoil surface

becomes more like a non-convex boundary. The surface acts as a discontinuity in the

flow domain in such cases and nodes on either sides of the boundary (upper and lower
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Figure 6.37: Influence domain truncated as per visibility criterion near trailing
edge of airfoil

airfoil surfaces) actually cast minimal influence on flow field parameters on the nodes

on opposite side. However, the spatial distance between the nodes on opposite sides is

not large enough to diminish their effect through usual numerical treatment which relies

on distance based function (like RBF). Therefore, special treatment is needed to have

reduced effect due to presence of non-convex boundary. For current work, the influence

domains for such nodes are modified as per visibility method by Belytschko et al. (1994).

According to this, the influence domain of any meshfree node xi is truncated in such

a manner that only those neighbouring nodes fall in the influence domain which can

be linked with xi through a straight line without intersecting the boundary. Influence

domain truncated in this manner is shown in Figure 6.37.

6.7.4 Flow around airfoil in prescribed pitch and heave motion

Application of coupled meshfree and mesh-based solver is investigated here for an airfoil

in simultaneous pitch and heave motion. In present study, numerical tests are conducted

for flow around NACA0015 airfoil which has been subjected to prescribed pitching and

heaving motion defined as:

θ(t) = θ0 sin(ωt) (6.5)

h(t) = H0 sin(ωt+ φ) (6.6)

where θ0 and H0 are maximum pitch and heave amplitudes and φ is the phase difference

between pitch and heave motion. The tests are conducted at Re = 1100. The flow is

predominantly laminar at this Reynolds number. Heave amplitude is fixed at H0/c = 1.0

and phase difference φ = −π/2 is used. The problem is set up in a way that heave

reference frame is attached with the airfoil. In this manner, the airfoil performs pitching

motion in a heaving reference frame. The heaving displacement is therefore, not imparted
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to the moving mesh. Similar tests were conducted by Kinsey and Dumas Kinsey and

Dumas (2008).

Grid configuration is the same as in Figure 6.34(a), while closer views of meshfree nodal

arrangement near the airfoil surface are shown in Figures 6.34(b) and 6.34(c) respec-

tively. The Airfoil is placed at a distance of 4c from inlet and 12c from outlet. Width of

fluid domain is set as 10c. Dimensions of active meshfree zone around airfoil are set as

1.35c× 1.6c. A total of 300 nodes are placed at airfoil surface. Computational domain

comprises of a total of 25880 meshfree and 65354 Cartesian nodes. The movement of

mesh is accomplished by displacing the meshfree zone according to prescribed pitching

motion. The problem is set up in heave reference frame. Therefore, heave displacement

is imparted to the moving mesh. However, heave velocity does contribute in the vertical

velocity of moving nodes when formulating momentum equation in ALE formulation.

Similar strategy was used by Kinsey and Dumas (2008) in their work. Numerical simula-

tions are carried out using two different parameters. First case is solved for θ0 = 76.33o

and ω = 0.28π. Second case is run for θ0 = 60.0o and ω = 0.36π. Time step is set as

∆t = 5× 10−4 for both the cases.

Variation of heave and pitch displacements in a single oscillation period of airfoil, for

θ0 = 76.33o, ω = 0.28π case, is shown in Figure 6.38(a). Variation of aerodynamic forces

during the same period is plotted in Figure 6.38(b). Vorticity profiles around the airfoil

at different stages of periodic motion are shown in Figure 6.39. As the pitch angle is

increased in the initial phase of oscillation, the lift achieves its maximum value. The flow

remains largely attached with airfoil top surface for t < T/8 as shown in Figure 6.39(a).

The first peak in lift profile appears at around t = T/8. Increasing lift also causes

increase in pressure drag and therefore, drag coefficient also increases. This initial rise

in lift is followed by flow separation close to leading edge as shown in Figure 6.39(b) and

causes reduction in lift. During T/4 ≤ t ≤ 3T/8, airfoil is subjected to positive heave

acceleration and rate of decrease in pitch angle is relatively low. In this situation, the

separated flow from leading edge reattaches at trailing edge, as shown in Figure 6.39(c).

As a results, airfoil quickly overcomes the stall like situation when the separated leading

edge vortex re-attaches with top surface near trailing edge. The lift increases again and

a second peak is observed at t = 3T/8. Subsequently, the leading edge vortex leaves

the airfoil from trailing edge at around t = T/2 and moves further downstream. By

this time airfoil is put in downward heave and pitch angle is also negative. Therefore,

a sharp decline in lift is observed between 3T/8T/8. The lift reduce to zero and then

shows similar profile in negative direction. Similar results were obtained by Kinsey and

Dumas (2008) during numerical simulation of flow around NACA0015 in simultaneous

pitch and heave motion. Figure 6.40 shows instantaneous vortex profiles along with

variation of aerodynamic forces during single oscillation period obtained by Kinsey and

Dumas (2008). Mean value of drag coefficient C̄D and maximum value of lift coefficient
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(a) Pitch and heave displacement

(b) Aerodynamic forces

Figure 6.38: Variation of pitch and heave displacements and aerodynamic
force coefficients around NACA0015 for a single period of oscillation at Re =
1100, θ0 = 76.33o, ω = 0.28π

ĈL calculated in current study are also compared with previous results in Table 6.7.

Results found here are in good agreement with those found in previous studies.

6.8 Conclusion

RBF-FD is a highly flexible meshfree method which is known for accurate and efficient

approximation of the derivatives of field variables over a scattered data points. How-

ever, like other meshfree methods, it lacks computational efficiency compared with the

conventional mesh based methods. Hybrid grid approach attempts to circumvent the

performance related limitations of meshfree methods by restricting their use to the lo-

cations where these methods can supersede their mesh-based counterparts due to their

inherent features. The presented scheme works well for both stationary and moving
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(a) T/8 (b) T/4 (c) 3T/8 (d) T/2

(e) 5T/8 (f) 3T/4 (g) 7T/8 (h) T

Figure 6.39: Instantaneous vorticity profiles around NACA0015 at Re =
1100, θ0 = 76.33o, ω = 0.28π

Figure 6.40: Results obtained by Kinsey and Dumas (2008). Instantaneous
vorticity profiles and variation of aerodynamic forces during a single oscillation
period around NACA0015 at Re = 1100, θ0 = 76.33o, ω = 0.28π
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Table 6.7: Comparison of aerodynamic force coefficients for sinusoidally pitching
and heaving motion of NACA0015 airfoil at Re = 1100 and H0 = c

Source C̄D ĈL
Case-I: θ0 = 76.33, ω = 0.28π

Present 1.93 2.15
Kinsey and Dumas (2008) 2.014 1.91
Wu et al. (2014) 2.107 1.97

Case-II: θ0 = 60.0, ω = 0.36π

Present 0.72 1.238
Kinsey and Dumas (2008) 0.727 1.256
Wu et al. (2014) 0.711 1.248

boundary cases. Phenomenon of locking-in was accurately predicted during forced vi-

bration cases. Resultant amplitudes and frequencies of solid vibration were found in

good agreement with previous solutions. Significant reduction in computational time

was achieved by limiting the size of meshfree zone in the domain. However, the size of

active and inactive meshfree zone should still be large enough to allow the movement of

the solid boundary. In case of multiple moving bodies, separate nodal clouds can also be

formed around each moving body. For multiple degrees of freedom systems, dimensions

of meshfree zone may accordingly be adjusted to accommodate movement of boundary

in more than one direction. The hybrid grid scheme for static and moving solid objects

has been presented in Javed et al. (2013b) and Javed et al. (2014a) respectively.



Chapter 7

A coupled FSI scheme on hybrid

fluid grid

7.1 Background

As discussed in Chapter 1, partitioned methods are commonly used to deal with fluid-

solid coupling. In this regard, closely coupled algorithms offer better stability and ac-

curacy at interface boundaries. These algorithms perform several sub-iterations of fluid

and solid solvers, to reach convergence at interface boundary, before moving on to the

next time step. Closely coupled models are however often criticized for their complex-

ity and inefficiency caused by increased number of computations during sub-iterations

(Farhat et al. (2006)). It is however understood that convergence between fluid forces

and solid deflection is required only at the fluid-solid interface for closely coupled system,

for which the solution over near field flow is more significant. Therefore, considerable

computational cost can be saved if far field flow region is excluded during sub-iteration

process, and solution is sought only over near field flow region around the solid during

sub-iterations. The flow solution over the entire fluid domain can be obtained only dur-

ing the outer iteration while marching on to next time step. Using this approach, yhe

gain in computational performance can be far more pronounced than loss of accuracy

in the bargain by excluding the far field grid during sub-iterative solutions.

In view of the foregone, a closely coupled FSI algorithm is presented, for flow induced

vibration problems, which attempts to reach convergence at fluid-solid interface using

only near field flow during inner (or sub) iterations. Closed coupling between fluid and

structural solvers has been achieved by performing a sub-iterative predictor-corrector

algorithm, within each time step, until mutual convergence is reached between fluid

forces and solid deflections, at fluid-structure interface. The fluid grid is represented by

a hybrid grid as explained in Section 6.2. Use of hybrid grid makes it simpler to exclude

far field flow during sub-iterations as the flow equations are already being solved using

145
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Figure 7.1: Flow chart of the FSI solution scheme, over hybrid grid, at a single
time step

a coupled solver. Therefore, during sub-iteration process, flow equations are solved only

over meshfree zone. Full flow field (meshfree and Cartesian zones) is solved during outer

(time marching) iterations only.

7.2 FSI coupling algorithm

As mentioned earlier, a closely coupled model has been used to transfer data between

fluid and structural solvers. Close coupling has achieved by iteratively running fluid

and structural solvers at a single time step. During this process, exchange of fluid and

structural data (fluid forces and structural deformations) takes place at solid boundary,

after every sub-iteration, until the convergence between results of fluid and structural

solver is reached. Use of closely coupled systems brings in high computational cost

which is primarily caused by repeated flow solutions at a single time step value. It is

however understood that the very purpose of running fluid solver during sub-iterations is

to obtain fluid forces at fluid-structure interface, which are required to be transferred to
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structural solver for onward calculation of structural deformation. Flow parameters at

far field show minimal variation when the results are being fine tuned at solid boundary

during sub-iterations. It is therefore logical to include only near field fluid grid for

iterative refinement of fluid forces at solid boundary. In view of this, only meshfree

zone is included in sub-iteration calculations of fluid solver. In fact, Cartesian grid zone

is included in computation only during outer (time step marching) iteration of solver.

During sub iterations, the results are updated only over the meshfree zone to get fluid

forces as shown in the flow chart of solution scheme at a single time step in Figure

7.1. The scheme is named Closely Coupled FSI with Reduced Fluid Domain (CFSI-

RFD) here. Conventional closely coupled FSI with full fluid domain will be written as

CFSI-FFD in short form in thesis. Whereas loosely coupled FSI will be written as LFSI.

The coupling algorithm of the two field solution during FSI marching of CFSI-RFD is

shown in Figure 7.2 and is carried out in following manner:

1. Structural displacement Wn+1 is predicted at time tn+1 using velocity and accel-

eration of previous time step tn.

2. Predicted structural displacement is mapped over the fluid grid.

3. Mesfhree fluid grid is displaced according to predicted structure displacement and

fluid equations are solved only in meshfree zone. The fluid forces Pn+1∗ are thus

calculated, at solid surface, using flow parameters.

4. An average of fluid forces Pn+1∗ and Pn is mapped over structural grid to get

applied loads.

