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Highlights 

 Direct EAD models ignore CCF formulation and select EAD as response variable 

 Performance is compared to CCF and utilization change models 

 Direct EAD model is more accurate in calibration than benchmark models 

 Direct EAD and CCF based models can be combined to drive further performance 

uplift 

 Direct EAD models without CCF formulation are an alternative for EAD modelling 
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Abstract 

 

The Basel II and III Accords allow banks to calculate regulatory capital using their own 

internally developed models under the advanced internal ratings-based approach (AIRB). The 

Exposure at Default (EAD) is a core parameter modelled for revolving credit facilities with 

variable exposure. The credit conversion factor (CCF), the proportion of the current undrawn 

amount that will be drawn down at time of default, is used to calculate the EAD and poses 

modelling challenges with its bimodal distribution bounded between zero and one. There has 

been debate on the suitability of the CCF for EAD modelling. We explore alternative EAD 

models which ignore the CCF formulation and target the EAD distribution directly. We 

propose a mixture model with the zero-adjusted gamma distribution and compare its 

performance to three variants of CCF models and a utilization change model which are used 

in industry and academia. Additionally, we assess credit usage - the percentage of the 

committed amount that has been currently drawn - as a segmentation criterion to combine 

direct EAD and CCF models. The models are applied to a dataset from a credit card portfolio 

of a UK bank. The performance of these models is compared using cross-validation on a 

series of measures. We find the zero-adjusted gamma model to be more accurate in 

calibration than the benchmark models and that segmented approaches offer further 

performance improvements. These results indicate direct EAD models without the CCF 

formulation can be an alternative to CCF based models or that both can be combined. 

 

Keywords: exposure at default; credit cards; generalized additive models; regression; risk 

analysis 

1. Introduction 

  

The Basel II and III Accords define the standards for calculating regulatory capital 

requirements for banks across the world (Basel Committee on Banking Supervision, 2005, 

2011). Under the Advanced Internal Ratings-Based approach (AIRB), banks are allowed to 

assess credit risk using their own internally developed models which target three key 

parameters for each credit facility: (i) Probability of Default, PD, (ii) Loss Given Default, 

LGD and (iii) Exposure at Default, EAD. These parameter estimates can be used to produce 

an estimate for the expected loss (EL) or to estimate the unexpected loss for which banks 

must hold capital. Beyond the purpose of calculating regulatory capital, these three 
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parameters have wide ranging uses for banks, serving as inputs into economic capital models, 

stress testing, impairment forecasting, pricing and informing portfolio management across 

retail, corporate and wholesale portfolios. 

 

In retail credit risk, PD modelling has been the main focus of credit research for several 

decades and in recent years, LGD models with challenging bimodal distributions have also 

been the focus of research (Loterman et al., 2012). Although EAD distributions are 

comparatively as difficult to model, they have received much less attention in the literature.  

 

For credit card and overdraft portfolios, EAD estimation has proven a hard problem to tackle 

in practice. For fixed exposures such as residential mortgages and personal loans, the 

estimate for EAD can simply be taken from the current on-balance amount and little if any 

modelling is required. For credit cards though, the revolving nature of the credit line poses 

challenges with regards to predicting the exposure at default time. As credit card customers 

may borrow more money in the months prior to default, simply taking the current balance for 

non-defaulted customers would not produce a conservative enough estimate for the amount 

drawn by the time of default.  The EAD could partially be driven by current or recent 

customer behaviour (i.e. credit usage, drawn, undrawn amounts, changes to undrawn amounts 

over time). As an example of two distinct behaviour groups, some customers, classified as 

transactors, tend to pay off their entire balance at the end of each month while others, termed 

revolvers, tend to pay off only part of the monthly balance and hence incur interest charges 

(So et al., 2014). 

  

To estimate the EAD for credit cards or other forms of revolving credit, the Basel II/III 

Accord has suggested the use of historic data to evaluate the Credit Conversion Factor (CCF), 

i.e. the proportion of the current undrawn amount that will likely be drawn down at time of 

default (Valvonis, 2008). The Accord did not explicitly require EAD models to use CCF 

calculations; however, CCFs are regularly referred to in the Accord. Once a CCF estimate is 

produced for a (segment of) variable exposure(s), the EAD is then given by: EAD = Current 

Drawn Amount + (CCF × Current Undrawn Amount). With this (indirect) approach, the 

accuracy of EAD prediction is obviously linked to the quality of the CCF model and such 

modelling has posed substantial challenges because the distribution of CCF does not conform 

to standard statistical distributions. CCF distributions tend to be highly bimodal with a 

probability mass at zero (no change in balance), another at one (borrowing has gone up to the 
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credit limit), and a relatively flat distribution in between, not unlike some LGD distributions 

(Loterman et al., 2012).  Furthermore, in many CCF datasets, one might see a substantial 

number of negative CCFs and CCFs greater than one (an example of the latter may be where 

the credit limit has increased between the point of observation and the time of default, 

allowing the customer to go over the original limit); since the final model estimates 

themselves would have to be constrained between zero and one, such individual observations 

are sometimes truncated to zero or one, respectively (Jacobs Jr, 2010). 

 

Traditional regression modelling with ordinary least squares (OLS) may be less suitable for 

the CCF because predicted values may be less than zero or greater than one, leading to 

invalid CCF predictions. Additionally, the non-normality of the error term undermines many 

of the OLS tests. Standard logistic regression commonly used for PD models would also be 

inappropriate because the CCF response variable is proportional and not binary. Appropriate 

discretization of the CCF response would be necessary, which could result in some 

information loss, or alternatively, fractional response regression should be considered. 

 

Taplin et al. (2007) have argued that the CCF formulation is problematic because the 

bounded CCF distribution forces EAD to be equal to the credit limit when CCF equals 1. In 

practice, it is common to find accounts with EAD greater than the credit limit from charges 

accrued due to additional purchases over the limit and interest charges, or credit limit changes. 

