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Summary Statement 

The polyphosphate kinase 2 (PPK2) from the intracellular pathogen Francisella tularensis has 

been characterized by a range of biochemical methods and X-ray crystallography. The antibiotic 

sensitivity of a deletion mutant lacking the gene encoding PPK2 is also reported.  

Abstract 

The metabolism of polyphosphate is important for the virulence of a wide range of pathogenic 

bacteria and the enzymes of polyphosphate metabolism have been proposed as an antibacterial 

target. In the intracellular pathogen Francisella tularensis, the product of the gene FTT1564 has 

been identified as a polyphosphate kinase from the PPK2 family. The isogenic deletion mutant  

was defective for intracellular growth in macrophages and was attenuated in mice, indicating an 

important role for polyphosphate in the virulence of Francisella.  Herein we report the 

biochemical and structural characterization of F. tularensis polyphosphate kinase (FtPPK2) with 

a view to characterizing the enzyme as a novel target for inhibitors. Using an HPLC based 

activity assay the substrate specificity of FtPPK2 was found to include purine but not pyrimidine 

nucleotides. The activity was also measured using 
31

P NMR. FtPPK2 has been crystallized and 

the structure determined to 2.23 Å resolution. The structure consists of a 6- stranded parallel  β 

sheet surrounded by 12 α helices, with a high degree of similarity to other members of the PPK2 

family and the thymidylate kinase superfamily. Residues proposed to be important for substrate 

binding and catalysis have been identified in the structure, including a lid-loop and the conserved 

Walker A and B motifs. The ΔFTT1564 strain showed significantly increased sensitivity to a 

range of antibiotics in a manner independent of the mode of action of the antibiotic. This 

combination of biochemical, structural and microbiological data provide a sound foundation for 

future studies targeting the development of PPK2 small molecule inhibitors. 

Short Title: Polyphosphate Kinase 2 from Francisella tularensis 

Keywords: Polyphosphate, kinase, Francisella tularensis, X-ray crystallography, enzyme 

kinetics, antibiotic sensitivity 

Abbreviations: Ft, Francisella tularensis subsp. tularensis SCHU S4; Sm, Sinorhizobium 

meliloti; PPK, polyphosphate kinase. 
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Introduction 

 Polyphosphate is an inorganic polymer which may extend to hundreds of phosphate residues 

linked as phosphoanhydrides and has been reported in cells from every domain of life [1]. At one 

time, polyphosphate was regarded as ‘molecular fossil’ [2], providing a prebiotic source of 

phosphoanhydride equivalents [2] and without a precise described function, but recent 

discoveries have made it increasingly clear than nothing could be further from the truth. In 

eukaryotes, polyphosphate has been identified in a range of subcellular organelles [3] and has 

regulatory roles in a wide range of processes [4-7]. Polyphosphate is ubiquitous in 

prokaryotes[8], contributing to metabolic regulation during growth and development and 

contributing to the regulatory network that controls the response to stress and nutrient starvation 

[9-13]. The importance of polyphosphate to bacterial survival [8, 9, 14] and in particular it’s 

correlation to the virulence of a wide spectrum of pathogens [14-17], has led to the proposal that 

enzymes from polyphosphate metabolism are potential therapeutic targets for antibacterial 

chemotherapy [14, 18].  

 For the assembly of polyphosphate chains, three subclasses of bacterial polyphosphate kinases 

have been identified (Scheme 1). The PPK1 family is found in the majority of bacterial species 

[19] and constitutes the principal polyphosphate biosynthetic enzyme in many bacteria [20, 21] 

using ATP as the preferred phosphate donor. Sequence similarity identified a subclass of 

polyphosphate kinases which shows a preference towards pyrimidine nucleotides [22]. Examples 

of PPK2 have been characterised from a wide range of bacteria [18, 23-26], where the kinetics 

favour polyphosphate-driven ATP synthesis. The three dimensional fold of PPK2 (PDB codes 

3CZP, 3CZQ and 3RHF)[23] is structurally distinct from PPK1 (PDB codes 1XDP  and 

1XDO)[27] and belongs to a larger family of P-loop kinases [28] that feature two conserved 

motifs that coordinate the nucleoside triphosphate and Mg
2+

, Walker A (GXXXXGK) and 

Walker B [23].  The Walker B motif was originally identified as hhhhD, where h represents a 

hydrophobic residue [29] and the aspartic acid is proposed to coordinate a magnesium ion. More 

recently, the same aspartate in a DRS tripeptide conserved within the PPK2 family has also been 

termed the Walker B motif (Figure 1) [23]. The hydrolytic degradation of polyphosphate is 

catalyzed by polyphosphatase (Ppx), resulting in the release inorganic phosphate. As part of a 

regulatory netowork, Ppx is inhibited by (p)ppGpp which increases during the stringent response 

[8, 14], resulting in the accumulation of higher levels of polyphosphate.  

 Francisella tularensis is an intracellular pathogen and the causative agent of the zoonotic 

disease tularemia [30]. It is noted for a low infectious dose, ease of dissemination and ability to 

cause severe disease [31]. These properties and the associated potential as a biothreat led to the 

classification of F. tularensis as category A (the highest priority for prevention) by the Centers 

for Disease Control and Prevention (CDC) [32].  The availability of genome sequence data and 

development of molecular tools has allowed us to start to understand the molecular basis of F. 

tularensis pathogenicity. Bacteria may have one or more polyphosphate kinase homologs within 

their genomes [8] and some encode multiple polyphosphate kinase genes [23]. In F. tularensis 

subspecies tularensis SCHU S4, the gene FTT1564 and the homologue in Francisella novicida, 

FTN1472, were identified as encoding polyphosphate kinases of the PPK2 family (Figure 1). 

