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Humans are proficient at distinguishing different object materials, e.g. metal, glass and plastic, based upon their 
visual appearance1, an important skill for object recognition and for guiding interaction with the environment. 
Whilst material perception appears effortless, the underlying computations are complex and under-constrained: 
an object’s image is determined not only by how its surface reflects light, but also by the object’s shape and the 
structure of the illumination field. In recent years, one aspect of material perception – visual gloss – has been 
widely studied2. Glossy and matte surfaces can be differentiated using specular highlights; bright image patches 
that occur when light is reflected from a surface regularly, in a mirror-like way, rather than scattered diffusely3–8.

Glossiness is conceptualised as a visual property. In contrast, other material dimensions have been studied 
within the haptic (touch) domain, such as surface roughness, thermal conductivity, compliance (or softness, i.e. 
deformation in response to force) and slipperiness (related to the coefficients of friction)9–11. However, little is 
known about how visual and haptic information interact when we estimate material properties, with existing 
research almost entirely constrained to the perception of roughness12–18 with a few studies on the visual-haptic 
cues to compliance19–24. Here we ask whether the feel of an object also affects our perception of its glossiness.

A substantial body of work has demonstrated the perceptual benefit of combining vision and haptic informa-
tion when humans estimate geometric attributes such as surface slant or object size. Visual and haptic informa-
tion is integrated optimally: judgments are more precise (less variable) for visual-haptic stimuli than when based 
on either vision or haptics alone25,26. However, this contrasts with multi-sensory findings in material perception: 
although some visual-haptic averaging has been found in surface roughness perception, studies have not found 
improvements in precision when both modalities provide information, relative to a single modality12,15. Moreover, 
robust contrast (repulsion) effects – the opposite of integration - have been found within material perception. For 
example, in the material-weight illusion, when two sized-matched objects appear to be made of different mate-
rials (e.g. balsa wood vs. metal), the denser-looking object feels lighter, when both are lifted and have the same 
mass27,28. Similarly, in the size-weight illusion, when two objects appear to be constructed of the same material, 
but differ in size, the larger object feels lighter when both are lifted and have the same mass29,30. Standard models 
of sensory integration predict the opposite perceptual effects31.

Here we describe two experiments that investigate whether humans integrate visual gloss information with 
haptic ‘rubberiness’ information when judging material properties. In our experiments, ‘glossier’ objects have 
higher specular reflectance, and less specular scatter than less glossy objects (see Table 1). We define ‘rubbery’ 
objects (e.g. squash balls) as those with high friction and compliance. In contrast, non-rubbery objects (i.e. a 
snooker ball) have low friction and high stiffness (low compliance), and can be described as feeling slippery and 
hard (see Table 1). Our experimental set-up allows us to present visual-haptic objects that can vary independently 
along these visual and haptic dimensions (Fig. 1). Visual and haptic stimuli were matched in size, shape and 
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location, giving observers the compelling sense that they are touching and viewing the same object. Experiment 
1 employed a discrimination paradigm to determine whether our participants’ ability to distinguish different 
visual-haptic objects is consistent with (i) independent processing of visual and haptic signals, or (ii) integration 
of visual and haptic cues. In Experiment 2, we used a completely different, but complementary paradigm to fur-
ther explore visual-haptic interactions: observers were presented with a single visual-haptic object per trial, and 
gave subjective ratings of a) how glossy each object looked, as well as b) how slippery and c) how hard the object 
felt.

�������
�����������ͷǤ� Here we report our participants’ ability to discriminate between stimuli that differ in gloss-
iness and rubberiness. On each trial, observers viewed and touched three visual-haptic stimuli and identified 
which one was ‘made of something different’. The manner in which the internal estimates of these visual and hap-
tic signals interact and influence discrimination will reflect the degree to which they have been correlated during 
our previous interactions with the environment32. For example, humans have learnt that the felt size of an object 
is highly correlated with its visually-estimated size, and these two signals are, therefore, fully integrated to form a 
single, visual-haptic size estimate25.

