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The Basel Accords require financial institutions to regularly validate their loss
given default (LGD) models. This is crucial so banks are not misestimating the
minimum required capital to protect them against the risks they are facing through
their lending activities. The validation of an LGD model typically includes back-
testing, which involves the process of evaluating to what degree the internal model
estimates still correspond with the realized observations. Reported backtesting
examples have typically been limited to simply measuring the similarity between
model predictions and realized observations. It is however not straightforward to
determine acceptable performance based on these measurements alone. Although
recent research led to advanced backtesting methods for PD models, the litera-
ture on similar backtesting methods for LGD models is much scarcer. This study
addresses this literature gap by proposing a backtesting framework using stat-
istical hypothesis tests to support the validation of LGD models. The proposed
statistical hypothesis tests implicitly define reliable reference values to determine
acceptable performance and take into account the number of LGD observations,
as a small sample may affect the quality of the backtesting procedure. This work-
bench of tests is applied to an LGD model fitted to real-life data and evaluated
through a statistical power analysis.
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1 INTRODUCTION

Banks are required to validate the internal estimation process and their internal models
s0 as to prove their soundness to the national regulator (Basel Committee on Banking
Supervision 2005). The validation of the estimation process involves issues such as
data quality, reporting and problem handling, and how the predictive models are used
by the bank; it is mainly qualitative in nature, although quantitative methods are useful
for the examination of data quality. The validation of the models, on the other hand,
includes both the examination of the model design and the predictions that each such
model produces for the key risk parameter it is modeling: probability of default (PD),
exposure at default (EAD), or loss given default (LGD), ie, the percentage of the loan
that the bank will not be able to recover in the event of a default. The evaluation of
the model design consists of a qualitative review of the statistical techniques and the
relevance of the data used to build the model. The assessment of a model’s predictions
typically includes quantitative methods such as benchmarking and backtesting.
While benchmarking methods evaluate the internal model estimates against (where
available) external model estimates (Loterman 2012), backtesting methods evaluate
the internal model estimates against the actual realized observations. The purpose of
backtesting is to evaluate the predictive performance of a model and how this evolves
over time, in order to detect model deterioration in a timely manner. An LGD model
can experience reduced predictive performance when current loan loss behavior no
longer reflects the previous loan loss behavior on which the model was originally
built. This may lead to an overestimation or underestimation of a bank’s required
minimum capital so that its operations can become less profitable or more risky,
respectively. Although banks are required to regularly validate their models in order to
be Basel-compliant, the accord does not mention how to perform this validation (Basel
Committee on Banking Supervision 2005). In addition, recent research has largely
focused on advanced methods for backtesting PD models (Castermans et al 2009;
Christodoulakis and Satchell 2008; Engelmann and Rauhmeier 2011) but literature
on comparable methods for backtesting LGD models is virtually nonexistent.
Current LGD performance evaluation practices found in the literature have, so far,
usually been limited to comparing internal LGD predictions and realized LGD obser-
vations using error-based metrics, correlation-based metrics or even classification-
based metrics (Loterman 2012). However, it is not straightforward to determine
acceptable performance based solely on these metrics. A single value has little mean-
ing without an appropriate reference value indicating acceptable accuracy. Addition-
ally, these metrics do not take into account the number of LGD observations. When
the portfolio lacks sufficient observations, a few extreme observations can distort the
accuracy result and thus undermine its reliability. This study therefore proposes a
backtesting framework in which the model performance on an out-of-time test data
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set is evaluated against earlier model performance, eg, on the training data, using
a number of suggested statistical hypothesis tests. Hence, an appropriate reference
value is introduced for each metric of interest that takes into account the number of
observations.

The remainder of this paper is organized as follows. First, a literature review is
conducted on empirical LGD studies that focus on the evaluation of the predictive
performance of LGD models. Second, the key idea of the proposed backtesting pro-
cedure is explained, together with our workbench of available statistical hypothesis
tests to evaluate LGD models. Third, the experimental setup to apply and evaluate the
backtesting framework is described. This involves information about the employed
real-life LGD data, the design of a predictive LGD model based on this data, a stat-
istical significance analysis of the measured predictive model performance and a
statistical power analysis of the proposed tests based on these performance metrics.
Fourth, the results of the application and the evaluation of the backtesting procedure
are reported and discussed.

2 LITERATURE REVIEW

The Basel Accords require banks to backtest their internal models but do not further
specify how this needs to be performed (Basel Committee on Banking Supervision
2005). Current backtesting practices in the empirical LGD literature are usually lim-
ited to comparing internal LGD predictions and realized LGD observations with
error-based metrics (eg, MAE, RMSE), correlation-based metrics (eg, Pearson’s r,
Kendall’s 7, Spearman’s p, coefficient of determination R?) or even classification-
based metrics (eg, AUROC) (Loterman 2012). Each of these metrics has its own
method of quantifying the degree of similarity between LGD model predictions and
the actual realized observations. This section describes the workings of these metrics
in more detail and explains how they are used to assess the predictive performance
of LGD models. It will conclude by identifying several problems when using these
metrics for the purpose of backtesting LGD.