Inactivation of FTN1472 resulted in abolition of polyphosphate production, confirming the 

observation from bioinformatics analysis that this is the only polyphosphate kinase present in 

these strains [17]. 
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 Herein we describe the biochemical characterization of the F. tularensis PPK2 encoded by 

FTT1564 (FtPPK2), including activity assays using HPLC detection and 
31

P NMR to measure 

product formation. These assays permitted the determination of the substrate preference and 

kinetic parameters of FtPPK2. We report the affinity of FtPPK2 for polyphosphate measured by 

isothermal titration calorimetry. We also report the crystal structure of FtPPK2 and compare it to 

other enzymes of the P-loop phosphotransferase superfamily, identifying the conserved structural 

features and likely substrate binding sites. In addition, we report the antibiotic sensitivity of the 

ΔFTT1564 strain. Taken together, these studies are an important prerequisite to investigating the 

development of FtPPK2 inhibitors as potential antimicrobials.  

 

Materials and Methods 

Materials 

NMPs, NDPs, NTPs and DMHA were purchased from Sigma Aldrich (Dorset, UK); DTT, BSA 

and antibiotics were purchased from Melford Laboratories (Suffolk, UK); polyacrylamide-bis 

polyacrylamide (30% w/v, 37:5:1) and Bacto agar were purchased from Fisher Scientific 

(Leicestershire, UK); Bacto tryptone and yeast extract for culture media were purchased from 

Oxoid (Hampshire, UK); Chelating Fast Flow resins were purchased from GE Healthcare 

(Buckinghamshire, UK); primers were purchased from Eurofins (London, UK); BIO-X-ACT 

was purchased from Bioline (London, UK); restriction enzymes and E. coli strain K12 JM109 

were purchased from New England Biolabs (Hertfordshire, UK); E. coli BL21 Rosetta
 
pLysS 

(DE3), the pET16b plasmid and polyphosphate averaging 25 units in length was purchased from 

Merck Chemicals (Middlesex, UK). E coli strain TOP10 was purchased from Invitrogen 

(Paisley, UK). 96-well screens, crystal trays and coverslips were purchased from Molecular 

Dimensions.  Unless otherwise states, other chemicals and reagents were and purchased from 

Sigma Aldrich (Dorset, UK) or Fisher Scientific (Loughborough, UK). 

 

Protein Expression and Purification 

The gene encoding FtPPK2, FTT1564, was amplified from F. tularensis subsp. tularensis SCHU 

S4 genomic DNA using a forward primer (5’-

gcggacatgttgcatcatcatcatcatcataaagttttaagtcaagaagagcgc) paired with a reverse primer (5’ - 

cgcctcgagttatttatatatttttgaagaagtgcctacgat). The PCR product was digested with PciI and XhoI 

and ligated into the NcoI/XhoI restricted pET16b. The resultant plasmid, pET16b/ppk, was 

verified by sequencing. The plasmid was chemically transformed into BL21 Rosetta
 
pLysS 

(DE3). Single colonies were used to inoculate 2YT medium (10 mL containing 100 𝜇g/mL 
ampicillin) and cultured overnight at 27 °C. The overnight culture was used as a 1% inoculum 

into flasks of 2YT medium (500 mL) which was induced with IPTG (final concentration 0.4 

mM) when the OD600 reached 0.6 and then cultured overnight at 27 °C.  Cells were harvested by 

centrifugation and the cell pellet (typically ~7 g/L of culture) was stored at -80 °C.  To purify 

FtPPK2, the frozen cell pellet (~35 g) was resuspended in cold lysis buffer (3 x w/v cell pellet) 

and a Roche protease inhibitor tablet added. Lysozyme (5-15 mg) was added and the cell 

suspension was stirred (4 ºC, 30 min), then sonicated on ice (4 ºC, 20 x 10 s with 10 s rest). The 
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lysate was cleared by centrifugation (Sorval evolution, SLA-1500 rotor, 4 ºC, 14000 rpm, 30 

min) and the resulting supernatant was applied (4 mL min
-1

) to a Ni-NTA Sepharose Fast Flow 

column (50 mL bed volume). The column was washed (4 mL min
-1

)
 
with low imidazole buffer 

(~5 column volumes, 50 mM Tris-HCl, 0.5 M NaCl, 50 mM imidazole, 20 % glycerol, pH 8.0). 

The FtPPK2 was eluted with a gradient of 0-100 % high imidazole buffer (4 column volumes, 50 

mM Tris-HCl; 0.5 M NaCl; 500 mM imidazole; 20 % glycerol; pH 8.0). Fractions containing 

FtPPK2 were pooled, dialysed (2 x 1 L, 50 mM Tris-HCl; 0.3 M NaCl; 20 % glycerol; 5 mM 

DTT; pH 8.0) and stored at -80 °C. For crystallization screening, FtPPK2 was concentrated to 15 

mg/mL in an Amicon pressure cell and applied to a S75 Sepharose gel filtration column (bed 

volume 200 mL, flow rate 2 mL min
-1

). The eluted FtPPK2 was eluted (2 mL min
-1

; 50 mM Tris-

HCl, 0.3M NaCl, 20% glycerol, 5 mM DTT, pH 8) and fractions judged to be pure by SDS-

PAGE analysis were pooled, concentrated to 15 mg/mL and stored as aliquots (100 𝜇L) at -80 

°C. 

 

Ion-pair HPLC of FtPPK2 Activity Assays 

Substrate specificity of FtPPK2 was analyzed using an ion-pairing HPLC based method.  

Reaction mixtures (1 mL) contained 50 mM Tris-HCl (pH 8.0), 0.3 M NaCl, 20 % Glycerol, 10 

mM MgCl2, and 80 mM (NH4)2SO4, 100 µM polyphosphate (as polymer), 0 to 2 mM nucleotide 

and were initiated by the addition of FtPPK2 (250 nM). Reactions were incubated at 37 °C and 

at selected time points, aliquots (100 µL) were withdrawn and the reaction quenched by heating 

(95 °C, 5 minutes). Precipitated protein was removed by centrifugation and a sample (40 µL) 

was analyzed by ion pairing HPLC [Gemini C18 column (150 x 4.6 mm 5 micron)] with 

detection at 260 nm using the following solvents:  organic, 80 % methanol, 15 mM DMHA, pH 

7.0; aqueous; 5 % methanol, 15 mM DMHA, pH 7.0. The solvents were adjusted to pH 7.0 with 

acetic acid. The column was equilibrated in 25 % organic at a flow rate of 0.8 mL min
-1. 