The visual and haptic cues to material properties that we consider here are unlikely to be perfectly corre-
lated in the environment; we can conceive of matte and glossy objects that feel equally rubbery. However, we 
hypothesise that on average, objects that feel more rubbery will look less glossy, i.e. there is a negative correlation 
between glossiness and rubberiness for objects that we experience in our environment. In other words, objects 
that we encounter in our environment might not be uniformly distributed across the stimulus parameter space, 
but be clustered around the negative correlation axis (Fig. 1b). If observers have learnt such a correlation, this 
should result in partial integration32,33, which will be reflected by our observers’ ability to discriminate between 
visual-haptic objects that differ in gloss and rubberiness (see Methods for a detailed explanation of the discrim-
ination predictions). In brief, stimuli that vary along the visual-haptic stimulus axis shown in Fig. 1b (Type A 
stimuli), in which glossiness and rubberiness are negatively correlated, will be relatively easy to discriminate. 
Stimuli that vary along the orthogonal axis (Type B stimuli, Fig. 1c) will be harder to discriminate. In other words, 
if observers have learnt a correlation between vision and haptic material cues, cross-modal integration will shift 
visual and haptic estimates towards the learnt visual-haptic mapping.

Figure 2a shows three possible experimental outcomes – predicted visual-haptic discrimination thresholds 
given three different integration behaviours:

(i) No integration: If the visual and haptic dimensions are unrelated in the environment, then the two signals 
should not be integrated for perception. Independent processing of the visual and haptic estimates will produce 
identical thresholds for Type A and Type B stimuli. Because the observer can identify the odd stimulus based 
on vision and/or haptics, she/he will have a two-cue advantage, relative to uni-modal thresholds (1 JND). In 
the absence of integration we predict thresholds of 0.78 JNDs for both Type A and Type B trials (see Methods: 
Procedure, Experiment 1 for a full explanation of discrimination predictions).

(ii) Partial integration, negative correlation: If observers have learnt that visual gloss and haptic rubberiness 
are negatively correlated, as described above, then we expect smaller thresholds for Type A than for Type B stim-
uli – the magnitude of this difference depends on the strength of integration (see Methods).

(iii) Partial integration, positive correlation: If observers have learnt that visual gloss and haptic rubberiness 
are positively correlated, i.e. that glossy stimuli feel more rubbery, on average, than matte stimuli, then discrimi-
nation will be better (smaller thresholds) for Type B than Type A stimuli.
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+ 5 0.3209 0.0019 0.9417 0.0942 0.0917 0.0917
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Table 1. Visual and haptic stimulus parameters. Shaded cells show the parameters of the standard stimuli 
used in both uni- and bi-modal trials.
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Error rates for the bi-modal discrimination task for one naïve subject are shown in Fig. 2b. Each subject’s data 
were fit with cumulative Gaussians using a single lapse rate (λ, corresponding to the lower asymptote), and an 
upper asymptote of 0.67 (chance performance: upper dashed line in Fig. 2b). Four separate mean (µ) and slope 
(σ) parameter pairs were used to fit the data either side of the standard, for both Type A and Type B trials. These 
fits were used to estimate thresholds at the 0.33 error rate (i.e. halfway between chance and perfect performance: 
lower dashed line in Fig. 2b). This method provided excellent fits to the data (r2 =  0.95 ±  0.007 across observers). 
The two thresholds for each trial type were averaged, with the resultant Type A and Type B mean thresholds 
shown in Fig. 2c, averaged across observers (left plot) and for individual observers (right plot). All observers show 

Figure 1. Experiment 1 stimuli. (a) The visual-haptic set-up and an example stimulus. (b) Stimuli for Type 
A trials lay along the negative diagonal: i.e. visual gloss and haptic rubberiness were negatively correlated. An 
example trial is shown to the right, see Methods for details. (c) The stimulus axis for Type B trials, with an 
example trial.
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better discrimination for Type A than Type B trials, consistent with a negative learnt association between visual 
gloss and haptic rubberiness, i.e. matte objects more often feel rubbery, whereas glossy objects are more likely to 
feel hard and slippery.