Error-based metrics quantify the error or difference between predicted and observed
values. One of the most often used error-based metrics is the mean squared error
(MSE) (Bellotti and Crook 2012; Calabrese 2012; Gupton 2005). The MSE is defined
as the average of the squared differences between loan-level LGD predictions and
actual observed values. Since errors are squared, this metric heavily weights outliers.
The metric is bound between the maximum squared error and zero (perfect prediction).
The root MSE (RMSE) is also often used as a metric in the literature (Bastos 2010a,b;
Bruche and Gonzdlez-Aguado 2010). The RMSE is merely the square root of the MSE
but offers the additional advantage that it has the same unit scale as the dependent
variable being predicted, unlike MSE. Another error-based metric used in the literature
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is the mean absolute error (MAE) (Bastos 2010a,b; Calabrese 2012). The MAE is
given by the averaged absolute difference between predicted and observed values.
Just like the RMSE, the MAE has the same unit scale as the dependent variable being
predicted, but MAE is not as sensitive to outliers. The metric is bound between the
maximum absolute error and zero (perfect prediction).

Correlation-based metrics quantify the degree of some statistical relationship
between predicted and observed values. A very popular correlation-based metric
seems to be the R? (Bellotti and Crook 2012; Caselli e al 2009; Dermine and Neto de
Carvalho 2005; Grunert and Weber 2009). The R? can be defined as 1 minus the frac-
tion of the sum of squared errors to the variance of the observations. Since the second
term in the formula can be seen as the fraction of unexplained variance, the R? can
be interpreted as the fraction of explained variance. Although R? is usually a number
on a scale from 0 to 1, R? can yield negative values when the model predictions are
worse than using the mean y from the training set as prediction. Other correlation-
based metrics include Pearson’s r (Gupton 2005), Spearman’s p (Loterman 2012)
and Kendall’s t (Chalupka and Kopecsni 2009). Pearson’s r measures the degree of
linear relationship between predictions and observations. Spearman’s p is defined as
Pearson’s r applied to the rankings of predicted and observed values. Kendall’s t mea-
sures the degree of correspondence between predictions and observations. All three
correlation coefficients can take values between minus 1 (perfect negative correlation)
and 1 (perfect positive correlation) with zero meaning no correlation at all.

Although not considered to be a metric to assess the performance of a regression
model, a typical binary classification-based metric such as the area under the receiver
operating characteristic curve (AUROC) (Fawcett 2006) is also used in the LGD
literature (Chalupka and Kopecsni 2009; Grunert and Weber 2009; Gupton 2005). It
is employed in an LGD context to measure how well an LGD regression model is able
to distinguish between high and low losses. In order for the curve to be produced, the
observed values are first dichotomized into a high and a low class using, for example,
the mean y of the training set as the cut-point. The area under the ROC curve is an
estimate for the discriminatory power of a model. The metric varies from 0.5 (random
classification) to 1 (perfect classification). Another similar metric is the area over the
regression error characteristic curve (AOREC) (Bi and Bennet 2003). It can be seen
as either a generalization of an error-based metric or a regression equivalent for the
AUROC. The AOC curve plots the error tolerance on the x-axis onto the percentage
of points predicted within that tolerance (or accuracy) on the y-axis. The resulting
curve represents the cumulative distribution function of the squared error. The area
over the REC curve (AOC) is an estimate of the prediction error by the model. The
metric is bound between zero (perfect prediction) and the maximum squared error.

The evaluation scheme used to assess the predictive performance of a LGD model
varies in the literature. For prediction it is important that the model performance is
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evaluated on unseen cases which is what it will also encounter in real-life. These
evaluation schemes are called out-of-sample. In an out-of-sample schema (Bastos
2010a,b; Caselli et al 2009; Chalupka and Kopecsni 2009; Grunert and Weber 2009),
the LGD dataset is split into a random training set (eg, two-thirds of the total dataset)
and a test set (remaining one-third of the total dataset). The training set is used to build
the model; the test set is used to evaluate the model. In order to enhance the reliability
of the assessment, multiple hold-out validations can be considered (Bastos 2010a,b).
Alternatively, rather than using a simple out-of-sample test set, we can also opt for
an out-of-time scheme. In an out-of-time scheme (Bastos 2010a; Bellotti and Crook
2012; Bruche and Gonzélez-Aguado 2010; Calabrese 2012; Gupton 2005), the model
itself is built on data from a specific time period and is evaluated on data collected after
this time period. While an average of multiple hold-out validations is most applicable
to assess how well a technique fits a model to a dataset, out-of-time validation adds
additional insights into real-life predictive model performance as the model is strictly
built using historical data and strictly evaluated on future data. Backtesting always
comes down to an out-of-time evaluation.

The use of the above-described metrics for backtesting an LGD model may present
problems. First, it is not straightforward to determine acceptable model performance
solely based on these metrics. A single value has little meaning without an appropriate
reference value indicating acceptable performance. For example, a loan level R? of
50% may look poor on paper since a perfect LGD model should in theory yield
an R? of 100%. However, comparing this performance with other real-life LGD
benchmarking results where the average R? ranges from 4% to 43% (Loterman 2012),
this may sound very good. Similarly, for error-based metrics, it is useful to employ,
for example, the relative squared error or relative absolute error, which measures
the model’s predictive performance compared with the predictive performance of
historical average LGDs, which may be seen as a reference model (null model) (Bastos
2013). Second, the above-described metrics do not take into account the number of
LGD observations. When the portfolio lacks sufficient observations, a small number
of extreme observations can distort the accuracy results and thus affect its reliability.
For example, when assessing LGD model performance in a specific year with only
ten defaults in the portfolio, one or two large loan-level prediction errors may cause
a disproportionately poor performance.