The authors instead suggested models that predict EAD directly and ignore the CCF 

formulation. However, Yang and Tkachenko (2012) have contended that CCF models are 

more suitable given that the EAD response variable may be too statistically difficult to model 

given the granular scale of currency amounts and that the CCF formula is less prone to such 

scaling issues with its range being limited to the unit interval. 

 

The aims of this paper are to empirically assess alternative statistical methods for modelling 

the EAD by targeting the EAD distribution directly rather than focusing on the CCF; to 

evaluate this, we use a credit card portfolio from a large UK bank. We hypothesize that 

competitive EAD models can be developed by ignoring the CCF formulation and instead 

selecting EAD as the response variable in a statistical model. Two different direct EAD 

models are considered – an OLS model and a zero-adjusted gamma model (Rigby and 

Stasinopoulos, 2005, 2007).  
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The zero-adjusted gamma (ZAGA) model was explored to deal with the positively skewed 

nature of EAD and considering its prior use in predicting the LGD amount of residential 

mortgage loans (Tong et al., 2013). In this model, the EAD amount is modelled as a 

continuous response variable using a semi-parametric discrete-continuous mixture model 

approach with the zero-adjusted gamma distribution. Firstly, as the non-zero or positive EAD 

amount displays right-skewness, it is modelled with the gamma distribution. The mean and 

dispersion of the positive EAD amount are modelled explicitly as a function of explanatory 

variables. Secondly, the probability of the (non-)occurrence of a zero EAD amount is 

modelled with a logistic-additive model. All mixture components, i.e. the logistic-additive 

component for the probability of zero EAD and the log-additive components for the mean 

and dispersion of the EAD amount conditional on there being a non-zero EAD, can be 

estimated using account-level behavioural characteristics. 

 

The performance of these direct EAD models are benchmarked against three CCF models 

(with CCF as the response variable) using OLS, Tobit and fractional response regression and 

the utilization change model. These approaches are established methods used in industry 

and/or academia for EAD and LGD modelling (Brown, 2011, Bellotti and Crook, 2012, Bijak 

and Thomas, 2015).  

 

When borrowers are already close to maxing out the credit line and the undrawn amount is 

low, the CCF can become highly volatile and model performance may be compromised (Qi, 

2009). Therefore, a combined approach is suggested that segments on credit usage (i.e. 

utilization rate, or the percentage of the committed amount that has been currently drawn) 

and then uses two separate models, with either the CCF or EAD as the response variable, 

depending on the utilization segment that the credit card falls into. We hypothesize that the 

combined use of CCF modelling for accounts with low utilization and direct EAD models for 

accounts with high utilization may improve the overall model performance.  

 

Our dataset included time to default as a variable. In practical model development, this 

variable would be considered unknown a priori for each customer and would not typically be 

used as a candidate covariate in predictive model fitting. Nonetheless, it has been used in 

previous empirical studies to study explanatory drivers of CCF (Moral, 2011, Brown, 2014, 

Jacobs Jr, 2010).  Therefore, discarding it would make our results less comparable to those 

reported by others. Furthermore, it would be interesting to explore this time effect on the 
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various components of the ZAGA model, particularly the dispersion component as one would 

intuitively expect the error variance to increase the more time elapses between the point of 

observation and default.  

To allow a model with time to default as one of its explanatory variables to be applied to a 

prediction task, we propose an additional survival analysis model component. Survival 

analysis has previously been employed to model time to default in retail loan portfolios, 

providing insight into factors that predict when consumers are more likely to default 

(Stepanova and Thomas, 2002, Malik and Thomas, 2010, Tong et al., 2012). Similarly, we 

develop a PD model using the Cox proportional hazards model (Cox, 1972, Hosmer et al., 

2008) with time to default as the event of interest but with the length of the cohort period as 

time horizon. We then show how the resulting monthly PD estimates can be combined with 

an EAD model that has time to default included as a covariate. This method for modelling 

EAD using a consistent probabilistic definition and a direct EAD estimation approach was 

proposed by Witzany (2011). Their research termed this method the ‘weighted PD approach’ 

and suggested the use of default intensities to estimate EAD by considering the time to 

default. Our paper extends their work by using a real banking dataset and explicit use of the 

Cox proportional hazards model. Leow and Crook (2015) have also combined survival and 

panel modelling methods comprising credit limit and drawn balance models to predict EAD 

for credit cards. We suggest this method could further incorporate the time to default as a 

predictive covariate in an EAD model to improve model performance. 

 

The novel aspects of our study thus are that we (1) evaluate whether competitive EAD 

models can be developed by targeting the EAD distribution directly without using a CCF 

component, (2) assess credit usage as a segmentation criterion allowing us to combine two 

types of EAD models to further improve performance, (3) compare the performance of these 

new approaches to CCF and utilization change models commonly used in industry and/or 

academia and (4) propose an additional survival analysis component to allow the use of time 

to default as a predictive covariate in EAD modelling. All models will be assessed out-of-

sample using cross validation on a series of discrimination and calibration measures. 

 

 

The remainder of the paper is organized as follows. In section 2, an overview of the dataset 

along with the application and behavioural characteristics used for the EAD models will be 

presented. The statistical and validation methods used in our experiments are discussed in 
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section 3. Next, the results of the models are discussed in section 4. Section 5 will conclude 

the paper and suggest some further avenues for research. 