After 

sample injection the following elution profile was applied: 5 min isocratic (25 % organic) and 

then a 22 minute linear gradient to 55 % organic, followed by a 5 minutes isocratic at 55 % 

organic, 5 min gradient to 25 % organic and 5 minute isocratic at 25 % organic. Absorbance 

measurements were converted to concentrations of NTPs and NDPs using calibration curves and 

plotted as reaction time courses. For competition assays, the formation of product nucleotides 

were empirically fitted to a single exponential rise to a maximum, [P]=[P]max(1-e
-kt

). Using the 

rate constant k, the initial rate of product formation, v, was calculated (v = k[P]max). For steady 

state kinetics, the time course of product formation was fitted to a linear function to give the 

initial rates which were then fitted to a classical Michaelis-Menten kinetic model. 

 

Metal Ion and pH Dependence of FtPPK2 

Substrate specificity of FtPPK2 was analyzed using an ion-pairing HPLC based method.  

Reaction mixtures (500 µL) contained 50 mM Tris-HCl (pH 8.0), 0.3 M NaCl, 20 % Glycerol, 

and 80 mM (NH4)2SO4, 30 µM polyphosphate, 0.2 mM  ADP and were initiated by the addition 

of FtPPK2 (30 nM). MnCl2 and MgCl2 concentrations from 0.25 to 50 mM and a pH range from 

5.5 to 9 were used, MES (50 mM) for the pH 5.5-6 and bis-tris propane (50 mM) for pH 6.5-9. 

Reactions were incubated at 30 °C and after 3 minutes, aliquots (100 µL) were withdrawn and 
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the reaction quenched using EDTA (50 mM), followed by heating (95 °C, 5 minutes). 

Precipitated protein was removed by centrifugation and a sample (40 µL) was analyzed by ion 

pairing HPLC [Gemini C18 column (150 x 4.6 mm 5 micron)] with detection at 260 nm using 

the same separation method described previously.  

 

Isothermal Titration Calorimetry 

All experiments were carried out using a MicroCal VP-ITC calorimeter (MicroCal, Inc., 

Northampton, MA, USA) at 310 K, unless otherwise stated, whilst stirring at 500 rpm. 

Experiments were carried out in ITC experimental buffer (50 mM HEPES (pH 8.0), 10 mM 

MgCl2, 0.3 M NaCl, 20 % glycerol, 0.15 mM β-mercaproethanol).  FtPPK2 was exchanged into 

this buffer by dialysis and/or size exclusion including chromatography.  Titrations began with an 

initial injection of 2 𝜇L followed by 39 identical injections of 5 𝜇L. Data was corrected for heats 

of dilution by subtracting the data from independent titrations of ligand into buffer. Data were 

fitted to a bimolecular binding model using MicroCal™ Origin software. Experiments were 

carried out in duplicate.  

 

31
P NMR FtPPK2 Activity Assays 

The overall reaction time course of an FtPPK2 catalyzed reaction was monitored with 
31

P NMR.  

Using standards of ADP and polyphosphate, the relaxation time (T1) was optimized to ensure 

integrals derived from spectra accurately reflected the concentrations of all 
31

P species in the 

reaction mixture. The signal from nucleotide dCMP (2 mM) was used as an internal standard. 

The assay mixture (2.5 mL) contained 50 mM Tris-HCl (pH 8.0), 0.3 M NaCl, 20 % Glycerol, 

10 mM MgCl2, 80 mM (NH4)2SO4, 10 % D2O, 500 µM polyphosphate and up to 2 mM 

nucleotide substrate. The reaction was initiated through the addition of 150 nM FtPPK2, mixed 

and data collected at 37 °C for 543 seconds followed by 453 second bins for the duration of the 

assay. Peak integrals were converted to concentrations using the dCMP standard as a calibrant 

and the concentration data used to plot time courses, which were fitted to an empirically selected 

function, either a first order or a linear process.  

 

FtPPK2 Crystallisation and Structure Determination 

Initial crystallization conditions were identified using the Hampton Research crystal screen 1 

using the sitting drop vapor diffusion method. Conditions for crystallization of FtPPK2 were 

optimized in 24 well format by the hanging drop vapor diffusion method at 20 °C. For X-ray 

data collection, FtPPK2 was crystallized using a precipitant solution containing: 0.8 M Na 

citrate, 0.1 M Na HEPES (pH 8.5), 2.5 mM AMP-PNP and 1 mM MgCl2. Diffraction data were 

collected on the i02 beamline at the Diamond Light Source. The data was processed with xia2 

[33] and the structure was solved by molecular replacement with the BALBES software [34], 

which also incorporates the Arp/Warp software [35]. The model was built with COOT [36] and 

refined with Phenix refine [37]. The data collection and refinement statistics are shown in Table 

2. 
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Antibiotic Sensitivity Testing of the ΔFTT1564 F. tularensis Mutant 

All work with Francisella strains was performed in a containment level III laboratory in 

accordance with relevant legislative requirements The F. tularensis SCHU S4ΔFTT1564::CAM 

mutant[17] was tested for susceptibility to various classes of antibiotics. F. tularensis SCHU S4, 

and the ΔFTT1564 mutant strain, were inoculated from a fresh blood cysteine glucose agar 

(BCGA) plate into 25 mL brain heart infusion broth to an optical density at 600 nm (OD600) of 

0.1, then the cultures were incubated overnight with shaking at 37 °C.   Cultures were adjusted to 

an OD600 of 1.0 with fresh culture medium.  In three biological replicates, aliquots of 1 mL F. 

tularensis SCHU S4 or the ΔFTT1564 mutant were pipetted onto dry BCGA plates, and surplus 

media removed. Sterile discs (BBL™ Sensi-Disc™ Susceptibility Test Discs, BD) 5 mm in 

diameter, impregnated with an antibiotic, were placed in triplicate on the plate using sterile 

forceps. The total quantities of antibiotic on each disc were: streptomycin, 10 𝜇g; gentamycin, 10 

𝜇g;  tetracycline, 30 𝜇g; doxycycline, 30 𝜇g;  ciprofloxacin, 5 𝜇g and polymyxin B, 100 𝜇g. The 

plates were incubated face-up, for 24 hours at 37 °C and zones of inhibition in the lawns 

surrounding the discs measured. The mean results from three independent experiments, 

conducted in technical triplicates were analyzed using an unpaired t-test with Welch’s correction 

for unequal variance using GraphPad Prism V6.02.   
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Results 

 

Expression and Purification of FtPPK2 

Heterologous expression FtPPK2 in E. coli was greatly improved by using the BL21 Rosetta 

pLysS (DE3) strain to overcome the problem of codon bias and the A+T rich nature of the F. 

tularensis sequence (66 %). Affinity purification with the incorporated His6 tag yielded 6 mg of 

purified FtPPK2/g cell paste and FtPPK2 was stable (over 3 months) when stored as aliquots in 

buffer containing 20 % glycerol at -80 °C.  Further purification by size exclusion 

chromatography (Superdex 75) yielded highly purified FtPPK2 suitable for protein 

crystallization studies (Figure 2A). 

