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Abstract

Direct numerical simulations (DNS) of turbulent plane Couette and Poiseuille
flow have been carried out at different Reynolds numbers in very large computa-
tional domains, which can ensure zero two-point correlations in both streamwise
and spanwise directions. Good agreement with published results and balanced en-
ergy budgets have been achieved for the simulation results. DNS databases have
been set up from Couette flow simulations up to Re, = 3400 and Poiseuille flow
up to Re, = 720. Statistics of velocity, pressure and their gradients are collected,
sufficient to evaluate all the terms in the transport equations for all second and
third moments, as well as for turbulent dissipation. The databases can be used
to validate and develop turbulence models for Reynolds averaged calculations and
subgrid models for large-eddy simulations.

1 Introduction

Channel flow is a geometrically simple problem which has played an important role in
understanding the mechanics of wall-bounded turbulent flow. Its simple geometry enables
efficient direct numerical simulations (DNS) to be carried out.

DNS has been proved to be a very reliable tool for turbulence investigation and its
ability to resolve details of turbulent flow has been utilized in many applications, for ex-
ample validation of large-eddy simulation (LES) techniques, subgrid scale (SGS) models,
and turbulence models used in Reynolds averaged Navier-Stokes (RANS) simulations. To
valid the models, DNS databases can either be used directly to calculate each term in
the transport equations to decide constants in the model, or indirectly by examination of
the energy budgets. DNS databases of plane Poiseuille flow are now available up to some

This study is supported by EPSRC under Grant GR/M38865, and the Cray T3E time is provided
by EPSRC Grant GR/M08424.
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moderate Reynolds numbers (Moser, Kim & Mansour 1999). Rapidly increasing super-
computer power makes higher Reynolds number simulations feasible. DNS databases of
turbulent channel flow at higher Reynolds number are useful in an effort to eliminate or
at least quantify low Reynolds number effects.

Plane Couette flow is different from Poiseuille flow in that the flow is shear stress
driven instead of pressure gradient driven. Very long large-scale structures exist in the
core region (channel central region), whereas no clear large structure is found in Poiseuille
flow (Lee & Kim 1991; Komminaho, Lundbladh & Johansson 1996; Hu & Sandham 2001).
This makes the simulation of Couette flow more expensive than Poiseuille flow as a much
bigger box is needed to resolve the large structure. So far no database has been published
for Couette flow.

It is very important in the simulation of turbulent channel flow, especially for appli-
cations to acoustics, to have a large enough computational box so that large turbulent
structures are correctly predicted and the low wavenumber behaviour is well demon-
strated. Otherwise the periodic boundary condition applied in the two homogeneous
directions will make the large structures infinitively long, resulting errors in the statistics.
Large computational domains are used for all the simulations in present study so that
the largest structures are included, this is ensured by checking that two-point correlation
functions drop to zero.

In this study, turbulent Couette flow is simulated up to Reynolds number Re, =
3400 and Poiseuille flow up to Re, = 720 in very large computational domains, which
can include the largest structures in the flow. DNS databases are established for 193
different statistical quantities, including high order moments of velocities, pressure and
their gradients, so that all the terms for the transport equation of second and third order
moments and turbulent dissipation can be calculated.

2 DNS of incompressible plane channel flow

2.1 Governing equations and summary of numerical method

The governing equations of incompressible turbulent flow, the continuity and momentum
equations, are non-dimensionalized with a reference length L7 equal to the channel half
width h*, and a reference velocity U}, which is chosen as the friction velocity u} for
Poiseuille flow, and the wall velocity u for Couette flow (both the upper and the lower
walls move, with velocity v’ and —u} respectively). The non-dimensional quantities are
then defined as (superscript = stands for dimensional quantities)
ui = Ui [Ups, @i =i /07, p=p"/(p"UiqUss), t=1Ure/h".
The non-dimensional continuity equation and the rotation form of the momentum
equations can be written as
an
— =0, 1
o (1)
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where w; is the vorticity, w; = €;;,0u;/0x;; Reynolds number is Re = Uj;h*/v*, equal
to Re; = utfh*/v* for Poiseuille flow, and Re, = U}h*/v* for Couette flow; v* is the
kinematic viscosity of the fluid; IT = p + u;u;/2 is the non-dimensional modified pressure;
€5, 1s the permutation tensor and A is the driving mean pressure gradient.