3 PROPOSED BACKTESTING FRAMEWORK

The proposed approach for backtesting the predictive performance of an LGD model is
to evaluate model performance on the most recent out-of-time validation set collected
(referred to as “test performance” from here on) against model performance on the
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original training dataset! (referred to as “training performance” in what follows); to
conduct this comparison, we will suggest a series of alternative statistical hypothesis
tests. By comparing test performance against training performance, a reference value
is introduced, tailored to the respective model. Model deterioration is thus defined
as a decrease in model performance compared with the performance during model
building (or some other reference period). Note that this is in contrast to the process of
benchmarking, where the performances of multiple models are compared with each
other. By applying statistical hypothesis tests, model deterioration can be statistically
detected at a predefined significance level (eg, 5%). In addition, statistical hypothesis
tests implicitly take into account any insufficient number of observations (ie, sample
size) to prevent incorrect judgements.

In what follows, the proposed statistical hypothesis tests to decide upon acceptable
model performance are explained. These tests typically start with the formulation
of a null hypothesis, Hp, which assumes no model deterioration, and an alternative
hypothesis, H,, which indicates model deterioration. Then, some test statistic is iden-
tified in order to assess Hy. A decision whether or not to reject Hy can be made by
calculating this test statistic for the sample at hand and comparing it with the critical
value corresponding to a significance level of 5%. If the resulting test statistic falls
in the rejection region (eg, is greater than the critical value), Hy may be rejected in
favor of H,, ie, we would accept that there is sufficient evidence to support model
deterioration.

3.1 Central tendency error tests

The most basic model performance aspect is the central tendency of the error; the
corresponding metrics are useful in assessing so-called model calibration, ie, whether
the model tends to under- or overestimate the true LGD of loans. The error E for loan
defaults in the test set is defined here as the difference between observed LGD, Y,
and predicted LGD, )A’; thus, E =Y — Y . Two well-known statistical hypothesis tests
from the literature may be used in this context: the 7 test and the Wilcoxon signed
rank test. Both tests allow us to evaluate whether the central tendency of the error
equals zero, which serves as the reference value. In other words, it is assumed that
the central tendency of the training error, E;, of a well-aligned model equals zero.
Whereas the T test compares the mean error with zero, the Wilcoxon signed rank test
compares the median error with zero.

Note that one-tailed tests will be used instead of two-tailed tests because the former
provide more power to detect whether model predictions are too low on average by

! Additionally, we could also decide to backtest against a validation sample from another past time
period (eg, using predicted and observed data collected as part of a previous backtesting exercise
as a reference); the statistical tests used would be similar though.
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not looking for systematic misestimations on either side. Although overestimating
LGDs may needlessly increase a bank’s capital requirements, detecting any systematic
underestimation of losses is considered more important since the primary regulatory
concern is that the bank would not have set aside sufficient capital. Nonetheless,
a bank may become less profitable compared with other banks when their capital
requirements are significantly overestimated so, where this would be a key concern,
it may be beneficial to consider two-tailed versions of the proposed tests instead.

The T test can be used to make inferences about whether the mean of the test-set
error (g equals zero or (provided that we opt for a one-tailed test) is positive:

Hy: png =0, H,: ug > 0.

A test statistic 7" can be derived from the property that the sample mean of a normally
distributed variable is normal or, in the absence of normality, approximately normal
for a large enough sample (due to the central limit theorem). Hence, given that Hy is
true, and with the true variance of the error being unknown, the following test statistic
follows a ¢-distribution:

e
T ety T

with n the number of loss observations available for backtesting. Note that as n
becomes larger (eg, starting from n > 30), a z-distribution converges to a normal
distribution. Hence, in that case, performing a Z test and comparing the test statistic
against a normal distribution table would be an appropriate alternative.

The one-sample Wilcoxon signed rank test (Wilcoxon 1945) on the other hand can
be used for making inferences about whether the median of the test-set error, ng,

equals zero:
H()ZUE:O, Ha:r)E>O.

A test statistic can now be derived by ranking the absolute values of nonzero errors in
ascending order. The smallest error is ranked 1, the second smallest is ranked 2, etc.
Tied cases (ie, absolute LGD prediction errors of the same magnitude) are assigned
the average of their ranks. The test statistic is then given by the sum of the ranks of
the positive errors, ry, and is approximately normal under Hy and for a large enough
sample; hence, we can use the following standardized test statistic:>

_ ry —(nn+1)/4) N
Vi +1)2n + 1))/24

Compared with the T test which draws conclusions based on the actual value of the
mean in the test sample and its assumed distribution, the Wilcoxon test statistic is a

N(O, 1).

2 Because ry takes only integer values, a continuity correction may be applied.
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nonparametric alternative which looks solely at the ranking of the errors. Nonetheless,
in order to be able to easily quantify and compare the central tendency error over the
test years, we propose an additional metric that will be referred to in this paper as the
Wilcoxon metric w,. It is defined as the ratio of the rank sum of negative errors (r_)
to the total rank sum of positive and negative errors (r4+ + r—). It is bound between
zero (ie, all errors are underestimations) and one (all are overestimations) with 0.5
indicating there is no upward or downward bias.

