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ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

Thesis for the degree of Doctor of Philosophy 

EXPERIMENTAL STUDY, MATHMETICAL MODELLING AND DYNAMICAL 

ANALYSIS OF MAGNETORHEOLOGICAL ELASTOMER MATERIALS AND 

STRUCTURES FOR VIBRATION CONTROL 

Guanghong Zhu 

As a smart material, magnetorheological elastomer (MRE) is composed of magnetisable particles dispersed 

in a non-magnetic medium. Because the mechanical properties of MRE can be continuously, rapidly and 

reversibly controlled by adjusting magnetic field in a pre-yield regime, there has been increasing research on 

MRE for mitigation of unwanted vibrations, and yet the application and commercialisation in varies fields are 

still on a very early stage. Considering the dependence of mechanical properties on strain, frequency and 

magnetic field the current research on mathematical modelling for MRE is still insufficient to provide 

guidelines for engineering applications.  

In this study, the dynamical properties of MRE were studied by means of shear tests under different 

driving frequencies (1-80Hz), strain amplitudes (0-6.0%) and magnetic fields (0-500mT). The experimental 

results have shown that the storage modulus of MRE increases as the frequency increases, but the loss 

modulus initially increases with frequency (<10Hz) up to a maximum value and then decreases with further 

increasing frequencies; both the storage modulus and loss modulus decrease with an increase of strain, and 

they increase with increasing magnetic flux densities until the magnetic saturation occurs. With the full use 

of gathered information on mechanical property characterisation of MRE, a nonlinear mathematical model is 

established to describe the complex behaviour of MRE for the dynamical analysis of vibration systems, and a 

methodology of modelling is proposed for materials to continuously describe the dynamic behaviour in 

certain region of strain and frequency with a benefit of low requirement for the calculation on parameter 

identification. A structure of MRE is developed with a high bearing capacity and a good controllability of 

stiffness to benefit vibration control systems. The dynamical properties of this structure are predicted with the 

dynamic design and the mathematical modelling, and the results are examined through dynamic tests to 

validate that the extension of this mathematical model in MRE structures. Furthermore, dynamical analysis is 

presented for a two-stage vibration isolation system, a vibration absorption system and an isolation system 

consists of a continuous beam and an MRE isolator to examine the efficiency of MRE absorbers and isolators. 

Results show that a reduction of the vibration amplitude, the force transmissibility or the power flow 

transmissibility can be achieved by properly designing dynamical systems and considering the excitation 

frequency ranges. Comparing with conventional absorbers and isolators, MRE devices can locally and 

globally improve the performance of vibration control significantly from the perspective of dynamical 

behaviour, transmissibility or vibratory energy transmission.  
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 Introduction Chapter 1

1.1 Background 

In order to avoid the problems due to vibration as much as possible in engineering applications, 

it is necessary to develop vibration control techniques all the time. The vibration control 

technique is widely used to suppress vibrations either locally for flexible structures or globally 

for rigid structures in various fields, such as civil engineering, automotive industry, aircraft 

industry and watercraft industry. As a conventional approach, passive vibration control is 

advantageous for its simplicity and ease of implementation; however, the limitation of 

adaptability makes it fail to satisfy advanced requirements. Considering that many practical 

systems have time-varying vibration sources or wide vibration bandwidth, active control is an 

ideal strategy for great vibration control performance, but it has drawbacks such as power 

requirement, cost and complexity. Because of the combination of the versatility of active control 

and reliability of passive control, semi-active (adaptive-passive) vibration control has attracted 

considerable attention over the past decades. Semi-active vibration control systems can adjust 

their resonance frequencies without consuming extra energy in real time, Therefore they have 

potential in engineering applications where high level of vibration control is required
[1,2]

.  

Various smart materials, such as piezoelectric materials, shape memory alloys, 

controllable fluids and elastomers, have been used to tackle vibration problems as smart 

elements with different control schemes, because they have adjustable abilities for sensors, 

actuators and controllers by adding secondary sources such as thermal, magnetic or electric 

energy
[3]

.  Therefore, increasing effort has been devoted to making semi-active vibration control 

devices more utilizable by incorporating smart materials. Since 1948 the discovery of the 

magneto-rheological (MR) phenomenon by Rabinow
[4]

, MR materials have proven to be well 

suited to many applications. Numerous applications are based on MRF because of its MR effect, 

the dynamic yield stress can be continuously, rapidly and reversely controlled by the applied 

magnetic field
[5]

. Such applications have been commercialised and industrialised in various 

fields such as motor damping, vehicle’s suspension and earthquake resistance
[6,7,8]

. Compared 

with the MRF, the application and commercialisation of MRE are still on an exploratory stage 

and the solid state of MRE can overcome many shortcomings of MRF including lower yield 
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stress, sensitivity to impurities, relatively high voltage supplies, liquid leakage and particle 

residue
[9]

. The stiffness and damping properties of MRE can be continuously, rapidly and 

reversibly adjusted within its pre-yield zone by controlling an applied magnetic field, making 

this material suitable for semi-active vibration control systems
[10]

. However, most of research on 

mathematical modelling for MRE is limited to presenting its linear mechanical properties which 

is not accurate due to the dependences on frequency, strain and field
[10,11]

. Therefore, aiming at 

expediting the application and commercialisation of MRE, progressive research should spare no 

effort to develop mathematical models for precisely describing its dynamical properties. 

This research is concerned with experimental characterisation of the dynamical properties 

of MRE. As a starting point, MRE samples are investigated in shear mode, but the methodology 

and results are expandable to compression mode because of the relationship between elastic 

modulus and shear modulus. In compression the elastic modulus is comparatively larger, so the 

relative change of elastic modulus resulting from the application of magnetic field is smaller 

than the relative change of shear modulus. Based upon the experimental research of mechanical 

properties for MRE a mathematical model is established to describe its dynamical behaviour 

and this mathematical model is employed to evaluate the efficiency of various MRE devices for 

vibration control in different dynamical systems. A challenge arises from precise description of 

the dynamical behaviour of MRE associated with frequency and strain dependences. To address 

this, a nonlinear mathematical model is proposed as an appropriate polynomial expression of 

frequency and strain. Another challenge arises from examining the vibration control 

effectiveness of MRE devices, and here various MRE devices are investigated to take dynamical 

behaviour, transmissibility and vibratory energy transmission into account in the selected 

dynamical systems.  

1.2 Aims and objectives 

The aims of this PhD project are: investigate the mechanical properties of MRE, propose a 

mathematical model to predict the dynamic behaviour of this material and apply this material to 

dynamical systems to control vibration transmissions adaptive to the changing operational 

conditions. The principal objectives are accordingly: 

1. Mechanical property characterisation for MRE 

The mechanical properties, including storage and loss moduli, are examined under 

dynamic loading conditions by designing and setting up a reliable measuring system. Firstly, the 

Instron E1000 Electro Plus in the Transport Systems Research Laboratory is employed to 
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perform dynamic loading tests, so as to obtain the experimental data for mechanical property 

characterisation of MRE. Secondly, the experimental data is processed following the Dynamic 

Mechanical Analysis directions for Instron E1000 ElectroPlus measurements to analyse the 

mechanical properties of MRE.  

2. Mathematical modelling for MRE 

A nonlinear mathematical model is proposed to predict the dynamic behaviour of MRE 

under different loading conditions. Firstly, based on the experimental results of mechanical 

property characterisation a model is established mathematically to describe the dependences of 

MRE on frequency and strain. Secondly, the nonlinear model is developed into a polynomial of 

frequency and strain to investigate the efficiencies of MRE absorbers and isolators in various 

vibration control systems. 

3. Dynamic design of MRE structure 

An MRE structure is designed to provide a good bearing capacity and a pronounced 

controllability of stiffness, and the mechanical properties of the MRE structure are predicted by 

the dynamical design and examined through the experimental research. Firstly, the MRE 

structure is designed based upon the experimental results of mechanical properties 

characterisation for MRE. Afterwards, the experimental research on the mechanical properties 

of the MRE structure is compared with the theoretical prediction through the dynamic design to 

verify the extension of all analytical discussion on the MRE.  

4. Efficiency analysis for MRE isolators and absorbers 

Different dynamic systems are selected to explore the performance evaluation on 

vibration control for MRE absorbers and isolators and provide guidelines for parameter 

selection in the dynamic design of MRE vibration control systems. Firstly, the dynamic designs 

for MRE absorbers and isolators are proposed on the basis of the dynamic design for MRE 

structures. Secondly, numerical simulation is carried out in Matlab to investigate the vibration 

characteristics of respective systems, and the efficiencies of vibration isolators and absorbers are 

evaluated from the perspective of dynamical behaviour, transmissibility and vibratory energy 

transmission. 

1.3 Novelty  

Due to the Payne effect, the Mullin effect and MR effect, the MRE is a nonlinear viscoelastic 

material with dependences of mechanical property on strain, frequency and magnetic field. 
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There are lots of experimental results on the stiffness properties of MRE, including the 

dependence of stiffness on frequency, strain and magnetic field; in this project the damping 

properties of MRE are also investigated to attain an integral research and model the dynamical 

behaviour for this material. Dynamic tests in shear mode are carried out to study the dependence 

of MRE, the mechanical properties are studied in a frequency range of 1 ~ 80Hz, a strain range 

of 1 ~ 5% and a magnetic field strength range of 0 ~ 500mT.  

Accurate models to describe the complex dynamical behaviour are essential to step 

towards the industrialisation and commercialisation of MRE. Currently, most modelling on 

MRE material has focused on the linear dynamical behaviour, and there are a few models to 

describe the influence of magnetic field, driving frequency and strain amplitude on the 

dynamical behaviour. However, MRE material displays a non-linear strain-stress relationship, 

and there is still a lot of work to do on mathematical modelling. The majority of the research on 

modelling of dynamical properties of MRE focuses on the hysteretic behaviour of this material, 

which is effective for describing the effects of loading history on the dynamic response of MRE, 

but considering time-varying vibration sources in reality it is hard to apply these models in a 

wide bandwidth because the influence of loading history varies with frequencies. There are also 

many researchers who modelled the dependence of mechanical properties on magnetic fields for 

MRE, but these models are limited to static loading conditions. In this project, the 

comprehensive experimentation research enables a nonlinear mathematical model to represent 

the dynamic behaviour of MRE. In this model the spring force and the damping force is 

expressed in the form of polynomials, and the frequency and strain are independently 

continuous variables. Due to the low requirement of calculation on parameter identification with 

the full use of gathered information on mechanical properties, this methodology of modelling 

can be also applied to other materials to describe the dynamic behaviour in a certain range 

continuously.  

The current investigation on dynamical properties of MRE on a large scale, which is 

essential for the application of MRE, is still deficient. Possessive research should spare no effort 

to develop a theoretical model to offer valid dynamical analysis of MRE structure and accurate 

evaluation of its vibration control efficiency. This study develops an MRE structure with a high 

bearing capacity and good controllability of stiffness, which can benefit vibration control 

systems. The stiffness and damping of this MRE structure are predicted by combining the 

dynamic design and the mathematical model. Subsequently this MRE structure is examined 

through dynamic tests in a frequency range of 1 ~ 60Hz, a strain range of 1 ~ 5% and a 
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magnetic field strength range of 0 ~ 160mT. Lastly the predictions are compared with the 

experimental results to validate that the mathematical model of MRE can be extended to MRE 

structures. 

Comparing with the industrialisation and commercialisation of MRF the current 

application of MRE on vibration control is still at a very exploratory stage. In this project, the 

nonlinear mathematical model of MRE is used to evaluate the efficiency of vibration control in 

dynamical systems. Herein a two stage isolation system, an absorption system and an isolation 

system with a flexible base are presented. Aiming at providing guidelines for parameter 

selection in the dynamic design of MRE vibration control systems, the effective evaluation of 

vibration control is investigated from the perspectives of dynamical behaviour, transmissibility 

and vibratory energy transmission in selected dynamical systems. The control efficiency of 

MRE devices are compared with traditional devices and the influence of non-linearity on 

vibration control is also analysed. 

1.4 Thesis structure 

The thesis begins with a general overview of the current research of MRE. The fabrication, 

classification, fundamental mechanics, theoretical models and applications of MRE are 

reviewed to exhibit the research background and significance of this project. It is shown that the 

majority of current research on mathematical modelling of MRE is insufficient in the integration 

of nonlinearities due to the dependence of mechanical properties on strain, frequency and 

magnetic field, and the application of MRE in vibration control is on a very early stage because 

both the valid mathematical model and the experimental research on a large scale are deficient 

for accurately describing the dynamical behaviour of MRE vibration systems. 

Chapter 3 elaborates the manufacturing of MRE samples and a methodology to 

characterise the dynamical properties of MRE in shear mode. The influences of ferromagnetic 

particle, magnetic field and coupling agent during solidification on mechanical properties of 

MRE are also discussed, respectively.  

Chapter 4 investigates the dependences of mechanical properties on frequency, strain and 

magnetic field to provide useful information for mathematical modelling of MRE. The storage 

modulus and loss modulus in shear mode are examined in a range of frequencies from 1Hz to 

80Hz, a range of strain amplitudes from 1% to 6% and a range of magnetic field intensities of 0 

to 0.5T. 
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Chapter 5 proposes a mathematical model to continuously describe the dynamical 

behaviour of MRE. This nonlinear model is developed from the Kelvin Voigt model and based 

on the experimental results of mechanical property characterisation. An MRE structure is 

graphically designed and experimentally tested to examine the extendibility of this nonlinear 

model on a large scale, where the dependence on strain and frequency is utilised as inputs in the 

research on MRE vibration systems. 

Chapter 6 analyses the effectiveness of MRE isolators within the context of a two-stage 

vibration system. The steady state response is obtained by formulating the motion equations, 

and the transmissibility of the isolation system is investigated by comparing different isolation 

systems. Reductions in the vibration response and isolation transmissibility can be obtained by 

properly selecting the parameters, which will provide guidelines for the dynamic design of two-

stage MRE isolation systems. The numerical results show that when comparing with traditional 

isolators the isolation characteristic can be improved with MRE isolators by applying magnetic 

field at frequencies in the required regime. 

Chapter 7 studies the dynamics of a vibration system with an MRE absorber. The motion 

equations are formulated to obtain the steady state response of system and the absorption 

characteristics are analysed for different parameters to evaluate the efficiency of vibration 

control. The results reveal that the vibration response and transmissibility can be effectively 

reduced with a proper parameter selection; thereby, this study is instructional for the dynamic 

design of MRE absorbers. The comparison of numerical results between traditional absorbers 

and MRE absorbers also displays that an improved absorption performance can be obtained 

with an adaptive MRE absorber by adjusting the applied magnetic field. 

Chapter 8 investigates the performance evaluation on vibration control for MRE isolators 

within a dynamical system comprising a flexible beam. The steady state response of the system 

is analysed by formulating the motion equations, and the numerical results of transmissibility 

and vibratory power are discussed to assess the effectiveness of vibration control. The isolation 

characteristics of the system are evaluated and compared for different parameters from 

perspective of dynamical behaviour, force transmissibility and vibratory energy transmission. 

The results provide useful guidelines for the dynamic design of this vibration system. By 

comparing with traditional isolators, the effectiveness of vibration control can be improved with 

adaptive MRE isolators through adjusting the applied magnetic field. 

  



7 

 

 

 Mechanical properties, modelling and Chapter 2

applications of MRE 

2.1 Fabrication of MRE 

2.1.1 Selection of matrix and particles 

MRE is a kind of multi-functional composite material, where typically magnetisable particles 

are suspended in a non-magnetic elastomer. For matrix material, having good mechanical 

properties and high mechanical strength is very important. There are many elastomers and gels 

which might be used as the matrix of a MRE, such as natural rubber
[12]

, silicon elastomer
[13]

, 

polystyrene
[12]

, gelatin
[14]

, polyurethane sealant
[15]

. Generally speaking, hard matrix materials 

have high zero-field modulus, and soft matrix provides small resistance to particles aligning in 

the direction of magnetic field; therefore softer matrix materials may show a greater MR 

effect
[16]

 which is the difference between the zero-field modulus and the modulus measured 

under external magnetic field. Additional plasticizers have proven to be effective in reducing 

zero-field modulus and improving the MR effect
[12,17]

, but too much plasticizer will also 

undermine the ability of materials to sustain load. 

This implies that the gel based MRE have high MR effects, but they are ill-suited for load 

bearing applications due to low mechanical strength and reduced fatigue life, meanwhile the 

elastomer based MRE has good bearing capacity, although their applications are limited by their 

low MR effect. Basically the obvious aging phenomenon of natural rubber-based MRE makes it 

difficult to possess excellent resistance to chemical or mechanical degradation. Therefore within 

natural rubber matrix the magnetisable particles have to be coated, which complicates the 

manufacture procedure of MRE material. As a kind of synthetic material, silicone elastomer is a 

suitable candidate because of good elasticity and temperature resistance. Furthermore silicone 

elastomer based MRE can be cured at room temperature, which simplifies the fabrication of 

MRE material. 

Magnetisable particle of MRE need to have good magnetic permeability, high saturation 

magnetisation and low remnant magnetisation. Good magnetic permeability and high saturation 
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magnetisation can provide high attraction between magnetisable particles, and thereby a high 

MR effect which is recommended. Low remnant magnetization is also an important 

characteristic
[18]

, which guarantees that the dependent properties of MRE can be adjusted 

continuously, rapidly and reversibly by an applied magnetic field. This is because when the 

magnetic field is switched off high remnant particles tend to stick together and prevent a 

completely reversible MR effect. Magnetisable particles of MRE are usually made of soft 

ferromagnetic materials. And the most commonly used magnetisable particles are carbonyl iron 

powders, because of their good magnetic permeability, high saturation magnetisation and low 

remnant magnetisation. 

The size and shape of the particles are also very important factors that influence the 

behaviour of MRE. Comparing with the shape, the average size of particles is more important. 

Basically, larger particles can improve the MR effect because stronger dipole–dipole action 

results in aligning in the direction of the magnetic field more easily
[19]

. MRE with large particles 

also has high elastic modulus and poor interactions between particles and matrix, which may 

cause poor mechanical properties
[20]

. 

Experiments reveal that high concentration of magnetisable particles can increase elastic 

modulus and MR effect. But above a threshold, further increase of particle volume 

concentration causes an elastic modulus drop of MRE, whilst at the same time the linear 

viscoelastic region gradually disappears with increasing filler content. Because when the 

elastomer is not sufficient for filling all the voids between particles, the mechanical properties 

of the composite will deteriorate, which is a general characteristic of filled rubber compounds
[21]

. 

It is believed that the critical volume concentration for magnetisable particle is 30%; higher than 

this threshold the mechanical properties, stability and inoxidisability of MRE material will 

deteriorate with increasing volume concentration of particles
[22]

. 

2.1.2 Influence of magnetisation 

The interaction between the non-magnetic matrix and the magnetisable particles can be either 

strong or weak and it influences its mechanical and rheological properties; especially in the 

linear viscoelastic range these are highly affected by the microstructure of composite. Firstly 

magnetisable particles are embedded in the uncured non-magnetic matrix and then the mixture 

is cured. There are two kinds of MRE due to the different ways in which the particles are 

dispersed in the matrix namely, anisotropic MRE which have a directed particle orientation 

attributed to the application of magnetic field during curing procedure and isotropic MRE which 

can be characterized by a random distribution of magnetisable particles because of the curing 
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without magnetic field
[23]

. In the curing process, an applied magnetic field forces the 

magnetisable particles to form in chains; thus the particles are fixed after the matrix 

solidification, which is called anisotropic MRE. Otherwise, isotropic MRE is cured without a 

magnetic field thereby can be considered as homogeneous materials
[24]

. In Figure ‎2.1, the SEM 

images display the microstructures of anisotropic MRE and isotropic MRE. 

 
 Figure ‎2.1 SEM images of (a) isotropic MREs and (b) anisotropic MRE

[15]
. 

The mechanism of magnetorheological (MR) effect: when a magnetic field is applied to 

MRE materials, the particles inside tend to align in the direction of magnetic flux, thereby the 

elastic matrix is also deformed, as shown in Figure ‎2.2. As a result MRE materials become 

stiffer with the application of external magnetic field, and the field-induced change in elastic 

modulus is commonly used to describe the measurement of MR effect. When the particles are 

magnetically saturated the maximum change of elastic modulus occurs, and when the applied 

magnetic field is parallel to the particle alignment in conjunction with the direction of stress the 

greatest MR effect can be found
[25]

.  

 

Figure ‎2.2 The sketch of mechanism of MR elastomers under magnetic field
[43]

. 

Therefore, anisotropic MRE material displays a more significant MR effect compared 

with isotropic MRE material. Additionally, anisotropic MRE always possesses higher zero-field 

elastic modulus and shear modulus than isotropic MRE with the same composition, which can 

be explained by the fact that the clusters or chains of magnetisable particles enhance the 
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interactions and resist the compressing force or shearing force, and friction occurs between the 

particles
[26]

. 

2.1.3 Influence of coupling agents 

The mechanical properties of MRE are strongly dependent on its microstructure and the 

interaction between magnetisable particles and non-magnetic matrix is relatively important
[30]

. 

Good wetting of particles is essential to form a continuous structure, because loose 

agglomerates are believed to be potential failure initiation sites
[27]

. Besides when gaps exist 

between matrix and particles, magnetic energy will be lost, thereby the microstructure will not 

change appreciably with the application of magnetic field, which destroys the rheological 

properties of MRE and reduces the MR effect. The coupling agent can effectively enhance the 

interaction between magnetisable particles and non-magnetic matrix in various ways, which 

may improve the MR effect
[28]

. According to Wang’s research vingytriethoxysilane improved 

the tensile strength of MRE by 77% and MR effect by 37%
[29]

. In Wu’s study diisooctyl 

phthalate allowed carbonyl iron particles to align more easily in the matrix as a result the 

composite owned greater MR effect. However, the thermal stability and compressive strength 

are undermined
[15]

. The research of Li and Sun showed that multi-walled carbon nanotubes 

could be also added to MRE as a coupling agent
[31]

, where a layer of nanocomposite could wrap 

the particles and form a district interface to improve the bonding between magnetisable particles 

and matrix. This composite could combine the outstanding properties of both the smart material 

and the carbon nanotubes, and exhibited both higher zero-field stiffness and larger absolute MR 

effect. 

2.2 Mechanical properties of MRE 

2.2.1 Payne effect 

The Payne effect can be observed when filler-reinforced rubber is subjected to cyclic loading 

with small strain amplitudes, and it can also be manifested as a dependence of the modulus on 

the applied strain amplitude
[32]

. The Payne effect can be physically attributed to deformation 

induced changes in microstructure, such as the breakage and recovery of weak physical bonds 

linking adjacent filler clusters. The Payne effect of MRE can be defined as the decrease of 

storage modulus and loss modulus with increasing amplitude of the applied harmonic load
[33]

, as 

shown in Figure ‎2.3. It is reported that the Payne effect increases with increasing filler 

concentration in the composite material
[34]

. 
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Figure ‎2.3 Experimental result of filled rubber: (a) storage modulus and (b) loss modulus at 

different amplitudes and frequencies
[33]

. 

As a kind of filler-reinforced rubber, MRE also performs a transient behaviour of the 

Payne effect, namely when the amplitude of applied harmonic deformation is increasing, the 

storage modulus decreases from a high level to a low plateau while the loss modulus also 

decreases
[35]

, as shown in Figure ‎2.4.  

 

Figure ‎2.4 Storage modulus and loss modulus of MRE under different strain amplitudes
[35]

. 

Additionally, anisotropic MRE has a more pronounced Payne effect than isotropic MRE. 

At the same time, the applied strain amplitude is also relative to the MR effect because the 

magnetic forces are dependent on the distance between the particles. Therefore, the maximum 

MR effect can be obtained at relatively small strain amplitudes when the interaction between the 

particles is strong
[36]

, and the MR effect decreases gradually with increasing amplitude of 

applied harmonic deformation, because the MR effect will diminish when the particle chains 

start to yield
[37]

. 
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2.2.2 Mullin effect 

The Mullins effect is a particular phenomenon of the dynamic response in filled rubbers where 

the stress–strain curve depends on the maximum loading previously encountered. MRE also has 

Mullin effect which can be described as the composite becoming softer with the loading cycles 

until the composite comes to a stable point after certain number of cycles
[38]

. So the same 

applied strain, during the first loading cycles will result in lower and lower stress, which is due 

to the breakdown of original firm binding structure between the filler particles and the rubber 

matrix
[39]

. If the material is left unloaded for a period this firm binding will start forming again 

and the material will partly recover its original stiffness. Additionally the recovery procedure 

can be speeded up when the material is heated. However, whether materials can recover totally 

to their original state depends on the strain they are loaded to
[40]

. 

2.2.3 MR effect 

As a kind of resilient material, MRE has rheological properties which can be changed with the 

action of an applied magnetic field, which is called the MR effect. The effect is taking place on 

a micron scale when filler particles interact with elastomer molecules, which can be called the 

elastomer-filler mesophase. Elastomer compounds are highly complex polymer systems where 

various solid ingredients are dispersed in an elastomer matrix, especially when the elastomer 

exhibits a viscoelastic character by nature
[41]

. 

MRE is commonly operated in the linear viscoelastic region with small deformations, 

where its field-dependent modulus can be continuously, rapidly and reversibly controlled in the 

pre-yield regime through adjusting an external magnetic field. MR effect enables the rheological 

properties of MRE to be varied by magnetic field, as shown in Figure ‎2.5, which is known as 

the relative change of the effective modulus when the magnetic field intensity increases from 0T 

to a value. MR effect can be defined as 

0

0

100%BM M

M




                                               (‎2.1) 

where M0 is the effective modulus when magnetic flux density is 0T and MB is the effective 

modulus when magnetic flux density is a maximum. 

It is suggested that the magnetic force between magnetisable particles inside the 

composite is relevant to the modulus of MRE. When a magnetic field is exerted, the filler 

particles will get magnetised and interact with surrounding particles
[42]

. Therefore, even the 
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isotropic MRE belongs to anisotropic materials in essence. In MRE material, the stiffness of 

composite depends on the number of particle chains per unit cross section and the stiffness of 

particle chains is sensitive to the amount of polymer in the gaps between the magnetisable 

particles. The application of magnetic field can effectively increase the stiffness of particle 

chains, so MR effect is a kind of temporary reinforcement. When applying an external magnetic 

field, the MRE will slightly deform without any mechanical loads. Thus, isotropic MRE will 

expand in the direction of the magnetic field, while anisotropic MRE will compress; 

additionally the magnetically induced deformations are related to the applied field strength 

when the magnetic field is parallel to the oriented structure
[43]

. The deformation of anisotropic 

MRE driven by external magnetic field is smaller than that of isotropic MRE with the same 

volume fraction, which coincidences with the fact that anisotropic MRE is stiffer than isotropic 

MRE in the chain direction
[44]

. 

 

Figure ‎2.5 Stress-strain plots of MRE with different magnetic field at a fixed strain amplitude of 

0.2% and a driving frequency of 5 Hz
[52]

. 

Magnetic flux density is very important among all the factors relevant to the magnetic 

force, and the magnetic force grows with increasing magnetic field intensity thus the modulus of 

MRE also grows. As show in Figure ‎2.6, both storage modulus and loss modulus of MRE 

increase with magnetic flux density. When saturation occurs, the magnetization of each particle 

will remain constant and the magnetic force between the particles will stop increasing with 

magnetic field
[45]

. Therefore, the moduli of MRE change very little with increasing magnetic 

flux density within such a regime, and the modulus of anisotropic MRE seems to be more 

sensitive to magnetic field intensity, which also indicates that the MR effect of anisotropic MRE 

is greater than isotropic ones
[46]

. 

At present, the broad industrial application of MRE is limited due to the MR effect not 

being large enough. In previous studies, the MR effect as a function of particle magnetisation, 
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and the maximum possible field-induced change in modulus occurs when the aligned particles 

are magnetically saturated, which explains why it is useful to select active particles with high 

magnetic permeability and saturation magnetization. 

 

Figure ‎2.6 Dependence of storage modulus (left) and loss modulus (right) of isotropic MRE 

with different concentrations of 40 μm iron particles in silicone on the magnetic flux density
[45]

. 

The MR effect can be improved by several factors which can be deduced from the 

mechanism. Firstly, the larger dipole-dipole action between magnetisable particles will make it 

easier to align in the direction of the magnetic field; and thus obtain higher MR effect. 