5. Solid equations are solved using averaged fluid forces to get the corrected structural

deflection Wn+1. At this stage, corrected structural deflections are compared with

previously obtained values.

6. Process from step 2 to 5 is repeated until the resultant structural deflection val-

ues achieve desired convergence level. Outer iteration is then run in which both

Cartesian and meshfree fluid zones participate to march to next time step tn+1

and get Pn+1.

It is understood that exclusion of Cartesian grid, for inner iterations of CFSI-RFD, may

cause some inaccuracies. However, the effect of using reduced fluid domain for inner

iterations was found to be minimal during numerical tests. It is also pertinent to high-

light that suggested closed coupling scheme is anyway more accurate than corresponding

loosely coupled FSI (LFSI) which does not attempt to converge the two field solutions

before marching to next time step.

The problem is solved using Hybrid fluid grid. Meshfree zone comprises of body confor-

mal nodal cloud which moves with the solid object during motion. Static Cartesian grid
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Figure 7.2: Coupling algorithm of two field solution for CFSI-RFD (Closely
coupled FSI with reduced fluid domain). Pn and Wn represent fluid forces and
solid deformation respectively, at nth iteration

surrounds the meshfree zone as discussed earlier. Incompressible viscous flow equations

are expressed in non-dimensionalized pressure-velocity (~P , ~u) form. The movement of

meshfree nodes is accounted for with Aribitrary-Langrangian-Eulerian (ALE) formula-

tion of N-S equations (Hirt et al. (1974)). Over moving meshfree grid, flow momentum

equations are expressed in ALE formulation as shown in Eq. (2.11) (Takashi and Hughes

(1992)). At each node, ALE velocity is set equal to the velocity of node. For static grid,

the nodal velocity ~v becomes zero and the momentum Eq. (2.11) transforms to its cor-

responding Eulerain form. Spatial and implicit time discretization is carried out in the

same manner as mentioned in Chapter 5. This formulation provides an elegant way of

solving the flow equations over moving data points. Flow equations are solved in their

Eulerian form over static Cartesian grid. Elastically supported solid objects are assumed

to be rigid with one or two degrees of freedom. Equations of solid mentioned in Section

2.4.1 are used. Time integration of equations of solid is carried out using Runge Kutta-4

method.

7.3 Stabilization at high Reynolds number flow

It is well known that convection becomes an increasingly dominant factor in the flow

at high Reynold numbers. Therefore, implementation of some stabilization technique

becomes essential for such problems. Use of Upwind finite differencing (Hirsch (2002)),

anisotropic balancing diffusion and streamline upwind Petrove Galerkin (SUPG) method

(Brooks and Hughes (1982)) are generally employed for stabilizing such equations.

In this section, a stabilization technique has been worked out to deal with such non-

physical fluctuations in the flow. The lead has been taken from pioneering work of Oñate

(1998) who came up with stabilized equations for advective-diffusive transport and flow
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Figure 7.3: Control volume for balancing of forces and moments (σxx is normal
stress along x-axis, τxy is in-plane shear stress, P is fluid pressure and Π is the
flow momentum)

problems by applying balancing of fluxes. They showed that the stabilizing diffusion

terms emerge naturally from within the governing equations of the problem when higher

order approximations of differential equations are introduced in the formulation. Here,

a similar concept has been employed over a finite control volume. However, stabilization

terms are derived by applying the conditions of force and momentum equilibrium using

Newton’s second law of motion. It is opined that such approach would provide a direct

correlation of derivation with physical flow problem. Nevertheless, finally obtained sta-

bilization terms for one and two dimensional flow equations are the same as obtained

previously by Oñate (1998). The stabilization is then applied with coupled RBF-FD and

Cartesian FD solver to solve problems involving high Reynolds number flow. Derivation

of stabilization term is shown in subsequent subsection.

7.3.1 Derivation of stabilized equation for incompressible flow

Let us consider the two dimensional control volume defined by vortices [(i−1, j−1), (i, j−
1), (i, j), (i− 1, j)] as shown in Figure 7.3. The horizontal and vertical dimensions of the

domain are ∆x and ∆y respectively. It is assumed that the distribution of momentum

fluxes and stresses on all the four faces of control volume is varying linearly. Using
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Newton’s second law of motion in x-direction, we can state that:

Rate of change of u−momentum within CV =

(Net u−momentum entering the CV )−

(Net u−momentum leaving the CV )+

(Sum of x− forces acting on CV surface)+

(Sum of x− body forces acting on CV ) (7.1)

‘

If ρ is the density of fluid and u = [u, v]T is the velocity vector, then

Rate of change of u−momentum within CV = ∂ρu/∂t∆x∆y

Net u−momentum entering the CV = ΠA + ΠC

= (ρu2)A∆y + (ρuv)C∆x

Net u−momentum leaving the CV = ΠB + ΠD

= (ρu2)B∆y + (ρuv)D∆x

Sum of x− forces acting on CV surface = [PA − PB] ∆y

− [(σxx)A − (σxx)B] ∆y

− [(τxy)C − (τxy)D] ∆x

Sum of x− body forces acting on CV =Fx∆x∆y

Therefore, Eq. (7.1) can be written as:

∂ρu

∂t
∆x∆y =

[
(ρu2)A − (ρu2)B

]
∆y + [(ρuv)C − (ρuv)D] ∆x

+ [PA − PB] ∆y − [(σxx)A − (σxx)B] ∆y

− [(τxy)C − (τxy)D] ∆x+ Fx∆x∆y (7.2)

As momentum flux is linearly varying on the faces of CV. Therefore, total momentum

flux in the CV through face-A can be expressed in terms of the values of momentum

flux at nodes (i− 1, j − 1) and (i− 1, j):

(ρu2)A =
(ρu2)i−1,j + (ρu2)i−1,j−1

2
(7.3)

Using Taylor expansion of the order O(h2) we get:
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(ρu2)A =
1

2
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+
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(7.4)

Similarly, momentum flux across face-B can be written as:

(ρu2)B =
(ρu2)i,j + (ρu2)i,j−1

2

=
1

2

[(
(ρu2)i,j

)
+

(
(ρu2)i,j −∆y

∂ρu2

∂y
+

∆y2

2

∂2ρu2

∂y2

)]
(7.5)

therefore,

(ρu2)A − (ρu2)B = −∆x
∂ρu2

∂x
+

∆x∆y

2

∂2ρu2

∂x∂y
+

∆x2

2

∂2ρu2

∂x2
(7.6)

Now finding Taylor expansion of terms (ρuv)C and (ρuv)D:

(ρuv)C =
(ρuv)i−1,j−1 + (ρuv)i,j−1

2

=
1

2

[(
(ρuv)i,j −∆x

∂ρuv

∂x
−∆y

∂ρuv

∂y
+ ∆x∆y

∂2ρuv
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+

∆x2

2

∂2ρuv
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+
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∂2ρuv

∂y2

)
+

(
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∂ρuv
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+

∆y2

2

∂2ρuv

∂y2

)]
(7.7)

(ρuv)D =
(ρuv)i−1,j + (ρuv)i,j

2

=
1

2

[(
(ρuv)i,j −∆x

∂ρuv

∂x
+

∆x2

2

∂2ρuv

∂x2

)

+

(
(ρuv)i,j

)]
(7.8)

therefore,

(ρuv)C − (ρuv)D = −∆y
∂ρuv

∂y
+

∆x∆y

2

∂2ρuv

∂x∂y
+

∆y2

2

∂2ρuv

∂y2
(7.9)
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Taylor expansion of force terms, due to normal and shear stresses (σxx and τxy) and

pressure, appearing in Eq. (7.2), can similarly be found resulting in following expres-

sions:

(σxx)A − (σxx)B = −∆x
∂σxx
∂x

+
∆x∆y

2

∂2σxx
∂x∂y

+
∆x2

2

∂2σxx
∂x2

(7.10)

(τxy)C − (τxy)D = −∆y
∂τxy
∂y

+
∆x∆y

2

∂2τxy
∂x∂y

+
∆y2

2

∂2τxy
∂y2

(7.11)

PA − PB = −∆x
∂P

∂x
+

∆x∆y

2

∂2P

∂x∂y
+

∆x2

2

∂2P

∂x2
(7.12)

Ignoring body forces and substituting expressions from Eqs. (7.6), (7.9)-(7.12) in Eq.

(7.2), we get:

∂ρu

∂t
∆x∆y =

[
−∆x

∂ρu2

∂x
+

∆x∆y

2

∂2ρu2

∂x∂y
+

∆x2

2

∂2ρu2

∂x2

]
∆y

+

[
−∆y

∂ρuv

∂y
+

∆x∆y

2

∂2ρuv

∂x∂y
+

∆y2

2

∂2ρuv

∂y2

]
∆x

+

[
−∆x

∂P

∂x
+

∆x∆y

2

∂2P

∂x∂y
+

∆x2

2

∂2P

∂x2

]
∆y

−
[
−∆x

∂σxx
∂x

+
∆x∆y

2

∂2σxx
∂x∂y

+
∆x2

2

∂2σxx
∂x2

]
∆y

−
[
−∆y

∂τxy
∂y

+
∆x∆y

2

∂2τxy
∂x∂y

+
∆y2

2

∂2τxy
∂y2

]
∆x (7.13)

after rearranging and simplifying Eq. (7.13), we get:

∂ρu

∂t
=

[
−∂ρu

2

∂x
− ∂ρuv

∂y
− ∂P

∂x
+
∂σxx
∂x

+
∂τxy
∂y

]
− ∆x

2

∂

∂x

[
−∂ρu

2

∂x
− ∂ρuv

∂y
− ∂P

∂x
+
∂σxx
∂x

+
∂τxy
∂y

]
− ∆y

2

∂

∂y

[
−∂ρu

2

∂x
− ∂ρuv

∂y
− ∂P

∂x
+
∂σxx
∂x

+
∂τxy
∂y

]
(7.14)

For viscous flow, general stress-strain relations can be written as viscous stresses. These

stresses are linearly related with strain rates for Newtonian fluids as:

σxx = 2µ
∂u

∂x
, τxy = µ

∂u

∂x
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where µ is the dynamic viscosity of flow. Ignoring third derivatives, Eq. (7.14) can be

expressed for incompressible flow as:

∂u

∂t
=

[
−u∂u

∂x
− v∂u

∂y
− 1

ρ

∂P

∂x
+
µ

ρ

(
∂2u

∂x2
+
∂2u

∂x2

)]
− ∆x

2

∂

∂x

[
−u∂u

∂x
− v∂u

∂y
− 1

ρ

∂P

∂x

]
− ∆y

2

∂

∂y

[
−u∂u

∂x
− v∂u

∂y
− 1

ρ

∂P

∂x

]
(7.15)

Eq. (7.15) can be non-dimensionalized using characteristic velocity U , length c, time

c/U and pressure ρU2 respectively and defining Reynolds number as Re = ρUc/µ. For

simplicity, non-dimensionalized parameter will be expressed using the same symbols as

their dimensionalized counterparts. Non-dimensional form of Eq. (7.15) is therefore

expressed as:

∂u

∂t
=

[
−u∂u

∂x
− v∂u

∂y
− ∂P

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂x2

)]
− ∆x

2

∂

∂x

[
−u∂u

∂x
− v∂u

∂y
− ∂P

∂x

]
− ∆y

2

∂

∂y

[
−u∂u

∂x
− v∂u

∂y
− ∂P

∂x

]
(7.16)

