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Modelling rough interfaces on seismic reflection profiles - the 
application of fractal concepts 
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Abstract. The distortion of reflection continuity and amplitude by 
overburden structure in seismic reflection images of the sub- 
surface is easily recognised and modelled when the wavelength of 
the shallower structure is relatively large. The effects of shorter 
wavelength structure although giving rise to little reflective 
response itself, cause significant distortion of the propagating 
wavefield, particularly when a moderate or strong acoustic 
impedance contrast is present in the shallow sub-surface. Here we 
show how short as well as long spatial wavelengths of horizon 
roughness affect deeper reflection continuity, and develop a new 
method using fractal interpolation techniques to predict the total 
roughness of sub-surface horizons from information contained in 
seismic reflection sections. Fractally complete depth-velocity 
models are used in forward models, using the finite difference 
technique, to produce synthetic seismic profiles. The technique is 
illustrated with data from the Edoras Bank area of the Rockall 

Plateau, NE Atlantic, where apparently discontinuous reflectors 
underlying basalt flows are shown to be from continuous 
sedimentary horizons distorted by overlying rough horizons. 

Fractal Interpolation 

Several earlier studies used data acquired from exposed rock 
surfaces to show that natural topographies are self-affine fractals 
(Mandelbrot, 1977; Brown & Scholz, 1985; Farr, 1992; Huang 
and Turcotte; 1989). Natural topographies have roughness on all 
scale ranges from centimetres to kilometres and features on one 
scale appear statistically identical under different magnifications. 
The power spectrum P(k) of such a profile, which quantifies the 
overall distribution of roughness in terms of spatial wavelength, 
follows a power-law, 

_1 
P(k) =Ak-,whereP(k)-lX(k)l,x(1)**X(k) (1) 

where x(I) is the input topographic data at regular sampling interval 
I, k is the spatial frequency (the inverse of the spatial wavelength of 
features present), A is a constant and p is the slope of the 
logarithmic plot of P(k) against k see Figure 1. The relationship 
between 15 and the fractal dimension Df is (Berry and Lewis, 1980), 

(2) 2 
where 1 < p < 3 and Df varies between 1 and 2 for fractal profiles. 

Barnsley and Demko (1985) called the process of predicting 
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small-scale roughness from larger scale features, fractal 
interpolation (see also Barnsley, 1988), and we use this term to 
describe the concept, illustrated in Figure 1, of adding the smaller 
spatial scale features to horizons digitised from seismic reflection 
profiles. Surface roughness estimation has been used to interpolate 
bathymetric and seafloor datasets (Fox and Hayes, 1985; Goff and 
Jordan, 1988; Mareschal, 1989; Turcotte, 1992) but has not been 
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Figure 1. The concept of Fractal interpolation is illustrated. (a) A 
cartoon of a digitised seismic horizon and (b) its amplitude spectrum 
are shown. The amplitude spectrum clearly shows that information on 
medium to large scale features is present, however the amplitude of 
the small scale features are either masked by seismic noise or 
completely missing (shown in circle). Fractal interpolation can be 
used to restore these small scale structures. Digitised horizon after 
fractal interpolation is shown in (c). (Df is the J?actal dimension and 
[i is the slope of regression line). 
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Figure 2. Flow chart showing the methodology of fractal interpolation using synthetic fractal insertion (SFI). 

previously applied to seismic reflection datasets. The horizontal and 
vertical resolution limits of seismic reflection datasets, and errors 

introduced by digitising mean that higher frequency features 
originally present on a horizon are missing. Two techniques for 
fractal interpolation are described in this paper, Synthetic Fractal 
Insertion (SFI) and Iterative Function Systems (IFS). 

Synthetic Fractal Insertion (SFI) 

In this approach lower spatial frequency (large spatial 
wavelength) information, reliably obtained from the seismic 
reflection data, is merged with higher spatial frequency components 

derived from a synthetic fractal profile of the same dimension. The 
flowchart in figure 2 summarises the procedure followed in the SFI 
method. Figure 3b shows horizons which have been interpolated by 
the SFI method and figure 4 (compare a and b with c and d) shows 
that the fractal dimension has not significantly changed after 
interpolation. It can be seen that the spatial wavelengths between 
450 m and 50 m have been added after interpolation. 

