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DNS Databases for Turbulent Couette andPoiseuille FlowZ. W. Hu and N. D. SandhamAerodynami
s and Flight Me
hani
s Resear
h GroupS
hool of Engineering S
ien
esUniversity of Southampton, Southampton SO17 1BJ, U.K.email: z.hu�soton.a
.uk n.sandham�soton.a
.ukAbstra
tDire
t numeri
al simulations (DNS) of turbulent plane Couette and Poiseuille
ow have been 
arried out at di�erent Reynolds numbers in very large 
omputa-tional domains, whi
h 
an ensure zero two-point 
orrelations in both streamwiseand spanwise dire
tions. Good agreement with published results and balan
ed en-ergy budgets have been a
hieved for the simulation results. DNS databases havebeen set up from Couette 
ow simulations up to Rew = 3400 and Poiseuille 
owup to Re� = 720. Statisti
s of velo
ity, pressure and their gradients are 
olle
ted,suÆ
ient to evaluate all the terms in the transport equations for all se
ond andthird moments, as well as for turbulent dissipation. The databases 
an be usedto validate and develop turbulen
e models for Reynolds averaged 
al
ulations andsubgrid models for large-eddy simulations.1 Introdu
tionChannel 
ow is a geometri
ally simple problem whi
h has played an important role inunderstanding the me
hani
s of wall-bounded turbulent 
ow. Its simple geometry enableseÆ
ient dire
t numeri
al simulations (DNS) to be 
arried out.DNS has been proved to be a very reliable tool for turbulen
e investigation and itsability to resolve details of turbulent 
ow has been utilized in many appli
ations, for ex-ample validation of large-eddy simulation (LES) te
hniques, subgrid s
ale (SGS) models,and turbulen
e models used in Reynolds averaged Navier-Stokes (RANS) simulations. Tovalid the models, DNS databases 
an either be used dire
tly to 
al
ulate ea
h term inthe transport equations to de
ide 
onstants in the model, or indire
tly by examination ofthe energy budgets. DNS databases of plane Poiseuille 
ow are now available up to someThis study is supported by EPSRC under Grant GR/M38865, and the Cray T3E time is providedby EPSRC Grant GR/M08424. 1



Z. W. Hu & N. D. Sandham, DNS Databases for Turbulent Couette and Poiseuille Flow.moderate Reynolds numbers (Moser, Kim & Mansour 1999). Rapidly in
reasing super-
omputer power makes higher Reynolds number simulations feasible. DNS databases ofturbulent 
hannel 
ow at higher Reynolds number are useful in an e�ort to eliminate orat least quantify low Reynolds number e�e
ts.Plane Couette 
ow is di�erent from Poiseuille 
ow in that the 
ow is shear stressdriven instead of pressure gradient driven. Very long large-s
ale stru
tures exist in the
ore region (
hannel 
entral region), whereas no 
lear large stru
ture is found in Poiseuille
ow (Lee & Kim 1991; Komminaho, Lundbladh & Johansson 1996; Hu & Sandham 2001).This makes the simulation of Couette 
ow more expensive than Poiseuille 
ow as a mu
hbigger box is needed to resolve the large stru
ture. So far no database has been publishedfor Couette 
ow.It is very important in the simulation of turbulent 
hannel 
ow, espe
ially for appli-
ations to a
ousti
s, to have a large enough 
omputational box so that large turbulentstru
tures are 
orre
tly predi
ted and the low wavenumber behaviour is well demon-strated. Otherwise the periodi
 boundary 
ondition applied in the two homogeneousdire
tions will make the large stru
tures in�nitively long, resulting errors in the statisti
s.Large 
omputational domains are used for all the simulations in present study so thatthe largest stru
tures are in
luded, this is ensured by 
he
king that two-point 
orrelationfun
tions drop to zero.In this study, turbulent Couette 
ow is simulated up to Reynolds number Rew =3400 and Poiseuille 
ow up to Re� = 720 in very large 
omputational domains, whi
h
an in
lude the largest stru
tures in the 
ow. DNS databases are established for 193di�erent statisti
al quantities, in
luding high order moments of velo
ities, pressure andtheir gradients, so that all the terms for the transport equation of se
ond and third ordermoments and turbulent dissipation 
an be 
al
ulated.2 DNS of in
ompressible plane 
hannel 
ow2.1 Governing equations and summary of numeri
al methodThe governing equations of in
ompressible turbulent 
ow, the 
ontinuity and momentumequations, are non-dimensionalized with a referen
e length L�ref equal to the 
hannel halfwidth h�, and a referen
e velo
ity U�ref , whi
h is 
hosen as the fri
tion velo
ity u�� forPoiseuille 
ow, and the wall velo
ity u�w for Couette 
ow (both the upper and the lowerwalls move, with velo
ity u�w and �u�w respe
tively). The non-dimensional quantities arethen de�ned as (supers
ript � stands for dimensional quantities)ui = u�i =U�ref; xi = x�i =h�; p = p�=(��U�refU�ref); t = t�U�ref=h�:The non-dimensional 
ontinuity equation and the rotation form of the momentumequations 
an be written as �uj�xj = 0; (1)2