2. Data 

 

The dataset consisted of 10,271 observations of accounts from a major UK bank. The dataset 

derived from a credit cards portfolio observed over a three year period from January 2001 to 

December 2004. In the absence of additional data about other potential default triggers, for 

the purpose of this study, a default occurred when a charge off or closure was incurred on the 

credit card account. A charge off in this case was defined as the declaration by the creditor 

that an amount of debt is unlikely to be collected, declared at the point of 180 days or 6 

months without payment. To compute the observed CCF value, the original data set was 

divided into two twelve-month cohorts. The first cohort ran from November 2002 to October 

2003 and the second cohort from November 2003 to October 2004. In the cohort approach for 

CCF, discrete calendar periods are used to group defaulted facilities into 12-month periods, 

according to the date of default. Data was then collected on candidate EAD risk factors and 

drawn/undrawn amounts at the beginning of the calendar period and drawn amount at the 

default date.  

 

Figure 1 shows the empirical CCF distribution after truncation; the mean CCF value here was 

0.515 (sd = 0.464). The value is similar to that of S&P and Moody's defaulted borrowers' 

revolving lines of credit from 1985 to 2007, as reported by Jacobs Jr (2010); there, the 

truncated mean was 0.422 (sd = 0.409). Note that the bimodal nature of Figure 1 shows 

similarities to reported LGD distributions (Loterman et al., 2012, Bellotti and Crook, 2012). 

Figure 2 displays the distribution we observed for the EAD, clearly showing the positively 

skewed nature of this variable. Please note that some of the scales on the figures in this study 

have been removed for data confidentiality reasons. 
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Figure 1. Distribution of the Credit Conversion Factor (after truncation). 
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Figure 2. Distribution of observed Exposure at Default. 

 

 

As shown in Table 1, a total of 11 candidate variables were considered for the models. The 

first six candidate variables in Table 1 were suggested by Moral (2011). They were generated 

from the monthly data in each of the cohorts, where td is the default date and tr is the 
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in Brown (2011), with the aim of improving the predictive performance of the models. 

 

The credit conversion factor for account i, CCFi, was calculated as the ratio of the observed 
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   

   
d ri i

i

r ri i

E t E t
CCF

L t E t





       (1) 

 

 

 

Table 1. Candidate variables considered for EAD models. 

Variable(s) Notation Description 

Committed amount L(tr) Advised credit limit at start of cohort 

Drawn amount E(tr) Exposure at start of cohort 

Undrawn amount L(tr) – E(tr) Limit minus exposure at start of cohort 

 

Drawn percentage 
 

 
r

r

E t

L t
 

Exposure at start of the cohort divided by credit 

limit at start of the cohort (also commonly referred 

to as utilization rate or credit usage) 

Time to default td – tr Default date minus reference date (months) 

Rating class R(tr) Behavioural score at start of cohort grouped into 

4 bins: (1) AAA-A, (2) BBB-B, (3) C, (4) Unrated 

Average days delinquent  Average number of days delinquent in previous 3, 6, 

9, or 12 months 

Undrawn percentage    

 
r r

r

L t E t

L t


 

Undrawn amount at start of cohort divided by 

credit limit at start of cohort 

Limit increase  Binary variable indicating increase in committed 

amount since 12 months prior to start of cohort 

Absolute change drawn  Absolute change in drawn amount: variable amount 

at tr minus variable amount 3, 6 or 12 months prior 

to tr 

Relative change drawn  Relative change in drawn amount: variable amount 

at tr minus variable amount 3, 6 or 12 months prior 

to tr, divided by variable amount 3, 6 or 12 months 

prior to tr, respectively. 

 

3. Statistical models 

 

The following sections outline the different statistical modelling approaches used to regress 

the EAD, CCF or utilization change against the candidate drivers listed in Table 1. The direct 

EAD models (i.e. those with EAD as the response variable) are described in Section 3.1. The 

three types of CCF models used are outlined in Section 3.2. The utilization change model is 

described in Section 3.3. The segmented models are introduced in Section 3.4 and the 

survival model add-on is outlined in Section 3.5. Finally, the process of model validation and 

testing is described in Section 3.6. 
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3.1. Direct EAD models  

 

3.1.1. Zero-adjusted gamma model 

 

The credit cards portfolio is stratified into two groups, the first group having zero EAD (in 

the absence of further data, we have to assume these may potentially include a number of 

special or technical default cases, charge-offs related to other accounts, truncated/rounded 

observations, transfers of the outstanding amount to other repayment arrangements, or they 

could be the result of late payments subsequent to the default trigger entering the EAD 

calculation) and a second group having non-zero EADs.  The latter appears to have a 

continuous positively skewed distribution (see Figure 3) and accounts for the large majority 

of cases.   

 

Let yi denote the EAD observed for the ith account, i = 1,..., n (for simplicity, the index i will 

be omitted from here on); x will be used to denote the vector of covariates observed for the 

account. A mixed discrete-continuous probability function for y can then be specified as: 

 

 
   

if 0
 

1 if 0






 

 

y
f y

g y y
  

                      (2) 

 

where g(y) is the density of a continuous distribution and π is the probability of zero EAD. 

 

Figure 3 shows different candidate distributions for g(y) fitted to the non-zero EADs. Three 

positively skewed distributions were explored: the gamma, inverse Gaussian and log normal 

distributions; the normal distribution is shown as a reference comparison. The candidate 

distributions were fitted onto a training set of a random representative sample. Figure 3 

indicates that the gamma distribution produced the most suitable fit for the histogram of 

positive EADs. There was further support for the fitted gamma distribution as it produced the 

lowest Akaike Information Criteria (AIC) when compared to the inverse Gaussian and log 

normal distributions. The zero-adjusted gamma distribution was hence selected to model f(y). 

The resulting model will be referred to in this paper as ZAGA-EAD.   
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Figure 3. Candidate continuous distributions for non-zero EAD on training set. 

