
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

Bounded Model Checking

of Multi-threaded Programs

via Sequentialization

by

Omar Inverso

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

November 2015

http://www.soton.ac.uk
mailto:oi2c11@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Omar Inverso

In order to achieve greater computational power, processors now contain several cores

that work in parallel and, consequently, multi-threaded software is rapidly becoming

widespread.

The inherently nondeterministic nature of concurrent computations can cause errors that

show up rarely and are difficult to reproduce and repair. Traditional testing techniques

perform an explicit exploration of the possible program executions, and are thus not

adequate to spot such bugs. They need to be complemented by symbolic verification

techniques that analyse multiple thread interactions simultaneously.

Sequentialization consists in translating a given concurrent program into a corresponding

non-deterministic sequential program that simulates executions of the original program.

We investigate on whether combining sequentialization (to symbolically represent thread

interleavings) with bounded model-checking (BMC) can be effective for finding errors in

concurrent software.

Specifically, we target multi-threaded C programs with POSIX threads. We make the

following contributions: (1) evaluate the Lal-Reps sequentialization schema in combination

with BMC; (2) propose and evaluate a new sequentialization schema specifically tailored

to BMC and aimed at fast bug finding; (3) present a framework for building tools based

on sequentialization.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:oi2c11@ecs.soton.ac.uk




Contents

Acknowledgements xi

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Evaluation of the Lal-Reps Schema . . . . . . . . . . . . . . . . . . 4

1.1.2 A New Lazy Sequentialization Schema . . . . . . . . . . . . . . . . 5

1.1.3 A Sequentialization Framework . . . . . . . . . . . . . . . . . . . . 6

1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Preliminary Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Alphabets, Words and Languages . . . . . . . . . . . . . . . . . . . 7

2.1.2 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Propositional Satisfiability . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Bounded Model Checking . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Shared-memory Multi-threaded Programs . . . . . . . . . . . . . . . . . . 12

2.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Bounded Model Checking of Multi-threaded Programs . . . . . . . . . . . 17

2.3.1 Context-bounded Analysis . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Sequentialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Partial-order Reduction . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Eager Sequentialization 21

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Lal-Reps Sequentialization of multi-threaded Programs . . . . . . . . . . . 23

3.2.1 Auxiliary Data Structures . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Non-deterministic State Replication . . . . . . . . . . . . . . . . . 25

3.2.3 Thread Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Context Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.5 Consistency Check . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.6 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Lazy Sequentialization 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



vi CONTENTS

4.2 Bounded multi-threaded Programs . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Lazy Sequentialization for Bounded Programs . . . . . . . . . . . . . . . . 36

4.4.1 Auxiliary Data Structures . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.2 Main Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3 Thread Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.4 Simulation of Thread Routines . . . . . . . . . . . . . . . . . . . . 42

4.4.5 Code-to-code Translation . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.6 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Alternative Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.1 Multiple Backends vs. Multiple Concurrency-handling Tools . . . . 57

4.6.2 Fastest Backend vs. Fastest Concurrency-handling Tool . . . . . . 61

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 CSeq Framework 65

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Argument Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.2 Line Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.3 Source Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Built-in Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Function Inlining and Loop Unrolling . . . . . . . . . . . . . . . . 76

5.4.2 Backend Instrumentation . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Lazy-CSeq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.1 Counterexample Generation . . . . . . . . . . . . . . . . . . . . . . 79

5.5.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusions 83

6.1 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 87



List of Figures

2.1 Bounded model-checking: SSA form and VC generation . . . . . . . . . . 11

2.2 Syntax of multi-threaded programs. . . . . . . . . . . . . . . . . . . . . . 14

2.3 A multi-threaded program: Producer-Consumer . . . . . . . . . . . . . . . 16

3.1 Propagation of global memory snapshots (Lal-Reps schema) . . . . . . . . 22

3.2 Structure of original and translated program (Lal-Reps schema) . . . . . . 24

3.3 Context-switch simulation (Lal-Reps schema) . . . . . . . . . . . . . . . . 26

3.4 Thread simulation stubs (Lal-Reps schema) . . . . . . . . . . . . . . . . . 26

3.5 Modelling assertions and assumptions (Lal-Reps schema) . . . . . . . . . 27

4.1 Syntax of bounded multi-threaded programs . . . . . . . . . . . . . . . . . 33

4.2 Example of sequentialization on a bounded program (lazy schema) . . . . 35

4.3 Main driver (lazy schema) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Thread simulation stubs (lazy schema) . . . . . . . . . . . . . . . . . . . . 42

4.5 Sequentialization rewriting rules (lazy schema) . . . . . . . . . . . . . . . 44

4.6 Lazy-CSeq: evaluation on safe benchmarks . . . . . . . . . . . . . . . . . 59

4.7 Lazy-CSeq vs. CBMC: size of the verification conditions . . . . . . . . . . 61

4.8 Lazy-CSeq vs. CBMC and LR-CSeq: bug-hunting performance . . . . . . 62

5.1 Architecture of the CSeq framework . . . . . . . . . . . . . . . . . . . . . 68

5.2 Source transformation module: from x++ to x=x+1. . . . . . . . . . . . . . 72

5.3 AST representation for the transformation from Fig. 5.2. . . . . . . . . . . 73

5.4 Parameterised source transformation module: function call renaming. . . 74

5.5 Function inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Loop unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Backend instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Lazy-CSeq: module layout and translation sketch. . . . . . . . . . . . . . 80

vii





List of Tables

3.1 LR-CSeq vs. tools with built-in concurrency handling . . . . . . . . . . . 28

4.1 Lazy-CSeq vs. tools with built-in concurrency handling . . . . . . . . . . 58

ix





Acknowledgements

The work presented in this thesis would not have been possible without the continuous

guidance, support, and encouragement of my supervisor, Gennaro Parlato, who never

hesitated to advise me throughout the course of my studies. Gennaro and Bernd Fischer

introduced me to my current research area of program analysis and verification. Special

thanks to Bernd Fischer and Salvatore La Torre for having kindly agreed to review my

drafts, providing meticulous feedback that has considerably improved this dissertation.

Thanks to Denis Nicole and Michael Tautschnig for having agreed to examine my work.

Thanks to Ermenegildo Tomasco and Truc Nguyen Lam for their friendship, collaboration,

and enthusiasm in tuning our tools up for the software verification competitions. I would

like to say thank you to all my fellow doctoral candidates and friends in ECS, with whom

I had the pleasure of spending some time during the past few years. Thanks to ECS for

funding my doctoral studies. Thanks to my family.

xi





Chapter 1

Introduction

The steady exponential increase in processor performance has reached the inevitable

turning point, at which it is no longer feasible to increase the density or clock frequencies

of individual processors. In order to achieve greater computational power, processors now

contain several cores that work in parallel and, consequently, multi-threaded software is

rapidly becoming widespread.

Multi-threaded programs consist of several threads of computation active at the same time

and communicating either by sharing variables or sending messages. An inherent source

of complexity is in the number of possible thread interleavings, which grows exponentially

with the number of threads and statements in the program. Multi-threaded software is

hard to implement: software developers not only have to guarantee the correctness of

each individual thread, but need to take into account the possibly complex interactions

between threads; to avoid unwanted behaviour, expedients such as synchronisation need

to be used, which add complexity to the code, and can introduce concurrency-specific

errors.

The nondeterministic thread interactions can cause errors that show up rarely and are

difficult to reproduce and repair [BBdH+09]. Due to their explicit exploration of the

possible executions of a program, traditional testing-based techniques are not adequate to

spot such bugs, and thus need to be complemented by automated verification techniques

for detecting errors in a systematic and symbolic way.

However, the symbolic verification of concurrent programs poses additional challenges.

Concurrency exacerbates the theoretical limitations of automated software analysis due

to the exponential blow up of the state space, and in practice by introducing additional

complexity at different levels: (1) at the level of multi-threaded applications using high-

level synchronisation primitives, (2) at the level of the software layer that implements the

concurrency libraries and synchronisation mechanisms, and (3) at the level of the memory

models adopted by compilers and modern multicore architectures in order to optimise

1



2 Chapter 1 Introduction

performance. Consequently, the state of the art for concurrent program verification lags

behind that for sequential programs.

Researchers have successfully explored a wide range of techniques and tools to address

real-world sequential programs, and software used in practice can already be successfully

analysed; organisations such as IBM, Intel, Microsoft, NASA, and NEC are building

dedicated divisions that regularly use program verification in industrial projects. As

a result, there are several mature techniques and tools for the analysis of sequential

programs based on model-checking, data-flow analysis, abstract interpretation, deductive

verification, etc. This dichotomy (i.e., the availability of strong verification tools for

sequential programs, and the lack of similarly strong tools for concurrent programs) is

the starting point of our research.

Verification of concurrent software has been the subject of extensive research over

the last few decades, and a variety of different approaches have been proposed. The

canonical approach, which is implemented for example by SPIN [Hol97], VeriSoft [God05],

CHESS [MQB+08], and ESBMC [CF11], is to explicitly explore the individual thread

interleavings; however, their large number makes scaling-up difficult. Therefore, symbolic

approaches that analyse simultaneously different thread interactions are highly desirable.

One symbolic approach is to model executions of concurrent programs using partial

orders [SW11, CKL04]. This has led to effective bug hunting tools based on bounded

model checking [BCCZ99] that leverage modern satisifiability (SAT/SMT) solvers for

the analysis.

A different symbolic approach, called sequentialization and originally proposed by Qadeer

and Wu [QW04], is to translate the concurrent programs so that verification techniques

or tools that were originally designed for sequential programs can be reused without any

changes. This is the main theme of our research. Sequentialization can be implemented

as a code-to-code translation from the concurrent program into a corresponding non-

deterministic sequential program that simulates all executions of the original program.

The sequential program contains both the mapping of the threads in the form of functions,

and an encoding of the scheduler, where the non-determinism allows to handle different

concurrent schedules collectively. This approach has three main advantages: (1) a code-

to-code translation is typically much easier to implement than a full-fledged analysis tool;

(2) it allows designers to focus only on the concurrency aspects of programs, delegating

all sequential reasoning to an existing target analysis tool; (3) sequentializations can be

designed to target multiple backends for sequential program analysis.

Most sequentializations proposed in the literature focus on capturing under-approximations

of concurrent programs communicating through shared memory. Lal and Reps [LR09]

showed a sequentialization (LR) that works for any given program with a finite number of

threads and captures all program’s executions up to a given number of context switches.

A lazy sequentialization for bounded context rounds that ensures that sequential program



Chapter 1 Introduction 3

explores only reachable states of the concurrent program was defined by La Torre et

al. [LMP09a], and it was empirically shown to be more efficient than LR on multi-threaded

Boolean programs. A sequentialization for an unbounded number of threads and bounded

round-robin rounds of context-switches is also known [LMP10]. Other sequentializations

cope with the problem of handling dynamic thread creation [BEP11, EQR11]. A se-

quentialization targeting real-time systems [CGS11] and distributed applications where

threads communicate through FIFO channels [BE14] has also been proposed.

1.1 Contributions

All the sequentialization schemas proposed to date are fundamentally theoretical in their

nature. The intellectual effort is in fact uniquely spent to capture the semantics of

the original programs, ignoring the details of the underlying technology for sequential

analysis. The evaluation does not go beyond proof-of-concepts or prototypes, and in the

most interesting cases is limited to show that on abstractions of the original program it is

possible to achieve good results in combination with BDD-based analysis [LR09, LMP09a].

In general, little evidence is provided for the effectiveness of sequentialization-based

approaches on general-purpose real-world software, and there is no trace of a systematic

and comprehensive evaluation on combining existing sequentializations with existing

mature techniques for sequential analysis. In particular, we have argued that the

symbolic representation of thread interleavings is essential for successful analysis of

concurrent software. It is not clear whether combining sequentialization (to symbolically

represent thread interleavings) with bounded model-checking can be effective for finding

errors in real-world concurrent software.

In order to address this question, in this thesis we fix our target to multi-threaded C

programs [ISO11] with POSIX threads [ISO09], because it is a fairly standard program

category for most operating systems, largely used in device drivers and embedded systems.

Our research then makes the following contributions:

1. we evaluate the Lal-Reps sequentialization schema in combination with BMC

(Chapter 3);

2. we develop, implement, and evaluate a novel lazy sequentialization schema specifi-

cally tailored to BMC and aimed at fast bug finding (Chapter 4);

3. we present our CSeq framework for building sequentialization tools (Chapter 5).

CSeq, including the implementations of the two schemas above, can be found at the

project’s homepage at http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html.

The following subsections give an overview of those contributions.

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html


4 Chapter 1 Introduction

1.1.1 Evaluation of the Lal-Reps Schema

We choose the Lal-Reps schema (LR) [LR09] as the starting point of our research,

following up on a preliminary empirical study [GHR10] where it is shown to be well

suited to BMC, in contrast to the schema proposed in [LMP09a] that suffers from

exponentially sized verification conditions due to the inlining performed by the back-end

on the sequentialized file. Moreover, LR is a context-bounded analysis method and so

should fit well into the general BMC framework as a bug finding approach; this hypothesis

is motivated by previous empirical work that shows that errors typically occur within

few context switches [QW04, MQ07, TDB14].

LR is a simple and elegant sequentialization that simulates up to a given number of round-

robin executions of the original program. The sequentialized program simulates each

thread using separate, non-deterministically initialised copies of the shared memory. These

copies are left totally unconstrained during the simulation, and the values corresponding

to unfeasible executions are pruned away only at the end (whence the term eager

exploration).

The schema was originally proposed for Boolean programs and for a fixed number of

threads. We work out the details to adapt it to multi-threaded C programs with POSIX

threads and dynamic thread creation.

The evaluation of our prototype in combination with three different bounded model-

checkers shows some initial encouraging results on a few non-trivial test cases, where the

combined system formed by LR-CSeq and the bounded model-checker is competitive with

native concurrency handling. However, we identify the theoretical limitations intrinsic to

the LR schema as major barriers to extending our prototype on more complex real-world

software.

In the sequentialized program, the large number of extra variables (that grows with the

number of threads, the number of rounds, and the size of the global memory that is

shared by the threads) and the resulting high degree of nondeterminism overwhelm the

backend, causing performance problems.

Eager guessing severely limits backend integration. Implicit safety properties, such as

array bounds violations or invalid pointer dereferences that are handled by the backend,

must be translated into explicit assertions, and their check by the backend must be

suppressed, in order to prevent spurious triggering due to eager guessing. This adds

overhead to the translation and therefore negatively affects the performance of the

backend.

A bigger problem is caused by heap-allocated memory that is accessible to all threads, and

so needs to be treated similarly to global variables. Intuitively, the checker would have to

guess and carry around memory blocks of possibly variable size. Such an explicit modelling



Chapter 1 Introduction 5

of the global memory would add even further overhead to the translated program.

Moreover, implementing a memory model forces low-level details into consideration,

which clashes with the very idea of sequentialization intended as a separation of concern

that allows to focus on concurrency aspects.

1.1.2 A New Lazy Sequentialization Schema

We address the question as to whether it is possible to derive a novel schema that does

not suffer from the drawbacks evidenced by the LR schema. In particular, our goal is to

keep the focus on BMC, to simulate the same schedules as in LR (for a fair comparison),

to avoid eager guessing in order to improve on backend performance and integration, and

to reduce the overall translation overhead by limiting the non-determinism and keeping

the control-flow structure simple in the translated program.

We design a new, surprisingly simple lazy sequentialization schema that works well

in combination with BMC and is very effective for finding bugs. In contrast to the

LR schema that performs the sequentialization upfront, the new schema works after

the program unfolding stage and thus aggressively exploits the structure of bounded

programs. The idea is to convert each thread into a thread simulation function that

is invoked as many times as the given number of rounds. We inject at each visible

statement non-invasive control code that simulates thread preemption and resuming at

nondeterministically guessed context switch points. The statements are identified by

unique numerical labels, so that for each thread we maintain the point at which the

context switch was simulated in the previous round and where the computation must

thus resume in the current round. The thread-local variables are made persistent by

forcing their storage class to be static, so we do not need to re-compute them when

resuming suspended executions, therefore avoiding the exponentially growing formula

sizes observed earlier [GHR10].

This translation introduces very small memory overheads and very few sources of nonde-

terminism, and thus results in simple formulae. The new schema only explores reachable

states of the input program (lazy approach) and thus requires no built-in error checks nor

any special dynamic memory allocation handling, but can rely on the backend for these.

The resulting sequentialized program simulates all bounded executions of the original

program for a bounded number of rounds.

We implement this sequentialization in the Lazy-CSeq tool, which is highly competitive

and ranked first in the Concurrency category of the last two editions of the SV-COMP

Software Verification Competition (SV-COMP). The tool successfully handles all the

proposed test cases without false results. A detailed evaluation shows its effectiveness in

a bug-hunting setting, and in particular the superiority over our own implementation of



6 Chapter 1 Introduction

the LR schema as well as its competitiveness with the state-of-the-art tools with built-in

concurrency handling.

1.1.3 A Sequentialization Framework

We present our framework for fast prototyping and development of sequentialization-based

tools, CSeq, that subsumes our experience in working on sequentialization.

Reasoning at the level of the source code can offer a very abstract and expressive

representation, and thus can indeed support more intricate reasoning than feasible at

lower levels (e.g., in terms of SSA form or of directly on the verification condition) where

potentially relevant information on the program is inevitably lost. In the particular case

of multi-threaded programs, sequentialization as source translation provides a clear-cut

separation of concern that allows the tool designers to focus on concurrency, disregarding

any other detail of the program. Our framework emphasises these aspects by supporting

a modular approach to source-to-source translation. We use string-based transformation,

which is more intuitive than rewrite rules, and thus closer to a developer’s standpoint.

CSeq reduces the overall engineering effort required in order to build a new tool by

providing concurrency-aware parsing and data structures. In addition, it comes with

a few built-in standard transformations (such as loop unrolling, function inlining, etc.)

commonly used in program analysis, and a set of built-in functionalities (such as the

backend integration, and the support for counterexample translation).

Our framework has already been used to build two other tools [TIF+15, NFLP15] (besides

the ones developed for this thesis) within very compressed development frames and with

modest engineering effort. We release it as open-source software, free for the community

to use.

1.2 Structure of the Thesis

This thesis is organised as follows. In Chapter 2 we provide a short overview of bounded

model-checking and sequentialization, including a brief review of work related to ours. In

Chapter 3 we present our evaluation of the Lal-Reps schema. In Chapter 4 we present and

evaluate our second contribution, our novel lazy sequentialization schema. In Chapter 5

we present our third contribution, the CSeq sequentialization framework. We conclude

in Chapter 6 with our final considerations and possible directions for future work.



Chapter 2

Background

2.1 Preliminary Notions

In this section we introduce the main concepts used throughout the thesis.

2.1.1 Alphabets, Words and Languages

An alphabet Σ is a non-empty finite set of symbols.

A string or word over Σ is a sequence of elements of Σ. A finite word w of length

n over Σ is a sequence w = (a0, a1, . . . , an−1) where ai ∈ Σ for 0 ≤ i ≤ n − 1. The

empty word ε has length 0. A finite word of length n can also be seen as a function

w : {0, 1, . . . , n−1} → Σ, where w(i) gives the symbol at position i. Similarly, an infinite

word w over Σ is a function w : N→ Σ.

The set of all words of length n over Σ is denoted as Σn. The set of all finite words, or

closure of Σ, is Σ∗ =
⋃
n∈N Σn. The set of all finite non-empty words is Σ+.

A language L over an alphabet Σ is a (possibly infinite) set of finite-length words over

that alphabet, i.e., L ⊆ Σ∗.

2.1.2 Propositional Logic

The alphabet of propositional logic consists of:

• a countably-infinite set V = (p, q, r, . . . ) of propositional variables

• the logical connectives or Boolean operators not (¬), and (∧), or (∨)

• parentheses ( and ).

The set P of well-formed formulae of propositional logic is inductively defined as follows:

7



8 Chapter 2 Background

• all propositional variables are well-formed formulae (called atoms)

• if ϕ ∈ P, then ¬ϕ ∈ P and (ϕ) ∈ P
• if ϕ1 ∈ P and ϕ2 ∈ P, then (ϕ1 ∧ ϕ2) ∈ P and (ϕ1 ∨ ϕ2) ∈ P.

Further logical connectives, such as implies (→) and equivalent to (↔), are derived

from the standard connectives (¬,∧,∨) in the usual way. A literal is a variable p, also

called positive literal or its negated form ¬p, then called negative literal. The formulae

ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are referred to as conjunction and disjunction of ϕ1 and ϕ2,

respectively. A clause is disjunction of literals, and it is also known as unary clause if

it contains just a single literal. A Horn clause is a clause that contains at most one

positive literal. The formula ¬ϕ is referred to as negation of ϕ. In the rest of this section

and throughout the thesis we use the terms formula, Boolean formula, and well-formed

formula interchangeably.

An interpretation, valuation, or assignment is a function I : V → {⊥,>} that assigns

either true (>) or false (⊥) to every propositional symbol in V . If I(p) = >, then

p is said to be true under the interpretation I. If I(p) = ⊥, then p is false under the

interpretation I.

Given a well-formed formula ϕ and an assignment I, either I satisfies ϕ or it does not.

This is indicated with I |= ϕ or I 6|= ϕ, respectively, and inductively defined by the

following rules:

• if ϕ is an atom p, then I |= ϕ if and only if I(p) = >
• if ϕ is a negation ¬ψ, then I |= ϕ if and only if I 6|= ψ

• if ϕ is a conjunction ψ1 ∧ ψ2, then I |= ϕ if and only if I |= ψ1 and I |= ψ2

• if ϕ is a disjunction ψ1 ∨ ψ2, then I |= ϕ if and only if I |= ψ1 or I |= ψ2.

A formula ϕ is satisfiable if there exists an interpretation I under which the formula

is true; if no such interpretation exists, ϕ is unsatisfiable, or a contradiction. Two

formulae ϕ1 and ϕ2 are equisatisfiable if they are both satisfiable or unsatisfiable; they

are equivalent, denoted with ϕ1 ≡ ϕ2, if for any assignment I, I |= ϕ1 if and only if

I |= ϕ2. A formula that evaluates to true under all possible assignments is valid, or a

tautology.

A canonical form is a way of representing formulae such that two equivalent formulae

will have the same representation. This is useful for software verification and in general

any automated method that handles logic formulae.

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, where

a clause is a disjunction of literals (note that CNF is not a canonical form). Every

propositional formula can be transformed into an equivalent CNF formula using the

well-known rules of logical equivalence, such as De Morgan’s laws, but the size of the

formula can increase exponentially. However, Tseitin’s transformation [Tse68] can convert

an arbitrary propositional formula into an equisatisfiable (not equivalent) CNF formula



Chapter 2 Background 9

with only a linear increase in size. In this case the resulting CNF formula will contain

more variables than the original one, but a satisfying assignment of variables on the

new formula can be converted into a satisfying assignment for the original formula by

discarding the assignments for the new variables.

The decision problem for a given Boolean formula ϕ consists in determining whether ϕ is

a tautology. A procedure to solve the decision problem is sound if, when it determines

that a given input formula ϕ is a tautology, then ϕ is a tautology (i.e., if the procedure

terminates with an answer, that answer is correct); the procedure is complete if, for

any input formula ϕ, (a) it terminates, and (b) if ϕ is a tautology, then the procedure

determines that ϕ is a tautology (i.e., the procedure terminates on any possible input).

Note that there may be sound but incomplete procedures (i.e., procedures that do not

terminate or fail to produce an answer on some input), and complete but unsound

procedures (i.e., procedures that produce wrong answers). The boolean satisfiability

problem, also known as propositional satisfiability problem and often abbreviated as SAT,

consists in determining whether a given propositional formula is satisfiable.

The question of the validity of a formula can be rewritten as to one involving satisfiability.

In particular ϕ is valid if and only if ¬ϕ is unsatisfiable. On the other hand, ϕ is

satisfiable if and only if ¬ϕ is invalid. Satisfiability is one of the most intensively studied

problems in computer science, and many well-known problems reduce to checking the

satisfiability of a propositional formula.

2.1.3 Propositional Satisfiability

SAT is NP-complete [Coo71], and all known deterministic algorithms to solve it have

exponential worst-case complexity. Despite this, the outstanding advancements over the

last fifteen years have brought us methods capable of handling formulae of considerable

size and complexity. In practice, there are heuristics that allow rather fast solution for

many large instances of SAT, both satisfiable and unsatisfiable, from a broad range of

real-world applications.

A SAT solver is a decision procedure that takes as input a given formula ϕ (typically in

CNF) and returns as output an assignment I of the variables of ϕ that satisfies ϕ, or ⊥
if the ϕ is unsatisfiable. In this last case, some SAT solvers may additionally provide an

unsatisfiable core of clauses or a resolution proof of unsatisfiability.

SAT solvers are mostly based on the Davis-Putnam-Logemann-Loveland (DPLL) proce-

dure [DP60, DLL62]. DPLL solvers follow three main steps: decision, propagation, and

backtracking. The decision step chooses an unassigned variable and assigns it a value. In

the propagation step, Boolean constraint propagation (also known as BCP) is performed.

