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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

MODELLING AT THE TRANSCRIPTOME - PROTEOME INTERFACE

by Yawwani P. Gunawardana

In high-throughput experimental biology, it is widely acknowledged that mRNA expres-

sion levels and the corresponding protein abundances are jointly analysed to observe

the relationship between these two omic measurements. While some experiments have

shown a good correlation between transcriptome and proteome for some species under

different conditions, such correlation values are not universal due to post-transcriptional

and post-translational regulations. Thus, bridging the gap between transcriptome and

proteome measurements allow us to uncover useful biological insights of the above reg-

ulations which are important to study on protein generation process and several disease

conditions. We develop a data-driven predictor using transcriptome layer properties as

proxies to protein abundance and employ the model in a novel manner to detect post-

translationally regulated proteins, hypothesizing that model failures (outlier proteins)

occur due to protein stability disruption by post-translational modifications (PTMs).

Three outlier detection techniques were employed with our protein abundance predictor

to detect post-translationally regulated protein. Those are; (1) simple linear regression

model which detects outliers by looking at the predicted and the measured protein scat-

ter plot, (2) Outlier Rejecting Regression (ORR) model, a novel mathematical formula-

tion which returns user-specific fraction of the data as outliers by solving a non-convex

optimization problem using Difference of Convex functions Algorithm (DCA) and (3)

Quantile Regression (QR) which employs an asymmetric loss model to detect outliers

only with negative losses for the first time in omic world. Proteins extracted as outliers

using above techniques confirmed our hypothesis on post-translational regulation (PTR)

by providing high statistical confidence for functional annotations and pathway infor-

mation. Therefore, this data-driven framework can be used as a reliable technique for

biologists to reduce laboratory experimental workspace in detecting post-translationally

regulated proteins.
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We also perform a thorough inference analysis on most commonly used high-throughput

microarray and RNA-Seq measurements using several machine learning inference tech-

niques to observe whether their high numerical precision provides additional information

about the gene with respect to the binary representation of gene switch on/off status.

We perform this analysis at the transcriptome level and as well at the proteome level as

an extended experimental setting of our PTR detection framework. These analyses sug-

gest that binarized mRNA concentrations, which are measured using high-throughput

RNA-Seq and microarray technologies are sufficient to perform accurate machine learn-

ing inferences similar to continuous measurements, not only at the transcriptome level

but also at the proteome level to predict protein abundance and to detect protein with

post-translation regulation to a high confidence level.
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Chapter 1

Introduction

1.1 Background

Computational analysis of high-throughput omic measurements has played a major role

in systems biology research over the last decade or so. Advanced measuring tech-

niques coupled with strong archiving methods have revolutionized the way of uncov-

ering biological insights, more at a system level than at a component level. Terabytes

of metabolomics, transcriptomic and proteomic experimental data are archived for com-

putational inferences. Transcriptome expression measurements made with cost effective

microarray technology being the most dominant omic measurement type with respect

to the other two. Most of the previous studies are based on simply looking at the cor-

relation between mRNA measurements and corresponding protein measurements (Gygi

et al., 1999; Futcher et al., 1999; Beyer et al., 2004; Wu et al., 2008) and report varying

levels of correlation. However, some authors have developed data-driven models such

as classification (Pancaldi and Bähler, 2011; Muppirala et al., 2011), clustering (Eisen

et al., 1998; Heard et al., 2005) and probabilistic approaches (Rogers et al., 2008; Kan-

nan et al., 2007) to investigate the relationship between these two properties. Tuller

et al., 2007 construct a machine learning based protein abundance predictor which is a

different approach to previous studies. They use several properties which are related to

translation process including mRNA abundance, and train a linear regression to predict

protein concentrations. Greedy feature selection algorithm selects mRNA concentration,

tRNA adaptation index (tAI) and evolutionary rate (ER) as the most dominant features

for their predictor. In fact, Tuller et al., 2007 achieve a correlation of 0.76 between the

true and the relevant predicted protein concentrations. However, it is difficult to demon-

strate the relationship between transcriptome-proteome data due to post-transcriptional

and post-translational regulations. During these processes mRNA (post-transcription)

and protein (post-translation) stability get disrupted due to enzymatic and structural

1



2 Chapter 1 Introduction

modifications, hence we believe that data-driven model between transcriptome and pro-

teome interface can be used to extract information about these post-transcriptional and

post-translational regulations. Taking inspiration from Tuller et al., 2007’s study, we

also develop a protein abundance predictor, but using an extended feature space. In con-

trast to previous work (Tuller et al., 2007), we employ sparse inducing LASSO technique

and select five features to predict protein abundance more accurately (R2 = 0.86); those

are mRNA, tAI, codon bias, ribosome density and occupancy. Further, we expand the

data-driven approach to detect post-translationally regulated proteins by considering

model failures (outliers) occur due to protein stability disruption by post-translational

modifications (PTMs). Thus, here we introduce a computational framework which can

be considered as a reliable technique for experimental biologists to reduce the laboratory

workspace in detecting post-translationally regulated proteins.

1.2 Motivation and Hypothesis

Post-translational modifications are important to study on different diseases. Protein

chemical structure changes occur after translation process effects on several physiological

diseases such as Alzheimer’s disease (AD), rheumatoid arthritis and Parkinson’s disease

(PD) (Gong et al., 2005; Oueslati et al., 2010). Furthermore, PTMs are used as candi-

dates for biomarker discovery for many cancer types. Phosphorylation of protein B/Akt

kinase enhances the effectiveness of the drug to suppress tumor growth (Gulmann et al.,

2005). Similarly, glycosylation was used to discover biomarker CA125 for ovarian carci-

noma caner (Wong et al., 2003) and glycomics profiling was employed to obtain serum

biomarker for hepatocellular carcinoma (Block et al., 2005). Additionally, these PTMs

are also being used as therapeutic interventions in cancer treatment. Autophosphoryla-

tion target on Tyrosine Kinase inhibitor as a treatment for lung cancer (Lynch et al.,

2004; Paez et al., 2004). Scientists use very complex and expensive mass spectrometry

(MS) technique to detect post-translationally modified proteins. However, this process

is not straightforward due to several technical reasons. Firstly, stoichiometry of PTR

is relatively low with respect to protein peptide pool (Wei and Li, 2009). Therefore it

is difficult to detect these changes by considering low abundance peptide peaks. Next,

PTMs are largely heterogeneous among different modification types and also within a

single modification. For example phosphorylation has several different phosphorylated

forms (Jensen, 2004; Yoon and Seger, 2006). Thus, unknown prior knowledge of which

PTMs are going to detect will enforce difficulties to identify variabilities inside a single

modification. Further, most of these analytical methods cannot detect low abundant

minor sites of PTMs due to technical difficulties (Chandramouli and Qian, 2009; Yoon

and Seger, 2006). Though there are several PTM detection methods have developed

with MS technique, still this task remains as a technical challenge (Arnott et al., 2003).

Therefore it is important to develop a computational model to detect post-translationally
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regulated (modified) proteins. Here we extract sub set of proteins which are likely to

be post-translationally regulated. In fact, during our finer level functional annotation

test, we explicitly detect proteins with phosphorylation, acetylation and ubiquitination.

Thus, our framework provides prior knowledge of the PTMs which are likely to be

detected by the MS experiment on these sub set of proteins and also reduces the exper-

imental time and cost due to the fewer number of testing samples. Additionally, since

we are targeting on a sub set of proteins, experimentalists will be able to detect minor

sites by amplifying the low abundances peptide ratios. This motivated us to develop a

data-driven computational framework to detect proteins which endure post-translation

regulation.

In this research we take a novel approach to detect post-translationally regulated pro-

teins by developing a protein abundance predictor and looking at the model failures (also

known as outliers) which give large errors between actual (measured) concentrations and

the predictions. We hypothesise that these model failures occurred due to protein stability

disruption caused by post-translational modifications during post-translation regulation

process. Therefore, outlier proteins with measured abundance lower than predicted are

likely candidates of post-translationally regulated proteins. Several studies have shown

that protein degradation can be triggered by post-translational modifications (Levine,

1983; Callis, 1995). In fact, protein stability can be disrupted by attaching new substi-

tutions to the amino acid. Post-translational modifications such as phosphorylation and

acetylation can act as proxies for such mutations by attaching to specific local sites which

increase the susceptibility of the protein to proteinase action to catalyse protein degra-

dation (Hood et al., 1977; Holzer and Heinrich, 1980). Martinez et al., 2003 showed that

ABCA1-PEST sequence phosphorylation regulates ABCA1 calpain degradation. They

performed several in-vitro experiments to show that phosphorylation with PEST motifs

regulate ABCA1 protein degradation and reduce the overall protein expression level.

Firstly, a flag-tagged PEST deletion mutant (which removes the degradation process)

was expressed in HEK293 cells (ABCA1delPEST) to compare the cell surface expression

levels with wild-type ABCA1 proteins. This experiment showed that wild-type ABCA1

gave 3.9 ± 0.4% mean fold reduction of the protein concentration with respect to pro-

tein degradation inactive PEST deleted ABCA1delPEST protein (Wang et al., 2003).

Next, a wild-type ABCA1 protein expression level was compared with phosphorylation

sites mutated ABCA1 proteins. These mutations impair protein degradation activity

in ABCA1 proteins. Therefore, the phosphorylation site mutated ABCA1 expression

levels gave higher expression levels compared to wild-type ABCA1 proteins (mean fold

3.4 ± 0.3% with MutAAAA in Thr-1286 site and 3.3 ± 0.3% with MutASSA in Thr-

1305 site). Thus, these experiments suggest that post-translational modifications such

as phosphorylation and acetylation catalyse the protein degradation and reduce total

protein expression levels. However, other regulations occur post-translationally, such
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as localization, hydrophobicity and enzymatic activities cannot be detected using this

data-driven approach.

1.3 Contributions

1.3.1 Modelling Transcriptome-Proteome Measurements & Detecting

Post-translationally Regulated Proteins

In the first part of this thesis, we develop a linear predictor using the best five features

out of 37 transcriptomic properties including mRNA abundance of yeast (Saccharomyces

cerevisiae), which are selected by the sparsity inducing lasso (L1 norm regularization)

technique. We then look for the systematic errors made by the predictor by hypothe-

sizing that those mRNA and protein pairs which have large errors where the predicted

protein abundance is lower than the actual measurement are likely candidates for post-

translational regulation. This experiment follows the fact that input features of our

predictor do not contain any information for post-translational regulation. We confirme

our hypothesis by performing a functional annotation check on these outlier proteins and

showing that they are highly enriched with post-translationally regulated proteins with

a high statistical confidence. Thus, here we introduce a data-driven machine learning

approach to reduce the laboratory experimental workspace to detect post-translationally

regulated protein.

1.3.2 Outlier Detection at the Transcriptome-Proteome Interface

Secondly, we introduce two regression models to extract outliers more systemically at the

transcriptome-proteome interface to prove our initial hypothesis on post-translational

regulation. (1) Outlier Rejecting Regression (ORR) model, devised through a collabora-

tion with Dr Akiko Takeda and Shuhei Fujiwara, allowing to specify a fraction (percent-

age) of data as outliers before performing the weight optimization in regression problem

to obtain robust outliers. (2) Quantile Regression (QR) has the asymmetric loss model

property to extract proteins with only negative losses where the predicted abundance

is lower than the actual measurement. These outliers confirmed our initial hypothe-

sis on post-translational regulation by providing high confidence levels for functional

annotations and biological evidence such as PTR related gene ontologies and pathways.
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1.3.3 Numerical Precision in Transcriptome-based Inference & Coher-

ence with Protein Prediction

Finally, we explore machine learning inference capabilities between high (continuous)

and low (binarized) numerical precision of microarray and RNA-Seq high-throughput

transcriptome measurements. Here we perform this task (1) using only transcriptome

measurements to explore quantitative analysis and (2) using our machine learning frame-

work to observe the PTR detection capability as a qualitative analysis. This is an ex-

tended experimental setting of the PTR detection framework under different transcrip-

tomic inputs. Previous authors have looked into binarized microarray data inference

capabilities at the transcriptome level (Tuna and Niranjan, 2009, 2010). However, as a

novel approach, here we also incorporate very recently developed RNA-Seq technology

measurements and compare these two high-throughput measuring techniques (microar-

ray and RNA-Seq) not only at the transcriptomic level but also at the proteome level.

These experiments suggest that, at both transcriptome and proteome levels, RNA-Seq

and microarray data perform similarly under high and low numerical precision where

binary data is sufficient to perform quantitative analysis. However, the PTR detection

framework showed that RNA-Seq binary data was able to capture more qualitative in-

formation on post-translation regulation compared to microarray binary measurements.

1.4 Thesis Organization

This report is organized as follows. Chapter 2 presents a literature review which includes

an overview of the central dogma of molecular biology, the importance of detecting post-

translationally regulated proteins, machine learning inference techniques and the joint

analysis of transcriptome and proteome data. Development of protein abundance pre-

dictor and proving hypothesis of post-translation regulation by analysing model failures

or outliers are described in Chapter 3. Chapter 4 introduces two novel formulations to

systemically detect outliers at the transcriptome-proteome interface and shows the over

representation of post-translationally regulated proteins as model failures using the three

types of regression models (including the simple linear regression model in Chapter 3).

Chapter 5 provides a thorough analysis of numerical precision in RNA-Seq and microar-

ray transcriptome measurements using continuous and binarized data and explore the

PTR detection capability by modelling at the transcriptome-proteome interface. Finally,

conclusions and future work are presented in Chapter 6.
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1.5 Publications

The following publications, presentations and posters are based on contributions made

during my PhD research:

Publications

⋆ Y. Gunawardana, M. Niranjan (2013), Bridging the Gap Between Transcriptome

and Proteome Measurements Identifies Post-translationally Regulated Genes, Bioin-

formatics, btt537.

⋆ Y. Gunawardana, S. Fujiwara, A. Takeda, J. Woo, C. Woelk, M.Niranjan (2014),

Outlier-Detection at the Transcriptome-Proteome Interface, Bioinformatics, btv182.

⋆ Y. Gunawardana, S.Tuna, C. Woelk, M.Niranjan (In Preparation), Numerical Pre-

cision in Transcriptome Representation is Illusory, Nature Methods

⋆ H. Johnson, C. White, Y. Gunawardana, B. Oliver, C. Woelk, S. Garbis (Under

Revision), Quality-Weighted Statistics Improves Differentially Expressed Protein

Determination by Isobaric Tag Quantitation, Journal of Proteome Research

Presentations & Posters

⋆ Presentation and Poster (Peer Reviewed Extended Abstract) - Y. Gunawardana

& M. Niranjan (2013), Bridging the Gap Between Transcriptome and Proteome

Measurements Identifies Post Translationally Regulated Genes, Seventh Interna-

tional Workshop on Machine Learning in Systems Biology, Berlin, Germany, July

19-21, 2013.

⋆ Presentation and Poster (Peer Reviewed Extended Abstract) - Y. Gunawardana,

S. Fujiwara, A. Takeda, C. Woelk & M. Niranjan (2014), Outlier-Detecting Sup-

port Vector Regression for Modelling at the Transcriptome-Proteome Interface,

Eighth International Workshop on Machine Learning in Systems Biology, Stras-

bourg, France, September 6-7, 2014.

⋆ Presentation - Y. Gunawardana, S. Tuna &M. Niranjan Precision in Transcriptome-

based Inference RNA-Seq Vs Microarray Fourth Next Generation Sequencing Sym-

posium, Southampton General Hospital, Southampton, UK, May 23, 2014.

⋆ Poster - Y. Gunawardana, M. Niranjan (2013), Modelling at Transcriptome and

Proteome Measurements Identifies Post-translationally Regulated Genes, Func-

tional Genomics & Systems Biology 2013, Wellcome Trust Conference Centre,

Cambridge, UK, November 21-23, 2013.
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⋆ Poster - A. Heinson, C. Denman, Y. Gunawardana, B. Moekser, M. Niranjan, C.

Woelk (2013), Bacterial Vaccine Design Using Reverse Vaccinology, 23th Annual

International Society for Computational Biology (ISMB) 2015, Dublin, Ireland,

UK, July 10-14, 2015.





Chapter 2

Literature Review

This chapter provides a comprehensive review on biological, computational and machine

learning concepts we employed in this thesis to develop our hypothesis and to perform

experiments to confirm it. We divided these background material into four main sections.

1. Central Dogma of Molecular Biology

2. Importance of Post-translational Regulation

3. Machine Learning Inference of High-throughput Omic Measurements

4. Joint Analysis of Transcriptome and Proteome Data

The first two sections are focused on biological information of protein generation process

and explain why it is important to develop a computational approach to detect post-

translationally regulated proteins at the transcriptome-proteome interface upon which

our main hypothesis is built. We then provide details on machine learning inference

techniques to analyse high-throughput transcriptomic measurements under high and

low numerical precision. Finally, we review previous work related to integrated analysis

of mRNA and protein data.

2.1 Central Dogma of Molecular Biology

This section describes the most important system in all living organisms, also known

as the central dogma of molecular biology, the flow of passing genetic information to

generate proteins. Francis Crick first stated this model in 1958 and re-stated it again

in 1970 in Nature publication (Crick et al., 1970). This system describes on protein

synthesis process inside living cells. There are three major classes of biopolymers; DNA,

9
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RNA and protein. Further, new studies have found microRNA and sRNA as supporting

biopolymers in central dogma. This framework illustrates the transmission of genetic

instructions from DNA to generate proteins (Figure 2.1).

• DNA: Deoxyribonucleic acid (DNA) is a molecule which contains genetic informa-

tion used for the development and functioning of all living organisms. These are

mostly located in nucleus but small amounts can be found in mitochondria region

as well. This is a long polymer made of repeating nucleotide units (Saenger, 1984;

Butler, 2005). Adenine (A), Guanine (G), Cytosine (C) and Thymine (T) are the

four nucleotides in a DNA sequence. These nucleotides pair with each other (A

with T and C with G) creating double-strand helices (Berg et al., 2002);

• RNA: Ribonucleic acid (RNA) is generated by DNA during the transcription

regulation. The main function of RNA is to transfer the genetic code from nucleus

to ribosomes to generate proteins. RNA helps DNA to pass on genetic information

without leaving the nucleus (Berg et al., 2002);

• mRNA, rRNA and tRNA: The first type of RNA is known as messenger

RNA (mRNA) and it carries information from DNA to ribosomal RNAs (rRNAs).

mRNA is the starting point of the translation process and the information is trans-

ferred to protein by transfer RNA (tRNA) (Mattick, 2001; Mattick and Gagen,

2001; Berg et al., 2002);

• Proteins: These perform a vast range of functions within living organisms. They

are large biological molecules with one or more chains of amino acids. Some of the

functions carried out by catalysing metabolic reactions, replicating DNA, respond-

ing to stimuli, and transporting molecules from one location to another. They fold

in a specific three-dimensional structure which determines their functional activ-

ities. Amino acid sequences in protein consist of genetic information which is

transferred by DNA (Kent, 2009; Lodish et al., 2000).

• microRNA: microRNAs (miRNAs) are small non-coding RNA molecules with

around 22 nucleotides in length. These biopolymers are regulated by directly

binding to 3’UTR region in mRNAs (Bartel, 2004). miRNAs inhibit the translation

or mRNA degradation processes which are important in protein generation.

• sRNA: These are small non-coding RNAs with 50-250 nucleotides and found in

bacteria with high level structure and stem loops. Microarray, RNA-Seq, Northern

blotting techniques are employed to detect sRNA molecules. These sRNAs can

either bind to the mRNAs and regulate the gene expressions or bind to proteins

and modify their functionalities (Vogel and Wagner, 2007).
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Figure 2.1: Central Dogma of Molecular Biology. Different levels of protein
generation and important regulations are highlighted. sRNA indicates small
RNAs with mRNA targets (taken from Silencing, 2011)

The central dogma of molecular biology consists of two main stages; namely transcription

and translation, which allow DNA to create useful proteins. However, there can be some

changes after each of these main processes. Post-transcriptional and post-translational

changes happen after transcription and translation processes respectively.

2.1.1 Transcription

During transcription regulation, DNA passes its genetic information to mRNA which is

a gene data transportation from the nucleus to cytoplasm. The DNA strand engages

with specific RNA polymers and transcription factors to generate mRNA. This step can

include 5’ cap, a poly-A tail and splicing. Alternative splicing also helps to generate

a range of proteins using a single mRNA. Following are the three main steps in the

transcription process.

→ RNA polymerase binds to DNA: RNA polymerase binds at the promoter

region of DNA and specific nucleotide sequences provide information about the
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beginning and the end of the transcription regulation. Transcription factor (TF)

proteins are directly involved with promoter region initiation;

→ Elongation: TFs unwind the DNA and RNA polymerase makes a copy of a single

strand of DNA into a single stranded RNA polymer called mRNA. The template

strand of DNA which makes the copy is known as the antisense stand and the

other one which does not transcribe is known as the sense strand;

→ Termination: The RNA polymer moves along the DNA antisense strand until

it reaches the terminator region and releases the mRNA polymer. After releasing

the mRNA polymer, the DNA antisense strand again binds with the sense strand

to create original DNA.

Levine, 2003 used several genome sequences to analyse the correlation between physio-

logical and behavioural complexities with gene expression data by looking at transcrip-

tion regulation. This study suggests that organism diversity occurs due to transcription

regulation of gene expression. In fact, different complexes are required to regulate cis-

DNA elements in a tissue specific and temporal manner. A single core promoter can be

detected by TFIID complexes and at the same time it can also interact with co-factor

complexes to vary the gene expression patterns. Different computational approaches

such as clustering of cis regulatory elements have been used to identify novel enhancers

in Drosophila genome (Markstein et al., 2002; Rajewsky et al., 2002). Several studies

have also shown that RNA polymerase II enzymes in Drosophila and mammal genes

pause at the promoter-proximal sites. Therefore the this regulation can occur at differ-

ent speeds in different organisms. There are several phases in the transcription process

such as initiation of transcription, elongation and termination. It is important to under-

stand how regulation works for a particular gene to understand its underlying biological

mechanism. Furthermore, transcriptionally inactivated promoters perform unusually

and are generally viewed as exceptions (Core and Lis, 2008; Gariglio et al., 1981).

2.1.2 Post-transcription

Post-transcription regulation occurs between the transcription and translation processes.

The changes that happen to mRNA after transcription are known as post-translational

regulation. Modern experiments show that multiple mRNAs are co-regulated by one

or more sequence-specific RNA-binding proteins. These are associated with RNA splic-

ing, stability, localization and translation. Scientists are currently investigating post-

transcription regulation properties using transcriptome and proteome data to further

explore information on immune system, stress response, and disease related properties

(Keene, 2007; Wu et al., 2008).
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Alternative splicing is an important post-transcriptional regulation which occurs in eu-

karyotic genomes such as human. The rearrangement of exons and introns of a single

mRNA generating several isoforms is known as alternative splicing mechanism. The

complexity of human protein abundance prediction lies in this alternative splicing pro-

cess. High-throughput sequencing showed that the human genome has far few genes

compared to the number of human proteins. Alternative splicing enhanced the protein

generation process and produce more than 150,000 proteins by using only 32,000 genes.

Yeakley et al., 2002 performed a microarray and fiber optic study on gene-to-protein

cycle. They observed that isoforms which are generated by alternative splicing have

short bits of genetic material to produce variety of proteins. These unique genetic sig-

natures reveal which portion of the gene is activated while producing different proteins.

Therefore, alternative splicing rules out one-to-one mapping between genes to proteins

in the human genome.

Microarray transcriptome measuring technique combined with chromatin immunopre-

ciptitations can be used to reveal global network of transcriptional control in a variety

of organisms and physiological conditions (Luscombe et al., 2004a; Barrera et al., 2006).

DNA and its interactions with transcription factors and mRNA and its association with

RNA-binding proteins are important for the regulation of gene expression at the post-

transcriptional level. Most of the recent studies have focused on large scale system

analysis of mRNA-protein interactions and dynamics (Wang et al., 2012b). Theses have

employed microarray based approaches to study different processes of the genome-wide

scale such as mRNA, RNA-binding proteins, mRNA stability, ribosomes and trans-

lational efficiency (Brockmann et al., 2007; Brazma et al., 2001; Wang et al., 2002).

Nevertheless, these large-scale approaches are especially useful to uncover the impor-

tance of post-transcriptional regulatory mechanisms. In this research we are interested

in post-transcription properties which can influence protein production in the translation

process such as mRNA half-life, alternative splicing, miRNA etc.

2.1.3 Translation

This is the main functional phase of protein generation by incorporating mRNA and

other transcription and post-transcription properties. mRNA carries coded genetic in-

formation to ribosomes and this information is read by the ribosomes as codon triplets,

normally beginning with AUG. Transfer RNAs (tRNAs) bring matching codons to ri-

bosome, completing amino acid sequence. Finally when the ribosome reaches the stop

codons such as UAA, UGA or UAG, it releases the nascent polypeptide chain as a

mature protein.
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Effects such as cell exposure to stress or changing conditions as hypoxia, heat shock or

change in carbon source on global mRNA specific translation regulation have been stud-

ied with the aid of translational profiling (Grolleau et al., 2002; Preiss and WHentze,

2003; Thomas and Johannes, 2007). Qin et al., 2007 used a high-resolution translation

profiling approach to analyse mRNA translational control for early Drosophila embryoge-

nesis. They measured ribosomal density and ribosome occupancy over 10, 000 transcripts

during the first ten hours (in 2-hour intervals) after egg laying and observed a variety

of translational profiles. This indicates that there are multiple mechanisms modulating

the transcript-specific translation. During our study we model this translation process

computationally, using mRNA and other transcriptomic properties to predict protein

abundance using yeast data.

2.1.4 Post-translation

Changes occur in some proteins after the translation process that increase or decrease

protein production are known as post-translation regulation. This regulation can occur

either by enzymatic events such as post-translational modifications or structural changes

such a proteolysis. Post-translational regulation changes the properties of a protein by

proteolytic cleavage or by addition of a modifying group to one or more amino acids. This

will also effect on activities of the protein such as localization, turnover and interaction

with other proteins (Mann and Jensen, 2003a). Though there are several regulations

that can occur post-translationally, our study is focused on regulation where protein

stability is disrupted by post-translation modifications and it starts to degrade faster.

Recent experiments have discovered that proteomic data is vastly more complex than

genome data. It is estimated that the human genome consists of around 32,000 genes

(Modrek and Lee, 2002), and over 1 million proteins can be found in human proteome

(Jensen, 2004). Therefore a single gene encoded with many proteins makes proteomic

data more complex (Figure 2.2). Post-translation modifications increase the complexity

from the genome level to the proteome level by introducing new modifications to proteins

after the translation process. Alternative splicing is another important regulation which

improves the production of different proteins. Therefore the complexity of proteome is

highly related to both transcriptome and genome data.

In fact, it is estimated that 5% of the proteome is comprised of enzymes that undergo

more than two-hundred types of PTMs (Walsh et al., 2006). PTMs can occur at several

stages after the translation process. Many proteins are modified soon after the transla-

tion process to mediate proper protein folding and stability. Others occur after folding

and those modifications influence the biological activities of the proteins. These are

covalently linked to tags which impact on protein degradation. Additionally, proteins



Chapter 2 Literature Review 15

Figure 2.2: Post-translational modifications increase the proteomic diver-
sity. Transcription process increases the number of transcriptomes relative to
genome, and PTMs exponentially increases the complexity of proteome relative
to both transcriptome and genome (Products, 2013)

are often modified by a combination of post-translational cleavage and attachment of

functional groups.

2.1.4.1 Different Types of Post-translational Modifications (PTMs)

Different types of post-translational modifications are explained below. These post-

translational modifications are used as functional annotations to detect post-translationally

regulated proteins in later chapters (Section 3.4).

Phosphorylation

The addition of phosphate groups to the three main amino acids, serine, threonine

and tyrosine in eukaryotic cells is the main function of phosphorylation. Nuclephilic

(-OH) group in these amino acids attacks the terminal phosphate group on adenosine

triphosphate (ATP), resulting in the attachment of a phosphate group to the amino acid

chain. A large amount of free energy is released by the broken phosphate-phosphate bond

in ATP. Phosphorylation is the most common PTM and it transmits signals throughout

the cell. This can be observed in bacterial proteins and also one-third of the proteins in

the human proteome (Cohen, 2000).
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Glycosylation

The attachment of glucose moieties to protein is known as glycosylation and it gives

greater proteomic diversity than other PTMs. There are several glycosidic linkages such

as, N-, O-, C-linked glycosylation, glypiation (attachment of a GPI anchor) and phos-

phoglycosylation. All these modifications help critical functions of biosynthetic-secretory

pathways in endoplasmic reticulum (ER) and golgi apparatus. Glycosylated proteins

(glycoproteins) can be found in all living organisms including eukaryotes, eubacteria

and archaea (Lechner and Wieland, 1989; P., 1997). This post-translation modification

is known to be the most complex modification due to its involvement in a large number

of enzymatic steps (Walsh, 2006).

Ubiquitination

Ubiquitination is an enzymatic process where the carboxylic acid of the terminal glycine

in the activated ubiquitin forms an amide bond to the epsilon amine of lysine. ’Ubiquitin’

is a small regulatory protein which directs proteins for recycling and other functions.

Activation of ubiquitin is the first step of ubiquitination. Afterwards, the activated

ubiquitin is transferred to the active cysteine site of an ubiquitin-conjugating enzyme.

Finally the ubiquitination cascade creates an isopeptide bond between a lysine of the

target protein and the C-terminal glycine of ubiquitin. Polyubiquitinated proteins are

recognised by the 26s proteasome that catalyses the degradation of proteins.

Methylation

This post-translational modification increases hydrophobicity and neutralises negative

amino acid charges by transferring one-carbon methyl group to nitrogen or oxygen, and

introducing N-methylation and O-methylation. S-adenosyl methionine (SAM) is the

primary methyl group and is considered as one of the most used substrates in enzy-

matic reactions after ATP (Walsh, 2006). In addition, N-methylation is irreversible

while O-methylation can be reversed. This is important in numerous cellular processes

such as, embryonic development, genomic imprinting, X-chromosome inactivation, and

preservation of chromosome stability. A review by Ehrlich, 2002 suggested that errors

in methylation could give rise to various diseases including cancer. Hypermethylation is

considered as a biomarker for cancer.

N-Acetylation

Transferring an acetyl group to the nitrogen is considered as the N-acetylation and this

can be occurred in both reversible and irreversible mechanisms. 80− 90% of eukaryotic
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proteins are acetylated by replacing amino acids with an acetyl group which involves

the cleavage of N-terminal methionine by methionine aminopeptidase (MAP) (Walsh,

2006). This was first identified in histones and cytoplasmic proteins, where acetylation

seems to play a major role in cell biology rather than transcription regulation (Glozak

et al., 2005). Furthermore, phosphorylation, ubiquitination and methylation can change

the biological function of acetylated proteins (Yang and Seto, 2008).