The coordinates used in this paper are x for the streamwise direction, y for the spanwise
direction, and z for the wall-normal direction with the channel walls at z = 41, and the
corresponding velocity components are denoted as (u, v, w).

Numerical solution of equations (1, 2) follows the spectral method of Kleiser & Schu-
mann (1980), with Fourier and Chebyshev methods used for spatial discretizations, replac-
ing the Adams-Bashforth time advance of Kleiser & Schumann (1980) with a third-order
Runge-Kutta method for the convective term and the Crank-Nicolson method for the
pressure and viscous terms. An implicit treatment is employed to avoid extremely small
time steps in the near wall region owing to Chebyshev discretization. For each Runge-
Kutta sub-step the discretized equation can be written as

ar\"*t  /om\"
+

oo (o) (o) | @

where a and b are the Runge-Kutta sub-step coefficients, their values can be found in
Sandham & Howard (1998); n — 1, n and n + 1 refer to successive sub-steps.

Poiseuille flow is a pressure gradient driven flow. Taking the Reynolds average of the
streamwise momentum equation, we get

ultt —

At

u? _ 1
! — a(ﬁiijjWk)n + b(eijkujwk)" 1 =+ (Sle — 5

A

= g(u’w’ — Tyz)- (4)
Where 7,, = v(0w/dx + 0u/0z) is the mean viscous shear stress. The non-dimensional
mean pressure gradient A = 1, so total non-dimensional shear stress in plane Poiseuille
flow is equal to y. Plane Couette flow is driven by the movement of the walls. There is no
mean pressure gradient for Couette flow, and the total shear stress is a constant across
the channel.

2.2 Spatial derivatives

Spectral methods are an accurate way of forming spatial derivatives, for wavenumbers
below some upper limit set by the spatial resolution. Fourier spectral methods require
periodic boundary conditions, while Chebyshev methods can be applied to non-periodic
directions. In the present problem, Fourier discretization is used for the channel horizontal
plane, and the Chebyshev tau method is used for the wall-normal direction.
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In the horizontal plane, a two-dimensional Fourier transformation from real to wave
space is accomplished by a streamwise real to complex Fourier transformation, followed
by a complex to complex Fourier transformation in the spanwise direction. After the
streamwise transformation, only the mean and positive Fourier modes need to be stored
due to symmetry. A real quantity ¢(z,y) is transformed to ¢(k;, k,) in discrete Fourier
space by the successive operations:

Nm 1 . .
q(xia y])a 6_12ﬂlZ/Nm (5)

£l =

(j(kww yj) =

I
=)

i

(kmﬂ kym - Z l'l ) ?J] _127ij/Ny ) (6)

Z\H

where i = \/—1; x;,y; are the streamwise and spanwise coordinates of grid points with a
total number of NV, and N, in the two directions (both even). Uniform grids are used, so

L.t )
z; = N;, (0<i<N,):; (7)
L,j .
p=20 <i<n,) )
Y

The spatial wavenumbers k;,, k,,, are given by

27l

k=7 (=No/2 <1< Nof2) (9)
2
by =7 (=N,/2<m < N,/2). (10)
y

L, and L, are the non-dimensional computational box lengths in the streamwise and
spanwise directions.