Increasing the amount and size of magnetisable particles is an effective way to enhance this 

interaction. However, too large concentration and size of particles will result in a high zero-field 

modulus M0 and then a low relative MR effect. Additionally, the mechanical properties, stability 

and inoxidizability of MRE will also deteriorate with increasing the amount or size of 

magnetisable particles. It is reported that for a required particle volume fraction the employment 

of an appropriate mixture of large particles and small particles (of 7.9μm and 1.25μm diameters) 

can effectively increase the field induced modulus of MRE without a concomitant increase of 

the zero-field modulus
[47]

. According to the mathematical modelling of Jolly and the finite 

element calculation of Davis, the highest MR effect is believed to take place when the particle 

volume fraction is 30% and the zero-field shear modulus of anisotropic MRE is larger than the 

isotropic materials with the same composition
[48,49]

.  

Secondly, the soft matrix material leads to a low zero-field modulus M0, which offers a 

potential opportunity for high relative MR effect. Simultaneously the softer matrix has smaller 

resistance to magnetisable particles getting aligned along the magnetic field lines, which also 

indicates that softer matrix materials may show a greater relative MR effect. The addition of 
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plasticizer has proven to be effective in enhancement for relative MR effect by decreasing the 

zero-field modulus. However, too much plasticizer will result in too soft matrix, and MRE 

based on soft elastomer matrices are usually ill-suited for most load-bearing applications 

because of low strength and reduced fatigue life.  

Thirdly, the interaction between magnetisable particles and non-magnetic matrix is also 

helpful in improving the MR effect. Because magnetic energy will be lost when gaps exist 

between particles and matrix, then the microstructure of MRE cannot be changed much with 

the magnetic field, thus the modulus cannot be changed much either. Han found that 

magnetisable particles in wavy chains are more effective in improving the MR effect in both 

shear and tension/compression than magnetisable particles in straight chains
[50]

. 

2.3 Dependences of MRE 

2.3.1 Frequency dependence 

In previous studies, most researchers employed the relationship between the known sinusoidal 

excitation frequency and its responses to evaluate the modulus of MRE, and the experimental 

research reveals that the storage modulus G' and the loss factor tanδ also change with the 

applied driving frequency, as shown in Figure ‎2.7. The storage modulus increases with the 

increment of driving frequency, whilst the loss factor decreases with increasing frequency and 

the relationship between them can be considered linear
[51]

. 

 
Figure ‎2.7 Storage modulus and loss modulus by oscillatory tests under different driving 

frequency
[51]

. 

Actually, the dependences on frequency are determined by the matrix material, or we can 

say MRE inherits the dependences on frequency from the matrix material. Noticeably, it is 

difficult to excite MRE material over 100Hz, because fixing MRE samples with high excitation 

frequency causes their viscoelasticity to vanish
[52]

. 
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2.3.2 Temperature dependence 

It is reported that temperature can also influence the mechanical properties of MRE, and 

experimental research reveals that both storage modulus and loss modulus decrease with 

increasing temperature
[53]

. As shown in Figure ‎2.8, the storage modulus decreases by 50% from 

20℃ to 80℃. It is worth pointing out that the electromagnets will produce thermal impact on 

MRE material while generating magnetic field and the increasing temperature will cause 

unreliable experimental results. Basically there are two main factors that influence the MR 

effect due to increment of temperature: (i) the magnetisation of particles decreases, which can 

reduce the maximum change of normal force, and (ii) the modulus of matrix decreases with 

increasing temperature, which can benefit the movement of the magnetisable particles inside 

and enhance the interaction between particles
 [54]

.  

 

 

Figure ‎2.8 (a) Temperature-dependent modulus of MRE
[53]

 and (b) Stress-strain curve of MRE  

at different temperatures
[55]

. 

2.4 Mathematical modelling of MRE 

2.4.1 Linear models 

The MRE exhibits linear viscoelastic characterisation within a certain range of frequency and 

strain where the microstructure of material does not change; thus, tiny strain excitations will 
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result in linear responsive stresses in this linear viscoelastic region. Although considerable 

destruction of microstructure has great influence on the dynamic performance of MRE material, 

it is still believed that it remains linear viscoelastic if the microstructure is only slightly 

destroyed. The dynamic behaviour of MRE under an applied harmonic load can be described by 

linear models developed with respect to its elastic hysteresis. When sinusoidal loads are applied 

to linear viscoelastic materials, the responsive stress will be a sinusoidal function with the same 

angular frequency neither exactly in phase with the applied strain nor totally out of phase
[56]

. 

The stress σ(ωt) and strain ε(ωt) can be expressed in sinusoidal form: 

 
0

0 0 0

sin

sin cos sin sin cos

t

t t t

  

         



   
          (‎2.2) 

where σ0 and ε0 are amplitudes of stress and strain, respectively, ω is the angular frequency, t is 

cycle time and  is the loss angle whose range is         . In viscoelastic materials, some 

of the deformation energy can be stored and recovered, whilst the remainder is dissipated as 

heat during each cycle. The first term on the right of Equation (‎2.2) represents the elastic 

component and the second item indicates the viscous component. It is obvious that the shape of 

the stress-strain curves for linear viscoelastic material under sinusoidal load is elliptical as 

shown in Figure ‎2.9. 

 

Figure ‎2.9 Stress-strain plot for linear viscoelastic material under sinusoidal actuating loading 

and the relationship between geometry and dynamic properties
[52]

. 

The storage modulus M represents the ability of viscoelastic material to store the energy 

due to deformation, which contributes to the material stiffness. The loss modulus M" indicates 

the ability of viscoelastic material to dissipate the energy of deformation. They can be defined 

as: 

0( sin cos )M t M t                                               (‎2.3) 
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where M can be either the shear modulus G or the Young’s modulus E. It is usually convenient 

to express the modulus as a complex quantity. Then the dependence of the in-phase and out-of-

phase stress on the strain can be presented using the complex modulus M
*
: 

M M iM    .                                                  (‎2.4) 

The ratio between the loss and storage moduli is another widely used term for viscoelastic 

materials: 

tan
M

M






                                                               (‎2.5) 

where tanφ is called the loss factor, which can be used for describing the efficiency of damping 

caused by the viscoelastic material.  

Based on the relationship between the geometry of stress-strain curve and dynamic 

properties of viscoelastic material in Figure ‎2.9, the complex modulus M
*
 can be obtained by 

calculating the slope of the line from the maximum strain to the minimum strain, and the loss 

angle  is relevant to the energy dissipation per volume within an oscillatory cycle which is the 

area enclosed by the hysteresis loop. The storage modulus M' and loss modulus M" can be 

expressed with the loss angle  and the magnitude of modulus |M
*
|: 

 cos sinM M M M                                                    (‎2.6) 

where |M
*
| =√       . 

Experimental research demonstrates that MRE behave with linear viscoelastic properties 

when the strain amplitude is within 10%, and then the hysteresis curve of response stress and 

input strain can be simplified as elliptical loops. There are already several linear viscoelastic 

models to process the stiffness and damping capability of MRE, and the Kelvin-Voigt model is 

the simplest among all the models. As shown in Figure  2.10, this is a parallel combination of a 

dash-pot and a spring. When the load is not too high, the Kelvin-Voigt model can represent 

creep in materials very well, because it predicts the material to deform at a decreasing rate with 

a constant stress and approach asymptotically the steady-state strain as time increases to infinity. 

But this model is not good with modelling relaxation in materials when the stress is released. 

In Figure ‎2.10 γ
*
 is input strain and τ

*
 is response stress, both of them in complex form. 

The corresponding parameters are defined with reference to Equation (‎2.6). 

,M k M c                                                     (‎2.7) 
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Figure ‎2.10 Kelvin-Voigt model for MRE
[56]

. 

Damping dissipates energy in vibrating systems, as a process it happens when the 

damping force is proportional to the vibrational velocity and has dimensions of force per unit 

velocity. When the system is subject to an external impulse, the smallest amount of damping for 

no oscillation occurs in free vibration response, and is defined as the critical damping. In 

practice, damping is usually smaller than the critical value. For MRE material, the damping can 

be considered as a viscous characteristic, and the constant describes the damping rate of the 

material. Subjecting the system to forced or free oscillations, damping can be studied when it is 

on a subcritical level, which can be obtained from the dynamic equilibrium equation of 

viscoelastic motion for a single degree of freedom (SDOF) system, namely. 

0( ) ( ) ( ) i tmx t cx t kx t F e                                              (‎2.8) 

where F0 is the external oscillating force, m the effective mass, x(t) the displacement and k the 

spring constant of the system. However, the value of the viscous damping constant c is 

dependent on the dimensions of the specimen. Thus the dimensionless damping ratio ξ, of actual 

damping to the critical damping, is often used instead of the damping constant c. The critical 

viscous damping constant is defined as cc = 2mω0, where ω0 is the natural frequency of the 

vibrating system, respectively. The damping ratio is defined as 

02c

c c

c m



  .                                                     (‎2.9) 

Damping has only a minor influence on the response of system in the frequency regions 

either well below or well above the resonance frequency, but it is of great importance near the 

resonance frequency. In the range of ω « ω0 the vibration is almost the same as produced by the 

static action of force, and in the range of ω » ω0 the high frequency disturbing force practically 

produces no forced vibrations and damping has only a secondary effect on the value of 

magnification factor. In these regions, the effect of damping can be neglected. But in the case of 

resonance where the magnification factor can be quite large, the damping becomes very 
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important and it cannot be disregarded as the magnification factor is very sensitive to the 

changes in damping
[57]

. 

2.4.2 Nonlinear models 

Within the pre-yield regime, the modulus of MRE is dependent on not only the applied 

magnetic field but also the applied strain amplitude and the driving frequency. Additionally 

interfacial slippages also occur between the matrix and particles. As a result, the relationship 

between applied strain amplitude and the response stress amplitude is nonlinear
[58]

. However, 

until now most of research has focused on the linearity when it comes to theoretical problems 

and the nonlinearity of MRE has not been systematically investigated. 

Several theoretical models have been proposed to describe the magneto-rheological 

properties of MRE. The first dipole model was developed by Jolly in 1996 which is basically 

quasi-static and one-dimensional
[47]

, and the saturated field-induced shear modulus was given 

by 

2

3

02

S
J

P

J
G

h



 
                                                            (‎2.10) 

where h is the space between two adjacent particles, φ is the volume fraction of magnetisable 

particles, JS is the saturation magnetization, μ0 is the permeability of ferrum and μP is the 

relative permeability of medium. 

In 1999 Davis proposed another chain model to deduce the field induced shear 

modulus
[59]

, which differed by a numerical factor of 1.2 due to isolated chains, and the optimum 

particle volume fraction was predicted to be 27%. This was expressed as 

2

3

0

3

5

S
D

P

J
G

h



 
 .                                                        (‎2.11) 

Chen came up with a column model in 2007 to calculate the field induced shear 

modulus
[60]

, namely 

  2

0 sin cos
C

H
G

   




                                             (‎2.12) 
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where γ is the shear strain, H0 is the applied magnetic field strength, μ║ the permeability of the 

block parallel to the column axes and μ┴ the permeability of the block perpendicular to the 

column axes. 

There are also several viscoelastic models that have been proposed in previous research to 

describe the frequency and strain dependent properties of MRE. Based on classical Kelvin-

Voigt model a three-parameter viscoelastic model was developed, as shown in Figure ‎2.11, with 

spring k1 used to improve the efficiency when the model is subject to sudden load. The 

corresponding parameters are defined by Equation (‎2.13)
[61]

 

2 2

1 2 1 2 1 1

2 2 2 2

1 2 1 2

( ) ( )
,

( ) ( ) ( ) ( )

k k k k k c k c
M M

k k c k k c

 

 

 
  

   
.                     (‎2.13) 

 

Figure ‎2.11 Three-parameter Kelvin viscoelastic model for MRE
[61]

. 

Figure ‎2.12 shows a standard linear solid model for MRE, which combines aspects of the 

Maxwell model and Kelvin–Voigt model to describe the overall behaviour of a system, and 

Equation (‎2.14) defines the corresponding parameters. This model is capable of describing the 

general features of viscoelastic relaxation, but the model lacks the ability to model the 

relaxation over the full range
[62]

. 

 

 

 

 

2 2

2 2

1 2 22 2

2 2

,
k c k c

M k M
k c k c

 

 
   

 
                              (‎2.14) 

 

Figure ‎2.12 Three-parameter Maxwell viscoelastic model for MRE
[62]

. 

As shown in Figure ‎2.13, a four-parameter viscoelastic model for MRE was proposed and 

the corresponding parameters
[63]

 are defined by Equation (‎2.15). 
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    (‎2.15) 

 

Figure ‎2.13 Four-parameter viscoelastic model for MRE
[63]

. 

Furthermore, a general Maxwell viscoelastic model
[64]

 for MRE was developed as shown 

in Figure ‎2.14, and the corresponding parameters are defined by Equation (‎2.16), as 

 

 

 

 

2 2

0 2 22 2
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,
n n
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i ii i i i
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k c k c

 

  

   
 

  .                                (‎2.16) 

 

 Figure ‎2.14 General Maxwell viscoelastic model for MRE
[64]

. 

Once large strain amplitude causes the destruction of microstructure, the nonlinearity will 

take place within MRE material. In that case the response stress of a sinusoidal strain loading 

can be expressed by a Fourier series of odd harmonics
[65]

, where the higher harmonics of the 

driving frequency are due to the nonlinearity of viscoelastic material, namely 

 

0

1,

sin

sin
N

n n

n odd

t

n t

  

   




 
.                                        (‎2.17) 
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It can be observed in Equation (‎2.17) that when the classical model is under a sinusoidal 

loading, the nonlinearity will give rise to a non-elliptic stress-strain curve due to harmonic 

distortion
[62]

, as shown in Figure ‎2.15. The high order terms generally have no explicit physical 

meaning, thus are of little help in further understanding the complex nonlinear behaviour. 

 

Figure ‎2.15 Stress–strain relationships with various magnetic fields at strain amplitude of 

10%
[62]

. 

Jun-Tao Zhu proposed another model
[66]

, where ε is assumed to be the input strain and σ 

is the output stress, with the stress–strain relationship is described by 

       0 0G G i
         .                                       (‎2.18) 

Notably, in this model α is an arbitrary order derivative, including fractional order. As for 

modelling the response of MRE material, it is a major challenge to capture the strain stiffening 

in force-displacement loops and the nonlinear relationship between velocity and force. 

Jian Yang proposed a new phenomenological model to portray this unique behaviour
[67]

. 

This model incorporates a Bouc–Wen component, which is combined with a spring and a 

damper to portray the unique strain stiffening property, and a Voigt element to describe 

hysteresis loops and solid-material behaviour, respectively. 

For each hysteresis loop of stress-strain curve, an equivalent storage modulus G'equ and an 

equivalent loss modulus G"equ can be calculated by Equation (‎2.6). In comparison with non-

linear models, this equivalent method avoids discussing the high order issues which have no 

explicit physical meanings. Therefore, to some extent, the equivalent dynamic mechanical 

properties are valuable for characterisation of the stiffness and the energy dissipation. 
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2.5 Applications of MRE 

2.5.1 MRE based vibration absorber 

In engineering applications tuned vibration absorbers (TVA) are widely employed to suppress 

vibrations, either locally for flexible structures or globally for rigid structures. TVAs can be 

divided into passive TVAs, active TVAs and semi-active TVAs. The generic passive TVAs are 

typically composed of an oscillator, a spring element and a damping element. A passive TVA 

can effectively suppress the monotone vibrations in the dynamical system by designing 

appropriate stiffness and damping. A vibration system with a TVA mounted on can be modelled 

as a two-DOF dynamical system, where the vibration system can be idealised as an equivalent 

one-DOF mass-spring system. However, the passive TVA is only functional over a very narrow 

frequency range. Nevertheless because of its effectiveness, a passive TVA has to be precisely 

tuned to the compressor self-induced harmonic disturbance for its optimum performance; 

otherwise a detuned or mistuned TVA could decrease its effectiveness in vibration suppression 

and even amplify it. Therefore, passive TVAs might lose their function in many practical 

systems due to time-varying vibration sources and wide vibration frequency range, especially in 

large scale interconnected structures. An active TVA can be considered as a TVA with a 

feedback or feed-forward control system, which makes it possible for the active TVA to vary its 

natural frequency to suit uncertain or time-varying excitation frequencies. Regardless of good 

vibration absorption ability, it has much energy consumption due to the wide distribution of 

sensors and actuators
[68]

. Even worse is that the active TVA may lose its function and 

potentially aggravate the primary structure when the control algorithm fails to work.  

The above mentioned problems can be overcome with a semi-active TVA, which is also 

called the adaptive tuned vibration absorber (ATVA). An ATVA can adjust its natural 

frequency in accordance with the varying conditions by changing its mass or stiffness in real 

time. Moreover, it consumes less energy because an activation force is no more necessary. So 

ATVAs are used more widely and the promising dynamical characteristics of MRE make it a 

suitable candidate as a controllable element for ATVAs. The vibration control mechanism of 

MRE absorbers is that the elastic modulus can be adjusted rapidly, continuously and reversibly 

by controlling an external magnetic field, which results in a controllable resonant frequency; 

hence, the vibration response can be minimised over a broader frequency range
[69]

.  

Ginder and co-workers designed the first MRE TVA and evaluated its absorption 

efficiency. Their experimental results demonstrated that MRE based TVAs have good capacity 
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to shift resonance away from the excitation frequency
[7,70,71]

. This TVA itself was a closed 

magnetic circuit, which comprised two MRE slabs, a metallic part and a wired coil. Aiming at 

improving the frequency shifting capacity, Deng developed MRE TVA with two coils
[72,73]

, as 

shown in Figure ‎2.16, and designed a compact shear mode AVTA using an MR elastomer as 

shown in Figure ‎2.17 (a). The electromagnets and magnetic conductor form a closed magnetic 

path, whilst also serving as a dynamic mass. In this way, the device has a more compact 

configuration than previous ones. The squeeze mode MR elastomer absorber can also be 

designed in a more compact manner, as shown in Figure ‎2.17 (b). Magnetic coils and steel 

components form a dynamic mass and were placed on top of the MRE samples. Lerner 

employed MRE material to construct ATVAs in three modes, namely shear mode, longitudinal 

mode and squeeze mode. The absorbers may adaptively operate over a relatively wide 

bandwidth without consuming any extra energy and the basic components are absorber mass, 

base mass MRE slabs and wire coils
[75]

. Hoang proposed a MRE ATVA for powertrain 

vibration mitigation, where the rotational part consisted of an outer ring, an inner ring and MRE 

samples between the rings
[76]

. 

 

Figure ‎2.16 ATVA (a) Sketch: 1. Oscillator: 2. MR elastomers: 3. Magnetic conductor: 4. Coils; 

(b) Photograph
[72]

. 

Gong’s research group did pioneer work on the development of ATVAs based on MRE 

and improved the vibration absorption capacity, as shown in Figure ‎2.18. Both calculation 

results and experimental results showed that MRE ATVAs possessed better absorption capacity 

than traditional TVAs
[72,77,78]

. Recently Kim and colleagues developed the continuous control 

algorithm of MRE ATVAs and the experimental results showed that the MRE ATVA was able 

to robustly suppress the vibration even when the resonant frequency was changed substantially 

from the initial frequency
[79]

. However, the damping coefficient of ATVAs which employ MRE 

as smart spring is relatively large, which significantly influences the absorption performance. 
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Xu attempted to attach a voice coil motor to an MRE ATVA to counteract the damping force, 

which seemed to be a potential way to solve this problem
[80]

. 

 

 

 Figure ‎2.17  (a) A compact MR elastomer ATVA: 1. Cover, 2. Guide rod, 3. Linear bearing, 4. 

Magnetic conductor, 5. Shear plate, 6. MREs, 7. Base, 8. Electromagnet, 9. Mounting shell. (b) 

Schematic of a compact squeeze MRE absorber
[74]

.  

 

 Figure ‎2.18 The MRE ATVA (a) schematic diagram and (b) photograph: (1) mounting shell; (2) 

MRE; (3) helical spring; (4) shear block; (5) magnetic conductor; (6) guide rod; (7) connector of 

the voice coil motor and the shell; (8) voice coil motor; (9) flange; (10) base
[78]

.  

2.5.2 MRE based vibration isolator 

A simple linear isolator can attenuate transmitted vibrations at frequencies which exceed 

the value of √  0 where ω0 is the natural frequency of the isolator. The transmitted force Ft 

reaches a value less than the excitation force F0 at an excitation frequency Ω > √  0 and the 

ratio of Ft to F0 is known as the transmissibility. In resonance damping exerts a beneficial effect 

on isolation transmissibility, but when Ω/ω0 > √  high damping should be avoided to 

successfully reduce the transmitted force. Therefore, the effectiveness of any isolator can be 
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improved by lowering its natural frequency and its damping ratio
[81]

, which explains why softer 

restoring force and lower natural frequency can result in better isolation characteristics. Energy 

dissipation and resilient load-supporting means are the two essential constituents of an isolator. 

In some isolators the functions of energy-dissipation and load-supporting can be performed by a 

single element, such as natural rubber and synthetic rubber. In other isolators, the resilient load-

supporting means, such as metal springs, may fail to possess sufficient energy dissipation, thus a 

distinct energy dissipation source need to be provided. 

Conventional linear isolators are only functional when their natural frequencies are well 

below the excitation frequency, which limits them to such engineering applications as moderate 

environmental disturbances. The spectrum of severe environmental disturbances, such as shocks, 

random ground motion and impact loads, may contain dangerous low-frequency components. In 

such cases the linear isolator may experience excessive deflections causing over-stress or even 

damage to the system
[82]

. At very low frequencies, vibration isolation characteristics can be 

improved by active control systems such as feedback or feed-forward control systems. However, 

the more effective isolation performance is obtained at the expense of extra energy for providing 

activation force. What is even worse, the active control system may fail to work even cause 

damage to the primary structure when the control algorithm loses its function
[83]

. A better 

vibration isolation performance can be obtained by semi-active vibration isolators without 

consuming any extra energy, because its resonant frequency can be adjusted to minimise the 

response by changing dynamical properties such as mass, damping or stiffness in real time
[84]

.  

The mechanism of MRE isolators is that the elastic modulus can be controlled by 

adjusting the magnetic field, which leads to changes of the resonant frequency of the dynamic 

system. Therefore, at low frequencies, where active vibration control is employed traditionally 

and passive vibration control is ineffective, the vibration response can be minimised by 

increasing dynamic stiffness. Semi-active control systems can be considered as hybrid control 

systems which combine the advantages of both passive ones and active ones. 

In 1997, Watson designed a suspension bushing with MRE which enable the patent to 

vary its stiffness
[85]

. Very recently, Hitchcock and Marur also applied patents for MRE vibration 

isolator and vehicle suspension, respectively
[86,87]

. In 2011, Behrooz investigated an integrated 

system with two MRE isolators by using shaking table tests, and the change in natural 

frequency of the dynamical system showed that the proposed varable stiffness and damping 

isolators were capable of isolating structures from the ground vibration
[88]

. Du presented a 

control strategy of vehicle seat suspension by using MRE isolator as shown in Figure ‎2.19, and 
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the results showed that the proposed continuous variable stiffness control achieves better 

isolation performance than conventional on-off control considering the driver body acceleration 

response
[89]

. Opie also proposed an MRE isolator, which enables the device to have a fail-safe 

operation in the event of a power failure
[90]

. Until now, the majority of research on MRE based 

isolation systems focused on characterisation, numerical evaluations and design of MRE 

isolators and the experimental tests were limited to simple structure models. However, the 

applicability to large structures has not been properly studied yet because of the challenge of 

numerically evaluating the complex behaviour of MRE based isolators and conducting 

experiments with large-size structures. Eem did pioneer work on the development of MRE 

isolators and designed a laminated rubber bearing to apply MRE in large scale by inserting 

aluminium plate layer in the elastomer block, as shown in Figure ‎2.20. The proposed a smart 

base isolation system had adaptability to various ground excitations and outperformed passive 

base isolation systems in terms of reducing the response of the structure
[91,92]

. In 2013, Li came 

up with a seismic isolator, as shown in Figure ‎2.21. The structure of thin steel and MRE layers 

ensured a low lateral stiffness and very high vertical stiffness simultaneously. The ideal 

performance of this new MRE based isolator implied that the design of real-time adaptive base 

isolation systems would be capable of combatting any type of earthquake with efficiency
[8,67,93]

. 

 

Figure ‎2.19 Schematic diagram of the MRE seat isolator
[89]

. 
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Figure ‎2.20 Laminated MRE based isolator. (a) Schematic diagram (b) Prototype of the 

isolator
[92]

. 

 

Figure ‎2.21 (a) Cross-section of the MRE base isolator (b) Typical laminated rubber isolator
 [93]

. 

2.5.3 MR structures 

As an ideal candidate for smart element in vibration control systems, MRE can be used to tackle 

vibration problems with various control schemes for automotive industry, ship structures and 

civil engineering. In engineering practice, ship structures are subject to different kinds of 

dynamical loads exciting vibrations, which not only affect the operation and health of crew on 

board but also cause damage to the cargo. Due to their ability to change elastic modulus with 

the magnetic field, MRE materials can be used in dynamic structures to adjust natural frequency, 

which is determined by the stiffness and mass of the structure. As elastic modulus increases, the 

natural frequency of the structure shifts to higher frequencies. The structure can be protected 

from attaining the resonance phenomena by adjusting its natural frequency. 

  Choi investigated a core sandwich beam with MRE embedded between steel skins. The 

MR effects were studied at 0.3 Tesla by comparing simply supported beams with clamped 

beams. The experimental results showed that the resonance frequency increased by 12% and 

resonance peak decreases by about 10dB at simply supported conditions; the resonance 

frequency increased by 15% and the resonance peak decreased by about 8dB at clamped 
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condition
[94]

. Yalcintas studied homogeneous sandwich beams with MR materials between two 

elastic layers. Both theoretical and experimental results show that for simply supported 

boundary condition the application of MR adaptive beam resulted in a reduction of 20dB in the 

vibration amplitudes and a shift of 30% in natural frequencies
[95]

. Ni investigated the micro-

vibration control efficiency of both MRE based composite wall and MRE based composite floor, 

as shown in Figure ‎2.22. The analytical results of velocity response
 
showed that the composite 

structure incorporating MRE material possessed great micro-vibration suppression capability for 

support motion excitation of varying frequency
[96]

. Dwivedy presented a symmetric three-

layered beam with conductive skins and MRE patch between two soft viscoelastic patches in the 

core layer. From the research when the sandwich beam was subject to periodic axial load, the 

stability of the system could be significantly improved by the MRE material
[97,98]

. 

 

Figure ‎2.22 Diagrams of (a) an MRE-based composite wall supporting equipment and (b) an 

MRE-based composite floor supporting equipment
[96]

. 

Aiming at high performance of MR materials, MR fluid-elastomer (MRF-E) has been 

studied to combine the advantages of MRF material and MRE material. Wang proposed a MR 

mount with MRF encapsulated in an elastomer; as a result the mount was capable of adjusting 

dynamic stiffness and damping. The results showed that MRF-E structure enlarged the capacity 

of changing damping and stiffness with the application of magnetic field
[99]

.  Similar to the 

MRF-E mounts, the stiffness of MRF-E vibration isolator changed with the displacement 

amplitude and magnetic field strength, which made the new isolator have potential in 

applications where tuning vibration characteristics were desired
[100]

. Anderson designed a new 

isolator consisting of MRF contained within an MRE jacket. The isolator possessed the ability 

of adjusting its response to stochastic shock and vibratory disturbances
[101]

. Zhang studied MRE 

embedded with MR fluids and MR gels, as shown in Figure ‎2.23. The experimental results 

showed that the MR effect was enlarged with the structure and the mechanical properties of MR 

material was improved
[102]

. MRE can be also developed using temperature-controllable 

materials. Gong studied the damping properties of MRE with polycaprolactone (PCL) as the 
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temperature-controllable component, which can be transformed from semi crystalline solid into 

liquated soft material through increasing the temperature above the melting point, as shown in 

Figure ‎2.24. This research indicated that when the temperature was above the PCL melting point, 

the influence of applied magnetic field on the loss factor was enlarged. In adition, when the 

temperature was below the PCL melting point, great enhancements took place in the strain and 

frequency dependence of the loss factor
[103]

. 

 

 Figure ‎2.23 Schematic diagram of sample with holes of MRF and MRG
[102]

. 

