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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

School of Engineering Sciences 

Thesis for the degree of Doctor of Philosophy 

HIGH–PRESSURE TORSION PROCESSING OF AZ91 MAGNESIUM ALLOY 

Ahmed Sattar Jabbar Al–Zubaydi 

 

AZ91 magnesium alloy has been successfully processed at room temperature by 

high–pressure torsion as well as at elevated temperatures. Ultrafine grains and 

nano–sized particles of β–phase have developed with increasing number of turns. 

The hydrostatic pressure, the geometry of the processing zone and the 

unidirectional nature of torsional straining during the HPT processing have 

facilitated processing of AZ91 alloy at room temperature. Extensive grain 

refinement and twinning segmentation of the coarse grains have been observed in 

the microstructures processed at room temperature and elevated temperatures, 

respectively. The twins have been observed at all processing temperatures during 

processing and their distribution was proportional to the processing temperature 

and number of turns. The morphology and distribution of the β–phase have altered 

during processing, with fragmentation of coarse clusters of the β–phase into nano–

sized particles and the alignment of these particles in the direction of torsional 

strain being observed. Microstructural homogeneity has gradually developed at a 

relatively low number of turns using the lower processing temperature and 

continued with increasing number of turns. A significant improvement in the 

strength of the alloy has been found after HPT processing at all processing 

temperatures. The dislocation density has developed significantly for the alloy 

processed at room temperature rather than at elevated temperatures with 

increasing number of turns. An experimental Hall–Petch relationship has 

emphasized a significant dependence of the strength on grain size for the alloy 

processed at room temperature. The high–strain rate superplasticity, low–

temperature superplasticity, and thermal stability of the processed alloy have been 

observed and attributed to the ultrafine–grained microstructures produced by HPT 

at room temperature and the dispersion of nano–sized β–phase particles. Grain–

boundary sliding was the main deformation mechanism during the high–strain rate 

superplasticity regime. Glide–dislocation creep accommodated by grain–boundary 

sliding was the deformation mechanism operating during the low–temperature 

superplasticity regime. At high temperature and slow strain rate grain–boundary 

sliding was accommodated by a diffusion creep mechanism.  
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1. INTRODUCTION 

The scientific principles of severe plastic deformation were revealed by Bridgman, 

when he noticed the increase in strength of a bar under twisting when it was 

subjected to a compressive loading. Bridgman’s work focused on the mechanical 

behaviour of bulk metals under high pressures. Later, Bridgman invented an 

apparatus to produce very high pressures and was awarded a Nobel Prize for this 

work [1]. The effect of grain size on mechanical properties was revealed by Hall 

and Petch. They showed that the strength of low–carbon steel increased 

significantly with decreasing grain size, and their work proposed the well–known 

Hall–Petch relationship, which describes the strengthening due to accumulation of 

dislocations at grain boundaries [2][3]. Armstrong and Petch extended the Hall–

Petch relationship to describe the effect of the grain size on the flow stress in 

stress–strain behaviour [4]. Further studies were performed by Armstrong to show 

the effect of grain size on the other mechanical properties of polycrystalline 

materials such as hardness, fatigue and creep [5]. The above–mentioned works 

emphasize the effect of grain size on the mechanical properties of polycrystalline 

materials. It was found that fine grain sizes (< 1 m) lead to higher strength at 

room temperature compared to coarser grain sizes (> 100 m) [6]. Fine–grained 

materials show a good ductility at room temperature, and a high ductility at 

elevated temperatures, where high ductility is an important factor in superplastic 

forming operations [7]. 

The combination of strength and ductility in fine–grained materials has attracted 

researchers in the field of materials science to think about possible procedures for 

producing grain refinement in metals and alloys. Based on Bridgman’s work, 

Kuznetsov and his co–workers from the Institute of Metals Physics in Russia have 

conducted the first high–pressure torsion (HPT) processing, where torsion and 

compression are applied simultaneously on a disk–shaped sample for several 

turns [1]. Segal and his co–workers in the Institute of Minsk introduced equal 

channel angular pressing (ECAP), where a sample in the form of a billet is pressed 

several times within a special geometry die [8]. The processing of metals and 

alloys by very large strains whilst retaining the overall dimensions of the work 
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piece is called severe plastic deformation (SPD). The HPT and ECAP techniques 

are used effectively to impose large plastic strains to produce ultrafine–grained 

microstructures with superior properties [6]. Numerous studies have been 

conducted on different materials processed by SPD processing techniques to 

investigate the relation between processing conditions and the evolution in 

microstructures and the resultant properties [1][6].  

Magnesium alloys are widely used in several applications such as transportation,  

materials–handling, and commercial equipment due to their low density compared 

to other structural alloys such as steel and aluminium alloys [9]. The main 

limitation on the use of these alloys is their poor workability at room temperature 

which makes mechanical processing difficult. The low ductility of magnesium 

alloys is a result of the hexagonal crystal structure of magnesium [10]. It has been 

found that severe plastic deformation can improve the strength and ductility of 

many materials including magnesium alloys [1]. Ultrafine–grained magnesium 

alloys have the potential to be used in automotive and aerospace applications due 

to their low density, a high ratio of strength–to–weight, and consequently, reduced 

fuel consumption [11][12]. Hence, several attempts have been performed to 

enhance their mechanical properties, but the majority of these experiments were 

conducted at elevated temperature, where dynamic recrystallization and grain 

growth also take place [13][14][15].  

The development of superplastic behaviour of ultrafine–grained magnesium alloys 

has been attracting significant consideration in the last decade. Among 

magnesium alloys, the AZ91 alloy is widely used in industry. This alloy has a good 

machinability and castability, high strength–to–density ratio, and good corrosion 

resistance [11][16]. Fine–grained AZ91 alloy has been produced through several 

severe plastic deformation (SPD) techniques, such as ECAP [10], [13], EX–ECAP 

[17] and HPT [18]. Fine–grained AZ91 magnesium alloys have shown a wide 

range of superplasticity depending on microstructure, strain rate and temperature 

[19]. The earlier work on superplasticity in SPD processed AZ91 alloy has been 

based on processing of the AZ91 alloy at high temperatures, where the limited 

ductility and workability of the alloy has been improved by the activation of 
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additional slip systems and dynamic recrystallization [20]. Up to now, no 

experiment have reported the development of microstructure and microhardness 

across horizontal and vertical cross–sections of the AZ91 samples processed by 

HPT at different processing temperatures, especially at room temperature and no 

study has been described the superplastic behaviour of the AZ91 alloy processed 

by HPT at room temperature. 

 

1.1 The Aim of the Work 

The first aim of the present research is to study the microstructural evolution of the 

AZ91 magnesium alloy during high–pressure torsion processing at different 

processing temperatures, particularly at room temperature, with regards to the α–

Mg matrix and β–phase. Microstructural observations have been conducted using 

optical, scanning electron, transmission electron microscopes and X-ray 

diffractometry. The second aim of this work is to investigate the mechanical 

properties of the processed alloy, considering the microstructural evolution of the 

alloy after processing. The development of microhardness and strengthening has 

been studied using Vickers microhardness tests across both horizontal and 

vertical cross–sections and X-ray diffractometry. The superplastic behaviour and 

the thermal stability have been investigated for the alloy processed at room 

temperature, and tested over different temperatures and strain rates.  

 

1.2 Thesis Structure 

The structure of this thesis is as follows. After this introduction, Chapter 2 

comprises a scientific review of magnesium and its alloys, the basics of SPD 

processing, especially HPT, proposals for the development of homogeneity in 

HPT–processed materials, properties of the materials processed by SPD and 

previous studies in the SPD processing of magnesium alloys. Chapter 3 

demonstrates the materials used in this study, processing conditions, and 

preparation of samples for microstructural, microhardness and tensile 

investigations. Chapter 4 presents the microstructural and microhardness results 
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across both horizontal and vertical cross–sections of the processed disks, the 

results of chemical analysis of the alloy before and after processing and tensile 

properties of the processed samples. Chapter 5 presents a thorough analysis of 

the results that are shown in chapter four. Chapter 6 summarizes the main 

outcomes of the current study and indicates the conclusions that can be drawn 

from the PhD. Chapter 7 outlines proposed future work. 

 



 

 

 

Chapter Two: Literature Review 
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2. LITERATURE REVIEW 

2.1 Magnesium  

Magnesium is the lightest metal used in structural alloys. It has the lowest density 

(1.74 gm/cm3) among other structural metals such as aluminium (2.7 gm/cm3), 

titanium (4.5 gm/cm3), and iron (7.8 gm/cm3) [21][22]. It has become an attractive 

competitor to replace the above–mentioned metals in the transportation industry 

[11]. However, magnesium possesses a hexagonal close–packed (HCP) structure 

and a limited number of slip systems, so it has a low ductility and a limited 

formability at room temperature [13]. Pure magnesium is usually alloyed with 

different elements such as aluminium, zinc, and manganese to form a variety of 

magnesium alloys [23].  

 

 Crystallography of Magnesium 2.1.1

The crystal structure of magnesium is hexagonal close–packed (HCP) with a 

primitive unit cell consisting of two axes (   ) as shown in Figure 2.1, with a 

corresponding inter-axial angle of 120° separating the axes   ,    and   . The HCP 

structure consists of top and bottom layers consisting of six atoms in the form of 

hexagons, with a central atom in each hexagon as labelled by C and G in Figure 

2.1 (a). In addition to that, three atoms exist as an atomic mid–plane between the 

top and bottom hexagons. Therefore, six equivalent atoms are present in the HCP 

crystal structure with the stacking sequence of        as shown in Figure 2.2. 

Magnesium, zinc, cadmium and titanium are examples of metals with HCP 

structure [24][25]. The axial ratio (    = 1.624) and atomic diameter (0.320 nm) of 

magnesium determine its alloying compatibility with different metals through solid 

solutions [23]. A solid solution is defined as the solid–state solution resulting from 

the addition of impurity atoms (solute atoms) to the host atoms (solvent atoms) 

[23]. The formation of magnesium solid solution alloys depends on the following 

factors [26]: 

1. The favourable atomic size of alloying elements must be within the range ± 15 

% of the atomic diameter of magnesium. This ratio is 15 % and 1 % for Al and 
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Zn respectively; which allows these elements to form solid solutions with 

magnesium. 

2. Crystal structure compatibility leads to a substitutional solid solution in the case 

of the presence of Zn (HCP), or Al (FCC); otherwise, the interstitial solid 

solution can be formed with Mn (BCC). 

3. The high electropositivity of Mg (1.2) tends to form stable intermetallic 

compounds of Mg2(Si, Pb) with Si and Pb of electronegativity 1.8 and 2.2, 

respectively, instead of the formation of a substitutional solid solution.  

4. Magnesium tends to form solid solutions with metals of similar valences such 

as Al, Zn.    

 

 Magnesium Alloys 2.1.2

Magnesium alloys exhibit a good machinability and castability, high strength/ 

density ratio, and good corrosion resistance. These alloys also show a limited 

toughness and poor workability at room temperature; and limited strength, 

corrosion, and creep resistance at high temperatures [11][16]. Magnesium alloys 

are designated internationally using ASTM International nomenclature, by which 

each alloy is coded by the two letters of the major alloying elements followed by 

their weight percentage [16][23]. For example, AZ91 consists of 9 wt.% Al and 1 

wt.% Zn, and the AZ31 alloy consists of 3 wt.% Al and 1 wt.% Zn [9]. Table 2.1 

shows the compositions and mechanical properties for pure magnesium and some 

of its common alloys [21][23] [27][28]. 
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Table 2.1: Mechanical properties of the pure magnesium and its alloys at room 

temperature. 

Material Condition 
Al 

wt.% 

Zn 

wt.% 

Mn 

wt.% 

Other 

wt.% 

   

(MPa) 

     

(MPa) 
    % HB 

Mg [21] Extruded – – – – 70 185 4 40 

AZ91 [23] As cast 9.0 0.7 0.3 – 125 200 7 55 

AZ91 [28] T–6 
8.1–
9.3 

0.4–
1.0 

0.17–
0.35 

– 170 270 5 65 

AM60 [27] As cast 6.0 – 0.13  130 240 13 65 

AS41 [27] As cast 4.2 – 0.2 1.0 Si 140 240 15 60 

AZ31 [21] Extruded 3.0 1.0 0.2 – 180 250 15 50 

AZ61 [21] Extruded 6.0 1.0 0.3  220 300 12 55 

ZK60 [21] Extruded – 5.5 – 0.5 Zr 260 340 11 90 

 

 

Figure 2.1: (a) Hexagonal close–packed crystal structure shows the primitive unit cell 

indicated by letters A to H, whereas the letter J refers to one of three atoms that lie in 

mid–plane inside the crystal structure and C and G represent the central atoms in the top 

and bottom hexagons. The short and long edge lengths are represented by labels a and c, 

respectively. (b) Coordinate axis system of the hexagonal crystal structure illustrates the 

angular relationship between axes (   ,    ,    ,  ) [24]. 
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Figure 2.2: Stacking sequence for the hexagonal close–packed structure as labeled by 

       [24]. 

 

 Main Alloying Elements in Magnesium Alloys 2.1.3

Addition of different alloying elements can alter the properties of magnesium alloys 

through solid–solution hardening and/or precipitation hardening. The solid–solution 

hardening mechanism is based on the available substitutional and interstitial 

atoms of the alloying element, while the precipitation hardening mechanism 

depends on the solubility of the atoms of alloying element, temperature of 

application, and the formation of intermetallic phases [16]. Aluminium represents 

the main alloying element in magnesium alloys. It forms a eutectic system at 437 

°C that enhances castability and increases strength and hardness [9][16]. The 

addition of zinc enhances the castability and strengthens the magnesium alloy 

[16]. The magnesium–aluminium eutectic separates completely within the alloy 

system due to the addition of zinc [9][29]. The solid solubility of aluminium in 

magnesium can be reduced by the addition of zinc to the alloy system, and the 

latter can slightly increase the strength of the alloy [23]. Addition of 0.2 wt.% of 

manganese improves the corrosion resistance, grain refinement, and tensile 

strength [16]. 
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 Magnesium–Aluminium System 2.1.4

Magnesium alloys can be classified into two types according to the amount of 

aluminium content [30][31]: 

1. Mg–Al–Zn–Mn and Mg–Al–Mn alloys that consist of 2–10 wt.% Al as well as 

small amounts of Zn and Mn. These alloys are characterised by the low cost of 

production, good corrosion resistance, and limited mechanical properties at 

elevated temperatures.  

2. Mg–Zr–Zn, Mg–RE–Zr, Mg–Ag–RE–Zr, Mg–Y–RE–Zr alloys, in which 

aluminium is replaced by a variety of elements like rare earths, Zr, Ag, and Si. 

The high cost of production and the stability at elevated temperatures are the 

main features of these alloys. 

The high content of aluminium 3–9 wt.% in magnesium–aluminium system 

produces alloys with a good castability, good mechanical properties and corrosion 

resistance at room temperature [16]. The AZ91 alloy (Mg–9wt.%Al–1wt.%Zn–

0.3wt.%Mn) is a common alloy in the Mg–Al–Zn family. This alloy has the following 

features [32]:  

1. Ease of production and machining as cast alloys due to high aluminium 

content. 

2. Good strength–to–density ratio (200 MPa / 1.8 gm/cm3). 

3. Good corrosion resistance due to low levels of contaminants (Fe, Cu, Ni).   

The microstructure of AZ91 alloy principally consists of a matrix of α–Mg solid 

solution and β–phase (Mg17Al12). The maximum solid solubility of aluminium in 

magnesium is 12.7 wt.% at a temperature of 437 °C. This solubility decreases to 

about 2 wt.% at a temperature of 100 °C as shown in the Mg–Al phase diagram in 

Figure 2.3 [33]. The β–phase (Mg17Al12) is an intermetallic compound of a high 

aluminium content (43 wt.%), this it is formed due to the high reactivity of 

magnesium [23]. The β–phase exists around grain boundaries and acts as a 

strengthening phase at room temperature [34], since it obstructs dislocation 

movements during deformation by pinning their climb and cross–slip. Its higher 

hardness compared to the matrix can also contribute to the overall strengthening 

[35]. Generally, the mechanical properties of AZ91 alloy decrease with increasing 
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temperature over 120–130 °C [16]. This can be attributed to the softening of β–

phase, which allows grain boundary sliding to occur [23]. 

 

Figure 2.3: A part of Mg–Al phase diagram [33]. 

 

 Deformation Mechanisms in Magnesium and its Alloys 2.1.5

2.1.5.1 Deformation by Slip  

Slip systems are defined as planes with preferred crystallographic directions along 

which dislocation movement occurs during plastic deformation. These planes and 

directions tend to have the highest atomic planar and linear densities, respectively 

[24]. Face–centred cubic (FCC) and body–centred cubic (BCC) metals have a 

higher number of slip systems compared with hexagonal close–packed metals 

(HCP) as illustrated in Table 2.2. Therefore, the FCC and BCC metals are ductile 

whereas the HCP metals are brittle [25]. Magnesium as HCP metal has the 

following set of crystallographic slip systems that operate at room temperature and 

elevated temperatures, which are represented schematically in Figure 2.4 [36]:  

1. Basal             <   ̅ >. 

2. Prismatic      {   ̅ } <   ̅ >. 
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3. Pyramidal (Twinning)      {   ̅ } <   ̅ >. 

4. 1st order pyramidal        {   ̅ } <   ̅ >. 

5. 2nd order pyramidal        {   ̅ } <   ̅ >. 

Slip initiates when the applied shear stress exceeds a critical value called the 

critical resolved shear stress (CRSS). This value generally depends on the value 

of applied shear stress, type of crystal structure, and temperature [25]. The values 

of CRSS for basal slip        <   ̅ > and twinning {   ̅ } <   ̅ > are 0.5 and 3 

MPa, respectively, which are both lower than that for prismatic and 1st & 2nd 

pyramidal plane (40 MPa). Hence, basal slip and twinning deformations can occur 

instead of slip by prismatic and pyramidal systems at room temperature. 

Therefore, basal slip and twinning are considered as the dominant deformation 

modes at ambient temperature [36].  

However, the crystal structure must be restored (without a change in volume) after 

the slip process due to the translation symmetry of the crystal lattice, which 

requires five independent slip systems according to the von Mises criteria to 

achieve a homogeneous deformation in polycrystalline material without failure [27]. 

Therefore, since HCP magnesium has only two independent slip systems for basal 

slip plane (0001) <   ̅ > at room temperature, this causes brittleness and limited 

ductility [37]. The presence of additional non–basal slip systems (at a temperature 

of 250 °C) such as 1st order prismatic and 2nd pyramidal slip systems can enhance 

the plasticity of magnesium and its alloys [38]. The activation of these slip systems 

depends on their critical resolved shear stress, which in turn, depends on 

temperature, solute atoms and precipitation state [32]. 
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Table 2.2: Slip systems in FCC, BCC and HCP metals [24]. 

 

 

Figure 2.4: Slip systems in HCP metals [38][36]. 

 

2.1.5.2 Deformation by Twinning  

Deformation by twinning results from atomic displacements under an applied 

shear stress, in which the atoms on both sides of the twinning plane (twin 

boundary) become a mirror image of each other [24]. Twinning is accomplished by 

atomic displacements that are less than the interatomic separation and it leads to 
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a difference in orientation across the twinning plane [25]. Twinning in metals can 

be classified into two types: mechanical twinning and annealing twinning. 

Mechanical twinning occurs as a result of mechanical deformation in HCP metals 

at low temperature where deformation by slip is restricted, or at high rates of 

stresses, or when the critical resolved shear stress of twinning is lower than that 

for the slip [25]. The other type of twinning, annealing twinning, occurs during the 

annealing process in FCC metals. However, the amount of plastic deformation 

produced by twinning is smaller than by slip deformation and its importance is 

highlighted most in the deformation of HCP metals where only a few slip systems 

are operative [26].  

Twinning in HCP metals can be further classified into two types according to the 

ratio      ; The first type is tension twinning {   ̅ } < ̅   > that appears when the 

      < 1.732, and the second one is compression twinning {   ̅ } < ̅   > that 

appears when the       > 1.732, as shown in Figure 2.5 [39]. Deformation by 

twinning takes place in the initial stages of plastic deformation, when both 

temperature and strains are low. It has been found that poorly orientated grains 

can be re–orientated for easy slip due to the occurrence of twinning [40]. 

 

Figure 2.5: Tension twinning and compression twinning in magnesium [40][41]. 

 

 Stacking Faults  2.1.6

Stacking faults are defined as planar defects of atomic stacking interruptions 

existing in close–packed crystal structures due to slip or twin deformation [25]. 
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There are three basal stacking faults in HCP magnesium: two intrinsic stacking 

faults with stacking sequence          and        , and one extrinsic 

stacking fault with stacking sequence          . These faults have an energy 

known as the stacking fault energy ( 
   

), which affects the value of critical 

resolved shear stress, and hence influences the mechanical behaviour and 

deformation mechanisms in metals and alloys [42]. 

The separation between the partial dislocations is determined by the stacking fault 

energy as shown in Figure 2.6. The mobility of dislocations during plastic 

deformation is influenced by the stacking fault energy. A lower stacking fault 

energy allows a wider separation between the partial dislocations and thus a wider 

stacking fault. The latter inhibits cross–slip of dislocations and produces planar 

arrays of dislocations, resulting in a fast rate of strain hardening and a low rate of 

dynamic recovery during plastic deformation [43]. On the other hand, a high 

stacking fault energy leads to a narrow separation between partial dislocations and 

this leads to a narrow stacking fault that facilitates the cross–slip process. The 

latter process results in formation of substructures consisting of three dimensional 

dislocation structures such as cells (subgrains), which leads to a slow rate of strain 

hardening and a high rate of dynamic recovery during plastic deformation [44]. 

Stacking faults in FCC metals are simpler compared to those in HCP metals since 

slip can take place more easily in FCC metals than that in HCP metals [45]. 

It has been shown that dynamic recovery can be affected by the presence of 

solute atoms, which can restrict the movement and mobility of dislocations. Thus 

dynamic recovery can be inhibited by the pinning effect on dislocations by these 

solute atoms [46]. The increase in the alloying elements also decreases the 

stacking fault energy and then in turn decreases grain size during SPD 

deformation by means of the respective effects on twinning and shear banding. 

Stacking fault energies for many metals and their alloys are shown in Table 2.3 

[20][47][48][49][50]. It was found that the fragmentation of the original grains 

occurs by means of the twin boundaries in materials with low stacking fault 

energies. Twinning and twin fragmentation in the materials with low stacking fault 

energies may result in a microstructural refinement down to smaller grain sizes 
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than that seen in materials with high stacking fault energies that may be refined by 

the subdivision of dislocation cells [51][52]. 

 

Figure 2.6: An illustration shows the relation between stacking fault and partial 

dislocations [25]. 

 

Table 2.3: Values of the stacking fault energies for different metals and their alloys.   

Material  
   

  (mJm
-2

) 

Mg 125 [20] 

Mg–3wt.%Al 27 [47] 

Mg–6wt.%Al 16 [47] 

Mg–9wt.%Al 6 [47] 

Al 200 [48] 

Al–0.7wt.%Mg 130 [48] 

Al–1.1wt.%Mg 87 [49] 

Cu 78 [50] 

Cu–10wt.%Zn 35 [50] 

Cu–30wt.%Zn 14 [50] 

 

 Dynamic Recovery in Magnesium 2.1.7

The plastic deformation of a metal introduces several changes in the 

microstructure such as changes in shapes and sizes of grains, strain hardening, 

and modified properties [25]. The changes in the microstructure and properties 

can be restored to the pre–cold–worked state by employing an appropriate heat 

treatment at appropriate temperatures. Recovery and recrystallization can be used 
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as heat treatment processes to revert the metal back to pre–deformation stage 

[53]. However, most of the deformation energy is dissipated as heat, and only a 

minor part of this energy is internally stored in the deformed metal. The major 

fraction of this energy is associated with dislocations as strain fields [54]. Part of 

this energy is relieved during recovery through the partial annihilation and/or 

rearrangement of dislocations, and producing structures with lower energies 

through formation of low–angle grain boundaries (LAGB) as shown in Figure 2.7 

[55]. 

Reduction in the stored strain energy is the driving force for the migration of 

dislocations, which leads to partial annihilation and rearrangement of dislocations 

during static recovery [24]. The annihilation of dislocations with opposite signs can 

occur by dislocation glide, cross–slip or by climb [53]. An unequal number of 

opposite–sign dislocations leads to incomplete annihilation and results in the 

arrangement of these dislocations in the form of dislocation walls as shown in 

Figure 2.8 [55], and such arrangements lead to release of part of the stored strain 

energy which works as the driving force for the aforementioned process [56]. The 

recovery process that occurs in the absence of external applied stress is called 

static recovery, whereas it is called dynamic recovery if it occurs during the hot 

deformation processes (  > 0.4   ) such as hot rolling and extrusion [25]. 

 

Figure 2.7: An illustration of the formation of low–angle grain boundaries during recovery 

process [55]. 
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Figure 2.8: An illustration of the of tilt grain boundaries [55]. 

 

Dynamic recovery leads to a softening effect by lowering the flow stress of the 

metal as illustrated in Figure 2.9, which facilitates the forming process [54]. It has 

been shown that the additional slip systems that are activated during the hot 

deformation of magnesium can provide extra paths for dislocations and decrease 

work–hardening rate, which facilitates the effect of softening (dynamic recovery) 

[46][57]. It was found that the presence of aluminium solute atoms can reduce the 

stacking fault energy of magnesium by solute–dislocation interactions, which 

reduces the mobility of these dislocations during hot deformation [20].  

It is note worth that the stacking fault energy of deformed metal can influence the 

rate of dynamic recovery. The stacking fault energy controls the dissociation 

process of dislocations into partial dislocations [56]. A low value of stacking fault 

energy promotes the dissociation of dislocations, and blocks the climb and cross–

slip of dislocations, leading to a slow rate of dynamic recovery. In contrast, climb 

and cross–slip can happen easily in a metal with high stacking fault energy 

resulting in a fast rate of dynamic recovery [55]. 
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Figure 2.9: The effect of dynamic recovery (softening) on the flow stress of AZ61 

magnesium alloy under compression test for: (a) different strain rates and (b) different 

testing temperatures [57]. 

 

2.2 Severe Plastic Deformation Processing (SPD) 

Imposing a large plastic deformation into a solid material leads to formation of an 

ultrafine–grained microstructure with grain sizes less than 1 m [58]. This 

microstructure can be produced by means of severe plastic deformation at 

relatively low temperatures, where the overall dimensions of the sample before the 

processing are retained by the geometry of processing tool [6]. A high plastic 

strain is required to form a homogeneous refined microstructure of equiaxed 

grains with high–angle grain boundaries [7]. An ultrafine microstructure of metals 

and alloys processed by SPD may contain nano–crystalline structures, nano–

twins, and nano–sized particles [6][59]. The main objective of severe plastic 

deformation processing is a fabrication of materials with a combination of high 

strength and moderate plasticity. It was found that the strength of the fine–grained 

materials is larger than that of their coarse–grained counterparts, as expressed by 

the Hall–Petch relationship [2][3]: 

          ⁄  (1.1) 
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where   is the strength,   is the grain size,    and   are constants. Ultrafine–

grained materials can be considered environmentally clean, since elemental 

additions are not required for introducing an increment in strength [60]. 

  

 Grain refinement mechanisms 2.2.1

Microstructural evolution at room temperature during unidirectional metal 

processing such as in HPT and ECAP (without rotation of the billet) is basically 

similar to that which occurs during rolling processes. The grain refinement process 

that occurs has been suggested to follow these steps [61]. Slip occurs in a single 

slip plane where the dislocations easily glide without any significant obstruction 

resulting in little initial strain hardening. As deformation proceeds, the grains start 

to rotate and thus slip occurs on many slip systems, leading to the multiplication of 

dislocations [56]. The grains fragment into deformation bands of different 

misorientations as shown in Figure 2.10 [55]. The deformation bands consist of 

many bands of incidental dislocation boundaries (IDBs) of relatively low 

misorientation (~ 1°). The incidental dislocation boundaries contain aligned cell 

blocks as shown in Figure 2.10 [61][55]. Shear bands can form when the 

deformation bands extend over many grains as shown in Figure 2.10 [55]. The 

shear bands form due to alignment of the deformation bands across many grains 

with relatively similar orientations and sizes of aligned cell blocks [56]. These 

bands occur due to shear localization or plastic instability when the microstructure 

has second phase particles, precipitation, twins and / or an insufficient number of 

slip systems for homogeneous deformation [61][56].   

The increase in the imposed strain (    ~ 2) leads to an increase in the 

misorientations between some cell blocks resulting in the formation of high–angle 

grain boundaries (HAGBs) with misorientations of < 30°. A fibrous structure 

develops and the fraction of the HAGBs increases as deformation proceeds (   ~ 

4) resulting in lamella HAGB structures [61][62]. The spacing between the lamella 

boundaries decreases with further strain (   ~ 5) leading to ribbon grains with a 

width of one subgrain (< 1 µm) [63]. These fibrous or ribbon structures will be 

fragmented into submicrometre grains by interaction with the existing shear bands, 
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the second phase particles and the existing low–angle grain boundaries (LAGBs) 

which increase their misorientations with further straining [61]. It should be noted 

that in materials with high stacking fault energies, the evolution of dislocation 

tangles and then cell structures will occur with increasing imposed strain and thus 

the grain refinement will occur by the dislocation subdivision [64]. In materials with 

low stacking fault energies, the dislocations arrange in the form of arrays of 

dislocations. Extensive twinning, twin fragmentation and shear bands are expected 

to occur at high strains of deformation in materials with low stacking fault energies 

[52].  

Thus grain refinement will happen by twin fragmentation and shear banding in 

materials with low stacking fault energies [52][56]. The rate of strain hardening and 

the subsequent grain refinement will be relatively faster in the initial stages of 

deformation in materials with high stacking fault energies due to the existence of 

more active slip systems cf. materials with low stacking fault energies. However, 

the final achievable grain size may be finer in materials with low stacking fault 

energies cf. materials with high stacking fault energies due to their higher rates of 

dynamic recovery processes [51][52]. 

 

Figure 2.10: The microstructural evolution in a metal under slip deformation: (a) Tangling 

of accumulated dislocations, (b) Structure of dislocation boundaries that separate low 

dislocation density regions, (c) Structure of deformation bands and (d) Structure of shear 

bands [55]. 
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 Essential Rules for Microstructure Refinement 2.2.2

Several factors control the formation of ultrafine–grained microstructure using 

SPD. These “rules” comprise the conditions of processing and the nature of the 

material under processing. A short description of these rules is presented below 

based on [60][61][65][66][67][68][69]: 

1. Processing at relatively low temperatures (        ) is recommended to 

achieve a high dislocation density. Processing at elevated temperatures results 

in a reduction in the dislocation density and the concomitant occurrence of 

grain growth. 

2. A high imposed strain is required to produce a homogeneous refined 

microstructure and to introduce a considerable fraction of high–angle grain 

boundaries.  

3. Considerable hydrostatic pressure is required to enhance the workability of the 

material under processing and to introduce high densities of lattice defects. 

4. The stacking fault energy influences the mechanical behaviour of the material 

under processing. A material with low stacking fault energy allows the 

dislocations to dissociate easily into partials and thus prevents easy cross–slip 

and climb processes. This leads to a slower rate of dynamic recovery and thus 

a faster rate of grain refinement and strain hardening compared to material with 

a high stacking fault energy. 

5. The strain path has an effect on the rate of grain refinement and formation of 

equiaxed grains during the HPT and ECAP. Reversed or cyclic straining leads 

to lower rates of grain refinement and strain hardening due to generation and 

annihilation of opposite–sign dislocations. An equiaxed microstructure is 

expected to occur at a faster rate during reversed deformation where the shear 

strain is redundant and the grain restored their equiaxed shapes.  

6. The presence of second phase particles may enhance the rate of grain 

refinement and strain hardening. The matrix areas around these particles are 

usually highly deformed zones containing significant strain gradients. This 

results in reduction in the lengths of deformation bands and lamella structures 

at relatively low strains and thus produces an earlier evolution of fine 

microstructures during SPD.   
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 SPD Techniques 2.2.3

A number of different SPD techniques have been introduced to impose very high 

strains on metallic materials that result in production of ultrafine–grained 

microstructures. The equal–channel angular pressing (ECAP), high–pressure 

torsion (HPT), accumulative roll bonding (ARB), and twist extrusion (TE) are 

examples of SPD techniques. The following section presents briefly some of these 

SPD techniques, apart from HPT which is reviewed in greater detail in 

section  2.2.5. These techniques employ different routes during processing and 

have a common feature that the grain refinement in processed work pieces 

reaches down to the submicrometre–nanometre level [60].  

Equal–channel angular pressing (ECAP) has been used frequently in the field of 

SPD and it can be summarised as pressing a sample in the form of a rod–shaped 

billet through a solid die having an internal hallow channel with an equal cross 

section [60][70]. The high plastic strain imparted to the sample when it passes 

through the bending area is illustrated in Figure 2.11 [71]. During ECAP 

processing, the overall cross–sectional dimensions of the sample are unchanged, 

and thus a high shear strain can be imposed into the sample by repetitive pressing 

of the billet through the intersection volume between the two parts of the channel 

[72]. The ECAP process is a repetitive process whereby the same billet can be 

pressed through several passes. The equivalent strain (   ) passed into the ECAP 

sample depends on the values of the channel angle ( ), the angle of curvature ( ) 

and number of passes ( ), the equivalent strain in ECAP is given by the following 

expression [73]: 
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Rotation of the billet in ECAP processing along its longitudinal axis results in 

activation of different slip systems, thus four processing routes             have 

been identified. In route  , the billet is pressed without any rotation. In route   , the 

billet is rotated in alternative directions by 90° between each pressing. In route   , 

the billet is rotated in the same directions by 90° between each pressing. In 
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route  , the billet is rotated by 180° and all these routes are schematically 

illustrated in Figure 2.12 [74]. In practice, route    is preferred as it produces 

homogeneous and equiaxed microstructures with high–angle grain boundaries 

[72].  

 

Figure 2.11: Schematic illustration of ECAP facility; ( ) and ( ) represent the channel 

angle and the angle of curvature, respectively [71]. 

 

 

Figure 2.12: Schematic illustration of the four routes in ECAP processing [74]. 



Literature Review | 25 

 

Accumulative roll bonding (ARB) has been developed from conventional rolling for 

continuous production of ultrafine grained materials. In this technique, a sheet is 

rolled to a half of its original thickness and then the rolled sheet cut into two 

segments. The resultant two sheets or segments are degreased and wired 

brushed at their contact or bonding surfaces and then these sheets stacked 

together and rolled again to one–half thickness as shown in Figure 2.13 [75]. 

Lamellar fine microstructures are usually produced in the ARB due to the nature of 

this process. A large accumulative strain can be imposed into the material during 

the ARB by repeating the steps of rolling, cutting, brushing and stacking many 

cycles. The equivalent strain in ARB for a specific number of cycles ( ) is given by 

the following expression [76]: 

           (1.3) 

  

 

Figure 2.13: Schematic illustration of the ARB processing [75]. 

 

Twist extrusion has been introduced as a tool for grain refinement and it is similar 

in principal to ECAP, where a sample is extruded through a die with constant 

dimensions and shape at the entrance and exit channels [77]. The sample is 

twisted along its longitudinal axis in the midway of the extrusion channel as shown 
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in Figure 2.14. As a result of tool shape, the extruded sample restores its pre–

extruded shape after each pass [78]. The equivalent strain in TE for a specific 

angle of twist ( ) is given by the following expression [79]: 

    
 

√ 
     (1.4) 

 

 

Figure 2.14: Schematic illustration of the twist extrusion [78]. 

 

 Properties of the materials processed by SPD 2.2.4

2.2.4.1 Mechanical properties at room temperature 

The mechanical properties of materials are controlled by several factors such as 

the grain size, texture, loading conditions, thermal history and environmental 

conditions [24]. The strength of the material at room temperature and the 

occurrence of superplastic behaviour at elevated temperatures are affected 

significantly by its grain size as expressed by the Hall–Petch relationship [2][3] and 

the constitutive superplastic law [6], respectively. It has been concluded that 

reduction in grain size leads to a considerable improvement in the strength and 

significant superplastic properties, and this consequence has been noticed clearly 

in materials processed by severe plastic deformation techniques [80].  



Literature Review | 27 

 

Tensile testing can be used to show the difference in strength of the UFG 

materials and their coarse grained (CG) counterparts as shown for example in 

Figure 2.15. It can be concluded that the UFG material shows higher tensile 

strength and lower ductility than its CG counterpart at room temperature [81]. 

Hardness measurement can be used also to assess the effect of grain refinement 

on the strength of the UFG material as illustrated in Figure 2.16, where the 

reduction in grain size from 50 m to 100 nm resulted in a considerable increase in 

strength (as indicated by hardness measurements). The strength of UFG materials 

can be higher than predicted by the Hall–Petch relationship, and this has been 

attributed to the formation of nanostructures such as non–equilibrium grain 

boundaries, nanotwins, and nano–sized particles [6]. The strengthening 

contributions from these nanostructures and by the grain refinement results in the 

overall strength of the UFG materials [59][81]. 

 

Figure 2.15: True stress–strain curve for commercial purity Ti processed at room 

temperature in HPT and then tested in tension at room temperature [82][83]. 
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Figure 2.16: The relationship between microhardness and grain size at room temperature 

for commercial purity Ti processed at room temperature in HPT [82][84][85][86][87]. 

  

2.2.4.2 Mechanical properties at elevated temperatures: 

Superplasticity 

The phenomenon of superplasticity is defined as the ability of a material to 

undergo an extensive elongation prior to fracture without any significant necking 

[88]. This phenomenon is measured usually under a tension deformation mode 

and the measured superplasticity in general reaches about 400 % [89]. The benefit 

of superplasticity lies in the possibilities of superplastic forming in which sheets of 

metals and alloys can be manufactured into complex-shaped parts for (amongst 

others) transportation and aerospace applications [90]. At relatively low 

temperature (        ) and in tension, the polycrystalline material strain hardens 

and flows plastically. The mechanical behaviour of the material in the plastic 

region of deformation can be described by [25]: 

      (1.5) 
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where   is the true stress or flow stress,   is the true strain,   is the strength 

coefficient and   is the strain–hardening exponent. This expression describes the 

stable behaviour of the material from the point at which the plastic flow occurs until 

the point of the maximum load at which the material starts to neck or becomes 

plastically unstable [88]. At elevated temperatures (        ), the strain 

hardening decreases and the material steadily flows without necking. Thus the 

material exhibits superplastic behaviour at such temperatures prior to fracture [91]. 

The steady–state behaviour of the material at elevated temperatures can be 

expressed by [92]: 

 ̇   
   

  
 
 

 
   

 

 
   (1.6) 

 

where  ̇ is the steady–state strain rate,   is a dimensionless constant,   is the 

appropriate diffusion coefficient              ⁄  ,    is the pre–exponential 

complex constant,   is the activation energy,   is gas constant,   is the dynamic 

shear modulus,   is the Burgers vector,   is Boltzmann’s constant,   is the 

absolute melting point,   is the grain size,   is the applied stress (or flow stress),   

and   are the exponents of the inverse grain size and normalized stress, 

respectively. This constitutive relationship describes the development of 

superplasticity during hot deformation with finer grain sizes [93]. The relation 

between the flow stress and strain rate can be realized through the strain–rate 

sensitivity    , which defines as the variation in the flow stress with the variation in 

the strain rate at a specific temperature and it is given by [94]: 

  
    

    ̇
 (1.7) 

 

The value of strain–rate sensitivity can be determined from the slope of the 

logarithmic plot of the flow stress versus the strain rate as shown schematically in 

Figure 2.17 [94]. Three distinctive regions have been identified from Figure 2.17 

[94], which are region I, II and III and these regions have different values of flow 

stress and strain–rate sensitivity [94]. In the first and third regions, a change in the 
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shape of grains occurred where the elongation of grains is found along the 

direction of tension. The low values of strain–rate sensitivity,      , that have 

been obtained indicate the occurrence of non–superplastic behaviour [88]. In the 

second region, the grains had equiaxed shapes with a fine grain size. The value of 

strain–rate sensitivity was higher than in the first and third regions,      , with 

occurrence of superplastic elongations [95].  

The difference in these three regions with regard to elongation can be seen in 

Figure 2.18 [96], where the regions I, II and III are depicted. A high elongation has 

been found in the second region, which is consistent with the high value of strain–

rate sensitivity, whereas the first and third regions are characterized by lower 

elongations associated with low values of strain–rate sensitivity [97]. The effect of 

temperature is obvious in prompting the superplasticity at fast and moderate strain 

rates in the second and third region, whilst the superplasticity is decreased in the 

first region where some grain growth happened at slow strain rates [96]. There are 

many prerequisites for achieving superplastic elongations in metallic materials as 

follows: 

1. Grain size:  

The grain size of the material must be fine and equiaxed, typically less than 10 

m. Equiaxed–shaped fine grains can experience gliding over each other more 

easily than elongated grains [88]. It has also been found that decreasing the grain 

size leads to an increase in the optimum strain rate for superplastic deformation. 

Therefore, for a material with finer grain size and at a specific strain rate, the flow 

stress required would be lower which is advantageous in the superplastic forming 

industry. The dependency of strain rate   ̇  on grain size     can be described by 

the following relation [91]: 

 ̇      (1.8) 

where   is the exponent of grain size and it equals 2 or 3. The effect of grain size 

on the strain rate is illustrated in Figure 2.19 [98] and Figure 2.20 [19]. The effect 

of grain size reduction and the increase in temperature result in occurrence of the 

superplastic behaviour at higher strain rates [97]. 
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Figure 2.17: The variation in (a) flow stress–strain rate curve and (b) strain–rate sensitivity 

    versus the strain rate for 66.8wt.%Mg–33.6wt.%Al eutectic alloy [94]. 

 

Figure 2.18: The variation in elongation–to–fracture (top) and flow stress (bottom) versus 

the strain rate for Zn–22%Al alloy at different temperatures [96]. 



Literature Review | 32 

 

 

Figure 2.19: Schematic illustration showing the effect of grain size reduction and 

temperature on the strain rate and flow stress [98]. 

 

Figure 2.20: Variation in flow stress and elongation as a function of strain rate and grain 

size at 573 K for extruded AZ91 magnesium alloy [19]. 
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2. Testing temperature:  

The temperature of deformation should exceed half that of the absolute melting 

temperature of the material, to promote the superplastic flow of the material. 

Figure 2.21 [99] shows the effect of testing temperature on the superplastic 

behaviour of the AZ61 alloy, where an increase in temperature above 0.5    leads 

to significant superplasticity especially at fast strain rates. However, the effect of 

temperature on the superplasticity is detrimental at the slowest strain rates due to 

the occurrence of grain growth [96]. 

 

Figure 2.21: The effect of testing temperature on the elongation for the AZ61 magnesium  

alloy processed by HPT at 423 K for 5 turns and then tested in tension at a strain rate of 

3.3×10-3 s-1 [99]. 

 

3. Existence of secondary phases:  

Single–phase materials with fine grains tend not to exhibit significant 

superplasticity compared to their counterparts containing secondary phases, 

because of the rapid grain growth that happens at elevated temperatures [95]. The 

presence of second–phase particles at the grain boundaries aids retention of the 

fine grain size in the matrix material and thus increases the range of superplastic 

deformation. Fine grains and a homogenous distribution of second–phase 

particles are necessary for inhibition of grain growth and can enhance grain–

boundary sliding [97]. The effect of the presence of these second phases on the 



Literature Review | 34 

 

thermal stability of fine–grained aluminium alloys processed by ECAP can be seen 

in Figure 2.22 [100][101][102][103], where the microstructural stability has been 

enhanced due to formation of fine precipitates that retarded the grain growth at 

elevated temperatures [96]. 

 

Figure 2.22: The variation in grain size with temperature after annealing for 1 hr for ECAP 

processed pure aluminium, Al–3% Mg alloy [100], Al–3% Mg–0.2% Sc alloy [101], Al–

2024 alloy [102], Al–7034 alloy [103].  

 

4. Nature of grain boundaries:  

High–angle grain boundaries (HAGB) promote grain–boundary sliding more than 

low–angle grain boundaries (LAGB) [91]. It has been found that the misorientation 

in materials processed by SPD techniques increases with increasing imposed 

plastic strain. Therefore, a high fraction of HAGB volumes is anticipated in these 

ultrafine–grained materials and superplastic elongations are expected through the 

increased degree of grain–boundary sliding [89]. 
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2.2.4.3 Mechanisms of Superplasticity 

A number of mechanisms for superplastic behaviour have been proposed to 

explain the variation in superplasticity with the grain size, temperature and strain 

rate [88][95]. There are three distinctive regions in Figure 2.17 [94] and Figure 

2.18 [96], with different values for elongation and strain–rate sensitivity as a 

consequence of variation in the flow stress, strain rates, grain size and 

temperature [95][104]. Diffusion creep, grain–boundary sliding and dislocation 

creep have been proposed as deformation mechanisms for superplasticity as 

illustrated in Figure 2.23 [105]. It has been suggested that the deformation in each 

region is controlled by one or more mechanisms [93][106]. Each mechanism is 

reviewed in the following section according to the increase in flow stress as 

illustrated in Figure 2.23 [105]. 
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Figure 2.23: Schematic illustration of different mechanisms of superplasticity with their 

corresponding values of the strain–rate sensitivity and activation energies [105]. 

 

2.2.4.3.1 Diffusion Creep 

This mechanism dominates during the low flow stress regime with a corresponding 

value of    , i.e. region I, as illustrated in Figure 2.17 [94] and Figure 2.23 [105]. 

Diffusion within the material occurs during deformation at high temperatures 
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(        ) by diffusional transportation of atoms along the grain boundaries or 

through the grains [88]. The atomic flow in diffusion is driven by the applied stress 

and it arises from compression sites to tension sites. Two forms of diffusional 

creep have been proposed: Nabarro–Herring creep and Coble creep [107].  

In Nabarro–Herring creep, the diffusional flow occurs through the grain as 

illustrated schematically in Figure 2.24 (a) [91]. This flow includes the movement of 

vacancies under the tension stress from the grain boundaries existing 

perpendicular to the direction of the tension towards the grain boundaries lying 

parallel to direction of tension [108]. Therefore, the flow of vacancies moves 

through the grain as shown in Figure 2.24 (a) [91], which causes elongation of the 

grain in the direction of stress. The gradient in the concentration of vacancies is 

the driving force for transportation of atoms under the applied stress. It should be 

noted that the flow of vacancies is opposite to the flow of atoms [109]. The 

mechanism of Coble creep supposes the occurrence of diffusion along the grain 

boundaries instead of within the grains as illustrated schematically in Figure 2.24 

(b) [91]. Therefore, diffusional flow happens rapidly through the grain boundaries 

rather than the interior of grains [110].  

Diffusion through the interior of grains requires higher energy than for Coble creep. 

Therefore, Nabarro–Herring creep occurs at relatively higher temperatures than for 

Coble creep [95]. Thus, Nabarro–Herring creep has an activation energy for lattice 

diffusion (  ) that is higher than the activation energy for grain–boundary diffusion 

(   ) for Coble creep [91]. Nabarro–Herring creep also has a lesser grain size 

dependence than for Coble creep, where the reduction in grain size leads to an 

increase in the proportion of grain boundaries and hence enhances the diffusional 

Coble creep along the grain boundaries [107].  
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Figure 2.24: Schematic illustration of (a) Nabarro–Herring creep and (b) Coble creep [91]. 

