
MU-CSeq 0.4: Individual Memory Location Unwindings

?

(Competition Contribution)

Ermenegildo Tomasco1, Truc L. Nguyen1, Omar Inverso1,2, Bernd Fischer3,
Salvatore La Torre4, and Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, UK
2 Gran Sasso Science Institute, L’Aquila, Italy

3 Division of Computer Science, Stellenbosch University, South Africa
4 Dipartimento di Informatica, Università di Salerno, Italy

Abstract. We present the MU-CSeq tool for the verification of multi-threaded C
programs with dynamic thread creation, dynamic memory allocation, and pointer
arithmetic. It is based on sequentializing the programs over the new notion of
individual memory location unwinding (IMU). IMU is derived from the notion of
memory unwinding that has been implemented in the previous versions of MU-
CSeq. The main concepts of IMU are: (1) the use of multiple write sequences,
one for each individual shared memory location that is effectively used in the
executions and (2) the use of memory addresses rather than variable names in the
operations on the shared memory, which requires a separate table to map write
sequences but supports pointer arithmetic.

1 Verification Approach

MU-CSeq 0.4 follows the sequentialization approach to verification. Its idea is to trans-
late, using a code-to-code translation that preserves the verification property of interest,
a concurrent program into a sequential one, which is then analyzed using a symbolic
sequential verification tool.

In MU-CSeq 0.4 we have implemented a sequentialization based on the novel no-
tion of individual memory location unwindings (IMU). IMU is derived from the concept
of memory unwinding that has been implemented in the previous versions of MU-CSeq
[2, 3]. A memory unwinding (MU) is an explicit representation of the sequence of write
operations into the shared memory performed by the threads. Each element of the se-
quence represents a write operation characterized by the identifier of the writing thread,
the variable identifier, and the written value. The sequentialized program first guesses
the values in the MU using non-determinism–supported by symbolic verification tools–
and then simulates each thread against the MU. If each thread matches its memory
writes in the MU then their sequential simulation corresponds to a valid execution of
the original concurrent program (see [2] for more details).

IMU improves on MU by providing a separate memory unwinding for each indi-
vidual shared memory location corresponding to a scalar type or a pointer. To recreate
? Partially supported by EPSRC EP/M008991/1 grant, INDAM-GNCS 2015 grant and MIUR-

FARB 2013-2015 grants. Contact author: Gennaro Parlato, gennaro@ecs.soton.ac.uk.



a global total order over the shared memory writes we associate a timestamp (i.e., a
distinct natural number) with each write in each individual MU. This is crucial for the
correctness of the simulation since it is used to synchronize the simulation of the indi-
vidual threads (otherwise the distinct MUs can give rise to many total orders).

Another important feature of the new encoding is to associate each memory location
with its physical memory address. When a read or write operation is performed using
a memory address, e.g.,

*

p=3 for a pointer variable p, we first search for the location
corresponding to the value of p and then simulate the read/write operation as we would
do for scalar variables (for which the locations are statically known).

This new representation of the writes has several good features when used in com-
bination with sequential BMC verification tools. In particular, the use of the individual
MU simplifies the simulation of read and write operations resulting in much smaller
verification conditions and verification time. In fact, for each memory access, the for-
mula now only contains an encoding of the corresponding individual sequence and not
the whole sequence of writes. Although the high level idea is simple, we observe that
the underlying reasoning for IMU is more involved than MU.

Another advantage of IMU is that it gives a simple and effective way to support dy-
namic memory allocation and pointer arithmetics. This feature was not implemented in
previous versions of MU-CSeq as it requires convoluted simulation functions resulting
in a blowup of the verification time of the sequential BMC backend analysis.

IMU not only improves MU as we have mentioned above but also simplifies the
development of new sequentialization schemes for other interesting properties of con-
current programs such as data-race and deadlock detection as well as weak memory
models including TSO and PSO.