Horizontal and vertical dimensions of control volume (at which stabilization is being

enforced) can be linked by a characteristic length ∆s such that ∆x = ∆s cosα and

∆y = ∆s sinα, where α is the angle between velocity vector u with x-axis. Then,

∆x = ∆s
u

|u|
, ∆y = ∆s

v

|u|

Eq. (7.16) can therefore, be written as:

∂u

∂t
=

[
−u∂u

∂x
− v∂u

∂y
− ∂P

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂x2

)]
− ∆s

2|u|

(
u
∂

∂x

[
−u∂u

∂x
− v∂u

∂y
− ∂P

∂x

]
− v ∂

∂y

[
−u∂u

∂x
− v∂u

∂y
− ∂P

∂x

])
(7.17)

Eq. (7.17) can be represented in vector form as:
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∂~u

∂t
= −~u.∇~u−∇P +

1

Re
∇2~u− ∆s

2|u|
~uT .∇g(~u) (7.18)

(where, g(φ) = −~u.∇φ−∇P )

For 1-D, the equation reduces to:

∂u

∂t
= −u∂u

∂x
− ∂P

∂x
+

1

Re

∂2u

∂x2
− ∆x

2
u
∂g(u)

∂x
(7.19)

(where, g(φ) = −u∂φ/∂x− ∂P/∂x)

7.3.2 Stabilized momentum equation

Modified momentum equation with stabilized term is given as:

∂~u

∂t
= −~u.∇~u−∇P +

1

Re
∇2~u− ∆s

2|u|
~uT .∇g(~u) (7.20)

(for g(φ) = −~u.∇φ−∇P )

The equation can be perceived as conventional momentum equation for incompressible,

viscous flow with stabilization term −∆s/(2|u|)~uT .∇g(~u) (where ∆s is the characteris-

tic length defining the size of finite domain at which stabilization is applied) appearing

at the end. Similar expression for stabilization term has been obtained in previous stud-

ies, by Oñate (1998) and Oñate et al. (1996), relating to convective-diffusive equation.

However, here we have adopted a different derivation approach which relates conditions

of force equilibrium with momentum balance within a control volume to reach the final

equation. Derivation of Eq.(7.20) has been carried out using Taylor expansion of the

order of O(h2) for terms appearing in momentum balance equation. In fact, by reducing

the order of Taylor expansion, during derivation, to O(h), the balancing term disappears

and momentum equation, shown in Eq. (5.2), is obtained. Hence, stabilization term

is actually an additional term resulting from higher order approximation of derivatives

during balancing of forces and moments in finite control volume. The stabilized momen-

tum equations can be used for both meshfree and Cartesian methods and are therefore,

suited for Hybrid grid scheme.

The stabilized momentum equation (7.20) is solved using non-incremental pressure pro-

jection method with implicit time discretization as discussed in Section 5.1.2.2. Inter-

mediate momentum equation, including stabilization term, can therefore, be expressed

as:
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~u∗ − ~un

∆t
= − (~u.∇) ~u + (1/Re)∇2~u− ∆s

2|u|
~uT .∇g(~u) (7.21)

As before, the convective and diffusive terms are dicretized using explicit Adams-Bashforth

and implicit Crank-Nicolson schemes respectively. Stabilized term is discretized using

Euler explicit scheme. The resultant discretized form of intermediate momentum equa-

tion is written as:

~u∗ − ~un

∆t
= −1

2

[
3 (~un.∇) ~un −

(
~un−1.∇

)
~un−1

]
+

1

2Re

[
∇2 (~un + ~u∗)

]
− ∆s

2|un|
~unT .∇g(~un) (7.22)

Subsequent solution process is the same as mentioned in Section 5.1.

7.3.3 Characteristic length for stabilization

One of the important aspect for implementing stabilization term is the selection of

appropriate characteristic length at which equilibrium of forces and moments is to be

applied. Oñate et al. (1996) suggested that characteristic length be the function of local

flow velocity and Reynolds number. For non-dimensionalized parameters, characteristic

length ∆s is defined as:

∆s = β∆s̄ (7.23)

where, β = coth |γ| − 1

|γ|
(7.24)

and γ =
|u| ∆s̄Re

2
(7.25)

In Cartesian zone, ∆s̄ is defined as the average distance between two neighbouring nodes

at point of interest. For meshfree nodal distribution, ∆s̄ is defined as the average distance

represented by each node in any local influence domain. Therefore, ∆s̄ = 2r/N for a

domain of radius r and N neighbouring points. α is the control parameter which allows

variation of characteristic length (and hence the amount of stabilization) in different

regions based on flow conditions. Figure 7.4 shows variation of β with magnitude of flow

velocity |u| for different value of Reynolds numbers. It can be observed that the value

of control parameter α varies from 0− 1 as flow velocity increases from 0−∞. In this

manner, the value of characteristic length is controlled to have greater stabilization in the

regions which are more susceptible to numerical instabilities caused by highly convective

flow and vice versa. At high Reynolds numbers, the value of β increases more rapidly in

the beginning. Therefore, stabilization term increases more rapidly at higher Reynolds



156 Chapter 7 A coupled FSI scheme on hybrid fluid grid

Figure 7.4: Variation of β with flow velocity |u| at ∆s̄ = 0.01

number and achieves its maximum value at lower flow velocities compared with lower

values of Re.

7.4 Stabilization for of 1-D Convection-Diffusion equations

The effect of stabilization can best be observed by solving convective diffusive equation

with a step field functions. For this purpose, the one dimensional convective-diffusive

Eq.(7.19) is considered. The equation is in non-dimensionalized form. u(x, t) is the

normalized velocity and Re is the Reynolds number. The solutions are obtained for

following cases:

1. With step field function as initial condition

2. With known field functions

3. with known field functions over hybrid grid

7.4.1 Solution with step field function as initial condition

For this test case, Eq. (7.19) is considered with pressure field and is solved over domain

0 ≤ x ≤ 10. Initial velocity field u(0, x) is defined by two step functions with opposite

signs. So, the initial conditions are:

u(x, 0) = 1 for 2 ≤ x ≤ 3

u(x, 0) = −1 for 7 ≤ x ≤ 8

u(x, 0) = 0 elsewhere
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At both ends of domain, Neumann boundary conditions are applied with ∂u/∂x =

0. The solutions are obtained, with and without the stabilization term, at different

Reynolds numbers. Test cases are run for spatial derivatives calculated using central

differencing as well as with RBF-FD method. Velocity time marching is carried out

using Euler explicit method. Figure 7.5(a) shows velocity profiles at t = 0 and t = 2

when spatial derivatives calculated using central difference scheme. Similar solutions

with RBF-FD are shown in Figure 7.5(b). It can be observed that spurious fluctuations

are experienced when stabilization term is not included in the solution. Although these

fluctuations are observed for both central differencing as well as RBF-FD based solutions,

severity of these oscillations is higher for central differencing. The reason for this is that

RBF-FD needs more particles for calculation of RBF weights than conventional finite

difference. In doing so, number of upstream particles are naturally increased in RBF-FD

case compared with central differencing. As a result spurious oscillations are relatively

suppressed. Nevertheless, fluctuations are still present in both the solution.

These fluctuations tend to increase at higher Reynolds number due to reduced diffusion.

However, inclusion of stabilization term in momentum equation helps avoid these non-

physical fluctuations in the solution. As a result, smooth profiles of flow variables are

obtained especially at high Reynolds numbers.

7.4.2 Solution with known field functions

In the previous sub-section, capability of stabilization term to suppress flow field fluctu-

ations was demonstrated. Now, another numerical test has been carried out to compare

the accuracy of the solution with and without the aid of stabilization term. For this

purpose, Eq.(7.19) has been used with pressure term included. The initial and boundary

values for pressure and velocity have been defined using following expressions:

u(x, t) = sin (πx) exp
[
−(π2t)/Re

]
p(x, t) = −1

4
cos (πx) exp

[
−2(π2t)/Re

]
(7.26)

The initial conditions are defined by evaluating velocity and pressure values at t = 0

using Eq.(7.26). Similarly, boundary conditions are obtained by substituting coordinate

values of the boundary node at given time t. Expressions for velocity and pressure,

defined in Eq.(7.26), are in fact the solutions of Eq.(7.19). This provides an opportu-

nity to examine the accuracy of numerical solution by comparing it with true solution

(obtained by Eq.(7.26)) at any given values of x and t. The solutions of Eq.(7.19) have

been obtained, at different Reynolds numbers, with and without stabilization term. At

every time instance, spatial derivatives are obtained using finite differencing as well as
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RBF-FD method. Euler explicit time marching has been used for velocity. Pressure

profile is directly evaluated using Eq. (7.26). Domain size is kept as 0 ≤ x ≤ 2 with

space step of 0.1. Time step of 0.05 is used. The profiles of velocity field, obtained at

t = 2, are compared with analytical solutions as shown in Figure 7.6. Fluctuations are

observed in the numerical solution, without stabilization, which tend to become more

pronounced at high Reynolds number and at regions of higher velocities. These fluctu-

ations are non-physical and truly numerical in nature as these tend to take the solution

away from true solution. This behaviour is observed for both FD and RBF-FD based

solutions. However, these spurious fluctuations remain effectively suppressed with the

use of stabilization. Although, stabilization term is not needed at low Reynolds number;

use of stabilized momentum equation does not affect the quality or accuracy of solutions

for these cases.

With increasing Reynolds number, the effect of diffusion gradually decreases and flow

becomes convection dominated. This calls for the use of special treatment like upwind

differencing or artificial viscosity. The stabilization term, used here, can be seen as an

additional diffusion term as appear in FE literature (Oñate et al. (1996)) which is found

to effectively controls non-physical oscillations in such cases.

7.4.3 Known field functions over hybrid grid

Finally, the solution of Eq.(7.19) is obtained on 1-D hybrid grid using initial and

boundary conditions defined by Eq.(7.26) at Re 1000. Computational domain spans

for 0 ≤ x ≤ 2. Nodes are uniformly distributed with step size of 0.1. The nodes falling

within 0.8 ≤ x ≤ 1.2 are treated with RBF-FD whereas conventional central differenc-

ing scheme is used elsewhere. Figure 7.7 shows the velocity plots for solutions with

and without stabilization at t = 2. Methodology of data transfer between meshfree and

mesh based zones is the same as mentioned in Section 6.2. Smooth transition of velocity

profiles is observed between meshfree and mesh based zones. Use of stabilization is also

found useful in dealing with spurious oscillations in this case.