3.2 Error dispersion tests

Another model performance characteristic that complements the central tendency of
the error is the dispersion of the error, or, inversely, model precision. Whereas the
central tendency tests proposed in the previous section look for systematic under-
(or over-)estimations of LGD, dispersion tests are meant to detect whether this error
distribution is getting wider, ie, loan-level predictions are becoming less precise. Two
existing statistical hypothesis tests may be used for this purpose: the F test (a well-
known parametric test) and the Ansari—Bradley test (a nonparametric alternative).
Both tests allow one to evaluate whether the dispersion of the error in the most recently
collected test set differs from the dispersion of the training error, which serves as a
reference. While the F test compares the variance of the test set error to the variance
of the training error, the Ansari—Bradley test compares the spread of both distributions
by using aranking procedure rather than relying on the numerical error values directly.
Note that, similarly to before, one-tailed tests are proposed in order to enhance the
statistical power to detect when the dispersion of the test error is larger than the
dispersion of the training error. A larger error dispersion implies larger prediction
errors; this loss of predictive power might affect the model’s ability to correctly
identify the LGD risk of individual loans or to produce sufficiently homogeneous
LGD risk grades.

The F test (Witte and Witte 2013) can be used to determine whether the variance
of the test set error 0}25 is equal to the variance of the training error 0‘25[, ie, for a
one-tailed test:

A2 2 A2 2
HO’OE_GE[’ Ha'aE>GE['

A test statistic is produced by inspecting the ratio of observed error variance in the
test sample, sg, over observed error variance in the training sample, 53; . Assuming the
error terms are sampled from an underlying normal distribution, (n — 1)(s2/0% ) and
(n,—1)(sZ,/o,) follow a y>-distribution, with n — I and , — 1 degrees of freedom,
respectively (where 7 is the number of loan defaults to backtest and n; the number
of defaults in the training (reference) set). Hence, dividing each by the corresponding
degrees of freedom and taking the ratio leads to the following F-distributed test
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statistic, under Hy:
2
se
F = > =~ I'n-1,n;-1-
Sg,
Note that deviations from the normality assumption could undermine the validity of
this test. Therefore, we propose a second, nonparametric test.
Alternatively, the Ansari—Bradley test (Ansari and Bradley 1960) can be used to
assess whether the camulative error distribution for the test set, Fg (1), and the cumu-
lative distribution function of the training errors, Fg, (1), are equal, assuming they

can only differ in the value of a scale parameter 6:
Hy: Fg(u) = Fg,(u), H,: Fg(6u) = Fg,(u) with 6 > 1.

In this setting, a test statistic can be derived by calculating the sum of rank scores or
weights of the ordered errors in the combined sample containing both test and training
errors, e and e;. Let the size of this sample be m = n + n;. The weights assigned are
one to both the smallest and largest error value in the combined sample (ie, the ‘outer
edges’ of the empirical error distribution), 2 to the next smallest and next largest,
etc, until a weight of m/2 is assigned to the two middle observations if m is even,
or %(m + 1) to the one middle observation if m is odd (using mid ranks for ties).
The test statistic is given by the sum of these weights (denoted w,) for the ordered
errors e associated with the test set only. For large sample sizes, w, is asymptotically
normally distributed, specifically’

7 - we —n(m +2)/4
B Vnn(m + 2)(m —2)/48(m — 1)

~ N(0,1),

when m is even, or
. we —n(m + 1)%/4m
Vnng(m + 1)(3 + m2)/48m?

when m is odd. A lower-tail test is then used to detect larger dispersion in the test
sample. As the test requires that £ and E; have identical population medians, Ansari
and Bradley (1960) recommend subtracting the sample medians and shifting both e
and e; to zero median if this assumption should not be met.

Compared with the F test, which draws conclusions based on the actual values of
training and test sample variances, the Ansari—Bradley test statistic uses a ranking
procedure to determine whether the test sample error distribution is wider than that
previously observed in the training (reference) data. Nonetheless, to be able to easily

Z ~ N(0, 1),

3 A further modification may be applied to the test statistic variance in this large-sample approxi-
mation if ties are present.
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quantify and compare the test performance over the out-of-time validation period at
hand, relative to the training performance, we propose an additional metric that will
be referred to in this paper as the Ansari-Bradley metric ab,,. This metric is defined as
the ratio of the sum of weights of the ordered errors in the combined sample associated
with e (w,) to the total sum of weights in the combined sample associated with both e
and e; (we + we, ). Values closer to zero (one) imply greater (smaller) error dispersion
in the test data, respectively; 0.5 indicates similar error dispersion in the training and
test sets.

3.3 Error-, correlation- and classification-based tests

In addition to our proposed tests for monitoring model calibration and precision, a
number of other metrics are frequently used in the empirical LGD literature to assess
model performance. These are error-based (ie, RMSE, MAE, AOREC), correlation-
based (ie, R?, r, p, T) or classification-based (ie, AUROC) metrics. However, the
backtesting literature has not always identified readily available statistical hypothesis
tests for them or described how to apply these to the problem of detecting model
deterioration. The main problem is that it is often not straightforward to determine
the theoretical distribution of a test statistic under a null hypothesis based on these
metrics. Instead, such a distribution may be estimated via a bootstrapping approach.
The basic idea of bootstrapping is that inference about a population can be made by
resampling from the available sample data. By doing so, one can produce an empirical
distribution for a test statistic under a given null hypothesis when its true distribution
is unknown.