The implications of the decision on the variable and its value are propagated by applying

the unit clause rule. If a clause is a unit clause, i.e. contains only a single unassigned



10 Chapter 2 Background

literal p, there is only one possible value of p that can make the clause true. This prunes

an otherwise exhaustive search space by avoiding unnecessary decisions. Sometimes it

can be done repeatedly, excluding large parts of the search space. In the propagation

step, pure literal elimination is also performed. A literal in a CNF formula is pure when it

occurs only with one polarity, i.e., either negated or not. Pure literals can always be set to

a value such that all clauses containing them are true. These clauses can then be removed

from the formula, as they no longer constrain the search. Since further literals become

pure, this simplification may need to be applied repeatedly in order to obtain a formula

without pure literals. Backtracking happens when the propagation generates conflicts.

The idea is to flip one of the decisions variables that has been assigned but not yet flipped,

marking it as flipped, and then re-applying propagation. The solver terminates if there

are no unassigned variables, in which case the formula is satisfiable, or if there are no

decision variables to invert, i.e., the formula is unsatisfiable. Plain backtracking tends to

be inefficient, and modern solvers implement Conflict-Driven Clause Learning (CDCL),

based on different refinements of the basic backtracking algorithm, such as backjumping

or clause learning. These methods identify the reason (i.e., the variable assignments) for

the conflict and prevent reaching the same conflict again by restricting the next possible

decisions of the solver accordingly. Clause learning uses binary resolution to identify

the reason for the conflict, generates the learnt conflict cause and appends it to the

input formula. Note that since these clauses are implied by the input formula itself, this

does not affects satisfiabilty. After learning a new conflict clause the solver progressively

invalidates decisions up to a certain point and restarts the whole process.

In order to achieve good efficiency, different SAT solvers rely on many different heuristics

to guide their choices, such as the selection of variables and their values, the backtracking

depth, BCP clause selection, and so on. In addition, modern solvers use further optimi-

sations that focus on more practical aspects, such as preprocessing (useful for instance

to simplify the input formula upfront), fast restarts, and highly efficient data structures.

The reader is referred to [Bie09, KS08, GPFW96, ZM02] for further details.

2.1.4 Bounded Model Checking

Bounded model-checking (BMC) is a symbolic technique for program analysis where only

subsets of feasible program behaviours are explored. It checks, given a program, a property,

and a bound k, if the property (that typically represents the negated form of some error

condition) can be violated within k execution steps [BCCZ99, BCC+03, CES09].

BMC efficiently reduces program analysis to propositional satisfiability (described in

Section 2.1.3). An initial program unfolding procedure enforces the bound by transforming

the input program into a bounded program and then simplifies it using an intermediate

representation; this is in turn compiled into a propositional formula, or verification

condition, that is satisfiable if and only if there exists an execution of the program



Chapter 2 Background 11

(a) input program

x:=x+y;

if(x!=1) then

x:=2;

else

x:=x+1;

assert(x<=3);

(b) SSA form

x1:=x0+y0;

x2:=2;

x3:=x1+1;

x4:=(x1!=1)?x2:x3;

assert(x4<=3);

(c) verification condition

ϕC := x1 = x0 + y0 ∧
x2 = 2 ∧
x3 = x1 + 1 ∧
x4 = (x1 6= 1)?x2 : x3

ϕP := x4 ≤ 3

Figure 2.1: Bounded model-checking: static single assignment (SSA) form and verifi-
cation condition (VC) (example slightly adapted from [CKL04])

that in at most k steps violates the property. The satisfiability of the formula implies

the existence of an error in the initial program, while the absence of detected errors

is indecisive, because an error might still occur beyond the given execution bound.

Completeness is in fact relinquished for decidability, making the technique mostly suited

for finding errors rather than for verifying their absence. This process is outlined in

Figure 2.1 and described below in more detail.

Program unfolding (also known as program bounding or program flattening) includes

loop unrolling and function inlining. Loop unrolling [DAC71, Sar01] replaces each loop

statement with k copies of the loop body, each guarded by the loop condition, followed

by a loop unwinding assertion on the negated loop condition that fails if the given loop

bound is not sufficient to fully unfold the loop; backwards jumps also generate loops and

therefore are handled likewise. Function inlining [AJ88] replaces each function call with

the body of the invoked function, transforming the return statements into an assignment

to a newly introduced variable that stores the return value (if any) followed by a jump

to the end of the function. Recursive calls are handled similarly to loop unwinding, by

asserting in the end that the recursion does not exceed the bound.

In the bounded program resulting from the procedure above there are no loops or

function calls, all jumps are forward, and each statement is executed at most once in

any feasible execution. Additionally, the transformation from bounded program to an

intermediate representation, or static single assignment (SSA) form [CFR+89, LA04],

guarantees that each variable is assigned at most once. This is essentially a matter

of introducing a new variable to replace the targeted variable within each assignment

statement, updating all other occurrences of that variable in the rest of the program

accordingly (see Figure 2.1(b)). The intermediate representation of the bounded program

is then compiled into a propositional formula (see Figure 2.1(c)) that is satisfiable if

and only if there exists an execution of the program that in at most k steps violates the

property. The verification condition is eventually analysed by a SAT solver.



12 Chapter 2 Background

An advantage of this approach is in that it exploits the considerable performance gains

achieved by modern SAT solvers; another advantage is in the ability to provide a

counterexample, or error trace: a satisfying assignment of variables in the verification

condition can be converted into the exact sequence of steps to follow in the input program

to reproduce any detected error. The above considerations, and the fact that BMC is

fully automatic, make it particularly attractive for industrial applications.

Completeness

Extending BMC to a complete analysis method has been considered of fundamental

importance since the inception of the technique [BCCZ99, CES09].

A possible approach is to pre-compute a completeness threshold [Bie09] before the actual

analysis, so to choose a bound k that is sufficient to cover the entire program’s state

space. Finding out the exact completeness threshold is computationally very expensive

and can be as hard as the model checking problem itself [CKOS05]. Research thus

focuses on over-approximation. There are many methods available that depend on the

program and the kind of property to prove; these methods use specific characteristics of

the program’s transition system, such as the diameter or the recurrence diameter (the

longest shortest path and the longest simple path between any two states, respectively)

[BKA02, KS03, MS03, CKOS04, BK04, Kro06, KOS+11, BOW12]. Nevertheless, the

problem of efficiently determining reasonably accurate completeness thresholds in the

general case remains still open.

An alternative technique is k-induction, which is essentially a mechanised inductive rea-

soning [SSS00, ES03, Bra11]. The idea is to use invariants to construct a k-step inductive

proof. Different variations have been proposed on this approach [DKR10, DHKR11]

and in general require auxiliary invariants to be provided externally, usually through

manual source-code annotations. Techniques to automatically generate invariants [AS06,

BHMR07, BM08] require additional effort and are not guaranteed to provide invariants

powerful enough to imply the correctness of the property.

2.2 Shared-memory Multi-threaded Programs

We describe multi-threaded programs using a simple imperative language. It features

dynamic thread creation, thread join, and mutex locking and unlocking operations for

thread synchronization. Thread communication is implemented via shared memory and

modelled by global variables. In this section and throughout this thesis, we use the terms

multi-threaded program and concurrent program interchangeably.

During the execution of a multi-threaded C program, we can assume that only one thread

is enabled at any given time. Initially, only the main thread is enabled; new threads can



Chapter 2 Background 13

be spawned from any thread by invoking create. Once created, a thread is added to the

pool of active threads. At a context switch the currently enabled thread is suspended and

becomes active, and one of the active threads is resumed and becomes the new enabled

thread. When a thread is resumed its execution continues either from the point where it

was suspended or, if it becomes enabled for the first time, from the beginning.

All threads share the same address space: they can write to or read from global (shared)

variables of the program to communicate with each other. We assume the sequential

consistency memory model: when a shared variable is updated its new valuation is

immediately visible to all the other threads [Lam79]. We further assume that each

statement is atomic. This is not a severe restriction, as it is always possible to decompose

a statement in a sequence of statements, each involving at most one shared variable

[Mül06]. 1

2.2.1 Syntax

The syntax of multi-threaded programs is defined by the grammar shown in Figure 2.2.

Terminal symbols are set in typewriter font. Notation 〈n t〉∗ represents a possibly empty

list of non-terminals n that are separated by terminals t; x denotes a local variable,

y a shared variable, m a mutex, t a thread variable and p a procedure name. All

variables involved in a sequential statement are local. We assume expressions e to be

local variables, integer constants, that can be combined using mathematical operators.

Boolean expressions b can be true or false, or Boolean variables, which can be combined

using standard Boolean operations.

A multi-threaded program consists of a list of global variable declarations (i.e., shared

variables), followed by a list of procedures. Each procedure has a list of zero or more typed

parameters, and its body has a declaration of local variables followed by a statement.

A statement is either a sequential, or a concurrent statement (also known as visible

statement), or a sequence of statements enclosed in braces known as compound statement.

A sequential statement can be an assume- or assert-statement, an assignment, a call to

a procedure that takes multiple parameters (with an implicit call-by-reference parameter

passing semantics), a return-statement, a conditional statement, a while-loop, a labelled

sequential statement, or a jump to a label. Local variables are considered uninitialised

1The restricted grammar considered and the assumptions on sequential consistency and atomicity of
statements simplify our presentation, but exclude many subtle circumstances that actually do occur in
practice, due to the increasing complexity of language specifications, compiler technologies, hardware
designs, and to the intricate interplay between them [Boe05]. For instance, for performance reasons
sequential consistency is often violated both at compile time and at the hardware layer (most modern
processors do so) due to the reordering of memory operations. There are other sources of trouble especially
related to multi-threaded C programs using POSIX threads, such as the complex notion of sequence
points in C, and the assumptions of the POSIX thread model that are indeed stronger than the actual C
standard. All these aspects should be properly taken into account in order to design industrial-strength
verification tools.



14 Chapter 2 Background

P ::= (dec;)∗ (type p (〈dec,〉∗) {(dec;)∗stm})∗

dec ::= type z

type ::= bool | int | void

stm ::= seq | conc | {〈stm;〉∗}

seq ::= assume(b) | assert(b) | x := e | p(〈e,〉∗) | return e
| if(b) then stm else stm | while(b) do stm | l : seq | goto l

conc ::= x := y | y := x | t := create p(〈e,〉∗) | join t
| init m | lock m | unlock m | destroy m | l : conc

Figure 2.2: Syntax of multi-threaded programs.

right after their declaration, which means that they can take any value from their domains.

Therefore, until not explicitly set by an appropriate assignment statement, they can

non-deterministically assume any value allowed by their type. We also use the symbol *

to denote the non-deterministic choice of any possible value of the corresponding type

(e.g., x:=*;).

A concurrent statement can be a concurrent assignment, a call to a thread routine, such

as a thread creation, a join, or a mutex operation (i.e., init, lock, unlock, and destroy),

or a labelled concurrent statement. A concurrent assignment assigns a shared (resp.

local) variable to a local (resp. shared) one. Unlike local variables, global variables

are always assumed to be initialised to a default value. For the sake of simplicity, we

assume that the default value is always 0 regardless of the variable type. A thread

creation statement t := create p(e1, . . . , en) spawns a new thread from procedure p with

expressions e1, . . . , en as arguments. A thread join statement, join t, pauses the current

thread until the thread identified by t terminates its execution, i.e., after the thread has

executed its last statement. Lock and unlock statements respectively acquire and release

a mutex. If the mutex is already acquired, the lock operation is blocking for the thread,

i.e., the thread is suspended until the mutex is released and can then be acquired.

We assume that a valid program P satisfies the usual well-formedness and type-correctness

conditions. We also assume that P contains a procedure main, which is the starting

procedure of the only thread that exists in the beginning. We call this the main thread.

We further assume that there are no calls to main in P and that no other thread can be

created that uses main as starting procedure.



Chapter 2 Background 15

2.2.2 Semantics

A thread configuration is a triple 〈locals, pc, stack〉, where locals is a valuation of the local

variables, pc is the program counter that tracks the current statement being executed,

and stack is a stack of procedure calls that works as follows. At a procedure call, the

program counter of the caller and the current valuation of its local variables are pushed

onto the stack, and the control moves to the initial location of the callee. At a procedure

return, the top element of the stack is popped, the local variables and the program

counter are restored. Any other statement follows the standard C-like semantics.

A multi-threaded program configuration c consisting of n threads with identifiers {i1, . . . , in},
is a tuple of the form 〈sh, en, thi1 , . . . , thin〉, where sh is a valuation of the shared vari-

ables, en ∈ {i1, . . . , in} is the identifier of the only thread that is enabled to make a

transition, and thij is the configuration of the thread with identifier ij . A configuration

c is initial if sh is the default evaluation of the shared variables, n = i1 = 1 and th1 is

the initial configuration of main.

A transition of a multi-threaded program P from a configuration c to a configuration

c′, denoted by c
j→
P
c′, corresponds to the execution of a statement by the thread with

identifier j = en. If the statement being executed is sequential, only ten’s configuration is

updated as usual. In particular, the execution of an assert statement on a condition that

does not hold, causes the whole program to terminate immediately and no other transitions

can continue from that configuration; in this case c′ is said to be an assertion-failure

configuration. In contrast, an assume statement will not allow any further transitions

from that thread if its condition does not hold. Concerning concurrent statements, a

thread creation statement adds a new thread configuration to the configuration of the

multi-threaded program with a fresh identifier i > 0. A thread join operation on a thread

identifier t will not allow any further transition for the invoking thread ten until the

thread identified by t terminates its execution. A thread lock statement on a free mutex

m (i.e., a mutex not held by any thread) will lead to a new configuration where the value

of m is set to ten. If the mutex is not free, an attempt to lock it will prevent ten to make

any further transitions. The execution of a thread unlock statement on a mutex m, held

by ten, allows to free it. When a ten terminates, its configuration is removed from the

pool of active threads. The enabled thread in c′ is non deterministically selected from

the pool of active threads of c′. We define →
P

to be the union of all relations
j→
P

.

Let P be a multi-threaded program with configurations c and c′. A run or execu-

tion of P from c to c′, denoted c  
P
c′, is any sequence of zero or more transitions

c0 →
P
c1 →

P
· · · →

P
cn where c = c0 and c′ = cn. A configuration c′ is reachable in P , if

c  
P
c′ and c is the initial configuration of P .

A context of thread t from c to c′, denoted c
t
 
P
c′, is any run c0

t→
P
c1

t→
P
· · · t→

P
cn for

some n, where c = c0, c′ = cn. A run c  
P
c′ is k-context bounded if it can be obtained



16 Chapter 2 Background

int m; int c;

void P(int b) {
int l:=b;

lock m;

if(c>0) then

c:=c+1

else {
c:=0;

while(l>0) do {
c:=c+1;

l:=l-1;

}
}
unlock m;

}

void C() {
assume(c>0);

c:=c-1;

assert(c>=0);

}

void main() {
c:=0;

init m;

int p0,p1,c0,c1;

p0:=create P(5);

p1:=create P(1);

c0:=create C();

c1:=create C();

}

Figure 2.3: Producer-Consumer multi-threaded program containing a reachable as-
sertion failure. In the main thread, functions P and C are both used twice to spawn a

thread.

by concatenating at most k contexts of P , i.e. there exist c0, c1, . . . , ck′ with k′ ≤ k, such

that ci−1  
P
ci is a context (of some thread), for any i ∈ {1, . . . , k′}.

For any fixed sequence ρ of thread indices (called schedule), a run of P is a round w.r.t.

ρ, also known as round-robin execution, if there exists a run c0
t1 
P
c1

t2 
P
· · · tn 

P
cn for

some n such that t1, t2, . . . , tn is a subsequence of ρ. A run is k round-robin if it can be

obtained by concatenating at most k round-robin executions of P .

2.2.3 Reachability

Let P be a multi-threaded program and k be a positive integer. The reachability problem

asks whether there is a reachable assertion-failure configuration of P . Similarly, the

k-context (respectively, k round-robin) reachability problem asks whether there exists

a assertion-failure configuration of P reachable through a k-context (respectively, k

round-robin) execution.

Example. The program shown in Figure 2.3 contains a reachable assertion failure. It

models a producer-consumer system, with two shared variables, a mutex m and an integer

c that stores the number of items that have been produced but not yet consumed.

The main function initializes the mutex and spawns two threads executing P (producer)

and two threads executing C (consumer). Each producer acquires m, increments c, and

terminates by releasing m. Each consumer first checks whether there are still elements

not yet consumed; if so (i.e., the assume-statement on c > 0 holds), it decrements c,

checks the assertion c ≥ 0 and terminates. Otherwise it terminates immediately.



Chapter 2 Background 17

The mutex ensures that at any point of the computation at most one producer is operating.

However, the assertion can still be violated since there are two consumer threads, whose

behaviors can be freely interleaved: with c = 1, both consumers can pass the assumption,

so that both decrement c and one of them will write the value −1 back to c, and thus

violate the assertion.

2.3 Bounded Model Checking of Multi-threaded Programs

Multi-threaded programs are formed from sequential programs, or threads, communicating

through a shared memory. A computation of such programs is an interleaving of the

computations of each thread, and thus can be seen as a sequence of contexts where only

one thread is enabled (see Section 2.2). Attempts to extend BMC to the analysis of

multi-threaded programs face the problem of state space explosion, as the number of

possible interleavings grows exponentially with the number of threads and statements in

the bounded program.

There are two main approaches to address this problem: context bounding (see Sec-

tions 2.3.1 and 2.3.2) limits the analysis to a given number of context switches; partial-

order reduction (see Section 2.3.3) prunes the search space by avoiding the exploration of

multiple executions leading to the same state.

2.3.1 Context-bounded Analysis

Context-bounded analysis (CBA) methods limit the number of context switches they

explore and so fit well into the general BMC framework. Their use for under-approximate

analysis is empirically justified by work that has shown that errors typically occur within

few context switches [QW04, MQ07, TDB14]

CBA can be performed by unfolding the set of running threads up to a given context

bound to build a reachability tree and then performing an explicit, depth-first exploration

of the different interleavings on the tree. The solver is invoked whenever the last statement

in an interleaving is reached. The process stops when a bug if found, or all possible

interleavings have been explored [CF11].

2.3.2 Sequentialization

CBA can be also implemented by translating the multi-threaded program into a non-

deterministic sequential program that simulates all possible schedules up to the context

switch bound. This translation or sequentialization idea was proposed by Qadeer and

Wu [QW04], with the goal to reuse verification tools originally developed for sequential



18 Chapter 2 Background

programs also to analyse multi-threaded programs. This first schema simply scheduled

the threads such that they all use a unique call stack, i.e., at each step the stack can

be split into contiguous parts each corresponding to the whole stack of an executed

thread, and each thread at the top of the stack can be either executed, or suspended, or

terminated. However, this limits the maximum number of contexts switches that can

be considered (e.g., for two threads only two context switches can be simulated in this

schema).

Eager Sequentialization

Lal and Reps subsequently proposed a generalised schema for Boolean programs with a

fixed number of threads and a parameterised number of round-robin schedulings [LR09].

The basic idea behind the Lal-Reps schema (LR) is that the sequentialized program

simulates all round-robin schedules of the threads in the concurrent program in a fixed

order, in such a way that (i) each thread is run to completion, and (ii) each simulated

round works on its own copy of the shared global memory. The first thread eagerly

guesses the initial values of all memory copies and the context switch points. At each

context switch point it switches over to the memory copy for the next round. Context

switches are thus simulated by “memory switches”. The subsequent threads follow

the same schema, but work with the values of the shared memory copies left by their

respective predecessors. After the simulation of the last thread has finished, a checker

prunes away all initial guesses that do not correspond to feasible computations, i.e.,

where the values guessed for one round do not match the values computed at the end of

the previous round). This requires a second set of memory copies. However, since each

thread is simulated to completion, its local variables can be discarded at termination,

and the global memory copies serve only as interfaces between the threads. This is

known as eager sequentialization, as the data non-determinism induces the exploration

of unreachable states that are pruned away only at the end of simulation, by the checker.

LR was originally designed for programs where threads are only created at the beginning

of the execution. Delay bounded sequentialization overcomes this issue to handle thread-

creation [EQR11]. The idea of delay bounded is similar to LR with the difference that

threads are transformed into function calls and are simulated at the point they are

spawn. Similarly, further extensions allowed modelling of unbounded, dynamic thread

creation [BEP11, LMP12], and dynamically linked data structures allocated on the

heap [ABQ11]. LR is relatively easy to implement, and has been applied in several tools

[CGS11, LQR09, Qad11, LQL12, FIP13a, FIP13b].



Chapter 2 Background 19

Lazy Sequentialization

Since the set of states reachable by a concurrent program can be much smaller than

the whole state space, techniques that explore only the reachable states (so-called lazy

exploration) are often desirable [LR09]. A fixed-point algorithm for the verification of

concurrent Boolean programs is given in [LMP09b] and a sequentialization algorithm in

[LMP09a]. These have been extended to parametric Boolean programs (i.e., concurrent

Boolean programs with unboundedly many threads) in [LMP10, LMP12].

Similarly to LR, the LMP lazy sequentialization schema [LMP09a] also simulates k

round-robin schedules of the original concurrent program P , using k copies of the shared

memory. In contrast, however, these copies are not guessed, but are computed also

for the first thread, and the simulation proceeds round-by-round. Note, that since the

call-stack and the program counter of a thread are not stored on context-switches, when

a thread is resumed it is necessary to recompute the values of its thread-local variables

from the first context. This recomputation of threads is not an actual problem for

tools that compute the function summaries since when simulating a thread for a new

round, the recomputation is avoided by using the summaries computed in the previous

iterations. However, the recomputation seems to be a serious drawback for applying

LMP in connection with BMC [GHR10].

2.3.3 Partial-order Reduction

Partial-order reduction (POR) exploits the traditional representation of concurrent

systems executions as partial orders [Lam78, Pra86, BF94]. The key observation is

that different executions of a multi-threaded program can lead to the same state, hence

the explicit enumeration of the thread interleavings potentially explores unnecessary

executions. The idea is then to partition the program’s executions into equivalence

classes, such that (ideally) only one representative execution for each equivalence class is

considered during the analysis. This can prune the state space and speed-up the analysis.

Lightweight POR can be achieved via static analysis by conservatively detecting po-

tential collisions between threads [DHRR04, God97, VHB+03]. Specific techniques

concentrate either on reasoning about potential thread interferences due to future

transitions [Val89], or using information recorded about past computations [God96].

Sophisticated mechanisms have been proposed recently that dynamically detect thread

interference, with the goal to improve the precision and thus effectively prune the state

space [FG05, GFYS07, KWG09].

Partial-order reduction can be tailored to SAT-based BMC and implemented at the

level of the propositional formula. In [AKT13] the approach is to build a propositional

formula for each thread following the standard approach for sequential BMC but leaving



20 Chapter 2 Background

global variables unconstrained; the individual formulae are then put in conjunction with

an additional formula that encodes the computations as a partial order. This approach

has been integrated within the CBMC tool and has been shown to yield a reduction of

the formula size over the use of total orders, and, in practice, an improved scalability

due to a reduced memory footprint.



Chapter 3

Eager Sequentialization

In this chapter, mostly based on our published paper [FIP13a], we present and evaluate

a slightly extended version of the Lal-Reps sequentialization (see Section 2.3.2).

The schema was originally proposed for Boolean programs; here we work out all the

details to adapt it to multi-threaded programs with dynamic thread creation.

We evaluate our implementation, LR-CSeq, on multi-threaded C programs using three

different bounded model-checkers for the sequential analysis.

3.1 Overview

The Lal-Reps sequentialization schema (LR) [LR09] translates a multi-threaded program

into a non-deterministic sequential program that simulates all round-robin schedules of

the original program in a fixed order and up to a given round bound.

The idea of the schema is the following:

• each thread is transformed into a thread simulation function;

• all calls to thread routines (e.g. create, join, lock, unlock, etc.) are replaced by

calls to functions that simulate them;

• the global memory is copied as many times as the number of rounds to simulate,

each copy is initialised with non-deterministic values, and accessed to in such a

way that each simulated round uses a distinct copy of the memory;

• each thread simulation function is executed exactly once (regardless of the number

of rounds to simulate); at non-deterministically chosen context-switch points, the

thread simulation function switches over to the memory copy for the next round;

and

21



22 Chapter 3 Eager Sequentialization

• memory consistency across the different memory copies is enforced at the end of

the simulation, when all executions based on global memory guesses that do not

correspond to feasible computations are pruned away.

Essentially, LR replaces the control non-determinism by data non-determinism and

simulates context-switches by “memory switches”.

f ′0 f ′1 f ′n

s0

s1

...

sk · · ·

· · ·
· · ·

. . .

s′0
s′1

...

s′k

Figure 3.1: Propagation of global memory snapshots in the Lal-Reps sequentialization
schema: f ′0, . . . , f

′
n represent the thread simulation functions, s0, . . . , sk the global

memory snapshot for the first simulated thread, and s′0, . . . , s
′
k the snapshot at the end

of the simulation of the last thread.

More precisely, the schema is defined on a fixed number of threads and a parameterised

number of round-robin schedulings. Consider a program P with n+ 1 threads f0, . . . , fn,

where f0 is the program’s main thread, or main function. Let k be the bound on the

number of round-robin schedulings to simulate.

The schema translates P into a sequential but non-deterministic program P ′ that simulates

all k round-robin schedules of P ’s threads in the order f0, . . . , fn. P ′ has n+ 2 functions,

f ′0, . . . , f
′
n, checker, where each f ′i is obtained by transforming fi, and checker is the

main function of P ′ that drives the simulation. In addition, the global memory s of the

program is duplicated k + 1 times, s0, . . . , sk.