Z. W. Hu & N. D. Sandham, DNS Databases for Turbulent Couette and Poiseuille Flow.�ui�t = �ijkuj!k + Æ1i�� ���xi + 1Re �2ui�xj�xj ; (2)where !i is the vorti
ity, !i = �ijk�uk=�xj; Reynolds number is Re = U�refh�=��, equalto Re� = u��h�=�� for Poiseuille 
ow, and Rew = U�wh�=�� for Couette 
ow; �� is thekinemati
 vis
osity of the 
uid; � = p+ uiui=2 is the non-dimensional modi�ed pressure;�ijk is the permutation tensor and � is the driving mean pressure gradient.The 
oordinates used in this paper are x for the streamwise dire
tion, y for the spanwisedire
tion, and z for the wall-normal dire
tion with the 
hannel walls at z = �1, and the
orresponding velo
ity 
omponents are denoted as (u; v; w).Numeri
al solution of equations (1, 2) follows the spe
tral method of Kleiser & S
hu-mann (1980), with Fourier and Chebyshev methods used for spatial dis
retizations, repla
-ing the Adams-Bashforth time advan
e of Kleiser & S
humann (1980) with a third-orderRunge-Kutta method for the 
onve
tive term and the Crank{Ni
olson method for thepressure and vis
ous terms. An impli
it treatment is employed to avoid extremely smalltime steps in the near wall region owing to Chebyshev dis
retization. For ea
h Runge{Kutta sub-step the dis
retized equation 
an be written asun+1i � uni4t = a(�ijkuj!k)n + b(�ijkuj!k)n�1 + Æ1i�� 12 24 ���xi!n+1 +  ���xi!n35+ 12Re 24 �ui�xj�xj!n+1 +  �ui�xj�xj!n35 ; (3)where a and b are the Runge{Kutta sub-step 
oeÆ
ients, their values 
an be found inSandham & Howard (1998); n� 1, n and n + 1 refer to su

essive sub-steps.Poiseuille 
ow is a pressure gradient driven 
ow. Taking the Reynolds average of thestreamwise momentum equation, we get� = ��z (u0w0 � �xz): (4)Where �xz = �(�w=�x + �u=�z) is the mean vis
ous shear stress. The non-dimensionalmean pressure gradient � = 1, so total non-dimensional shear stress in plane Poiseuille
ow is equal to y. Plane Couette 
ow is driven by the movement of the walls. There is nomean pressure gradient for Couette 
ow, and the total shear stress is a 
onstant a
rossthe 
hannel.2.2 Spatial derivativesSpe
tral methods are an a

urate way of forming spatial derivatives, for wavenumbersbelow some upper limit set by the spatial resolution. Fourier spe
tral methods requireperiodi
 boundary 
onditions, while Chebyshev methods 
an be applied to non-periodi
dire
tions. In the present problem, Fourier dis
retization is used for the 
hannel horizontalplane, and the Chebyshev tau method is used for the wall-normal dire
tion.3