 

 
 

The probability function of the ZAGA  , ,    model, a mixed discrete-continuous 

distribution, is defined by Rigby and Stasinopoulos (2010): 

 

 
   

 
 

 

 

1 21
2

1 2
2 2

1

1

if 0
| , ,  

1 , if 0

for 0  < , 

where 0 <  < 1, mean 0, dispersion 0,

, ,
 




 


  

  

  

 
 




 

 

 

 


y

y e

y
f y

Gamma y

y

Gamma y

           (3)  

with:  
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         2 21    and   1E y Var y                          (4) 

The ZAGA-EAD model is implemented using the Generalized Additive Models for Location, 

Scale and Shape (GAMLSS) framework developed by Rigby and Stasinopoulos (2005). Their 

approach allows a range of skewed and kurtotic distributions to explicitly model 

distributional parameters that may include the location/mean, scale/dispersion, skewness and 

kurtosis as functions of explanatory variables. GAMLSS also allows fitting of distributions 

that do not belong to the exponential family as provided in the Generalized Linear Model 

(GLM) (Nelder and Wedderburn, 1972) and Generalized Additive Model (GAM) 

frameworks (Hastie et al., 2009). 

 

The GAMLSS approach is a semi-parametric method that allows the relationship between the 

explanatory variables and response variable to be modelled either parametrically (e.g. where 

linearity is met), or non-parametrically, using spline smoothers, the latter of which is a key 

feature of the GAM approach. 

 

There are three components to the ZAGA-EAD model. The mean, µ, and dispersion, σ, of a 

non-zero EAD and the probability of zero EAD, π, are modelled as a function of the 

explanatory variables using appropriate respective link functions: 

 

   

   

   

1

2

3

1 1 1 1 1

1

2 2 2 2 2

1

3 3 3 3 3

1

log

log

logit

J

j j

j

J

j j

j

J

j j

j

h x

h x

h x

  

  

  







  

  

  







x

x

x

               (5) 

 

where k kx  denote parametric terms, hjk(xjk) are non-parametric terms such as smoothing 

splines and with k = 1, 2, 3 for the distribution parameters (hence, each model component can 

have its own selection of covariates). The dispersion of non-zero EAD is the squared 

coefficient of variation, δ
2
/µ

2
, from the exponential family for the gamma density function 

(McCullagh and Nelder, 1989) where δ
2
 denotes the variance of the non-zero EAD 
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distribution. The hjk(xjk) functions are modelled with penalized B-splines (Eilers and Marx, 

1996). Such non-parametric smoothing terms have the ability to find non-linear relationships 

between the response and predictor variables (Hastie et al., 2009). Penalized B-splines were 

chosen because they are able to select the degree of smoothing automatically using penalized 

maximum likelihood estimation. This selection was done by minimizing the Akaike 

Information Criterion, i.e. AIC = -2L + kN, with L the log (penalized) likelihood, k the 

penalty parameter (set to 2), and N the number of parameters in the fitted model (Akaike, 

1974). Automatic selection of smoothing may suggest non-linear or linear relationships to the 

response variable as discovered in the data. 

 

Each account, i, in this model is associated with a probability of zero EAD, πi, and a non-zero 

EAD amount, yi. These pairs are then used to form the following likelihood function: 

 

 

   
1

0 0

1 ,   



 



 



 
i i

n

i

i

i i i i

y y

L f y

Gamma
                  (6) 

 

An algorithm developed by Rigby and Stasinopoulos (2005) was used, which is based on 

penalized (maximum) likelihood estimation. The estimates of the probability of zero EAD, 

mean and dispersion of g(y) are used to compute an estimate for f(y) which combines the 

probability of EAD and the EAD amount given that there is a non-zero EAD. 

 

The model was developed and implemented using the gamlss package by Rigby and 

Stasinopoulos (2007) in R 3.0.1 software (R Development Core Team, Vienna, Austria). 

 

3.1.2. Ordinary least squares 

 

The second direct EAD model was based on a standard OLS regression of the EAD response 

(untransformed) against the explanatory variables. We denote this model as OLS-EAD. A 

parsimonious model was selected through stepwise selection and backward elimination based 

on a 5 percent α-level. 
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3.2. CCF models 

 

Three models comprising OLS, Tobit and fractional response regression were developed to 

predict the CCF (rather than the EAD directly). An account-level estimate for EAD is then 

derived from the predicted CCF as follows: 

 

EAD = Current Drawn Amount + (CCF × Current Undrawn Amount)      (7) 

 

Firstly, a standard OLS regression model, denoted OLS-CCF, was fitted for the CCF target. 

Secondly, a Tobit regression model (Tobin, 1958, Greene, 1997), denoted Tobit-CCF, was 

developed, which treats observations with CCF below zero and above one as censored with 

the response only observed in the interval [0, 1]. The Tobit model assumes a latent variable 

y*, for which the residuals conditional on covariates x are normally distributed. The two-

sided Tobit model is given by: 

 

 

        *y  x           (8) 

   where   2* ,y N   x  ~  

and 

 

0, if * 0,

  *, if 0 * 1,

  1, if * 1

y y

y y

y

 

  

 

                                         (9) 

 

Maximum likelihood estimates are obtained for the β coefficients; for further details we refer 

to Greene (1997).  

 

Thirdly, a fractional response regression (denoted FRR-CCF) was run. This model has been 

used for modelling bimodal LGD distributions of credit cards and corporate loan portfolios 

(Bellotti and Crook, 2012, Qi and Zhao, 2011). FRR is a quasi-likelihood method proposed 

by Papke and Wooldridge (1996) to model a fractional continuous response variable bounded 

between zero and one, with valid asymptotic inference and is given by: 
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   |E CCF F x x        (10) 

 

where x is a vector of explanatory variables, β is a vector of coefficients and F() represents 

the logistic functional form which ensures that predicted values are constrained between zero 

and one. 

 
 
1

1 exp
F  

 
x

x



        (11) 

 

To estimate the β coefficients, the log-likelihood function is maximized, i.e. the sum over all 

accounts of: 

 

       log 1 log 1l CCF F CCF F            x x         (12) 

 

Similarly to the direct EAD models, variable selection for all CCF models was performed 

through stepwise selection and backward elimination. The OLS-EAD and all three CCF 

models were developed with SAS 9.3 software (SAS Institute Inc., Cary, NC, USA). 