 

 Figure ‎2.24 Microscopic structures of PCL-blended MRE where (a) before the preforming 

configuration, (b) and (c) after the preforming configuration, respectively, corresponding to the 

two states when the temperature is below and above PCL melting point, and (d) and (e) are the 

enlarged views of the distribution of particles in the matrix corresponding to (b) and (c)
[103]

. 

2.5.4 Feasibility study of MRE 

MR effect is a result of change in the mechanical properties of material as the magnetic field 

strength changes. Since the discovery in 1948 of the magneto-rheological (MR) phenomenon by 

Rabinow
[4]

, MRF has been industrialized and commercialized based on its variation capability 

of yield stress within a post-yield regime under applied magnetic field. Considering MRF 

comprises of magnetically polarisable particles suspended in viscous fluids, MRE can be taken 

as the structural solid analogue of MRF, because MRE is composed of polarisable particles 

dispersed in a polymer medium. Compared with MRF the MR effect of MRE is the field-
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dependent elastic modulus within a pre-yield regime and the application of MRE is still on an 

exploratory stage. But MRE is a good solution to overcome the defects which are latent in the 

applications of MRF, such as deposition, environmental contamination and sealing problems
[9]

. 

Because of a stable microstructure, compared with common organic polymers, MRE has a 

relatively higher heat resistance, flame retardancy and chemical stability and also provides 

better electrical insulation. Take silicone rubber based MRE as an example, which are not 

flammable, toxic or volatile, and the microstructure is considered to be stable in a broad 

temperature range between -100 ºC and 250 ºC
[104]

. Additionally silicone rubber based MRE 

have good resistance to aging and oxidation, so they can work for several decades under natural 

environment
[105]

.  

At present, the mechanical properties of MRE require an in-depth study, such as Mullin 

effect, Payne effect, temperature influence, frequency dependence and fatigue mechanism. 

According to Zhang’s study, the storage modulus and loss modulus of MRE with mass fraction 

60% of iron particles were almost independent of the strain amplitudes and number of cycles, 

whilst the storage modulus and loss modulus of MRE with 80% iron particles by weight were 

strongly dependent on the strain amplitudes and number of cycles, as shown in Figure ‎2.25
106]

. 

Zhou investigated the equi-biaxial fatigue properties of MRE within a dynamical bubble 

inflation system at various stress amplitudes ranging from 0.75 to 1.4 MPa. The stress-strain 

relationship and S-N curves of MRE, from the experimental results, can be seen in Figure ‎2.26. 

The fatigue lives decreased with the stress and stress softening continued with the accumulation 

of cycles, especially the softening behaviour was more pronounced in the first 100 cycles
[107]

. 

As shown in Figure ‎2.27, Zhang studied the durability properties of MRE materials based on a 

series of matrices mixed with cis-polybutadiene rubber (BR) and natural rubber (NR). Both the 

storage and loss moduli decreased with increasing number of cycles and the MR effect 

increased after cyclic loading
[108]

.  

Most applications of MRE are limited by its lower MR effect. Lower zero-field elastic 

modulus usually results in a greater relative MR effect. However, it is usually ill-suited for load-

bearing applications due to the low strength and reduced fatigue life. Therefore, the research of 

MRE is still on a very early stage of commercial and industrial applications. The mechanical 

properties of MRE are dependent on strain, frequency, temperature, humidity, microstructure 

and magnetic field. Among these dependent properties, strain dependence limits MRE materials 

for load bearing applications, because the elastic modulus decreases with increasing strain. 
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 Figure ‎2.25 Relationship between MR effect and number of cycles for structured MRE with (a) 

60%, (b) 70%, and (c) 80% iron particles by mass, under various fatigue strain amplitudes
[106]

. 

 

 Figure ‎2.26 (a) Stress amplitude versus log cycles to failure and (b) Stress softening behaviour 

in an engineering stress controlled fatigue test
[107]

. 

 

 Figure ‎2.27 (a) Modulus after cyclic loading and (b) Relationship between MR effect and cycle 

numbers
[108]

. 

2.6 Motivation for current work 

In a summary, current research on the engineering application of MRE is still in its 

infancy. Lots of experimental results are reported on the stiffness properties of MRE, but there 

are a lot of work undone to understand the dependence of damping properties on frequency, 

strain and magnetic field. In addition, because of time-varying vibration sources in reality 

current mathematical models for describing the dynamical behaviour of MRE are deficient to 

support related applications for vibration control. Considering effectiveness and economy, a 
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valid methodology of performance evaluation without manufacturing and testing MRE devices 

is important for the dynamic design of vibration control devices. 

To achieve deeper and more comprehensive understanding of the mechanical properties 

of MRE material and structure forms the foundational motivation of this PhD project. The 

overall objective is to apply MRE material in vibration control systems, as part of this project. 

This thesis mainly focuses on the aspects associated with the dynamical analysis of MRE, 

including: 

1. Characterising the mechanical properties of MRE experimentally to investigate the 

influence of frequency, strain and magnetic field on the dynamical behaviour. 

2. Establishing a nonlinear model mathematically with all the above dependences taken into 

account to describe the dynamical behaviour of MRE material and structure. 

3. Analysing the vibration response, transmissibility and vibratory energy transmission of 

dynamical systems with MRE structure to evaluate the vibration control efficiency. 
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 Experimental setup for dynamical Chapter 3

property characterisation of MRE 

3.1 Introduction 

The mechanical properties of MRE material have been studied by many researchers both 

theoretically and experimentally, but there is still much work to be done for the 

commercialisation and industrialisation of its application. MRE has field dependent modulus 

which can be controlled by adjusting an external magnetic field, and the microstructure of MRE 

affects its mechanical properties and dependences on magnetic fields, strains and frequencies. 

At present we can learn the stiffness properties with current experimental studies, but more 

investigations on the loss modulus are necessary for understanding the damping properties.  

This chapter mainly focuses on the experimental setup for dynamic load testing and the 

characterisation of mechanical properties. Firstly, the preparation of MRE samples is briefly 

introduced with respect to its composition, categories and fabrication. And then the test 

apparatus and data processing method are illustrated. Secondly, a series of experiments are 

carried out in shear mode to investigate the influence of microstructure on the mechanical 

properties of MRE, especially the influence of magnetisable particles, magnetic fields and 

coupling agents. Therefore, this chapter offers the preparation and methodology for dynamic 

mechanical analysis of MRE in the following sections. 

3.2 Experimental setup 

3.2.1 MRE samples preparation 

The simplified manufacturing procedure can be illustrated as follows: firstly Elastosil A is 

mixed with Elastosil B, according to the instructions (Appendix I) the mixing ratio of these two 

compounds was 10:1 by weight. Silicone oil is chosen based on the discussion in Section ‎2.1 

and can be also added into the mixture under the guidance of Appendix II to improve the 

interaction between magnetisable particles and non-magnetic matrix, such as the MRE samples 

in Section ‎3.3.3. Then the carbonyl iron powders sized up to 9 μm are added with reference to 

an identified optimal particle volume concentration of about 30%
[22]

, which is considered to be 
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able to generate the maximum MR effect; secondly, after stirring thoroughly, the mixture is 

placed in a vacuum chamber for about 30 minutes at room temperature to remove air bubbles 

entrapped inside; finally the mixture is put into square prism aluminium moulds 21.8 × 21.8 × 

6.5 mm³ and left to solidify.  

The shape and dimensions of the MRE samples are designed by referring to the BS ISO 

4664-1:2011 (Appendix III) for shear tests and the basic parameters of small-sized samples are 

given in Table ‎3.1. For the curing of anisotropic samples, the moulds with mixture inside are 

placed between two permanent magnets producing a stable uniform magnetic field. In this study, 

the MRE is assumed to be homogeneous on the considered length scale and non-aging under 

isothermal conditions at room temperature. Without the application of magnetic field the 

isotropic MRE is perfectly isotropic but the anisotropic MRE is not. In Table ‎3.2, the pot lives 

and curing times of MRE processing are listed at various temperatures. As instructed in 

Appendix I, the pot lives indicate the time required for the mixture to attain a viscosity of 150 

Pa·s and curing times apply to a layer thickness of 1cm. It can be seen that as the curing 

temperature increases the required time for MRE casting reduces.  

Table ‎3.1 Fabrication of small-sized samples 

Iron particle size, μm 6 ~ 9 

Shape  Rectangular column 

Dimensions, mm
3
 22.0 × 22.0 × 6.5 

 

Magnetic flux density, mT 0. 290 

Table ‎3.2 Pot lives and curing times at various temperatures 

Temperature  ºC Pot lives Curing times 

5 6 hr  

23 90 min 15 hr 

30 40 min 4 hr 

60  2 hr 

100  15 min 
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3.2.2 Dynamic test apparatus 

The experiments for the mechanical property characterisation were performed by Instron E1000 

Electro plus in Transport Systems Research Laboratory. During dynamic tests, displacement 

and force are the main tracking channels. The strain amplitude and the excitation frequency can 

be controlled by the channels of displacement and time, and the resulting stress can be 

calculated by measuring the force channel. In this study circular disc magnets are used to carry 

out dynamic tests for MRE by varying the external magnetic field. As shown in Figure ‎3.1, the 

diameter of the circular disc magnets is 40mm. By adding the applied circular disc magnets, the 

magnetic flux density can be increased by several discrete values. With permanent magnets the 

magnetic field intensity can be only changed in discrete values and the low requirement of 

magnetic field makes low costs of permanent magnets preferable for the experiments of 

mechanical property characterisation. Comparatively expensive electro-magnets are capable to 

continuously control the magnetic field intensity, which is essential for the adaptive MRE 

devices to improve the effectiveness of vibration control. 

 

Figure ‎3.1 Shear test rigs for MRE samples with circular disc magnets. 

As shown in Figure ‎3.2, two rectangular MRE blocks are bonded to the surfaces of 

stainless aluminium rigs using Araldite Standard adhesive. Before the loading tests, the MRE 

samples are preloaded and unloaded for at least five times until 20% in strain because of 

Mullins effect, which is a phenomenon where the stiffness decreases with the loading cycles 

until the material comes to a stable point after certain cycles (usually 3-5)
[38]

. As a kind of filled 

rubber, the same applied strain will result in lower and lower stress in MRE during the first 

loading cycles, which can be idealised for many purposes as an instantaneous and irreversible 

softening of the stress–strain curve that occurs whenever the load increases beyond the 
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maximum value it encountered previously
[39]

. When strains applied to anisotropic MRE samples, 

the mode of testing we attain with this apparatus is not pure shear. But in this thesis the applied 

strains are small, so it is assumed that the related errors can be neglected to have pure shear 

states for anisotropic MRE samples during testing. 

According to BS ISO 4664-1:2011 (Appendix III), the shear property characterisation of 

MRE was performed under static and dynamic loading conditions in certain range of 

frequencies, strain amplitudes and magnetic flux densities, as shown Table ‎3.3.  

 Table ‎3.3 Test apparatus for small-sized samples  

Frequency, Hz 1, 5, 10, 20, 30, 40, 50, 60, 70, 80 

Strain amplitude, % 0, 1, 2, 3, 4, 5 

Magnetic flux density, mT 0, 160, 260, 400, 500 

 

    

Figure ‎3.2 (a) MRE samples. (b) Experimental setup. 
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3.2.3 Data process method 

The experimental data of frequency, load and position channels are recorded to obtain the 

force-displacement curves for MRE samples. The dynamic tests are performed for a range of 

frequencies from 0 to 80Hz, strain amplitudes from 0 to 5% and magnetic field intensities from 

0 to 0.5 T. The storage and loss moduli of MRE can be calculated following the directions of 

the manual of Instron E1000 Electro plus for Dynamic Mechanical Analysis measurements 

(Appendix IV). In order to attain a good reliability, each set of tests are carried out with three 

pairs of samples independently, every test is repeated twice for each pair of samples and the 

experimental data are averaged to present the curve or surface. During testing we noticed that 

the experimental data change very little for the same samples when the dynamic tests are 

repeated, there are small differences in the experimental data between different pairs of samples 

in the same set, and the six experimental results in the same set have the same trends in the 

range of strain, frequency and magnetic field for testing. 

As a kind of rubber material, the MRE cannot respond instantaneously when a sinusoidal 

strain is applied because of its viscosity; hence the resultant stress will lag the input with a loss 

angle or factor, as shown in Figure ‎3.3. 

 

Figure ‎3.3 Stress-strain plot for MRE material under harmonic load. 

To take this situation into consideration, mathematically the modulus of MRE is 

considered to be a complex number comprising a real elastic component and an imaginary 

viscous component, namely the storage modulus and loss modulus 
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where M
*
 can be either the Young’s modulus E or the shear modulus G, M' and M" denote the 

storage modulus and the loss modulus, respectively. The complex modulus M
*
 can be obtained 

by calculating the ratio of the stress range to the strain range. The loss angle  is relevant to the 

energy dissipation per volume within an oscillatory cycle, which is the area enclosed by the 

hysteresis loop and can be calculated following the Dynamic Mechanical Analysis directions of 

the manual for Instron E1000 ElectroPlus measurements in this study. The complex modulus M
*
, 

storage modulus M', loss modulus M" and loss angle  can be defined as follows: 
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                                           (‎3.2) 

where Eloop is the energy enclosed by the hysteresis loops, Astrain denotes the strain amplitude 

and Astress the stress amplitude. 

3.3 The influence of microstructure on MRE mechanical properties 

3.3.1 The influence of magnetisable particles 

In Figure ‎3.4 we can see the influence of microstructure on storage modulus due to the presence 

of magnetisable particles, and the blue dots on the surface indicate experimental data of silicone 

rubber and isotropic MRE. It can be seen from Figure ‎3.4 (a) that in the dynamic tests the 

storage modulus of silicone rubber decrease with the increasing strain amplitude and increases 

as the driving frequency increases. From 1Hz to 80Hz, the storage modulus increases 

dramatically at the beginning, higher than 20Hz it increases slowly and reaches the highest 

storage modulus of 0.76MPa. From Figure ‎3.4 (b) we can see that the storage modulus of 

isotropic MRE shows a similar dependence on frequency and strain as silicone rubber in the 

vibration tests. The storage modulus decreases as the strain amplitude increases. When the 

driving frequency goes up from 1Hz to 80Hz, the storage modulus increases obviously at the 

beginning, higher than 20Hz the increase slows down and the highest storage modulus is 

1.25MPa at 80Hz. Comparing Figure ‎3.4 (a) with Figure ‎3.4 (b), it is obvious that the presence 

of magnetisable particles, in agreement with the previous discussion in [45], improve the 

storage modulus of the elastomer by approximately 70%. But it does not change the dependence 

on frequency and strain, because the two fitting surfaces have similar shapes. 
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Figure ‎3.4 Storage modulus of (a) silicone rubber and (b) isotropic MRE with different strain 

amplitude and loading frequency. 

The influence of microstructure on loss modulus due to the presence of magnetisable 

particles can be seen in Figure ‎3.5, and experimental measurements of silicone rubber and 

isotropic MRE are denoted by the blue dots. Figure ‎3.5 (a) shows that in the vibration tests the 

loss modulus of silicone rubber does not change with the strain amplitude. As the driving 

frequency increases from 1Hz to 80Hz, the loss modulus increases at the beginning, at 10Hz it 

reaches a maximum of 46 kPa and starts to decrease with further increase of frequency. It can be 

seen from Figure ‎3.5 (b) that the loss modulus of isotropic MRE shows a similar dependence on 

frequency and strain as silicone rubber in the dynamic tests. The loss modulus barely decreases 

with increasing strain amplitude. The loss modulus also increases with the driving frequency at 

the beginning, reaching a maximum of 89 kPa at 10Hz and starts to decrease with further 

increasing frequencies. From the comparison of Figure ‎3.5 (a) and Figure ‎3.5 (b), we can see 

that the presence of magnetisable particles, in agreement with the observations in [45], improves 

the loss modulus of the elastomer by approximately100%. As the two fitted surfaces have 

similar shapes, so it does not change the dependence on frequency and strain.  
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Figure ‎3.5 Loss modulus of (a) silicone rubber and (b) isotropic MRE with different strain 

amplitude and loading frequency. 

Figure ‎3.6 illustrates the influence of microstructure on loss factor due to the presence of 

magnetisable particles, and the blue dots indicate experimental data of silicone rubber and 

isotropic MRE. It can be seen from Figure ‎3.6 (a) that in the dynamic tests the loss factor of 

silicone rubber does not change with the strain amplitude. As the driving frequency goes up 

from 1Hz to 80Hz, the loss factor increases at the beginning, reaches a maximum of 0.06 at 

10Hz and starts to dramatically decrease at higher frequencies. Figure ‎3.6 (b) shows that the loss 

factor of isotropic MRE has the same dependence on frequency and strain as silicone rubber in 

vibration tests. The loss factor changes little with the strain amplitude; meanwhile it increases 

with the driving frequency at the beginning, reaches a maximum of 0.08 at 10Hz and begins to 

decrease with further increasing frequencies. By comparing Figure ‎3.6 (b) with Figure ‎3.6 (a) 

we can see that the presence of magnetisable particles improves the loss factor of the elastomer 

by about 20%. However, it changes the dependence on frequency and strain very little, because 

the two fitted surfaces have the same shapes. 
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 Figure ‎3.6 Loss factor of (a) silicone rubber and (b) isotropic MRE with different strain 

amplitude and loading frequency. 

3.3.2 The influence of magnetic field 

In this section, the solidification of anisotropic MRE samples is attained with a magnetic field 

of 290mT. In Figure ‎3.7 we can see the influence of microstructure on storage modulus due to 

the presence of magnetic field and the experimental measurements of isotropic MRE and 

anisotropic MRE by the blue dots. Figure ‎3.7 (a) shows that the storage modulus of isotropic 

MRE decrease with the strain amplitude and increases with the driving frequency. From 1Hz to 

80Hz, the storage modulus increases obviously at the beginning, higher than 20Hz it slows 

down and reaches 1.25MPa at 80Hz. From Figure ‎3.7 (b) we can see that the storage modulus of 

anisotropic MRE shows a similar dependence on frequency and strain as the isotropic MRE. 

The storage modulus decreases with the strain amplitude. As the frequency increases from 1Hz 

to 80Hz, the storage modulus increases dramatically at the beginning, higher than 20Hz the 

increase is slow and the maximum of storage modulus is 2.1MPa. The comparison between 

Figure ‎3.7 (a) and Figure ‎3.7 (b) shows that with the same particle volume concentration the 

presence of a magnetic field about 290mT during the solidification can improve the storage 
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modulus of the elastomer by about 65% and also enhance the dependence of storage modulus on 

frequency and strain at the same time.  

 

Figure ‎3.7 Storage modulus of (a) isotropic MRE and (b) anisotropic MRE with different strain 

amplitude and loading frequency. 

Figure ‎3.8 illustrates the influence of microstructure on storage modulus due to the 

presence of magnetic field, and the blue dots indicate experimental results of isotropic MRE and 

anisotropic MRE. From Figure ‎3.8 (a) it can be seen that at 10Hz the storage modulus of the 

isotropic MRE increases with magnetic field intensity, and decreases with the increasing strain 

amplitude. The storage modulus reduces to 1.1MPa when the strain amplitude is 2%. With an 

external magnetic field of 400mT the storage modulus reaches as high as 1.28MPa when the 

strain amplitude is 0.9%. In Figure ‎3.8 (b) the dependence of anisotropic MRE on strain and 

field is similar to the isotropic MRE in the dynamic tests. When the loading frequency is 10Hz, 

the application of external magnetic field increases the storage modulus of the anisotropic MRE, 

but the strain amplitude reduces the storage modulus. Without any external magnetic field, the 

storage modulus is 1.9MPa when the strain amplitude is 2%; and with an external magnetic 

field of 400mT, the storage modulus can be as high as 2.8MPa when the strain amplitude is 
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0.9%. Comparing Figure ‎3.8 (b) with Figure ‎3.8 (a), it is obvious that with the same loading 

frequency of 10Hz and the same particle volume concentration of 30%, the presence of a 

magnetic field about 290mT during the curing progress can increase the storage modulus of 

MRE by approximately 100% and also enhance the dependence on magnetic field and strain.  

  

Figure ‎3.8 Storage modulus of (a) isotropic MRE and (b) anisotropic MRE at 10 Hz with 

different strain amplitude and magnetic field.  

In Figure ‎3.9 the influence of microstructure on loss modulus due to the presence of 

magnetic field during curing is shown, and the blue dots are experimental measurements of 

isotropic MRE and anisotropic MRE. It is shown in Figure ‎3.9 (a) that without the application 

of external magnetic field the loss modulus of isotropic MRE decreases slightly with the strain 

amplitude. As the driving frequency goes up from 1Hz to 80Hz, the loss modulus increases at 

the beginning, reaches a maximum of 89 kPa at 10Hz and starts to decrease with further 

increase of driving frequency. From Figure ‎3.9 (b) we can see that without the application of 

external magnetic field the loss modulus of anisotropic MRE shows a similar dependence on 

frequency and strain as isotropic MRE in vibration tests. The loss modulus decreases with the 
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strain amplitude but more than isotropic MRE. From 1Hz to 80Hz the loss modulus increases 

initially, reaches a maximum of 240 kPa at 10Hz and decreases with further increasing 

frequencies. By comparing Figure ‎3.9 (b) with Figure ‎3.9 (a), it can be seen that with the same 

particle volume concentration of 30% the presence of a magnetic field about 290mT during 

solidifications can increase the loss modulus of the elastomer by about 300% and also enhance 

its dependence on frequency and strain. 

 

Figure ‎3.9 Loss modulus of (a) isotropic MRE and (b) anisotropic MRE with different strain 

amplitude and loading frequency. 

From Figure ‎3.10 we can see the influence of microstructure on loss modulus due to the 

presence of magnetic field and experimental data of isotropic MRE and anisotropic MRE are 

denoted with the blue dots on the surface. Figure ‎3.10 (a) shows that when the loading 

frequency is 10Hz the loss modulus of isotropic MRE increases with the magnetic flux density 

and decreases when the strain amplitude increases. Without any external magnetic field, the loss 

modulus of isotropic MRE is 80 kPa when the strain amplitude is 2%; with an external magnetic 

field of 400mT the loss modulus is 0.1MPa when the strain amplitude is 0.9%. In Figure ‎3.10 (b) 
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it is shown that at 10Hz the loss modulus of anisotropic MRE has a similar dependence on strain 

and magnetic field as the isotropic MRE in dynamic tests. The application of external magnetic 

field increases the loss modulus of anisotropic MRE; however, the increasing strain amplitude 

reduces the loss modulus. Without any external magnetic field, when the strain amplitude is 2% 

the loss modulus of anisotropic MRE is 0.22MPa; with an external magnetic field of 400mT the 

loss modulus is 0.32MPa when the strain amplitude is 0.9%. From the comparison of 

Figure ‎3.10 (a) and Figure ‎3.10 (b), we can see that when the loading frequency is 10Hz, the 

presence of a magnetic field about 290mT during curing can improve the loss modulus of MRE 

with the same composition by approximately 300% and also enhance the dependence of loss 

modulus on magnetic field and strain. 

 

Figure ‎3.10 Loss modulus of (a) isotropic MRE and (b) anisotropic MRE at 10 Hz with different 

strain amplitude and magnetic field. 

Figure ‎3.11 shows the influence of microstructure on loss factor due to the presence of 

magnetic field, and the blue dots indicate experimental measurements of isotropic MRE and 

anisotropic MRE. From Figure ‎3.11 (a) it can be seen that without any external magnetic field 
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the loss factor of isotropic MRE changes little with the strain amplitude. As the frequency 

increases from 1Hz to 80Hz, the loss factor initially increases, reaches a maximum of 0.08 at 

10Hz and starts to decrease at higher frequencies. In Figure ‎3.11 (b), without the application of 

magnetic field the loss factor of anisotropic MRE shows the same dependence on frequency and 

strain as the isotropic MRE. The loss factor changes very little with the strain amplitude. From 

1Hz to 80Hz, the loss factor increases at the beginning, reaches a maximum of 0.13 at 10Hz and 

stops to decrease with further increasing frequencies. Comparing in Figure ‎3.11 (a) and (b) we 

can see that with the same particle volume concentration the presence of a magnetic field about 

290mT during the solidification can increase the loss factor of MRE by approximately 80%, 

however, it does not change the dependence on frequency and strain as the two fitted surfaces 

have similar shapes. 

 

Figure ‎3.11 Loss factor of (a) isotropic MRE and (b) anisotropic MRE with different strain 

amplitude and loading frequency. 

The influence of microstructure on loss factor due to the presence of magnetic field can 

be seen in Figure ‎3.12, and the experimental measurements of isotropic MRE and anisotropic 
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MRE are indicated with blue dots. It is shown in Figure ‎3.12 (a) that when the frequency is 

10Hz the loss factor of isotropic MRE increases with the magnetic field intensity and decreases 

with the strain amplitude. Without any external magnetic field, the loss factor of isotropic MRE 

is as low as 0.074; with an external magnetic field of 400mT the loss factor is 0.082. From 

Figure ‎3.12 (b) it can be seen that at 10Hz the loss factor of anisotropic MRE also increases 

with the magnetic field density and decreases with the strain amplitude. An application of 

400mT magnetic field increases the loss factor of anisotropic MRE from 0.11 to 0.135. From 

the comparison between Figure ‎3.12 (b) and Figure ‎3.12 (a) it is obvious that with the same 

particle volume concentration of 30% and the loading frequency of 10Hz, the presence of a 

magnetic field about 290mT can improve the loss factor of MRE by about 65% and also 

enhance the dependence on magnetic field and strain. 

  

Figure ‎3.12 Loss factor of (a) isotropic MRE and (b) anisotropic MRE at 10 Hz with different 

strain amplitude and magnetic field. 
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3.3.3 The influence of coupling agents 

In this section, a group of anisotropic MRE samples are fabricated in the same magnetic field 

with a coupling agent to investigate its influence on the mechanical properties of MRE. Silicone 

oil volume concentration is 20%, silicone rubber volume concentration is 50% and carbonyl 

iron particle volume concentration stays at 30%.  

Figure ‎3.13 shows the influence of microstructure on storage modulus due to the 

application of coupling agent, and the blue dots indicate experimental measurements of the 

anisotropic MRE with and without coupling agent.  

 

 

Figure ‎3.13 Storage modulus of anisotropic MRE (a) without silicone oil and (b) with silicone 

oil at different strain amplitude and magnetic field. 

We can see from Figure ‎3.13 (a) that in vibration tests the storage modulus of anisotropic 

MRE increase slightly with the driving frequency and decreases as the strain amplitude 

increases. From 1% to 6%, the storage modulus decreases obviously 2.2MPa to 1.4MPa. 
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Figure ‎3.13 (b) shows that when silicone oil is included, similarly the storage modulus also 

increases slightly with the driving frequency, and as the strain amplitude increases the storage 

modulus decreases from 1.7MPa to 0.8MPa. By comparing Figure ‎3.13 (b) with Figure ‎3.13 (a), 

we can see the presence of silicone oil reduces the storage modulus of MRE by approximately 

30%, but adding silicone oil into anisotropic MRE does not change the dependence of storage 

modulus on frequency and strain as the two fitted surfaces have similar shapes. 

The influence of microstructure on loss modulus due to the application of coupling agent 

is shown in Figure ‎3.14, and the experimental results of the anisotropic MRE with and without 

coupling agent are illustrated by the blue dots on surfaces. 

 

 

Figure ‎3.14 Loss modulus of anisotropic MRE (a) without silicone oil and (b) with silicone oil 

at different strain amplitude and magnetic field. 

It can be seen from Figure ‎3.14 (a) that in the dynamic tests the loss modulus of 

anisotropic MRE decreases with the strain amplitude. As the driving frequency increases from 

1Hz to 60Hz, the loss modulus increases at the beginning, at 10Hz it reaches a maximum of 
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0.26MPa and starts to decrease with a further increase of frequency. In Figure ‎3.14 (b) the loss 

modulus decreases with the increase of strain amplitude. As the driving frequency increases 

from 1Hz to 60Hz, the loss modulus initially increases, reaches a maximum of 0.2Mpa at 10Hz 

and decreases with higher frequencies. It can be seen from the comparison of Figure ‎3.14 (a,b) 

that the presence of silicone oil reduces the loss modulus of MRE by approximately 30%. But it 

does not change the dependence on frequency and strain as the two fitted surfaces have similar 

shapes, but improves the mechanical properties as the fitting surface is smoothed. 

In Figure ‎3.15 we can see the influence of microstructure on loss factor due to the 

application of coupling agent and the experimental measurements of the anisotropic MRE with 

and without coupling agent, both denoted by the blue dots.  