 

2.2.4.3.2 Grain–Boundary Sliding 

This mechanism dominates during the moderate regime of the flow stress with a 

corresponding value of      , i.e. region II, as illustrated in Figure 2.17 [94] and 

Figure 2.23 [105], where the activation energy is the activation energy for grain–

boundary diffusion (   ). Grain–boundary sliding (GBS) refers to the displacement 

of grains over each other under the influence of the external stress, and this sliding 

occurs usually along their grain boundaries [111][112][113][114]. Grain–boundary 

sliding has been proposed as the dominant mechanism for superplasticity at 

elevated temperatures and under large strains [115].  

There are two types of grain–boundary sliding, Rachinger sliding [111][112] and 

Lifshitz sliding [116]. Rachinger sliding is represented as pure grain–boundary 

sliding where the grains retain their equiaxed shapes during superplastic 

deformation with an increase in the number of sliding grains along the axis of 

applied stress [107]. This type of grain–boundary sliding leads to superior 

superplastic ductilities in fine–grained materials, where the formation of cavities is 

less likely in these materials with no need for an accommodation process [106]. In 

Lifshitz sliding, the grain–boundary sliding acts as accommodation process for the 
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diffusion creep. According to this mechanism, there is no change in the number of 

grains along the along the axis of applied stress and it leads to the occurrence of 

elongated grains [117].  

It has been proposed that grain–boundary sliding requires an accommodation 

mechanism to maintain itself and to minimize cavitation under high–temperature 

deformation [93]. This need has arisen due to the presence of grains with either an 

inconsistent orientation for sliding and/or microstructure irregularities such as 

grain–boundary ledges and triple junctions [95]. Diffusional accommodation and 

dislocation accommodation have been proposed as accommodation mechanisms 

for this grain–boundary sliding [88][95][114]. 

  

2.2.4.3.2.1 GBS accommodated by dislocation motion 

Several models have been proposed to explain the accommodation of grain–

boundary sliding with dislocation movement during the superplastic regime, some 

of which are reviewed in this section. The mechanism of sliding of grains as one 

ensemble during superplastic regime has been proposed by Ball and Hutchison 

[118]. The presence of a grain which is unsuitably oriented for sliding can obstruct 

the movement of other sliding grains as illustrated in Figure 2.25 [119]. This 

obstruction leads to the occurrence of a stress concentration at the blocking grain, 

which generates dislocations in the blocking grain as illustrated in Figure 2.25 

[119]. The accumulation of these dislocations at the opposite grain boundary 

produces a back stress that opposes the motion of additional dislocations until it 

stops the generation of dislocations and stops the sliding of the grains. Dislocation 

climb will occur at the head of the pile up into and along the grain boundaries into 

annihilation sites. Then further sliding will occur again by continuous replacement 

of these dislocations, and grain boundary diffusion controls the dislocation climb 

[118].  

A modification to the Ball–Hutchison model has been proposed by Mukherjee, 

where it has been assumed that the grains can rotate and slide individually instead 

of their sliding as a group as in the Ball–Hutchison model. The ledges and 
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protrusions of grain boundaries act as sources for dislocations under the effect of 

sliding shear, which move through the grain and pile up at the grain boundaries 

and later climb into the grain boundary. The rate of dislocation climb into 

annihilation sites that are located at the grain boundary will control the sliding of 

grains [120]. Another mechanism proposed to accommodate grain–boundary 

sliding has been proposed by Gifkins and it is based on grain–boundary 

dislocations. The pile up of these dislocations at the triple points results in a stress 

concentration, which is relaxed by the dissociation of these new grain–boundary 

dislocations [114]. The new dislocations have the ability to move along the grain 

boundary and / or within the grains. Annihilation or combination of the new grain–

boundary dislocations with each other during their climbing or gliding along the 

grain boundary generates different grain–boundary dislocations as illustrated in 

Figure 2.26 [90]. Gifkins’s model has been called a core and mantle theory, where 

the grain is considered as a non–deforming core and the motion of the dislocations 

(climb and glide) in the mantle region or the periphery of grain can accommodate 

the grain–boundary sliding. In this model, grain rotation has been suggested 

through the material flow in the mantle region, and therefore, the movement of 

grains is introduced [121] as illustrated schematically in Figure 2.27 [91][122]. 

 

Figure 2.25: Schematic illustration of Ball–Hutchison model for grain–boundary sliding 

accommodated by dislocation motion [119]. 
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Figure 2.26: Schematic illustration of Gifkins’s model for grain–boundary sliding 

accommodated by dislocation motion [90].  

 

Figure 2.27: Schematic illustration of (a) the core (grain) and mantle regions (peripheries 

of grains) [91], and (b) The flow of material along the mantle region and rotation of the 

cores (grains) [122]. 

 

2.2.4.3.2.2 GBS accommodated by diffusion 

This mechanism has been proposed by Ashby and Verrall in which grain–

boundary sliding is accommodated by diffusional flow. In this model, grain 

switching occurs in a group of grains to avoid elongation of grains under the 

applied stress [123]. Figure 2.28 illustrates a cluster of four grains which change 

their shapes temporarily during sliding under the tensile stress. To maintain the 

continuity during the deformation, a diffusional flow occurs across the grain 

boundary and equiaxed grains are restored [119].      
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Figure 2.28: Schematic illustration of Ashby–Verrall model for grain–boundary sliding 

accommodated by diffusional flow and grain switching [119][123]. 

 

2.2.4.3.3 Dislocation Creep 

This mechanism dominates during the high regime of the flow stress with a 

corresponding value of      , i.e. region III, as illustrated in Figure 2.17 [94] and 

Figure 2.23 [105]. The dislocation slip in the grains controls the activity of the 

dislocation creep as illustrated in Figure 2.29 [91], where dislocation slip occurs by 

the glide of dislocations on slip planes and their climb over obstacles such as 

solute atoms and precipitations. The deformation in region III is characterized by 

the formation of dislocation tangles, elongated grains and the flow stress is less 

sensitive to the grain size and strain rate than observed in region II or superplastic 

region [105]. Activation of extra slip systems occurs with increasing temperature 

that promotes the gliding of dislocations. When gliding dislocations are blocked by 

an obstacle, as illustrated in Figure 2.29, they pile up against that obstacle until 

their concentration increases [25]. Therefore, a back stress occurs at the head of 

dislocation pile up and thermal activation at elevated temperatures, the blocked 

dislocation can climb by diffusion to another slip plane. This process can repeat in 

this sequence to produce a dislocation creep through glide and climb of 

dislocations [124].  



Literature Review | 42 

 

Dislocation creep occurs at both high temperature and stress as the gliding of 

dislocations becomes more complicated with increasing density of intersected 

dislocations on different slip planes [25], as well as the climb process of the gliding 

dislocation being a diffusion controlled process that is activated at elevated 

temperatures. Interaction of the gliding dislocations with the solute atoms or any 

other obstacles results in reduction in the rate of gliding [119]. Therefore, the glide 

process will be slower than the climb process and solute drag creep or dislocation 

glide controlled creep will occur with an activation energy equal to   . The 

domination of the solute drag creep mechanism requires a high concentration of 

solute atoms, significant difference in the lattice parameters and a low diffusivity of 

solute atoms [125].  

The climb controlled dislocation creep was proposed by Weertman [126]. In this 

model the piled up dislocations at a slip barrier leads to hindrance of their motion 

and the occurrence of strain hardening. Climb of these dislocations under thermal 

excitation results in their escaping away from the pile up location and annihilation 

[25]. When the rate of strain hardening equals the rate of recovery, a steady state 

will occur, and the rate of creep is controlled by the rate of dislocation climb with 

activation energy equals to    [107]. At elevated temperatures and in the presence 

of compression and tension regions ahead of the slip direction leads to sequential 

absorption and creation of vacancies that increases the rate of dislocation climb 

[127]. 

 

Figure 2.29: Schematic illustration of glide and climb processes during dislocation creep 

[91]. 
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 High–Pressure Torsion (HPT) 2.2.5

High–pressure torsion is one of the SPD techniques that is used for fabrication of 

bulk nanostructured microstructure with a grain size of 100 nm or less [1]. A 

schematic illustration of HPT processing is shown in Figure 2.30 [128]. The disk–

shaped sample is located in a small depression between the two anvils, and 

compressive pressure and rotation are applied to the sample simultaneously [129]. 

High–pressure torsion is performed at room temperature and/or at elevated 

temperatures using an applied pressure of several GPa. The plastic torsional 

strain is imposed into the sample by the rotation of the lower anvil. Due to the 

rotation of the lower anvil during the processing, the sample deforms plastically 

through surface frictional forces [1][6]. 

 

Figure 2.30: Schematic illustration of the HPT setup before and after application of loading 

[128]. 

 

2.2.5.1 The Imposed Strain by HPT 

The shear strain that is imposed during HPT can be calculated by the following 

relation [6][130]:  

  
    

 
 (1.9) 
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where   is the thickness of disk,   is the number of turns and   is the distance 

from the centre of the disk. The equivalent von Mises strain (     √ ⁄ ) [131] was 

used to compare the value of shear strain in Eq. (1.9) with other deformation 

modes in rolling, drawing or extension. Therefore, the true strain imposed by HPT 

becomes [132][133]: 

      
    

 √ 
 (1.10) 

 

Practically, the compressive pressure leads to a decrease in the thickness of the 

disk during HPT processing, thus the true strain becomes [60][134]: 

        (
      

  
) (1.11) 

 

where    and   represent the initial and the final thicknesses of the HPT disk, 

respectively. In practice, the number of turns is used to predict the imposed strain 

on the disk during HPT processing [1][60]. 

 

2.2.5.2 The Configurations of HPT  

Three types of configurations of HPT processing are available as illustrated 

schematically in Figure 2.31, which are the unconstrained, constrained, and 

quasi–constrained HPT [135]. In the unconstrained HPT as shown in Figure 2.31 

(a), the material of the disk flows freely out of the anvils during processing. 

[135][136]. In the constrained HPT that is shown in Figure 2.31 (b), the disk fits 

into a depression located on the lower anvil. This setup leads to no outward flow 

and introduces an effective back pressure into the processing zone [135]. 

Practically, the idealised constrained condition is hard to achieve, so it is common 

to perform the HPT processing under a quasi–constrained condition as illustrated 

in Figure 2.31 (c), where the material under processing undergoes a limited flow 

out of the depression [137]. This type of HPT was used in the current study. 
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Figure 2.31: An illustration of HPT setups for (a) unconstrained, (b) constrained, and (c) 

quasi–constrained HPT [135]. 

 

2.2.5.3 Microstructural Inhomogeneity by HPT Processing 

The existence of microstructural inhomogeneity in UFG materials processed by 

HPT is important because the resulting properties significantly depend on the 

microstructure after processing [138]. A variation in the imposed strain was found 

in the disk, and this strain decreases to almost zero at the centre of the disk, as 

predicted by Eq. (1.10). Therefore, this variation in the strain distribution through 

the sample leads to an inhomogeneous microstructure after HPT processing [139]. 

Measurements of local microhardness and microstructural microscopy were used 

to investigate the microstructural homogeneity / heterogeneity of the processed 

material [1][131]. It has been shown that the measurements of the microhardness 

after HPT processing along the disk’s diameter give a reasonable indication of the 

microstructural evolution [140][141].  

It has been shown that the hardness increases significantly in the initial stage of 

processing at the edge regions, whereas a lower hardness appears in the centre 

region (although it is still higher than that of the as–received material). A further 

straining was found to increase the hardness at the centre region, so that it 

becomes close to the values of hardness at the edge regions [1]. This trend has 

been found in many materials processed using HPT such as Al–3wt.%Mg–

0.4wt.%Cu alloy [132], austenitic steel [138], pure nickel [141], Al–3wt.%Mg–

0.2wt.%Sc alloy [142], Mg–9wt.%Al alloy [18]. Examples of this trend are shown 

by Figure 2.32 and Figure 2.33 for nickel [141] and austenitic steel [138], 
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respectively. This trend reveals the microstructural heterogeneity that is introduced 

in the initial stage of HPT processing, whereas the microstructure at the edge 

regions is finer than that at the centre regions, as shown in Figure 2.34 and Figure 

2.35 for nickel [141] and austenitic steel [138], respectively.  

 

Figure 2.32: Distribution of microhardness for nickel processed by HPT using an applied 

pressure of 6.0 GPa at room temperature: (a) along the diameter of the disk for two 

different number of turns and (b) as a function of the number of turns at the edge and 

centre regions [141]. 

 

Figure 2.33: Distribution of microhardness after HPT processing for the austenitic steel 

disks for different numbers of turns [138] (The Figure above contains an error in the axis 

of radius, where the microhardness values were plotted against a fraction of the radius 

instead of the whole radius (0 – 5 mm)).  
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Figure 2.34: Microstructure observation for nickel processed by HPT for 5 turns using an 

applied pressure of 1.0 GPa at room temperature at (a) the centre region and (b) the edge 

region [141]. 

 

 

Figure 2.35 Microstructure observations of austenitic steel disk processed by HPT at the 

centre region for: (a) 2.27 turns and (b) 16 turns [138]. 

 

Further studies were conducted to evaluate the homogeneity and/or heterogeneity 

of microstructure after HPT processing by inspecting the values of microhardness 

over the entire horizontal cross–sections of the processed disk. The 

microhardness values were taken by following a rectilinear grid across the 

horizontal cross–sections of the disk [139]. The variations in distribution of 

microhardness over the horizontal cross–sections were represented using colour–
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coded maps. These measurements provide a comprehensive representation of 

variations in the microhardness at different locations on the surface of the 

processed disk for different conditions of HPT processing [143]. The colour–coded 

maps were used to inspect the distribution of hardness after HPT processing for 

many materials such as high–purity Al (99.99%) [139], Al–1wt.%Mg alloy [144], 

Zn–22wt.%Al alloy [145], Al–9.4wt.%Zn–2.5wt.%Mg–2.5wt.%Cu alloy [146], and 

Cu–0.1wt.%Zr alloy [147]. 

The aforementioned studies revealed two phenomena: first, the presence of 

inhomogeneity in microstructures at the initial stages of processing, since fine 

grains were found at the centre regions and relatively large grains at the edge 

regions. Therefore, the higher values of hardness existed at the centres than at 

the edge regions of processed disks. It was shown that the subsequent processing 

resulted in a decrease in the microstructural heterogeneity and microhardness 

values at the centre regions, in addition to stability in the hardness distribution 

across the entire horizontal cross–sections of processed disks. An example of the 

latter behaviour is shown in Figure 2.36 for pure aluminium [139][143].  

Second, an increase in microhardness from the edge regions towards the centre 

regions was observed at the initial stages of processing, which is symmetric with a 

gradual microstructural evolution from the edges towards the centres of the 

processed disks. The subsequent deformation resulted in a reasonable 

homogeneity in both microstructure and microhardness after a sufficient number of 

turns, since the microstructure became uniformly finer and homogeneous [14]. 

Examples of the latter behaviour are shown in Figure 2.37 and Figure 2.38, for Al–

1wt.% Mg alloy [144] and Cu–0.1wt.%Zr alloy, respectively [147]. 
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Figure 2.36: Vickers microhardness maps for pure aluminium (99.99%) processed by HPT 

at room temperature and a pressure of 1.25 GPa for: (a) 1 turn, (b) 3 turns and (c) 5 turns 

[139]. 
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Figure 2.37: Vickers microhardness maps for Al–1wt.%Mg alloy processed by HPT at 

room temperature and at a pressure of 6.0 GPa for: (a) 1/4 turn, (b) 1 turn and (c) 5 turns 

[144].  
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Figure 2.38: Vickers microhardness maps for Cu–0.1wt.%Zr alloy processed by HPT at 

room temperature and at a pressure of 6.0 GPa for: (a) 1/4 turn, (b) 1 turn, (c) 5 turns and 

(d) 10 turns [147]. 
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 The Basic Factors in HPT Processing  2.2.6

2.2.6.1 Role of the Applied Pressure in HPT processing 

The effect of the applied pressure on the microhardness is shown in Figure 2.39 

[141]. Nickel disks were processed by HPT at room temperature for 5 turns under 

pressures of 1.0 and 9.0 GPa. The microhardness at the edge regions of the disk 

was larger than that at the centre region using the lower applied pressure (1.0 

GPa). Increasing the applied pressure resulted in an increase in the 

microhardness with a reasonable uniform distribution along the diameter of the 

disk. It was found that the increase in the applied pressure leads to a greater grain 

refinement as shown in Figure 2.40 [141]. The role of the hydrostatic compression 

stress is to enhance the fracture strain of the material under processing, and thus 

improves the deformability of the material under processing [6]. Moreover, the high 

hydrostatic pressure prevents the sliding between the anvils and the top and 

bottom surfaces of the disk under processing. The high hydrostatic pressure is 

important for microstructural refinement by means of introducing a large amount of 

dislocations into the processed microstructure [138]. 

 

Figure 2.39: Microhardness distribution for nickel processed by HPT at room temperature: 

(a) along the diameter of disk using for two different applied pressures, and (b) as a 

function of applied pressure at the edge and centre regions [141]. 
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Figure 2.40: Microstructure observations for nickel processed by HPT for N = 5 turns at 

room temperature at the edge region using: (a) 1.0 GPa and (b) 6.0 GPa [141]. 

 

2.2.6.2 Role of the Number of Turns in HPT processing 

The number of turns determines the total imposed strain into the disk, as shown by 

Eq. (1.10). The influence of the number of turns on the microhardness and 

microstructure is shown in Figure 2.41 and Figure 2.32, respectively, for nickel 

disks processed by HPT at room temperature under an applied pressure of 6.0 

GPa for different number of turns [141]. The microhardness increased after one 

turn at the edge, where the centre of the disk exhibits a lower hardness than the 

edge. The latter behaviour is attributed to the difference in grain refinement at the 

edge and centre regions, where the microstructure was finer at the edges than that 

at the centre as shown in Figure 2.32. Increasing the number of turns resulted in 

an overall increase in microhardness with a reasonable homogeneous distribution 

across the diameter of the disk. It was found that the high number of turns leads to 

a considerable grain refinement in the processed microstructure, which results in a 

significant homogeneity in the distribution of microhardness [136]. The latter 

behaviour was also shown for Cu–0.1wt.%Zr alloy processed by HPT at room 

temperature for 1 turn and 5 turns as shown in Figure 2.41 [147].   
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Figure 2.41: Microstructure observations for Cu–0.1wt.%Zr alloy processed by HPT at 

room temperature and at a pressure of 6.0 GPa for: (a) 1 turn, and (b) 5 turns [147]. 

 

2.2.6.3 Proposals to Explain the Development of Homogeneity during 

HPT Processing 

The radial distribution of shear deformation as expressed by Eq. (1.10), reveals 

that HPT introduces a heterogeneity in the microstructure due to a higher imposed 

strain at the edge regions and a lower imposed strain at the centre [14]. However, 

the trend of gradual evolution to a reasonable homogeneous microstructure has 

been revealed in many reports using a sufficient number of turns and / or applied 

pressure [138][141].  

Two approaches were used to explain the development of homogeneity during 

HPT processing. The first approach was proposed by Zhilyaev et al. [136], and it is 

based on the transfer mechanism of the shear deformation, where the deformation 

develops during HPT processing in a repetitive undulating manner. The 

mechanism suggests that the localisation of high friction at a certain point results 

in the presence of shearing at that point. Therefore, local hardening is introduced 

due to the shearing, and then it shifts to an adjacent location as a result of 

reduction in friction forces at that point. By combining this approach with the 

physical explanation of Eq. (1.10), and using enough turns, the deformation 

develops in a repetitive manner, as shown by the undulation in the distribution of 

microhardness in Figure 2.37 and Figure 2.38. It is obvious that the deformation 
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occurs at the edge regions and then extends towards the centre region of the disk 

according to Eq. (1.10), thus producing a reasonable homogeneous microstructure 

at a high number of turns. 

The second approach was suggested by Estrin et. al. [148] and it is based on the 

strain gradient plasticity theory [149]. It was found that the uniformity in the 

microstructure processed by HPT processing resulted from the strain gradient 

effects [148]. When a polycrystalline material deforms, each grain tries to deform 

homogeneously with respect to the total deformation of the whole material. 

Because of the constraints imposed by the required continuity of the deformation, 

a strain gradient occurs between the centres of grains and regions near the grain 

boundaries [25].  

Therefore, voids and overlaps will be introduced between the adjacent grains as 

shown in Figure 2.42. The spaces and superposition can be corrected by refitting 

the grains together again by introducing geometrically necessary dislocations 

(GNDs), thus providing a compatibility for deformation of neighbouring grains and 

in the whole deformed material [53]. The dislocations generated during the 

deformation of material can provide a hardening effect through storing, 

accumulating and trapping each other during deformation. These dislocations are 

normally called statistically stored dislocations (SSDs) and they occur when there 

is no strain gradient [149]. These statistically stored dislocations are different from 

the geometrically necessary dislocations (GNDs) that occur as a result of the 

presence of plastic strain gradients, which, in turn appear due to inhomogeneous 

plastic deformation of the material [150]. It was found that the geometrically 

necessary dislocations can provide an extra hardening contribution during 

deformation [132].  

Strain gradient plasticity modelling of the HPT process for pure copper showed a 

reasonable consistency with experimental data. These data showed a 

considerable increase in accumulation of plastic strain in the initial stage of torsion 

at the edge regions of the processed disks, and a relatively low strain at the centre 

region as shown in Figure 2.43 [148]. It can be seen that the increase in the 

number of turns leads to a reduction in strain gradient, starting from the edge 

regions towards the centre regions through the mid–way regions, which is 
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consistent with earlier reports on microhardness data for austenitic steel [138], 

commercial purity aluminium [140] and copper [151]. The evolution of strain 

distribution and strain gradient are related to the variation in the density of the 

generated dislocations. The low density of geometrically necessary dislocations at 

the edge regions corresponds to the low strain gradient at these regions. In 

contrast, the high density of geometrically necessary dislocations occurs as a 

result of a high strain gradient at the centre region [148].   

 

 

Figure 2.42: An illustration for the generation of geometrically necessary dislocations in a 

polycrystalline material showing: (a) Beginning of deformation, (b) Formation of voids and 

overlap between deformed grains, (c) Introduction of geometrically necessary dislocations 

to correct the former situation and (d) Grains refitted together again to achieve an integrity 

in the deformation process [25]. 

 

Figure 2.43: The variation in the accumulated equivalent strain imposed by HPT across 

the diameter for: (a) 1/3 to 1 turn and (b) 2 to 5 turns [148]. 
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 SPD Processing of Magnesium Alloys 2.2.7

The grain refinement of magnesium alloys has a great influence on their 

microstructures, and in turn, their mechanical properties, since they characterized 

by a limited ductility and workability at room temperatures. The majority of early 

reports on the bulk ultrafine–grained magnesium alloys had focused on different 

SPD processing at elevated temperatures, where the dynamic recrystallization and 

grain growth were present [19][152]. The review below summarizes the results of 

SPD processing of the common magnesium alloys. 

 

2.2.7.1 AZ31 Magnesium Alloy 

An extruded AZ31 alloy (Mg–3wt.%Al–1wt.%Zn) has been processed in ECAP in 

the route    using a 90 die with the variation of processing temperatures (473–

593 K) with the number of passes for enhancing the grain refinement and 

deformability of the processed alloy being assessed. The processing temperature 

reduced with increasing number of passes. Fine and homogeneous microstructure 

of average grain size of 2 m was obtained by increasing the number of passes. 

The hardness tested at room temperature of the ECAP processed alloy were 

improved by decreasing the grain size. The tensile yield strength of the processed 

alloy was lower than for the unprocessed one with a reasonable increase in tensile 

elongation at room temperature, which was attributed to the modification in texture 

for the alloy during the ECAP processing [153]. The superplastic behaviour was 

investigated for the AZ31 alloy processed by EX–ECAP in the route    using 110 

die at 473 K for 8 passes. A grain reduction was achieved from 75 m for the as–

received alloy to about 0.7 m after 8 passes at 473 K. A maximum ductility of 460 

% was achieved for the EX–ECAP processed alloy at testing temperature of 423 K 

using a strain rate of 1×10-4 s-1. This achieved elongation lies within the regime of 

low temperature superplasticity and it has been attributed to the effect of strong 

texture for easy slip that was gained through the extrusion and subsequent EACP 

processing [22].  
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The ECAP processing of extruded AZ31 alloy has been successfully achieved at a 

relatively low temperature of 373 K using a back pressure and using the route    

and 90 die. A bimodal microstructure consisting of fine and coarse grains was 

found in the initial stage of processing. By increasing the number of passes, a 

fine–grained microstructure was produced with an average grain size of 1 m, 

whereas the initial grain size was about 15 – 22 m. It was found that the back–

pressure suppresses the dynamic recrystallization and grain growth during 

processing. The absence of the back pressure resulted in cracking during ECAP 

processing of the magnesium alloy at 473 K. The hardness and elongation tested 

at room temperature were improved by increasing the number of passes because 

of the grain size being decreased. The initial decrease and subsequent increase in 

the strength at room temperature was attributed to the texture development after 

ECAP processing and during tensile testing [15]. A significant grain refinement 

was found for the AZ31 processed for 6 passes in the route    using 90 die at 

423 K in ECAP with increasing back–pressure used during the processing. The 

high elongation of 1210 % was achieved using a strain rate of 1×10-4 s-1 that was 

attributed to the highest value of the back–pressure. The role of the back–pressure 

was in producing a bimodal microstructure at relatively lower processing 

temperature in ECAP, which resulted in a significant superplastic elongation 

through the grain–boundary sliding accommodated by slip [154].  

HPT processing of AZ31 alloy was conducted to study the effect of strain rate 

imposed by HPT processing on the produced microstructure. A heterogeneous 

microstructure is expected at the centres of processed disks and a homogeneous 

microstructure far away from the centres using different rotation rates. Therefore, 

heterogeneous and homogeneous distributions of hardness were found in the 

centre region and the remaining regions over the disk surfaces, respectively. The 

grain refinement was somewhat proportional to the rotation speeds due to the 

large amount of imposed strain by HPT at fast strain rates [14]. Structural 

observations and microhardness measurements were conducted on the vertical 

cross sections of disks of AZ31 magnesium alloy that were processed by HPT at 

463 K. It was found that the deformation was heterogeneous in the through–

thickness directions, due to the grain size variation at different regions across the 

vertical planes of processed disks, and due to the formation of shear bands. These 
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bands were aligned in the nonparallel direction of the vertical cross–sections of the 

disks. A heterogeneous distribution of hardness was found along the vertical cross 

section due to the heterogeneity in microstructure [155]. 

The effect of processing temperature during HPT processing has been studied for 

the AZ31 alloy over different processing temperatures (296 K to 473 K) up to 5 

turns. It was found that the ultrafine–grained microstructure was obtained at 296 K 

and 373 K, and a relatively coarser microstructure was found at 473 K due to the 

occurrence of grain growth. Heterogeneous and homogeneous distributions of 

recorded hardness were found for the alloy processed at 296 K and 473 K, 

respectively. Hardness data were significantly higher for the alloy processed at 

296 K rather than 473 K due to the absence of dynamic recrystallization and grain 

growth at the relatively lower processing temperature [156]. The mechanical 

properties, hardness and tensile behaviour, were studied across the longitudinal 

cross sections for AZ31 alloy processed in ECAP using the route    and a 110 

die. Small circular disk samples were cut perpendicular to the pressing direction of 

ECAP for subsequent tests. A homogeneous fine microstructure of 1 m after 8 

passes at 473 K was found, with increasing hardness across the disk surfaces 

with the number of passes. Tensile elongations for the processed alloy were 

increased at all testing temperatures (296, 423, 473) K and with increasing the 

number of passes compared to the unprocessed alloy. The maximum recorded 

elongation was 192 % which is much lower than the common elongation values 

seen for superplasticity (400 %). This was attributed to the relatively small scale of 

the tensile samples and the subsequent behaviour under testing [157].  

The superplastic behaviour of AZ31 alloy was conducted at elevated temperatures 

after ECAP processing. The alloy was processed in ECAP in the route    using 

135 die for 6 passes, and the processing temperature decreased gradually in two 

successive passes from 473 K to 413 K. A homogeneous fine microstructure was 

obtained of an average grain size of m. The maximum elongation of 1200 % was 

achieved at testing temperature of 623 K using a strain rate of 1×10-4 s-1. The 

grain–boundary sliding was the deformation mechanism during the superplastic 

behaviour with strain–rate sensitivity of 0.5, and fracture after the maximum 

elongation was due to the cavity interlinkage [158]. A recent study has been 
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conducted on the AZ31 alloy processed in HPT at room temperature. An extreme 

grain refinement down to 150–200 nm was obtained for samples in the form of 20 

mm in diameter disks processed up to 15 turns. Development in hardness towards 

from heterogeneity to homogeneity was found with increasing the number of turns. 

The crystallite size and density of dislocation were decreased and increased, 

respectively, during the HPT processing until saturation occurred at high number 

of turns [159].      

 

2.2.7.2 AZ91 Magnesium Alloy 

The SPD processing of AZ91 magnesium alloy was achieved by equal channel 

angular pressing at a temperature of 448 K. Fine equiaxed grains of 1 m were 

obtained after processing, and a maximum elongation of 661 % was achieved at a 

testing temperature of 473 K using a strain rate of 6.2×10-5 s-1. Microstructural 

observation indicated that the grain–boundary sliding was assumed as the 

deformation mechanism during the superplastic behaviour showed a strain–rate 

sensitivity of 0.3. It was found that the elongation–to–fracture depends mainly on 

the grain size of the material under tensile tests [10].  

Pure magnesium and Mg–9wt.%Al alloy were processed by ECAP using the route 

   and 90 die in the temperature range of (473 – 673) K for different number of 

passes. The grain size was reduced from 100 m to 17 m after processing at 473 

K, and the higher processing temperatures resulted in the occurrence of grain 

growth during processing. It was found that the tensile strength and ductility at 

room temperature were improved after processing due to the homogeneous 

equiaxed microstructure that was obtained by the dynamic recrystallization during 

processing. The tensile properties of this magnesium alloy were better than for 

pure magnesium due to the presence of Al content within the microstructure of 

alloy [13]. 

A two–step EX–ECAP process comprising of an extrusion step followed by ECAP 

processing was conducted for the Mg–9wt.%Al alloy that was alloyed from high–

purity magnesium and aluminium. The extrusion was conducted at 623 K and 
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followed by ECAP processing at a temperature of 473 K using the route    and 

90 die. The grain refinement reached down to 0.7 m after EX–ECAP. The study 

showed the possibility of pressing magnesium alloys easily and without cracking 

using an extrusion step prior to ECAP processing. A maximum elongation of 840% 

was achieved in the processed alloy due to the relative thermal stability of the 

fine–grained microstructure of the alloy produced by the EX–ECAP. It was found 

that the fine β–phase particles prevented the grain growth during ECAP 

processing at the elevated temperatures [17]. A high–temperature extrusion was 

conducted in a temperature range of (608 – 688) K for investigating the 

microstructural changes in the AZ91 alloy. A fine–grained microstructure of 4 m 

was produced at the lower processing temperature by dynamic recrystallization. It 

was shown that aluminium solute atoms can hinder the dynamic recovery of 

magnesium in the alloy through lowering its stacking fault energy [20]. 

The influence of β–phase on the mechanical properties was studied for a hot 

extruded AZ91 alloy. The extrusion was conducted at 543 K and the resultant 

grain refinement was about 4 m. It was found that the β–phase in the extruded 

alloy elongated and broke during processing and distributed as fine particles with 

grain sizes of (0.3 – 0.8) m along the recrystallized grain boundaries. This phase 

prevented the grain growth of the dynamically recrystallized microstructure, and 

thus produced a fine–grained microstructure by the hot extrusion. The tensile 

strength at room temperature was improved due to the existence of the β–phase 

particles at the grain boundaries. These fine particles act as a barrier for the 

motion of dislocations during deformation, and at the same time, the existence of 

some elongated particles of the β–phase lying parallel to the extrusion direction 

enhanced the ductility [160].  

The microstructure and mechanical properties were studied for AZ91 alloy 

processed by ECAP at different temperatures and at different numbers of passes. 

It was found that the two–step ECAP including pressing at 498 K followed by 

pressing at 453 K resulted in a homogeneous microstructure of grain size of 2 m. 

The two–step ECAP processing is described as pressing of a sample through two 

sequential routes, where each route is conducted at a different number of passes 

and a specific processing temperature. After the two–step ECAP, a homogeneous 
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and recrystallized microstructure was found with widely distributed and fine 

particles of the β–phase. A high tensile strength and good ductility at room 

temperature were achieved after two–step ECAP due to the development of a 

homogeneous fine microstructure with fine particles of the β–phase distributed 

within the processed microstructure [161]. 

The Mg–9wt.%Al alloy was processed at 296 K and 423 K in the HPT and for a 

different number of turns. This alloy was prepared by alloying of high–purity 

magnesium and aluminium. An ultrafine–grained microstructure with grain size of 

0.15 m and 0.37 m after 5 turns in HPT at room temperature and 423 K, 

respectively. It was found that the level of grain refinement in HPT is much better 

than ECAP for this alloy. The hardness and ductility were significantly improved as 

a result of the ultrafine–grained microstructure produced by HPT processing. A 

maximum elongation of 810 % was achieved for the alloy processed in HPT at 

processing temperature of 423 K and then tested in tension at testing temperature 

of 473 K using a strain rate of 5×10-4 s-1. It was found that the hydrostatic pressure 

used in the HPT retained the solidity of the magnesium alloys during the 

processing at room temperature, which was not applicable in the case of ECAP 

processing [18].  

In summary, the majority of the earlier work of SPD processing of magnesium 

alloys (especially for AZ91 alloy) was conducted at elevated temperatures, where 

the dynamic recrystallization, dissolution and change in morphology of β–phase 

are seen. Two studies revealed the possibility of HPT processing at room 

temperature for the magnesium alloys to achieve a homogeneous ultrafine–

grained microstructure. One of them focused on the Mg–9wt.%Al alloy. The HPT 

processing were conducted on this alloy at 296 K and at 423 K [18]. Another study 

was conducted on the AZ31 magnesium alloy at 296 K [159]. Both of the 

aforementioned studies revealed the formation of ultrafine–grained microstructures 

with grain sizes within (150 – 250) nm and the maximum superplastic elongation 

reached was 810% for the Mg–9wt.%Al alloy processed in HPT at 423 K. 



 

 

Chapter Three: Experimental Work 
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3. EXPERIMENTAL WORK 

3.1 Material  

An extruded rod of AZ91 magnesium alloy was used in this study, which was 

supplied by Magnesium Elektron Company (Manchester, UK). The starting 

material was solutionised for 24 hours at a temperature of 420 °C, then cooled in 

air. Subsequent ageing was applied for 16 hours at a temperature of 210 °C. The 

purpose of this heat treatment is to increase the yield strength and hardness 

through precipitation hardening [28]. The chemical composition of the as–received 

AZ91 alloy as analysed using energy–dispersive spectroscopy (EDS) is shown in 

the Table 3.1. 

Table 3.1: The measured chemical composition of the as–received AZ91 magnesium 

alloy. 

Element Mg Al Zn Mn 

Content wt.% 88.74 9.57 1.11 0.58 

 

 Metallographic preparation 3.1.1

The AZ91 samples were prepared for microstructural examination prior to high–

pressure torsion processing using the following procedure: 

1. Sectioning: An abrasive cut–off wheel was used to cut disk–shaped samples 

from the AZ91 rod. Water was used as a coolant to minimise the thermal 

damage generated during the cutting process for the samples. 

2. Mounting: A cold–mounting method was used for sample mounting due to the 

low heat generated during polymerisation. Moulds were sprayed with spray 

separator to ensure a feasible extraction of the mounted samples and to keep 

the moulds clean for subsequent use.  

3. Grinding: Rigid–disk grinding with a series of SiC abrasive papers P800, P1200, 

and P4000 were used to remove all scratches from previous grinding stages on 

the surfaces of the mounted samples (generated from sectioning) and to 

produce flat surfaces and regular edges for the mounted samples. Grinding with 

the above–mentioned papers was conducted under a load of 22.25 N and a 
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wheel rotation of 200 rpm. An automatic grinding machine and water (as a 

coolant) were used during this process. 

4. Polishing: was performed in two stages. In the first stage, a diamond paste of 1 

µm and a short nap pad were used under a load of 22.25 N with a wheel 

rotation of 150 rpm. The use of water was avoided during this process and an 

oil lubricant was used as a coolant. In the second stage a colloidal alumina of 

0.05 µm and a napless elastomer pad were used for the final polishing. The 

polishing with the colloidal alumina was applied under a load of 11.12 N with a 

wheel rotation of 120 rpm. An automatic polisher machine was used for this 

process and water was also avoided during this stage. 

5. Etching: An acetic–picral solution (5 ml acetic acid, 3.6 ml picric acid, 10 ml 

H2O, 100 ml Ethanol) was used as an immersant etchant for 10 sec. The 

etched samples were washed with alcohol, and then dried using compressed 

air. 

 

 HPT processing conditions 3.1.2

HPT processing was conducted at room temperature and elevated temperature 

using the HPT facility shown in Figure 3.1. This facility consists of upper and lower 

anvils, with a circular depression of 0.25 mm in depth and 10 mm in diameter that 

is located centrally in both anvils, as shown in Figure 3.2 [162]. The samples were 

cut from the AZ91 alloy rod in the form of disks of 10 mm in diameter and 1 mm in 

thickness. Later, an abrasive paper was used to reduce the thickness of each disk 

to about 0.82 mm. A small heater was located around both upper and lower anvils 

as shown in Figure 3.3, this heater surrounds both anvils to achieve homogeneous 

heating during processing. A thermocouple positioned within the upper anvil was 

used to measure the temperature  continuously. Prior to HPT processing, the 

anvils were heated to the required processing temperature (± 5 °C) and the 

temperature held for 10 minutes. Then, the sample was placed in the cavity of the 

lower anvil and held for 5 minutes at the required processing temperature, 

thereafter HPT processing was started. HPT processing was conducted under a 

quasi–constrained condition at a speed of 1 rpm using the conditions mentioned in 

Table 3.2. 
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Table 3.2: Conditions for HPT processing used in this study. 

P 
(GPa) 

Processing 
temperature (K) 

N (turns) Duration of processing 
(minute) 

3.0 

296 0, 1/4 , 1/2 , 3/4 , 1 , 3 , 5 , 10 1, 0.25, 0.5, 0.75, 1, 3, 5, 10 

423 1/2 , 1 , 5 , 10 0.5, 1, 5, 10 

473 1/2 , 1 , 5 , 10 0.5, 1, 5, 10 

6.0 296 0 , 1/2 , 1 , 3 , 5 , 10 1, 0.5, 1, 5, 10 

 

The applied pressure in the HPT facility has been calculated as follows: the 

applied loads by the hydraulic press in HPT facility were 24 tonnes (24000 Kg) and 

47 tonnes (47000 Kg) corresponding to applied pressures of 3.0 GPa and 6.0 

GPa, respectively. The area under pressure was calculated from the circular area 

of the HPT disk as      , where   is the radius of the disk equal to 5 mm. Thus, 

for the applied load of 24 ton, the applied pressure is:  

              
        

        ⁄
             

                                

         
     

    
 

           

             
                    

(the same relationships above can be used to show the corresponding applied 

pressure for the applied load of 47 tonnes is 6.0 GPa).  In addition, pressing of 

disks without torsion was conducted for 1 minute using both above–mentioned 

pressures and these samples were labelled as N = 0, in the microhardness plots. 

The outer rim of each depression was lubricated with oil before HPT processing to 

avoid any possible damage to these areas by means of friction. For the disks 

processed by HPT using an applied pressure of 3.0 GPa, microstructural and 

microhardness observations were conducted over the horizontal and vertical 

cross–sections as shown schematically in Figure 3.4 (a,b). A comparison between 

the distributions of microhardness along the diameters of the disks was carried out 

for the disks processed in HPT using the applied pressures of 3.0 and 6.0 GPa. 

After HPT processing, the disks were prepared metallographically using the same 

steps detailed in the section  3.1.1 over the horizontal and vertical cross–sections 



Experimental Work | 67 

 

of the processed disks as illustrated schematically in Figure 3.4. The vertical 

cross–section was produced by cutting the disk (see Figure 3.4 (a)) along the 

diameter and through its centre to produce two equal halves. An illustration of a 

one–half segment of the vertical cross–section of the disk is shown in Figure 3.4 

(b).  

 

Figure 3.1: (a) The high–pressure torsion facility used in this study, and (b) Configuration 

of the lower anvil. 

 

Figure 3.2: An illustration of the anvil configuration in the HPT facility shows the position of 

the sample in  the depression between the anvils [162]. 
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Figure 3.3: Schematic illustration of the heating furnace used during HPT processing [99]. 

 

 

Figure 3.4: An illustration of a HPT disk shows: (a) The horizontal upper cross–section, 

and (b) The vertical cross–section. These cross–sections were used in the microstructural 

and microhardness observations. The arrow from the centre to the edge refers to the 

longitudinal (radial) direction, while the arrow from the upper surface to lower surface 

refers to the through–thickness direction. 
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3.2 Microscopy Characterisation 

 Optical microscopy 3.2.1

By using the optical microscope (OLYMPUS–BX51, Japan) shown in Figure 3.5, 

microstructural observations were made on the etched cross–sections of the 

processed disks, prepared as shown in section  3.1.1. The average grain size prior 

to HPT processing was determined by means of the linear intercept method on 

optical micrographs.  

 

 Scanning electron microscopy 3.2.2

The scanning electron microscope (JEOL JSM–6500F, Japan), shown in Figure 

3.5 was used in this study to reveal more details on the morphology of as–

received and processed microstructures, and the detailed morphology of the β–

phase. The chemical analysis of the as–received and processed microstructures 

was carried out using energy–dispersive spectroscopy (EDS) attached to the 

SEM. Samples for SEM inspection were prepared metallographically using the 

steps mentioned in section  3.1.1. 

 

Figure 3.5: Left: the optical microscope (OLYMPUS–BX51, Japan) and right: the SEM 

microscope (JEOL JSM–6500F, Japan) facilities used in this study. 
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 The size distribution, area fraction and average size of 3.2.3

the β-phase particles 

These data have been estimated using ImageJ image analysis software 

(http://imagej.nih.gov/ij/) and using a point count technique [163] on the horizontal 

cross–sections of the disks for the as–received alloy and the processed alloy in 

HPT at room temperature using an applied pressure of 3.0 GPa for N = 1/2, 1, 5 

and 10 turns. The analysis has been conducted on several SEM micrographs at 

the same magnification. Three micrographs of each etched microstructure have 

been selected for analysis at random locations on the relevant horizontal cross–

sections of the disks. The micrographs (“field areas”) have been transformed into 

black and white images via contrast control in order to enhance the contrast 

between the grains and β–phase particles. The area fraction has then been 

calculated using the following relation [163]: 

                              
                                                  

          
      (3.1) 

 

where the total no. of particles and the average area of the particles have been 

estimated from the selected field under analysis in terms of black and white pixel 

assignations by the operator. The field area is the area of the SEM micrograph 

under analysis. The area fraction of the β–phase particles has been estimated for 

each of the three selected fields and plotted with associated error bars against the 

number of turns at which the alloy was processed in HPT at room temperature 

using an applied pressure of 3.0 GPa as well as for the as–received alloy. The 

distribution of particle sizes has been estimated and plotted against the particle 

diameter for the aforementioned conditions of the processed alloy and the as–

received alloy. This simple methodology of estimation of the size distribution, area 

fraction and average size of the β-phase particles has been adopted in several 

other studies using this standard ImageJ image analysis software 

[164][165][166][167]. The methodology mentioned above is clearly an estimation 

and the estimated data are affected by the choice of field area under analysis, the 

accuracy of the count for the finer particles and contrast–colour enhancement 

between the grains and the β–phase particles, which partly depends on the type of 
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etchant solution that used in the metallographic preparation of the samples as well 

as the choice of contrast levels during image analysis. 

 

 Transmission electron microscopy 3.2.4

The transmission electron microscope (JEOL JEM–3010, Japan), shown in Figure 

3.6 was used in this study to observe the microstructure of the processed alloy 

down to nanometre scale and in determining the grain size after HPT processing. 

Samples for TEM inspection were prepared in the form of thin disks of 3 mm in 

diameter and about 150 m thickness. These disks were cut from the HPT disks 

using a punch machine and then mechanically ground using abrasive paper 

P4000 and methanol as a coolant during grinding process. Later, these disks were 

subjected to additional thinning to produce thin foils using a twin–jet electro–

polishing facility and a solution consisting of with a solution of 15 ml perchloric 

acid, 15 ml glycerol, and 70 ml ethanol under a voltage of 20 volt for 1 minute. 

     

 X-ray diffraction analysis 3.2.5

X–ray diffraction (XRD) analysis was used to determine the crystallite size and 

density of dislocations in the as–received and processed alloy using the XRD 

facility (D2 Phaser, Germany) as shown in Figure 3.6. The test was conducted at a 

step size of 0.02 from    = 25 to 80 using a Cu Kα source of wavelength of 

0.154 nm. X–ray diffraction analysis is an indirect and alternative technique for 

investigating ultrafine–grained materials. The crystallite size and density of 

dislocations can be estimated using X–ray diffraction analysis [60]. Advantages of 

X–ray diffraction (XRD) analysis over transmission electron microscopy (TEM) are 

the relatively larger area that can be analysed, quicker inspection times and less 

critical sample preparations steps than those are required in TEM [168]. However, 

a difference has been found between the size (usually called the crystallite size) 

measured by X–ray diffraction analysis and the grain size measured by TEM 

observations. This difference reflects the existence of different microstructural 

elements in the UFG material such as grains, subgrains, cell blocks, dislocation 

cells and twins [169].  
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Figure 3.6: Left: the TEM microscope (JEOL JEM–3010, Japan) and right: the XRD facility 

(D2 Phaser, Germany) facilities used in this study. 

 

The crystallite size has therefore been found to be usually smaller than the grain 

size measured by TEM in SPD–processed materials, as the grains in these 

materials are made up of subgrains and / or dislocation cells [170]. Thus coherent 

scattering in the X-ray diffraction analysis from these substructures represents the 

(smaller) mean crystallite size rather than the grains which can be more easily 

observed in TEM [170]. Therefore, both XRD analysis and TEM analysis are 

preferred (when possible) to allow better microstructural investigation in terms of 

grain size reduction and the resultant density of dislocations [169]. When crystals 

are perfect in a material, the diffraction patterns will be uniform and symmetrical as 

shown in Figure 3.7 (a). However, when the crystals became deformed or 

imperfect (as would be expected in SPD materials) the diffraction patterns will be 

shifted and / or broadened as shown in Figure 3.7 (b, c) [60][171]. The shift in X–

ray peaks occurs due to internal stresses, stacking faults and twinning [60]. The 

broadening of X–ray peaks is due to the smallness of the crystallites (< 1 µm) and 

the lattice distortions [172].  

