The University of Southampton
University of Southampton Institutional Repository

Application of advanced transient laser polarimetry to study of nonlinear reflective polarisation phenomena in solids

Application of advanced transient laser polarimetry to study of nonlinear reflective polarisation phenomena in solids
Application of advanced transient laser polarimetry to study of nonlinear reflective polarisation phenomena in solids
A novel femtosecond time-resolved polarimeter for reflective measurements was developed. The instrument was used with a picosecond Nd:YAG laser and an advanced femtosecond Ti:Sapphire laser. Sensitivity to pump-induced reflected probe polarisation rotation of better than 10-6 radians combined with time resolution up to 70 femtoseconds has been achieved. Time resolution of 30 femtoseconds was achievable with loss of sensitivity of approximately an order of magnitude. The polarimeter has been tested in a variety of spectroscopic configurations and with different types of solids (metals, semiconductors and superconductors) and was found to be a useful tool for the investigation of the transient nonlinear optical properties of opaque materials. A new type of optical autocorrelator for measurement of the duration of femtosecond optical pulses utilizing a reflective polarisation effect in metallic nickel was designed.

The recently developed spectroscopic polarimetric technique of the Specular Inverse Faraday effect was for the first time used to study a semimagnetic semiconductor (Cd0.6Mn0.4Te), a high Tc superconductor (YBaCuO7-δ) and a ferromagnetic metal (Ni). The cubic optical nonlinearity (χ(3)1122 - χ(3)1221) was measured in these opaque solids for the first time. In particular, in nickel a strong (χ(3) ~ 2 x 10-9esu) and exceptionally fast (τ < 30 fs) nonlinearity, which is promising for reflective nonlinear optical applications, was found. The thermalisation and spin-relaxation dynamics in GaAs were investigated with femtosecond time resolution using Specular Inverse Faraday effect spectroscopy for the first time.

Investigations were undertaken into natural and light induced reflective anisotropy in zincblende structure crystals. Transient measurements of induced anisotropy, its orientation dependence and intensity dependence were made for the first time in GaAs, InSb and Cd0.6Mn0.4Te. Analysis of microscopic and macroscopic pictures of the light-matter interaction in zincblende structure materials allowed attribution of the observed anisotropic effects to the phenomenon of natural and induced gyrotropic linear dichroism.

A computer program based on the quaternion description of light polarisation, the constitutive equation and the wave equation and suitable for calculation of evolution of partially polarised light in linear and nonlinear optical media with local and nonlocal optical response has been developed. The evolution of the polarisation state of partially polarised light during propagation in an isotropic medium with cubic nonlinearity has been investigated in detail and compared with published analytical and semi-analytical data.
University of Southampton
Malinowski, Andrew
54fd31d4-b510-4726-a8cd-33b6b2ad0427
Malinowski, Andrew
54fd31d4-b510-4726-a8cd-33b6b2ad0427
Zheludev, Nikolay
32fb6af7-97e4-4d11-bca6-805745e40cc6

Malinowski, Andrew (1996) Application of advanced transient laser polarimetry to study of nonlinear reflective polarisation phenomena in solids. University of Southampton, Optoelectronics Research Centre, Doctoral Thesis, 158pp.

Record type: Thesis (Doctoral)

Abstract

A novel femtosecond time-resolved polarimeter for reflective measurements was developed. The instrument was used with a picosecond Nd:YAG laser and an advanced femtosecond Ti:Sapphire laser. Sensitivity to pump-induced reflected probe polarisation rotation of better than 10-6 radians combined with time resolution up to 70 femtoseconds has been achieved. Time resolution of 30 femtoseconds was achievable with loss of sensitivity of approximately an order of magnitude. The polarimeter has been tested in a variety of spectroscopic configurations and with different types of solids (metals, semiconductors and superconductors) and was found to be a useful tool for the investigation of the transient nonlinear optical properties of opaque materials. A new type of optical autocorrelator for measurement of the duration of femtosecond optical pulses utilizing a reflective polarisation effect in metallic nickel was designed.

The recently developed spectroscopic polarimetric technique of the Specular Inverse Faraday effect was for the first time used to study a semimagnetic semiconductor (Cd0.6Mn0.4Te), a high Tc superconductor (YBaCuO7-δ) and a ferromagnetic metal (Ni). The cubic optical nonlinearity (χ(3)1122 - χ(3)1221) was measured in these opaque solids for the first time. In particular, in nickel a strong (χ(3) ~ 2 x 10-9esu) and exceptionally fast (τ < 30 fs) nonlinearity, which is promising for reflective nonlinear optical applications, was found. The thermalisation and spin-relaxation dynamics in GaAs were investigated with femtosecond time resolution using Specular Inverse Faraday effect spectroscopy for the first time.

Investigations were undertaken into natural and light induced reflective anisotropy in zincblende structure crystals. Transient measurements of induced anisotropy, its orientation dependence and intensity dependence were made for the first time in GaAs, InSb and Cd0.6Mn0.4Te. Analysis of microscopic and macroscopic pictures of the light-matter interaction in zincblende structure materials allowed attribution of the observed anisotropic effects to the phenomenon of natural and induced gyrotropic linear dichroism.

A computer program based on the quaternion description of light polarisation, the constitutive equation and the wave equation and suitable for calculation of evolution of partially polarised light in linear and nonlinear optical media with local and nonlocal optical response has been developed. The evolution of the polarisation state of partially polarised light during propagation in an isotropic medium with cubic nonlinearity has been investigated in detail and compared with published analytical and semi-analytical data.

Text
97000493 - Version of Record
Available under License University of Southampton Thesis Licence.
Download (3MB)

More information

Published date: June 1996
Organisations: University of Southampton, Optoelectronics Research Centre

Identifiers

Local EPrints ID: 386866
URI: http://eprints.soton.ac.uk/id/eprint/386866
PURE UUID: a6b5a1e4-8ed3-4a84-8efd-dcf0228499af
ORCID for Nikolay Zheludev: ORCID iD orcid.org/0000-0002-1013-6636

Catalogue record

Date deposited: 12 Feb 2016 14:30
Last modified: 15 Mar 2024 02:45

Export record

Contributors

Author: Andrew Malinowski
Thesis advisor: Nikolay Zheludev ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×