A bootstrap test can thus be used to determine to what degree, for a metric of
interest, the test performance P is equal to the training performance P;:

Hy: P=P,, H, P <P,

In this case, the test statistic is given by P; — P if P is one of the commonly used
correlation- or classification-based metrics, or P — P, if the metric of interest is an
error-based one (since their values are inversely related to model performance). The
distribution of this test statistic under the null hypothesis can be simulated through
bootstrapping according to Beran’s algorithm (Beran 1986; Hall and Wilson 1991;
Westfall 1993; Yuan 2003). First, the training and test observations, along with their
predicted LGD values, are pooled into one larger sample. Next, a training/test boot-
strap sample with the same length as the original training/test set is extracted from this
pool of observation/predictions through random sampling with replacement. Then, the
difference in value for the metric under consideration between the bootstrap training
sample and the bootstrap test sample is calculated. This procedure is repeated 1000
times in order to empirically build up the distribution of the test statistic under the

Journal of Risk Model Validation 8(1)
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TABLE 1 Number of observations.

Year Observations Purpose
2004 30 Backtesting
2003 47
2002 140
2001 155

1984-2000 519 Training

null hypothesis. Note that again only one-tailed tests are proposed so as to enhance
the statistical power to detect performance deterioration; however, the method can
easily be adapted to implement two-tailed tests where needed.

4 METHODS

This section evaluates the proposed backtesting framework by applying it to an exam-
ple LGD model fitted to and tested on real-life data. The experimental setup is as
follows. First, real-life loss data was collected, consisting of a variety of character-
istics of each respective loan on the one hand and its corresponding observed LGD
on the other. Second, a regression analysis is performed over the loss data in order to
build a predictive LGD model. Third, the performance of the predictive LGD model
is backtested on multiple years of out-of-time data. To this end, the proposed statis-
tical hypothesis tests are run in order to discover any significant model deteriorations.
Fourth, the proposed statistical hypothesis tests are empirically evaluated through a
statistical power analysis.

4.1 Data collection

The real-life LGD dataset collected in this study consists of corporate loan losses
over a time span from 1984 to 2004 and contains 891 observations. Data from 2001
to 2004 is used to annually backtest the constructed LGD model. The model is built
with data from 1984 to 2000. This split between training and test data (ie, letting the
training window run to the year 2000) is chosen so as to have sufficient data (about
500 defaults) to train an LGD model while still having sufficient time periods (ie, four
years) to backtest the LGD model. The number of observations used for training and
backtesting purposes is given in Table 1.

The empirical distribution of the LGD data used for training and testing is shown
in Figure 1 on the next page. It appears to be predominantly J-shaped with the highest
observed frequencies at the right end of the LGD value range. This means that the
dataset is characterized by high LGDs for a majority of defaults. Notice that especially
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FIGURE 1 LGD observations histograms.
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2001 and 2002 are characterized by high LGDs while this shifts to generally lower
LGDs for 2003 and 2004. From the literature, we know that the LGD distribution is
indeed typically nonnormal and often bimodal; real-life LGD tends to be characterized

by high concentrations of either (near-)total recovery (LGD = 0 or close to 0) or
total loss (LGD = 1) or both. Most of the empirical LGD literature reports a large
peak at zero and a smaller peak on 1 (Bastos 2010a; Calabrese 2012; Chalupka and
Kopecsni 2009; Dermine and Neto de Carvalho 2005; Gupton 2005). Nonetheless, a
few studies also report what we observe in our dataset: a large peak on 1 and a smaller

or nonexisting peak on zero (Caselli et al 2009; Gupton 2005).

The LGD dataset covers both loans and bonds from large corporates. Apart from
the LGD target variable, the dataset includes 42 variables, which represent potential
LGD drivers, such as rating, level of seniority, country of domicile, type of industry,

US default rate, etc. The data covers different sectors such as transportation, finance,

public, industrial and real estate. Firms are domiciled in America, Europe and Ocea-
nia. The average size of the debts is about US$100 million and about 15% of the debts

Journal of Risk Model Validation 8(1)
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are secured by collateral. For the purpose of predictive modeling, a few preprocessing
actions are performed. Continuous variables are transformed to the standard z-score
using the sample mean and standard deviation of the training set. Furthermore, cate-
gorical variables are quantified by dummy encoding. Further information about this
dataset is confidential.

4.2 Predictive modeling

First of all, a predictive LGD model is required to estimate future outcomes. This
allows the bank to protect itself against default losses while remaining competitive.
A second consideration is that the bank may need to provide a comprehensible LGD
model typically required by the national regulators in order to ensure that banks fully
understand their risks and underlying model relations. Although nonlinear models
such as support vector machines and artificial neural networks seem to show signif-
icantly better performance on average than linear models in a recent benchmarking
study, they are often labeled as black-box models (Loterman 2012). Therefore, a sim-
ple linear model is deliberately chosen in this paper so that the model form remains
understandable and its backtesting results can be more easily interpreted. Note that,
in the context of this study, the focus is not on building the best possible model, but
on illustrating how a given model can be properly backtested.