Profile analysis of the X–ray diffraction results has been achieved by two standard 

methods. The first one is based on the full widths at half maximum intensity 

(FWHM) method and the second one is the whole–profile fitting (WPF) method 

[60]. In the FWHM method, the breadth of the profile (             ) on the 

y–axis is plotted against           on the x–axis as shown in Figure 3.8, where 

  is the full width at half maximum intensity,   is the Bragg angle and   is the wave 

length of x–ray source. The intercept of the extrapolated line with y–axis gives the 
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inverse value of the apparent crystallite size. This procedure has been suggested 

by Williamson and Hall [173]. However, a modification has been applied later to 

the Williamson and Hall method to avoid the scattering of plotted data as a result 

of strain anisotropy by the elastic fields of dislocations as shown in Figure 3.8 

[174]. The whole–profile fitting (WPF) of x–ray peaks has been suggested by 

Rietveld [175], in which the peaks are refined and reconstructed using the patterns 

of the ideal random powder of the same sample. Figure 3.8 shows an example for 

XRD patterns that have been analysed using whole–profile fitting procedure 

[176][177]. In the current research, the whole–profile fitting procedure has been 

employed and using Maud XRD software analysis as reported by previous 

researchers [178][179][180][181]. The density of dislocations has been calculated 

using the following relationship [1]: 

  
 √  

      
 

(3.2) 

 

where   is the density of disloactions,   is the microstrain,    is the apparent 

crystallite size and   is the value of Burgers vector. The apparent crystallite size 

and microstrain have been estimated using the whole–profile fitting procedure and 

Maud XRD software analysis. It should be noted that the crystallites have been 

assumed to be spherical and their sizes represent the apparent volume-weighted 

crystallite sizes (     ) that have been obtained using the relation from [182]: 

                 , where       represents the apparent linear crystallite 

diameter that is measured from the XRD plot.      
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Figure 3.7: Schematic illustration shows the x–ray diffraction from (a) unstrained 

crystallite, (b) homogeneously strained crystallite and (c) in) homogeneously strained 

crystallite [171]. 

 

Figure 3.8: The classical (left) and modified (right) Williamson–Hall plot for the Cu 

processed in ECAP for 12 passes using the route    at room temperature [6][183].  
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Figure 3.9: The XRD patterns (open circles) for the Al–3% Mg powder milled for 3 hr., 

where these patterns have been fitted using the whole–profile fitting procedure as shown 

by the solid line [184].      

 

3.3 Mechanical Tests 

 Microhardness Test 3.3.1

3.3.1.1 Sample preparation for test 

The samples from the microstructure inspection step were re–ground and re–

polished using the same steps in section  3.1.1, to get mirror–like finish surfaces for 

microhardness testing over the horizontal and vertical cross–sections that are 

shown in Figure 3.4 (b), using the Vickers microhardness tester (FM–300, Japan) 

as shown in Figure 3.10. The microhardness measurements of the processed disk 

were conducted using an applied load of 100 gf and a dwell time of 15 sec.  

 

3.3.1.2 Methodology of hardness measurement 

Three procedures were adopted to obtain the values of microhardness, as follows:  

1. For the microhardness profile along the diameter of the processed disk, the 

measurements were taken at positions separated by 0.3 mm between two 

successive indentations in a given horizontal row. An average value of 

recorded microhardness was obtained for four individual points located around 
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the selected position.  Alternate horizontal rows were offset by 0.15 mm, thus 

four hardness measurements at a distance of 0.15 mm can be considered to 

characterise these individual points. An illustration of the locations of these 

microhardness measurements is shown by the red rectangle in Figure 3.11.  

2. For the microhardness distribution over the horizontal cross–section of the 

processed disk, a rectilinear grid was used to record the microhardness values 

with a separation of 0.3 mm between each two successive indentations. 

Colour–coded maps were used to represent the collected data, since these 

maps provide an indication of the achieved strengthening as a function of 

processing conditions. The variation in the colours on these maps represents 

the local variation in microhardness distribution. An illustration of locations for 

microhardness measurements across one–quarter of the horizontal cross–

section is shown by the blue arc in Figure 3.11 [143].  

3. For the microhardness distribution over the vertical cross–section of the 

processed disk, a separation of 0.1 mm was used between each two 

successive indentations. Colour–coded maps were also used to represent the 

collected data using a rectilinear grid of recorded values of the microhardness 

as illustrated in Figure 3.12. The colour–coded map represents the variations 

of measured microhardness as a function of the positions across the vertical 

cross–section. 

 

Figure 3.10: Left: The microhardness tester (FM–300, Japan) used in this study and right: 

Indenter and lens assembly. 
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Figure 3.11: An illustration of one–quarter of the horizontal cross–section of HPT disk that 

illustrated schematically in Figure 3.4 (a), shows the procedure of the microhardness 

measurement across the diameter of the disk as shown by the red rectangle, where the 

open circles that are surrounded by four recorded microhardness values represent the 

selected positions of microhardness profile. The rest of the recorded values, as illustrated 

by the blue arc, represent the method used in recording the microhardness map over the 

entire horizontal cross–section of each disk [143].  

 

Figure 3.12: An illustration of one–half of the vertical cross–sections of the HPT disk 

illustrated schematically in Figure 3.4 (a), which shows the locations of the microhardness 

measurements.  
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 Tensile test 3.3.2

3.3.2.1 Sample preparation for testing 

For tensile tests, the processed disks were carefully ground to thicknesses of 0.6 

mm using an abrasive paper to prepare them for cutting into micro-tensile samples 

as illustrated in Figure 3.13 [99]. The method of cutting these micro-tensile 

samples from the HPT disks is known as the off–centre position method. This 

method is used to avoid the central region in an HPT disk where structural 

heterogeneity is anticipated after HPT. This allows production of two miniature 

tensile samples per HPT disk with dimensions of (1.0×0.9×0.6) mm3 as measured 

by the optical microscope.  

 

3.3.2.2 Methodology of tensile test 

The tensile test was conducted at initial strain rates between 1×10-1 s-1 to 1×10-4 s-

1 at each testing temperature of 423, 473, and 573 K, and for tensile samples 

produced from disks processed for N = 1, 3, 5 and 10 turns. The tensile samples 

of the as–received alloy were tested at the same range of strain rate and at testing 

temperatures of 296, 473 and 573 K. The processed alloy was tensile tested at a 

temperature of 296 K for N = 1 and 3 turns. Each tensile test evaluation of a 

particular processing condition was conducted using two tensile samples and 

hence 136 tensile samples were used in this investigation. Tensile testing was 

carried out using a Zwick/Roell tension (Z030, Germany) machine shown in Figure 

3.13 operating at a constant rate of crosshead displacement. The load and 

displacement data were gathered using testIIXpert testing software in a computer–

acquisition system. Curves of engineering stress versus elongation and 

elongation–to–fracture versus strain rate were plotted. The flow stress versus 

strain rate curves were plotted to measure the values of strain–rate sensitivity ( ). 

The microstructures of tensile samples after testing were observed at the gauge 

section surfaces using scanning electron microscopy. In order to investigate the 

surface morphology in detail, the as–tested samples were observed without any 

further metallographic preparation. The average grain size was estimated from 

these SEM images along the gauge lengths of the tested samples using a linear 

intercept method and then corrected by a factor of 1.74 [185]. This procedure has 
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been conducted because optical microscopy of tensile samples after testing led to 

significant smearing in the polished samples after chemical etching, obscuring any 

grain size measurement. Additional steps of grinding and polishing would also 

have resulted in a detrimental reduction in the thickness of the tensile sample 

being observed, which is already very thin after testing. Microstructural 

observations of the gauge length of tensile samples using SEM observation have 

been adopted in many studies due to these constraints [186][187][188][189]. 

 

 

Figure 3.13: Left: Schematic illustration for the positions of tensile samples within the HPT 

disk [99], and right: The tensile machine (Z030, Germany) used in in this study. 



 

 

Chapter Four: Results 



Results | 81 

 

4. RESULTS 

4.1 Microstructure Observations 

 Microstructure processed at 296 K across the horizontal 4.1.1

cross–sections  

The as–received AZ91 alloy of an average grain size of 30 µm is shown in                 

Figure 4.1. The microstructure consists of two main phases: α–Mg matrix; and 

lamellar and agglomerate forms of β–phase with the presence of Al8Mn5 particles 

as shown in Figure 4.1 (b). It is obvious from Figure 4.1 (c) that the grain 

boundaries between α–Mg grains are covered with the β–phase. The magnesium 

matrix appears darker than the β–phase, which appears brighter as shown in 

Figure 4.1. The chemical analyses of the alloy constituents for the as–received 

alloy and processed alloy for N = 5 turns are shown in Figure 4.2 and Figure 4.3, 

where the white arrows show the locations of the analyses. The weight fractions of 

Mg, Al, Zn, and Mn in the matrix, β–phase and Al8Mn5 particles are shown in 

Tables (4.1– 4.2). No significant changes were introduced to the compositions of 

the alloy before and after processing, as shown by the weight percentages of the 

alloy constituents.  

The microstructures of AZ91 alloy in the case of pressing only (without torsion) are 

shown in Figures (4.4 – 4.6), where the compression resulted in fragmentation of 

lamellar and agglomerate β–phase and scattering or spreading of a few β–phase 

particles to the surrounding areas. The microstructures of AZ91 alloy as observed 

by SEM and TEM after HPT processing for N = 1/2, 1, 3, 5 and 10 turns at the 

centre and the edge of the processed disks are shown in Figures (4.7 – 4.29, 

4.31), where the grain refinement of the microstructure occurred significantly at the 

edges in the earlier stage of processing. The grain boundaries became ill–defined 

as seen by SEM gradually with increasing the number of turns up to N = 10 turns, 

as shown in Figures (4.13, 4.15, 4.17) for the sample processed for N = 1 turn, 

Figures (4.18, 4.19) for the sample processed for N = 3 turns, Figures (4.20, 4.22, 

4.23, 4.31) for the sample processed for N = 5 turns and Figures (4.26 – 4.29) for 

the sample processed for N = 10 turns. 

The morphology and distribution of the β–phase altered after HPT processing as 

shown in Figures (4.8, 4.10, 4.11) for the sample processed for N = 1/2 turn, 
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Figures (4.13, 4.14, 4.15) for the sample processed for N = 1 turn, Figures (4.18, 

4.19) for the sample processed for N = 3 turns, Figures (4.20 – 4.24) for the 

sample processed for N = 5 turns, and Figures (4.26 – 4.28) for the sample 

processed for N = 10 turns. The fragmentation of the β–phase into small particles 

occurred during processing as revealed in Figures (4.8 – 4.10) for the sample 

processed for N = 1/2 turn, Figures (4.13 – 4.17) for the sample processed for N = 

1 turn, and Figures (4.18, 4.19) for the sample processed for N = 3 turns. The 

break–up of the β–phase was associated with the scattering or spreading of these 

particles to the surrounding areas as shown in Figure 4.11 for the sample 

processed for N = 1/2 turn, and Figure 4.17 for the sample processed for N = 1 

turn. The fine particles of β–phase were aligned in the form of bands as shown in 

Figure 4.15 for the sample processed for N = 1 turn, Figures (4.18, 4.19) for the 

sample processed for N = 3 turns, Figures (4.20 – 4.22, 4.24) for the sample 

processed for N = 5 turns and Figures (4.26 – 4.29) for the sample processed for 

N = 10 turns. A close look at the aligned bands of the β–phase showed well–

distributed particles with nanometre sizes, as shown in Figure 4.25 for the sample 

processed for N = 5 turns and Figure 4.29 for the sample processed for N = 10 

turns. The size distribution, area fraction and average size of β–phase are 

illustrated in Figure 4.30, for the as–received alloy and processed alloy for different 

number of turns after HPT processing at 296 K. The AZ91 alloy was inspected 

using TEM for samples processed at room temperature for N = 1/2 and 1 turn in 

HPT using an applied pressure of 3.0 GPa as presented in Figure 4.31. The 

microstructure of the alloy at this low number of turns (N = 1/2) revealed the 

occurrence of the grain refinement with grain sizes in the range of (200 – 1000) 

nm as shown in Figure 4.31 (a). The alloy exhibited a strong degree of grain 

refinement down to 50 nm after just N = 1 turn as exhibited in Figure 4.31 (b) and 

the grain boundaries after N = 5 turns were ill–defined as shown in Figure 4.31 (c). 

 

 Microstructure processed at 296 K across the vertical 4.1.2

cross–sections 

The microstructures of the vertical cross–sections of the disks processed at room 

temperature, for N = 1/4, 1 and 5 turns, using an applied pressure of 3.0 GPa, are 
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presented in Figure 4.32. The microstructure of the as–received alloy is also 

shown in Figure 4.32. These images represent the centre, mid–radius and edge 

regions of the vertical planes of disks. The apparent variation in microstructures 

can be seen in the through–thickness and radial directions. The as–received alloy 

showed a matrix of α–Mg solid solution and β–phase along the grain boundaries, 

without no apparent alignment of either phase, as exhibited in Figure 4.32 (a – c) 

and Figure 4.33 (a). The processed disks exhibited elongated microstructure, 

shear bands decorated by β–phase and twinning, all distributed along the vertical 

cross–sections as presented in Figure 4.32 (d – l) and Figure 4.33 (b – d). The 

microstructure seems slightly deformed, and tends to be elongated in the direction 

of torsion straining at the centre region along the vertical cross–sections as 

exhibited in Figure 4.32 (d) for N = 1/4 turn, which is associated with the presence 

of the shear bands decorated by β–phase and twinning as shown in Figure 4.32 

(d) and Figure 4.33 (b). It can be seen that more shear bands appeared at mid–

radius and edge areas as shown in Figure 4.32 (e, f). The elongated 

microstructure showed an increase in the alignment in the direction of torsion 

straining as shown in Figure 4.32 (f).  

After processing for N = 1 turn, the microstructure was more elongated at the 

centre region and was associated with the aligned β–phase near the top and 

bottom surfaces as shown in Figure 4.32 (g). The microstructure exhibited areas 

containing shear bands decorated by β–phase aligned in random directions, but 

the major direction of these bands tends to be parallel to the vertical cross–section 

of the processed disk at mid–radius and edge areas as shown in Figure 4.32 (h, i). 

Further straining up to N = 5 turns resulted in the formation of a main shear band 

in the centre area, which consisted of many secondary shear bands aligned at 45° 

with respect to the main shear band along the vertical cross–section of the 

processed disk as shown in Figure 4.32 (j). The width of the main shear band 

increased in the mid–radius region and it was associated with secondary shear 

bands that aligned along the vertical cross–section of the processed disk as 

shown in Figure 4.32 (k). It was found that the microstructures in both mid–radius 

and edge regions consist of severely deformed microstructures aligned parallel to 

the vertical cross–section as shown in Figure 4.32 (l, i) for N = 1 and N = 5 turns, 

respectively. 
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 Microstructure processed at 423 K and 473 K across 4.1.3

the horizontal cross–sections 

The microstructure of the AZ91 alloy processed at 423 K using an applied 

pressure of 3.0 GPa for N = 1/2, 1 and 5 turns are shown in Figures (4.34 – 4.36), 

respectively. The samples showed twinning across the processed microstructures 

and this evolution of twinning increased and spread gradually with increasing 

number of turns especially at the edge regions of the processed disks. The 

microstructures at the centre regions showed a slower rate of twinning evolution 

as shown in Figure 4.34 (a), Figure 4.35 (a) and Figure 4.36 (a) compared to that 

at the edge regions. The level of grain refinement at the centre regions occurred at 

a slower rate than at edge regions. It can be seen that the microstructures at the 

edge regions were refined effectively through the segmentation of the coarse 

grains by twinning as shown in Figure 4.34 (b), Figure 4.35 (b) and Figure 4.36 (b). 

The microstructure of the AZ91 alloy processed at 473 K using an applied 

pressure of 3.0 GPa for N = 1/2, 1 and 5 turns are shown in Figure 4.37. The 

activity of twinning at the centre regions of the processed disks was increased with 

increasing number of turns. For samples processed for N = 1/2 and 1 turn, the 

twins were resulted in the segmentation of grains as shown in Figure 4.37 (a, b) 

similarly for samples processed at 423 K. Grain growth was found in the sample 

processed for N = 5 turns as shown in Figure 4.37 (c). 

 

 XRD results 4.1.4

The XRD diffraction patterns were recorded for the as–received alloy and 

processed alloy at 296 K in HPT using an applied pressure of 3.0 GPa for N = 1/2, 

1, 5 and 10 turns and the results are plotted as shown in Figure 4.38 (a – e). 

Recorded peaks belong to the α–Mg matrix, where prismatic 

planes     ̅   and     ̅  , basal plane        and pyramidal planes     ̅  , 

    ̅  ,     ̅   and     ̅   were detected as shown in Figure 4.38 for all tested 

samples. The whole–profile fitting procedure for the recorded peaks is shown in 

Figure 4.38 (f – g) for as–received alloy and processed alloy at 296 K in HPT using 
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an applied pressure of 3.0 GPa for N = 10 turns. The prismatic plane     ̅   

dominated before HPT processing in the as–received alloy, while after processing 

the pyramidal plane     ̅   was more dominant. Furthermore, two pyramidal 

planes     ̅   and     ̅   were detected after processing and these planes were 

not detected in the as–received alloy. The lattice parameters were calculated for 

the processed alloy using the following relation [190]: 

 

   
 

 
 

 
(
        

  
)  

  

  
 (4.1) 

  

where     is the inter–spacing distance between the atomic planes,       are Miller 

indices and     are the short and long lattice constants in the HCP structure. The 

values of constants   and   of the AZ91 alloy were about 0.317 nm and 0.550 nm, 

respectively, which are slightly different from their counterparts for pure 

magnesium that are quoted as 0.320 nm and 0.520 nm for the constants   and  , 

respectively [191]. The variation in the crystallite size of the processed alloy with 

the number of turns in HPT processing at 296 K is plotted in Figure 4.39. A 

significant reduction in the crystallite size was achieved with increasing the 

number of turns in HPT at 296 K, which emphasizes the advantage of HPT 

processing at room temperature rather than processing at elevated temperatures. 

Another direct observation of the effect of processing at room temperature will be 

shown later through the microhardness results in the next section.  
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Figure 4.1: (a) The microstructure of the as–received AZ91 magnesium alloy on the 

horizontal cross–section of the disk, (b) A magnified view of the as–received 

microstructure shows the presence of lamellar (arrow–1) and agglomerate (arrow–2) 

forms of β–phase and Al8Mn5 compound (arrow–3), and (c) A magnified view of the as–

received microstructure shows the presence of β–phase along the grain boundaries. 
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Figure 4.2: The chemical analysis of as–received AZ91 magnesium alloy on the horizontal 

cross–section of the disk shows: (a) α–matrix, (b) β–phase (Mg17Al12 intermetallic 

compound) and (c) Al8Mn5 intermetallic compound. The white arrows show the locations 

of the chemical analyses. 

 

(a) 

(c) 

(b) 
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Figure 4.3: The chemical analysis on the horizontal cross–section of the AZ91 disk 

processed by HPT after N = 5 turns for: (a) α–matrix, (b) β–phase (Mg17Al12 intermetallic 

compound) and (c) Al8Mn5 intermetallic compound. The white arrows show the locations 

of the chemical analyses. 

 

(a) 

(b) 

(c) 
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Table 4.1: The chemical compositions on selected locations in Figure 4.2 for the as–

received AZ91 magnesium alloy for: (a) α–matrix, (b) β–phase (Mg17Al12 intermetallic 

compound) and (c) Al8Mn5 intermetallic compound. 

(a) α–matrix (b) β–phase (Mg17Al12) (c) Al8Mn5 compound 

Element wt.% Element wt.% Element wt.% 

Mg 88.74 Mg 55.14 Mg 4.44 

Al 9.57 Al 43.13 Al 43.10 

Zn 1.11 Zn 0.94 Zn 0.45 

Mn 0.58 Mn 0.79 Mn 51.95 

 

Table 4.2: The chemical compositions on selected locations in Figure 4.3 for the AZ91 

magnesium alloy processed by HPT after N = 5 turns at 296 K using an applied pressure 

of 3.0 GPa for: (a) α–matrix, (b) β–phase (Mg17Al12 intermetallic compound) and (c) Al8Mn5 

intermetallic compound. 

(a) α–matrix (b) β–phase (Mg17Al12) (c) Al8Mn5 compound 

Element wt.% Element wt.% Element wt.% 

Mg 87.74 Mg 58.22 Mg 6.10 

Al 10.53 Al 40.20 Al 42.10 

Zn 1.31 Zn 0.91 Zn 0.65 

Mn 0.42 Mn 0.67 Mn 51.15 
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Figure 4.4: The microstructure on the horizontal cross–section at the centre region for the 

pressed disk without torsion (N = 0) at 296 K using an applied pressure of 3.0 GPa. 

 

Figure 4.5: A magnified view of the microstructure on the horizontal cross–section at the 

centre region of the pressed disk without torsion (N = 0) at 296 K using an applied 

pressure of 3.0 GPa, shows the fragmentation of lamellar and agglomerate β–phase. 
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Figure 4.6: A magnified view of the microstructure on the horizontal cross–section at the 

centre region of the pressed disk without torsion (N = 0) at 296 K using an applied 

pressure of 3.0 GPa, shows the scattering of β–phase particles. 

 

Figure 4.7: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 1/2 turn at 296 K using an applied pressure of 3.0 GPa. 
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Figure 4.8: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 1/2 turn at 296 K using an applied pressure of 3.0 GPa shows the 

fragmentation of β–phase. 

 

Figure 4.9: The microstructure on the horizontal cross–section at the edge region after 

HPT processing for N = 1/2 turn at 296 K using an applied pressure of 3.0 GPa. 
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Figure 4.10: The microstructure on the horizontal cross–section at the edge region after 

HPT processing for N = 1/2 turn at 296 K using an applied pressure of 3.0 GPa shows the 

fragmentation of β–phase as shown by the green arrows. 

 

Figure 4.11: A magnified view of the microstructure on the horizontal cross–section at the 

edge region after HPT processing for N = 1/2 turn at 296 K using an applied pressure of 

3.0 GPa shows the fragmentation and scattering of β–phase particles. 
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Figure 4.12: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 1 turn at 296 K using an applied pressure of 3.0 GPa. 

 

Figure 4.13: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 1 turn at 296 K using an applied pressure 3.0 GPa shows the β–

phase fragmentation. 
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Figure 4.14: The microstructure on the horizontal cross–section at the edge region after 

HPT processing for N = 1 turn at 296 K usning an applied pressure of 3.0 GPa. 

 

Figure 4.15: The microstructure on the horizontal cross–section at the edge region after 

HPT processing for N = 1 turn at 296 K using an applied pressure of 3.0 GPa shows the 

alignment of β–phase as indicated by the green arrows. 
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Figure 4.16: A magnified view of the microstructure on the horizontal cross–section at the 

edge region after HPT processing for N = 1 turn at 296 K using an applied pressure of 3.0 

GPa shows the nano–sized particles of the aligned β–phase. 

 

Figure 4.17: A magnified view of the microstructure on the horizontal cross–section at the 

edge region after HPT processing for N = 1 turn at 296 K using an applied pressure of 3.0 

GPa shows the grain boundaries became ill–defined and the fragmentation and scattering 

of β–phase particles. 
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Figure 4.18: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 3 turns at 296 K using an applied pressure of 3.0 GPa shows the 

alignment of β–phase near the centre region as indicated by the green arrows. 

 

Figure 4.19: The microstructure on the horizontal cross–section at the edge region after 

HPT processing for N = 3 turns at 296 K using an applied pressure of 3.0 GPa shows the 

grain boundaries became ill–defined and the fragmentation of aligned β–phase as 

indicated by the green arrows. 
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Figure 4.20: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 5 turns at 296 K using an applied pressure of 3.0 GPa shows no 

distinct grain boundaries and the alignment and distribution of β–phase particles. 

 

Figure 4.21: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 5 turns at 296 K using an applied pressure of 3.0 GPa shows the 

alignment of β–phase particles. 



Results | 99 

 

 

Figure 4.22: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 5 at 296 K using an applied pressure of 3.0 GPa turns shows the 

fragmentation of aligned β–phase as shown by the green arrows. 

 

Figure 4.23: The microstructure on the horizontal cross–section at the edge region after 

HPT processing for N = 5 turns at 296 K using an applied pressure of 3.0 GPa shows the 

distribution of β–phase particles with no distinct grain boundaries. 
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Figure 4.24: The microstructure on the horizontal cross–section at the edge region after 

HPT processing for N = 5 turns at 296 K using an applied pressure of 3.0 GPa. 

 

Figure 4.25: A magnified view of the microstructure on the horizontal cross–section at the 

edge region after HPT processing for N = 5 turns at 296 K using an applied pressure of 

3.0 GPa shows the nano–sized particles of the aligned β–phase. 
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Figure 4.26: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 10 turns at 296 K using an applied pressure of 3.0 GPa shows the 

alignment of β–phase particles and no distinct grain boundaries. 

 

Figure 4.27: The microstructure on the horizontal cross–section at the centre region after 

HPT processing for N = 10 turns at 296 K using an applied pressure of 3.0 GPa shows the 

fragmentation of β–phase particles and no distinct grain boundaries. 
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Figure 4.28: The microstructure on the horizontal cross–section at the edge region after 

HPT processing for N = 10 turns at 296 K using an applied pressure of 3.0 GPa shows the 

alignment of β–phase particles and no distinct grain boundaries. 

 

Figure 4.29: The microstructure on the horizontal cross–section at the edge region after 

HPT processing for N = 10 turns at 296 K using an applied pressure of 3.0 GPa shows the 

nano–sized particles of the aligned β–phase. 
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Figure 4.30: The size distribution, area fraction and average size of the β-phase particles 

in the as–received alloy and processed alloy at 296 K using an applied pressure of 3.0 

GPa for different number of turns on the horizontal cross–sections of the processed disks.  
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Figure 4.31: Microstructure as observed by TEM of the AZ91 alloy processed in HPT at 

296 K using an applied pressure of 3.0 GPa for (a) N = 1/2 turn, (b) N = 1 turn and (c) N = 

5 turns on the horizontal cross–sections of the processed disks.  
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Figure 4.32: The microstructures at the centre, mid–radius, and edge regions across the 

vertical cross–sections of the as–received and processed disks after different numbers of 

turns at 296 K using an applied pressure of 3.0 GPa. The yellow and red arrows refer to 

the elongated microstructure and shear bands decorated by β–phase, respectively. All 

scales are 100 m. 
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Figure 4.33: Magnified views of the microstructures along the vertical planes as observed 

by the optical microscope for: (a) the as–received alloy and the disk processed at 296 K 

using an applied pressure of 3.0 GPa for: (b) N = 1/4 turn, (c) N = 1 turn and (d) N = 5 

turns. The black and red arrows refer to the twinning and shear bands decorated by the 

β–phase, respectively. 

 

(d) 

(c) 
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Figure 4.34: Magnified views of the microstructures on the horizontal cross–sections of 

the disks of the AZ91 alloy processed in HPT at 423 K using an applied pressure of 3.0 

GPa for N = 1/2  turn at: (a) the centre region and (b) the edge region. 

 

(a) 

(b) 
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Figure 4.35: Magnified views of the microstructures on the horizontal cross–sections of 

the disks of the AZ91 alloy processed in HPT at 423 K using an applied pressure of 3.0 

GPa for N = 1 turn at: (a) the centre region and (b) the edge region. 

 

(b) 

(a) 



Results | 110 

 

 

Figure 4.36: Magnified views of the microstructures on the horizontal cross–sections of 

the disks of the AZ91 alloy processed in HPT at 423 K using an applied pressure of 3.0 

GPa for N = 5 turns at: (a) the centre region and (b) the edge region. 

  

(a) 

(b) 
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Figure 4.37: Magnified views at the centre regions of the microstructures on the horizontal 

cross–sections of the disks of the AZ91 alloy processed in HPT at 473 K using an applied 

pressure of 3.0 GPa for: (a) N = 1/2 turn, (b) N = 1 turn and (c) N = 5 turns. 

 

 

(c) 
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Figure 4.38: XRD diffraction patterns for: (a) the as–received AZ91 alloy and for the AZ91 

alloy processed at the edge regions of the disks on the horizontal cross–sections of 296 K 

using an applied pressure of 3.0 GPa in HPT for: (b) N = 1/2 turn, (c) N = 1 turn, (d) N = 5 

turns and (e) N = 10 turns. Examples of the fitting for XRD peaks are shown in (f) for the 

as–received AZ91 alloy and (g) for the AZ91 alloy processed for N = 10 turns. 
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Figure 4.39: The variation in the apparent crystallite size with number of turns for AZ91 

alloy processed at 296 K in HPT on the horizontal cross–sections of the as–received alloy 

and processed alloy. 
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4.2 Microhardness Results 

 Distributions of microhardness across the diameter after 4.2.1

using two different applied pressures in HPT processing 

The distributions of microhardness across the diameters are shown in Figure 4.40 

for disks of AZ91 magnesium alloy processed by HPT using an applied pressure 

of 3.0 GPa for N = 0, 1/4, 1/2, 3/4, 1, 5, 10 turns, as well as using an applied 

pressure of 6.0 GPa for N = 0, 1/2, 1, 3, 5, 10 turns, where N = 0 means the 

pressed disk for 1 minute without torsion. The grey lines in Figure 4.40 show the 

average values for the Vickers microhardness of the as–received alloy, which was 

about 65. After pressing (without torsion) using applied pressures of 3.0 and 6.0 

GPa, a gradual increment can be noticed in Vickers microhardness to about 100 in 

the edge regions, and a smaller increment at the centre region for the pressed 

disks as shown in Figure 4.40. 

After HPT processing using an applied pressure of 3.0 GPa, a gradual increment 

was found in the microhardness to about 120 for the processed disks for N = 1/4, 

1/2, 3/4 and 1 turn at the edge regions, whereas the increment in microhardness 

was about 100 in the centre regions of the processed disks. No significant 

differences were found between microhardness distributions for the disks 

processed along the diameter for N = 1/4, 1/2, 3/4 and 1 turn. By increasing the 

number of turns, an increment in microhardness to about 130 was found at the 

centre region of the disk processed for N = 3 turns, with development of stability in 

the microhardness distribution across the diameter. The microhardness increased 

to about 135 along the diameter for the disks processed for N = 5 and 10 turns, 

with no significant difference in microhardness distributions between them.  

After HPT processing using an applied pressure of 6.0 GPa and for N = 1/2 turn, a 

gradual increment was found in the microhardness to about 120 at the edge 

regions as shown in Figure 4.40, whereas the increment in the microhardness was 

about 90 at the centre region of the processed disk. By increasing the number of 

turns to N = 1 and 3 turns, an increment in microhardness distributions was found, 

where the microhardness increased to about 110 at the centre regions and this 

increased to about 120 for the rest of the diameters. The microhardness 

distributions for the disks processed for N = 1 and 3 turns showed no significant 
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difference along the diameters. The microhardness increased to about 135 along 

the diameter for the disks processed for N = 5 and 10 turns, and no significant 

difference was noticed in microhardness distributions between them.  

The values of microhardness that are listed in Figure 4.40 are illustrated in                  

Table  4.3 and these values are shown for a radius between 0 mm (centre of the 

disk) and 4.8 mm (edge of the disk) for the disks processed for N = 1/2, 1, 3, 5, 10 

turns and for the as–received alloy. It was assumed that the values of recorded 

microhardness are the same along both radii around the centre position (0 mm) of 

each disk. Each value of microhardness was based on the average of four 

individual indentations (cross–sign points) taken around an identified position 

(open circles) as shown schematically by the red rectangle in Figure 3.11 and 

represented by the column of the distance from the centre in Table 4.3.   

Several trends can be concluded from Figure 4.40. First, the highest error bars 

were found at the centre regions of the disks, and relatively lower error bars were 

presented in the edge regions. Second, a decrease in the values of the error bars 

was found at the centre region with increasing number of turns. Third, the edge 

regions of the processed disks exhibited a bigger increment in the microhardness 

than that at the centre regions, as shown for the disks processed for N = 1/2 and 1 

turn. Later, a saturation in the distributions of microhardness was found in the 

processed disks for N = 3, 5 and 10 turns at the centre and edge regions. 

A correlation of the microhardness values relative to the imposed equivalent strain 

during HPT processing is plotted in Figure 4.41. A significant increase in the 

microhardness was observed with increasing the equivalent strain that imposed 

during HPT. Another correlation was plotted as shown in Figure 4.42 (a) for the 

microhardness values and the crystallite size versus the number of turns in HPT 

for the AZ91 alloy processed at 296 K. It is obvious that the increasing of number 

of turns is associated with a significant grain refinement and a considerable 

increase in microhardness. An experimental Hall–Petch relationship was obtained 

by plotting the values of microhardness and crystallite size obtained in this 

research as shown in Figure 4.42 (b). The slope of the straight line represents the 

experimental Hall–Petch relationship for the AZ91 alloy processed in HPT at 296 K 

for N = 1/2, 1, 5, 10 turns. It can be seen there is a significant dependency of 



Results | 118 

 

microhardness on the crystallite size for the AZ91 alloy. The dislocation density 

has calculated for the AZ91 alloy processed at 296 K and plotted versus the 

crystallite size and Vickers microhardness as shown in Figure 4.43 (a,b). The 

dislocation density has increased gradually with increasing the number of turns 

and become relatively saturated at N = 5 and 10 turns, and this behaviour was 

associated with the decrease in the crystallite size down to nanometre scale as 

shown in Figure 4.43 (a). The gradual increase in the dislocation density has 

resulted in a gradual development in microhardness, and the relative saturation in 

the Vickers microhardness that observed at N = 5 and 10 turns was associated 

with the relative saturation in the dislocation density shown in Figure 4.43 (b). An 

experimental Taylor relationship [184][192] was obtained by plotting the values of 

microhardness versus the dislocation density obtained in this research as shown 

in Figure 4.44 (a). The trend of strengthening was similar to that obtained by the 

Hall–Petch relationship and it confirms the effect of dislocation density on the 

resultant strength as well as the effect of the grain boundaries as illustrated in 

Figure 4.44 (b). 

  

 Distributions of microhardness across the horizontal 4.2.2

cross–sections for the alloy processed at 296 K, 423 K 

and 473 K 

The colour–coded maps show comprehensive distributions of the recorded 

microhardness across the entire horizontal cross–section (see Figures 3.11 (a) 

and 3.7) with regard to the condition of processing and the location on the 

horizontal cross–section relative to the centre of the disk. These plots are shown in 

Figure 4.45 for the disks processed at 296 K using an applied pressure of 3.0 GPa 

for N = 1/2, 1, 5, and 10 turns. The colours on these maps show the distribution of 

individual values of the recorded microhardness. A small inset in Figure 4.45 

shows the scale of microhardness values with regard to each colour. The 

distribution of microhardness values for N = 1/2 turn across the horizontal cross–

section of the processed disk is shown in Figure 4.45. There are two distinct 

halves showing an increment in the recorded microhardness. The first half of the 

processed disk shows a higher value of microhardness within 120 –130, and a few 
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dots with a relatively lower microhardness of 110. The second half of the disk 

shows an increment in microhardness of 110 in most of the cross–section area, 

which is relatively less than their counterparts in the first half of the processed 

disk, as well as a few dots of a higher microhardness within 120 – 130. Some dots 

are found in the second half, which contain a relatively lower recorded 

microhardness of 100, although this is still higher than the initial microhardness of 

the as–received alloy, which roughly equals to 65. These dots lie at the centre and 

near the edges in the second half of the processed disk.  

The distribution of microhardness values of the disk processed for N = 1 turn over 

the horizontal cross–section of the processed disk is shown in Figure 4.45. Two 

distinct regions show an increment in the recorded microhardness. The outer area 

is represented by a higher microhardness in the range 120 – 140, and a few spots 

of microhardness within 110 – 120. The inner area showed a low microhardness in 

the centre region with a relatively low microhardness of 100 and an area of a 

higher microhardness of 110. The distribution of microhardness values for the disk 

processed for N = 5 turns is shown in Figure 4.45 across the horizontal cross–

section of the processed disk. The distribution showed a majority of high values of 

microhardness within 130 – 140, as well as a few spots spread mainly around the 

edge regions with a microhardness of 110 – 120. The distribution of 

microhardness of the disk processed for N = 10 turns values are shown in Figure 

4.45 across the horizontal cross–section of the processed disk. The results 

showed a high homogeneity in the recorded microhardness with a saturation limit 

of 135 – 140.  

Similar procedures for these microhardness maps were adopted for the alloy 

processed at 423 K and 473 K in HPT. The Vickers microhardness maps for the 

disks processed at 423 K in HPT using an applied pressure of 3.0 GPa are shown 

in Figure 4.46. The distribution of microhardness for the disk processed for N = 1/2 

turns consists of two regions as shown in Figure 4.46. The inner region has a 

microhardness of 80 – 90 and this region spread over from the edge towards the 

centre of the disk. The outer region spreads over a smaller area rather than the 

inner region. The disk processed for N = 1 turn shows a spread of the relatively 

higher microhardness of 110 starting from the edges of the disk and the relatively 

lower microhardness is confined to the centre of the disk as shown in Figure 4.46. 
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Increasing the number of turns in HPT leads to a considerable increase in the 

microhardness to 120 – 130 over the whole cross–section of the disk processed 

for  N = 5 turns as shown in Figure 4.46, with a relatively small area of lower 

microhardness at the centre of the disk. Further processing towards N = 10 turns 

results in a saturation in the distribution of microhardness over the whole cross–

section, and this distribution is heterogeneous with the existence of regions of 

relatively lower microhardness at the centre and the edge of the processed disk as 

shown in Figure 4.46. 

The Vickers microhardness maps for the alloy processed at 473 K in HPT using an 

applied pressure of 3.0 GPa is shown in Figure 4.47. The level of microhardness is 

relatively lower than for the alloy processed at 296 K and 423 K. For the disks 

processed for N = 1/2 and 1 turn, the microhardness is divided into two distinct 

regions with values of 90 and 110, respectively. A relatively early saturation in 

microhardness of average value of 110 appears for the disk processed for N = 5 

turns associated with regions of relatively lower microhardness. A significant and 

homogenous decrease in the microhardness is found for the sample processed for 

N = 10 turns as shown in Figure 4.47. 

 

 Distributions of microhardness across the vertical 4.2.3

cross–sections for the alloy processed at 296 K, 423 K 

and 473 K 

The colour–coded maps were again used to reveal the changes in the 

microhardness on the vertical cross–sections (see Figure 3.11 (b)) of the 

processed disks. Figure 4.48 shows the distributions of microhardness relative to 

the position of measurement in the through–thickness direction (see Figure 3.12). 

The maps were plotted for whole vertical cross–sections of the disks processed at 

296 K using an applied pressure of 3.0 GPa, for  N = 1/2, 1, 5 and 10 turns, 

respectively. Significant differences in the distributions of microhardness can be 

noticed in different positions in the radial directions for the disks processed for N = 

1/2 and 1 turn, and these differences occurred especially at the centres of the 

disks. A homogeneous distribution of the microhardness was found in the disks 

processed for N = 5 and 10 turns. The sample processed for N = 10 turns exhibits 
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relatively higher values of microhardness compared to the sample processed for N 

= 5 turns. The current results show that increasing the numbers of turns results in 

an increase in homogeneity of microhardness distribution in the vertical cross–

sections of the processed disks at room temperature. 

The samples processed at 423 K in HPT using an applied pressure of 3.0 GPa are 

shown in Figure 4.49. The alloy processed at 423 K shows a slower rate of 

development of microhardness with increasing number of turns in HPT compared 

to that for the alloy processed at 296 K. The samples processed for N = 1/2 and 1 

turn exhibit a lower microhardness across the vertical cross–sections especially at 

the centre region. The samples processed for N = 5 and 10 turns show a 

significant increase in the overall distribution of microhardness with a higher 

microhardness at the mid-radius and edge regions compared to the centre region. 

These samples exhibit also heterogeneous distributions of the microhardness 

across their vertical cross–sections even at high number of turns compared to the 

homogenous distributions of microhardness found for the samples processed at 

296 K. 

The samples processed at 473 K in HPT using an applied pressure of 3.0 GPa are 

shown in Figure 4.50. These samples show significantly lower values of 

microhardness compared to their counterparts for the samples processed at 296 K 

and 423 K. The sample processed for N = 1/2 turn shows a relatively higher 

microhardness at the edge regions with a lower microhardness over the rest of the 

cross–section. A gradual development in the microhardness was found at the 

edge and near mid–radius regions for the sample processed for N = 1 turn. A 

relatively homogeneous distribution of the microhardness was observed for the 

sample processed for N = 5 turns. Further processing up to N = 10 turns results in 

a relatively homogeneous distribution of the microhardness but lower than for the 

sample processed for N = 5 turns.  

The effect of the processing temperature in HPT on the crystallite size, 

microhardness and dislocation density of the AZ19 alloy is illustrated in Figure 

4.51 for samples processed at 296 K, 423 K and 473 K. The crystallite size has 

increased with increasing the processing temperature. The alloy processed at 296 

K and 423 K shows a considerable increase in the microhardness and dislocation 
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density with increasing number of turns, but the microhardness profile and 

dislocation density were significantly higher for the alloy processed at 296 K than 

for the alloy processed at 423 K. An increase in the microhardness and dislocation 

density were found at a relatively lower number of turns, and then a gradual 

decrease in the microhardness was found with increasing the processing 

temperature and increasing the number of turns for the alloy processed at 437 K. 
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Figure 4.40: The variation in average microhardness along diameters over the horizontal 

cross–sections of the disks processed at 296 K using applied pressures of: (a) 3.0 GPa 

and (b) 6.0 GPa, for different numbers of turns. 
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Table 4.3: The average values of microhardness along diameters over the horizontal 

cross–sections of the disks processed after HPT processing at 296 K using an applied 

pressure of 3.0 GPa and for different number of turns.  

Distance 
from 

centre 
(mm) 

Values of microhardness and their error bars 

As–received N = 1/2 N = 1 N = 3 N = 5 N = 10 

HV Err. HV Err. HV Err. HV Err. HV Err. HV Err. 

0 70.1 ±1.1 92.7 ±3.8 97.3 ±3.0 119.0 ±2.1 122.1 ±1.5 129.8 ±1.0 

0.3 70.1 ±1.1 99.8 ±3.3 118.7 ±2.8 121.0 ±2.4 126.0 ±2.0 127.3 ±1.5 

0.6 69.8 ±1.9 104.8 ±3.3 105.4 ±2.7 121.9 ±2.0 124.9 ±1.5 130.8 ±1.5 

0.9 67.7 ±2.7 104.8 ±3.9 117.5 ±3.1 128.0 ±2.2 131.0 ±1.7 132.0 ±1.0 

1.2 67.2 ±3.3 117.0 ±5.0 114.6 ±4.2 122.0 ±3.3 125.0 ±2.2 127.4 ±2.0 

1.5 68.9 ±2.5 110.1 ±4.5 115.8 ±3.7 124.4 ±2.8 127.4 ±1.7 133.5 ±1.5 

1.8 67.6 ±1.8 123.1 ±3.8 120.4 ±3.0 127.0 ±2.0 132.2 ±2.0 127.5 ±2.0 

2.1 67.1 ±1.6 118.1 ±3.3 131.5 ±2.5 126.3 ±1.6 129.3 ±2.0 129.9 ±1.0 

2.4 67.6 ±2.6 122.9 ±5.7 131.2 ±4.9 127.0 ±4.0 130.0 ±2.9 134.7 ±2.7 

2.7 67.2 ±3.1 118.8 ±4.8 125.7 ±4.0 124.2 ±3.1 127.2 ±2.0 131.8 ±1.8 

3.0 65.7 ±2.3 119.3 ±3.0 125.5 ±2.2 133.4 ±1.5 136.4 ±1.3 132.5 ±1.3 

3.3 65.2 ±1.8 115.1 ±3.8 128.4 ±3.0 127.9 ±2.1 130.9 ±1.6 129.7 ±1.3 

3.6 66.6 ±1.6 115.1 ±3.7 125.0 ±2.9 126.0 ±2.0 134.6 ±1.6 138.9 ±0.9 

3.9 66.0 ±2.0 112.0 ±2.3 121.4 ±1.5 125.0 ±1.6 118.1 ±1.6 133.4 ±1.1 

4.2 64.2 ±1.1 113.5 ±2.7 127.2 ±1.9 126.2 ±1.3 129.2 ±1.7 137.1 ±1.1 

4.5 64.3 ±3.3 119.6 ±2.7 122.8 ±1.9 131.2 ±1.4 134.2 ±1.5 133.5 ±0.9 

4.8 64.9 ±3.5 120.0 ±2.6 125.0 ±1.8 130.5 ±1.5 133.5 ±1.4 138.0 ±1.0 
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Figure 4.41: Correlation of the measured microhardness with the equivalent strain 

imposed by HPT along diameters over the horizontal cross–sections of the disks 

processed at 296 K using an applied pressure of 3.0 GPa and for different number of 

turns. 
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Figure 4.42: (a) The variation in average Vickers microhardness and the average 

crystallite size with the number of turns in HPT and (b) The variation in Vickers 

microhardness with the reciprocal square root of the average crystallite size of the AZ91 

disks processed at 296 K in HPT. These data have been obtained on the horizontal 

cross–sections of the disks processed in HPT using an applied pressure of 3.0 GPa at 

room temperature.  



Results | 126 

 

 

as-received 1/2 1 5 10

0.01

0.1

1

10

100

 Dislocation density

 Crystallite size

Number of turns

D
is

lo
c
a
ti
o
n
 d

e
n
s
it
y
 (

1
0

1
4
 m

-2
)

(a)

10
1

10
2

10
3

10
4

 C
ry

s
ta

lli
te

 s
iz

e
 (

n
m

)

 

as-received 1/2 1 5 10

0.01

0.1

1

10

100

 Dislocation density

 Vickers microhardness (Hv)

Number of turns

D
is

lo
c
a
ti
o
n
 d

e
n
s
it
y
 (

1
0

1
4
 m

-2
)

0

40

80

120

160

 V
ic

k
e
rs

 m
ic

ro
h
a
rd

n
e
s
s
 (

H
v
)

(b)

 

Figure 4.43: The variation in the dislocation density with: (a) the average crystallite size 

and (b) average Vickers microhardness for the AZ91 alloy processed at 296 K in HPT for 

different number of turns. These data have been obtained on the horizontal cross–

sections of the disks processed in HPT using an applied pressure of 3.0 GPa at room 

temperature. 
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Figure 4.44: (a) The variation in Vickers microhardness with the square root of the 

dislocation density for the AZ91 disks processed at 296 K in HPT. (b) A comparison 

between the Hall–Petch and Taylor strengthening. These data have been obtained on the 

horizontal cross–sections of the disks processed in HPT using an applied pressure of 3.0 

GPa at room temperature.  
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Figure 4.45: The colour–coded maps of the microhardness distributions over the 

horizontal cross–sections of the AZ91 disks processed by HPT at 296 K and using an 

applied pressure of 3.0 GPa for N =  1/2, 1, 5 and 10 turns. The small inset in the Figure 

shows the scale of the microhardness (in Kgf/mm2) in regards of each colour. 
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Figure 4.46: The colour–coded maps of the microhardness distributions over the 

horizontal cross–sections of the AZ91 disks processed by HPT at 423 K and using an 

applied pressure of 3.0 GPa for N = 1/2, 1, 5 and 10 turns. The small inset in the Figure 

shows the scale of the microhardness (in Kgf/mm2) in regards of each colour. 
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Figure 4.47: The colour–coded maps of the microhardness distributions over the 

horizontal cross–sections of the AZ91 disks processed by HPT at 473 K and using an 

applied pressure of 3.0 GPa for N = 1/2, 1, 5 and 10 turns. The small inset in the Figure 

shows the scale of the microhardness (in Kgf/mm2) in regards of each colour. 
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Figure 4.48: The colour–coded maps for the microhardness distributions on the vertical 

cross–sectional planes of the processed disks after HPT processing at 296 K and using 

an applied pressure of 3.0 GPa for N = 1/2, 1, 5 and 10 turns. The small inset in the 

Figure shows the scale of the microhardness (in Kgf/mm2) in regards of each colour. 
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Figure 4.49: The colour–coded maps for the microhardness distributions on the vertical 

cross–sectional planes of the processed disks after HPT processing at 423 K and using 

an applied pressure of 3.0 GPa for N = 1/2, 1, 5 and 10 turns. The small inset in the 

Figure shows the scale of the microhardness (in Kgf/mm2) in regards of each colour. 
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Figure 4.50: The colour–coded maps for the microhardness distributions on the vertical 

cross–sectional planes of the processed disks after HPT processing at 473 K and using 

an applied pressure of 3.0 GPa for N = 1/2, 1, 5 and 10 turns. The small inset in the 

Figure shows the scale of the microhardness (in Kgf/mm2) in regards of each colour. 
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Figure 4.51: The overall variation in the average: (a) crystallite size, (b) dislocation density 

and (c) microhardness for the AZ91 alloy processed at different processing temperatures 

in HPT using an applied pressure of 3.0 GPa, where the data were obtained from the 

horizontal cross–sections of the processed disks. 
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4.3 Tensile Results 

 Stress – elongation curves 4.3.1

The tensile properties of the AZ91 alloy processed at 296 K were tested in tension 

for the samples processed for N = 1, 3, 5 and 10 turns are shown in Figures (4.52 

– 4.55). These plots represent the engineering stress – engineering strain curves 

for the alloy tested in tension to fracture at testing temperatures of 423 K, 473 K 

and 573 K using initial strain rates of 1×10-1 s-1 to 1×10-4 s-1. The testing 

temperatures used in this investigation corresponded to 0.55    (423 K), 0.61    

(473 K) and 0.74    (573 K), where the absolute melting point of the AZ91 alloy is 

768 K (495 C) [191]. 

 These curves show the occurrence of the superplastic elongations with increasing 

number of turns from N = 1 turn to N = 10 turns in HPT, with lowering tensile 

strains from 1×10-1 s-1 to 1×10-4 s-1, as well as with increasing testing temperature 

from 423 K to 573 K, as illustrated in Figures (4.52 – 4.55). For a sample 

processed in HPT at a specific number of turns and then tested in tension, the 

strain hardening behaviour decreased with increasing the testing temperature and 

decreasing the strain rate in the tensile test. The differences between strain 

hardening behaviours were insignificant for samples processed at different number 

of turns and tested at the same temperatures and strain rates. 

