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In this study the use of an inerter is considered for active vibration control of a structure
excited by white noise. The structure is modelled as a single degree of freedom system
and the control system consists of a vibration absorber with a mass suspended on a
spring, a damper and an inerter. The absorber is equipped with a reactive force transducer

velocity of the structure under control measured by an ideal collocated sensor. The effect
of the inerter on the control stability and performance of the control system is investi-
gated. It is shown that the effect of the inerter is to reduce the natural frequency of the
inertial actuator, improving the stability of the feedback loop and thus its performance.
The optimisation of the physical and control parameters of the control system such as the
internal damping of the actuator, its natural frequency, its inertance and the feedback gain
are considered such that either the kinetic energy of the host structure is minimised or the
power dissipated by the control system is maximised.

& 2016 Published by Elsevier Ltd.
1. Introduction

Passive tuned vibration absorbers were proposed by Farhm [1] in 1911 and have been widely used to control structural
vibrations ever since. They normally consist of a mass suspended on an elastic mount, which can usually be modelled as a
single degree of freedom system. When they are used to control the vibration of flexible structures subjected to broadband
excitation their natural frequency and internal damping are tuned to reduce the structural response in a narrow frequency
band around a structural resonance [2]. Many optimisation criteria of passive vibration absorbers have been proposed
depending on the application and a vast literature can be found on this topic [2–11]. As summarised by Zilletti et al. [11]
several criteria have been derived using lumped parameter models. One drawback of passive vibration absorbers is that they
can only be tuned to one resonance frequency of the host structure at the time and very small reduction is achieved at other
resonance frequencies. Therefore multi-degrees of freedom absorbers [12] or time variant one [13–15] have been proposed
in order to widen the frequency band of operation of these devices. However the efficiency of passive and semi-active
vibration absorbers increases with the mass ratio of the absorber to the system under control resulting in high added
weight.

A considerable improvement can be achieved by using active vibration absorbers, which consist of a passive vibration
absorber with a reactive force transducer in parallel with the suspension, which is driven to implement a feedback loop. An
example of this device is the voice coil inertial actuator with an accelerometer sensor at its footprint commonly used in
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www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
http://dx.doi.org/10.1016/j.jsv.2016.01.035
http://dx.doi.org/10.1016/j.jsv.2016.01.035
http://dx.doi.org/10.1016/j.jsv.2016.01.035
mailto:m.zilletti@soton.ac.uk
http://dx.doi.org/10.1016/j.jsv.2016.01.035
http://dx.doi.org/10.1016/j.jsv.2016.01.035
http://dx.doi.org/10.1016/j.jsv.2016.01.035
http://dx.doi.org/10.1016/j.jsv.2016.01.035


M. Zilletti / Journal of Sound and Vibration ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
vibration control applications [16]. The advantages of an active vibration absorber are its adaptability to parameters changes
of the structure under control, which guarantees a better vibration control performance in a wider range of operating
conditions compared with a passive one. Depending on the circumstances, active solutions may be cheaper and lighter than
passive systems offering performances that no passive system can achieve, especially in controlling low frequency vibration.
One way of driving these devices in order to damp the structural response of flexible structures subjected to broadband
excitation is by using a velocity feedback loop [17–20]. In this case the controller acts as a sky-hook active damper in the
frequency region above the resonance of the actuator, before higher order resonances interfere with their dynamics. This
type of control system is only conditionally stable because of the 180° phase shift in the response of the actuator due to its
resonance. In order to improve the stability of the controller and thus its performance, the natural frequency of the absorber
has to be as low as possible compared to the natural frequency of the structure under control [21]. This may be achieved by
using a low suspension stiffness which, however, may cause problems with the static deflection of the suspended mass due
to gravity. This can be overcome with internal displacement feedback loops [22]. In a similar manner, internal velocity
feedback loops can be used to increase the internal damping [23]. These methods require external power and particular care
has to be taken in the practical implementation of the feedback loop to avoid instability phenomena. Another strategy to
improve the stability of these devices is by using a compensator which electronically shifts the resonance frequency of the
device at lower frequency with the drawback of increasing the feedback signal in the low frequency regionwhich may result
in a stroke/force saturation effect of the actuator [24].