 

Substrate Specificity of FtPPK2 

To investigate the substrate preference of FtPPK2, competition activity assays were prepared 

containing pairs of nucleoside diphosphate analogues (ADP and GDP; ADP and CDP; ADP and 

UDP) and analyzed for formation of the triphosphate product by ion pairing HPLC (Figure 2B). 

The initial rate was 0.250 ± 0.052 𝜇mol/sec for formation of ATP as product and 0.244 ± 0.026 

𝜇mol/sec for formation of GTP, but UDP and CDP were not substrates under these conditions. 

Single time point activity assays (quenched at 60 min) were prepared with AMP and GMP (500 

𝜇M) as substrates. No formation of nucleotide diphosphates was detected, which demonstrated 

that AMP and GMP were not substrates for FtPPK2 (data not shown). 

 

Metal ion and pH dependence of FtPPK2 

The optimal concentrations for divalent cations Mg
2+

 and Mn
2+

 with FtPPK2 were 10 mM and 1 

mM respectively (Figure 2C). A lower optimal concentration for Mn
2+ 

ions than Mg
2+

 ions has 

been observed for other PPK2 enzymes [18, 23]. FtPPK2 was active over a wide range of pH 

values, with optimal activity at pH 8 (Figure 2D). The sharp drop off in activity at pH 9 may 

have resulted from deprotonation of either a catalytic residue or a protonated basic residue that 

acts as counterions to the polyphosphate and nucleotide substrates.  

 

Nucleotide Substrate Steady State Kinetics 

As shown in the previous section, FtPPK2 uses both GDP and ADP as substrates and the data 

indicated that both these substrates were used with approximately equal efficiency.  The IP-

HPLC assay was then used to quantify (in duplicate) the rates of formation of reaction products 

in FtPPK2 catalyzed reactions, in both directions. For the triphosphate forming reaction, GDP 

and ADP were used as substrates and the formation of GTP and ATP products were measured. 

For the reaction in the reverse direction (forming diphosphates), GTP and ATP were used as 

substrates and the formation of GDP and ADP products were measured. Measurements were 

made with substrate nucleotides (GDP, ADP, GTP and ATP) concentrations over a range 0-2 
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mM at  37 °C. Fitting the derived initial rates to Michalis-Menten steady state kinetics (Figure 3) 

gave the kcat and KM parameters for FtPPK2 which are compared with values for other members 

of the PPK2 family [23] in Table 1. In the activity assays with nucleoside triphosphates as 

substrates (Figure 3B), a fine precipitate was occasionally observed to form in assays at higher 

NTP concentrations (>500 𝜇M). This may account for the observed larger error bars for these 

activity measurements.  The calculated catalytic efficiency (kcat/ KM) is broadly similar for 

guanine and adenine nucleotides, and for di- or tri- phosphate substrates.  

 

Substrate Binding to FtPPK2 by Isothermal Titration Calorimetry (ITC)   

To measure the binding affinity of substrates to FtPPK2, we used isothermal titration 

calorimetry. The results of these titration experiments (Figure 4) showed no discernable substrate 

binding for a nucleotide substrate in the absence of polyphosphate, but titration of polyphosphate 

in the absence of nucleotides fitted to a single binding site model (N = 0.63 ± 0.01) with the 

following thermodynamic parameters: Ka = 8.21 ± 3.29 x 10
6
, ΔH = -6.09 ± 0.17 kcal/mol and 

ΔS = 11.2, equivalent to a Kd of 122 nM. This data suggests that significant binding of the 

nucleotide substrate requires the presence of polyphosphate. 

 

31
P NMR FtPPK2 Activity Assay.  

The overall reaction time course of an FtPPK2 catalyzed reaction was monitored with 
31

P NMR 

(Figure 5).  Using standards of ADP and polyphosphate, the relaxation time (T1) was optimized 

to ensure integrals derived from spectra accurately reflected the concentrations of all 
31

P species 

in the reaction mixture. The signal from nucleotide dCMP (2 mM) was well separated from any 

substrate or product derived signals and was used as an internal standard (Figure 5A, green). The 

assay mixture (2.5 mL) contained 50 mM Tris-HCl (pH 8.0), 0.3 M NaCl, 20 % Glycerol, 10 

mM MgCl2, 80 mM (NH4)2SO4, 10 % D2O, up to 500 µM polyphosphate and up to 2 mM 

nucleotide substrate. The reactions were initiated through the addition of 150 nM FtPPK2, mixed 

and data collected at 37 °C for 543 seconds followed by 453 second bins for the duration of the 

assay. Qualitatively, the time dependent utilization of the ADP [signals at –5.94 (β-ADP) and –

10.07 (α-ADP) ppm] and the internal phosphoanhydrides of polyphosphate (-23.39 ppm) can be 

observed, as can the corresponding formation of ATP [signals at –5.44 (-ATP) –10.72 (α-ATP); 

–18.96 (β-ATP) ppm]. No signal for the formation of inorganic phosphate or other phosphorus 

containing by-product appeared, suggesting the FtPPK2 catalyzed phosphotransfer reaction is 

efficient, without any significant competing hydrolytic or other side reaction. Using the dCMP 

standard as an internal calibrant, the integrals were converted to concentrations for each time 

point. Plotting these concentrations against time gave a reaction time course for ATP, ADP 

(Figure 5, panel B) and polyphosphate internal phosphoanhydride (panel C).  Comparing time 

courses initiated at high and low polyphosphate concentrations (500 𝜇M and 16 𝜇M respectively) 

reveals the limitation of this experimental approach, as the errors in the integrals at lower 

polyphosphate concentrations become too large. For example, using 500 𝜇M polyphosphate 

(Table 2, experiment 1), the kinetic parameters for fitting the time courses of ATP formation and 

ADP depletion approximately match, as does the total change in concentrations and the 

calculated initial rates. However, the results at 16 𝜇M polyphosphate, whilst qualitatively 
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heading in the expected direction, cannot be fitted to give well correlated results.  A similar 

caveat must be placed on integrals of the internal phosphate signal of polyphosphate, which both 

qualitatively show a decrease but the small change in a relatively large integral could not be 

reliably fitted (Figure 5, panel C).  