7.5 Flow induced vibration of cylinder with 1-DoF

CFSI-RFD scheme, discussed above, is used to solve flow induced vibration of an elas-

tically mounted cylinder. This basic test case of fluid-structure interface is amongst the

most revealing problem pertaining to bluff bodies. Simple geometry and well established

results available in literature make it an attractive choice to test current FSI solution

scheme. Schematic of the problem is the same as Figure 2.4(a) except that horizon-

tal degree of freedom is removed and the cylinder has only single degree of freedom in

cross flow direction. Flow Reynolds number is set as 100. At this Reynolds number,
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(a) Solution with central differencing

(b) Solution with RBF-FD

Figure 7.5: Solution of 1-D convective-diffusive equation for domain 0 ≤ x ≤ 10
at t=2. u(x, 0) is defined by two unit step functions in opposite directions.
Solutions are obtained with and without stabilization term

oscillating flow vortices behind the cylinder will produce time varying lift profile. The

cylinder is thus able to vibrate vertically under the influence of these forces. Cylindrical

vibrations were stated as self-limiting by Mittal and Kumar (2001) in their analysis.
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(a) Solution with central differencing

(b) Solution with RBF-FD

Figure 7.6: Solution of 1-D convective-diffusive equation for domain 0 ≤ x ≤ 2
at t=2. Initial and boundary conditions are obtained from the expressions of
true solution in Eq.(7.26). Solutions are obtained with and without stabilization
term

This means that the vibration amplitudes retain their constant value after initial set-

tling down period. Vibration of solid causes reduction in lift force and renders some

additional frequency components in fluid force profiles which tend to limit the vibrating
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Figure 7.7: Solution of convective diffusive equation, at Re = 1000, over 1-D
hybrid grid for domain 0 ≤ x ≤ 2 at t=2. Meshfree zone spans for 0.6 ≤ x ≤
1.2. Initial and boundary conditions are obtained from the expressions of true
solution in Eq. (7.26)

amplitudes to specific level (Placzek et al. (2009)). A parameter called effective elastic-

ity k∗eff is often used to characterize the system response for such problems. Effective

elasticity combines the effect of system mass m, stiffness k and reduced vortex shedding

frequency f∗ = fU/D through following expression (Shiels et al. (2001)):

k∗eff = k − 4π2mf∗2 (7.27)

Effective elasticity therefore offers an inclusive representation of system parameters. For

this work, dimensions of fluid domain are the same as for static case. The dimensions

of meshfree zone are however changed to 3D × 9D out of which 3D × 6D constitutes

active meshfree zone. Vertical dimension of meshfree zone is elongated to allow cross-

flow vibration. Figure 7.8 shows nodal distribution around cylinder for this case. The

solutions are sought on ordered as well as randomized meshfree nodal arrangement.

Randomization is obtained by randomly disturbing the position of meshfree nodes from

their corresponding location on the ordered grid. For this purpose, a random function of

the order of 0.4∆r (∆r is the radial spacing of nodes) is used. Figures 7.9(a) and 7.9(b)

show ordered and randomized nodal arrangements around the cylinder respectively.

Time step is kept as 5 × 10−3. Mass of the cylinder is set as 3.3. The solutions are

obtained by changing the values of spring stiffness k. For every test case, k∗eff is cal-

culated using spring stiffness k and resulting reduced frequency of vortex shedding f∗.
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Figure 7.8: Computational grid around cylinder for 1-DoF vibration

(a) Ordered arrangement (b) Random arrangement

Figure 7.9: Arrangement of meshfree nodes around circular solid

Corresponding values of non-dimensionalized vibration amplitudes (Ymax/D), reduced

frequency (f∗), maximum lift coefficient (CLmax) and RMS values of drag coefficient

(CDrms) are plotted in Figure 7.10. The results are comparable to those obtained by

Shiels et al. (2001). Moreover, the results from ordered as well as randomized meshfree

nodal distribution match very closely with each other. This indicates that the solutions

are not affected by randomization of meshfree nodes. Plots in Figure 7.10(a) indicate a

high amplitude region between 0 ≤ k∗eff ≤ 4. The lift and drag values are also higher

in this range as shown in Figures 7.10(c) and 7.10(d). This high amplitude zone is

called ’locked-in’ zone. In that, the vortex shedding frequency deviates from its original

value and equalizes with natural frequency of vibrating system creating resonance. This
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(a) Crossflow amplitudes (b) Normalized vortex frequency

(c) Maximum lift coefficient (d) rms of drag coefficient

Figure 7.10: 1-DoF cylindrical vibration at Re=100: Variation of parameters
with effective elasticity (k∗eff ) ( —•—Shiels et al Shiels et al. (2001), O Present
work (Ordered grid), 4 Present work (Randomized grid)

synchronization of fluid forces with vibrating system results in higher amplitudes. Fig-

ure 7.10(b) clearly indicates deviation of vortex frequency in ’locked-in’ zone. Beyond

’locked-in’ zone, a sharp decline in vibration amplitudes is observed. Figure 7.11 shows

the difference in flow patterns around the cylinder for ’locked-in’ and ’un-locked’ con-

figurations. Due to high vibration amplitudes in ’locked-in’ zone, vortices are stretched

and two distinct rows of vortices are formed behind the cylinder. In ’un-locked’ zone,

the vortex street resumes its conventional form. However, the vortices are being shed in

2S mode in both configurations and 2P mode of vortex shedding is not observed with

change in k∗eff . This observation is in line with what was obtained by Placzek et al.

(2009) who argue that mode switch from 2S to 2P is only experienced at high Reynolds

number which is not the case here. The vorticity plots, obtained by Shiels et al. (2001),

for similar problem at locked-in and unlocked configurations are shown in Figures 7.12(a)

and 7.12(b) respectively.

7.5.1 Effect of stabilization at low Reynolds number

During study of flow induced cylindrical vibrations with 1-DoF, the solutions are ob-

tained at Re = 100. At this Reynolds number, the viscous forces are sufficiently high
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(a) Vorticity pattern in locked-in configuration (k∗eff = 1.57)

(b) Vorticity pattern in unlocked configuration (k∗eff = −1.89)

Figure 7.11: Comparison of vorticity plots for ’locked-in’ and ’un-locked’ con-
figurations

and use of stabilization, mentioned in Section 7.3, is not necessary. However, the so-

lution should not be affected even if the stabilized momentum Eq. (7.20) is used, at

these Reynolds numbers, and the results should be the same as those from the equation

without stabilization term. In order to verify that stabilization has no effect on results

at low Re, three different test cases are run with and without inclusion of stabilization

term in momentum equation. The results are compared in Table 7.1. It can be observed

that the solutions with stabilization are the same as those for without stabilization up

to 3rd decimal place in most cases.

7.5.2 Comparison of FSI algorithms

The solutions of flow induced cylindrical vibration with 1 DoF discussed in Section 7.5,

are carried out using closely coupled FSI with reduced fluid domain (CFSI-RFD) as

mentioned in Section 7.2. The accuracy and computational efficiency of CFSI-RFD

scheme is studied by comparing its solution and computation time with corresponding

values from loosely coupled FSI (LFSI) as well as with closely coupled FSI with full fluid
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(a) Vorticity pattern in locked-in configuration (k∗eff = 1.414)

(b) Vorticity pattern in unlocked configuration (k∗eff = 0)

Figure 7.12: Vorticity plots for ’locked-in’ and ’un-locked’ configurations ob-
tained by Shiels et al. (2001)

domain (CFSI-FFD). For this purpose, the above mentioned problems, with k∗eff =

0.623, is solved using all the three FSI algorithms. The curves in Figure 7.13 show

computation time for calculation of 150 sec of simulation on Intel R©2.6 GHz processor

using different FSI schemes. As expected, the calculation time for loosely coupled FSI

is the least and that for CFSI-FFD is the highest. Calculation time for CFSI-RFD is

significantly lower than that for CFSI-FFD. This reduction has been achieved through

reduced fluid domain. Computation time values for unit simulation time for each case

have been shown in last column of Table 7.2. These results indicate that CFSI-FFD takes

almost double computational time compared with LFSI. However, in case of CFSI-RFD,

the computation time is increased only by 40% than that for LFSI. So, computational

performance is significantly improved by reducing the fluid domain during sub-iterations.

For calculation of errors, the results of CFSI-FFD are taken as standard. Error values
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Table 7.1: Comparison of parameters for test case with and without stabilization
(1-DoF cylindrical vibration at Re=100)

Parameters Stabilization Ymax/D f∗ CLmax CDrms
m = 3.3 No 0.0726 0.149 -0.1418 1.2806
k = 1.0 Yes 0.0727 0.1494 -0.1417 1.2807

m = 3.3 No 0.5606 0.1833 0.4067 2.102
k = 1.0 Yes 0.5604 0.1833 0.4092 2.114

m = 3.3 No 0.2593 0.2018 1.2954 1.3788
k = 10.0 Yes 0.2591 0.2006 1.2960 1.3789

are calculated by taking root mean square (RMS) of the difference of corresponding field

value ,between LFSI or CFSI-RFD and standard values from CFSI-FFD, in the domain.

For example

RMS error of vx for CFSI −RFD =

√√√√ 1

N

N∑
i=1

(vxi − v
ref
xi ) (7.28)

where N is the total number of nodes, vxi is the x-component of flow velocity ~u = (vx, vy)

at node i using CFSI-RFD and vrefxi is the similar value calculated using CFSI-FFD at

same spatial location and time.

The results are recorded after every 5 sec of simulation time and RMS error has been

calculated for velocity components ~u = (vx, vy) and pressure P . Time profiles of these

RMS errors in meshfree and Cartesian zone as well as in the entire computational domain

are shown in Figures 7.14(a) - 7.14(c) respectively. As the cylinder starts its motion, the

results from LFSI starts to deviate from corresponding values of CFSI-FFD. Therefore,

RMS error keeps rising. On the contrary, RMS error for CFSI-RFD scheme stabilize at

much lower level compared with LFSI error. The error is more pronounced in meshfree

zone which is due to the presence of near field flow around moving boundary. The

flow variables experience large variation due to moving boundaries and effect of better

coupling are more pronounced. However, CFSI-RFD depicts far more accuracy even in

this zone. Far field flow in Cartesian zone shows significantly lower error values. Similar

trend is observed in the time profiles of resultant vertical displacement of cylinder, lift

and drag coefficients for the three FSI schemes which are co-plotted in Figures 7.15(a) to

7.15(c) respectively. It can be observed that profile curves of CFSI-RFD closely follow

the curves of CFSI-FFD. However, the curves from LFSI are relatively off.

In order to compare the overall error during the entire course of simulation, the RMS has

been calculated of all the error values recorded during the simulation for each variable

separately. For example RMS(Evx) is calculated using all the values shown in Figure

7.14(a). These values are tabulated in Table 7.3. Error values from CFSI-RFD are

significantly lower than their counterpart values from LFSI.
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Figure 7.13: Computation time versus simulation time for 1-DoF cylindrical
vibration at Re=100 and k∗eff = 0.623. Comparison of i) closely coupled with
full fluid domain (CFSI-FFD). ii) closely coupled with reduced fluid domain
(CFSI-RFD) and iii) loosely coupled (LFSI) cases.

Table 7.2: Comparison of computation time per second of simulation time for
different FSI schemes used for the solution of 1-DoF vibration of cylinder at
Re = 100 and k∗eff = 0.623

LFSI CFSI-RFD CFSI-FFD

Computation time 0.3898 0.5043 0.7405
per Simulation time

Table 7.3: RMS (root mean square) error for three different FSI schemes used
for the solution of 1-DoF vibration of cylinder at Re = 100 and k∗eff = 0.623

Error LFSI CFSI-RFD

RMS(Evx) 0.0665 0.0124

RMS(Evy) 0.063 0.006

RMS(EP ) 0.0464 0.0126

RMS(EY ) 0.2169 0.0078

RMS(ECL) 0.144 0.0084

RMS(ECD) 0.4626 0.0183

Comparing error values and computation time, it can be inferred that closely coupled

FSI case with reduced fluid domain calculations offer an efficient computation of FSI

problems without much loss in accuracy.
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(a) vx error (rms(vx − vrefx ))

(b) vy error (rms(vy − vrefy )

(c) P error (rms(P − P ref )

Figure 7.14: Time profiles of error for LFSI and CFSI-RFD. Error calculated
using results of CFSI-FFD as reference. 1-DoF cylindrical vibration at Re=100
and k∗eff = 0.623.
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(a) YC profile (b) CL profile

(c) CD profile

Figure 7.15: 1-DoF cylindrical vibration at Re=100 and k∗eff = 0.623. Compar-
ison of time profiles of displacement, lift and drag for i) LFSI (-), ii) CFSI-RFD
(-.-) and iii) CFSI-FFD (- -) cases.