 

3.3. Utilization change model 

 

An alternative benchmark model, which has been popular in industry, was developed based 

on the facility utilization change (Yang & Tkachenko, 2012). The utilization change models 

the outstanding dollar amount change as a fraction of the current commitment amount and is 

defined for account i as  

 

   

 
d ri i

r i

E t E t
util

L t


       (13)  

 

A Tobit model, denoted Tobit-UTIL, was fitted as in Equation (8) which treats observations 

with util below zero and above one as censored hence the response is only observed in the 

interval [0, 1]. 
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3.4. Credit usage segmentation model 

 

Segmented models were developed using the credit usage variable to partition accounts into 

low and high utilization accounts. A CCF model was then fitted to the low usage subset of the 

data, an EAD model to the latter. Sensitivity analysis was used to identify an optimal credit 

usage cut-off for the partitioning. Model calibration performance was evaluated by varying 

the credit usage segmentation cut-point from 10% to 95%. The cut-off that produced the 

highest calibration performance (i.e. lowest MAE, RMSE; cf. section 3.6) was selected. 

When a cut-off was identified, low usage accounts were modelled with an FRR-CCF model 

since this is the model that achieved the highest calibration performance among the CCF 

models considered earlier. High usage accounts were tackled with OLS-EAD and ZAGA-

EAD models. We denote the two resulting segmentation models by OLS-USE (the one 

comprising FRR-CCF and OLS-EAD) and ZAGA-USE (i.e. FRR-CCF combined with 

ZAGA-EAD), respectively. 

 

3.5. Survival EAD model 

 

To allow the time to default variable to be used as an explanatory variable in practical model 

development, we propose that a Survival PD model be developed and applied in conjunction 

with the EAD model, we term this combination the Survival EAD model. The time to default 

variable is unknown a priori and cannot be used for predictive modelling with conventional 

EAD model frameworks. To avoid having to discard the variable, a Survival PD model 

component was developed with the Cox proportional hazards (PH) approach. Several 

aforementioned models, Tobit-CCF, FRR-CCF, Tobit-UTIL, ZAGA-EAD and ZAGA-USE, 

with time to default as an explanatory variable, were considered for the EAD component. 

 

The semi-parametric approach in hazard form for the Cox PH model is given by:  

 

     0| exph t h t x x β       (14) 
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where  |h t x   is the hazard or default intensity at time t conditional on a vector of 

explanatory variables x , and in which h0(t) is the baseline hazard, i.e., the propensity of a 

default occurring around t (given that it has not occurred yet) when all explanatory variables 

are zero. The baseline hazard is left unspecified for the Cox PH model. 

 

Combining estimates from the Cox PH and EAD models, we calculate the expected EAD for 

account i, as follows: 

 

   
 

12

1

1

1 (12)

      
  


t

S t S t
EAD EAD t

S
           (15) 

 

where  S t  is the survival function at time t,    1S t S t     thus gives the probability of 

default occurring in the t-th month according to the Cox PH model, and  EAD t is the EAD 

model estimate (according to Tobit-CCF, FRR-CCF, Tobit-UTIL, ZAGA-EAD or ZAGA-

USE) conditional on the time to default being t. Hence (15) allows us to produce estimates of 

EAD without any prior knowledge of the time to default variable. 

 

Note that, to produce valid EAD estimates, the horizon length for the Cox model must be the 

length of each cohort period (12 months) and the origin of time is taken to be the start of the 

cohort period in which default occurs; this means no event time censoring is observed in the 

data and each of the produced default probabilities are indeed conditional on the account 

defaulting over the cohort period (i.e. S(12)=0). One could argue that, in the absence of 

censoring, other (non-survival) regression methods could also be considered, but its flexible 

baseline hazard still makes the Cox PH model an attractive candidate for modelling time to 

default. The Cox PH model was developed with SAS 9.4 software (SAS Institute Inc., Cary, 

NC, USA). Table 8 displays the results of the models fitted using (15). 

 

3.6. Model validation and testing 

 

To assess the out-of-sample performance of the models thoroughly, 10-fold cross validation 

was conducted on the entire sample of accounts on a series of discrimination and calibration 

measures. All measures were derived from account-level EAD predictions (either direct ones 
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or produced indirectly through a predicted CCF) to have a common base of comparison. To 

evaluate discriminatory power (i.e. the models' ability to discriminate between different 

levels of EAD risk), the Pearson r and Spearman’s ρ correlation were computed. The Pearson 

r measures linear association and the Spearman’s ρ correlation measures the correlation 

between the rank orderings of observed and expected EADs. Calibration performance (here 

seen as the model's ability to come up with accurate account-level estimates of EAD) was 

assessed with the mean absolute error (MAE) and the root mean square error (RMSE). A 

normalized version of these measures was also produced, where MAE and RMSE were 

calculated for EAD / Commitment Amount, which facilitated a percentage interpretation. 

These measures were termed MAEnorm and RMSEnorm respectively. 
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4. Results 

 

Next, we present the results obtained for a direct EAD model, two competing CCF models, 

the sensitivity analysis of the segmented model and the cross-validated performance 

measures to compare all models (reported values here are averages over each 10 runs). 

Finally, we show the findings for the added survival component. 

4.1. ZAGA-EAD model parameters 

 

The parameters of a representative ZAGA-EAD model are shown in Table 2, with the three 

sub-components for the occurrence of zero EAD, mean of non-zero EAD and dispersion of 

non-zero EAD: π, µ and σ respectively. The parameters fitted with splines are denoted by s(.) 

in the table. The other estimates without spline functions are either fitted as categorical 

variables or linearly as continuous variables. 

 

Figure 4 shows the partial effect plots on log odds scale for the occurrence of zero EAD. 