In this paper the use of an inerter that lowers the fundamental resonance frequency of the actuator is investigated. The
inerter is a mechanical device which produces a force proportional to the relative acceleration of its two terminals and was
initially proposed by Smith [25]. The constant of proportionality is called inertance and is measured in kilogram. Since its
invention inerters have been widely used and a vast literature can be found on their applications. Although a complete
literature review on this topic is beyond the scope of this paper, it is instructive to consider few examples of inerters in
vibration control applications. Inerters have been previously used in vibration absorbers with the aim of improving their
performance in damping out the vibration of both linear [26] and nonlinear systems [27]. Also, vibration absorbers with
tuneable inertance have been proposed which use a continuously variable transmission and gear ratio control system [28].
Inerters have been used to improve the performance of passive [29–31] and semi-active car suspensions [32]. In the case of
semi-active suspensions the inertance is electronically synthetised with a state- feedback control system. Several applica-
tions of inerters can be found in different systems such as passive network synthesis [33–35], motorcycles steering system
[36,37], train suspensions [38,39], civil engineering applications [40], and landing gear suspensions [41] with the aim of
improving vibration control performance.

Chen et al. [42] have demonstrated that the natural frequency of a lumped parameter mechanical systemwith an inerter
can always be reduced by increasing the inertance. This suggests that the use of an inerter in an active vibration absorber
could be used to improve its control stability by lowering the resonance frequency of the device without softening the
suspension.

In this paper the proposed vibration absorber that implements an ideal velocity feedback loop is used to control a single
mode of a vibrating structure, modelled as a single degree of freedom system, which is subjected to white noise excitation.
Throughout the paper, to better emphasise the advantages of the proposed control unit, the vibration control effect of the
proposed device with the inerter is compared with the effect produced by a reference control unit without the inerter. It is
demonstrated that the use of the inerter improves the control stability and thus provides a better control performance
compare to the configuration without the inerter.

One important issue with such a control system is how the feedback gain is set to optimally control the vibration of the
hosting structure. In an ideal system, the optimal feedback gain would be adjusted to minimise the kinetic energy of the
structure under control. However this optimisation may be difficult to implement in practice because it would require
velocity measurements in many points of the structure. Previous studies have shown that the maximisation of power
absorbed by the controller, which can be easily estimated from the feedback signal, is equivalent to the minimisation of the
kinetic energy of the structure under control subjected to a white noise excitation [43–45]. This paper extends this result to
the case of the control unit with the inerter.

The organisation of the paper is as follow. In Section 2 the mathematical model of the primary systemwith the controller
is derived providing the expressions for the frequency response functions. In Section 3 the stability of the control system is
analytically assessed and the expressions for the kinetic energy of the system under control and the power absorbed by the
controller are derived. In Section 4 numerical simulation results are presented and conclusions are drawn in Section 5.
2. Mathematical model

Typically when an inertial actuator is used to implement a velocity feedback loop to control the resonant response due to
one mode of a flexible structure, a simplified lumped parameters model is considered. As shown in Fig. 1 it is assumed that
the primary structure is composed by a modal mass m1, a damper c1 and a stiffness k1 and is excited by a primary force f p.

Classical inertial actuators are composed by a block mass m2, mounted on a suspension of stiffness k2 a damping c2. In
this study an inerter of inertance b2, producing a force proportional to the relative acceleration between massm1 andm2 has
been added in parallel with a reactive force transducer. At frequencies above its fundamental resonance frequency, the
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inertial actuator produces a sky-hook active force f a proportional to the absolute velocity of the modal mass m1 via the
control gain g.

The equation of motion of the system shown in Fig. 1 can be written in a matrix form as:

M €x tð ÞþC _x tð ÞþKx tð Þ ¼ f ðtÞ (1)

where M is the mass matrix, K is the stiffness matrix and C is the damping matrix given by:

M¼
m1þb2 �b2
�b2 m2þb2

" #
;K¼

k1þk2 �k2
�k2 k2

" #
;C¼

c1þc2þg �c2
�c2�g c2

" #
; (2)

x tð Þ ¼ ½ x1ðtÞ x2ðtÞ �T is the column vector containing the displacements of the two masses x1 and x1 and
f tð Þ ¼ f p tð Þ 0

h iT
is the column vector of the primary excitation. It is important to notice that due to the feedback loop the

damping matrix C is non-symmetric. As it will be shown in the next section this implies that the control system is only
conditionally stable.