�����������͸Ǥ� Experiment 1 showed that visual gloss and haptic rubberiness are partially integrated - our 
sensory system has learnt that glossy objects are more likely to be slippery and hard than sticky (high in friction) 

Figure 2. Experiment 1 Predictions and Results. (a) Hypothetical discrimination performance for Type A 
(red) and Type B (green) bi-modal stimuli (i) in the absence of integration (left), (ii) given integration driven 
by a negative gloss-rubberiness correlation (middle) or (iii) integration driven by a positive correlation (right). 
(b) Error rates and fits for Type A & B trials for one naïve observer. (c) Left: Averaged (N =  8) threshold data 
(mean ±  1 SE). Right: Difference between Type A and Type B thresholds for all 8 observers.
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and compliant, and the visual and haptic signals are integrated accordingly. However, in Experiment 1, compli-
ance and friction always co-varied – thus we cannot determine whether the discrimination effects were driven 
by the integration of visual gloss with friction, or with compliance or both. Experiment 2 addressed this question 
and also asked whether the visual-haptic integration suggested by discrimination performance in Experiment 1 
is also evident in subjective judgements of perceived gloss, compliance and friction.

In each trial, observers rated the gloss, friction and compliance of a single visual-haptic object. Each of these 
three stimulus attributes varied independently across trials. To determine which of these visual and haptic stim-
ulus dimensions had a reliable effect on our subject’s ratings we used leave-one-out cross-validation to compare 
regression models comprised of all possible combinations of single predictors and their interactions for each 
rating type. To preview the key results: gloss ratings were predicted by stimulus gloss and stimulus friction. In 
complement to this, friction ratings were predicted by both stimulus friction and stimulus gloss. However, com-
pliance and gloss appear to be processed independently – neither modulated perception of the other.

Gloss Ratings. Figure 3a shows observers’ gloss perception as a function of stimulus gloss and stimulus fric-
tion (left plot), and stimulus gloss and stimulus compliance (right plot). The best model of perceived gloss (as 
determined by leave-one-out cross-validation) included both stimulus gloss and stimulus friction as predictors 
and accounted for an average of 66 ±  3% of response variance, across observers. As expected, perceived gloss 
increased significantly with stimulus gloss. However, as can be seen from Fig. 3a, the objects rated as glossiest 
were not only high in stimulus gloss, but also had the lowest friction, although the effect of changing friction was 
smaller –11% (on average, across subjects) of the effect of changing stimulus gloss.

Stimulus compliance had no significant effect on perceived gloss. Could this be because compliance is a less 
reliable cue than gloss or friction in this study? The correlation between stimulus compliance and compliance 
ratings (µ = .0 67) is weaker than the parallel correlations for the other two attributes (stimulus gloss vs. gloss 
rating: µ = .0 81, stimulus friction vs. friction rating: µ = .0 80, see Fig. 3d), suggesting that compliance is a less 
reliable signal, and would therefore have a smaller weight if gloss and compliance were (partially) integrated. 
However, by the same logic, gloss (a more reliable signal) would be expected to have a relatively large influence on 
perceived compliance, if the two were integrated. This is not evident in the data: neither the correlation between 
stimulus compliance and perceived gloss, nor the correlation between stimulus gloss and perceived compliance 
are significantly different from 0. It seems unlikely, therefore, that the lack of interaction between compliance and 
gloss is due to reliability differences. Rather, our data suggest, in agreement with a previous study34, that observers 
have not learnt a significant correlation between compliance and gloss from their normal interactions with the 
world.

The gloss ratings are in agreement with the discrimination data from Experiment 1 – observers appear to have 
learnt a relationship between how glossy something looks, and how it feels – glossier objects feel less ‘rubbery’, 
and this is driven by friction – glossier objects tend to be more slippery.

Friction ratings. Perceived friction was best predicted by stimulus friction, stimulus compliance, a fric-
tion x compliance interaction and stimulus gloss. This model explained an average of 67 ±  6% of the variance 
in friction responses, across observers. There was a small but significant effect of stimulus gloss on perceived 
friction: glossy objects were perceived as having lower friction: the difference in friction rating from minimum to 
maximum stimulus gloss was only 3.5% of the full rating scale, averaged across observers.