The LGD model is estimated by applying ordinary least squares (OLS) regression
to the training data. In order to improve the generalization ability, ie, the ability to
accurately estimate the LGD on out-of-sample data, a variable selection method is
used to exclude irrelevant or redundant variables from the model. Using a ten-fold
cross-validation scheme, a model wrapper searches for a subset of variables that best
predicts the LGD by sequentially selecting variables until there is no improvement
in minimizing the sum of squared differences between predictions and observations.
The selected subset includes two binary variables referring to the level of senior-
ity, ie, senior unsecured (SU) (true/false) and junior subordinated (JS) (true/false),
and one continuous variable, ie, (standardized) US default rate from the previous
year (USDR(t-1)). The output of the variable selection strengthens previous literature
studies which stress the importance of seniority and default rate as major predictive
drivers (Basel Committee on Banking Supervision 2005):

LGD =0.74 —0.15-SU + 0.18 - JS + 0.02 - USDR (¢ — 1).

The resulting linear model can be interpreted as follows. The baseline LGD estimate is
74%:; this estimate decreases with 15% when the loan is senior unsecured or increases
with 18% when the loan is junior subordinated (keeping the other variables constant).
Similarly, the LGD increases with the US default rate from the previous year. These
relations are roughly in line with previous empirical studies. Secured debt and high

Research Paper www.risk.net/journal

81



82 G.Loterman et al

TABLE 2 Performance metrics.

Metric Worst Best

e -00 0
wr 0 0.5
52 +00 0
aby 0 0.5
RMSE +00 0
MAE +00 0
AUROC 0.5 1
AOREC +00 0
R? 0 1
r 0 1
P 0 1
T 0 1

Although R? can yield excessive negative values when the model predictions are worse than using the mean from
the training set as prediction, these have however the same meaning as zero values, ie, that the model does not
explain any variation at all (Nagelkerke 1991). Hence, any negative values are replaced by zero to enhance their
interpretation.

priority are known to decrease the LGD (Acharya et al 2003; Altman and Kishore
1996; Altman ef al 2001, 2005; Araten et al 2004; Asarnow and Edwards 1995; Carty
and Lieberman 1996; Carty et al 1998; Eales and Bosworth 1998; Frye 2003; Gupton
et al 2000). Also, LGD was reported to be higher in periods of high defaults (Altman
et al 2001, 2005; Araten et al 2004; Frye 2000, 2003; Gupton et al 2000; Hamilton
et al 2003).

4.3 Significance analysis

Table 2 gives an overview of the performance metrics on which the statistical hypoth-
esis tests of the proposed backtesting framework are based. The name of each per-
formance metric is given in column one while the values in columns two and three
show its lower and upper bound. The first two metrics specifically measure the cen-
tral tendency of the error while the subsequent two metrics measure the dispersion
of the error. As explained in Sections 3.1 and 3.2, standard (non)parametric tests are
available to test performance deterioration in terms of these metrics. The following
eight metrics are a further selection of error-, correlation- and classification-based
metrics. To detect performance deterioration based on these metrics, we will use the
bootstrapping procedure outlined in Section 3.3.

To monitor whether the performance according to each metric falls within an accept-
able range, the out-of-time performance is compared with the training performance.
Each statistical hypothesis test assumes a null hypothesis and if sufficient evidence
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exists against the null hypothesis, we accept the alternative hypothesis, ie, that per-
formance has been affected. This evidence is gathered in the form of a p-value. The
p-value is the probability of obtaining a test statistic at least as extreme as the one that
was actually observed, assuming that the null hypothesis is true. When the resulting
p-value is compared with a predefined significance threshold, a decision can be made
on statistical significance. This predefined level is the maximum allowed probability
of making a type I error (ie, the incorrect rejection of the null hypothesis). This is
generally denoted as « and can, for example, be set to 5%. Low p-values (ie, < 5%)
indicate that H can be more confidently rejected, whereas larger p-values (ie, > 5%)
indicate that there is insufficient evidence to do so. Other values of « may be chosen
depending on cost considerations, the level of conservatism required by the bank or
regulator, etc.

Note that a significance analysis may be extended in various ways. First, if required,
statistical comparisons may also be performed between the performance of the test
year under consideration and the performance of any previous year(s), instead of the
performance on the training set. Second, the statistical tests may also be performed on
specific segments of the data. This segmentation could be done either on the input data
(eg, different levels of seniority) or on the output data (ie, different levels or “grades”
from low to high LGD risk). Third, a traffic lights approach may be used to support the
visualization of the resulting p-values. Different colors can be assigned depending on
the range that the corresponding p-values are in (Castermans et al 2009). The choice
and number of colors as well as the definition of their underlying p-value bounds
are at the discretion of the financial institution, although a minimum number of three
is suggested (Svec 2009). These extensions are however not put into practice in this
paper for reasons of brevity.

4.4 Power analysis

In order to evaluate whether the results of the statistical hypothesis tests are sufficiently
reliable, the statistical power m is empirically determined. The power of a test is
defined as the probability that the test rejects the null hypothesis when it is indeed
false. Note that this is the probability of not making a type II error (ie, the failure
to reject the null hypothesis while it is actually false). The probability of making a
type Il error is generally denoted as 8. To decide upon acceptable statistical power, a
threshold of 85% is often used. A test is then considered to be sufficiently powerful
when 7 is higher than 85% or B is lower than 15%. Note that 8 (and thus also 7) is
related to the significance level « desired. When « is higher, 8 is lower or x is higher,
and vice versa.