 

X-ray Crystal Structure of FtPPK2 

Screening using the sitting drop vapor diffusion method yielded FtPPK2 crystals with a sodium 

citrate precipitant and HEPES buffer (pH 8.4) in the presence of the non-hydrolysable ATP 

analog adenylyl imidodiphosphate (AMP-PNP)[38]. The crystals formed overnight and reached 

a maximum size after 3 days. Conditions were optimized to produce crystals up to 200 𝜇m in the 

longest dimension which diffracted to a 2.23 Å resolution at Diamond beamline i02 (Table 3).  

The FtPPK2 structure was solved by molecular replacement using the S. meliloti PPK2 structure 

(SMc02148, PDB ID: 3CZQ) as a model and the BALBES pipeline [34]. The refined structure of 

FtPPK2 reveals 4 monomers in the asymmetric unit in a D2 tetrameric organization (Figure 6A). 

Despite the inclusion of AMP-PNP in the crystallization solution, no density corresponding to 

this ligand was observed. Each monomer consists of a six strand β-sheet, surrounded by 10 α-

helices, with the insertion of a lid motif (helices 8 and 9, Figure 6B and 6C). A Dali search [39] 

for structural similarity identified PPK2 from S. meliloti as the closest related protein structure, 

followed by the PPK2 protein from P. aeruginosa (PA3455, PDB ID: 3CZP)[23] and 

Arthrobacter aurescens (AAur_2811, PDB ID: 3RHF). The next most similar structures are two 

thymidylate kinases, from Sulfolobus tokodaii STK_15430, PDB ID: 2PLR) and Staphylococcus 

aureus (SAV0482, PDB ID: 4EAQ) respectively (Table 4). 

 Comparison of FtPPK2 and S. meliloti PPK2 (Figure 7A) shows high structural similarity in 

most areas (r.m.s.d. 0.782 Å for all atoms), apart from the N terminus, Walker A motif and lid 

module. Like the S. meliloti structure, FtPPK2 has a central six stranded parallel β-sheet flanked 

by α-helices at the side and top. The lid module of FtPPK2 is not covered by the N-terminal 

extension domain present in the S. meliloti structure and the FtPPK2 lid module appears to be in 

a slightly more open conformation (Figure 7B). Parts of the electron density for the lid module 

for fully refined FtPPK2 cannot be resolved for chains C (missing residues 181-192) and D 

chains (missing residues 182-188), which may point to a high degree of flexibility in this region. 

This flexibility may also be reflected in the lid B factors which are higher in the lid motif (for 

example, residues 168-198, chain A, mean B = 45.8 Å
2
) than the mean for the whole structure 

(all residues, chain A, mean B =31.6 Å
2
) (Figure 7C). 

 Nocek et al. [23] postulated that the nucleotide substrate binds to PPK2 to one side of the 

Walker A-motif containing loop, which in FtPPK2 corresponds approximately to the area 

between Asp117 and Phe132, forming a pocket between α helices 6 and 7 (Figure 6 and 8A). 

They suggested that a conserved Asp residue (corresponding to FtPPK2 Asp117, Figure 8A) in 

the Walker B motif may coordinate a magnesium ion required for substrate binding and 

potentially for catalysis. In addition they identified a conserved lysine residue in the Walker A 

motif (corresponding to FtPPK2 Lys66, Figure 8A) which they anticipated may bind the β and γ 

phosphates of ATP in the active site. 
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FtPPK2 has a large positively charged region (on the left hand side of the Walker A motif as 

shown in Figure 8B), made up of residues His76, Arg174, Lys228, Lys229 and Arg232. We 

propose these residues constitute the polyP substrate binding pocket, which is sufficiently long 

(18 Å) to accommodate ~8 residues of the polyphosphate chain (calculated maximum length 21 

Å).  Using this arrangement, the terminal phosphate of the polyP and the nucleotide are correctly 

juxtaposed below the lid, in the region of the Walker A motif and the catalytically important 

Lys66 and Asp62. Higher B-factors indicate that the Walker A motif is a flexible region and the 

N-terminal region of helix 3, around Asp62 in the FtPPK2 structure, adopts a different 

conformation to the S. meliloti PPK2 structure, with some atoms moving as much as 5.9 Å 

(Figure 7B), although the functional significance of this movement is difficult to ascertain 

without precise knowledge of the substrate binding modes. There are several conserved basic 

residues in the lid module that are close enough to interact with the poylphosphate ligand: 

Arg178, Arg174 and Lys184. The two arginine residues, 174 and 178 form part of a motif (Arg-

X2-3-Arg) conserved in the lid of bacterial PPK2s [40]. The conserved Arg118 of the Walker B 

motif is anticipated to potentially form hydrogen bonds with the β and γ phosphates of the 

nucleotide substrate. 

Antibiotic Sensitivity of F. tularensis ΔFTT1564 Mutant. 

The effect of inactivation of polyphosphate production in F. tularensis on antibiotic 

susceptibility was determined (Figure 9). Relative to the wild type strain, the ΔFTT1564 mutant 

was significantly more sensitive to killing by antibiotics targeting the translational 

machinery[41], namely streptomycin (10 𝜇g, P = 0.0048), gentamicin (10 𝜇g, P = 0.0048), 

tetracycline (30 𝜇g, P = 0.0357) and doxycycline (30 𝜇g, P = 0.0028). The ΔFTT1564 F. 

tularensis mutant was also more susceptible to killing by the topoisomerase/gyrase inhibitor 

ciprofloxacin, (5 𝜇g, P = 0.0286). However, the mutant showed no difference in susceptibility to 

the membrane-targeting compound polymyxin B.  