7.6 Flow induced vibration of cylinder with 2-DoF

Applicability of CFSI-RFD is tested for two degree of freedom problem here. For this

purpose, vortex induced vibration (VIV) of cylinder with two degrees of freedom (in-flow

direction X and cross-flow direction Y ) has been chosen. The problem is of practical

importance in many engineering applications including offshore cylindrical structures,

underwater flexibly mounted pipelines and large electrical cables. For flexibly mounted

cylindrical objects, incoming flow can initiate modes of vibration both along the flow as

well as in cross-flow directions. The problem is therefore studied as 2-DoF vortex induced

vibration (Dai Zhou (2012); Dahl et al. (2010)). The system vibrational response is often

studied with changing reduced velocity (vr = U/(fND), where U is free stream velocity,

D is cylindrical diameter and fN is natural frequency of vibration). Dahl et al. (2010)

found that the in-flow vibrations of cylinder show significantly higher amplitudes, due to

dual resonant response, when ratio of in-line to transverse natural frequencies (fNx/fNy)

is set around 2.0 . For other frequency ratios, cylindrical vibration is predominantly

cross-flow and very low amplitudes of in-flow vibrations are observed.
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(a) Full Domain

(b) Domain near solid object

Figure 7.16: Hybrid grid around cylinder for 2-DoF cylindrical vibration

In the present study, numerical tests are carried out to investigate the effect of changing

reduced velocity (vr = U/(fND)), frequency ratio (fNx/fNy), mass ratio (m∗=(Mass of

cylinder)/(Displaced fluid mass)) and Reynolds number on in-flow (X) and cross-flow

(Y ) vibrational amplitudes of vibrating cylinder. Damping is set as zero to achieve high

amplitudes. Meshfree zone spans 5D × 5D around the cylinder. Out of this, size of

active meshfree zone is 5D × 5D. An inactive zone (overshadowed region of meshfree

grid) 1.5D wide is left on all the four sides of the cylinder to cater for solid movement.

Nodal distribution in fluid domain is shown in Figure 7.16.
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(a) Crossflow amplitudes (b) Inflow amplitudes

(c) RMS of Lift coefficient (d) Mean Drag coefficient

Figure 7.17: Variation of parameters with reduced velocity (vr) for cylindrical
vibration with 2-DoF (Mass ratio= m∗ = 2.0, frequency ratio= fNx/fNy = 2.0,
Re = 150), —o —present results (ordered meshfree nodes), —4 —present
results (randomized meshfree nodes), ∗ results from Dai Zhou (2012) (at =
m∗ = 2.0, = fNx/fNy = 2.0, Re = 150), � Experimental results from Dahl et al.
(2010) (at = m∗ = 5.7, = fNx/fNy = 1.9, Re = 15000− 60000)

Validation test case is run at Re = 150. Mass ratio is set as 2.0 and In-line to transverse

natural frequencies ( fNx/fNy) is set around 2.0. Reduced velocity (vr) is calculated

according to transverse natural frequency (fNy) and tests are conducted for vr = 1−12.

Solutions are obtained for both ordered and randomized meshfree nodal arrangements.

Resultant amplitudes of cross-flow (Ymax) and in-flow (Xmax) vibrations, mean values

of drag coefficient (C̄D) and root mean square (RMS) values of lift coefficient (C ′L)

are shown in Figure 7.17 along with numerical solutions obtained by Dai Zhou (2012)

and experimental results from Dahl et al. (2010). It can be observed that the results

do not change significantly with randomization of meshfree nodes. Maximum in-flow

amplitude reaches to 0.256 at vr = 5.0. Cross-flow amplitude achieves its maximum

value (Ymax/D = 0.905) at vr = 6.0. Similar values of maximum amplitudes are obtained

by Dahl et al. (2010) and Dai Zhou (2012). Vibration amplitudes and lift and drag

coefficients tend to increase dramatically as the resonance conditions are approached

near vr = 6. Beyond this regime, in-flow vibration amplitudes are almost zero and

even cross-flow amplitudes are also very low. These observations are in agreement with

previous studies.
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(a) vr = 3.0 (b) vr = 4.0

(c) vr = 5.0 (d) vr = 6.0

(e) vr = 7.0 (f) vr = 8.0

(g) vr = 9.0 (h) vr = 10.0

Figure 7.18: Vortex structure behind cylinder vibrating with 2-DoF at
fNx/fNy = 2.0

7.6.1 Vortex structure of flow

Figure 7.18 shows vorticity profile behind the cylinder at various reduced velocities. For

small values of reduced velocities (e.g. vr = 3), where amplitudes of vibrations are also

small, the vortex structure is similar to those for stationary cylinder cases (shown in

Chapter 6). However, as reduced velocity increases the vibration amplitudes becomes

higher resulting in two distinct rows of vortices appearing behind the cylinder. The

distance between these rows increases at higher cross-flow amplitudes. With further

increase in reduced velocities, the vibration amplitudes start to decrease. Therefore,

rows of vortices gradually come close and ultimately merge with each other to form a

single row of vortices. The vortex pattern is 2S for all the cases except that for vr = 5.

This means that two single opposite signed vortices (one positive and other negative

vortex) are alternatively shed behind the cylinder. At vr = 5, the vortex pattern is

more like S+P. This means that shedding of a single vortex is followed by a pair of

vortices with opposite sign. Difference in vortex pattern is caused by higher in-flow

vibration amplitudes. However, this difference is caused by in-flow vibration as high as

at vr = 5 and frequency ratio of 2.0. For other cases, when in-flow vibration amplitudes

are relatively small, vortex structure resumes its usual 2S pattern.
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Figure 7.19: Cylindrical trajectories for 2-DoF problems. (Mass ratio= m∗ =
2.0, frequency ratio= fNx/fNy = 2.0, Re = 150)

XY trajectories of cylinder at different reduced velocities are plotted in Figure 7.19.

For the case when frequency ratio is 2.0, the dominant frequency in drag oscillation

is twice that for lift. This results in significantly higher in-flow vibration amplitudes

and therefore, the combined in-flow and cross-flow vibration trajectory typically depicts

figure-of-eight motion. However, shape of the trajectory also depends upon reduced

velocity. For cases where in-flow vibration is minimal, this figure-of-eight progressively

thins out to show predominantly vertical vibration only. Figures 7.20(a)-7.20(k) show

screen-shots of cylindrical motion during one complete cycle for vr = 5. Shedding of two

negative signed vortices from top side of the cylinder are obvious after positive signed

vortex is shed from the bottom side. This would result in P+S type of vortex structure.

Corresponding position of every screen-shot on XY trajectory is also indicated in Figure

7.20(l). It can be observed that the path direction is counter clockwise. Path direction

remains unchanged in all the cases and these paths are found to be highly repeatable.

Dahl et al. (2007) observed similar behaviour. They argued that counter clockwise path

directions are highly repetitive and the path direction and orbit shapes are indicators of

high harmonic force.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) Location on trajectory

Figure 7.20: Screen-shots of vibrating cylinder at various time instances during
one complete cycle. 2-DoF flow induced vibration of cylinder at Re = 150,
= m∗ = 2.0, = fNx/fNy = 2.0 and vr = 5.0.

7.6.2 Effect of changing frequency ratio

The effect of changing frequency ratio = fNx/fNy on system response (amplitudes of

aerodynamic forces and solid motion) along in-flow and cross-flow directions is investi-

gated here. For this purpose, the test cases are run at Re = 150 and m∗ = 1.25. Figure

7.21 shows response curves at various reduced velocities vr and frequency ratios. High
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vibrational amplitudes (both cross-flow and in-flow directions) are observed for range of

reduced velocities 4 ≤ vr ≤ 9 indicating the presence of resonance zone in both direc-

tions. Although this resonance zone is present at all tested values of frequency ratio, the

vibration amplitudes dramatically increase typically at = fNx/fNy = 2.0. This increase

is more pronounced for in-flow amplitudes where maximum vibrational amplitude soared

by 3.4 times when frequency ratio was increased from 1.5 to 2.0. An increase of 1.25

times was observed in maximum cross-flow amplitude for same variation of frequency ra-

tio. Moreover, reduced velocity corresponding to maximum vibrational amplitude tends

to shift to higher value with increasing frequency ratio. However, bounds of resonant

zone remain unaffected during this change.

Figure 7.21(c) indicate that lift coefficient largely remains unaffected by variation of

frequency ratio except at = fNx/fNy = 2.0. At this value, significant reduction in the

maximum value of CL is observed. On the contrary, the drag coefficient depicts an

increase in its maximum value at same frequency ratio.

In order to explain the presence of resonance zone between 4 ≤ vr ≤ 9, Strouhal num-

bers along cross-flow and in-flow directions are plotted in Figure 7.22. These strouhal

numbers are obtained using first natural frequencies of lift and drag profiles over time.

On the same plot corresponding natural frequencies of the structure are also plotted.

In cross-flow directions, Strouhal numbers match closely with system natural frequency

curves between 4 ≤ vr ≤ 9 yielding high cross-flow vibrational amplitudes. At vr = 9,

sty for fNx/fNy = 2.0 is still close to fNy curve whereas sty for fNx/fNy = 1.0 and

1.5 tend to deviate. As a result, cross-flow amplitude for fNx/fNy = 2.0 is higher at

vr = 2.0 than the other two cases.

Strouhal number curves for in-flow direction are quite interesting. Strouhal number

values do not change much with changing frequency ratio. They largely remains close

to fNx = 2fNy curve between 4 ≤ vr ≤ 9. This means that Strouhal number along

in-flow direction naturally remains twice its value along cross-flow direction. Therefore,

for the case when fNx/fNy = 2.0, the value of Stx exactly matches with system natural

frequency and high vibrational amplitudes are observed along in-flow direction. For the

other cases, relatively higher amplitudes are caused by higher vortex shedding modes.

However, these cannot produce very large vibration. For fNx/fNy = 1.5 case, stx touches

fNx = 1.5fNy curve at vr = 4. Therefore, highest in-flow amplitude is observed at this

reduced velocity for fNx/fNy = 1.5 case.

7.6.3 Effect of changing mass ratio

The effect of changing mass ratio on system response has been investigated at Re = 150

and fNx/fNy = 2.0. At these settings, the solution parameters are obtained different

values of mass ratio and for changing reduced velocities. The results are summarized
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(a) Crossflow amplitudes (b) Inflow amplitudes

(c) RMS of Lift coefficient (d) Mean Drag coefficient

Figure 7.21: Variation in system response with changing frequency ratio
(fNx/fNy) for cylindrical vibration with 2-DoF at = m∗ = 1.25 and Re = 150.
−o− fNx/fNy = 2.0, − ∗ − fNx/fNy = 1.5, − � − fNx/fNy = 1.0

(a) Cross-flow direction (b) In-flow direction

Figure 7.22: Variation of Strouhal number with reduced velocity (vr) and fre-
quency ratio (fNx/fNy) for cylindrical vibration with 2-DoF at = m∗ = 1.25
and Re = 150. −o− fNx/fNy = 2.0, −∗− fNx/fNy = 2.0, −�− fNx/fNy = 1.0

in the plots shown in Figure 7.23. The most prominent effect of changing mass ratio is

that the resonance zone tends to shrink with increasing mass ratios. Though the peak

values appear at same location (i.e same value of vr), the lower and upper limits of high

amplitude regime tend to squeeze inward with increasing mass ratio. The maximum

vibration amplitudes remains largely unchanged until m∗ = 2.0. However, they start to

decline later and relatively lower amplitudes (both in-flow and cross-flow) are observed
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(a) Crossflow amplitudes (b) Inflow amplitudes

(c) RMS of Lift coefficient (d) Mean Drag coefficient

Figure 7.23: Variation in system response with changing mass ratio for cylin-
drical vibration with 2-DoF at fNx/fNy = 2.0 and Re = 150. −o− m∗ = 0.75,
− ∗ − m∗ = 1.25, − � − m∗ = 2.0, −t̄ − m∗ = 7.5

at m∗ = 7.5. Mass ratio seems to have significant effect on lift coefficient. The maximum

value of lift coefficient keeps increasing from m∗ = 0.75 to m∗ = 2.0. However, dramatic

decline in lift coefficient is observed at m∗ = 7.5. Moreover, the value of reduced velocity,

corresponding to highest value of CL, also shifts from 4.0 to 5.0. Beyond the resonance

zone (vr ≥ 10), RMS value of CL depicts a steadily increasing trend with increasing

mass ratio whereas cross-flow amplitudes decrease during same range of vr.