Iterative Function Systems (IFS) 

Barnsley and Demko (1985) defined an interpolation function 
based on self-affine mapping which interpolated patterns from one 
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Figure 3. Horizons digitised from a time-migrated seismic reflection profile (a) (see figure 5), the fractal interpolation using (b) SFI and (c) 
IFS method are shown. These horizons are used to prepare the Depth-Velocity models for the Finite Difference modelling to study wave 
propagation through them. 
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scale to another, without alteration of the key fractal properties. In 
this work, software developed by Mareschal (1989) was adapted for 
fractal interpolation of seismic reflection horizons. The most critical 
parameter within IFS is the scaling factor which controls the 
roughness of the interpolated segments of the horizon. Mareschal 
(1989) selected the scaling factors iteratively by comparing the 
fractally interpolated profile with a known (bathymetric) profile. 
However this approach is not practical if the number of digitised 
points is large, as is the case of a seismic horizon. Therefore, for the 
IFS scheme implemented here, scaling factors for each point were 
calculated based on the running standard deviation of nearby 
digitised points (Walia, 1997). The IFS interpolation does restore 
features of small spatial scale (see Figure 3c), however it does tend 
to predict a high amplitude of roughness for those segments which 
are steeply dipping (as can be seen particularly for Horizon-III). 
This is due to the number of digitised points and the maximum 

Figure 4. Estimating the fractal dimension of the digitised Top lava 
(a & b), the fractally interpolated Top lava using the SFI algorithm (c 
& d) and using the IFS algorithm (e & f). Length estimator method 
(shown in a, c and e) calculates precise Devalues based on a technique 
proposed by Higuchi (1988). Power spectrum method (shown in b, d 
and f) considers digitised horizon data as a regular time series and 
calculates its power-spectrum, P(k), using Fourier transformation. P(k) 
quantifies the overall distribution of the roughness in terms of the 
spatial wavelength. The slope of the curve P(k) against k in log-log 
space is related to Df as discussed in the main text. 
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Figure 5. Comparison of seismic data with synthetics produced by finite difference models with depth-velocity models incorporating (b) SFI 
fractal interpolation and (c) SFI fi'actal interpolation. In the input models for finite difference modelling a flat constant reflection coefficient layer 
was included beneath the deepest rough interface (the base lava here) to enable the distortion of deeper horizons to be investigated. Note that 
in (b) and (c) there is substantial amplitude variation along the originally constant reflection coefficient horizon caused by the rough overburden. 
See Bull and Masson (1996) for a complete description of the seismic stratigraphy, but note that the base lava interface is picked with less 
confidence than the other horizons. 
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amplitude allowed for the computation of the scaling factors. The 
optimal values for these two parameters can be selected iteratively. 
Figure 4 (compare a and b with e and f) shows that the fractal 
dimension is unchanged within error. 

Finite-Difference Modelling 

One of the applications of fractal time velocity or depth velocity 
models is illustrated with data from south of Edoras Bank, south- 
west Rockall Plateau, NW British Isles (see Bull & Masson, 1996 
for more detail). In this area Tertiary sediments overlie Palaeocene 
lavas which largely obscure the underlying stratigraphy. The base 
of the lava can be followed around the area described by Bull & 
Masson (1996) as a change in seismic attribute, from a transparent 
scattering zone within the lava to sub-horizontal discontinuous 
reflectors beneath the lavas. (Figure 5). 

Five horizons which were relatively rough (as measured by their 
D value) and/or had a significant acoustic impedance contrast were 
modelled. The sea-bed (D value, Df=l.2), Horizon II - the latest 
Early Miocene unconformity (Df=l.3), Horizon III - Mid-Eocene 
to Early Oligocene unconformity (Df=l.2), the top lava (Df =1.3) 
and base lava (Dr =1.4). Figure 3 illustrates the fractally interpolated 
horizons digitised from Figure 5a. In order to assess the effect of the 
shallower rough interfaces on sub-lava structure, the five interfaces 
above, together with a sub-basalt constant reflection coefficient flat 
horizon, were input to a 4th order acoustic finite difference 
modelling code. The time migrated synthetics using SFI and IFS 
interpolation are shown in Figure 5b and c. The originally constant 
reflection coefficient sub-basalt reflector now appears with 
substantial amplitude variation which is similar to that observed in 
the real data (Figure 5a). It can be concluded that continuous flat 
sedimentary units present sub-basalt would appear as layers with 
substantial amplitude variation on a seismic reflection profile. The 
coherency of the modelled sub-basalt reflector would be further 
reduced if noise had been simulated within the synthetic. 

Conclusions 

We introduce the concept of fractal interpolation of horizons 
digitised from seismic reflection data and describe two methods 
for achieving the interpolation. One application of fractal seismic 
horizons is illustrated by the production of a fractal depth-velocity 
model used as input to a finite difference modelling program. This 
example shows that the roughness of the overburden is responsible 
for severe distortion of reflection amplitudes, particularly where 
interfaces are rough and where there are strong acoustic impedance 
contrasts. 
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