.   
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Discussion 

 The characterization of FtPPK2 through the HPLC assay format has enabled measurement of 

substrate preference and specificity (Figure 2 and Table 1), identifying that Francisella 

tularensis polyphosphate kinase belongs to the PPK2 family[18, 23, 24, 42]. FtPPK2 did not 

accept pyrimidine nucleotides or purine monophosphate substrates, but comparing activity with 

the purine substrates, it showed little substrate preference between guanosine and adenosine 

nucleotides. This is comparable with the observed small preference of M. tuberculosis PPK2[18] 

for ATP (KM = 330 𝜇M) over GTP (KM = 660 𝜇M), but very different from S. meliloti PPK2[23] 

which shows a 10 fold difference in KM, preferentially utilizing ADP over GDP (Table 2).  

 Sequence analysis has indicated that polyphosphate kinase enzymes are widely distributed in 

prokaryotes[8]. Some bacteria have a single polyphosphate kinase, either of the PPK1 or PPK2 

subtypes, and other species of bacteria contain multiple polyphosphate kinase sequences, 

including a mixture of subtypes[8]. Analysis of the genomes of F. tularensis subsp. tularensis 

SCHU S4 and subsp. novacida indicates that genes FTN1472 and FTT1564 respectively encode 

a member of the PPK2 family[17]. Moreover, biochemical evidence from the knockout mutant 

verified this to be the only gene encoding a polyphosphate kinase[17]. Francisella spp. are 

renowned for having compact genomes[43] and therefore there may be a competitive advantage 

to avoiding having multiple polyphosphate kinases when one broader specificity enzyme will do.  

 Measuring the formation of a product nucleotide by HPLC has a significant limitation, as the 

sensitivity of absorbance at 260 nm limits accurate measurement of nucleotides from assay 

mixtures to approximately 5 𝜇M; below this point, the errors become unacceptable. This was not 

an issue for the nucleotide substrates (KM’s in the range 300-800 𝜇M), but the KM for 

polyphosphate was significantly lower and could not be accurately measured with the HPLC 

based assay. Using isothermal titration calorimetry (Figure 4), the binding of polyphosphate 

could be quantified for a single binding site and gave a a sub-micromolar binding constant. This 

contrasted with the lack of nucleotide binding observed in the absence of polyophosphate. 

Further characterization of FtPPK2 with respect to polyphosphate turnover was achieved using 
31

P NMR analysis.  On a qualitative basis, the 
31

P NMR assays confirmed the utilization of 

polyphosphate and ADP as substrates and the formation of ATP. The limited sensitivity of the 
31

P NMR restricted quantitative measurements of activity to assays containing relatively high 

concentrations of substrates (initial [NDP] = 2 mM; initial [polyphosphate] = 500 𝜇M): under 

these conditions, there was a good correlation of ATP formed and ADP utilized, and the 

associated rate constants (Table 2, initial [polyphosphate] = 500 𝜇M). Interestingly, the fidelity 

of the phosphotransfer reaction proved to be excellent: over the relatively long time course of 

these experiments (over one hour corresponding to more than 10,000 turnovers), by-products of 

hydrolysis such as inorganic phosphate were not observed to accumulate to a measurable extent.  

 There is a high degree of similarity between the structures of FtPPK2 and S. meliloti PPK2 

enzymes (Fig. 7A), although the FtPPK2 sequence is shorter than the other structurally 

characterized PPK2 enzymes and lacks the N-terminal domain present in the Pseudomonas 

aeruginosa sequence (up to residue ~60 of PA0141, accession code UniProtKB Q8GCQ3)[25]. 

In terms of active site binding, isothermal titration calorimetry identified that FtPPK2 does not 

significantly bind nucleotide substrates in the absence of polyphosphate, which may explain the 

lack of observable ligand density for a nucleotide in the structure of a crystal grown in the 
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presence of AMP-PNP.  Analysis of the surface electrostatic potential has identified an extensive 

positively charged region suitable for polyphosphate binding. Nocek et al.[23] proposed 

NDP/NTP binding between helices 6 and 7, but the molecular basis for substrate selectivity 

(purine vs. pyrimidine, guanosine vs. adenosine) and assignment of precise roles for active site 

residues during catalysis will require further experimental evidence, either from mutagenesis or 

from structural analysis of FtPPK2 co-crystallized with substrate(s) or structural analogue(s). It 

seems likely that residues in the lid module are involved in substrate binding[23] and it will be 

interesting to determine if there is the same flexibility in the lid module in a substrate-bound 

FtPPK2 structure or not. 

 As polyphosphate appears to be an important metabolite contributing to survival of F. 

tularensis, it was important to ensure that abolition of polyphosphate production did not 

inadvertently induce a stress response that made the pathogen more resistant to clinically 

relevant antibiotics. Disc diffusion experiments indicated that decreased polyphosphate 

production in F. tularensis led to increased antibiotic sensitivity to various classes of 

antimicrobials. An important caveat must be applied to these experiments, as a chromosomal 

deletion can result in polar effects, modifying the expression of downstream genes.  An approach 

that may form part of future studies of antibiotic sensitivity is provided by complementation 

analysis of the ΔFTT1564 strain, which has potential to address this issue. Ciprofloxacin is the 

current antibiotic therapy of choice, according to the Centre for Disease Control and Prevention 

guidelines, for the treatment of tularemia, and has very effective antibiotic action against all F. 

tularensis strains[44].  Crucially, the abolition of polyphosphate production resulted in increased 

susceptibility to ciprofloxacin. This suggests that inhibitors of FtPPK2 could act as “antibiotic 

adjuvants” to enhance the efficacy of current antibiotic regimens for the treatment of tularemia, 

as well as acting as antibiotics in their own right.  In contrast, the ΔFTT1564 mutant showed no 

statistically significant increase in sensitivity to polymixin B.  Polymyxin B disrupts the bacterial 

cell membrane[45], and F. tularensis has known resistance: resistance is conferred by a tetra-

acylated lipid A to which polymyxin B cannot bind[46]. Therefore, inactivation of 

polyphosphate production does not render the pathogen generally weaker due to stress, but rather 

the increased susceptibility is due to a specific inability to counter antibiotic killing mechanisms. 

