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Abstract: We study the propagation properties and light-matter in-
teractions of the “focused doughnut” pulses, broadband, single-cycle
electromagnetic perturbations of toroidal topology first described by Hell-
warth and Nouchi in 1996. We show how “focused doughnuts” are reflected
and refracted at planar metallic and vacuum-dielectric interfaces leading to
complex distortions of the field structure. We also identify the conditions
under which these toroidal pulses excite dominant dynamic toroidal dipoles
in spherical dielectric particles.
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1. Introduction

The homogenous Maxwell’s equations describe the behavior of electromagnetic radiation in
free space. Infinite energy plane waves of the form Aei(kr−ωt) are the most well established
solutions and are used extensively in the geometric optics regime [1]. However, pulse solu-
tions to the homogenous Maxwell’s equations i.e. representing localised propagation of finite
electromagnetic energy, are significantly less well analyzed. A first attempt to produce a mathe-
matical formulation for three dimensional, non-dispersive, source-free solutions to homogenous
Maxwell’s equations yielded the focused wave mode (FWM) solutions, suggesting the possibil-
ity for efficient and localized transport of electromagnetic energy in free-space [2]. FWMs were
required to meet six criteria: 1) satisfy the homogenous Maxwells equations, 2) be continuous
and non-singular, 3) have a three-dimensional pulse structure, 4) be non-dispersive for all time,
5) move at light velocity c along straight lines, and 6) carry finite electromagnetic energy. Al-
though the original FWMs were subsequently shown not to violate the sixth criterion [3–5], the
finite energy requirement was satisfied by utilizing superpositions of the FWMs over carefully
chosen weighting functions [6,7]. These superpositions are termed as electromagnetic directed
energy pulse trains (EDEPTs) and can be tailored so as to give localized propagation of electro-
magnetic energy in space and time. A wide variety of pulses have been established within the
EDEPT family, including the modified power spectrum pulse [7], pulses with azimuthal depen-
dence [8, 9], “focused pancake” pulses [10–12], and the “focused doughnut” (FD) pulse [13].
The FD pulse is of particular interest owing to its complex toroidal field geometry, space-time
non-separability, and polynomial localisation of energy. Finally, as a free-space toroidal elec-
tromagnetic perturbation, investigation of the FD pulse complements the burgeoning field of
toroidal electrodynamics in matter.

In this letter we give a detailed description of the propagation properties of FD pulses and
their interactions with matter. We demonstrate that due to the toroidal field configuration of
the FD pulses, even reflection from dielectric and metallic interfaces can lead to complex field
transformations. We show that dielectric nanoparticles under illumination with FD pulses ex-
hibit broadband, multi-mode excitations, including the recently established toroidal response.
The paper is organized as follows. Section 2 introduces the theoretical formalism for the de-
scription of FD pulses. Studies in the transient domain are considered and these numerical
models are used as a basis for examining the interaction of FD pulses with matter. Section 3 ex-
amines the transformation of the FD field topologies when the pulse is incident on dielectric and
metallic boundaries, and Section 4 considers the interaction of FD pulses with non-dispersive,



dielectric nanoparticles.
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Fig. 1. Field topology and focusing properties of the “focused doughnut” pulse. The elec-
tric E and magnetic H fields are represented by green and red arrows respectively. The
effective wavelength parameter q1 and the pulse focal region depth q2 are indicated on
both diagrams, along with the region of maximum energy concentration at z = 0, t = 0.
The pulse envelope is shown by the black lines and arrows.

2. The “focused doughnut” pulse

The FD pulse was first established as a solution to the homogenous Maxwell’s equations by
Hellwarth and Nouchi [13]. As space-time non-separable solutions to Maxwells equations, FD
pulses can be classified in TE and TM field configurations, with the electric and magnetic fields
for the TE case given in cylindrical coordinates (ρ,θ ,z) as:

Eθ =−4i f0

√
µ0

ε0

ρ (q1 +q2−2ict)

[ρ2 +(q1 + iτ)(q2− iσ)]3
(1)

Hρ = 4i f0
ρ (q2−q1−2iz)

[ρ2 +(q1 + iτ)(q2− iσ)]3
(2)

Hz =−4 f0
ρ2− (q1 + iτ)(q2− iσ)

[ρ2 +(q1 + iτ)(q2− iσ)]3
(3)