S-Nitrosylation

This is a useful post-translational modification to stabilise proteins, regulate gene ex-

pression and act as nitric oxide (NO) donors. S-nitosylation is a reversible PTM and

half-lives of the S-nitrothiols (SNOs) are very short. The attachment of NO with free

cysteine residues is the main action in this process. Specific cysteine residues undergo

S-nitrosylation; therefore it is not a random event.

Proteolysis

Amino acid sequences break their bonds to fold in a stable manner. This process is

known as proteolysis. This is thermodynamically favourable and not reversible. Thus,

this process is tightly regulated to avoid uncontrolled proteolysis from temporal and

spatial mechanisms. The main advantage of proteolysis is that it converts an inactive

or non-functional protein into an active proteins post-translationally. This may also be

involved in the removal of signal peptides and/or N-terminal methionine.

2.1.4.2 Protein Degradation by Post-translation Regulation (PTR)

Proteins are continuously being synthesised and degraded in all living organisms. How-

ever, some proteins degrade faster due to post-translational regulation. Covalent mod-

ifications occur as PTMs serve as markers for the protein degradation process (Stadt-

man, 1990). Callis, 1995 studied plant proteins to investigate the relationship between

post-translational modifications and regulated degradation. They observed that mul-

tiple levels of post-translational modifications regulate protein degradation of a single

species. In addition, Stadtman, 1990 found that phosphorylation post-translation mod-

ification catalyses the protein degradation process. This study also claimed that most of

the post-translationally modified proteins have a common structural feature that serves

as a recognition signal for protein degradation. Early experiments by Levine, 1983;

Holzer and Heinrich, 1980 also explained how oxidative modifications act as markers for

intracellular proteolytic degradation.
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Proteasome is a common process for degrading unneeded or damaged proteins by pro-

teolysis or by enzymatic reactions such as post-translational modifications. These pro-

teasomes can be found in the cytosol and nucleus of eukaryotic cells. Proteins which are

degraded by proteasome are tagged with a multimer 76 amino acid polypeptide ubiqui-

tin by ubiquitination post-translation modification. This chemical reaction is known as

26s proteasome and after the degradation of the tagged protein, ubiquitin monomer is

released and can be reused with another protein. The review of Hartmann-Petersen and

Gordon, 2004 discusses several proteins which interact with 26s proteasome and degrade

faster. Rpn10/Pusl/S5a binds with multi-ubiquitin chains and interacts with protea-

some via its N-terminus to catalyse the degradation process (Hofmann and Falquet,

2001). Dsk2/Dph1, Rad23/Rhp23 and Ddi1 are also degraded faster following ubiquiti-

nation during the 26s proteasome process (Hofmann and Bucher, 1996). Martinez et al.,

2003 showed that ABCA1-PEST sequence phosphorylation regulates ABCA1 calpain

degradation. Several in-vitro experiments were carried out to show that phosphoryla-

tion with PEST motifs regulated ABCA1 protein degradation and reduces the overall

protein expression level. Firstly, they compared protein expression levels of a PEST

deleted mutation called ABCA1delPEST and a wild-type ABCA1 protein in HEK293

cells. Here the PEST deletion mutation damages the protein degradation attribute,

therefore the wild-type ABCA1 gave 3.9 ± 0.4% mean fold reduction of the protein

concentration with respect to ABCA1delPEST protein (Wang et al., 2003). Secondly, a

wild-type ABCA1 protein expression level was compared with phosphorylation sites mu-

tated ABCA1 proteins. These mutations impair protein degradation activity in ABCA1

proteins. Therefore, the phosphorylation site mutated ABCA1 expression levels gave

higher expression levels compared to wild-type ABCA1 proteins (mean fold 3.4 ± 0.3%

with MutAAAA in Thr-1286 site and 3.3±0.3% with MutASSA in Thr-1305 site). Thus,

these experiments suggest that post-translational modifications such as phosphorylation

and acetylation catalyse protein degradation and reduce total protein expression levels.

2.2 Importance of Post-translational Regulation

As described in the introduction, modelling at the transcriptome-proteome interface

allow us to develop a novel machine learning framework to detect post-translationally

regulated proteins by exploring the model failures. Here we describe the importance of

post-translationally regulated proteins and significance of developing a computational

approach to detect post-translationally regulated proteins. Chemical and structural

changes occurring post-translationally have implications on several pathological and

physiological processes. Gene expression regulation, differentiation of epithelial ter-

minals and apoptosis are some physiological processes and Alzheimer’s disease (AD),

rheumatoid arthritis and Parkinson’s disease (PD) are some pathological diseases (Gong

et al., 2005; Oueslati et al., 2010). Citrullination is a process in which an amino acid
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is converted into an organic compound called citrulline. Peptidylarginine deiminases

(PADs) replace the primary =NH (ketamine) group with a =O group (ketone). These

protein modifications are normally related to diseases in which the immune system

attacks citrullinated proteins. Citrulline proteins are generated as a result of post-

translational modifications. Therefore post-translational modifications play a major

role in finding a cure for the above mentioned diseases.

PTMs are also useful in the study of severe cancers in the human body. Bode and Dong,

2004’s review says that the mutations which disrupt p53 function, occur in approxi-

mately half of all human cancer cases. These mutations are caused by a multitude of co-

valent post-translational modifications, including phosphorylation, acetylation, methy-

lation and ubiquitination. Therefore PTMs in p53 protein contribute to tumourigenesis.

Furthermore, proteins with PTMs are used as candidates for biomarker discovery for sev-

eral cancer types. Phosphoproteomics provides information on tumour growth signalling

pathways where the clinician can make rational decisions in prognosis that drives the

treatment strategy. Gulmann et al., 2005’s study discovered that the phosphorylation

of protein B/Akt kinase improves the efficacy of drug treatment of recurrent tumours.

Similarly, Glycomics also provides a fertile class of molecular structures to perform as

biomarkers for cancer. Ovarian carcinoma biomarker CA125 was discovered using struc-

tural properties of glycosylation (Wong et al., 2003) and glycomics profiling can be used

to obtain serum biomarker for hepatocellular carcinoma by isolating N-linked oligosac-

charides (Block et al., 2005). Table 2.1 is taken from a review by Krueger and Srivastava,

2006 which shows proteins with PTMs that are used as cancer biomarkers.

Table 2.1: Example of post-translational modifications of proteins being used
as cancer biomarkers (Krueger and Srivastava, 2006).

PTMs
Protein Localization

Nuclear Cytosolic, intracellular organs Plasma membrane

Phosphorylation
pRBs, p53, histones, PTEN, Akt, MAP kinases, EGFRs, PDGFR,
HDACs, STAT − 3 death related protein ILK, osteopontin

kinase, cyclindependent

Glycosylation

kinases, GP73 CD44; galectins;
CA125, CA19-9;
MUC4, osteopontin;
prostate antigen;

Ubiquitination p53, NF-kB, HDACs Inhibitor of apoptosis proteins
Prenylation Ras, Rho, Braf G-protein- receptors
Methylation Histones, DNA polymerase

Acetylation
p53, GATA TF histones,
HDACs, NF-kB



20 Chapter 2 Literature Review

Post-translationally modified proteins have also been used in therapeutic interventions

in cancer treatment. PTM perturbation can slow the growth of cancer cells, if the can-

cer causing pathways are required or involved in post-translational regulation (Krueger

and Srivastava, 2006). HDAC inhibitors are involved in cancer progression and histone

acetylation and deacetylation can control the cell growth (Benson et al., 2006; Marks

et al., 2004). Similarly, autophosphorylation targeting tyrosine kinase inhibitors are

used to treat non-small-cell lung cancer (Lynch et al., 2004; Paez et al., 2004). These

examples illustrate the importance of detecting post-translational regulation to study

on different diseases.

Mass spectrometry is the standard way of detecting post-translational modified proteins

(Mann and Jensen, 2003a). This relies on the mass alternation of tryptic peptides

where chemical modifications of the amino acid chains can be detected. However, this

process is very complex, expensive and time consuming (Yates et al., 2009; Mann and

Jensen, 2003a) and high quality protein samples are required. Therefore, it is important

to develop a computational approach cut down the experimental workspace needed to

detect post-translationally regulated proteins.

2.3 Machine Learning Inference of High-throughtput Omic

Measurements

Transcriptome data analysis using microarray and RNA-Seq technologies have rapidly

improved over the last decade. Brazma et al., 2001 proposed a microarray data repre-

sentation standard called Minim Information About Microarray Experiment (MIAME).

This reporting technique archives microarray data with minimum information, which will

facilitate the establishment of proper transcriptome databases and public repositories.

Functional classification of genes along signalling pathways was carried out by Brown

et al., 2000a using transcriptome measurements. Molecular classification of critical dis-

eases such as cancer (Golub et al., 1999a) and subspace projection of transcriptome

expression data (Zheng-Bradley et al., 2010; Brunet et al., 2004) are some successful

applications of microarray data analysis. Genomic analysis using regulatory networks

is another important area involving high-throughput transcriptome measurements (Liao

et al., 2003; Luscombe et al., 2004b; Sanguinetti et al., 2006). Furthermore, some other

important properties such as mRNA decay (Wang et al., 2002), translation efficiency

(Washburn et al., 2003; Arava et al., 2003) and transcription factor binding locations

along the genome (Harbison et al., 2004) were measured and analysed to discover in-

teresting biological properties. However, transcriptome data itself is strong enough to

provide an approximate picture of cellular functions. Important biological phenomena

such as dynamical cellular function and differential spatio-temporal behaviours can be

revealed by using extensive mathematical and computational models. Chen et al., 2004
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have developed a mathematical model based on biochemical rate equations using for

budding yeast cell data. This model is largely successful in explaining the phenotypes of

mutants. Parameter estimation of heat shock response (Liu and Niranjan, 2012), heat

beat modelling (Zhang et al., 2000) and measuring robustness of circadian oscillations

with respect to molecular noise (Gonze et al., 2002) are some examples for complex

mathematical models. Scientists have also looked into spatial selectivity in morphogen-

esis using early Drosophila embryo (Houchmandzadeh et al., 2002; Liu and Niranjan,

2011) to understand complex biological properties.

Transcriptome and proteome abundance data and their turn-over rates of mammalian

organisms were measured in a parallel manner for thousands of genes by Schwanhäusser

et al., 2011. They measured these properties for more than 5000 mammalian. Schwanhäusser

et al., 2011 used pulse labelling with amino acid and 4sU to quantify mRNA and protein

expression levels and turnover in a parallel manner. A population of exponentially grow-

ing NIH3T3 mouse fibroblasts were employed with this experiment. Newly synthesized

RNA abundances in 2h with 4SU were measured with parallel to protein levels. These

RNA samples were divided into newly synthesized and pre-existing fractions. mRNA

half-lives were calculated using the ratios between newly synthesized RNA/total RNA

and pre-existing RNA/total RNA. By using these measurements, they observed that the

mRNA levels can explain around 40% of the variability in protein levels. Most recently,

Schwanhäusser et al., 2013 have analysed synthesis and degradation processes jointly

to determine the responsiveness of the cellular proteome. These different transcriptome

and proteome data have been used with different data-driven models to uncover impor-

tant biological mechanisms (Pancaldi and Bähler, 2011; Muppirala et al., 2011; Rogers

et al., 2008; Kannan et al., 2007).

2.3.1 Microarray and RNA-Seq Transcriptome Measurements

Here we discuss the most commonly used high-throughput microarray and RNA-Seq

transcriptome measuring techniques in detail. In Chapter 5, a thorough machine learning

analysis is carried out to observe the importance of the high numerical precision of these

transcriptome measurements.

2.3.1.1 Microarrays

Microarray transcriptome measurements provide a vast amount of information about

different cell types (Kai et al., 2005) and tissues (Chan et al., 2009). Microarray tech-

nology has been used in many biological studies including gene expression changes during

a development time course (Graveley et al., 2011; Arbeitman et al., 2002), classification

of different diseases (Golub et al., 1999b; Tuna and Niranjan, 2010) and discovery of
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new phenotypes in different species (Zhang et al., 2007). Initially the microarray chip

was designed as a set of short oligonucleotides to represent genomic DNA. In a modern

microarray, we can find patches of short oligonucleotide probes which are complemen-

tary to investigating transcripts. Thus, prior knowledge of transcriptome is important

to develop a microarrays (i.e. normally sequence data or open reading frames are in-

corporated to develop the probes in microarray (Malone and Oliver, 2011)). There are

four main steps to measure mRNA abundance using microarray technology.

1. Sample Preparation: mRNA is extracted from the total RNA with ployA tail

and converted into cDNA by reverse transcription and random priming. Fluores-

cent dye is added to label the sample. For example cancer and normal samples

can use red and green colour fluorescent dye respectively.

2. Hybridization Procedure: Next, the samples are added to microarray chip

where complementary probes of transcriptome are employed and hybridization

process is carried out. Hybridization allows two cDNA strands from different

sources to be paired with each other.

3. Acquisition: The microarray chip is scanned by a laser to obtain the gene ex-

pression levels by looking at the colour intensities.

4. Data Process: Finally, the image file is processed into a text file by converting

colour intensities into gene expression values.

Figure 2.3 shows an example involving measurements of gene expression levels of male

and female fly heads of D.pseudoobscura using the microarray technique (Malone and

Oliver, 2011). There are both advantages and disadvantages of this technique. The main

advantages are that it is fast, user friendly, capable of measuring high-throughput tran-

scriptome data, and most importantly, it is a low cost technique compared to other tran-

scriptome measuring techniques. Disadvantages include the need to have prior knowl-

edge of the transcripts to design the microarray probes, meaning it is unable to detect

new exon junctions and isoforms in genomes (Reimers, 2010; Shi et al., 2006).

2.3.1.2 RNA-Seq

RNA-Seq is a recently developed powerful transcriptome measuring technique. This uses

massive parallel deep sequencing of RNA molecules to detect gene expression levels with

high sensitivity and accuracy (Wang et al., 2009; Mortazavi et al., 2008; Fu et al., 2009;

Marioni et al., 2008). Illumina HiSeq 2500, High-Sequencing and Applied Bio-system’s

SOLID are examples of fast instruments used to perform this deep sequencing process.
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Figure 2.3: Microarray transcriptome measuring work flow taken from Malone
and Oliver, 2011: This shows the four main steps in the microarray measur-
ing process for male and female fly heads of D.pseudoobscura. Dominant gene
expression levels for each probe are indicated in red/green or yellow colour.

The main difference between microarray and RNA-Seq is that the latter uses direct se-

quencing instead of hybridization to capture transcripts of interest. Here, the transcript

reads are mapped to the reference genome and the mapped read counts are used to

obtain the gene expression levels. There are several advantages of using RNA-Seq com-

pared to microarray technology. Since RNA-Seq directly involves gene sequences, it has
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the capability to detect novel exon junctions, RNA- editing events and other properties

of the gene structure without any prior knowledge needed. In fact, unlike microarray

technology, RNA-Seq method does not need prior knowledge of the gene structure to

measure the gene expression levels (Wang et al., 2009; Malone and Oliver, 2011). RNA-

Seq can also be used to detect gene expression levels for species, whose full genome

sequence information is not available (Malone and Oliver, 2011), whereas microarray is

limited due to the sequence divergence of different species. Another interesting advan-

tage of RNA-Seq is that it has the potential to quantify expression levels of different

isoforms from the same transcript generated by the alternative splicing process (Richard

et al., 2010; Trapnell et al., 2010). In fact, high-throughput genome sequencing allows

the detection of new isoforms which have not been detected before. Thus, RNA-Seq

is a more powerful tool for obtaining qualitative properties of the transcriptome with

respect to microarray technology. However, Malone and Oliver, 2011’s study showed

that both microarray and RNA-Seq quantitative values are highly correlated and these

measurements provide a consistent story with respect to quantitative properties. Fig-

ure 2.4 shows that both microarray and RNA-Seq measurements are highly correlated

for D.pseudoobscura female (R2 ≈ 0.9) and male (R2 ≈ 0.9) fly head data (Malone and

Oliver, 2011).

Figure 2.4: Comparison of microarray and RNA-Seq gene expressions of
D.pseudoobscura by Malone and Oliver, 2011. Both female (A) and male (B)
gene expressions are highly correlated, but not the combined (C) no sex bias
gene expressions

However, there are some practical disadvantages of the RNA-Seq technique. The main

disadvantage is that it is very expensive compared to microarray technology. For ex-

ample, a 12-plex array costs less than $100 per sample whereas RNA-Seq process costs

around $1000 per sample (Malone and Oliver, 2011). Moreover, RNA-Seq requires a

more in depth sample sequencing process. If the gene is highly expressed a small amount
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of sequencing is sufficient, otherwise it needs a great deal of sequencing of samples to

obtain many reads to give an accurate measure (Graveley et al., 2011). Finally, the

data storage space needed is high for RNA-Seq measurements. Microarray image files

only use around 30MB file space, but RNA-Seq deep sequencing data use more than

600MB to store all the sequencing data and the read file. Thus, RNA-Seq requires a

large storage space to store important sequencing data.

Figure 2.5 shows the main steps of the RNA-Seq measuring procedure using the same

D.pseudoobscuramale and female fly head data by Malone and Oliver, 2011. This process

is more complex compared to microarray technology. The following are the four main

stages of the RNA-Seq measuring process.

1. Sample Preparation: The tissue sample is collected and mRNA with polyA

tails are isolated for the measuring process. Next, the mRNA is fragmented using

alkaline hydrolysis and random hexamer primers are employed to generate reverse

transcribed double stranded cDNAs. Finally, oligonucleotide adaptors are added

to the ends of the cDNAs .

2. Procedure: Fragments are then injected into a flow cell. This consists of a

glass slide containing lawns of complementary oligonucleotide adaptors so that the

fragments can bind. Afterwards, the isothermal bridge amplification process is

used to amplify the fragments and generate clusters of DNA clones.

3. Acquisition: In this step, DNA strands are synthesised in a cycle. In each itera-

tion, sequencing reagents are added to the flow cell and the bound base is detected

using a laser.

4. Data Processing: Finally, FASTQ files are obtained at the acquisition process

with millions of sequences mapped to the reference genome and the gene expression

levels are computed by counting the number of mapped reads.

2.3.2 Precision Based Inference of Transcriptome Measurements

According to the literature RNA-Seq is considered as a more sensitive and accurate tran-

scriptome measuring technique (Wang et al., 2009; Malone and Oliver, 2011; Fu et al.,

2009; Marioni et al., 2008). Importantly, it also has high qualitative properties compared

to the microarray method including being able to detect transcriptome properties like

exon junctions, different isoforms etc. Thus, in our work we would like to investigate

whether these two techniques perform differently in a quantitative environment. In fact,

we perform a machine learning inference of the RNA-Seq and microarray techniques

using high (continuous) and low (binary) precision measurements. There are only a

few mRNAs found in a single cell. Therefore, high-throughput transcriptome measuring
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Figure 2.5: RNA-Seq transcriptome measuring work flow by Malone and
Oliver, 2011: Gene expression quantification of male and female fly heads of
D.pseudoobscura. Read counts mapped to a scaled region of genome are con-
sidered as the index of gene expression levels.

techniques such as microarray and RNA-Seq, amplify the number of mRNA with respect

to the cell population to obtain more accurate relative abundances (Nygaard et al., 2003;

Ozsolak and Milos, 2011). This amplification process generates high numerical precision
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in mRNA measurements. Tuna and Niranjan, 2010 showed that high precision microar-

ray does not provide additional information with respect to binary interpretation of

gene switched on/off status. Tuna and Niranjan, 2009 also showed that binary microar-

ray data has the capability to perform machine learning classification tasks with high

accuracy. Since, the microarray data have been experimented previously, in our work

we mainly focus on RNA-Seq measurements. We perform a quantitative analysis using

RNA-Seq and microarray measurements at the transcriptome level and a qualitative

analysis using our PTR detection framework at the proteome level. In Chapter 5, we

discuss this experimental setup and results in detail.

2.3.3 Machine Learning Inference Techniques

The two main categories of machine learning inference techniques are known as super-

vised and unsupervised learning. Supervised learning uses target information of the data

to perform inferences, e.g. class labels should be given to train the learning algorithm.

In contrast, unsupervised learning methods do not need any target information as they

understand the data by looking at similar patterns and grouping them into clusters

(Cristianini and Shawe-Taylor, 2000; Rogers and Girolami, 2012b). These supervised

and unsupervised techniques are used in different areas such as computer vision (Espos-

ito and Malerba, 2001; Cipolla et al., 2012), artificial intelligence (Anderson et al., 1986),

finger print analysis (Wilson et al., 1994) etc. However, our main focus lies on making

inferences on transcriptome data using gene expressions. Therefore in this section, we

describe the algorithms which are mainly used for gene expression analysis. The state-of-

the-art classification approach in gene expression analysis uses Support Vector Machines

(SVM) (Brown et al., 2000b; Statnikov et al., 2008). However, in our study we also used

the K-Nearest Neighbour (KNN) method to compare the classification performance with

SVM (Dudani, 1976; Singh et al., 2002). We also used two main clustering techniques

to analyse transcriptome measurements. Those are K-means (MacQueen et al., 1967;

Causton et al., 2009) and Spectral clustering (Shi and Malik, 2000; Higham et al., 2007)

learning algorithms.

2.3.3.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) learning algorithm was introduced by Vapnik (1998).

SVM was initially used to classify linearly separable data. However, kernel SVM was

later introduced to deal with non-linearly separable data. Here we explain linear, kernel

and one class SVM learning algorithms. One class SVM algorithm is a popular algorithm

to detect outliers and we will discuss about this approach as we are interested in detecting

outliers in our main hypothesis.
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Linear SVM

This learning method performs well with linearly separable data sets. Figure 2.6 shows

an example of two-dimensional linearly separable data. SVM selects optimal hyperplane

to separate classes by maximizing the margin between the closest data points of each

class.

Figure 2.6: Example of Linearly Separable Data: (A) Two possible hyperplanes
to linearly separate data, (B) Red line demonstrates the optimal hyperplane
with maximum margin from two classes (red data points are the support vectors
of the two classes)

Suppose xi data points can be divided into two classes yi = {−1,+1} and the hyperplane

can be defined as below,

y(xi) = w⊤xi + b,∀i (2.1)

where w weight vector and b bias are learnt by the data. The perpendicular distance

from the origin to the hyper plane is defined as |b|/‖w‖. +d and −d define the distance

for the optimal margin from the support vectors of the two classes. Training data should

satisfy the following constraints to obtain the optimal margin with maximum distance

d.

w⊤xi + b ≥ +1, for yi = +1, (2.2)

w⊤xi + b ≤ −1, for yi = −1. (2.3)
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We can combine these inequalities and define the constraint as below:

yi(w
⊤xi + b)− 1 ≥ 0, ∀i. (2.4)

For data points which satisfy Equation (2.2) on the hyperplane h1 : w⊤xi + b = +1

with normal w have the perpendicular distance from the origin as |1 − b|/‖w‖ and

for data points satisfying Equation (2.3) with hyperplane h2 : w⊤xi + b = −1 have

|−1− b|/‖w‖ distance from the origin. Therefore, the margin between the two classes is
|1−b|
‖w‖ −

|−1−b|
‖w‖ = 2

‖w‖ . In order to find the two hyperplanes with maximum margin using

Equation (2.4) for all data points can be obtained by minimizing ‖w‖ as below:

min
1

2
‖w‖2

s.t. yi(w
⊤xi + b)− 1 ≥ 0, ∀i.

(2.5)

Lagrange multiplier is used to obtain the solution for the above optimization problem.

This is a strategy to find local minima or maxima of a function subject to equality

constraints.

For example assume following optimization problem,

min f(x, y) (2.6)

s.t. g(x, y) = 0 (2.7)

Both f and g functions should get partial derivatives. Thus, a new variable λ called

Lagrange multiplier is introduced.

L(x, y) = f(x, y) + λ.g(x, y), (2.8)

This will yield necessary conditions for optimality in constrained problems (Vapnyarskii,

2012; Lasdon, 2013).

Thus, Equation (2.5) can be written as below using a Lagrange multiplier:

L(w, b, λ) =
1

2
‖w‖2 −

n∑

i=1

λi[yi(w
⊤xi + b)− 1] (2.9)
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Derivatives of L with respect to w and b will produce the solution to the optimization

problem:

∂L(w,b,λ)

∂w
=

n∑

i=1

λiyixi = 0 (2.10)

∂L(w,b,λ)

∂b
= w −

n∑

i=1

λiyi = 0 (2.11)

Soft Margin SVM

In some cases, training data cannot be separated without any error. In order to overcome

this issue, Cortes and Vapnik (1995a) suggested the soft margin SVM technique, which

separates the training data with minimum error. In this method, a set of variables

ǫi are introduced to allow the possibility to violate the constraint which is given by

Equation (2.4). Therefore, we can re-write Equation (2.4) as below:

yi(w
⊤xi + b) ≥ 1− ǫi, ∀i (2.12)

by relaxing the separation constraint, where any large value for ǫi will be able to satisfy

the constraint. Thus, to penalized the effect of large ǫi, the constraint is multiplied by a

constant C to have a trade-off with training error and margin maximization, which can

be written as below:

min
1

2
‖w‖2 + C

∑

i

ǫpi

s.t. yi(w
⊤xi + b) ≥ 1− ǫi; ǫi ≥ 0, ∀i

(2.13)

where a small value for C maximizes the training error and minimizes the margin and

a large value for C minimizes the training error and maximizes the margin. Therefore,

penalty parameter C needs to be tuned to obtain the best value. Cross-validation can

be used to tune hyper-parameter C.

Lagrange multiplier is used to obtain solution for this optimization problem. Equa-

tion (2.13) can be written as below;
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L(w, b, ǫ, λ, α) =
1

2
‖w‖2 + C

∑

i

ǫi −
n∑

i=1

λi[yi(w
⊤xi + b)− 1 + ǫi]−

∑

αǫi (2.14)

The solutions for the Equation (2.14) can be obtained by taking derivatives of L with

respect to w, b and ǫ:

∂L(w,b,ǫ,λ,α)

∂w
= w −

n∑

i=1

λiyixi = 0 (2.15)

∂L(w,b,ǫ,λ,α)

∂b
= w −

n∑

i=1

λiyi = 0 (2.16)

∂L(w,b,ǫ,λ,α)

∂ǫ
= C − λi − αi = 0 (2.17)

where C ≥ λi ≥ 0

2.3.3.2 K-Nearest Neighbours (KNN)

This is a very popular classification technique due to its simplicity and good performance

with empirical data. It does not assume any parametric form to obtain the decision

boundary and rather the distances between input objects are considered (Dudani, 1976;

Singh et al., 2002; Rogers and Girolami, 2012a). Figure 2.7 represents a binary class

problem to be solved using KNN method where K = 3. The red stars A and B are the

testing data objects and 3 closest neighbouring (because K = 3) data objects are used

to determine the classes of these testing data points. In fact, the majority class from the

neighbours is assigned to the testing data object. Thus, data point A will be assigned

to the class circle and data point B will be assigned to the class square.

The main drawback of the method occurs when K is an even number and an equal

number of samples are found from each class as neighbours. One solution is to assign

data objects to a random class from neighbouring classes. However, this is not a good

solution if we are testing the data object using more than one iteration. Therefore, it

is better to use odd numbers for K in binary classifications. We can also determine

the value of K using cross validation technique. Following are some distance measuring
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Figure 2.7: Example for K=3 Nearest Neighbour classification: Data point A
falls to the majority class circle and point B classifies to the class square.

functions:

Euclidean Distance

d1 =

√
∑

i

(xi − yi)2, ∀i (2.18)

Manhattan Distance

d2 =
∑

i

|xi − yi|, ∀i (2.19)

Minkowski Distance

d3 =

[
∑

i

(|xi − yi|)p
]1/p

, ∀i (2.20)

We can use either of the above distance measuring functions to perform the classification.
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2.3.3.3 Gaussian Mixture Model (GMM)

Gaussian Mixture Model is a combination of M Gaussian (normal) distributions where

each distribution has its own mean and standard deviation N(x|µk,σk). Equation (2.21)

represents a GMM with M components:

p(x) =

M∑

k=1

πkN(x|µk,σk) (2.21)

where πk satisfies 0 ≤ πk ≤ 1 and
∑M

k=1 πk = 1 is the mixing coefficient. Figure 2.8

shows a two component GMM example.

Figure 2.8: Mixture of two Gaussian distributions

GMM is used to model data in a high dimensional space by maximizing the likelihood

function with respect to the model parameters (µk, σk and πk). Equation (2.22) shows

the log likelihood function of GMM;

L = log p(X|π,µ,σ) =
P∑

p=1

log
M∑

k=1

πkN(xp|µk,σk) (2.22)

Expectation-Maximization (EM) algorithm (Dempster et al., 1977a) is used to maximize

the log likelihood function to estimate unknown parameters. It is difficult to obtain
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optimum parameters with a summation inside the logarithm. Thus, EM algorithm

derives a lower bound for this likelihood where a function of parameters (x, π, µ and σ)

are always lower than or equal to L. This method maximizes the lower bound instead of

L. Jensen’s inequality is used to obtain the lower bound: the log of the expected value

of a function f(z) is always greater than or equal to the expected value of the log f(z)

(Equation (2.23)).

log Ep(z){f(z)} ≥ Ep(z){log f(z)} (2.23)

There are four main steps in applying EM algorithm to GMM (Dempster et al., 1977a).

Those are;

1. Initialize distribution parameters π, µ and σ and obtain the log likelihood.

2. Expectation (E) Step : Calculate the posterior probabilities of P (z|x) where z rep-
resents the latent variable indicating probability of x belongs to which component.

Current parameter values are used to calculate the posterior probability:

ψ(zpi) =
πiN(xp|µk,σk)

∑M
i=1 πiN(xp|µi,σi)

(2.24)

3. Maximization (M) Step: Re-calculate the parameter values by maximizing the

likelihood function. Obtain the derivatives of log p(x|π,µ,σ) with respect to µ

and σ and estimate the new parameters µnew and σnew. Use a Lagrange multiplier

and maximize log p(x|π,µ,σ) with respect to π (π has the condition of
∑
π = 1)

to estimate the new πnew.

µnew
k =

1

Qk

P∑

p=1

ψ(zpk)xp (2.25)

σnew
k =

1

Qk

P∑

p=1

ψ(zpk)(xp − µnewk )(xp − µnewk )T (2.26)

πnewk =
Qk

p
(2.27)
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where

Qk =

P∑

p=1

ψ(zpk) (2.28)

4. Calculate the log likelihood with new parameter values and check for convergence.

If the convergence condition is not satisfied return to step 2.