 

 

Figure ‎3.15 Loss factor of anisotropic MRE (a) without silicone oil and (b) with silicone oil at 

different strain amplitude and magnetic field. 

Figure ‎3.15 (a) shows that in vibration tests the loss factor of anisotropic MRE decreases 

with the strain amplitude and increases with the driving frequency. From Figure ‎3.15 (b) it can 
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be seen that adding silicone oil into anisotropic MRE does not change the loss factor very much. 

Comparing Figure ‎3.15 (b) with Figure ‎3.15 (a), it can be seen that the presence of silicone oil 

barely has any influence on the loss factor of MRE. 

3.4 Summary  

The preparation of MRE samples is introduced in this chapter including component selections 

and manufacture progresses. Good mechanical properties are the most important characteristics 

for matrix material of MRE, and high magnetic permeability, high saturation magnetisation and 

low remnant magnetisation are the key characteristics for particles of MRE. For these reasons 

silicone rubber and carbonyl iron powders are the most commonly used selections. The 

optimisation particle volume concentration is 30% to ensure the mechanical properties and 

rheological properties of MRE. As a composite material, MRE can be categorised with respect 

to the way in which magnetisable particles are embedded in the matrix material: isotropic MRE 

with a uniform particle distribution and anisotropic MRE with a directed particle orientation. 

Test apparatus and data processing for the mechanical property characterisation of MRE 

are also briefly introduced, and the influence of microstructure on mechanical properties is 

discussed as well. A series of dynamic tests are carried out to analyse the influence of 

magnetisable particles, magnetic fields and coupling agents. The presence of magnetisable 

particles in composition can substantially increase the modulus of elastomer but the dependence 

does not change appreciably. The application of magnetic field in solidification can effectively 

enable anisotropic MRE to have higher modulus than isotropic MRE with the same composition 

and simultaneously enhance the dependence of anisotropic MRE on magnetic fields, strains and 

frequencies. Adding coupling agents in curing progress can improve the mechanical properties 

and stability characteristics of MRE, at the same time also reduce the modulus, as a result the 

composite becomes softer which can potentially allow the material to own higher MR effect.   
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 Mechanical properties of MRE Chapter 4

4.1 Introduction 

As a kind of composite material, MRE material behaves like other traditional filled rubbers and 

displays the Mullin and Payne effects under cyclic loading. All MR materials, including fluids, 

elastomers and foams, have rheological properties, thus possess the ability to change 

mechanical properties with a controllable magnetic field. The stiffness of MRE can be adjusted 

continuously, rapidly and reversibly in the pre-yield region; hence, it is a suitable candidate as a 

smart spring for vibration control. 

In Section ‎3.3 we can see the overall dependence of mechanical properties on magnetic 

field, strain and frequency, and in this chapter dynamic tests in shear mode are conducted to 

investigate the dependence of mechanical properties on magnetic field, strain and frequency, 

respectively
[9]

. The MR effect enables the shear modulus of MRE to increase with the magnetic 

field intensity and the Payne effect causes the shear modulus to decrease with the loaded strain. 

In this chapter, the anisotropic MRE samples are cured under a magnetic field of 450mT which 

is stronger than the magnetic field employed in ‎Chapter 3. As a result the difference of 

experimental results between isotropic MRE and anisotropic MRE is enhanced to be obvious in 

the following figures. The dynamic tests carried out are independently repeated twice by three 

independent pair of MRE samples respectively to attain a good reliability, and all the 

measurements are taken by averaging the experimental data for dynamic mechanical analysis of 

MRE. This chapter provides the experimental evidence which is the basis of modelling for MRE 

to describe its dynamical behaviour in the following chapters. 

4.2 Dependence on magnetic field 

The stress-strain relationships under quasi static loading for isotropic MRE and 

anisotropic MRE are shown in Figure ‎4.1 (a) and Figure ‎4.1 (b), respectively. It can be seen that 

the shear modulus of isotropic MRE changes very little with magnetic fields. On the other hand 

the anisotropic MRE obviously becomes stiffer with magnetic intensity, which can be observed 

from the slope of the stress strain curve increasing with increasing magnetic flux density. 
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Comparing Figure ‎4.1 (a) with Figure ‎4.1 (b), it is noticeable that anisotropic MRE is stiffer 

than isotropic MRE with the same composition. 

 

 

Figure ‎4.1 Stress-strain plot with varying magnetic flux densities under quasi static loading for 

(a) isotropic MRE and (b) anisotropic MRE. 

Figure ‎4.2 (a) and Figure ‎4.2 (b) show the stress-strain hysteresis loops of isotropic MRE 

and anisotropic MRE at different magnetic intensities, respectively. Based on the stress-strain 

hysteresis loops, the complex modulus can be obtained from the slope of the line from the point 

of minimum strain to the point of maximum strain, the loss angle can be calculated from the 

area within the hysteresis loop and the storage and loss moduli can be obtained from Equation 

(‎3.2). We can see that both of the isotropic MRE and the anisotropic MRE show that the 

complex modulus increases with an increase of magnetic flux density, because the slope of 

hysteresis loop moves up with magnetic field strength. From the comparison between Figure ‎4.2 
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(a) and Figure ‎4.2 (b) it can be seen that anisotropic MRE possesses higher storage modulus and 

higher loss modulus than the isotropic MRE with the same composition, for both the slope and 

the area of stress-strain hysteresis loops for anisotropic MRE are greater than isotropic MRE. 

 

 

Figure ‎4.2 Stress-strain plot at 10Hz with different magnetic flux densities for (a) isotropic 

MRE and (b) anisotropic MRE. 

Figure ‎4.3 shows that the storage modulus increases with magnetic flux densities for both 

isotropic MRE and anisotropic MRE. For the same strain amplitudes and magnetic flux density 

the anisotropic MRE has higher storage modulus than the isotropic MRE with identical 

composition, and the strain amplitude does not change the dependence of storage modulus on 

magnetic field as the curves for different strain amplitude show similar trends. It can be also 

noted that the dependence of storage modulus on magnetic field for anisotropic MRE is greater 
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than that of isotropic MRE with the same composition, because the storage modulus of 

anisotropic MRE increases more with magnetic field strength.  

 

Figure ‎4.3 Dependence of storage modulus on magnetic field at 10Hz. 

From Figure ‎4.4 we can see that the loss modulus also increases with magnetic flux 

density for both isotropic MRE and anisotropic MRE, and the dependence of loss modulus on 

strain is independent of the dependence on magnetic field. Similarly, the loss modulus of 

anisotropic MRE is always higher than the isotropic MRE with the same composition at the 

same strain amplitude and magnetic flux density. The loss modulus of anisotropic MRE also 

displays a more obvious dependence on magnetic field than isotropic MRE with the same 

composition.  

 

Figure ‎4.4 Dependence of loss modulus on magnetic field at 10Hz. 

It can be seen from Figure ‎4.5 that the loss factor shows an increase with magnetic flux 
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factor of anisotropic MRE increases more with magnetic intensity. Similarly the dependence of 

loss factor on strains is independent from the dependence on magnetic fields, and for the same 

strain amplitude and magnetic flux density the anisotropic MRE has greater loss factor than the 

isotropic MRE with the same composition. 

 

Figure ‎4.5 Dependence of loss factor on magnetic field at 10Hz. 

Because the application of MRE is mainly based the controllability of stiffness, the MR 

effect is defined as the relative change of the storage modulus in Equation (‎2.1). Figure ‎4.6 

shows that the MR effect increases with increasing magnetic flux density for both isotropic 

MRE and anisotropic MRE, and for the same strain amplitude and the same magnetic flux 

density the anisotropic MRE has a greater MR effect than the isotropic MRE with the same 

composition, this is in agreement with the results reported in [46]. Similarly, the increase of the 

MR effect with magnetic intensity for anisotropic MRE is comparatively more obvious.  

 

 Figure ‎4.6 Dependence of relative MR effect on magnetic field at 10Hz. 
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As iterated previously the modulus of MRE is affected by the magnetic force between the 

particles, amongst all factors influencing this interaction the magnetic intensity is essential. 

Both storage modulus and loss modulus increase with magnetic flux density and when 

saturation occurs these moduli will remain constant with the maximum magnetic force between 

magnetisable particles. Consequently, the MR effect increases with magnetic flux density at the 

beginning and reaches a maximum at some point; then the MR effect will stay constant with 

further increases in magnetic field strength. Most experimental research on MRE shows that the 

increase of MR effect with magnetic intensity is prevalent when the magnetic flux density is 

below 500 mT, higher than 500 mT the increase of MR effect gradually slows down with 

magnetic field strength, and above about 800 mT magnetic saturation occurs in the composite 

there is no more increase of MR effect with further increasing magnetic intensities
[45]

. 

Considering the consumption of electricity for controlling required magnetic fields, the 

magnetic field below 500 mT is cost-effective, as much more electric energy is required to 

generate strong magnetic fields of above 500 mT, especially when the resulting increment of 

MR effect is shrinking.   

4.3 Dependence on strain 

The dynamic tests of each MRE sample are carried out without magnetic field and under a 

magnetic field of 500mT. The Payne effect of MRE material can be observed in terms of the 

dependence of modulus on the amplitude of applied strain, namely both the storage and loss 

moduli decrease with increasing amplitude of the shown applied harmonic load. Based on the 

hysteresis loops of isotropic MRE and anisotropic MRE, in Figure ‎4.7 (a) and Figure ‎4.7 (b), 

respectively, we can see that the slope of hysteresis loop decreases with increasing strain 

amplitudes, indicating that the storage modulus decreases with the strain amplitude. Because the 

complex modulus can be calculated by the slope of the stress-strain hysteresis loop, the loss 

angle is relevant to the energy dissipation per volume within an oscillatory cycle, hence the 

storage and loss moduli can be obtained from Equation (‎3.2). Comparing Figure ‎4.7 (b) with 

Figure ‎4.7 (a), it is obvious that anisotropic MRE has both higher storage modulus and higher 

loss modulus than isotropic MRE with the same composition. 
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 Figure ‎4.7 Stress-strain plot at 10Hz with different strain amplitudes of (a) isotropic MRE and 

(b) anisotropic MRE. 

Figure ‎4.8 reveals that the storage modulus decreases with increasing strain amplitude for 

MRE both without and with the application of external magnetic field; hence the dependence of 

storage modulus on strains is independent of the dependence on magnetic fields. Under the 

same strain amplitude and magnetic flux density the anisotropic MRE owns higher storage 

modulus than the isotropic MRE with the same composition. The storage modulus of 

anisotropic MRE displays a more obvious dependence on strains than the storage modulus of 

isotropic MRE because the decrease of the storage modulus with increasing strain amplitudes 

for anisotropic MRE is greater than that for the isotropic MRE with the same composition in the 

same magnetic fields. 
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 Figure ‎4.8 Dependence of storage modulus on strain amplitude at 10Hz. 

It can be seen from Figure ‎4.9 that the loss modulus of MRE also decrease with 

increasing strain amplitudes and the application of magnetic fields does not change the 

dependence of loss modulus on strains. It is obvious that the loss modulus of anisotropic MRE 

is higher than the isotropic MRE with the same composition at the same strain amplitude and 

magnetic flux density, and the decrease of loss modulus with strain amplitude for anisotropic 

MRE is more obvious than that for isotropic MRE with the same composition, which indicates 

anisotropic MRE has greater dependence on strain amplitudes than isotropic MRE.  

 

 Figure ‎4.9 Dependence of loss modulus on strain amplitude at 10Hz. 

From Figure ‎4.10 we can see that the loss factor of MRE also decreases with strain 
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always greater than the isotropic MRE with the same composition, and the loss factor of 

anisotropic MRE also displays a more pronounced dependence on strain amplitudes than the 

isotropic MRE as the loss factor of anisotropic MRE decrease with increasing strain amplitude 

more obviously than the isotropic MRE with the same composition.  

 

 Figure ‎4.10 Dependence of loss factor on strain amplitude at 10Hz. 

Figure ‎4.11 shows that the MR effect decreases with increasing strain amplitudes for both 

anisotropic MRE and isotropic MRE. It is also shown that for the same strain amplitudes, the 

anisotropic MRE has greater MR effects than the isotropic MRE with the same composition. 

 

 Figure ‎4.11 Dependence of relative MR effect on strain amplitude at 10Hz. 
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slope of hysteresis loop and the loss angle can be obtained by the area within the hysteresis loop, 

and then the storage modulus and loss modulus can be calculated by the relationship in Equation 

(‎3.2). It can be seen that the storage modulus increases with frequency for both isotropic MRE 

and anisotropic MRE, as the slope of hysteresis loop increases with frequency. When comparing 

Figure ‎4.12 (b) with Figure ‎4.12 (a), it is noticeable that anisotropic MRE has both higher 

storage modulus and higher loss modulus than isotropic MRE, because both the slope and the 

area of hysteresis loop for anisotropic MRE are greater than those of isotropic MRE with the 

same composition. 

 

 

 Figure ‎4.12 Stress-strain plot at 1.5% strain amplitude with varying frequencies for (a) isotropic 

MRE and (b) anisotropic MRE. 
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It can be seen from Figure ‎4.13 that the storage modulus, in agreement with the results 

reported in [51], increases with frequency and the dependence of storage modulus on frequency 

does not change with magnetic fields. At the same frequency an under the same magnetic field 

the anisotropic MRE always possess higher storage modulus than the isotropic MRE with the 

same composition. Furthermore, the anisotropic MRE shows greater dependence on frequency 

than the isotropic MRE because the change of storage modulus with increasing frequency for 

anisotropic MRE is more obvious than the isotropic MRE.  

 

 Figure ‎4.13 Dependence of storage modulus on frequency at 1.5% strain amplitude. 

From Figure ‎4.14 we can see that the loss modulus initially increases with frequency, 

reaches a maximum at 10Hz and starts to decrease with further increasing frequency either 

without and with application of external magnetic fields. Similarly, the dependence of loss 

modulus on frequency is independent from the dependence on magnetic field and the loss 

modulus of anisotropic MRE is always greater than that for the isotropic MRE with the same 

composition at the same frequency and in the same magnetic field. The loss modulus of 

anisotropic MRE changes more obviously with driving frequency, thus, displays greater 

dependence on frequency than isotropic MRE with the same composition. 

Figure ‎4.15 shows that the dependence of loss factor on magnetic field does not change 
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above 10Hz the loss factor decrease with further increasing frequency. Thus at high frequencies 
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line with the conclusions in Sections ‎3.3.1 and ‎3.3.2, namely that the dependence of loss factor 

on frequency is mainly determined by the matrix material and the magnetisable particles 

contribute very little to the dependence on frequency. 

 

 Figure ‎4.14 Dependence of loss modulus on frequency at 1.5% strain amplitude. 

 

 Figure ‎4.15 Dependence of loss factor on frequency at 1.5% strain amplitude. 
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Figure ‎4.16 Dependence of relative MR effect on frequency at 1.5% strain amplitude. 

4.5 Conclusions 

This chapter investigates the dependence of mechanical properties of MRE, mainly including 

the dependence of storage modulus and loss modulus on strain, frequency and magnetic field. 

The experimental results reveal that both the storage modulus and loss modulus increase with 

magnetic flux density and decrease with strain amplitude for both anisotropic MRE and 

isotropic MRE. Furthermore the storage modulus increases with frequencies, but the 

dependence of loss modulus on frequency is determined by the matrix material. The loss 

modulus initially increases with frequency, reaches a maximum at 10Hz and then stops to 

decrease with further increasing frequencies for both anisotropic MRE and isotropic MRE.  

Under the same loading conditions, the anisotropic MRE have higher storage modulus, 

loss modulus and loss factor than the isotropic MRE with the same composition. Furthermore, 

the anisotropic MRE also shows greater dependence on magnetic field, strain and frequency 

than the isotropic MRE with the same composition. The MR effect decreases with strain 

amplitude and frequency, as the increasing strain destroys the interactive force between 

magnetisable particles and the modulus increases with frequencies. The MR effect increases 

with the magnetic field strength until magnetic saturation; then the MR effect will remain 

constant afterwards with further increasing magnetic field intensities. The MR effect can reach 

as high as 36% under an external magnetic field of 500mT. 
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 Mathematical modelling for MRE Chapter 5

5.1 Introduction 

Because of the dependence of mechanical properties on strain and frequency, the MRE material 

is governed by a non-linear stress-strain relationship. In addition the dependence of MRE on 

magnetic field can be selected and tuned by adjusting the magnetic field; thus, it is highly 

suitable for vibration control systems. As an important step towards the application of MRE in 

engineering practice, accurate mathematical modelling to describe the dynamic behaviour is 

very essential. Most of the research on mathematical modelling for MRE focuses on either the 

hysteretic behaviour of this material or the field dependent properties. The former is effective to 

describe the effects of loading history on dynamic response. However, in reality it is difficult to 

apply in a wide bandwidth when considering time-varying vibration sources, as the influence of 

loading history varies with frequency. The latter is limited to static loading conditions, which is 

inadequate in MRE vibration systems. Considering the dependence of mechanical properties on 

strain and frequency, current research on modelling for MRE is still insufficient for providing 

guidelines for engineering applications.  

The aim is to propose a non-linear mathematical model for MRE, which is developed 

from a classic model, based on the experimental research on mechanical property 

characterisation and capable of representing the dependence of MRE on strain and frequency
[113]

. 

In this model the restoring force and the damping force are expressed in polynomials of 

frequency and strain as independently continuous variables. This chapter provides a 

mathematical model for the dynamical analysis of MRE vibration systems and a methodology to 

establish models for materials to continuously describe the dynamic behaviour in certain region 

of strain and frequency. The focus is on low requirement of calculation on parameter 

identification, with full use of gathered information on mechanical properties. 

This chapter develops an MRE structure with a high bearing capacity and a good 

controllability of stiffness to benefit vibration control systems. The stiffness and damping of this 

structure are predicted by combining the dynamic design and the mathematical modelling, and 

the results are examined through dynamic tests of this MRE structure to validate the extension 

of this mathematical model in MRE structures. 
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5.2 Modelling for dynamical properties of MRE 

5.2.1 Modelling method for MRE 

When a sinusoidal strain is applied to MRE material, instead of responding instantaneously the 

resultant stress will lag the input strain with a loss angle. To mathematically represent this 

behaviour the elastic modulus is commonly considered as a complex number comprising a real 

elastic element and an imaginary viscous element. A phase difference between input strain and 

resultant stress implies that part of the energy in put into MRE during loading cannot be 

recovered during unloading, which leads to a strain-stress hysteresis loop
[109]

. The area in 

hysteresis loops can indicate the amount of energy lost during loading and unloading; hence, it 

is an indicator of the damping capability of the material. The mechanical properties of MRE 

depend on strain amplitude, loading frequency, magnetic field and temperature. Under dynamic 

loading, the force-displacement curves are not exact ellipses, but they are deformed by the 

amplitude of the applied loading
[110]

. For example Figure ‎5.1 illustrates the force-displacement 

curves for anisotropic MRE in compression mode studied by Kallio. 

 

Figure ‎5.1 Force-displacement hysteresis curves for anisotropic MRE with 30 vol.% of iron 

particles with different magnetic field strength values
[110]

. 

It has been reported that the effective modulus or the equivalent stiffness decreases with 

the increasing amplitudes of applied strain. Under cyclic loading conditions with small strain we 

can observe the Payne effect, which is commonly manifested as a dependence of modulus on 

the strain amplitudes. As a particular feature of dynamic behaviour, the effect occurs especially 

in filled rubbers. According to the experimental research MRE also exhibits this feature. The 

Payne effect can be attributed to deformation-induced changes in the microstructure of material, 

such as the breakage and recovery of weak physical bonds linking adjacent filler clusters.  
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The simplest model for MRE is the Kelvin-Voigt model, which can be represented by a 

viscous damper connected in parallel with an elastic spring as shown in Figure ‎5.2, where γ* is 

assumed to be the input strain and τ* the output stress.  

 

 Figure ‎5.2 Kelvin-Voigt model of MRE. 

Because of the dependence of mechanical properties on strain and frequency, both the 

storage modulus and loss modulus of MRE change with the strain amplitude and frequency. The 

storage modulus and loss modulus of MRE can be modelled as functions of loading strains and 

driving frequencies. Based upon the experimental research in Section ‎4.2, the surface fitting can 

be carried out with strain amplitude γ and angular frequency ω as independent variables shown 

in Equation (‎5.1), namely. 
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                                (‎5.1) 

where G0ʹ, G1ʹ, G2ʹ, G3ʹ, G4ʹ, G0ʺ, G1ʺ, G2ʺ, G3ʺ and G4ʺ are the parameters that depend on 

experimental results of mechanical property characterisation.  

From the influence of microstructure on mechanical properties in Section ‎3.3, we can see 

the anisotropic MRE has higher shear modulus than the isotropic MRE with identical 

composition which can benefit the bearing capacity of structures. From the dependence of 

mechanical properties on magnetic fields in Section ‎4.2, it can be also seen that under the same 

loading conditions the anisotropic MRE exhibits greater MR effects than the isotropic MRE 

with the same composition which can contribute to the controllable variability of structures.  

For the reasons above, the anisotropic MRE is selected to design vibration control devices, 

and the relative experimental research is used for the dynamic design of MRE structures. Based 

on the surface fitting of storage and loss moduli for MRE material in Figure ‎3.7 (b) and 

Figure ‎3.9 (b), the experimental parameters are listed in Table ‎5.1 and these parameters will be 

used to predict the equivalent stiffness and damping of MRE structures in the following sections. 
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Table ‎5.1 Experimental parameters in the expressions of storage modulus and loss modulus. 

G0ʹ, Pa G1ʹ, Pa·s G2ʹ, Pa·s
2 

G3ʹ, Pa G4ʹ, Pa 

1675590 1414.14 -2.97170 -15417040 138352000 

G0ʺ, Pa G1ʺ, Pa·s G2ʺ, Pa·s
2
 G3ʺ, Pa G4ʺ, Pa 

255039 462.676 -2.12152 -2974230 19367100 

When MRE material experiences sinusoidal excitations, the resultant displacement s can 

be expressed as Equation (‎5.2). 

  0, sin( )s t s t                                              (‎5.2) 

where s0 is the amplitude of vibration response. In a simplified mass-spring-damper system, 

when the spring constant is K and the damping coefficient is C, the equivalent restoring and 

damping forces can be obtained, as  

( , )

( , )

spring

damper

F Ks t

F Cs t








.                                           (‎5.3) 

Substituting the displacement and the velocity in Equation (‎5.2) into Equation (‎5.3), we 

have the oscillatory force and the viscous drag, 

0

0

sin( )

cos( )

spring

damper

F Ks t

F C s t

 

  

 

 
.                             (‎5.4) 

According to strain theory, the shear strain of MRE material can be expressed. 

  0 sin( )
,

s t
t

D

 
 


                                         (‎5.5) 

where D is the thickness of MRE samples in shear tests. The restoring force and the damping 

force can be expressed, considering the stress theory as  

( , )

( , )

spring

damper

F G A t

F iG A t

 

 




.                                     (‎5.6) 

where A is the actual contact area of MRE samples in shear tests. Substituting the shear strain in 

Equation (‎5.5) into Equation (‎5.6), we can obtain the oscillatory force and the viscous drag as 
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0

0

sin( )

sin( )

spring

damper

G As
F t

D

G As
F i t

D

 

 


 


 

 .                               (‎5.7) 

Combining the expressions of Equation (‎5.4) and Equation (‎5.7), the equivalent stiffness 

K and the equivalent damping C can be calculated as 

G A
K

D

G A
C

D







 .                                                 (‎5.8) 

According to the expressions in Equation (‎5.1), a non-linear model can be built up based 

on the Kelvin-Voigt model to describe the dynamical behaviour of MRE. Combining with the 

dimensions of MRE samples and the setup of dynamic tests, the restoring force and the damping 

force are, thus, represented by 

 

 

2 2

0 1 2 3 4

2 2

0 1 2 3 4

( , )

( , )

spring

damper

F s s K K K K s K s

F s s C C C C s C s

  

   

    

    
            (‎5.9) 

where s and   are relative displacement and velocity, ω is the angular frequency. K0, K1, K2, K3, 

K4, C0, C1, C2, C3 and C4 are introduced as parameters of stiffness and damping. Because the 

mathematical modelling is based on the experimental results of mechanical property 

characterisation for MRE, it is limited to the range of strain γ < 6% and frequency ω < 80 Hz. 

With the expressions of equivalent restoring force and equivalent damping force, this 

model is capable of describing the steady response of MRE material under harmonic loading 

conditions. Because this mathematical modelling focuses on the effects of strain and frequency 

on mechanical properties, the hysteretic behaviour of MRE is not taken into account; hence, this 

model is inadequate for taking into account the influence of loading history on dynamic 

response. Although it has its limitation under time varying loadings, this model is effective for 

continuously describing the dynamic behaviour of MRE in certain region of strain and 

frequency. In comparison with other mathematical models considering the hysteretic behaviour 

of MRE, this model is more efficient for parameters identification with full use of gathered 

information on mechanical properties.  
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5.2.2 Nonlinear analysis on MRE modelling 

Based upon the experimental results of storage modulus and loss modulus, the equivalent 

stiffness and equivalent damping can be obtained when the mechanical properties of MRE are 

represented by the Kelvin-Voigt model.  

From the surface fitting in Figure ‎5.3 it can be seen that the equivalent stiffness of MRE 

samples is not constant, similar to the experimental results of storage modulus in Section ‎3.3. It 

also depends on displacement and frequency. The equivalent stiffness decreases with increasing 

amplitude; however, it increases with increasing angular frequency. Within the frequency range 

of 1 Hz ~ 60 Hz and the displacement range of 1 μm ~ 400 μm, it can be seen that the 

equivalent stiffness of MRE can be changed by as much as 37 %. 

 

 

 Figure ‎5.3 The equivalent stiffness of anisotropic MRE sample (a) when B = 0, (b) when B = 

160mT. 
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According to the Kelvin-Voigt model and the experimental setup, the equivalent damping 

of MRE samples can be also calculated from the experimental results of loss modulus in 

Section ‎3.3. Figure ‎5.4 shows that the equivalent damping of MRE samples cannot be simplified 

as constants. It also depends on the displacement amplitude and the angular frequency. At low 

frequencies the equivalent damping is quite high and as the frequency increases the equivalent 

damping decreases, especially at frequencies below 10 Hz it decreases dramatically. on the 

other hand, the equivalent damping does not change much with the vibration amplitude. It can 

be seen that within the range of frequency 1 Hz ~ 60 Hz and displacement 1 μm ~ 400 μm, the 

equivalent damping of MRE can be changed by as high as 1500 %. 

 

 

  

 Figure ‎5.4 The equivalent damping of anisotropic MRE sample (a) when B = 0, (b) when B = 

160mT. 

The surface fitting in this section directly results from the experimental results in ‎Chapter 

3, where the experimental data are almost on the fitted surfaces. Because no further fitting 
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process is induced, the errors generated during fitting are at the same level as they are 

in ‎Chapter 3. In Appendix V, the maximum error for equivalent stiffness is 4.00% and average 

error is 1.29%, and the maximum error for equivalent damping is 9.70% and average error is 

4.36%, details can be referred to Appendix V. 

5.3 Mathematical modelling for MRE structure 

5.3.1 Dynamic design for MRE structure 

Aiming at a good performance of vibration control, it is important for the dynamic design of 

MRE structures to effectively improve the bearing capacity and at the same time ensure a 

substantial variability in equivalent stiffness with magnetic field. In comparison with series 

connections, parallel connections are more effective for MRE structures for obtaining good load 

capacities and the two connections are comparable from the perspective of the controllable 

variability of structural stiffness. Therefore, the parallel connection is adopted for the dynamic 

design of MRE structures to obtain the good effectiveness of vibration control. As shown in 

Figure ‎5.5, the configuration comprises several slices of MRE and two aluminium gratings, 

allowing flexibility in the vertical direction through shear deformations of MRE material and by 

applying external magnetic field, the equivalent stiffness of MRE structures can be adaptively 

controlled. In this dynamic design, the load capacity can be improved by connecting MRE slices 

in parallel without sacrificing any variability of shear modulus with magnetic field
[111]

. 

 

Figure ‎5.5 A schematic of MRE structure. 