7.7 Flow around static airfoil

The Solution scheme is now used for solving incompressible flow, at various Reynolds

numbers, around static and moving airfoil. The static tests are conducted for flow at

Re = 5000, 10000 and 50000 around NACA0012 airfoil. In order to suppress instabilities

caused by increased convection at high Reynolds number flow, stabilized momentum Eq.

(7.20) is used here. The flow parameters are set according to properties of air. Followings

are the flow parameters : Chord length c = 1.0m, density ρ = 1.225kg/m3, dynamic

viscosity µ = 1.8375N.s/m2. Free stream velocity U is calculated according to the

required value of Reynolds number (U = µRe/(ρc)). Hybrid grid around the airfoil is

generated using the method discussed in Section 6.7.1. Computational grid is therefore,
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(a) Grid for Re = 5000 and 10000

(b) Grid for Re = 50, 000

Figure 7.24: Fluid grid around NACA0012 at different Reynolds numbers
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similar to what is shown in Figure 6.34(a). At each value of Reynolds number, nodal

resolution near airfoil surface is set to ensure sufficient number of nodal layers within

the boundary layer region. Therefore, the grid for Re = 50000 is finer than that for

Re = 5000 and 10000, near the airfoil, as shown in Figure 7.24. Boundary conditions

are used as mentioned in Section 5.5. Time step is set as 5.0× 10−4 for all cases.

In order to study the effect of stabilization term, the solutions are obtained for Re =

10000 and α = 10o case at t = 5 sec with and without the use of stabilization term in

the momentum equation. The resultant 3D velocity plots as well as velocity vector plots

are shown in Figure 7.25. For the case without stabilization, significant fluctuation is

observed in the velocity field at the upper side of airfoil as can be seen in Figures 7.25(a)

and 7.25(c). A zoomed in view of area with fluctuations is shown in Figure 7.25(d).

As the solution proceeded, these fluctuations were found to become more severe and

ultimately caused breakdown of iteration process. Use of stabilized momentum equations

however, managed to suppress these fluctuations. The velocity 3D plot shown in Figure

7.25(b) depicts smooth velocity profile when stabilized momentum equation is used. At

high Reynolds numbers, use of stabilization is therefore, necessitated to avoid possible

errors and breakdown of solution due to non-physical flow field fluctuations.

Static solutions are obtained at various angles of attack between 0 ≤ α ≤ 20. RMS values

coefficient of lift CL are plotted for Re = 10000 and Re = 50000 in Figures 7.26(a) and

7.26(b) respectively. At Re = 10000, the results are compared with numerical solution of

Akbari and Price (2003) and experimental results of Alam et al. (2010). At Re = 50000,

solutions are compared with experimental results from Alam et al. (2010) and Huang

and Lee (1999). Effect of Reynolds number on lift, drag and moment coefficients over

the airfoil is shown in Figure 7.27. A gradual increase can be observed in lift values with

increasing Reynolds number in Figure 7.27(a). Moreover, coefficient of drag tends to

be less at high Reynolds number before stall angle (≈ 10o) due to lower viscous effects

as can be seen in Figure 7.27(b). However at higher angles of attack, when effect of

pressure drag becomes more dominant, overall drag coefficient becomes more for higher

Reynolds numbers. Pressure drag increases at high Reynolds numbers due to increased

lift. Variation of lift and drag with Reynolds number is in agreement with previous

studies. For example, Massey (1979) presented coefficient of lift (CL) and drag (CD) for

a particular airfoil at two different Reynolds numbers and at α = 10o. They observed

an increase in the value of CL from 0.49 to 1.4 when the Reynolds number was increased

from 21000 to 430000. The value of CD reduced from 0.19 to 0.07 during same variation

of Reynolds number.

Instantaneous vortex profiles are also shown at various angles of attack for three Reynolds

numbers in Figure 7.28. At Re = 5000, the flow separates from the airfoil upper surface

after leading edge and is not able to reattach later. Also at Re = 10000, the flow sepa-

rates early but this time the flow does show a tendency to reattach at α = 10o resulting

in relatively higher lift before the onset of stall. However, there is still a big separation
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(a) 3D-Velocity plot (without stabilization) (b) 3D-Velocity plot (with stabilization)

(c) Velocity vector plot (without stabilization) (d) Zoomed in view

Figure 7.25: Comparison of flow around NACA0012 with and without stabiliza-
tion at Re = 10000, α = 10o, t = 5.0 sec

region between flow detachment and reattachment points as shown in Figure 7.28(e). As

the angle of attack is increased, the reattachment point moves upstream reducing the

size of separated flow region and increasing the lift (see Figure 7.28(f)). At Re = 50000,

an increased tenancy of the flow to re-attach the airfoil surface is observed. At α = 5o,

the flow reattaches soon after separation. The separation region therefore remains suffi-

ciently small even at α = 10o and therefore large amount of lift is produced. However, as

the angle of attack is further increased, separation region progressively becomes larger

causing a decline in lift at α = 15o. Oscillating vortex profiles in all cases result in time

varying profiles of aerodynamic forces. Therefore, RMS values of lift, drag and moment

coefficients are shown in Figures 7.26 and 7.27.

7.8 Flow induced airfoil vibration

After demonstrating the applicability of stabilized coupled meshfree-mesh based solver

for flow around static airfoil, the solution scheme is now used for flow induced airfoil

vibration problem. For this purpose, flow cases are solved around NACA0012 airfoil

with two degrees of freedom. Airfoil is able to vibrate vertically as well as rotate about
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(a) Re = 10000 (b) Re = 50, 000

Figure 7.26: CL vs α curves for NACA0012 airfoil at various Reynolds number

(a) CL vs α (b) CD vs α (c) CM vs α

Figure 7.27: Variation of lift, drag and moment coefficients with Reynolds num-
ber at NACA 0012 airfoil

(a) Re = 5000, α = 5o (b) Re = 5000, α = 10o (c) Re = 5000, α = 15o

(d) Re = 10000, α = 5o (e) Re = 10000, α = 10o (f) Re = 10000, α = 15o

(g) Re = 50000, α = 5o (h) Re = 50000, α = 10o (i) Re = 50000, α = 15o

Figure 7.28: Instantaneous vortex profiles around NACA0012 airfoil at various
Reynolds numbers and angles of attack
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Figure 7.29: CL vs α plots for NACA0012 airfoil, o present solution at Re =
8× 105, * solution from Critzos et al. (1955) at Re = 5× 105, � solution from
Critzos et al. (1955) at Re = 1.8× 106

its elastic axis as shown in Figure 2.4(b). Motion of airfoil, under fluid forces, will

therefore be governed by set of differential Eqs. (2.31) and (2.32). Interaction of fluid

forces and solid displacement is realized by a closely coupled FSI algorithm with reduced

fluid domain (CFSI-RFD). Only meshfree zone participates in the inner FSI iterations to

reach fluid-solid convergence as discussed in Section 7.2. Grid configuration is the same

as in discussed in Section 6.7.1. Airfoil chord length is set as c = 0.3 m, fluid density is

ρ = 1.225 kg.m−3 and kinematic viscosity is ν = 1.5× 10−5 m.s−2. Dynamic test cases

are run for free stream velocity in the range of U = 20−45 m/s. This corresponds to flow

Reynolds number range Re = 4× 105− 9× 105. At such high Reynolds numbers, use of

stabilization term is necessary to achieve stable solution. Therefore, stabilization term

is included in the flow equations. Moreover, it is understood that the use of a suitable

turbulence model might be necessary for high Reynolds number problems especially

to get accurate drag values. However, drag does not play critical role in aero-elastic

problems with vertical vibrations and therefore scope of this research is limited to the

use of laminar solver only. Similar approach has also been followed in previous works

by Sváček et al. (2007) and Feistauer et al. (2011) also.

Prior to running flow induced vibration cases, validation has been done by running static

solutions at above mentioned flow parameters with Re = Uc/ν = 800000 and at range

of angles of attack α = 0 − 14. Resultant lift coefficients have been compared with

standard data from Critzos et al. (1955) in Figure 7.29. Lift coefficient values from this

solution are in agreement with standard data before stall angle.

Dynamic problem has been solved using following structural dynamics parameters: m =

0.08622 kg, Sα = −0.000779673 kg.m, Iα = 0.00048791 kg.m2, kh = 105.109 N.m−1,

kα = 3.695582 N.m/rad, span = l = 0.05 m, dh = 0.001kh and dα = 0.01kα. Elastic

axis is at 0.4c aft of leading edge. Airfoil is initially kept at an angle of attack of

5o. To avoid possible instability caused by initial numerical fluctuations, the airfoil

vibration is allowed when the flow is already stabilized around the arfoil. Time profile of
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pitch angle (α) and vertical displacement (y) are shown in Figure 7.30 for different free

stream velocities. The divergence is observed for flow velocities greater than 35.0 m/s.

The solution at U = 45 m/s is unstable due to very high vibrational amplitudes. The

solutions are compared with NASTRAN flutter analysis from Cecrdle and J (2002) which

was carried using similar flow and structural parameters. According to Cecrdle and J

(2002), critical velocity for divergence is 37.7 m/s and that for flutter is 42.4 m/s. These

values are in agreement with what are found in present study study. The results are also

in agreement with computational solutions from Sváček et al. (2007) and Furmnek and

Kozel (2013). Pressure and vorticity profiles around the airfoil at various pitch angles

are shown in Figure 7.31.

Above calculations are carried out using closely coupled FSI with partial fluid domain.

Calculation for simulation time of 0.1 sec were performed in 295 sec on Intel R©2.4 GHz

processor. On the contrary, similar calculations for full fluid domain were carried out in

840 sec on same machine. Therefore, the computation time was reduced by 65 percent

by reducing the fluid domain for inner FSI iterations.

7.9 Energy harvesting using flow around oscillating airfoil

In the past decade, there has been a growing interest of researchers in extracting energy

from tidal stream and wind. The energy available in moving fluid (wind or tidal power)

can be converted to useful mechanical work in a variety of ways. Traditionally this has

been achieved using rotary turbines. Lately, oscillating foils are increasingly becoming

the focus of research for energy harvesting devices (Xiao and Zhu (2014); Young et al.

(2014)). Compared with conventional rotary turbines, these bio inspired energy convert-

ers are less noisy, possess greater structural resilience and are operable even in shallow

water (Xiao and Zhu (2014)). Flapping foil based power extracting systems developed

so far can be classified in three categories:

1. Systems with forced (or prescribed) pitching and heaving motion. These are also

called fully activated systems.