The intra-modal interactions between friction and compliance, although not directly relevant to our research 
question, are interesting nonetheless. Compliance had a small but significant effect on perceived friction: more 
compliant objects were perceived as more slippery (the correlation between compliance and perceived friction 
did not reach significance – see Fig. 3d, but compliance was a significant predictor alongside other terms in the 
regression model). Compliance could affect perceived friction in this way if observers were partially confusing 
lateral and tangential finger displacements. Further, in the physical model implemented in the Phantom, the 
frictional force is proportional to the force in the normal direction (see supplementary information for details of 
the force models).

Compliance ratings. As noted above, gloss and compliance appear to be processed independently; compliance 
ratings were independent of stimulus gloss. However, interactions between compliance and friction were also 
apparent within compliance ratings – these were best predicted by a model that included both stimulus compli-
ance and stimulus friction, accounting for 59 ±  5% of response variance, averaged across observers. Objects that 
were physically compliant, but also had high friction were rated as most compliant. The effect of stimulus friction 
was large: around 40% of the effect of changing stimulus compliance. The reason for this interaction is not clear 
– when objects have high friction the finger doesn’t slip across the surface - introspection suggests that in this 
case the observer is confident that they are moving the finger only in the surface normal direction, and that this 
creates the impression of increased compliance (this might be also be conceptualised as a contrast effect between 
normal and tangential resistance). We note, however, that the positive relationship between stimulus friction and 
perceived compliance is hard to reconcile with the negative relationship between perceived friction and stimulus 
compliance – further work is required to better understand these interactions.

����������
We show that observers have learnt a statistical relationship between the material cues of visually-defined gloss 
and haptically-defined friction and that knowledge of this statistical relationship is reflected in the integration of 
these cues.

Experiment 1 used a discrimination paradigm to demonstrate that observers partially integrate visual and 
haptic material cues: when a standard stimulus was compared to an object that was visually more glossy, but felt 
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Figure 3. Stimulus ratings, averaged across observers, for (a) perceived gloss, (b) perceived friction and  
(c) perceived compliance. Yellow indicates high ratings; blue indicates low ratings, as indicated by the legend. 
Dashed contour lines show stimulus parameter pairings that produce equal ratings, as determined by the 
optimal regression models. (d) Mean correlation between each stimulus parameter (gloss: ‘Gl’, friction: ‘Fr’ 
and compliance ‘Co’) and each of the three rating scales (each rating type shown in a separate plot). Error 
bars give ±  1SE across observers. Asterisks show significant correlations, from one-sample t-tests against 0 
(*p <  0.05, **p <  0.01, ***p <  0.001).
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more rubbery, the difference was hard to detect. In contrast, an increase in visual gloss accompanied by a decrease 
in rubberiness was easier to detect.

Experiment 2 confirmed that friction, rather than compliance, is the haptic dimension that interacts with 
visual gloss. The pattern of discrimination seen in Experiment 1 was reflected in subjective ratings of gloss and 
friction: slippery objects are perceived to be glossier, and glossy objects are perceived to be more slippery.

Importantly, visual and haptic cues were uncorrelated across our experimental trials. Our observers did not, 
therefore, learn their visual-haptic associations in the laboratory. Rather, it seems that observers have learnt, from 
a lifetime of interactions with the environment, to associate, and thus partially integrate, visual gloss and haptic 
friction signals. That this association is learnt (rather than hard-wired) seems likely given previous demonstra-
tions of relatively fast learning about the statistics of the environment32,35–37.

Is there an ecological basis for this integration? Our rating data suggest that the effect of haptic friction on 
perceived gloss is larger than vice versa (correlation between stimulus friction and perceived gloss: µ = − .0 09, 
compared to correlation between stimulus gloss and perceived friction: µ = − .0 05), although this difference did 
not reach significance. The visual image is inherently ambiguous, with visual gloss cues affected not just by the 
specular components of the surface reflectance function, but also by object shape, motion, and the illumination 
environment7,38–42. An optimal perceptual system should, therefore, exploit all available information. However, 
the physical relationships between gloss and friction are complex: Decreasing surface roughness at the micro level 
(e.g. by polishing) can both increase gloss and decrease friction. At this scale, smoothness modulates friction by 
altering the contact area between surfaces43. However, friction and gloss can be unrelated in organic structures, 
such as the nanostructure that controls the low reflectance of moth eyes44 or the glossiness of feathers45. Moreover, 
the predominant determinant of friction for many solid surfaces may not be roughness, but adhesive forces 
between thin adsorbed films on solid surfaces43.