We analyze the statistical power of a test using again Beran’s algorithm (Beran
1986; Hall and Wilson 1991; Westfall 1993; Yuan 2003). First, the distribution of
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TABLE 3 Performance metric values.

Metric 1984-2000 2001 2002 2003 2004

e 0.00 -0.177 -0.12 0.08 0.16
wy 0.43 0.15 020 053 0.83
52 0.05 0.05 0.05 0.07 0.05
aby 0.50 024 021 0.06 0.05
RMSE 0.23 029 025 028 0.27
MAE 0.18 026 022 025 0.23
AUROC 0.70 056 055 063 0.55
AOREC 0.05 0.08 0.06 0.08 0.07
R? 0.12 0.00 0.00 0.01 0.00
r 0.34 0.14 019 0.30 0.17
0 0.33 0.03 022 024 0.07
T 0.23 0.03 0.18 0.19 0.06

the test statistic under H, is empirically derived. To do so, a same-sized training/test
bootstrap sample is extracted from the original training/test set, respectively, through
random sampling with replacement. Subsequently, the test statistic is calculated for
each bootstrap sample. This procedure is repeated 1000 times in order to empirically
build up a reliable distribution of the test statistic under H,. Similarly to section 3.3,
the distribution of the test statistic under Hy can be empirically derived by repeatedly
extracting a training and test bootstrap sample but now from a pooled dataset which
combines the training and test set values. Next, the probability of making a type Il error
B is calculated. This is given by the percentile rank of the test statistic’s distribution
under H, for the 95th percentile (corresponds to &« = 5%) of the distribution of the
test statistic under Hy in the case of a right-tailed test. Finally, the power can be
calculatedas 7w = 1 — 8.

5 RESULTS AND DISCUSSION

This section reports and discusses the performance values of the LGD model, the
statistical significance values of the performance differences between training and
test sets and the statistical power values of the applied statistical hypothesis tests. The
performance results of the LGD model for each metric are listed in Table 3. Both
training (ie, data from 1984 to 2000) and test set performances (ie, data from 2001 to
2004) are given in order to show the evolution of the performances of the subsequent
years with respect to the training performance. In order to detect significant perfor-
mance deteriorations based on these performance values, Table 4 on the facing page
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TABLE 4 Statistical significance values (p-values rounded to two decimal places).

Test 2001 2002 2003 2004
T 0.00 0.00 097 1.00
Wilcoxon 0.00 0.00 098 1.00
F 043 073 0.04 052
Ansari-Bradley 0.86 0.29 0.00 0.10
RMSE 0.00 0.09 0.03 0.07
MAE 0.00 0.00 0.00 0.06
AUROC 0.00 0.00 021 0.10
AOREC 0.00 0.07 0.02 0.07
R2 0.00 0.00 0.13 0.18
r 0.01 0.05 033 0.15
p 0.00 0.13 025 0.10
T 0.00 026 035 0.08

TABLE 5 Statistical power values.

Test 2001 2002 2003 2004
T 1.00 1.00 0.00 0.00
Wilcoxon 1.00 1.00 0.00 0.00
F 0.09 0.02 054 0.01
Ansari-Bradley 0.05 0.15 0.94 0.30
RMSE 1.00 0.36 079 0.40
MAE 1.00 095 0.92 0.57
AUROC 0.87 095 0.15 0.19
AOREC 1.00 039 0.75 0.39
R2 098 091 0.13 0.09
r 0.8 050 0.06 0.38
) 096 027 0.15 0.50
T 095 0.18 0.12 0.5

presents the resulting p-values of the statistical hypothesis tests corresponding to
each performance metric; bold-face notation is used to denote significant differences
(p < 0.05). Finally, Table 5 lists the power values of each statistical hypothesis test
so that we can evaluate to what degree they can be sufficiently relied upon to discover
performance deteriorations. Power values greater than our example threshold of 0.85
are again put in bold.
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The evolution of the central tendency of the error in terms of the mean error e or
(our variant of) the Wilcoxon metric w; is represented in the first and second rows of
Table 3 on page 84. Regardless of whether the central tendency of the error is measured
using e or w,, the same trend is observed. The central tendency is below zero in terms
of e and below 0.5 in terms of w, for 2001 and 2002, while it is above zero in terms
of e and above 0.5 in terms of w, for 2003 and 2004. The corresponding p-values in
Table 4 on the preceding page for both the 7 test and the one-sample Wilcoxon test are
(close to) zero for 2001 and 2002 and are (close to) 1 for 2003 and 2004. This means
that both tests agree that the model is significantly underestimating LGD for 2001 and
2002, while this is not the case for 2003 and 2004. The consistent underestimations
of the model may point to a more severe economic downturn period than expected
by the model. The corresponding power values in Table 5 on the preceding page for
both the T test and the one-sample Wilcoxon test are at their maximum value for
2001 and 2002 and at their minimum value for 2003 and 2004. Both results should
be seen in conjunction with the significance results obtained for those same years.
Note that, even prior to the test results for 2001-4, the Wilcoxon metric w, when
calculated using the training data only was lower than 0.5, thus indicating that the
error is nonnormally distributed and mean and median error are different.