In this dynamic design, shown in Figure ‎5.5 the upper and lower aluminium gratings 

mesh successfully with MRE elements bonded to their surfaces through Araldite Standard 

adhesive. The dimension of this device are 60 × 60 × 60 mm³ and for both MRE elements and 
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aluminium elements the thickness is 6mm and the length is 60mm, the height of MRE elements 

is 40 mm. The spaces between the MRE elements and the aluminium bases enable the structure 

to have a maximum deformation of 4 mm in the vertical direction, which equates to a maximum 

allowable shear strain of 67%. Considering fitting to obtain the parameters in the expressions 

for the storage modulus and the loss modulus of MRE in Table ‎5.1, the equivalent stiffness and 

the equivalent damping of this structure can be obtained by combining the geometric 

dimensioning of dynamic design with the material properties of MRE, which is similar to the 

process in previous section, see Equation (‎5.8). Then the restoring force and the damping force 

can be represented by Equation (‎5.10) and the parameters are listed in Table ‎5.2. Thus 

 

 

 

 

2 2
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2 2

0 1 2 3 40.16

2 2
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F S S C C C C S C S

F S S C C C C S C S









       

       

        

        

.      (‎5.10) 

Table ‎5.2 Parameters for the expressions of spring force and the damper force.  

 

K00, N/m K10, N·s/m K20, N·s
2
/m K30, N/m

2 
K40, N/m

3
 

2680940 2262.62 -4.75472 -24667300 221363000 

K0m, N/m K1m, N·s/m K2m, N·s
2
/m K3m, N/m

2
 K4m, N/m

3
 

3259500 2579.58 -5.29688 -38567500 331072000 

C00, N·s/m C10, N·s
2
/m C20, N·s

3
/m C30, N·s/m

2 
C40, N·s/m

3 

408062 740.282 -3.39443 -4758770 30987400 

C0m, N·s/m C1m, N·s
2
/m C2m, N·s

3
/m C3m, N·s/m

2 
C4m, N·s/m

3 

509587 804.920 -3.77984 -7730770 56415200 

5.3.2 Experimental validation of dynamic design 

As shown in Figure ‎5.6, the designed stiffness and damping of this MRE structure can be 

expressed through Equation (‎5.10) and the parameters are listed in Table ‎5.2. From Figure ‎5.6 (a) 

and Figure ‎5.6 (c), the bearing capacity for safety can be calculated with the geometric 

dimensioning of dynamic design and the mechanical properties of MRE. For this MRE structure 

the static load capacity of bearing is 65kg. The dynamic load capacity of bearing decreases with 
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the static load exerted on the smart structure and when the static load is close to zero the 

dynamic load capacity of bearing is 75kg. Furthermore with the application of a magnetic field 

at 160 mT the dynamic load capacity of bearing can reach 100kg. It can be seen from Figure ‎5.6 

(b) and Figure ‎5.6 (d) that the damping of this MRE structure declines dramatically at low 

frequencies below 10 Hz and at high frequencies the damping diminishes and approaches zero. 

 

 Figure ‎5.6 The designed stiffness of MRE structure (a) when B = 0, (c) when B = 160mT and 

the designed damping of MRE structure (b) when B = 0, (d) when B = 160mT. 

The dynamic test of this MRE structure is conducted to obtain the mechanical properties. 

As shown in Figure ‎5.7, the fixtures are made of aluminium and MRE samples are bonded to 

the metal surfaces with Araldite Standard adhesive. There are eight pieces of MRE prepared in 

dimensions of 60 × 40 × 6 mm³ for the dynamic tests. Consequently this structure can be 

examined with two independent sets of four MRE samples, each set of MRE samples are tested 

twice respectively, and the experimental results are obtained by averaging the four sets of 

experimental data. 

Figure ‎5.8 shows the experimental results of stiffness and damping by examining the 

MRE structure. The bearing capacity for safety of this MRE structure can be obtained from 

Figure ‎5.8 (a) and Figure ‎5.8 (c). We can see the stiffness of structure reduces with the vibration 

amplitude, and this tendency is in agreement with the predictions on the stiffness of this MRE 
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structure. The static load capacity and the dynamic load capacity are almost the same as the 

calculation in dynamic design of MRE structure. In Figure ‎5.8 (b) and Figure ‎5.8 (d) we can see 

that the damping of the structure decreases with frequency, especially at frequencies below 

10Hz, and is close to zero at high frequencies, which is consistent with the discussion for 

Figure ‎5.6 (b) and Figure ‎5.6 (d).  

 

 Figure ‎5.7 Experimental setup for MRE structure. 

 

 Figure ‎5.8 The experimental results of structural stiffness (a) when B = 0, (c) when B = 160mT 

and the experimental results of structural damping (b) when B = 0, (d) when B = 160mT. 
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From Figure ‎5.9 we can see the errors of predicted values for the stiffness and the 

damping of MRE structure. In Figure ‎5.9 (a), (c) and (d) the errors are within 5% which is 

acceptable, but in Figure ‎5.9 (b) the errors of equivalent damping when B = 160mT are a bit 

higher. Acceptable errors indicate the mathematical model of MRE material can be extended to 

MRE structures within the used range of displacements and frequencies. However, the 

mathematical model of MRE is limited to loading conditions of dynamic tests, as the errors of 

prediction can be mitigated when the working condition is well in the region of strain and 

frequency of mechanical property characterisation for MRE. In the dynamic tests for MRE 

materials and MRE structures in shear mode, bonding technology is a reason for creating errors. 

Overall, within the displacement range of S < 400 μm and the frequency range of Ω < 60Hz, the 

mathematical model is valid for describing the dynamical behaviour of this MRE structure.  

 

 Figure ‎5.9 The error between the predicted values and experimental results of stiffness for 

MRE structure (a) when B = 0, (c) when B = 160mT; and the error between the predicted values 

and experimental results of damping for MRE structure (b) when B = 0, (d) when B = 160mT. 
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5.4 Summary 

Experimental results confirm the importance of nonlinearities in equivalent stiffness and 

equivalent damping, which are a consequence of the dependence of storage modulus and loss 

modulus on frequency and strain, and results in relative differences of 37% and 1500% 

respectively. This evidence indicates the necessity to consider the nonlinearity in the mechanical 

properties of MRE for an effective dynamic design in vibration systems.  

Based upon the experimental research on the dependence of mechanical properties on 

frequency and strain in the chapters ‎Chapter 3 and ‎Chapter 4, herein presents a nonlinear 

mathematical model for MRE material to describe the dynamic behaviour under cyclic loadings. 

The non-linear mathematical model is developed from the Kelvin-Voigt model, and the 

restoring force and the damping force are expressed in polynomials of frequency and strain as 

independently continuous variables. A dynamic design of MRE structure is taken as an example 

to evaluate the effectiveness of this mathematical model. The geometric dimensioning of 

dynamic design and the mechanical properties of MRE enable predictions for the structural 

stiffness and the structural damping within a region of strain and frequency used in the dynamic 

tests of mechanical property characterisation for MRE. Dynamic tests are conducted for this 

MRE structure to examine this mathematical model and error analysis is accordingly carried out 

to assess the efficiency of its extension in structures. The discussion shows that the errors 

between the predicted values and the experimental results are acceptable. Therefore, the 

mathematical model is reliable for describing the dynamic behaviour of MRE structures in the 

range of strain and frequency where mechanical properties are characterised for MRE. 

The mathematical model provided in this chapter is essential for the dynamical analysis 

of MRE vibration systems, and the methodology of building up mathematical models also 

provides guidelines for materials to continuously describe the dynamic behaviour in the 

required region of strain and frequency with a low requirement of calculation on parameter 

identification and full use of gathered information on mechanical properties. 
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 Two-stage Nonlinear MRE Vibration Chapter 6

Isolation Systems 

6.1 Introduction 

Since the discovery in 1948 of the MR phenomenon by Thomas Rabinow
[4]

, MR materials such 

as MR fluids, MR elastomers and MR foams have proven to be suited to vibration mitigation. 

Numerous applications are based on MRF because the dynamic yield stress can be continuously, 

rapidly and reversely controlled by the applied magnetic field. Comparing with MRF, the 

rheological property of MRE is the field-dependent modulus, and the microstructure and 

mechanical properties of MRE are also relatively stable
[5]

. The applications of MRE mainly 

involve vibration isolators
[8,69,93]

 and adaptive vibration absorbers
[10,69,75]

. 

Because the mechanical properties of MRE depend on strain, frequency and magnetic 

field, it is essential for the application to describe the dynamical behaviour with a valid 

mechanical model. The aim of this chapter is to study the dynamics of a two-stage isolation 

system with MRE isolators. Firstly, the motion equations are formulated to obtain the overall 

steady state response of the system and this is followed by dynamical analysis of the resulting 

system using originally derived analytical expressions. Secondly, the force transmissibility is 

evaluated and compared for different vibration isolation systems. The numerical results show 

that a reduction in the vibration response and transmissibility can be obtained by applying a 

magnetic field to MRE isolators in a proper range of excitation frequency, which will provide 

useful guidelines for the dynamic design of two-stage MRE vibration isolation systems
[112]

. 

6.2 Equations of motion 

6.2.1 Standard form of equations of motion 

The two-stage nonlinear isolation system can be considered as a two degree of freedom (DOF) 

vibration system, as shown in Figure ‎6.1. X1 and X2 are displacements of the two compressors, 

M1 and M2 are corresponding masses supported by non-linear dampers and non-linear springs, 

the nonlinear damping force and the nonlinear restoring force are expressed by Equation (‎5.9). 
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F0 and 
 
are the amplitude and angular frequency of harmonic excitation, respectively. It is 

assumed that the masses in this system only have vertical displacements. 

 

 Figure ‎6.1 Two-stage vibration isolation system with MRE isolators. 

Considering the nonlinearity of MRE models in Section ‎5.3, the governing differential 

equations are 
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 
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   (‎6.1) 

where Δ = X1 – X2 is the relative displacement of mass M1 with respect of mass M2 and  ̇ is the 

relative velocity, C1,2 and K1,2 are the linear damping and stiffness of the isolators, respectively; 

K1,2’, K1,2” are coefficients of stiffness which proportionally and quadratically depend on 

frequency, respectively; K1,2
*
, K1,2

**
 are coefficients of stiffness which proportionally and 

quadratically depend on strain, respectively; C1,2’, C1,2” are coefficients of damping which anti-

proportionally and proportionally depend on frequency, respectively; C1,2
*
, C1,2

**
 are coefficients 

of damping which proportionally and quadratically depend on strain, respectively. 

Equation (‎6.1) can be rewritten in matrix form: 

Mx + Cx + Kx = F                                                      (‎6.2) 

where 



85 

 

1

2

X

X

 
  
 

x , 
1

2

X

X

 
  
 

x , 
1

2

X

X

 
  
 

x . 
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2 2 2 31 1 1
0 1 1 1 1 1 1

2 2 2 31 1 1
2 1 1 1 1 1

2 2 22 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2

cos
C C C

F t M g C K K K K

C C C
M g C K K K K

C C C
X C X X X X X K X K X K X K

 
 

 
 

 



                     

  

 
                   

  


            

  

F

3

2 2X

 
 
 
 
 
 
 
 
 
 
 

 

In this system, M1 is 30kg and F0 is 300N. The stiffness and damping can be designed as 

the discussion in Section ‎5.3, and the parameters can be obtained by combining the geometrical 

design of structure and the dynamical properties of material. The limitation of shear strain for 

static load is defined as 2% for the mechanical property characterisation of MRE material, and 

the static load capacity can be determined for the safe dynamic design of MRE isolator. 

According to Equation (‎5.8), the calculation of equivalent stiffness and damping are based upon 

experimental results of storage modulus and loss modulus for MRE material, as shown in 

Figure ‎6.2 and Figure ‎6.3. The parameters of designed stiffness and designed damping are listed 

in Table ‎6.1, with the application of magnetic field at B = 500mT the parameters change as the 

discussion in Section ‎5.2.  
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Figure ‎6.2 Experimental results of storage modulus when (a) B = 0, (b) B = 500mT. 

 

 

 Figure ‎6.3 Experimental results of loss modulus when (a) B = 0, (b) B = 500mT. 
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 Table ‎6.1 Parameters of stiffness and damping. 

K1 (B = 0) 

N/m 

K1’ (B = 0) 

N·s/m 

K1” (B = 0) 

N·s
2
/m 

K1
*
 (B = 0) 

N/m
2 

K1
**

 (B = 0) 

N/m
3
 

2680940 2262.62 -4.75572 -24667300 221363000 

K1 (B = 0.5T) 

N/m 

K1’ (B = 0.5T) 

N·s/m 

K1” (B = 0.5T) 

N·s
2
/m 

K1
*
 (B = 0.5T) 

N/m
2 

K1
**

 (B = 0.5T) 

N/m
3
 

4131550 3028.96 -6.97805 -52978300 438218000 

C1 (B = 0) 

N·s/m 

C1’ (B = 0) 

N·s
2
/m 

C1” (B = 0) 

N·s
3
/m 

C1
*
 (B = 0) 

N·s/m
2 

C1
**

 (B = 0) 

N·s/m
3 

740.282 408062 -3.39443 -4758770 30987400 

C1 (B = 0.5T) 

N·s/m 

C1’ (B = 0.5T) 

N·s
2
/m 

C1” (B = 0.5T) 

N·s
3
/m 

C1
*
 (B = 0.5T) 

N·s/m
2 

C1
**

 (B = 0.5T) 

N·s/m
3 

797.505 663845 -3.96701 -9594550 65007000 

 

The relationship between K1 and K2 can be determined on the basis of guaranteeing the 

static load capacity and avoiding any waste or any failure of MRE material, as expressed in 

Equation (‎6.3), namely. Consequently, it can be deduced from the mechanical properties of 

MRE that all the parameters of stiffness and damping K1,2, K1,2’, K1,2”, K1,2
*
, K1,2

**
, C1,2, C1,2’, 

C1,2”, C1,2
*
 and C1,2

**
 have the same relationship. 

 1 2 1 2 1M K M M K                                                        (‎6.3) 

6.2.2 Steady state response of system 

In order to observe the steady state behaviour of the system, numerical simulations are carried 

out using the expressions derived above. According to the standard form of motion equations, a 

specific group of parameters is selected for simulation. The response of the vibration isolation 

system for this selection is shown in Figure ‎6.4 and the Poincare map is shown in Figure ‎6.5. 

Applying the method of averaging, the steady state responses are represented as 

     cos sint t t t t   x u v                                                  (‎6.4) 
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where  
 

 
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u v are assumed to be slow functions of time t. The 

motivation for this assumption is that F is zero, then Equation ( 6.2) its solutions in the form of 

the Equation (‎6.4) with u(t)
 
and v(t) constants. The velocity is expressed by 

     sin cost t t t t    x u v .                                             (‎6.5) 

 

Figure ‎6.4 Response of the system (M1 = 30kg, M2 = 5kg and F0 = 300N). 

 

 Figure ‎6.5 Poincare maps of the system (M1 = 30kg, M2 = 5kg and F0 = 300N). 

Differentiating Equation (‎6.4)(‎6.5) with respect to the time t, we obtain 

         cos sin sin cost t t t t t t t t       x u u v v .                  (‎6.6) 

Substituting Equation (‎6.6) into Equation (‎6.5), the resulting equation is 

   cos sin 0t t t t   u v .                                              (‎6.7) 

Also, differentiating Equation (‎6.6) 
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         2 2sin cos cos sint t t t t t t t t        x u u v v        (‎6.8) 

Substituting the expressions about , ,x x x  
into Equation ( 6.2), we have 

   
 

2 2cos sin

, ,

t t

t

          



Mv Mu Cv Ku Mu Mv Cu Kv

F u v     
  (‎6.9) 

Adding (- sinΩt) × Equation (‎6.9) and (MΩcosΩt) × Equation (‎6.7), we can obtain 

   
  

2 2 2cos sin sin

, sin

t t t

t t

           

  

Mu Mu Cv Ku Mv Cu Kv

F u, v
.         (‎6.10) 

With a similar manipulation, we can also obtain 

   
 

2 2 2cos sin cos

, cos

t t t

t t

           

 

Mv Mu Cv Ku Mv Cu Kv

F u, v
.    (‎6.11) 

According to the assumption expressed in Equation (‎6.4), 

1 1 1

2 2 2

cos sin

cos sin

X u t v t

X u t v t

   

   
                                                   (‎6.12) 

the nonlinear term F(u,v,t) in Equation ( 6.2) can be expressed as 
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 (‎6.13) 



90 

 

where 1 2 1 2,u u u v v v      . 

Then Equation (‎6.10) is integrated from 0 to 2π/Ω by assuming that ,u v  remain constant. 

The final result is 

  12

2

1 1

2 2

Q

Q

 
    

   
Mu K M v .                                      (‎6.14) 

With a similar manipulation, we can also obtain 

  32

4

1 1

2 2

Q

Q

 
     

   
Mv M K u                                      (‎6.15) 
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 
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                  

   
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   

. (‎6.16) 

Equations (‎6.14) and (‎6.15) represent a set of first order, ordinary differential equations. 

For the periodic steady state vibration, the conditions are given as 

u = v = 0 .                                                           (‎6.17) 
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Substituting Equations (‎6.14) and (‎6.15) into condition Equation (‎6.17), a set of four non-

linear algebraic equations for 1 1 2 2, , ,u v u v  are obtained, namely 

   

   

2 2

1 1 1 1 2 1 1 1 1 2 2 2 2

2 2

1 1 1 1 2 3 1 1 2 1 2 2 4

0 0

0 0

K M v K v Q K v K K M v Q

M K u K u Q K u M K K u Q

         

          
.          (‎6.18) 

6.3 Efficiency analysis of vibration isolation system 

6.3.1 Analysis of dynamical characteristic 

A very important aspect of vibration analysis is the natural frequencies of mechanical systems, 

as vibration isolators are believed to be effective when the excitation frequency is well above 

√  0, as stated in Section ‎2.5.2, where ω0 is the natural frequency of isolators. The calculation 

of natural frequencies can provide guidelines for the dynamic design of isolator. In many 

handbooks on vibration
[118]

, we can obtain the expressions of natural frequencies for two-stage 

linear vibration systems as  

2

2 1 1 2 1 1 1 2
1,2

2 1 2 2 1 2 1 2

1 4
1 1

2

K K M K K M K K

M M M M M M M M


 
                      

.                 (‎6.19) 

Substituting Equation (‎6.3) into Equation (‎6.19), the natural frequencies of the 

corresponding linear system in Figure ‎6.1 can be expressed as 

1 1 1
1,2

1 2 1 2

1 1
K M M

M M M M


  
       

.                                     (‎6.20) 

When M1 = 30kg, K1 = 2680940 and K2 is designed following Equation (‎6.3), we can see 

the influence of M2 on natural frequencies of system from Figure ‎6.6. The first natural 

frequency ω1 increases from 34 Hz to 36.5 Hz with M2 from 1kg to 30kg, and the second natural 

frequency ω2 decreases from 370 Hz to 90 Hz with M2. 

In order to determine the stability of a periodic solution, a small perturbation of the 

solutions of Equation (‎6.18) is introduced and written as 

       

       
1 10 11 1 10 11

2 20 21 2 20 21

,

,

u t u u t v t v v t

u t u u t v t v v t

   

   
                               ( 6.21) 
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Figure ‎6.6 The influence of M2 on natural frequencies of system. 

where 10 10 20 20, , ,u v u v  are the steady state solutions of Equation (‎6.18), and u11(t), v11(t), u21(t) 

and v21(t) are small perturbations. Substituting Equation ( 6.21) into Equations (‎6.14) and (‎6.15), 

expanding the resulting equations in Taylor series with respect to u11, v11, u21 and v21, and using 

conditions in Equation (‎6.17), the perturbed equations are obtained by keeping the linear parts, 

which is a linear system in the form of 

x Ax                                                             (‎6.22) 

where 
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u t u t v t v t   x                                         (‎6.23) 
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.(‎6.24) 
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By obtaining the eigenvalues of the coefficient matrix in Equation (‎6.24), the stability of 

periodic solutions can be determined. If the real part of all the eigenvalues is negative, then the 

periodic solution is stable; otherwise, it is unstable. If a real eigenvalue changes sign, it is a 

saddle-node-type bifurcation and may result in jump phenomena. If we have a pair of complex 

conjugate eigenvalues whose real part changes sign, it is a Hopf bifurcation and quasi-periodic 

vibrations will result. 

6.3.2 Analysis of isolation characteristic 

The effectiveness of an isolator can be assessed by examining the transmissibility of the 

vibrating system. Transmissibility is defined as the ratio of the force transmitted to the 

foundation to the applied force, in the direction of the applied loads. In order to investigate the 

isolation transmissibility of the two-stage vibration system, the transmitted force FB can be 

expressed as 

22 2 2
2 2 2 2 2 2 2 2 2

2 2 3

2 2 2 2 2 2 2 2 2 2

B

C C C
F C X X C X X X X X

K X K X K X K X K X

 

 


     

  

       

.                            (‎6.25) 

According to Equation (‎6.12), the steady state response can be expressed as 

 2 2 2cosX A t                                                             (‎6.26) 

where φ2 = tan
-1

(-v2 /u2) is the phase between exciting force F0cosΩt and the steady state 

response X2. Substituting Equation (‎6.26)  into Equation (‎6.25), we obtain the transmitting force 

FB, as 

     0 cos cos 2 2 cos 3 3B B B B BF F F t F t F t                        (‎6.27) 
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 
. Then the transmissibility of isolation system is 

defined as the magnitude of the force ratio, which can be expressed as 

0BTr F F .                                                        (‎6.28) 

From this expression, it is obvious that a decrease in transmissibility leads to a reduction 

in the vibration transmitted to the foundation. In order to obtain the best isolation characteristic, 

the analysis focusses on how to reduce the vibration transmissibility. 

6.4 Numerical results and discussions 

6.4.1 Influence of linear parameters 

In all the numerical calculations, the exciting frequency Ω is taken as an independent variable. 

r1 and r2 denote the response amplitudes of X1 and X2, respectively, namely 

2 2 2 2

1 1 1 2 2 2r u v r u v    .                                         ( 6.29) 

When the nonlinear parameters K1,2’ = K1,2” = K1,2
*
 = K1,2

**
 = C1,2’ = C1,2” = C1,2

*
 = C1,2

**
 

= 0, the vibration system turns into a linear dynamical system. As illustrated in Section ‎6.2.1, 

for safety design of static load capacity we have to guarantee the relationship between stiffness 

K1 and stiffness K2. 

 1 2

2 1

1

M M
K K

M


 .                                                  (‎6.30) 

The steady responses of X1 and X2 are studied to assess the vibration attenuation of this 

corresponding linear dynamical system. As shown in Figure ‎6.7, we can see the influence of 

stiffness K2 on response amplitudes of X1 and X2. When M1 is 30kg, M2 is 5kg, K1 is 

2680940N/m and C1 is 740N.s/m, the resonance frequencies of both X1 and X2 shift to the right 

with increasing stiffness K2 and the peak values of vibration amplitude reduce for both X1 and 

X2. However, the amplitudes of vibration response are not sensitive to the stiffness ratio of K2 to 

K1 with further increasing frequencies higher than resonance frequency. As stated previously, 

the vibration effectiveness of isolation can be obtained by ensuring that the excitation frequency 

is well above √  0, where ω0 is the natural frequency of the isolator. Therefore, both the lower 

resonance frequency and the smaller peak of vibration amplitude are desirable characteristics for 
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isolation. In this two-stage isolation system, increasing the stiffness K2 can reduce the peaks of 

vibration amplitude, but at the same time result in a right shift of resonance frequency, which 

should be avoided to improve the effectiveness of isolation by lowering the natural frequency of 

isolators. Besides considering saving MRE material, it also makes perfect sense to design the 

stiffness K2 as expressed by Equation (‎6.3). 

 

Figure ‎6.7 The effect of stiffness K2 on the amplitude of vibration response (F0 = 300N, M1 = 

30kg, M2 = 5kg, K1 = 2680940N/m and C1 = 740N.s/m). 

Figure ‎6.8 shows the effect of the mass ratio M1 / M2 on the system response. When M1 is 

30kg, K1 is 2680940N/m, C1 is 740N.S/m and the stiffness K2 and C2 are designed according to 

Equation (‎6.3), an observable decrease of resonance frequency can be obtained by increasing 

this mass ratio. However, simultaneously the peaks of vibration amplitude increase obviously, 

as shown in Figure ‎6.8. When the excitation frequencies are higher than resonance frequency, 

the mass ratio M1 / M2 barely affects the vibration amplitude of the system. Therefore, as a 

desirable characteristic of isolation smaller peaks of vibration amplitude can be obtained by 

decreasing the mass ratio of M1 to M2, although the resonance frequency slightly increases at the 

same time in this two-stage isolation system. 

The numerical results of transmissibility are investigated to evaluate the effectiveness of 

isolation in the corresponding linear vibration system. Figure ‎6.9 shows the influence of 

stiffness K2 on transmissibility of isolation system. When M1 is 30kg, M2 is 5kg, K1 is 

2680940N/m and C1 is 740N.s/m, increasing of stiffness K2 can shift natural frequencies to the 

right and increase the force transmissibility values at frequencies higher than the resonance 

frequency, but the peak of transmissibility does not change much. Therefore, it can be 

concluded that a lower stiffness K2 can improve the isolation characteristics, because the lower 
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stiffness K2 can reduce both the resonance frequency and also reduce the force transmissibility 

at higher frequencies. 

 

 Figure ‎6.8 The effect of mass M2 on the amplitude of vibration response (F0 = 300N, M1 = 30kg, 

K1 = 2680940N/m, C1 = 740N.s/m, K2 = K1(M1+ M2)/M1 and C2 = C1(M1+ M2)/M1). 

 

Figure ‎6.9 The effect of stiffness K2 on the transmissibility of system (F0 = 300N, M1 = 30kg, 

M2 = 5kg, K1 = 2680940N/m and C1 = 740N.S/m). 

When M1 is 30kg, K1 is 2680940N/m, C1 is 740N.s/m and the stiffness K2 and C2 are 

selected according to Equation (‎6.3), it can be seen in Figure ‎6.10 that increasing mass M2 

slightly shifts the first natural frequency of system to the left and obviously shifts the second 

natural frequency to the right, which is in accordance with the discussion on natural frequency 

of system in Section ‎6.3.1. As mass M2 increases, the force transmissibility increases slightly at 

frequencies lower than the first natural frequency, and the transmissibility increases obviously 

when excitation frequencies are above the second natural frequency. Increasing the mass ratio 
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M1 / M2 slightly increases the peak of force transmissibility at resonance frequency and 

significantly decreases the transmissibility at frequencies between the two natural frequencies. 

Overall a lower mass ratio M1 / M2 can effectively reduce the force transmissibility at high 

frequencies; hence, appropriately increasing the mass M2 is helpful to reduce the force 

transmissibility in this isolation system. 

 

Figure ‎6.10 The effect of mass M2 on the transmissibility of system (F0 = 300N, M1 = 30kg, K1 = 

2680940N/m, C1 = 740N.S/m, K2 = K1(M1+ M2)/M1 and C2 = C1(M1+ M2)/M1). 

6.4.2 The influence of non-linearity 

Solving Equation (‎6.1) is essential to assess the performance of dynamic isolators and to explore 

the influence of nonlinearity on the isolation characteristic. However, it is impossible to obtain 

the exact analytical solutions of the system response when damping or stiffness is nonlinear. 

Alternatively, direct numerical integration is employed with the fourth order Runge-Kutta 

method to investigate the dynamical behaviour and isolation transmissibility.  

If the nonlinear parameters K1,2’ = K1,2” = K1,2
*
 = K1,2

**
 = C1,2’ = C1,2” = C1,2

*
 = C1,2

**
 = 0, 

the vibration system is a linear isolation system; if the parameters K1,2’ = K1,2” = K1,2
*
 = K1,2

**
 = 

C1,2 = C1,2” = C1,2
*
 = C1,2

**
 = 0 and the storage and loss moduli of the MRE material are linear 

and this material turns into a linear viscoelastic material. As shown in Figure ‎6.11, the influence 

of non-linearity on vibration response of this two-stage isolation system is investigated by 

comparing with a corresponding linear vibration system and a corresponding linear viscoelastic 

material. All the non-linear parameters are chosen from Table ‎6.1 with magnetic intensity B = 0, 

and the stiffness and damping are designed following the relationship in Equation (‎6.3). From 

Figure ‎6.11, a slight right shift of the resonance frequency occurs with the non-linearity of MRE 
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isolator in this two-stage vibration system when comparing with either the linear isolator or the 

linear viscoelastic material. It can also be noticed that the MRE isolator can work much better 

than the linear isolator on reducing the peaks of transmitted vibration, but the MRE isolator 

cannot lower the transmitted vibration as much as the linear viscoelastic material. Furthermore, 

the amplitude of steady response changes dramatically at 74 Hz, because the negative damping 

happens when frequencies are higher than 74 Hz which will never happen in reality because the 

loss modulus of MRE must be a positive value. Therefore, this model has a limited working 

frequency range to guarantee its efficiency considering the frequency range where the 

experimental results are used to develop mathematical modelling. 