The two-dimensional backward transformation is done with a spanwise complex to
complex transformation, followed by a streamwise complex to real transformation:

Ny/2

q~(kI“ yj) _ Z d(kz“ kym)ei%rmj/Ny, (11)
m=—Ny /2
N/ -
q(i,y;) = 40, 95) +2 > G(kay, yy)e® ™M (12)

=1
Chebyshev transformations are used for the wall-normal direction with the help of the
Chebyshev polynomial T},(z) (Canuto et al, 1987):

q(k=) = > q(z)Tol(z), (13)
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a(5) = 2 G(k.) T (). (14)

Here N, is the number of wall-normal grid points, whose coordinates z; are a non-uniform
cosine profile

k
zk:cos<Nz_1>, 0<kE<N,-1 (15)

The nonlinear convective terms are calculated by zero-padding the separate factors in
wave space by 50% before transforming back to real space, where the nonlinear terms
are calculated. This ‘3/2 rule’ de-aliasing has been applied whenever nonlinear quantities
are required. Note that the process generates additional wavenumber components in the
wave space representation, but these are truncated.

2.3 Initial condition

The initial flow fields consist of an approximate mean turbulent flow with superimposed
artificial disturbances. Statistical data are accumulated only after the initial influence
has disappeared and the flow has statistically settled down. The convergence is checked
by comparing the statistical data in successive time segments, making sure that they are
consistent. All statistical data are averaged over the horizontal plane and time.

More details of the numerical method used can be found in Kleiser & Schumann (1980),
Canuto et al. (1987) and Sandham & Howard (1998). The parallel implementation of
Sandham & Howard (1998) is employed for all the simulations.

3 DNS and validation

3.1 Details of simulations

Simulations of turbulent Poiseuille and Couette flow have been carried out at different
Reynolds numbers, details of each simulation are given in table 1.

Table 1: Configurations of simulations.

Flow Re;/ | Cray T3E box length grid points Ay™ at N

Type Rey, | PEhours | (Ly X Ly x L) | (Ny x Ny x N,) | 2zt =9 | (27 <9)
Poiseuille | 720 95,000 12 X 6 x 2 512 x 512 x 321 1.14 18
Poiseuille | 360 30,000 12 X 6 x 2 256 x 256 x 161 1.58 13
Poiseuille | 180 13,000 24 x 12 x 2 256 x 256 x 121 1.52 13
Couette | 3400 14,000 48 x 12 x 2 012 x 256 x 121 1.45 13
Couette | 1300 26,000 192 x 24 x 2 1024 x 256 x 81 1.52 13

Figure 1 shows the mean velocity profiles in wall units for Poiseuille and Couette flow
simulations at different Reynolds numbers.
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Figure 1: Mean velocity profile in wall units.
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Figure 2: Energy spectra of Poiseuille flow Re, = 360 at z* = 105.4.
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Figure 3: Energy spectra of Couette flow Re, = 3400 at centreline (z* = 186.6).

The same resolution in wall units is maintained for different Reynolds number simu-
lations in the two periodic directions with Az* = 16.88 and Ay* = 8.44 for Poiseuille
flow and Az* = 15.38 and Ay™ = 7.69 for Couette flow. These are comparable with
what was used in Kim, Moin & Moser (1987). In the wall-normal direction, at least 13
points are put in the near wall region (2 < 9), which has been proved to be sufficient
for spectral methods. Energy spectra from simulations also give evidence for adequate
spatial resolutions, as shown in figure 2 for Poiseuille flow at Re, = 360 and figure 3 for
Couette flow at Re, = 3400.

3.2 Validation of DNS
3.2.1 Plane Poiseuille flow

A comparison of statistics with available DNS results and energy budgets of turbulent
shear stresses has been performed to validate of DNS. Some typical results for Poiseuille
flow with Re, = 360 are given below.
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Figure 4: Two-point correlations of velocity R(u'), R(v"), R(w') and pressure R(p') for
Poiseuille flow Re, = 360 at 2™ = 105.4.

In order to apply periodic boundary conditions to plane channel flow simulations, the
computational domain must be large enough to include the largest turbulent structures.
This can be checked after the simulation by examination of the zero two-point correla-
tions. The two-point correlation functions of fluctuation velocity and pressure have been
calculated.