These plots can be useful for interpreting coefficient estimates. For example, larger undrawn 

amounts are associated with a higher propensity (and probability) of zero EAD (see top-left 

plot) and larger exposure commitment corresponds to a lower propensity of zero EAD (see 

top-right plot). Precision of the estimates can be gauged with 95 percent confidence intervals 

represented as dashed lines. 

 

For example, in Figure 4, the partial effect of Rating 2 versus Other Ratings is shown as 

approximately -1 on the logit or log odds scale, which represents the propensity of zero EAD 

after adjustment for the effect of other covariates in the model. Hence the odds for the 

occurrence of zero EAD would reduce by 63%  11 e  for Rating 2 versus other Ratings. 
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Table 2. Zero-adjusted gamma model (ZAGA-EAD) based on a representative training 

sample. 

 

Model component Estimate SE p-value 

log(µ) for non-zero EAD       

Intercept 6.949 0.007 <.001 

s(Commitment amount) 0.0003 8.0e-7 <.001 

s(Undrawn percentage) -1.561 0.015 <.001 

Time to default 0.003 0.001 <.001 

Average days delinquent (last 6 months) -0.0004 2.1e-4 0.055 

Rating class 1 versus others 0.038 0.020 0.064 

log(σ) for non-zero EAD       

Intercept -3.630 0.055 <.001 

Undrawn percentage 3.497 0.048 <.001 

Time to default 0.033 0.007 <.001 

logit(π) for occurrence of zero EAD       

Intercept -6.000 1.259 <.001 

Undrawn amount 0.008 0.002 0.002 

Commitment amount -0.007 0.002 0.002 

Average days delinquent (last 12 months) 0.128 0.051 0.012 

Rating class 2 versus others 1.848 1.120 0.099 

s() is a penalized B-spline smoothing function 
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Figure 4. Propensity of zero EAD for zero-adjusted gamma model. 

 
 

Importantly, Figure 5 shows the partial effects for the mean and Figure 6 the dispersion of 

non-zero EAD. For example, the commitment size / amount plot in Figure 5 suggests higher 

committed exposure is linked to larger EAD, but the relationship is non-linear (which could 

in part be explained by the log link function used). A longer time to default is also associated 

with higher EAD. All of the effects encountered appear to be intuitive.  

 

In Figure 6, the undrawn percentage plot shows a strong positive linear relationship whereby 

higher undrawn proportions are associated with higher dispersion in the non-zero mean of 

EAD. This implies the ZAGA-EAD model has greater uncertainty in EAD prediction for 

accounts with low credit usage, which provides some justification for including our 

segmented models (i.e. OLS-USE, ZAGA-USE) into the study.   Also, time to default has the 
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expected positive relationship with both conditional mean (as the drawn down amount can 

accumulate over time) and dispersion (the farther from default, the harder to predict the final 

balance) – hence, there is potential value in the survival component proposed earlier.   

 

Figure 5. Mean of non-zero EAD for zero-adjusted gamma model. 
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Figure 6. Dispersion of non-zero EAD for zero-adjusted gamma model. 

 
 

4.2. OLS-CCF and FRR-CCF model parameters 
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for OLS-CCF and Table 4 for FRR-CCF. For brevity reasons, coefficient estimates for the 

Tobit-CCF, Tobit-UTIL and OLS-EAD models are not shown but can be made available on 

request. 

Stepwise variable selection for both models resulted in similar choices of covariates. The 

direction of the coefficient estimates from both models is consistent and confirms previous 

findings by Jacobs Jr (2010) where the effect of credit usage was negative while commitment 

amount and time to default were positive in sign. 
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Table 3. CCF model with ordinary least squares regression (OLS-CCF) based on a 

representative training sample. 

Parameter Estimate SE p-value 

Intercept 0.152 0.030 <.001 

Commitment amount -5.8e-5 5.5e-6 <.001 

Drawn amount 7.9e-5 6.8e-6 <.001 

Credit usage (%) -0.128 0.026 <.001 

Time to default 0.036 0.002 <.001 

Rating class 1 vs 4 0.241 0.037 <.001 

Rating class 2 vs 4 0.244 0.018 <.001 

Rating class 3 vs 4 0.091 0.018 <.001 

Average days delinquent (last 6 months) 0.003 0.001 0.0019 

 

Table 4. CCF model with fractional response regression (FRR-CCF) based on a 

representative training sample. 

Parameter Estimate SE p-value 

Intercept -1.497 0.146 <.001 

Commitment amount -2.7e-4 2.8e-5 <.001 

Drawn amount 3.6e4 3.5e-5 <.001 

Credit usage (%) -0.591 0.125 <.001 

Time to default 0.158 0.011 <.001 

Rating class 1 vs 4 1.058 0.177 <.001 

Rating class 2 vs 4 1.055 0.089 <.001 

Rating class 3 vs 4 0.407 0.089 <.001 

Average days delinquent (last 6 months) 0.012 0.004 0.004 

 

4.3. Sensitivity analysis of credit usage based segmentation models 

 

For the OLS-USE and ZAGA-USE segmented models, a line search was required to 

determine an appropriate cut point for segmenting the accounts into low- and high-usage 

segments. Table 5 shows this sensitivity analysis for the OLS-USE model. The optimal cut 

point (i.e. the one yielding the model combination with the lowest MAE) was found to be at 

90% credit usage, which also happened to be the median of the variable.  
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Table 5. Performance measures from 10-fold cross validation by varying credit usage 

segmentation cut-off used by the OLS-USE model. 