Assuming the excitation to be harmonic for the time being and expressing the force and the steady-state response in
exponential form, Eq. (1) becomes:

SðjωÞx jωð Þ ¼ fðjωÞ (3)

where

S jωð Þ ¼ �ω2Mþ jωCþK (4)

is the dynamic stiffness matrix. The solution of Eq. (3) can be obtained as:

x jωð Þ ¼ S�1 jωð Þf jωð Þ: (5)

Integrating Eq. (5) to obtain the velocities yields:

_x jωð Þ ¼ Y jωð Þf jωð Þ; (6)

where _x jωð Þ ¼ jωx jωð Þ and Y jωð Þ ¼ jωS�1 jωð Þ is the mobility matrix. Using the expression of M, K and C of Eq. (2), the steady
state complex response of the system can be expressed in terms of the input and transfer frequency response functions
(FRF) as:

Y11 jωð Þ ¼ _x1
f p

¼

¼ jk2ω�c2ω2� jm2ω
3� jb2ω3

k1k2þ jc2k1ωþ jc1k2ω�c1c2ω2�b2k1ω2�k2m1ω
2�k1m2ω

2�k2m2ω
2� jb2c1� jc2m1ω

3�

jc1m2ω
3� jc2m2ω

3þgm2ω
2þb2m1ω

4þb2m2ω
4þm1m2ω

4 (7)
Fig. 1. Scheme of the SDOF system with a velocity feedback loop using an inertial actuator.
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Y21 jωð Þ ¼ _x2
f p

¼

¼ jk2ω�c2ω2þgω2� jb2ω3

k1k2þ jc2k1ωþ jc1k2ω�c1c2ω2�b2k1ω2�k2m1ω
2�k1m2ω

2�k2m2ω
2� jb2c1� jc2m1ω

3�

jc1m2ω
3� jc2m2ω

3þgm2ω
2þb2m1ω

4þb2m2ω
4þm1m2ω

4 (8)

where _x1 and _x2 are the complex frequency dependent velocities of masses m1 and m2 respectively. The two FRFs can be
expressed in non-dimensional form as follows:

Γ jλð Þ ¼ B0þ jλð ÞB1þ jλð Þ2B2þ jλð Þ3B3

A0þ jλð ÞA1þ jλð Þ2A2þ jλð Þ3A3þ jλð Þ4A4

(9)

Θ jωð Þ ¼ C0þ jλð ÞC1þ jλð Þ2C2þ jλð Þ3C3

A0þ jλð ÞA1þ jλð Þ2A2þ jλð Þ3A3þ jλð Þ4A4
; (10)

where the coefficients A0�4, B0�3 and C0�3 are given by:

A0 ¼ ν2 B0 ¼ 0 C0 ¼ 0
A1 ¼ 2ζ2νþ2ζ1ν2 B1 ¼ ν2 C1 ¼ ν2

A2 ¼ ν2þ1þμν2þ4ζ1ζ2νþδ B2 ¼ 2ζ2ν C2 ¼ 2ζ2νþ4αζ2ν
A3 ¼ 2ζ2νþ2ζ2μνþ2ζ1þ4ανζ2μþ2ζ1δ B3 ¼ 1þδ C3 ¼ δ

A4 ¼ 1þδþδμ

The seven non-dimensional parameters in Eqs. (9) and (10) are defined by:

μ¼m2=m1

ν¼ ω2=ω1

λ¼ ω=ω1

ζ1 ¼ c1=ð2m1ω1Þ
ζ2 ¼ c2=ð2m2ω2Þ

α¼ g= 2c2ð Þ
δ¼ b2=m2 (11)

where μ is the mass ratio, ν is the frequency ratio, λ is the normalised driving frequency, ζ1 and ζ2 are the primary and
secondary damping ratios respectively, α is the normalised velocity control feedback gain and δ is the normalised inertance.
The natural frequency of the primary system, ω1, and the natural frequency of the inertial actuator, ω2, are defined as:

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

q
;

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

q
: (12)
Fig. 2. Block diagram of the control system with measurement noise n.
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3. Stability and performance

In this section the stability of the control system is analytically assessed and the expressions for the kinetic energy of the
primary system and the power absorbed by the controller are derived.