The checker sets s0 = s (so that the global memory is initially the same as in the original

program) and initialises all other memory copies s1, . . . , sk with non-deterministic data.

Then it launches f ′0, . . . , f
′
n following the fixed round-robin order.

Let us now consider Figure 3.1. The first thread simulation function, f ′0, starts exe-

cuting its statements following the same order as in the original program, until non-

deterministically it decides to simulate a context-switch. At a context-switch, the thread

simulation function switches over to a different copy of the global memory (namely, at

context-switch j it switches to sj), and keeps following the normal order of execution

of the statements. The simulation then continues until the next context-switch. This

process is repeated up to k times.

The subsequent threads f ′1, . . . , f
′
n follow the same schema, but work with the values

of the shared memory copies left by their respective predecessors. Each copy of the

memory thus represents the snapshot seen by the thread simulations executing during

the corresponding round of a round-robin schedule.



Chapter 3 Eager Sequentialization 23

In order to ensure that the thread simulations work on consistent snapshots, before

starting the simulation the checker stores the initial global memory in a second copy

s′′1, . . . , s
′′
k, and checks at the end (i.e., after all simulation functions have terminated)

that the last thread in each round has ended its simulation with consistent initial guesses

for the next round, i.e., s′i = s′′i+1 for i = 0, . . . , k − 1. This thread mapping guarantees

that the execution of P ′ corresponds to an actual execution of P .

LR is possibly the most well-known sequentialization schema and has been implemented

in several tools. Rek [CGS11] implements sequentialization for C via code-to-code

transformation; it is targeted at real-time systems and hard-codes a specific scheduling

policy. STORM [LQR09] extends the LR schema to C programs, by first translating

from concurrent C programs to concurrent Boogie programs, and then applying an LR

sequentialization integrated into a CEGAR approach. Similarly, Poirot [Qad11] also

verifies concurrent C programs via sequentialization; it first translates them into Boogie

and then implements the sequentialization transformation at the Boogie level.

In this chapter, we present and evaluate our implementation of LR, slightly modified to

handle dynamic thread creation, that works directly on multi-threaded C programs with

POSIX threads and is not necessarily tied to a specific back-end for the actual analysis.

3.2 Lal-Reps Sequentialization of multi-threaded Programs

In this section we work out all the details to instantiate the LR schema on multi-threaded

programs.

Our implementation assumes that the input program can be divided into three blocks of

code: declarations of global variables, function definitions, and main function definition.

Fig. 3.2 sketches this structure. We assume that the above blocks do not mix and that

their order is as shown.

We show how to model the basic thread functionalities: thread creation and join, mutex

lock and unlock. In particular, we extend the LR schema so that thread creation

statements can be at any point in the input code, therefore dynamic thread creation is

now supported as well.

In the rest of the section, we use the definitions introduced in Section 2.2, in a few cases

abusing the notation for the sake of simplicity. In particular, we use pointer to functions

without explicit notation (following the simplified call-by-reference semantics already

used for all other ordinary variables).



24 Chapter 3 Eager Sequentialization

typeg1 g1; typeg2 g2; . . .

void fn() {
typex1 x1; typex2 x2; . . .
stmt1;
stmt2;
. . .

}

. . .

void f0() {
. . .

}

(a) multi-threaded program

typeg1 g1[K]; typeg2 g2[K]; . . . (i)

void f ′n() {
typex1 x1; typex2 x2; . . .
cs(); if(ret) then return; stmt′1; (ii)
cs(); if(ret) then return; stmt′2;
. . .

}

. . .

void f ′0() {
. . .

}

void main() {
typeg1 g1[K]; typeg2 g2[K]; . . . (iii)

for(i:=1;i<K;i:=i+1) do { (iv)
g1[i]:=g1[i];

g2[i]:=g2[i];

}

t[0]:=f ′0; (v)
born[0]:=0;

for(i:=0;i<N;i:=i+1) do {
if(born[i]>-1) then {

ret:=0;

k:=born[i];

t[i]();

}
}

for(i:=0;i<K-1;i:=i+1) do { (vi)
assume( g1[i+1]=g1[i]);

assume( g2[i+1]=g2[i]);

. . .
}

assert(err=0); (vii)
}

(b) sequentialized program

Figure 3.2: Structure of original (a) and translated program (b). Function f ′n is
the sequentialized version of function fn. Functions f0 and f ′0 denote, respectively,
the main function of the concurrent program and the corresponding sequentialized
function. Function main is the checker. The auxiliary data structures, the context-
switch simulation, and the simulation functions for thread routines are omitted (see

Section 3.2.1, Figure 3.3, and Figure 3.4, respectively).

3.2.1 Auxiliary Data Structures

Let N = n + 1 be the maximum number of threads in P and K = k the number of

round-robin schedules to simulate. We use the following data structures to simulate

concurrency:

• int k and int ct keep track of the index of the current round being simulated

and of the currently running thread, respectively.

• int ret is set to a value different than 0 to force the termination of the current

thread.



Chapter 3 Eager Sequentialization 25

• bool error is set whenever an error is found and checked after thread-wrapping.

• int born[N] stores the round number where a thread is created (or -1 if the

thread has not been created yet).

• int status[K][N] maintains the thread statuses (either RUNNING or TERMINATED)

for all rounds.

• thread[N]() is an array of (pointers to) thread functions used as argument to

create to spawn new threads.

3.2.2 Non-deterministic State Replication

In our implementation, we replace each global variable g by a k-indexed entry g[k] in

an array of size K, where k is is the current round counter and K = k is the round bound

(see Fig. 3.2 (i)); we use the notation stmt′ to denote the statement resulting from this

replacement (e.g., Fig. 3.2 (ii)).

For each global variable g we also also keep a second copy g[] (see Fig. 3.2 (iii)) that

contains the guesses that the first thread uses in each round; note that only the guesses

for the second and subsequent rounds are copied into the first copy, to prevent overwriting

the initializations done by the original program (see Fig. 3.2 (iv)).

3.2.3 Thread Simulation

All thread-specific statements are mapped into function calls to the corresponding

simulation functions (see Figure 3.4).

We model the status of each thread and each lock as an integer variable. lr create

(which simulates the thread creation function, create) simply inserts a pointer to the

thread function into the array threads, and records the round in which the thread was

created in the array born; the pointer is then used later on to start the simulation of the

threads in the round stored in born.

The program’s main function, f0, is handled as a thread created in round 0 (f ′0 in Fig. 3.2)

and its pointer is inserted as the first item in the array of threads, to start the simulation

(see Fig. 3.2 (v)). lr join uses an assume statement on the thread status to prune away

simulations in which the thread has yet not terminated. The mutex lock and unlock

operations similarly set and check the lock variable.



26 Chapter 3 Eager Sequentialization

void cs() {
int j;

assume(j>=0);

assume(k+j<K);

k:=k+j;

if (k=K-1 ∧ *) then ret:=1;

}

Figure 3.3: Context-switch simulation (Lal-Reps schema).

void lr create(int id1, t()) {
assume(ct<T);

ct:=ct+1;

born[ct]:=cr;

thread[ct]:=t;

status[cr][ct]:=RUNNING;

id1:=ct;

}

void lr join(int tid) {
assume(status[cr][tid]=FINISHED);

}

void lr init(int m) {
m:=FREE;

}

void lr destroy(int m)

m:=DESTROY;

}

void lr lock(int m) {
if (lock=0) then {

lock:=ct+1;

} else {
ret:=1;

}
}

void lr unlock(int lock) {
assume(lock=ct+1);

lock:=0;

}

Figure 3.4: Thread simulation stubs (Lal-Reps schema).

3.2.4 Context Switch

The sequentialized program simulates the threads in the order in which they are created

via lr create. It simulates a context switch by non-deterministically increasing k up

to the round bound. If k reaches the bound, non-deterministically an early exit can be

enforced (i.e., the thread is forced to exit and never gets to run again). We insert this

simulation code (as shown in Fig. 3.3) at all sequence points of the original program

threads (see Fig. 3.2 (ii)). Early thread exit is enforced by setting the control variable

ret.

3.2.5 Consistency Check

The first simulated thread, in each round, accesses a fresh copy of the memory with

non-deterministically chosen values, while the subsequent threads continue with the

state left by their predecessor. The initial guesses are stored in g[]; at the end of

the simulation (see Fig. 3.2 (vi)) we check that each round has ended with the guesses



Chapter 3 Eager Sequentialization 27

void lr assert(int expr) {
if (!expr) then { ret:=1; error:=1; }

}

void lr assume(int expr) {
if (!expr) then { ret:=1; }

}

Figure 3.5: Modelling assert and assume statements (Lal-Reps schema).

that are used in the next round; simulations that do not satisfy this condition do not

correspond to feasible runs, and are discarded.

3.2.6 Error Detection

Since infeasible runs are only discarded at the end, in order to prevent false results, errors

can only be reported after the checker has run. In particular, assertion checking must

be integrated with the sequentialization (see Figure 3.5). We thus replace all assert

statements by conditionals that set an error variable error and exit from the thread. The

error variable is then checked at the end of the simulation (see Fig. 3.2 (vii)). assume

statements require a similar handling in that they force the current thread to exit in case

the assumption does not hold, but the error variable is not set.

3.3 Evaluation

We have implemented the LR schema for multi-threaded C programs using POSIX threads

in our prototype tool LR-CSeq. We have evaluated LR-CSeq over 24 test cases taken

from the pthread atomic and pthread sections of the Concurrency category of the

SV-COMP 2013 Software Verification Competition [Bey13], with a total of approximately

2.2k lines of code. The 10 benchmarks that end on unsafe contain an error condition

that we encoded as assert(0). We used LR-CSeq to translate the benchmarks into all

supported formats and then used CBMC (v4.5), ESBMC (v1.22), and LLBMC (v2012.2a)

to verify the translated programs.

We did a few preliminary tests using abstraction-based backends (such as SATABS

[CKSY05] or CPAchecker [BK11]) where we could have achieved context-bounded analy-

sis without bounding of the program. However due to either restrictions on the input

programs or poor performance, none of the considered backends worked on the sequen-

tialized files.

We also evaluated the native concurrency handling of CBMC [AKT13] and of Threader

(c0.92) [PR13], the fastest verifier in the Concurrency category at the SV-COMP 2013

Software Verification competition [Bey13]. Here we ran CBMC with the same setting for



28 Chapter 3 Eager Sequentialization

Table 3.1: Comparison of sequentialization and native concurrency handling. ∗ -

program rejected. † - internal error.

Sequentialized version Concurrent version
n k u CBMC ESBMC CBMC Threader

dekker safe 2 3 5 4.7 4.2 0.5 0.5
lamport safe 2 3 5 52.0 23.0 7.1 63.8
peterson safe 2 3 5 0.6 0.8 0.3 7.4
rw lock safe 4 2 5 1.6 2.8 0.6 1.8
rw lock unsafe 4 2 5 -† 4.5 0.4 2.6
scull safe - - 5 -† -† 1.5 171.2
szymanski safe 2 3 5 0.9 1.1 0.6 21.3
time var mutex safe 2 3 5 1.0 2.1 0.7 7.2
fib longer safe 2 7 7 23.4 TO 18.1 11.2
fib longer unsafe 2 7 7 7.2 TO 3.0 10.1
fib safe 2 6 6 6.6 65.2 6.8 7.7
fib unsafe 2 6 6 6.3 45.8 0.5 6.8
indexer safe - - 130 -† -† TO 0.7
lazy unsafe 3 2 7 0.9 1.8 0.5 0.7
queue safe 2 2 5 144.5 10.1 71.6 -†

queue unsafe 2 2 5 249.2 TO 86.0 -†

reorder 2 unsafe - - 8 -† -† 6.2 2.4
reorder 5 unsafe - - 8 -† -† 6.5 3.5
stack safe 2 2 5 8.7 TO 64.7 TO
stack unsafe 2 2 5 9.2 TO 3.7 144.4
stateful safe 2 2 5 0.8 0.7 0.9 3.9
stateful unsafe 2 2 5 0.7 1.1 0.7 0.8
sync safe 2 2 5 4.5 1.4 4.9 2.5
twostage 3 unsafe - - 5 -* -* 28.6 24.1

the context switch bound and Threader for complete analysis. All the tests were made

on an otherwise idle Gentoo Linux standard PC with 12GB of memory and an Intel

Xeon CPU with 2.67GHz. The timeout was set to 400s.

Table 3.1 summarizes the results. Here n and k denote the number of threads and rounds,

respectively, used for the sequentialization translation, and u denotes the unwinding

bound for bounded model-checking (not used by Threader). Times are given in seconds;

for the sequentialized versions they also include LR-CSeq’s runtime, which is generally

neglible (approx. 0.1secs). TO denotes timeout. The time of the fastest tool for each

benchmark is shown in bold; the time of the fastest LR-CSeq backend is shown in cursive.

Note that LLBMC uses a more precise memory model and a more accurate syntactic

checks than the other tools. It resulted sensibly slower than CBMC and ESBMC, timing

out on many instances, and reporting a memory error on the sequentialized version of

stack safe (we do not know whether this error is spurious or not). Therefore LLBMC

running times on the sequentialized files are not shown in the table.

LR-CSeq failed to translate five benchmarks due to the restrictions already mentioned:

on the first file due to non-standard include files, on the last file because of dynamic



Chapter 3 Eager Sequentialization 29

memory allocation (the tool finds a call to malloc and rejects the file) and on the other

files because the passing of parameters to the main function is not supported at the

moment. Threader fails on both the versions for the queue test cases.

Overall, the native concurrency handling is faster than sequentialization, but the time

difference is generally reasonably small; moreover, for some benchmarks LR-CSeq even

outperforms the native concurrency handling. Within LR-CSeq, CBMC slightly outper-

forms ESBMC as backend, but again the differences are small, and may be caused by the

fact that we have mainly used CBMC for testing during development, and as a result

the code generated from LR-CSeq is now somewhat optimized for that specific backend.

For an evaluation of this schema on a larger benchmark suite (and in particular for a

comparison against our novel schema proposed in Chapter 4), see Section 4.6.2.

3.4 Conclusions

Our prototype has several limitations, mostly due to the strong assumptions on the

input that we adopted to simplify the implementation. For instance, we assume that the

declarations for the global variables precede those for all functions, that there are no

static variables and no global multi-dimensional arrays, and that local variables cannot

shadow global variables. These limitations did not significantly affect the evaluation of

our prototype tool, due to the simplicity of the test cases.

Another limitation of our prototype is that the counterexample provided by the backend

to the wrapper script refers to the sequentialized code and is not translated back to the

original input code. However, this can be done by mapping back line numbers, reverting

the state replication, and rearranging the order of the statuses in the counterexample,

shuffled by non-determinism. This would take a negligible computational effort and

would hardly have any impact on the overall analysis performance.

The above implementation-specific limitations could be removed with some engineering

effort, and we observed encouraging results on a few non-trivial test cases. However,

the inherent limitations to the LR schema remain. In the rest of this section we briefly

discuss the main problems that motivated us to develop a newer schema.

A limitation of LR is in the fact that it only works for round-robin thread schedules

assuming a fixed thread ordering. Note that, since empty execution contexts are allowed

(i.e., threads can be pre-empted without executing any computation) other (shorter)

schedules that can fit in a round-robin schedule are captured. For example, with three

threads T1, T2, T3 and a fixed ordering ρ = 1, 2, 3, a round bound k = 2 is sufficient to

capture the scheduling 〈T2, T1, T3〉, but not enough for the scheduling 〈T3, T2, T1〉, which

requires one more round. Naively, context-bounded simulation up to a given bound

can be achieved by setting the round bound to that bound. However, in this way the



30 Chapter 3 Eager Sequentialization

simulation will also unduly include other schedules that actually exceed the context

bound. It is still not clear how to achieve a more efficient context-bounded analysis, that

does not consider schedules beyond a given bound.

Eager guessing inevitably limits the integration with the applied backend verification

tool. For instance, implicit safety properties, such as array bounds violations or invalid

pointer dereferences that are handled by the backend, must be translated into explicit

assertions, and their detection by the backend must be explicitly suppressed, in order to

prevent false results due to eager guessing. While adding further checks to our prototype

is certainly possible, it would add overhead to the translation and therefore negatively

affect the performance of the backend.

Another problem is heap-allocated memory. Since this memory is accessible to all

threads, it needs to be treated similarly to global variables. Intuitively, the checker would

have to guess and carry around memory blocks of possibly variable size. This would

require an explicit modelling of the global memory and therefore would add even more

non-determinism and overhead to the translated program. It is not clear how to do this

efficiently without overwhelming the backend. This leaves an open research question that

is beyond the scope of this thesis.



Chapter 4

Lazy Sequentialization

In this chapter we present our novel sequentialization schema for efficient bug finding,

which is based on the idea of lazy analysis and is specifically targeted to bounded

model-checking.

We introduce our sequentialization schema in Section 4.1. We define bounded multi-

threaded programs in Section 4.2 and outline the schema in Section 4.3. We give a

detailed description with an informal correctness argument in Section 4.4, a formal

description based on rewrite rules in Section 4.4.5, and a formal proof of correctness

in Section 4.4.6. We discuss two variations on the original schema in Section 4.5. We

summarise the experimental evaluation in Section 4.6, and finally give our conclusions in

Section 4.7.

The content of this chapter is largely based on our published work [ITF+14a, INF+15].

4.1 Introduction

Sequentialization is a technique to re-use on concurrent software existing tools for the

analysis of sequential software [QW04]. It can be implemented as a code-to-code trans-

lation of the input program into a corresponding nondeterministic sequential program,

and the tool for analysis of sequential software is used as a backend (see Section 2.3.2).

Such translations alter the original program structure by injecting control code that is

an overhead for the backend. Therefore, the design of well-performing tools under this

approach requires careful attention to the details of the translation.

The LR sequentialization schema [LR09] evaluated in Chapter 3 uses a large number

of extra variables; the number of assignments involved in handling these variables, the

high degree of nondeterminism, and the late pruning of infeasible runs can all negatively

impact the performance of the backend tool. Moreover, due to the eager exploration, LR

31



32 Chapter 4 Lazy Sequentialization

cannot rely on built-in error checks of the backend and also requires specific techniques

to handle programs with heap-allocated memory [LQR09].

Since the set of reachable states of a concurrent program can be much smaller than

the whole state space explored by LR, lazy techniques that explore only the reachable

states can be much more efficient. For instance, an alternative schema uses, like LR,

several copies of the shared memory but rather than guessing values, it computes them

precisely [LMP09a]. However, in the schema from [LMP09a] since the local state of a

thread is not stored on context switches, the values of the thread-local variables must

be recomputed from scratch when a thread is resumed. This re-computation poses no

problem for tools that use function summarisation because they can re-use the summaries

from previous rounds [LMP09a, LMP10], but it is a serious drawback when applying

the schema on the top of BMC: each recomputation causes a duplication of the formula

corresponding to the thread, and this causes an exponential blow-up in the size of the

verification condition [GHR10]. It was thus an open question whether it is possible to

design an effective lazy sequentialization for BMC-based backends.

In this chapter, we answer this question and design a new, surprisingly simple but

effective lazy sequentialization schema that works well in combination with bounded

model-checkers.

Typically, a sequentialization schema is not conceived for any particular underlying

technology and performs the source transformation upfront in the whole analysis process.

This is the case of the LR schema evaluated in Chapter 3 as well. In contrast, our schema

specifically targets bounded model-checking, and in particular the source transformation

takes place between the program bounding procedure and the generation of the verification

condition (see Section 2.1.4). Working directly on bounded programs allows us to

aggressively exploit their structure. The translation is in fact carefully designed to

introduce very small memory overheads and very few sources of nondeterminism, so

that it produces simple formulae, and is thus very effective in practice. In contrast to

LR, only reachable states of the input program are explored, and thus the translation

requires no built-in error checks nor any special dynamic memory allocation handling,

but can rely on the backend for these. The resulting sequentialized program simulates

all bounded executions of the original program for a bounded number of rounds, but

avoids their re-computation and thus the exponentially growing formula sizes observed

above [GHR10]. The formula size is instead proportional to the product of the size of

the original program, the number of threads and the number of rounds.

We have used our CSeq sequentialization framework (see Chapter 5) to implement

our lazy schema on sequentially-consistent multi-threaded C programs with POSIX

threads [ISO11, ISO09]. The prototype tool, Lazy-CSeq (see Section 5.5), implements

both bounding and sequentialization as source-to-source translations and supports the

full C language and the main parts of the POSIX thread API, such as dynamic thread



Chapter 4 Lazy Sequentialization 33

creation and deletion, and synchronisation via thread join and locks. The resulting

sequential C program can be analysed with any existing verification tool for sequential

C programs.

We have tested Lazy-CSeq using BLITZ [CDS13], CBMC [CKL04], ESBMC [CFM12],

and LLBMC [MFS12] as backends. We have evaluated our approach and tool over the

SV-COMP benchmark suite [Bey14, Bey15]. Lazy-CSeq [ITF+14a] won the concurrency

category at SV-COMP 2014 and SV-COMP 2015. The positive results thus justify

the general sequentialization approach, and in contrast to the findings by Ghafari et

al. [GHR10], also demonstrate that a lazy translation can be more suitable for use in

BMC than the more commonly applied LR translation [LR09, EQR11], as Lazy-CSeq

also significantly outperforms our own LR-CSeq tool described in Chapter 3.

4.2 Bounded multi-threaded Programs

Bounded multi-threaded programs represent the starting point for our sequentialization

schema. Intuitively, bounded multi-threaded programs are multi-threaded programs

(see Section 2.2) in which there are no loops, and all the functions, except for the main

function, are never called explicitly but passed as arguments to the thread creation

routine to spawn new threads. The bounded version of any multi-threaded program can

be obtained by applying the program unfolding procedure described in Section 2.1.4 and,

if needed, by duplicating the functions definitions, such that multiple threads spawned

from the same function (if any) use distinct copies of that function (see Figure 4.2(a)).

P ::= (dec;)∗ (void fi (〈dec,〉∗) {(static dec;)∗stm})i=0,...,n

dec ::= type z

type ::= bool | int | void

stm ::= seq | conc | {〈stm;〉∗}

seq ::= assume(b) | assert(b) | x := e | return e
| if(b) then stm1 else stm2 | l : seq | goto l

conc ::= x := y | y := x | t := create fi(e) | join t
| init m | lock m | unlock m | destroy m | l : conc

Figure 4.1: Syntax of bounded multi-threaded programs.

More precisely, bounded multi-threaded programs are defined by the syntax given in

Figure 4.1. Note that for effect of program bounding there are no loops in these programs,

so the additional property not captured by the given syntax is that all goto statements



34 Chapter 4 Lazy Sequentialization

are forward-only. In our definition thread-local variables use the static storage class.

We used this convention to make our presentation simpler. Static variables are in practice

equivalent to local variables, except that uninitialised local variables contain undefined

values, while static variables are initialised to 0 by default. Thus, after the declaration of

these variables we assign them with a nondeterministic value. For instance, int tmp is

turned into static int tmp:=*. This directly applies to all primitive types and can be

done at the level of the components for programming languages that have arrays and

structured types.

In addition, we restrict our attention to bounded multi-threaded programs that satisfy

the following assumptions:

• (functions) every function, which we refer to as thread function, is used exactly

once to spawn a new thread,

• (arguments) every function has at most one argument, the type of which is int,

• (main) there exists a thread function f0 corresponding to the main thread,

• (exits) the return statement occurs exactly once in each function, as the last

statement of that function,

• (labels) in all functions there are numerical labels in increasing order starting from

0, immediately before the first statement, every visible statement, and the last

statement; any other label of the program is non-numerical.

In addition, for the sake of conciseness, we adopt the usual square-bracket notation

commonly used for arrays to indicate elements of fixed-sized sets of scalar variables.

Note that all of the above assumptions can be enforced in any bounded multi-threaded

program by simple source transformations.

4.3 Overview

Our translation transforms a bounded multi-threaded program into a bounded sequential

program that simulates round-robin schedules of the initial program up to a fixed number

of rounds. The basic idea is the following:

• each thread is transformed into a thread simulation function;

• all calls to thread routines (e.g. create, join, lock, unlock, etc.) are replaced by

calls to functions that simulate them;



Chapter 4 Lazy Sequentialization 35

int m; int c;

void f1(int p) {
0: static int l; l:=p;

1: lock m;

2: if(c>0) then

3: c:=c+1;

else {
4: c:=0;

if(!(l>0)) then

goto l1;

5: c:=c+1;

l:=l-1;

if(!(l>0)) then

goto l1;

6: c:=c+1;

l:=l-1;

assume(!(l>0));

l1:

}
7: unlock m;

8: return;

}

void f2(int p) {...}

void f3() {
0: assume(c>0);

1: c:=c-1;

assert(c>=0);

2: return;

}

void f4() {...}

void f0() {
0: c:=0;

1: init m;

int p0,p1,c0,c1;

2: p0:=create f1(5);
3: p1:=create f2(1);
4: c0:=create f3(0);
5: c1:=create f4(0);
6: return;

}

(a) bounded multi-threaded program

bool active[N]={1,0,0,0,0};
int cs,ct,pc[N],size[N]={5,8,8,2,2};
#define G(L) assume(cs>=L)

#define J(A,B) if(pc[ct]>A||A>=cs) goto B;

int m; int c;

void fseq1 (int p) {
0:J(0,1) static int l; l:=p;

1:J(1,2) seq lock(m);

2:J(2,3) if(c>0) then

3:J(3,4) c:=c+1;

else { G(4);

4:J(4,5) c:=0;

if(!(l>0)) then

goto l1;

5:J(5,6) c:=c+1;

l:=l-1;

if(!(l>0)) then

goto l1;

6:J(6,7) c:=c+1;

l:=l-1;

assume(!(l>0));

l1: G(7);

} G(7);

7:J(7,8) seq unlock(m);

8: return;

}

void fseq2 (int b) {...}

void fseq3 () {
0:J(0,1) assume(c>0);

1:J(1,2) c:=c-1;

assert(c>=0);

2: return;

}

void fseq4 () {...}

void fseq0 () {
0:J(0,1) c:=0;

1:J(1,2) seq init(m);

static int p0,p1,c0,c1;

2:J(2,3) p0:=1; seq create(5,1);

3:J(3,4) p1:=2; seq create(1,2);

4:J(4,5) c0:=3; seq create(0,3);

5:J(5,6) c1:=4; seq create(0,4);

6: return;

}

void main() {...see Fig. 4.3...}

(b) sequentialized program

Figure 4.2: Lazy sequentialization example. The program on the left is the bounded
program resulting from applying the method described in Sec. 2.1.4 to the multi-threaded
program from Figure 2.3. Note that some statements are preceded by a numerical label,
following the assumptions from Sec. 4.2. The program on the right is the sequentialized
program. The code injected by the source transformation is gray. For practical reasons

we abuse the notation and use C-style syntax to define the macros G() and J().



