Sabbaghianrad, S. and Langdon, T.G. (2016) Mechanical properties and microstructural behavior of a metal matrix composite processed by severe plastic deformation techniques. MRS Advances, 1-6. (doi:10.1557/adv.2015.7).
Abstract
A severe plastic deformation (SPD) technique was applied to an Al-7075 alloy reinforced with 10 vol.% Al2O3. This processing method of high-pressure torsion (HPT) was performed at room temperature under a pressure of 6.0 GPa through a total number of up to 20 turns. The metal matrix composite (MMC) showed a significant grain refinement from an initial average grain size of ?8 ?m to ?300 nm after processing by HPT through 20 turns which led to an increase in the average values of Vickers microhardness at room temperature.
Full text not available from this repository.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg)
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Mechanical Engineering (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Mechanical Engineering > Mechanical Engineering (pre 2018 reorg)
Mechanical Engineering > Mechanical Engineering (pre 2018 reorg) - Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Mechanical Engineering (pre 2018 reorg) > Engineering Mats & Surface Engineerg Gp (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Mechanical Engineering > Mechanical Engineering (pre 2018 reorg) > Engineering Mats & Surface Engineerg Gp (pre 2018 reorg)
Mechanical Engineering > Mechanical Engineering (pre 2018 reorg) > Engineering Mats & Surface Engineerg Gp (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.