Additionally, it is important to determine the number of components per GMM to

best represent true distribution of data. There are few model selection techniques to

over-come this problem. Akaike Information Criterion (AIC) (Akaike, 1998) and Bayes

Information Criterion (BIC) (Schwarz et al., 1978) are the most common model selection

techniques in GMM. These model selection techniques reward the goodness of the fit,

but also penalise the model complexity.

Suppose k is the number of parameters to be estimated and L is the likelihood function.

AIC value of the model can be obtained as below;

AIC = 2k − 2.ln(L) (2.29)

Similarly BIC value can be obtained using following function.

BIC = k.ln(n)− 2.ln(L) (2.30)

where n is the number of samples in the observation data. Here the asymptotic result is

derived under the assumption that data distribution belongs to an exponentially family.

2.3.3.4 K-means Clustering

Clustering is an unsupervised learning model which does not use any prior knowledge

(class labels) to divide data into groups. This is widely used with gene expression analysis

(MacQueen et al., 1967).The noise and variability of transcriptome measurements reduce

the accuracy of clustering results for gene expressions.

K indicates the number of clusters specified by the user and a random centroid will

be assigned for the each cluster. Euclidean distance metric is used to assign each data

point to its closest centroid with the minimum distance. Next, with the new clusters,

K new centroids will be assigned and the process is repeated until there is no change in

the centroids. However, the whole clustering process will depend on the initial centroids

(MacQueen et al., 1967).
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2.3.3.5 Spectral Clustering

This is also an unsupervised learning method which does not need any prior knowledge

of data to perform clustering task. Spectral clustering was introduced by Shi and Malik,

2000 in the field of image processing. Later, several authors used this approach for

computational biological problems including gene expression analysis (Higham et al.,

2007; Tritchler et al., 2005; Xing and Karp, 2001). This technique uses eigenvectors

of the pairwise similarity matrix of the data to partition them into relevant groups.

Negative exponential of Euclidean distance function (Equation (2.31)) is the most widely

used similarity matrix in spectral clustering.

A(i, j) = exp(−‖xi − xj‖2
σ2

) (2.31)

Main tool in spectral clustering is the Laplacian matrix. The field of studying these

matrices are known as spectral graph theory (Chung, 1997). There are normalized and

unnormalized Laplacian matrices. However, here we consider the normalized Laplacian

matrix which is mainly used in clustering algorithms. Symmetric normalized Laplacian

matrix is defined as below;

L = D−1/2LD−1/2 = I −D−1/2WD−1/2 (2.32)

where D(i, i) =
∑

j A(I, j) and W stands for the weight matrix with wij = wji ≥ 0

(Chung, 1997).

Normalized Laplacians satisfy following properties:

1. For every f ∈ R
n, f ′Lf = 1

2

∑2
i,j=1wij

(

fi√
di
− fi√

dj

)2

where indicator vector

1A = (f1, . . . , fn)
′ and d1, . . . , dn are degrees of diagonal matrix D

2. 0 is an eigenvalure of L with eigenvector D1/21

3. L is positive semi-definite and have n non-negative real value eigen values 0 =

λ1 ≥ · · · ≥ λn.

Following four steps are involved in the spectral clustering learning algorithm which

invloves similarity matrix and Laplacian matrix (Shi and Malik, 2000):

1. Similarity matrix A(i, j) is calculated for gene i and j using Equation (2.31)
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2. Compute Laplacian matrix using similarity matrix A:

L = D−1/2 ×A×D−1/2 (2.33)

where D(i, i) =
∑

j A(I, j)

3. Obtain the generalized eigenvalue decomposition of L:

(D −L)yi = λiDyi (2.34)

4. Obtain the eigenvector which gives the second smallest eigenvalue (smallest eigen-

value of L can be 0)

This reduces the disassociation between the clusters and improves the association within

the clusters themselves to obtain an accurate clustering analysis. There are several

methods to select the most suitable eigenvector. Xing and Karp, 2001 used leukaemia

data set from Golub et al., 1999b’s study and clustered microarray data into the AML

and ALL cancer subtypes using the method introduced by Shi and Malik, 2000. However,

Higham et al., 2007 used a different level of eigenvectors and clustered microarray data

into two or more classes. They observed that second eigenvector is more suitable for

binary class problems. Additionally, Tritchler et al., 2005 changed the similarity matrix

approach and used a covariance matrix on a leukaemia data set and was able to cluster

the AML and ALL cancer subtypes more accurately.

2.3.4 Proteomics Techniques

This section provides an overview of proteomics measuring techniques. We describe

their applications, challenges and strengths.

Proteomics is the study of charactering and measuring proteins in a cell or organism.

This can be used to measure qualitative and quantitative properties such as protein pro-

files, protein-protein interactions, compare two or more protein samples and importantly

to detect post-translationally modified proteins. However, processing and analysis pro-

tein data is very complex and involves multiple steps (Chandramouli and Qian, 2009;

Kearney and Thibault, 2003). In fact identifying post-translational modifications re-

quires prior knowledge of the type and the modification and time consuming (Jensen,

2004; Mann and Jensen, 2003b). Thus, it is important to build a computational model

to cut down the experimental time and cost to detect post-translationally regulated pro-

teins. We believe our data-driven approach provides a solution for this critical problem.

There are three types of proteomics categories and those are expression, structural

and functional proteomics. Expression proteomics analysis protein abundances in large
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scale to identify differentially expressed proteins in two or more samples. This cate-

gory is capable of detecting proteins which are useful in drug or biomarker discovery.

Two Dimensional gel Electrophoresis (2-DE) and Fluorescence 2D Differential gel elec-

trophoresis (2D-DIGE) are some examples for expression proteomics category. Struc-

tural proteomics involves in analysing protein structures in large scale to identify main

proteins to a particular sample based on the protein structure. Isotope-Coded Affin-

ity Tag (ICAT), Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and

Stable Isotope labelling with Amino Acids in Cell Culture (SILAC) are common to

structural proteomics. Finally, functional proteomics analyse biological functions of un-

known proteins and cellular mechanisms at the molecular level. Matrix-Assisted Laser

Desorption/Ionization (MALDI) and MALDi with a tandem Quadrupole/Time-of-Fight

(MALDI-QqTOF) mass spectrometers are used in functional proteomics analysis. Ta-

ble 2.2 shows some common proteomics technologies and their strengths and limitations

obtained from the proteomics review by Chandramouli and Qian, 2009. This shows that

not all techniques have the capability of detecting PTMs.

Table 2.2: Proteomic techniques, their applications, strengths and limitations
by Chandramouli and Qian, 2009.

Technology Application Strengths Limitations

2DE
Separate Proteins Relative quantitative Poor separation of acidics
Profiling quantitative PTM information and low abundance
expressions

DIGE

Separate Proteins Relative quantitative Proteins without lysine
Profiling quantitative PTM information cannot be labeled, Expensive,
expressions High sensitivity Requires special

Reduction of intergel visualization tools
variability

ICTA
Chemical isotope labeling Reproducible ans sensitive Acidic proteins
for quantitative proteomics Detect low expressions are not detectable

iTRAQ
Isobaric tagging Multiplex several samples Increase sample complexity
of peptides Relative quantitative Require fractionation of

High-throughput peptides before MS

MS

Primary tool for High sensitivity and No individual method to
protein identification specificity, High-throughput, identify all the proteins, Not
and characterization Qualitative and quantitative sensitive to weak spots

PTM information

Following are descriptions on few proteomics technologies.

2DE

2DE is a key technique in purifying proteins and obtaining protein expression levels from

complex samples based on their isoelectric points and molecular weights. Following are
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the main steps in this process;

1. Sample solubilisation: Proteins need to be processes and solubilized in isoelectric

focusing (IEF) compatible reagents such as urea.

2. Isoelectric Focusing (IEF): When proteins are solubized in the reagent, electric

field is used to push the proteins through the acrylamide gel which incorporates a

pH gradient. Thus, proteins move until it reaches the isoelectric point (pl). pl is

the pH with no net charge.

3. SDS Electrophoresis: Next proteins are solubilzed again in sodium dodecyl sul-

phate (SDS) and are separated by the molecular weights on an orthogonal axis

(2D). This technique aligns these proteins along two axes: isoelectric point vs.

molecular weight.

4. Protein detection and image analysis: Finally, mass spectrometry (MS) is used

to measure the protein abundances, post-translational modifications and other

properties based using mass to charge ratios.

Isotope-Coded Affinity Tag (ICTA)

This is a gel-free technique and more reproducible than 2DE technique. ICTA is mostly

used chemical isotope labeling technique, which employs with MS technology (Shiio

and Aebersold, 2006). The chemical reagents consists of three main elements; a thiol

reactive group, a biotin segment and isotopically coded linker (Chandramouli and Qian,

2009). This mixture of labeled proteins are then digested by trypsin and separated by

liquid chromatographic (LC) separation. Tandem mass spectrometry (MS/MS) is used

to identify peptides and relative abundances are measured using LC peaks (Shiio and

Aebersold, 2006)

Isobaric Tag for Relative and Absolute Quantification (iTRAQ)

This is a well-known proteomics technique to measure relative and absolute protein

abundances. iTRAQ has several advantages such as the ability use multiplexing up to

four different samples in one MS based experiment, labeling process can be performed

after cell or tissue lysis and simple analysis procedure in iTRAQ increases the precision

and accuracy of the measurement. This also contains several stages to measure protein

concentration. First the protein samples are digested using an enzyme such as typsine

to generate protein peptides. These peptide mixtures are then label with a different

iTRAQ reagent and combine them into one sample mixture. Finally, LC-MS/MS tech-

nique is used to quantify peptides by comparing the intensities of reporter ion signals.
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Figure 2.9 shows the workflow of iTRAQ. The main disadvantage of iTRAQ technique

is that this requires a powerful fractionation method due to enzymatic digestion process

(Chandramouli and Qian, 2009).

Figure 2.9: iTRAQ technique work flow

Mass Spectrometry (MS)

Mass spectrometry is the primary technique in identification of proteins, regardless the

protein separation using gel-based or gel free method. MS has evolved drastically over

the last decade and it consists of three main components; ion source, mass analyser and

ion detection system (Chandramouli and Qian, 2009). These components are used in

main four stages in MS analysis (Figure 2.10 taken from Clark, 2015);
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1. Protein iInization: Molecules are ionized by knocking one or more electrons off to

obtain positive ion gas.

2. Acceleration: Ions are accelerated to provide same kinetic energy.

3. Deflection: Ions are deflected using a magnetic field based on their mass to charge

ratio

4. Detection: Lighter ions will be detected electrically.

Figure 2.10: Mass Spectrometry work flow taken from Clark, 2015

Simple MS only measures mass, however tandem mass spectrometry (MS/MS) are em-

ployed to determine amino acid sequences (Dubey and Grover, 2001). MS/MS combines

two different MS separations steps where the trypsin-digested peptides are fragmented

after the liquid phase separation. Liquid chromatography (LC) mass spectrometry em-

ploys an analytical chemistry technique that combines physical separation ability of

liquid chromatography or HPLC. This enhances the sensitivity and selectivity of mass

spectrometry technique. Prior knowledge on protein sites and specific modifications

are used to detect post-translational modifications. However, MS might not be able

to detect all the new sights and post-translational modifications. A combination of

techniques will be able to reveal PTMs, but a comprehensive proteomics is still not
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feasible. These multiple enrichment techniques are more complex and time consuming

(Jensen, 2004). Therefore, our computational model comes in handy to detect post-

translationally modified before testing them on high-throughput proteomics techniques

such as mass spectrometry.

2.4 Joint Analysis of Transcriptome and Proteome

We now turn into integrated analysis of transcriptome and proteome measurements.

First, we discuss previous work related to correlation analysis between these two omic

data. We then analyse several data-driven modelling approaches performed by previous

authors to uncover useful biological information regarding cell regulation. These back-

ground material provide guidance for the development of a robust data-driven model at

the transcriptome-proteome interface to detect post-translationally regulated proteins

as outliers.

2.4.1 Correlation of Transcriptome and Proteome Data

Most of the previous authors have looked into the correlation between mRNA expression

data and the corresponding protein expressions to understand their relationship (Gygi

et al., 1999; Futcher et al., 1999; Greenbaum et al., 2003; Beyer et al., 2004). However,

there are some other biological properties such as codon bias, ribosomal properties and

protein half-life that help to understand the relationship between transcriptome and

proteome measurements. These properties allow for more accurate predictions.

◦ Codon Bias and Codon Adaptation Index (CAI): There are different fre-

quencies for synonymous codons (i.e coding for the same amino acid) and this

aspect is known as codon bias. Codon adaptation index (CAI) is a proper mea-

sure of codon bias (Maier et al., 2009);

◦ Ribosome Density and Ribosome Occupancy: These are the main compo-

nents to determine translational efficiency (the number of proteins translated per

mRNA over time) (Greenbaum et al., 2003). Ribosome occupancy is the fraction

of mRNA molecules attached to at least one ribosome and ribosome density is the

number of ribosomes active with mRNAs for a unit transcript length (Brockmann

et al., 2007; Arava et al., 2003);

◦ Protein Half-Life: This is a crucial factor in mRNA-protein correlation. The

cellular life time of the protein depends on several aspects. Post-translational

processing, intrinsic protein stability and first or terminating amino acids are some
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of the main properties. N-end rule is a simple and accurate method to measure

protein half-life (Varshavsky, 1997).

Gygi et al., 1999 used Saccharomyces cerevisiae (yeast) mRNA and protein data to

observe the relationship between these measurements. However, the correlation between

these data is insufficient to predict protein expression levels by simply using mRNA

measurements. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and

serial analysis of gene expression (SAGE) techniques were employed to measure protein

and mRNA levels, respectively. Pearson correlation for 106 genes by only using mRNA

and protein levels gave 0.935. However, this number is highly biased by a small number

of genes with very large mRNA and protein expression levels. 69% of the data genes (73

of 106) had very small mRNA levels with less than 10 copies per cell and these genes

gave only a 0.356 correlation coefficient. This study also incorporated codon bias and

protein half-life measurements for deeper analysis. Codon bias data was extract from the

Yeast Protein Database (YPD) (Hodges et al., 1998) and N-end rule was employed to

calculate protein half-lives. These properties showed that post-translational mechanisms

such as protein half-life controls the correlation between mRNA and protein levels in

mammalian cells, where no predictive correlation can be found. Another interesting

observation is that codon bias did not appear as a predictor either to protein or mRNA

because the distribution patterns of mRNA and protein data with respect to codon bias

are highly variable. Therefore, this study shows that transcriptome data itself provides

very little information for predicting protein expression data.

However, the sampling of the yeast proteome in the study by Futcher et al., 1999 gave

a good correlation between mRNA and protein abundances (R2 = 0.76). SAGE and 2D

gel techniques were employed to measure mRNA and protein abundances, respectively.

Codon adaptation index data was extracted from YPD spread sheets (Hodges et al.,

1998). Gygi et al., 1999 used Pearson product-moment correlation coefficients, which is

a parametric statistical method and requires bivariate normal distribution. Thus, Pear-

son correlation is more appropriate if mRNA and protein data are normally distributed.

However, mRNA and protein expressions are far from normal distribution. Therefore,

in this study, Futcher et al., 1999 used Spearman rank coefficient correlation which is a

non-parametric statistics. CAI and protein abundance also gave R2 = 0.80 Spearman

correlation which is similar to mRNA-protein correlation. Futcher et al., 1999 also found

that protein turnover was insignificant for protein expression prediction. This experi-

mental setting discovered some proteins with post-translational modifications (phospho-

rylation) by running 2D gel with labelled cells. Examining the behaviour in differential

centrifugation experiments with 2D gels provided a global view of the yeast proteome.

Thus, different statistical analysis and differences in data resulted in different conclusions

being made by these two authors (Futcher et al., 1999 and Gygi et al., 1999).
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Figure 2.11: Correlation of mRNA and protein data by Greenbaum et al., 2003.
This plot represents the correlation of the mRNA data and their newly compiled
protein abundance data. mRNA axis is in copies per cell and the protein axis
is in thousand copies per cell.

A review of mRNA and protein abundance correlations focusing on the yeast genome was

carried out by Greenbaum et al., 2003. This study provides details about the methods

used for determining protein levels: eg. 2D electrophoresis, mass spectrometry approach

including isotope-coded affinity-tag bases protein profiling and multi-dimensional protein

identification technology. Here they merged mRNA and protein data from Gygi et al.,

1999 and Futcher et al., 1999. Figure 2.11 shows the correlation between the compiled

mRNA and protein data (0.66). They observed that presumably there are three main

reasons for the absence of the correlation between mRNA and protein data. Those are

(1) complicated and varied post-transcriptional mechanisms, (2) differences in protein

half-life measurements in vivo and (3) noise errors in both expression data. In order

to represent the variation of genes along the yeast cell cycle, the standard deviation

was divided by the average expression level. The mechanism of the protein degradation

process was explained using transcriptome and proteome expression data;

dP (i, t)/dt = SE(i, t)−DP (i, t)

where P is the protein concentration i at time t, and the mRNA expression level for

protein P is represented as E. The general protein synthesis rate per mRNA is shown

by S and finally the general rate of protein degradation per protein is expressed as D

(Greenbaum et al., 2003). This model represents that the change in protein abundance
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over the time is equal to the total translation minus protein degradation rate. Therefore,

increasing protein degradation rate by post-translational modifications, reduces the total

protein concentration levels of post-translationally regulated proteins. Further, Green-

baum et al., 2003 also investigated the effects of codon adaptation index (CAI) with

mRNA and protein correlation. However, genes with high level of CAI, did not show a

very good correlation between mRNA and protein expressions.

Beyer et al., 2004 used large scale data of protein and mRNA abundance, translation

status and transcript length of yeast (Saccharomyces cerevisiae) genome to investigate

the relationship between transcription, translation and protein-turnover on a genome-

wide scale. Several data sets were combined together to generate the final large scale

data set. This study demonstrates that mRNA concentration, translation rate (which is

determined by ribosome density and occupancy) and protein degradation are the three

factors determining protein concentration. Therefore, mRNA abundance and translation

rate related properties are important in developing a protein abundance predictor. These

data also showed that the correlation between protein and mRNA (R2 = 0.58) varies

among different cellular compartments and functional modules. In addition, they have

explained a novel approach to correct large microarray signals for a saturated bias and

combined them with proteomic data to gain new insights of the cellular regulation.

Further, ribosome density was identified as a good property to measure translation

efficiency. In fact, transcript length with ribosome density is a better descriptor for

translation efficiency with respect to the ORF length.

These data samples were also used by Wu et al., 2008 and mRNA and protein half-life

information was also included to expand this analysis. A multiple regression was carried

out with the sequence derived features to observe their relevance with mRNA-protein

correlation (Nie et al., 2006).

yi = α+mRNAi × β +

m∑

j=1

βjxij

where xij refers to the jth sequence feature such as codon usage and m is the number

of features. However, they did not use this regression approach to predict protein abun-

dance similar to Tuller et al., 2007 or our study. The main purpose of this approach

is to observe the relationship between post-transcriptional and other biological proper-

ties with the mRNA-protein correlation. Protein half-life was observed as an important

regulatory factor which contributed 16.9% of the mRNA-protein correlation. However,

mRNA half-lives only contributed 0.2% for the mRNA-protein correlation. These re-

sults are also consistent with a similar work for D.vulgaris by Nie et al., 2006. Further,

codon usage (8.9%) and amino acid usage (7.7%) also showed a great contribution for
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protein translation. Therefore, these features can be used to develop a robust protein

abundance predictor.

Investigating Biological Mechanisms Using mRNA and Protein Correlation

Here we discuss the important biological mechanisms identified by join analysis of mRNA

and protein expression data.

In the study of complementary profiling of gene expression at transcriptome and pro-

teome levels in Saccharomyces cerevisiae, Griffin et al., 2002 used an integrated genomic

and proteomic approach to investigate the effects of carbon source perturbation on

steady-state gene expressions growing on galactose or ethanol. This experiment showed

that the correlation between mRNA and protein expression levels varies rapidly with the

above changes. A non-parametric correlation analysis using Spearman rank correlation

method gave a 0.21 correlation between mRNA and protein ratios which is lower than

simple mRNA-protein correlations reported by both Gygi et al., 1999 and Futcher et al.,

1999. This study demonstrates that protein expression levels significantly increase with

the galactose carbon source, but do not significantly change with mRNA abundance.

Therefore, joint analysis provides a better picture of the underlying mechanism. Five

essential proteins were identified with respect to galactose to glucose conversion, namely;

Gal1p, Gal2p, Gal7p, Gal15p and Gal10p. Genes and their quantities involved in the

metabolism of ethanol through respiration have also been recognized. Another inter-

esting result was the discovery of key regulatory genes involved in both tricarboxylate

and the glyoxylated cycles. All these results were obtained by examining the correlation

between mRNA and protein data.

Washburn et al., 2003 studied complex clustering of correlated transcriptome and pro-

teome data of Saccharomyces cerevisiae to understand the biochemical properties of

protein pathways. According to this study, the Spearman rank correlation between

mRNA and protein expression was weakly positive (0.45 for 678 loci). In order to in-

terpret the correlation of the data set, authors used a loci analysis with clustering on

mRNA and protein data based on protein pathway and protein complexes. At the path-

way level, mRNA and protein expressions were highly correlated (0.99) not only on a

loci by loci basis but also as a whole pathway. However, for aromatic amino acid and

hitidine biosynthetic pathways, mRNA and protein data only correlated at the pathway

level. Thus, these results showed that there are pathway and sub pathway levels at

the transcriptional interface. Protein complex clustering method identified biological

components such as amino acid and hitidine biosynthetic pathways of Saccharomyces

cerevisiae, which are not detectable by the oligonucleotide array analysis of mRNA ex-

pression. Further, several protein complexes such as Holeenzymes, SPT and GTPases

were over-expressed in the cell culture and mRNA and protein expression data did not
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correlate with these complexes. This indicates that there is a post-transcriptional control

of protein expression functions at the protein complex level or sub complex level. Thus,

this study encourages to use clustering technique in transcriptome/proteoem inferences.

Correlation between mRNA and protein expression data in Desulfovibrio vulgaris was

studied by Nie et al., 2006. Whole genome microarray data and LC-MS/MS protein

expression data for this organism were studied under three different conditions. Mul-

tiple regression approach was used to investigate the correlations between mRNA and

protein data with sequence derived features such as codon bias (similar to the study

by Wu et al., 2008). However, the experimental results showed that mRNA data alone

only explains 20− 28% of the total variation of proteomic data suggesting that mRNA

data alone cannot use to determine protein concentration. Authors also explained the

three aspects to improve the potential of the current model. Those were: (1) improving

the semi-quantitative measurements of protein concentration; (2) using more accurate

RNA and protein stability data and (3) measuring mRNA decay rate since the expres-

sion levels were measured. Considering the correlation of mRNA and protein data on

functional categories, Nie et al., 2006 observed that central intermediary metabolism,

energy metabolism, and transport and binding protein categories have more pronounced

correlations.

A label free MS based protein concentration technique was used by Ning et al., 2012

to measure brain stem and liver tissue protein levels of mice. Afterwards, a joint anal-

ysis of mRNA and protein data was carried out to investigate the correlation between

these two properties. This is the first attempt to compare RNA sequence and microar-

ray mRNA data with label-free protein data. In order to obtain biological properties,

DAVID (Da W. H. et al., 2008) GO enrichment analysis was used. 75% of MitoCarta

genes were annotated as mitochondrial in GO terms. In addition, genes annotated as

ribosomal did not show a good correlation between mRNA and protein data. Ribosomal

genes undergo several post-translational activities such as phosphorylation, acetylation

and methylation. Therefore protein expression levels change through protein degrada-

tion due to the above post-translational modifications reducing the correlation between

mRNA-protein measurements. They also looked for the correlation coefficient and av-

erage abundance of genes for each GO category and observed a noticeable difference in

correlation between genes in different categories. Finally, the authors claimed that the

results of this experiment can be useful to develop a robust computational pipeline for

gene and label-free protein data in future studies.

2.4.2 Data-Driven Models for Transcriptome and Proteome Data

We now look at data-driven approaches used in previous studies to jointly analyse tran-

scriptome and proteome measurements which will be highly relevant with our study to
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develop a novel data-driven framework at the transcriptome-proteome interface.

2.4.2.1 Classification Approach

Support Vector Machine (SVM) (Cortes and Vapnik, 1995b) and Random Forest (RF)

(Breiman, 2001) machine learning techniques have been mainly used for transcriptome

and proteome classification problems. Pancaldi and Bähler, 2011 carried out an ex-

periment to characterize and predict protein-mRNA interactions in the yeast genome.

They investigated how well RNA binding protein (RBP) and RNA interactions can be

predicted using RBP and other features of mRNA rather than using sequence motifs.

More than 100 different features of mRNA and protein data were used for this exper-

iment. For example mRNA half-life, GO annotations, secondary structure of proteins,

relative abundance of amino acid, codon bias etc. Prediction RBPs using mRNA data

was performed as a binary classification where the interaction can either be present

or absent. SVM and RF predictors were used to discover the relationship. Pancaldi

and Bähler, 2011 obtained 70% accuracy in 2-fold cross validation using RF and 68%

using a SVM classifier. They also reported that the 5-fold and leave-one-out method

gave similar results. Despite the high accuracy with the known targets, the prediction

of uncharacterized RBPs remains challenging because of the limited experimental data

available. However, a more complete data set with a wider range of RBPs and a strong

feature selection process for SVM approach will enhance the power of their predictions.

Comparing the correlation of human transcriptome and proteome data is a hugely en-

couraging for future studies. Even though their comparison was not quite successful,

this can be a starting point to model the interaction between mRNA and protein data.

Muppirala et al., 2011 also performed a classification prediction to predict mRNA-

protein interactions similar to Pancaldi and Bähler, 2011’s study by only using sequence

information. SVM and RF were used as the main predictors. They predicted whether or

not mRNA and protein pairs interact by giving RNA and protein sequences as predictor

inputs. Muppirala et al., 2011 also compared their results with Pancaldi and Bähler,

2011’s results. RF and SVM classifiers achieved 68% and 61% accuracies respectively.

These prediction accuracies are lower than those recored in the study by Pancaldi and

Bähler, 2011. However, Muppirala et al., 2011 achieved 78% for RF and 65% for SVM

classifiers by using all 13, 243 mRNA-protein pairs, where Pancaldi and Bähler, 2011

used only 5166 due to missing features. Thus, the technique used by Muppirala et al.,

2011 can do a reasonably good job of predicting mRNA and protein interactions by only

using sequence information.

Support Vector machine classifiers have been used in many RNA-protein interaction

studies. Wang et al., 2012b used LLE (Local Linear Embedding) algorithm (Roweis

and Saul, 2000). This is a fast non-linear dimensionality reduction algorithm, used to



Chapter 2 Literature Review 49

project high dimensional feature space to lower dimension space. This algorithm was

able to reduce the feature space from 440 to 80. Further, a binary SVM classifier was

also used to predict the interactions between RNA and protein pairs. LLE-SVM model

and simple binary SVM gave accuracies of 95.8% and 90.5% respectively. Thus, the LLE

feature extraction method improves the accuracy of the SVM predictor.

2.4.2.2 Clustering Approach

Several authors have performed microarray expression data analysis using clustering

technique (Eisen et al., 1998; Heard et al., 2005). Eisen et al., 1998 used cDNA microar-

ray of budding yeast (Saccharomyces cerevisiae) and human data. They observed that

gene expression data with similar functions are grouped together in both organisms.

Heard et al., 2005’s study was based on co-clustering technique to investigate on the

immune defense response to multiple experimental challenges using a time series cDNA

microarray data of A. gambiae mosquito. The joint analysis of mRNA and protein data

using the clustering approach is an important milestone in system biology (Rogers et al.,

2008).

Figure 2.12: An example of a concatenated clustering: mRNA and protein data
from Rogers et al., 2008. The top row shows the two data sets and in each
data set rows represent genes and columns represent time-points. The bottom
row represents three clusters obtained from the concatenated cluster analysis
(Rogers, 2011)

Rogers et al., 2008 used a couple mixture cluster model to reveal important biological

insights using mRNA and protein data which were collected along a time series from a
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human breast epithelial cell line (HMEC). Concatenation is the simplest clustering ap-

proach for two real-value transcriptome and proteome data sets. However, this method

is rather inflexible and doubles the size of feature space without increasing the number

of data points and therefore increases the overall complexity (Figure 2.12). The second

method is to analyse two data sets independently, however this approach will remove

important relationships from the data. Therefore, Rogers et al., 2008 employed a prob-

abilistic clustering model that couples mRNA and protein data in a sensible and flexible

manner. They assumed that there are two separate mixture models for both mRNA

and protein data. If mRNA data has k components and protein data has j components

the prior distribution of the two data sets will be p(k, j). If k and j are independent

then p(k|j) = p(k)p(j). At the other extreme if they have a one-to-one relationship,

the joint distribution that would be p(k|j) = p(k)δkj , where δkj = 1 if k = j and 0 if

otherwise. However in Rogers et al., 2008’s model, p(k, j) was considered as a parameter

to be inferred by the model. Assuming X is the mixture model for mRNA and Y be the

mixture model for protein data. ∆ is the used to represent some parameters required to

define the distributions. Therefore, the data distribution is as follows;

p(X,Y|∆) =
G∏

g=1

K∑

k=1

J∑

j=1

p(xg|∆x
k)p(yg|∆x

j )

Expectation-maximization (EM) algorithm (Dempster et al., 1977b) was employed to

infer the unknown parameter values for this distribution. These results showed a very

complex relationship between mRNA and protein data. Gene ontology analysis shows

a high correlation between mRNA-protein data is limited to a few molecular properties

such as cell adhesion complexes, ribosomes, protein folding and TCP-1 chaperonin.

However, they were able to come up with three main conclusions. Firstly, the correlation

with mRNA and protein data was generally low. Secondly, their results showed that

the correlation is very limited for mammalian data. Finally, they claimed that mRNA

and protein data evolve independently unless there are strong selection factors present

in favour of gene transcription and protein translation.

2.4.2.3 Bayesian Method

Probabilistic modelling using Bayesian networks is another significant data-driven ap-

proach to model mRNA and protein data. This method can be used to infer useful

biological properties while understanding the relationship between mRNA and protein

data.

Kannan et al., 2007 used microarray mRNA measurements and mass spectrometry pro-

tein measurements of laboratory mouse (Mus musculus) to model the relationship be-

tween transcriptome and proteome measurements. Here the authors mentioned three

main problems in the use of other techniques to investigate the relationship between
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the above measurements. Firstly, searching for correlations will only give a global sum-

mary while gene-by gene correlation provides more information (Mootha et al., 2003).

Secondly, most systems consider that the noise of the data is distributed as Gaussian.