The evolution of the dispersion of the error in terms of the observed variance of
the error s2 or the Ansari-Bradley metric aby, is shown in the third and fourth row
of Table 3 on page 84. According to sg, the dispersion of the error remains fairly
stable for the subsequent years, except for 2003 which shows a 0.02 increase in error
variance. According to ab,, on the other hand, the dispersion of the error seems
to worsen over time, gradually dropping further below the reference value of 0.5
tabulated in the training results column. The corresponding p-values in Table 4 on
the preceding page for both the F test and the Ansari—Bradley test are above the
significance level of 5%, except for 2003. This means both tests agree that only for
2003 is there a significant deterioration. However, the corresponding power values in
Table 5 on the preceding page, with the exception of 2003, are low for both. These
low values undermine the usefulness of the p-values greater than 0.05, as they imply
that we can not conclude with much certainty that there is no deterioration of the error
dispersion in those years. For 2003 however, the detection of significant differences
is supported by the greater power of both tests for that year. Interestingly, the power
values of the F test are generally much lower compared to the power values of the
Ansari—Bradley test. This is hardly a surprise as previous power analysis studies have
found that the F test is most powerful under normal assumptions (Witte and Witte
2013) but extremely sensitive to nonnormality (Box 1953; Markowski and Markowski
1990) whereas the Ansari—Bradley test makes no distribution assumptions and can be
applied to relatively small samples (Shaffer 1990). Hence, the nonsymmetrical shape

Journal of Risk Model Validation 8(1)



A proposed framework for backtesting loss given default models

of the error distribution observed in training and test samples is likely to be a major
factor in explaining the lower power values of the F' test.

The observed values for our series of error-, classification- and correlation-based
metrics are shown in the last eight rows of Table 3 on page 84. The corresponding
p-values for 2001 in Table 4 on page 85 are also all below the significance level of 5%.
This means that all tests unanimously agree that there is a significant deterioration
of the performance for 2001. For 2002 and 2003, however, some metrics still agree
on significant performance deterioration but this is no longer true for all of them. In
2004, no significant performance deteriorations could be detected although all metrics
show consistently lower test performance compared with the training performance.
The corresponding power values shown in Table 5 on page 85 are generally high for
2001 and decrease for the subsequent years. In other words, the significant differences
detected for the bootstrap tests are backed up by large power values. However, in the
rest of the cases (ie, where no significant differences are detected) the bootstrap
tests show only moderate power. This leaves decisions about lack of performance
deterioration in those later years rather inconclusive.

Summarizing the reported performance results, we can conclude that the model
shows significantly worse performance in 2001 and (according to several of the tests)
2002, specifically where it comes to being well-calibrated (see the central tendency
tests) as well as in terms of a series of other performance metrics that we tested
using a bootstrapping procedure. However, with the exception of significantly lower
precision in 2003, performance over the subsequent two years, 2003—4, is much more
acceptable; admittedly, however, some of the tests applied over that period appear to
only have moderate power. The observed performance loss in 2001 and 2002 may
be linked to the US recession experienced in the early 2000s and the corresponding
increase in the number of defaults in the loan portfolio. As suggested by several authors
(eg, Bade et al 2011), higher default rates can be associated with higher LGDs, and our
simple linear model may not adequately quantify this adverse relationship, despite
the inclusion of US default rate as a macro-economic factor and the fact that the
training data did include loss observations from a previous recession in the 1990s.
This suspicion is strengthened by the shift in the actual LGD distribution seen in
Figure 1 on page 80, and the fact that the model, according to both the 7" test and
the Wilcoxon test, is consistently underestimating the elevated LGDs during those
recession years. The subsequent economic recovery period may explain the slow
performance correction for the following years.

For the last two years, 2003-4, we found that the statistical hypothesis tests are
not sufficiently powerful to detect performance deterioration even if the model would
suffer from it. Hence, in these time periods, many of the tests are of limited value. Part
of the explanation for this may lie in the smaller sample sizes available for backtesting
in those last two years (see Table 1 on page 79).
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Generally, when the model is well-trained but degrades over time, it means that
the original training data is no longer representative for the current population. This
can be caused by external changes (eg, new developments in the economic, political
or legal environment) or internal changes (eg, new business strategies, exploration of
new market segments or new organizational structure) (Castermans et al 2009). A data
stability analysis may offer more insight into which variables are causing possible
shifts (Castermans et al 2009). In this case it is advised to build a new model with
more representative (recent) training data.

6 CONCLUSIONS

This paper addresses the call for more research on backtesting LGD models, a Basel
validation requirement for any bank implementing the advanced internal-ratings based
approach, by proposing a framework to backtest LGD models using a series of statis-
tical hypothesis tests. The key idea is to evaluate two performance aspects, ie, model
calibration and precision, on an out-of-time test data set, against the original perfor-
mance on the training data (or some other earlier collected reference sample). For
both aspects, potentially suitable parametric and nonparametric tests are identified.
In addition, a bootstrap method is suggested to test for differences in other com-
monly used performance metrics. One of the main attractions of this framework is
that an appropriate reference value is introduced, which takes into account the num-
ber of observations available for backtesting. The practical implementation of the
framework would require the following three steps. First, model performance must
be quantified using a selection of metrics so that validators can monitor their evolu-
tion over the available time horizon. Second, the corresponding statistical tests should
be run to help flag up any significant performance degradations. Third, the power of
each test could be calculated in order to verify whether weakening performance would
likely be picked up by the test. The proposed backtesting framework is illustrated by
applying it to an LGD model fitted to real-life corporate loss rate data.
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