3.1. Stability of the controller

It is important to notice that due to the resonance of the inertial actuator the velocity loop is only conditionally stable
thus the control gain cannot exceed the value that leads the system to instability. Fig. 2 shows the block diagram of the
control system where Δ jλð Þ is the open loop frequency response function given by:

Δ jλð Þ ¼Θ0 jλð Þ�Γ0 jλð Þ: (13)

where Γ0 jλð Þ and Θ0 jλð Þ are obtained from Eqs. (9) and (10) by setting α to zero.
The stability of the controller can be assessed from the open loop frequency response function applying the Routh's

stability criterion. The characteristic equation of the control system is given by the denominator of Eq. (13) and the related
Routh's coefficients are listed in Table 1.

The coefficients of the characteristic equation are all positive and so is the coefficient h1. To guarantee the stability of the
system the numerator of coefficient h2 has to be greater than zero and thus the following condition has to be satisfied:

S2α2þS1αþS040 (14)

where S2, S1 and S0 are given by:

S2 ¼ 2νðμν3ζ21þζ1 1þδð Þ2�2 1þδþδμð Þν2þ 1þμð Þ2ν4þ4 1þδð Þν2ζ21
� �

ζ2þνðμþ4ð1þδ

þ 1þμð Þν2Þζ21Þζ22þ4 1þμð Þν2ζ1ζ32Þ
S1 ¼ 4μν2ζ2 1þδ� 1þμð Þν2� �

ζ2þ4ν2ζ21ζ2þνζ1 �1�δþ 1þμð Þν2þ4ζ22
� �� �

S0 ¼ �8μ2ν4ζ22 (15)
Table 1
Routh's coefficients chart.

A4 A2 A0

A3 A1

h1 ¼ A3A2 �A4A1
A3

A0

h2 ¼ h1A1 �A3A0
h1

A0

Fig. 3. Magnitude of the sensitivity (solid line) and the complementary sensitivity (dashed line) functions for αmax=4 (plot (a)) and for the control gain
approaching the maximum stable gain αmax (plot (b)).
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The block diagram shown in Fig. 2 also includes the signal n which represents measurement errors or noise on the
feedback signal. The block diagram reduction indicates that the closed-loop output is given by:

_x1 ¼
Γ0 jλð Þ

1þgΔ jλð Þf p�
Γ0 jλð ÞαΔ jλð Þ
1þαΔ jλð Þ n¼ S jλð Þf p�T jλð Þn (16)

where the transfer functions S jλð Þ and T jλð Þ are usually defined as sensitivity and complementary sensitivity function
respectively. Fig. 3 shows the magnitude of S jλð Þ (solid line) and T jλð Þ (dashed line) functions for low values of control gain
(plot (a)) and for the control gain approaching the maximum stable gain (plot (b)).

Plot (a) shows that the magnitude of T jλð Þ is lower than S jλð Þ thus the control system has a good feedback noise rejection.
However as shown in plot (b), when the control gain approaches the maximum stable gain the magnitude of T jλð Þ gets larger
than S jλð Þ in the frequency region around the natural frequency of the control unit. This brief analysis shows that particular
care must be taken in reducing the noise in the feedback signal since an excessive noise level may limit the control gain that
can be achieved in practice and thus degrade the performance of the system.

3.2. Energy and power formulation

The performance of the controller discussed in the next section is assessed in terms of the reduction of the kinetic energy
of the system under control when excited by a broadband white noise force. The kinetic energy of the primary mass per unit
excitation force with a uniform power spectral density (PSD) Sf ðωÞ measured in N2 s/rad is given by:

Ek ¼
m1E j _x1 tð Þj2� �
2Sfω1=k1

; (17)

where E½ � denotes the expectation value and the constant Sfω1=k1 is introduced to ensure that Ek is dimensionless. The
mean squared value of the velocity of the primary mass, m1, can be written as:

E½j _x1 tð Þj2� ¼ Sfω1

m1k1

Z þ1

�1
Γ jλð Þ 2dλ:

				 (18)

Thus substituting Eq. (9) in (18) and then in (17) yields:

Ek ¼
1
2

Z þ1

�1

					 B0þ jλð ÞB1þ jλð Þ2B2þ jλð Þ3B3

A0þ jλð ÞA1þ jλð Þ2A2þ jλð Þ3A3þ jλð Þ4A4

					
2

dλ: (19)

Eq. (19) can be integrated using the formula in reference [46] leading to:

Ek ¼
1
2

G1αþG0

F2α2þF1αþF0
(20)

where the coefficients G0;1 and F0;1;2 are given in Table A.1 in Appendix A. The optimal control gain αopt that minimise the
kinetic energy of the primary system can be calculated by setting to zero the derivative of Ek with respect to α leading to:

F2G1α
2þ2F2G0αþF1G0�F0G1 ¼ 0: (21)

As shown in references [43,44,47] a convenient way to tune the control gain is by maximise the power absorbed by the
control unit. The total power absorbed by the control unit is given by the sum of the passive power dissipated by the damper
and the active power of the electromechanical transducer. The PSD of the power absorbed by the passive damper c2 is equal
to:

Ppas ωð Þ ¼ 1
2
Re f �d jωð Þ _x1 jωð Þ� _x2 jωð Þ½ �
 �

; (22)

where * denotes complex conjugate and the force f d is the force produced by the damper given by:

f d jωð Þ ¼ c2 _x1 jωð Þ� _x2 jωð Þð Þ: (23)

Substituting Eq. (23) in (22) the power passively dissipated by the inertial actuator becomes:

Ppas ωð Þ ¼ 1
2
c2 _x1 jωð Þ� _x2 jωð Þ 2;

				 (24)

The non-dimensional power dissipated by the damper per unit excitation force is given by:

Ipas ¼
c2E j _x1ðtÞ� _x2ðtÞj2

� �
4πSfω1=k1

; (25)

which represents the ratio of the power passively dissipated by the control unit to that generated by the excitation force
with spectrum density Sf acting on a damper of value k1=ðπω1Þ. The mean squared value of the relative velocity is given by:

E½j _x1 tð Þ� _x2 tð Þj2� ¼ Sfω2
1

k1
2ζ2μν

Z þ1

�1
Γ jλð Þ�Θ jλð Þ 2dω:

				 (26)
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Substituting Eqs. (9) and (10) in Eq. (26) and then in (25) the power passively dissipated by the damper becomes:

Ipas ¼ ζ2μν

2π

Z þ1

�1

					 D0þ jλð ÞD1þ jλð Þ2D2þ jλð Þ3D3

A0þ jλð ÞA1þ jλð Þ2A2þ jλð Þ3A3þ jλð Þ4A4

					
2

dω; (27)

where

D0 ¼ C0�B0 ¼ 0
D1 ¼ C1�B1 ¼ 0

D2 ¼ C2�B2 ¼ 4ανζ2
D3 ¼ C3�B3 ¼ �1 (28)

The integral over the frequency band between 71 in Eq. (27) can be calculated using the expression given in reference
[46], leading to:

Ipas ¼
1
2
H2α

2þH1αþH0

F2α2þF1αþF0
; (29)

where the coefficients H0;1;2 are given in Table A.1 in Appendix A.
The PSD of the active power produced by the electromechanical reactive force is equal to:

Pact ωð Þ ¼ 1
2
Re f �a jωð Þ x1 jωð Þ�x2 jωð Þ�g:½


(30)

Assuming that the force f a is proportional to the velocity _x1ðjωÞ of the primary mass, Eq. (30) can be written as:

Pact ωð Þ ¼ �g
2
Re _x�1 jλð Þ _x1 jωð Þ� _x2 jωð Þ½ �
 �¼ �g

2
_x1 jωð Þ 2�Re _x�1 jωð Þ _x2 jωð Þ
 �		 �

:
		� (31)

After some manipulations Eq. (31) can be written as:

Pact ωð Þ ¼ �g
4

_x1 jωð Þ 2þ _x1 jωð Þ� _x2 jωð Þ 2� _x2 jωð Þ 2
		 �

:
										� (32)

In this case the active power per unit excitation force is given by:

Iact ¼ �gE½j _x1 tð Þj2þj _x1 tð Þ� _x2 tð Þj2�j _x2 tð Þj2�
4πSfω1=k1

; (33)

which represents the ratio of the power actively dissipated by the control unit to that generated by the excitation force with
spectrum density Sf acting on a damper of value k1=ðπω1Þ. The mean squared value of the relative velocity times the control
gain g can be expressed as follow:

gE _x1 tð Þ
		 		2þ _x1 tð Þ� _x2 tð Þ

		 		2� _x2 tð Þ
		 		2h i

¼ Sfω2
1

k1
2ζ2μν

Z þ1

�1
Γj j2dλþ

Z þ1

�1
Γ�Θj j2dλ�

Z þ1

�1
Θj j2dλ

� 

(34)