However, in their approach they used hidden variables to deal with the non-Gaussian

noise. Thirdly, most models use multiple sources (Gygi et al., 1999; Greenbaum et al.,

2003) to obtain data while in this method they extracted mRNA and protein data from

the same source. Kannan et al., 2007 overcome these problems by using the following

methods. They used a gene-by-gene based analysis by introducing a probabilistic model

which uses a Bernoulli switch variable (s). They also introduced a hidden variable (τ)

with a Poisson distribution over the observed peptide counts to represent the noise of

the data. The total data set contained mRNA and protein data for six main organs,

namely; brain, heart, kidney, liver, lung and placenta. These were measured under the

same conditions. A Bayesian network for mRNA and protein abundance is represented

in Figure 2.13.

Figure 2.13: This is the Bayesian network taken from Kannan et al., 2007 which
represents the relationship between peptide counts measuring protein expression
and microarray mRNA expression levels. Inner rectangle represents a single gene
g and all T tissues of gene g shares the same s,w and τ variables.

Let m and y are mRNA and protein abundances respectively. Average peptide count

given the peptide count is modelled using Poisson distribution and the rate parameter x

is modelled using a Gamma distribution. Prior distribution of switch variable is shown
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as P (s). If the switch variable is s = 1 then the noise is modelled as a linear function

of average peptide counts, given by mi = wxi + noise and the noise assumed to be

Gaussian with mean = 0 and variance τ . Even though the added noise to the model

is assumed as Gaussian, other random variables have different distributions. Therefore,

the resulting model is far from Gaussian distribution. The joint distribution over all the

variables would be:

p(x,y,m, θ, s) = p(x)p(y|x)p(m|x, s, θ)p(θ)P (s)
With θ = w, τ .

The objective of this model is to obtain the relationship between mRNA data and pro-

tein peptide count data. Therefore, in this study they chose to model p(m|y) because
learning and inference is more straight forward. Parameters were learned by max-

imizing the probability p(m|y). In order to check the linear relationship between

two measurements, P (s = 1|m,y) was calculated for each gene.

p(
{
m(g)|y(g)

}
) ≈

∫

θ

G∏

g=1

∫

x

∑

s

P (s(g))p(x(g)|y(g))p(θ)p(m(g)|x(g), s(g), θ)

Sample average was employed to approximate true expectation. The strength

of the relationship between mRNA and protein pair was given by the P (s|m,y)

probability.

P (s|m,y) =

∫

x
p(m|s,x)p(x|y)P (s)

∑

s

∫
xp(m|s,x)p(x|y)P (s)

Kannan et al., 2007 performed a permutation test and re-learned the model to

obtain the scores for the linear relationships. The data was then partitioned into

three groups of biological interest: inliers, borderline and outliers. Genes that

have a score in the range of P (s = 1|m,y) ≤ 0.33 and a p-value within 0.05 were

considered as outliers. 503 genes were detected as outliers and several of these

were blood-borne factors in liver, lung and placenta. Outlier genes were enriched

with GO annotations such as embryogenesis and transport. Inliers genes were

obtained by considering the score in the range of P (s = 1|m,y) ≥ 0.66 and a

p-value within 0.05. These inliers were significantly enriched with cell adhesion

and central nervous system GO annotations. The rest of the genes were taken

under borderline and these genes were enriched with the functional annotations

such as mitochondrion and skeletal development anomalies. Kannan et al., 2007

also compared their results with maximum likelihood (ML) version of the proposed

method and standard linear regression (LR) and found Bayesian model achieves

mappings with higher statistical significance compared to the other two.
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2.4.2.4 Protein Abundance Predictor

Tuller et al., 2007’s research was a significant remark in bridging the gap between

transcriptome and proteome measurements. They developed a machine learning

based predictor of protein concentrations, which takes a different approach to most

of the previous research. In order to obtain the best features for the predictor,

Greedy feature selection technique was used with 32 transcriptome and proteome

properties of Saccharomyces cerevisiae (Table 2.3). In fact, mRNA, tRNA adap-

tation index (tAI) and evolutionary rate (ER) were selected as the most significant

feature to develop the predictor. Feature selection algorithm byTuller et al., 2007

is shown below:

Algorithm 1 Forward Greedy Feature Selection

1: Initialization Feature set F k = ∅ at k = 0 and with n no of selections
2: while k 6= n do
3: find the best feature j to add to F k with most significant cost reduction
4: k ++ and F k = F k−1 ∪ {j}
5: end while

A linear predictor as developed using the above three properties (see Appendix A

for linear predictor). Two main data sets were used to find the correlation be-

tween predicted and measured protein abundances. For both data sets, prediction

accuracy of the predictor increased by adding one features at a time (Figure 2.14).

By this process Tuller et al., 2007 achieved a correlation of 0.76 for averaged data

and of 0.63 for data obtained by separate data sources. This is relatively higher

than that found in previous work (Gygi et al., 1999; Futcher et al., 1999). They

also used a SVM non-linear predictor and observed that there is no improvement

in the prediction. GO enrichment analysis was carried out to investigate on the

biological properties of the predicted proteins. The results indicate that their

predictor is more appropriate for proteins in large macro-molecule are complexes.

Further, they also used Schizosaccharomyces pombe mRNA and protein expression

for the predictor. Corresponding orthologs in Saccharomyces cerevisiae were used

obtain ER and tAI values. However, S.pombe obtained a correlation of 0.675 for

predicted a measured protein abundance, where the correlation between mRNA

and protein data was only 0.629. Comparing protein concentration in both rich

and poor media also represented a general trend for homeostatic regulation.

However, Tuller et al., 2007 only forcused on developing a predictor, whereas in our

research we wanted to go further and investigate the model failures with large er-

rors between actual measurements and predictions to identify post-translationally

regulated proteins.
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Table 2.3: Abbreviation and full description of all the features used in Tuller
et al., 2007’s Study

Index Abbreviation Full Description

1 MW Molecular weight
2 PI Net charge of protein in aqueous solution
3 CAI Codon Adaptation Index
4 PL Protein length
5 CB Codon bias
6 ALA Frequency of the amino acid Alanine in the protein
7 ARG Frequency of the amino acid Arginine in the protein
8 ASN Frequency of the amino acid Asparagine in the protein
9 ASP Frequency of the amino acid Aspartic acid in the protein
10 CYS Frequency of the amino acid Cysteine in the protein
11 GLN Frequency of the amino acid Glutamine in the protein
12 GLU Frequency of the amino acid Glutamic acid in the protein
13 GLY Frequency of the amino acid Glycine in the protein
14 HIS Frequency of the amino acid Histidine in the protein
15 ILE Frequency of the amino acid Isoleucine in the protein
16 LEU Frequency of the amino acid Leucine in the protein
17 LYS Frequency of the amino acid Lysine in the protein
18 MET Frequency of the amino acid Methionine in the protein
19 PHE Frequency of the amino acid Phenylalanine in the protein
20 PRO Frequency of the amino acid Proline in the protein
21 SER Frequency of the amino acid Serine in the protein
22 THR Frequency of the amino acid Threonine in the protein
23 TRP Frequency of the amino acid Tryptophan in the protein
24 TYR Frequency of the amino acid Tyrosine in the protein
25 VAL Frequency of the amino acid Valine in the protein
26 FOP Frequency of optimal codons
27 GRAV Gravy, hydropathicity of Protein
28 AROM Aromaticity (Frequency of aromatic amino acids: Phe, Tyr, Trp)
29 HL Protein Half life
30 ER Evolutionary rate
31 TE Translation efficiency
32 tAI tRNA adaptation index

2.5 Summary

In summary, extensive high-throughput omic data are now available and there is

a huge demand for computational methods to cut down the data space for labo-

ratory experiments. Proteomic data getting complex compared to transcriptome

data due to post-translational modifications. These post-translational modifica-

tions are very important in studies of different diseases such as cancer. More-

over, PTMs can be used to determine different biological processes. Further,

some post-translation modifications disrupt protein stability and causing them
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Figure 2.14: Accuracy variation of linear predictor by Tuller et al., 2007. (A)
Test set was generated using separate data sources for all the features. (B)
Averaged at least two data sources to generate the test data.

to degrade faster. Therefore protein concentrations will be lower due to these

post-translational modifications. We also observed that most of the experiments

are designed to simply look for the correlation between transcriptome and pro-

teome measurements. Several authors have employed data-drive approaches such

as clustering, classification, Bayesian and regression to extract useful biological in-

formation from the above measurements. However, Tuller et al., 2007’s regression

approach is different from others where they predict the protein abundance us-

ing mRNA and other translation related features. Taking inspiration from Tuller

et al., 2007’s study, we develop a data-driven framework which can detect post-

translationally regulated proteins by looking at the model failures or outliers of a

protein abundance predictor.





Chapter 3

Modelling

Transcriptome-Proteome

Measurements & Identifying

Post-translationally Regulated

Proteins

In this chapter, we develop a regression model at the transcriptome and proteome

interface and detect post-translationally regulated proteins by looking at the model

failures (outliers). Firstly, we consider mRNA and other transcriptomic properties

as proxies to predict protein abundance and employ L1 norm sparse solution to

select the best set of features to develop the global regression predictor. Secondly,

we look into the outliers of the regression model assuming that post-translational

regulation primarily act by disrupting protein stability where the measured abun-

dance is lower than predicted. Finally we carry out a functional annotation check

to prove our hypothesis using statistical evidence. This also motivates the effective

outlier detection at the transcriptome-proteome interface in later chapters.

3.1 Data Preparation

In order to use a machine learning approach to model at the transcriptome pro-

teome interface, a rich set of input and output data samples are important. Yeast

bacteria, which is also known as Saccharomyces cerevisiae under exponentially

57
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growth conditions was selected as the main organism to obtain data for our ex-

periment because this is the most well studied genome in transcriptomic and pro-

teomic world. We combined 37 input variables at the transcriptome layer using

ORF and gene names to develop the protein abundance predictor (Figure 3.2(A)).

mRNA and protein abundances were downloaded from Greenbaum et al., 2003 and

PaxDb (Wang et al., 2012a) respectively. Translation rate related features such

as proteins per second, ribosomal occupancy, ribosome density, relative transla-

tion rate and gene length were obtained from Greenbaum et al., 2003. Further,

mRNA half-lives Miller et al. (2011), tRNA adaptation index (tAI) (Man and

Pilpel, 2007) and evolutionary rate (ER) (Wall et al., 2005) data sets were also

employed as input variables. Table 3.1 shows 28 sequence derived transcriptome

properties which were obtained from SGD database (Cherry et al., 2012). Here,

we employed gene length, proteins per second, relative translation rate, mRNA

half-lives, ribosomal density and occupancy as new features, with respect to the

previous work by Tuller et al., 2007. We obtained 2000 samples with all the 37

input features.

We explored pairwise scatter plots to verify the range over which data was available

and filtered out some of the data. It is important to limit the range of the data

distribution for robust modelling. The length property of transcripts had the range

between 157 to 14733 base pair(bp), where only 50 genes had length greater than

5000 bp. Hence, the genes which are longer than 5000 bp were removed to reduce

the skewness of the data distribution (Figure 3.1(A)). We also observed that,

at low levels of mRNA expression, the same mRNA values lead to very different

protein expression levels. Such low expressions of mRNAs have not been measured

reliably using hybridization microarrays, as they are the result of molecules that

are available in very low copy numbers per cell and are pooled and amplified before

hybridization. Therefore, 323 genes were filtered from the data set at the value

of −1.0 from the natural log mRNA expression level (Figure 3.1(B)) in order to

remove the measuring errors from the data set.

3.2 Feature Selection Using Sparse Regression (LASSO)

Feature selection is considered as the key step towards solving any practical clas-

sification problem. The two main kinds of feature selection methods are, those

based on probabilistic separable measures applied to the data and those based

on the error rate of a classifier as a design criterion (Lovell et al., 1998). It is

beneficial to reduce feature space to avoid curse of dimensionality problem, where

the classification accuracy increases with the number of features up to a certain
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Table 3.1: Twenty-Eight Sequence Properites

Index Abbreviation Full Description

1 MW Molecular weight
2 PI Net charge of protein in aqueous solution
3 CAI Codon Adaptation Index
4 PL Protein length
5 CB Codon bias
6 ALA Frequency of the amino acid Alanine in the protein
7 ARG Frequency of the amino acid Arginine in the protein
8 ASN Frequency of the amino acid Asparagine in the protein
9 ASP Frequency of the amino acid Aspartic acid in the protein
10 CYS Frequency of the amino acid Cysteine in the protein
11 GLN Frequency of the amino acid Glutamine in the protein
12 GLU Frequency of the amino acid Glutamic acid in the protein
13 GLY Frequency of the amino acid Glycine in the protein
14 HIS Frequency of the amino acid Histidine in the protein
15 ILE Frequency of the amino acid Isoleucine in the protein
16 LEU Frequency of the amino acid Leucine in the protein
17 LYS Frequency of the amino acid Lysine in the protein
18 MET Frequency of the amino acid Methionine in the protein
19 PHE Frequency of the amino acid Phenylalanine in the protein
20 PRO Frequency of the amino acid Proline in the protein
21 SER Frequency of the amino acid Serine in the protein
22 THR Frequency of the amino acid Threonine in the protein
23 TRP Frequency of the amino acid Tryptophan in the protein
24 TYR Frequency of the amino acid Tyrosine in the protein
25 VAL Frequency of the amino acid Valine in the protein
26 FOP Frequency of optimal codons
27 GRAV Gravy, hydropathicity of Protein
28 AROM Aromaticity (Frequency of aromatic amino acids: Phe, Tyr, Trp)

stage but if you increase the feature space further the accuracy starts to degrade.

Thus, selecting the best subset of features from a large feature space is impor-

tant to explain useful aspects of the problem domain. Greedy search with series

of linear predictors was used in previous work (Tuller et al., 2007), introducing

mRNA abundance, tAI and evolutionary rate as the main features. However, this

method is particularly weak with correlated features and also difficult to prove

the correctness of the feature set (Hall, 1999). Therefore, sparse regression with

L1 norm regularization (Equation (3.1)), also known as LASSO (Tibshirani, 1994)

was selected as an alternative strategy, which is interestingly popular in machine

learning literature to select most dominant features (Lu et al., 2011; Wu et al.,

2009; Park and Casella, 2008). Figure 3.2 illustrates the feature selection process

using L1 norm regularization technique. LASSO can be written as;
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Figure 3.1: Data Filtering: Some of the data was filtered by studying the distri-
bution of mRNA/protein species. (A) genes with lengths longer than 5000 kb
and (B) those with log mRNA expressions lower than −1.0 were eliminated
from analysis.

min
w,b

{y − (〈w,x〉+ b)}2 + λ‖w‖1 (3.1)

where x represents the input matrixof covariates, y represents the response vector

and w is the unknown weight vector which minimizes the loss function. λ deter-

mines the amount of regularization happens to the loss function and this value

need to be decided by sample validation. If the λ is too small all features will end

up with high weights and if the λ value is too large no features will be detected

as significant. This method is used to identify most suitable features from over-

determined systems, where in this case we need to find best features out of 37

variables without over-fitting the data (Figure 3.2(A)). LASSO generates weights

for all the features which minimizes the loss function and produces the maximum

sparse regression. Features with the highest weights (absolute weight values) are

considered as the most dominant features (Figure 3.2(B)). We used the CVX package

within a MATLAB environment to obtain solutions for sparse regression.
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Regularization

Fifty samples, which contains 500 genes per sample were selected using with and

without replacement bootstrap sampling method. Each of these 50 samples were

tested using 20 values for λ parameter between 0 to 1000, i.e. creating a total

of 1000 validation trials (50 samples x 20 values for λ). In this feature selection

process we had two main problems to address on; one is to select the best value

for parameter λ from the above mentioned range and then to select the best set

of features from the 1000 sets of highly weighted features.

Figure 3.2: L1 norm regularization: (A) 37 transcriptomic input properties were
used as proxies for protein abundance. (B) Best set of features were obtained by
selecting the non-zeros weights after thresholding. Weights between red dashed
lines (thresholding points) are considered as zero.

Sparse regression with L1 norm regularization was carried out for all the samples,

producing a weight vector for each sample. By plotting the weights with respect

to their features as shown in Figure 3.2(B), we observed that majority of the

features resulted very low weight values and few of the features had very high
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weight values. Therefore, we set a threshold to the weight vectors on −0.2 and

0.2 and removed the features which had very low weights between the threshold

values. Thus, highly weighted transcriptomic properties (features) were selected

as most dominant features for each test trial.

Setting the λ parameter with an appropriate value is crucial in sparse regression.

Therefore, we looked into the average number of retained features as a function of λ

which is shown Figure 3.3(A) to understand the variation of the feature extraction

with the λ parameter. This figure shows that the number of dominant features

selected using different λ values do not reduce linearly or monotonically. In fact

there is a stable region over three order of magnitude of λ between 0.001 and 1.

We note that set of five features get selected during the stable region, suggesting

that there is an important aspect of the data set with five dominant features. In

order to confirm our observation, we constructed a random data set (using same

mean and variance values to the original data set) and looked into the variation

of average number of features selection with respect to λ. Red dashed line in

Figure 3.3(A) shows that the number of dominant features selected by randomly

generated data reduces monotonically along the λ value distribution (no stable

region).

Figure 3.3(B) shows the frequencies of the six sets of features (containing 6, 5,

5, 6, 4 and 4 features in each set) which are repeatedly identified more than 5

times with 500 bootstrap samples along the stable region. From these six, set 3

turned out to be significant with highest frequency and it contained following five

features; mRNA abundance, tRNA adaptation index (tAI), codon bias, ribosome

density and occupancy. Thus, the aspect of selecting five features along the stable

region is clarified by these results. However, our best features are slightly different

from Tuller et al., 2007’s three features; mRNA, tAI and evolutionary rate (ER).

Sparse regression identifies ribosome density, ribosomal occupancy and codon bias

as relevant features, whereas Tuller et al., 2007 did not use translation efficiency

related properties, which are important to predict protein abundance (Greenbaum

et al., 2003). Ribosome occupancy is the fraction of mRNA molecules attached to

at least one ribosome and ribosome density is the number of ribosomes active with

mRNA with a unit transcript length (Brockmann et al., 2007; Arava et al., 2003).

Frequency of occurring synonymous codons in coding sequence is known as codon

bias, which is an important factor for protein synthesis to produce efficient amino

acid sequences (Brockmann et al., 2007; Tuller et al., 2010). tAI predicts the level

of adaptation of amino acids to the coding sequence relative to the cells tRNA

pool (Man et al., 2006). This gives the ratio between gene copy number (GCN)
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Figure 3.3: Feature Selection: (A) Average number of selected features as a
function of λ regularization term; which have a stable region over 3 orders of
magnitude of λ (0.001 and 1). (B) Identifying the best set of features (set three)
using the most frequent features sets repeated more than 5 times in bootstrap
trials over the stable region of λ. Set three contained mRNA abundance, codon
bias, tAI, ribosome density and occupancy.
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of the corresponding tRNA with codon k and the maximum GCN for that amino

acid (Brockmann et al., 2007):

tAI =
GCNk

max {GCNk}
tAI directly associate with translation efficiency in human proteome (Waldman

et al., 2010). Thus, features selected by sparse regression are directly associated

with protein generation process.

3.3 Development of Protein Abundance Predictor

With the five best features selected by LASSO technique were employed with a

linear regression model (Equation (3.2)) to predict the protein abundance more

accurately. Linear regression is considered as the starting approach in data-driven

modelling scenarios. Suppose we have a set of m samples {(xi, yi)}i=1,...,m where

xi ∈ R
n and yi ∈ R are the inputs and targets respectively. In this regression

model, our main objective is to predict y as f(x) = 〈w,x〉+ b with the minimum

squared loss. Leave-one-out cross validation was employed to obtain the average

prediction accuracy.

min
w,b

{y − (〈w,x〉+ b)}2 (3.2)

Our best five features (mRNA, occupancy, ribosome density, tAI and codon bias)

gave a regression of R2 = 0.86 between the predictions and the targets, while

previous work (Tuller et al., 2007) features (mRNA, tAI and evolutionary rate)

gave only R2 = 0.80. Combining all 37 features gave R2 = 0.80, which is lower

than our best five feature accuracy. Therefore, with various tests on unseen (leave-

one-out cross validated) data, the five features selected by sparse regression gave

the highest protein abundance prediction accuracy.

Afterwards, neural network machine learning technique was employed to observe

non-linear prediction accuracy. Neural net curve fitting application in MATLAB was

used to develop the predictor. Stochastic gradient descent method was used to

optimize the parameters and 10 neurons were used as the hidden layers (Bishop,

1995). 50% of the data set was employed as training data and the rest were

partitioned in to two groups for validation and testing purposes, which contained

25% from the total data set in each partition, i.e. validation data was used to
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measure the network generalization, and to halt training when generalization stops

improving. Ensuring that all genes in the data set were subjected to a test group,

this process was carried out four times while swapping the test data with training

and validation data.

Figure 3.4 shows the regression comparison between linear and non-linear pre-

dictors. Neural net non-linear predictor gave R2 = 0.82 regression with our five

features and R2 = 0.79 for the Tuller et al., 2007’s three features. However, the

prediction accuracy dropped drastically to R2 = 0.69, by including all 37 features.

Tuller et al., 2007 also had a similar observation where the non-linear kernel SVM

model did not improve the prediction accuracy. However, with both predictors

our five features outperformed in predicting protein abundance more accurately.

Figure 3.4: Regression comparison between linear and non-linear (neural net)
predictors using unseen (cross-validated) data. Our five features gave high ac-
curacies with both predictions. However, there is no advantage of using a non-
linear predictor in this task.

Additionally, ER was not selected as an important feature by our sparse regression

feature selection. Therefore, we examined the correlation from our predictor by

adding our five features progressively and finally including ER as a sixth feature to

observe the effects of ER. Figure 3.5 shows that, adding our five features improved

the prediction accuracy monotonically (this is true for any order of feature adding),

but including ER as the sixth feature reduced the accuracy to R2 = 0.80. Further,

ER and protein concentration only gave a correlation of R2 = −0.46. Thus, ER

is not a good feature for this task and Moreira et al., 2002 mentioned that ER is

just an empirical observation as a feature for the protein abundance predictor.
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However, in this research we are more interested in identifying post-translationally

regulated proteins by looking at the model failures or outliers of a protein predictor,

rather than improving the prediction accuracy.

Figure 3.5: Adding our five features (mRNA abundance, tAI, codon bias, ri-
bosome occupancy and density) improved accuracy monotonically in each step.
However, adding ER as the sixth features to the linear predictor reduced the
overall accuracy.

3.4 Identifying Proteins with PTR as Outliers

As we explained in the Introduction, post-translational regulation (PTR) disrupts

protein stability, therefore proteins with PTR degrade faster than we actually

predict from a global regression. Based on the above fact, we developed our main

hypothesis as follows; model failures or outliers of a protein abundance predictor

those having large errors between the actual measurement (P )and the predicted

protein levels (P̂ ) (i.e. measured abundance lower than the predicted - P < P̂ )

are more likely to be post-translationally regulated.

Here we use a simple technique to detect outliers from the regression model. We

produced a regression plot between predicted protein abundance (P̂ ) versus mea-

sured protein abundance (P ) and obtained the 50 proteins that are lying further

away from the regression line as outliers (2.5% outlier cut-off region) as shown in

Figure 3.6. Here we use 50 proteins as the benchmark number of outlier proteins to

test PTR as it is a small number of samples to be tested in a biological experimen-

tal setting. Afterwards, we carried out functional annotation checks at two levels

(coarse and finer levels) to confirm that these outlier proteins are enriched with

post-translationally regulated proteins. (1) At the coarse level, we used UniProt
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database (Magrane and Consortium, 2011) which is cross referred by the PaxDb

(Wang et al., 2012a) where we obtained the protein abundance data and checked

for post-translational modification (PTM) keywords as the primary requirement

to detect PTR from the outlier proteins. (2) At the finer level, we coupled PTM

keywords with protein stability determinant motif information as a stronger in-

dicator of post-translational regulation (i.e. Phosphorylation with PEST motifs,

Acetylation with N-termini segments and Ubiquitination with D/KEN Box mo-

tifs). Epestfind database (Rice et al., 2000) and NetAcet 1.0 database (Kiemer

et al., 2005) were employed to detect PEST motifs and N-termini segments re-

spectively. D and KEN box motifs related to ubiquitination were detected using

GPS-ARM 1.0 toolkit (Liu et al., 2012). In order to obtain statistical significance

of the outliers proteins with respect to post-translation regulation, 1000 random

samples (with sample size 50) were employed as a computationally exhausting

sampling process.

3.4.1 Results and Discussion

Figure 3.6 shows the regression plot of the measured (P ) and predicted protein

concentrations (P̂ ). Outliers in this figure are points that are lying further away

from the regression line (shown as solid line). Fifty proteins were selected as the

outliers from the 2.5% cut-off boundary and 48 of them were detected in upper

outlier section with P < P̂ (negative losses), where our interest focus lies.

3.4.1.1 Level 1 : Coarse Level PTM Analysis

Forty-two from 48 outliers with P < P̂ had PTM keywords and they are showed in

Table 3.2. No proteins were detected with PTM keywords in the lower region (P >

P̂ ) outliers, thus this region does not contain any significant post-translational

regulation.

The detected outlier set had six main PTM key words and their functional descrip-

tions according to UniProt database Magrane and Consortium (2011) are given

below:

• Phosphoprotein, the most frequently noted annotation, a process that

attaches either a single phosphate group, or a complex molecule, such as

5’phospho-DNA, through a phosphate group;

• Glycoprotein (also known as Glycosylated proteins) containing one or more

covalently linked carbohydrates of various types;
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Table 3.2: Coarse level check - PTM keywords identified with 50 outliers (cut-off
at 2.5%) using UniProt database Magrane and Consortium (2011)

ORF Name Gene Name PTMs

YJL129C TRK1 Phosphoprotein, Glycoprotein
YBR038W CHS2 Phosphoprotein, Glycoprotein
YDL093W PMT5 Glycoprotein
YDL217C TIM22 x
YFL029C CAK1 Phosphoprotein
YHR031C RRM3 Phosphoprotein
YJR124C YJR124C Phosphoprotein
YDL048C STP4 Phosphoprotein
YGL159W YGL159W x
YDR006C SOK1 Phosphoprotein
YIL169C YIL169C Glycoprotein
YDL222C FMP45 Phosphoprotein, Glycoprotein
YDL130W RPP1B Phosphoprotein, Acetylation
YCR010C ADY2 Phosphoprotein
YHR141C RPL42B Methylation
YBR106W PHO88 Phosphoprotein
YAR075W YAR075W Phosphoprotein
YHR094C HXT1 Phosphoprotein, Glycoprotein
YDR342C HXT7 Isopeptide b., Phosphoprotein, Ubl con.
YBR1317 RPS9B Phosphoprotein
YJL177W RPL17B Phosphoprotein
YGR282C BGL2 Glycoprotein
YBL0613 RPS8A Phosphoprotein
YDR225W HTA1 Isopeptide b., Phosphoprotein, Acetylation, Ubl conj.
YEL027W VMA3 x
YKR059W TIF1 Phosphoprotein, Acetylation
YGL030W YGL030W Phosphoprotein
YIL148W RPL40A Isopeptide b., Ubl con., Phosphoprotein
YBR010W HHT1 Methylation, Phosphoprotein, Acetylation
YHR021C RPS27B Phosphoprotein
YGR034W RPL26B Phosphoprotein
YER102W RPS8B Phosphoprotein
YDL083C RPS16B Acetylation, Phosphoprotein
YDR064W RPS13 Phosphoprotein
YCR031C RPS14A Acetylation, Phosphoprotein
YDL081C RPP1A Acetylation, Phosphoprotein
YEL034W HYP2 Acetylation, Phosphoprotein
YDR447C RPS17B Phosphoprotein
YER117W RPL23B Methylation, Acetylation, Phosphoprotein
YKL180W RPL17A Phosphoprotein
YKL056C TMA19 x
YKL152C GPM1 Phosphoprotein
YLR044C PDC1 Acetylation, Phosphoprotein
YCR012W PGK1 Acetylation, Phosphoprotein
YGL123W RPS2 Acetylation, Phosphoprotein
YDR382W RPP2B Phosphoprotein
YGR148C RPL24B Phosphoprotein
YDL014W NOP1 Phosphoprotein, Methylation
YDL080C THI3 x (lower outlier region)
YER070W RNR1 x (lower outlier region)
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Figure 3.6: Detecting outliers using protein abundance predictor. Black solid
line shows the linear regression of R2 = 0.86 between the true and the predicted
concentrations. Red dashed lines represent the 2.5% cut-off boundaries of the
data set. Fifty proteins which are lying further away from the regression (solid)
line were selected as outliers (beyond cut-off boundaries).

• Acetylation, the modification by the attachment of at least one acetyl group

(normally at the N-terminus);

• Methylation, is post-transalationally modified by the attachment of at least

one methyl group.

• Isopeptide bonds, involving the side chain of one or two amino acid residues.

These facilitate catalysis by enzymes leading to the formation of dimers and

other complexes.

• Ubiquitin conjugation, in which proteins attach with at least one ubiquitin-

like modifier such as SUMO, APG12, URM1 or RUB1.

Above PTMs are largely associated with protein stability. Hood et al., 1977 have

shown the interest in determinant of protein turnover and degradation. As an

example, Hofmann et al., 2001 suggest that the stability of the protein is affected

by the phosphorylation and acetylation by using their study of the p53 regulation

activity. Review of post-translational modifications by Nalivaeva and Turner, 2001

imply that PTMs such as N-linked (Acetylation) and glycosylphosphatidylinositol

(GPI) in protein stability. They also mentioned that members of the ubiquitin
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family can be implicated in protein turnover by post-translational modifications.

Amino acids substitutions due to mutations can act as a marker for protein degra-

dation (Stadtman, 1990). Therefore localized post-translational modifications,

such as methylation, can be equivalent to site-specific amino acid substitutions,

affecting stability and the degradation rates of proteins. Thus, we can explain the

over-representation of PTM annotated proteins in upper region outliers as an ef-

fect of fast protein degradation by the post-translational regulation, which reduce

the actual measurement compared to the global regression prediction.

Statistical confidence level of outlier sample was measured using normal cumu-

lative distribution function, using 1000 random samples of size 50 with mean

and standard deviation of 34.286 and 3.576 respectively. Figure 3.7 shows the

distribution of random samples. Using these random samples, the claim of over-

representation of post-translational regulations among the selected outlier set was

made at significance of p ≤ 0.02. However, biological research uses 0.05 as the

level of significance to accept the hypothesis (McDonald, 2009). Therefore, our

initial hypothesis is true with p ≤ 0.05, which explains that most of the proteins

selected as outliers undergo with post-translational regulation.

Figure 3.7: Histogram of PTM proteins identified within random subsets of 50.
The distribution has a mean standard deviation of 34.286 and 3.576 respectively.