36 Chapter 4 Lazy Sequentialization

• for each round, the thread simulation functions are called in a fixed order and

non-deterministically they can exit at any visible statement to simulate a context

switch; we maintain the program location of the (simulated) context switch where

the computation must resume from in the next round;

• on thread resuming, the control jumps back to the locations stored as above, then

executes, again, a non-deterministically selected number of steps, and jumps out of

the function;

• the local variables of all threads are persistent, so that the simulation does not

need to recompute them.

Note that the above mechanism only works because the original program is bounded,

so that (i) there is a bounded number of activations for each function, and (ii) we

can associate unique identifiers as jump targets with each statement of the sequential

program.

Figure 4.2(b) shows the resulting sequentialized program for the Producer-Consumer

example (cf. Figure 2.3), with an unwinding bound of 2. The parts in black correspond

to the unwound original program, those in light gray are injected to achieve the wished

sequentialization, as described in Section 4.4. Note that in the bounded program we get

two separate copies of each of the functions P and C, since the original program spawns

two producer and two consumer threads.

4.4 Lazy Sequentialization for Bounded Programs

We now describe our code-to-code translation from a bounded multi-threaded program P

to a sequential program P seq
k that simulates all round-robin executions with k > 0 rounds

of P .

Assume that P consists of n + 1 functions f0, . . . , fn, where f0 denotes the unwound

main function. By definition, P contains n calls to create, which spawn (at most) n

threads using as start functions f1, . . . , fn, respectively. Each start function is associated

with at most one thread, so that we can identify threads and functions.

For round-robin executions, we fix an arbitrary schedule ρ by permuting f0, . . . , fn. For

any fixed ρ, our translation guarantees that P fails an assertion in a k round-robin

execution if and only if P seq
k fails the same assertion. Moreover, the translation preserves

not only bounded reachability, but allows us to perform on the bounded multi-threaded

program all the analyses that are supported by the sequential backend tool.

P seq
k is composed of a new function main and a thread simulation function f seqi for each

thread fi in P . The new main of P seq
k calls, in the order given by ρ, the functions f seqi



Chapter 4 Lazy Sequentialization 37

for k complete rounds. For each thread it maintains the numerical label at which the

context switch was simulated in the previous round and where the computation must

thus resume in the current round.

Each f seqi is essentially fi with few lines of additional control code (note that we have

assumed the existence of numerical labels in fi to denote the relevant context switch

points in the original code). When executed, each f seqi jumps (in multiple hops) to the

saved position in the code and then restarts its execution until the label of the next

context switch is reached. Since the local variables are made persistent (i.e., of storage

class static) we do not need to re-compute them when resuming suspended executions.

We now describe our translation in a top-down fashion. We also convey an informal

correctness argument as we go along. A formal proof of correctness of the sequentialization

schema is provided in Section 4.4.6. We start by describing the (global) auxiliary variables

used in the translation in Section 4.4.1. Then, we give the details of function main of

P seq
k in Section 4.4.2, and illustrate how to construct each f seqi from fi in Section 4.4.3.

Finally, we discuss how the thread routines are simulated in Section 4.4.4.

4.4.1 Auxiliary Data Structures

During the simulation of P , the sequentialized program P seq
k maintains the following data

structures.

Let N be a symbolic constant denoting the maximal number of threads in the program,

i.e., n+ 1.

– bool active[N] tracks whether a thread is active, i.e., has been created but not

yet terminated. Initially, only active[0] is true since f seq0 simulates the main

function of P ;

– int arg[N] stores the argument used for thread creation (recall that for simplicity

we have assumed an implicit call-by-reference semantics in Section 2.2);

– int size[N] stores the largest numerical label for each thread simulation function;

– int pc[N] stores the label of the last context switch point for each thread simulation

function;

– int ct tracks the index of the thread currently under simulation;

– int cs contains the (pre-guessed) numerical label at which the next context switch

for thread ct will happen.

Note that the thread simulation functions f seqi read but do not write any of the above

data structures. N and size[] are constants computed from the bounded program and



38 Chapter 4 Lazy Sequentialization

remain unchanged during the simulation. arg[] is set by seq create (that simulates

create) and remains unchanged once set. active[] is set by seq create and unset by

the main driver as described in the next section. pc[], ct, and cs are updated by the

main driver following the mechanism shown in the next section.

4.4.2 Main Driver

Figure 4.3 shows the new function main in P seq
k that drives the simulation. For simplicity,

we assumed that the fixed schedule corresponds to the ordering 0, . . . , n.

K is a symbolic constant that gives the bound on the round-robin schedules to simulate,

i.e., K evaluates to k.

Each iteration of the loop simulates an entire round of a computation of P . The simulation

of each thread fct invokes the corresponding simulation function f seqct with the argument

arg[ct] that was originally used to create the thread. The order in which the functions

are called corresponds to the fixed round-robin schedule ρ, here 0, . . . , n.

For each active thread the driver thus executes the following steps:

1. nondeterministically guess the label for next context switch and store it in cs,

2. check that the value is appropriate,

3. simulate the thread from pc[ct] through to cs, and

4. store cs in pc[ct], since in the next round the computation must restart from this

label.

The choice of an appropriate value for cs is simplified by the structure of P , more

precisely, by the fact that the control flow always moves forward because all jumps are

forward. We can thus pick any value for cs that is between the value stored in pc[ct]

(corresponding to the case that the thread will not make any progress, hence skips the

round) and the largest label in f seqct that is added in the translation (which corresponds

to the last possible context switch point in the code of the corresponding thread fct). We

stress that this guess is the only source of nondeterminism introduced by our translation.

4.4.3 Thread Translation

In our schema, each function fi representing a thread in P is converted into a thread

simulation function f seqi in P seq
k that is obtained as follows.



Chapter 4 Lazy Sequentialization 39

void main() {
round:=0;

while(round<K) do {
ct:=0;

if (active[ct]) then {
cs:=pc[ct] + *;

assume(pc[ct]<=cs<=size[ct]);

fseq0 (arg[ct]);

pc[ct]:=cs;

}

...

ct:=n;

if (active[ct]) then {
cs:=pc[ct] + *;

assume(pc[ct]<=cs<=size[ct]);

fseqn (arg[ct]);

pc[ct]:=cs;

}

round:=round+1;

}
}

Figure 4.3: P seq
k : main driver.

Persistence of Thread Local Storage

Each thread fi in P is simulated in P seq
k by repeated calls to f seqi ; each invocation executes

a fragment of the code according to the context switch points that are guessed nondeter-

ministically in the main function. Since each thread simulation function is called once in

each round, and the thread-local variables are persistent (static) between consecutive

invocations (because their storage class is static), the inefficient re-computation of their

values is thus avoided.

Thread Pre-emption and Resuming

When a function f seqi is called for the first time (i.e., in the first round), it starts its

execution from the beginning. In the subsequent calls, it must skip over the statements

already executed in previous calls, in order to resume the simulation from its last context

switch point. When the control reaches the label guessed for the context switch, it must

return without executing any further statements. Different solutions exist to implement

this using goto statements and distinct labels associated with every meaningful context

switch point in the code. We tried to use a multiplexer at the top of the thread’s body,

implemented with a switch and a series of goto statements, to jump over the statements

already executed, directly to the starting label. We also injected additional code at the



40 Chapter 4 Lazy Sequentialization

context-switch label to return immediately when the thread is pre-empted. However,

this schema has performed poorly in our experiments, possibly because it introduces

complex control flow branching.

In contrast, the schema we present here, although at first it may look counterintuitive,

actually scales well when used together with BMC backends. We use goto statements

in a way that avoids complex branching in the control flow. We remark that we use

consecutive natural numbers as labels, starting with 0 for the first statement in each

function, and label the other statements with numbers increasing in program order (see

Figure 4.2). To reduce the nondeterminism, we insert the labels (which are only used to

simulate the context switches) only at the first statement, the last statement, and every

visible statement (see Section 2.2). Note that this suffices, as we are only interested in

assertion violations and in general properties involving only the shared memory and the

local state of one thread [Mül06].

Right after each numerical label i (except for the last one) we inject a conditional jump

of the form

if (pc[ct]>i ∨ i >=cs) then goto i+1; (J macro)

in front of the statement. Note that the fragment i+1 is evaluated at translation time,

and thus simplifies to an integer literal that also occurs as label. When the thread

simulation function tries to execute statements before the context switch of the previous

round, or after the guessed context switch, the condition becomes true, and the control

jumps to the next label without executing actual statements of the thread. This achieves

the positioning of the control at the program counter corresponding to pc[ct] with

potentially multiple hops, and similarly when the guessed context switch label is reached,

the fall-through to the last statement of the thread (which is by assumption always

a return). Note that, whenever the control is between these two labels, the injected

code is immaterial, and the statements of f seqct in this part of the code are executed as

in the original thread. We use a macro J to package up the injected control code (see

Figure 4.2(b)).

As an example, consider the sequentialized program in Figure 4.2(b), and assume that

fseq1 is called (i.e., ct=1) with pc[1]=2 and cs=6. At label 0, the condition of the

injected if statement holds true, thus the goto statement is executed and the control

jumps to label 1. Again, the condition is true, and then the control jumps to label 2.

Now, the condition check fails, thus the underlying code is executed, up to label 5. At

label 6, the condition of the injected if-statement holds again, thus the control jumps to

label 7, and then to label 8, thus reaching the return statement without executing any

other code of the producer thread.



Chapter 4 Lazy Sequentialization 41

Handling Control-flow Branching

Eager sequentializations such as the Lal-Reps schema (see Chapter 3) need to prune

away guesses for the shared variables that lead to infeasible computations. A similar

issue arises in our schema for the guesses of context switches. We remark that this is the

only source of nondeterminism introduced by our translation.

Consider for example the if-then-else in f1, as shown in Figure 4.2(b), and assume

that pc[1]=2 and cs=3, i.e., in this round the sequentialized program is assumed to

simulate (feasible) control flows between labels 2 and 3. However, if c≤0, then the

program jumps from label 2 to the else-branch right before label 4; if we ignore the G(4)

macro, the condition in the if statement inserted by J(4,5) would be tested, and since

it would hold, the control flow would slide through to label 8, and return to the main

driver, which would then set pc[1] to 3. In the next round, the computation would then

duly resume from this label—which in this execution should be unreachable! Similar

problems may occur when the context switch label is in the body of the else-branch,

and with goto statements.

Note that assigning pc in the called function rather than in the main driver would fix

this problem. However, this would require to inject at each possible context-switch point

an assignment to pc guarded by a nondeterministic choice. This has performed poorly

in our experiments. The main reason for this is that the control code is spread “all

over” and thus even small increments of its complexity may significantly increase the

complexity of the formulae computed by the backend tools. We therefore simply prune

away simulations that would store unreachable labels in pc. For this, we use a simple

guard of the form

assume(cs>=j); (G macro)

where j is the next inserted label in the code. We insert such guards at all control flow

locations that are target of an explicit or implicit jump, i.e., right at the beginning of

each else block, right after the if statement, and right after any label in the actual code

of the simulated thread (which can be the target of a goto-statement of the starting

program). Again, we package this up in a macro called G (see Figure 4.2(b)).

This solution prunes away all spurious control flows. Consider first the case of goto

statements. We assume without loss of generality that the statement’s execution is

feasible in the multi-threaded program and that the target’s label l is in the code after

the planned context switch point. But then the inserted G assumption fails, and the

simulation is correctly aborted. The argument for if statements is more involved but

follows the same lines. First consider that the planned context switch is the then branch.

If the simulation takes the control flow into the else branch, then the guard fails because

the first label in this branch is guaranteed to be greater than any label in the then

branch, and the simulation is aborted. In the symmetric scenario, the guard after the



42 Chapter 4 Lazy Sequentialization

void seq create(int arg, int id) {
active[id]:=true;

arg[id]:=arg;

}

int seq join(int tid) {
assume(pc[tid]=size[tid]);

}

void seq init(int m) {
m:=FREE;

}

void seq destroy(int m) {
m:=DESTROY;

}

void seq lock(int m) {
assert(m!=DESTROY);

assume(m=FREE);

m:=t;

}

void seq unlock(int m) {
assert(m=t);

m:=FREE;

}

Figure 4.4: Thread simulation stubs (lazy schema).

if statement will do the job because cs is guaranteed to be smaller than the next label

used as argument in the G. Note that the J macro at the last context switch point in

the else branch (in the example J(6,7)) jumps over this guard so that it never prunes

feasible control flows.

We stress that though the guess of the context-switch points is done eagerly and thus we

need to prune away infeasible guesses, the simulation of the input program is still done

lazily. In fact, even when we halt a simulation at a guard, all the statements of the input

program executed until that point correspond to a prefix of a feasible computation of

the input program.

4.4.4 Simulation of Thread Routines

For each thread routine we provide a verification stub, i.e., a simple standard function

that replaces the original implementation for verification purposes. Figure 4.4 shows

the stubs for the routines used in this paper. Spawned threads are simply mapped to

integers, which serve as unique thread identifiers; all other relevant information is stored

in the auxiliary data structures, as described in Section 4.4.1.

In seq create we simply set the thread’s active flag and store the argument to be

passed (later, from within the main driver) to the thread simulation function. Note that

we do not need to store the thread start function, as the main driver calls all thread

simulation functions explicitly, and that the seq create stub uses an additional integer

argument id that serves as thread identifier. The id values correspond to the order in

which the calls occur in the unwound program and are statically added to the seq create

calls.



Chapter 4 Lazy Sequentialization 43

From the semantics of multi-threaded programs, a thread invoking join(t) blocks until

t is terminated. In the simulation a thread is terminated if it has reached the thread’s

last numerical label, but there is no notion of blocking and unblocking. Instead, the stub

seq join uses an assume statement with the condition pc[t]=size[t] (which checks

that the argument thread t has reached its last numerical label) to prune away any

simulation that corresponds to a blocking join. We can then see that this pruning does

not change the reachability of error states. Assume that the joining thread t terminates

after the invocation of join(t). The invoking thread should be unblocked then but the

simulation has already been pruned. However, this execution can be captured by another

simulation in which a context switch is simulated right before the execution of the join,

and the invoking thread is scheduled to run only after thread t is terminated, hence

avoiding the pruning as above.

For mutexes we need to know whether they are free or already destroyed, or which thread

holds them otherwise. We thus model mutexes as integers, and define two constants

FREE and DESTROY that have values different from any possible thread index. When we

initialise or destroy a mutex we assign it with the appropriate constant. If we want to

lock a variable we assert that it is not destroyed and then check whether it is free before

we assign to it the index of the thread that has invoked mutex lock. Similarly to the

case of join, we block the simulation if the lock is held by another thread. If a thread

executes unlock, we first assert that the lock is held by the invoking thread and then set

it to FREE.

4.4.5 Code-to-code Translation

We now formalise the general translation, described in the previous sections, using

rewriting rules on the syntax grammar of bounded multi-threaded programs. Let P be a

bounded multi-threaded program and JP Kk be the sequentialized program for P , where

k is the bound on the number of round-robin schedules. The rewrite rules are given in

Figure 4.5.

The resulting sequentialized program is formed as follows. We start with the declaration

of the auxiliary data structures introduced by the sequentialization (see Section 4.4.1),

followed by the declaration of the original global variables, that remains unchanged. All

thread functions are first sequentialized (as discussed in Section 4.4.3) and then appended

to the program. Then, all simulation procedures for thread routines from Figure 4.4 are

inserted. Finally, the main driver shown in Figure 4.3 is appended.

Every call to a thread routine (create, join, init, lock, unlock, destroy) is trans-

formed into a call to the corresponding simulation function.

Branching statements are treated as described in Section 4.4.3. In particular, within

every if statement we introduce two guards, one appended at the end of the original code



44 Chapter 4 Lazy Sequentialization

s
(dec;)∗ (void fi (〈dec,〉∗)
{(dec;)∗stm})i=0,...,n

{
def
=

bool active[T] = {1,0,...,0};
int cs,ct;

int arg[T],pc[T],size[T];

(dec;)∗ (void seq fi (〈dec,〉∗)
{(static dec;)∗JstmK})i=0,...,n

seq create(int i, int arg){...}
seq join(int m){...}
seq init(int m){...} seq destroy(int m){...}
seq lock(int m){...} seq unlock(int m){...}
main(){...}

Jassume(b)K def
= assume(b)

Jassert(b)K def
= assert(b)

Jx := eK def
= x := e

Jreturn eK def
= return e

s
if(b) then stm1

else stm2

{
def
=

if(b) then Jstm1 K
else {G(`′(stm1 ));Jstm2 K} G(`′(stm2 ));

Jl : seqK def
=

{
l : J(l , l +1 ); JseqK, if l = 0,

l : G(`′′(seq)); JseqK, otherwise.

Jgoto lK def
= goto l

Jx := yK def
= x := y

Jy := xK def
= y := x

Jt := create fi(e)K
def
= { t := i; seq create(e, i) }

Jjoin tK def
= seq join(t)

Jinit mK def
= seq init(m)

Jlock mK def
= seq lock(m)

Junlock mK def
= seq unlock(m)

Jdestroy mK def
= seq destroy(m)

Jl : concK def
=

{
l : J(l , l +1 ); JconcK, if l is numerical,

l : G(`′′(conc)); JconcK, otherwise.

Figure 4.5: Rewriting rules for the lazy sequentialization.

and one inserted right at the beginning of the else block. The guards are implemented

by the G macro and their arguments are calculated by a function `′, which returns the

numerical label (plus 1) for a single statement, or the last numerical label (plus 1) in a

compound statement. In the absence of numerical labels, `′ returns a special value that

causes the guards to have no effects. Sequential and concurrent statements preceded by



Chapter 4 Lazy Sequentialization 45

a non-numerical label are both translated in a similar way, with a G guard being inserted

between the label and the actual statement in the simulated code. In that case, the

argument for the macro is calculated by a function `′′ that returns the value of the last

numerical label seen before that statement, plus 1. See Figure 4.2(b) for an example of

this transformation.

Finally, we guard every visible statement through the macro J using as argument the value

of the numerical label l that (by definition) occurs immediately before that statement.

Any other statement is left as in the original program.

Example 4.1. Figure 4.2(b) is the result of the translation map J·K of Figure 4.5 applied

to the bounded multi-threaded program shown Figure 4.2(a).

4.4.6 Correctness

In this section, we provide a correctness proof for the lazy-sequentialization schema.

We show that any k round-robin execution of a bounded multi-threaded program P

can be simulated by the sequentialized program JP Kk, and that every execution of JP Kk
embeds a k round-robin execution of P . Thus, P fails an assertion (that is, reaches an

assertion-failure configuration) within the given round-robin bound if and only if JP Kk
fails the same assertion by reaching an equivalent configuration.

Henceforth, P denotes a bounded multi-threaded program with at most n+ 1 threads,

and k is a bound on the number of round-robin schedules of P . We assume that any

potentially blocking operation (i.e., join or lock) does not block during the execution

of P . Note that this assumption does not affect the reachability of error states. In fact,

any execution of P containing a join from a thread t1 on a thread t2 can always be

captured by another execution where t1 is pre-empted immediately before the join and is

re-scheduled only after t2 terminates (if at all). For the sake of simplicity, we also assume

that all local variables of P and JP Kk are transformed into global variables initialised

with non-deterministic values at the beginning of the main function; furthermore, we

inline all the functions in JP Kk. We refer to a program obtained by modifying JP Kk as

above as the simplified inlining of JP Kk and denote it with S in the rest of this section.

Let us now define how to map program counters from P to S. By definition, each thread

function in P is translated into a unique thread simulation function in JP Kk, and each

statement of P is translated to either a single statement, or a block of statements in

JP Kk. Each program counter of P is therefore unequivocally mapped into a program

counter of JP Kk, i.e., the program counter of the statement, or of the first statement of

the block, to which the original statement is translated. Note that in the main driver

of S each call to a thread simulation function is inlined k times, one for each simulated

round. Hence we can define a map, denoted linemap[P,k], from pairs (pc, r), where pc is

the program counter of a statement in a thread function of P and r is a round number,



46 Chapter 4 Lazy Sequentialization

into the program counter of the corresponding statement in the r-th inlined copy of the

sequentialized version of that function in the main driver. We also introduce a map

labelP that associates to the program counter of a visible statement in P the value of

the numerical label preceding it.

We now define a notion of equivalence between configurations of P and S. Let V be

the common variables of P and S and recall that S has the following auxiliary control

variables introduced by the sequentialization: active[], cs, ct, arg[], pc[], and size[].

Intuitively, a configuration c of P and a configuration ĉ of S are equivalent if the valuations

of their common variables coincide, and the valuation of the auxiliary control variables

in ĉ is consistent with the configuration c, that is: the valuation of active is consistent

with the threads present in c, the valuation of ct identifies the currently enabled thread,

the valuation of pc matches the numerical labels at the program counters of all threads

in c except possibly for the enabled one, and the program counter corresponds to that of

the running thread in c.

Definition 4.1 (Equivalent Configurations). Let k be a positive integer, P be

a bounded multi-threaded program, c = 〈shP , enP , thi1 , . . . , thi`〉 be a configuration of

P where thi = 〈pci〉1 for any identifier of active threads i ∈ {i1, . . . , i`} ⊆ [0, n], and

ĉ = 〈shS , pcS〉 be a configuration of the sequentialized program S.

Let C and Ĉ be the sets of configurations of P and S, respectively. For a round number

r ∈ [1, k], we define the binary relation ≡r⊆ (C×Ĉ) as follows: c ≡r ĉ (i.e., c is equivalent

to ĉ w.r.t. r), if the following holds:

1. shP (v) = shS(v), for every variable v ∈ V ;

2. for any i ∈ [1, n], shS(active[i]) = true iff i ∈ {i1, . . . , i`};

3. shS(ct) = enP ;

4. for any i ∈ ({i1, . . . , i`} \ {enP }), pci points to a visible statement of P , and

shS(pc[i]) = labelP (pci);

5. pcS = linemap[P,k](pcenP , r).

Let π = c0 →
P
c1 →

P
· · · →

P
cm be an execution of P . We fix the schedule as the

sequence of threads ordered by increasing identifier2 (increasing-id schedule). Let enjP be

the identifier of the enabled thread in configuration cj . We define a map that from each

prefix of π according to this schedule returns the minimal round-robin bound. Formally,

1Since by assumption thread functions do not have function calls or local variables, the configuration
of each thread in P only consists of its program counter.

2Note that this is exactly the order in which thread functions are called in the main driver of JP Kk.



Chapter 4 Lazy Sequentialization 47

roundπ : [0,m]→ [1, k] is inductively defined as follows:

roundπ(j) =


1 if j ∈ {0, 1};
roundπ(j − 1) + 1 if j ∈ [2,m] ∧ enjP < enj−1

P ;

roundπ(j − 1) otherwise (i.e., j ∈ [2,m] ∧ enjP ≥ en
j−1
P ).

We are now ready to prove that every k round-robin execution of P (according to the

increasing-id schedule) can be simulated by S, hence by JP Kk. Intuitively, the proof shows

that an execution π of P can be simulated by an execution π̂ of S. The key observation

is that any statement executed in P is simulated by a sequence of one or more statements

of S. We split such sequence of statements in two sequences and consider these in two

separate parts of the proof. The first sequence corresponds to executing in S exactly

the same statement as in P , which leads to an intermediate configuration ĉ. For this

part we consider separately the case when the statement is not a call to a thread routine,

and one individual case for each of the thread routines modelled in our schema. For the

second sequence (that starts from ĉ) we show that zero or more transitions are performed

to correctly position the program counter of S to the next statement to simulate (that

corresponds to the next statement executed in P according to π). The proof at this point

proceeds by case inspection on the kind of statement. If the statement is non-visible,

there are no further steps and the lemma trivially holds. If the statement is visible, the

proof proceeds by considering separately the case when a context switch happened in P

(and thus needs to be simulated in S) or when it does not.