The engineering stress – engineering strain curves of the as–received AZ91 alloy 

at testing temperatures of 296 K, 473 K and 573 K are illustrated in Figure 4.56. 

The strain hardening of the as–received alloy decreased with increasing the 

testing temperature up to 573 K and decreasing the strain rate down to 1×10-4 s-1. 

The values of the maximum stress decreased with increasing the testing 

temperature and decreasing the strain rates. 

 

 Elongation – strain rate curves and the appearances of 4.3.2

fractured samples 

The effect of number of turns in HPT, the testing temperature and strain rate in 

tensile test were concluded from Figures (4.52 – 4.55) and then plotted in Figure 
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4.57 and Figure 4.58. These Figures represent the variation in the maximum 

achieved elongation after fracture in tension with different testing temperatures 

using different strain rates for each sample processed in HPT for a given number 

of turns as well as for the as–received alloy. Increasing the number of turns in HPT 

up to N = 10 turns resulted in increasing the value of elongation at all strain rates 

as shown in Figure 4.57. The data of maximum elongations that were achieved in 

this research are tabulated in Table 4.4. For instance, the maximum elongations 

for a sample processed for N = 1 turn were 277 % and 1014 % using strain rates 

of 1×10-1 s-1 and 1×10-4 s-1, respectively at testing temperature of 573 K. Whereas 

for the sample processed for N = 10 turns, the maximum elongations were 410 % 

and 1308 % using strain rates of 1×10-1 s-1 and 1×10-4 s-1, respectively at testing 

temperature of 573 K.  

The effect of testing temperature on the achieved elongation is illustrated by               

Figure 4.57, where the increase in testing temperature resulted in increasing 

elongation at all strain rates. For example, for the sample processed in HPT for               

N = 10 turns, the maximum elongations were 760 %, 1164 % and 1308 % at 

testing temperatures of 423 K, 473 K and 573 K, respectively, using a strain rate of                  

1×10-4 s-1. The role of strain rate on the elongation is shown in Figure 4.57 and 

Figure 4.58. For a sample processed in HPT for a specific number of turns, the 

higher strain rates (1×10-1 s-1 and 1×10-2 s-1) caused the occurrence of lower 

elongations compared to their counterparts, which showed significantly higher 

values at the slowest strain rates (1×10-3 s-1 and 1×10-4 s-1). For instance, for the 

sample processed for N = 10 turns, the maximum elongations at a testing 

temperature of 573 K were 410 %, 860 %, 1050 % and 1308 % using strain rates 

of 1×10-1 s-1, 1×10-2 s-1, 1×10-3 s-1, and 1×10-4 s-1, respectively.   

For the as–received alloy, the elongations increased slightly for the samples tested 

at a temperature of 296 K as shown in Figure 4.58 (e). Significant increase in the 

elongations were observed when samples were tested at temperatures of 473 K 

and 573 K. The data of the maximum elongations for the as–received alloy is 

tabulated in Table 4.5. The appearances of fractured samples after reaching the 

maximum elongations are shown in Figures (4.59 – 4.62) for samples processed 

in HPT for N = 1, 3, 5, and 10 turns, as well as for the as–received alloy. The 

untested tensile sample is depicted in these images. It can be seen clearly here 
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the effect of the aforementioned factors on the elongation for the alloy under test. 

The fractured samples exhibited noticeable elongations associated with relatively 

uniform deformation across the gauge lengths of tested samples, especially at 

higher testing temperatures and / or using the lowest strain rates. 

 

 Flow stress – strain rate curves and the strain–rate 4.3.3

sensitivity results 

The flow stress was plotted versus the strain rate for the samples processed in 

HPT for different numbers of turns and then tested at different testing 

temperatures using different strain rates. The values of strain–rate sensitivity ( ) 

were obtained from the slopes of the log – log format plots as shown in Figure 

4.64. For a given number of turns for the sample processed in HPT and then 

pulled in tension, the flow stress decreased with decreasing strain rate and testing 

temperature, which was reflected in the values of the strain-rate sensitivity and in 

the extent of the elongation–to–fracture.  

The values of strain rate sensitivity increased with decreasing the strain rate from 

1×10-1 to 1×10-4 s-1 at all testing temperatures. The increase in the values of 

strain–rate sensitivity are associated with increase in the elongation–to–fracture 

for the slower strain rates as illustrated in the elongation–strain rate curves in 

Figure 4.57. Increasing the testing temperature from 423 K to 573 K resulted in an 

increase in the values of strain rate sensitivity over the strain rate range as 

illustrated in Figure 4.58. An increase in the values of the strain–rate sensitivity 

was found also for the as–received alloy with increasing the testing temperature 

and decreasing the strain rate.  

The activation energy ( ) of the superplastic deformation was calculated from the 

slope of the plot of the variation in the flow stress with the reciprocal of the 

temperatures from 423 K to 573 K as shown in Figure 4.65 for the tensile sample 

processed in HPT for N = 10 turns and tested using strain rate 1×10-4 s-1 over the 

temperature range (423 – 573) K. The activation energy was calculated using the 

following equation [3]: 



Results | 138 

 

  
 

 
 

     

     ⁄  
 (4.1) 

 

The value of activation energy was 80.34 KJ/mole for the temperature range, 

which is which is close to the activation energy of grain boundary diffusion of pure 

magnesium (92 KJ/mol) [193]. The temperature and grain size compensated strain 

rate versus normalised stress is plotted as shown in Figure 4.66 for the AZ91 alloy 

processed in HPT for N = 10 turns at room temperature and tested in tension at 

different temperatures and strain rates. The slope of the straight line has a value of 

the stress exponent of   = 2, and it represents the predicted superplastic strain 

rate. 

 

 Microstructure observations for the fractured samples 4.3.4

The microstructures of tensile samples after the tensile test to fracture were 

observed along the gauge lengths by SEM as shown in Figures (4.67 – 4.75). 

These samples were processed in HPT for N = 1, 3 and 10 turns and then tested 

at different testing temperatures and strain rates. These observations revealed 

that the microstructures after the tensile test have gradually grown with increasing 

the testing temperature from 423 K to 573 K at all strain rates. For a specific 

testing temperature, the microstructures were also gradually grown at the slower 

strain rates (1×10-3 s-1 and 1×10-4 s-1) in a more pronounced way than at the 

higher strain rates (1×10-1 s-1 and 1×10-2 s-1).  

A representative comparison of the grain sizes as observed by SEM along the 

gauge lengths of the tensile samples tested at different testing temperatures and 

strain rates is shown in Figure 4.76. These samples were processed in HPT for N 

= 10 turns and then tested in tension at different temperatures and strain rates. At 

the lower testing temperature, i.e., 423 K, the grain size increased slightly from 

0.15 m to 1.5 m using strain rates of 1×10-1 s-1 and 1×10-4 s-1, respectively. At 

the higher testing temperature, i.e., 573 K , the grain size increased moderately 

from 0.4 m to 8 m using strain rates of 1×10-1 s-1 and 1×10-4 s-1, respectively. 

Another comparison was made between the grain sizes of the samples processed 
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for N = 1 and 10 turns after tensile test as shown in Figure 4.77. The grain sizes 

for samples processed for N = 1 turn are larger than for samples processed for N 

= 10 turns over the range of strain rates and testing temperature. These limited 

changes in the grain sizes did not influence the extent of superplastic ductilities 

that have been achieved for the AZ91 alloy in this research. 

The microstructure observed along the gauge lengths of the tensile samples for 

the as–received alloy after tensile testing at 296 K, 473 K and 573 K is also shown 

in Figures (4.78 – 4.80). These as-received microstructures showed non-

superplastic behaviour for all strain rates at all testing temperatures, except at 473 

K using a strain rate of 1×10-4 s-1 and at 573 K using strain rates of 1×10-3 s-1 and 

1×10-4 s-1 where relatively moderate ductilities were observed. The maximum 

elongation achieved for the as–received alloy was 332% at 573 K using a strain 

rate of               1×10-4 s-1, and the data of the maximum elongations for the as–

received alloy after tensile test to fracture at different testing temperatures and 

strain rates is illustrated in Table 4.5. 

 

 Variation of the grain size with testing temperature and 4.3.5

time 

The AZ91 alloy processed in HPT at room temperature exhibited significant 

microstructural stability during the tensile test at elevated temperatures. The 

microstructures as observed by SEM after tensile test retained their fine grain 

sizes even at the slowest strain rate (1×10-4 s-1) at a testing temperature of 573 K 

as shown in Figure 4.81 for samples processed in HPT for N = 1, 3 and 10 turns. 

The data of the grain sizes were re-plotted versus the testing temperature and 

time as shown in Figure 4.82 and Figure 4.75 for the samples processed in HPT 

for N = 1 turn and 10 turns.  

The average grain size was about 1.5 m after testing at 423 K (for 2–1200 

minutes) over the strain rate range. After testing at 473 K (for 3–1440 minutes), 

the microstructures also showed fine grains with only modest grain growth to an 

average grain size of about 3 m. Tensile testing at 573 K (for 5–1680 minutes) 

resulted in the maintenance of a fairly fine microstructure with limited grain growth 



Results | 140 

 

up to about 8 m as shown in Figure 4.77. The samples processed in HPT for N = 

10 turns exhibited a relatively slower rate of limited grain growth than the samples 

processed for N = 1 turn at the fastest and slowest strain rates, i.e., at 1×10-1 s-1 

and 1×10-4 s-1, respectively, as illustrated in Figures (4.82 – 4.75). However, both 

aforementioned samples revealed considerable thermal stability during tensile 

testing. 

The grains remained equiaxed after testing at 423 K, 473 K and 573 K at different 

strain rates as observed in Figures (4.67 – 4.76). Some individual grains have 

developed fibrous morphologies at temperatures of 473 K and 573 K at strain 

rates of 1×10-3 s-1 and 1×10-4 s-1 as shown in Figure 4.77 (b, c, e, f), and at a 

temperature of 573 K using strain rates of 1×10-3 s-1 and 1×10-4 s-1 as shown in 

Figure 4.77 (k, l). The fibrous or filament structures were observed at the slower 

strain rates and higher temperatures along the gauge lengths of the tensile 

samples in the direction of the tension loading. These structures were connected 

with grains that appear to have separated during the superplastic elongation 

regimes as observed in Figure 4.81. As a result of the occurrence of these 

structures, significant elongations were observed as illustrated in Figure 4.81 for 

samples processed in HPT for N = 1, 3 and 10 turns that were tested at 573 K 

using a strain rate of 1×10-4 s-1. 

The EDS analysis of these fibrous structures revealed their composition as shown 

in Figure 4.84, and the analysis was conducted at three locations: grain, grain 

boundary and filament. It was found that the composition of these filaments 

consists mostly of β–phase (Mg17Al12) as indicated by the relative estimation of the 

weights of the constituents. It is worth mentioning that the tensile test has been 

conducted in the air in this research and therefore the surfaces of the samples 

were oxidized as indicated by the presence of oxygen in the EDS analyses of the 

tensile samples as illustrated in Figure 4.84.  

The oxidation of the alloy appeared as superficial layers on the tested samples at 

all testing temperatures. At a temperature of 423 K and using high strain rates, i.e.,                    

1×10-1 s-1 and 1×10-2 s-1, the oxidation layer occurred as a fragmented layer as 

illustrated by the yellow arrows in Figure 4.67 for the sample processed for N = 1 

turn and as a cracked layer as shown in Figure 4.68 for the sample processed for 
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N = 3 turns. At temperatures of 473 K and 573 K and / or at slow strain rates, i.e., 

1×10-3 s-1 and 1×10-4 s-1, the oxidation layer fragmented into small blocks as 

shown in Figures (4.67, 4.78 – 4.75). However, the oxidation occurred within the 

matrix of the alloy as indicated by EDS analyses in Figure 4.84. 
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Figure 4.52: Stress–strain curves for the AZ91 alloy processed at room temperature in 

HPT for N = 1 turn using an applied pressure of 3.0 GPa and tested in tension at 423 K, 

473 K and 573 K using different strain rates.  
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Figure 4.53: Stress–strain curves for the AZ91 alloy processed at room temperature in 

HPT for N = 3 turn using an applied pressure of 3.0 GPa and tested in tension at 423 K, 

473 K and 573 K using different strain rates. 
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Figure 4.54: Stress–strain curves for the AZ91 alloy processed at room temperature in 

HPT for N = 5 turns using an applied pressure of 3.0 GPa and tested in tension at 423 K, 

473 K and 573 K using different strain rates. 
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Figure 4.55: Stress–strain curves for the AZ91 alloy processed at room temperature in 

HPT for N = 10 turns using an applied pressure of 3.0 GPa and tested in tension at 423 K, 

473 K and 573 K using different strain rates. 
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Figure 4.56: Stress–strain curves for the as–received AZ91 alloy and tested in tension at 

296 K, 473 K and 573 K using different strain rates. 
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Figure 4.57: Elongation–strain rate curves for the AZ91 alloy processed at room 

temperature using an applied pressure of  3.0 GPa for different number of turns in HPT 

and tested in tension at temperatures of: (a) 423 K, (b) 473 K, and (c) 573 K.  

  

(c) 
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Table 4.4: The maximum elongations that achieved in this research for the AZ91 alloy 

processed in HPT using an applied pressure of 3.0 GPa at room temperature. 

         ̇                      ̇            

1 

423 

       20  

3 

423 

       64 

       109         120 

       144         390 

       249         450 

473 

       64  

473 

       100 

       439         500 

       536         570 

       845         977 

573 

       277  

573 

       430 

       600         746 

       822         899 

       1041         1190 

5 

423 

       70  

10 

423 

       90 

       160         180 

       577         660 

       617         760 

473 

       161  

473 

       190 

       560         590 

       734         780 

       1090         1164 

573 

       370  

573 

       410 

       796         860 

       950         1050 

       1234         1308 
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Figure 4.58: Elongation–strain rate curves for the AZ91 alloy processed at room 

temperature in HPT using an applied pressure of  3.0 GPa for: (a) N = 1 turn, (b) N = 3 

turns, (c) N = 5 turns, (d) N = 10 turns and (e) as–received alloy and tested in tension at 

different temperatures.   

 

 

Table 4.5: The maximum elongations for the as–received AZ91 alloy that obtained in this 

research. 

       

 ̇       296 473 573 

       29 91 101 

       42 102 161 

       51 138 272 

       57 209 332 

 

 

(e) 
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Figure 4.59: Appearance of the AZ91 samples processed by HPT for N = 1 turn using an 

applied pressure of 3.0 GPa at room temperature after tension to fracture at testing 

temperatures of 423 K, 473 K, and 573 K using different strain rates. The upper sample 

represents the untested case. 
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Figure 4.60: Appearance of the AZ91 samples processed by HPT for N = 3 turns using an 

applied pressure of 3.0 GPa at room temperature after tension to fracture at testing 

temperatures of 423 K, 473 K, and 573 K using different strain rates. The upper sample 

represents the untested case. 
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Figure 4.61: Appearance of the AZ91 samples processed by HPT for N = 5 turns using an 

applied pressure of 3.0 GPa at room temperature after tension to fracture at testing 

temperatures of 423 K, 473 K, and 573 K using different strain rates. The upper sample 

represents the untested case. 
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Figure 4.62: Appearance of the AZ91 samples processed by HPT for N = 10 turns using 

an applied pressure of 3.0 GPa at room temperature after tension to fracture at testing 

temperatures of 423 K, 473 K, and 573 K using different strain rates. The upper sample 

represents the untested case. 
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Figure 4.63: Appearance of the as–received AZ91 samples after tension to fracture at 

testing temperatures of 296 K, 473 K, and 573 K using different strain rates. The upper 

sample represents the untested case. 



Results | 158 

 

Strain rate (s-1)

10-5 10-4 10-3 10-2 10-1 100

F
lo

w
 s

tr
e

s
s

 (
M

P
a

)

100

101

102

103

T = 423 K

T = 473 K

T = 573 K

AZ91
HPT: 3.0 GPa RT N = 1 turn

0.20

0.17

m - values
0.09

0.20

0.35

0.37

0.37

0.38

0.38

 

Strain rate (s-1)

10-5 10-4 10-3 10-2 10-1 100

F
lo

w
 s

tr
e
s
s
 (

M
P

a
)

100

101

102

103

T = 423 K

T = 473 K

T = 573 K

AZ91
HPT: 3.0 GPa RT N = 3 turns

m - values

0.30

0.25

0.09

0.21

0.35

0.38

0.45

0.47

0.51

 

(a) 

(b) 



Results | 159 

 

Strain rate (s-1)

10-5 10-4 10-3 10-2 10-1 100

F
lo

w
 s

tr
e
s
s
 (

M
P

a
)

100

101

102

103

T = 423 K

T = 473 K

T = 573 K

AZ91
HPT: 3.0 GPa RT N = 5 turns

m - values
0.09

0.30

0.38

0.25

0.35

0.45

0.25

0.47

0.52

 

Strain rate (s-1)

10-5 10-4 10-3 10-2 10-1 100

F
lo

w
 s

tr
e
s
s
 (

M
P

a
)

100

101

102

103

T = 423 K

T = 473 K

T = 573 K

AZ91
HPT: 3.0 GPa RT N = 10 turns

m - values

0.09
0.30

0.38

0.18

0.53

0.49

0.40

0.43

0.55

 

(c) 

(d) 



Results | 160 

 

Strain rate (s-1)

10-5 10-4 10-3 10-2 10-1 100

F
lo

w
 s

tr
e
s
s
 (

M
P

a
)

101

102

103

T = 296 K

T = 473 K

T = 573 K

m - values

as-received AZ91

0.01

0.13

0.30

0.30
0.10

0.33

0.42

 

Figure 4.64: Flow stress–strain rate curves showing the values of strain–rate sensitivity 

( ) for the AZ91 alloy processed at room temperature in HPT using an applied pressure 

of 3.0 GPa for: (a) N = 1 turn, (b) N = 3 turns, (c) N = 5 turns, (d) N = 10 turns and (e) the 

as–received alloy tested in tension at different temperatures.    
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Figure 4.65: The variation in the flow stress with the reciprocal of the temperatures from 

423 K to 573 K for determining the value of the activation energy ( ) for the tensile 

sample tested using strain rates of 1×10-3 s-1 and 1×10-4 s-1. The straight line represents 

the fitting for the obtained data at 1×10-4 s-1 and its slope refers to the value of the 

activation energy. The plotted data are belonged to the AZ91 alloy processed in HPT for N 

= 10 turns at room temperature using an applied pressure of 3.0 GPa. 
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Figure 4.66: The temperature and grain size compensated strain rate versus normalised 

stress for the AZ91 alloy processed in HPT for N = 10 turns using an applied pressure of 

3.0 GPa at room temperature and tested in tension at different temperatures and strain 

rates. The slope of the straight line has a value of the stress exponent of   = 2, and it 

represents the predicated superplastic strain rate. 
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Figure 4.67: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture at 423 K. The samples above were 

processed by HPT using an applied pressure of 3.0 GPa for N = 1 turn at room 

temperature before tensile test. The yellow arrows refer to the fragmented particles of 

oxide. The white arrows refer to the direction of tension.  
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Figure 4.68: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture at 423 K. The samples above were 

processed by HPT using an applied pressure of 3.0 GPa for N = 3 turns at room 

temperature before tensile test. The yellow arrows refer to the fragmented particles of 

oxide. The white arrows refer to the direction of tension.  
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Figure 4.69: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture at 423 K. The samples above were 

processed by HPT using an applied pressure of 3.0 GPa for N = 10 turn at room 

temperature before tensile test. The yellow arrows refer to the fragmented particles of 

oxide. The white arrows refer to the direction of tension.  
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Figure 4.70: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture at 473 K. The samples above were 

processed by HPT using an applied pressure of 3.0 GPa for N = 1 turn at room 

temperature before tensile test. The yellow arrows refer to the fragmented particles of 

oxide. The white arrows refer to the direction of tension.  
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Figure 4.71: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture at 473 K. The samples above were 

processed by HPT using an applied pressure of 3.0 GPa for N = 3 turns at room 

temperature before tensile test. The white arrows refer to the direction of tension.  
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Figure 4.72: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture at 473 K. The samples above were 

processed by HPT using an applied pressure of 3.0 GPa for N = 10 turns at room 

temperature before tensile test. The white arrows refer to the direction of tension. 
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Figure 4.73: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture at 573 K. The samples above were 

processed by HPT using an applied pressure of 3.0 GPa for N = 1 turn at room 

temperature before tensile test. The yellow arrows refer to the fragmented particles of 

oxide. The white arrows refer to the direction of tension. 
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Figure 4.74: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture at 573 K. The samples above were 

processed by HPT using an applied pressure of 3.0 GPa for N = 3 turns at room 

temperature before tensile test. The white arrows refer to the direction of tension. 
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Figure 4.75: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture at 573 K. The samples above were 

processed by HPT using an applied pressure of 3.0 GPa for N = 10 turns at room 

temperature before tensile test. The white arrows refer to the direction of tension. 
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Figure 4.76: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test to fracture. The samples above were processed in 

HPT using an applied pressure of 3.0 GPa for N = 10 turns at room temperature before 

tensile test. All scales in micrographs are 1 m. The white arrows refer to the direction of 

tension. 
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Figure 4.77: Magnified views of microstructures of the AZ91 alloy as observed by SEM at 

gauge lengths after the tensile test. The samples above were processed in HPT using an 

applied pressure of 3.0 GPa for N = 1 turn and N = 10 turns at room temperature before 

tensile test. The white arrows refer to the direction of tension. 
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Figure 4.78: Magnified views of microstructures of the as–received AZ91 alloy as 

observed by SEM at gauge lengths after the tensile test to fracture at 296 K. The white 

arrows refer to the direction of tension. 
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Figure 4.79: Magnified views of microstructures of the as–received AZ91 alloy as 

observed by SEM at gauge lengths after the tensile test to fracture at 473 K. The white 

arrows refer to the direction of tension. 
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Figure 4.80: Magnified views of microstructures of the as–received AZ91 alloy as 

observed by SEM at gauge lengths after the tensile test to fracture at 573 K. The white 

arrows refer to the direction of tension. 
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Figure 4.81: Microstructures of the AZ91 alloy as observed by SEM at gauge lengths and 

the occurrence of fibrous morphologies after the tensile test to fracture at 573 K using a 

strain rate of 1×10–4 s–1, for samples processed in HPT using an applied pressure of 3.0 

GPa at room temperature for: (a) N = 1 turn, (b) N = 3 turns and (c) N = 10 turns. The 

white arrows refer to the direction of tension.  
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Figure 4.82: The variation in grain size and testing time with testing temperature and 

strain rate in tensile test for the AZ91 alloy processed in HPT N = 10 turns at room 

temperature using an applied pressure of 3.0 GPa.  
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Figure 4.83: The variation in the grain size after the tensile test at different testing 

temperatures (423 K, 473 K, 573 K) and different strain rates for the AZ91 alloy processed 

in HPT for N = 1 and 10 turns at room temperature using an applied pressure of 3.0 GPa. 

The dashed and solid lines represent samples processed for N = 1 and 10 turns, 

respectively. 
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Figure 4.84: EDS analyses with the weight fractions of the elements at: (a) grain, (b) grain 

boundary and (c) filament, for the sample processed in HPT for N = 10 turns at room 

temperature using an applied pressure of 3.0 GPa and tested in tension at testing 

temperature of 573 K using a strain rate of 1×10–4 s–1. The white arrows refer to the 

direction of tension.   
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5. DISCUSSION 

5.1 HPT processing of AZ91 magnesium alloy 

Magnesium alloys are effective alternatives to replace the relatively denser 

materials, such as steel and aluminium alloys, with the objective to meet the 

requirements for saving fuel, and light weight / high strength parts [20]. The 

mechanisms of deformation in magnesium alloys at room temperature are basal 

slip and twinning, which result in a limitation in their workability at room 

temperature [13]. The limited ductility and workability of these alloys can be 

improved at higher temperatures by the activation of additional slip systems [20]. 

Thermo–mechanical processing is used to improve the workability of these alloys, 

although such processing is associated with grain growth and a greater 

consumption of energy [19][194]. 

The microstructure of the magnesium alloy is being optimised through variation in 

the processing conditions in order to overcome the difficulties of the low workability 

at low temperature and the grain growth at elevated temperatures [19]. Several 

processing routes have been introduced for microstructure refinement in 

magnesium alloys, and these routes include the dynamic recrystallization under 

high–temperatures in ECAP processing [10], hot rolling [194], HPT processing 

[18][155], ECAP processing at relatively low temperatures assisted by a back–

pressure [15], or through the use of a higher channel angle of pressing die in 

ECAP processing [195]. The dynamic recrystallization is defined as a 

recrystallization process that occurs during hot working and involves the 

elimination of dislocations and the formation of new grains by means of the grain–

boundary migration at temperatures above 0.6    [196]. 

The presence of dynamic recrystallization results in the softening of the material 

under deformation, where ductility increases and microhardness decreases 

[197][198]. Therefore, the microhardness and then strengthening of the 

magnesium alloys that were processed at elevated temperatures, will be lower 

than those for alloys processed at low temperatures [199]. There is limited number 

of studies on the processing of magnesium alloys in HPT at room temperature, 

which are Mg–9wt.%Al alloy [18], AZ61 alloy [99] and AZ31 alloy [159]. These 
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studies have been investigated briefly the microhardness for samples processed 

at both 296 K and 423 K in HPT and the tensile behaviour for the samples 

processed at 423 K in HPT only. TEM investigation has been conducted for 

samples processed at both 296 K and 423 K in HPT and showed a significant 

grain refinement after processing up to high number of turns. 

The current research has focused on the HPT processing at 296 K, 423 K and 473 

K for the AZ91 alloy. The microstructure has investigated using the SEM, TEM and 

XRD for the alloy processed at 296 K. The distributions of microhardness along 

the horizontal and vertical cross–sections have broadly investigated for samples 

processed at the processing temperatures of at 296 K, 423 K and 473 K. The 

superplastic behaviour has extensively studied at a wide range of conditions for 

the alloy processed at 296 K. Therefore, this research can provide comprehensive 

information about the microstructure and mechanical behaviour of the AZ91 alloy 

processed in HPT at room temperature and elevated temperatures.  

In the present research, a successful HPT processing of the AZ91 magnesium 

alloy at room temperature and an ultrafine microstructure has achieved, which was 

not applicable for the same alloy using ECAP processing at a temperature lower 

than 200 °C, due to the development of cracking with increasing number of passes 

[13]. The TEM and XRD revealed the occurrence of extensive grain refinement in 

the AZ91 magnesium alloy within the nanometre range as a result of imposing a 

very high plastic strain by HPT at 296 K after a relatively low number of turns. The 

processed alloy has been refined from 30 m in the as–received alloy to about 

1000 nm and 50 nm after processing for N = 1/2 turn and 1 turn, respectively as 

revealed by TEM. The measurements of the crystallite size of the processed alloy 

at 296 K exhibited a reduction in crystallite size (or subgrain sizes) from 60 nm to 

35 nm with increasing the number of turns from N = 1/2 turn to N = 10 turns. In 

general, both TEM and XRD were inconsistent in regards of the refinement in the 

processed alloy at 296 K in HPT, but they confirm the significance of the 

processing temperature in HPT processing. However, the low values of the 

crystallite size (or subgrain sizes) that obtained by XRD was lower than the grain 

size measured by TEM.  
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This difference in the grain size measurements between the XRD and TEM 

analysis is expected in SPD–processed materials [170]. The grains in a heavily 

deformed material contain subgrains and / or dislocation cells. These structures 

are usually separated by low–angle grain boundaries or dislocation walls [25]. The 

coherent diffraction of the X–ray from these walls or subgrains corresponds to the 

coherent domains or the crystallites, and their sizes are therefore called the 

crystallite size rather than the grain size that can be obtained by TEM [200]. It is 

expected that the grain refinement for the current alloy continued gradually during 

HPT processing as indicated indirectly by microhardness measurements that have 

been carried out in previously reported work for the same alloy [201] and for AZ31 

magnesium alloy also processed by other workers at room temperature [159]. 

The limitation in the processing of magnesium alloys with processing temperature 

arises from the availability of the operative slip systems in these alloys. The 

processing at higher temperature results in activation of the prismatic and 

pyramidal slip systems [38][202]. These additional slip systems enhance the 

plasticity under deformation and then permits the processing of magnesium alloys 

for a higher number of passes / turns [15][99]. Thus, the processing of these alloys 

at room temperature is difficult due to the limitation in workability due to the basal 

slip and twinning [36][203]. However, the current study showed the possibility of 

the successful HPT processing of AZ91 magnesium alloy at room temperature, 

although there were limited numbers of the deformation modes. The HPT 

processing at room temperature of this alloy can be attributed to the presence of 

hydrostatic pressure and the geometry of processing zone [15][18].  

The hydrostatic pressure arises from the stress state by the interaction of the 

material under processing and the HPT anvils [25][204]. The development of the 

hydrostatic pressure during the HPT processing of AZ91 alloy influences the crack 

propagation by closing up, or confining of the alloy constituents during the HPT 

processing, thus preventing the propagation of fracture in such a relatively brittle 

alloy [25]. The brittleness of the magnesium alloy originates from the presence of 

HCP magnesium as the main constituent in the AZ91 alloy, and ductility was 

enhanced by the presence of hydrostatic compressive pressure during HPT 

processing. The enhanced deformability by the effect of the hydrostatic pressure 
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was noticed for Mg–9wt.%Al alloy [18], which has been processed by HPT at room 

temperature.  

The geometry of the processing zone has a significant effect on the deformation of 

alloys of limited slip systems such as magnesium alloys. The configuration of the 

HPT cavity constrains the alloy within a volume as shown in Figure 3.2 [162], 

where the material is constrained by an outflow outside the processing zone and 

between the rims of the anvils [205]. The activation of twinning is induced by the 

shear state in the constrained deformation, which is caused by the reduction in the 

thickness–to–diameter ratio during processing. The latter results in an additional 

shear friction and hence induces the twinning formation [205] as shown in Figure 

4.33, for the vertical cross sections of the processed disks. The formation of 

twinning during compression at room temperature was also found in AZ31 and 

AM30 magnesium alloys [206][207].  

During the deformation of the polycrystalline material, each grain responses to the 

deformation in a relatively different way from the other grains; depending on the 

orientation of each grain in regards to the applied shear stress. Therefore, a 

constraint arises due to the presence of neighbouring grains, and the difference in 

the strain between the interior of the grain and the grain boundaries [25]. As the 

magnesium alloys have only two independent slip systems (basal slip systems) at 

room temperature, which are less than the five required systems for the 

homogeneous deformation. Therefore, the brittle behaviour and fracture are likely 

to take place under deformation at room temperature [37]. However, the lack of 

five independent slip systems results in a strain incompatibility between the grains 

of different orientation and across the grain boundaries. Therefore, additional 

stress is required to maintain a strain compatibility, leading to the activation of 

additional deformation modes under HPT processing [41].  

It is believed that the unidirectional nature of straining during HPT processing may 

contribute to the re–orientation of the microstructure, including the α–Mg matrix 

and β–phase towards the easy slip [61]. As the critical resolved shear stress for 

twinning (3 MPa) is much lower than that required for the prismatic and pyramidal 

slip systems (40 MPa), then the twinning becomes the preferred mode for 

accompanying the basal slip in the magnesium alloy at room temperature 
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[36][208]. It was found that the increase of imposed strain through increasing the 

number of turns in the HPT processing leads to the re–orientation of the grains for 

twinning mode [209]. 

5.2 Microstructure over the horizontal cross–sections  

It was shown by Figure 4.1 that the as–received microstructure of AZ91 

magnesium alloy consists of α–Mg matrix, β–phase and Al8Mn5 particles. It is 

obvious that the microstructure has an average grain size of 30 m with distinct 

grain boundaries. The β–phase is decorated along the grain boundaries as 

lamellar and agglomerate forms. The lamellar or discontinuous precipitates of β–

phase resulted from the solution treatment and the aging of the as–cast alloy 

[210]; whereas the agglomerate precipitates of β–phase resulted from the non–

uniform continuous precipitation [211]. It was found that the precipitation of β–

phase at the grain boundaries results in an increase in the microhardness of alloy 

[212]. 

There was no significant alignment or configuration of the microstructures prior to 

the HPT processing along the horizontal cross–sections of the as–received 

sample, as shown in Figure 4.1. Following the HPT processing, considerable 

changes were found in the microstructures, as shown in Figures (4.4 – 4.29) for 

the horizontal cross–sections of the processed disks. In the stage of compression 

(N = 0), the β–phase fragmented into several segments due to the applied 

pressure, which resulted in breaking the lamellar and agglomerate β–phase into 

small pieces [213]. During the early stage of HPT processing, the fragmentation of 

this phase continued and it experienced more breaking–up due to an increase in 

the imposed strain by the HPT processing, up to N = 10 turns. The fragmented 

particles of the β–phase reached the nanometre sizes with the higher imposed 

strains, indicating a severe level of deformation of the alloy under processing 

[214].  

It has found that the fragmentation of the β–phase was more intense at the edge 

regions than at the centre regions of the processed disks. The breaking–up of the 

β–phase reached almost the same level of fragmentation at the centre and edge 

regions at a higher number of turns, due to the high value of strain that was 
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imposed at the centre regions, which was comparable to the imposed strain at the 

edge regions at a high number of turns [145].   

The deformation incompatibility between α–Mg matrix of HCP structure and            

β–phase of BCC structure may lead to the fragmentation of the β–phase under 

high strain in the HPT processing. The hard particles of the β–phase can obstruct 

the flow of the alloy under deformation [215]. A local strain gradient can be 

generated due to the plastic deformation of a matrix containing hard particles; 

therefore, these particles can result in heterogeneous structures and induce high 

local densities of dislocations in the areas around the matrix [149]. Since the β–

phase is harder than the α–Mg matrix, which is relatively softer, then, the massive 

and agglomerate β–phase tend to fracture during HPT processing [25][216]. 

During the deformation, the fragmented particles of the β–phase separated from 

the original or pre–existing grain boundaries. The particle–matrix separation during 

the plastic deformation resulted from the stress concentration at the particles that 

are located at the grain boundaries, through the interaction of moving dislocations 

and these particles [217]. Increasing the scattering or spreading of the β–phase 

particles increased with the imposed strain, which emphasized the interaction 

between the β–phase particles and piled–up dislocations at the grain boundaries 

[25]. 

The alignment of the β–phase particles in the direction of straining was noticed to 

arise owing to mechanical fibering. The latter results in the alignment of these 

particles in the direction of mechanical straining during the HPT processing [218]. 

This alignment is common in the monotonic SPD processing, such as in HPT, 

ECAP (without rotation of billet) and ARB [219]. The alignment of the nano–

particles of β–phase occurred at the edge regions and then moved to the centre 

regions with increasing the number of turns. Further straining resulted in the 

alignment of bands of the nano–particles, and these bands were elongated with 

regard to the direction of torsion, indicating a high level of imposed deformation 

during HPT processing [145].  

It has found that the grain boundaries were obvious after the compression stage; 

however, they became ill–defined gradually with increasing the number of turns 

during the HPT processing. Some areas in the processed microstructures showed 
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the accumulation and alignment of the β–phase particles along specific directions 

over the horizontal cross–sections of the processed disks. It is assumed that this 

accumulation and alignment occurred due to flow localization or shear banding in 

these areas. The shear bands occur due to the limited active slip systems able to 

accommodate the high imposed strain in HPT processing of the AZ91 magnesium 

alloy [220]. The presence of the second phase particles in such areas provide 

sources for steep strain gradients resulting in occurrence of this flow localization 

[61][56]    

The EDS analyses showed no significant changes in the chemical compositions of 

the α–Mg matrix and β–phase for the as–received alloy and processed one for N = 

5 turns. Therefore, no dissolution was identified for Al in the matrix, which 

precludes the occurrence of the supersaturated alloy by the HPT processing. It 

has shown that the β–phase can precipitate along the grain boundaries during the 

ECAP processing [161] and compression [221] at elevated temperatures. In the 

current work, the HPT processing of AZ91 alloy was conducted at room 

temperature, which is much lower than that required for the precipitation of β–

phase. Thus, the latter process was excluded during the HPT processing of this 

alloy at room temperature.  

In addition, the size and shape of β–phase particles in the present research are 

significantly different form their counterparts that precipitate at elevated 

temperatures during the ECAP processing [161] and compression [221]. The 

current study showed that the nano–sized particles of β–phase with irregular 

shapes, has accumulated and aligned along the shear bands. The accumulated 

nano–sized particles were significantly finer than the micro–sized β–phase 

precipitates of rod–like and agglomerate shapes. Accordingly, such differences in 

the sizes and shapes of the β–phase also preclude the β–phase precipitation 

during the HPT processing of AZ91 in the current work. 

It seems that the grain refinement in the alloy processed at 296 K has occurred by 

the extensive grain fragmentation or subdivision as shown by TEM investigation in 

Figure 4.31. The severe plastic deformation of the AZ91 alloy with low–stacking 

fault energy has resulted in bulk nanostructured alloy with nanometre grain sizes. 

The fragmentation of the old or original grains in the current alloy has been 
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achieved by the presence of twinning as shown in Figures (4.32, 4.33). The 

reduction in the stacking fault energy of the material leads to smaller grain sizes 

under SPD processing [50][222]. For instance, the effect of stacking fault energies 

of the pure Mg [20], AZ31 alloy, AZ61 alloy and AZ91 alloy [47] are 125, 27, 16 

and 6 mJm-2, respectively, and their average grain sizes after HPT at room 

temperature were 600 nm (N = 8 turns) [223], 200 nm (N = 15 turns) [159], 110 nm 

(N = 5 turns) [99] and 35 nm (N = 10 turns, the crystallite size in the current 

research), respectively. 

The relatively high content of aluminium in the AZ91 magnesium alloy leads to                    

a significant reduction in the stacking fault energy through the solute–dislocation 

interaction [224]. The solute atoms (aluminium) segregate preferentially to the 

stacking fault and hence the separation between the partial dislocations increases 

and the mobility of dislocations becomes harder [25]. In this case, the pile up of 

accumulated dislocations results in formation of planar structures at low strains 

and the occurrence of ultrafine microstructure by the formation of twinning and 

their fragmentation and formation of shear bands at higher strains [52]. The AZ91 

microstructure developed from bimodal microstructure after processing at N = 1/2 

turn to a fairly homogenous ultrafine one after N = 1 turn as observed by TEM as 

shown in Figure 4.31. As the alloy has been processed at room temperature, the 

effect of the dynamic recovery was slower and microstructural homogeneity 

observed after only N = 1 turn. It is anticipated that the homogeneity developed 

gradually with further straining at room temperature as mentioned by several 

investigators [17][99][159][225]. Therefore, an exceptional grain refinement has 

been found in the AZ91 alloy over the other aforementioned alloys after HPT 

processing at room temperature. 

The occurrence of twinning in the alloy processed at room temperature during 

HPT processing as shown in Figures (4.32, 4.33) indicates the importance of 

twinning as a deformation mode in the AZ91 alloy with HCP structure and on the 

resultant microstructure after HPT processing at room temperature. XRD analysis 

has revealed the activation and domination of the compression twinning (   ̅ ) 

and (   ̅ ) and tension twinning     ̅   in the processed samples at all number of 

turns, whereas the prismatic plane     ̅   is the dominate one in the as–received 

alloy. Moreover, the basal plane        was more pronounced in the processed 
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alloy than in the as–received alloy. These observations indicate the orientation of 

the processed microstructure towards twinning and basal deformation modes 

under HPT conditions at room temperature [226]. As discussed before, the 

existence of torsional straining, the geometry of anvils and the strain path during 

the HPT process produce a significant shearing on the alloy and thus the 

activation of twinning deformation at room temperature [25][61][205].  

Electron back–scattered diffraction (EBSD) characterization is an effective 

technique that can provide crystallographic and microstructural information (e.g. 

grain size and orientation information) about various materials. This technique is a 

surface one, i.e., the information via diffraction patterns comes from the surface 

layer with depths of a few tens of nanometres. Therefore, low deformation and low 

contamination surfaces are required to gain good quality EBSD diffraction patterns 

[227]. EBSD was found to not be suitable for analysis of the AZ91 magnesium 

alloy processed in HPT. This is attributed to the rapid oxidation of the surfaces of 

the etched samples, where magnesium has a high reactivity with oxygen [9]. The 

heavily deformed surfaces (especially as deformation extended through the whole 

material) could not be removed by any available metallographic procedure; 

particularly since ion milling facilities was not available to this project. Many 

attempts were conducted during the course of the PhD but the resultant diffraction 

patterns were poorly indexed due to the surface oxide and severely distorted 

material. 

The alloy processed at elevated temperatures (423 K and 473 K) showed a 

significant activity of twinning than for the alloy processed at 296 K. These twins 

are compression and tension twins along the  –axis. Microstructural observation 

for the alloy processed at 423 K and 473 K revealed that the twins were not 

completely found in all grains and the twinning developed gradually with increasing 

the number of turns. At the relatively lower number of turns, the grains were mainly 

orientated towards the basal slip plane and not pyramidal (twinning) plane. The 

CRSS for the basal slip is about 0.5 MPa which is smaller than 3.0 MPa for the 

twinning plane, thus the grains were likely tried to deform via basal plane [226]. 

However, due to the accommodation incompatibility for the plastic deformation on 

the basal slip plane in the alloy with the HCP structure, some grains have re–

orientated themselves preferentially towards twinning as the CRSS reached to 
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enough value for initiation the deformation by twinning under the HPT loading 

conditions. Increasing the number of turns under such conditions was resulted in a 

gradual activation of twinning across the microstructure due to increase the 

preferential re–orientation for twinning to accommodate the further imposed 

deformation in HPT [228]. The massive shear produced by the combined 

compression and torsion in HPT at elevated temperatures may have lowered the 

CRSS required for the activation of twinning. 

Despite the formation of twinning being normally observed at low temperature and 

or high strain rates [25][229][230], twins have been observed during hot 

compression of AZ91 at temperatures between 250 – 300 °C [231], in AM30 at a 

temperature of 450 °C [232] alloy and in AZ91 alloy processed by backward 

extrusion at a temperature of 450 °C [215]. The occurrence of twinning has been 

shown at a relatively lower processing temperature as in AZ31 magnesium alloy 

processed by HPT at 373 K [225]. The lack of sufficient slip systems for 

homogeneous deformation and the presence of fine particles of β–phase 

encourage deformation localization in the AZ91 magnesium alloy and thus 

promote formation of twins [61][56][206]. The high content of aluminium in the 

AZ91 alloy could promote the activation of twins at elevated temperatures due to 

pinning of dislocations by aluminium solute atmospheres [215][233].  

Increasing the number of turns and processing temperature resulted in 

intersections of twins inside the grains and segmentation of the original grains into 

smaller grains. Microstructural observations revealed that the density of twinning 

at the centre regions of the processed samples are relatively lower than at the 

edge regions for alloy processed for N = 1/2 and 1 turn. It has found that the β–

phase has fragmented into small pieces with some remaining clusters at the 

centre region, whereas fine particles of the β–phase have observed at the edge 

regions for the alloy processed for relatively low number of turns. Therefore, it is 

expected that migration of twin boundary has restricted by the relatively coarser 

particles of the β–phase that distributed at the centre region and this resulted in a 

lower distribution of twinning in the centre region [228]. The finer particles of the β–

phase at the edge region have allowed to the twins to bypass them and hence a 

higher distribution of twinning has found in the edge region. However, increasing 

the number of turns to N = 5 turns resulted in a comparable values of twinning 
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density at the centre and edge regions, due to formation of nano–sized particles of 

the β–phase caused for further distribution of twins [234].  

The grain refinement in the processed alloy at 423 K has developed efficiently by 

the twinning intersections as well as the grain subdivision mechanism. At this 

temperature the dynamic recrystallization was absent or had a minor effect on the 

refinement process compared to the twinning activity since the processing 

temperature only just at the beginning of the range for recrystallization 

temperature (420 – 600 K) in magnesium alloys [235]. It is likely that the dynamic 

recrystallization may have contributed to the grain refinement in the processed 

alloy at 473 K. It has been reported that the new recrystallized grains could form 

as necklace–like bands along the original grain boundaries and twin boundaries 

[236]. A limited grain growth has observed in the alloy processed at 473 K with 

increasing the number of turns up to N = 5 turns. The significant dispersion of 

nano–sized particles of the β–phase during HPT processing had pinning effect for 

the grain growth of the alloy at a higher number of turns [17]. However, the 

formation and fragmentation of twinning were the dominant mechanism for 

refinement at 473 K. The accumulation of nano–sized particles of the β–phase 

along shear bands and twin boundaries retarded nucleation and dynamic 

recrystallization [237][238]. However, the alloy processed at 296 K showed a 

microstructural homogeneity with at the early stage of HPT processing rather than 

the heterogeneity that found in the alloy processed at 423 K and 473 K, which 

needed further processing turns and / or higher processing temperature for 

achieving a reasonable homogeneity as reported earlier using ECAP processing at 

elevated temperatures [13][239].  

The sources for heterogeneity and homogeneity in the materials processed by 

HPT are divided into two groups; the HPT process–related parameters and the 

material–related characters [1][205]. The HPT process–related parameters 

include: distribution of imposed strain over the sample, the applied pressure, the 

number of turns or value of imposed strain, the processing temperature, the 

sample dimensions, and the misalignment in HPT anvils [205]. The material–

related characters include: the crystal structure, the value of stacking fault energy, 

and the presence of precipitates or second phases [1]. If it assumed that the HPT 

process–related parameters and the material–related characters were the same 
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for all processed samples, except the processing temperature that will be the 

crucial factor in achieving the homogeneity in the alloy.  