2. Systems with imposed pitching and induced heaving motion. These are also called

semi-activated systems.

3. Systems with flow induced flow-induced pitching and heaving motion. These are

called fully-passive systems.

The performance of these energy harvesters largely depends upon vortex structure and

flow behaviour around oscillating airfoil. It is therefore, important to understand flow

behaviour and performance and efficiency of these mechanism at various system param-

eters.
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7.9.1 Extracted power by oscillating and heaving airfoil

Let us consider an airfoil in simultaneous pitch and heave as shown in Figure 7.32. For

a wing with unit depth, the power extracted during heaving and pitching motion can be

expressed mathematically as (Kinsey and Dumas (2008)):

Power extracted due to heaving = Py(t) = h(t)Vy(t) (7.29)

Power extracted due to pitching = Pθ(t) = M(t)ω(t) (7.30)

where h(t), Vy(t), M(t) and ω(t) are instantaneous heave, vertical velocity, pitching

moment and angular velocity in pitch respectively. The total power extracted over one

cycle can be calculated by integrating the extracted power over time:

Total power extracted in one cycle = P = 1/T

∫
(Py(t) + Pθ(t)) dt (7.31)

In non-dimensionalized form, the extracted power is written as:

Cop =
P

1/2ρU3
∞c

(7.32)

Therefore, coefficient of extracted power is written as:

Cop = Cpy + Cpθ =
1

T

∫ (
Cy(t)

Vy(t)

U∞
+ CM (t)

ω(t)c

U∞

)
dt (7.33)

Power extraction efficiency η is defined as the ratio of extracted power to power available:

η =
P

Pa
=

Py + Pθ
1/2ρU3

∞d
= Cop

c

d
(7.34)

where d is the overall extent of airfoil vertical displacement as shown in Figure 7.32.

7.9.2 Energy extraction through fully activated system

An airfoil in simultaneous pitch and heave may impart as well as extract energy from

oncoming flow in various modes of its motion. Carefully tuned pitch and heave motion of

airfoil can therefore, result in net energy extracted from oncoming flow. Such oscillating

airfoil acts as turbine. Kinsey and Dumas (2008) performed a parametric study for such

an airfoil in the power extraction regime and related overall energy extraction condition
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Table 7.4: Comparison of aerodynamic parameters and power extraction effi-
ciency over NACA0015 airfoil at Re = 1100 and H0 = c

Source C̄D ĈL η(%)
Case-I: θ0 = 76.33, ω = 0.28π

Present 1.93 2.15 34.66
Kinsey and Dumas (2008) 2.014 1.91 33.7
Wu et al. (2014) 2.107 1.97 34.7

Case-II: θ0 = 60.0, ω = 0.36π

Present 0.72 1.238 12.04
Kinsey and Dumas (2008) 0.727 1.256 11.4
Wu et al. (2014) 0.711 1.248 12.2

with a feathering parameter X . In current work, flow around NACA0015 airfoil, subject

to prescribed pitching and heaving motion, was solved in Section 6.7.4 at two different

sets of parameters. The results of these simulations are used here for calculating the co-

efficient of performance and power extraction efficiency values for corresponding system

parameters using equations described in Section 7.9.1. As mentioned earlier (in Section

6.7.4), the pitching and heaving motion of the airfoil is governed by following equation

(Kinsey and Dumas (2008)):

θ(t) = θ0 sin(ωt) (7.35)

h(t) = H0 sin(ωt+ φ) (7.36)

Therefore, pitch and heave displacement rates over time can be expressed as:

dθ

dt
= ωθ0 cos(ωt) (7.37)

dh

dt
= ωH0 cos(ωt+ φ) (7.38)

For test case with θ0 = 76.33o, ω = 0.28π, time variation of heave and pitch displacement

rates (dh/dt and dθ/dt) of airfoil are shown in Figure 7.33(a), during a single oscillation

period. Coefficients of lift and drag forces as well as coefficient of performance are plotted

in Figure 7.33(b) during the same period. These parameters are used to calculate the

power extraction efficiency of the system using Eq. (7.34). Results are also obtained

for test case with θ0 = 60.0o and ω = 0.36π. Mean drag coefficient C̄D, maximum lift

coefficient ĈL and energy extraction efficiency η are shown in Table 7.4. Results found

here are in good agreement with previous solutions from Kinsey and Dumas (2008) and

Wu et al. (2014).
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Table 7.5: Comparison of maximum values of coefficients of lift (CLmax), mean
values of coefficients of drag (C̄D) and maximum values of coefficients of moment
(CMmax) for pitching-motion-activated-flapping NACA0015 airfoil

Mechanical Parameters Source CLmax C̄D CMmax

Re = 1100, θ0 = 15o, f∗ = 0.2, Wu et al. (2014) 0.704 0.179 -
d∗ = 2π, k∗ = 10, m∗ = 1 Present work 0.69 0.17 -

Re = 1100, θ0 = 30o, f∗ = 0.1, Wu et al. (2014) 0.905 0.345 -
d∗ = π, k∗ = 0, m∗ = 1 Present work 0.885 0.334 -

Re = 1000, θ0 = 75o, f∗ = 0.12, Deng et al. (2015) 2.0 - 0.33
d∗ = π, k∗ = 0, m∗ = 0.1022 Present work 2.017 - 0.31

Re = 1000, θ0 = 75o, f∗ = 0.22, Deng et al. (2015) 2.8 - 0.6
d∗ = π, k∗ = 0, m∗ = 0.1022 Present work 2.55 - 0.56

7.10 Pitching-motion-activated-flapping foil for power ex-

traction

Semi-activated flapping airfoil system is studied here. In this case, the airfoil is sub-

jected to a prescribed pitching motion about its elastic axis and is allowed to move freely

along heave axis due to fluid forces. Airfoil is mounted on a translational spring-damper

system. When, airfoil is subjected to periodic pitch oscillation, it causes correspond-

ing variation of fluid forces over time. These time varying fluid forces induce heaving

motion. Such mechanisms have recently gained focus for their potential application in

tidal and wind energy extraction systems (Wu et al. (2014); Deng et al. (2015)). Pitch

displacement (θ(t)) for the airfoil is defined by Eq. (6.5). Resulting heave displacement

is calculated using Eq. (2.33). Solid equations are solved in non-dimensionalized form.

The non-dimensionalized mass (m∗), damping (d∗), spring stiffness (k∗) and frequency

(f∗) are defined as:

m∗ =
m

1
2ρc

2
, d∗ =

d
1
2ρUc

, k∗ =
k

1
2ρU

2
, f∗ =

fc

U

where ρ, U and c are flow density, free stream velocity and airfoil chord length respec-

tively. The test cases are run for flow around NACA0015 airfoil. with its elastic axis

located at a distance c/3 from leading edge. Results are obtained at Re = 1100 and

Re = 1000. Laminar flow equations can safely be used at these Reynolds numbers.

Simulations are run at four different sets of mechanical parameters (θ0, f
∗, d∗ k∗, m∗)

and resultant values are summarized in Table 7.5. The results are compared with the

solutions from Wu et al. (2014) and Deng et al. (2015) respectively and are found to be in

good agreement with the previous studies. For both test cases conducted at Re = 1000,

variation of CL during a single pitch oscillation period is compared, in Figure 7.34. It

can be observed that the peak value of lift coefficient increases at higher frequency (f∗).

Similar behaviour was observed by Wu et al. (2014) in their work.
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After performing validation, test cases are run to study the effect of Reynolds number

(Re) and translational stiffness k on system response and power extraction efficiency of

semi-activated flapping foil. For this purpose, tests are conducted for varying values of

pitch frequencies (f = ω/(2π)) at three different Reynolds numbers (Re = 5000, 10000

and 50000) for NACA0015 airfoil. Effect of changing elastic stiffness (k) is also studied

by performing calculations at two different values (k = 10 and k = 100). Values of

non-dimensionalized mass and damping constant are set as m∗ = 1 and d∗ = 2π for all

test cases and elastic axis is placed at c/3 aft of leading edge.

7.10.1 Effect of changing stiffness

In order to investigate the effect of changing stiffness on system response, the curves

of rms values lift coefficients (CLrms), power extraction efficiency (η), rms of moment

coefficient (CMrms) and rms of heave displacement (YCrms) are plotted against changing

values of pitching frequency (f∗) at Re = 5000 in Figure 7.35. Power extraction efficiency

(η) is calculated using Eqs. (7.32) - (7.34). It can be observed that lift coefficient initially

reduces with increasing frequency (f∗) but later tends to increase. This behaviour is

similar for both values of k∗. However for k∗ = 100, values of CLrms are higher and

subsequent rise (after reaching local minimum) is also more prominent compared with

that for k∗ = 10. The power extraction efficiency (η) always reduces with increasing

pitching frequency. At k∗ = 10, positive values of η are obtained for the range of

frequencies tested. This indicates that net energy is extracted from the flow. Moreover,

the drop in the values of η is rather linear. On the contrary, power extraction efficiency

values are negative for k∗ = 100. Moreover, the slope of η with f∗ keeps decreasing

with increasing values f∗. These trends are similar to what were observed by Wu et al.

(2014) in their work.

7.10.2 Effect of changing Reynolds number

The response of semi activated flapping foil is studied with changing Reynolds number.

For this purpose, three different Reynolds numbers (Re = 5000, 10000 and 50000) are

considered. System response curves at different Reynolds numbers and at k∗ = 10 are

shown in Figure 7.36. Similar plots k∗ = 100 are shown in Figure 7.37. At low pitching

frequencies, CLrms is higher for higher Reynolds numbers. This aspect is particularly

prominent at k∗ = 100. However, this difference in the values of CLrms diminishes at

higher values of f∗. Similarly, at f∗ = 0.1, the power extraction efficiencies are also

higher for high values of Re. But the efficiency values become almost similar for higher

values of f∗. Therefore, it can be stated that effect of flow Reynolds number on efficiency

of pitching-motion-activated-flapping-foil is more prominent at lower values of pitching

frequencies. At higher values of f∗, the Reynolds number does not significantly affect

the efficiency of the system.
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Instantaneous flow vortex structures at different stages of periodic pitch oscillations are

shown for the three Reynolds number in Figure 7.38. The flow seperation occurs close

to leading edge during pitch-up and pitch-down motion. For Re = 5000, the detach

flow does not re-attaches the airfoil surface. However as the Reynolds number increases,

the inertial forces in the flow enable it to re-attach the airfoil surface after it has been

separated due to pitching motion. As a result, the lift can achieve higher values both

in positive and negative directions. Variation of CL during a complete pitch oscillation

period has been plotted for all the three Reynolds numbers in Figure 7.39. It can

be observed that CL profiles for Re = 10000 and 50000 tend to rise further after a

temporary ridge at around t = T/4. As a result, higher peak lift values are achieved.

The ridge is caused due to leading edge vortex separation. However, as the flow re-

attaches the airfoil, lift starts to increase further high. The ridge in the lift profile is

more prominent at Re = 50000 due to more effective flow re-attachment which can also

be seen in corresponding vortex plots shown in Figure 7.34.