One of the main behavioural advantages of learning the relationship between friction and gloss may be iden-
tification of lubricant surface coatings. Whilst lubricants can be powdery and matte, they are more often water or 
oil-based, and highly glossy. Observers appear to use gloss in assessing the slipperiness of a surface46,47 - there are 
obvious advantages to identifying a wet, slippery floor. Thus, although friction is not a perfect predictor of gloss 
across all natural objects, the perceptual system appears to have an implicit understanding of the probabilistic 
relationship between these variables, and uses this to inform estimates of gloss.

�������
���������������������Ǥ� Our experimental set-up (depicted in Fig. 1a) allowed concurrent and spatially 
aligned visual-haptic stimulus presentation, centred at 57cm from the observer’s eyes. Head position was main-
tained using a headrest, and observers wore an eye patch to eliminate binocular cues to shape and gloss8.

Stimulus objects were spherical meshes, deformed by 3D simplex noise48, to produce potato-like shapes. These 
objects were rendered for visual presentation using an unbiased, physically-based renderer (Octane Render; Otoy 
Inc.), under one of three complex light fields (Beach, Campus and Uffizi49, see Fig. 1B). Stimuli subtended an 
average visual angle of 8.9°. Visually defined gloss was manipulated by varying the proportion of light reflected 
specularly, and the degree of specular scatter (micro-scale roughness). Additional examples of the visual stimuli 
can be found in the supplementary information.

The same shapes were rendered haptically using the OpenHaptics toolkit (Geomagic, USA) and presented via 
a Phantom force feedback device. We manipulated how ‘rubbery’ an object felt by modulating compliance-related 
forces in the surface normal direction (i.e. how the object responds when it is poked or squashed), and in the tan-
gential direction (how easy it is to slide your finger across the object’s surface: static and dynamic friction). More 
rubbery objects were more compliant (squashy) and had higher friction. Table 1 shows the stimulus parameters 
for the uni-modal task of Experiment 1.

���������ǣ������������ͷǤ� Uni-modal. For each participant we first established uni-modal sets of 
(i) visual and (ii) haptic stimuli that were equated in terms of discriminability, via an odd-one-out task with 
uni-modal stimuli (Fig. 4). On each trial, three stimuli were displayed in succession (2500 msec for each 
stimulus): either two standard stimuli and one comparison stimulus, or one standard stimulus and two 
(parameter-matched) comparison stimuli. Observers reported (by using the Phantom to press a visual/haptic 
button rendered in the workspace) which stimulus was “made of something different”. To avoid simple image 
matching on visual-only trials, objects within a trial had different shapes, but all three were rendered under 
the same light field. In visual-only trials a virtual wall blocked haptic access to the stimuli. In haptic-only tri-
als, a visual silhouette aided object localisation whilst eliminating visual cues to the object’s material. Observers 
completed 624 trials (12 comparison levels × 2 modalities × 26 repetitions) in random order, across 3 sessions of 
approximately 45 minutes each.

Bi-modal. Uni-modal discrimination data were used to create a set of 11 visual and 11 haptic stimulus levels that 
were (i) linearly spaced in JNDs and (ii) spanned a range of ± 2 uni-modal JNDs (Just-Noticeable-Differences) 
around the visual and haptic standards (see Fig. 4b, fewer stimulus levels have been shown in this schematic). 
Gaussian distributions were fitted separately to each observer’s visual and haptic uni-modal data (fits were con-
strained to have a mean of 0, but standard deviation varied across observers). As part of this fitting process, stim-
ulus index (x) was transformed according to Equation 1, selecting exponent p that minimised residual error in the 
subsequent Gaussian fit, effectively linearising the visual and haptic parameter scales in (JND) space.