It well–known that the temperature assists the activation of additional deformation 

modes in HCP magnesium alloys, and hence, increasing the temperature facilities 

the processing of these alloys [20]. In general, the processing of any material at 

elevated temperatures is time–dependent, thus, increasing processing time or the 

number of turns in HPT leads a microstructural homogeneity [235]. However, for 

the magnesium alloys the higher processing temperature and number of turns are 

associated with the dynamic recrystallization and grain growth during processing 

[194]. In the current research, an extensive twinning and grain growth have 

observed with increasing the temperature and number of turns for the alloy 

processed up to N = 5 turns at 473 K. The twinning activity seems has competed 

to the dynamic recrystallization even at higher processing temperature due to the 

existence of fine particles of the β–phase. This phase has melting point about 733 

K (460 °C) [191]; therefore the grain growth of recrystallized grains and twinned 

grains under the highest temperature (473 K) has constricted by the pinning effect 

of this phase [240].     

 

5.3 Microstructure over the vertical cross–sections 

The current results reveal that the HPT processing produced inhomogeneous 

grain structures in the AZ91 magnesium alloy in the through–thickness directions 

of the disks processed for N = 1/4 and 5 turns at room temperature. It has 

observed that the applied pressure during HPT processing imposes a compressive 

stress state across the processing volume of HPT. According to the geometry of 

depression and the disk shape, the centre region of the disk is subjected to the 

highest compressive stresses due to friction, whereas the lower compressive 

stresses are induced at the edge regions [25]. It has found that the mean stress 

(the result of compressive load divided by circular area of the disk) decreases with 

increasing the number of turns as a result of the material outflow that occurs in 

quasi–constrained HPT. This outflow increases the effective cross–sectional area 

of the sample [241]. 
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The microstructure of the AZ91 alloy reveals differences in the levels of inclination 

as shown in Figure 4.32, N = 1/4, 1 and 5 turns. The flow of plastic deformation 

can be traced through the configuration of the β–phase alignment, where any 

difference in the alignment through different locations along the axial direction of 

the processed disks, can reveal the variations in the plastic flow within the disks 

during the processing [25][216]. The shear bands decorated by β–phase has 

found near the top and bottom surfaces in the early stage of processing. The 

increase in straining resulted in a more shear bands and refined β–phase near 

these surfaces. It has found that the edge regions accommodated higher amounts 

of deformation than the centre regions at the early stage of processing, as shown 

in Figure 4.32, as a result of the proportionality of deformation with the distance 

from the centre as assumed by Eq. (1.10) [138].  

Increasing the number of turns can spread the deformation progressively across 

the vertical cross–sections of the processed disks; however, this seems to be 

heterogeneous in nature especially for the β–phase relative to the –matrix [155]. 

This phase is incompatible with –matrix due to the difference in the crystal 

structures between them and thus it is more susceptible to the plastic deformation 

and flow under processing than the matrix [25][216]. As observed by TEM and 

XRD, it is highly expected that the grain refinement across the vertical cross–

sections has attained within the nanometre range. The shear bands have occurred 

due to the concentration of deformation in specific areas, as shown by the red 

arrows in Figure 4.32, which reveals the heterogeneity of the deformation across 

the vertical cross–sections of the processed disks. The absence of sufficient slip 

systems for homogeneous deformation at room temperature, second phase 

particles and / or twins can lead to the shear localization and development of 

shear bands [61][56]. It has noticed that the presence of these bands increased 

with increasing the number of turns; however, their distribution was variable at 

different locations in the longitudinal directions in the disks processed through N = 

1/4 to N = 5 turns. These bands appeared to be parallel to the surfaces of the disk, 

indicating the constraining of deformation relative to the plane of the theoretical 

maximum shear stress [155][201]. The shear bands have concentrated in the edge 

area, as shown in Figure 4.32, due to the high outflow of material during 

processing and the high imposed shear deformation in these regions [242][243].  
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It can be seen that the width of shear bands was directly proportional to the 

number of turns, as shown in Figure 4.32, which is attributed to an increase in the 

material outflow with increasing the straining. The back–pressure is generated due 

to the outflow between the anvils, and because of die geometry, which resulted in 

a heavily deformed microstructure, and a uniform distribution of shear banding in 

the edge region [205]. The heterogeneous deformation may occur due to the 

differences in the friction coefficients between the upper and lower anvils. The high 

friction coefficient leads to the material being stuck to the depression walls under 

the processing, whereas the low friction coefficient results in the sliding of the 

material over the depression walls [25]. Therefore, the high friction enforces the 

material to revolve as a rigid–body, whereas the low friction allows the material to 

flow plastically within the volume of processing. Thus, the difference in friction 

coefficient induces a gradient in the deformation over the axial direction [244].  

The twins have induced, as shown in Figure 4.33, as a result of the shear 

deformation during the HPT processing. This twinning has induced by the stress 

concentrations and the reorientation of the grains during the HPT processing [40]. 

The nature of the HPT processing of the AZ91 alloy allows for occurrence of 

additional deformation mode at room temperature (twinning mode). During the 

early stage of HPT processing, the relatively coarse grains undergo slip across the 

basal slip plane. Piling–up of dislocations and existence of β–phase at areas that 

contain grains that are poorly orientated for the basal slip, can lead to the 

occurrence of stress concentrations at these areas [25]. Therefore, the poorly 

orientated grains will re–orientate themselves by means of torsion straining, and 

twinning will occur for accompanying the basal slip [226]. The generated twins 

include of both tension and compression types as shown by XRD analysis. The 

twinning activity has persisted in the processed alloy at 296 K with increasing the 

number of turns, which confirms its accommodation for the higher imposed strain 

by HPT. 
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5.4 Microhardness along the diameter 

A considerable increment in the microhardness can be noticed for the as–pressed 

disk (N = 0), as shown in Figure 4.40. The increase in microhardness of the as–

pressed alloy is attributed to the strain hardening by the compressive pressure 

[242], where the difference between the microhardness profiles for the as–

received and as–pressed disks is obvious in Figure 4.40. The larger error bars that 

appear in the microhardness profile of the as–pressed disk indicate the presence 

of a local heterogeneity in the deformation during compression stage. The flow of 

the alloy laterally outward at the anvils during compression leads to the formation 

of frictional shear stresses at the edge regions. These stresses are directed 

towards the centre region of the alloy within the processing zone [25], which 

explains the increase in microhardness towards the edge regions of the disks 

under compression, and the associated local heterogeneity in deformation [205]. 

Many aspects can be concluded from Figure 4.40. First, the microhardness tends 

to increase with the increasing distance from the centre of the disk at the early 

stage of HPT processing. This behaviour can be explained using Eq. (1.10), which 

states that the strain imposed by HPT is proportional to the location from the 

centre of the disk [138]. Therefore, a gradient in the accumulated dislocations 

appears within the processed microstructure at the centre and edge regions at the 

early stage of HPT processing, which leads to finer and harder microstructures at 

the edge regions than those found at the centre region of lower hardness [245]. 

Second, a gradual development in the microhardness can be seen in the centre 

region of the processed disks with increasing the number of turns from N = 3 turns, 

up to N = 10 turns. This development in the achieved microhardness is a result of 

the finer and homogenous microstructures evolved at the centre regions for the 

processed disks after a large number of turns, resulting in a higher strengthening 

effect compared with its counterparts at the centre regions in the early stage of 

HPT processing [147]. Third, the microhardness profiles for the disks processed 

for N = 3, 5 and 10 turns are relatively similar in spite of the differences in the 

number of turns. The similarity in the distributions of microhardness after a high 

number of turns is assigned to the ultrafine–grained microstructures achieved 

gradually for the greater number of turns [140]. Fourth, no considerable difference 

was noticed between the profiles of microhardness for the disks processed using 
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the applied pressures of 3.0 GPa and 6.0 GPa for the same number of turns, 

except in the centre regions for N = 1/2, 1 and 3 turns. The saturation in the 

distributions of microhardness was found to be independent of the values of the 

applied pressures. This saturation can be attributed to the values of applied 

pressures used in HPT processing compared with the yield strength of the AZ91 

alloy.  

In HPT processing, there is a need for a minimum applied pressure in order to 

avoid the sliding of the sample within the anvils during the processing and to 

achieve enough frictional forces to deform the sample plastically. This pressure 

should be three times larger than the yield strength of the material under 

processing [205]. The AZ91 alloy has a yield strength of 170 MPa [28], that is 

significantly less than the pressures used in this work, which are 3.0 GPa and 6.0 

GPa; thus the HPT processing at these pressures was clearly applicable for the 

AZ91 alloy. The first applied pressure (3.0 GPa) is much higher than the critical 

applied pressure for the HPT processing for AZ91 alloy, which value is close to the 

yield strength of the alloy [246]. Therefore, the HPT processing using an applied 

pressure of 6.0 GPa had no significant effect on the obtained microhardness. 

Moreover, it was found that there were no chemical changes in the microstructure 

of the AZ91 alloy after HPT processing with an applied pressure of 3.0 GPa in the 

current study, as shown by the EDS analysis in Table 4.2. The results of EDS 

analysis eliminate any possible increase in the microhardness of the processed 

alloy under the applied pressures of 3.0 GPa and 6.0 GPa. No new phase of 

higher microhardness was found during the HPT processing [246] such as that 

found for the pure Ti, which transformed from α–phase to ω–phase at higher 

applied pressures during the HPT processing, causing a significant increase in 

microhardness [247].   

The values of the error bars have recorded and tabulated as shown in Table 4.3 

for the distribution of microhardness along the diameter for alloy processed at 296 

K. The highest values of error bars at the centre regions of the processed disks at 

the early stage of HPT processing, indicate the initial heterogeneity in the 

deformation and microstructure of the alloy at this stage. The further straining 

resulted in a gradual decrease in these bars due to the gradual evolution in 

microstructure towards homogeneity with increasing the number of turns [139]. 
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The low values of the error bars at the edge regions can be attributed to the 

development of homogeneity in microstructure, where the microhardness at these 

regions was increased earlier than that for the centre regions, due to the high 

imposed strain in the edge regions [140]. 

  

5.5 Effect of the equivalent strain on the Hall–Petch 

relationship and dislocation density 

A correlation of the microhardness values has constructed relative to the imposed 

equivalent strain during HPT processing as shown in Figure 4.42 (b), where the 

microhardness results were obtained from Figure 4.40 (b). This correlation for the 

obtained microhardness has been adopted in many studies [137][138]. The results 

shown in Figure 4.42 (b) have represented by a fitting line as shown in the plot, 

which highlights the increase and saturation in the measured microhardness with 

increasing the imposed strain. A schematic illustration of the variation in hardness 

with the equivalent strain is shown in Figure 5.1, which is based on the 

measurement shown in Figure 4.42 (b).   

A significant increase in the microhardness found in the initial stages of 

deformation, where the increase appeared gradually at equivalent strains higher 

than ∼20. The increase of microhardness can be explained by the accumulation of 

dislocations at the initial stage of the HPT processing, thus leading to the 

formation of subgrains within the original grains in the alloy as illustrated in stage I 

in Figure 5.1 [248]. Increasing the equivalent strain up to ∼50, results in a 

continuous increase in microhardness, but at a slow rate. It was found that the 

further straining reduces the sizes of the subgrains, increases the clarity of the 

subgrain boundaries and increases the misorientation. The former evolution in 

microstructure leads to a slow rate in the progress of the microhardness [248]. A 

limited increase in the microhardness was found by increasing the equivalent 

strain in the range of 50 – 250, which reveals saturation in the measured 

microhardness using a high number of turns. The relative saturation in the 

measured microhardness can be attributed to the balance between the generation 

of dislocations during the HPT processing and the absorption of the dislocations 
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by the grain boundaries, which results in a lower rate of strain hardening as 

illustrated in the stage II in Figure 5.1 [131].  

Increasing the number of turns in HPT at room temperature resulted in 

strengthening of the alloy through the grain reduction as shown in Figure 4.42 

(a,b). The strength of alloy (in term of its microhardness) improved significantly 

with grain refinement at room temperature as illustrated in Figure 4.42 (a). This 

proportionality has expressed by the Hall–Petch relationship for the hardness 

measurement (             ⁄ ) [249] as shown in Figure 4.42 (b). The effect 

of grain refinement on the strength of the processed alloy at room temperature 

showed a significant consistency with the Hall–Petch relationship. The linear 

relationship between the Vickers microhardness and the grain size after HPT 

processing gave a value of the parameter    (233 MPa.m1/2) and the AZ91 alloy 

showed a relatively higher level of hardness than for the AZ31 alloy [159]. The 

value of the parameter   in the Hall–Petch relationship indicates the ability of 

dislocations to extend from one grain to another during deformation 

[250][251][252], and it describes the contribution of strengthening by the grain 

boundaries [25]. The value of the parameter   is affected by the temperature, 

strain rate, texture and impurities [25][253]. The both aforementioned alloys 

processed at the same temperature and strain rate, as well as identical X–ray 

patterns have observed after processing.  

This difference can be attributed to the difference in alloying constituents in both 

alloys. The AZ91 alloy contains a higher aluminium content (9 wt.%) than in the 

AZ31 alloy (3 wt.%). The alloying of a pure metal with impurity atoms results in 

occurrence of lattice strains that interact with the moving dislocation during the 

deformation causing hardening. The lattice strains arise from the change in the 

lattice constants of the pure metal after alloying with atoms of different atomic 

radii. For the pure magnesium, the lattice constants are   = 0.320 and   = 0.520 

nm, whereas their values in the as–received AZ91 alloy as obtained by XRD were 

  = 0.317 and   = 0.550 nm. It is clearly that the lattice in the AZ91 alloy has 

contracted and extended along the   and   axes due to the presence of different 

alloying elements. The atomic size difference is about 15 % and 10 % between the 

magnesium atom and aluminium and zinc atoms, respectively, which results in a 
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noticeable change in the lattice dimensions and thus introduces strengthening. 

The strengthening effect in magnesium alloy depends on the concentration of the 

alloying elements as expressed by the following relation [254]:        
   , where 

   is a constant and   is the atomic concentration of solute. It has noticed that 

hardness increased from    = 32 [223] to 55 [14] and 65 (the current work), for 

the pure Mg, AZ31 alloy and AZ91 alloy, respectively, which reveals the influence 

of alloying elements (Al and Zn) on the strength of the magnesium.  

A significant strengthening has achieved after HPT processing at 296 K in the 

AZ91 alloy, which was higher than for the pure Mg [223] and AZ31 alloy [159] 

processed at the 296 K in HPT. The hardness improved considerably in the AZ91 

alloy to an average value of    = 135 after processing for N = 10 turns, whereas 

the hardness reached to about    = 50 and 110 in the pure Mg processed for N = 

16 turns and in the AZ31 alloy processed for N = 15 turns, respectively [159][223]. 

It can be seen that the rate of strain hardening has evolved earlier in the AZ91 

alloy than in the pure Mg and AZ31 alloy, where the highest level of hardness has 

achieved at a relatively low number of turns for the AZ91 alloy. The evolution in 

dislocation density with increasing of imposed strain in HPT has a major effect on 

the achieved strengthening in the AZ91 alloy. The dislocation density has 

developed significantly with increasing the number of turns for samples processed 

at 296 K and this evolution was associated by extensive grain refinement as 

illustrated in Figure 4.42 (a). The measured microhardness for samples processed 

at different number of turns revealed the gradual development of strengthening 

with increasing the dislocation density as shown in Figure 4.43 (b) and Figure 4.44 

(a). The calculated dislocation density and crystallite size for the AZ91 alloy were 

higher than for the AZ31 alloy [223] at all number of turns. The difference in 

dislocation density between both alloys is attributed to the difference in the 

contents of alloy elements, area fractions of β–phase, values of applied pressure 

in HPT and values of stacking fault energies in both alloys.  

The increase in the content of alloying element in the AZ91 alloy resulted in finer 

microstructure than in the AZ31 alloy and therefore a higher dislocation density 

inside the refined grains and along the new grain boundary. Therefore, a higher 

level of strengthening has observed in the AZ91 alloy compared to that in the 

AZ31 alloy. A similar behaviour of the effect of alloying element on the grain 
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refinement dislocation density and hardness has been reported for the aluminium 

alloys with different Mg concentrations after ECAP processing at 296 K [255]. The 

higher content of aluminium atoms in the –Mg solid solution leads to a significant 

obstruction for the dislocation mobility by the means of solute atmosphere [231]. 

The distribution and sizes of β–phase altered significantly during HPT and these 

changes could affect the evolution of dislocation density in the processed alloy. 

The area fraction of the fine particles of β–phase increased with increasing the 

number of turns and this increase associated with a significant refinement of the 

β–phase down to nanometre sizes. These fine particles act as barriers for the 

mobile dislocations during deformation as these particles are harder than the –

Mg matrix and they dispersed overall the matrix with significant alignment of these 

particles especially at the edge areas. The increase in the applied pressure used 

in HPT processing resulted in a higher value of dislocation density [256][257]. The 

applied pressure of 3.0 GPa used in this research for processing the AZ91 was 

higher than its counterpart used in processing AZ31 (2.5 GPa) [223]. The higher 

value of applied pressure enhances the obstruction of defect migration in the 

processed material and then promotes the suppression of lattice defect 

annihilation [257][258]. This results in a continuous accumulation of generated 

lattice defects by shear torsional deformation and thus a high density of lattice 

defects is expected [259][260]. 

As the value of stacking fault of the AZ91 is much lower than for the other 

magnesium alloys in the AZ alloy series such as AZ31 and AZ61 alloys [47]. 

Therefore, the dissociated dislocations are separated by wider distances in the 

AZ91 alloy than in the other alloys, which lead to a significant inhibition of 

dislocation cross–slip and formation of high density of planar arrays of dislocations 

[43]. During the deformation, the moving dislocations will be blocked effectively by 

the wide stacking faults and then hindering their movements. The possible 

segmentation of stacking faults by the moving dislocations could provide additional 

sources for dislocation accumulation and obstruction [261]. The continuous 

accumulation of dislocations at the stacking faults with increasing the imposed 

strain in HPT improved the strength of the alloy as indicated by microhardness 

measurements [159]. In general, the high concentration of grain boundaries, 

stacking faults, area fraction of  the β–phase in the ultrafine-grained microstructure 
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are effective sources for obstruction of dislocations and thus enhance the strength 

of the material [261]. 

However, a comparison between strengthening by grain boundaries (Hall– Petch 

strengthening) and strengthening by dislocation activity (Taylor strengthening) has 

been illustrated in Figure 4.44 (b). It seems that the estimated values of 

microhardness using the Hall– Petch relation are closer to the measured values of 

the microhardness than by using the Taylor relation. It seems then that the grain 

boundaries have a more significant effect on the strength of ultrafine–grained 

AZ91 alloy rather than the dislocation density. This difference however should also 

be considered in terms of the potential errors in the measurements of the 

crystallite size (grain sizes should be used) and dislocation density [184][192]. 

However, the increase in processing temperature resulted in a minor increase in 

the crystallite size at 423 K and 473 K as shown in Figure 4.51 (a), which was 

associated by a significant decrease in the microhardness of processed alloy 

especially at 473 K for N = 10 turns as shown in Figure 4.51 (b). This behaviour 

can be attributed to the variation in the dislocation density with processing 

temperature and number of turns as shown in Figure 4.51 (c). It is clear that the 

processing temperature has a minor effect on the microhardness especially at the 

initial stages of HPT processing (N = 1/2 and 1 turn), where the times of 

processing are significantly low and thus the microstructures did not undergo any 

significant grain growth as observed in Figures (4.34 – 4.37, 4.51) for the alloy 

processed at 423 K and 473 K [225]. As the processing times increased for N = 5 

and 10 turns the crystallite sizes increased clearly but they still within the 

nanometre range and the microhardness showed a significant decrease. The 

gradual decrease in the dislocation density with increasing the processing times at 

a given processing temperature has considerable effect on the values of 

microhardness of the alloy due to recovery at elevated temperatures [170][262].   

The values of parameters in Hall–Petch relationship depend also on the texture 

after processing [263]. The XRD analysis showed a domination of the basal slip 

and pyramidal modes after processing. It has been reported that the basal 

textured microstructure in a magnesium alloy leads to domination of basal slip and 

then feasible transportation of gliding over the surrounding grains [263]. Therefore, 
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less resistance from the grain boundaries would appear and hence low value of 

the parameter   in the Hall–Petch relationship and low strength are highly 

expected. Activation of the non–basal deformation modes would enhance the 

obstruction of slip by grain boundaries and increase the value of parameter   and 

strength as observed in the processed alloy [251][264]. 

 

Figure 5.1: (a): A schematic illustration for correlation of the measured microhardness with 

the equivalent strain [248] and (b): A correlation of the microhardness (recorded along the 

diameter) with the equivalent strain for the AZ91 alloy processed in HPT at room 

temperature and using an applied pressure of 3.0 GPa. 

 

5.6 Microhardness over the horizontal cross–sections 

The distribution of microhardness for the AZ91 disks processed by HPT 

processing at temperatures of 296 K, 423 K and 473 K are shown in Figures (4.45 

– 4.47). These graphical maps exhibit the evolution in the distributions of 

microhardness over the horizontal cross–sections with increasing the number of 

turns. A significant evolution has achieved in the microhardness of the alloy during 

HPT processing compared to its values in the as–received alloy. This increase in 

the microhardness is associated with the evolution in the microstructure during 

HPT processing with increasing the number of turns up to N = 10 turns [136]. The 

HPT processed disks showed an earlier increment in the microhardness at the 

edge regions compared with the counterpart values at the centre regions for N = 

1/2 and 1 turn. At the initial stage of HPT processing, a relatively higher strain 

(b) (a) 
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imposed into the edge regions of the disk as predicted by Eq. (1.10), resulting in 

an earlier evolution in the microstructure and an increase in the microhardness in 

these areas. At the same time, the centre region experienced a lower value of the 

imposed strain, leading to a relatively lower deformation and then a lower 

microhardness at this area [136].  

However, the centre region of the processed disk for N = 1/2 turn showed a higher 

microhardness than for the as–received alloy. The increase in the microhardness 

may be caused by the first stage of the compressive deformation that introduced 

by the applied pressure prior to the HPT processing, and to the second stage of 

the compressive deformation that appeared during the torsional deformation 

during the HPT processing [138]. The further straining resulted in a considerable 

increment in the microhardness in the centre regions for the disk processed for N 

= 5 turns with a minor increase in the microhardness in the edge regions. The 

increase in microhardness at the centre regions associated with the evolution in 

the microstructure during HPT processing, where fine and homogeneous 

microstructure has achieved due to the gradual spreading of the torsional 

deformation from the edges to the centre regions during HPT processing [18]. A 

relative saturation in the distributions of microhardness achieved both at the edge 

and centre regions of the disk processed for N = 5 and 10 turns. This behaviour 

attributes to fine and homogeneous that evolved at these regions [147].  

The development of microhardness in the processed alloy can be explained 

through the evolution of microstructure during HPT processing. At the early stage 

of HPT processing, the average grain size at the edge regions was assumed 

smaller than that at the centre region, resulting in a non–uniform microstructure at 

the initial stage of HPT processing. Thus, a bimodal microstructure of relatively 

coarse and fine grains is expected to develop during the HPT processing for a low 

number of turns as shown in Figure 4.31 (a) [265]. The initial heterogeneity of 

microstructures leads to an initial heterogeneity in the distribution of 

microhardness [6]. Increasing the number of turns resulted in the spreading of 

deformation towards the interior regions of the processed disks. At the initial stage 

of HPT processing, i.e. at a small number of turns, and according to Eq. (1.10), the 

value of strain imposed by HPT is low at the centre region where the radius 

theoretically equals zero; thus, the expected imposed deformation is low at this 
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region. The high imposed strain is expected to be at the edge regions according to 

the above mentioned equation, where the radius is significantly larger than zero. 

The difference in grain sizes at the centre and edge regions was diminished by 

further straining, where a gradual evolution towards homogeneity has found in the 

microstructure and microhardness at both centre and edge regions of the 

processed disks for N = 5 and 10 turns. 

This behaviour is anticipated at a higher number of turns according to Eq. (1.10), 

although the value of the radius equals zero at the centre region. The development 

of homogeneity can be explained according to three approaches. The first 

approach is called a repetitive undulating manner that has been proposed by 

Zhilyaev et.al. [136], where the shear deformation expands towards the centre 

region with increasing the number of turns as shown in Figure 4.45, where the 

areas of the higher microhardness covered the edge regions initially, and then 

moved to the centre regions. Increasing the number of turns resulted in the 

significant spreading of the deformation to cover the whole cross–section of the 

processed disks as shown in Figure 4.45, indicating a gradual homogeneity in the 

processed microstructure and then the microhardness.    

The second approach has been proposed by Estrin et.al. [148] and related to the 

strain gradient phenomenon [149] across the material under deformation. It has 

been found that the high strain accumulates at the edge regions and the low strain 

accumulates at the centre regions at the initial stage of processing. Thus, the high 

and low rates of strain hardening appear at the edge and centre regions, 

respectively. This accumulation results in the occurrence of grain refinement 

significantly at the edge regions rather than at the centre region. This behaviour 

resulted in a higher and lower distributions of the microhardness at the edge and 

centre regions, respectively as shown in Figure 4.45. It was also found that the 

increasing number of turns led to an increase in the accumulated plastic strain in 

the centre region, resulting in an increase in the refined areas at this region of the 

processed disks, and further increase in the homogeneity of the microstructures 

and microhardness [148] as shown in Figure 4.45. 

The third approach is related to the misalignment of HPT anvils, which plays an 

important role in reducing the un–deformed regions in the centres of processed 
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disks and then achieving a reasonable homogeneity after a high number of turns 

[138]. It has been found that the misalignment of the anvils increases with 

increasing the number of turns. This misalignment results by the reduction in the 

thickness of the disk under HPT processing, subsequently causing a friction 

between the two rims of the anvil and between the material’s outflow and these 

rims [205]. The existence of misalignment between the anvils at high number of 

turns causes an additional deformation at the centre region of the processed disk, 

which appeared as an increase in the measured microhardness [138].  

It has been reported that the development of microhardness after the HPT 

processing depends on the stacking fault energy of the alloy [139]. The AZ91 with 

low stacking fault energy (6 mJm-2) [47] shows a slow rate of the dynamic recovery 

during the HPT processing, thus the strain hardening occurs at a fast rate during 

the processing [43]. Therefore, the microstructural homogeneity and progress in 

the microhardness (see Figure 4.45) requires a higher imposed strain or an 

increase in the number of turns [147][144]. The behaviour of strain hardening and 

dynamic recovery in magnesium alloys are in contrast to that for a material with 

high stacking fault energy such as pure aluminium (200 mJm-2) [48]. A high rate of 

dynamic recovery has been observed during the HPT processing of pure 

aluminium, which means that the microhardness increases at the initial stage of 

processing then drops with further straining or by increasing the number of turns 

as shown in Figure 2.36 [139]. A schematic illustration for the development of 

Vickers microhardness for materials with low and high stacking fault energies after 

HPT or ECAP processing in Figure 5.2 [139]. It is clearly that the strain hardening 

and saturation in the microhardness for the AZ91 alloy with low stacking fault 

energy follows the behaviour as illustrated schematically in shown in Figure 5.2.  

The development of microhardness can be explained in term of the stacking fault 

energy of the processed material. The AZ91 alloy processed in HPT for N = 5 

turns showed an earlier saturation in the microhardness distribution than for the 

AZ31 alloy [159] processed at the same number of turns in HPT at room 

temperature. The stacking fault energy of the AZ91 alloy (6 mJm-2) is smaller than 

for the AZ31 alloy (27 mJm-2) [47]. Therefore, the evolution of grain refinement and 

strain hardening occurred at faster rates in the AZ91 alloy than for the AZ31 alloy. 

Furthermore, the area fraction of β–phase is higher than in the AZ31 alloy due to 
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higher amount of aluminium in the AZ91 alloy than for the AZ31 alloy. Therefore, 

the solute–dislocation interactions would be more intense in the AZ91 alloy than in 

the AZ31 alloy, which results in more obstruction of the motion of dislocations and 

then a higher strain hardening in the AZ91 alloy [25][266]. 

The effect of processing temperature on the development of microhardness can 

be seen in the coloured–coded maps in Figures (4.46 – 4.47). These maps 

represent the distribution of Vickers microhardness on the horizontal cross–

sections of the AZ91 alloy processed at 423 K and 473 K. It is obviously that the 

overall microhardness for the alloy processed at 423 K is relatively similar to it 

counterpart for the alloy processed at 296 K, where the behaviour of strain 

hardening at both processing temperatures developed with increasing the number 

of turns. However, the rate of strain hardening and then the development of 

microhardness were slower at 423 K than at 296 K. The overall microhardness 

and rate of strain hardening for the alloy processed at 473 K were significantly 

lower than their counterparts at 296 K and 423 K. This can be explained according 

to the variation in dislocation density with processing temperature.  

It has been stated that the dislocation density decreases significantly at higher 

processing temperatures [170]. Existence of the grain growth at such higher 

temperature (i.e., 473 K) had a detrimental influence on the strength of the alloy 

especially at high number of turns (N = 10 turns). Processing of the AZ91 alloy at 

lower temperatures (i.e., 296 K and 423 K) did not show any significant grain 

growth [156]. However, the rate of strain hardening in the alloy processed at 296 K 

was significantly faster and higher than at 423 K due to higher dislocation density 

that accumulated in the alloy at 296 K than at  423 K. Increasing the number of 

turns up to N = 10 turns resulted in development of the microhardness for the alloy 

processed at 423 K due to increase the dislocation density at high number of 

turns.  

It has been reported that the processing of magnesium alloys at temperatures 

lower than 400 K leads to no grain growth [235]. Therefore, the limited grain 

growth that observed in the alloy processed at 473 K resulted in a lower overall 

microhardness compared to their counterparts obtained after processing at 296 K 

and 423 K [225]. The reduction in microhardness has been reported in the AZ31 



Discussion | 206 

 

alloy after processing at 473 K especially at high number of turns [267]. However, 

the overall microhardness for the AZ91 alloy processed at 473 K was higher than 

for the AZ31 at all number of turns. This difference can be attributed to the higher 

area fraction of the β–phase in the AZ91 alloy than in the AZ31 alloy. After the 

HPT processing this phase fragments into fine particles that have pinning effect for 

the accumulated dislocations and then influence the strengthening of the alloy 

[25][266].  

  

Figure 5.2: Schematic illustration of the distributions of Vickers microhardness for two 

materials with low and high rates of recovery processed by HPT or ECAP, for the 

materials of the low and high stacking fault energies, respectively [139]. 

 

5.7 Microhardness over the vertical cross–sections  

The current results have shown that the microhardness distributions in the AZ91 

alloy are heterogeneous along the through–thickness directions at the initial stage 

of deformation. This is supported by the differences in microstructural observations 

in the along this direction, as shown in Figures (4.48 – 4.50), and confirms the 

occurrence of plastic flow localisation. The results show that the microhardness 

developed by increasing the number of turns relative to the increase of the 

distance from the centre. These results are symmetric with the microstructural 

inspections on the vertical cross–sections of the processed disks. The evolution of 

deformed microstructure that elongated along the mid–plane of the processed 

disks for N = 1/2, 1, 5 and 10 turns contributed in the increase of microhardness 
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across the vertical cross–sectional planes. Increasing the imposed strain by HPT 

resulted in increasing the values of microhardness, especially in the mid–radius 

and edge regions of the disks processed for N = 1/2 and 1 turn. The initial 

heterogeneity in the deformation of AZ91 alloy at the initial stage of HPT 

processing has been shown reported for the AZ31 alloy [199] processed by HPT 

at 296 K and using an applied pressure of 6.0 GPa for N = 1/4, 1 and 5 turns.  

This initial heterogeneity is a result of the lack of sufficient slip systems for a 

homogenous deformation in the magnesium alloy [20], which results in the 

occurrence of the localized plastic flow. The presence of shear bands along the 

vertical cross–sections gives an indication of this flow. The high friction coefficient 

leads to the rotation of the alloy within the volume of the centre region of the disk, 

whereas low friction coefficient results in the flow of the alloy across the volume at 

the edge region of the disk. Therefore, the difference in the friction coefficients 

leads to a heterogeneous distribution of the deformation in the through–thickness 

direction [268]. 

A significant saturation in the microhardness achieved after N = 5 and 10 turns, 

which indicates the development of homogeneity in the microstructure and 

measured microhardness. The development of homogeneity by increasing the 

number of turns can be explained by the presence of higher imposed strains under 

the hydrostatic pressure, which enforce the poorly orientated grains to re–orientate 

themselves towards the basal slip through the activation of twinning, and the latter 

increases the deformation homogeneity [61]. It is assumed that the sufficiently 

high number of turns may reduce the effect of the difference in the friction 

coefficients, due to the alloy being filled between the anvils and achieving a 

significant sticking condition [205][269]. The high processing temperature (423 K 

and 473 K) resulted in low and heterogeneous distribution of microhardness at 

initial stages of HPT processing and relatively homogeneous distribution of 

microhardness with increasing the number of turns. The effect of processing 

temperature on the average microhardness illustrated in Figure 4.51.  

The alloy processed at 296 K shows a significant strengthening up to high number 

of turns, whereas the alloy processed at 423 K and 473 K exhibits a lower level of 

strengthening that becomes even lower with increasing the number of turns at 473 
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K indicating the loss of accumulated dislocation density and occurrence of grain 

growth. The distribution of microhardness along the vertical and horizontal cross–

sections showed a considerable consistency for the alloy processed at each 

specific processing temperature, which indicates the development of 

microstructural homogeneity with increasing the imposed strain at each condition 

[245]. This consistency in the AZ91 alloy has not been observed in the AZ31 alloy 

processed at both ambient and elevated temperatures due to difference in the 

aluminium content and stacking fault energy in both alloys, which control the 

extent of grain refinement, dislocation density, achieved homogeneity and 

resultant mechanical properties [25] [47][224][266]. 

 

5.8 Flow behaviour during hot deformation 

The discussion in this section and the following sections are based on the author’s 

paper published on [270]. The stress–elongation curves in Figures (4.52 – 4.55) 

for the fine–grained AZ91 magnesium alloy reveal significant superplastic 

elongation and relative thermal stability of the alloy under tensile loading at 

temperatures up to 573 K for up to 1680 minutes using a strain rate of 1×10–4 s–1. 

The achieved elongations varied with microstructure, strain rate and testing 

temperature as shown in Figures (4.57 – 4.58) and summaries in Table 4.4. For 

the alloy processed for N = 10 turns in HPT and then pulled in tension at a testing 

temperature of 573 K using a strain rate of 1×10–4 s–1, the maximum elongation 

reached 1308 %; which (to the authors’ knowledge) is the highest value of 

elongation reported to date in this alloy. The elongation results in the current 

research are significantly higher than data that have been published earlier. For 

instance, the maximum elongation previously published was 810 % at 473 K using 

at a strain rate of 5×10–4 s–1 for the Mg–9%Al alloy processed in HPT for N = 5 

turns at 423 K [18], whereas in the present work, the maximum elongation was 

1090 % at a testing temperature of 473 K using a strain rate of 1×10–4 s–1, for the 

AZ91 alloy processed at room temperature in HPT for N = 5 turns.  

In addition, the tensile elongations in this investigation are also higher than 

observed for alloy processed at high temperatures in ECAP as reported earlier 
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[17], where the maximum elongation was 840 % at a testing temperature of 473 K 

using a strain rate of 3.3×10–4 s–1 for samples processed for 2 passes in ECAP at 

a processing temperature of 473 K; whereas the current AZ91 alloy processed by 

HPT for N = 1 and 3 turns at room temperature showed maximum elongations of 

845 % and 977 % at a testing temperature of 473 K using a strain rate of 1×10–4 s–

1.  

This difference in the elongation can be attributed to the processing temperature in 

HPT and ECAP. For magnesium alloys, it is well documented that a much finer 

microstructure can be produced by SPD processes at room temperature rather 

than at elevated temperatures [17][99][159][225]. The current alloy has refined 

efficiently from 30 m in the as–received alloy to about 35 nm in the alloy 

processed at room temperature for N = 10 turns in HPT. Furthermore, the level of 

grain refinement that achieved after HPT at room temperature is much finer than 

that after ECAP. The minimum grain sizes in AZ91 alloy were 1 m in ECAP at 

448 [10], 17 m after 2 passes in ECAP at 473 K [13], 0.7 m after 2 passes in 

EX–ECAP at 473 K [17] and 2 m after 4 passes in two–step ECAP at 498 K and 

then 453 K [161]. The aforementioned grain sizes are significantly larger than the 

grain size in the current alloy after HPT; especially the grain growth has taken 

place with increasing the number of passes in ECAP at elevated temperatures. 

Thus, the observed higher elongations are expected from a finer microstructure 

during the subsequent hot deformation as the presence of fine grains is one of the 

prerequisites for achieving superplasticity in polycrystalline materials [88]. The 

increase in elongation with finer microstructure can be seen in Figures (4.57 – 

4.58) and depicted in Figures (4.59 – 4.62), where the higher elongations towards 

the superplastic range were achieved with increasing the number of turns up to N 

= 10 turns. 

For the as–received alloy, the elongations varied with strain rate and testing 

temperature as shown in Figures (4.57, 4.58, 4.63) and summarised in Table 4.5. 

The elongation has increased as the temperature increased and strain rate 

decreased in the as–received alloy. At a testing temperature of 296 K, the alloy 

showed the highest strain hardening among the tested samples and the lowest 

elongations, where the microstructure has not shown any changes at this 
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temperature. The strain hardening in the as–received samples is attributed to the 

high density of dislocations that accumulated in the samples tested at  296 K 

where slow recovery and no recrystallization occurred. The limited ductility at 296 

K is attributed to the restricted number of slip systems in the AZ91 magnesium 

alloy. The magnesium and its alloys deform by the basal slip and twining at room 

temperature and thus the limited ductility results [20]. The moderate increase in 

elongation for the as–received alloy has influenced by the decreasing in the strain 

rate, where the microstructure could re–orientated its grains for the basal slip 

under tensile loading [226][271]. However, the presence of non–basal deformation 

modes such as prismatic and pyramidal planes as shown in Figure 4.38 has 

retained the high values of strain hardening even at low strain rates due to the 

obstruction of slip in the basal plane with its counterpart in the non–basal planes 

[251][264]. Increasing the temperature up to 473 K and 573 K resulted in lower 

values of strain hardening and significant improvement in the elongation for the 

as–received alloy at all strain rates due to softening of the microstructure by the 

dynamic recrystallization as shown in Figures (4.79, 4.80). The grain sizes were 3 

m and 5 m after testing at 473 K and 573 K, respectively using a strain rate of 

1×10-4 s-1, which corresponding to elongations of 209 % and 332 % as illustrated 

in Figure 4.63. 

 

5.9 Occurrence of the superplastic behaviour 

The microstructural inspections along the gauge lengths of tensile samples after 

tension as shown in Figures (4.67 – 4.77), reveal that the apparent grains 

remained equiaxed (as revealed by SEM from the surface morphology of the 

tested samples [187][188][189]) with fine sizes until fracture at all temperatures 

and strain rates. The presence of these apparent equiaxed grains was associated 

with superplastic elongations, which indicated that the main deformation 

mechanism was grain–boundary sliding (GBS). The retention of an equiaxed 

microstructure at elevated temperature under tension is necessary for superplastic 

elongations through grain–boundary sliding [106][272]. In addition, the retention of 

equiaxed grains after the tensile test reveals the migration of grain boundaries 

during superplastic deformation at elevated temperatures. The stress 
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concentration at grain boundary discontinuities can be reduced by the migration of 

grain boundaries during deformation, and thus grain–boundary sliding continues 

as the main deformation mechanism [91].  

The measurements of strain–rate sensitivity ( ) confirm that grain–boundary 

sliding is the dominant deformation mechanism, where the  –values were 0.3 – 

0.5 as illustrated in Figure 4.64. It is well known that high values of strain–rate 

sensitivity indicate a higher resistance to failure by necking and thus high 

elongations are expected [272]. The uniform appearances in the gauge lengths of 

tested samples that showed high elongations as depicted in Figures (4.59 – 4.62) 

reveal the absence of necking after hot deformation that indicates the occurrence 

of superplastic flow [273]. However, this necking has noticed in the samples with 

relatively lower elongations using the faster strain rate (1×10–1 s–1) at relatively 

testing temperatures 423 K and 473 K, where these samples has fractured by the 

localized necking and the lower elongations have observed. At above–mentioned 

conditions, the test has conducted rapidly so there was no chance for strain 

softening and fine–grained microstructures were retained. At these rapid rates of 

deformation, the activation of twinning is anticipated for accommodation the 

deformation and re–orientation of the grains for the direction of tensile stress. 

Subsequently, the twins tend to re–orientation also in the direction of tensile stress 

[274], and the localized deformation appears at sites when twins intersect with 

each other while they are orientating towards the tensile stress leading to crack 

initiation at these sites and thus high strain hardening and low elongation are 

resulted [275].  

The current results reveal an excellent high–strain rate superplasticity (HSRSP) for 

the AZ91 alloy processed by HPT at room temperature compared to those found 

previously for Mg–9%Al alloy processed by EX–ECAP (360 %, 1×10–2 s–1, 498 K) 

[17], Mg–9%Al alloy processed by HPT (325 %, 1×10–2 s–1, 473 K) [18], hot 

extruded AZ91 alloy (300 %, 1×10–2 s–1, 548 K) [276], and hot rolled AZ91 alloy 

(275 %, 1×10–2 s–1, 698 K) [277]. It has been assumed that an improvement in 

microstructural stability at elevated temperature and additional grain refinement 

are possible ways to achieve high–strain rate superplasticity in magnesium alloys 

[98]. In the present work, the AZ91 alloy was processed in HPT at room 

temperature, which was not the case reported by those using other processing 
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techniques such as equal channel angular pressing [17]. A more extreme grain 

refinement is expected after processing at room temperature than at elevated 

temperatures as reported in previous HPT studies [17][99][159][225]. Thus, the 

room temperature processed alloy with a finer microstructure exhibits better 

thermal stability and thus superior superplasticity under faster strain rates in hot 

deformation [278].  

It can be seen in Figure 4.77 (g – l), for the sample processed for N = 10 turns in 

HPT, that high–strain rate superplasticity to elongations of 590 %, 410 % and 860 

% using strain rates of 1×10–2 s–1 at 473 K, 1×10–1 s–1 and 1×10–2 s–1 at 573 K, 

respectively, and the grain growth was insignificant at testing temperatures of 473 

K (for 2 – 3 minutes) and 573 K (for 5 – 10 minutes). In addition, it is obvious from 

Figures (4.54, 4.61), that the maximum high–strain rate superplasticity achieved 

for Mg–9%Al processed in HPT for N = 5 turns at 423 K [18], was significantly 

lower than its counterpart for the alloy in the present investigation that was 

processed in HPT for the same number of turns but at 296 K. This can also be 

attributed to the effect of processing temperature on the grain refinement of 

magnesium alloys as discussed previously.  

Low–temperature superplasticity (LTSP) was also noticed in the AZ91 alloy during 

tensile testing at a low temperature of 423 K using strain rates of 1×10–3 s–1 and 

1×10–4 s–1 as illustrated in Figure 4.57. The lower testing temperature is equivalent 

to 0.55   , where    for the AZ91 alloy is 768 K (495 °C) as illustrated in the 

phase diagram of the alloy [33]. The current performance in the low–temperature 

superplasticity regime is better than previous data obtained for the AZ91 

magnesium alloy [10][18]. It has been found that finer grain sizes are preferable for 

achieving low–temperature superplasticity as well as for achieving high–strain rate 

superplasticity [10]. It can be seen that the grain sizes were retained to within 1 m 

and 4 m for samples tested at 423 K and 473 K, respectively, using strain rates of 

1×10–3 s–1 and 1×10–4 s–1 as observed in Figures (4.76 – 4.77). The current results 

for low–temperature superplasticity reveal the potential for superplastic forming of 

magnesium alloys at lower possible temperatures to overcome their poor 

workability at room temperature and excessive oxidation at elevated temperatures 

[279].  
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A small difference was observed in the maximum values of the low–temperature 

elongations, for samples processed by EX–ECAP (800 %, 1×10–4 s–1, 423 K) [17], 

and its counterpart obtained in the current study (760 %, 1×10–4 s–1, 423 K). This 

can be attributed to the difference in dimensions of tensile samples for ECAP and 

HPT. The ECAP tensile sample was cut from a cylindrical billet with a gauge 

length of 5 mm and gauge cross–section area of (3×2) mm2 [17], whereas in this 

study, the HPT tensile sample was cut from a circular disk with a gauge length of 

1.0 mm and gauge cross–section area of (0.9×0.6) mm2. Therefore, the small 

difference in the calculated elongations can be attributed to the difference between 

the relatively large–scale and micro–scale tensile samples produced in ECAP and 

HPT, respectively [280][281]. Moreover, the direction of cutting for tensile samples 

from ECAP billets and HPT disks has a further impact. The tensile samples after 

EX–ECAP were cut parallel to the longitudinal axes after the extrusion step and 

after the ECAP [17], whereas the disk–shaped samples were cut firstly from an 

extruded rod perpendicular to the extrusion direction; then after HPT processing, 

the tensile samples were cut parallel to the shear–plane direction [99]. Therefore, 

occurrence of a strong texture is anticipated due to the extrusion and subsequent 

ECAP for 2 passes through the route   , and alignment of the basal planes parallel 

to the extrusion direction [282]. The ECAP processing for 2 passes does not lead 

to a redundant strain process and thus an significant alignment and texturing of 

the microstructure towards the direction of pressing is expected rather than after 

processing for 4 passes [283]. This leads to easy slip in tension at a testing 

temperature of 423 K and the occurrence of low–temperature superplasticity for 

the alloy processed in extrusion and ECAP for 2 passes [22]. In contrast, the 

monotonic HPT mode was used in the processing of the AZ91 alloy in this 

investigation, which leads to a more random texture with equiaxed grains at a high 

number of turns [284].  

Therefore, at temperatures of 423 K, a relatively lower elongation is expected in 

the alloy processed by HPT compared to its counterpart processed by EX–ECAP. 

The average strain sensitivity of 0.3 and the equiaxed grains were found for all 

samples tested at a testing temperature of 423 K using a strain rate of 1×10–4 s–1, 

which suggests that grain boundary sliding is the deformation mechanism at low 

temperature [10]. Lower elongations were found at a low temperature of 423 K 
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using high strain rates of 1×10–1 s–1 and 1×10–2 s–1, and these elongations were 

associated with low values of strain–rate sensitivity with an average of 0.25. Thus, 

glide–dislocation creep is assumed as the deformation mechanism accommodated 

with grain–boundary sliding as the grains retained their equiaxed shapes and did 

not elongate as in the case of dislocation creep only [277][285].  

 

5.10 Mechanisms of the deformation 

The activation energy was calculated at a fixed strain rate using the following 

equation [193][286]:                ⁄  ⁄  , where   is the activation energy,   

is stress exponent (    ⁄ ),   is the gas constant, and            ⁄  ⁄  is the 

slope of plot in Figure 4.65. For the AZ91 alloy, the activation energy was obtained 

for a sample processed in HPT for N = 10 turns then tensile tested using a strain 

rate of 1×10–4 s–1 over the temperature range (423 – 573) K as shown in Figure 

4.76. It was found that the activation energy equals 80.34 KJ/mol that is close to 

the activation energy of grain boundary diffusion of pure magnesium (92 KJ/mol). 