 

  Credit usage percentage cut-off 

Measure 10% 20% 30% 50% 70% 80% 90% 95% 

Pearson r 0.790 0.792 0.794 0.801 0.808 0.808 0.804 0.796 

Spearman ρ 0.733 0.739 0.743 0.747 0.753 0.752 0.750 0.743 

MAE 920.1 911.3 902.0 873.6 847.8 837.9 829.9 839.2 

RMSE 1623.9 1620.3 1615.3 1597.2 1582.9 1575.9 1565.7 1571.7 

 

4.4. Discrimination and calibration performance 

 

The discrimination and calibration performance of the models, all in terms of the EAD 

predictions produced by them, were assessed with 10-fold cross validation and are shown in 

Table 6. There was broad similarity of discriminatory performance across models based on 

the Pearson r and Spearman ρ. There did not appear to be a model that was superior based on 

these measures. 

 

The results did reveal performance differences based on the MAE, MAEnorm, RMSE and 

RMSEnorm calibration measures. Among the CCF models, the FRR-CCF had the lowest MAE 

and RMSE (best performance). Among all models, the OLS-EAD had the highest MAE 

(worst performance). Although the RMSE was higher than for two of the CCF models, 

ZAGA-EAD had the lowest MAE and MAEnorm at 833.5 and 0.268 respectively, among all 

non-segmented models. Segmentation by credit usage, i.e. using the OLS-USE and ZAGA-

USE approach, reduced the MAE further. The ZAGA-USE had the lowest MAE of all model 

approaches with 819.2.  

 

Figure 7 shows the observed EAD histogram along with fitted EAD densities for FRR-CCF, 

ZAGA-EAD and ZAGA-USE. The fitted values were computed through 10-fold cross 

validation. Importantly, the ZAGA-EAD model is able to reproduce the large peak at the 

lower bound of EAD more closely than the other models.  This also provides a plausible 

explanation as to why ZAGA-EAD was characterised by a highly competitive MAE but a 

somewhat disappointing RMSE, as producing a wider distribution may result in some larger 

residuals that are heavily penalised by the latter criterion.   
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Table 6. Performance measures from 10-fold cross validation for CCF, direct EAD and 

segmented credit usage models using observed time to default.  

Measure 

OLS-

CCF 

Tobit-

CCF 

FRR-

CCF 

Tobit-

UTIL 

OLS-

EAD 

ZAGA-

EAD 

OLS-

USE 

ZAGA-

USE 

Pearson r 0.792 0.799 0.801 0.808 0.809 0.798 0.804 0.803 

Spearman ρ 0.741 0.737 0.743 0.746 0.744 0.742 0.750 0.749 

MAE 859.0 870.6 856.1 925.2 883.3 833.5 829.9 819.2 

RMSE 1614.8 1586.3 1577.7 1654.3 1546.1 1602.5 1565.7 1571.0 

MAEnorm 0.273 0.276 0.273 0.294 0.301 0.268 0.269 0.260 

RMSEnorm 0.432 0.430 0.430 0.442 0.448 0.454 0.430 0.429 

 

Figure 7. Histogram of observed EAD and predicted EAD densities from 10-fold cross 

validation for FRR-CCF, ZAGA-EAD and ZAGA-USE models. 
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4.5. Survival model component 

 

A survival model was trained to show how an EAD model having time to default as a 

covariate could still be applied in a prediction setting. The results of fitting the Cox 

proportional hazards model onto a representative training sample are shown in Table 7. 

Positive coefficient estimates imply that a unit increase in the variable is associated with an 

increased hazard (and thus shorter time to default) and, conversely, negative values indicate 

reduced hazards of defaulting (default tends to occur later).  

 

The estimated survival probabilities produced by this Cox model were then combined with: 

the ZAGA-EAD model described in Section 3.1; ZAGA-USE, i.e. the best performing 

segmentation model (cf. section 3.4); several of the competing CCF models and the UTIL 

model, against which both ZAGA models were benchmarked in the previous section. For 

each resulting model configuration, predicted EAD values were computed according to 

Equation (15), i.e. by weighting the EAD estimates produced for different default time 

intervals by the monthly PD estimates from the survival component. As all accounts were 

guaranteed to default within a 12 month time horizon, the estimated survival function was set 

to zero at t = 12, i.e. no accounts survived beyond 12 months in the sample. Each such model 

combination (referred to as Cox-ZAGA, Cox-ZAGA-USE, Cox-Tobit-CCF, Cox-FRR-CCF, 

and Cox-Tobit-UTIL, respectively) is a particular instance of the Survival EAD model 

described in Section 3.5. This approach eliminates the need for any prior knowledge of time 

to default, and thus allows us to verify whether the performance improvements obtained with 

the ZAGA approaches are maintained in a practical deployment setting where forward-

looking predictions are required. Table 8 provides the model performance comparison for all 

such selected Survival EAD model configurations. 

 

The Cox-ZAGA model demonstrated good discrimination ability with a Pearson r of 0.798 

and Spearman ρ of 0.741. The MAE and MAEnorm were 830.3 and 0.266. The RMSE and 

RMSEnorm were 1603.2 and 0.455. These results showed very competitive explanatory power 

compared to a setting where time to default would be allowed to enter the EAD calculation 

directly.  In fact, this combined model, which does not rely on time to default, performed 

better in terms of MAE than most of the previous model components that used observed time 

to default, except for the segmented credit usage models (see Table 6). Furthermore, Table 8 
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corroborates our earlier findings by showing both ZAGA model combinations (cf. the two 

right-most columns) still outperformed the competing models in terms of MAE. 

 

Table 7. Cox proportional hazards PD model component of Survival EAD model on a 

representative training sample. 

Parameter Estimate SE p-value 

Credit usage (%) 0.239 0.038 <.001 

Rating class 1 vs 4 -0.527 0.081 <.001 

Rating class 2 vs 4 -0.635 0.039 <.001 

Rating class 3 vs 4 -0.315 0.041 <.001 

Average days delinquent (last 3 months) 0.007 0.002 <.001 

Average days delinquent (last 12 months) -0.020 0.003 <.001 

Relative change drawn (last 3 months) -2.6e-6 1.1e-6 0.021 

Absolute change drawn (last 3 months) 4.4e-5 1.3e-5 0.001 

 

 

Table 8. Performance measures from 10-fold cross validation for Survival EAD models using 

PD weighting method of Equation (15). 