Ri(Ar) = WEE T D) gy o VW AT) (16)

Ribe - BOWECTAZ b TEWETAY) -

2 2
U; p

Figure 4 shows the two-point correlations for Poiseuille flow at y™ = 105.4. The two-point
correlations fall to zero at maximum separation in both the streamwise and spanwise
directions, demonstrating that present computational domain is adequate.
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Figure 5: Mean velocity of Poiseuille flow Figure 6: Turbulence intensities of Poiseuille
compared with MKM. flow compared with MKM.
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The mean velocity and turbulent intensities shown in figures 5 and 6 are in good
agreement with MKM (Re, = 395). Symmetry of the results about the centreline indicates
well converged statistics. The mean velocity profile collapses on the law of the wall
ut = (1/k)Iny" 4+ B with K = 0.4 and B = 5.5.
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Figure 7: Energy budgets of Poiseuille flow Reynolds stresses. Solid line: Pj;, dash line:
Tij, dash-dotted line: Djj, long dash line: 0.J}% /0x},, dash-double-dotted line: 9.}, /0wy,
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The transport equations of Reynolds stresses, R;; = wjuj, can be derived from the

continuity and momentum equations, as

8Rij _8Rij 0

— P+ Ty — Dji — ——

or gy, —tutlu T Vi g
9

(i + Tk + Tie) (18)
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where terms on the right hand side are

P. =—(R, %% 4 R, 05 )
i — zkaxk ]kaxk

ou' ou'.
L. — | =i J
Tv“ =P <8:1:]- + (911-)

D.. — 2 0u %y
Ly Re Oz}, Oxy, (]_9)
u — r,,!,,!
ik T WU U

)

The = P + puldjy

1 ORy;

v —
ijk T Re Omy )

In the above equations, F;; is the production due to mean velocity gradients, T;; is the
pressure-strain term, D;; is the ‘dissipation’ (it is different from the real dissipation term
e, which represents the transfer rate of energy from turbulence to heat) and J;j; is the
turbulence flux term, with Ji%, contribution from the turbulence transport term, ijk, the
pressure transport term and J};, the viscous transport term. After the flow has become
statistically stable, the terms on the right hand side should sum to zero.

Plane Poiseuille and Couette flow are homogeneous in the streamwise and spanwise
directions, and the Reynolds stresses 23 and Ry3 are zero. Budgets of the all remaining
turbulent shear stresses have been calculated as a check on our simulation results, as
shown in Figure 7. The budget balances (sum of all terms on the right hand side) are of

the order of 107, All quantities are normalized by u**/v*.

3.2.2 Plane Couette flow

It is well known that very long structure exists in the core area of Couette flow; this
makes Couette flow simulations more difficult as very large computational domains are
needed to include this structure. Very few DNS of Couette flow are available at low
Reynolds numbers, e.g. Komminaho et al. (1996) at Re,, = 750 and Kristoffersen, Bech
& Andersson (1993) (referred to as KBA hereafter) at Re, = 1300. In this section, DNS
of results of Couette flow Re,, = 1300 are compared with KBA.

The computational box used in present study is large enough to allow periodic bound-
ary conditions to be applied in both streamwise and spanwise directions, as demonstrated
by the streamwise and spanwise two-point correlations shown in figure 8 at the channel
centreline, where the worst situation for two-point correlations occurs.

Figure 9 show the mean velocity of Couette flow, which is in good agreement with
KBA. Plane Couette flow is driven by the two walls moving in opposite directions, and
has a typical S-shaped mean velocity profile, leading to a non-zero mean velocity gradient
at the centreline. Its non-dimensional value is 0.1924 for Re, = 1300 from the present
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Figure 8: Two-point velocity correlations of Couette flow at channel centreline.
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Figure 10: Turbulence intensities of Couette

Figure 9: Mean velocity of Couette flow.
flow.

simulations. Another simulation at higher Reynolds number Re, = 3400 gives 0.1980.
Tillmark et al. (1993) collected available experimental data and found that the non-
dimensional mean velocity gradient at the centreline varies between 0.15 and 0.3 for
Re,, = 750 ~ 19000. DNS of Komminaho et al. (1996) for Reynolds number Re,, = 750
gave a value of 0.18. This mean velocity gradient gives Couette flow a finite shear stress
at centreline, which leads to non-zero production as well as dissipation at the channel
centreline (figure 11(a)).