2 Software Architecture

The sequentializations in MU-CSeq 0.4 are implemented as source-to-source transfor-
mations in Python (v2.7.9), within the re-factored CSeq framework [4]. This uses the
pycparser (v2.14, github.com/eliben/pycparser) to parse a C program
into an abstract syntax tree (AST), and then traverses the AST to construct a sequential-
ized version, as outlined above. The resulting program can be processed independently
by any verification tool for C, but we have only tested MU-CSeq 0.4 with CBMC (v5.2,
www.cprover.org/cbmc/). For the competition we use a wrapper script that bun-
dles up the translation, calls CBMC for verification, and retuns its output.

Our tool takes the following options: w is the bound on the number of write oper-
ations for each location, f is the unwind bound for for-loops, u is the unwind bound
for the remaining loops, b is the number of bits used for shared variables and memory
addresses, p is the number of tracked locations that are stored on the heap, m is the
maximal number of malloc invocations, v is the bound on the number of lock/unlock
operations on single locations, ml is the bound on the number of lock/unlock operations
on the whole memory, and thl is the bound on the number of threads that are spawned
in any while-loop.

We use a simple syntactic analysis of the program to determine which schema and
parameters we use in the competition. If the program contains more than 30 assign-



ments but no loops, or a pthread create inside a constant bounded for-loop, we
use the inter-thread coarse-grained MU with parameters -w2 -f52 -u1 -b7 (for the
MU scheme, w actually denotes the length of the overall sequence of writes). Otherwise
we use the IMU scheme with the following parameters:

-w7 -u1 -f2 -b12 -p5 -v6 -ml7 -m3 -thl3, for programs with arrays;
-w7 -u2 -f2 -b12 -p2 -v6 -ml7 -m3 -thl3, if the program contains thread-
local variables;
-w<c1> -u1 -f<c1> -b17 -p2 -v6 -ml7 -m3 -thl3, if the program’s for-
loops are upper bounded by a constant <c1> and do not contain pthread create;
-w6 -u1 -f2 -b7 -p2 -v6 -ml7 -m3 -thl3, otherwise.

All parameter values were empirically determined. We use a timeout of 70 seconds, and
interpret the cases where this timeout applies as true.

3 Tool Setup and Configuration

Availability and Installation. MU-CSeq 0.4 is available at http://users.ecs.
soton.ac.uk/gp4/cseq/mu-cseq-0.4.zip; it also requires installation of
the pycparser. CBMC must be installed in the same directory as MU-CSeq. The
wrapper script for the tool on the BenchExec repository is mu-cseq.py.
Call. MU-CSeq should be called in the installation directory as mu-cseq.py -i

file --spec specfile.

1 10 100

1

10

100

MU-CSeq-0.4

M
U

-C
Se

q-
0.

3

pthread (32)

pthread-atomic (10)

pthread-ext (53)

pthread-lit (11)

pthread-wmm (898)

Fig. 1. Comparison of MU-CSeq v0.3 and v0.4.

Strengths and Weaknesses. Since MU-
CSeq 0.4 is not a full verification tool
but only a concurrency preprocessor, we
only competed in the Concurrency

category. Here we achieved a full score,
with an overall runtime of circa 45 min-
utes for all benchmarks in the category.
Compared to MU-CSeq 0.3 [2], the new
version achieved a substantial speedup
over most of the benchmarks, as shown
by the scatter plot in Figure 3.

References

1. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, G. Parlato. Bounded Model Checking of
Multi-Threaded C Programs via Sequentialization CAV, LNCS 8559, pp. 585-602, 2014.

2. E. Tomasco, O. Inverso, B. Fischer, S. La Torre, G. Parlato. Verifying Concurrent Programs
by Memory Unwinding. TACAS, LNCS 9035, pp. 551-556, 2015.

3. E. Tomasco, O. Inverso, B. Fischer, S. La Torre, G. Parlato. MU-CSeq 0.3: Sequentializa-
tion by Read-Implicit and Coarse-Grained Memory Unwindings - (Competition Contribu-
tion). TACAS, LNCS 9035, pp. 436-438, 2015.

4. O. Inverso, T.L. Nguyen, B. Fischer, S. La Torre, G. Parlato. Lazy-CSeq: A Context-Bounded
Model Checking Tool for Multi-Threaded C-Programs. ASE Tool Demonstration, pp. 807-
812, 2015.