Lemma 4.2. Let P be a bounded multi-threaded program, k be a positive integer, and S

be the simplified inlining of JP Kk. For every k round-robin execution

π = c0 →
P
c1 →

P
· · · →

P
cm

of P with respect to the increasing-id schedule, there is an execution

π̂ = Î  
S
ĉ0  

S
ĉ1  

S
· · ·  

S
ĉm

of S such that cj ≡rj ĉj with rj = roundπ(j), for every j ∈ [0,m].

Proof. For j ∈ [0,m], let cj = 〈shjP , en
j
P , pc

j
t1
, . . . , pcjt`〉, and ĉj = 〈shjS , pc

j
S〉.

Furthermore, we define csπ : [0,m]→ N as follows:

csπ(j) =


size[enm] if j = m;

labelP (pcj+1
enj ) if j < m ∧ enjP 6= enj+1

P ;

csπ(j + 1) otherwise.

In other words, csπ(j) is the value of the numerical label at which the thread enabled in

configuration cj will context-switch out. We denote csj = csπ(j), for any j ∈ [0,m].



48 Chapter 4 Lazy Sequentialization

The proof now proceeds by showing by induction on j ∈ [0,m] that the following property

P(j) holds:

There exists an execution of S, π̂j = Î  
S
ĉ0  

S
ĉ1  

S
· · ·  

S
ĉj such that

ci ≡ri ĉi and shiS(cs) = csi, for every i ∈ [0, j].

Base case: j = 0. We choose the initial configuration Î such that the values of global

and local variables coincide with those in c0. Furthermore, the auxiliary variables of the

initial configuration of S are by construction initialised as follows: (1) the valuation of

active[0] is 1 and the valuation of active[i] is 0 for any i ∈ [1, n], as the only active

thread is the one corresponding to the main procedure of P that has identifier 0; (2)

variable ct (that keeps track of the identifier of the thread under simulation) is also set

to 0; and (3) all the elements of the array pc are set to 0, which is the numerical label of

the first statement in any thread. Thus, the equivalence of c0 and Î holds for properties

1-4 of Definition 4.1, but property 5 still does not hold, because the program counter of

S is positioned at the beginning of the main driver rather than pointing to the beginning

of the sequentialized main procedure (i.e., the first thread simulation function).

In the main driver of S (see Figure 4.3), we can execute the first if statement in the first

loop iteration, where ct is 0, and pick the transition that sets cs to cs0 (which is always

possible as we can choose any nondeterministic value in the range of the thread labels of

the main procedure of P ). Then, we invoke the sequentialized main function, where the

condition check of the macro J(0,1) guarding the first statement fails, thus the control

moves to the first statement, s. This configuration is ĉ0. Since the original variables are

not affected by these last transitions, c0 ≡r0 ĉ0 and sh0
S(cs) = cs0, that shows the base

case.

Inductive step. Now, assuming that P(j − 1) holds, we prove that P(j) holds. For

this, it suffices to prove that ĉj−1  
S
ĉj , cj ≡rj ĉj , and shjS(cs) = csj .

Since P(j − 1) holds, from the definition of equivalent configurations we obtain that

pcj−1
S = linemap[P,k](pc

j−1
enj−1 , rj−1), which essentially means that both P and S point to

the same statement, say stmt, in cj−1 and ĉj−1, respectively.

We now split the proof into two parts. We first show that by simulating stmt in S (which

may require one or more transitions) there exists an intermediate configuration ĉ where

all parts of Definition 4.1 hold except possibly for part 5 that concerns the consistence of

the program counters. Then, we show that from ĉ we can take zero or more transitions

that position the program counter s.t. part 5 of Definition 4.1 holds while retaining the

remaining properties. The reached configuration is ĉj . The proof of both parts is by case

inspection.

We start by considering the first part, i.e., from ĉj−1 to ĉ. We distinguish between the

different kinds of the simulated statement stmt:



Chapter 4 Lazy Sequentialization 49

• Thread creation and joining. A thread create statement in P adds to cj−1 the

initial configuration of the newly created thread with a new identifier, say t, and a

program counter pointing to the first statement of that thread. By construction,

the create statement is transformed into a call to seq create in S that sets

active[t] to true and pc[t] to 0.

A join statement in P invoked with thread identifier t normally blocks the invoking

thread (i.e., the thread does not make any further transition) until the thread

identified by t terminates its execution. At that point, the configuration for the

terminated thread is removed from cj . By assumption, all calls to a concurrency

routine in π are not blocking (see discussion at the beginning of the section). In

S, the assume statement from seq join (see Figure 4.4), discards all executions

where active[t] is set.

The above reasoning shows that in both the transitions considered properties 2 and

4 of Definition 4.1 hold for ĉ and cj . Since the rest of the configuration (except for

the program counter) remains unchanged, by inductive hypothesis parts 1–4 hold.

• Lock acquisition and release. A thread lock operation in P on a mutex m suspends

the invoking thread until m becomes available, i.e., it is not held by any other

thread, and then sets the variable representing m to enj . Similarly to thread

joining, seq lock, which simulates lock in S (see Figure 4.4), uses an assume

statement to discard any execution where the mutex is not free, and then sets m,

now a free mutex, to the same value.

A thread releasing a mutex m using an unlock statement in P sets m to a special

value indicating that the lock is now free. This is done in S by the corresponding

seq unlock function that performs exactly the same assignment.

In both cases, the transition of S performs the same memory update as P and

thus since everything else, except the program counter, is unchanged, by inductive

hypothesis again parts 1–4 of Definition 4.1 hold for ĉ and cj .

• Remaining statements. If stmt is not a call to a concurrency routine, it can only

involve the common variables of P and S. Being cj−1 and ĉj−1 equivalent, after

executing stmt these variables will hold the same values in P and S3

Since everything else except the program counter is unchanged, by inductive

hypothesis parts 1–4 of Definition 4.1 hold for ĉ and cj .

Now we show that indeed from ĉ there are transitions of S leading to a configuration ĉj

such that cj ≡rj ĉj and shjS(cs) = csj . Note that these transitions do not modify the

common variables of P and S. We set pc to pcjenj−1 , which is the program counter of the

thread that has executed the statement in the last transition. We proceed again by case

inspection:

3Nondeterministic transitions of P due to the occurrence of the ∗ operator can be matched by
transitions in S where ∗ yields the same evaluation as in P .



50 Chapter 4 Lazy Sequentialization

• Non-visible statements. If pc points to a non-visible statement then enj = enj−1 and

pcjS = linemap[P,k](pc, rj). Thus, cj ≡rj ĉ already holds. Moreover, the valuation

of cs in ĉj−1 is the same as in ĉ that is csj = csj−1, therefore we can take ĉj = ĉ.

• Visible-statements with no context-switch. If pc points to a visible statement, then

the corresponding statement in S with program counter linemap[P,k](pc, rj) is

guarded by the macro J(s, s + 1) for some numerical label s. Since no context-

switch occurs, s cannot be greater than the guessed context-switch point, and thus

this macro is immaterial and the control moves to linemap[P,k](pc, rj) in S. The

reached configuration, that we denote with ĉj , is such that cj ≡rj ĉj .

We recall that csj is the label of the statement at which the enabled thread in

configuration cj context-switches out. By inductive hypothesis, cs at ĉj−1 evaluates

to csj−1. Since no context switch occurs in the last transition, csj−1 = csj . Being

cs not updated in the last transition, the valuation of cs at ĉj is exactly csj .

• Visible-statements with context-switch. The remaining case is when pc points to a

visible statement in P and a context-switch occurs. Thus, is S, the value of the

current numerical label s must be greater than cs, so that the macro J(s, s+ 1)

jumps to label s + 1. By construction, then the control jumps in multiple hops

from one label to the next one and then back to the main driver, right after the

(inlined) call to the sequentialized function of the thread identified by enj−1 in

the rj−1-th iteration of the while loop. Thus, variable pc[enj−1] is set to cs,

which corresponds to the value of the numerical label of the statement where the

context-switch happened. The other entries of the array pc remain as in ĉj−1. Now,

going through all subsequents thread simulation blocks within the main driver, we

enter the first block that corresponds to the thread identified by enj . Notice that

this block is in the rj-th iteration of the while loop.4

Variable ct is then set to enj , and we can take the transition of S that sets cs to

cj (in S we nondeterministically guess this value). Then, the thread simulation

function for the enabled thread enj is entered. Jumping in multiple hops the control

is repositioned to the numerical label pc[enj], which by inductive hypothesis

corresponds to the numerical label of the last context switch for this thread. Here

the macro J has no effect and the control is positioned to linemap[P,k](pc, rj). The

reached configuration is ĉj and is such that cj ≡rj ĉj .

Let us now introduce some additional definitions to prove the other direction of the

lemma. A configuration ĉ = 〈shS , pcS〉 of S is relevant if there exists a program counter

4Note that other intermediate simulation blocks for other active threads may be entered due to the
corresponding active flag being set, however appropriate non-deterministic choices of cs allow to skip
the simulation of those threads.



Chapter 4 Lazy Sequentialization 51

pc of P and a round number r ∈ [1, k] such that pcS = linemap[P,k](pc, r). A signature

of an execution π̂ of S ending with a relevant configuration is the sequence obtained by

removing from π̂ all the configurations that are not relevant.

We show now that each k round-robin execution π̂ of S ending with a relevant configuration

can be simulated by an execution of P that matches all the relevant configurations of π̂

with equivalent configurations according to Definition 4.1, thus showing the completeness

of our approach w.r.t. k round-robin executions.

Lemma 4.3. Let P be a bounded multi-threaded program, k a positive integer, and S

the simplified inlining of JP Kk. For every execution

π̂ = Î  
S
ĉ0  

S
ĉ1  

S
· · ·  

S
ĉm

of S such that ĉ0, ĉ1, . . . , ĉm is the signature of π̂, there is a k round-robin execution of P

π = c0 →
P
c1 →

P
· · · →

P
cm

and a non-decreasing sequence of round numbers (r0, r1, . . . , rm) ∈ [k]m+1 such that

cj ≡rj ĉj for every j ∈ [0,m].

Proof. For j ∈ [0,m], let cj = 〈shjP , en
j
P , pc

j
t1
, . . . , pcjt`〉, and ĉj = 〈shjS , pc

j
S〉. Given a

program counter pcS of S, we define prev label(pcS) as the last numerical label occurring

in S before the statement with program counter pcS .

The proof now proceeds, showing by induction on j ∈ [0,m], that the following property

Q(j) holds:

There is an execution of P , πj = c0 →
P
c1 →

P
· · · →

P
cj and a non-

decreasing sequence of round numbers (r0, r1, . . . , rj) ∈ [k]j+1 such that for

every i ∈ [0, j], ci ≡ri ĉi, and ri ≥ roundπj (i).

Base case: j = 0. We choose the initial configuration c0 such that the values of global

and local variables coincide with those in Î. Furthermore, the auxiliary control variables

of an initial configuration of S are by construction initialised as follows: (1) the valuation

of active[0] is 1 and the valuation of active[i] is 0 for any i ∈ [1, n]; (2) variable ct

is also set to 0; and (3) all the elements of array pc are set to 0, which is the numerical

label of the first statement in any thread. Thus, c0 and Î are equivalent except that the

program counter of S is positioned at the beginning of the main driver, while in P it

points to the beginning of the main procedure (i.e., the first thread simulation function).

The execution from Î to ĉ0 in π̂ is deterministic when r0 is fixed. Observe that r0 is

the number of the loop iteration in the main driver in which the first thread simulation

starts by executing at least one statement of the original thread. Now in the main driver



52 Chapter 4 Lazy Sequentialization

of S (see Figure 4.3), we execute the first if statement in r0-th loop iteration, where

ct is set to 0, and then the transition that sets cs to any nondeterministic value in the

range of the numerical labels of the main procedure of P . This value must be greater

than 0 to make the simulation start. Then, the sequentialized main is invoked. The

condition check of the macro J(0,1) guarding the first statement s of the sequentialized

main fails, and the control moves to s. This configuration is relevant and corresponds to

ĉ0. Since none of the original variables has changed in the above transitions, c0 ≡1 ĉ0,

sh0
S(cs) > prev label(pc0

S), and r0 ≥ 1 = roundπ0(0) that shows the base case.

Inductive step. Now, assuming that Q(j − 1) holds, we prove that Q(j) holds. For

this, it suffices to prove that cj−1 →
P
cj , cj ≡rj ĉj , sh

j
S(cs) > prev label(pcjS), and

rj ≥ roundπj (j).

Since Q(j − 1) holds, from the definition of equivalent configurations we obtain that

pcj−1
S = linemap[P,k](pc

j−1
enj−1 , rj−1), which means that both P and S point to the same

statement, say stmt, in cj−1 and ĉj−1, respectively.

By construction, any execution of S that starts from a relevant configuration and ends at

a relevant configuration without visiting other relevant configurations can be split into

two executions: a first part that simulates a statement from P , and a second part that

positions the program counter to the next statement to execute. Let ĉj−1  
S
ĉ  

S
ĉj be

such an execution, where ĉ is the configuration resulting from the simulation of stmt.

Now, we pick as cj the configuration of P obtained from cj−1 by executing stmt, choosing

enjP = shjS(ct) (which is always possible since the enabled thread is nondeterministically

selected in P ), and matching any other nondeterministic choice in ĉj−1 and ĉ.

We observe that for ĉ and cj Definition 4.1 holds except possibly for parts 3-5. The

proof is as for the cases Thread creation and joining, Lock acquisition and release and

Remaining statements given in the proof of Lemma 4.2. Therefore, we omit further

details on this.

Also, the execution from ĉ to ĉj does not modify the common variables of P and S, thus

parts 1-2 of Definition 4.1 are preserved up to ĉj . We now show that this computation

from ĉ to ĉj indeed satisfies parts 3-5 of Definition 4.1, and so cj ≡rj ĉj . The proof is by

case inspection.

Let pc be pcjenj−1 , which is the program counter of the thread that has executed the

statement in the last transition in P , and p̂c be the program counter of S at ĉ.

• Non-visible statements. If pc points to a non-visible statement, then enj−1
P = enjP

and (by construction of S) pcjS = p̂c = linemap[P,k](pc, rj). Therefore, ĉ is a

relevant configuration and ĉj = ĉ. We now prove that cj ≡rj ĉj by showing that

parts 3-5 of Definition 4.1 hold. Note that variable ct is only updated in the



Chapter 4 Lazy Sequentialization 53

main driver, thus shjS(ct) = shj−1
S (ct). By inductive hypothesis shj−1

S (ct) = enjP ,

thereby part 3 of the definition holds. With a similar argument we prove part 4.

Moreover, we have already shown that pcjS = linemap[P,k](pc, rj), hence part 5 also

holds.

Now we show that shjS(cs) > prev label(pcjS). Since pcjS points to a non-visible

statement, it must be the case that prev label(pcj−1
S ) = prev label(pcjS). Further, by

inductive hypothesis, shj−1
S (cs) > prev label(pcj−1

S ). Thus, shjS(cs) = shj−1
S (cs) >

prev label(pcj−1
S ) = prev label(pcjS).

We conclude the proof of this case by showing that rj ≥ roundπj (j). Since enjP =

enj−1
P , roundπj (j) = roundπj (j − 1). Furthermore, the control in S remains in the

same sequentialized thread function, hence rj = rj−1. By inductive hypothesis,

rj−1 ≥ roundπj (j − 1) thereby rj ≥ roundπj (j).

• Visible-statements. If pc points to a visible statement, then the corresponding

statement in S with program counter linemap[P,k](pc, rj) is guarded by either the

macro J(s, s+ 1), or the sequence of macros G(s) J(s, s+ 1), for some numerical

label s. We only consider the latter case as it is more general. Observe that the

configurations right before and after the execution of G(s) are not relevant. Since

we reach ĉj , the assume statement in G does not block the computation. Let us now

distinguish the cases based on whether the condition check in J(s, s+ 1) succeeds.

We recall that J(s, s+ 1) is defined as follows:

if( pc[ct]>s || s >=cs ) goto s+1;

No context-switch simulation. If the condition cond of the if-statement in J

is evaluated to false, then the control moves to linemap[P,k](pc, rj) in S. The

reached configuration is relevant and corresponds to ĉj . This proves parts

1-2, 5 of Definition 4.1. Parts 3 and 4 also hold for the same argument as the

Non-visible statements case given above. Furthermore, since cond does not

hold, it must be the case that shjS(cs) > prev label(pcjS) = s. The argument

proving that rj ≥ roundπj (j) is the same as for the Non-visible statements

case given above.

Context-switch simulation. The remaining case is when cond is evaluated to

true. In this case, we claim that s = shj−1
S (cs) holds.

Claim’s proof. We first prove that first sub-expression in cond, i.e., pc[ct]>s, is

evaluated to false. The proof is by contradiction. If pc[ct]>s was evaluated to

true, then the same sub-expression in all the other macros J(t) with 0 ≤ t < s

within the same sequentialized function would be evaluated to true. Thus, in

the last call to the current thread function along π̂, the control would have

moved from J(0,1) to J(s, s + 1), jumping in multiple hops through the

in-between J macros. Consequently, the simulation of stmt would not have



54 Chapter 4 Lazy Sequentialization

taken place, which is indeed a contradiction. Thus, cond holds because s >=cs

is evaluated to true.

We now show that at this point of the execution indeed s corresponds to the

evaluation of cs. We consider two cases. If the macro G(s), which is defined

as assume(cs>=s), precedes J(s, s+ 1), then the evaluation of cs after the

evaluation of cond in J must be s. If only the macro J(s, s+ 1) occurs, the

control must come from the previous statement (which is stmt by hypothesis)

whose program counter is pcj−1
S = linemap[P,k](pc

j−1
enj−1 , rj−1). Note that

prev label(pcj−1
S ) = s− 1. By inductive hypothesis, shj−1

S (cs) > s− 1. Since

in the simulation of stmt variable cs is not modified, the evaluation of cs

satisfies the same condition right before J(s, s+ 1). Thus, similarly as above,

when J(s, s+ 1) is executed the evaluation of cs is s.

The above claim implies that on executions of S leading to relevant configu-

rations, after the simulations of some statements of a thread, the first time

that the condition of a J macro does not hold always coincides with the

case that cs evaluates to s. Since the numerical labels follow an increasing

order, this will be the case up to the end of the thread simulation function.

By construction, the control jumps in multiple hops from one label to the

next one and then back to the main driver, right after the unique call to

the (inlined) sequentialized function of the thread with identifier enj−1 of the

rj−1-th iteration of the while loop in the main driver of S. Thus, variable

pc[enj−1] is set to cs, and as shown above, corresponding to the numerical

label of the statement where the context-switch has happened. The other

elements of the array pc remain as in ĉj−1. Now, going through all successive

thread simulation blocks within the main driver, we enter the first block int

the rj-th iteration that corresponds to the thread identified by shjS(ct) = enj .

Variable ct is then set to enj , and rightafter cs is set to a non-deterministic

value greater than the valuation of pc[ct]. Then, the thread simulation

function for the enabled thread enj is entered. Jumping in multiple hops

the control is repositioned to the numerical label pc[enj], which by induc-

tive hypothesis corresponds to the label of the last context-switch for this

thread. Here the macro J has no effect and the control is positioned to

linemap[P,k](pc, rj). The reached configuration is ĉj , and cj ≡rj ĉj .
It is straightforward to show that (1) the valuation of cs is greater than the

valuation of pc[ct] (see above), and (2) using the inductive hypothesis that

rj ≥ roundπj (j).

From Lemma 4.2 and 4.3, we are now ready to claim the main result of this section.



Chapter 4 Lazy Sequentialization 55

Theorem 4.4 (Correctness). Let P be a bounded multi-threaded program, and k be a

positive integer. P fails and assertion through a k round-robin execution if and only if

JP Kk fails an assertion.

4.5 Alternative Scheduling Policies

Our sequentialization schema captures round-robin executions, where in each round the

threads are scheduled following a fixed order. It has been carefully fine-tuned with the

purpose of optimising the performance of the back-end for bug finding. However, the

interdependency, in the resulting schema, between the simulation of thread execution,

pre-emption, and resuming (undertaken by self-contained functions, as described in

Section 4.4.3) and the scheduler (the main driver presented in Section 4.4.2) grants

some degree of control over the considered thread interleavings. This can profitably be

exploited for different goals.

In this section, we outline two simple variations of the original schema: the first avoids the

analysis of unwanted schedules by filtering them out according to the thread identifiers

involved in the simulation; the second one extends the control at the level of the individual

execution contexts, by deactivating context-switch points that do not satisfy specific

conditions. Both of them can be obtained by slightly modifying the main driver, and

can be used, for instance, to (a) guide the analysis on a pruned state space (aiming at

leveraging specific facts known on the input program in order to achieve faster analyses),

or (b) partition the state space at the level of the translation (desirable for partial or

distributed analysis of large programs).

The simplicity of our changes points out, once again, the expressiveness of reasoning at

the level of the source code, especially for sequentializations, where concurrency-related

aspects can be manipulated at a very high-level. In fact, achieving similar alterations by

working at a different level, for instance at the level of the verification condition, or even

at the level of the decision procedure, would require considerable efforts.

Coarse-grained Selective Round-robin Scheduling

A first simple variation consists in introducing schedule restrictions on a round-by-round

basis. Namely, for each round we can explicitly indicate a pool of threads (i.e., a subset

of the threads of the program) to which limit the simulation such that the simulation of

threads that do not belong to the pool is bypassed5.

This is a generalisation of the default round-robin scheduler shown in Figure 4.3 that can

be captured by setting the pool of threads to all threads in each round. Also, observe

5The pool for the first simulated round must include the main thread, otherwise the simulation cannot
start.



56 Chapter 4 Lazy Sequentialization

that we can narrow the pools down to single elements for each round, thereby forcing a

specific thread interleaving. However, we remark that even when the schedule is fixed

context switching can still occur at any visible statement.

Assuming that the external loop in the main driver has been unfolded k times, this

results in a static simplification of the main driver. More precisely, in each (unfolded)

iteration of the main driver, now corresponding to a restricted round, the guarded code

snippet that simulates a thread is statically removed when that thread is not in the pool

of threads for that round. In practice, the translation is tailored to the specific sub-set

of possible schedules, and the trimmed-down main driver results in smaller verification

conditions. Our current prototype includes this feature (see Section 5.5.2).

Fine-grained Selective Scheduling

We now describe another variation to our schema that, operating on the context switch

points, allows to refine the set of analysed program behaviours to a more fine-grained

level.

The main driver shown in Figure 4.3 uses the variable cs multiple times to guess the next

context switch point for the thread under simulation, immediately before invoking the

thread simulation function. However, we can guess all the context switch points at once,

for each thread and round, at the beginning of the main driver, and access them using

double-indexed array elements cs[round][ct] instead of one single scalar variable.

This change in the main driver yields an equivalent sequentialization, but, with all the

context switch points guessed upfront, restricting conditions may be enforced on them

by introducing an assume-statement right after their guessing. Note that, due to static

single assignment (see Section 2.1.4), the variable cs used in the original schema is

duplicated anyway along the process that generates the verification condition, hence the

proposed variation does not affect the size of the verification conditions6.

Following a similar reasoning, we can now replace variable ct with multiple variables

ct[round], and overwrite the constant values used in the original assignments of ct

according to our preferences. This yields an effect similar to when restricting round-

robin schedules using singleton pools (as described above), and in addition it allows

fine-grained control over the considered program behaviours, by considering both the

scheduled threads and the context-switch point at once. This can for instance be used as a

basic mechanism to experiment with partial-order reduction techniques [FG05, KWG09].

6At a closer look, since the guesses occur at different points in the program, the resulting verification
conditions have different structures and may trigger different heuristic decisions within the underlying
SAT procedure, thus potentially leading to performance gaps. However, the purpose of this variation is
not to improve the bug-finding performance, and as a matter of fact the standard translation generally
yields faster analysis in practice.



Chapter 4 Lazy Sequentialization 57

4.6 Evaluation

We have implemented our sequentialization approach in the Lazy-CSeq tool for multi-

threaded C programs (see Section 5.5) using our CSeq framework (see Chapter 5).

Our evaluation is divided in two main parts:

1. we compare Lazy-CSeq in combination with multiple backends against several tools

with built-in concurrency handling, observing the bug finding performance, the

state space coverage, and the size of the verification conditions (Section 4.6.1);

2. we compare Lazy-CSeq using the best-performing backend against LR-CSeq us-

ing the best-performing backend and against the best-performing bounded-model

checker with built-in concurrency handling, observing only the bug finding perfor-

mance and using a considerably extended benchmark suite for a more in-depth

comparison (Section 4.6.2).

4.6.1 Multiple Backends vs. Multiple Concurrency-handling Tools

We have evaluated Lazy-CSeq on the benchmark set from the concurrency category of

the SV-COMP 2014 software verification competition [Bey14]. This set consists of 76

concurrent C programs using POSIX threads as a concurrency model, with a total size of

about 4,500 lines of code. 20 of the files contain a reachable error location. We chose this

benchmark set because it is widely used and all tools (but Corral) we compare against

have been trained on this set for the competition.

The experiments are split into two parts. The first part only concerns the unsafe programs,

where we investigate the effectiveness of several tools at finding errors. The second part

concerns the safe programs, where we estimate whether limiting the round bound to

small values allows a more extensive exploration of programs in terms of increased values

of loop unwinding bounds.

The tools considered for comparison are BLITZ [CDS13] (4.0), CBMC [AKT13] (4.5

and 4.7), Corral [LQL12], LR-CSeq [FIP13a] (0.5) ESBMC [CFM12] (1.22), LLBMC

[MFS12] (2013.1), and Threader [PR13].