 Previous studies into other Gram negative bacteria such as Pseudomonas aeruginosa, have 

reported increased susceptibility to antibiotics in mutants that are defective for genes involved in 

the stringent response[47].  Polyphosphate production is directly influenced by the stringent 

response whereby abolishment of (p)ppGpp synthesis results in simultaneous decreased 

polyphosphate production[48].  It has also been reported that bacteria become more tolerant to 

antibiotics under nutrient starvation conditions[49].  That targeted mutagenesis of FTT1564 not 

only results in decreased polyphosphate production[17] but also in an increase in sensitivity to 

antibiotics, indicates that polyphosphate metabolism plays a key role in the increased antibiotic 

susceptibility observed upon inactivation of the stringent response. 

 In summary, we report the biochemical and biophysical characterization of FtPPK2, an 

enzyme activity important for F. tularensis virulence[17]. The enzyme can serve as a broad 

specificity reversible purine diphosphate kinase, consistent with FtPPK2 being the only 

polyphosphate kinase encoded by the F. tularensis genome. Inhibitors of  FtPPK2 could be novel 

antibiotics and may also enhance the activity of other antibiotics.  The combined biochemical, 

Ac
ce

pt
ed

 M
an

us
cr

ip
t

© 2015 The Author(s) Archiving permitted only in line with the archiving policy of Portland Press Limited.
The final version of record will be available under the Creative Commons Attribution Licence 3.0
(http://creativecommons.org/licenses/by/3.0/). You are encouraged to use the final version of record.



14 

 

biophysical and microbiological results reported herein address some of the prerequisites for 

studies to discover such novel FtPPK2 inhibitors. 
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Tables 

Table 1. Steady state kinetic parameters for FtPPK2 from activity measurements using IP-

HPLC. *Shaded rows data for S.meliloti PPK2 (SMc02148) from Nocek et al.[23]. 

 

 

  

Substrate Measured 

product 

kcat/ s
-1

 KM/ µM kcat/KM/  s
-1 

M
-1 

 

ADP ATP 3.17 ± 0.22 546 ± 79.2 5788 ± 1242 

ATP ADP 1.46 ± 0.13 372 ± 90.5 3920 ± 1301 

GDP GTP 3.69 ± 0.37 727 ± 138 5075 ± 1472 

GTP GDP 2.77 ± 0.41 692 ± 235 4002 ± 1951 

*ADP  7.60 ± 0.01 32.0 ± 4.10 23800 

*GDP  0.80 ± 0.03 520 ± 70.0 1538 
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Table 2. Rate constants from 
31

P NMR time courses of FtPPK2 assays. 

 

 

Experiment
a
 Initial [PolyP] 

/ 𝜇M 

Kinetic parameters
b
 Nucleotides 

   ATP ADP 

1 500 k1 x 10
-3

 / s-1 1.52 ± 0.17 1.02 ± 0.14 

R
2
 0.99 0.99 

ΔC / 𝜇M 1750 ± 73 1880 ± 36 

Initial rate / 𝜇M s-1 2.65 ± 0.41 1.915 ± 0.30 

2 16 k1 x 10
-3

 / s-1 0.769 ND
c
 

R
2
 0.98 ND 

ΔC / 𝜇M 556 ND 

Initial rate / 𝜇M s-1 0.450 ND 

 
a
Reactions also contained 150 nM FtPPK2, 2 mM nucleotide, 2 mM CMP (internal standard) 

and 10% v/v D2O. 
b
Time courses were fitted to a first order process: k1, first order rate constant; R

2
, goodness of fit; 

ΔC, calculated change in concentration of nucleotide. 
c
ND, not determined (a reliable fit could not be achieved). 
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Table 3. Crystallographic data for FtPPK2. Figures in brackets indicate the highest resolution 

shell. 

 

Data Set FtPPK08 

Resolution of data (outer shell), Å 81.65-2.23 (2.27-2.23) 

Space group P212121 

Unit cell parameters a= 86.79, b = 88.89, c =163.3 

a=b=c= 90° 

Rmerge (overall, all I+ and I-) 0.052 (0.539) 

Mean I/σI (outer shell) 15.5 (2.4) 

Completeness (outer shell), % 99.2 (99.7) 

Multiplicity (outer shell) 3.6 (3.5) 

No. unique reflections 61793 

Rwork 0.20 

Rfree 0.25 

No. protein atoms 8412 

No. solvent waters 473 

No. ligand atoms None 

RMSD for bonds (Å) 0.009 

RMSD for angles (°) 1.220 

Average protein B factor 31.6 

Average lid module B factor 45.8 

Average solvent B factor  48.8 

PDB entry 4YEG 
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Table 4. Dali analysis for FtPPK2. Results for the five structures that are most similar to 

FtPPK2 are shown. 

 

Model 

PDB Code 

Average 

Z-score 

Average RMSD 

(Å) 

Sequence Identity 

(Percent) 

3CZQ 31.78 1.73 47.0 

3CZP 24.65 2.25 33.0 

3RHF 24.75 2.53 26.8 

4NZY 11.65 3.2 29.5 

2PLR 11.6 3.25 18.5 
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Figure and Scheme Legends. 

Scheme 1. Reaction scheme for the three classes of polyphosphate kinases, PPK1, PPK2 and 

PPK3 indicating observed substrate specificity of the different enzyme classes. 

Figure 1. Alignment of PPK2 sequences from F. tularensis  (labelled Ftula, accession code 

YP_170487.1, PDB code 4YEG), Pseudomonas aeruginosa (Paeru, NP_248831, 3CZP), 

Sinorhizobium meliloti (Smeli, NP_384613, 3CZQ) and Arthrobacter aurescens (Aaure, 

YP_949739.1, 3RHF). Residues are colored by degree of conservation. Elements of secondary 

structure are taken from the F. tularensis structure (α-helices in pink, 𝛽-sheets in green). The 

Walker A and B motifs of PPK2 identified by Nocek et al. [23]  are boxed in red.  The unaligned 

N-terminal 45 residues of PaPPK2 are omitted. 