 

Figure ‎6.11 The vibration responses of different systems (F0 = 300N, M1 = 30kg and M2 = 5kg). 

In Figure ‎6.12, the non-linear parameters for MRE isolation system in a field-on state are 

chosen from Table ‎6.1 when magnetic intensity B = 500 mT, and the stiffness and damping are 

also designed following the relationship in Equation (‎6.3). It can be seen that the application of 

a magnetic field of 500 mT can shift the resonance frequency to the right noticeably and reduces 

the peak of vibration amplitude simultaneously. In this two-stage vibration system, the lower 

resonance frequency and the smaller peak value of response amplitude can be obtained as 

desirable characteristics for isolation by employing a magnetic field of 500 mT when 

frequencies are lower than 40 Hz and removing the magnetic field when frequencies are higher 

than 40 Hz. That is because with the application of magnetic field the adaptive MRE isolator 

can have a higher stiffness, which is helpful to attenuate the vibration amplitude at low 

frequencies in this vibration system, and at high frequencies this isolator works with a low 

stiffness to improve the isolation efficiency. 
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Figure ‎6.12 The vibration response of system with MRE isolators (F0 = 300N, M1 = 30kg and 

M2 = 5kg). 

From Figure ‎6.13 we can see the comparison between conventional isolators and adaptive 

MRE isolators. The resonance frequency of this adaptive MRE isolator shifts to the right 

compared with either the linear isolator or the linear viscoelastic material. In addition the peak 

of vibration amplitude can be reduced much more with an adaptive MRE isolator than the linear 

isolator or the linear viscoelastic material. Therefore, the vibration isolation can be effectively 

improved over the full frequency range by applying a magnetic field of 500 mT at frequencies 

below 40 Hz and removing this magnetic field at frequencies above 40 Hz.  

 

Figure ‎6.13 The vibration response of different systems (F0 = 300N, M1 = 30kg and M2 = 5kg). 
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The force transmissibility of the selected systems is investigated to evaluate the 

effectiveness of MRE isolators. The numerical results of Equation (‎6.28) are obtained as 

vibration transmissibility. As shown in Figure ‎6.14, the resonance frequency is a bit higher in 

the MRE isolation system than it is in either the linear isolation system or the linear viscoelastic 

material, and the peak of transmissibility in the MRE isolation system is lower than it is in the 

linear isolation system, but for the linear viscoelastic material the peak of transmissibility is 

even lower. It can also be noted that the MRE isolation system becomes unstable at frequencies 

above 74 Hz, because the expression of damper force in Equation (‎5.9) results in negative 

damping coefficients when frequencies are higher than 74 Hz, a limitation of modelling results 

from the frequency range during testing of mechanical properties characterisation for MRE. 

From the fact in Section ‎5.3.2 that the equivalent damping coefficient of MRE structure 

drastically decreases with increasing frequency, it can be deduced that at frequencies higher 

than 74 Hz the damping coefficient will be very low and close to zero; hence, the isolation 

characteristic in the MRE vibration system will be even better than either the linear isolation 

system or the linear viscoelastic material, as the general knowledge of vibration isolation is that 

low damping coefficients play a more important role in improving the isolation characteristic as 

driving frequency increases. Besides, the discussion in Section ‎5.3.2 shows that the equivalent 

stiffness of MRE isolator increases with frequency. Therefore, in this two-stage vibration 

system although the numerical results show instability of MRE isolation system at frequencies 

above 74 Hz, due to the limitation of mathematical modelling, there is a good reason to deduce 

that comparing with the linear isolation system or the linear viscoelastic material MRE isolation 

system will have better characteristics for vibration isolation at those high frequencies.  

 

Figure ‎6.14 The force transmissibility of different systems (F0 = 300N, M1 = 30kg and M2 = 5kg). 
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From Figure ‎6.15 it can be seen that the resonance frequency can be effectively shifted to 

the right with the application of a magnetic field of 500 mT from 36 Hz to 45 Hz, but the 

transmissibility remains the same. The isolation performance can be improved by applying a 

magnetic field of 500 mT at frequencies below 40 Hz and removing the magnetic field at 

frequencies above 40 Hz. In this two-stage vibration system, the lower resonance frequency and 

the smaller peak value of transmissibility can be obtained as desirable isolation characteristics 

with a switchable magnetic field. Thus, the application of magnetic field enables the adaptive 

MRE isolator to have a higher stiffness and, thus, attenuate the transmissibility at low 

frequencies, and at high frequencies removing this magnetic field allows the adaptive MRE 

isolator to work with a low stiffness to improve the isolation efficiency.  

 

Figure ‎6.15 The transmissibility of system with MRE isolators (F0 = 300N, M1 = 30kg and M2 = 

5kg). 

Figure ‎6.16 shows the comparison between conventional isolators and adaptive MRE 

isolators. The adaptive MRE isolator has a higher resonance frequency and a lower peak value 

of isolation transmissibility when compared with either the linear isolator or the linear 

viscoelastic material. Therefore, a better isolation performance can be obtained by switching on 

a magnetic field of 500 mT when frequencies are lower than 40 Hz and switching off this 

magnetic field when frequencies are higher than 40 Hz. In addition, as discussed previously in 

this section although the simulation shows an instability in MRE isolation system at frequencies 

above 74 Hz, because the model of this two-stage vibration system has a limitation of working 

frequency to guarantee its efficiency considering the frequency domain where the experimental 

results are used to develop this mathematical model, it can be still deduced that the MRE 

isolation system will have a lower isolation transmissibility at frequencies higher than 74 Hz 
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compared with the linear isolation system or the linear viscoelastic material. This is based on 

the results and discussions in Section ‎5.3.2 that the equivalent damping of MRE isolators 

decreases with frequencies and the equivalent stiffness increases which can result in an 

improved isolation performance at frequencies higher than resonance frequency. 

 

Figure ‎6.16 The force transmissibility of different systems (F0 = 300N, M1 = 30kg and M2 = 5kg). 

 

6.5 Summary   

In this chapter, a two-stage vibration system incorporating non-linear damping and non-linear 

stiffness is selected to investigate the use of MRE in isolation system. Firstly the study presents 

analytical expressions to describe the dynamical behaviour of this two-stage system that allows 

a simulation of steady response and an assessment of stability. Finally, direct numerical 

integration is employed to investigate the dynamical behaviour and isolation characteristics of 

this system. The steady vibration responses and force transmissibility curves of different 

systems are compared in frequency domain to evaluate the efficiency of adaptive MRE isolators.  

In isolation systems, both lower resonance frequency and smaller peak of vibration 

amplitude or transmissibility are desirable characteristics. In this two-stage isolation system, 

appropriately increasing the mass of M2 and decreasing the stiffness of K2 can effectively lower 

the resonance frequency and reduce the peak of force transmissibility. However, considering 

keeping isolators compact and saving MRE material, we cannot increase the mass M2 or reduce 

the stiffness K2 ad infinitum, since the corresponding bearing capacity must be guaranteed for 

the safety of dynamic designs. 
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Comparing with the corresponding linear isolator and linear viscoelastic material, it is 

hard for MRE isolators to improve the efficiency of vibration control by lowering the resonance 

frequency. As an alternative way to improve the isolation characteristic, reduction of the peak 

value of vibration amplitude or force transmissibility can be obtained by controlling the 

magnetic field applied to an MRE isolator. With a switchable magnetic field, at low frequencies 

the application of magnetic field enables the adaptive MRE isolator to have a higher stiffness 

thus attenuate the vibration and the transmissibility, and at high frequencies removing this 

magnetic field allows the adaptive MRE isolator to work with a lower stiffness to improve the 

isolation efficiency. 

Guidelines for designing MRE isolators: considering the related requirement for bearing 

capacity, the MRE isolator is designed with the lowest allowable stiffness to support the 

equipment; referring to the intersection point on curves of transmissibility in a field-off state 

and field-on state, the frequency for switching magnetic field is determined for MRE isolators; 

at low frequencies the isolator works in a field-on state, at high frequencies the isolator works in 

a field-off state. 
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 MRE Vibration Absorption Systems Chapter 7

7.1 Introduction  

At present, the vibration absorber is the main application of MRE and the range of working 

frequencies can be effectively broadened for MRE absorbers by adjusting the magnetic field. As 

the stiffness of MRE material can be controlled with magnetic fields, when the excitation 

frequency varies MRE absorbers can be accordingly retuned. Compared with the 

commercialisation and industrialisation of MRF the application of MRE is still on a very early 

stage. Thus it is essential to develop reliable mechanical models for MRE to describe its 

dynamical behaviour accurately with the consideration of the dependence on strain, frequency 

and magnetic field. 

The aim of this chapter is to study the dynamics of vibration absorption systems with 

MRE absorbers. At first, the general form of motion equations is established for this vibration 

absorption system, and the dynamical characteristics are analysed with analytical expressions. 

Secondly, the steady state vibration response and the transmissibility of absorption system are 

investigated by direct numerical integration. The performance of vibration control can be 

improved with MRE absorbers by adjusting the magnetic field accordingly as excitation 

frequency varies, from the perspective of both vibration response and force transmissibility
[113]

. 

The results and discussions in this chapter can provide useful guidelines for the dynamic design 

of MRE absorbers.  

7.2 Equations of motion 

7.2.1 Standard form of equations of motion 

The absorption system can be considered as a two DOF vibration system, which refers to the 

auxiliary absorber and the primary system with a spring and a damper, as shown in Figure ‎7.1. 

X1 and X2 are displacements of the absorber and the compressor. M1 is the auxiliary mass 

coupled by a non-linear damper and a non-linear spring to a primary system with properties M2, 

K2 and C2. The primary system is excited by force of amplitude of F0 and angular frequency of 

 and it is assumed that the masses in this system only have vertical displacements. 
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Figure ‎7.1 Vibration system with an MRE absorber. 

Considering the mathematical modelling in Section 5.3, the governing differential 

equations of displacements are 

 

 

2 2 21 1 1
1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2

2 2 21 1 1
0 2 1 1 1 1 1 1 1cos

C C C
M X C C K K K K K M g

M X C X K X

C C C
F t M g C C K K K K K

 
 

 
 

 
                      

   
 

 

 
                        

   
 

 (‎7.1) 

where Δ = X1 – X2 is the relative displacement of mass M1 with respect of mass M2 and  ̇ is the 

relative velocity, C1,2 and K1,2 are the linear damping and stiffness coefficients of the absorber 

and the compressor, respectively; K1’, K1” are coefficients of stiffness which proportionally and 

quadratically depend on frequency, respectively; K1
*
, K1

**
 are coefficients of stiffness which 

proportionally and quadratically depend on strain, respectively; C1’, C1” are coefficients of 

damping which anti-proportionally and proportionally depend on frequency, respectively; C1
*
, 

C1
**

 are coefficients of damping which proportionally and quadratically depend on strain, 

respectively. 

The motion equations can be also rewritten in matrix form: 

Mx + Cx + Kx = F                                                      (‎7.2) 

where 

1

2

X

X

 
  
 

x , 
1

2

X

X

 
  
 

x , 
1

2

X

X

 
  
 

x . 

The mass, damping and stiffness matrices are expressed by 
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1

2

0

0

M

M

 
  
 

M , 
1 1

1 1 2

C C

C C C

 
  

  
C , 

1 1

1 1 2

K K

K K K

 
  

  
K

 

respectively, and the force vector 

2 2 2 31 1 1
1 1 1 1 1 1

2 2 2 31 1 1
0 2 1 1 1 1 1cos

C C C
M g C K K K K

C C C
F t M g C K K K K

 
 

 
 

 
                    

   
 
 

 
                      

    

F

. 

Table ‎7.1 Parameters of designed stiffness and damping. 

K1 (B = 0) 

N/m 

K1’ (B = 0) 

N·s/m 

K1” (B = 0) 

N·s
2
/m 

K1
*
 (B = 0) 

N/m
2 

K1
**

 (B = 0) 

N/m
3
 

536188 452.524 -0.95094 -4933460 44272600 

K1 (B = 0.5T) 

N/m 

K1’ (B = 0.5T) 

N·s/m 

K1” (B = 0.5T) 

N·s
2
/m 

K1
*
 (B = 0.5T) 

N/m
2 

K1
**

 (B = 0.5T) 

N/m
3
 

826310 605.792 -1.39561 -10595650 87643500 

C1 (B = 0) 

N·s/m 

C1’ (B = 0) 

N·s
2
/m 

C1” (B = 0) 

N·s
3
/m 

C1
*
 (B = 0) 

N·s/m
2 

C1
**

 (B = 0) 

N·s/m
3
 

148.056 81612 -0.67889 -951754 6197480 

C1 (B = 0.5T) 

N·s/m 

C1’ (B = 0.5T) 

N·s
2
/m 

C1” (B = 0.5T) 

N·s
3
/m 

C1
*
 (B = 0.5T) 

N·s/m
2 

C1
**

 (B = 0.5T) 

N·s/m
3
 

159.501 132769 -0.79340 -1918910 13001400 

As the discussion in Section ‎5.3, the parameters of designed stiffness and damping can be 

obtained by combining the geometrical design of the structure and the dynamical properties of 

MRE materials. The shear strain limitation of static load capacity is defined as 1% for the safe 

dynamic design of MRE absorber, the primary mass M2 = 30 kg, the primary stiffness K2 = 

5.5×10
6
 N/m and the excitation force F0 = 300 N. According to Equation (‎5.8), the calculation 

of equivalent stiffness and damping are based upon experimental results of mechanical property 

characterisation for MRE in Figure ‎6.2 and Figure ‎6.3. The parameters of designed stiffness and 
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designed damping for an auxiliary mass M1 = 3 kg are listed in Table ‎7.1, when a magnetic field 

of 500 mT is applied the parameters change as per the discussion in Section ‎5.2.  

Ensuring the static load capacity and avoiding any waste or any failure of MRE material, 

the stiffness K1 has to be in proportion to the auxiliary mass M1, as expressed in Equation (‎7.3). 

From the mechanical properties of MRE it can be deduced that all the parameters of stiffness 

and damping K1, K1’, K1”, K1
*
, K1

**
, C1, C1’, C1”, C1

*
 and C1

**
 have the same relationship.  

1

1

3 kg
( 1,2.3...)

 536188 N/m

M n
n

K n





                                        (‎7.3) 

7.2.2 Steady state response of system 

Numerical simulations of Equation (7.1) are used to observe the steady state behaviour of this 

vibration absorption system. A specific group of parameters is selected for simulation according 

to the standard form of motion equations. The response of the absorption system for this 

selection is shown in Figure ‎7.2 Response of the system (M1 = 3kg, M2 = 30kg, K2 = 5.5×10
6
N/m 

and F0 = 300N). and the Poincare map is shown in Figure ‎7.3. 

 

Figure ‎7.2 Response of the system (M1 = 3kg, M2 = 30kg, K2 = 5.5×10
6
N/m and F0 = 300N). 

 

 Figure ‎7.3 Poincare maps of the system (M1 = 3kg, M2 = 30kg, K2 = 5.5×10
6
N/m and F0 = 

300N). 
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The steady state responses can be represented as Equation (‎7.4) when applying the 

method of averaging, 

     cos sint t t t t   x u v                                                  (‎7.4) 

where  
 

 
 

 

 
1 1

2 2

,
u t v t

t t
u t v t

   
    
   

u v are assumed to be slow functions of time t. The 

motivation for this assumption is that F is zero when Equation (‎7.2) has a solution in the form of 

Equation (‎7.4)  with u(t)
 
and v(t) constants. Applying the same progress as in Section ‎6.2.2, we 

obtain 

   
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Mu Mu Cv Ku Mv Cu Kv

F u v
        (‎7.5) 

and 

   
 

2 2 2cos sin cos

, , cos

t t t

t t

           
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F u v
.       (‎7.6) 

According to the assumption expressed in Equation (‎7.4), 

1 1 1

2 2 2

cos sin

cos sin

X u t v t

X u t v t

   

   
                                                   (‎7.7) 

and the nonlinear term F(u,v,t) in Equation (‎7.5) and Equation  (‎7.6) can be expressed as 
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 (‎7.8) 

where Δu = u1 – u2, Δv = v1 – v2. 
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Then Equation (‎7.5) and Equation  (‎7.6) are integrated from 0 to 2π/Ω by assuming that u 

and v remain constant. The final result is 

  12

2

1 1

2 2

Q

Q

 
    

   
Mu K M v                                         (‎7.9) 
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where 
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Equations (‎7.9) and (‎7.10) represent a set of first order, ordinary differential equations. 

For the periodic steady state vibration, the conditions are given as 

u = v = 0 .                                                           (‎7.12) 

Substituting Equations (‎7.9) and (‎7.10) into the initial condition Equation (‎7.12), a set of 

four non-linear algebraic equations for u1, u2, v1, v2 is obtained 

   

   

2 2

1 1 1 1 2 1 1 1 1 2 2 2 2

2 2
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M K u K u Q K u M K K u Q

         

          
.          (‎7.13) 
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7.3 Efficiency analysis of vibration absorption system 

7.3.1 Analysis of dynamical characteristic 

It is necessary to analyse the natural frequencies of dynamical systems. Practical consideration 

makes it important to avoid any resonance. The calculation of natural frequencies can provide 

guidelines for the dynamic design of absorbers. From many handbooks on vibration
[118]

, we can 

obtain the expressions of natural frequencies in absorption systems as 

2
2 2 2 2

2 20 0
1,2 0

(1 ) (1 )

2 2

a a
a

     
  

    
   

 
                 (‎7.14) 

where ωa = √      is the natural frequency of the auxiliary system on its own, ω0 = √      

is the natural frequency of the primary system on its own and μ = M1/M2. 

When M2 = 30kg, K2 = 5.5×10
6
N/m, M1 and K1 are designed following Equation (‎7.3), we 

can see the influence of M1 on the natural frequencies of composite system in Figure ‎7.4. The 

first natural frequency ω1 decreases from 65Hz to 42Hz with M1 from 1kg to 30kg, and the 

second natural frequency ω2 increases from 75Hz to 110Hz with M1. 

The analysis of stability for this absorption system is similar to that of Section ‎6.3.1. By 

obtaining the eigenvalues of the coefficient matrix in Equation (7.15), the stability of periodic 

solutions can be determined. When the real part of all eigenvalues is negative, then the periodic 

solution is stable; otherwise, it is unstable. 

 

Figure ‎7.4 The influence of M1 on natural frequencies of this composite system. 
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   (‎7.15) 

7.3.2 Analysis of absorption characteristic  

The effectiveness of an absorber can be assessed by examining the amplitude of vibration 

response, and a good absorption characteristic leads to a profound reduction in the vibration 

response of the primary system. If the auxiliary mass is small relative to the mass of the primary 

system, the effectiveness of the absorber is dependent on accurate tuning. Nominally the 

absorber is tuned to the frequency of the excitation, so the natural frequency ω1,2 that is close to 

the driving frequency is of interest. The ratio of ω1,2 to ωa is a measure of sensitivity of the 

tuning required to avoid resonance, and the tuning for a primary system with high natural 

frequency is more sensitive compare to that for a primary system with low natural frequency. 

When the driving frequency is above the natural frequency of the primary system ω0, it is 

preferable to tune the absorber to a frequency slightly lower than the driving frequency to avoid 

the resonance that lies above ω0. Likewise when the driving frequency is less than ω0, it is better 

to tune the absorber to a frequency slightly greater than the driving frequency. 

In order to obtain the best absorption characteristic, the analysis focusses on how to 

reduce the amplitude of vibration response in the primary system. In this thesis, transmissibility 

is defined as the ratio of the amplitude of motion of primary mass to the static deflection of the 

primary system. According to Equation (‎7.7), the steady response of the primary mass can be 

expressed as 

 2 2 2cosX A t   

                                                

 (‎7.16) 

where φ2 = tan
-1

(-v2 /u2) is the phase between excitation and the steady state response.  

Then the transmissibility of the absorption system is defined as the ratio of vibration 

amplitude A2 to the static deflection Ast = F0 / K2, it can be expressed as Equation (‎7.17). From 
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this expression, a decrease in transmissibility results from a reduction in the amplitude of the 

vibration response in primary system. 

2 stTr A A                                                              (‎7.17) 

7.4 Numerical results and discussions 

7.4.1 Influence of linear parameters 

In all the numerical calculations, the exciting frequency Ω is taken as an independent variable. 

r1 and r2 denote the response amplitudes of X1 and X2 , respectively 

2 2 2 2

1 1 1 2 2 2r u v r u v    .                                       ( 7.18) 

When the nonlinear parameters K1’ = K1” = K1
*
 = K1

**
 = C1’ = C1” = C1

*
 = C1

**
 = 0, the 

vibration system is a linear absorption system. As discussed in Section ‎7.3.2 absorbers are tuned 

to the excitation frequency, the auxiliary mass M1 and the stiffness K1 are designed following 

the relationship in Equation (‎7.3). The steady responses of X1 and X2 are studied to explore the 

influence of linear parameters on the vibration attenuation of the corresponding linear 

absorption systems. 

Figure ‎7.5 shows the effect of the auxiliary mass M1 on the system response, the stiffness 

K1 changes with the mass M1 due to the tuning progress of absorbers and the design rule in 

Equation (‎7.3). There are two peaks in the vibration amplitude, at natural frequencies ω1 and ω2 

respectively. The vibration of primary mass M2 is effectively attenuated at frequencies between 

the ω1 and ω2 where the vibration amplitude of X2 is reduced. When M2 is 30kg and K2 is 

5500000N/m, from the vibration amplitude of X2 we can be observe that as the auxiliary mass 

M1 decreases, the peak of amplitude at ω1 decreases and the peak of amplitude at ω2 increases, 

but the range of working frequencies which are between the two natural frequencies ω1 and ω2 

narrows down. Thus the effectiveness of absorbers depends on an accurate tuning very much 

when the auxiliary mass M1 is relatively small. Comparing the vibration amplitude of X2 with 

the vibration amplitude of X1, we can see that at working frequencies between natural 

frequencies ω1 and ω2 the absorber effectively reduce the vibration amplitude of X2 for the 

primary system, simultaneously the motion of the absorbers becomes very large as the vibration 

amplitude of X1 is even larger than the vibration amplitude of X2 at frequencies between ω1 and 

ω2. From the vibration amplitude of X1, as the auxiliary mass decreases the motion of absorbers 
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at frequencies between the two natural frequencies ω1 and ω2 becomes larger, so it is necessary 

to limit the vibration of the auxiliary mass by damping for avoiding failure. 

 

Figure ‎7.5 The effect of mass M1 on the amplitude of vibration response (F0 = 300N, M2 = 30kg 

and K2 = 5500000N/m). 

The effect of the damping C1 
of the absorber on the vibration response of the system can 

be seen in Figure ‎7.6. When M2 is 30kg, K2 is 5500000N/m and C2 is 1500N.s/m, increasing the 

damping C1 reduces the vibration amplitudes for both X1 and X2 at the two natural frequencies 

ω1 and ω2. However, the vibration amplitude for X2 increases with damping at the natural 

frequency of the absorber ωa. Therefore, an increase of damping C1 can effectively attenuates 

the vibrations of the auxiliary mass M1 thus mitigate the risk of any failure of absorbers, as well 

as reduce the vibrations of the primary mass M2 at the two natural frequencies ω1 and ω2. 

However, at the natural frequency of the absorber ωa, increasing damping C1 cannot help in 

obtaining a better absorption performance but deteriorates the absorption efficiency, as the 

vibration amplitudes of X2 increases with damping C1 at the natural frequency ωa. Additionally, 

damping C1 cannot either broaden or narrow the range of working frequencies for the absorber.  

In order to evaluate the absorption efficiency, we alternatively investigate the numerical 

results of Equation (‎7.17) obtained as vibration transmissibility. In Figure ‎7.7 we can see the 

influence of auxiliary mass M1 on transmissibility of the absorption system. Because of the 

tuning process of absorbers and the design rule in Equation (‎7.3) the stiffness K1 and the mass 

M1 of the absorber change together. When M2 is 30kg and K2 is 5500000N/m, increasing the 
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1, if the excitation frequency is in this range the transmissibility can be effectively controlled. 

Form Figure ‎7.7 it can be seen that as the auxiliary mass M1 increases, the range of working 

frequencies becomes wider, which is another piece of evidence that when the auxiliary mass M1 

is relatively small the effectiveness of absorbers depends on accurate tuning. The absorption 

performance is better because the transmissibility decreases with the increasing auxiliary mass 

M1 in the range of working frequency, in addition a larger auxiliary mass M1 results in a lower 

transmissibility at the second natural frequency of this composite system ω2, however, 

increasing the auxiliary mass M1 will slightly increase the transmissibility at the first natural 

frequency of this composite system ω1. 

 

 Figure ‎7.6 The effect of damping C1 on the amplitude of vibration response (F0 = 300N, M2 = 

30kg, K2 = 5500000N/m and C2 = 1500N.s/m). 

 

 Figure ‎7.7 The effect of mass M1 on the transmissibility (F0 = 300N, M2 = 30kg and K2 = 

5500000N/m). 
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From Figure ‎7.8, we can see how the damping C1 of absorbers influences the 

transmissibility of this composite system when M2 is 30kg, K2 is 5500000N/m and C2 is 

1500N.s/m. The two peaks of transmissibility at natural frequencies of this composite system ω1 

and ω2 significantly deccrease with the increasing damping C1. However, increasing the 

damping C1 degrades the transmissibility at the natural frequency of the absorber ωa, so in the 

range of working frequencies lowering the damping C1 is an effective way to improve the 

absorption characteristic. This suggests that increasing the damping C1 can help to reduce the 

transmissibility at the two natural frequencies ω1 and ω2, but it is necessary to lower the 

damping C1 for a better absorption performance in the range of working frequencies. 

 

 Figure ‎7.8 The effect of damping C1 on the transmissibility (F0 = 300N, M2 = 30kg, K2 = 

5500000N/m and C2 = 1500N.S/m). 
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linearity on vibration response of this absorption system is investigated, as shown in Figure ‎7.9. 

The non-linear parameters are as per Table ‎7.1. When M2 is 30kg, K2 is 5500000N/m and C2 is 

1500N.s/m we can see the MRE absorber amplifies the vibration of both the auxiliary mass M1 

and primary mass M2 at the two natural frequencies ω1 and ω2 compared to linear absorbers and 

linear viscoelastic materials. This may cause the failure of absorbers and primary systems. From 

the amplitude of X2, it can be also seen that the absorption system with corresponding linear 

viscoelastic material has the lowest vibration amplitude at the two natural frequencies of this 

composite system. The application of MRE absorbers results in an improved absorption 

performance in the range of working frequency as the vibration amplitude of X2 in the primary 

system can be effectively reduced at frequencies in a range around the natural frequency of 

absorber ωa. From the vibration of both the absorber and the primary system, it can be seen that 

at 91.7 Hz the vibration amplitudes of both X1 and X2 increase dramatically, because in this 

modelling of MRE absorbers the form of damping force allows negative damping to occur at 

frequencies higher than 91.7 Hz, which is the limitation of this mathematical modelling as 

illustrated in Section‎5.3.2 that the equivalent damping coefficient of MRE structure 

dramatically decreases with frequencies. But the instability due to negative damping will never 

occur in reality, as the loss modulus of MRE material must be a positive value although the 

damping gets close to zero with increasing frequencies. 

 

Figure ‎7.9 The vibration responses of different systems (M2 = 30kg, K2 = 5500000N/m and C2 = 

1500N.s/m). 