We also obtained 50 outliers from the Tuller et al., 2007 three feature predictor

to compare the PTR detection ability with our five feature protein abundance

predictor. Interestingly, only 37 proteins were identified as with PTM keywords

providing a p-value of 0.22. This confidence level is far lower than the confidence

level (p ≤ 0.02) produced by our predictor and also the hypothesis accepting

confidence boundary (p ≤ 0.05). Therefore, despite the close prediction accuracies

between the two predictors, PTM detection ability of our five feature predictor is
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significantly higher than the Tuller et al., 2007’s predictor. We also used mRNA

and protein direct mapping and looked into PTM keywords on 50 outliers of the

mRNA-protein scatter plot. Only 35 proteins were found with PTM keywords

providing a p-value of 0.42, which is a lower confidence level compared to both

our five feature and Tuller et al., 2007’s three feature predictors. Thus, developing

a protein abundance predictor using mRNA and other properties improves the

ability of detecting post-translationally regulated proteins as outliers. Figure 3.8

shows the statistical confidence levels of the above three different outlier sets.

Figure 3.8: p-Values of 50 outlier samples of three different outlier detection
scatter plots. Red dashed line represents the hypothesis acceptance boundary.
This graph emphasizes on the following facts. (1) Our five features predictor
is more capable of detecting outliers compared to previous work (Tuller et al.,
2007). (2) Outliers of protein abundance predictors improve the ability of pre-
dicting PTM compared to raw mRNA and protein data scatter plot.

Further investigating on the model failures of the predicted versus measured pro-

tein abundance plot, we selected outliers by changing the cut-offs to retain 1% and

5% of the data set and carried out the same experiment. Table 3.3 shows the num-

bers of outliers and their level of confidence to detect post-translationally regulated

proteins. Confidence level of 0.01 and 0.17 was detected for 1% and 5% cut-off

boundaries respectively. Hence, when the cut-off boundary gets closer to the re-

gression line (i.e. cut-off percentage increases), the number of post-translationally

regulated proteins found are decreased. Thus, proteins with larger errors (further

away from regression line) are more likely to be post-translationally regulated.

Moreover, our predictor is capable to defeat Tuller et al., 2007’s predictor and raw

mRNA and protein data not only at 2.5% cut-off boundary but also at the 5%

cut-off boundary with 100 outlier data.
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Table 3.3: Confidence levels indicating how well the outlier subset identifies
post-translationally regulated proteins, at different cut-off levels. 1000 random
trials were used to obtain the p-values

Cut-off Level
Coarse Level Finer Level

PTR Proteins Confidence Level PTR Proteins Confidence Level

1.0% (20) 19 p ≤ 0.01 16 p ≤ 3.05× 10−11

2.5% (50) 42 p ≤ 0.02 37 p ≤ 2.11× 10−10

5.0% (100) 73 p ≤ 0.17 46 p ≤ 0.001

3.4.1.2 Level 2 : Finer Level PTM Analysis

In this functional annotation check, we combined PTM keywords with protein

stability determinant motif information to provide a stronger indicator of post-

translational regulation of our initial 50 outliers. Several studies show that phos-

phorylation of PEST motif sequences in flexible areas intensify the degradation

process (Garćıa-Alai et al., 2006; Marchal et al., 1998). Similarly N-terminus

segments in acetylation such as N-actelylation directly engage in the process of

protein degradation (Solomon and Goldberg, 1998; Hwang et al., 2010). Ubiqui-

tnation itself is a strong indicator for protein degradation. Further, D and Ken

Box motifs signal the Anaphase Promoting Complex (APC) machinery which ac-

celerates the degradation process by ubiquitination post-translational modification

(Pfleger and Kirschner, 2000; Burton and Solomon, 2001). Addtionally, as we de-

scribed in Section , there are in-vitro experiments showing that post-translation

regulation with motif information catalyses the protein degradation and reduce

the overall protein expression levels (Martinez et al., 2003; Wang et al., 2003).

ABC1 calpain degradation is regulated by phosphorylation with PEST motif se-

quence and Martinez et al., 2003 observed a 3.9 ± 0.4% mean fold reduction of

the protein concentration of ABC1 wild-type protein with respect to the PEST

deleted ABC1 protein. Similarly, Wang et al., 2003 also showed that wild-type

ABC1 protein gave lower protein expression levels compared to phosphorylation

site mutated ABC1 proteins e.g. protein expression level reduction of mean fold

3.4 ± 0.3% with MutAAAA in Thr-g1286 site and 3.3 ± 0.3% with MutASSA in

Thr-1305 site.

Table 3.4 shows the 50 outliers and their respective finer level functional an-

notations. Thirty-seven proteins out of 50 had PTM with motif information

and the corresponding statistical confidence level with respect to the distribu-

tion of 1000 random samples (mean = 16.244 and standard deviation = 3.3232)

is p ≤ 2.11 × 10−10. We also obtained the annotation confidence levels for Tuller

et al. (2007)’s features set and simply mRNA-protein scatter plot outliers and
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Table 3.4: Finer level check - PTM + Motif keywords detected with 50 outliers

ORF
Gene Phosphorylation Acetylation Ubiquitnation

Name Name + PEST + N-terminus + D/Ken box

YJL129C TRK1 X x x
YBR038W CHS2 X x x
YDL093W PMT5 x x x
YDL217C TIM22 x x x
YFL029C CAK1 X x x
YHR031C RRM3 X x x
YJR124C YJR124C X x x
YDL048C STP4 X x x
YGL159W YGL159W x x x
YDR006C SOK1 X x x
YIL169C YIL169C x x x
YDL222C FMP45 X x x
YDL130W RPP1B X X x
YCR010C ADY2 X x x
YHR141C RPL42B x x x
YBR106W PHO88 X x x
YAR075W YAR075W X x x
YHR094C HXT1 X x x
YDR342C HXT7 X x X

YBR1317 RPS9B X x x
YJL177W RPL17B x x x
YGR282C BGL2 x x x
YBL0613 RPS8A X x x
YDR225W HTA1 X X X

YEL027W VMA3 x x x
YKR059W TIF1 X X x
YGL030W YGL030W X x x
YIL148W RPL40A x x X

YBR010W HHT1 x x x
YHR021C RPS27B X x x
YGR034W RPL26B X x x
YER102W RPS8B X x x
YDL083C RPS16B X x x
YDR064W RPS13 X x x
YCR031C RPS14A X x x
YDL081C RPP1A X X x
YEL034W HYP2 X x
YDR447C RPS17B X x x
YER117W RPL23B X X x
YKL180W RPL17A x x x
YKL056C TMA19 x x x
YKL152C GPM1 X x x
YLR044C PDC1 x X x
YCR012W PGK1 X X x
YGL123W RPS2 x X x
YDR382W RPP2B X x x
YGR148C RPL24B X x x
YDL014W NOP1 X x x
YDL080C THI3 x x x
YER070W RNR1 x x x
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those two outlier sets with size 50 gave p-values of 0.0017 (26 out of 50 proteins)

and 0.042 (22 out of proteins) of confidence levels respectively.

Table 3.3 shows the finer level annotation detection at the 1% and 5% cut-off

levels. These results are similar to the coarse level check where the number of PTR

detection as outlier decreases with the increment of cut-off percentage (getting

closer to the regression line).

We observed that finer level annotation check provides a higher confidence level to

support our hypothesis. Thus, by considering all cases we can conclude that the

proteins identify as outliers are more likely to be post-translationally regulated.

In fact, our five feature predictor outperforms in detecting post-translationally

regulated proteins as outliers in both coarse level and finer level annotation checks.

Moreover, we also included finer level PTR annotation information as a binary

input with our five features performed the regression to observe the protein abun-

dance prediction accuracy knowing that the proteins are going to be post-translationally

regulated or not. Interestingly, linear regression model gave R2 = 0.90 regression

(Figure 3.9) which is higher than our five feature predictor (R2 = 0.86). In fact,

adding PTR information as an input feature minimizes the overall error between

the predicted and the measured abundance. Therefore, this result re-confirms that

the outlier proteins with large errors between predicted and measured of the five

feature predictor are likely candidates of post-translational regulation.

Figure 3.9: Including post-translational regulation information as the sixth fea-
ture improved the prediction accuracy of the linear predictor to R2 = 0.90.
Thus, outliers (with large errors) of the five feature regression model occurred
due to post-translational regulation.
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3.4.2 Gene Ontology (GO) Analysis

We subjected the initial 50 outlier set to a GO enrichment analysis using GOEAST

web toolkit (Zheng and Wang, 2008) and found 37 GO annotations among the

outlier proteins. Four from this 37 were common to more than 30 proteins, those

were GO : 0044444, GO : 0009058, GO : 1901576 and GO : 0032991. Table 3.5

shows the list of annotations in detail. Interestingly, we also observed that 14

GO terms are related to ribosomal proteins. Ribosomal proteins undergo several

post-translational activities such as N-termini methylation, N-termini acetylation,

phosphorylation and methionine removal (Carroll et al., 2008). Therefore, ribo-

somal proteins provide evidence that the outlier proteins are post-translationally

regulated. As we found 23 ribosomal proteins from our 50 outliers, we wanted to

evaluate the effect of ribosomal proteins in our methodology. Red circles in Fig-

ure 3.10 shows the distribution of ribosomal proteins in the total data set. We can

find few ribosomal proteins with high expression levels, however, their distribu-

tion was not significant with respect to the total data distribution. We repeated

the entire experiment after removing the 155 ribosomal proteins from the data

set and checked for the over-representation of post-translational regulation in the

new 50 outliers obtained by 3% cut-off boundary. At the coarse level annotation

check we observed 42 proteins with PTM keywords providing a confidence level of

p ≤ 0.02 and at the finer level 36 proteins gave p ≤ 1.38×10−09 level of confidence

confirming that ribosomal proteins did not unduly influence our methodology.

Further, we also carried out a pathway analysis using PANTHER (Thomas et al.,

2003) web tool. Table 3.6 shows the dominant pathways discovered by the pathway

analysis. Interestingly, we observed p53 and p53 pathway feedback loop pathways

as dominant components in our analysis and Shin et al., 2013 showed that pro-

tein degradation process by post-translational regulation enables p53 regulation.

Therefore, pathway analysis results re-confirmed our hypothesis by providing bi-

ological evidence that our outlier proteins are enriched with post-translational

regulation.

3.4.3 Analysis of Protein Half-Life

We also investigated whether the ability of protein abundance prediction has a

systematic behaviour with protein half-life because proteins with rapid degradation

speeds will not be qualified. Thus, we observed the absolute and squared loss of

the prediction against the protein half-lives obtained by Belle et al., 2006 which is

shown in Figure 3.11, and found no meaningful correlation. Only 26 proteins (out
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Table 3.5: GO Enrichment Analysis Results. Ont. stands for Ontology and
those are Cellular Component (CP), Biological Component (BP) and Molecular
Functions

GO ID Ont. Term # Outliers # Genome p-Value

GO : 0044444 CP cytoplasmic part 36 2988 0.0127
GO : 0009058 BP biosynthetic process 32 2025 0.000187
GO : 1901576 BP organic substance biosynthetic 32 1997 0.000139
GO : 0032991 CP macromolecular complex 30 2137 7.53 × 10−03

GO : 0009059 BP macromolecule biosynthetic process 28 1519 9.27 × 10−05

GO : 0034645 BP cellular macromolecule 27 1497 0.000256
GO : 0044249 BP cellular biosynthetic process 27 1958 0.036
GO : 0043228 CP non-membrane-bounded organelle 27 1296 1.40 × 10−05

GO : 0043232 CP intracellular non-membrane organelle 27 1296 1.40 × 10−05

GO : 0019538 BP protein metabolic process 25 1623 0.0127
GO : 0044267 BP cellular protein metabolic 25 1517 4.36 × 10−03

GO : 0010467 BP gene expression 25 1763 0.0458
GO : 0005829 CP cytosol 25 712 1.79 × 10−09

GO : 0005840 CP ribosome 24 358 7.42 × 10−15

GO : 0030529 CP ribonucleoprotein complex 24 2.098 2.97 × 10−08

GO : 0006412 BP translation 23 670 2.83 × 10−08

GO : 0022626 CP cytosolic ribosome 21 174 2.69 × 10−17

GO : 0044445 CP cytosolic part 21 242 7.42 × 10−15

GO : 0003735 MF structural constituent of ribosome 20 227 3.46 × 10−14

GO : 0005198 MF structural molecule activity 20 372 3.60 × 10−10

GO : 0044391 CP ribosomal subunit 20 240 8.71 × 10−14

GO : 0002181 BP cytoplasmic translation 19 172 7.42 × 10−15

GO : 0015934 CP large ribosomal subunit 11 141 1.95 × 10−06

GO : 0022625 CP cytosolic large ribosomal subunit 11 93 2.83 × 10−08

GO : 0042254 BP ribosome biogenesis 11 419 0.036
GO : 0006364 BP rRNA processing 9 318 0.0746
GO : 0016072 BP rRNA metabolic process 9 330 0.0951
GO : 0015935 CP small ribosomal subunit 9 99 1.40 × 10−05

GO : 0022627 CP cytosolic small ribosomal subunit 9 64 3.22 × 10−07

GO : 0042274 BP ribosomal subunit biogenesis 8 128 0.00105
GO : 0000462 BP maturation of SSU-rRNA 7 98 0.00177
GO : 0030684 CP preribosome 7 148 0.0195
GO : 0030686 CP 90S preribosome 6 91 0.0113
GO : 0032040 CP small-subunit processome 4 49 0.0705

of 50 outliers) had protein half-life data and they did not show any systematic

behaviour.

We also employed GMM appraoch to model our transcriptome-proteome measure-

ments and observed that GMM provides a low confidence in detecting PTMs as

outliers. See Appendix B for further details. Therefore linear regression outper-

forms in detecting post-translationally regulated proteins as outliers.
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Figure 3.10: Distribution of ribosomal proteins. Red circles represents the ri-
bosomal proteins among the data set. There were 155 ribosomal proteins in the
total data set and 23 were fallen into the 50 outlier set.

Table 3.6: Pathway analysis results for 50 outliers

Pathway
Pathway No of Gene No of

Accession Name Components Subfamilies

P00059 p53 pathway 70 103
P04398 p53 pathway feedback loops 32 64
P02738 De novo purine biosynthesis 23 68
P00017 DNA replication 18 49
P00024 Glycolysis 10 40
P02739 De novo pyrimidine deoxyribonucleotide biosynthesis 10 26
P02748 Isoleucine biosynthesis 5 31
P02785 Valine biosynthesis 4 29

3.5 Summary

In this chapter, we developed a machine learning predictor to predict protein

concentration using five transcriptomic properties obtained by the LASSO fea-

ture selection and investigated on the model failures which are likely candidates

of post-translational regulation. Outlier proteins, over-represented functional an-

notations related to post-translational regulation with high statistical confidence

level. Here we consider protein stability disruption as the primary requirement

for post-translation regulation and other modifications such as localization, hy-

drophobicity and enzymatic activities cannot be detected by this approach.
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Figure 3.11: (A) Absolute error values of the predicted protein abundance ver-
sus protein half-lives of the relevant proteins. and (B) Squared error values of
the predicted protein abundance versus protein half-lives of the relevant pro-
teins.

Previous authors mostly focused on finding the correlation between mRNA and

protein levels. However, in this approach we build a regression model at the

transcriptome-proteome interface and use the model failures to extract useful in-

formation on post-translational regulation. This is a good example of using ma-

chine learning effectively in computational biology. Unlike computer vision or voice

recognition where the performance is measured by the classification accuracy, in

biology we need to cut down the experimental work space to confirm important bi-

ological properties. Thus, with this framework can reduce experimental workspace

for biologists to detect post-translationally regulated proteins.



Chapter 4

Outlier Detection at the

Transcriptome-Proteome

Interface

In previous chapter (Chapter 3), we demonstrated that outliers detected at the

transcriptome-proteome interface are likely candidates for post-translational reg-

ulation. However in Chapter 3 we used a very simple approach to obtain outliers

from a linear regression model, by taking the proteins that are lying further away

from the regression line (Figure 3.6). Here, we introduce two formulations of

deriving a protein abundance predictor to extract outliers systematically from a

regression model. First, we formulate novel Outlier Rejecting Regression (ORR)

model which has the capability to obtain a proportion of the data as robust out-

liers by truncating or clipping the loss function, where the regression problem

becomes non-convex (Xu et al., 2006). Thus, we use Difference of Convex func-

tions Algorithm (DCA) and an alternative ad-hoc variant of optimization strategy

to solve this non-convex problem. As the second method, we use Quantile Re-

gression (QR) (Koenker, 2005) approach which allows asymmetric conditional loss

models to extract outliers only with negative losses or positive losses. Based on

our hypothesis (Chapter 3), we are more interested with the negative loss outliers

where the measure abundance is lower than the predicted (P < P̂ ). Therefore,

quantile regression technique is more suitable with our data-driven framework. We

believe that these two new methods are much neater ways of selecting outliers. In

order to remove the ambiguity between the three models, we numbered them as

below.

• Model 0 - Simple Linear Regression used in Chapter 3

79
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• Model 1 - Outlier Rejecting Regression (ORR)

• Model 2 - Quantile Regression (QR)

With all above regression models, we use the five transcriptomic protperties ob-

tained by LASSO features selection as main inputs (i.e. mRNA abundance, tRNA

adaptation index (tAI), codon bias, ribosome density and occupancy).

4.1 Outlier Rejecting Regression (ORR) - Model 1

Figure 4.1: Convex and non-convex functions. (A) is an example of a convex
function. (B) Squared loss and (C) hinge loss functions before (black dashed
line) and after (red solid line) loss clipping. Purple colour lines segments in (B)
and (C) represent the violation of convex definition by loss clipping.

4.1.1 Clipped Loss Functions

In regression problems, robustness of the outliers are determined by the loss func-

tion. A convex loss model is largely sensitive to outlier samples and a single
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outlier can vary the total regression (Yu et al., 2010; Huber, 2011). Therefore, loss

clipping or truncation is used to extract robust outliers from convex loss models.

Following is the the definition of a convex function;

A function f(x) is called convex, if a line segment draws between any two points

in the function lies above the function graph in a Euclidean space. Mathematical

definition of a convex function is given below;

f is called convex if:

∀x1, x2 ∈ X, ∀t ∈ [0, 1] : f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

Figure 4.1(A) represents an example of a convex function. In fact, Figure 4.1(B)

and (C) black dashed lines show real world squared and hinge convex loss models

respectively.

However, loss clipping converts convex functions in to non-convex functions. Fig-

ure 4.1(B) and Figure 4.1(C) red solid lines show the clipped loss functions of

squared and hinge loss models respectively and they violate the convex definition.

Therefore, clipped squared loss and clipped hinge loss are non-convex functions.

Loss Clipping in ORR Model

Suppose we have a set of m samples {(xi, yi)}i=1,...,m where xi ∈ R
n and yi ∈ R.

Our main objective is to predict y as f(x) = 〈w,x〉 + b with smallest error. We

define the clipped loss function as below:

ℓU(x, y;w, b) := min{U, ℓ(x, y;w, b)}

where a hyper parameter U > 0 denotes the clipping position. Figure 4.2 illustrates

an example of truncated (clipped) squared loss model with clipping position 15.

Here we use L2 regularized loss function (Equation (4.1)) which is also known as

ridge regression with the ORR model.

min
w,b

{y − (〈w,x〉+ b)}2 + λ‖w‖2, (4.1)

where λ > 0.

This is similar to the ordinary least square loss function (Equation (3.2)), but

with an additional regularization term (L2) which helps to penalize the data over-

fitting and model complexity. Ridge regression is almost a standard approach with
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Figure 4.2: Example of truncated squared loss: ℓU (x, y;w, b) with U = 15 for
the squared loss function ℓ(x, y;w, b).

its roots in Tikhonov regularization, Bayesian methods with zero mean Gaussian

prior and incorporating a ridge to achieve numerical stability in matrix analysis.

However, any loss function, such as ordinary least square, episilon-insensitive,

hinge loss or logistic loss can be used with the ORR model. Following is the

clipped loss function for the ridge regression model:

min
w,b

λ‖w‖2 +
∑

i

ℓU(xi, yi;w, b), (4.2)

where U > 0 and λ > 0 are hyper parameters.

Controlling U is difficult with respect to the number of samples we need to extract

as outliers at the end of the optimization. Therefore, we introduce a new parameter

µ ∈ [0, 1) where the user can define the number of outlier samples needed as a

ratio from the total data samples. Reformulated model using µ instead of U is

given below;
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min
w,b,η

1

(1− µ)m

∑

i

ηiℓ(xi, yi;w, b) + λ‖w‖2

s.t.
∑

i(1− ηi) ≤ µm, 0 ≤ ηi ≤ 1, ∀i, (4.3)

where µ ∈ [0, 1) and λ ∈ (0,∞) are hyper parameters.

Here we believe that the specifying a fraction of data as outlier using our prior

knowledge is easier than using a clipping position U . See Appendix C for the

relationship between Equation (4.2) and (4.3). Note that
∑

i(1 − ηi) = µm holds

at the optimal solution, where the samples (xi, yi) with η∗i = 0 is considered as

outliers for small µ > 0. However, this optimization problem is non-convex and

finding a global solution for a non-convex problem is very difficult.

4.1.2 Difference of Convex Functions Algorithm (DCA)

Difference of convex Functions algorithm (DCA) is a mathematical approach to

obtain plausible solutions for non-convex optimization problems (Pham Dinh and

Le Thi, 1997; Collobert et al., 2006). Therefore, we use DCA to solve our non-

convex ORR regression model (Equation (4.3)). Appendix C shows step by step

derivation of the clipped loss model using DCA. In order to solve Equation (4.3),

DCA updates the η and (w, b) in each iteration alternatively. Selection of ηk in

kth iteration is follows:

ηk ∈ argmaxη
∑

i(1− ηi)ℓ(xi, yi;wk, bk)

s.t.
∑

i(1− ηi) = µm, 0 ≤ ηi ≤ 1. (4.4)

We obtain the ηk by sorting the squared loss and assigning the 0 to largest µm

samples. Therefore, (wk+1, bk+1) is computed using ηk as a solution to the follow-

ing subproblem:

h(wk+1, bk+1) := min
w,b

1

(1− µ)m

[
∑

i

ℓ(xi, yi;w, b)− µm(〈gw,w〉+ gbb)

]

+ λ‖w‖2,

(4.5)

where
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gw =
1

µm

∑

i

(1− ηki )∇wℓ(xi, yi;w
k, bk),

(4.6)

gb =
1

µm

∑

i

(1− ηki )∇bℓ(xi, yi;w
k, bk).

(4.7)

∇wℓ(.) and ∇bℓ(.) denote subgradients of a nonsmooth loss function ℓ(.) with

respect to w and b.

Algorithm 2 shows the pseudo code for the implementation of Outlier Rejecting

Regression (ORR) model using DCA. CVX package in MATLAB was used as the de-

velopment environment. Algorithm 2 generates a sequence of (wk, bk), which has

following good convergence properties: in each iteration the objective value of

Equation (4.3) decreases and every limit point is a critical point which satisfies a

necessary condition of local minima in Equation (4.3).

Algorithm 2 DCA for Outlier Rejecting Regression

Require: Initial (w0, b0); hyper-parameters µ ∈ [0, 1) and λ ∈ (0,∞).
k ← 0.
repeat
Obtain ηk from Equation (4.4) by sorting ℓ(xi, yi;w

k, bk),∀i.
Computer (gw, gb) using ηk as shown in Equation (4.6) and 4.7.
(wk+1, bk+1) ← a solution of subproblem in Equation (4.5).
k ← k + 1.

until convergence.

4.1.3 Alternative Heuristic Implementation of DCA in ORR

We also developed an alternative heuristic MATLAB implementation of DCA in ORR

model as shown in Algorithm 3. Equation (4.8) was used (without subgradients)

as the main optimization problem in this implementation and set the λ and µ

values similar to Algorithm 2 (λ = 0.01 and µ = 0.975). We observed that both

implementations select the same set of proteins as outliers, providing identical

results.

Though these two algorithms produce similar results, heuristic Algorithm 3 is more

intuitive and easier compared to Algorithm 2. The only difference between these

two algorithms is the step where the subproblem is solved.
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min
w,b,η

1

(1− µ)m

∑

i

ηki ℓ(xi, yi;w, b) + λ‖w‖2. (4.8)

Algorithm 3 Alternative Heuristic Implementation of Outlier Rejecting Regression

Require: Initial (w0, b0); hyper-parameters µ ∈ [0, 1) and λ ∈ (0,∞).
k ← 0.
repeat
Obtain ηk from Equation (4.4) by sorting ℓ(xi, yi;w

k, bk),∀i.
(wk+1, bk+1) ← a solution of subproblem in Equation (4.8).
k ← k + 1.

until convergence.

See Appendix C for MATLAB implementation scripts of Algorithm 2 (function ORR1)

and 3 (function ORR2).

4.1.4 ORR Convergence Speed

We employed four data sets with different dimensionalities to compare the conver-

gence speeds of Algorithm 2 and 3 in ORR model. Those are,

1. Transcriptome-proteome data from Chapter 3 (n≈ 2000,d=5),

2. Boston Housing data (n≈ 500,d=14) : Consists of housing values in suburb

area of Boston (Harrison and Rubinfeld, 1978),

3. Concrete Compressive Strength data (n≈ 2000,d=9) : This data set com-

prises of important attributes to determine concert compressive strength in

a civil engineering problem domain (Yeh, 1998),

4. KEGG Metabolic Network data (n≈ 50000,d=22): KEGG metabolic path-

way details can be used to model directed relational or reaction networks

between pathways (Shannon et al., 2003).

Last three data sets were downloaded from UCI Machine Learning Repository

(Bache and Lichman, 2013). Figure 4.3 shows the convergence speed of two algo-

rithms with the number of iterations. In all cases, Algorithm 3 converges faster

than Algorithm 2, providing the same error. Though convergence speed is not a

dominant factor with our regression problem (transcriptome-proteome data), Al-

gorithm 3 well be a better solution for large regression problems (data sets with

very high dimensionality).
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Figure 4.3: Blue and red lines represent the convergence of Algorithm 2 and
Algorithm 3 respectively. (A) represents the transcriptome-proteome data set
(n≈ 2000,d=5) from Chapter 3 and (B) Boston Housing data (n≈ 500,d=14),
(C) Concrete Compressive Strength data (n≈ 2000,d=9) and (D) KEGG
Metabolic Network data (n≈ 50000,d=22) were downloaded from UCI Machine
Learning Repository (Bache and Lichman, 2013). In all cases, Algorithm 3
converges faster than Algorithm 2.

4.2 Quantile Regression (QR) - Model 2

Quantile regression is desirable if we are interested in conditional losses, where the

user can define the outliers to be selected either with positive or negative losses.

The main advantage of this technique over the ordinary least square (OLS) tech-

nique (Equation (3.2)), is that the outlier detection is more robust with respect

to the response measurements. In fact, OLS method is inefficient if the errors are

non-normal. However, QR provides a wide description of the data by looking at

impact of a covariate on the entire distribution of outputs, not merely the condi-

tional mean (Koenker and Geling, 2001; Koenker, 2005).
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QR has been widely used in many real world applications such as economics (Hen-

dricks and Koenker, 1992; Koenker, 2005), medicine (Cole and Green, 1992; Hea-

gerty and Pepe, 1999) and survival analysis (Koenker and Geling, 2001) to detect

outliers in an asymmetric problem domain. Here we use quantile regression for

the first time with joint omic measurements, to detect outliers with negative losses

(measured abundance lower than predicted - P < P̂ ) as likely candidate for post-

translational regulation.

Different weight will be assigned to negative and positive losses, where y−(〈w,x〉+
b), is considered as the loss function. Parameter τ ∈ (0, 1) is used to define the

quantile of interest and τ = 0.5 represents symmetric error with conditional median

(Koenker, 2005). Quantile loss is given as ρτ (y − (〈w,x〉+ b)) where

ρτ (z) =

{

τ · (z) if (z) ≥ 0,

−(1− τ) · (z) otherwise.
(4.9)

The outliers of our interest (i.e. in our case (y−(〈w,x〉+b)) < 0) can be extracted

by setting the required τ value in Equation (4.10),

min
w,b

∑

i

{ρτ (yi − (〈w,xi〉+ b))} (4.10)

As shown in Equation (4.11), linear programming in MATLAB environment was em-

ployed to solve quantile regression problem.

min
u,v,w,b

m∑

i

[τui + (1− τ)vi]

s.t. yi − f(xi) = ui − vi, ∀i
ui ≥ 0, vi ≤ 0 (4.11)

4.3 Validating ORR and QR Models

Hawkins et al. (1984)’s synthetic data set was employed to validate ORR model

(Model 1). This is a popular data set, specially used to detect outliers with

symmetric loss (both positive and negative losses) regression problem (Rousseeuw

and Leroy, 1987; Colin, 2002; Atkinson and Riani, 2000; Hadi, 1992). This data set

contains 75 samples with three input features and first 14 samples are considered

as outliers. Outlier samples are divided into two groups; group 1 - sample 1 to 10
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with positive losses and group 2 - sample 11 to 14 with negative losses. However, a

classical regression outlier detection techniques can only detect sample 12, 13 and

14 as outliers (mainly group 2) (Rousseeuw and Leroy, 1987). We set µ to 0.1867

to obtain the 14 outliers and λ and ǫ were set to 0.01 and 0.00001 respectively.

Interestingly, all 14 outliers were detected (observations 1 − 14) and they were

also clustered into two groups. Figure 4.4(A) shows the detected outliers i.e.

observations 1 − 10 (group 1) in circles and observations 11 − 14 (group 2) in

crosses.

Boston Housing Data (n≈ 500,d=13) from UCI Machine Learning Repository

(Harrison and Rubinfeld, 1978; Bache and Lichman, 2013) was used to detect

one-side outliers (either with positive or negative losses) using QR model (Model

2). Here, majority of the outliers were found with positive losses by simply using

a linear regression model (i.e. we assumed data with larger error as outliers).

Therefore, by setting τ = 0.96, we obtained the most dominant 20 outliers only

with positive losses using QR model. Figure 4.4(B) shows the 20 data points de-

tected as outliers only with positive losses. Thus, QR model is capable of detecting

one-side outliers.