Where σ = z+ ct, τ = z− ct and f0 is an arbitrary normalisation constant. The parameters
q1 and q2 have the dimensions of length and represent respectively the effective wavelength
of the pulse and the focal region depth. Beyond the focal region (|z| > q2), the FD diffracts in
the same manner as a Gaussian pulse with wavelength q1 and Rayleigh length q2. The name of
this pulse is derived from its three-dimensional field topology, which is illustrated in Fig. 1(a)
and (b). The azimuthal electric field in Eq. (1) forms closed loops that are zero valued on axis.
The magnetic field components [Eqs. (2) and (3)] form closed loops around the electric field,
forming the meridians of a torus structure. The field along the meridians of the torus results in
strong longitudinal field component on axis due to the increase in field density within the centre
of the torus. The TM solutions are readily obtained by interchanging electric and magnetic field
components. Further separating the real and imaginary parts of Eqs. (1)-(3) yields two families
of pulses, corresponding to a single cycle and 1 1

2 cycle pulse respectively.
Eqs. (1)-(3) are plotted out explicitly in Fig. 2(a) and (b) along a yz cross-section, show-

ing explicitly the transverse electric field and longitudinal magnetic field at a time t = 0. The
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Fig. 2. Spatial and temporal structure of the “focused doughnut” pulses. Panels (a) and (b)
show respectively the normalised transverse electric and longitudinal magnetic fields along
a yz cross-section at time t = 0. The characteristic parameters of the FD pulse in all cases
are q2 = 100q1. All plots are generated from the analytical form of the FD pulse, Eqs. (1-
3). The propagation properties of the transverse magnetic pulse are identical to the TE case
presented here, by replacing electric (magnetic) with magnetic (electric) fields. (c) and (d)
show the evolution of the on-axis field component of both the real and imaginary pulses
respectively as they propagate, demonstrating the transformations between the single and
1 1

2 cycle pulses.

few cycle nature of the pulse evident, with Fig. 2(a) showing a single cycle of the transverse
electric field and Fig. 2(b) showing the corresponding 1 1

2 cycle longitudinal magnetic field. As
expected, the longitudinal field component of FD pulses is the only component that is non-zero
at ρ = 0. The energy density (µ0H2 + ε0E2) drops off polynomially with r (r =

√
ρ2 + z2),

decaying as r−8 (for the real pulse) and r−10 (for the imaginary pulse) at the point of maxi-
mum focus (z = 0, t = 0). All FD solutions have been shown to possess equal and finite total
energy [13].

It is worth noting that whilst the original paper by Hellwarth and Nouchi categorised the two
families of FD into single (imaginary) and 1 1

2 cycle (real) pulses, significant temporal reshaping
of the pulses occurs as they propagate along z. This is emphasised in Fig. 2(c) and (d) which
shows the spatio-temporal transformations that both the real and imaginary pulses undergo
as they propagate along z. It is immediately clear from Fig. 2(c) that as the pulses propagate
beyond the q2 parameter, the imaginary pulse evolves from single cycle to 1 1

2 cycles, whilst the
real pulse evolves from 1 1

2 cycle to single cycle. Similar transformations have been described
for other pulses in the EDEPT family and experimentally for single-cycle Gaussian Terahertz
pulses, and they have been explained in terms of the Gouy phase shift of the pulses [10, 12].

As a result of their short cycle nature, FD pulses are considered to be ultra–broad bandwidth
pulses. Hellwarth and Nouchi give a far-field (z� q2) approximation for the Fourier spectra of
a real FD in their original paper:
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Fig. 3. Fourier spectrum of the ”focused doughnut” pulses. (a) shows the intensity of the
Fourier spectrum for q2 = 100q1 at z = q2 and for four different radial positions ρ . (b)
shows the evolution of the peak frequency as a function of ρ and z for z = q2→ 2q2.

F ′ω =

(
iπµ0 f0ω |ω|sinϕ

2rc2

)
e

iωr−|ω|Q
c (4)

Where Q = [q1 + q2− (q2− q1)cosϕ]/2 and ϕ is the polar angle. The equivalent Fourier
spectrum for the imaginary pulse is formed by F ′′ω = (iω/|ω|)F ′ω .