Figure 2.Characterisation of FtPPK2. A. SDS PAGE analysis of fractions from the final 

purification step (Superdex 75 size exclusion chromatography). B.  Formation of NTPs in 

FtPPK2 activity assays. Concentrations of NTPs were measured by IP-HPLC. Red squares, 

ATP; blue circles GTP; green diamonds, UTP.  Reagents were added at the following initial 

conditions: polyphosphate, 0.1 mM; FtPPK2, 250 nM; NDPs, 500 𝜇M; 37 °C. C. Metal ion 

dependence of FtPPK2. Black open circles, Mg
2+

; red squares, Mn
2+

. D. pH Dependence of 

FtPPK2. Activity in panels C and D has been normalized to the maximum (100%).  

Figure 3. Steady state kinetic analysis of FtPPK2 substrate specificity. A: nucleoside 

diphosphate substrates, B nucleoside triphosphate substrates. Adenosine nucleotides, blue 

circles; guanosine nucleotides, red squares. Reagents were added at the following concentrations:  

polyphosphate, 0.1 mM; FtPPK2, 150 nM. Goodness of fit (R
2
) for each nucleotide was: GDP, 

0.99; ADP, 0.99; GTP, 0.95; ATP, 0.97. 

Figure 4. Isothermal titration calorimetry analysis of  FtPPK2 substrate binding.  A. Titration of 

ADP into FtPPK2. B. Titration of polyphosphate into FtPPK2. Titration conditions: 50 mM 

HEPES (pH 8),  10 mM MgCl2, 0.3 M NaCl, 20 % (v/v) glycerol, 0.15 mM β-mercaptoethanol, 

298 K. 

 

Figure 5. Kinetic analysis of FtPPK2 catalysed reactions using 
31

P NMR. A. Time course for a 

FtPPK2 reaction monitored by 
31

P NMR. In this example reaction, initial conditions were: 2 mM 

ADP, 125 𝜇M polyphosphate, 2 mM dCMP and 150 nM FtPPK2.  Peaks were assigned as 

follows: 3.44 (dCMP), –5.44 (-ATP), –5.94 (-ADP), –10.07 (-ADP), –10.72 (-ATP), –

18.96 (-ATP), –23.39 (polyphosphate internal phosphoanhydride); peaks are colored as 

follows: ATP, red; ADP, blue; polyphosphate internal phosphoanhydride, grey; dCMP, green. B. 

Kinetics analysis of 
31

P NMR time course experiments for two nucleotide concentrations. 

Experiment 1 (initial [polyphosphate] = 500 𝜇M), ATP, red circles; ADP, red triangles; 

experiment 2 (initial [polyphosphate] =16 𝜇M), ATP, blue circles; ADP, blue triangles. C. 

Kinetic analysis of 
31

P NMR time course experiments for changes in internal phosphoanhydride 

in polyphosphate. Red, experiment 1; blue, experiment 2.  The spectrometer (Bruker 400 MHz, 

operating at 161 MHz for 
31

P NMR) was maintained at 37 °C for the duration of the experiment. Ac
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Figure 6. Overall structure of FtPPK2. A. Tetrameric organization of FtPPK2 within the 

assymetric unit. B. FtPPK2 monomer A, labelling the α-helices (α-1 to α-12) and  strands of β-

sheet (β-1 to β-6). The lid-loop motif including helices α-8 and α-9 is colored red, the Walker A 

and B motifs are colored blue and purple respectively. C. Topology diagram color coded as in 

panel B. 

Figure 7. Similar and flexible regions of PPK2. A. Overlay of the F. tularensis (pale green, 

PDB: 4YEG) and S. meliloti (pale yellow, PDB: 3CZQ) PPK2 structures. B. Detail of the active 

site region (boxed region in panel A) highlighting the movement in the lid module (up to 5.9 Å) 

and the movement of the Walker A motif aspartic acid residue (FtPPK2 D62 and SmPpk D93). 

C. Structure of FtPPK2 colored by B-factors, ranging from blue (20 Å
2
) to red (50 Å

2
).  

Figure 8. Active site of FtPPK2. A. Residues close to the active site with proposed roles in 

substrate binding or catalysis. B.  FtPPK2 with an electrostatic surface, showing proposed 

substrate binding sites and the location of residues with proposed roles in catalysis. Electrostatic 

map generated with APBS[50] using a -20 to 20 scale.  

Figure 9 Antibiotic sensitivity of F. tularensis SCHU S4 wild type and mutant strain ΔFTT1564. 

Zones of inhibition were measured in bacterial lawns surrounding antibiotic impregnated discs. 

Black bar, wild type; grey bar, ΔFTT1564 mutant.  Statistical significance determined by 

unpaired t-test with Welch’s correction for unequal variance (* - P ≤ 0.05, ** - P ≤ 0.01).  
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Scheme 1. 

 

 

  

Ac
ce

pt
ed

 M
an

us
cr

ip
t

© 2015 The Author(s) Archiving permitted only in line with the archiving policy of Portland Press Limited.
The final version of record will be available under the Creative Commons Attribution Licence 3.0
(http://creativecommons.org/licenses/by/3.0/). You are encouraged to use the final version of record.



26 

 

Figure 1.  
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Figure 2.  
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Figure 3.  
 

[N D P ]  ( M )

v
/[

E
] 

(s
-1

)

0 5 0 0 1 0 0 0 1 5 0 0

0

1

2

3

[N T P ]  ( M )

v
/[

E
] 

(s
-1

)

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

A

B

 
 

  

Ac
ce

pt
ed

 M
an

us
cr

ip
t

© 2015 The Author(s) Archiving permitted only in line with the archiving policy of Portland Press Limited.
The final version of record will be available under the Creative Commons Attribution Licence 3.0
(http://creativecommons.org/licenses/by/3.0/). You are encouraged to use the final version of record.



29 

 

Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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Figure 8.  
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Figure 9.  
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