Therefore, grain–boundary sliding is the dominant deformation mechanism, which 

is consistent with the observed microstructures as shown in Figure 4.76. The 

grain–boundary sliding mechanism was accommodated with diffusional flow at 

temperatures of 473 K and 573 K using a strain rate of 1×10–4 s–1 as shown in 

Figure 4.77 (c, f, i, l). It can be seen that the shapes of grains under these 

conditions were changed from equiaxed to elongated and oriented towards the 

tension axis and thus the highest level of superplasticity produced [287]. The 

relative difference in the obtained activation energy and its counterpart for pure 

magnesium is attributed to the presence of β–phase in the AZ91 alloy, where this 

phase has an activation energy for grain boundary diffusion of 65 KJ/mol, which 

reduces the overall activation energy for the present alloy [288][289].  

The steady–state strain rate for the superplastic flow at high temperatures is 

expressed by [45]:  ̇         ⁄     ⁄      ⁄   , where   is the appropriate 

diffusion coefficient              ⁄  ,    is the pre–exponential complex 

constant,   is a dimensionless constant,   is the dynamic shear modulus,   is the 

Burgers vector,   is the grain size,   is the applied stress,   and   are the 
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exponents of the inverse grain size and normalized stress, respectively. Using the 

following values of    ,    ,     ,       [272],                  , 

                      , and               [290] in the former 

equation for the grain–boundary sliding mechanism results in Figure 5.3, which 

represents the temperature and grain size compensated strain rate versus the 

normalized stress for the alloy processed for N = 10 turns and tested in tension at 

different temperatures and strain rates. The solid line represents the predicted 

strain rate for superplasticity with a slope of    2 (   0.5).  

Good agreement was obtained between the observed experimental data for the 

current alloy and similar work in a series of magnesium alloys [291][292] and the 

constitutive equation of superplastic flow based on the assumption that grain–

boundary sliding is the dominant deformation mechanism over these testing 

temperatures and strain rates. It is important to note that the values of apparent 

grain sizes were collected from the SEM micrographs of the gauge lengths of the 

tensile test as indicated in Figure 4.76 and these values were used in the 

constitutive equation. The glide–dislocation creep was assumed as the 

deformation mechanism accommodated with grain–boundary sliding at 423 K and 

fast strain rates 1×10–1 s–1 and 1×10–2 s–1, where the low values of strain–rate 

sensitivity were about 0.25 and the obtained elongations were significantly lower 

than at higher testing temperatures and slower strain rates. The microstructures at 

these conditions showed no elongated and equiaxed grains indicating the 

occurrence of dislocation creep [277][285].  

For the as–received alloy, the glide–dislocation creep was assumed to be 

occurred at testing temperatures of 296 K using all strain rates, at 473 K using 

strain rates of 1×10–1 s–1 to 1×10–3 s–1 and 573 K using strain rates of 1×10–1 s–1 to 

1×10–2 s–1. The mechanism of glide–dislocation creep assisted by grain–boundary 

sliding would assume at the lowest strain rates at testing temperatures of 473 K 

and 573 K, where the values of strain–rate sensitivity were about 0.3 – 0.4 and the 

fine–grained microstructures have observed due to the dynamic recrystallization at 

these temperatures [277][285].        
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Figure 5.3: The temperature and grain size compensated strain rate versus normalised 

stress for the AZ91 alloy processed in HPT compared with a series of magnesium 

alloys. The slope of the straight line has a value of the stress exponent of 2, and 

represents the predicted superplastic strain rate. 

 

5.11 Thermal stability during hot deformation 

The thermal stability of the AZ91 alloy was enhanced by the presence of fine 

particles of the β–phase (Mg17Al12). Prior to HPT processing, the β–phase exists 

normally along the grain boundaries as lamellar and agglomerate forms in the 

unprocessed alloy as shown in Figure 4.1. After HPT processing, this phase 

fragmented into fine particles with nanometre sizes due to the high value of the 

imposed strain by HPT and these nano–sized particles were dispersed in the 

matrix (α–Mg solid solution) as shown in Figures (4.16, 4.29) for the alloy 

processed for N = 1 and 10 turns.  



Discussion | 217 

 

It was found that the morphology of the second phase significantly affects the 

mechanical behaviour of the metallic materials at room temperature and elevated 

temperatures [293]. The existence of well–dispersed particles of the β–phase 

inhibited significant grain growth during superplastic deformation at elevated 

temperature and then enhanced the extent of superplasticity. The β–phase has a 

melting point of about 733 K (460 °C) which is relatively lower than 768 K (495 °C) 

for the AZ91 alloy [191]; thus, the β–phase along the grain boundaries may glide 

relatively earlier than the grains during hot deformation.  

For samples processed in HPT for a low number of turns (N = 1), it was noticed 

that the distribution and area fraction of the fine particles of the β–phase are 

relatively lower as shown in Figure 4.16 than in samples processed for a high 

number of turns (N = 10) as shown in Figure 4.29. Therefore, during tensile testing 

at elevated temperature, with a low fraction volume of the fine particles of β–

phase, where the β–phase is located mainly near and / or on the grain boundaries, 

it acts as pinning phase and the sliding of grains is probably accommodated with 

limited sliding of the fine particles of β–phase. Increasing the distribution and area 

fraction of the fine particles of the β–phase leads to a more significant sliding of 

the β–phase particles, which can be expected in samples tested at a temperature 

of 573 K, which represents 0.78    of the β–phase. It has been proposed that the 

β–phase acts as a lubricant for matrix sliding during tension [189]. Therefore, the 

highest elongations were obtained at all strain rates at a temperature of 573 K for 

samples processed in HPT for N = 10 as illustrated in Figures (4.55, 4.58, 4.62). 

The effect of area fraction of β–phase on the superplasticity has been reported 

earlier for Mg–15%Al–1%Zn alloy [189], Mg–33%Al alloy [94] where elongations 

have been improved considerably with increasing the amount of aluminium (or the 

area fraction of the β–phase).  

As the strain rate decreased to 1×10–4 s–1 and testing temperature increased to 

473 K and 573 K, the microstructure showed filaments and surface cavities as 

shown in Figure 4.77 (c, f, i, l) and Figure 4.81. The formation of filaments has 

been reported for AZ91 alloy in the temperature range of (623 – 698) K [277], Mg–

15%Al–1%Zn alloy in the temperature range of (548 – 598) K [189] and in AZ61 

alloy in the temperature range of (573 – 673) K [294]. The filaments appear to 

have reconnected the disconnected grains and grain boundaries and relinked the 
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cavities at the final stage of superplastic deformation. These fibres were formed 

and aligned in the direction of tension, and their lengths increased with decreasing 

strain rate and increasing temperature. Thus, the superplastic elongations were 

enhanced and maintained by the continuous fibrous structures at the slowest 

strain rate and elevated temperatures [189][277][294]. The micro–superplasticity of 

filaments in superplastic materials has been proposed to explain the superplastic 

elongations [189][295] as shown in Figures 4.77 (c, f, i, l) and Figure 4.81. 

EDS analysis was conducted on matrix, grain boundary and filament as shown in 

Figure 4.84, for a sample processed in HPT for N = 10 turns and then tested at a 

temperature of 573 K using a strain rate of 1×10–4 s–1. It can be seen that the alloy 

has oxidized since the testing was conducted in the air, as the chemical analysis 

revealed the presence of oxygen on the grain and grain boundary. The filaments 

were oxidized also but showed the presence of a higher aluminium level, 26.13 %, 

than in the structures of the grains and grain boundaries (9.97 % and 7.87 %, 

respectively). Therefore, it can be concluded that the filaments were composed 

mainly of the β–phase as shown in previous work [189].  

The variation in the average grain size as observed using SEM is illustrated in 

Figures (4.82, 4.83) for tensile samples with increasing testing temperature using 

different strain rates. It can be seen that the processed alloy with fine particles of 

β–phase retained its grain size below 10 m over the range of subsequent testing 

temperatures, strain rates and times. The alloy exhibited only modest grain growth 

at lower temperature and / or high strain rates (lower times), and a limited grain 

growth at higher temperature and slow strain rates (higher times at temperature). 

Moreover, it was found that presence of a high area fraction of these fine particles 

retarded cavity formation at elevated temperatures and slow strain rates due to 

softening of these particles at temperatures over 573 K [296]. 



 

 

Chapter Six: Conclusions
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6. CONCLUSIONS 

1. The AZ91 magnesium alloy has effectively processed by HPT at room 

temperature up to 10 turns, which was not applicable using ECAP at room 

temperature. The capability of HPT processing of AZ91 magnesium alloy at 

room temperature can be attributed to the presence of the hydrostatic 

pressure, the geometry of the processing zone and the unidirectional nature of 

torsional straining during the HPT processing. 

2. An ultrafine–grained microstructure of the α–Mg solid solution and nano–sized 

particles of β–phase has developed during HPT processing with increasing the 

number of turns up to 10 turns. The extensive grain refinement with average 

crystallite size (subgrain size) of 35 nm was found in the alloy processed at 

296 K, where the processing at 423 K and 473 K has been refined by twinning 

segmentation of the original grains into smaller grains with average crystallite 

size (subgrain size) of 60 nm.  

3. The twins have observed at all processing temperatures. The occurrence of 

twinning during processing at 296 K has induced by the need for re–

orientation of the microstructure towards the slip and for accommodating the 

severe plastic deformation.  

4. The chemical composition of the alloy before and after the HPT processing 

has been unaltered indicating no chemical changes by the processing at room 

temperature. 

5. Fragmentation and alignment of the β–phase in the direction of torsional strain 

have observed during the processing. This phase has refined into nano–sized 

particles with average sizes of 200 nm indicating the very high level of plastic 

deformation that imposed into the alloy during the HPT. The area fraction of 

the β–phase particles has increased throughout the processed alloy with 

increasing the number of turns. 
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6. Limited grain growth has found at the higher processing temperatures and 

number of turns, where this growth has been retarded by the high fraction of 

nano–sized particles of the β–phase. 

7. The microstructural homogeneity has developed gradually at relatively low 

number of turns using the lower processing temperature and it continues with 

increasing the number of turns as indicated by microhardness measurements, 

TEM and XRD across horizontal and vertical cross–sections of the processed 

samples. A local heterogeneity was found along the vertical cross–sections of 

the processed samples due to the difference in friction coefficients between 

the upper and lower anvils. 

8. The development in microhardness towards the homogeneity across the 

horizontal and vertical cross–sections of the processed samples with 

increasing the number of turns has achieved earlier in the alloy processed at 

296 K rather than at 423 K and 473 K as revealed by the microstructural 

observations and microhardness measurements. A significant improvement in 

the strength of the alloy has been found after the HPT processing at all 

processing temperatures as shown by microhardness measurements. The 

different values of the applied pressure in the HPT processing had no 

significant differences in the distributions of microhardness.  

9. The dislocation density has remarkably developed for the alloy processed at 

296 K as the number of turns increased rather than alloy processed at 423 K 

and 473 K. The gradual increase in the dislocation density has been 

associated by an extensive grain refinement and has resulted in a gradual 

development in microhardness. The values of dislocation densities were 

significantly higher than their counterparts after ECAP due to the very higher 

value of the imposed strain during HPT than in ECAP for the same alloy, the 

processing at room temperature, and high fraction of β–phase particles. A 

linear proportion for experimental Hall–Petch relationship has achieved for the 

alloy processed at 296 K that emphasizes the significant dependence of the 

strength on grain size. 
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10. High–strain rate superplasticity was obtained with excellent elongations of 590 

% at a testing temperature of 473 K using a strain rate of 1×10–2 s–1, 410 % 

and 860 % at a testing temperature of 573 K using strain rates of 1×10–1 s–1 

and 1×10–2 s–1, respectively. Significant low–temperature superplasticity was 

achieved with maximum elongations of 660 % and 760 % at a testing 

temperature of 423 K and using strain rates of 1×10–3 s–1 and 1×10–4 s–1, 

respectively. 

11. The samples processed by HPT at room temperature revealed fine equiaxed 

grains with significant thermal stability at all testing temperatures and strain 

rates. The thermal stability of the processed alloy was attributed to the 

ultrafine grains produced by HPT at room temperature and to the high fraction 

of nano–sized β–phase particles. 

12. Equiaxed microstructures and high values of strain–rate sensitivity indicate 

that grain–boundary sliding was the main deformation mechanism during the 

high–strain rate superplasticity regime. Glide–dislocation creep 

accommodated with grain–boundary sliding is suggested as the deformation 

mechanisms operating during the low–temperature superplasticity regime. At 

high temperature and slow strain rate the grain–boundary sliding 

accommodated with a diffusion creep mechanism. 

13. The fibrous structures were mainly composed of β–phase and they enhanced 

the superplasticity at high temperatures and low strain rates through resisting 

the cavitation and relinking the disconnected grains. 

 



 

 

Chapter Seven: Future Work 
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7. FUTURE WORK 

1. Investigation of the microstructural evolution of the alloy at different processing 

temperatures and number of turns using TEM techniques. This would allow 

better definition of the mechanisms and stages of the grain refinement at 

different processing conditions, revealing in detail the role of twinning and 

stacking faults on development of the ultrafine–grained microstructure, the 

presence of dislocations in matrix and β–phase and matrix/β–phase interface, 

inspection of the interaction of matrix \ nano–particles of β–phase and twin \ 

nano–particles of β–phase and their influence on the strengthening and tensile 

behaviour of the processed alloy. 

2. Using EBSD techniques to study the microstructural evolution of the alloy 

under different processing conditions. This analysis can be used to investigate 

the dynamic recrystallization, twin density, population of high–angle grain 

boundaries, and development of grain refinement with regards to dynamically 

recrystallized grains, twin subdivision and dynamic precipitation of the β–

phase and its nano–sized particles. All these observations would be used to 

correlate the resultant mechanical properties with the observed microstructural 

evolution.  

3. Investigation of the tensile properties of the alloy processed at 423 K and 473 

K in HPT including the microstructure observations after the tensile test. This 

would show the effect of dynamic recrystallization of microstructure and 

dynamic participation of β–phase of the resultant properties and thermal 

stability of the alloy during the tensile test. 

4. A model for strengthening in the alloy processed in HPT at different 

temperatures, including the effect of grain refinement, the nano–sized particles 

of the β–phase, and the twins.  
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Abstract Experiments were conducted to evaluate the

evolution of structure and hardness in processing by high-

pressure torsion (HPT) of the magnesium AZ91 and AZ31

alloys. Both alloys were processed by HPT at room tem-

perature for 1/4, 1, and 5 turns using a rotation speed of

1 rpm. Structure observations and microhardness mea-

surements were undertaken on vertical cross-sectional

planes cut through the HPT disks. The results demonstrate

that the deformation is heterogeneous across the vertical

cross sections but with a gradual evolution toward homo-

geneity with increasing numbers of revolutions.

Introduction

Mg–Al–Zn alloys have become one of the most important

light alloys with widespread applications in the automotive

industry [1]. However, magnesium alloys typically have

low formability near room temperature due to their hex-

agonal close-packed (hcp) crystal structure and the limited

number of slip systems that operate at lower temperatures.

Processing to produce grain refinement is an effective

procedure for achieving both high strength and reasonable

ductility at room temperature. It is now well established

that ultrafine-grained microstructures can be produced in

metals using severe plastic deformation (SPD) techniques.

One of the most common SPD methods is equal-channel

angular pressing (ECAP) which permits the fabrication of

submicrometer microstructures without any reduction in

the cross-sectional dimensions of the billets [2, 3]. More

recently, high-pressure torsion (HPT), where a disk is

subjected to a high pressure and concurrent torsional

straining [4], has become a popular and important SPD

technique. Most published results on the ECAP processing

of Mg alloys describe experiments in which the processing

was conducted at a relatively high temperature, typically at

or above 423 K, because ECAP processing at lower tem-

peratures generally leads to severe segmentation and

cracking of the samples [5–9]. A detailed description of the

characteristics of this unstable flow in ECAP was given in

earlier reports [10, 11]. Alternatively, by using HPT it is

possible to process Mg alloys at much lower temperatures,

and even at room temperature, because of the presence of a

high hydrostatic pressure that prevents segmentation and

cracking during the straining process. To date, there are

only very limited reports describing the room temperature

processing of Mg–Al–Zn alloys by HPT [12, 13].

Moreover, the majority of papers focus on the structure

and properties achieved after SPD processing and only a

few on the processing characteristics. In addition, there are

very few papers evaluating the homogeneity of deforma-

tion. The occurrence of heterogeneity in deformation in

ECAP was reported in an early investigation when flow

localization was observed in copper and an ‘‘end effect’’

was shown in a billet of aluminum processed by multiple

passes [14]. Experiments using plasticine also revealed the
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occurrence of heterogeneity of deformation in the regions

of the billet in contact with the die walls [15] and finite

element modeling showed the occurrence of heterogeneous

plastic deformation in ECAP [16–18].

The occurrence of heterogeneity of deformation in HPT

is not well understood at the present time. The principle of

torsion deformation predicts a heterogeneous distribution

of strain along the diameter of the disks since the center is

assumed to be subjected to a lower strain and the edge to a

larger strain. Thus, early investigations documented the

distance from the disk center at which the experiments,

such as microhardness measurements and structure char-

acterization, were carried out in samples processed by HPT

[19–22]. Later, a theoretical study showed that the varia-

tion in deformation along the whole surface of the disk

tends to decrease with increasing numbers of rotations [23].

The tendency toward a homogenization of deformation was

confirmed by microhardness measurements taken over the

whole surfaces of disks processed by HPT to large numbers

of turns [19, 24, 25]. Thus, the development of heteroge-

neity in the deformation imposed at different distances

from centers of samples processed by HPT is now widely

known. It is noteworthy that an early report suggested that

microhardness measurements taken at different distances

from the centers in individual HPT samples processed to

different numbers of turns were well correlated through the

use of the shear strain [21].

Nevertheless, heterogeneity of deformation along the

through-thickness direction was not well studied in the

earlier reports. It is only in very recent investigations that

measurements have been taken to characterize the structure

and microhardness distributions on vertical planes cut

through the disks [26–35]. Accordingly, the present

investigation was initiated in order to study and compare

plastic flow and hardness homogeneities on two represen-

tative Mg–Al–Zn alloys. Specifically, tests were conducted

on the AZ91 and AZ31 alloys having nominal aluminum

contents of 9 and 3 wt%, respectively. These alloys were

selected because they are the most common and most

widely used within the AZ magnesium series.

Experimental materials and procedures

The materials used in this study were an AZ91 (Mg–9Al–

1Zn) alloy supplied by Magnesium Elektron Co. (Man-

chester, UK) and an AZ31 (Mg–3Al–1Zn) alloy supplied

by Timminco Co. (Aurora, CO, USA). Both alloys were

supplied in the form of extruded rods having diameters of

10 mm. In the unprocessed condition, the average grain

sizes and values of the Vickers microhardness, Hv, were

*30 lm and 70 Hv for the AZ91 alloy and *9.4 lm and

68 Hv for the AZ31 alloy. The extruded rods were sliced

into thin disks with thicknesses of about 1.5 mm and

ground with abrasive papers to final thicknesses of

*0.85 mm for the AZ91 alloy disks and *0.80 mm for

the AZ31 alloy disks. Inspection showed that the distri-

butions of grain size and hardness were homogeneous

throughout the thicknesses of the unprocessed samples.

All disks were processed by HPT under quasi-

constrained conditions [36–38] in which the disks are held

in shallow depressions on the inner surfaces of the upper

and lower anvils and there is a small outflow of material

between the two anvils during the processing operation.

The HPT processing was conducted at room temperature

(296 K) at a rotational speed of 1 rpm using imposed

pressures of 3.0 and 6.0 GPa for the AZ91 and AZ31

alloys, respectively. All disks were processed through

totals of 1/4, 1, and 5 turns. The top and bottom surfaces of

each disk were clearly marked prior to HPT processing.

After processing, the disks were sectioned vertically along

their diameters in planes perpendicular to the radial direction

and mounted in resin. These longitudinal sections were

ground with abrasive papers, polished to a mirror-like finish,

and etched to reveal the phase boundaries using optical

microscopy (OM) in the AZ91 alloy and the grain boundaries

in the AZ31 alloy. Following observations of the micro-

structure, the etched surfaces were re-polished and Vickers

microhardness measurements were taken at selected loca-

tions. These measurements used an applied load of 100 gf and

a dwell time of 10 s. The minimum distance between con-

secutive indentations was 100 lm in order to avoid any

interference between the measurements. The values of hard-

ness were determined as the average of five indentations and

these values were then plotted as a function of the distance

from the bottom of the disk. Separate measurements were

carried out at points located at fractions of 0.1, 0.5, and 0.9 of

the disk radius. Color-coded contour maps were constructed in

which the individual hardness values were displayed using a

color scale and these values were plotted as a function of the

locations on the longitudinal sections of the disks.

Experimental results

Structural features of AZ91 after HPT

One-half cross sections of the three disks of the AZ91 alloy

are shown in Fig. 1 after processing by HPT. It is readily

apparent that the etching leads to variations in the contrast

in different regions of the samples. A general and overall

impression from the cross sections shown in Fig. 1 is that

there is a more pronounced variation of structure in the

through-thickness direction than in the radial direction. It is

also evident that the sample processed to 5 turns cracked

near the bottom corner.
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The AZ91 alloy has a two-phase microstructure con-

sisting typically of a matrix of a grains with a b phase

(intermetallic Mg17Al12) along the a grain boundaries.

Etching reveals structural features of the dual phase AZ91

alloy, and Fig. 2 shows representative micrographs in the

alloy in areas located *3 mm from the center of each disk:

these disks were processed through (a) 1/4 turn, (b) 1 turn,

and (c) 5 turns, respectively. The presence of two phases in

this alloy facilitates the observation of the plastic flow

during deformation. The sample exhibited no major

alignment of the darker phase before processing. Thus, any

alignment observed after processing indicates plastic flow

during processing. It is apparent that the phases near the

top and bottom in Fig. 2a appear distorted and tend to align

to a horizontal direction whereas the phases in the central

region appear coarser and do not exhibit any major align-

ment. This suggests that there are differences in the plastic

flow in these two areas. In Fig. 2b and c, it is also evident

that different structural features are present at different

distances from the bottom of the disks. Thus it is readily

apparent, even when using optical microscopy, that the

structure after HPT varies along the through-thickness

direction. Generally, finer phases are observed near the

surfaces of the disk processed to 1 turn in Fig. 2b while

coarser phases are present near the mid-plane. In the

sample processed to 5 turns in Fig. 2c, there is a clear

difference in alignment of the phases near the bottom and

near the mid-plane of the disk.

In addition, shear bands developed in the AZ91 alloy

after HPT processing and these bands were visible at var-

ious locations in the three processed disks: two examples

are shown in Fig. 3 marked with red arrows. Inspection

showed these shear band extended over lengths of several

hundreds of microns but their thicknesses were less than

one micron. Figure 3a shows a shear band at a radius, r, of

3.5 mm in the disk processed to 1/4 turn and Fig. 3b shows

a shear band at a radius of 4.5 mm in the disk processed to

1 turn. It is apparent that these shear bands are approxi-

mately parallel to the disk surfaces. However, they are not

entirely linear and at some locations they are not parallel to

the disk surfaces. These perturbations indicate that the

processing deformation is not confined exclusively to the

plane of the theoretical maximum shear stress.

Structural features of AZ31 after HPT

The longitudinal sections of disks of the AZ31 alloy pro-

cessed by HPT to different numbers of turns are shown in

Fig. 4. Again, it is readily apparent that the structural

features vary in the through-thickness direction and, as for

AZ91 

HPT: 3 GPa (296 K) N = 1/4

AZ91 

HPT: 3 GPa (296 K) N = 1

AZ91 

HPT: 3 GPa (296 K) N = 5

Fig. 1 Appearance of the one-

half cross sections of disks of

the AZ91 alloy after HPT

processing to different numbers

of turns

J Mater Sci (2013) 48:4661–4670 4663

123



the AZ91 alloy, the variations in the through-thickness

direction are clearer than along the radial direction.

Details of the flow lines are displayed at a higher mag-

nification in Fig. 5 for selected areas of the disks processed

for different numbers of turns. The area near the center of the

disk processed to 1/4 turn is shown in the upper left image in

Fig. 5. In this image in the early stages of processing, the

flow lines are clearly aligned perpendicular to the disk sur-

face. In fact, they are aligned parallel to the sample axial

direction and this is caused by extrusion of the rod prior to the

HPT processing. Thus, the material was received as extruded

rods so that the initial flow lines are oriented parallel to the

axial directions of the disks. It is also apparent from the

image at upper right, corresponding to the edge of the sample

after 1/4 turn, that the flow lines are not aligned perpendic-

ular to the disk surface throughout the thickness in this

region. Thus, some regions retain the original alignment (at

the top and bottom corners) but there is no clear alignment in

the area near the mid-plane. This suggests that the mid-plane

area at the edge of the disk after 1/4 turn was subjected to

higher deformation than the top and bottom corners.

The alignment of the flow lines becomes inclined at the

edge of the disk after 1 turn of HPT as shown at the bottom

left in Fig. 5, thereby suggesting high deformation by tor-

sional shear parallel to the disk surface. At the edge of the

sample processed to 5 turns, shown at the bottom right in

AZ91 
HPT: 3 GPa (296 K) N = 1/4 
r = 3.0 mm 

(a) (b) 

AZ91 
HPT: 3 GPa (296 K) N = 1 
r = 3.0 mm 

AZ91 
HPT: 3 GPa (296 K) N = 5 
r = 3.0 mm 

(c) 

Fig. 2 Grain structures in the AZ91 alloy at a radius of 3.0 mm after HPT processing through different numbers of turns a N = 1/4 turn,

b N = 1 turn, and c N = 5 turns
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Fig. 5, there is a clear alignment of the flow lines parallel to

the surface of the disk between the mid-plane and the bottom

surface. This alignment is due to the severe torsional shear

taking place parallel to the disk surface during HPT. How-

ever, there is also a region with flow lines perpendicular to

the disk surface near the upper surface of the sample pro-

cessed to 5 turns. This demonstrates an inhomogeneity in the

flow processing since it appears that this area retains the

original flow alignment and, therefore, it was not subjected to

the same level of severe deformation.

Microhardness distributions in AZ91 after HPT

Color-coded contour mapping was used to reveal changes

in the microhardness on the longitudinal sections of AZ91

disks processed by HPT. Figure 6 shows plots of the

hardness distributions as a function of location on one-half

of the vertical cross sections of the disks processed by HPT

through 1/4 turn (upper), 1 turn (center), and 5 turns

(lower), respectively: the central positions in each disk are

labeled 0 on the lower axes and the edges lie at the points

labeled 5. It is apparent that there are significant differ-

ences in the levels of hardness at different radial positions

in the disks processed to 1/4 and 1 turn and these differ-

ences occur especially in the vicinity of the centers of the

disks. By contrast, there is a high degree of homogeneity in

the disk processed through 5 turns such that there is little

variation in the hardness values either in the radial or the

axial directions. These results confirm, therefore, the

gradual evolution into a homogeneous hardness distribu-

tion with increasing numbers of torsional revolutions.

Furthermore, this evolution is consistent with the analytical

treatment of homogeneity in HPT processing using strain

gradient plasticity theory [23].

Microhardness distributions in AZ31 after HPT

Similar color-coded contour mapping was also used for the

AZ31 alloy and the results for the one-half longitudinal

sections are shown in Fig. 7 for disks processed through

1/4, 1, and 5 turns of HPT, respectively. Again it is

observed that the hardness tends to increase with increasing

distance from the center in the samples processed through

1/4 and 1 turn of HPT but after 5 turns there is a higher

level of homogeneity although the AZ31 alloy is less

homogeneous than the AZ91 alloy. After 1/4 and 1 turn the

hardness varies significantly in the through-thickness

direction in both samples and after 5 turns there is greater

homogeneity but there remains a narrow region of lower

hardness along the upper surface. This suggests that the

AZ31 alloy requires more than 5 turns in HPT processing

in order to attain a fully homogeneous structure. It should

be noted that earlier experiments on the AZ31 alloy

showed a much higher level of inhomogeneity after pro-

cessing by HPT through 5 turns at a temperature of 463 K

[29] and a comparison of these two processing tempera-

tures confirms the advantage of performing HPT at the

lowest possible temperature.

AZ91 
HPT: 3 GPa (296 K) N = 1 
r = 4.5 mm

(b) 

AZ91 
HPT: 3 GPa (296 K) N = 1/4 
r = 3.5 mm 

(a) 

Fig. 3 Shear bands (marked by red arrows) in the AZ91 alloy after

HPT processing through a N = 1/4 turn and b N = 1 turn (Color

figure online)
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Discussion

The present results demonstrate that HPT processing pro-

duces inhomogeneous hardness distributions, and, there-

fore, inhomogeneous grain structures, in the AZ91

magnesium alloy in the through-thickness directions of

disks processed by HPT for 1/4 or 1 turn. However, the

alloy achieves a reasonable level of hardness homogeneity

after processing through 5 turns. Similar results were

obtained also for the AZ31 alloy although there was

slightly less homogeneity in the flow patterns after 5 turns.

Significance of any rise in temperature during HPT

The present experiments were carried out at room tem-

perature. However, the large amount of plastic deformation

imposed to a small sample may produce a temperature rise

in the disk. A recent report examined the temperature rise

in the anvils during processing of different materials by

HPT under different conditions [39] and finite element

modeling was used to estimate the maximum temperature

rise in the samples [37, 39]. Specifically, a graphical

solution was developed in order to estimate the maximum

temperature rise in a disk processed under quasi-con-

strained HPT conditions [37].

Using this graphical solution, it is possible to distinguish

three regimes during HPT processing. There is an early

stage when a continuous increase in temperature is

observed in the sample, an intermediate stage where the

rate of temperature rise decreases continuously due to heat

lost to the environment, and a final stage where an essen-

tially steady-state condition is attained and the heat gen-

erated is similar to the heat lost. The temperature rise in

these three stages may be approximately calculated using

the following three equations which are derived directly

using the data in the earlier report [37]:

Stage 1 (t \ 300 s)

DT ¼ 16þ 0:04tð Þ xrð Þ 1þ 0:025
P

r

� �� �� �
ð1Þ

Stage 2 (300 s \ t \ 1500 s)

DT ¼ 6:6 ln tð Þ � 9:5½ � xrð Þ 1þ 0:025
P

r

� �� �� �
ð2Þ

Stage 3 (t [ 1500 s)

DT ¼ 39ð Þ xrð Þ 1þ 0:025
P

r

� �� �� �
ð3Þ

where DT is the maximum temperature rise in �C, t is the

processing time in seconds, x is the rotation rate in rpm, r
is the average flow stress of the material in GPa, and P is

the applied pressure.

Noting that r & 0.4 GPa from the hardness tests, it

follows that the maximum temperature rises at 5 turns

(t = 300 s at x = 1 rpm) for the two magnesium alloys

are estimated as DT & 15 �C for AZ31 where

Fig. 4 Appearance of the one-

half cross sections of disks of

the AZ31 alloy after HPT

processing to different numbers

of turns
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P = 6.0 GPa and DT & 13 �C for AZ91 where

P = 3.0 GPa. Thus, these estimated values are low

because of the low rotation rate and the reduced strength of

the magnesium alloys. As a consequence, it is reasonable to

conclude from these calculations that the temperature rise

is of negligible importance and it cannot account for the

occurrence of any recrystallization during processing.

Structural inhomogeneity

Magnesium has a hexagonal close-packed (hcp) structure

and a limited number of slip planes so that it is generally

characterized by limited ductility and a poor formability at

room temperature [40, 41]. This inherent brittleness of

magnesium alloys is a consequence both of the limited

number of slip systems and the failure to fulfill von Mises

criterion of five independent slip systems for general

homogeneous polycrystalline deformation [42].

It is possible to process magnesium by HPT at room

temperature because of the presence of a large hydrostatic

pressure that prevents cracking within the sample. How-

ever, the sectional displays presented in Fig. 1 show the

possibility of introducing cracking in the AZ91 alloy after

processing through 5 turns under an applied pressure of

3.0 GPa. This pressure is calculated as the force applied by

the anvils divided by the initial area of the sample. It was

shown recently, using finite element modeling, that the real

hydrostatic stress (or mean stress) is not constant across the

cross section of the samples in HPT [36]. Larger com-

pressive stresses are observed near the center and lower

stresses are observed at the edge. Moreover, it was shown

that the mean stresses decrease with increasing numbers of

Fig. 5 Structures of the AZ31

alloy after HPT processing to

different numbers of turns
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rotations due to the material outflow which occurs in quasi-

constrained HPT between the upper and lower anvils. In

practice, this outflow increases the effective cross-sectional

area of the sample.

The present results show different structural features

along the through-thickness directions of the samples after

processing by HPT. Furthermore, differences in the levels

of inclination of the grain structures in the AZ91 alloy are

readily apparent in Fig. 2 after 1/4, 1, and 5 turns. The

alignment of grains is expected to reveal the traces of

plastic flow during HPT and, therefore, differences in grain

alignment at different distances from the disk surfaces

demonstrate the development of variations in the plastic

flow within the disks. In Fig. 2, the elongated areas of the

grain structures lie mainly parallel to the disk surfaces,

thereby revealing concentrations of deformation in these

areas that are smaller in thickness than the size of the

samples. This deformation appears to be concentrated

essentially near the bottom and top surfaces of the disk

processed to 1/4 turn but thereafter it spreads gradually

throughout the vertical planes of disks processed through 1

and 5 turns.

It should be noted that these differences are not pre-

dicted by the theory of torsional deformation. However,

computer modeling of plastic flow in HPT has shown the

occurrence of heterogeneities along the through-thickness

directions after processing [38]. These heterogeneities may

be caused by the overall material behavior as in an absence

0 1 2 3 4 5

D
is

ta
nc

e 
fr

om
 B

ot
to

m
 (

m
m

)

0.0

0.2

0.4

0.6

Distance from centre (mm)
0 1 2 3 4 5

0.0

0.2

0.4

0.6

0 1 2 3 4 5
0.0
0.2
0.4
0.6

Hv

130 

100 

105 

110 

115 

120 

125 

AZ91
HPT: 3 GPa (296 K) N = 1/4

AZ91
HPT: 3 GPa (296 K) N = 1

AZ91
HPT: 3 GPa (296 K) N = 5

Fig. 6 Color-coded contour

mapping for the AZ91 alloy

showing the hardness

distributions on one-half of the

cross-sectional planes after HPT

processing through 1/4 turn

(upper), 1 turn (center), and

5 turns (lower)

Fig. 7 Color-coded contour

mapping for the AZ31 alloy

showing the hardness

distributions on one-half of the

cross-sectional planes after HPT

processing through 1/4 turn

(upper), 1 turn (center), and

5 turns (lower)
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of strain hardening, by the sample aspect ratio and/or by

the frictional forces between the samples and the lateral

walls of the depressions in the anvils. It is noted that the

present results in Fig. 3 show the occurrence of shear

banding in the magnesium AZ91 alloy and this demon-

strates a high propensity for flow localization in this

material.

Hardness inhomogeneity

The present results provide a clear demonstration that in

the Mg–Al–Zn alloys the hardness distributions are gen-

erally, at least initially, not homogeneous along the

through-thickness directions. This supports the observa-

tions of differences in structure along this direction, as in

Fig. 2, and confirms the occurrence of plastic flow locali-

zation. Moreover, the present results show an overall

increase in hardness with increasing distance from the

centers of the samples and with increasing numbers of

rotations. Similar trends are observed in both alloys.

It was shown in early experiments using HPT processing

that the measured hardness values vary with the distance

from the center of each disk, but a reasonable correlation

may be achieved by plotting hardness measurements

against the calculated equivalent strains [21]. A similar

approach was adopted in the present experiments in order

to evaluate the effect of the alloying content on the evo-

lution of hardness in these two magnesium alloys. In HPT

processing, the equivalent von Mises strain, eeq, is given by

a relationship of the form [43–45].

eeq ¼
2pNr

h
ffiffiffi
3
p ð4Þ

where N is the number of turns, r is the distance measured

from the center, and h is the initial height (or thickness) of

the sample. It is noteworthy that simulations of HPT by

finite element modeling show a general consistency

between the imposed strain and the values calculated by

Eq. (4) [28, 35, 36]. Figure 8 shows the variation of

hardness with equivalent strain where the hardness values

were obtained by taking the average hardness values at

selected points along the through-thickness directions. It is

readily apparent from Fig. 8 that the alloy with the higher

aluminum content (AZ91 with 9 wt% Al) exhibits a higher

hardness in the initial stages of deformation but the other

alloy (AZ31 with 3 wt% Al) exhibits an initial higher rate

of hardening. In practice, both alloys exhibit similar values

of hardness at the highest levels of strain where this cor-

responds reasonably with the saturation values.

Summary and conclusions

(1) Samples of two magnesium alloys with different

levels of alloying content (AZ91 and AZ31) were

processed by HPT at room temperature for up to

5 turns. The structures were characterized and the

hardness distributions were measured on vertical

cross-sectional planes cut through the disks.

(2) Under quasi-constrained HPT processing, both alloys

exhibit heterogeneous flow in the through-thickness

directions. This heterogeneity is confirmed through

variations in the flow pattern in the structures, the

presence of shear bands, and variations in the

microhardness along the longitudinal sections.

(3) The alloy with the higher content of aluminum

(AZ91) exhibits higher hardness at lower levels of

strain compared with its counterpart with a lower

content of aluminum (AZ31). However, AZ31 exhib-

its increasing hardness with increasing strain and both

alloys show similar saturation levels of hardness after

large amounts of deformation.
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Abstract Two sets of anvils having different surface

roughness were used to systematically investigate the flow

patterns developed on the top and bottom surfaces of

stainless steel discs with an anvil misalignment of 100 lm

during high-pressure torsion. It is shown that the flow

patterns on the disc surfaces have different variation ten-

dencies depending on whether the anvils have rough or

smooth surfaces. Double-swirl flow patterns were observed

on the top and bottom surfaces of discs after 1 and 5 turns

when using an anvil with a smooth surface. In contrast,

when using an anvil with a rough surface the double-swirl

flow patterns appeared only on the top surface after 1 turn

and a single swirl appeared on both surfaces after 5 turns.

Hardness measurements on the top surfaces showed that

discs processed using an anvil with a rough surface have

greater hardness than discs processed using an anvil with a

smooth surface. There was no obvious hardness difference

on the bottom surfaces for discs processed using anvils

with rough or smooth surfaces.

Introduction

High-pressure torsion (HPT) is a mature severe plastic

deformation technique which is regularly used to achieve

significant grain refinement [1]. There are many published

results on HPT processing of various metals and alloys [2]

and recently HPT techniques were applied to the process-

ing of metal powders [3, 4] and machining chips [5]. The

uses of HPT also include mechanical mixing [6], investi-

gations of amorphization [7, 8] and phase transformations

[9–11], evaluations of the hydrogen storage capabilities of

magnesium [12, 13], and examinations of the structural

modifications and the mechanical properties of bulk

metallic glasses [14, 15].

In the idealized HPT process, the deformation procedure

can be considered as a simple shear process (rigid-body

analysis) where the shear strain, c, is evaluated using the

equation [16]:

c ¼ 2pNr

h
ð1Þ

where r and h are the radius and height (or thickness) of the

disc, respectively, and N is the number of revolutions. In

the idealized unconstrained HPT, the disc is placed

between two flat anvils and the lateral flow of the material

is not restricted under the applied pressure. However, this

unconstrained HPT is technically difficult to implement as

there is a continuous decrease in the sample thickness. In

constrained HPT, the disc is placed within a cavity in the

lower anvil so that the lateral flow of the material is totally

restricted under the applied hydrostatic pressure. In this

condition, the specimen deforms under torsional straining

and under the imposed hydrostatic pressure without chan-

ges in the geometry if there is no friction force at the outer

cylinder wall. However, because friction is unavoidable, a
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homogenous shear deformation process cannot occur in

constrained HPT. In practice, quasi-constrained HPT can

overcome the drawbacks and problems associated with

idealized unconstrained and constrained HPT. Most HPT

processing is now conducted under quasi-constrained

conditions where the disc is contained within shallow

depressions on the lower and upper anvils, and there is

some limited outflow of material between the two anvils

during the straining operation [17, 18].

It follows from Eq. (1) that the shear strain should

increase linearly with the radius of the disc. Therefore,

based on the rigid-body assumption in Eq. (1), it is rea-

sonable to anticipate that the microstructure and mechan-

ical properties remain inhomogeneous across the disc.

However, there is an additional strain on the HPT disc due

to the applied compressive stress introduced in quasi-con-

strained HPT processing and this is not considered in

Eq. (1). In practice, there is an evolution towards micro-

structural homogeneity in HPT and this has been effec-

tively predicted by making use of strain gradient plasticity

modelling [19]. In fact, a fully homogeneous microstruc-

ture and mechanical properties have been reported in many

materials after HPT processing [13, 20–25].

Some recent experiments were conducted on a duplex

stainless steel to observe visual displays of the flow pat-

terns produced by the HPT processing [26–28]. The results

were unexpected because there was evidence for the for-

mation of significant local turbulence including the pre-

sence of double-swirl patterns and local shear strain

vortices. Furthermore, double-swirl flow patterns were

also observed in a Cu-28 % Ag alloy after HPT processing

[29]. It is possible that the presence of double-swirl flow

patterns may arise in HPT discs from a misalignment of

the axes of the anvils prior to conducting the HPT pro-

cessing. However, no specific information on the initial

anvil alignment was available in these earlier reports, and

no checks were undertaken to determine whether the

anvils were in alignment [26–29]. Therefore, it is not

possible to obtain a correlation between the appearance of

double-swirl patterns on the disc surfaces and the inherent

anvil misalignments.

The effect of a misalignment of the axes of the anvils

was first considered in several reports of HPT in order to

explain the reasons for attaining a fully-homogenized

microstructure and hardness distribution [30, 31] but this

possibility was never examined experimentally. Recently, a

series of experiments were conducted to investigate the

effect of different amounts of anvil misalignment on the

flow patterns and hardness distributions on the top surfaces

of discs in HPT processing [32–34]. These experiments

showed that the presence of double-swirls on the disc top

surfaces was a feature of HPT processing when the anvils

had a small initial lateral misalignment.

Friction is an important factor which is needed in order

to achieve the torsional straining. Therefore, the anvil

surfaces are generally initially treated by sandblasting or

spark erosion in order to generate a distinctive surface

micro-roughness. Through this surface roughness, com-

bined with the hydrostatic pressure, it is feasible to develop

the high frictional forces that are required for rotational

straining. To date, there has been no investigation to

determine whether the initial anvil surface roughness has

any effect on the flow patterns and the hardness distribu-

tions. Accordingly, the present research was initiated to

investigate the influence of the anvil roughness on the flow

patterns generated on both the top and bottom surfaces of

the discs when processing by HPT.

Experimental material and procedures

A commercial F53 super duplex stainless steel was

received in the form of a rolled plate having a thickness of

3 mm. This material was supplied by Castle Metals UK

Ltd. (Blackburn, Lancashire. UK), and has a high yield

strength up to *570 MPa, good ductility and outstanding

corrosion resistance. The chemical composition of the as-

received material is given in Table 1 and the microstruc-

ture is shown in Fig. 1. The material consists of essentially

equal proportions, and similar volume fractions, of the

lighter-contrast austenitic (c) and the darker-contrast fer-

ritic (a) phases. The widths of these two phases varied

between *5 and *50 lm.

Discs having diameters of 9.8 mm and thicknesses

of *1.2 mm were cut from the steel plate, and then ground

to a uniform thickness of *0.82 mm. The HPT processing

was conducted at room temperature under quasi-con-

strained conditions [17, 18] using two massive anvils each

machined with a central depression having a diameter of

10 mm and a depth of 0.25 mm. The term anvil mis-

alignment is used to denote a parallel displacement of the

rotation axis of the upper anvil with respect to the lower

anvil, and the basic principles of anvil alignment were

given in earlier reports [32–34]. In the present experiments,

the anvils were set up with an initial misalignment of

100 lm.

Table 1 Chemical composition

of the super duplex stainless

steel

Element C Cr Mn Mo N Ni P S Si

wt. (%) \0.030 24.0–26.0 \1.20 3.0–5.0 0.24–0.32 6.0–8.0 \0.035 \0.020 \0.8
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The surface roughness of the anvils was measured using

Alicona Infinite Focus. Two sets of anvils having different

surface roughness were used to investigate the flow pat-

terns on the disc top and bottom surfaces after HPT. Fig-

ure 2 shows the anvil surface profile measurements on the

two anvils which are nominally designated (a) smooth and

(b) rough. For each anvil, the upper image is the anvil

surface morphology as represented by a set of unique

colours shown by the colour key on the right, and the lower

image is the result of surface roughness measurements

along the anvil surface shown in the upper image. The

measured average surface roughness values of the smooth

and rough anvils, Ra, were equal to 5 and 15 lm, respec-

tively. Henceforth, these initial anvil surface conditions are

named smooth with Ra = 5 lm and rough with

Ra = 15 lm.

A set of discs was prepared for both of these anvil

surface conditions with the discs processed at room tem-

perature with a pressure 6.0 GPa and a rotation speed of

1 rpm through totals of N = 1 and 5 turns. To avoid any

problems with slippage, all of the HPT processing was

conducted using new anvils so that the surfaces within the

depressions were in perfect condition. In addition, and

following standard practice [35], some preliminary tests

were conducted using discs with marker lines scribed on

the top and bottom surfaces and these tests revealed no

evidence for any slippage under the present experimental

conditions.

After processing through 1 and 5 turns, the discs were

mounted in bakelite for top and bottom surface observa-

tions. The mounted samples were mechanically polished,

and then electro-etched using an electrolyte of 40 % NaOH

solution at 25 �C. After etching, the c-phase appeared

bright and the a-phase appeared dark. The local flow pat-

terns were examined using an Olympus BX51 microscope.

The values of the Vickers microhardness, Hv, were

measured on the polished surfaces with separations of

0.3 mm between each consecutive point along the disc

diameter. An FM300 hardness tester equipped with a

Vickers indenter was used with a load of 300 gf and a

dwell time of 15 s.

Experimental results

Flow pattern observations on disc top and bottom

surfaces using the smooth anvil

Figure 3 shows the flow patterns developed on the disc top

surface when using smooth anvils where the rows of black

dots correspond to the marks from the hardness mapping

indentations. The appearance of the disc top surface shows

a clearly defined curvature of the phase domains for both 1

turn in Fig. 3 (a) and 5 turns in Fig. 3 (b). Close inspection

shows there are pairs of curvatures for both conditions and

these pairs correspond to double-swirls with each swirl

having a unique swirl centre. Earlier reports demonstrated

similar observations, and it was found that the double-swirl

configurations decrease in size with increasing numbers of

turns on the disc top surface [32–34].

Figure 4 displays the flow patterns on the disc bottom

surface when using smooth anvils for (a) 1 turn and (b) 5

turns. The bottom surfaces also display well-defined cur-

vature of the phase domains for both 1 and 5 turns. It is

obvious that there are double-swirl flow patterns on the

bottom surfaces and the distance between the two swirl

centres is reduced with increasing numbers of rotations.

The current observations on the disc bottom surfaces are

different from those reported earlier where no double-

swirls patterns were visible at the bottom [28]. However,

the present observations are for samples processed with

smooth anvils and with a measured anvil misalignment of

100 lm, whereas no information is available on either the

smoothness of the anvils or the extent of the initial anvil

misalignment in the earlier report.