Turbulence intensities for plane Couette flow are given in figure 10, with all quantities
normalized by uZ. Results of KBA are also plotted with thin lines for comparison. The
streamwise and spanwise turbulence intensities of KBA are close to the present results in
the near wall region but smaller elsewhere; the differences are almost certainly caused by
the coarser resolution and smaller box used in KBA. KBA used a second-order central
finite difference method for all spatial derivatives and a second-order Adams-Bashforth
scheme for time advance. The grid spacing used by KBA is 11.12 and 8.34 wall units
for the streamwise and spanwise directions respectively, compared to 15.38 and 7.69 for
the present simulation. Although their streamwise grid spacing is smaller, the effective

11
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resolution is still lower because of the higher accuracy of the present spectral method.
The wall-normal resolution of KBA is also lower with only 64 points, compared with 81
points in the present simulation. Comparison between test cases with different resolutions
shows that coarse resolution will give smaller turbulence intensities in the streamwise and
spanwise directions. Another difference is that the computational box used in KBA is
4mh* x 2wh* x 2h*, which is not large enough to get two-point correlations dropping to
zero, as shown in their two-point correlation results.

Large differences exist in the wall-normal turbulence intensity, with the results of
KBA being flat in the channel centre region. Komminaho et al. (1996) ran a Couette
flow simulation at Re, = 750 in a box of 287h* x 8rh* x 2h*, and their results for
wall-normal turbulence intensity also show a parabolic profile with no flat region.
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Figure 11: Energy budgets of Couette flow Reynolds stresses. Solid line: P;;, dash line:
Tij, dash-dotted line: Dj;, long dash line: 0.J}%/0x},, dash-double-dotted line: 0., /0wy,

R

dotted line: 9.}, /Oxy,)

R

Budgets of Couette flow Reynolds stresses are shown in figure 11. All quantities are
normalized by u**/v*. Very good balances of energy have been achieved, demonstrating
high accuracy of the simulation results. The maximum imbalance is less than 2 x 107%.
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4 DNS databases

The following is a list of statistical moments collected from the simulation after the flow
has statistically settled down. All the quantities have been averaged over the two periodic
directions and time, which is denoted with angle brackets. Numbers in the brackets refer
to the number of quantities collected for this term.

< wu; > (3) < u;u; > (6) < uiujuk > (10) < uiujukul > (15)

<p>(1) <p*> (1) <p’>(1) <p'> (1)

< pu; > ( ) < pu; u] (6) < pa“’ > (9) < g;“ ‘?91;’" > (45)

<ul > (1) | w < 2D (18) | < Quou O s (1) | < B0 ()
a d%u; 32 i

<p~> o u] (18) 8:vjz9xk 8:ngxk ( )

One application of the data from DNS is to validate turbulence models, for use in
engineering applications. A total of 193 statistics are collected in the database. All the
terms of the transport equations of second and third moments and turbulent dissipation
can be calculated from the above statistics. This database can then be used to to valid
and develop new RANS and LES models.

The DNS databases are available at http://www.afm.ses.soton.ac.uk/~zhi.

5 Summary

Direct numerical simulations of turbulent Couette and Poiseuille flow have been carried
in very large computational domains, which can ensure zero two-point correlations in
both streamwise and spanwise directions. The simulations of Couette flow were run up
to Reynolds number Re, = 3400 and Poiseuille flow up to Re, = 720. 193 statistics
were collected to establish the DNS databases, which enable the calculation of all the
terms in the transport equations of second and third moments and turbulent dissipation.
The databases can be used for validation of turbulence models and LES techniques and
developing new turbulence models.
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