Figure ‎7.10 shows the performances of the MRE absorber before retuning and after 

retuning. In this MRE absorption system the non-linear parameters for a field-on state are 

chosen from Table ‎7.1 when magnetic intensity B = 500 mT, and the stiffness and damping are 

also designed following the relationship in Equation (‎7.3). From the vibration amplitude of X2 
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we can see that without any application of magnetic field the natural frequency of the MRE 

absorber ωa is 69 Hz, where the vibration of the primary mass M2 can be effectively attenuated 

by this absorber, while a field-on state shifts the natural frequency of the MRE absorber ωa from 

69 Hz to 80 Hz. Additionally the peaks of vibration amplitude at the two natural frequencies of 

this composite system ω1 and ω2 can be obviously reduced with retuning the MRE absorber as 

well, which contributes to the mitigation of potential failures. From the vibration amplitude of 

X1 it can be seen that retuning MRE absorber also results in a significant reduction of the 

vibration amplitude of the auxiliary mass M1 at the two natural frequencies of this composite 

system ω1 and ω2. Therefore, the potential risks of failure for both auxiliary system and primary 

system can be mitigated by retuning the MRE absorber, and the frequency range for vibration 

control which is around the natural frequency of the absorber ωa can effectively shift by 16% 

with an adaptive MRE absorber, which is a potential way to broaden the frequency range for 

vibration control. 

 

 Figure ‎7.10 The vibration responses of MRE absorption systems (M2 = 30kg, K2 = 5500000N/m 

and C2 = 1500N.s/m). 

In Figure ‎7.11 it is the comparison of vibration responses among a linear absorption 
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frequency of the absorber ωa, because at frequencies around ωa the vibration amplitude of the 

primary mass M2 can be reduced more with the adaptive MRE absorber than with the 
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magnetic field of 500 mT. The adaptive capability enables MRE absorbers to have a broader 

frequency range where the vibration of primary system can be successfully absorbed. 

Additionally comparing with the corresponding linear absorber and the corresponding linear 

viscoelastic material the better absorption characteristic of adaptive MRE absorbers can reduce 

potential failures of the primary system. From the vibration response of X1, an adaptive MRE 

absorber can obviously reduce the first peak of vibration amplitude for the auxiliary mass M1 

and slightly increase the second peak compared with the corresponding linear absorber and the 

corresponding linear viscoelastic material. As the vibration amplitude at the first natural 

frequency of this composite system is much larger than the vibration amplitude at the second 

natural frequency, the potential failure of auxiliary system is more sensitive to the first peak of 

vibration amplitude, therefore the adaptive MRE absorber can also mitigate the risk of potential 

failure for auxiliary system by reducing the first peak of vibration amplitude of the auxiliary 

mass M1.  

 

 Figure ‎7.11 The vibration responses of different systems (M2 = 30kg, K2 = 5500000N/m and C2 

= 1500N.s/m). 

In order to evaluate the effectiveness of the MRE absorber, the transmissibility of 
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the corresponding linear viscoelastic material. The natural frequencies ωa in the three systems 

are almost the same. It can be noted that the transmissibility of MRE absorption system 

increases dramatically at 91.7 Hz, thus the MRE absorption system becomes unstable at 

frequencies above 91.7 Hz. In the mathematical model for MRE absorber, the expression of 

damper force in Equation (‎5.9) results in negative damping coefficients at frequencies above 

91.7 Hz which undermines the stability of system. Regardless of this limitation of modelling 

due to the testing conditions of mechanical properties characterisation for MRE, negative 

damping can never occur because the loss modulus of MRE material cannot be a negative value. 

 

Figure ‎7.12 The transmissibility of different systems (M2 = 30kg, K2 = 5500000N/m and C2 = 

1500N.s/m). 

Figure ‎7.13 shows that with the application of a magnetic field of 500 mT the MRE 

absorber can shift the natural frequencies ωa from 69 Hz to 80 Hz. In this way an adaptive MRE 

absorber is effective in broadening the working frequency range for vibration control by 

retuning the natural frequency of the absorber ωa with a controllable magnetic field. 

Additionally, the peaks of transmissibility curve can also be reduced obviously with an adaptive 

MRE absorber, which can contribute to avoiding potential failures for primary system. 

Therefore, in this vibration system, the wider range of working frequency and the smaller peak 

value of transmissibility can be obtained as desirable absorption characteristics with an adaptive 

MRE absorber by controlling the applied magnetic field. 

It can be seen from Figure ‎7.14 that an improved absorption performance at working 

frequencies around the natural frequency of the absorber ωa can be obtained with an adaptive 
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field the natural frequency of absorbers ωa is 69 Hz, whilst with the application of a magnetic 

field of 500 mT the natural frequency ωa can be shifted by 16% through the adaptive MRE 

absorber. This capability of retuning the natural frequency ωa will enable MRE absorbers to 

have a wider frequency range for effectively reducing the transmissibility of system. Comparing 

with the corresponding linear absorber or the corresponding linear viscoelastic material, the 

adaptive MRE absorber can also obviously reduce the two peaks of the transmissibility at the 

two natural frequencies of this composite system ω1 and ω2, which is beneficial to mitigation of 

potential failure for primary system. Therefore, the adaptive MRE absorber can provide an 

improved performance for vibration control with a larger reduction of vibration transmissibility 

and a broader frequency range of effective vibration control when comparing with the 

corresponding linear absorber or the corresponding linear viscoelastic material.  

 

 Figure ‎7.13 The transmissibility of MRE absorption systems (M2 = 30kg, K2 = 5500000N/m 

and C2 = 1500N.s/m). 

 

 Figure ‎7.14 The transmissibility of different absorption systems (M2 = 30kg, K2 = 5500000N/m 

and C2 = 1500N.s/m). 
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7.5 Summary 

 A vibration system with a nonlinear absorber is selected in this chapter to investigate the use of 

MRE in absorption systems. At first, the equations of motion for this absorption system are 

presented for the dynamic analysis that enables a simulation of steady response and an 

assessment of stability. Then, the dynamical behaviour and absorption performance of this 

system is investigated with the method of direct numerical integration, and the efficiency of 

adaptive MRE absorbers is evaluated with comparisons of the vibration amplitudes and the 

transmissibility for different systems in frequency domain. 

In absorption systems, the desirable characteristics are a broader frequency range for 

effective vibration control and smaller peaks of vibration amplitude or transmissibility. In this 

selected system, because of the tuning process of absorbers and the safe design of bearing 

capacity the auxiliary mass M1 and the stiffness K1 have to be designed under the standards 

expressed by Equation (‎7.3). As the mass of M1 and the stiffness K1 increase, the frequency 

range for vibration absorption can be effectively widened, which results in an improved 

absorption characteristic, and the vibration of absorbers can be obviously reduced, which 

mitigates the potential risks of failure. However, the mass M1 and the stiffness K1 cannot be 

increased ad infinitum considering keeping absorbers compact and saving MRE material. 

Increasing the damping C1 can reduce the vibration and transmissibility at the two natural 

frequencies ω1 and ω2, which contributes to avoiding potential failures; but in the frequency 

range of effective absorption the vibration and transmissibility increase with the damping C1. 

Therefore, it is necessary to balance a better absorption performance with better mitigation for 

potential failures. 

Comparing with traditional absorbers or linear viscoelastic materials, both the absorption 

characteristic and the mitigation of failures for the system can be improved with adaptive MRE 

absorbers. By retuning the MRE absorber with a controllable magnetic field, the peak value of 

vibration amplitude or force transmissibility can be effectively reduced and the frequency range 

for effective absorption can be broadened. 

Guidelines for designing MRE absorbers: according to the related requirement for bearing 

capacity, the MRE absorber are tuned to the driving frequency; considering the natural 

frequency of the primary system, the frequency range of effective vibration absorption can be 

determined to broaden to lower frequencies or higher frequencies; referring to the intersection 

point on curves of transmissibility in a field-off state and field-on state, the frequency for 
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switching magnetic field is determined for MRE absorbers; at low frequencies the isolator 

works in a field-off state, at high frequencies the isolator works in a field-on state. 
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 Nonlinear MRE Isolation Systems Chapter 8

with a Flexible Base 

8.1 Introduction 

The mechanical properties of MRE can be adjusted through a controllable external magnetic 

field, which makes MRE very suitable as a smart spring for vibration isolations, and the 

adaptive isolator is another main application of MRE. Due to the dependence of mechanical 

properties on strain, frequency and magnetic field, a non-linear mathematical model is necessary 

to describe its unique dynamical behaviour. Investigations on the dynamics of MRE isolation 

systems are necessary for applications in vibration control. Vibration on board ships might be 

caused by the propeller, engine, ancillary machinery and effects of the sea. The frequency of 

random vibrations is between 0.01Hz in very calm seas and 1.5Hz in bad weather and the 

frequency of periodic vibrations is between 3Hz and 80Hz. On ships, the entire driveshaft, 

which is liable to respond to the excitation from the propeller or propulsion system, and thus 

may excite the structure of the double bottom; the entity made up of an engine and the structure 

of the double bottom may respond to excitations caused by the functioning of the engine and 

make the structure of hull vibrate. 

In this chapter, the effectiveness of MRE isolators is examined in a vibration isolation 

system with a beam as a flexible base
[111]

. Firstly, the standard form of motion equations is 

formulated for this isolation system to obtain the overall steady state response, and the 

dynamical characteristics of system are analysed with analytical expressions. This is followed 

by an analysis of the resulting vibratory power flow with an originally derived analytical 

expression. Furthermore, the vibratory energy transmission and isolation transmissibility are 

investigated by direct numerical integration and compared for different parameters. Finally by 

comparing with traditional isolators, the improved isolation characteristic of adaptive MRE 

isolators demonstrates the potential for vibration isolation. 
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8.2 Equation of motion 

8.2.1 Standard form of equations of motion 

Figure 8.1 illustrates schematically a dynamical interaction system comprising a machine, an 

isolator and a simply supported beam. During operation, it is assumed that the machine is 

excited by sinusoidal loadings. This study predicts the resultant motions of the beam and 

assesses the interactions between many components with an emphasis on the nonlinear 

behaviour. The uniform simply supported beam is of length L, mass density per unit length  

and bending stiffness EI, and this beam is assumed to be symmetric (port-starboard) about the 

longitudinal X-axis. M denotes the mass of the machine, F0 and 
 
are the amplitude and angular 

frequency of the harmonic excitation, respectively. 

 

Figure ‎8.1 Dynamic interaction system comprising a machine, an isolator and a beam. 

The governing equations describing the nonlinear interactive system are as follows: 
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    (‎8.1) 

where D() denotes a delta function, Y1 and Y2 are the absolute displacements of the mass and the 

beam at the point XC, respectively. F(Ω    ) represents the restoring force of the MRE nonlinear 

isolator where S and   are relative displacement and velocity, K, Kʹ, Kʺ, K
*
, K

**
, C, Cʹ, Cʺ, C

*
 

and C
**

 are introduced as parameters of stiffness and damping for this nonlinear isolator. 
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Here, the natural vibration of a linear uniform dry simply supported beam is examined, 

which is governed by the following equations 
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X t
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.                                         (‎8.2) 

By solving the characteristic equations of the system, the natural frequencies Ωn and the 

corresponding mode functions Φn(X)  are obtained as follows: 
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These natural modes satisfy orthogonal relations, namely 
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                       (‎8.4) 

where ()" = ∂
2
()/∂X

2
 and δij represents the Kronecker delta. These natural mode functions Φi(X) 

(i=1,2…)  form a series of complete and orthogonal functions defined in the domain (0,L). 

Obviously, these functions are continuous and sufficiently differentiable within the defined 

domain and independent of any external forces. 

This beam is assumed to have no discontinuity or multi-values of the displacement at any 

point during its motion, so the dynamic displacement Y2(X,t) of the beam satisfying Equation 

(‎8.1) is a single-value and differentiable function of X defined in the domain X ∈ (0,L). 

Therefore, the dynamic displacement Y2(X,t) of the beam can be represented using an arbitrary 

series of complete functions defined in the domain X ∈ (0,L). Here the series of the mode 

functions Φi(X) are chosen
[114]

. Thus 

 2

1

, ( ) ( )
N

n nY X t X Q t                                            (‎8.5) 
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where Qn(t) (n=1,2…) is a time-dependent generalised coordinate and N is the maximum 

number of modes adopted in the analysis to achieve a prescribed accuracy of solution. 

Substituting Equation (‎8.5) into Equation (‎8.1), then pre-multiplying Φi(X) on both sides, 

integrating with respect to X from 0 to L and using the orthogonal relations driven by Equation 

(‎8.4) as well as considering the delta function D(X-XC) in the integration, we obtain 

2 ( , , ) ( )n n n n C nQ Q F S S X M          (n=1,2…).                     (‎8.6) 

Here Mn, Kn and Ωn are generalised mass, stiffness and natural frequency, respectively. 
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Equation (‎8.6) is a set of differential equations with N+2 unknown variables Qn(t) 

(n=1,2…) and S(t) to be determined by solving Equation (‎8.6) and Equation (‎8.1). 

8.2.2 Steady state response of system 

The harmonic balance method is an effective numerical tool to study nonlinear dynamical 

problems in the frequency domain. The general idea of this method is to represent each time 

history by its frequency content and then a set of equations can be obtained by balancing the 

terms with the same frequency components to find the solutions of these equations through an 

iterative procedure. Considering it is difficult to know the frequency components in vibration 

systems in reality, calculating sufficient orders for approximate solutions is necessary for 

obtaining precise solutions with the harmonic balance method. In this thesis, the relative 

displacement S(t), the generalised coordinates Qn(t) and the nonlinear coupling force F(Ω    ) 

are represented as Fourier expansions to the first order as a first approximation in the harmonic 

balance method. Herein it is assumed that the first approximation is adequate for weak nonlinear 

systems, and the approximation belonging to higher orders are very small and can be neglected 

compared with the first approximation. Without loss of generality, we can arbitrarily choose S = 

0 as a reference position in the Fourier expansion of the relative displacement S, namely 
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where   is a phase angle, Δ1, Qn0, Qn1 and Qn2 are coefficients of amplitudes to be determined. 

It is not necessary to include phase angle φ in Equation (‎8.8), but it is a convenient parameter 

for the derivation of the power flow absorption later on. R0, R1 and R2 are the Fourier 

coefficients defined by 
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                                                 (‎8.9) 

where θ = Ωt + φ. Substituting Equation (‎8.8) into Equations (‎8.1) and (‎8.9) and omitting the 

lengthy derivation of the integration, we find that the detailed expressions for R0, R1 and R2 are 

given by 
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The substitution of Equation (‎8.10) into Equation (‎8.1) and Equation (‎8.6) gives 

2

1 0 1 2

0

1

cos cos sin

cos ( ) ( )
N

n C n

M R R R

F t M X Q t

       

   
                                   (‎8.11) 

which when combined with Equation (‎8.8) and (‎8.10) yield 
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The coefficients of the same harmonics (i.e. sinΩt, cosΩt) and constant terms in Equation 

(‎8.6) are equated, resulting in 
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To solve the coupled nonlinear algebraic equations, we express Equations (‎8.12) and 

(‎8.13) in the matrix form, namely 
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To aid calculation, Equation (‎8.15) is written as 
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                                   (‎8.16) 

where the matrices I0, I1  and I2  are given by 
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I I I .                            (‎8.17) 

The set of Equations (‎8.14) is of nonlinear form and the exact analytical solutions are 

impossible to obtain. Many numerical methods can be used as alternatives to solve such 

nonlinear system problems, e.g. a Newton–Raphson iteration process. This method is adopted to 

solve the resulting nonlinear equations by combining the two coupled nonlinear Equations 

(‎8.14). 
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1( , ) ,n  F Y F                                                (‎8.18) 

where 

1

1

1

( , ) ( )
N

n C n n

n

M X 



    F G A B .                                      (‎8.19) 

Equation (‎8.18) is a nonlinear vector equation where the vector F(Δ1, Ω) depends 

nonlinearly on the displacement Δ1 and requires solving iteratively. The solution at each 

excitation frequency Ω is determined using the Newton–Raphson iteration method. 

8.3 Efficiency analysis of vibration isolation system 

8.3.1 Analysis of isolation characteristics 

The effectiveness of an isolator can be assessed by examining the transmissibility of the 

vibrating system. Transmissibility is defined as the ratio of the force transmitted to the 

foundation to the applied force in the direction of the applied loads. In order to investigate the 

isolation transmissibility of the vibration system, the transmitted force F(t) can be expressed as 

Equation (‎8.20) following Equation (‎8.8), 

   

 
* 2 ** 3

2 ** 31 1
1 1 1 1

2 * 2 ** 3

1 1 1 1 1

4 1
sin

2 3 4

8 3
cos

3 4

K K
F t C C C C

K K K K K







    
               

  

 
            

 

.         
(‎8.20)

 

Then the transmissibility of isolation system can be defined as the magnitude of the force 

ratio, which can be expressed as  

2 2

1 2 0Tr R R F  .                                                    
(‎8.21)

 

From this expression, it is obvious that a decrease in transmissibility leads to a reduction 

in the vibration transmitted to the beam. In order to obtain the best isolation performance, the 

analysis focusses on how to reduce the vibration transmissibility. 

8.3.2 Power flow analysis 

By accounting for both force and motion characteristics, the vibratory power flow can describe 

the dynamical behaviour of vibration systems well and also serve as a cost function for 
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evaluating the efficiency of vibration control
[115,116]

.Various power flow analysis methods have 

been successfully developed to model complex vibration systems and to predict power 

generation, dissipation and transmission. Once the nonlinear dynamic displacement variables 

are obtained the associated vibratory power flow can be calculated from the inner product of the 

force and the corresponding velocity response
[117]

.  

The instantaneous input power Pin is defined by the cyclic force F0cosΩt and the velocity 

response  1(t) of the machine. 

0 1cos ( )inP F t Y t   .                                                 
(‎8.22)

 

The time-averaged input power 〈Pin⟩ is defined by 

0 1
0

1
cos ( )

T

inP F t Y t dt
T

                                           
(‎8.23)

 

where T = 2π/Ω. 

Aiming at characterisation of vibratory energy transmission from the machine to the ship, 

the instantaneous transmitted power Pout is calculated from the inner product of the transmitted 

force F(   ) and the velocity response  2(t) of the flexible base 

2( , ) ( , )out CP F S S Y X t  .                                           (‎8.24) 

 The time-averaged transmitted power 〈Pout⟩ transmitted through the mounting to the ship 

is calculated by 

0

1 T

out outP P dt
T

  .                                                 (‎8.25) 

The power flow isolation can be used to assess the effectiveness of power flow control, 

which is intended for isolating vibratory energy or minimising its transmission to foundation 

through an isolation system. By using the power generation and transmission equations 

described previously, the instantaneous power Piso dissipated by the nonlinear isolator can be 

derived from the product of the transmitted force F(   ) and the relative velocity response  (t)  

( ) ( , )isoP S t F S S  .                                             (‎8.26) 

The time-averaged dissipated power 〈Piso⟩ can be expressed as 
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0

1 T

iso dP P dt
T

                                               (‎8.27) 

where  (t) = − ΩΔ1sin(Ωt + φ). 

8.4 Numerical results and discussions 

8.4.1 The influence of linear parameters 

The effectiveness of isolation can be guaranteed by ensuring that the excitation frequency is 

well above √  0, where ω0 = √    is the natural frequency of the isolator. Both lower 

resonance frequency and smaller vibration transmission are desirable characteristics for 

isolation. In order to investigate the dynamical behaviour and isolation efficiency for this 

interactive isolation system as illustrated in Figure ‎8.1, numerical simulations are undertaken 

with the system parameters as follows: the beam: L = 20 m, ρ = 200 kg/m; the machine: M = 60
 

kg; mounting position: XC = 5 m; exiting force: F0 = 600 N. And it is assumed that the first three 

elastic modes of the beam are covering the frequency bandwidth of interest. The time-averaged 

power flow for different isolation systems are calculated in the frequency domain to investigate 

the effects of elastic supporting structure. 

The parameters of stiffness and damping in MRE isolators can be designed as per the 

discussion in Section ‎5.3, by combining the geometrical design of structure and the dynamical 

properties of material. It is obvious a lower stiffness of the isolator may lead to a better isolation 

characteristic, but considering guaranteeing load capacities and saving MRE materials, the 

stiffness of isolators cannot be lowered ad infinitum. The static load capacity of this MRE 

isolator is designed by a shear strain limitation of 2% for the safe dynamic design. The 

equivalent stiffness and damping can be calculated according to Equation (‎5.9) with the 

experimental results of mechanical properties characterisation for MRE in Figure ‎6.2 and 

Figure ‎6.3. The parameters of designed stiffness and designed damping are listed in Table ‎8.1.  

Numerical simulations are carried out to investigate the dynamical behaviour of the 

system excited by a sinusoidal force. According to the equations of motion in Equation (‎8.1), a 

group of parameters is selected for the observation of steady response. When the nonlinear 

parameters K’ = K” = K
*
 = K

**
 = C’ = C” = C

*
 = C

**
 = 0, the vibration isolation system is linear. 

It can be seen from Figure ‎8.2 that the response of the system with elastic base is not simple 

harmonic and it is necessary to identify the frequency components.  
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Table ‎8.1 Parameters of designed stiffness and damping. 

K (B = 0) 

N/m 

K’ (B = 0) 

N·s/m 

K” (B = 0) 

N·s
2
/m 

K
*
 (B = 0) 

N/m
2
 

K
**

 (B = 0) 

N/m
3
 

5361880 4525.24 −9.51144 −49334600 442726000 

K (B = 0.5T) 

N/m 

K’ (B = 0.5T) 

N·s/m 

K” (B = 0.5T) 

N·s
2
/m 

K
*
 (B = 0.5T) 

N/m
2
 

K
**

 (B = 0.5T) 

N/m
3
 

8263100 6057.92 −13.9561 −105957000 876436000 

C (B = 0) 

N·s/m 

C’ (B = 0) 

N·s
2
/m 

C” (B = 0) 

N·s
3
/m 

C
*
 (B = 0) 

N·s/m
2
 

C
**

 (B = 0) 

N·s/m
3
 

1480.56 816124 −6.78886 −9517540 61974800 

C (B = 0.5T) 

N·s/m 

C’ (B = 0.5T) 

N·s
2
/m 

C” (B = 0.5T) 

N·s
3
/m 

C
*
 (B = 0.5T) 

N·s/m
2
 

C
**

 (B = 0.5T) 

N·s/m
3
 

1595.01 1327690 −7.93402 −19189100 130014000 

The Fourier transform is employed to analyse the frequency components in frequency 

domain, as shown in Figure ‎8.3, it is obvious when L is 20 m, ρ is 200 kg/m, M is 60
 
kg and XC 

is 5 m, the vibration response of system with an elastic base has more than one peak in the 

spectrum, namely at 22Hz and 25Hz, respectively. In this system, when a natural frequency of 

the beam is 22 Hz, we can see from Figure ‎8.3 that the corresponding elastic mode of the beam 

is active at 25 Hz which is in the neighbourhood of the natural frequency 22 Hz. 

 

Figure ‎8.2 Response of different systems (F0 = 600 N, EI = 6 × 10
9 
Nm

2 
and Ω = 25 Hz). 
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Figure ‎8.3 Amplitude Spectrum of Y1(t) (F0 = 600 N, EI = 6 × 10
9 
Nm

2 
and Ω = 25 Hz). 

Figure ‎8.4 (a) and (b) show the effects of the base on the vibration response in the 

presented system by comparing a rigid base with a flexible base within this isolation system and 

illustrating the influence of the bending stiffness EI of this beam on the amplitude of vibration 

response. The numerical results reveal that comparing with the rigid base the isolation system 

mounted on the beam has a more complex dynamical behaviour. As shown in Figure ‎8.4 (a), 

there are four peaks on the curve of amplitude of Y2 at the frequencies ω = ω0, ω1, ω2, ω3. These 

peaks correspond to the rigid mode at frequency ω0 and three elastic modes at frequencies ω1, 

ω2, ω3 respectively. Therefore, it is important to consider the elastic effect in designing an 

effective isolation system. As the bending stiffness EI increases in the isolation system with a 

flexible base, the three natural frequencies ω1, ω2, ω3 shift to the right and the peaks of vibration 

amplitude at natural frequencies ω1, ω2, ω3 decline dramatically. It can be seen in Figure ‎8.4 (b), 

for the system with a rigid base the curve of vibration amplitude of Y1 is unimodal, while for the 

system with a flexible base there are more than one peaks on the curve because of the elastic 

modes. When the natural frequencies of the elastic modes are lower than the frequency of the 

rigid mode, the peaks at natural frequencies will be noticeable. For example, in Figure ‎8.4 (a) 

when EI is 6 × 10
9 
Nm

2
 or EI is 2.4 × 10

10 
Nm

2
 the first natural frequency ω1 is lower than ω0 

and the curve of vibration amplitude of Y1 has two obvious peaks, which is another evidence 

indicating the importance of considering the elastic effect in designing an effective isolation 

system especially when the base is comparatively soft.  

In Figure ‎8.5 we can see the influences of the base on the transmissibility of this isolation 

system. It can be observed from the numerical results that in the isolation system with a flexible 

base there might be more than one peak on the curve of transmissibility due to the 

corresponding elastic modes, especially when the corresponding natural frequencies are lower 
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than the frequency of the rigid mode. As shown in Figure ‎8.5 the first natural frequency ω1 of 

the elastic mode is lower than ω0, when EI is 6 × 10
9 
Nm

2
 and EI is 2.4 × 10

10 
Nm

2
 and there are 

three and two peaks respectively on the curve of transmissibility. In the comparison with the 

main peak at ω0, the other peaks corresponding to higher natural frequencies can be neglected. 

In the isolation system it can be also seen that with a flexible base the increasing bending 

stiffness EI can effectively shift the three natural frequencies ω1, ω2, ω3 to the right. 

 

Figure ‎8.4 (a) The influence of base on the vibration amplitude of Y2 and (b) the vibration 

amplitude of Y1 (L = 20 m, ρ = 4 × 10
3
 kg/m, M = 60

 
kg and F0 = 600 N). 

 

Figure ‎8.5 The influence of base on the transmissibility (L = 20 m, ρ = 4 × 10
3
 kg/m, M = 60

 
kg 

and F0 = 600 N). 

The influences of the base on the input vibratory power and the vibratory power 

transmission are also discussed to assess the isolation performance. From the numerical results 

in Figure ‎8.6 it can be seen that in the isolation system with a rigid base the curve of input 

power is unimodal, whilst in the system with a flexible base the curve of input power 〈Pin⟩ 
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might own more than one peak, because of the peaks corresponding to the elastic modes, 

especially when the corresponding natural frequencies are lower than the frequency of the rigid 

mode. In addition, in the isolation system with a flexible base the three natural frequencies ω1, 

ω2, ω3 shift to the right with the increasing bending stiffness EI. In Figure ‎8.6 when EI is 6 × 

10
9 
Nm

2
 and EI is 2.4 × 10

10 
Nm

2
 the first natural frequency ω1 of the elastic mode is lower than 

ω0, and there are three and two obvious peaks respectively on the curve of input power, while 

the other peaks corresponding to natural frequencies higher than the frequency ω0 of the rigid 

mode can be neglected compared with the main peak at ω0. 

 

Figure ‎8.6 The influence of base on the input power (L = 20 m, ρ = 4 × 10
3
 kg/m, M = 60

 
kg and 

F0 = 600 N). 

In Figure ‎8.7 the transmitted power 〈Pout⟩ increases dramatically at the natural frequencies 

of elastic modes The three natural frequencies ω1, ω2, ω3 increase with the bending stiffness EI 

and the peaks of transmitted power decreases with bending stiffness EI. Therefore, it can be 

concluded that the simplified rigid model underestimates the vibration response and power at 

frequencies around ω1, ω2, ω3, especially when the base is comparatively soft. Increasing the 

bending stiffness EI thus the elastic natural frequencies is beneficial in reducing vibration 

transmission from the mounted machine to the base. 

Figure ‎8.8 displays the influence of base on the isolated vibratory power, which has 

trends similar to that of transmissibility in Figure ‎8.5. With a rigid base the curve of isolated 

power 〈Piso⟩ is unimodal and with a flexible base there might be more than one peak on the 

curve of isolated power. Especially when the natural frequencies of elastic modes are lower than 

the frequency of the rigid mode, the corresponding peaks become obvious compared with the 
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main peak at ω0. When the natural frequencies of elastic modes are well higher than the 

frequency ω0 of the rigid mode, the corresponding peaks can be neglected. 

 

 Figure ‎8.7 The influence of base on the power transmission (L = 20 m, ρ = 4 × 10
3
 kg/m, M = 

60
 
kg and F0 = 600 N). 

 

Figure ‎8.8 The influence of base on the isolated vibratory power (L = 20 m, M = 60
 
kg, F0 = 600 

N and  ρ = 4 × 10
3
 kg/m). 