We ran the experiments on an otherwise idle machine with a Xeon W3520 2.6GHz

processor and 12GB of memory, running Linux with a 64-bit kernel. We set a 10GB

memory limit and a 750s timeout for each test case.



58 Chapter 4 Lazy Sequentialization

Table 4.1: Bug-hunting performance (unsafe instances); −1: timeout (750s); −2:
internal error; −3: manual translation not done; −4: test case rejected; −5: unknown

failure.
Sequentialized version Concurrent version

u
n
w

in
d

ro
u

n
d

B
L

IT
Z

4
.0 C
B

M
C

4
.5 C
B

M
C

4
.7 E
S

B
M

C
1
.2
2

L
L

B
M

C
2
0
1
3
.1

C
B

M
C

4
.5 C
B

M
C

4
.7 C
or

ra
l

L
R

-C
S

eq
0
.5 E
S

B
M

C
1
.2
2

T
h

re
a
d

er

27 boop simple v 2 2 0.3 0.3 0.3 0.8 0.4 −5 0.4 1.9 1.0 −1 117.6
28 buggy simple loop1 2 1 0.2 0.2 0.2 0.3 0.3 −5 0.3 0.8 0.2 624.7 0.3
32 pthread5 vs 2 2 0.4 0.2 0.3 0.2 0.2 −5 0.8 2.2 −2 −1 −1

40 barrier v 4 1 0.2 0.3 0.2 0.3 0.3 −5 0.6 0.8 −2 −2 0.7
49 bigshot p 1 2 0.3 0.4 0.3 0.3 0.6 0.4 0.3 −3 −4 1.7 −2

50 bigshot s 1 2 0.3 0.4 0.3 0.3 0.6 −5 0.5 −3 −4 4.0 −2

53 fib bench 5 5 36.6 1.1 1.0 15.2 2.1 0.7 1.8 5.8 6.3 31.1 6.9
55 fib bench longer 6 6 155.5 4.1 1.5 402.1 3.1 1.6 3.2 14.4 7.2 150.9 10.4
57 fib bench longest 11 11 −1 425.7 214.0 −1 −1 645.9 75.2 −1 −2 −1 54.3
61 lazy01 1 1 0.3 0.2 0.2 0.2 0.4 0.6 0.5 1.3 0.7 398.6 7.1
63 qrcu 1 2 1.4 0.6 0.8 0.7 −5 0.6 0.7 5.8 −5 −1 −1

65 queue 2 2 1.6 8.4 8.8 1.1 −1 18.8 20.9 −3 128.7 −1 −2

67 read write lock 1 2 0.5 0.3 0.3 0.4 −5 0.4 0.4 1.8 2.6 −1 38.4
69 reorder 2 2 1 0.3 0.6 0.6 −2 1.3 1.0 0.7 1.3 −2 −1 2.4
70 reorder 5 4 1 0.4 0.8 0.9 −2 3.3 2.1 0.7 1.9 −2 −1 3.5
72 sigma 16 1 1.4 7.6 7.8 −2 73.0 −1 219.1 −3 −4 −1 −2

73 singleton 1 3 0.7 0.6 0.5 0.5 −5 −5 1.6 −3 −4 −1 −2

75 stack 2 1 0.2 0.3 0.3 0.3 1.0 3.2 0.8 2.1 2.1 −1 151.9
77 stateful01 1 1 0.2 0.2 0.2 0.3 0.5 0.7 0.7 2.0 0.7 −1 0.9
82 twostage 3 2 1 0.3 0.7 0.8 −2 8.0 9.1 4.9 3.6 −4 −1 −1

Unsafe instances

The evaluation on unsafe instances is split into two parts. The purpose of the first part

is to evaluate the performance of Lazy-CSeq in combination with different sequential

backends; the second part compares the performance of Lazy-CSeq against different tools

with built-in concurrency support.

The performance of Lazy-CSeq using different backends is shown on the left of Table 4.1.

Note that only the backend run-times are given. The additional Lazy-CSeq pre-processing

time, which is the same for every backend, is about one second for each file with our

current Python prototype implementation. This could easily and substantially be reduced

with a more efficient implementation. The results show that the tools were able to process

most of the files generated by Lazy-CSeq’s generic pre-processing, and found most of the

errors. This is in marked contrast to our experience with LR-CSeq, where the integration

of a new backend required a substantial development effort, due to the nature of the

Lal-Reps schema. They also show that the different backends generally perform relatively

uniformly, except for few cases where the performance gap is noticeably wide, probably

due to a different handling of subtle corner-cases in the input from the backends. Both

observations gives us further confidence that our approach is general and not bound to a

specific verification backend tool.



Chapter 4 Lazy Sequentialization 59

1 2 3 4 6 8 10 12 14
0

20

40

60

80

100

unwind bound

u
n

fi
n

is
h

ed
a
n

a
ly

se
s

(%
)

Lazy-CSeq -R1

Lazy-CSeq -R2

Lazy-CSeq -R3

Lazy-CSeq -R4

Lazy-CSeq -R5

Lazy-CSeq -R6

CBMC 4.7

Figure 4.6: Evaluation of safe benchmarks for increasing loop unwind bounds.

We then compared the bug-hunting performances of Lazy-CSeq and several tools with

different native concurrency handling approaches. CBMC and ESBMC are both bounded

model-checkers; CBMC uses partial orders to handle concurrency symbolically while

ESBMC explicitly explores the different schedules [CF11]. LR-CSeq is our implementation

of the variant of the Lal-Reps schema (see Chapter 3), and uses CBMC as sequential

backend. Corral [LQL12] uses a dynamic unwinding of function calls and loops, and

implements abstractions on variables with the aim of discovering bugs faster. Threader,

the winner in the Concurrency category of the SV-COMP 2013 competition, is based

on predicate abstraction. For each tool (except Threader) we adjusted, for each file,

all parameters to the minimum needed to spot the error. The results, given on the

right of Table 4.1, show that Lazy-CSeq is highly competitive. Of the “native” tools

only CBMC is able to find all errors with the most recent version. All other tools time

out, crash, or produce wrong results for several files. This shows how difficult it is to

integrate concurrency handling into a verification tool—in contrast to the conceptual and

practical simplicity of our approach. Moreover, for simple problems (with verification

times around one second), Lazy-CSeq performs comparably with the fastest competitor.

On the more demanding instances, Lazy-CSeq is almost always the fastest, except for

the Fibonacci tests (53, 55 and 57) that are specifically crafted to force particularly

twisted interleavings. In most cases (again except for the Fibonacci tests), Lazy-CSeq

successfully finds the errors in all test cases using only three rounds, confirming that few

context switches are sufficient to find bugs [QW04, MQ07, TDB14].

Safe instances

The evaluation on safe instances consisted in comparing Lazy-CSeq using CBMC v4.7 as

backend with the best-performing tool with native concurrency handling (again, CBMC).



60 Chapter 4 Lazy Sequentialization

We ran nine sets of experiments for CBMC with unwinding bounds to 1, 2, 3, 4, 6, 8, 10,

12, and 14, respectively. Recall that CBMC considers all possible interleavings and does

not performs context-bounding. For Lazy-CSeq, we ran six repetitions of the sets, with a

bound on the number of rounds from one to six, for each of the above unwinding values,

respectively.

As shown in Figure 4.6, we observe that CBMC starts performing worse than Lazy-CSeq,

in terms of number of instances on which the analysis is completed, as we increase the

loop unwinding bound. Overall, with the settings from the SV-COMP, Lazy-CSeq, is

about 30x faster than CBMC for safe instances. This points out how the introduction

of an extra parameter for BMC, i.e., the bound on the number of rounds, can offer a

different, alternative coverage of the state-space. In fact, it allows larger loop unwindings,

and therefore a deeper exploration of loops, than feasible with other methods.

Size of the Verification Condition

We conducted further investigation in order to compare the size of the verification

conditions generated from the original files against the size of their sequentialized

counterparts. We compared the number of variables and clauses of the resulting formulae

reported by CBMC after the propositional reduction on the original and the sequentialized

files, with loop unrolling bounds of 1,2,3,4,6, and 8 and round bounds from 1 to 4.

Figure 4.7 shows the curves of the average ratio, over all the safe test cases, between

the number of variables (resp. clauses) generated from the original files and the number

of variables (resp. clauses) from the sequentialized files, for different values of the loop

unwind bound. We observe that this gap grows for increasing values of this parameter.

The major insight here is that introducing a small bound on the number of round-robin

schedules keeps the formulae compact when increasing the loop unwinding bound; in

contrast, with unbounded context-switches the formula tends to grow very quickly both

in the number of clauses and variables.

Note that with unwinding bounds greater than 8 the back-end fails to produce the

formula within the given memory and time limits on too many test cases, which makes it

unfeasible to extend our comparison beyond that bound.



Chapter 4 Lazy Sequentialization 61

1 2 3 4 6 8
0

5

10

15

20

unwind bound

v
a
ri

a
b

le
s

(r
a
ti

o
)

CBMC / Lazy-CSeq -R1

CBMC / Lazy-CSeq -R2

CBMC / Lazy-CSeq -R3

CBMC / Lazy-CSeq -R4

1 2 3 4 6 8
0

5

10

15

20

25

30

unwind bound

cl
a
u

se
s

(r
a
ti

o
)

CBMC / Lazy-CSeq -R1

CBMC / Lazy-CSeq -R2

CBMC / Lazy-CSeq -R3

CBMC / Lazy-CSeq -R4

Figure 4.7: Verification condition size ratio between CBMC and Lazy-CSeq using

different round bounds.

Several approaches [RG05, GG08, SW11, SW10, AKT13] encode program executions as

partial orders, in which each thread is an SSA program and operations on the shared

memory are constrained by a global conjunct modeling the memory model. In [AKT13]

the authors argued that the formula size of their encodings on the considered benchmarks

(among which are 36 from SV-COMP 2014) is smaller than those of [RG05, GG08, SW11,

SW10]. In our work, we have empirically evaluated the formula size of our encoding

against CBMC (see Figure 4.7). The main result is that our approach yields smaller

formulae already for small unwind bounds, even for four rounds; with increasing unwind

bounds (e.g., n = 8), CBMC’s formulae contain 5x to 15x more variables and 5x to 25x

more clauses, depending on the number of rounds.

4.6.2 Fastest Backend vs. Fastest Concurrency-handling Tool

We recently re-compared the bug-hunting performance of Lazy-CSeq against CBMC

(as the best-performing bounded model-checker with native concurrency handling) and

LR-CSeq (our implementation of the LR schema described in Chapter 3), on a consid-

erably extended benchmark suite, using the latest available versions of the tools, and

a faster machine to reduce the timeouts. We used CBMC as the backend for both our

sequentialization tools.



62 Chapter 4 Lazy Sequentialization

We considered the 783 unsafe files of the 993 files from the Concurrency category of the

SV-COMP 2015 benchmark suite [Bey15], with a total of approx. 240K lines of code.

We have performed the experiments on an otherwise idle machine with a Xeon W3520

2.6GHz processor and 12GB of memory, running a Linux operating system with 64-bit

kernel 3.0.6. We set a 10GB memory limit and a 750s timeout for the analysis of each

subject. For each tool and file, we set the parameters to the minimum value needed to

expose the error.

1 10 100

1

10

100

time to find the bug (Lazy-CSeq)

ti
m

e
to

fi
n

d
th

e
b

u
g

(C
B

M
C

) pthread (17)

pthread-atomic (2)

pthread-ext (8)

pthread-lit (3)

pthread-wmm (753)

1 10 100

1

10

100

time to find the bug (Lazy-CSeq)

ti
m

e
to

fi
n

d
th

e
b

u
g

(L
R

-C
S

eq
) pthread (11)

pthread-atomic (2)

pthread-ext (2)

pthread-wmm (753)

Figure 4.8: Lazy-CSeq vs. CBMC and LR-CSeq: bug-hunting performance

The scatter plots (with logarithmic axes) shown in Figure 4.8 summarise the running-time

comparison between Lazy-CSeq and CBMC, and Lazy-CSeq and LR-CSeq.

All tools report the correct answers. Both CBMC and LR-CSeq time out on 6 files.

Furthermore, LR-CSeq rejects 5 files and returns “unknown” on 10 files (due to the

restrictions mentioned in Chapter 3, translation errors or bugs in the tool). The experi-

ments show that Lazy-CSeq outperforms both CBMC and LR-CSeq, except on a handful

of small files on which CBMC is faster. Overall, Lazy-CSeq is about 6x and 20x faster

than LR-CSeq and CBMC, respectively.



Chapter 4 Lazy Sequentialization 63

4.7 Conclusions

In this chapter we have presented a novel lazy sequentialization schema for bounded

multi-threaded programs that has been carefully designed to take advantage of BMC tools

developed for sequential programs. We have implemented our approach for multi-threaded

C programs with POSIX threads in the prototype tool Lazy-CSeq as a code-to-code

translation (see Section 5.5) using our sequentialization framework, CSeq (see Chapter 5).

Lazy-CSeq can be used as a stand-alone model checker that currently supports several

BMC tools as backends. The experimental results show that our prototype:

• can detect all the errors in the unsafe files, and is competitive with or even

outperforms state-of-the art BMC tools that natively handle concurrency;

• allows an alternative analysis of safe programs with a higher number of loop

unwindings by imposing small bounds on the number of rounds;

• is generic in the sense that works well with different backends.

Laziness allows us to avoid handling all spurious errors that can occur in an eager

exploration (for example when using the Lal-Reps schema evaluated in Chapter 3).

Thus, we can inherit from the backend tool all checks for sequential C programs such

as array-bounds-check, division-by-zero, pointer-checks, overflow-checks, reachability of

error labels and assertion failures, etc.

A core feature of our code-to-code translation that significantly impacts its effectiveness

is that it just injects light-weight, non-invasive control code into the input program. The

control code is composed of few lines of guarded goto statements and, within the added

function main, also very few assignments. It does not use the program variables and it

is clearly separated from the program code. This is in sharp contrast with the existing

sequentializations (such as LR, LMP [LR09, LMP09b], which can handle also unbounded

programs) where multiple copies of the shared variables are used and assigned in the

control code.

As consequence, we get three general benefits that set our work apart from previous

approaches, and that simplify the development of full-fledged, robust model-checking tools

based on sequentialization. First, the translation only needs to handle concurrency—all

other features of the programming language remain opaque, and the backend tool can

take care of them. This is in contrast to, for example, LR where dynamic allocation

of the memory is handled by using maps [LQR09]. Second, the original motivation

for sequentializations was to reuse for concurrent programs the technology built for

sequential program verification, and in principle, a sequentialization could work as a

generic concurrency preprocessor for such tools. However, previous implementations

needed specific tuning and optimizations for the different tools (see [FIP13a]). In contrast,



64 Chapter 4 Lazy Sequentialization

Lazy-CSeq works well with different backends (currently BLITZ, CBMC, ESBMC, and

LLBMC), and the only required tuning was to comply with the actual program syntax

supported by them. Finally, the clean separation between control code and program

code makes it simple to generate a counter-example starting from the one generated by

the backend tool.



Chapter 5

CSeq Framework

In this chapter we present CSeq, our open-source framework for developing sequentializa-

tion tools. We describe the architecture of the framework, its main functionalities, and

how to develop new source-to-source translations. We present our Lazy-CSeq tool and

discuss how it has been developed within this framework [INF+15].

We release CSeq, including Lazy-CSeq, as open-source software. The project’s homepage

is at: http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html.

5.1 Overview

CSeq is a framework for developing tools for program analysis of C programs [ISO11]

that use the POSIX threads shared-memory concurrency model [ISO09]. It follows the

sequentialization approach, where the analysis of concurrent programs is reduced to the

analysis of sequential (i.e., non-concurrent) programs (as described in Section 2.3.2).

There are three main advantages in this approach: (1) a code-to-code translation is

typically much easier to implement than a full-fledged analysis tool; (2) it allows designers

to focus only on the concurrency aspects of programs, delegating all sequential reasoning

to an existing target analysis tool; (3) sequentializations can be designed to target

multiple backends for sequential program analysis.

CSeq subsumes our experience in developing sequentializations, and in particular empha-

sises the above aspects by: (a) encouraging a modular approach to source translation,

where the translation can be designed as a sequence of simple steps; (b) providing a

range of built-in modules and functionalities, in order to limit the overall engineering

effort and speed-up the prototyping and development of sequentialization-based tools.

In practice, the use of sequentialization can be summarised in three main phases:

65

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html


66 Chapter 5 CSeq Framework

• transformation: the concurrent program is re-written into a corresponding sequen-

tial version (i.e., the sequentialized file), where typically concurrency is removed

and replaced by non-determinism

• analysis: the sequentialized file is analysed using a backend for sequential analysis

that can handle non-determinism

• feedback : the output from the backend is processed in order to generate a user-

readable report.

The tool design methodology that we propose with our framework consists in splitting the

above phases into simple steps, each implemented as a separate component, or module.

A complete tool is then obtained by conveniently arranging the modules in a sequence,

or configuration. This modular approach supports the development of complex source

transformations.

CSeq borrows concepts related to source-to-source transformation and software analysis

frameworks. Source-to-source transformation, sometimes also referred to as code re-

factoring, was introduced in the 1970s for recursive programs with the goal to improve code

maintenance [BD77]. More recently, many source-to-source transformation frameworks

have been made available. A possible approach, followed for instance by DMS [BPM04],

consists in defining the transformations using rewrite rules. Similarly, TXL [Cor06] is

a special-purpose programming language for rapid prototyping of generalised source

transformation systems; it targets multiple languages and features language primitives for

specifying tree rewriting rules using context-free grammars. Cetus [BML+13] specifically

targets C programs and provides a range of built-in transformations for optimised

parallelisation and annotation of the source code. ROSE [QSPK01] uses different data

structures to capture multiple aspects of the input code, and embeds many source

transformations, for instance for loops (loop interchange, loop splitting, loop unrolling,

etc). Rather than using rewrite rules, it uses string-based source transformations. Roughly

this consists in building the AST from the original code and then visiting the AST to

re-generate the code. The transformation is achieved by altering the behaviour of the

AST visiting procedures.

CSeq only targets the C programming language [ISO11], and in particular shared-memory

multi-threaded programs using POSIX threads [ISO09]; it provides data structures that

capture detailed concurrency-related information on the input. In addition, it comes

with a few built-in standard transformations (not restricted to multi-threaded programs),

such as loop unrolling, function inlining, etc., commonly used in program analysis. It

uses string-based transformation, which is possibly more intuitive than using rewrite

rules, and thus perhaps closer to a developer’s point of view.

There are many well-known tool-development frameworks for software analysis. The

CPROVER framework has been used to develop tools for bounded model-checking



Chapter 5 CSeq Framework 67

[CKL04, MFS12, CFM12, CDS13] and abstraction-based tools such as SATABS [CKSY05].

It uses an intermediate representation that reduces the input program to a control-flow

graph. The IKOS [BNSV14] framework is targeted at building tools based on abstract

interpretation of avionic software; it uses the intermediate representation of LLVM

(LLVM-IR) [LA04].

LLVM’s intermediate representation has recently been attracting considerable interest,

and many tools both for software analysis and source-to-source translation rely on its

well-designed API built on top of a properly layered architecture. However, the frequent

changes to the API between releases anticipate additional code maintenance efforts. The

C back-end to generate C code from a parsed IR source tree has been removed due

stability and other issues, with tentatives to resurrect that functionality being still at

an experimental stage and outside the scope of the main branch. As an intermediate

representation LLVM-IR is thus not particularly indicated for source transformations,

especially on concurrent programs, as the support for multiple threads is not very mature

either.

CSeq does not use any low-level intermediate representation of the source code. Inter-

mediate representation, while undoubtedly increasing robustness by making the syntax

more regular, inevitably drops along the way potentially relevant information about the

input program. On the other hand, working directly on the original source language

offers a more abstract, compact, and expressive representation that can indeed support

more intricate reasoning, especially when dealing with source-to-source translations.

However, this does not prevent tool developers from implementing sequences of multiple

transformations to progressively obtain syntactically-restricted programs, whenever this

is desirable to simplify the development of complex transformations, as described later in

this chapter. In this sense the C language itself is used as an intermediate representation,

in a way similarly to CIL [NMRW02].

In this chapter we present the general architecture of CSeq and the Lazy-CSeq tool as a

specific instantiation that applies the lazy sequentialization schema discussed in Chapter 4

to realistic multi-threaded C programs. To date, however, CSeq has also been used for

developing other tools, namely MU-CSeq, which implements a new schema based on

memory unwindings [TIF+14, TIF+15] and a new prototype targeting abstraction-based

backends [NFLP15].

5.2 Architecture

The architecture of CSeq and the main component interplay is shown in Figure 5.1.

The front-end controls the execution of the system. The user provides through the

command-line (1) the input file, or files, to analyse, (2) the name of the definition file



68 Chapter 5 CSeq Framework

for the configuration to use, (3) a possibly empty extra argument list, depending on the

modules used in the configuration.

A configuration definition file is a plain text file that contains a list of modules: the

front-end executes them in the order given in the configuration and with the given

arguments (if any). The input of the first module is the content of the input file whose

name is given as an argument to the front-end, and the input of any of the remaining

modules is the output of the corresponding previous module in the configuration. The

output of the last module is the output of the front-end shown on the standard output

at the end of the execution.

Front-end Merger Translator Wrapper Back-end

Parser

Environment

. . .. . .

abstract syntax tree
symbol table
. . .

configuration definition
module parameters
. . .

Figure 5.1: Architecture of the CSeq framework

The dashed and the double-framed rectangles in the diagram indicate the configuration

and the modules, respectively. A configuration starts with the source merging module,

Merger, then continues with a sequence of Translator modules followed by a sequence

of Wrapper modules.

Each module has an input string, an output string, and zero or more parameters.

Wrappers work on generic input and output strings, and are basic units that carry out

general-purpose tasks, such as interacting with the operating system to make system calls.

More generally, they allow embedding external components within a tool. For example,

the built-in module for backend wrapping takes as input a program, invokes an external

tool to analyse the program, and returns the output from the tool upon completion.

Translator modules are specialised modules that extend the basic functionalities of a

Wrapper in order to support source-to-source program transformation. They take as

input a C program and return as output a transformed C program. Translators do

not allow preprocessor directives in the input, nor multiple inputs. The Merger module,

positioned in the beginning of the chain, is an exception. It takes as input one or multiple

C programs, performs source merging and preprocessing by invoking the C preprocessor

[SW05, EBN02], and returns as output a single C program.



Chapter 5 CSeq Framework 69

The Environment object, shared by the front-end and all modules, keeps tracks of the

overall status of the CSeq system and of each module in the configuration. It is a container

for shared information that the front-end and the modules can access throughout the

execution of a tool. The front-end uses it to store the input and output of each module,

the actual parameters, and other data structures described later on in this chapter.

The Parser object available to Translators provides a set of data structures useful

for reasoning about the input code, such as the abstract syntax tree, the symbol table,

and other information extracted using lightweight static analysis. In particular, the

Parser extracts from the input some concurrency-specific information, such as the (over-

approximated) set of visible statement, the list of functions potentially used to spawn new

threads, and so on. The Translator object is built on top of pycparser, an open-source

C parser that uses PLY, an implementation of Lex-Yacc [LS90, Joh75].

5.3 Modules

A module of CSeq is implemented in module definition file, that is a separate Python file

that extends either class Translator or Wrapper.

Modules work in two steps: initialisation and execution. Module initialisation is performed

by method init, to initialise all the data structures needed later in the execution step

and declare any parameters used by the module. A module is executed by invoking

loadfromstring on a given input string (see Figure 5.4).

The initialisation and execution of a module are both triggered by the front-end, that at

the end of the execution forwards the output of the module to the next module in the

configuration, if present, or to the standard output.

The basic mechanisms provided by a Translator are: source transformation, argument

passing, and line mapping. Argument passing is described in Section 5.3.1, line mapping

in Section 5.3.2, source transformation in Section 5.3.3. Wrappers are simpler basic units

and only support argument passing.

5.3.1 Argument Passing

Modules can be parameterised for improved flexibility. Input parameters are convenient

for parameterised transformations. CSeq’s standard unroller module for program

unfolding, for instance, accepts as an argument an integer number representing the loop

unrolling bound; the instrumenter module for backend instrumentation accepts a string

with the name of the backend for which it needs to instrument the input.



70 Chapter 5 CSeq Framework

Output parameters can be used to transfer information across modules. For instance

the loop unrolling module mentioned above might follow another module that calculates

over-approximations for loop bounds and outputs them as an argument for next modules,

thereby avoiding the need to provide externally a loop bound to the unroller.

Parameters are declared in the module initialisation method, init, within the module

definition file, by invoking either addInputParam or addOutputParam (see Figure 5.4).

During the initialisation cycle, the front-end invokes the init method for each module in

the configuration being used, and collects all the parameter definitions. It then attaches

the parameter definitions to the environment object. The front-end then adjusts the

command-line options accordingly. Roughly, if a module declares an input parameter

that is not an output parameter for some (previous) module in the configuration, then it

should be provided by the user in the command-line. The arguments are later fetched

within the module by invoking getParamValue, or set by setParamValue.

Figure 5.8 shows the argument passing in Lazy-CSeq. The backend parameter is shared

by multiple modules. Note that threads, an actual parameter for the sequentialization

schema, is not provided externally but is instead calculated by one of the program

bounding modules, and used later.