Ideally, the flow patterns on the disc top and bottom

surfaces should be identical but with the flow visible in

opposite directions. Figs. 3 and 4 demonstrate this ideal

symmetry because both top and bottom surfaces show the

appearance of double-swirls and, as the numbers of rota-

tions increase from 1 to 5 turns, the configuration size of

the double-swirls becomes smaller on both the top and

bottom surfaces.

Fig. 1 Microstructure of the as-received duplex stainless steel
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Fig. 2 Anvil surface profile

measurements on a the smooth

anvil and b the rough anvil: for

each anvil, the upper image

shows the surface morphology

with the colour key on the right

and the lower image shows the

measurements of the surface

roughness taken on the anvil

surface shown in the upper

image
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Flow pattern observations on disc top and bottom

surfaces using the rough anvil

Figure 5 shows the flow patterns developed on the disc top

surfaces when using the rough anvils. In Fig. 5 (a) and (b),

the top row shows low magnification images of the phase

domains along the disc diameter and the two lower rows

show high magnification images of the areas in the red

squares in the upper images. From the top row image in

Fig. 5 (a), a double-swirl flow pattern can be recognised on

the disc top surface after 1 turn, but the double-swirl is not

clearly defined as on the top surface when using smooth

anvils in Fig. 3 (a). Thus, in Fig. 3 (a) the austenitic (c) and

the ferritic (a) phases are clearly distinguished and the

curvature of the phase domains is smooth, whereas in the

top image in Fig. 5 (a) the overall curvature of the phase

domains is not smooth so that some areas show clear two

phase contrast and other areas display unclear phase con-

trast. The bottom images corresponding to the areas

marked with the red squares in the top row show that the

left red square contains many local vortices, whereas the

right red square, which is an area showing unclear two

phase contrast at the low magnification, has two phases

with the widths of the austenitic (c) and the ferritic (a)

phases reduced significantly.

These observations suggest that local deformation, such

as local vortices and local variations in the widths of the

austenitic (c) and ferritic (a) phase refinement, leads to a

non-uniform appearance for the phase domains. After 5

turns, the disc top surface shows an overall single swirl

appearance in the top row image in Fig. 5 (b). There

appears to be a clear phase contrast and some local vorti-

ces, but the magnified image of the red square of the single

swirl area shows that the widths of the austenitic (c) and

the ferritic (a) phases are significantly refined. Again, these

observations confirm the occurrence of non-uniform

deformation on the disc top surface.

The appearance of the flow patterns on the disc bottom

surfaces when using a rough anvil is shown in Fig. 6 after

(a) 1 turn and (b) 5 turns. After 1 turn, the domains for the

austenitic c and ferritic a phases are easily recognised in

Fig. 6 (a) and the phase domains remain reasonably

straight in the centres of the discs with an appearance that

is generally similar to the initial as-received material

shown in Fig. 1. These straight patterns continued

throughout the disc bottom surface except for small

Fig. 3 The flow pattern appearance on the disc top surface while using smooth anvils (Ra = 5 lm) with an anvil misalignment of 100 lm for

a N = 1 turn and b N = 5 turns
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deviations at the edges of the discs. In Fig. 6 (b), the top

row shows low magnification images of the phase domains

along the disc diameter and the bottom row shows high

magnification images of the areas contained within the red

squares in the upper images. A single swirl is clearly

identified on the disc bottom surface after 5 turns as shown

in the top row image of Fig. 6 (b) but in the right red square

the domains of the austenitic c and ferritic a phases cannot

be identified clearly and this is similar to the single swirl

observed on the disc top surface with the rough anvil after

5 turns as shown in Fig. 5 (b). The high magnification

images in the bottom row of Fig. 6 (b) show the refined

austenitic (c) and the ferritic (a) phases in the right red

square area and local vortices that have developed in the

left red square area.

It is concluded from these observations that a rough

anvil in HPT leads to different flow patterns on the disc top

and bottom surfaces after 1 turn. Thus, the disc top surface

shows double-swirl flow patterns in Fig. 5 (a), whereas the

disc bottom surface displays straight phase domains in

Fig. 6 (a). Figures 5 (b) and 6 (b) demonstrate the occur-

rence of ideal symmetry on the top and bottom surfaces

after 5 turns because these surfaces show the same single

swirl flow pattern.

A comparison of hardness evolution on the top surfaces

with smooth and rough anvils

To compare the influence of smooth and rough anvils on

the mechanical characteristics of the top surfaces, the

hardness distributions were recorded after 1 and 5 turns as

presented in Fig. 7 for (a) 1 and (b) 5 turns.

After 1 turn, the use of smooth anvils introduces dou-

ble-swirl flow patterns on the disc top surface, whereas

rough anvils lead to the appearance of double-swirls with

non-uniform phase domain contrast. As shown in Fig. 7

(a), the hardness values on the top surface using the rough

anvil are larger than with the smooth anvil. Nevertheless,

the hardness distributions from the smooth and rough

anvils display similar variations across the discs with a

minimum hardness in the centre, higher values towards

the edges and with evidence for a saturation condition at

the edge of the disc over an outer ring having a width of

about 2 mm.

After 5 turns, the smooth anvil generates double-swirl

flow patterns on the top surface, whereas the rough anvil

produces the appearance of a single swirl with a non-uni-

form phase domain contrast in the swirl area. In Fig. 7 (b)

Fig. 4 The flow pattern appearance on the disc bottom surface, while using smooth anvils (Ra = 5 lm) with an anvil misalignment of 100 lm

for a N = 1 turn and b N = 5 turns
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the microhardness values after 5 turns are again larger for

the rough anvil. Furthermore, after 5 turns the position of

the minimum hardness is displaced from the disc centre for

the smooth anvil, but it remains essentially in the centre

position for the rough anvil.

A comparison of hardness evolution on the bottom

surfaces with smooth and rough anvils

To compare the influence of smooth and rough anvils on

the mechanical characteristics for the disc bottom surfaces,

Fig. 5 The flow pattern appearance on the disc top surface while using rough anvils (Ra = 15 lm) with an anvil misalignment of 100 lm for

a N = 1 turn and b N = 5 turns

J Mater Sci (2014) 49:6517–6528 6523

123



Fig. 6 The flow pattern

appearance on the disc bottom

surface while using rough anvils

(Ra = 15 lm) with an anvil

misalignment of 100 lm for

a N = 1 turn and b N = 5 turns

Fig. 7 Hardness distributions on the disc top surface after a 1 and b 5 turns using smooth and rough anvils
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hardness distributions were recorded on the bottom sur-

faces as shown in Fig. 8 after (a) 1 and (b) 5 turns.

After 1 turn, double-swirl flow patterns are visible on

the bottom surfaces with the smooth anvil, whereas the

phase domains have a straight appearance with the rough

anvil. Due to these different flow patterns, the hardness

distributions for the smooth and rough anvils have different

variations. As shown in Fig. 8 (a), with the smooth anvil

the hardness distribution displays a two-stage behaviour

which includes an initial linear variation between hardness

and distance around the centre of the disc and then a sat-

uration plateau. With rough anvils, the hardness values

increase almost linearly with the disc radius from the centre

to the edge. The linear variations of hardness on the bottom

surface with the rough anvil demonstrate that the shear

strain at the disc bottom is very close to the ideal rigid-

body assumption. Overall, the hardness values at the bot-

tom surface tend to be larger with the smooth anvil than

with the rough anvil.

After 5 turns, smooth anvils produce double-swirl flown

patterns on the disc bottom surface, whereas rough anvils

generate the appearance of a single swirl with a non-uni-

form phase domain contrast. Figure 8 (b) shows the overall

microhardness values at the disc bottom surface using the

rough and smooth anvils. In Fig. 8 (b), both sets of data

have similar values after processing through 5 turns of

rotation, but for the smooth anvil; the minimum hardness

position is again displaced from the centre position while

the minimum hardness remains at the centre for the rough

anvil.

Discussion

Comparing the surface morphology images of the depres-

sions within the smooth and rough anvils in Fig. 2, it is

readily apparent that the smooth anvil has not only a

smaller value of Ra but also a smaller area for each pit.

Overall, the smooth anvil surface in Fig. 2 (a) has shallow

pits and a reasonably uniform pit distribution, whereas the

rough anvil surface in Fig. 2 (b) has deeper and larger pits

with a fairly non-uniform distribution. During HPT pro-

cessing, the hydrostatic pressure which is imposed initially

leads to a plastic flow of the sample material into the

micro-asperities on the anvil surfaces within the depres-

sions, and this provides an excellent fit between the sample

and the anvil for subsequent rotational straining. Thus,

shear deformation occurs in the interior of the disc sample.

With the rough anvil, the pit area and pit depth are large

and the pit distribution is non-uniform so that the local

frictional forces change from place to place during the HPT

processing. These variations in the local frictional forces

affect the flow patterns of the deformed materials. With the

smooth anvil, the pit area and pit depth are relatively small

and the pit distribution is reasonably uniform so that the

local frictional force is reasonably uniform from place to

place during the HPT processing. Due to the different

surface roughness characteristics of the smooth and rough

anvils, it is readily apparent that samples processed to the

same numbers of rotations will have different flow patterns

and hardness distributions depending on the precise nature

of the anvil surfaces. Both the flow patterns and the

refinement in width of the austenitic (c) and the ferritic (a)

phases make contributions to the hardness distributions on

the top and bottom surfaces of the disc.

After 1 turn of rotation on the disc top surface, there are

clear double-swirl flow patterns on samples processed with

the smooth anvil, whereas the double-swirls are less easy to

identify on the sample processed using the rough anvil. It is

important to define and make a meaningful distinction

between the terms clear double-swirl flow patterns and

recognisable double-swirl flow patterns. The former have

smooth and well-defined phase domains in low magnifi-

cation images as shown in Fig. 3 (a) whereas the latter have

Fig. 8 Hardness distributions on the disc bottom surface after a 1 and b 5 turns using smooth and rough anvils
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many local vortices and locally there is significantly refined

austenitic c and ferritic a phases as shown in Fig. 5 (a). It is

reasonable to assume that variations in the local frictional

forces introduced by the rough anvil contribute to the so-

called recognisable double-swirl flow patterns. Further-

more, although the disc top surface shows a double-swirl

flow pattern after 1 turn when using smooth or rough

anvils, because of the obvious refinement in the widths of

the austenitic c and ferritic a phases with the rough anvil,

as shown in Fig. 7 (a), the sample processed by 1 turn on

the rough anvil has higher hardness values on the disc top

surface than for the smooth anvil.

After 5 turns of rotation on the disc bottom surface,

there are clear double-swirl flow patterns but with a smaller

configuration when using the smooth anvil, whereas there

is a single swirl flow pattern on the sample processed using

the rough anvil. The double-swirl flow pattern has smooth

and well-defined phase domains in the low magnification

image shown in Fig. 4 (b), whereas the single swirl has

local vortices in the swirl centre area and local austenitic c
and ferritic a phases which are significantly refined as

shown in Fig. 6 (b). It is reasonable to assume that the local

friction force variation introduced by the rough anvil leads

to the single swirl flow pattern. With the smooth anvil, the

disc bottom surface has double-swirl flow patterns,

whereas with the rough anvil a single-swirl flow pattern

accompanied by a refinement in the width of the austenitic

(c) and the ferritic (a) phases appears on the bottom sur-

face. It is assumed the hardness value should be higher

when using a rough anvil than when using a smooth anvil

on the disc bottom surface but, as shown in Fig. 8 (b), the

disc bottom surface of the sample processed by 5 turns with

the rough anvil has similar hardness values as with the

sample processed by the smooth anvil. Thus, the difference

in flow patterns on the disc bottom surface failed to make a

major contribution to the hardness values after 5 turns.

It should be noted that in the as-received stainless steel

the widths of the austenitic (c) and the ferritic (a) phases do

not have a uniform size distribution, as shown in Fig. 1, but

instead the widths vary from *5 to *50 lm. When using

smooth anvils, clear double-swirl flow patterns and well-

defined phase domains are present on the top and bottom

surface and there are no significant refinements in the

widths of the austenitic (c) and the ferritic (a) phases.

When using rough anvils, after 1 turn the disc top surface

shows a recognizable double-swirl flow pattern with local

refined austenitic (c) and ferritic (a) phases. After 5 turns,

the disc top and bottom surfaces show single-swirl flow

patterns with local significantly refined austenitic (c) and

ferritic (a) phases. In these local refined phase domain

areas, the measured widths of the austenitic (c) and the

ferritic (a) phases vary between *1 and *20 lm after 1

and 5 turns, where these values are significantly refined by

comparison with the range from *5 to *50 lm for the

austenitic (c) and ferritic (a) phases in the as-received

condition.

Finally, it is important to note that, although the strain

varies significantly across the discs in HPT processing as

documented in Eq. (1), there is a gradual evolution towards

microstructural homogeneity with increasing numbers of

revolutions and this evolution has been reported experi-

mentally [22, 36–42] and predicted theoretically using

strain gradient plasticity modelling [19].

Summary and conclusions

[1] Experiments were undertaken using a super duplex

stainless steel to evaluate the influence of anvil

surface roughness on the flow patterns and hardness

evolution on the disc top and bottom surfaces using a

fixed anvil misalignment of 100 lm during HPT

processing. The experiments were conducted using

smooth and rough anvils with roughness values of

Ra = 5 lm and Ra = 15 lm, respectively.

[2] The results show that the same double-swirl flow

patterns develop on the disc top and bottom surfaces

when using a smooth anvil and the double-swirl

configuration decreases with increasing numbers of

rotations. When using a rough anvil, the disc top and

bottom surfaces have the same single swirl flow

patterns for 5 turns, whereas for 1 turn the disc top

surface has a recognisable double-swirl flow pattern

and the disc bottom surface has straight phase

domains.

[3] While using rough anvils, there are two common

features in the disc surface flow patterns. First, there

are non-uniform phase domains with some areas

having significantly refined austenitic c and ferritic a
phases. Second, there are some areas having local

vortices. These features are attributed to variations in

the local frictional forces which cause unstable flow

and non-uniform structural refinement.

[4] Due to the local refinement of the austenitic c and

ferritic a phases when using the rough anvil, the disc

top surface has larger hardness values than when

using a smooth anvil. By contrast, there are no

significant hardness differences at the bottom surface

when using rough and smooth anvils.
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Stainless steel was selected to study the flow patterns developed with anvil misalignments

of  100, 200 and 300 �m on the disc lower surfaces during processing by high-pressure torsion

(HPT)  through totals of up to 16 turns. A pair of anvils having a roughness of Ra ≈ 15 �m was

utilized  to investigate the flow pattern development. Discs subjected to only compression

in  HPT exhibit similar characteristics to the as-received material in the phase domains

and  there were no overall curvatures of the austenitic (�) and ferritic (�) phases. Double-

swirl  flow patterns were not observed in the 1 turn sample but they appeared on the disc

lower  surfaces after 5 and 16 turns with all three-anvil alignment conditions. There was no

significant  difference in the double-swirl configuration size for the 5 and 16 turns samples

with  different amounts of anvil misalignments. These results have important implications

for  processing metals by HPT.
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1.  Introduction

High-pressure torsion (HPT) is now recognized as the most
effective  severe plastic deformation (SPD) technique for
producing  ultrafine-grained and nanocrystalline metallic
materials having superior mechanical properties including
high  strength [1–3]. During HPT processing, a disc is placed
between two anvils and a torsional strain is imposed on the
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disc by applying a very high pressure (normally several GPa)
to  the upper anvil and simultaneously rotating the lower
anvil.  The shear strain imposed on the disc is estimated by
the  following equation based on the conventional rigid-body
analysis [4]:

� = 2�Nr

h
(1)
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where r and h are the radius and height (or thickness) of
the  disc, respectively, and N is the number of revolutions.
Based on the rigid-body assumption in Eq. (1), it is reason-
able  to anticipate that the strain is inhomogeneous in HPT
and  varies linearly from zero strain at the disc centre to a
maximum  at the outer edge of the disc. However, there is an
additional  strain on the HPT disc due to the applied compres-
sive  stress introduced in HPT processing and this compression
stress  is not considered in Eq. (1). This means that the real
shear  strain distribution during HPT processing is not well
described.

Experiments show that a fully homogeneous microstruc-
ture and mechanical properties may  be achieved in many
materials  after HPT processing [5–11]. The evolution towards
microstructural homogeneity in HPT has been explained suc-
cessfully  by making use of strain gradient plasticity modelling
[12].  Attempts have been made to understand the shear pro-
cess  and shear strain distribution during HPT processing
through microstructural observations on a duplex stainless
steel  [13–15] and a two-phase Cu-Ag alloy [16]. Evidence of
unusual  flow patterns, including the occurrence of double-
swirls  and local vortices, provide a clear demonstration that
flow  within the disc is not always consistent with the antic-
ipated  rigid-body analysis. A possible explanation for these
effects  may  lie in an initial misalignment of the anvils in the
HPT  facility prior to conducting the HPT processing [17,18].
However,  no specific information on the initial anvil align-
ment  was  available in these earlier reports and no checks
were  undertaken to determine whether the anvils were in full
alignment [13–16].

Later,  the flow pattern development on the disc upper sur-
faces  was  studied systematically while using smooth anvils
(with  roughness of Ra ≈ 5 �m)  under different amounts of
anvil  misalignment (specifically, 100 and 200 �m misalign-
ment) [19–22]. It was  found that double-swirls develop on the
disc  upper surfaces when processing by HPT with a controlled
amount  of misalignment of either 100 or 200 �m in the anvil
positions  but there were  no double-swirls when processing
with  essentially perfect alignment. Measurements showed the
separations  between the centres of the double-swirls both
increased  with increasing anvil misalignment and decreased
with  increasing numbers of turns [19]. Furthermore, if the
straining  was  continued to a sufficiently large number of turns,
as  with 16 turns for an anvil misalignment of 100 �m,  the
double-swirl pattern disappeared [19,22].

Recently there was  the first report on the effect of the
initial  anvil roughness on the flow patterns [23]. By com-
paring  the flow patterns developed on the disc upper and
lower  surfaces using both rough and smooth anvils with
a  fixed anvil misalignment of 100 �m,  it was shown that
there  were  some differences in the flow patterns, which
were  dependent upon the initial surface roughness. However,
there  was  no systematic investigation of the flow pattern
development while using the rough anvils under differ-
ent  amounts of anvil misalignment. Therefore, the present
research  was  undertaken in order to study the flow patterns
generated on the disc lower surfaces when using rough anvils
with  a series of initial anvil misalignments of 100, 200 and
300  �m.

2.  Experimental  material  and  procedures

A commercial F53 super duplex stainless steel was  obtained
from  Castle Metals UK Ltd. (Blackburn, Lancashire, UK)
with  a chemical composition consisting of C < 0.030, Si < 0.80,
Mn  < 1.20, P < 0.035, S < 0.020, Ni 6.0–8.0, Cr 24.0–26.0, Mo
3.0–5.0 and N 0.24–0.32 (wt.%). Fig. 1 shows the as-received
microstructure which consists of essentially equal propor-
tions,  and similar volume fractions, of the lighter-contrast
austenitic (�) and the darker-contrast ferritic (�) phases. The
widths  of these two phases varied between ∼5 and ∼50 �m.
Since  the two phases exhibit good contrast, this material pro-
vides  an excellent opportunity to reveal the flow patterns that
are  introduced during processing by HPT.

The as-received material was  in the form of a rolled
plate having a thickness of 3 mm.  Disks having diameters
of  ∼9.8 mm and thicknesses of ∼1.2 mm were  cut from the
plate  and then ground carefully to give a uniform thick-
ness  of ∼0.82 mm.  Processing by HPT was  conducted at
room  temperature under quasi-constrained conditions in
which  a small amount of material flows outwards around
the  periphery during the processing operation [24,25]. Dur-
ing  HPT processing, the upper anvil is in a fixed position
and the lower anvil rotates in a single direction. Any par-
allel  shift between the axis of the upper anvil and the
axis  of the lower anvil is designated as a measure of the
anvil  misalignment between the upper and lower anvils. The
present  experiments were conducted by making changes in
the anvil alignment prior to HPT processing. Three different
anvil  alignment conditions were utilized in these experi-
ments  by making a deliberate parallel shifting of the upper
anvil:  the anvil misalignments were (1) about 100 �m,  (2)
about  200 �m and (3) about 300 �m.  Normally the anvil align-
ment  would fall within <100 �m when processing materials
in  a conventional manner. Therefore, an anvil misalign-
ment of ∼300 �m is rather large and is almost visible by
eye  observations. Nevertheless, an anvil misalignment of
300  �m was  included in order to have systematic observations

200µm

Fig. 1 – Microstructure of the as-received duplex stainless
steel.
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Fig. 2 – Anvil surface morphology and surface roughness showing (a) surface morphology and a line profile from one side of
the anvil cavity to the other, and (b) the surface roughness measurements.

and investigations on the flow pattern development with var-
ious amounts of misalignment.

In  order to avoid any problems associated with slippage
during the processing operation, all of the HPT processing was
conducted  using new anvils so that the surfaces within the
depressions  were  in perfect condition to have enough friction
force  to hold discs during rotation. In addition, and following
standard practice [26], some preliminary tests were conducted
using  discs with marker lines scribed on the top and bottom
surfaces  and these tests revealed no evidence for any slippage
under  the present experimental conditions.

A set of discs was  prepared for each of these three anvil
misalignment conditions and HPT was  conducted at room
temperature using an applied pressure of 6.0 GPa and a rota-
tion  speed of 1 rpm through total numbers, N, of 1, 5 and 16
turns.  In order to investigate whether the compressive stress
makes  any contribution to the flow pattern development, for
each anvil misalignment condition one sample was  processed
using  only an applied pressure of 6.0 GPa for 10 s but without
anvil  rotation. These compressed samples are designated as
N = 0 samples.

A set of relatively rough HPT anvils was  used to investigate
the  flow patterns on the disc lower surfaces after processing.
The  surface roughness within the depression on the anvil was
measured  using Alicona Infinite Focus. Fig. 2 shows the surface
morphology  of the anvil depression and the profile measure-
ments.  The image  in Fig. 2(a) shows the surface morphology
within the depression as represented by a set of unique colours
defined  by the colour key on the right and with a line pro-
file  from one side of the anvil cavity to the other. The image
in  Fig. 2(b) is the result of surface roughness measurements
along the anvil surface within the cavity area. The measured
average surface roughness value, Ra, was  equal to ∼15 �m.

After processing through 0, 1, 5 and 16 turns, these
discs were  mounted and polished for surface observations
within ∼100 �m of the bottom surfaces of the discs. Samples
were  prepared by mechanically polishing and then electro-
etching  using an electrolyte of 40% NaOH solution at 25 ◦C.
After  etching, the �-phase appeared bright and the �-phase
appeared dark. The local microstructures and flow patterns
were  examined along the disc diameters using an Olympus
BX51  microscope.

3.  Experimental  results

With an anvil misalignment of 100 �m,  Fig. 3 shows the flow
pattern  development from one side to the other side of discs
processed  by HPT through N = 0, 1, 5 and 16 turns. For the
disc  which was  only compressed under 6.0 GPa pressure for 10
seconds  but without rotation (N = 0), Fig. 3(a) shows the phase
domains  remain straight in the majority area of the disc but
in  the area very close to the edge of the disc there are some
local  curvatures of the austenitic � phase and ferrite � phases
which  are probably due to the anvil side wall constraint on
the  disc. It can be seen that the microstructures in Fig. 3(a) are
very  close to the microstructure of the as-received material as
shown in Fig. 1. After HPT processing to 1 turn in Fig. 3(b) where
the  disc was  subjected to combined compression and shear
deformation, the disc lower surface shows no overall curva-
tures  but with reasonably straight phase domains, although
a  slight local curvature of the austenitic � phase and ferrite
�  phase can be identified in the disc centre area. No double-
swirl  flow pattern developed on the disc lower surface for the
1  turn sample. Comparing Fig. 3(b) with Fig. 3(a) it is apparent
that  the phase domains in the N = 1 disc are not as straight as
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Fig. 3 – Flow pattern development on the lower surfaces after (a) N = 0, (b) N = 1, (c) N = 5 and (d) N = 16 turns across the disc
diameters  with an anvil misalignment of 100 �m.

the phase domains in the N = 0 disc. A single swirl is clearly
identified on the disc lower surface after 5 turns as shown
in  the image  of Fig. 3(c) although there are some areas with
clear  phase domain contrast and other areas where the phase
domain  contrast cannot be identified clearly. Earlier results
demonstrated that these areas of unclear phase domain con-
trast,  as in Fig. 3(c), are refined austenitic � phase and ferrite
�  phase as revealed in higher magnification observations [23].
For the disc processed to 16 turns, clearly defined curvatures
of  the phase domains and overall double-swirl flow patterns
are  clearly visible as shown in Fig. 3(d).

With an anvil misalignment of 200 �m,  the overviews of the
flow  pattern development across the diameters of discs after
HPT  processing to N = 0, 1, 5 and 16 turns are presented in Fig. 4.
For the N = 0 sample, there are clearly defined and very straight
phase  domains in Fig. 4(a). After 1 turn, as shown in Fig. 4(b),
the  disc lower surface shows no signs of any overall curvature
of  the phase domains and there are no double-swirls or sin-
gle  swirl flow patterns, but there are local slight curvatures of
the  austenitic � phase and ferrite � phase. Fig. 4(c) shows the
recognizable double-swirl flow pattern develops on the disc
lower  surface after 5 rotations. In Fig. 4 (c), the phase domain
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Fig. 4 – Flow pattern development on the lower surfaces after (a) N = 0, (b) N = 1, (c) N = 5 and (d) N = 16 turns across the disc
diameters  with an anvil misalignment of 200 �m.

contrast is not as well defined as in Fig. 4(a) and (b) and this is
again  due to the microstructural refinement of the austenitic �

phase and ferrite � phase. Further HPT processing to 16 turns
as  in Fig. 4(d) leads to a disc lower surface showing a clearly
defined  double-swirl flow pattern.

For the relatively large anvil misalignment of 300 �m,  the
flow  patterns produced during HPT processing to N = 0, 1, 5 and
16  turns are displayed in Fig. 5. Again the N = 0 sample has clear
straight  phase domains in Fig. 5 (a). After 1 turn, the disc lower
surface  shows no overall curvature of the phase domains
so  that there is no double-swirl or single swirl flow pattern
but  there are local slightly curved austenitic � and ferrite �

phases  in Fig. 5(b). In Fig. 5(c) after 5 turns, the HPT processing

produces a recognizable double-swirl flow pattern with a
phase  domain contrast which is less clear as in Fig. 5(a) and (b)
due to the microstructural refinement of the austenitic � and
ferrite  � phases. With further HPT processing to 16 turns in
Fig.  5(d), the disc lower surface shows a clearly defined double-
swirl  flow pattern and good contrast of the austenitic � phase
and  the ferrite � phase.

4.  Discussion

Based on the observations of flow pattern development from
0  turn to 1, 3, 5 and 16 turns with anvil misalignments of 100,
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Fig. 5 – Flow pattern development on the lower surfaces after (a) N = 0, (b) N = 1, (c) N = 5 and (d) N = 16 turns across the disc
diameters  with an anvil misalignment of 300 �m.

200 and 300 �m in Figs. 3–5, there are some common features
in  the flow pattern evolution. First, with three anvil align-
ment  conditions, samples subjected to only compression but
without rotation have clear straight phase domains as shown
in  Figs. 3(a), 4(a) and 5(a) and they are very similar to the
microstructure of the as-received material in Fig. 1. There-
fore,  this feature clarifies that the compression stress makes
no  contribution to any overall curvature in the phase domain
development and it is not responsible for the double-swirl
and single swirl flow patterns. Second, after introducing shear
deformation  to the low number of rotations of N = 1, the disc
lower  surfaces for the three anvil misalignment conditions all
have  a similar appearance with no overall curvature of the
phase  domains in Figs. 3(b), 4(b) and 5(b). Nevertheless, the
phase  domains are not as straight as in Figs. 3(a), 4(a) and 5(a).

These  observations show that with a low number of rotations,
as  in N = 1, the shear deformation begins to generate some
changes  in the appearance of the local phase morphology
although shear deformation remains insufficient to produce
an  overall curvature of the phase domains. Third, as the defor-
mation  evolves to higher numbers of rotations, as in N = 5,
the  disc surfaces for the three anvil misalignment conditions
all  show microstructural refinement of the austenitic � and
ferrite  � phases and there are also unclear phase domain con-
trasts  at the present magnifications used for the images in
Figs.  3(c), 4(c) and 5(c). Furthermore, all disc surfaces show an
overall  curvature of the phase domains although with an anvil
misalignment  of 100 �m the disc has a single swirl appearance
in  Fig. 3(c) whereas with 200 and 300 �m anvil misalignment
the discs have double-swirl flow patterns in Figs. 4(c) and 5(c).
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Fourth, the double-swirl flow patterns are retained in the
samples  processed to 16 rotations with the three anvil mis-
alignments  as shown in Figs. 3(d), 4(d) and 5(d).

Ideally, the flow patterns on the disc top and bottom
surfaces should be identical but with the flow visible in oppo-
site  directions. When using smooth anvils and with an anvil
misalignment of 100 �m used to process stainless steel, obser-
vations  on the disc upper and lower surfaces confirm this type
of  symmetry [23]. Thus, the disc upper and lower surfaces all
have  double-swirl flow patterns after 1 and 5 turns and the
configuration size of the double-swirls becomes smaller on
both  the upper and lower surfaces as the numbers of rota-
tions  increase from 1 to 5. More  systematic results [19,22]
on  HPT processing of stainless steel using smooth anvils,
which  include anvil misalignments of 100 and 200 �m to rota-
tion  numbers of 1, 5 and 16 turns, show that the separations
between the centres of the double-swirls both increase with
increasing  anvil misalignment and decrease with increasing
numbers of turns.

There  are some different tendencies concerning the
double-swirl flow pattern development and the configuration
size  of the double-swirls when examining the earlier observa-
tions  using smooth anvils [19–23] and the present observations
when  using rough anvils. With the use of rough anvils, the
double-swirl flow patterns do not appear on the disc lower
surface  after 1 turn but they appear on the lower surface
after  5 and 16 turns with the three anvil misalignment condi-
tions.  There are no size reductions for the configuration size of
the  double-swirls as the numbers of rotations increase from
5  to 16 with the three anvil misalignments. Therefore, it is
readily  apparent that these different tendencies should corre-
late  directly with the anvil roughness.

The anvil surfaces are generally treated by sandblasting
or spark erosion in order to generate a distinctive surface
micro-roughness. Through this surface roughness, combined
with  the hydrostatic pressure, it is feasible to develop the
high  frictional forces that are a necessary prerequisite for
rotational  straining. During HPT processing, the hydrostatic
pressure which is imposed initially leads to plastic flow
of  the sample material into these micro-asperities on the
anvil  surfaces within the depressions and this provides an
excellent  fit between the sample and the anvil for sub-
sequent rotational straining. Thus, shear deformation in
fact  occurs in the interior of the disc sample, i.e. in the
area  that is below the micro-asperities layers on the disc
top  and bottom surface. The rough anvil surface shown
in  Fig. 2 has relatively deep and large pits, which have a
fairly  non-uniform distribution. Overall, the smooth anvil
surface  used in earlier research has shallow pits and a
reasonably uniform pit distribution [23]. Normally, the disc
thickness  is ∼0.78 mm after HPT processing, considering a
smooth  anvil has a roughness Ra ≈ 5 �m [23] and a rough
anvil  has a roughness Ra ≈ 15 �m,  therefore, the real thick-
ness  for shear deformation in the interiors of the discs will
be  about 0.77 mm when using smooth anvils and 0.73 mm
when  using rough anvils. Thus, because of the use of rough
anvils,  the real thickness for shear deformation in the inte-
rior  of the disc samples is reduced and, according to Eq.
(1),  the shear strain applied on each disc is larger when
using  rough anvils than when using smooth anvils. The

calculated shear strain difference at the edge of the disc
between a rough anvil and a smooth anvil is about 5.4%.
It  should be noted that, for the strain hardening metals
including the stainless steel, an earlier FEM analysis demon-
strated  that differences in disc thicknesses leads to minor
variations in the distribution of strain along the through-
thickness [27]. Therefore, the shear strain difference at the
edge  of the disc between a rough anvil and a smooth anvil
will  lead to larger unsymmetrical shear and compression
stresses when using anvil misalignment and this will produce
more  instability based on conventional buckling theory [21].
This  difference provides an explanation for the double-swirl
flow  patterns, which are present in all 5 and 16 turns sam-
ples  with the three anvil misalignment conditions and thus
there  is no tendency for the size of these double-swirl con-
figurations to reduce as the rotation number increases from
5  to 16.

Therefore, the major factors contributing to double swirl
flow  pattern should arise from the anvil surface roughness.

With  the use of rough anvils as in the present investigation,
the pit area and pit depth are large and the pit distribution
is  non-uniform as shown in Fig. 2 so that the local frictional
forces may  change from place to place on the disc surface dur-
ing  HPT processing. In practice, these variations in the local
frictional  forces would also affect the flow patterns of the
deformed  materials.

5.  Summary  and  conclusions

Experiments were conducted using a stainless steel to inves-
tigate  the development of flow patterns near the surfaces of
discs  processed by high-pressure torsion (HPT) using anvils
having  relatively rough surfaces.

The absence of any double-swirls on discs processed only
with  compression but without rotation confirms that the
unusual  double-swirl flow patterns are not introduced by the
compressive  deformation. On the contrary, the presence of
double-swirls  is specifically a feature of the HPT shear defor-
mation.

When  using rough anvils and with anvil misalignments of
100,  200 and 300 �m,  no double-swirls flow patterns develop
for  1 turn samples but double-swirl flow patterns are produced
by  HPT for samples processed through 5 and 16 turns.

There are no obvious changes in the sizes of the double-
swirl configurations for samples processed through 5 and 16
turns.
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a b s t r a c t

An investigation has been conducted on the tensile properties of a fine-grained AZ91 magnesium alloy
processed at room temperature by high pressure torsion (HPT). Tensile testing was carried out at 423 K,
473 K and 573 K using strain rates from 1�10�1 s�1 to 1�10�4 s�1 for samples processed in HPT for
N¼1, 3, 5 and 10 turns. After testing was completed, the microstructures were investigated by scanning
electron microscopy and energy dispersive spectroscopy. The alloy processed at room temperature in HPT
exhibited excellent superplastic behaviour with elongations higher than elongations reported previously
for fine-grained AZ91 alloy produced by other severe plastic deformation processes, e.g. HPT, ECAP and
EX-ECAP. A maximum elongation of 1308% was achieved at a testing temperature of 573 K using a strain
rate of 1�10�4 s�1, which is the highest value of elongation reported to date in this alloy. Excellent
high-strain rate superplasticity (HSRSP) was achieved with maximum elongations of 590% and 860% at
temperatures of 473 K and 573 K, respectively, using a strain rate of 1�10�2 s�1. The alloy exhibited
low-temperature superplasticity (LTSP) with maximum elongations of 660% and 760% at a temperature
of 423 K and using strain rates of 1�10�3 s�1 and 1�10�4 s�1, respectively. Grain-boundary sliding
(GBS) was identified as the deformation mechanism during HSRSP, and the glide-dislocation creep
accommodated by GBS dominated during LTSP. Grain-boundary sliding accommodated with diffusion
creep was the deformation mechanism at high test temperature and slow strain rates. An enhanced
thermal stability of the microstructure consisting of fine equiaxed grains during deformation at elevated
temperature was attributed to the extremely fine grains produced in HPT at room temperature, a high
volume fraction of nano β-particles, and the formation of β-phase filaments.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Magnesium alloys are widely used in many applications such as
transportation, materials-handling, and commercial equipment
due to their low density compared to other structural alloys such
as steel and aluminium alloys [1]. However, the main limitation in
the use of these alloys is their poor workability at room tempera-
ture, which makes mechanical processing difficult. The low ducti-
lity of magnesium alloys is a result of the hexagonal crystal
structure of magnesium [2]. It has been found that severe plastic
deformation can improve the strength and ductility of many
materials including magnesium alloys [3]. Hence, several attempts
have been made to enhance their mechanical properties via these
processes, but the majority of these experiments have been

conducted at elevated temperature, where dynamic recrystalliza-
tion and grain growth take place [2,4–6]. Ultrafine-grained mag-
nesium alloys have the potential to be used in automotive and
aerospace applications due to their lightweight, a high ratio of
strength-to-weight, and consequently, reduced fuel consumption
[7,8]. The development of superplastic behaviour of ultrafine-
grained magnesium alloys has been attracting significant attention
in the last decade. Among magnesium alloys, the AZ91 alloy is
widely used in industry. This alloy has a good machinability and
castability, high strength-to-density ratio, and good corrosion
resistance [7,9]. Fine-grained AZ91 alloy has been produced
through several severe plastic deformation (SPD) techniques, such
as ECAP [2,4], EX-ECAP [10] and HPT [11]. Superplasticity beha-
viour in any material requires a fine grain size (r 10 μm), and
typically a high temperature ðT40:5 Tm, where Tm is the absolute
melting point of the material). Fine-grained AZ91 magnesium
alloys have shown a wide range of superplasticity depending on
strain rate and testing temperature. ECAP processing at 448 K in
AZ91 alloy resulted in a superplastic elongation of 661% at a
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temperature of 473 K using a strain rate of 6�10�5 s�1 [2].
Superplasticity behaviour was found in the same alloy processed
by EX-ECAP at 473 K with elongation of 800% at temperature of
423 K using a strain rate of 6�10�4 s�1 [2]. HPT processing at
423 K of a Mg–9%Al alloy resulted in elongation of 810% at a
temperature of 473 K using a strain rate of 5�10�4 s�1[11]. It can
be seen then that earlier work on superplasticity in SPD processed
AZ91 alloy has been based on processing of the AZ91 alloy at high
temperatures, where the limited ductility and workability of the
alloy has been improved by the activation of additional slip
systems and dynamic recrystallization [12]. So far, no experiment
has been reported which investigates the superplastic behaviour
of the AZ91 alloy processed by HPT at room temperature. The
current investigation focuses on superplastic behaviour and the
thermal stability of the AZ91 magnesium alloy that have been
processed at room temperature, and tested over different tem-
peratures and strain rates.

2. Experimental procedure

An extruded 10 mm rod of AZ91 magnesium alloy (Mg–9%Al–
1%Zn) was used in this study, which was supplied by Magnesium
Elektron Co. (Manchester, UK). Thin disks were made of the
extruded rod with thicknesses of 1.5 mm and then ground to final
thicknesses of 0.85 mm using abrasive paper. The HPT processing
was conducted at room temperature using a HPT facility that has
been previously discussed in detail elsewhere [13]. This facility
consists of upper and lower anvils and a circular depression of
0.25 mm in depth and 10 mm in diameter that is located centrally
in both anvils. The HPT processing was conducted under a quasi-
constrained condition at room temperature and at a speed of
1 rpm using an applied pressure of 3.0 GPa for differing numbers
of turns ðNÞ: 1, 3, 5, and 10 turns. The peripheries of both anvils
were coated with a lubricant containing MoS2 to avoid any
possible damage to these areas during processing. The as-
received and the processed alloys were carefully ground, polished
and etched in acetic-glycol solution (20 ml acetic acidþ19 ml
waterþ1 ml nitric acidþ60 ethylene glycol) then the microstruc-
tures observed using scanning electron microscopy (SEM, JEOL
JSM-6500F, Japan). Small disks of 3 mm diameter were punched
from the processed HPT disks and these small disks were ground
to a thickness of 150 μm and then thinned using a twin-jet electro-
polishing facility (Struers Tenupol-3) with a solution of 15 ml
perchloric acid, 15 ml glycerol, and 70 ml ethanol. Subsequently a
transmission electron microscope (TEM, JEOL JEM-3010) was used
for microstructural observation of the alloy after HPT processing.
For tensile tests, the processed disks were carefully ground to
thicknesses of 0.6 mm using an abrasive paper to prepare them for
cutting into micro-tensile samples as previously reported else-
where [14]. The method of cutting these micro-tensile samples
from the HPT disks is known as the off-centre position method
and it is used to avoid the central region in an HPT disk where
structural heterogeneity is anticipated after HPT. This allows
production of two miniature tensile samples per HPT disk with
dimensions of (1.0�0.9�0.6) mm3 as measured by the optical
microscope (OLYMPUS-BX51, Japan). The tensile test was con-
ducted at initial strain rates between 1�10�1 s�1 and
1�10�4 s�1 at each testing temperature of 423, 473, and 573 K,
and for tensile samples produced from disks processed for N¼1, 3,
5 and 10 turns. For better accuracy, each tensile test evaluation of a
particular processing condition was conducted using two tensile
samples and hence 96 tensile samples were used in this investiga-
tion. Tensile testing was carried out using a Zwick/Roell tension
(Z030, Germany) machine operating at a constant rate of cross-
head displacement. The load and displacement were gathered

using testIIXpert testing software in a computer-acquisition sys-
tem. Curves of engineering stress versus elongation and
elongation-to-fracture versus strain rate were plotted. The flow
stress versus strain rate curves were plotted to measure the values
of strain-rate sensitivity (m). The microstructures of tensile sam-
ples after tests were observed at the gauge section surfaces using
scanning electron microscopy. In order to investigate the surface
morphology in detail, the as-tested samples were observed with-
out any further metallographic preparation. The average grain size
was measured from these SEM images using a linear intercept
method and then corrected by a factor of 1.74. The variation in
grain size versus temperature and time at test temperature was
assessed for samples processed in HPT for N¼1 and 10 turns and
tested in tension at different strain rates. The chemical composi-
tion of the matrix and the secondary phase were analysed using
energy dispersive spectroscopy (EDS). To calculate the values of
elongations, the final lengths of the tensile samples after the test
were measured under the optical microscope. Representative
images of the untested and fractured tensile samples were
produced using a low-magnification optical microscope (Wild
Herrbrugg, Switzerland), and these images show the testing
temperature and strain rate used in tensile testing and the
resultant percentages of elongations.

3. Results

The microstructure of the AZ91 magnesium alloy prior to and
after HPT processing is shown in Fig. 1 as observed using SEM and
TEM. The chemical analysis with weight fractions of alloying
elements in the as-received alloy as obtained by EDS is shown in
Fig. 2. The microstructure of the as-received alloy shows an
average grain size of 30 mm as shown in Fig. 1(a), where the
microstructure consists of two main phases: α-Mg matrix; and
lamellar and agglomerate forms of β-phase with the presence of
Al8Mn5 particles as confirmed by EDS analysis and illustrated by
the weight fractions found in Fig. 2. It is obvious from Fig. 1(a) that
the grain boundaries between α-Mg grains are covered with the β-
phase. The magnesium matrix appears darker than the β-phase,
which appears brighter as shown in Fig. 1(a). After HPT processing,
the microstructure altered noticeably with significant grain refine-
ment and the original decoration of the grain boundaries by β-
phase disappeared with increasing number of turns (up to N¼10
turns) as shown in Fig. 1(b and c). The β-phase fragmented into
fine particles and aligned along the direction of the torsional
straining. The microstructure shows a significant level of grain
refinement even at the beginning of HPT processing with grain
sizes down to nanometre scale as observed using TEM as shown in
Fig. 1(d). It is expected that the grain refinement for the current
alloy continued gradually during HPT processing as indicated
indirectly by microhardness measurements that have been done
in previously reported work for the same alloy [15] and for AZ31
magnesium alloy also processed by other workers at room tem-
perature [16]. The engineering stress–strain behaviour of fine-
grained AZ91 magnesium alloy is shown in Fig. 3, where samples
have been processed in HPT for N¼10 turns and then pulled to
fracture at different testing temperatures of 423 K, 473 K, and
573 K using initial strain rates of 1�10�1�1�10�4 s�1. The
testing temperatures used in this investigation corresponded to
0.55Tm (423 K), 0.61Tm (473 K), and 0.74Tm (573 K), where the
absolute melting point of the AZ91 alloy is 768 K (495 1C) [1].
These curves show the occurrence of superplastic elongation: with
increasing number of turns in HPT, at slower tensile rates, as well
as at higher testing temperatures, as illustrated in Fig. 3. The strain
hardening behaviour of the alloy decreased and elongation-to-
fracture increased with decreasing strain rate from 1�10�1 to
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1�10�4 s�1 as shown in these curves. The effect of strain rate on
elongation during hot deformation can be seen in (Figs. 3 and.4).
The samples tested at the slowest strain rate, i.e., 1�10�4 s�1,

resulted in the highest elongations for all numbers of turns in HPT
processing and at all testing temperatures used in tensile testing
as shown in Fig. 5(a), e.g., for the sample processed in HPT for N¼1

0.5 μμm 10 μm 

10 μm 

1 

2 

3 

10 μm 

Fig. 1. SEM observations of microstructure for (a) the as-received AZ91 alloy, (b) the processed alloy for N¼1 turn, (c) the processed alloy for N¼10 turns and (d) TEM
observation of the processed alloy for N¼1/2 turn. The corresponding numbers (1,2,3) in the micrograph (a) represent the lamellar, agglomerate forms of the β-phase
(Mg17Al12) and Al8Mn5, respectively.