The vibration responses of Y1 and Y2 around the natural frequencies of elastic modes can 

be used to investigate the influence of base flexibility on the dynamical behaviour. As shown in 

Figure ‎8.9, when L is 20 m, ρ is 200 kg/m, M is 60
 
kg and XC is 5 m, the first elastic mode is at 

ω1 = 22 Hz if the bending stiffness EI is 6 × 10
9 
Nm

2
. The vibration transmission can be better 

understood through comparison at frequencies around the first elastic mode. It can be seen in 

Figure ‎8.9 (a) and (b) that the dynamical response of Y1 at 20 Hz is greater than it is at 23 Hz, 

while at 20 Hz the vibration amplitude of Y1 is 0.33 mm and it is 0.12 mm at 23 Hz. In 

Figure ‎8.9 (c) we can see that at 20 Hz the vibration amplitude of Y2 is 0.13 mm which is lower 

than it is at 23 Hz where the amplitude is 0.20 mm. Therefore, at frequencies in the vicinity of 
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the elastic modes the vibration transmitted to the base increases, as illustrated in Figure ‎8.3 that 

the elastic mode of this beam wakes up within the neighbourhood of corresponding natural 

frequency. This is also in agreement with the discussion of power transmission in Figure ‎8.7, 

where the transmitted power obviously increases around the natural frequencies of the simply-

supported beam. 

 

 

 

Figure ‎8.9 Response of Y1 in different systems (a) at 20 Hz and (b) at 23 Hz, (c) response of Y2 at 

different frequencies (L = 20 m, ρ = 4 × 10
3
 kg/m, M = 60

 
kg and F0 = 600 N). 
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8.4.2 The influence of non-linearity 

Solving Equation (‎8.1) for the isolation system can be used to investigate the influence of 

nonlinearities on the performance of vibration control. But when the dynamical system is 

nonlinear, the exact analytical solutions of vibration responses are impossible to get. The direct 

numerical integration can be employed as an alternative to investigate the dynamical behaviour 

and isolation performance with the fourth order Runge-Kutta method. 

When the nonlinear parameters K’ = K” = K
*
 = K

**
 = C’ = C” = C

*
 = C

**
 = 0, the 

vibration system turns into a linear isolation system; while the parameters K’ = K” = K
*
 = K

**
 = 

C = C” = C
*
 = C

**
 = 0 the MRE material turns to be a linear viscoelastic material because both 

the storage modulus and loss modulus are linear. L is 20 m, ρ is 4 × 10
3
 kg/m, M is 60

 
kg, EI is 6 

× 10
9 

Nm
2
 and F0 is 600 N. In Figure ‎8.10 we can see the comparison of vibration responses 

among various systems. The natural frequency ω0 of MRE isolators is a bit higher than that of 

either corresponding linear isolators or systems with corresponding linear viscoelastic materials. 

The amplitude of Y1 in MRE isolation systems is slightly lower than that in the two 

corresponding linear systems. Whilst in MRE isolation systems the peak of vibration amplitudes 

at ω0 is lower than that in corresponding linear isolation systems, but is not lower than that in 

systems with corresponding linear materials. It can be also noted that at 74 Hz the vibration 

responses of both Y1 and Y2 increase dramatically, which reflects the limitation of mathematical 

modelling illustrated in Section ‎5.3.2. Because in this modelling of MRE isolators the form of 

damping force allows negative damping to occur at frequencies higher than 74 Hz, but the 

instability due to negative damping will never occur in reality, as the loss modulus of MRE 

material must be a positive value although the damping becomes close to zero with increasing 

frequencies. 

All the parameters of stiffness and damping for MRE isolation system in a field-on state 

are from Table ‎8.1 when the magnetic flux density B = 0.5 T. As shown in Figure ‎8.11 (a) there 

is an overall decline in the amplitude of Y1 with the application of magnetic field, whilst the 

natural frequency ω0 of isolators shifts to the right. Furthermore the peak of vibration amplitude 

can be effectively reduced with an adaptive MRE isolator, the switch-point at 54 Hz is 

determined by the intersection of curves of vibration amplitude in a field-off state and in a field-

off state. At lower frequencies the MRE isolator works in a field-on state because a higher 

stiffness helps to reduce the resultant vibration, and at higher frequencies the isolator works in a 

field-off state as a lower stiffness can improve the isolation performance. In Figure ‎8.11 (b) 

there is no obvious difference of the vibration amplitude among the three isolation systems. 



141 

 

 

 Figure ‎8.10 The vibration amplitude of (a) Y1 and (b) Y2 in different vibration systems (L = 20 

m, ρ = 4 × 10
3
 kg/m, M = 60

 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

 

Figure ‎8.11 The vibration amplitude of (a) Y1 and (b) Y2 in MRE isolation systems (ρ = 4 × 10
3
 

kg/m, L = 20 m, M = 60
 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

The comparison of vibration amplitudes among various systems is illustrated in 

Figure ‎8.12. As shown in Figure ‎8.12 (a), with a field-on state below 54 Hz and a field-off state 

above 54 Hz, the adaptive MRE isolator can globally reduce the vibration response of Y1 and 

effectively lower the peak value of vibration amplitude of Y1, when compared with the 

corresponding linear isolation system and the system with corresponding linear viscoelastic 

material. In Figure ‎8.12 (b), it can be seen that comparing with the other two corresponding 

systems the adaptive MRE isolator can make no difference on the vibration amplitude of Y2, 

except in the vicinity of the natural frequency ω0 of the isolators when the vibration amplitude 

of Y2 can be effectively reduced with an adaptive MRE isolator. Additionally, in the 
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mathematical modelling illustrated in Section ‎5.3.2 the form of damping force results in a 

negative damping in this isolation system when frequencies are higher than 74 Hz, but the 

corresponding instability will never occur in reality, because the loss modulus of MRE material 

must be a positive value although the damping becomes very close to zero. 

 

Figure ‎8.12 The vibration amplitude of (a) Y1 and (b) Y2 in different isolation systems (ρ = 4 × 

10
3
 kg/m, L = 20 m, M = 60

 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

The performance of vibration control can be evaluated with the numerical results of 

transmissibility in Section ‎8.3. In Figure ‎8.13 we can see when L is 20 m, ρ is 4 × 10
3
 kg/m, M 

is 60
 
kg, EI is 6 × 10

9 
Nm

2
 and F0 is 600 N, the MRE isolator slightly shifts the natural 

frequency ω0 to the right compared with the corresponding linear isolation system and the 

system with corresponding linear viscoelastic material. At frequencies below ω1 the MRE 

isolator can hardly make any difference on transmissibility with corresponding linear isolation 

system or linear viscoelastic material. At frequencies between ω0 and ω1 the MRE isolator can 

reduce the transmissibility more than the two corresponding isolation systems and at 

frequencies above ω0 the MRE isolator cannot obviously improve the isolation performance 

compared with the other two linear systems. Because of the limitation of mathematical 

modelling on damping force as illustrated in Section ‎5.3.2, in this MRE isolation system the 

instability happens when frequencies are higher than 74 Hz due to negative damping. But in 

reality this instability will never occur as the loss modulus of MRE material cannot be a 

negative value. It can be seen from Figure ‎8.13 that the reduction of transmissibility in the MRE 

isolation system increases with frequencies, as the equivalent damping decreases with 

increasing frequency in this mathematical modelling which can benefit the isolation 

performance at high frequency. 
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The parameters of stiffness and damping when the magnetic flux density B is 0.5 T in 

Table ‎8.1 are taken for the simulation of the MRE isolation system in a field-on state, and the 

transmissibility in different MRE isolation systems are shown in Figure ‎8.14. The resonant 

frequency of MRE isolators increases with the application of magnetic field as the equivalent 

stiffness increases. The isolation performance can be effectively improved with an adaptive 

MRE isolator by reducing the transmissibility over the full frequency range. When frequencies 

are below 54 Hz the adaptive MRE isolator works in a field-on state, as a higher stiffness can 

help to reduce the resultant vibration at low frequencies. At high frequencies a lower stiffness 

can improve the effectiveness of isolation, so the MRE isolator works in a field-off state.  

 

Figure ‎8.13 The transmissibility in different vibration systems (L = 20 m, ρ = 4 × 10
3
 kg/m, M = 

60
 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

 

Figure ‎8.14 The transmissibility in different MRE isolation systems (L = 20 m, ρ = 4 × 10
3
 kg/m, 

M = 60
 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 
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As shown in Figure ‎8.15, the force transmissibility can be effectively reduced by the 

adaptive MRE isolator over the full frequency range. When comparing with the two 

corresponding isolation systems, the main peaks of transmissibility at resonant frequencies 

around 50 Hz can be significantly reduced with the adaptive MRE isolator by switching from a 

field-on state to a field-off state: at frequencies between the first natural frequency of elastic 

mode ω1 and the resonant frequency ω0, with the adaptive MRE isolator we can obtain a 

substantial reduction of transmissibility. However, at frequencies below ω1 or above ω0, the 

performance of vibration control cannot be obviously improved with an adaptive MRE isolator 

than the two corresponding linear systems from the perspective of the force transmissibility. 

 

Figure ‎8.15 The transmissibility in different isolation systems (L = 20 m, ρ = 4 × 10
3
 kg/m, M = 

60
 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

The numerical results of Section ‎8.3 are investigated to assess the vibratory power 

generation, dissipation and transmission in this dynamical system and evaluate the effectiveness 

of isolation. When L is 20 m, ρ is 4 × 10
3
 kg/m, M is 60

 
kg, EI is 6 × 10

9 
Nm

2
 and F0 is 600 N, 

as shown in Figure ‎8.16, compared with the corresponding linear isolation system and the 

system with corresponding linear viscoelastic material, the MRE isolation system slightly shifts 

the natural frequency ω0 to the right. It can be seen that at frequencies below ω0 both the power 

input through the machine 〈Pin⟩ and the power isolated by the isolator 〈Piso⟩ in this MRE 

isolation system are at the same level as they are in the system with corresponding linear 

viscoelastic material, and higher than they are in the corresponding linear isolation system. 

Whilst at frequencies above ω0 the input power 〈Pin⟩ and the isolated power 〈Piso⟩ in the MRE 

isolation system is much lower than they are in the two corresponding isolation systems. In this 

MRE isolation system a negative damping occurs when frequencies are higher than 74 Hz, 
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which results from the limitation of mathematical modelling on damping force illustrated in 

Section ‎5.3.2. But the loss modulus of MRE material cannot be a negative value, so the 

corresponding instability will never occur in reality. From the comparison in Figure ‎8.16, it can 

be seen that as the frequency increases the reductions of both the input power and the isolated 

power by the MRE isolator also increase, because the equivalent damping decreases with 

increasing frequency in this mathematical modelling which can help to improve the isolation 

performance at high frequencies. 

 

 Figure ‎8.16 (a) The input power and (b) the isolated power in different vibration systems (L = 

20 m, ρ = 4 × 10
3
 kg/m, M = 60

 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

In Figure ‎8.17 it can be seen that at frequencies below ω0 50 Hz the power 〈Pout⟩ 

transmitted to the base in the MRE isolation system is lower than that in the two corresponding 

isolation systems, but at higher frequencies the MRE isolator can make no improvement on the 

transmitted power 〈Pout⟩. The instability reflected in Figure ‎8.17 will never occur, because the 

loss modulus of MRE material can never be a negative value although the limitation of 

mathematical modelling allows a negative damping to happen above 74 Hz. 

The power input through the machine 〈Pin⟩ and the power isolated by the isolator 〈Piso⟩ 

for different MRE isolation systems are shown in Figure ‎8.18. The parameters of stiffness and 

damping when the magnetic flux density B is 0.5 T in Table ‎8.1 are taken for the simulation of 

the MRE isolation system in a field-on state. The application of magnetic field can shift the 

resonant frequency of MRE isolators to higher frequency range by increasing the stiffness of 

MRE material, and the application of magnetic field has no effect on the natural frequencies of 
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the beam. The isolation performance can be effectively improved with an adaptive MRE isolator 

by reducing the input power 〈Pin⟩. Because at low frequencies a higher stiffness can help to 

reduce the resultant vibration, the adaptive MRE isolator works in a field-on state when 

frequencies are below 54 Hz. At high frequencies a lower stiffness can help to improve the 

isolation efficiency, so the isolator works in a field-off state. Therefore the power 〈Pin⟩ input 

through the machine can be effectively controlled with the adaptive MRE isolator over the full 

frequency range. 

 

 Figure ‎8.17 The power transmitted to the base in different isolation systems (L = 20 m, ρ = 4 × 

10
3
 kg/m, M = 60

 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

 

Figure ‎8.18 (a) The input power and (b) the isolated power in different MRE vibration systems 

(L = 20 m, ρ = 4 × 10
3
 kg/m, M = 60

 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 
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The time-averaged power 〈Pout⟩ transmitted to the base in different MRE isolation 

systems is compared in Figure ‎8.19. It can be noted that in the neighbourhood of resonance 

frequency ω0 the application of magnetic field can influence the output power flow 〈Pout⟩, which 

can be mitigated by turning on the magnetic field below 54 Hz and removing this magnetic field 

above 54 Hz. However, there is no significantly global difference of the transmitted power 〈Pout⟩ 

in the entire bandwidth range considered amongst the MRE isolation systems.  

 

 Figure ‎8.19 The power transmitted to the base in different MRE isolation systems (L = 20 m, ρ 

= 4 × 10
3
 kg/m, M = 60

 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

As shown in Figure ‎8.20, the power input through the machine 〈Pin⟩ and the power 

isolated by the isolator 〈Piso⟩ can be effectively reduced by the adaptive MRE isolator over the 

full frequency range. When comparing with the two corresponding isolation systems around 50 

Hz the natural frequency ω0 of the isolator, the main peaks of input power 〈Pin⟩ and isolated 

power 〈Piso⟩ can be significantly reduced with the adaptive MRE isolator by switching from a 

field-on state to a field-off state. At the high frequency range, the adaptive MRE isolator can 

also have a substantial reduction of both the input power 〈Pin⟩ and the isolated power 〈Piso⟩ 

because the damping of MRE isolators declines with increasing frequency, which can result in 

an improved isolation characteristic at high frequencies. But in the very low frequency range, 

the efficiency of vibration control we obtain with an adaptive MRE isolator is not better than 

that we get from the corresponding linear isolator from the perspective of the power input 

through the machine 〈Pin⟩ and the power isolated by the isolator 〈Piso⟩. 

The numerical results in Figure ‎8.21 reveal that at frequencies below 54 Hz a better 

performance of vibration control can be obtained with an adaptive MRE isolator as the power 

〈Pout⟩ transmitted to the beam can be effectively reduced. However, above 54 Hz the adaptive 
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MRE isolator can hardly further lower the transmitted power flow compared with the 

corresponding conventional isolator and the isolator with corresponding linear viscoelastic 

material. 

 

 Figure ‎8.20 (a) The input power and (b) the isolated power in different vibration systems (L = 

20 m, ρ = 4 × 10
3
 kg/m, M = 60

 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

 

 Figure ‎8.21 The power transmitted to the base in different isolation systems (L = 20 m, ρ = 4 × 

10
3
 kg/m, M = 60

 
kg, EI is 6 × 10

9 
Nm

2
 and F0 = 600 N). 

8.5 Summary 

In this chapter, an isolation system with an MRE isolator and a flexible beam is investigated to 

explore the application of MRE in vibration control. Firstly the equations of motion are 
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employed to analyse the steady response and the vibration power flow of this isolation system. 

Secondly, the numerical simulation of vibration response and power flow is used to study the 

dynamical behaviour and isolation performance in frequency domain. Both the lower resonance 

frequency and smaller vibration response or power transmissibility are desirable characteristics 

for vibration isolation. Lastly the effectiveness of adaptive MRE isolators is examined by 

comparing with the corresponding conventional isolators and the isolators with linear 

viscoelastic material.  

In this selected isolation system, we have a rigid mode of the isolator and a few elastic 

modes of the flexible base. When the frequencies of the elastic modes are lower than the 

frequency of the rigid mode, the peaks on the curve of vibration amplitude or vibration power at 

natural frequencies will be notable, which indicates the importance of considering the elastic 

effect in designing an effective isolation system especially when the base is comparatively soft. 

For a safe design the elastic dynamic characteristics of the supporting structure need to be 

considered when the excitation frequencies are in the vicinity of the elastic natural frequencies. 

At these frequencies the vibration transmitted to the base dramatically increases, as the elastic 

mode wakes up in the neighbourhood of corresponding natural frequency. 

The lower resonance frequency and the smaller vibration transmission are two desirable 

characteristics for isolation. Although a lower stiffness of the isolator may improve the isolation 

performance, the stiffness of isolators cannot be lowered ad infinitum to guarantee load 

capacities and save MRE materials. Finally, the effectiveness of isolation is estimated for the 

adaptive MRE isolator by comparing with the corresponding linear isolation system and the 

system with corresponding linear viscoelastic material. Numerical results show that with a 

magnetic field-on state at low frequencies and a magnetic field-off state at high frequencies, the 

adaptive MRE isolator can effectively reduce the vibration response and vibration power over 

the full frequency range. Therefore, by retuning the MRE isolator with a switchable magnetic 

field, the performance of vibration control can be improved from the perspective of dynamical 

behaviour and vibratory energy transmission. 
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 Conclusions Chapter 9

The MRE is composed of magnetisable particles dispersed in an elastic medium, and under an 

applied magnetic field this material has a variable capability of field-dependent modulus within 

the pre-yield regime. Therefore, the mechanical properties of MRE make this material well 

suited to vibration control. Modelling and simulation is a necessary step towards the application 

of MRE. The main contribution of this work is divided into three parts: 

1. A nonlinear mathematical model is built up to present the dynamic behaviour of MRE 

based upon a comprehensive experimental investigation on the influence of frequencies, 

strains and magnetic fields on the mechanical properties. The methodology of modelling 

can be also used to describe the dynamic behaviour for other materials in a certain range 

continuously with a comparatively low requirement of calculation on parameter 

identification. 

2. An MRE structure is developed with a high bearing capacity and a good controllability of 

stiffness to benefit vibration control systems. The extension of this mathematical model 

to MRE structures is examined by comparing the predictions of structural stiffness and 

damping with experimental results of dynamic tests. 

3. The performance evaluation of vibration control for MRE devices in terms of dynamical 

behaviour, transmissibility and vibratory energy transmission can provide guidelines for 

the dynamic design of MRE isolators and absorbers. Comparing with traditional devices, 

the efficiency of vibration control can be effectively improved with MRE devices in 

isolation systems and absorption systems.  

9.1 Mechanical properties of MRE 

Comparing with the MRF, the MRE have better thermal stability and mechanical properties; 

thus, can be considered as a good solution to overcome many disadvantages of the MRF, such 

as deposition, environmental contamination and sealing problems. The MR effect of MRE is the 

variation capability of dynamic stiffness within a pre-yield regime under applied magnetic field, 

this material is widely applied for adaptive devices of vibration control. The main experimental 

results are as follows: 
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1. The presence of magnetic field in solidification can not only improve both the storage 

modulus and the loss modulus, but also enhance the frequency- strain- and magnetic field 

dependent properties of MRE. 

2. The storage modulus of MRE increases with frequency, and the dependence of loss 

modulus on frequency is determined by the matrix material. In this study, at low 

frequencies (<10Hz) the loss modulus increases with frequency and at high frequencies 

(>10Hz) the loss modulus decreases. Consequently, the stiffness increases with an 

increase of excitation frequency and the damping decreases. In vibration absorption 

systems, a variable stiffness can result in a better absorption performance by broadening 

the range of frequencies for which the dynamic absorber is effective. In vibration 

isolation systems, the lower level of damping at high frequencies and the higher level of 

damping at low frequencies are desirable to improve isolation efficiency. 

3. Both the storage modulus and loss modulus of MRE decrease with increasing strain, as a 

result stiffness and damping decrease as the strain increases. The dependence of 

mechanical properties on the strain undermines the bearing capacity of MRE; thus, 

limiting its applications, thereby, the dynamic design is important for vibration control 

devices to guarantee the safety. 

4. The storage modulus and the loss modulus of MRE increase with the magnetic flux 

density and remain constant when magnetic saturation occurs. The MR effect increases 

with magnetic flux density and can reach as high as 37% under magnetic field of 400mT. 

The stiffness and damping of MRE vibration control devices can be continuously, rapidly 

and reversibly adjusted by employing external magnetic field.  

9.2 Mathematical modelling for MRE 

The MRE is a nonlinear viscoelastic material, considering its dependence on mechanical 

properties of strain and frequency the current research on modelling is still insufficient to 

describe the complex dynamic behaviour of MRE and to provide guidelines for dynamical 

analysis of vibration systems. 

1. The comprehensive experimental research of MRE in this thesis enables a nonlinear 

mathematical model to develop from Kelvin-Voigt model, whereby the spring and the 

damping forces are expressed in the form of polynomials with frequency and strain as 

independently continuous variables. With a low requirement of calculation on parameter 

identification and a full use of gathered information on the mechanical properties, the 
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methodology of modelling can be also applied to other materials to continuously describe 

their dynamical behaviour in a certain range of strain and frequency. 

2. An MRE structure is developed with a good bearing capacity and good controllability of 

stiffness for application to vibration control systems. Considering the structural dynamic 

design and the nonlinear mathematical model, the dynamical properties of MRE structure 

on a large scale are predicted, and the predicted results are compared with the 

experimental results to validate the extension of this mathematical model of MRE 

structure.  

9.3 Applications for vibration control 

Compared with the industrialisation and commercialisation of MRF the current applications of 

MRE on vibration control are still on a very exploratory stage. Performance evaluation of 

vibration control is essential for the application of MRE, and herein a two-stage isolation system, 

an absorption system and an isolation system with a flexible base are investigated. Aiming at 

providing guidelines for the dynamic design of MRE devices, this nonlinear mathematical 

model is employed to investigate the dynamical behaviour, transmissibility and vibratory energy 

transmission in MRE vibration control systems. Comparing with traditional devices the 

effectiveness of vibration control can be further improved with MRE devices by controlling an 

external magnetic field. 

1. For MRE absorbers the range of frequencies for effective absorption can be broadened, as 

the natural frequencies of MRE absorbers cannot only be precisely tuned to the excitation 

frequency for an optimum performance but also be retuned with a controllable magnetic 

field to suit time-varying excitation frequencies. 

2. For MRE isolators the vibration transmissibility and energy transmission can be 

effectively reduced by employing magnetic fields at low frequencies where the high 

stiffness can help to reduce the vibration and removing magnetic fields at high 

frequencies where the low stiffness can improve the isolation performance.  
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 Recommendations for future work Chapter 10

The outcomes of the work in this thesis highlight the importance of considering the dependence 

of mechanical properties on frequencies, strains and magnetic fields for mathematical modelling 

of MRE as a step towards its application. To achieve a more integral research on this subject, 

future work is recommended and major challenges are foreseen as described briefly below.  

1. Develop mathematical models for MRE. 

In the light of the experimental results of mechanical characterisation, a mathematical 

model is developed from Kelvin-Voigt model to continuously describe the dynamical behaviour 

of MRE. Herein the dependence of mechanical properties on frequencies, strains and magnetic 

fields are investigated from 1 Hz to 60 Hz, from 0 to 6% and from 0 to 400 mT. Because of the 

propeller, engine, ancillary machinery and effects of the sea, the frequency of vibration on board 

ships might be between 0.01Hz and 80Hz, a wider range of frequencies, strains and magnetic 

fields is more desirable for developing this mathematical model of MRE. 

2. Dynamical design MRE devices for vibration control. 

A wide variation of stiffness from a field-off state to a field-on state is essential for MRE 

vibration control devices, which requires a large MR effect and, consequently, a soft matrix, but 

the soft materials undermines the bearing capacity and the durability of MRE. A strong 

magnetic field is also of benefit to the variation of stiffness, but the resultant power 

consumption cannot be neglected. Therefore, a trade-off between a high MR effect and other 

criteria needs to be considered carefully, and the dynamic designs need to enable MRE 

structures to improve the mechanical properties. Compact designs for the MRE devices 

emphasize that mass and the volume of electromagnets need to be taken into account for 

dynamic designs. Besides the electromagnets produce temperature influence while generating 

magnetic field, and MRE material becomes softer with the increasing temperature. 

3. Experimental validation of modelling for MRE. 

Although the extension of this model to MRE structures has been validated in this thesis, 

it is necessary to manufacture the MRE devices and verify their performances on vibration 

control. The extension of mathematical models and the efficiency of modelling methodology 
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can be examined by comparing the predicted values with the experimental results. From the 

perspective of effectiveness and economy, a valid methodology of performance evaluation 

without manufacturing and testing MRE devices is important for the dynamic design of 

vibration control devices. 
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Appendix V 
 

 

Experimental data for equivalent stiffness 

 

KN/m 65 μm 130 μm 195 μm 260 μm 325 μm 390 μm 

1Hz 223.2 204.9 195.8 192.2 189.1 185.0 

5 Hz 242.3 214.5 204.9 200.6 197.3 192.7 

10 Hz 241.8 222.1 210.7 205.8 201.4 197.3 

20 Hz 252.7 229.2 217.8 213.3 208.4 203.6 

30 Hz 253.2 231.0 219.8 214.6 209.0 204.1 

40 Hz 255.8 233.0 221.7 215.3 210.3 205.4 

50 Hz 256.1 234.6 222.4 216.6 211.2 206.1 

 

 

Expectation of equivalent stiffness 

 

KN/m 65 μm 130 μm 195 μm 260 μm 325 μm 390 μm 

1Hz 229.9 213.1 200.5 191.9 187.5 187.2 

5 Hz 234.8 218.0 205.3 196.8 192.4 192.1 

10 Hz 240.1 223.3 210.6 202.1 197.7 194.4 

20 Hz 248.1 231.3 218.6 210.1 205.7 205.4 

30 Hz 252.6 235.8 223.1 214.6 210.2 209.9 

40 Hz 253.6 236.8 224.1 215.6 210.2 210.9 

50 Hz 251.1 234.3 221.7 213.1 208.7 208.4 

 

Errors 

 

% 65 μm 130 μm 195 μm 260 μm 325 μm 390 μm 

1Hz 3.00 4.00 2.40 0.15 0.84 1.18 

5 Hz 3.09 1.63 0.19 0.18 2.48 0.31 

10 Hz 0.70 0.54 0.05 1.80 1.84 1.47 

20 Hz 1.82 0.92 0.37 1.50 1.30 0.88 

30 Hz 0.24 2.08 1.50 0 0.57 2.84 

40 Hz 0.86 1.63 1.08 0.14 0.05 2.68 

50 Hz 1.95 0.13 0.31 1.62 1.18 1.12 
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Experimental data for equivalent damping 

 

KN·s/m 65 μm 130 μm 195 μm 260 μm 325 μm 390 μm 

1Hz 4.446 3.728 3.349 3.198 2.947 2.669 

5 Hz 1.136 0.927 0.826 0.759 0.698 0.657 

10 Hz 0.625 0.541 0.492 0.447 0.419 0.395 

20 Hz 0.285 0.247 0.228 0.206 0.199 0.178 

30 Hz 0.158 0.137 0.129 0.117 0.106 0.099 

40 Hz 0.109 0.103 0.086 0.078 0.071 0.066 

50 Hz 0.064 0.055 0.048 0.042 0.036 0.032 

 

Expectation of equivalent damping 

 

KN·s/m 65 μm 130 μm 195 μm 260 μm 325 μm 390 μm 

1Hz 4.458 3.890 3.415 3.031 2.739 2.539 

5 Hz 1.138 1.005 0.901 0.793 0.714 0.654 

10 Hz 0.588 0.532 0.484 0.446 0.417 0.397 

20 Hz 0.297 0.269 0.245 0.226 0.211 0.191 

30 Hz 0.166 0.147 0.131 0.118 0.108 0.102 

40 Hz 0.119 0.105 0.093 0.083 0.076 0.071 

50 Hz 0.070 0.059 0.050 0.042 0.036 0.032 

 

Errors 

 

% 65 μm 130 μm 195 μm 260 μm 325 μm 390 μm 

1Hz 0.27 4.35 1.97 5.22 7.06 4.87 

5 Hz 0.18 8.41 9.08 4.48 2.29 0.46 

10 Hz 5.92 1.66 1.63 0.22 0.48 0.51 

20 Hz 4.21 8.90 7.45 9.71 6.03 7.30 

30 Hz 5.06 7.30 1.55 0.85 1.89 3.03 

40 Hz 9.17 1.94 8.14 6.41 7.04 7.58 

50 Hz 9.37 7.27 4.17 0 0 0 

 