A number of intriguing properties of the FD pulse can be inferred from the Fourier decompo-
sition. The dependence of the Fourier spectrum on ρ is emphasised in Fig. 3(a) which plots the
intensity of the Fourier spectrum at four different values of ρ . It can be seen that high frequency
components dominate the centre of the FD and lower frequency components become prevalent
as ρ increases. This effect can be visualised by considering Fig. 2(a), where the curvature of
the pulse wavefronts indicates a change in frequency as ρ increases. The evolution of the peak
frequency as a function of both ρ and z is shown in Fig. 3(b) over a propagation distance of q2
from z = q2 → 2q2. It can be seen that, as the FD evolves in space, different radial points ac-
quire different peak frequencies. However, it can be noted from the white circles indicating the
radial positions of peak intensity, that the peak frequency at the point of peak intensity remains
constant as the pulse propagates, in this case at ∼ c

4q1
.

The property of a varying peak frequency transverse to the pulse propagation direction is
known as spatial chirp, and is a common occurrence in ultrafast optics. However, whilst the
spatial chirp of the FD is intrinsic to the pulse, it generally arises in ultrafast optics due to
misalignment of optical elements used for production of ultrashort pulses e.g. prisms, tilted
substrates and Fourier pulse shapers [14]. This lack of control of the phenomenon leads to the
spatial chirp being considered an undesirable side-effect. The well-defined spatial chirp of the
FD pulse however, allows to exploit this property by coupling frequency information to spatial
positions of the pulse, a situation which is of interest for spectroscopy for example. In addition,
it can be noted that the spatial chirp of the FD is axially symmetric, as per the topology of the
pulse, and so can in fact be considered as radial chirp.

A further point is that for all ρ , the bandwidth of the FD pulse is greater than the peak
frequency. Consider for instance the Fourier spectrum at ρ = 10q1 [Fig. 3(a), green curve]. The



peak frequency ν0 at this ρ value is c
4q1

, compared to a full width at half maximum bandwidth
of ∼ 1.1ν0. This can be taken in contrast to the typical bandwidth-limited pulses produced by
solid-state laser, for which the bandwidth will always be smaller than the peak frequency.

To date, there has not been an experimental realisation of the FD pulse. Although waveg-
uides [15] and ultra-wide bandwidth antenna arrays [16] have been suggested as potential gen-
erating platforms for localised pulses, the creation an FD pulse remains a non-trivial task, owing
to the need for simulataneous control of spatial and temporal dispersion over a wide bandwidth.
Despite this, the nature of the FD pulses has resulted in several potential applications being
presented. The strongly localised nature of the pulse for |z|< q2 suggests microscopy, commu-
nications and directed energy transfer as potential uses [13]. The presence of the longitudinal
field component was discussed in detail by Hellwarth and Nouchi in terms of a mechanism for
accelerating co-propagating particles, and later by Varin et al. [17].

3. Interaction with plane interfaces

Although the properties of the FD pulse in freespace have been well established, and the propa-
gation dynamics and reshaping of similar pulses have been described in the literature, there has
been a very limited treatment of the interaction of such complex pulses with matter. In general,
the problem is not amenable to analytical considerations. To this end, we employ a commeri-
cal finite element solver package to evaluate the interactions of the FD pulse with continuous
matter. In this section, we give the first explicit analysis of the transformations of the FD field
components under reflection and transmission when incident on semi-infinite dielectrics and
perfect electric conductor (PEC) boundaries.

We first consider a PEC boundary located at z = 20q1 in the free-space propagation domain.
Fig. 4(a) and (b) show the TE and TM pulse respectively at two times – one prior to incidence
on the boundary (t1) and one after the pulse has been reflected (t2).

For the TE FD pulse in Fig. 4(a), the transverse electric and longitudinal magnetic field com-
ponents are shown. It is clear from examining the field distributions at the two time steps that,
upon reflection, the transverse electric field of the TE pulse rotates in the same direction with
respect to the propagation direction as before reflection. Similarly, the longitudinal magnetic
field component both before and after reflection has a component parallel to the propagation
direction leading the pulse.

In contrast however, the reflection of the TM pulse at the boundary in Fig. 4(b) results in
the reversal of both the electric and magnetic field components. After reflection, the transverse
magnetic fields are counter-rotating with respect to the propagation direction. The longitudi-
nal electric field component is dominated by a strong component parallel to the propagation
direction at the pulse front. Upon reflection, the electric field at the pulse front is anti-parallel
to the propagation of the pulse. The presence of a longitudinal field component, anti-parallel
to the propagation direction, at the leading edge of the pulse is a particularly intriguing and
non-intuitive property of the reflected TM FD pulse.