Z. W. Hu & N. D. Sandham, DNS Databases for Turbulent Couette and Poiseuille Flow.In the horizontal plane, a two-dimensional Fourier transformation from real to wavespa
e is a

omplished by a streamwise real to 
omplex Fourier transformation, followedby a 
omplex to 
omplex Fourier transformation in the spanwise dire
tion. After thestreamwise transformation, only the mean and positive Fourier modes need to be storeddue to symmetry. A real quantity q(x; y) is transformed to ~q(kx; ky) in dis
rete Fourierspa
e by the su

essive operations:~q(kxl; yj) = 1Nx Nx�1Xi=0 q(xi; yj); e�i2�li=Nx (5)~q(kxl; kym) = 1Nz Nz�1Xj=0 ~q(kxl; yj)e�i2�mj=Ny ; (6)where i = p�1; xi; yj are the streamwise and spanwise 
oordinates of grid points with atotal number of Nx and Ny in the two dire
tions (both even). Uniform grids are used, soxi = LxiNx ; (0 � i � Nx); (7)yj = LyjNy ; (0 � j � Ny): (8)The spatial wavenumbers kxl; kym are given bykxl = 2�lLx ; (�Nx=2 � l � Nx=2); (9)kym = 2�mLy ; (�Ny=2 � m � Ny=2): (10)Lx and Ly are the non-dimensional 
omputational box lengths in the streamwise andspanwise dire
tions.The two-dimensional ba
kward transformation is done with a spanwise 
omplex to
omplex transformation, followed by a streamwise 
omplex to real transformation:~q(kxl; yj) = Ny=2Xm=�Ny=2 ~q(kxl; kym)ei2�mj=Ny ; (11)q(xi; yj) = ~q(0; yj) + 2 Nx=2Xl=1 ~q(kxl; yj)ei2�li=Nx : (12)Chebyshev transformations are used for the wall-normal dire
tion with the help of theChebyshev polynomial Tn(zk) (Canuto et al, 1987):~q(kzn) = Nz�1Xk=0 q(zk)Tn(zk); (13)4



Z. W. Hu & N. D. Sandham, DNS Databases for Turbulent Couette and Poiseuille Flow.q(zk) = Nz�1Xn=0 ~q(kzn)Tn(zk): (14)Here Nz is the number of wall-normal grid points, whose 
oordinates zk are a non-uniform
osine pro�le zk = 
os �kNz � 1! ; 0 � k � Nz � 1: (15)The nonlinear 
onve
tive terms are 
al
ulated by zero-padding the separate fa
tors inwave spa
e by 50% before transforming ba
k to real spa
e, where the nonlinear termsare 
al
ulated. This `3/2 rule' de-aliasing has been applied whenever nonlinear quantitiesare required. Note that the pro
ess generates additional wavenumber 
omponents in thewave spa
e representation, but these are trun
ated.2.3 Initial 
onditionThe initial 
ow �elds 
onsist of an approximate mean turbulent 
ow with superimposedarti�
ial disturban
es. Statisti
al data are a

umulated only after the initial in
uen
ehas disappeared and the 
ow has statisti
ally settled down. The 
onvergen
e is 
he
kedby 
omparing the statisti
al data in su