5.3.2 Line Mapping

Translator modules have an automatic line-mapping feature. The idea is to keep track

of the exact coordinates in the input source where the translated code originates from.

This can help debugging transformation prototypes and can be useful for interpreting the

output from the backend. In a traditional bug-finding setting, for instance, the backend

generates a counterexample trace with the steps to reproduce a bug. Without tracing

the lines back to the original file, the trace may be difficult to understand because it

refers to the transformed program rather than to the initial one.

Line mapping is automatically calculated and normally does not require any extra

engineering effort; it is available at the end of the module’s execution as a map from

output line numbers to input line numbers.

The mapping is calculated on a line-by-line basis and regardless from the specific

transformation performed, in a similar way to how the C preprocessor (CPP) uses line

control information, by inserting explicit #line directives in the source code during

the generation of the output. However, at the end of the execution of the module, line

control information is removed from the output and the information is stored as a map

from output line numbers to input line numbers (note that each input line may generate

several output lines, for instance when unfolding a loop or inlining a function multiple

times).



Chapter 5 CSeq Framework 71

For example, in the function inlining example of Figure 5.5, line 3 of the input program

on the left generates output lines 8 and 9 (note that the jump is used instead of the

return statement, and f simulates the passing of the return value). As another example,

consider the loop unrolling shown in Figure 5.6. Lines 5,6 and 7 of the input program

(a) are translated into lines 5-7,9-11 and 13-15, respectively, in the output program (b).

Input line 4 generates output lines 4, 8 and 12.

For a more involved example of how code snippets propagate over a longer sequence of

transformations, consider Figure 5.8(i)-(v). The source files are initially merged into a

single string, and simplified. The line map for this first stage is therefore, and exceptionally,

a function from output line numbers to pairs of the kind (linenumber,filename). On

subsequent transformations, it will suffice to map only line numbers to line numbers, as

all operations after the source merging are on single input and output files.

The simplified program then gets through a program flattening stage that includes loop

unrolling and function inlining (see Section 5.4.1). Note that in this example the thread

t1 of the bounded program (ii) contains a loop that has been unfolded three times

in program (iii), meaning that the lines corresponding to the loop body of the input

program on the left generate three different sets of output lines. Similarly, a function is

inlined twice, in thread tn and function main. In the next transformation, the mapping

from existing lines to output lines is unchanged, but there are extra snippets of code

at the top and bottom of the output program (iv): no map entries are generated for

these lines as these are not translated from the input, but simply added to the output

as raw strings. The last transformation does not alter the line map either, as it does

not add any new line but in practice only performs a few string substitutions. Note that

unmapped lines always refer to code injected at some point during the translation (e.g.,

the main driver, additional function definitions for the instrumentation, expanded header

files, etc.) rather than translated code. They introduce intermediate transitions during

the simulation that in the actual counterexample translation (see Section 5.5.1) need to

be processed in a way that depends on the specific source transformation (and in some

cases can be safely ignored).

Line mapping is available at two different levels of detail: at the level of the individual

module, maps are available through the outputtoinput and inputtooutput instance

attributes, that map from output line numbers to input line numbers (and the other

way around); at the level of the translation, from output line numbers for a given

module to input line numbers for the first module in the configuration (or more precisely,

to coordinates of the original input file, or files). This map is available by invoking

generatelinenumbers() that iteratively composes the line maps by following the con-

figuration in a reversed order. The resulting output can be visualised as a a table of

the line maps across all source transformation steps, one row for each output line, one

column for each transformation.



72 Chapter 5 CSeq Framework

import core.module

class test(core.module.Translator):

def visit UnaryOp(self,n):

if n.op == "p++":

return "%s = %s + 1" % (n.expr,n.expr)

return super(test,self).visit UnaryOp(n)

Figure 5.2: Source transformation module: from x++ to x=x+1.

5.3.3 Source Transformation

Source-to-source transformation is the main task for a Translator. When the front-end

executes a Translator invoking its loadfromstring method, this automatically parses

the input code to build the AST, then visits the AST to un-parse it back and generate

the transformed input, which is the output of the module.

Source transformation is obtained by modifying the standard AST visit in such a way

to produce alterations in the output. This mechanism is implemented by conveniently

overriding pycparser’s AST-based pretty-printer. Note that by design choice no struc-

tural change is made to the AST itself, the transformation is in fact performed on-the-fly

by directly modifying the output strings corresponding to fragments of code generated

during AST sub-visits.

In the rest of this section we show two small examples of source transformation, and

how to wrap up one of them to build a complete tool that can be invoked from the

command-line.

A Simple Translator

Figure 5.2 shows a small example of source transformation module that replaces every

statement using the unary post-increment operator on a variable, say x, with a statement

that assigns to x the result of the addition x+1.

The transformation is implemented by overriding the visit UnaryOp method that gen-

erates the source code from AST-subtrees representing unary operations. In the AST,

nodes for unary operations have two children: expr and op, representing the variable

name and the operator, respectively. The string p++ represents the operator, where p is

not the real variable name but a placeholder used in the grammar to distinguish pre-

and post-increment operators (a simple ++ would have been ambiguous).

The if statement detects whether the unary operation is of the kind being targeted, in

which case the amended output is returned. In any other case the method returns the code

snippet that would normally be generated during a standard visit of the AST-subtree for

unary operations (notice the call to super), therefore leaving the input code unchanged.



Chapter 5 CSeq Framework 73

++

x

UnaryOp

ID

=

x +

x 1

Assignment

ID BinaryOP

ID Constant

Figure 5.3: AST representation for the transformation from Fig. 5.2.

Similarly, the output is untranslated for any other node type: being visit UnaryOp the

only method in the module, all other visits are inherited from Translator, whence in

turn from pycparser.

Figure 5.3 shows two AST fragments for a snippet of code affected by the transformation

of module test from Figure 5.2: the AST on the left is generated from the relevant part

of the input of the module, before the transformation; the AST on the right encodes the

corresponding transformed code from the output of the module, after the transformation.

Note the simple example described above serves only to provide a first glance at the

source translation mechanism implemented by CSeq. The module has indeed several

flaws that would prevent it from being used reliably on anything else than very simple

programs; these issues are not for us to worry about at the moment and will be discussed

later in this section.

A Parameterised Translator

Figure 5.4 shows a module for a parameterised transformation. The module replaces

every call to a given function into a call to another given function.

The functions identifiers are declared as parameters in the init method and can be set

by the user externally, as shown later on in section. For now, let us concentrate on the

source transformation, assuming that the module execution method, loadfromstring,

correctly loads the source and destination function identifiers and stores them into two

strings, respectively as oldname and newname, as instance attributes of class rename.

The AST node for function calls has two children: name, which stores the actual function

identifier, and args, the root node of a subtree that represents the arguments of the

call. Method visit FuncCall is invoked whenever a function call is found during the

AST visit. The method is overridden in order to change its behaviour and implement

the transformation. The if statement in visit FuncCall detects when the name of

the called function matches the old name self.oldname, in which case the name is

changed to the string stored in self.newname by overwriting the value of fref previously

calculated by the first statement of the module.



74 Chapter 5 CSeq Framework

import core.module

class rename(core.module.Translator):

def init(self):

self.addInputParam("old","source function","s","a",False)

self.addInputParam("new","destination function","d","b",False)

def loadfromstring(self,string,env):

self.oldname = self.getInputParamValue("old")

self.newname = self.getInputParamValue("new")

super(rename,self).loadfromstring(string,env)

def visit FuncCall(self,n):

fref = self. parenthesize unless simple(n.name)

args = self.visit(n.args)

if fref == self.oldname:

fref = self.newname

return fref + "(" + args + ")"

Figure 5.4: Parameterised source transformation module: function call renaming.

Setting-up a Configuration

Let us now briefly re-consider the argument passing mechanism to show how it can

allow the transformation of Figure 5.4 to work for any two given function identifiers. By

default the module transforms any call to function a into a call to function b. During the

module initialisation phase, the front-end finds the two parameters declared in the init

method of the module and automatically adds them as command-line arguments. The

function identifiers can thus be set by using the --old and --new command-line options.

To wrap this up as a standalone tool, we write a configuration definition file, say

rename test, containing rename as the only module. Then, the following command:

cseq.py -i input.c --old f --new g -l rename test

has the effect of applying the transformation to file input.c and change all the function

calls to f into calls to function g.

This toy tool can only make one renaming at once. A possible solution to extend it to

make multiple renamings in a single pass would be to change the two input parameters

to file names rather than variable names, and then store in these file names the function

names to replace.



Chapter 5 CSeq Framework 75

Suggestions

In order to preserve syntactic correctness and semantic equivalence with the input source

code, particular attention to detail and corner-cases is essential when writing a new

transformation module. The transformation implemented by the module in Figure 5.2,

for instance, changes blindly the syntactic category from expression to statement, and

can easily break the syntax due to nested expressions.

A problem with the example from Figure 5.4 is that it does not check whether the

destination function identifier was already being used in the input source code. This

can introduce syntax errors in the transformed program, for instance due to calls to the

same function using inconsistent signatures. A basic symbol table lookup to validate

the module parameters can easily fix this issue. In general, since coding oversights may

lead to non-trivial mistakes, formal reasoning about correctness may be needed on more

convoluted transformation steps. This is the case of the lazy sequentialization schema

presented in Chapter 4 and implemented in module lazyseq of CSeq.

Splitting complex translations into multiple steps instead of just writing a single one-pass

task can be convenient. The idea is to devise a sequence of small transformations of

increasing complexity and with a progressively restricted input syntax, starting with

simple syntactic reductions and then gradually shifting to more elaborate transformations.

Assuming a reduced input syntax generally keeps the structure of the module compact

and readable, minimising potential corner cases and allowing quick adjustments when

needed.

A loop unrolling module could, for instance, assume that there are only for loops in the

input. This would avoid writing AST transformations for do..while and while nodes,

making the module considerably more compact, shrinking its code down to roughly

one third, in practice. Clearly, this would not work on unrestricted inputs. The input

would need to be first processed by another module that trivially changes all loops into

equivalent for statements.

Consider the function inlining module from Figure 5.5. Given the simplicity of the basic

case shown in the example, one might be tempted to conclude that a simple repositioning

of the function body will do the job. However, a robust implementation requires more

attention. For example, if the function call occurs inside the condition block of an if

statement, the expanded function body would end up in the condition block, possibly

breaking the syntax. Nevertheless, to keep the inlining simple one could assume the

absence of function calls from within condition blocks anyway; another module, executed

before the actual inlining, could move the function calls outside the condition block by

introducing additional Boolean variables.



76 Chapter 5 CSeq Framework

(a) original function call

1: int f(int i)

2: {
3: return 123+i;

4: }
5:

6: main() {
7: ...

8: x = f(x);

9: ...

10: }

(b) function f inlined

1: main() {
2: ...

3: int f;

4: {
5: int i;

6: i=x;

7: {
8: f = 123+ i;

9: goto L;

10: }
11: L: ;

12: }
13: x = f;

14: ...

15: }

Figure 5.5: Function inlining (simplified example).

5.4 Built-in Modules

In this section, we briefly describe CSeq’s built-in modules for function inlining, loop

unrolling, and backend instrumentation.

5.4.1 Function Inlining and Loop Unrolling

The inliner module implements function inlining [AJ88]. A basic example was already

shown in Figure 5.5, where the left and right parts show the input and output of the mod-

ule, respectively. Roughly, the function definition (declaration and body) is removed, and

the function call is replaced with the function body. Additional variables are introduced

to simulate the passing of arguments, if any. Functions with an undefined body (for

example, extern functions) or declared as atomic using the prefixes VERIFIER atomic

or CSEQ atomic , are not inlined.

Loop unrolling [DAC71, Sar01] is provided by module unroller. Consider the loop in

Figure 5.6(a). An example of full unfolding in three iterations is given in Figure 5.6(b).

The output code starts by first copying the initialisation statement k=0, followed by a

copy of the compound statement representing the body of the loop. Similarly, further

unfolding iterations will replicate the increment statement k++ followed again by the

loop body. Note that this is potentially incorrect if the loop body updates k, thus fully

unfolding according to this schema should check that this never happens in the loop

body.

In general, when the loop condition is a more complex expression, a loop unwind bound

on the number of unfolding iteration is set upfront, such that the loop body is duplicated

exactly as many times as required and regardless of the loop condition. Figure 5.6(c)



Chapter 5 CSeq Framework 77

(a) initial loop

1: main() {
2: int k;

3:

4: for (k=0;k<3;k++)

5: {
6: ...

7: }
8: }

(b) full unfolding

1: main() {
2: int k;

3:

4: k=0;

5: {
6: ...

7: }
8: k++;

9: {
10: ...

11: }
12: k++;

13: {
14: ...

15: }
16: }

(c) bounded unfolding

1: main() {
2: int k;

3:

4: k=0; if(!(k<3)) goto L;

5: {
6: ...

7: }
8: k++; if(!(k<3)) goto L;

9: {
10: ...

11: }
12: assert(!(k<3));

13: L: ;

14: }

Figure 5.6: Loop unrolling (simplified example).

shows a bounded unfolding (in two iterations) of the same loop. The guarded jumps

simulate the loop condition check (k < 3) by moving the control at the end of the

unfolding as soon as the condition is no longer satisfied, following the same behaviour of

the original code.

An assertion with the negated loop condition is added after the last copy of the loop’s

body (loop unwind assertion), so to generate an error when the loop has not been

unwound a sufficient number of times. Alternatively, runs longer than the bound can be

silently discarded by using an assume statement instead.

5.4.2 Backend Instrumentation

Instrumenting the code for a specific backend is in itself a simple standalone transformation

undertaken by the instrumenter module and consists in replacing the primitives for

modelling non-determinism, assumptions and assertions (formally defined in Section 2.2),

potentially inserted at any point during the translation, with analogous backend-specific

statements. The backends supported by CSeq’s standard program instrumentation

module are the following:

• bounded model-checkers: blitz [CDS13], cbmc [CKL04], esbmc [CFM12], llbmc

[MFS12]

• abstraction-based tools: cpachecker [BK11], satabs [CKSY05]

• symbolic testing tools: klee [CDE08].



78 Chapter 5 CSeq Framework

(a) bounded model-checking: CBMC

assert();

CPROVER assume();

extern int nondet int(void);

(b) abstraction-based: CPAchecker

void assert(int x) { if(!(x)) { ERROR: goto ERROR; } }
void assume(int x) { while(!(x)); }
extern int nondet int(void);

(c) symbolic testing: KLEE

KLEE assert();

void assume(int x) { while(!(x)); }
int nondet int() { int x; klee make symbolic(&x,sizeof(x),"x"); return x; }

Figure 5.7: Backend instrumentation. For the two nondet int declared as extern

the backend already considers every possible return value due to the missing body, so
there is no need to define them (extern is used to avoid warnings from the backend);
all the other functions with a missing body correspond to primitives natively modelled

by the backend.

Although non-determinism is typical in modelling languages, and tools for software

analysis usually support it, there is no common standard for a precise set of primitives

and their semantics. Depending on whether the given verification backend natively models

such primitives, the instrumentation requires either a simple function call renaming, or

also inserting ad-hoc function definitions.

Figure 5.7 shows the basic differences in the instrumentation for the different families

of backend supported. Bounded model-checkers generally model all the needed primi-

tives natively. Explicit implementation of assume and assert is, however, needed for

CPAchecker. We have observed that this is often the case for other tools based on

abstraction. The figure also shows the instrumentation for the only testing tool sup-

ported, KLEE, which handles assertions, but requires implementations for assume and

non-deterministic functions. Note that klee make symbolic can be used for all other

data types too.

5.5 Lazy-CSeq

Lazy-CSeq implements the lazy sequentialization schema presented in Chapter 4 for

multi-threaded C program.

Figure 5.8 shows the module layout, the argument flow, and a sketch of the translation.

The lazy sequentialization schema is implemented by a source translation module, box



Chapter 5 CSeq Framework 79

lazy in the diagram. Since the schema only works for bounded programs, modules for

function inlining and loop unrolling need to be inserted into the configuration before the

sequentialization module.

The complete configuration is defined by a sequence of 18 modules (16 Translator and

two Wrapper modules), which can be conceptually grouped according to the following

categories:

1. the source merging module, followed by eight simple transformation modules, the

purpose of which is to rewrite the input program into a progressively simplified

syntax, so to make it easier to implement the more complex transformations

occurring later in the sequence;

2. four Translators for program flattening (that include improved versions of loop

unrolling and function inlining modules presented in Section 5.4) to produce a

bounded multi-threaded program that is equivalent to the input program up to the

given unwind bound;

3. a module implementing the lazy sequentialization schema described in Chapter 4

that yields a backend-independent sequentialized file;

4. standard program instrumentation (discussed in Section 5.4) to instrument the

sequentialized file for a specific backend;

5. two Wrappers for backend invocation and user report generation or counterexample

translation (presented in Section 5.5.1).

Double-framed boxes in the diagram denote groups of modules. The input and output

of the tool are boxes (i) and (vii), respectively. Boxes (ii) to (vi) represent the output

of intermediate modules in the configuration. In particular, boxes (ii) to (v) sketch

the structure of the output file resulting from the execution of each of the group of

translation modules shown above them. Boxes (vi) and (vii) represent the original and

translated counterexample traces, respectively. The counterexample from the backend

(vi) that refers to the sequentialized file (v) is translated by module cex into another

counterexample (vii) that refers to the actual input (i).

5.5.1 Counterexample Generation

One of the main usability limitations of sequentialization-based tools is in that when an

error is found the error trace is too hard to follow because the counterexample produced

by the backend actually refers to the sequentialized file. The built-in cex counterexample

generation module generates counterexamples that instead refer to the actual input

code. Counterexample generation is built on top of CSeq’s line-mapping described in



80 Chapter 5 CSeq Framework

MERGE BOUND LAZY INSTR FEEDER CEX

(a) module layout and parameter flow

(b) translation sketch

source

unwind threads

rounds

backend

report

(i) (ii) (iii) (iv) (v) (vi) (vii)

. . .

main()

#incl...

t1()

.

.

.

tn()

main()

<cseq.h>

f1()

.

.

.

fn()

f0()

main()

line l

step 1

.

.

.

line l

step k

line l

step 1

.

.

.

line l

step k

Figure 5.8: Lazy-CSeq: module layout and translation sketch.
(a) boxes from merge to cex show the module configuration, with double-border boxes
denoting groups of modules. (b) boxes (i) to (vii) represent the input and output of
the modules, or group of modules, above them (for example, (v) and (vi) represent the

input and output, respectively, of module feeder).

Section 5.3.2. It is currently only supported for the Lazy-CSeq configuration and the

default backend (i.e., CBMC). Note, however, that the line-mapping facility provided by

the framework is backend-independent and translation-independent, thus it can be used

in other settings. The counterexample module itself may be or may be not easy to adapt

to other sequentializations schemas and other backends.

Let us now consider the hypothetical tool’s execution shown in Figure 5.8(b). Observe

that box (vi) is a counterexample for the sequentialized file (v). Module cex changes

that file into another counterexample (vi) that actually refer to the original input file (i).

To do so, cex translates one by one the state transitions listed in the counterexample

returned by the backend by tracing back line numbers to their corresponding input

coordinates using CSeq’s linemapping, and then showing the amended transitions in the

same order. Specifically, the translation is done according to the three cases discussed

below.

If the output line is traced back to a thread statement (e.g., lock, create, etc), we append

to the new counterexample an intermediate transition to explicitly show concurrency-

specific details, such as context-switching, changes to lock conditions, and the like. If the

output line is traced back to any other statement, we amend the transition description

with the mapped line number and append it to the counterexample. If the output

line cannot be mapped back (as explained in Section 5.3.2), it must come from thread

simulation code injected during the sequentialization (see Figure 4.2). Therefore the



Chapter 5 CSeq Framework 81

transition indicated in the counterexample refers to an computation that was performed

to simulate concurrency and does not correspond to any transition in the original program

(i). Therefore, these transitions can be safely ignored.

5.5.2 Usage

Lazy-CSeq can be executed by invoking CSeq with the lazy configuration, through the

command:

cseq.py -i input.c -l lazy

to analyze the file input.c and check for reachable error states determined by an

ERROR label, an assertion failure, or incorrect use of locks, using the default analysis

parameters and the default backend. Deadlock checking is off by default and can be

enabled with --deadlock.

The analysis parameters are the loop unwinding depth and the number of rounds.

The default value is 1 for both and can be changed with --unwind k and --rounds k,

respectively. The default backend is cbmc and it can be changed using --backend b where

b is any backend supported by the instrumentation module as described in Section 5.4.2.

Our lazy sequentialization schema is tailored to bounded model-checkers as backends.

However, since the instrumenter module also supports abstraction-based and test-

ing backends, these can still be tried, and occasionally might work well on some test

cases. However, achieving accurate analysis would require substantial changes to the

sequentialization schema.

The option --rounds uses standard round-robin schedules. This can be replaced with

restricted schedules using --schedule r1:. . . :rn, which gives schedule restrictions for

n rounds, as described in Section 4.5.

By default Lazy-CSeq does not generate counterexamples. Counterexample generation

can be enabled by using the default backend with the --cex option. Alternatively,

--linemap will show the line mapping table across all source transformation steps.





Chapter 6

Conclusions

6.1 Summary of Work

In this thesis we have investigated on the effectiveness of combining BMC and sequen-

tialization for finding errors in real-world concurrent software, by targeting the largely

representative category of multi-threaded C programs with POSIX threads.

We have implemented and evaluated the Lal-Reps sequentialization schema [LR09], in

previous empirical work advocated as a suitable technique to complement BMC [GHR10].

In contrast, we have identified several major drawbacks that prevent LR from actually

being used on non-idealised software, and in particular we have discussed the need for

lazy techniques and the reasons why they can improve backend integration and analysis

performance when used on top of BMC.

We have developed a novel lazy sequentialization schema specifically tailored to BMC and

provided an extensive empirical evidence of its superiority over our own implementation

of the Lal-Reps schema, and its high level of competitiveness with the state-of-the-art

bug-hunting tools with built-in concurrency handling. Our tool Lazy-CSeq [ITF+14b,

ITF+14a] is aggressively optimised for fast bug finding, and has won the gold medal in

the concurrency category in the last two editions of SV-COMP [Bey14, Bey15]. In our

tool we have implemented both the program unfolding and the sequentialization using

source translations, therefore once again providing evidence that reasoning at the level of

the source code can be very beneficial for optimising the program analysis process. With

regard to BMC-based techniques, a major insight is that integrating context-bounding

within the program unfolding stage can possibly represent one of the most competitive

approaches for finding bugs in concurrent software, considering that errors typically occur

within a few context switches [MQ07, QW04, TDB14].

83



84 Chapter 6 Conclusions

We have presented our framework for fast prototyping and development of sequentialization-

based tools that subsumes our experience in working on sequentializations. CSeq em-

phasises the desirable aspects of sequentialization, and in general of source translation,

by encouraging a modular approach to designing new schemas, and providing a range

of built-in functionalities to reduce the overall engineering effort to build a new tool.

During the development of Lazy-CSeq, the framework has been very useful by solidly and

comfortably supporting the intricate reasonings at the level of the source code needed

to refine our schema. CSeq has also been used to develop other tools not discussed in

this thesis [TIF+14, TIF+15, NFLP15] within very compressed development time frames

and with a relatively modest effort in comparison to what it would have been required

using lower-level program representations. In general, source transformation can be a

very expressive, flexible and powerful method for gathering deep insights on the nature

of programs, and can thus yield significant improvements to program analysis. Our view

is shared by others [Cad15].

6.2 Future Work

The aggressive performance optimisations on our lazy schema were only possible because

we concentrated on a specific backend technology. Targeting other families of backends,

for instance abstraction-based tools, might be interesting. A few simple, preliminary

experiments using our lazy schema in combination with abstraction-based backends

produced (not surprisingly) a significant amount of incorrect results due to the variables

modelling the program counters of the simulated threads being too coarsely abstracted.

As the next step in this direction one could change the translation in such a way to force

more or less precise representations of the program counters (while keeping the same level

of abstraction on the rest of the program) to see to what extent the overall accuracy of

the analysis can be improved, and to understand the possible trade-offs between accuracy

and performance.

During our experiments with sequentialization we have observed different program

features that can negatively affect the performance of the backend, such as: extensive use

of pointers and dynamic memory allocation, number of visible statements, complexity

of control-flow structure, number of threads, size of the shared or local memory, use of

synchronisation primitives, length of the shortest schedule to find the error, and so on.

A systematic study on how these features affect the performance of different backend

technologies (not limited to BMC) in combination with different sequentializations could

highlight valuable insights.

In particular, we have noticed that on very large instances sometimes bounded model-

checkers even struggle to start the analysis (i.e., they fail to generate the verification

condition), thus leaving testing as the only possibility to look for bugs. However, testing



Chapter 6 Conclusions 85

is only adequate to detect errors that show up with high probability. Issues that only

show rarely are unlikely to be found in large programs. A detailed investigation on

well-selected test cases that are currently out of reach for BMC could be the starting

point to advance the state of the art.

Partitioning the program’s state space is potentially useful on complex instances as it

can spread the computational load over multiple machines. It would be interesting to

experiment with partitioning at a sequentialization level (for example by partitioning the

schedules, as sketched in Section 4.5), and in particular to estimate the overhead due to the

redundant computations performed on similar verification conditions representing distinct

partitions, and to appreciate the suitability of incremental BMC techniques [SKB+14] in

this setting.