= ( + ) − ( )x x 6 6 1fit
P P
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Visual and haptic stimulus parameters were then combined in two different ways, to create Type A 
visual-haptic stimuli and trials, in which more matte-looking stimuli felt more rubbery, or Type B stimuli and tri-
als, in which glossier stimuli felt more rubbery, as shown in Fig. 3B. Each observer completed at least 10 blocks of 
40 visual-haptic discrimination trials presented in a random order, making a 3IFC decision on each trial to iden-
tify the odd-one-out that was “made of something different”. (Due to a programming error, a subset of observers 
had one condition missing from initial blocks, and completed an additional 10 blocks). The same instruction was 
given across all uni-modal and bi-modal trials in order to (i) make it clear that 3D shape was irrelevant to the 
task, and (ii) to avoid biasing the observers to rely on one modality more than the other on bi-modal tasks. Each 
visual-haptic object was initially presented as a silhouette until the observer made haptic contact, from which 
point it was viewed and explored haptically for 2500 msecs. Similarly to the uni-modal case, the odd-one-out 
could be either a standard, or a comparison stimulus. Type A and B trials were randomly intermingled.

Integration and bi-modal discrimination performance. If observers have learnt that visual gloss and haptic rub-
beriness signals are correlated in the environment, the signals should be integrated. Integration will modify esti-
mates of gloss and rubberinesss and discriminability of visual-haptic stimuli that vary along these dimensions. 
Knowledge about the statistical relationship between sensory signals can be represented by a coupling prior32, 
where the width of the prior corresponds to the strength of the correlation, and the associated degree of integra-
tion. Figure 5 shows optimal sensory integration under different hypothetical coupling priors.

The 2D Gaussian in the top left plot of Fig. 5 represents the sensory likelihood for a single object (comparison 
stimulus CA) that is visually matte and feels rubbery. If visual gloss signals are statistically unrelated to how an 
object feels, our perceptual system should have learnt a uniform (flat) coupling prior (Fig. 2, top row) and these 
visual and haptic dimensions would be processed independently, with the prior having no effect on the final visual 
and haptic estimates represented by the posterior (right column).

Alternatively, humans may have learnt that matte objects are more likely to feel rubbery, whereas glossy objects 
more often feel hard and slippery (red boxes); this possibility is shown in rows 2–4, for a weak negative correlation 
(rows 2–3; the spread, σC, of the coupling prior shown is twice that of the uni-modal likelihoods) or a near perfect 
negative correlation (row 4). For a stimulus on the axis of the coupling prior (CA, row 2), integration does not 
change the mean visual and haptic estimates (likelihood and posterior distributions are aligned), but noise is 
reduced in the direction orthogonal to the prior. In this case, discriminating between this stimulus and the stand-
ard stimulus (S, blue circle) will be very slightly easier than if the two signals were processed independently, i.e. 
under a uniform coupling prior (row 1).

We can now consider a stimulus that is visually matte but does not feel rubbery – instead it feels hard and slip-
pery like ice (Stimulus CB, row 3). Under the weak negative coupling prior, integration shifts the visual and haptic 
estimates towards the prior, and distinguishing this stimulus from the standard stimulus becomes harder. With 
the strongest coupling prior (row 4) the visual and haptic estimates are fully integrated; the posterior distributions 
for the stimuli CB and S – whose likelihoods were separated in the direction orthogonal to the prior - become 
superimposed and discrimination between them becomes impossible – they are visual-haptic metamers. In other 
words, a negative coupling prior, representing a negative correlation between gloss and rubberiness, will result in 
better performance (smaller discrimination thresholds) for Type A trials than for Type B trials.

In contrast, we may have learnt a statistical relationship between signals such that glossy objects tend to feel 
more rubbery (green boxes). This situation is shown in the last two rows of Fig. 5. Given this positive coupling 
prior, integration results in poorer discrimination of CA from S, but slightly improved discrimination of CB from 
S, relative to independent processing of the two stimuli. In other words, a positive coupling prior will lead to 
larger thresholds for Type A, than Type B trials.