essive time segments, making sure that they are
onsistent. All statisti
al data are averaged over the horizontal plane and time.More details of the numeri
al method used 
an be found in Kleiser & S
humann (1980),Canuto et al. (1987) and Sandham & Howard (1998). The parallel implementation ofSandham & Howard (1998) is employed for all the simulations.3 DNS and validation3.1 Details of simulationsSimulations of turbulent Poiseuille and Couette 
ow have been 
arried out at di�erentReynolds numbers, details of ea
h simulation are given in table 1.Table 1: Con�gurations of simulations.Flow Re�= Cray T3E box length grid points 4y+ at NType Rew PE hours (Lx � Ly � Lz) (Nx �Ny �Nz) z+ = 9 (z+ < 9)Poiseuille 720 95,000 12� 6� 2 512 � 512� 321 1.14 18Poiseuille 360 30,000 12� 6� 2 256 � 256� 161 1.58 13Poiseuille 180 13,000 24� 12� 2 256 � 256� 121 1.52 13Couette 3400 14,000 48� 12� 2 512 � 256� 121 1.45 13Couette 1300 26,000 192� 24� 2 1024 � 256 � 81 1.52 13Figure 1 shows the mean velo
ity pro�les in wall units for Poiseuille and Couette 
owsimulations at di�erent Reynolds numbers. 5
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ow Re� = 360 at z+ = 105:4.
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(b) SpanwiseFigure 3: Energy spe
tra of Couette 
ow Rew = 3400 at 
entreline (z+ = 186:6).The same resolution in wall units is maintained for di�erent Reynolds number simu-lations in the two periodi
 dire
tions with �x+ = 16:88 and �y+ = 8:44 for Poiseuille
ow and �x+ = 15:38 and �y+ = 7:69 for Couette 
ow. These are 
omparable withwhat was used in Kim, Moin & Moser (1987). In the wall-normal dire
tion, at least 13points are put in the near wall region (z+ < 9), whi
h has been proved to be suÆ
ientfor spe
tral methods. Energy spe
tra from simulations also give eviden
e for adequatespatial resolutions, as shown in �gure 2 for Poiseuille 
ow at Re� = 360 and �gure 3 forCouette 
ow at Rew = 3400.3.2 Validation of DNS3.2.1 Plane Poiseuille 
owA 
omparison of statisti
s with available DNS results and energy budgets of turbulentshear stresses has been performed to validate of DNS. Some typi
al results for Poiseuille
ow with Re� = 360 are given below. 7
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orrelations of velo
ity R(u0); R(v0), R(w0) and pressure R(p0) forPoiseuille 
ow Re� = 360 at z+ = 105:4.In order to apply periodi
 boundary 
onditions to plane 
hannel 
ow simulations, the
omputational domain must be large enough to in
lude the largest turbulent stru
tures.This 
an be 
he
ked after the simulation by examination of the zero two-point 
orrela-tions. The two-point 
orrelation fun
tions of 
u
tuation velo
ity and pressure have been
al
ulated. Ri(�x) = u0i(x)u0i(x+4x)u02i ; Rp(�x) = p0(x)p0(x +4x)p02 ; (16)Ri(�z) = u0i(z)u0i(z +4z)u02i ; Rp(�z) = p0(z)p0(z +4z)p02 : (17)Figure 4 shows the two-point 
orrelations for Poiseuille 
ow at y+ = 105:4. The two-point
orrelations fall to zero at maximum separation in both the streamwise and spanwisedire
tions, demonstrating that present 
omputational domain is adequate.
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Z. W. Hu & N. D. Sandham, DNS Databases for Turbulent Couette and Poiseuille Flow.The mean velo
ity and turbulent intensities shown in �gures 5 and 6 are in goodagreement with MKM (Re� = 395). Symmetry of the results about the 
entreline indi
ateswell 
onverged statisti
s. The mean velo
ity pro�le 
ollapses on the law of the wallu+ = (1=�) ln y+ +B with � = 0:4 and B = 5:5.
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The transport equations of Reynolds stresses, Rij = u0iu0j, 
an be derived from the
ontinuity and momentum equations, as�Rij�t + uk �Rij�xk = Pij + Tij �Dij � ��xk (Juijk + Jpijk + J�ijk); (18)9