7.11 Conclusion

Closely coupled FSI algorithm with reduced fluid domain is found to be highly effi-

cient for flow induced vibration problems. Accuracy of the solution scheme is greatly

improved with relatively smaller computational overheads compared with conventional

closely coupled FSI systems. The computational cost (in terms of calculation time) is

found to be around 30 % less than that for closely coupled system with full fluid do-

main. It is envisaged that this computational advantage will be even more pronounced

for problems which require a larger number of inner iterations to converge (like problems

involving flexible solids). Use of reduced fluid domain is greatly facilitated by inherent

capability of meshfree-mesh based solver over hybrid grid as it already solves the flow in

two different grid zones separately. Accuracy of the solution is verified for flow around

solids with one and two degrees of freedom. The solution scheme is found to be capable

of providing an insightful information about complex flow structure around vibrating

bodies. A Journal paper, outlining the details of this scheme and its findings, has been

submitted for review Javed et al. (2015). The scope of present study has been restricted

to low Reynolds number flow around rigid solid objects. However, meshfree methods

possess great capabilities to deal with flexible solids with multiple degrees of freedom.

Therefore, future studies may be focused on investigating the applicability of presented

scheme for such problems.

The problems relating to high Reynolds number need special treatments to deal with

stability related issues. In this regard, use of stabilized momentum equation enables

the application of coupled solution scheme for high Reynolds number problems and

enhances the applicability of this solver for a wide range of application including wing

flutter analysis, energy harvesting problems etc. At high Reynolds numbers, turbulent
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flow equations are better representative of flow behaviour. However, the scope of this

study has been limited to laminar flows only. Future studies may therefore, focus the

use of turbulent flow equations with similar solution method.
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(a) U∞ = 20 m/s

(b) U∞ = 30 m/s

(c) U∞ = 35 m/s

(d) U∞ = 37.5 m/s
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(e) U∞ = 40 m/s

(f) U∞ = 42.5 m/s

(g) U∞ = 45 m/s

Figure 7.30: Time profiles of pitch angle α and vertical position for flow induced
vibration of NACA 0012 airfoil
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(a) Pressure profiles at different time instances

(b) Vorticity profiles at different time instances

(c) Pitch angle variation, marked points correspond instances where pressure and vorticity profiles, in
(a) and (b), are captured

Figure 7.31: Flow profiles around NACA0012 during aeroelastic vibration at
Re = 9× 105.



Chapter 7 A coupled FSI scheme on hybrid fluid grid 193

Figure 7.32: Airfoil pitch and heave with respect to oncoming flow

(a) Pitch and heave displacement (b) Aerodynamic forces

Figure 7.33: Variation of heave and pitch displacement rates, aerodynamic
force coefficients and coefficient of performance around NACA0015 at Re =
1100, θ0 = 76.33o, ω = 0.28π
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Figure 7.34: Variation of coefficient of lift CL around pitching-motion-activated
flapping NACA0015 airfoil during a single oscillation period (Re = 1000, θ0 =
75o, k∗ = 0, d∗ = π,m∗ = 0.1022)

(a) (b)

(c) (d)

Figure 7.35: Variation of rms values lift coefficients (CLrms), power extraction
efficiency (η), rms of moment coefficient (CMrms) and rms of heave displacement
(YCrms) with changing Reynolds number and pitch frequencies (f) for pitching-
motion-activated-flapping NACA0015 airfoil at Re = 5000, b = 2π, θ0 = 15o
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(a) (b)

(c) (d)

Figure 7.36: Variation of rms values lift coefficients (CLrms), power extraction
efficiency (η), rms of moment coefficient (CMrms) and rms of heave displacement
(YCrms) with changing Reynolds number and pitch frequencies (f) for pitching-
motion-activated-flapping NACA0015 airfoil at k = 10, b = 2π, θ0 = 15o
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(a) (b)

(c) (d)

Figure 7.37: Variation of rms values lift coefficients (CLrms), power extraction
efficiency (η), rms of moment coefficient (CMrms) and rms of heave displacement
(YCrms) with changing Reynolds number and pitch frequencies (f) for pitching-
motion-activated-flapping NACA0015 airfoil at k = 100, b = 2π, θ0 = 15o
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(a) t=T/8

(b) t=T/4

(c) t=3T/8

(d) t=T/2

(e) t=5T/8

(f) t=3T/4

(g) t=7T/8

(h) t=T

Figure 7.38: Comparison of instantaneous vortex structure for pitching-motion-
activated-flapping NACA0015 airfoil at k∗ = 10, b∗ = 2π, θ0 = 15o, f8 = 0.2.
Left column: Re = 5000, middle column: Re = 10000, right column: Re =
50000
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Figure 7.39: Variation of coefficient of lift CL during a single pitch oscillation pe-
riod for pitching-motion-activated-flapping NACA0015 airfoil at k∗ = 10, b∗ =
2π, θ0 = 15o, f∗ = 0.2.
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Conclusions

The solution scheme presented in this research is found to possess both flexibility and

computational efficiency to deal with problems pertaining to moving boundaries in gen-

eral and fluid structure interaction in particular. RBF-FD was found to provide accurate

derivative approximations especially at random particle distribution. However, well con-

ditioning of the problem was affected when nodal density was significantly varied across

the domain. In order to overcome this issue, shape adaptive RBFs were introduced

which were able to retain well-conditioning of coefficient matrix in changing nodal den-

sity. Shape adaptive RBFs allowed much larger variation of nodal density within the

domain compared with conventionally used RBFs. This was found to be particularly

useful for fluid flow problems where an optimum grid necessitates variation of nodal

density in different parts of fluid domain.

The spatial derivatives obtained from shape adaptive RBF-FD were used to find the

solution of flow equations in vorticity-stream function as well as pressure-velocity for-

mulations. Transient Navier Stokes equations in pressure-velocity formulation were dealt

with using explicit and implicit time marching techniques. Unsurprisingly, implicit time

marching scheme provided better accuracy and stability compared with their explicit

time marching counterparts. Excellent numerical results were obtained on non-uniform

node distribution using the implicit RBF-FD method and therefore the same scheme

was used for further analysis during the research.

RBF-FD was found to be a highly flexible meshfree scheme for accurate approximation

of spatial derivatives at various nodal distributions. The applications of solution scheme

were tested for problems relating to lid driven cavity flow and flow around circular

cylinder. However, like other meshfree methods, RBF-FD was found to be lacking com-

putational efficiency compared with the mesh based methods. In order to overcome this

computational performance related issue, a coupled solution scheme was proposed. The

scheme employed RBF-FD meshfree method and conventional finite differencing method

over a hybrid fluid grid comprising of meshfree nodal cloud and structured Cartesian

199
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grid. The aim of this proposed scheme is to circumvent the performance related limi-

tations of RBF-FD methods by restricting its application to only those locations where

the use of meshfree method is required to flexibly negotiate with moving boundary or

complex geometrical shapes. The remaining part of fluid domain is treated with com-

putationally efficient finite difference scheme over a Cartesian grid. Hybrid grid scheme

was found to work well for both stationary and moving boundaries. Performance and

applicability of the scheme was tested for problems relating to flow around stationary

cylinder as well as cylinder vibrating with one and two degrees of freedom. For mov-

ing boundary cases, problems with forced and flow induced oscillations were studied.

Computational time was found to decline rapidly with reducing the size of meshfree do-

main. However, minimum size requirements of meshfree zone were dictated by expected

vibration amplitudes and degrees of freedom of solid.

The solution scheme was also applied for closely coupled FSI model with reduced fluid

domain (CFSI-RFD). In order to reduce computational cost involved in closely coupled

model, solution on partial fluid domain was sought during inner FSI iterations which are

performed to converge fluid and solid solutions at interface boundary. For CFSI-RFD,

an arrangement for solution on partial fluid grid was naturally provided by hybrid grid

as it treats meshfree and Cartesian zones separately. Therefore, only the meshfree zone

was used during inner (sub) iterations and full fluid domain was used during outer (time

step) iterations. Significant reduction (approximately 30% reduction in calculation time

for flow around static cylinder case) in computational overheads was achieved compared

with conventional closely coupled FSI systems. The computational advantage associated

with the use of partial fluid domain is envisaged to be more pronounced for flexible

structures which need higher numbers of inner iterations to achieve convergence at fluid-

solid boundary. It is pertinent to highlight that CFSI-RFD does not supersede the its

counterpart using full fluid domain (conventionally used closed coupling). However, the

method is more accurate than loosely coupled algorithm and is computationally more

efficient compared with conventional closely coupled method. The solution scheme was

applied to fluid around solid objects with one and two degrees of freedom. Bounds

of stability, amplitudes of vibrations and vortex shedding frequencies were accurately

predicted. The solutions provided insightful information about complex flow structure

around vibrating objects.

Stabilized solution scheme was suggested to deal with instabilities arising in convection

dominated flows. Stabilization technique discussed during the research is equally appli-

cable to both RBF-FD and conventional finite difference based schemes. The stabilized

flow momentum equations were derived using higher order Taylor series approxima-

tions of spatial derivatives evolved by equilibrium conditions over control volume. The

stabilization term was found to effectively suppress spurious oscillations caused by dom-

inating convection. The hybrid solution scheme with stabilization was then applied to

FSI problems with relatively high flow Reynolds number. Flow induced airfoil vibration
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problems were solved for applications in flutter analysis and energy extraction by flap-

ping foil. The solution, which was otherwise not stable due to spurious oscillations, was

found to be stable and accurate with the use of stabilization terms.

Usability of meshfree methods, for flow problems, has always been inhibited due to

their high computational cost. On the other hand, mesh-based methods are, in general,

inferior to meshfree methods in offering required flexibility to deal with moving bound-

aries. Therefore, use of coupled meshfree and mesh-based solvers provides an optimum

modelling approach which can benefit from the strengths of both classes of numerical

techniques. The coupled solution scheme over hybrid grid, suggested in this research,

is found to be highly effective in dealing with flows around solid vibrating around their

mean positions. However, there is still a lot of further research required to fully under-

stand the strengths and limitations of presented work. Some of these areas are identified

in the next section.

8.1 Future work

As mentioned earlier, there lies a good potential to further investigate the coupled solvers

in various aspects. The following are some of the suggested directions towards which

the future research can aim:

1. Usability of hybrid solution scheme may be investigated at high Re and turbulent

flows. This may entail the use of other stabilization techniques, like flux limiting

or upwinding etc., to deal with instabilities. However, the applicability of solution

scheme can thus be extended to a wider range of flutter and vibrating wings related

problems at higher speed flows.

2. Current solution scheme considers only laminar flows. However, it is understood

that turbulent flow modelling represents an even wider range of flow problems.

Therefore, the coupled solution schemes may also be extended for turbulent flows.

3. The computational costs associated with 3-D problems is far higher than for 2-D

cases. Therefore, use of hybrid grid method would offer significant reduction in

computational resources when applied to 3-D problems. It is therefore suggested

that applicability of coupled solution scheme on hybrid grid may be studied for

3-D problems.

4. Application of coupled solution scheme can be investigated for FSI problems having

flexible structures. Convergence of solutions at fluid-solid boundary needs more

number of inner iterations, during closely coupled algorithms, when the structure

is flexible. For such cases, CFSI-RFD will provide an efficient solution approach

by reducing computational effort during convergence at fluid-solid interface.
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5. Various authors have suggested different projection methods for N-S equations in

pressure-velocity formulations. Those methods can also be tested in conjunction

with current solution scheme.

6. Usability of coupled solution scheme is not restricted by non-linearity or large solid

deflections. It can be applied to complicated FSI problems without any further

special treatment. The solution scheme can therefore be used to further investigate

complex flow structures, response behaviour and parametric studies for problems

relating to flow induced cylindrical vibrations, passive and active energy harvesters

using flapping foils, wing flutter, etc.
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