This modelling of the FD pulse also highlights the spatio-temporal transformations the pulse
undergoes, as described in Section 2 and Fig. 2(c) and (d). It can be clearly seen in Fig. 4(a)
how, after reflection at the boundary, the transverse magnetic field of the pulse is beginning to
transform from single cycle to 1 1

2 cycle nature. Equivalently, the longitudinal electric field is
beginning to transform from 1 1

2 cycle to single cycle nature. This transformation is also evident
in Fig. 4(b) for the TE pulse.

We now consider interaction at a dielectric boundary. The modelling space is separated into
two regions – one free space and one of refractive index n = 2, with the boundary located at
z = 15q1 so as to illustrate both the reflected and transmitted pulse. Fig. 5 shows the results of
these models in both TE and TM incidence cases, with the transverse and longitudinal fields
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Fig. 4. Reflection of “focused doughnut” pulses from a perfect conductor. (a) Transverse
electric (left) and longitudinal (right) magnetic field components of a transverse electric
FD pulse before (t1) and after (t2) reflection. (b) Similar to (a) but for a transverse magnetic
pulse. In both cases the parameters of the FD pulse are q2 = 100q1 and the boundary is
located at a distance z= 20q1 from the focal point of the pulse (z= 0). All field components
have been normalized to their maximum value.
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Fig. 5. Reflection and refraction of “focused doughnut” pulses at a vacuum-dielectric inter-
face. (a) Transverse electric (left) and longitudinal magnetic field (right) components of a
transverse electric FD pulse before (t1) and after (t2) incidence on the interface. (b) Similar
to (a) but for a transverse magnetic pulse. In both cases the parameters of the FD pulse are
q2 = 100q1 and the boundary is located at a distance z = 15q1 from the focal point of the
pulse (z = 0). All field components have been normalized to their maximum value. The
dielectric is considered to be semi-infinite with a refractive index n = 2.



shown at two times – one prior to incidence on the boundary (t1) and one after the pulse has been
reflected and transmitted (t2). In both polarisation cases the toroidal topology of the pulse is
maintained after being transmitted though the dielectric boundary and it undergoes the expected
increase in momentum within the medium as for conventional electromagnetic pulses. Similarly
the reflected pulse also maintains its toroidal topology. Evaluation of transmission and reflection
coefficients for the reflected and transmitted pulses indicates that both TE and TM FD pulses
interact with the semi-infinite dielectric as predicted by the Fresnel equations.

It is worth noting that all models in this section utilise idealised non-dispersive metals and
dielectrics, in the form of PEC and a dielectric refractive index of n = 2. This is due to limita-
tions in Maxwell’s equations solver utilised for this study, which prohibits temporal dispersion
for transient models. As illustrated previously in this paper, the FD pulse is highly broadband
with a bandwidth greater than the peak frequency. For realistic materials, it is likely that dis-
persive effects would be present over such a wide frequency range, inducing some reshaping
to the temporal profile of the pulse. However, it is expected that this will not limit the analysis
of the reflected and transmitted geometries. It could also be considered that this would be a
valid description for an FD pulse in the microwave regime, in which metals can generally be
approximated as PEC for thicknesses greater than µm-scale [18, 19].

4. Interaction with nanoparticles

The space-time non-separable and ultra-broadband nature of the FD pulses is expected to man-
ifest in an interesting manner when considering their interaction with dielectric nanoparticles.
The case considered is that of a spherical nanoparticle located at ρ = z = 0. The radius of the
nanoparticle is given as q1, such that it is less than the width of the FD pulse. In this regime,
excitation by the ultra-broadband FD pulse can be expected to induce multiple Mie modes of
the dielectric nanoparticle. As in the previous section, the dielectric is given a non-dispersive
refractive index of n = 2. For an incident TM FD pulse, the interaction with the nanoparticle
is dominated by the longitudinal electric field on axis. Fig. 6 shows both the simulated interac-
tions [Fig. 6(a) and (b)] and artistic schematics [Fig. 6(c) and (d) insets] for both TE and TM
cases.

We first evaluate the normalised electric field intensity within the nanoparticle as a function
of frequency. These are shown in Fig. 6(c) and (d) for the TE and TM incidence case respec-
tively. For TE FD incidence, a clear series of Mie modes are excited corresponding to resonant
distributions of the azimuthal field throughout the nanoparticle. This is emphasised in Fig. 6(e),
which shows out-of-plane electric field distributions for a cross-section through the nanopar-
ticle at three different peaks. In contrast, the spectrum for excitation of the nanoparticle by a
TM pulse is more complicated, owing to the interplay between the radial and longitudinal elec-
tric field components. As such, the TM excitations are considerably weaker than those from
TE pulse incidence. Modes corresponding to distributions of x-aligned (in-plane) E field from
three frequencies are shown in Fig. 6(f), corresponding to a series of Mie resonances, similar
to the TE pulse case.