Figure 4.4: Validating outlier detection by ORR and QR models. (A) ORR
model validation was carried out using Hawkins et al. (1984)’s synthetic data
set. Circles represent the group 1 (observations 1 − 10) and crosses represent
the group 2 (observations 11 − 14). (B) QR with an asymmetric loss model
was validated using Boston Housing data in UCI Machine Learning repository
(Harrison and Rubinfeld, 1978; Bache and Lichman, 2013) data set. Red circles
represent the most dominant 20 outliers (only with positive losses) detected by
setting τ parameter to 0.96.
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4.4 Results

Five best features at the transcriptome level (i.e. mRNA abundance, ribosome

occupancy, ribosome density, tAI and codon bias ) of Saccharomyces cerevisiae

were employed as the inputs for the regression models and the respective protein

abundances were used as the outputs. With linear regression model (Model 0) in

Chapter 3, we used a simple empirical approach to detect outliers by selecting the

proteins that are lying further away from the regression line. However, here we

use more mathematical or systematic ways of detecting outlier using ORR and

QR models. Further, with Model 0, we used 2.5% as the cut-off boundary and

obtained 50 samples as the bench mark number of outlier proteins to prove our

hypothesis. Therefore, with new ORR and QR models also we obtained 50 samples

as outliers by setting µ = 0.975 and τ = 0.025 respectively. Figure 4.5 shows the

three regression plots (Model 0, 1 and 2) with the detected outlier points as red

circles. We observed that, all three regression models gave a good level of protein

abundance prediction, i.e. R2 = 0.86 for simple linear regression (Model 0), R2 =

0.86 for ORR model (Model 1) and R2 = 0.85 for QR model(Model 2). Further, we

also compared the prediction outputs of ORR and QR models. Figure 4.6 shows

that these two new regression approaches produce highly correlated (R2 = 0.97)

outputs.

Figure 4.5: Outlier detection by three regression models: solid lines represent
the regression of each model and outliers are shown in red colour circles. (A)
Linear Regression (Model 0 ) in Chapter 3 - blue dashed line shows the 2.5% cut-
off boundary where the proteins found far away from the regression line were
obtained as outliers (solid line R2 = 0.86) (B) Outlier Rejecting Regression
(Model 1) - selects the least accurate 50 outliers using symmetric squared loss
(solid line R2 = 0.86) and (C) Quntitle Regression (Model 2) - blue dashed line
represents the R2 = 1 line where y = f(x). However, this model selects the
proteins only with negative errors where y − f(x) < 0 (solid line R2 = 0.85).
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Figure 4.6: Comparison of ORR and QR output predictions. These two models
produce highly correlation of R2 = 0.97 outputs, showing the agreement in
model fitting, but they identify different data as outliers (see Figure 4.7) due to
the difference between imposed loss functions.

4.4.1 PTR Detection in Outlier Proteins

Similar to the previous Chapter (Section 3.4), functional annotation check was

performed at the coarse level and finer level, to provide evidence of post-translation

regulation of these outlier proteins. Table 4.1 shows the statistical confidence levels

obtained by the outlier sets (size 50) of the three regression models at the coarse

and finer level functional annotation checks.

Table 4.1: Function annotation check results of the three set of outliers (each
set contains 50 proteins). 1000 random samples were used obtain the p-values

Regression Model
Coarse Level Finer Level

No of genes Confidence Level No of genes Confidence Level

Model 0 44 p ≤ 0.020 37 p ≤ 2.11 × 10−10

Model 1 40 p ≤ 0.048 35 p ≤ 8.31 × 10−09

Model 2 45 p ≤ 9.89× 10−04 38 p ≤ 2.94 × 10−11

Outlier Rejecting Regression (ORR) PTR Detection

Figure 4.5(B) shows the ORR model outliers as red circles in the predicted ver-

sus true protein concentrations scatter plot. λ value was determined by cross-

validation and set to 0.01. Forty proteins were found with PTM key word at

the coarse level providing a p ≤ 0.048. Thirty three proteins were detected at

the finer level annotation check (PTMs+motif) with a high confidence level of
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p ≤ 8.31 × 10−09 . Though these confidence levels are lower than our previous

model (Model 0) outliers, these p-values can also be considered as high confidence

levels with respect to the confidence level threshold p < 0.05 of accepting a hy-

pothesis in biomedical research (McDonald, 2009). Thus, the outliers detected by

ORR model are also highly enriched with post-translational regulation.

Quantile Regression (QR) PTR Detection

By setting the τ value to 0.025, we obtained 50 proteins with negative errors (P <

P̂ ) from the upper region of the regression plot (i.e. see the Figure 4.5(C)). Accord-

ing to this method, all the other proteins had positive error values (P > P̂ ). Thus,

these results are more appropriate with respect to our main hypothesis (i.e. pro-

teins with P < P̂ are more likely to be post-translationally regulated). We carried

out both coarse and finer levels annotation check with the new outlier set. Forty-

five proteins were detected at the coarse level check providing p ≤ 9.89 × 10−04

and with finer level annotation check 38 proteins found with PTMs + motifs in-

formation giving p-value < 2.94× 10−11.

All three regression models have high level of confidence (p < 0.05) to support

our hypothesis at both coarse level and finer level. Note that quantile regression

model gives the highest confidence level to detect post-translationally regulated

proteins as outliers by excluding the false positives.

4.4.2 Biological Insights of Outlier Proteins

Figure 4.7 shows the overlap of the outlier proteins between the three regression

models in a Venn diagram. We found 92 proteins as the union of the Venn diagram

and 17 as the outlier intersection of the three models. Appendix D shows the 92

outlier proteins detected by the three regression models with their corresponding

outlier detection techniques. Here, we use gene enrichment analysis and protein-

protein interaction networks to extract more biological interpretations of these

outlier proteins.
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Figure 4.7: Distribution of outlier proteins between the three regression models
in a Venn diagram.

4.4.2.1 Gene Enrichment Analysis

Gene Ontology (GO) and pathway analyzes were carried out using BiNGO 2.44

(a plug-in for Cytoscape) (Maere et al., 2005) and PANTHER (Thomas et al.,

2003) analysis tools respectively. WebGestalt web tool (Zhang et al., 2005) was

also employed to enhance the analysis results using multiple large databases.

Table 4.2 shows the most dominant GO terms and their respective p-values found

with the union set of outliers (92 proteins). Additionally, Figure 4.8 illustrates

these annotations in a hierarchical structure under three main categories; (A) Bio-

logical Process, (B) Cellular Components and (C) Molecular Functions. Note that

ribosomal GO terms were frequent in all three categories. Further, KEGG and

Wikipathway results obtained by WebGestalt web tool (Table 4.3) also showed

several keywords related to ribosomal proteins. As mentioned in Chapter 3, ri-

bosomal proteins react with several post-translational regulation processes such

as phosphorylation, N-terminal acetylation, N-terminal methylation and removal

of methionine (Carroll et al., 2008). However, in previous chapter we showed

that ribosomal protein did not unduly influence the model failures of the global

regression model.

Pathway analysis was carried out using consensus (intersections) and union set

of outliers. Interestingly, with all the combinations (considering two models at a

time and all three), p53 pathway and p53 pathway feedback loop significantly over-

represented in these outlier proteins. Shin et al. (2013)’s study showed that protein

degradation process of post-translational regulation enables p53 regulations in a

robust manner. In fact, during DNA damage conditions, p53 levels are down
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Table 4.2: Most dominant (over-represented) GO keywords by BiNGO Analysis

GO-ID Description No (%) of Genes Corrected p

Biological Process

GO : 0009058 biosynthetic process 51(56.6%) 3.76× 10−03

GO : 0006725 cellular aromatic compound process 8 (8.8%) 4.42× 10−02

GO : 0044249 cellular biosynthetic process 47(52.2%) 3.68× 10−03

GO : 0030490 maturation of SSU-rRNA 8(8.8%) 4.80× 10−03

GO : 0000462 maturation of SSU-rRNA from tricistronic rRNA 8(8.8%) 3.76× 10−03

GO : 0015146 pentose transmembrane transporter activity 2(2.2%) 4.42× 10−02

GO : 0010608 post-transcriptional regulation 12(13.3%) 3.00× 10−03

GO : 0032268 cellular protein metabolic process 12(13.3%) 3.76× 10−03

GO : 0051246 protein metabolic process 12(13.3%) 2.82× 10−02

GO : 0006417 regulation of translation 12(13.3%) 1.60× 10−03

GO : 0000028 ribosomal small subunit assembly 3(3.3%) 4.89× 10−02

GO : 0016072 rRNA metabolic process 11(12.2%) 4.62× 10−02

GO : 0006364 rRNA processing 11(12.2%) 3.96× 10−02

GO : 0070181 SSU rRNA binding 2(2.2%) 4.42× 10−02

GO : 0006412 translation 28(31.1%) 7.16× 10−03

Cellular Component

GO : 0032991 macromolecular complex 42(46.6%) 1.92× 10−02

GO : 0043228 non-membrane-bounded organelle 31(34.4%) 3.89× 10−03

GO : 0030529 ribonucleoprotein complex 24(26.6%) 7.73× 10−05

GO : 0043232 intracellular non-membrane-bounded organelle 31(34.4%) 3.89× 10−03

GO : 0044444 cytoplasmic part 58(64.4%) 1.74× 10−02

GO : 0005840 ribosome 22(24.4%) 9.84× 10−09

GO : 0005829 cytosol 29(32.2%) 6.09× 10−06

GO : 0044445 cytosolic part 23(25.5%) 1.41× 10−11

GO : 0022626 cytosolic ribosome 21(23.3%) 1.41× 10−11

GO : 0030686 90S preribosome 6(6.6%) 4.42× 10−02

GO : 0033279 ribosomal subunit 20(22.2%) 1.68× 10−08

GO : 0015934 large ribosomal subunit 11(12.2%) 3.99× 10−04

GO : 0015935 small ribosomal subunit 9(10.0%) 9.14× 10−04

GO : 0022625 cytosolic large ribosomal subunit 11(12.2%) 1.06× 10−05

GO : 0022627 cytosolic small ribosomal subunit 9(10.0%) 3.47× 10−05

Molecular Function

GO : 0005198 structural molecule activity 21(23.3%) 8.58× 10−06

GO : 0003735 structural constituent of ribosome 20(22.2%) 1.68× 10−08

GO : 0016829 lyase activity 7(7.7%) 2.29× 10−02

GO : 0016882 cyclo-ligase activity 2(2.2%) 2.82× 10−02

GO : 0015146 pentose transmembrane transporter activity 2(2.2%) 4.42× 10−02

GO : 0070181 SSU rRNA binding 2(2.2%) 4.42× 10−02

Third column represents the number and the percentage of genes from the outlier sets
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Figure 4.8: Hierarchical structure of the significantly over-represented GO terms
using union outlier proteins (N=92): (A) Biological Process (B) Cellular Com-
ponent and (C) Molecular Function are the three main categories. Each node
represents a GO term and branches divide into smaller and more specific cate-
gories from top to bottom. Size of the node demonstrates the number of genes
related to each GO term. Level of statistical significance associated with each
GO term is illustrated as pseudo-colour where the red being most significant.
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Table 4.3: Gene Enrichment Analysis by WebGestalt Tool

ID Description Data Source No(%) of Genes Corrected p

3010 ribosome KEGG 19 (13.0%) 5.70× 10−13

WP210 cytoplasmic ribosomal proteins Wikipathways 17(11.1%) 1.08× 10−12

WP224 aerobic glycerol catabolism Wikipathways 3(12.7%) 1.05× 10−02

WP178 isoleucine degradation Wikipathways 2(20.6%) 1.77× 10−02

WP112 carbon metabolism Wikipathways 5(4.4%) 1.92× 10−02

WP340 glucose fermentation Wikipathways 3(7.4%) 2.04× 10−02

WP515 glycolysis and gluconeogenesis Wikipathways 3(5.4%) 4.13× 10−02

WP253 glycolysis Wikipathways 2(8.0%) 4.22× 10−02

WP416 histidine, purine & pyrimidine Wikipathways 3(4.6%) 4.22× 10−02

WP390 serine-isocitrate lyase Wikipathways 2(8.5%) 4.22× 10−02

regulated by disrupting the protein stability of the proteins as a post-translational

regulation (Shin et al., 2013; Šmardová et al., 2005). Hence, over-representation of

p53 related pathways with the outlier proteins re-confirmed our initial hypothesis

with another biological explanation (i.e. protein degradation process by post-

translational regulation enhance p53 regulation).

Table 4.4 shows the enrichment of functional annotations among the common

outlier genes. All combinations provide high confidence levels for detecting post-

translationally regulated proteins (p < 0.05). We observed that, ORR (Model 1)

and QR (Model 2) models have the highest number of common genes and these are

found in the upper region (P < P̂ ) of the regression plot which, as noted earlier, is

our region of interest for this problem. In the following section we further discuss

the gene enrichment of the common genes by taking two models at a time and

finally all the models together.

Table 4.4: Finer level PTM annotation check for three outlier sets. 1000 random
trials were used in each case.

Outlier Sets No of Common Genes Annotation Check

Model 2 and Model 1 20 p ≤ 2.61× 10−05

Model 3 and Model 1 23 p ≤ 1.74× 10−08

Model 2 and Model 3 32 p ≤ 4.94× 10−11

All three outlier sets 17 p ≤ 1.04× 10−08

(i) Linear Regression (Model 0) and Outlier Rejecting Regression (Model

1) Outliers

GO enrichment analysis showed that 20 common genes over-represent in catalytic

activities and metabolic biological processes. Six main pathways were detected
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by the PANTHER classification system including p53 pathway and p53 pathway

feedback loop. We also subjected the non-common genes between these two sets

into GO and pathway analysis. Those were enriched with 15 ribosomal proper-

ties and four pathways such as; valine biosynthesis, isoleucine biosynthesis, DNA

replication and glycosis.

(ii) Linear Regression (Model 0) and Quantile Regression (Model 2)

Outliers

Figure 4.7 shows 23 proteins that are common to linear regression and quantile

regression models. Thirteen proteins have catalytic molecular functions and 14

proteins are enriched with metabolic GO biological process. Similar to the previous

comparison (linear regression and ORR model outliers), these consensus genes also

showed p53 pathway and p53 feedback loop as dominant pathways. Further, non-

common genes in linear regression showed ribosomal properties.

(iii) Outlier Rejecting Regression (Model 1) and Quantile Regression

(Model 2) Outliers

Thirty-two genes were common between these two outlier sets. Catalytic molecular

functions were found under GO analysis and p53 pathway, p53 pathways feedback

loop and DNA replication were detected as the main pathways in pathway analysis.

(iv) All Three Outlier Sets (Model 0, 1 and 2)

Figure 4.9 shows the GO enrichment and pathway analysis results of the 17 genes as

pie charts. With 17 common genes to all three outlier sets, we observed that several

biological process and molecular function GO terms. Note that p53 pathway and

p53 pathway feedback loop are the only two pathways we found with these common

genes. This confirmed that the duo combination results are accurate (i.e. all duo

combinations comprised with the two p53 pathways).

4.4.2.2 Protein-Protein Interaction Networks

Detailed physical protein-protein interaction network was generated BioGRID

database (Stark et al., 2006) using union set of outliers (Figure 4.10). We observed
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Figure 4.9: GO and Pathway anaylsis for the 17 gene common to all three outlier
sets

two main clusters among the physical interactions. Large cluster consists of ribo-

somal subunits such as RPS13, RRP2B, RPS9B, RPS14A, RPS16B, RPL17A and

RPL17B, mostly detected by Model 0. As we explained earlier, ribosomal pro-

teins are active in translational and post-translational regulations (Carroll et al.,

2008; Warner, 1999). The small cluster with hub PHO88, have proteins that are

involved in phosphate ion transportation and protein maturation which occur due

to phosphorylation post-translational regulation (Burnett and Kennedy, 1954).

Additionally, we also employed GeneMANIA web tool (Warde-Farley et al., 2010)

to uncover further biological relationships using several other protein-protein in-

teraction networks. Figure 4.11 shows the co-expression, genetic, predicted and

physical networks obtained by the GeneMANIA web tool. We observed that co-

expression network gives the largest coverage among the outlier proteins. Hence,

we employed random samples with size 92 (same as union outlier set) and gen-

erated the interaction networks to observe the significance of the co-expression

network generated using our outlier proteins. However, all the random samples

showed a high coverage with the co-expression network and Figure 4.12 shows

two examples of co-expression networks produced using random samples. There-

fore, co-expression results of the union outlier set is not significant with respect

to random samples. The reason for this observation is, GeneMANIA web tool

employs transcript level gene expression data but not proteomic measurements

where the post-translation regulation happen. Thus, the co-expression network

is not suitable to measure significance of proteomic level properties such as post-

translation regulation. We also observed that both BioGRID and GeneMANIA
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Figure 4.10: BioGRID physical interaction network constructed using union out-
lier set (N=92): node size and colour represent the number of interactions made
by a particular protein and the regression model used to detect outlier protein
respectively. Edge colour demonstrates experimental setup used to define the
interactions and those are: yellow-affinity capture- MS, green two hybrid, blue-
PCA (protein fragment complementation assay) and gray for the interactions
defined by two or more experimental settings. Edge number representation as
follows: 1) affinity capture by western, two-hybrid; 2) affinity capture by MS,
affinity capture by western, two-hybrid, reconstituted complex; 3) affinity cap-
ture by MS, affinity capture by western, reconstituted complex respectively and
co-purification.

tools produced similar structure physical networks, where ribosomal proteins tend

to cluster together.

4.5 Discussion

All three regression models showed high confidence levels for detecting post-translationally

regulated proteins as outliers. However, our main hypothesis relies on the protein

abundance difference between measured and the predicted proteins i.e. PTR ef-

fects on the protein stability thus, proteins with PTR start to degrade faster. In
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Figure 4.11: Protein-protein interaction networks obtained by GeneMANIA web
tool for union outlier set (N=92): nodes and edges represent the outlier pro-
teins and their interactions respectively. Pink colour nodes represents ribosomal
proteins (A) Co-expression network with purple edges which gave the highest
coverage of interactions (58.33%). (B) Green colour edges represents genetic
interactions with 18.58% of coverage. (C) Predicted interaction network repre-
sents predicted relationships with other organisms such as rat, worm, human
(11.06% of coverage) and finally (D) shows the physical interaction network
which is similar to BioGRID physical interaction network.

fact, proteins with predicted protein abundance (P̂ ) greater than measured pro-

tein abundance (P ) are more likely to be post-translationally regulated. Linear

regression (Model 0) and ORR (Model 1) select outliers with both negative and

positive losses (P < P̂ and P > P̂ ). Thus, these two techniques have a disadvan-

tage of adding false positive to the results. However, linear regression model from

previous chapter selects only two proteins from the lower region and those two

were not annotated as post-translationally regulated. Therefore, linear regression

has less impact on detecting P > P̂ proteins as outliers on the final outcome. In
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Figure 4.12: Co-expression networks obtained using random gene samples with
sample size 92 (similar to the union outlier set): (A) and (B) are two examples
of co-expression networks generated using random samples. All the random
samples gave high co-expression network coverage which is similar to our union
outlier set. Therefore, outlier co-expression network results are not significant.
GeneMANIA uses transcript level gene expressions to generate co-expression
networks so that it is not capable of detecting proteome level relationships as
post-translational regulation.

contrast, ORR model selects 15 proteins from the lower region of the regression

line as outliers and seven of them did not show post-translational regulation. This

caused low confidence level of detecting post-translationally regulated proteins as

outliers with respect to the other two models. In order to overcome this problem,

QR model (Model 2) was introduced. This model allows us to use asymmetric er-

ror and select outliers either with negative or positive losses. Hence, according to

our problem domain we selected outliers only from with negative losses (upper re-

gion in a regression plot) and tested the over-representation of post-translationally

regulated proteins as outliers. Interestingly, these outliers showed the highest con-

fidence level of detecting post-translationally regulated proteins. Thus, QR model

is the best technique to detect post-translationally regulated proteins as outliers

using a global regression approach. Gene ontology analysis on outlier proteins also

provided evidence for post-translational regulation and pathway analysis further

supported our hypothesis by over-representing p53 pathways which are directly

associated with the protein degradation process of post-translational regulation.
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4.6 Summary

In this chapter, we presented two novel outlier detection techniques at the transcriptome-

proteome interface and we compare our results with the linear regression approach

used in previous chapter (Chapter 3). ORR model selects a certain fraction of the

data as outliers while performing the global regression and QR model minimizes

the error to be one sided to detect outliers only with negative losses. All outlier sets

show high confidence levels in functional annotation checks providing evidence for

post-translational regulation. In fact, quantile regression (Model 2) gave the high-

est confidence level suggesting it as the best method to detect post-translationally

regulated proteins from a global regression due to the asymmetric conditional

loss property. Thus, these data-driven approaches can be used to cut down the

experimental work space to detect proteins with post-translational regulation.





Chapter 5

Numerical Precision in

Transcriptome-based Inference &

Coherence with Protein

Prediction

High-throughput microarray and RNA-Seq measurements are widely used in anal-

ysis of transcriptome-proteome interface and these are measured to very high nu-

merical precision (i.e. mRNA concentrations are measured to several decimal

places e.g. 3.698567190672298). However, these high numerical precision occur

due to mRNA amplification process in these high-throughput measuring tech-

niques to obtain more accurate relative abundances (Figure 5.1) (Nygaard et al.,

2003; Ozsolak and Milos, 2011). Therefore, we investigate whether these high nu-

merical precision carry more additional information with respect to low precision

binarized data. In fact, in this chapter, we compare machine learning inferences

between these two transcriptomic measurements at the low (binary measurement

as 0 or 1) and high (continuous measurement as 5.786861236001966) numerical

precision. Firstly, we consider transcriptomic layer and perform classification,

clustering, time series analysis and cross platform analysis using only mRNA con-

centrations. Secondly, we develop a protein abundance predictor based on the

five feature regression model in Chapter 3 to investigate protein prediction ca-

pabilities between these two techniques. Here, we also explore the variability of

the prediction accuracies with respect to continuous and binary mRNA concen-

trations. Further, we use quantile regression outlier detection technique which is

considered as the best technique among the techniques we used in Chapter 4 to de-

tect post-translationally regulated proteins and compare PTR detection capability
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between microarray and RNA-Seq techniques under low and high numerical pre-

cision. This is an extended experimental setting of our PTR detection framework

under different transcriptomic inputs.

5.1 Numerical Precision in Microarray and RNA-Seq Mea-

surements

Microarray and RNA-Seq are the most commonly used high-throughput transcrip-

tome measuring techniques and Section 2.3.1 in Literature Review chapter gives

an detailed description of these two measuring technique. However, both these

techniques amplify the number of mRNA strands found in the actual cell to high

number of copies to reduce the measuring errors and improve the accuracy of the

relative abundance (Nygaard et al., 2003; Ozsolak and Milos, 2011). Figure 5.1

shows the process of amplifying actual mRNA strands per cell into high number

of copies. Therefore, it is important to investigate whether these high numeri-

cal precision obtained by mRNA amplification carry additional information with

respect to a binary representation of mRNA concentration providing the gene sta-

tus as switch on or off. We believe that comparing of machine learning inferences

between continuous and binarized data will allow us to uncover the mystery be-

hind the numerical precision. In fact, if the machine learning performance drops

by converting continuous data to binary, we can justify that the high numerical

precision carries more additional information rather than gene on/off signal.

Figure 5.1: Amplification of mRNA copy numbers in transcriptome measuring
techniques: both microarray and RNA-Seq measuring techniques amplify the
number of mRNA copies found in a cell to a high number of copies to improve
the accuracy of relative abundance.

5.2 Transcriptomic Inferences

In this section, we only use transcriptomic data (mRNA abundance) and perform

different machine learning inferences using continuous (high numerical precision)
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and binary (low numerical precision data) measurements to observe the informa-

tion loss under different binarization techniques. As we discussed in the Literature

Review (Chapter 2), RNA-Seq technique is more powerful to detect qualitative

attributes such as identifying novel exon junctions, RNA-editing events and new

isoforms with respect to microarray technology (Wang et al., 2009; Mortazavi

et al., 2008; Fu et al., 2009; Marioni et al., 2008). Tuna and Niranjan, 2009’s

study showed that microarray numerical precision carries no additional informa-

tion and binary representation of the data is sufficient to classify cancer and nor-

mal patients. Shmulevich and Zhang, 2002 had a similar perspective on microar-

ray measurements and showed that binarized mRNA expression levels can solve

classification problems accurately by considering the Hamming distance between

signatures as distance metric. Friedman et al., 2000 used a probabilistic Bayesian

network to observe the gene interactions. They employed a multinomial model

with quantized gene expressions under three levels. Those are under-expressed

(-1), normal (0) and over-expressed (1). This model was able to detect casual re-

lationships and interactions among genes other than the correlation values. Thus,

as a novel approach we explore the behaviour of the RNA-Seq measurements in

binary world and explore its impact on classification and clustering accuracies.

Also we compare RNA-Seq inference capability with microarray data to analyze

the quantitative performances between these two techniques. In fact, our ultimate

goal is to observe numerical precision inferences of these two high-throughput

transcriptome measuring techniques.

5.2.1 Feature Selection

Our first approach was to select the most dominant genes (best features) for clas-

sification, clustering and other analysis purposes. This is an important process

to overcome over-fitting problem in machine learning techniques. Thus, we used

the Fisher score feature selection method similar to Golub et al., 1999b’s study

to obtain the most dominant features. In fact, genes were ranked according to a

univariate metric and selected the highest ranking genes as the best features. The

scoring reflects the discriminative power of each feature. Fisher score for gene g is

given below;

F = abs

∣
∣
∣
∣

µ(1)g − µ(2)g
σ(1)g + σ(2)g

∣
∣
∣
∣
∀ ∈ g (5.1)

where µ(i)g and σ(i)g are the mean and standard deviation of gene g in class i

and i ∈ {1, 2}. In all cases we used 200 features as the maximum no of features.
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5.2.2 Binarization Techniques

After selecting the best features (genes), four different types of binarization tech-

niques were used to convert high numerical precision continuous data to low nu-

merical precision binary data. Those are,

1. Global Mean Binarization (B1) - Obtained the mean of the total data

set and gene expression below the mean considered as 0 and the rest as 1. (if

Xi ≥ mean, then Xi =1 or else Xi =0 ; i.e Xi denotes a continuous mRNA

abundance).

2. Gene by Gene Mean Binarization (B2) - Figure 5.7 shows distribution of

gene expression of the best gene selected from the Fisher Score technique for

bladder cancer using both RNA-Seq and microarray techniques. This figure

illustrates that a single gene provides sufficient information to do a better

classification. Thus, we obtained the best 200 genes from the feature selection

and binarization carried out for each gene separately. Mean expression value

was computed for each gene and samples below mean were converted to 0

and the rest converted to 1.

3. Global GMM Threshold Binarization (B3) - Tuna and Niranjan, 2009’s

study used Gaussian Mixture Model (GMM) technique to obtain the thresh-

old value to binarize data. This approach was motivated by Zhou et al.,

2003’s study where two component GMM was employed to model highly ex-

pressed and not expressed genes in a sample. One component corresponds

to highly expressed genes and the other for not expressed genes. Figure 5.2

shows an example of fitting a two GMM fitting model with to a microarray

gene. Data distribution of a the best genes after the feature selection (Fig-

ure 5.7) also showed that the two component mixture model is more suitable

to classify cancer and normal samples. Thus, the threshold value was ob-

tained by fitting a two centres GMM, similar to Zhou et al., 2003. Mean (µ)

and standard deviation (σ) values were used to obtain the threshold value as

given below;

Th =
µ(1) + σ(1) + µ(2)− σ(2)

2
(5.2)

(Zhou et al., 2003) where µ(1) and σ(1) belong to class 1 (cancer) and µ(2)

and σ(2) belong to class 2 (normal). In Gobal GMM method we use total

data set to fit the mixture model. Gene expressions less than the threshold
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value considered as 0 and the rest considered as 1. Netlab package in a MATLAB

environment was employed to fit data into Gaussian Mixture Models.

4. Gene by Gene GMM Threshold Binarization (B4) - We employed the

same two center GMM model gene by gene for the best 200 genes (i.e each

gene obtained a threshold value for the binarization).

Figure 5.2: Example of fitting a two component GMM model with a microarray
gene

5.2.3 Classification and Clustering

Continuous and binary mRNA measurements from microarray and RNA-Seq tech-

niques were compared using classification and clustering machine learning ap-

proaches. K-Nearest neighbour (KNN) algorithm (Dudani, 1976) and Support

Vector Machine (SVM) (Vapnik, 1998) linear classifiers were employed for classi-

fication purposes and K-Means clustering (MacQueen et al., 1967) and Spectral

clustering (Shi and Malik, 2000) techniques were used to obtain clustering results.

With both clustering and classification methods, area under the curve (AUC) was

used to obtain the accuracy in 200 bootstrap iterations. AUC is the best technique

to measure accuracies when the number of samples are not balanced between the

two or more classes Chawla (2005). Hierarchical clustering was also employed to
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generate dendrograms of cluster classes to compare clustering accuracies (Eisen

et al., 1998).

5.2.3.1 Data sets

Several data sets were employed to compare microarray and RNA-Seq measure-

ments at the transcriptome layer. Table 5.1 shows microarray and RNA-Seq the

data sets used for classification and clustering experiments. All RNA-Seq data

sets were downloaded from TCGA Cancer Genome Atlas public data portal under

National Cancer Institute (http://cancergenome.nih.gov/dataportal/) as available

on Feb, 2014 [TCGA].

Table 5.1: Microarray and RNA-Seq data sets used for anlysis purposes

Measuring
Cancer Reference No. of Samples

Technique Type Genes (Can/Nor)

Microarray

Lung adenocarcinoma Bhattacharjee et al., 2001 12600 203 (186/17)
Ovarian Bonome et al., 2008 22283 196 (186/10)
Soft-tissue sarcoma Barretina et al., 2010 22283 158 (125/37)
Head & Neck squamous carcinoma Estilo et al., 2009 12625 59 (31/28)
Colon adenocarcinoma Alon et al., 1999 2000 62 (40/22)
Bladder Dyrskjøt et al., 2004 2000 60 (51/09)
Stomach D’Errico et al., 2009 54675 69 (38/28)

RNA-Seq

Breast invasive carcinoma TCGA (UNCC) 20532 195 (127/11)
Bladder urothelial carcinoma TCGA (UNCC) 20532 67 (56/11)
Lung adenocarcinoma cancer TCGA (UNCC) 20532 162 (125/37)
Stomach adenocarcinoma TCGA (MSGSC) 22346 271 (238/33)
Liver hepatocellular carcinoma TCGA (UNCC) 20532 25 (16/9)
Head and Neck squamous cell carcinoma TCGA (UNCC) 20532 294 (263/31)

UNCC stands for University of North Carolina Cancer Center and MSGSC stands for
Micheal Smith Genome Science Centre.