Element wt.% Element wt.% Element wt.%
Mg 88.74
Al 9.57
Zn 1.11
Mn 0.58

Mg 55.14
Al 43.13
Zn 0.94
Mn 0.79

Mg 4.50
Al 43.10
Zn 0.45
Mn 51.95

Fig. 2. The chemical analysis with weight fractions of the as-received alloy showing: (a) α-Mg matrix, (b) β-phase (Mg17Al12), (c) Al8Mn5 compound.
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turn, the maximum elongations were 249%, 845% and 1041%, at
testing temperatures of 423 K, 473 K and 573 K, respectively. The
maximum elongations for the sample processed for N¼10 turns
were 760%, 1164% and 1308% using testing temperatures of 423 K,
473 K and 573 K, respectively. Significant elongations were
achieved at all strain rates with increasing number of turns used
in the HPT processing of the AZ91 alloy, where the highest values
of the elongation using a strain rate of 1�10�4 s�1 were 760%,
1164% and 1308% at testing temperatures of 423 K, 473 K and
573 K, respectively. These highest elongations were obtained for
the alloy processed in HPT for N¼10 turns as demonstrated in
(Figs. 3–5(a)), where a homogeneous ultrafine microstructure is
expected after HPT processing at room temperature as mentioned
by several investigators [10,14,16,17]. Increasing the testing tem-
perature resulted in increasing elongation at all numbers of turns
in HPT processing, where the maximum elongations were 1041%,
1190%, 1234% and 1308% found in the alloy processed through
N¼1, 3, 5 and 10 turns, respectively at a testing temperature of
573 K, as illustrated in Fig. 5(a) and illustrated in Fig. 3 for samples
processed for N¼10 turns in HPT. Increasing the testing tempera-
ture resulted in the occurrence of significant elongations at even
the fast strain rates, i.e., 1�10�1 and 1�10�2 s�1 at temperatures
of 473 K and 573 K, respectively as illustrated in (Figs. 3 and 5(a)).
This indicates the presence of excellent high-strain rate super-
plasticity (HSRSP) at these strain rates and temperatures for the
current alloy compared to earlier results obtained after processing
in EX-ECAP [10], HPT [11], hot extrusion [18] and hot rolling [19].
Tensile testing at a lower temperature, i.e., 423 K, resulted in

significant elongations using strain rates of 1�10�3 and
1�10�4 s�1. These elongations increased with increasing the
number of turns in the HPT process as shown in Fig. 5(a), where
the maximum elongations were 660% and 760% using strain rates
of 1�10�3 s�1 and 1�10�4 s�1, respectively at a temperature of
423 K. These data confirm the occurrence of low-temperature
superplasticity (LTSP) for the AZ91 alloy. The values of strain-rate
sensitivity (m) were obtained from the slopes of the log–log
format plots of the variation in flow stress versus strain rate for
samples tested at different testing temperatures as shown in
Fig. 5(b). The values of sensitivity increased with decreasing the
strain rate from 1�10�1 to 1�10�4 s�1 at all testing tempera-
tures, and are associated with an increase in the elongation-to-
fracture for the slower strain rates as illustrated in the elongation–
strain rate curves in Fig. 5(a). Increasing the testing temperature
resulted in an increase in the values of sensitivity over the strain
rate range as illustrated in Fig. 5(b). For a given number of turns for
the sample processed in HPT and then pulled in tension, the flow
stress decreased with decreasing strain rate and increasing testing
temperature, which is reflected in the values of the sensitivity and
in the extent of the elongation-to-fracture. The microstructures of
tensile samples after tensile testing to fracture were observed
along the gauge lengths by SEM as shown in Fig. 6. These samples
were processed in HPT for N¼1 and 10 turns and then tested at
different testing temperatures and strain rates. The grain sizes in
Fig. 6(a–f) for samples processed for N¼1 are larger than for
samples processed for N¼10 turns as shown in Fig. 6(g–l) over the
range of strain rates and testing temperature. The samples
processed for N¼10 turns in HPT exhibited significant microstruc-
tural stability with fine grains of an average size of 1.5 μm70.2 μm
after testing at 423 K (for 2–1200 min) over the strain rate range.
After testing at 473 K (for 3–1440 min), the subsequent micro-
structures also showed fine grains with only modest grain growth
to an average grain size of 3 μm70.3 μm. Tensile testing at 573 K
(for 5–1680 min) resulted in maintenance of a fairly fine micro-
structures with limited grain growth up to about 8 μm70.5 μm as
shown in Fig. 6. The grains remained equiaxed after testing at
423 K, 473 K and 573 K at different strain rates as observed in
Fig. 6; where some individual grains have developed into fibrous
morphologies at temperatures of 473 K and 573 K at strain rates of
1�10�3 s�1 and 1�10�4vs�1 as shown in Fig. 6(b, c, e and f), and
at a temperature of 573 K using strain rates of 1�10�3 s�1 and
1�10�4 s�1 as shown in Fig. 6 (k and l). The fibrous or filament
structures were observed at the slower strain rates and higher
temperatures, and they connect the grains, which appear to have
separated during the superplastic elongation regimes as observed
in Fig. 7. The EDS analysis of these fibrous structures revealed their
composition as shown in Fig. 7, and the analysis was conducted at
three locations: grain, grain boundary and filament. It was found
that the composition of these filaments consists mostly of β-phase
(Mg17Al12) as indicated by the relative estimation of the weights of
the constituents. It is noticeable from (Figs. 6 and 8) that the
existence of fine equiaxed grains and their relative thermal
stability was seen in all samples tested at all temperatures and
strain rates despite the differences in the number of turns in HPT
processing. This indicates the level of the considerable grain
refinement obtained in HPT processing and its impact on the
superplastic elongations obtained at elevated temperatures.

4. Discussion

In the present investigation, a successful HPT processing of the
AZ91 magnesium alloy at room temperature with an ultrafine
microstructure was achieved, which was not produced for the
same alloy using ECAP processing at a temperature lower than

Fig. 4. Appearance of samples processed by HPT for N¼10 turns after tension to
fracture at a testing temperature of 573 K at different strain rates. The upper sample
represents the untested case.
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Fig. 3. The engineering stress–strain behaviour at a testing temperature of 573 K
using different strain rates for AZ91 samples processed in HPT for N¼10 turns.

A.S.J. Al-Zubaydi et al. / Materials Science & Engineering A 637 (2015) 1–114



Strain rate (s-1)

10-5 10-4 10-3 10-2 10-1 100

Fl
ow

 s
tr

es
s 

(M
Pa

)

100

101

102

103

T = 423 K
T = 473 K
T = 573 K

N = 5 turns

m - values
0.09

0.30

0.38
0.25

0.36

0.40
0.41

0.42

0.50

Strain rate (s-1)

10-5 10-4 10-3 10-2 10-1 100

Fl
ow

 s
tr

es
s 

(M
Pa

)

100

101

102

103

T = 423 K
T = 473 K
T = 573 K

N = 10 turns

m - values
0.09

0.30 0.25
0.42

0.41

0.43

0.38

0.46

0.52

Strain rate (s-1)

10-5 10-4 10-3 10-2 10-1 100

Fl
ow

 s
tr

es
s 

(M
Pa

)

100

101

102

103

T = 423 K
T = 473 K
T = 573 K

N = 3 turns

m - values

0.30

0.25
0.09
0.21

0.35

0.38
0.40

0.40

0.45

Strain rate (s-1)

10-5 10-4 10-3 10-2 10-1 100

Fl
ow

 s
tr

es
s 

(M
Pa

)

100

101

102

103

T = 423 K
T = 473 K
T = 573 K

N = 1 turn

0.20
0.17

m - values
0.09

0.20
0.35

0.37

0.35

0.38

0.42

Strain rate (s-1)

10-4 10-3 10-2 10-1

El
on

ga
tio

n 
%

0

200

400

600

800

1000

1200

1400

1600

T = 423 K
T = 473 K
T = 573 K

N = 1 turn

Strain rate (s-1)

10-4 10-3 10-2 10-1

El
on

ga
tio

n 
%

0

200

400

600

800

1000

1200

1400

1600

T = 423 K
T = 473 K
T = 573 K

N = 10 turns

Strain rate (s-1)

10-4 10-3 10-2 10-1

El
on

ga
tio

n 
%

0

200

400

600

800

1000

1200

1400

1600

T = 423 K
T = 473 K
T = 573 K

N = 3 turns

Strain rate (s-1)

10-4 10-3 10-2 10-1

El
on

ga
tio

n 
%

0

200

400

600

800

1000

1200

1400

1600

T = 423 K
T = 473 K
T = 573 K

N = 5 turns

Fig. 5. (a) Elongation-to-fracture versus strain rate at different testing temperatures for alloy processed by HPT through N¼1, 3, 5 and 10 turns. (b) log–log plot of the
variation of flow stress as a function of strain rate shows the strain-rate sensitivity values (m) at different testing temperatures for the samples processed in HPT for N¼1, 3,
5 and 10 turns.
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200 1C, where development of cracking with increasing number of
passes was observed [4]. It is believed that the grain refinement in
the current work was achieved within the nanometre range due to

the imposition of a high plastic strain by HPT. This is indicated by a
comparison between: Mg–9 wt%Al alloy [11], AZ31 alloy [15] and
the alloy in this study, in terms of: the HPT processing conditions,

T = 423 K T = 473 K T = 573 K

5 μm 5 μm 5 μm 

5 μm 5 μm 5 μm 

5 μm 5 μm 5 μm 

5 μm 5 μm 5 μm 

5 μm 5 μm 

Fig. 6. Magnified views of the microstructures of the AZ91 alloy as observed by SEM on the gauge lengths after the tensile test. The samples above were processed by HPT for
N¼1 turn (a–f) and N¼10 turns (g–l) before tensile testing. The tested samples showed fibrous morphologies as shown in (c, f, i and l).
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the achieved refinement, and the obtained microhardness [16].
Increasingly ultrafine-grained AZ91 alloy (albeit with indistinct
grain boundaries) developed with increasing number of HPT turns
as shown in Fig. 1. The morphology and distribution of the β-phase
also altered after HPT processing. The β-phase separated from the
grain boundaries and fragmented into fine particles. Increasing the
number of turns resulted in a refinement of β-phase down to
nano-sized particles. These nano-sized particles aligned in the
form of bands in the direction of the torsional straining with a
relatively homogeneous distribution within α-Mg grains, and in
part this is what makes direct observation of the grain sizes after
multiple HPT turns via TEM techniques challenging. The stress–
elongation curves in Fig. 3 for the fine-grained AZ91 magnesium
alloy reveal significant superplastic elongation and relative ther-
mal stability of the alloy under tensile loading at temperatures up
to 573 K for up to 1680 min using a strain rate of 1�10�4 s�1. The
achieved elongations varied with microstructure, strain rate and
testing temperature as shown in (Figs. 3–6). For the alloy pro-
cessed for N¼10 turns in HPT and then pulled in tension at a
testing temperature of 573 K using a strain rate of 1�10�4 s�1,
the maximum elongation reached 1308%; which (to the authors’
knowledge) is the highest value of elongation reported to date in
this alloy. The elongation results in the current study are signifi-
cantly higher than data that have been published earlier. For
instance, the maximum elongation previously published was
810% at 473 K using at a strain rate of 5�10�4 s�1 for the Mg–
9%Al alloy processed in HPT for N¼5 turns at 423 K [11], whereas
in the present study, the maximum elongation was 1090% at a
testing temperature of 473 K using a strain rate of 1�10�4 s�1, for
an alloy processed at room temperature in HPT for N¼5 turns. In
addition, the tensile elongations in this investigation are also
higher than observed for alloy processed at high temperatures in

ECAP as shown earlier [10], where the maximum elongation was
840% at a testing temperature of 473 K using a strain rate of
3.3�10�4 s�1 for samples processed with 2 passes in ECAP at a
processing temperature of 473 K; whereas our alloy processed by
HPT for N¼1 and 3 turns at room temperature showed maximum
elongations of 845% and 977% at a testing temperature of 473 K
using a strain rate of 1�10�4 s�1. This difference in the elonga-
tion can be attributed to the processing temperature in HPT and
ECAP. For magnesium alloys, it is well documented that a much
finer microstructure can be produced by SPD processes at room
temperature rather than at elevated temperatures [10,14,16,17].
Thus, the observed higher elongations are expected from a finer
microstructure during the subsequent hot deformation as the
presence of fine grains is one of the prerequisites for achieving
superplasticity in polycrystalline materials [20]. The increase in
elongation with finer microstructure can be seen in Fig. 5(a),
where the higher elongations towards the superplastic range were
achieved with increasing the number of turns up to N¼10 turns.
The microstructural inspections along the gauge lengths of tensile
samples after tension reveal that the grains remained equiaxed
with fine sizes until fracture at all temperatures and strain rates.
The presence of equiaxed grains was associated with superplastic
elongations, which indicated that the main deformation mechan-
ism was grain-boundary sliding (GBS). The retention of an
equiaxed microstructure at elevated temperature under tension
is necessary for superplastic elongations through grain-boundary
sliding [21,22]. In addition, the retention of equiaxed grains after
the tensile test as shown in Fig. 6 reveals the migration of grain
boundaries during superplastic deformation at elevated tempera-
tures. It was found that the stress concentration at grain boundary
discontinuities can be reduced by the migration of grain bound-
aries during deformation, and thus grain-boundary sliding

Element wt.%
O 41.73

Mg 47.73
Al 9.97
Zn 0.17 
Mn 0.40 

Element wt.%
O 31.14

Mg 60.80
Al 7.87
Zn –
Mn 0.19 

Elemen t wt.%
O 24.77

Mg 48.28
Al 26.13
Zn 0.65 
Mn 0.16 

Fig. 7. EDS analyses with the weight fractions of the elements at: (a) grain, (b) grain boundary and (c) filament, for the sample processed in HPT for N¼10 turns and tested in
tension at a testing temperature of 573 K using a strain rate of 1�10�4 s�1.
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continues as the main deformation mechanism [23]. The measure-
ments of strain-rate sensitivity (m) confirm that grain-boundary
sliding is the dominant deformation mechanism, where the
m-values were 0.3–0.5 as illustrated in Fig. 5(b). It is well known
that high values of strain-rate sensitivity indicate a higher resis-
tance to failure by necking and thus high elongations are expected
[21,22]. The current superplastic elongations were obtained as
strain rate decreased and temperature increased, where m-values
increased to 0.5. The tested samples showed excellent elongations
using a strain rate of 1�10�2 s�1 at testing temperature of 473 K;
and using strain rates of 1�10�1 s�1 and 1�10�2 s�1 at testing
temperature of 573 K as illustrated in (Figs. 3 and 5(a)). The
current results reveal an excellent high-strain rate superplasticity
(HSRSP) for the AZ91 alloy processed by HPT at room temperature
compared to those found previously for Mg–9%Al alloy processed
by EX-ECAP (360%, 1�10�2 s�1, 498 K) [10], Mg–9%Al alloy
processed by HPT (325%, 1�10�2 s�1, 473 K) [11], hot extruded
AZ91 alloy (300%, 1�10�2 s�1, 548 K) [18], and hot rolled AZ91
alloy (275%, 1�10�2 s�1, 698 K) [19]. It has been assumed that an
improvement in microstructural stability at elevated temperature
and additional grain refinement are possible ways to achieve high-
strain rate superplasticity in magnesium alloys [24]. In the present
work, the AZ91 alloy was processed in HPT at room temperature,
which was not the case reported by those using other processing
techniques such as equal channel angular pressing [10]. A more
extreme grain refinement is expected after processing at room
temperature than at elevated temperatures as reported in previous
HPT studies [10,14,16,17]. Thus, the room temperature processed
alloy with a finer microstructure exhibits better thermal stability
and thus superior superplasticity under faster strain rates in hot
deformation [25]. It can be seen in Fig. 6(g–l), for the sample
processed for N¼10 turns in HPT, that high-strain rate

superplasticity to elongations of 590%, 410% and 860% using strain
rates of 1�10�2 s�1 at 473 K, 1�10�1 s�1 and 1�10�2 s�1 at
573 K, respectively, and the grain growth was insignificant at
testing temperatures of 473 K (for 2–3 min) and 573 K (for 5–
10 min). In addition, it is obvious from Fig. 5, that the maximum
high-strain rate superplasticity achieved for Mg–9%Al processed in
HPT for N¼5 turns at 423 K [11], was significantly lower than its
counterpart for the alloy in the present investigation that was
processed in HPT for the same number of turns but at 296 K. This
can also be attributed to the effect of processing temperature on
the grain refinement of magnesium alloys as discussed previously.
The thermal stability of the AZ91 alloy was enhanced by the
presence of fine particles of the β-phase (Mg17Al12). Prior to HPT
processing, the β-phase exists normally along the grain boundaries
as lamellar and agglomerate forms in the unprocessed alloy as
shown in Fig. 1(a). After HPT processing, this phase fragmented
into fine particles with nanometre sizes due to the high value of
the imposed strain by HPT and these nano particles were dis-
persed in the matrix (α-Mg solid solution) as shown in Fig. 1
(b and c). It was found that the morphology of the second phase
significantly affects the mechanical behaviour of the metallic
materials at room temperature and elevated temperatures [26].
The existence of well-dispersed particles of the β-phase inhibited
significant grain growth during superplastic deformation at ele-
vated temperature and then enhanced the extent of superplasti-
city. The β-phase has a melting point of about 733 K (460 1C)
which is relatively lower than 768 K (495 1C) for the AZ91 alloy
[1]; thus, the β-phase along the grain boundaries may glide
relatively earlier than the grains during hot deformation. For
samples processed in HPT for a low number of turns (N¼1), it
was noticed that the distribution and volume fraction of the fine
particles of the β-phase are relatively lower as shown in Fig. 1
(b) than in samples processed for a high number of turns (N¼10)
as shown in Fig. 1(c). Therefore, during tensile testing at elevated
temperature, with a low fraction volume of the fine particles of β-
phase, where the β-phase is located mainly near and/or on the
grain boundaries, it acts as pinning phase and the sliding of grains
is probably accommodated with limited sliding of the fine parti-
cles of β-phase. Increasing the distribution and volume fraction of
the fine particles of the β-phase leads to a more significant sliding
of the β-phase particles, which can be expected in samples tested
at a temperature of 573 K, which represents 0.78 Tm of the β-
phase. It has been proposed that the β-phase acts as a lubricant for
matrix sliding during tension [27]. Therefore, the highest elonga-
tions were obtained at all strain rates at a temperature of 573 K for
samples processed in HPT for N¼10 as illustrated in (Figs. 5(a) and
6). The effect of volume fraction of β-phase on the superplasticity
has been reported earlier for Mg–15%Al–1%Zn alloy [27], Mg–33%
Al alloy [28] where elongations have been improved considerably
with increasing the amount of aluminium (or the volume fraction
of the β-phase). As the strain rate decreased to 1�10�4 s�1 and
testing temperature increased to 473 K and 573 K, the microstruc-
ture showed filaments and surface cavities as shown in (Figs. 6(c, f,
i and l), 7). The formation of filaments has been reported for AZ91
alloy in the temperature range of (623–698) K [19], Mg–15%Al–1%
Zn alloy in the temperature range of (548–598) K [27] and in AZ61
alloy in the temperature range of (573–673) K [29]. The filaments
appear to have reconnected the disconnected grains and grain
boundaries and relinked the cavities at the final stage of super-
plastic deformation. These fibres were formed and aligned in the
direction of tension, and their lengths increased with decreasing
strain rate and increasing temperature. Thus, the superplastic
elongations were enhanced and maintained by the continuous
fibrous structures at the slowest strain rate and elevated tempera-
tures [19,27,29]. The micro-superplasticity of filaments in super-
plastic materials has been proposed to explain the superplastic
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elongations [27,30] as shown in (Figs. 6 (c, f, i and l), 7). EDS
analysis was conducted on matrix, grain boundary and filament as
shown in Fig. 7, for a sample processed in HPT for N¼10 turns and
then tested at a temperature of 573 K using a strain rate of
1�10�4 s�1. It can be seen that the alloy has oxidized since the
testing was conducted in the air, as the chemical analysis revealed
the presence of oxygen on the grain and grain boundary. The
filaments were oxidized also but showed the presence of a higher
aluminium level, 26.13%, than in the structures of the grains and
grain boundaries (9.97% and 7.87%, respectively). Therefore, it can
be concluded that the filaments were composed mainly of β-phase
as shown in previous work [27]. The variation in the average grain
size as observed using SEM is illustrated in Fig. 8 for tensile
samples with increasing testing temperature using different strain
rates. It can be seen that the processed alloy with fine particles of
β-phase retained its grain size below 10 μm over the range of
subsequent testing temperatures, strain rates and times. The alloy
exhibited only modest grain growth at lower temperature and/or
high strain rates (lower times), and a limited grain growth at
higher temperature and slow strain rates (higher times at tem-
perature). Moreover, it was found that presence of a high volume
fraction of these fine particles retarded cavity formation at
elevated temperatures and slow strain rates due to softening of
these particles at temperatures over 573 K [31]. Low-temperature
superplasticity (LTSP) was also noticed in the AZ91 alloy during
tensile testing at a low temperature of 423 K using strain rates of
1�10�3 s�1 and 1�10�4 s�1 as illustrated in Fig. 5(a). The lower
testing temperature is equivalent to 0.55Tm, where Tm for the
AZ91 alloy is 768 K (495 1C) as illustrated in the phase diagram of
the alloy [32]. The current performance in the low-temperature
superplasticity regime is better than previous data obtained for
the AZ91 magnesium alloy [2,11]. It has been found that finer grain
sizes are preferable for achieving low-temperature superplasticity
as well as for achieving high-strain rate superplasticity [2]. It can
be seen that the grain sizes were retained to within 1 μm and 4 μm
for samples tested at 423 K and 473 K, respectively, using strain
rates of 1�10�3 s�1 and 1�10�4 s�1 as observed in Fig. 6 and
illustrated in Fig. 8. The current results for low-temperature
superplasticity reveal the potential for superplastic forming of
magnesium alloys at lower possible temperatures to overcome
their poor workability at room temperature and excessive oxida-
tion at elevated temperatures [33]. A small difference was
observed in the maximum values of the low-temperature elonga-
tions, for samples processed by EX-ECAP (800%, 1�10�4 s�1,
423 K) [10], and its counterpart obtained in the current study
(760%, 1�10�4 s�1, 423 K). This can be attributed to the differ-
ence in dimensions of tensile samples for ECAP and HPT. The ECAP
tensile sample was cut from a cylindrical billet with a gauge length
of 5 mm and gauge cross-section area of (3�2) mm2 [10], whereas
in this study, the HPT tensile sample was cut from a circular disk
with a gauge length of 1.0 mm and gauge cross-section area of
(0.9�0.6) mm2. Therefore, the small difference in the calculated
elongations can be attributed to the difference between the
relatively large-scale and micro-scale tensile samples produced
in ECAP and HPT, respectively [34,35]. Moreover, the direction of
cutting for tensile samples from ECAP billets and HPT disks has a
further impact. The tensile samples after EX-ECAP were cut
parallel to the longitudinal axes after the extrusion step and after
the ECAP [10], whereas the disk-shaped samples were cut firstly
from an extruded rod perpendicular to the extrusion direction;
then after HPT processing, the tensile samples were cut parallel to
the shear-plane direction [14]. Therefore, occurrence of a strong
texture is anticipated due to the extrusion and subsequent ECAP
through the route Bc , and alignment of the basal planes parallel to
the extrusion direction [36], which leads to easy slip in tension at a
testing temperature of 423 K and the occurrence of low-

temperature superplasticity [37]. In contrast, the monotonic HPT
mode was used in the processing of the AZ91 alloy in this
investigation, which leads to a more random texture with
equiaxed grains at a high number of turns [38]. Therefore, at
temperatures of 423 K, a relatively lower elongation is expected in
the alloy processed by HPT compared to its counterpart processed
by EX-ECAP. The average strain sensitivity of 0.3 and the equiaxed
grains were found for all samples tested at a testing temperature
of 423 K using a strain rate of 1�10�4 s�1, which suggests that
grain boundary sliding is the deformation mechanism at low
temperature [2]. Lower elongations were found at a low tempera-
ture of 423 K using high strain rates of 1�10�1 s�1 and
1�10�2 s�1, and these elongations were associated with low
values of strain-rate sensitivity with an average of 0.25. Thus,
glide-dislocation creep is assumed as the deformation mechanism
accommodated with grain-boundary sliding as the grains retained
their equiaxed shapes and did not elongate as in the case of
dislocation creep only [19,39]. The activation energy was calcu-
lated at a fixed strain rate using the following equation [40,41]:
Q ¼ nRð∂ðln σÞ=∂ð1=TÞÞ, where Q is the activation energy, n is stress
exponent (n¼ 1=m), R is the gas constant, and ð∂ðln σÞ=∂ð1=TÞ is the
slope of plot in Fig. 9. For the AZ91 alloy, the activation energy was
obtained for a sample processed in HPT for N¼10 turns then
tensile tested using a strain rate of 1�10�4 s�1 over the tem-
perature range (423–573) K as shown in Fig. 9. It was found that
the activation energy equals 80.34 KJ/mol that is close to the
activation energy of grain boundary diffusion of pure magnesium
(92 KJ/mol). Therefore, grain-boundary sliding is the dominant
deformation mechanism, which is consistent with the observed
microstructures as shown in Fig. 6. The grain-boundary sliding
mechanism was accommodated with diffusional flow at tempera-
tures of 473 K and 573 K using a strain rate of 1�10�4 s�1as
shown in Fig. 6 (c, f, i and l). It can be seen that the shapes of grains
under these conditions were changed from equiaxed to elongated
and oriented towards the tension axis and thus the highest level of
superplasticity produced [42]. The relative difference in the
obtained activation energy and its counterpart for pure magne-
sium is attributed to the presence of β-phase in the AZ91 alloy
[27], where this phase has an activation energy for grain boundary
diffusion of 65 KJ/mol, which reduces the overall activation energy
for the present alloy [43,44]. The steady-state strain rate for the
superplastic flow at high temperatures is expressed by [45]:
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Fig. 9. The variation in the flow stress with the reciprocal of the temperatures from
423 K to 573 K to determine the value of the activation energy (Q) for the tensile
samples tested using strain rates of 1�10�3 s�1 and 1�10�4 s�1. The straight line
represents the linear least squares fit for the obtained data and its slope then refers
to the value of the activation energy.
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_ε¼ ADGb=kT
� �

b=d
� �p

σ=G
� �n, where D is the appropriate diffusion

coefficient D¼Doexpð�Q=RTÞ, Do is the pre-exponential complex
constant, A is a dimensionless constant, G is the dynamic shear
modulus, b is the Burgers vector, d is the grain size, σ is the applied
stress, p and n are the exponents of the inverse grain size and
normalized stress, respectively. Using the following values of
p ¼ 2, n ¼ 2, A¼ 10, D¼Dgb [22], Do ¼ 7:8� 10�3 m2s�1,
G¼ 1:92� 104�8:6T ðMPaÞ, and b¼ 3:2� 10�10 m [45] in the
former equation for the grain-boundary sliding mechanism results
in Fig. 10, which represents the temperature and grain size
compensated strain rate versus the normalized stress for the alloy
processed for N¼10 turns and tested in tension at different
temperatures and strain rates. The solid line represents the
predicted strain rate for superplasticity with a slope of n ¼ 2
(m ¼ 0:5). Good agreement was obtained between the observed
experimental data for the current alloy and similar work in a series
of magnesium alloys [46,47] and the constitutive equation of
superplastic flow based on the assumption that grain-boundary
sliding is the dominant deformation mechanism over these testing
temperatures and strain rates. It is important to note that that the
values of grain sizes were collected from the SEM micrographs of
the gauge lengths of the tensile test as indicated in Fig. 6 and these
values were used in the constitutive equation.

5. Conclusions

1. The HPT processing at room temperature for the AZ91 magne-
sium alloy resulted in excellent superplastic elongations that were

higher than their counterparts obtained in earlier work through
HPT, ECAP and EX-ECAP.

2. High-strain rate superplasticity (HSRSP) was obtained with
excellent elongations of 590% at a testing temperature of 473 K
using a strain rate of 1�10�2 s�1, 410% and 860% at a testing
temperature of 573 K using strain rates of 1�10�1 s�1 and
1�10�2 s�1, respectively.

3. Significant low-temperature superplasticity (LTSP) was
achieved with maximum elongations of 660% and 760% at a
testing temperature of 423 K and using strain rates of
1�10�3 s�1 and 1�10�4 s�1, respectively.

4. The samples processed by HPT at room temperature revealed
fine equiaxed grains with significant thermal stability at all
testing temperatures and strain rates.

5. Equiaxed microstructures and high values of strain-rate sen-
sitivity indicate that grain-boundary sliding was the main
deformation mechanism during the high-strain rate super-
plasticity regime. Glide-dislocation creep accommodated with
grain-boundary sliding is suggested as the deformation
mechanisms operating during the low-temperature super-
plasticity regime. At high temperature and slow strain rate
the grain-boundary sliding accommodated with a diffusion
creep mechanism.

6. Considerable thermal stability of the processed alloy was
attributed to the ultrafine grains produced by HPT at room
temperature and to the high volume fraction of fine, nano-
sized β-phase particles.

The fibrous structures were mainly composed of β-phase
and they enhanced the superplasticity at high tempera-
tures and low strain rates through resisting the cavitation
and relinking the disconnected grains.
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Abstract An investigation has been conducted on AZ91

magnesium alloy processed in high-pressure torsion (HPT)

at 296, 423 and 473 K for different numbers of turns. The

microstructure has altered significantly after processing at

all processing temperatures. Extensive grain refinement has

been observed in the alloy processed at 296 K with

apparent grain sizes reduced down to 35 nm. Segmentation

of coarse grains by twinning has been observed in the alloy

processed at 423 K and 473 K with average apparent grain

sizes of 180 nm and 250 nm. Substantial homogeneity in

microhardness has been observed in the alloy processed at

296 K compared to that found at 423 K and 473 K. The

ultrafine-grained AZ91 alloy exhibited a significant

dependence of the yield strength on grain size as shown by

the microhardness measurements, and it obeys the expected

Hall–Petch relationship. The alloying elements, fraction of

nano-sized particles of b-phase, and the dominance of basal

slip and pyramidal modes have additional effects on the

strengthening of the alloy processed at 296 K.

Introduction

Magnesium alloys are promising alternatives to replace

denser materials, such as steel and aluminium alloys, with

the objective of meeting requirements to save fuel by

manufacturing light weight/high strength parts [1]. The

mechanisms of deformation in magnesium alloys at room

temperature are basal slip and twinning, which result in a

limitation in their workability at room temperature [2]. The

limited ductility and workability of these alloys can be

improved at higher temperatures by the activation of

additional slip systems [1]. Thermo-mechanical processing

is used to improve the workability of these alloys, although

such processing is associated with grain growth and a

greater consumption of energy [3]. Several processing

routes have been introduced to achieve optimization of the

microstructure, and these routes include dynamic recrys-

tallization under high-temperatures in ECAP processing

[4], HPT processing [5, 6], ECAP processing at relatively

low temperatures assisted by a back-pressure [7], or

through the use of a higher channel angle of pressing die in

ECAP processing [8]. The majority of the earlier work in

SPD processing of magnesium alloys, especially for AZ91

alloy, has been conducted using ECAP at elevated tem-

peratures (C473 K) [2, 4, 9] with resultant grain refinement

being achieved in the micrometre range. The AZ91 alloy

(Mg–9wt%Al–1wt%Zn–0.3wt%Mn) is a common alloy in
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the Mg–Al–Zn family. This alloy has a good strength-to-

density ratio, good corrosion resistance and ease of pro-

duction and machining [3]. To date, only one investigation

has been conducted on Mg–9wt%Al alloy [6] using HPT at

room temperature. The development of microstructure and

microhardness across horizontal and vertical cross-sections

of AZ91 samples processed by HPT has not been reported

to date. This research describes the microstructural

homogeneity and development of microhardness in AZ91

alloy after processing by HPT at different processing

temperatures. The dislocation density, distribution of b-
phase and Hall–Petch relationship have also been

investigated.

Experimental materials and procedures

AZ91 alloy (Mg–9 %Al–1 %Zn) in the form of an extru-

ded rod was used in this work, the alloy was supplied by

Magnesium Elektron Co. (Manchester, UK). Thin discs

were made of the extruded rod with thicknesses of 1.5 mm

and final thicknesses of 0.85 mm. The HPT processing was

conducted at 296, 423 and 473 K using a HPT facility that

has been previously discussed in detail elsewhere [10]. The

HPT processing was conducted under a quasi-constrained

condition at a speed of 1 rpm using an applied pressure of

3.0 GPa for differing numbers of turns: N = 1/2, 1, 5 and

10 turns. The as-received and processed microstructures

were observed using optical microscopy (OM, OLYMPUS-

BX51, Japan) and scanning electron microscopy (SEM,

JEOL JSM-6500F, Japan). Subsequently, a transmission

electron microscope (TEM, JEOL JEM-3010) was used for

microstructural observation of the alloy after HPT pro-

cessing. The chemical compositions of the as-received and

processed alloy were analysed using energy-dispersive

spectroscopy (EDS). The area fraction and average size of

the b-phase particles in the as-received alloy and processed

alloy were determined by ImageJ software using a point

count technique [11]. X-ray diffraction was used to deter-

mine the crystallite size and dislocation density in the

processed alloy using an XRD facility (D2 Phaser, Ger-

many). The diffraction data were analysed using Rietveld

refinement based software program (MAUD). Microstruc-

tural observations and microhardness testing were con-

ducted over the horizontal and vertical cross-sections that

are illustrated schematically in Fig. 1a, b. The microhard-

ness measurements of the processed disc were conducted

using a Vickers microhardness tester (FM-300, Japan) and

using an applied load of 100 gf and a dwell time of 15 s.

The microhardness data were recorded at separation dis-

tances of 0.3 and 0.1 mm throughout the entire horizontal

and vertical cross-sections, as reported earlier [5, 12].

Experimental results

The microstructure of the AZ91 magnesium alloy prior to

and after HPT processing is shown in Fig. 2. The as-re-

ceived AZ91 alloy has an average grain size of 30 lm and

an average value of Vickers microhardness of 70 ± 5. The

initial and processed microstructures consist of two main

phases: a-Mg matrix, b-phase and Al8Mn5 particles as

shown in Fig. 2a, b. The chemical analysis obtained by

EDS of alloying elements in the alloy processed at 296 K

for N = 5 turns is shown in Fig. 3. The alloy constituents

were identical before and after HPT as shown earlier [13].

The processed microstructure at 296 K showed extensive

grain refinement, and the original decoration of the grain

boundaries by b-phase disappeared with increasing number

of turns as shown in Fig. 2b, c. The b-phase fragmented

into nano-sized particles as observed in Fig. 2b–d and

appears aligned along the direction of torsional straining. A

strong degree of grain refinement after processing at 296 K

was observed with an apparent grain size down to 500 and

50 nm observed after N = 1/2 and 1 turn, respectively, as

shown in Fig. 2e, f. A reduction in the crystallite size from

60 to 35 nm was found with increasing number of turns up

to N = 10 turns. The processed microstructures at 296 K

across the vertical cross-sections are shown in Fig. 4. The

microstructure seems slightly deformed with the presence

of twinning as shown in Fig. 4a. Shear bands decorated by

the b-phase were observed aligned parallel to the radial

direction across the vertical cross-section as observed in

Fig. 4b. Recorded peaks by XRD as shown in Fig. 5 are

Fig. 1 An illustration of a HPT disc shows a the horizontal cross-

section, and b The vertical cross-section. These cross-sections were

used in the microstructural and microhardness observations. The

arrow from the centre to the edge refers to the longitudinal (radial)

direction, whereas the arrow from the upper surface to lower surface

refers to the through-thickness (vertical) direction
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prismatic planes 10�10ð Þ, 11�20ð Þ, ð20�20Þ, basal plane

ð0002Þ and pyramidal planes ð10�11Þ, ð10�12Þ, ð10�13Þ. The
microstructures of the alloy processed at 423 and 473 K are

shown in Fig. 6. The samples showed twinning, and the

distribution of twinning increased and spread gradually

with increasing number of turns. The microstructures were

effectively refined by the segmentation of the coarse grains

by twinning as observed in Fig. 6a, b. However, grain

growth has been observed at 473 K with increasing number

of turns up to N = 5 turns as shown in Fig. 6b. The

apparent area fraction has increased (which may reflect a

sampling effect once the second phase is more homoge-

neously distributed), and the average size of the b-phase
particles has been refined down to 200 nm in the pro-

cessed alloy compared to the as-received alloy as shown

in Fig. 7. A gradual development in the microhardness

over the horizontal and vertical cross-sections has been

achieved with increasing number of turns up to N = 10

turns as shown in Figs. 8 and 9. The distributions of

microhardness were relatively lower for the alloy pro-

cessed at 423 and 473 K than at 296 K. A significant

increase in the microhardness has been observed as shown

Fig. 2 Microstructural observations using SEM for a the as-received

alloy, b the alloy processed for N = 1 turn (296 K), c the alloy

processed for N = 10 turns (296 K) and d the nano-sized particles of

b-phase in the alloy processed for N = 10 turns (296 K), and TEM

observation of the alloy processed for e N = 1/2 turn (296 K) and

f N = 1 turn (296 K). The corresponding numbers (1, 2, 3) in the

micrograph a represent the lamellar, agglomerate forms of the b-
phase (Mg17Al12) and Al8Mn5 particle, respectively
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in Fig. 10, with increasing equivalent strain imposed

during HPT for the alloy processed at 296 K. A signifi-

cant dependency of the microhardness on the crystallite

size of the AZ91 alloy processed at 296 K is shown in

Fig. 11. The lower processing temperature leads to finer

crystallite size, higher microhardness and dislocation

density, and at elevated temperatures, these outcomes

decreased significantly as the number of turns increased

as shown in Fig. 12.

Discussion

Feasibility of HPT processing of AZ91 magnesium

alloy

The TEM and XRD revealed the occurrence of extensive

grain refinement in the AZ91 alloy due to the imposition of a

very high plastic strain by HPT at 296 K. However, for the

sample processed for N = 1/2 turn, it is noteworthy that the

Fig. 3 The chemical analysis with weight fractions of the alloy processed at 296 K for N = 5 turns showing a a-Mg matrix, b b-phase
(Mg17Al12), c Al8Mn5 particle

Fig. 4 The microstructures of the alloy processed at 296 K as observed along the vertical cross-sections for a N = 1 turn and b N = 5 turns. The

black and white arrows refer to the twinning and shear bands decorated by the b-phase, respectively
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value of the crystallite size obtained by XRD was signifi-

cantly lower than the apparent grain size measured by TEM.

This difference between the measurements via XRD and

TEM is expected in SPD-processed materials, because the

grains in these materials are made of subgrains and/or dis-

location cells. Thus, coherent scattering of the X-ray from

these substructures represents the (smaller) mean crystallite

size rather than grains which can be more easily observed in

TEM [14]. The feasibility of HPT processing at 296 K for

the AZ91 magnesium alloy can be attributed to the presence

of hydrostatic pressure, which prevents propagation of

fracture during processing [6–8]. Furthermore, the geometry

of the processing zone constrains the alloy within a specific

volume as illustrated earlier and thus activation of twinning

[8, 15, 16]. The XRD observations indicate the orientation of

the processed microstructure towards twinning and basal

deformation modes under HPT conditions that facilitate

processing at room temperature [16]. The unidirectional

nature of straining during HPT processing may have con-

tributed to re-orientation of the microstructure towards easy

slip [17]. The twinning activity has persisted in the pro-

cessed alloy at 296 K with increasing number of turns,

which confirms its accommodation for the higher imposed

strain produced by HPT [18].

Fig. 5 XRD diffraction patterns for a the as-received alloy and b the alloy processed at 296 K for N = 10 turns

Fig. 6 The microstructures of the alloy as observed across the horizontal cross-sections after HPT processing at a 423 K (N = 5 turns) and

b 473 K (N = 5 turns)

Fig. 7 The area fraction and average size of the b-phase particles in

the as-received alloy and processed alloy at 296 K for different

number of turns
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Fig. 8 The colour-coded maps of the microhardness over the

horizontal cross-sections of the AZ91 discs processed forf a N = 1/

2 turn (296 K), b N = 1 turn (296 K), c N = 5 turns (296 K),

d N = 10 turns (296 K), e N = 10 turns (423 K) and f N = 10 turns

(473 K). The small inset in the figure shows the scale of the

microhardness with regard to each colour (Color figure online)

Fig. 9 The colour-coded maps of the microhardness distributions

over the vertical cross-sections of the AZ91 discs processed for

N = 10 turns at 296 K (upper), 423 K (centre) and 473 K (lower).

The small inset in the figure shows the scale of the microhardness

with regard to each colour (Color figure online)

Fig. 10 Correlation of the measured microhardness with the equiv-

alent strain imposed by HPT processing for the alloy processed at

296 K for different number of turns
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Grain refinement in AZ91 alloy

The relatively high content of aluminium in the AZ91

magnesium alloy leads to a significant reduction in the

stacking fault energy through the solute–dislocation inter-

action and results in smaller grain sizes under SPD pro-

cessing [19]. The effect of dynamic recovery was absent as

the alloy has been processed at room temperature. It is

anticipated that the homogeneity developed gradually with

further straining at room temperature as mentioned by

several investigators [20–23]. The grain refinement in the

processed alloy at 423 K has developed efficiently by

twinning intersections and the grain subdivision mecha-

nism. At this temperature, dynamic recrystallization was

absent or had a minor effect on the refinement process

compared to the twinning activity. It is likely that dynamic

recrystallization may have contributed to grain refinement

in the processed alloy at 473 K. However, the formation

and fragmentation of twinning appears to be the dominant

mechanism for refinement at 473 K. The HPT-processed

alloy at 423 and 473 K has significantly refined apparent

grain sizes of 180 and 250 nm, respectively, which are

finer than in the previously reported ECAP [20, 24–26],

FSP [27] and ARB-processed alloys [28]. In the afore-

mentioned SPD techniques, grain refinement occurs mainly

by dynamic recrystallization with resultant microstructures

of micrometre size grains. The severe levels of deformation

in the alloy and the deformation incompatibility between a-
Mg matrix and b-phase have resulted in fragmentation of

the b-phase [29]. The significant dispersion of nano-sized

particles of the b-phase during processing had a pinning

effect on grain growth at a higher number of turns and

elevated temperatures [23]. The alloy processed at 296 K

showed microstructural homogeneity at the initial stage of

HPT processing rather than the heterogeneity observed in

the alloy processed at 423 and 473 K, which required

further processing turns and/or higher processing temper-

ature to achieve a reasonable homogeneity [10]. The tem-

perature rise expected during HPT processing at room

temperature does not exceed 293 K for samples processed

Fig. 11 The Hall–Petch relationship for the ultrafine-grained AZ91

alloy in the current work and for AZ31 and AZ61 alloys processed by

HPT and ECAP

Fig. 12 The overall variation in the average a crystallite size,

b dislocation density and c microhardness for the AZ91 alloy after

HPT at different processing temperatures
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at 296 K for N = 10 turns. This value of temperature rise

has been calculated using the equation stated in [30], and is

similar to the experimental value (290 K) measured

directly from the thermocouple located in the upper anvil.

The low value of temperature rise can be attributed to (1)

the heat loss from relatively small samples in contact with

the much larger HPT anvils and (2) due to the low strain

rates of deformation in HPT processing [31]. A further

factor, making the heat generated low, is the lower friction

expected between the relatively lower strength magnesium

alloy and the high strength (high speed tool steel) anvils

[15, 31]. As a result, any temperature rise due to processing

is considered negligible and unlikely to produce any

occurrence of recrystallization or grain growth during

processing at room temperature [32].

Development of microhardness

The initial heterogeneity of microstructures leads to an

initial heterogeneity in the distribution of microhardness

[10, 33, 34]. The difference in grain sizes at the centre and

edge regions was diminished by further straining, where a

gradual evolution towards homogeneity was found in the

observed microstructure and microhardness at both centre

and edge regions at a higher number of turns [10, 35]. The

existence of misalignment between the anvils at a high

number of turns causes an additional deformation at the

centre region of the processed disc, which appears as an

increase in the measured microhardness [36, 37]. The

development of microhardness after HPT processing

depends on the stacking fault energy of the alloy [10, 19].

The AZ91 alloy with a low stacking fault energy [38]

shows a slow rate of dynamic recovery during processing

at room temperature, thus strain hardening occurs at a fast

rate during processing [20, 32]. The AZ91 alloy processed

in HPT showed an earlier saturation in the microhardness

distribution than for the AZ31 alloy [21] processed in HPT

at room temperature. The stacking fault energy is lower,

and the fraction of particles of b-phase is higher in the

AZ91 alloy than for the AZ31 alloy [38, 39]. Therefore, the

evolution of grain refinement and strain hardening occurred

at faster rates in the AZ91 alloy than for the AZ31 alloy.

The overall microhardness values for the alloy processed at

473 K were significantly lower than for their counterparts

processed at 296 and 423 K, due to the variation in dislo-

cation density with processing temperature [14]. However,

the level and homogeneity of strengthening are still higher

when processing by HPT at elevated temperatures than

observed in ECAP [26], and FSP [27], where strengthening

has been lowered by dynamic recrystallization, over-ageing

and precipitate coarsening [26, 27]. The microhardness

distributions in the AZ91 alloy are heterogeneous along the

through-thickness directions in the initial stage of defor-

mation. This is supported by the differences in

microstructural observations along this direction. A suffi-

cient high number of turns may reduce heterogeneity, by

filling the alloy in-between the anvils and achieving a

significant sticking condition which then increases the

deformation and microstructural homogeneity [5, 12, 15,

40, 41]. The distribution of microhardness along the ver-

tical and horizontal cross-sections showed considerable

consistency for the current alloy processed at each specific

processing temperature. This indicates the development of

microstructural homogeneity with increasing imposed

strain at each condition [8]. This consistency in the AZ91

alloy has not been observed in the AZ31 alloy or AZ91

alloy processed by ECAP [26] and FSP [27]. This is

attributed to the difference in the aluminium content and

stacking fault energy in both alloys, which control the

extent of grain refinement, dislocation density, achieved

homogeneity and resultant mechanical properties [14, 21,

38]. The behaviour of strain hardening and homogeneity of

microhardness in the AZ91 alloy follows a standard model

of hardness evolution with increasing equivalent strain

reported in earlier work [20].

The effect of the equivalent strain on the Hall–Petch

relation and dislocation density

The increase in the equivalent strain resulted in an evolu-

tion in microstructure and a gradual development in the

microhardness [10]. The strength of the alloy in terms of its

microhardness improved significantly with grain refine-

ment at room temperature. This proportionality has been

expressed by the Hall–Petch relationship for hardness

measurements: Hv ¼ H0 þ kHd
�1=2 [42]. The effect of

grain refinement on the strength of the ultrafine-grained

alloy AZ91 alloy showed a significant consistency with this

Hall–Petch relationship. The material constants are

H0 = 76 MPa and kH = 233 MPa lm1/2, which is rela-

tively higher than those found for AZ31 and AZ61 alloys

(H0 = 647–697 MPa and kH = 118–170 MPa lm1/2) [7,

22, 43]. Thus, the ultrafine-grained AZ91 alloy shows a

relatively higher level of hardness than for AZ31 and AZ61

alloys processed by HPT and ECAP processing at room

temperature and elevated temperatures [21, 22, 44]. The

difference in kH can be attributed to the difference in

alloying constituents in the mentioned alloys, where the

high content of alloying element in the AZ91 alloy resulted

in a lowering of its stacking fault and thus a finer

microstructure and a higher dislocation density in the AZ91

alloy after processing than in the AZ61 and AZ31 alloy

[19, 21, 22]. The evolution in dislocation density with

increase of imposed strain in HPT has a major effect on the
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achieved strengthening in the AZ91 alloy. The evolution of

dislocation density is affected by the fraction of nano-sized

particles of b-phase, value of applied pressure in HPT, and

value of stacking fault energy. The widely distributed b-
phase fine particles are reported as acting as barriers for

mobile dislocations during deformation [39]. The high

value of applied pressure has also been reported to enhance

the obstruction of defect migration in the processed mate-

rial and then promotes the suppression of dislocation

annihilation [45, 46]. The low stacking fault energy in the

AZ91 alloy leads to a significant inhibition of dislocation

cross-slip, and formation of a high density of planar arrays

of dislocations has also been reported [10, 38].

Conclusions

1. AZ91 magnesium alloy has been effectively processed

in HPT processing at room temperature with an

ultrafine-grained microstructure down to 35 nm. The

alloy processed at 423 and 473 K has been signifi-

cantly refined by twinning segmentation of the original

grains into fine grains with average apparent grain

sizes of 180 and 250 nm, respectively.

2. Fragmentation and alignment of the b-phase in the

direction of torsional strain have been observed during

processing. This phase has been refined down to

nanometre sizes with a higher fraction as the number

of turns increased, indicating the very high level of

plastic deformation that is imparted to the alloy during

HPT.

3. Existence of twins at all processing temperatures and

their distribution was proportional to processing tem-

perature and the number of turns. The occurrence of

twinning has been induced by the need for re-orientation

of the microstructure towards the slip direction and to

accommodate severe plastic deformation.

4. Lower processing temperature has resulted in homoge-

nous microstructure and significant development of

strength. Higher processing temperatures have resulted

in heterogeneous microstructures especially in the

initial stages of HPT and this heterogeneity decreased

gradually at higher numbers of turns.

5. A considerable dislocation density has developed with

increasing the number of turns at lower processing

temperature rather than at higher processing temper-

atures. The values of dislocation density after HPT

were higher than earlier reported data for the same

alloy.

6. The ultrafine-grained AZ91 alloy follows the Hall–

Petch relationship, and this emphasizes the significant

dependence of strength on grain size. The higher

alloying content, fraction of nano-sized particles of

b-phase and the dominance of basal slip and pyramidal

modes after processing also have a significant effect on

the strengthening of the alloy processed at 296 K.
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