Figure 4. Visual and haptic uni-modal discrimination trials were used to measure each observer’s uni-
modal JNDs, and thus define the visual and haptic stimulus parameter space to be used for bi-modal trials. 
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Figure 5. Visual-haptic integration with different coupling priors. Each row shows a likelihood (left column: 
the information associated with a particular visual-haptic signal), a coupling prior (middle column) and their 
product, the posterior (right column). Coupling priors in different rows reflect (i) no relationship between 
visual gloss and haptic rubberiness (top row), or (ii) a weak (rows 2–3) or strong (row 4) negative correlation or 
(iii) a weak positive correlation (rows 5–6). The effect of different coupling priors can be seen for stimuli lying 
on the axis of the negative prior (such as CA), or lying on the axis of the positive prior (CB). For comparison, the 
blue ring represents a ‘standard’ stimulus – an object in the middle of the visual-haptic space.
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Figure 6 shows how discrimination performance for Type A (red) and Type B (green) stimuli is modulated by 
the strength of integration (i.e. the spread, σC, of the coupling prior). Without integration (top left plot, σ = ∞C ), 
the discrimination threshold (defined by 67% correct performance – dashed grey line) is the same for both trial 
types, and equal to 0.78 uni-modal JNDs. Note that in our paradigm we don’t expect the usual two cue advantage 
of /1 2  (relative to a uni-modal threshold of 1 JND). This is because our observers are performing a bivariate 
discrimination task: their visual-haptic estimates are subject to noise in two dimensions (as represented by the 
Gaussian blobs in Fig. 5). If our observers knew, on each trial, whether the stimuli differed along the positive or 
negative axis and could discount noise in the orthogonal (irrelevant) direction, we would predict thresholds of 
/1 2 in the absence of integration.

For the negative coupling prior modelled in Fig. 6, as the spread of the coupling prior decreases, Type A 
thresholds decrease and Type B thresholds increase. The top right plot shows the prediction for a coupling prior 
whose spread is 1.75 times that of the unimodal likelihoods. In this case the Type B threshold is around 1JND, and 
the Type A threshold is close to 0.8 JNDs. This is comparable to our observers’ thresholds (see Fig. 2c). Under full 
integration (σ = 0C , as in standard Bayesian integration models), as depicted in the bottom panel of Fig. 6, the 
Type A threshold is /1 2 and Type B stimuli become indistinguishable.

���������ǡ������������͸Ǥ� Observers were presented with a single object on each trial to view and touch. 
Its visual gloss, haptic compliance, and haptic friction (as well as its shape) varied independently from trial to 

Figure 6. Predicted discrimination performance, given a negative coupling prior. The proportion of correct 
trials is shown as a function of the distance between standard and comparison stimuli in units of uni-modal 
JNDs. Each plot shows a different coupling prior, varying from infinitely broad (no integration) to infinitely 
narrow (full integration).
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trial. As in Experiment 1, the visual stimulus appeared as a silhouette until the observer made haptic contact with 
it. After viewing and haptically exploring the stimulus for 2500 msec., the observer rated it on the dimensions of 
gloss (from ‘most matte’ to ‘most glossy’), compliance (‘most hard’ to ‘most squashy’) and friction (‘most slippery’ 
to ‘most sticky’). Responses were given by moving virtual visual-haptic markers along three slider bars, which 
had linearly spaced tick marks corresponding to steps of 0.1 on a scale of 0 to 1. Before these experimental trials, 
and at the beginning of each session, each observer was given unlimited time to explore three pairs of reference 
objects to acquaint themselves with the rating scales: (i) a pair of visual objects (no haptics) that represented the 
highest and lowest gloss values, labelled ‘most matte’ and ‘most glossy’, (ii) a pair of visual-haptic objects that were 
shown in silhouette, with mid-range friction, representing the most and least compliant values, labelled ‘hardest’ 
and ‘most squashy’ (iii) a pair of silhouetted objects, with mid-range compliance, with the lowest or highest fric-
tion values of the stimulus set, labelled ‘most slippery’ to ‘most sticky’. The lowest and highest parameter values 
were the same as those used in the odd-one-out experiment, and shown in Table 1.

Six observers (2 authors, 4 naive) each completed 1458 trials (9 gloss levels x 9 compliance levels × 9 friction 
levels × 2 light field illuminations: ‘Beach’ and ‘Campus’ from the Debevec set49 split across multiple sessions 
of around 25–35 minutes each, with the total participation time of approximately 2 hours. Both experiments 
were approved by the University of Southampton Ethics Committee and were conducted in accordance with the 
University of Southampton’s policy on the ethical conduct of research and studies involving human participants. 
All participants gave informed written consent.
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