5.2.3.2 Results

Figure 5.3 shows the continuous and binarized classification results using SVM

classifier for RNA-Seq and microarray stomach cancer transcriptome data. Here,

we compare the continuous classification results with all four types of binarization

techniques i.e. (B1) Global Mean Binarization, (B2) Gene by Gene Mean Binariza-

tion, (B3) Global GMM Threshold Binarization and (B4) Gene by Gene GMM

Threshold Binarization in Section 5.2.2. We observed that both measurements

(microarray and RNA-Seq) perform similarly in continuous and binary classifica-

tion and gene based binarization techniques (B2 and B4) perform better than the
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Figure 5.3: SVM classification performance on stomach cancer using continuous
and binarized data (using 100 top genes in each experiment). (A) shows the
RNA-Seq classification performance and (B) represents the microarray classi-
fication accuracies. 200 bootstrap cross validation trails were carried out to
obatin the accuracy variation of each experiment and the four types of bina-
rization techniques are: (B1) Global Mean Binarization, (B2) Gene by Gene
Mean Binarization, (B3) Global GMM Threshold Binarization and (B4) Gene
by Gene GMM Threshold Binarization

global mean techniques (B1 and B3). Therefore, precision reduction did not influ-

ence the RNA-Seq and microarray classification performance. We also performed

a supervised machine learning inferences using classification and clustering tech-

niques and obtained AUC accuracies. Table 5.2 shows the classification and clus-

tering performance of RNA-Seq measurements and Table 5.3 shows the microarray

analysis results. In all cases, both microarray and RNA-Seq measurements per-

form similarly, confirming that binarization does not affect either classification

or clustering performances. Thus, high precision of transcriptome measurements

(continuous data) obtained by RNA-Seq and microarray techniques do not carry

any additional information, where the binary data is sufficient to perform a better

classification and clustering analysis. Here, we also observed that B4 (gene by gene

GMM threshold) binarization technique performs better compared to other three

binarization techniques. Therefore with the latter experiments, we will mainly

consider B4 binarization technique to convert continuous mRNA abundance data

to binary representation. Hierarchical clustering was also carried out with contin-

uous and binarized (using B4) data from both RNA-Seq and microarray data sets.

Figure 5.4 and Figure 5.5 show hierarchical clustering results for bladder cancer
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using RNA-seq and microarray data respectively. See Appendix E for hierarchi-

cal clustering results of all other cancer data sets. These results also confirmed

binarization does not effect on the clustering analysis of RNA-Seq and microarray

transcriptome measurements.

Table 5.2: Classification and clustering accuracies of RNA-Seq cancer data.
Accuracies were calculated for 200 bootstrap sampling using 200 best genes in
each experiment. Cont. stands for Continuous Data and B1, B2, B3, B4 stand
for global mean, gene by gene mean, global GMM and gene by gene GMM
binarization techniques respectively. (+/-) means (no of cancer patients/no of
normal patients)

Cancer Data Type KNN AUC SVM AUC K-Means AUC Spectral AUC

Breast Cont. Data 0.99± 0.01 1± 0 1± 0 1± 0

(+127/-68)

B1 Data 0.87± 0.07 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.03
B2 Data 0.97± 0.01 1± 0 1± 0 0.99 ± 0.01
B3 Data 0.98± 0.01 0.99 ± 4.3× 10−4 0.96 ± 0.03 0.94 ± 0.03
B4 Data 0.99± 0.01 0.99 ± 2.8× 10−4 0.99 ± 5.6× 10−16 0.99 ± 0.01

Bladder Cont. Data 0.98± 0.01 1± 0 1± 0 0.99± 1.3 × 10−15

(+56/-11)

B1 Data 0.93± 0.07 0.98 ± 0.02 0.98 ± 0.02 0.99 ± 0.01
B2 Data 0.96± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.94 ± 0.06
B3 Data 0.99± 0.01 1± 0 1± 0 0.98 ± 0.01
B4 Data 1± 0 1± 0 1± 0 0.89 ± 0.11

Lung Cont. Data 0.99± 0.01 1± 0 1± 0 0.92 ± 0.09

(+125/-37)

B1 Data 0.85± 0.14 0.86 ± 0.11 0.86 ± 0.11 0.96 ± 0.04
B2 Data 0.99± 0.01 1± 0 1± 0 0.98 ± 0.11
B3 Data 0.99± 0.01 1± 0 0.85 ± 0.05 0.91 ± 0.04
B4 Data 1± 0 1± 0 0.87 ± 0.22 1± 0

Stomach Cont. Data 0.95± 0.03 0.99 ± 0.01 0.99 ± 0.01 0.96 ± 0.03

(+238/-33)

B1 Data 0.85± 0.06 0.97 ± 0.03 0.95 ± 0.02 0.91 ± 0.01
B2 Data 0.95± 0.03 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.11
B3 Data 0.94± 0.02 0.98 ± 0.01 0.90 ± 0.09 0.86 ± 0.01
B4 Data 0.95± 0.04 0.99 ± 0.01 0.99 ± 7.0 × 10−4 0.93 ± 0.09

Liver Cont. Data 0.99± 0.01 1± 0 1± 0 1± 0

(+16/-9)

B1 Data 0.98± 0.01 0.99 ± 0.01 0.99 ± 0.01 1± 0
B2 Data 1± 0 1± 0 1± 0 1± 0
B3 Data 0.95± 0.04 0.99 ± 0.01 1± 0 1± 0
B4 Data 1± 0 1± 0 1± 0 1± 0

Head & Neck Cont. Data 1± 0 1± 0 1± 0 0.91 ± 0.09

(+263/-31)

B1 Data 0.91± 0.05 0.98 ± 0.02 0.98 ± 0.02 1± 0
B2 Data 0.98± 0.01 1± 5.7 × 10−17 1± 1.57 × 10−17 1± 0
B3 Data 0.98± 0.01 0.99 ± 0.01 0.92 ± 0.07 0.88 ± 0.12
B4 Data 1± 0 1± 0 1± 0 1± 0

We then extended our experiments by changing the number of genes used to gen-

erate the SVM classifier. Figure 5.6 shows the classification accuracies of stomach

cancer with respect to the number of genes (features) used to generate the clas-

sifier. Gene expressions were binarized using B4 binarization technique. Both
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Table 5.3: Microarray measurements classification and clustering accuracies for
different cancer types. Bootstrap sampling with 200 trails were used with 200
best genes in each experiment. Cont. stands for continuous data and B1, B2,
B3, B4 stand for global mean, gene by gene mean, global GMM and gene by
gene GMM binarization techniques respectively.

Cancer Data Type KNN AUC SVM AUC K-Means AUC Spectral AUC

Lung Cont. Data 0.96± 0.04 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

(+186/-17)

B1 Data 0.93± 0.06 0.98 ± 0.02 0.98 ± 0.02 0.99 ± 0.01
B2 Data 0.94± 0.05 0.99 ± 0.01 0.99 ± 0.01 0.96 ± 0.03
B3 Data 0.93± 0.06 0.99 ± 0.01 0.98 ± 0.01 0.96 ± 0.03
B4 Data 0.92± 0.07 0.99 ± 0.01 0.99± 2.88 × 10−4 0.97 ± 0.03

Ovary Cont. Data 1± 0 1± 0 1± 0 1± 0

(+186/-10)

B1 Data 1± 0 1± 0 1± 0 0.96 ± 0.04
B2 Data 0.99± 0.01 1± 0 1± 0 1± 0
B3 Data 1± 0 1± 0 0.96 ± 0.03 0.92 ± 0.07
B4 Data 1± 0 1± 0 1± 0 0.96 ± 0.02

Soft Tissue Cont. Data 0.99± 0.01 1± 0 1± 0 0.96 ± 0.03

(+125/-37)

B1 Data 0.99± 0.01 1± 0 1± 0 0.92 ± 0.06
B2 Data 0.99± 0.01 1± 0 1± 0 0.96 ± 0.03
B3 Data 0.99± 0.01 1± 0 0.94 ± 0.06 0.94 ± 0.03
B4 Data 0.99± 0.01 1± 0 0.93 ± 0.07 0.95 ± 0.04

Head & Neck Cont. Data 0.95± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 2.08 × 10−15

(+31/-28)

B1 Data 0.96± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 2.06 × 10−15

B2 Data 0.96± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.01
B3 Data 0.94± 0.03 0.99 ± 0.01 0.91 ± 0.07 0.98 ± 0.01
B4 Data 0.96± 0.02 0.99 ± 0.01 0.99 ± 1.33 × 10−15 0.98 ± 0.02

Colon Cont. Data 0.82± 0.07 0.91 ± 0.04 0.91 ± 0.03 0.89 ± 0.02

(+40/-22)

B1 Data 0.76± 0.07 0.87 ± 0.06 0.87 ± 0.07 0.88 ± 0.03
B2 Data 0.78± 0.07 0.84 ± 0.07 0.84 ± 0.08 0.83 ± 0.07
B3 Data 0.78± 0.07 0.87 ± 0.06 0.80 ± 0.02 0.80 ± 0.01
B4 Data 0.81± 0.07 0.86 ± 0.06 0.82 ± 0.11 0.89 ± 0.12

Bladder Cont. Data 0.92± 0.07 0.99 ± 0.01 0.99 ± 0.01 0.97 ± 0.02

(+51/-09)

B1 Data 0.94± 0.03 0.90 ± 0.02 0.96 ± 0.04 0.96 ± 0.02
B2 Data 0.95± 0.03 0.98 ± 0.02 0.98 ± 0.02 0.89 ± 0.01
B3 Data 0.90± 0.10 0.96 ± 0.04 0.96 ± 0.01 0.96 ± 0.02
B4 Data 0.90± 0.09 0.99 ± 0.01 0.91 ± 0.05 0.91 ± 0.06

Stomach Cont. Data 0.99± 0.01 0.94 ± 0.04 0.98 ± 0.01 0.96 ± 0.02

(+38/-28)

B1 Data 0.90± 0.07 0.96 ± 0.01 0.89 ± 0.05 0.90 ± 0.06
B2 Data 0.99± 0.01 0.95 ± 0.03 0.99 ± 4.25 × 10−04 0.88 ± 0.12
B3 Data 0.98± 0.01 0.97 ± 0.01 0.0.94 ± 0.04 0.94 ± 0.01
B4 Data 0.99± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.90 ± 0.05

RNA-Seq and microarray measurements produce similar results and the binariza-

tion did not affect the classification accuracies with reasonable number of features

to perform the classification task. The top two genes from RNA-Seq and microar-

ray data sets are CENPO and TP53INP1 respectively. CENPO was ranked

as 14th from the RNA-Seq top genes and TP53INP1 as 12th from microarray
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Figure 5.4: Hierarchical clustering of RNA-Seq bladder cancer data (using 30 top
genes in each experiment). (A) shows the continuous data clustering (B) shows
binarized data using B4 (gene by gene GMM threshold binarization) clustering.
Both continuous and binary data clustered cancer and normal patients into two
groups. Class 1 and class 2 have majority patients with cancer and majority
patients with no cancer (normal) respectively.

gene list. Further, previous studies have shown that CENPO and TP53INP1

are directly associates with stomach cancer (Jiang et al., 2006; Thiru et al., 2014).
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Figure 5.5: Hierarchical clustering of microarray bladder cancer data (using
30 top genes in each experiment). (A) shows the continuous data clustering
(B) shows binarized data using B4 (gene by gene GMM threshold binarization)
clustering. Both continuous and binary data generate same two cluster classes.
Class 1 and class 2 have majority patients with cancer and majority patients
with no cancer (normal) respectively.

Thus, these two genes are strong candidates to classify cancer and normal pa-

tients using gene expression data. Figure 5.7 represents that in both techniques

(RNA-Seq and microarray) cancer and normal samples represent a gap/difference

between gene expression levels. Thus, in this cancer type single gene is sufficient
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Figure 5.6: Variation of classification performance of stomach cancer with the
number of best genes/features selected by the Fisher Score technique. (A) and
(C) related to the RNA-Seq continuous and binarized data respectively and
(B) and (D) for the microarray data. B4 (gene by gene GMM threshold based)
binarization method was employed to convert continuous data into binary (using
200 top genes in each experiment).

to provide good classification accuracy. However, when you increase the number of

genes the accuracy improves with both transcriptome data sets. Wang and Gotoh,

2009 also showed single gene can provide good classification accuracies in cancer

studies.

5.2.4 Time Series Data Analysis

Tuna and Niranjan, 2010 used Drosophila melanogaster’s development cycle mi-

croarray measurements by Hooper et al., 2007 to show that both continuous and

binary time series data have similar number of up-regulated and down-regulated

genes along the time-course. This experiment expands the transcriptome infer-

ence by not just using cancer patient data but also by observing the changes along

the development time course. However, Tuna and Niranjan, 2010 only compared

the number of up/down regulated genes using microarray continuous and binary

measurements. Here we perform a quantitative analysis by counting number of

up/down regulated genes using RNA-Seq data of Drosophila melanogaster’s de-

velopment cycle by Graveley et al., 2011 and also perform a qualitative analysis
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Figure 5.7: Gene expression levels of cancer and normal pateints of the best
gene selected by the Fisher Score feature selection method. (A) represents
the RNA-Seq measurements of gene CENPO and (B) shows the microarray
measurements of TP53INP1 gene obtained for the stomach cancer. Both of
these genes represents a expression level change between cancer and normal
patients

using gene ontology key words to observe the functional information lose in both

microarray and RNA-Seq measurements with low precision binarized data along

the development time course.

Following Hooper et al., 2007, we employed local convolution two steps function

with RNA-Seq embryonic development data to obtain up and down regulated

genes with respect to the time parameter. Following patterns were used as two

step convolution functions;

• −1 − 1− 1− 1 + 1 + 1 + 1 + 1 , to detect up regulations; and

• +1 + 1 + 1 + 1− 1− 1− 1− 1 , to detect down regulations.

We selected the genes which exceeded 0.9 correlation coefficient (similar to Hooper

et al., 2007) with the above patterns and compared the number of up and down

regulated genes of continuous and binary measurements along the development

time course.

Further, GO enrichment analysis was carried out using GOEAST web tool Zheng

and Wang (2008) for the time points with highest number of up/down regulated
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proteins to observe the biological enrichment between continuous and binary mea-

surements. Here we ranked the GO terms based on the p-value and obtained the

top 50 GO terms which gave highest confidence levels and extracted best terms

related to the development life cycle to compare the confidence levels between

continuous and binary data. Next, we used all the GO terms identified by the

GOEAST web tool at the highest number of up/down regulated time points were

used to generate gene ontology scatter plots. REVIGO web tool (Supek et al.,

2011) was employed to generate these gene ontology scatter plots and compared

the GO term clusters of continuous and binary data.

5.2.4.1 Results

Figure 5.8 and Figure 5.9 compare the number of up-regulated and down-regulated

genes of continuous and binary data obtained by B2 (gene based mean) and B4

(gene based GMM) techniques respectively. In all cases, RNA-Seq transcriptome

continuous and binary data have a similar number of up-regulated (or down-

regulated) genes along the development time course. Thus, RNA-Seq binary data

does not remove useful information throughout a development time course. In fact

the lowest precision binary measurements carry same amount of information as

high precision continuous measurements.

Figure 5.8: Comparison of significantly (A) up and (B) down regulated genes
using continuous and B2 binarized RNA-Seq expression data over a developmen-
tal time series i.e. Drosophila melanogaster’s embryonic stage data (Graveley
et al., 2011)
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Figure 5.9: RNA-Seq up/down regulated genes of Drosophila melanogaster’s
development time series data. (A) Continuous and (B) B4 Binarized data using
B4 techniques show a same number of up/down regulated genes and a similar
pattern along the development time course.

Table 5.4 represents GO annotations found related to the development biological

processes from the top 50 (lowest p-value) GO terms in each experiment. Com-

parison of top set of GO terms and their p-values between continuous and binary

data showed that binarization did not remove any important biological interpreta-

tions (found same set of GO terms) and provided similar high level of confidence

for the development processes with respect to the continuous data. In fact, the

binary data is sufficient to provide important biological interpretations of devel-

opment life cycle using both microarray and RNA-Seq measurements. Further,

Figure 5.10 shows the GO term scatter plot of continuous and binary data of

RNA-Seq development time point where the highest number of down regulated

genes were detected. See Appendix F for RNA-Seq up regulation and microarray

up and down regulation GO term scatter plots. These results also show that both

continuous and binary data have similar gene ontology terms and binary data is

sufficient provide gene enrichment analysis along the development time course.

We also compared the continuous and binary (using B4) data GO terms by sim-

ply taking random time points in up/down regulated RNA-Seq and microarray

time series data. Appendix F REVIGO gene ontology scatter plots show that

both RNA-Seq and microarray data provide same GO terms with continuous and

binary measurements.
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Table 5.4: Comparison of GO annotations and their statistical confidence levels
related to time points which gave higest up/down regulated genes during the
development process of Drosophila melanogaster (Cont. and Bin stand for con-
tinuous and binary data respectively). Here we only list the significant GO terms
related to development life cycle found within the top 50 (lowest p-values) GO
terms. B4 gene by gene GMM threshold binarization technique was employed
to convert to binary measurements.

Regulation Type GO ID GO Annotation Cont. p-val Bin. p-val

RNA-Seq GO : 0048731 system development 6.83×10−77 8.37×10−69

Up Reg.

GO : 0007399 nervous system development 3.46×10−75 1.81×10−58

GO : 0030154 cell differentiation 2.06×10−65 3.48×10−50

GO : 0007275 multicellular-organism development 2.91×10−65 1.01×10−53

GO : 0048869 cellular developmental process 1.12×10−63 7.76×10−49

GO : 0048856 anatomical structure development 3.63×10−57 6.91×10−50

GO : 0048513 organ development 6.75×10−54 1.50×10−65

GO : 0032502 developmental process 7.34×10−53 1.50×10−65

GO : 0007444 imaginal disc development 8.97×10−51 9.45×10−51

RNA-Seq GO : 0048731 system development 7.70×10−49 6.74×10−45

Down Reg.

GO : 0030154 cell differentiation 7.05×10−48 6.50×10−45

GO : 0048513 organ development 3.01×10−47 2.72×10−45

GO : 0048869 cellular developmental process 4.56×10−47 7.01×10−37

GO : 0044767 single-organism deve. process 4.73×10−44 3.66×10−37

GO : 0048468 cell development 1.08×10−43 7.01×10−37

GO : 0048856 anatomical structure development 5.01×10−43 1.75×10−35

GO : 0007399 nervous system development 7.97×10−43 7.62×10−35

GO : 0007275 multicellular-organism development 4.02×10−41 1.04×10−38

GO : 0032502 developmental process 7.49×10−41 2.17×10−36

Microarray GO : 0042335 cuticle development 1.89×10−04 1.87×10−05

Up Reg.

GO : 0051146 striated muscle differentiation 0.04 0.05
GO : 0055001 muscle cell development 0.01 0.05
GO : 0055002 striated muscle cell development 0.01 0.05
GO : 0040003 chitin-based cuticle development 0.01 2.54×10−04

GO : 0030427 site of polarized growth 0.05 0.01

Microarray GO : 0030154 cell differentiation 3.15×10−39 7.31×10−52

Down Reg.

GO : 0048869 cellular developmental process 1.10×10−38 1.42×10−50

GO : 0007399 nervous system development 8.96e-28 8.62×10−45

GO : 0048731 system development 8.58×10−20 6.49×10−33

GO : 0048856 anatomical structure development 3.79×10−18 3.01×10−26

GO : 0032502 developmental process 1.77×10−17 2.28×10−24

GO : 0007275 multicellularorganism development 2.45×10−16 8.68×10−25

GO : 0048468 cell development 1.06×10−08 7.24×10−15

GO : 0003006 developmental in reproduction 2.49×10−07 6.20×10−09

GO : 0045595 regulation of cell differentiation 1.70×10−06 3.88×10−07
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Figure 5.10: GO terms scatter plots of (A) continuous and (B) binary RNA-Seq
measurements obtained at the highest number of up regulated genes detected
time point of the Drosophila melanogaster’s developmental time course Graveley
et al. (2011)
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5.2.5 Cross Platform Analysis

In order to compare the two major transcriptome measuring techniques in a com-

mon environment, a cross platform analysis was carried out. We selected four

cancer types, where we obtained both microarray and RNA-seq measurements to

perform classification tasks. In this experiment, well studied microarray data was

used to train the SVM classifier (as the training environment) and the recently

developed RNA-Seq data was employed as the testing environment. Feature se-

lection was carried out at the training environment (with microarrauy data) using

Fisher Score technique. Same features (genes) were selected as the inputs for the

testing environment with RNA-Seq data. Different combinations of continuous

and binary data were incorporated with the SVM classifiers to obtain the cross

platform analysis, those are;

• C + C : Training using continuous (microarray) data and testing also using

continuous (RNA-Seq) data

• C + B : Training using continuous (microarray) data and testing using

binary (RNA-Seq) data

• B + C : Training using binary (microarray) data and testing using contin-

uous (RNA-Seq) data

• B + B : Training using binary (microarray) data and testing also using

binary (RNA-Seq) data

Here we used B4 gene by gene GMM threshold binarization techniques, which was

identified as the best method to binarize data with classification and clustering

experiments. This method will be able deal with data distribution of cancer and

normal patient data as a two component mixture model. SVM was used as the

main classifier because it performs well with data measured under different scales

and dimensions. In all cases, transcriptome data was converted in the log scale

before using it for experimental analysis.
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5.2.5.1 Results

Figure 5.11: Cross Platform Analysis: SVM was trained using Microarray data
and tested on RNA-Seq data. Feature selection was performed on microarray
environment. B4 gene by gene GMM threshold binarization techniques was
employed to convert continuous data into binary.

Figure 5.11 illustrates the cross platform analysis between microarray and RNA-

Seq measurements. We observed that, in all four cancer types, training on mi-

croarray continuous data and testing on RNA-Seq binary data (C + B) and both

training and testing using binary data (B + B) gave similar or better accuracies

compared to traditional continuous training and testing experiments (C + C).

Therefore, even under different platforms binarized transcriptome data perfom

similar or better with respect to continuous data. In fact, binarization removes

noise from the testing data and improves the accuracy in C + B approach and in

binary representation itself is sufficient to produce good classification accuracies.

We also observed that training on binary and testing on continuous data (B +

C) reduced the accuracy of continuous train and testing experiment (C + C) due

to the noise addition to the testing data by using continuous data.
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5.3 Transcriptome-Proteome Inferences

In previous section (Section 5.2) we observed that microarray and RNA-Seq high

precision expression levels do not provide additional information whereas binary

representation is sufficient to perform machine learning inferences. However, in

our study we are more interested in modelling transcriptome-proteome interface.

Therefore, here we investigate the correlation, prediction capability of protein

abundance and PTR detection as outliers with high and low numerical precision

of microarray and RNA-Seq transcriptome measurements. B4 gene by gene GMM

threshold binarization technique was employed to convert continuous data into

binary in following experiments.

5.3.1 Correlation

We used yeast (Saccharomyces cerevisiae - strain S2883) organism RNA-Seq and

microarray transcriptome measurements with proteome data to compare the cor-

relation of these two measurements with respect to the proteome measurements (in

log scale). Microarray (Greenbaum et al., 2003) and RNA-Seq (Dang et al., 2014)

data were obtained under exponentially growing conditions. Figure 5.12 shows the

correlations between transcriptome and proteome levels for RNA-Seq (R2 = 0.65)

and microarray (R2 = 0.70) measurements of yeast organism. Thus, both tech-

niques showed a similar correlation with respect to the protein abundance. Fu

et al., 2009 carried out a similar experiment using human brain tissue and they

found RNA-Seq (R2 = 0.62) correlates better than microarray (R2 = 0.75) mea-

surements. However, the relationship between transcriptome and proteome levels

in human cells are much complicated than yeast due to the alternative splicing

process (Lundberg et al., 2010; Nilsen and Graveley, 2010). Therefore, we believe

yeast organism data is more appropriate to observe direct relationship between

transcriptomic and proteomic measurements.

5.3.2 Protein Abundance Predictor

We also developed protein abundance predictors using microarray and RNA-Seq

data to compare the transcriptome-proteome modelling capabilities of these two

transcriptome measurements. A combination of mRNA levels, translation efficien-

cies and sequence derived codon bias information were incorporated to develop the

protein abundance predictor (i.e. input features are - mRNA, tRNA adaptation

index (tAI), codon bias, ribosome density and occupancy) according to Chapter 3.
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Figure 5.12: Correlation comparison of yeast (Saccharomyces cerevisiae - strain
S2883) transcriptome and proteome data. (A) Microarray (Greenbaum et al.,
2003) and (B) RNA-Seq (Dang et al., 2014) techniques were used to measured
transcriptome measurements. Protein data was downloaded from PaxDB (Wang
et al., 2012a).

In fact, with two predictors, only mRNA input was changed to microarray and

RNA-Seq measurements respectively and the rest of the inputs remained same.

Next, we used binarized mRNA levels (using B4 binarization techniue) to observe

the prediction changes with the precision reduction. We also used neural net tech-

nique to develop a non-linear predictor. Table 5.5 shows the continuous and binary

data prediction accuracies of two transcriptome measurements. Figure 5.13 repre-

sents linear regression outputs for different transcriptome-proteome combinations.

We observed that both microarray and RNA-Seq continuous data provide good

prediction levels with linear and non-linear regression models. Interestingly, with

the binary data, both microarray and RNA-Seq techniques gave very close predic-

tion levels as similar to the continuous data. Therefore, with both measurements,

binarization did not remove any important information to develop an accurate

protein abundance predictor.

Table 5.5: Linear and non-linear protein abundance predictor regressions. B4
gene by gene GMM threshold binarization technique was employed to binarize
data.

Regression Type Data Type RNA-Seq Microarray

Linear Regression
Continuous 0.85 0.86

Binary 0.85 0.86

Non-linear Regression
Continuous 0.81 0.80

Binary 0.82 0.82
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Figure 5.13: Comparison of linear protein abundance prediction accuracies of
microarray and RNA-Seq measurements. Five input features were used in all
the experiments i.e mRNA abundance, tRNA adaptation index, codon bias,
ribosome density and occupancy (similar to Chapter 3). Only mRNA abundance
was changed as (A) RNA-Seq continuous (B) microarray continuous (C) RNA-
Seq binary and (D) microarray binary data. B4 gene by gene GMM threshold
binarization techniques was employed to binarize data.

5.3.3 PTR Detection

Though the quantitative regression models performed similarly with both contin-

uous and binary data, here we would like to investigate the effects of binarization

with respect to a qualitative attribute which is detecting post-translationally regu-

lated proteins as outliers from the transcriptome-proteome interface. We used four
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transcriptomic data types (i.emicroarray continuous, microarray binary, RNA-Seq

continuous and RNA-Seq binary) with our other four input features (tAI, codon

bias, ribosome density and ribosome occupancy) to predict protein abundance us-

ing quantile regression model. According to Chapter 4, quantile regression gave

the highest confidence level in detecting post-translationally regulated proteins as

outliers. Fifty outliers were selected from each regression model and coarse and

finer level functional annotation checks were performed as described in Section 3.4.

Figure 5.14 shows the Venn diagram of outlier distribution among the four tran-

scriptomic measurements and 70% of the proteins were common to all four mea-

surements. Microarray continuous and binary inputs have seven and six unique

proteins respectively and 11 proteins were different in both outlier sets. However,

RNA-Seq continuous and binary outliers highly coincide and only one protein dif-

fer between two sets. Therefore, RNA-Seq binarization did not remove any outlier

information from the regression approach. Table 5.6 shows the coarse and finer

level functional annotation confidence levels of four outliers sets. We observed

that all four outlier sets are highly confidence with post-translationally regulated

proteins. However, there is a slight information loss with microarray binarization

and RNA-Seq performed similar in both continuous and binary outlier detections.

In fact, RNA-Seq performed marginally better in detecting outliers with respect

to microarray regression models. Therefore, RNA-Seq transcriptomic data pro-

vide more information with respect to qualitative properties such as detecting

post-translationally regulated proteins as outliers at the transcriptome-proteome

interface.

Figure 5.14: Outliers obtained by quantile regression using four types of tran-
scriptomic measurements. i.e other four input properties (tAI, codon bias, ri-
bosome density and ribosome occupancy) and proteins abundances are similar
in all 4 regression models. Cont and Bin stand for continuous and binary tran-
scriptomic measurements respectively.
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Table 5.6: Coarse and finer level PTM annotation check for four outlier sets.
1000 random trials were used in each case. B4 gene by gene GMM threshold
binarization technique was employed to binarize data.

mRNA Input
Coarse Level Finer Level

No of genes Confidence Level No of genes Confidence Level

RNA-Seq Continuous 44 p ≤ 0.02 40 p ≤ 4.38 × 10−13

RNA-Seq Binary 44 p ≤ 0.02 40 p ≤ 4.38 × 10−13

Microarray Continuous 45 p ≤ 9.89 × 10−04 38 p ≤ 2.94 × 10−11

Microarray Binary 41 p ≤ 0.030 35 p ≤ 8.31 × 10−09

5.4 Summary

In this chapter, we explored the numerical precision inference of the two main

transcriptomic measuring techniques which are microarray and RNA-Seq. Tuna

and Niranjan, 2009 showed that microarray binarized low numerical precision ex-

pression data is sufficient to provide good machine learning inference. Here, we

used most recently developed RNA-Seq expression values and compared infer-

ence accuracies with the microarray measurements under high and low precision.

Firstly, by only considering transcriptomic measurements we observed that clas-

sification, clustering, and time series data produced high accuracies with both

continuous and binary measurements. Thus, binary measurement is sufficient to

provide good machine learning inferences. Secondly, we investigated the influence

of high numerical precision in transcriptome-proteome modelling approach. Here

we combined the five feature model explained in Chapter 3 and outlier detection in

Chapter 4 to perform our analysis. Both transcriptomic measurements (microar-

ray and RNA-Seq) gave similar regression values under high and low numerical

input values. Further, binary mRNA inputs in the regression model did not re-

duce the capability of detecting post-translationally regulated proteins as outliers

of the regression approach. In fact, RNA-Seq measurements performs marginally

better than microarray measurements in detecting outliers with both continuous

and binary data. Thus, this study shows that in machine learning quantitative

inferences, high numerical precision obtained by mRNA amplification process in

RNA measuring techniques do not provide more information with respect to gene

switch on/off status given by binary measurements.
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Conclusions and Future Work

6.1 Conclusions

This dissertation is on data-driven modelling applied to the integrated analysis

of high-throughput omic measurements. Specifically we focus on the interface

between transcriptome and proteome levels where the mRNA abundances are often

used as proxies for protein concentrations. While several authors have looked

for correlation between these two levels of measurements and noted only week

relationship on a genomic scale (Gygi et al., 1999; Futcher et al., 1999; Beyer

et al., 2004; Wu et al., 2008), we follow a notably different approach, similar

to Tuller et al., 2007, in constructing a predictor of protein levels from mRNA

levels and other transcriptomic variables may influence the corresponding protein

concentrations on yeast (Saccharomyces cerevisiae).