Further possible directions for future research consist in extending our existing imple-

mentations or designing new schemas to: handle other memory models than sequential

consistency to capture the subtle process interactions due to modern hardware designs

(previous work has already shown how to reduce weaker memory models to SC using

source transformations [ABP11, AKNT13]), support other concurrency models (for in-

stance message-passing, perhaps by just transforming it to multi-threaded systems),

and using partial orders [FG05, KWG09] to reduce the number of simulated thread

interleavings.





Bibliography

[ABP11] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. Getting

rid of store-buffers in TSO analysis. In Gopalakrishnan and Qadeer [GQ11],

pages 99–115.

[ABQ11] Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-

bounded analysis for concurrent programs with dynamic creation of threads.

Logical Methods in Computer Science, 7(4), 2011.

[ÁH14] Erika Ábrahám and Klaus Havelund, editors. Tools and Algorithms for

the Construction and Analysis of Systems - 20th International Conference,

TACAS 2014, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014.

Proceedings, volume 8413 of Lecture Notes in Computer Science. Springer,

2014.

[AJ88] Randy Allen and Steve Johnson. Compiling C for vectorization, paralleliza-

tion, and inline expansion. In Richard L. Wexelblat, editor, Proceedings of

the ACM SIGPLAN’88 Conference on Programming Language Design and

Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages

241–249. ACM, 1988.

[AKNT13] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig.

Software verification for weak memory via program transformation. In

Matthias Felleisen and Philippa Gardner, editors, Programming Languages

and Systems - 22nd European Symposium on Programming, ESOP 2013,

Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,

volume 7792 of Lecture Notes in Computer Science, pages 512–532. Springer,

2013.

[AKT13] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders

for efficient bounded model checking of concurrent software. In Natasha

Sharygina and Helmut Veith, editors, CAV, volume 8044 of Lecture Notes

in Computer Science, pages 141–157. Springer, 2013.

87



88 BIBLIOGRAPHY

[AS06] Mohammad Awedh and Fabio Somenzi. Automatic invariant strengthening

to prove properties in bounded model checking. In Ellen Sentovich, editor,

Proceedings of the 43rd Design Automation Conference, DAC 2006, San

Francisco, CA, USA, July 24-28, 2006, pages 1073–1076. ACM, 2006.

[BBdH+09] Thomas Ball, Sebastian Burckhardt, Jonathan de Halleux, Madanlal Musu-

vathi, and Shaz Qadeer. Deconstructing concurrency heisenbugs. In ICSE

Companion, pages 403–404. IEEE, 2009.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and

Yunshan Zhu. Bounded model checking. Advances in Computers, 58:117–148,

2003.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.

Symbolic model checking without bdds. In Rance Cleaveland, editor, TACAS,

volume 1579 of Lecture Notes in Computer Science, pages 193–207. Springer,

1999.

[BD77] Rod M. Burstall and John Darlington. A transformation system for devel-

oping recursive programs. J. ACM, 24(1):44–67, 1977.

[BE14] Ahmed Bouajjani and Michael Emmi. Bounded phase analysis of message-

passing programs. STTT, 16(2):127–146, 2014.

[BEP11] Ahmed Bouajjani, Michael Emmi, and Gennaro Parlato. On sequentializing

concurrent programs. In Yahav [Yah11], pages 129–145.

[Bey13] Dirk Beyer. Second competition on software verification - (summary of

sv-comp 2013). In TACAS, pages 594–609, 2013.

[Bey14] Dirk Beyer. Status report on software verification - (competition summary

SV-COMP 2014). In Ábrahám and Havelund [ÁH14], pages 373–388.

[Bey15] Dirk Beyer. Software verification and verifiable witnesses - (report on

SV-COMP 2015). In Christel Baier and Cesare Tinelli, editors, Tools and

Algorithms for the Construction and Analysis of Systems - 21st International

Conference, TACAS 2015, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,

2015. Proceedings, volume 9035 of Lecture Notes in Computer Science, pages

401–416. Springer, 2015.

[BF94] Yosi Ben-Asher and Eitan Farchi. Using true concurrency to model execu-

tion of parallel programs. International Journal of Parallel Programming,

22(4):375–407, 1994.

[BHMR07] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Ry-

balchenko. Invariant synthesis for combined theories. In Byron Cook



BIBLIOGRAPHY 89

and Andreas Podelski, editors, Verification, Model Checking, and Abstract

Interpretation, 8th International Conference, VMCAI 2007, Nice, France,

January 14-16, 2007, Proceedings, volume 4349 of Lecture Notes in Computer

Science, pages 378–394. Springer, 2007.

[Bie09] Armin Biere. Bounded model checking. In Armin Biere, Marijn Heule, Hans

van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume

185 of Frontiers in Artificial Intelligence and Applications, pages 457–481.

IOS Press, 2009.

[BK04] Jason Baumgartner and Andreas Kuehlmann. Enhanced diameter bounding

via structural. In 2004 Design, Automation and Test in Europe Conference

and Exposition (DATE 2004), 16-20 February 2004, Paris, France, pages

36–41. IEEE Computer Society, 2004.

[BK11] Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for configurable

software verification. In Gopalakrishnan and Qadeer [GQ11], pages 184–190.

[BKA02] Jason Baumgartner, Andreas Kuehlmann, and Jacob A. Abraham. Property

checking via structural analysis. In Ed Brinksma and Kim Guldstrand

Larsen, editors, Computer Aided Verification, 14th International Conference,

CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, volume

2404 of Lecture Notes in Computer Science, pages 151–165. Springer, 2002.

[BM08] Aaron R. Bradley and Zohar Manna. Property-directed incremental invariant

generation. Formal Asp. Comput., 20(4-5):379–405, 2008.

[BM09] Ahmed Bouajjani and Oded Maler, editors. Computer Aided Verification,

21st International Conference, CAV 2009, Grenoble, France, June 26 - July

2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer Science.

Springer, 2009.

[BML+13] Hansang Bae, Dheya Mustafa, Jae-Woo Lee, Aurangzeb, Hao Lin, Chirag

Dave, Rudolf Eigenmann, and Samuel P. Midkiff. The cetus source-to-source

compiler infrastructure: Overview and evaluation. International Journal of

Parallel Programming, 41(6):753–767, 2013.

[BNSV14] Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet. IKOS: A

framework for static analysis based on abstract interpretation. In Dimitra

Giannakopoulou and Gwen Salaün, editors, Software Engineering and Formal

Methods - 12th International Conference, SEFM 2014, Grenoble, France,

September 1-5, 2014. Proceedings, volume 8702 of Lecture Notes in Computer

Science, pages 271–277. Springer, 2014.

[Boe05] Hans-Juergen Boehm. Threads cannot be implemented as a library. In Vivek

Sarkar and Mary W. Hall, editors, Proceedings of the ACM SIGPLAN 2005



90 BIBLIOGRAPHY

Conference on Programming Language Design and Implementation, Chicago,

IL, USA, June 12-15, 2005, pages 261–268. ACM, 2005.

[BOW12] Daniel Bundala, Joël Ouaknine, and James Worrell. On the magnitude

of completeness thresholds in bounded model checking. In Proceedings of

the 27th Annual IEEE Symposium on Logic in Computer Science, LICS

2012, Dubrovnik, Croatia, June 25-28, 2012, pages 155–164. IEEE Computer

Society, 2012.

[BPM04] Ira D. Baxter, Christopher W. Pidgeon, and Michael Mehlich. Dms R©:

Program transformations for practical scalable software evolution. In ICSE,

pages 625–634. IEEE Computer Society, 2004.

[Bra11] Aaron R. Bradley. Sat-based model checking without unrolling. In Ranjit

Jhala and David A. Schmidt, editors, Verification, Model Checking, and Ab-

stract Interpretation - 12th International Conference, VMCAI 2011, Austin,

TX, USA, January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes

in Computer Science, pages 70–87. Springer, 2011.

[BS11] Thomas Ball and Mooly Sagiv, editors. Proceedings of the 38th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2011, Austin, TX, USA, January 26-28, 2011. ACM, 2011.

[Cad15] Cristian Cadar. Targeted program transformations for symbolic execution. In

Elisabetta Di Nitto, Mark Harman, and Patrick Heymans, editors, Proceed-

ings of the 2015 10th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, pages

906–909. ACM, 2015.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted

and automatic generation of high-coverage tests for complex systems pro-

grams. In Draves and van Renesse [DvR08], pages 209–224.

[CDS13] Chia Yuan Cho, Vijay D’Silva, and Dawn Song. Blitz: Compositional

bounded model checking for real-world programs. In Denney et al. [DBZ13],

pages 136–146.

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking:

algorithmic verification and debugging. Commun. ACM, 52(11):74–84, 2009.

[CF11] Lucas C. Cordeiro and Bernd Fischer. Verifying multi-threaded software

using smt-based context-bounded model checking. In Richard N. Taylor,

Harald C. Gall, and Nenad Medvidovic, editors, Proceedings of the 33rd

International Conference on Software Engineering, ICSE 2011, Waikiki,

Honolulu , HI, USA, May 21-28, 2011, pages 331–340. ACM, 2011.



BIBLIOGRAPHY 91

[CFM12] Lucas C. Cordeiro, Bernd Fischer, and João Marques-Silva. Smt-based

bounded model checking for embedded ANSI-C software. IEEE Trans.

Software Eng., 38(4):957–974, 2012.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. An efficient method of computing static single assignment

form. In Conference Record of the Sixteenth Annual ACM Symposium on

Principles of Programming Languages, Austin, Texas, USA, January 11-13,

1989, pages 25–35. ACM Press, 1989.

[CGS11] Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. Time-bounded analysis

of real-time systems. In Per Bjesse and Anna Slobodová, editors, FMCAD,

pages 72–80. FMCAD Inc., 2011.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking

ansi-c programs. In Kurt Jensen and Andreas Podelski, editors, TACAS,

volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer,

2004.

[CKOS04] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.

Completeness and complexity of bounded model checking. In Bernhard

Steffen and Giorgio Levi, editors, Verification, Model Checking, and Abstract

Interpretation, 5th International Conference, VMCAI 2004, Venice, January

11-13, 2004, Proceedings, volume 2937 of Lecture Notes in Computer Science,

pages 85–96. Springer, 2004.

[CKOS05] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.

Computational challenges in bounded model checking. STTT, 7(2):174–183,

2005.

[CKSY05] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.

Satabs: Sat-based predicate abstraction for ansi-c. In Nicolas Halbwachs and

Lenore D. Zuck, editors, TACAS, volume 3440 of Lecture Notes in Computer

Science, pages 570–574. Springer, 2005.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In In

STOC, pages 151–158. ACM, 1971.

[Cor06] James R. Cordy. The TXL source transformation language. Sci. Comput.

Program., 61(3):190–210, 2006.

[DAC71] International Business Machines Corporation. Research Division, F.E. Allen,

and J. Cocke. A Catalogue of Optimizing Transformations. 1971.



92 BIBLIOGRAPHY

[DBZ13] Ewen Denney, Tevfik Bultan, and Andreas Zeller, editors. 2013 28th

IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013. IEEE,

2013.

[DHKR11] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp

Rümmer. Software verification using k-induction. In Yahav [Yah11], pages

351–368.

[DHRR04] Matthew B. Dwyer, John Hatcliff, Robby, and Venkatesh Prasad Ranganath.

Exploiting object escape and locking information in partial-order reductions

for concurrent object-oriented programs. Formal Methods in System Design,

25(2-3):199–240, 2004.

[DKR10] Alastair F. Donaldson, Daniel Kroening, and Philipp Rümmer. Automatic

analysis of scratch-pad memory code for heterogeneous multicore processors.

In Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for

the Construction and Analysis of Systems, 16th International Conference,

TACAS 2010, Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,

2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages

280–295. Springer, 2010.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program

for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification

theory. J. ACM, 7(3):201–215, July 1960.

[DvR08] Richard Draves and Robbert van Renesse, editors. 8th USENIX Symposium

on Operating Systems Design and Implementation, OSDI 2008, December

8-10, 2008, San Diego, California, USA, Proceedings. USENIX Association,

2008.

[EBN02] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical analysis

of C preprocessor use. IEEE Trans. Software Eng., 28(12):1146–1170, 2002.

[EQR11] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. Delay-bounded

scheduling. In Ball and Sagiv [BS11], pages 411–422.

[ES03] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT

solving. Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction

for model checking software. In Jens Palsberg and Mart́ın Abadi, editors,

Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles



BIBLIOGRAPHY 93

of Programming Languages, POPL 2005, Long Beach, California, USA,

January 12-14, 2005, pages 110–121. ACM, 2005.

[FIP13a] Bernd Fischer, Omar Inverso, and Gennaro Parlato. CSeq: A concurrency

pre-processor for sequential C verification tools. In Denney et al. [DBZ13],

pages 710–713.

[FIP13b] Bernd Fischer, Omar Inverso, and Gennaro Parlato. CSeq: A sequentializa-

tion tool for C - (competition contribution). In Nir Piterman and Scott A.

Smolka, editors, Tools and Algorithms for the Construction and Analysis of

Systems - 19th International Conference, TACAS 2013, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS

2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of Lecture

Notes in Computer Science, pages 616–618. Springer, 2013.

[GFYS07] Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sagiv. Cartesian

partial-order reduction. In Dragan Bosnacki and Stefan Edelkamp, edi-

tors, Model Checking Software, 14th International SPIN Workshop, Berlin,

Germany, July 1-3, 2007, Proceedings, volume 4595 of Lecture Notes in

Computer Science, pages 95–112. Springer, 2007.

[GG08] Malay K. Ganai and Aarti Gupta. Efficient modeling of concurrent systems

in BMC. In Klaus Havelund, Rupak Majumdar, and Jens Palsberg, editors,

Model Checking Software, 15th International SPIN Workshop, Los Angeles,

CA, USA, August 10-12, 2008, Proceedings, volume 5156 of Lecture Notes

in Computer Science, pages 114–133. Springer, 2008.

[GHR10] Naghmeh Ghafari, Alan J. Hu, and Zvonimir Rakamaric. Context-bounded

translations for concurrent software: An empirical evaluation. In Jaco van de

Pol and Michael Weber, editors, SPIN, volume 6349 of Lecture Notes in

Computer Science, pages 227–244. Springer, 2010.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems - An Approach to the State-Explosion Problem, volume 1032 of

Lecture Notes in Computer Science. Springer, 1996.

[God97] Patrice Godefroid. Model checking for programming languages using verisoft.

In Peter Lee, Fritz Henglein, and Neil D. Jones, editors, Conference Record of

POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Papers Presented at the Symposium, Paris, France,

15-17 January 1997, pages 174–186. ACM Press, 1997.

[God05] Patrice Godefroid. Software model checking: The verisoft approach. Formal

Methods in System Design, 26(2):77–101, 2005.



94 BIBLIOGRAPHY

[GPFW96] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms

for the satisfiability (sat) problem: A survey. In DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, pages 19–152. American

Mathematical Society, 1996.

[GQ11] Ganesh Gopalakrishnan and Shaz Qadeer, editors. Computer Aided Veri-

fication - 23rd International Conference, CAV 2011, Snowbird, UT, USA,

July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer

Science. Springer, 2011.

[Hol97] Gerard J. Holzmann. The model checker spin. IEEE Transactions on

Software Engineering, 23:279–295, 1997.

[INF+15] Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and

Gennaro Parlato. Lazy-CSeq: A Context-Bounded Model Checking Tool

for Multi-Threaded C-Programs (Tool Demonstration). In ASE, page to

appear, 2015.

[ISO09] ISO/IEC. Information technology—Portable Operating System Interface

(POSIX) Base Specifications, Issue 7, ISO/IEC/IEEE 9945:2009. 2009.

[ISO11] ISO. ISO/IEC 9899:2011 Information technology — Programming languages

— C. International Organization for Standardization, Geneva, Switzerland,

December 2011.

[ITF+14a] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, and

Gennaro Parlato. Bounded model checking of multi-threaded C programs

via lazy sequentialization. In Armin Biere and Roderick Bloem, editors,

Computer Aided Verification - 26th International Conference, CAV 2014,

Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,

July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer

Science, pages 585–602. Springer, 2014.

[ITF+14b] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. Lazy-CSeq: A lazy sequentialization tool for C

- (competition contribution). In Ábrahám and Havelund [ÁH14], pages

398–401.

[Joh75] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical report,

1975.

[KOS+11] Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, and James

Worrell. Linear completeness thresholds for bounded model checking. In

Gopalakrishnan and Qadeer [GQ11], pages 557–572.

[Kro06] Daniel Kroening. Computing over-approximations with bounded model

checking. Electr. Notes Theor. Comput. Sci., 144(1):79–92, 2006.



BIBLIOGRAPHY 95

[KS03] Daniel Kroening and Ofer Strichman. Efficient computation of recurrence

diameters. In Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and Supratik

Mukhopadhyay, editors, Verification, Model Checking, and Abstract Inter-

pretation, 4th International Conference, VMCAI 2003, New York, NY, USA,

January 9-11, 2002, Proceedings, volume 2575 of Lecture Notes in Computer

Science, pages 298–309. Springer, 2003.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic

Point of View. Springer Publishing Company, Incorporated, 1 edition, 2008.

[KWG09] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order

reduction: An optimal symbolic partial order reduction technique. In

Bouajjani and Maler [BM09], pages 398–413.

[LA04] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework

for lifelong program analysis & transformation. In 2nd IEEE / ACM

International Symposium on Code Generation and Optimization (CGO

2004), 20-24 March 2004, San Jose, CA, USA, pages 75–88. IEEE Computer

Society, 2004.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558–565, 1978.

[Lam79] Leslie Lamport. A new approach to proving the correctness of multiprocess

programs. ACM Trans. Program. Lang. Syst., 1(1):84–97, 1979.

[LMP09a] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Reducing context-

bounded concurrent reachability to sequential reachability. In Bouajjani and

Maler [BM09], pages 477–492.

[LMP09b] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato.

Analyzing recursive programs using a fixed-point calculus. In Michael Hind

and Amer Diwan, editors, PLDI, pages 211–222. ACM, 2009.

[LMP10] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Model-checking

parameterized concurrent programs using linear interfaces. In Tayssir Touili,

Byron Cook, and Paul Jackson, editors, CAV, volume 6174 of Lecture Notes

in Computer Science, pages 629–644. Springer, 2010.

[LMP12] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Sequentializing

parameterized programs. In Sebastian S. Bauer and Jean-Baptiste Raclet,

editors, FIT, volume 87 of EPTCS, pages 34–47, 2012.

[LQL12] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. A solver for reachability

modulo theories. In P. Madhusudan and Sanjit A. Seshia, editors, CAV,

volume 7358 of Lecture Notes in Computer Science, pages 427–443. Springer,

2012.



96 BIBLIOGRAPHY

[LQR09] Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. Static and

precise detection of concurrency errors in systems code using smt solvers. In

Bouajjani and Maler [BM09], pages 509–524.

[LR09] Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a

context bound to sequential analysis. Formal Methods in System Design,

35(1):73–97, 2009.

[LS90] M. E. Lesk and E. Schmidt. Unix vol. ii. chapter Lex&Mdash;a Lexical

Analyzer Generator, pages 375–387. W. B. Saunders Company, Philadelphia,

PA, USA, 1990.

[MFS12] Florian Merz, Stephan Falke, and Carsten Sinz. Llbmc: Bounded model

checking of c and c++ programs using a compiler ir. In Rajeev Joshi, Peter

Müller, and Andreas Podelski, editors, VSTTE, volume 7152 of Lecture

Notes in Computer Science, pages 146–161. Springer, 2012.

[MQ07] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for

systematic testing of multithreaded programs. In Jeanne Ferrante and

Kathryn S. McKinley, editors, PLDI, pages 446–455. ACM, 2007.

[MQB+08] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-

manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing

heisenbugs in concurrent programs. In Draves and van Renesse [DvR08],

pages 267–280.

[MS03] Maher N. Mneimneh and Karem A. Sakallah. Sat-based sequential depth

computation. In Hiroto Yasuura, editor, Proceedings of the 2003 Asia and

South Pacific Design Automation Conference, ASP-DAC ’03, Kitakyushu,

Japan, January 21-24, 2003, pages 87–92. ACM, 2003.

[Mül06] Markus Müller-Olm. Variations on Constants - Flow Analysis of Sequential

and Parallel Programs, volume 3800 of Lecture Notes in Computer Science.

Springer, 2006.

[NFLP15] Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato.

Unbounded Lazy-CSeq: A lazy sequentialization tool for C programs with

unbounded context switches - (competition contribution). In TACAS, volume

9035 of LNCS, pages 461–463. Springer, 2015.

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.

CIL: intermediate language and tools for analysis and transformation of

C programs. In R. Nigel Horspool, editor, Compiler Construction, 11th

International Conference, CC 2002, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble,



BIBLIOGRAPHY 97

France, April 8-12, 2002, Proceedings, volume 2304 of Lecture Notes in

Computer Science, pages 213–228. Springer, 2002.

[PR13] Corneliu Popeea and Andrey Rybalchenko. Threader: A verifier for multi-

threaded programs - (competition contribution). In TACAS, pages 633–636,

2013.

[Pra86] Vaughan Pratt. Modeling concurrency with partial orders. International

Journal of Parallel Programming, 15(1):33–71, 1986.

[Qad11] Shaz Qadeer. Poirot - a concurrency sleuth. In Shengchao Qin and Zongyan

Qiu, editors, ICFEM, volume 6991 of Lecture Notes in Computer Science,

page 15. Springer, 2011.

[QSPK01] Daniel J. Quinlan, Markus Schordan, Bobby Philip, and Markus Kowarschik.

The specification of source-to-source transformations for the compile-time

optimization of parallel object-oriented scientific applications. In LCPC,

volume 2624 of LNCS, pages 383–394. Springer, 2001.

[QW04] Shaz Qadeer and Dinghao Wu. Kiss: keep it simple and sequential. In

William Pugh and Craig Chambers, editors, PLDI, pages 14–24. ACM, 2004.

[RG05] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of concurrent

programs. In Kousha Etessami and Sriram K. Rajamani, editors, Computer

Aided Verification, 17th International Conference, CAV 2005, Edinburgh,

Scotland, UK, July 6-10, 2005, Proceedings, volume 3576 of Lecture Notes

in Computer Science, pages 82–97. Springer, 2005.

[Sar01] Vivek Sarkar. Optimized unrolling of nested loops. International Journal of

Parallel Programming, 29(5):545–581, 2001.

[SKB+14] Peter Schrammel, Daniel Kroening, Martin Brain, Ruben Martins, Tino

Teige, and Tom Bienmüller. Incremental bounded model checking for em-

bedded software (extended version). CoRR, abs/1409.5872, 2014.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety

properties using induction and a sat-solver. In Warren A. Hunt Jr. and

Steven D. Johnson, editors, FMCAD, volume 1954 of Lecture Notes in

Computer Science, pages 108–125. Springer, 2000.

[SW05] Richard M. Stallman and Zachary Weinberg. The C Preprocessor, 2005.

[SW10] Nishant Sinha and Chao Wang. Staged concurrent program analysis. In

Gruia-Catalin Roman and Kevin J. Sullivan, editors, Proceedings of the

18th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010, pages 47–56.

ACM, 2010.



98 BIBLIOGRAPHY

[SW11] Nishant Sinha and Chao Wang. On interference abstractions. In Ball and

Sagiv [BS11], pages 423–434.

[TDB14] Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concurrency testing

using schedule bounding: an empirical study. In José Moreira and James R.

Larus, editors, ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’14, Orlando, FL, USA, February 15-19,

2014, pages 15–28. ACM, 2014.

[TIF+14] Ermenegildo Tomasco, Omar Inverso, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. MU-CSeq: Sequentialization of C programs by shared

memory unwindings - (competition contribution). In Ábrahám and Havelund

[ÁH14], pages 402–404.

[TIF+15] Ermenegildo Tomasco, Omar Inverso, Bernd Fischer, Salvatore La Torre,

and Gennaro Parlato. Verifying concurrent programs by memory unwinding.

In TACAS, volume 9035 of LNCS, pages 551–565. Springer, 2015.

[Tse68] G. S. Tseitin. On the complexity of derivations in the propositional calculus.

Studies in Mathematics and Mathematical Logic, Part II:115–125, 1968.

[Val89] Antti Valmari. Stubborn sets for reduced state space generation. In Grze-

gorz Rozenberg, editor, Advances in Petri Nets 1990 [10th International

Conference on Applications and Theory of Petri Nets, Bonn, Germany, June

1989, Proceedings], volume 483 of Lecture Notes in Computer Science, pages

491–515. Springer, 1989.

[VHB+03] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and

Flavio Lerda. Model checking programs. Autom. Softw. Eng., 10(2):203–232,

2003.

[Yah11] Eran Yahav, editor. Static Analysis - 18th International Symposium, SAS

2011, Venice, Italy, September 14-16, 2011. Proceedings, volume 6887 of

Lecture Notes in Computer Science. Springer, 2011.

[ZM02] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability

solvers. In Andrei Voronkov, editor, Automated Deduction - CADE-18, 18th

International Conference on Automated Deduction, Copenhagen, Denmark,

July 27-30, 2002, Proceedings, volume 2392 of Lecture Notes in Computer

Science, pages 295–313. Springer, 2002.