To extend this description of FD-nanoparticle interaction, we evaluate the scattering from the
microscopic multipoles excited within the nanoparticle. These are given up to quadrupole order
by [20, 21]:
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Fig. 6. Interactions of “focused doughnut” pulses with spherical dielectric nanoparticles.
(a) and (b) show the xz cross-sections of the COMSOL simulation domain at a time t = 0.
(a) shows the normalised transverse electric field of a TE FD pulse, and (b) shows the
normalised longitudinal electric field of the TM FD pulse. The outline of the spherical
nanoparticle is shown by the dotted line. (c) & (d) show the electric field intensity integrated
over the volume of the nanoparticle as a function of frequency, when under excitation from
a transverse electric (TE) and a transverse magnetic (TM) FD pulse respectively. (e) &
(f) show the electric field distributions on an xz cross-section of the nanoparticle (see grid
in the insets to (c) & (d)) at resonance positions (i)-(vi). (g) & (h) show the scattering
intensity of the individual cartesian multipoles up to quadrupole order (electric dipole p,
magnetic dipole m, toroidal dipole T , electric quadrupole Qe, and magnetic quadrupole
Qm) for illumination with TE and TM FD pulses, respectively. In (c)-(d) & (g)-(h) dots
correspond to simulation data points, while lines serve as eye guides.



Electric dipole p =
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Where j is the induced current density. These multipole moments can then be used to calcu-
late the far-field scattered intensity of the multipoles using:

Itotal =
2ω4

3c3 |p|
2+

2ω4

3c3 |m|
2+

2ω6

3c5 |T|
2+

4ω5

3c4

(
p† ·T

)
+

ω6

5c5 Qe
αβ

Qe
αβ

+
ω6

20c5 Qm
αβ

Qm
αβ

(10)

Owing to the toroidal topology of the FD pulse, the toroidal family of multipoles are included
in this analysis. In recent years, the previously elusive toroidal dipole has been demonstrated
as a dominant contributor to the scattering of mutliple systems with toroidal topology [22–
24]. This includes systems composed entirely of dielectric elements [24]. In contrast, here the
incident excitation (the FD) is in possession of toroidal topology, whereas the excited system of
the nanoparticle is not. This is particularly relevant for the TM FD pulse, where its azimuthal
H and radial and longitudinal E fields are analagous to the poloidal currents and closed loop of
magnetic field that compose a toroidal dipole. As such, it is anticipated that a TM FD should
excite a non-negligible toroidal dipole within the nanoparticle.

In the case of TE FD incidence on the nanoparticle [Fig. 6(g)] it is clear that the dominant
contributors to the scattering are the magnetic multipoles. This is anticipated owing to the az-
imuthal E field configuration of the TE FD pulse. Contributions from the electric and toroidal
multipoles are significantly suppressed. For the case of TM incidence [Fig. 6(h)] however, the
mutlipole excitations are more complex. As expected, electric multipoles dominate at lower
frequencies, as a result of coupling to the longitudinal E field of the incident pulse. However at
∼ 0.46(c/q1), the toroidal dipole becomes the dominant scattering multipole up to quadrupole
order. This is a particularly intriguing feature as it demonstrates a significant toroidal response
in a system with non-toroidal geometry, reiterating the importance of toroidal multipoles in
electrodynamics. It is anticipated that different topologies of nanoparticle interacting with FD
pulses could show an even more significant presence of toroidal multipoles.

5. Summary

In conclusion, we have demonstrated that the field configuration of FD pulses, consisting of
longitudinal and circulating azimuthal fields, undergoes complex polarisation-sensitive trans-
formations under reflection and refraction at metallic and dielectric interfaces. When FD pulses
interact with (non-dispersive) dielectric particles, the single-cycle, broadband nature of the
pulse results in the resonant excitation of multiple Mie modes over a wide frequency region.
Finally, the toroidal topology of the pulse allows to excite a non-negligible toroidal dipole in a
system of non-toroidal topology. Our results highlight the potential of the FD pulses, especially
within the context of the nascent field of toroidal electrodynamics.
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