In Chapter 3, we show that, such a predictor, using LASSO regularized linear re-

gression, shows increased ability to predict protein levels than simply looking for

correlation between mRNA and protein concentrations. Further, LASSO regular-

ization suppress irrelevant features and selects mRNA, codon bias, tAI, ribosome

density and occupancy as best features to predict protein abundance more accu-

rately. Additionally, we also show that non-linear models did not help in improv-

ing prediction ability at the transcriptome-proteome interface. We then use this

protein abundance predictor in a novel manner to identify post-translationally

regulated protein by taking model failures which give large errors between the

predicted and the actual measurements due to the protein stability disruption by

post-translation regulation. However, detecting PTR proteins using mass spec-

trometry on a laboratory experimental setting is challenging, time consuming and

costly. In fact, lack of prior knowledge on the modifications to be detected and
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technical limitations to measure low abundances of minor sites induce difficul-

ties to detect PTR proteins effectively (Chandramouli and Qian, 2009; Arnott

et al., 2003). Hence, our data-driven model selects sub set of proteins (outliers) as

post-translationally regulated proteins and cut-down the number of samples to be

tested using mass spectrometry experimental setting. Addtionally, finer level an-

notation check provides information on PTM types to be detected by these outlier

proteins. Thus, experimentalist can use this prior knowledge to detect variations

among these modifications and also few number of samples will allow to amplify

the low abundance peptide ratios to detect minor sites with less cost and time.

In Chapter 4, we introduce two formulations, (i) Outlier Rejecting Regression

(ORR) model and use (ii) Quantile Regression (QR) model, to detect robust out-

liers at the transcriptome-proteome interface in a systematic manner (or mathe-

matically) to confirm our hypothesis on post-translational regulation. We compare

the model failures or outliers of the three models (including simple linear regression

model in Chapter 3) using over-representation of functional annotations related to

post-translational regulation. All three outlier sets showed good statistical con-

fidence levels providing evidence that outlier proteins are likely candidates for

post-translational regulation. Quantile regression with the asymmetric loss model

gave the highest confidence level suggesting that among the methods we consid-

ered, QR is the best technique to detect post-translationally regulated proteins

at the transcriptome-proteome interface. Additionally, all these outlier samples

(from three regression models) showed high enrichment of the p53 pathway during

pathway analysis. Further, Shin et al., 2013 showed that the protein degradation

process by post-translation regulation enables p53 regulation. Therefore, pathway

analysis reconfirmed our hypothesis providing further biological evidence.

In Chapter 5, we focus our study on the numerical precision of high-throughput

transcriptome measurements. Tuna and Niranjan, 2009 and Tuna and Niranjan,

2010 studies have shown that high precision microarray measurements provide no

additional information with respect to quantized binary data. In fact, binary data

is sufficient to obtain high accuracy for machine learning inferences as classifica-

tion, clustering etc. Hence, in our study we use a novel approach with RNA-Seq

measurements, which is considered as a more sensitive and accurate technique to

measure mRNA concentrations with respect to microarray technique (Wang et al.,

2009; Malone and Oliver, 2011; Fu et al., 2009; Marioni et al., 2008), to perform

similar inferences using continuous and binarized data. Further, we compare mi-

croarray and RNA-Seq measurements by developing a protein abundance predictor

and using model failures to identify post-translationally regulated proteins. We
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also combine the five feature predictor in Chapter 3 and quantile regression out-

lier detection in Chapter 4 to compare microarray and RNA-Seq measurements for

high (continuous) and low (binary) precision data. Transcriptomic inferences show

that RNA-Seq also behaves similarly to microarray data, where there is not much

information loss with binarization. Classification, clustering and time series data

analysis have shown that both continuous and binary data give similar accuracies.

Similarly, protein abundance prediction accuracies also show that binarized data

is sufficient to obtain good regression accuracies for both microarray and RNA-Seq

measurements. However, RNA-Seq performs better in detecting PTR as outliers

using binarized data compared to microarray binarized measurements which can

be considered as a qualitative attribute.

6.2 Future Work

In this thesis, we bridge the gap between the transcriptome and proteome in-

terface and identify post-translationally regulated proteins as outliers using yeast

(Saccharomyces cerevisiae) data. As the next step, we would like to use human

transcriptome and proteome measurements with our data-driven framework. How-

ever, modelling human data using a regression approach is difficult due to the

alternative splicing process (Lundberg et al., 2010; Nilsen and Graveley, 2010).

Therefore, as the first approach, we can expand our input feature space by in-

cluding microRNA (miRNA) information to deal with alternative splicing at the

isoform level. miRNAs are short RNA molecules which regulate mRNAs by di-

rectly binding to the 3’UTR region (Bartel, 2004). These molecules will inhibit

the translation or mRNA degradation process. Similarly we would like to use

ribo-seq measurements to obtain translation efficiency rates (Barry and Hartigan,

1993). Secondly, we can use a probabilistic non linear approach to model human

omic measurements. As we discussed in the literature review, Kannan et al., 2007

used a Bayesian model which links microarray mRNA measurements with mass

spectrometry protein measurements for the entire genome of laboratory mouse,

Mus musculus. They learn the model and score the genes as a measurement of

the strength of the relationship between mRNA and protein data using probabilis-

tic inferences. However, their Bayesian network lack of knowledge in translation

process to obtain the correct relationship of mRNA and protein data; e.g mRNA

is translated in to protein but their Bayesian network represents this relationship

in the opposite direction. Therefore, we can incorporate new transcriptome prop-

erties such as miRNA and ribo-seq information with isoform data and develop a
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probabilistic Bayesian model along the human genome. Thus, least probable pro-

teins can be extracted as candidates for post-translationally regulated proteins,

which can be used as biomarkers for cancer and other diseases.

We can then use this data-driven framework with cancer and normal patient data.

In Chapter 4, during the pathway analysis, we observed p53 pathway as a dominant

pathway with all of three outlier sets. However, p53 is a tumour suppression

protein, where the mutation would be directly involved with cancer studies (Butz

et al., 1995; Bodner et al., 1992; Hollstein et al., 1991). Comparing the outliers of

our data-driven model using cancer and normal patient data we would be able to

provide information about cancer causing proteins due to p53 mutations. Further,

mutations caused by cancer can increase protein concentrations with respect to

cancer free (normal) protein. Olsen et al., 2007 have shown that HER-2 protein

concentration is higher than a normal reference protein. Similar behaviour have

shown with lung cancer gene apolipoprotein E by in a study by Trost et al.,

2008. Thus, we can change our hypothesis to observe outlier proteins in the

lower region of the regression plot where the measured protein concentration is

higher than the predicted (P > P̂ ) concentration in order to detect proteins that

increase their concentration with cancer mutations. By comparing the cancer

and the normal outliers, we will be able to uncover new proteins with potential

cancer mutations. We can perform a statistical test to obtain the significance of

these proteins using currently available literature and biologists can then perform

laboratory experiments on these potential cancer causing proteins. Therefore,

we can use our data-driven model to discover new biomarkers and therapeutic

interventions for human cancer.



Appendix A

Linear Predictor

As mentioned in the Literature Review chapter, Tuller et al., 2007 have used

the linear regressor to develop their protein abundance predictor. In this model

we assume that the relationship between input and target data is linear and the

main objective of this method to minimize the squared error or loss (Rogers and

Girolami, 2012b).

min
{
‖Xw− y‖2

}
(A.1)

Assume we have p samples and n features for the input matrix X and p targets in

target vector y

X =


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We can generate output vector t by the dot product of X⊤ and w (assuming

relationship between input and target is linear)

t = X⊤ w
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Thus, we can define the error vector ǫ = X⊤w− y

Least Squared Error

The squared error is given as below,

E(w|D) = ‖ǫ‖2 = ‖X⊤w− y‖2
= (X⊤w− y)⊤(X⊤w− y)

= (w⊤X− y⊤)(X⊤w− y)

= wXX⊤w− y⊤X⊤w−w⊤Xy+ y⊤y

= wXX⊤w− 2w⊤Xy + y⊤y

In order to find minimum values of the squared error or loss function, we take the

partial derivative of the E(w|D) with respect to the weight vector w (∂E(w|D
∂w

=

∇E(w|D) = 0).

∇E(w|D) = ∇(wXX⊤w− 2w⊤Xy + y⊤y)

= 2(XX⊤w−Xy)

= 2(XX⊤w−Xy) = 0

w = (XX⊤)−1Xy

(XX⊤)−1Xy is also known as pseudo inverse. This method models linear rela-

tionships among data, where we can predict outputs for unseen data in a precise

manner.



Appendix B

Detecting Outlier Using Gaussian

Mixture Model (GMM)

We also employed GMM appraoch to model our transcriptome-proteome mea-

surements using a probabilistic model assuming that all data points are generated

from a mixture of Gaussian distributions. A review by Pimentel et al., 2014 de-

scribes the use of GMM algorithm in detecting outliers or one-class classification

with cancer patients data with image information. Several authors used GMM

with image information to diagnose breast cancer (Li et al., 2012; Lederman et al.,

2011). Therefore, here we use omic measurements (five input features and protein

abundance) with GMM approach to detect post-translationally regulated proteins.

As mentioned in Chapter 2 (Literature Review), each Gaussian density (compo-

nent) N(x|µk,σk) has its own mean (µk) and standard deviation(σk),

p(x) =

M∑

k=1

πkN(x|µk,σk) (B.1)

where πk represents the mixing coefficient satisfying 0 ≤ πk ≤ 1 and
∑M

k=1 πk = 1.

Expectation Maximization (EM) algorithm (Dempster et al., 1977a) was used to

estimate the parameters of these Gaussian densities. Afterwards, we obtained

the negative log likelihood of the samples based on the estimated parameters and

extract the least probable (with lowest likelihood) samples as outliers from the

Gaussian mixture model.
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Figure B.1 shows an example of randomly generated data using a two dimensional

Gaussian data distribution and fitting a single component GMM. Least probable

10 samples are circled in red. Here, we observe that these samples with lowest

likelihood (circles in red) are lying as outliers from the total data set.

Figure B.1: Randomly generated data using two dimensional Gaussian distri-
bution and fitting a single component GMM. The mean vector is are µ = [1,−1]
and covariance matrix is σ = [0.9, 0.4; 0.4, 0.3]. Red circles represent the samples
with least likelihood probability as outliers.

Similarly, we fitted a 6 component GMM to our transcriptomic and proteomic

measurements (five input features and protein abundance) using Netlab package

in MATLAB environment. Least probable 50 samples as outliers assuming 50 as the

benchmark number of outliers with respect to the linear regression model. Since

we cannot represent the 6 dimensions GMM plot with the outliers, we used our lin-

ear regression plot and circled the new set of outliers obtained from GMM in pink

as shown in Figure B.2. However, GMM model only selected 13 samples similar

to linear regression model (Figure 3.6) and the functional annotation checks gave

low statistical confidence levels for coarse (p ≤ 0.93) and finer (p ≤ 0.13) levels,

showing that these outliers are not significant with respect to post-translational

regulation. We also observed that same set of outliers were detected under differ-

ent initializations for parameters. Further, we changed the number of mixture

components and observed the detected outliers and their significance in post-

translational regulation. Table B.1 shows the PTR detection significance under

different number of mixture components. In all cases, GMM was not able to detect
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post-translationally regulated proteins with a high statistical confidence. GMM

has the limitation of selecting a functional form for the input data distribution

which may not be suitable to generate a good model with omic measurements

where the underlying functional form is unknown (Pimentel et al., 2014). We

believe that assuming all input features have normal (Gaussian) distribution and

parameter estimation errors (random starting points), reduced the potential of

capturing protein stability disruption property as outliers. Therefore, linear re-

gression model outperforms in detecting post-translationally regulated proteins as

outliers with respect to GMM approach.

Figure B.2: Fifty outlier proteins detected by the GMMmodel are circled in pink
colour. Only 13 proteins are similar with linear regression outliers. Majority of
the GMM outliers are inline with the regression plot. Therefore, this outliers do
not show protein stability disruption property by post-translational regulation.
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Table B.1: PTR detection under different number of mixture components. Low-
est probable 50 outliers were selected in each experiemnt and 1000 random trials
were used to obtain the p-values

No of
Coarse Level Finer Level

Components PTR Proteins Confidence Level PTR Proteins Confidence Level

1 30 p ≤ 0.88 20 p ≤ 0.13
2 27 p ≤ 0.98 18 p ≤ 0.29
3 28 p ≤ 0.96 19 p ≤ 0.20
4 29 p ≤ 0.93 20 p ≤ 0.13
5 29 p ≤ 0.93 20 p ≤ 0.13
6 29 p ≤ 0.93 20 p ≤ 0.13
10 28 p ≤ 0.96 19 p ≤ 0.20
100 22 p ≤ 0.99 17 p ≤ 0.41



Appendix C

Difference of Convex functions

Algorithm (DCA) in ORR Model

In this section we describe the steps of solving the DCA in Outlier Rejecting

Regression (ORR) model. Suppose we have a set of m samples {(xi, yi)}i=1,...,m

where xi ∈ R
n and yi ∈ R and the main objective is to predict yi as as f(x) =

〈w,x〉+ b with smallest error.

Objective function for the regression model can be written as below,

min
w,b,η

1

(1− µ)m

∑

i

ηiℓ(xi, yi;w, b) + λ‖w‖2

s.t.
∑

i(1− ηi) ≤ µm, 0 ≤ ηi ≤ 1, ∀i, (C.1)

where µ ∈ [0, 1) and λ ∈ (0,∞) are hyper parameters.

We can re-write the objective function (C.1) as a difference of convex functions as

below:

minw,b
1

(1− µ)m

{
∑

i

ℓ(xi, yi;w, b)− µmφ1−µ(w, b)

}

+ λ‖w‖2,

minw,b
1

(1− µ)m

∑

i

ℓ(xi, yi;w, b) + λ‖w‖2

︸ ︷︷ ︸
convex

− µ

1− µ
φ1−µ(w, b)

︸ ︷︷ ︸
convex

,
(C.2)

where φ1−µ(w, b) is (1−µ)-Conditional Value-at-Risk (CVaR) which is defined as

the mean of µ-tail distribution (the white area in Figure C.1).
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Rockafellar and Uryasev (2002) proposed Conditional Value-at-Risk (CVar) as a

financial risk measure, which can be written as

φ1−µ(w, b) = max
η

{
1

µm

∑

i(1− ηi)ℓ(xi, yi;w, b) :
∑

i(1− ηi) = µm, 0 ≤ ηi ≤ 1, ∀i
}

.

Takeda and Sugiyama (2008)’s study shows that ν-SVM is able to minimizes the

financial risk CVaR. With respect to the clipped loss function we minimizes the

mean loss of the gray area in Figure C.1.

Next, we use optimal solution of η∗ in Equation (C.1) to define the set of outliers

as Θ,

Θ := {i ∈ {1, . . . , m} : η∗i < 1}

Thus, the clipped loss function of regression model in Equation (C.2) can be

written as
1

(1− µ)m

{
m∑

i=1

ℓ(xi, yi;w, b)−
∑

i∈Θ
ℓ(xi, yi;w, b)

}

.

DC algorithm sequentially linearizes the concave part of Equation (C.2) and solves

the convex subproblem. Let (wk, bk) be the solution obtained in the (k − 1)th

iteration. In the kth iteration, we solve the following subproblem:

h(wk+1, bk+1) := min
w,b

1

(1− µ)m

{
∑

i

ℓ(xi, yi;w, b)− µm(gk⊤
w w + gkb b)

}

+ λ‖w‖2

(C.3)

where gk
w ∈ ∂wφ1−µ(wk, bk) and gkb ∈ ∂bφ1−µ(wk, bk) are a subgradient of φ1−µ(w, b)

at (wk, bk) which can be calculated by sorting the loss ℓi(xi, yi;wk, bk).

Sequence {(wk, bk)} obtained by Algorithm 2 has good convergence properties as

below:

• Objective value is decreasing in each step (i.e. h(wk+1, bk+1) ≤ h(wk, bk))

• Every limit point of the sequence is a critical point of Equation (C.2) (i.e.

critical points are defined in Pham Dinh and Le Thi (1997))

The critical point is also known as generalized KKT point which is a necessary

condition to obtain a local solution.
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Figure C.1: ORR model minimizes the mean loss in gray area. (1 − µ)-CVar
denotes mean loss of the white area. Difference between total mean loss and
(1− µ)-CVar will give the mean loss (gray area) of the ORR model.

Definition C.1. (w∗, b∗) is said to be a critical point of u(w, b) − v(w, b) if

∂u(w∗, b∗) ∩ ∂v(w∗, b∗) 6= ∅.

According to Definition C.1, a critical point (w∗, b∗) has gu ∈ ∂u(w∗, b∗) and

gv ∈ ∂v(w∗, b∗) such that gu − gv = 0 which is a necessary condition for local

minimum of Equation (C.3).

Matlab Codes for ORR Model

Following are the Matlab codes for ORR Model using Algorithm 1 and 2. All

functions require NormalizeData() function to normalize data.

Data Normalization

function [Y, f] = NormalizeData(Y,f)

% Y = Input Data, f = targets

[N, p] = size(Y);

for j=1:p

Y(:,j)=Y(:,j)-mean(Y(:,j));

Y(:,j)=Y(:,j)/std(Y(:,j));

end
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f = f - mean(f);

f = f/std(f);

ORR - Algorithm 1

function [Outliers] = ORR1(Y,f,Mu,lambda,eps)

% function inputs are Y = Input data,f = targets,

% Mu = fraction needed as outliers (between 0-1)

% lambda , eps user define variables

% Normalize the data, zero mean, unit standard deviation

[Y, f] = NormalizeData(Y,f);

% Initialize

s = size(Y);

n = s(1);

m = s(2);

% Define required number of outliers

noOfOutliers = Mu*m;

f_dif = 1;

% Least squares regression to obtain initial weights

YY = [Y ones(n,1)]

w = inv(YY’*YY)*YY’*f;

fh = YY*w;

w0 = w(1:n,1);

b0 = w(n+1,1);

%DCA

while f_dif >= eps

% Get the outlier list

fh = Y*w0 + b0;

Error = (f - fh).^2;

[E iE] = sort(Error,’descend’);

iOut = iE(1:noOfOutliers);

Yout = Y(iOut,:);

fout = f(iOut,1);

% Get Gradient gw

A = zeros(noOfOutliers,n);

for i=1:noOfOutliers

t = fout(i) - ((Yout(i,:)*w0) + b0);
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A(i,:) = t*Yout(i,:);

end

gw = ((-2)*(sum(A)))/(noOfOutliers);

% Get Gradient gb

B = zeros(noOfOutliers,1);

for i=1:noOfOutliers

B(i) = fout(i) - ((Yout(i,:)*w0) + b0);

end

gb = ((-2)*(sum(B)))/(noOfOutliers);

% Calculate Constants

k = 1/(m-noOfOutliers);

K= noOfOutliers*k;

% Do the convex programming

cvx_begin

variables w(n) b;

minimize ((square_pos(norm((Y*w +b) -f))*(k)) - ((gw*w + gb*b)*(K)));

cvx_end

f_old = ((square_pos(norm((Y*w0 +b0) -f))*(k)) - ((gw*w0 + gb*b0)*(K)));

f_new = ((square_pos(norm((Y*w +b) -f))*(k)) - ((gw*w + gb*b)*(K)));

% Assign new values to the next iteration

w0 = w;

b0 = b;

f_dif = abs((f_old - f_new));

end

% Get the Best Outliers

fh = Y*w +b;

Error = (f - fh).^2;

[E iE] = sort(Error,’descend’);

Outliers = iE(1:noOfOutliers);

ORR - Algorithm 2

function [Outliers] = ORR2(Y,f,Mu,lambda,eps)

% function inputs are Y = Input data,f = targets,

% Mu = fraction needed as outliers

% lambda , eps user define variables
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% Normalize the data, zero mean, unit standard deviation

[Y, f] = NormalizeData(Y,f);

% Initialize

s = size(Y);

n = s(1);

m = s(2);

%Get Mum number of outliers

noOfOutliers = Mu*m;

f_dif = 1;

% Least squares regression to obatin initial weights

w = inv(Y’*Y)*Y’*f;

fh = Y*w;

z = zeros(m,1);

S = [eye(m) z; z’ 0];

a0 = w;

neta = ones(n,1);

D = diag(neta);

Dh = sqrt(D);

% DCA

while f_dif >= eps

% Step 1

cvx_begin quiet

variable a(m+1)

minimize(square_pos(norm(Dh*Y*a - Dh*f)) + lambda*square_pos(norm(S*a)))

cvx_end

% Step 2

f_old = (square_pos(norm(Dh*Y*a0 - Dh*f)) + lambda*square_pos(norm(S*a0)));

Error = (Y*a-f) .^2;

[E iE] = sort(Error);

k= 1-Mu;

Outliers = iE(ceil(k*n):n);

neta = ones(n,1);

neta(Outliers)=0;

D = diag(neta);

Dh = sqrt(D);

f_new = (square_pos(norm(Dh*Y*a - Dh*f)) + lambda*square_pos(norm(S*a)));

f_dif = abs((f_old - f_new));

a0 =a;

end

% Get the Best Outliers
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Error = (Y*a-f) .^2;

[E iE] = sort(Error);

k= 1-Mu;

Outliers = iE(ceil(k*n):n);





Appendix D

Outlier Proteins Detected by

Three Regression Models

Table D.1 shows the union set of 92 proteins and their corresponding outlier de-

tection technique.

ORF Name Gene Name Model 0 Model 1 Model 2

YAL007C YAL007C x X X

YAL015C NTG1 x X X

YAR075W YAR075W X X X

YBL0613 RPS8A X x X

YBR010W HHT1 X x x

YBR038W CHS2 X X X

YBR106W PHO88 X X x

YBR1317 RPS9B X x X

YBR150C TBS1 x X X

YBR246W ERE1 x x X

YBR248C HIS7 x X x

YCR010C ADY2 X X X

YCR012W PGK1 X x x

YCR031C RPS14A X x x

YDL014W NOP1 X x x

YDL048C STP4 X X X

YDL080C THI3 X X x

YDL081C RPP1A X x x

YDL083C RPS16B X x x

YDL093W PMT5 X X X
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YDL130W RPP1B X x x

YDL195W SEC31 x X x

YDL217C TIM22 X X X

YDL222C FMP45 X X X

YDR006C SOK1 X X X

YDR064W RPS13 X x x

YDR067C OCA6 x X X

YDR098C GRX3 x X X

YDR127W ARO1 x X x

YDR144C MKC7 x x X

YDR225W HTA1 X X X

YDR243C PRP28 x X X

YDR342C HXT7 X X X

YDR382W RPP2B X x X

YDR407C TRS120 x X X

YDR447C RPS17B X x x

YDR464W SPP41 x x X

YDR490C PKH1 x x X

YEL027W VMA3 X x x

YEL034W HYP2 X x x

YEL039C CYC7 x x X

YER023W PRO3 x X x

YER026C CHO1 x X X

YER030W CHZ1 x x X

YER069W ARG5,6 x X x

YER070W RNR1 X X x

YER093C TSC11 x X X

YER102W RPS8B X x x

YER117W RPL23B X x x

YER183C FAU1 x X X

YFL029C CAK1 X X X

YFL036W RPO41 x X x

YFR039C YFR039C x x X

YGL009C LEU1 x X x

YGL012W ERG4 x x X

YGL030W YGL030W X x x

YGL123W RPS2 X x x

YGL159W YGL159W X X X

YGL191W COX13 x x X
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YGL234W ADE5,7 x X x

YGR009C SEC9 x X X

YGR034W RPL26B X x x

YGR078C PAC10 x X x

YGR148C RPL24B X x x

YGR172C YIP1 x X X

YGR253C PUP2 x X x

YGR279C SCW4 x x X

YGR282C BGL2 X x X

YHL032C GUT1 x X x

YHR021C RPS27B X x x

YHR031C RRM3 X X X

YHR094C HXT1 X X X

YHR138C YHR138C x x X

YHR141C RPL42B X x x

YIL148W RPL40A X x x

YIL169C YIL169C X X X

YIR023W DAL81 x X X

YJL129C TRK1 X X X

YJL177W RPL17B X x X

YJL200C ACO2 x X x

YJR006W POL31 x X X

YJR095W SFC1 x X x

YJR124C YJR124C X X X

YJR140C HIR3 x X X

YKL056C TMA19 X x x

YKL082C RRP14 x x X

YKL152C GPM1 X x x

YKL180W RPL17A X x x

YKL210W UBA1 x X x

YKL216W URA1 x X x

YKR059W TIF1 X x X

YLR044C PDC1 X x x

Total No of Genes 50 50 50





Appendix E

Hierarchical Clustering Results:

Continuous and Binary Data

Here we show hierarchical clustering results obtained by continuous and binarized

transcriptome measurements (using B4 - gene by gene GMM threshold method)

of RNA-Seq and microarray techniques.
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Figure E.1: RNA-Seq Breast Cancer - Hierarchical clustering using top 30 genes.
(A) shows the continuous data clustering (B) shows binarized data using B4
(gene by gene GMM threshold binarization) clustering. Both continuous and
binary data clustered cancer and normal patients into two groups. Class 1 and
class 2 have majority patients with cancer and majority patients with no cancer
(normal) respectively.
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Figure E.2: RNA-Seq Lung Cancer - Hierarchical clustering using top 30 genes.
(A) shows the continuous data clustering (B) shows binarized data using B4
(gene by gene GMM threshold binarization) clustering. Both continuous and
binary data clustered cancer and normal patients into two groups. Class 1 and
class 2 have majority patients with cancer and majority patients with no cancer
(normal) respectively.
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Figure E.3: RNA-Seq Stomach Cancer - Hierarchical clustering using top 30
genes. (A) shows the continuous data clustering (B) shows binarized data using
B4 (gene by gene GMM threshold binarization) clustering. Both continuous
and binary data clustered cancer and normal patients into two groups. Class 1
and class 2 have majority patients with cancer and majority patients with no
cancer (normal) respectively..
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Figure E.4: RNA-Seq Liver Cancer - Hierarchical clustering using top 20 genes.
(A) shows the continuous data clustering (B) shows binarized data using B4
(gene by gene GMM threshold binarization) clustering. Both continuous and
binary data clustered cancer and normal patients into two groups. Class 1 and
class 2 have majority patients with cancer and majority patients with no cancer
(normal) respectively.
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Figure E.5: RNA-Seq Head and Neck Cancer - Hierarchical clustering using top
30 genes. (A) shows the continuous data clustering (B) shows binarized data
using B4 (gene by gene GMM threshold binarization) clustering. Both contin-
uous and binary data clustered cancer and normal patients into two groups.
Class 1 and class 2 have majority patients with cancer and majority patients
with no cancer (normal) respectively.
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Figure E.6: Microarray Ovarian Cancer - Hierarchical clustering using top 30
genes. (A) shows the continuous data clustering (B) shows binarized data using
B4 (gene by gene GMM threshold binarization) clustering. Both continuous
and binary data clustered cancer and normal patients into two groups. Class 1
and class 2 have majority patients with cancer and majority patients with no
cancer (normal) respectively.
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Figure E.7: Microarray Soft Tissue Cancer - Hierarchical clustering using top 50
genes. (A) shows the continuous data clustering (B) shows binarized data using
B4 (gene by gene GMM threshold binarization) clustering. Both continuous
and binary data clustered cancer and normal patients into two groups.
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Figure E.8: Microarray Head and Neck Cancer - Hierarchical clustering using
top 50 genes. (A) shows the continuous data clustering (B) shows binarized data
using B4 (gene by gene GMM threshold binarization) clustering. Both contin-
uous and binary data clustered cancer and normal patients into two groups.
Class 1 and class 2 have majority patients with cancer and majority patients
with no cancer (normal) respectively.
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Figure E.9: Microarray Colon Cancer - Hierarchical clustering using top 50
genes. (A) shows the continuous data clustering (B) shows binarized data using
B4 (gene by gene GMM threshold binarization) clustering. Both continuous
and binary data clustered cancer and normal patients into two groups. Class 1
and class 2 have majority patients with cancer and majority patients with no
cancer (normal) respectively.
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Figure E.10: Microarray Lung Cancer - Hierarchical clustering using top 50
genes. (A) shows the continuous data clustering (B) shows binarized data using
B4 (gene by gene GMM threshold binarization) clustering. Both continuous
and binary data clustered cancer and normal patients into two groups. Class 1
and class 2 have majority patients with cancer and majority patients with no
cancer (normal) respectively.
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Figure E.11: Microarray Stomach Cancer - Hierarchical clustering using top 50
genes. (A) shows the continuous data clustering (B) shows binarized data using
B4 (gene by gene GMM threshold binarization) clustering. Both continuous
and binary data clustered cancer and normal patients into two groups. Class 1
and class 2 have majority patients with cancer and majority patients with no
cancer (normal) respectively.



Appendix F

Gene Ontology Scatter Plots:

Continuous and Binary Data

F.1 GO Scatter Plots for Times Points with Highest Num-

ber of Up/Down Regulated Proteins

REVIGO (Supek et al., 2011) gene ontology visualization plots for all the GO terms

identified by the GO analysis for the time points with the highest number of up or

down regulated proteins using both RNA-Seq and microarray measurements under

Drosophila melanogaster’s developmental time course are shown here. B4 gene by

gene GMM threshold binarization technique was employed to convert continuous

data into binary in following experiments.

F.2 GO Scatter Plots for Random Times Points of Up/-

Down Regulated Proteins

Following figures show the gene ontology scatter plots generated by REVIGO (Su-

pek et al., 2011) web tool for continuous and binary (using B4) data by simply con-

sidering random time points of RNA-Seq and microarray Drosophila melanogaster

development time course.
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Figure F.1: GO terms scatter plots of (A) continuous and (B) binary RNA-Seq
measurements obtained at the highest number of down regulated genes detected
time point of the Drosophila melanogaster’s developmental time course Graveley
et al. (2011)
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Figure F.2: GO terms scatter plots of (A) continuous and (B) binary microarray
measurements obtained at the highest number of up regulated genes detected
time point of the Drosophila melanogaster’s developmental time course Hooper
et al. (2007)
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Figure F.3: GO terms scatter plots of (A) continuous and (B) binary microarray
measurements obtained at the highest number of down regulated genes detected
time point of the Drosophila melanogaster’s developmental time course Hooper
et al. (2007)
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Figure F.4: GO terms scatter plots of (A) continuous and (B) binary RNA-
Seq measurements obtained at a random time point with up regulated genes of
Drosophila melanogaster’s developmental time course Graveley et al. (2011)
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Figure F.5: GO terms scatter plots of (A) continuous and (B) binary RNA-Seq
measurements obtained at a random time point with down regulated genes of
Drosophila melanogaster’s developmental time course Graveley et al. (2011)



Appendix F Gene Ontology Scatter Plots: Continuous and Binary Data 167

Figure F.6: GO terms scatter plots of (A) continuous and (B) binary microarray
measurements obtained at a random time point with up regulated genes of
Drosophila melanogaster’s developmental time course Hooper et al. (2007)
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Figure F.7: GO terms scatter plots of (A) continuous and (B) binary microarray
measurements obtained at a random time point with down regulated genes of
Drosophila melanogaster’s developmental time course Hooper et al. (2007)
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