Measure 

Cox- 

Tobit-CCF 

Cox- 

FRR-CCF 

Cox- 

Tobit-UTIL 

Cox- 

ZAGA 

Cox- 

ZAGA-USE 

Pearson r 0.792 0.792 0.801 0.798 0.798 

Spearman ρ 0.721 0.723 0.733 0.741 0.736 

MAE 908.8 903.5 1176.2 830.3 860.1 

RMSE 1617.5 1615.2 1865.3 1603.2 1593.4 

MAEnorm 0.287 0.286 0.375 0.266 0.273 

RMSEnorm 0.437 0.437 0.497 0.455 0.435 
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5. Conclusions and future research 

 

Our study considered the development of EAD models which target the EAD distribution 

directly in lieu of the CCF. Two such direct models were developed using OLS and the zero-

adjusted gamma approach. These were compared to more commonly known CCF variants 

using OLS, Tobit and fractional response regression and the utilization change model. 

Segmentation by credit usage was also attempted, which involves combining CCF and direct 

EAD models based on a suitable cut-off level. 

 

The cross validated discrimination measures reported in Table 6 broadly showed that direct 

EAD models and CCF models risk ranked similarly. In terms of calibration measures (the 

MAE, MAEnorm, RMSE and RMSEnorm), the FRR-CCF model had the highest performance 

among CCF variants. The OLS-EAD model had the lowest RMSE; however, the model 

produced 15 negative fitted values of EAD as its output is not constrained to be a positive 

value. Although these values could in theory be truncated, this may be considered a drawback 

of using the OLS model for targeting EAD directly. The OLS-CCF model had the second 

lowest MAE among CCF models but it also produced 10 negative fitted values of CCF 

predictions below zero. The utilization change model, Tobit-UTIL, did not perform as well as 

the other models. 

 

When comparing the non-segmented models, the ZAGA-EAD showed the highest 

performance among the CCF and direct EAD models, having the lowest MAE and MAEnorm 

from the cross validated findings (see Table 6). Additionally, the ZAGA-EAD model does 

not produce negative EAD values as the zero-adjusted gamma distribution only predicts 

values of zero and above. 

 

The notion that CCF models perform better for low credit usage accounts and that direct 

EAD models perform better for high credit usage accounts appeared to be supported by 

various findings. The positive relationship of the undrawn percentage with the dispersion 

parameter in the ZAGA-EAD model indicated that direct EAD models provide less precise 

estimates for low credit usage. Also, the segmented credit usage models developed by 

combining CCF and direct EAD models provided further performance improvements (see 

Table 6). Although the discrimination results remained broadly similar relative to non-

segmented models, the calibration performance was improved with lower MAE and RMSE 
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values observed for both types of segmented models. The OLS-USE model produced the 

second lowest MAE among all model types; the ZAGA-USE model had the lowest MAE 

which represented the most accurate model for this study.  

 

Our models from Table 6 included the observed time to default as a predictive covariate. We 

showed that the time to default variable, which is unknown a priori for a credit line, can 

nonetheless be applied in a prediction context by using a survival model component 

alongside a direct EAD model approach. This provides EAD estimates for each month 

weighted by the respective PD. According to Table 8, the Survival EAD models were 

competitive and had similar performance compared to the use of a model with observed 

values of time to default. When combined with the weighted PD approach, the Cox-ZAGA-

EAD model had the lowest MAE while the Cox-ZAGA-USE model had the second lowest 

MAE and the lowest RMSE. In other words, the ZAGA approach proved highly competitive, 

not just with observed time of default but equally when combined with a survival model 

component that does not require prior knowledge of this variable. 

 

 

The direct EAD models had some limitations with respect to drawn balances. Basel 

compliance requires estimated EAD to be at least equal to or above the drawn balance of the 

credit line. Some accounts from direct EAD models could have predicted a value of EAD that 

is less than the drawn balance. Thus during model implementation, appropriate overrides 

could be used to floor such account-level EAD predictions at the observed drawn balance. 

This effect would not occur for truncated CCF models where the CCF cannot take values 

below zero. We note however that if the direct EAD model is used to pool accounts into 

different EAD risk grades, account-level estimates of EAD that fall outside of the expected 

range would present less of a problem and the ZAGA-EAD model's better calibration 

performance would likely imply better grade-level estimates of EAD. However, the direct 

EAD models are more complex with more parameters to estimate; hence, for use in industry, 

model developers should consider potential implications of this level of complexity for model 

implementation and auditing. 

 

Future avenues for research could explore further improving the segmented credit usage 

models by considering alternative CCF model components, for example, using a beta inflated 

mixture model (Rigby and Stasinopoulos, 2010) to accommodate the highly bimodal nature 
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of the CCF distribution. Other EAD distributions with long tails may also be tried as part of 

the direct EAD models, e.g. using two component gamma distributions for two underlying 

subpopulations of low and high EAD amounts. The survival model component may be 

further developed using parametric survival models with truncated survival distributions 

which allows for fixed maximum time horizons given defaulted accounts have done so within 

a 12 month horizon. 

 

In summary, our results suggest direct EAD models using the gamma model without the CCF 

formulation offer a competitive alternative to CCF or utilization change based models. The 

findings also indicate model segmentation by credit usage may improve calibration 

performance further, which implies direct EAD models are a complement to CCF based 

models. This is a positive finding for EAD models as the focus of prediction is not only on 

risk ranking ability but on the concordance of the observed and predicted values. We suggest 

EAD model developers consider exploring the use of direct EAD models and credit usage as 

a segmentation criterion for uplift in calibration performance and to improve risk sensitivity 

of credit risk models. 
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