Z. W. Hu & N. D. Sandham, DNS Databases for Turbulent Couette and Poiseuille Flow.where terms on the right hand side arePij = � �Rik �uj�xk +Rjk �ui�xk �Tij = p0 � �u0i�xj + �u0j�xi�Dij = 2Re �u0i�xk �u0j�xkJuijk = u0iu0ju0kJpijk = p0u0jÆik + p0u0iÆjkJ�ijk = � 1Re �Rij�xk

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;
(19)

In the above equations, Pij is the produ
tion due to mean velo
ity gradients, Tij is thepressure-strain term, Dij is the `dissipation' (it is di�erent from the real dissipation term", whi
h represents the transfer rate of energy from turbulen
e to heat) and Jijk is theturbulen
e 
ux term, with Juijk 
ontribution from the turbulen
e transport term, Jpijk, thepressure transport term and J�ijk, the vis
ous transport term. After the 
ow has be
omestatisti
ally stable, the terms on the right hand side should sum to zero.Plane Poiseuille and Couette 
ow are homogeneous in the streamwise and spanwisedire
tions, and the Reynolds stresses R13 and R23 are zero. Budgets of the all remainingturbulent shear stresses have been 
al
ulated as a 
he
k on our simulation results, asshown in Figure 7. The budget balan
es (sum of all terms on the right hand side) are ofthe order of 10�4. All quantities are normalized by u�� 4=��.3.2.2 Plane Couette 
owIt is well known that very long stru
ture exists in the 
ore area of Couette 
ow; thismakes Couette 
ow simulations more diÆ
ult as very large 
omputational domains areneeded to in
lude this stru
ture. Very few DNS of Couette 
ow are available at lowReynolds numbers, e.g. Komminaho et al. (1996) at Rew = 750 and Kristo�ersen, Be
h& Andersson (1993) (referred to as KBA hereafter) at Rew = 1300. In this se
tion, DNSof results of Couette 
ow Rew = 1300 are 
ompared with KBA.The 
omputational box used in present study is large enough to allow periodi
 bound-ary 
onditions to be applied in both streamwise and spanwise dire
tions, as demonstratedby the streamwise and spanwise two-point 
orrelations shown in �gure 8 at the 
hannel
entreline, where the worst situation for two-point 
orrelations o

urs.Figure 9 show the mean velo
ity of Couette 
ow, whi
h is in good agreement withKBA. Plane Couette 
ow is driven by the two walls moving in opposite dire
tions, andhas a typi
al S-shaped mean velo
ity pro�le, leading to a non-zero mean velo
ity gradientat the 
entreline. Its non-dimensional value is 0.1924 for Rew = 1300 from the present10
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Figure 10: Turbulen
e intensities of Couette
ow.simulations. Another simulation at higher Reynolds number Rew = 3400 gives 0.1980.Tillmark et al. (1993) 
olle
ted available experimental data and found that the non-dimensional mean velo
ity gradient at the 
entreline varies between 0.15 and 0.3 forRew = 750 � 19000. DNS of Komminaho et al. (1996) for Reynolds number Rew = 750gave a value of 0.18. This mean velo
ity gradient gives Couette 
ow a �nite shear stressat 
entreline, whi
h leads to non-zero produ
tion as well as dissipation at the 
hannel
entreline (�gure 11(a)).Turbulen
e intensities for plane Couette 
ow are given in �gure 10, with all quantitiesnormalized by u�� . Results of KBA are also plotted with thin lines for 
omparison. Thestreamwise and spanwise turbulen
e intensities of KBA are 
lose to the present results inthe near wall region but smaller elsewhere; the di�eren
es are almost 
ertainly 
aused bythe 
oarser resolution and smaller box used in KBA. KBA used a se
ond-order 
entral�nite di�eren
e method for all spatial derivatives and a se
ond-order Adams{Bashforths
heme for time advan
e. The grid spa
ing used by KBA is 11.12 and 8.34 wall unitsfor the streamwise and spanwise dire
tions respe
tively, 
ompared to 15.38 and 7.69 forthe present simulation. Although their streamwise grid spa
ing is smaller, the e�e
tive11



Z. W. Hu & N. D. Sandham, DNS Databases for Turbulent Couette and Poiseuille Flow.resolution is still lower be
ause of the higher a

ura
y of the present spe
tral method.The wall-normal resolution of KBA is also lower with only 64 points, 
ompared with 81points in the present simulation. Comparison between test 
ases with di�erent resolutionsshows that 
oarse resolution will give smaller turbulen
e intensities in the streamwise andspanwise dire
tions. Another di�eren
e is that the 
omputational box used in KBA is4�h� � 2�h� � 2h�, whi
h is not large enough to get two-point 
orrelations dropping tozero, as shown in their two-point 
orrelation results.Large di�eren
es exist in the wall-normal turbulen
e intensity, with the results ofKBA being 
at in the 
hannel 
entre region. Komminaho et al. (1996) ran a Couette
ow simulation at Rew = 750 in a box of 28�h� � 8�h� � 2h�, and their results forwall-normal turbulen
e intensity also show a paraboli
 pro�le with no 
at region.
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(d) w0w0Figure 11: Energy budgets of Couette 
ow Reynolds stresses. Solid line: Pij, dash line:Tij, dash-dotted line: Dij, long dash line: �Juijk=�xk, dash-double-dotted line: �Jpijk=�xk,dotted line: �J�ijk=�xk)Budgets of Couette 
ow Reynolds stresses are shown in �gure 11. All quantities arenormalized by u�� 4=��. Very good balan
es of energy have been a
hieved, demonstratinghigh a

ura
y of the simulation results. The maximum imbalan
e is less than 2� 10�4.12



Z. W. Hu & N. D. Sandham, DNS Databases for Turbulent Couette and Poiseuille Flow.4 DNS databasesThe following is a list of statisti
al moments 
olle
ted from the simulation after the 
owhas statisti
ally settled down. All the quantities have been averaged over the two periodi
dire
tions and time, whi
h is denoted with angle bra
kets. Numbers in the bra
kets referto the number of quantities 
olle
ted for this term.< ui > (3) < uiuj > (6) < uiujuk > (10) < uiujukul > (15)< p > (1) < p2 > (1) < p3 > (1) < p4 > (1)< pui > (3) < puiuj > (6) < p �ui�xj > (9) < �ui�xj �um�xn > (45)< ui �uj�xk > (27) uk < �ui�xm �uj�xm > (18) < �ui�xj �ui�xk �uj�xk > (1) < �p�xi �uj�xk > (27)< p > �uiuj�xk (18) �2ui�xj�xk �2ui�xj�xk (1)One appli
ation of the data from DNS is to validate turbulen
e models, for use inengineering appli
ations. A total of 193 statisti
s are 
olle
ted in the database. All theterms of the transport equations of se
ond and third moments and turbulent dissipation
an be 
al
ulated from the above statisti
s. This database 
an then be used to to validand develop new RANS and LES models.The DNS databases are available at http://www.afm.ses.soton.a
.uk/�zhi.5 SummaryDire
t numeri
al simulations of turbulent Couette and Poiseuille 
ow have been 
arriedin very large 
omputational domains, whi
h 
an ensure zero two-point 
orrelations inboth streamwise and spanwise dire
tions. The simulations of Couette 
ow were run upto Reynolds number Rew = 3400 and Poiseuille 
ow up to Re� = 720. 193 statisti
swere 
olle
ted to establish the DNS databases, whi
h enable the 
al
ulation of all theterms in the transport equations of se
ond and third moments and turbulent dissipation.The databases 
an be used for validation of turbulen
e models and LES te
hniques anddeveloping new turbulen
e models.Referen
es[1℄ C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spe
tral Methods in FluidDynami
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