Substituting the expressions of Γ and Θ in Eq. (34) and calculating the integrals over the frequency band between 71
using the expression given in reference [46] the total active power becomes:

Iact ¼
L2α2þL1α

F2α2þF1αþF0
; (35)

where the coefficients L1;2 are given in Table A.1 in Appendix A. The total power absorbed by the control unit, given by the
sum of power dissipated by the passive damper Ipas and the active power produced by the electromechanical actuator Iact
can be written as:

Ip ¼
1
2
ð2L2þH2Þα2þð2L1þH1ÞαþH0

F2α2þF1αþF0
: (36)

From the energy balance, in steady state conditions, the total power input into the whole system Ipin is equal to the
power dissipated by damper 1 plus the total power dissipated by the control unit Ip. The power dissipated by damper 1 is
given by:

P1 ωð Þ ¼ 1
2
c1 _x1ðjωÞ 2:

				 (37)

In order to obtain a dimensionless formulation, a dimensionless index relative to P1 ωð Þ can be defined by:

Ip1 ¼
c1E ½j _x1ðtÞj2�
4πSfω2

1=k1
¼ 1
2
c1
m1

Ek: (38)
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The power input into the system per unit input force can be calculated as the sum of Eqs. (36) and (38) giving:

Ipin ¼ Ip1þ Ip ¼ 1þδ

2þ2δþ2δμ
: (39)

Eq. (39) indicates that, when the system is excited by a random white noise force, the power input into the system only
depends on the masses, m1 and m2 and the inertance b2. Multiplying Eq. (39) by the constant 2πSfω2

1=k1 and setting the
inertance δ to zero, the power input reduces to 1=ð2m1Þ thus it only depends on the mass of the primary system as shown in
references [11,48].

Taking the derivative with respect to α of Eq. (39) yields:

∂Ip1
∂α

þ∂Ip
∂α

¼ 0 (40)

and substituting Eq. (38) in (40) gives:

∂Ip
∂α

¼ �1
2
c1
m1

∂Ek
∂α

: (41)

Eq. (41) indicates that, for given c1 andm1, the derivative with respect to α of Ip is proportional to the derivative of Ek thus
the maximisation of the power absorbed by the control unit is equivalent to the minimisation of the kinetic energy of the
structure under control.
4. Numerical simulations

This section discusses the stability and performance of the velocity feedback loop implemented to control the resonant
response of a structure modelled as single degree-of-freedom lumped parameter model.

To better understand the dynamics of the system and compare the vibration control effect obtained with the control unit
with and without the inerter numerical simulations have been carried out using the parameters listed in Table 2.

4.1. Stability

The stability of the control system is first assessed with the Nyquist criterion. Fig. 4 shows the Bode (a) and the Nyquist
(b) diagrams of the open loop frequency response function (OL-FRF) given by Eq. (13). The dashed line shows the OL-FRF for
the classical inertial actuator without the inerter while the solid line shows the OL-FRF of the inertial actuator with the
inerter proposed in this study. In order to obtain a non-dimensional formulation the damping ratio of the control unit ζ2 was
defined in Eq. (11) to be independent from the inertance b. However the actual damping ratio of the control unit is indeed
influenced by the presence of the inerter thus the actual damping ratio of the inertial actuator ζ02 is defined as:

ζ02 ¼
c2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðm2þb2Þ

p ; (42)

In order to compare the two configurations the value of the actual damping ratio ζ02 of the two devices with and without
the inerter has been set to 0.1. The OL-FRF in Fig. 4 has been normalised with respect to the magnitude at the second
resonance peak in the OL-FRF of the classical configuration without the inerter, so that the differences between the two FRFs
can be better compared.

Considering first the classical configuration without the inerter (dashed line) the magnitude of the OL-FRF shows two
peaks at about the actuator fundamental resonance frequency (λ¼ 0:5) and the fundamental resonance frequency of the
system under control (λ¼ 1). The two resonant responses are out of phase, thus the low frequency portion of the OL-FRF
locus shown in Fig. 4(b) is characterised by a circle in the real-negative quadrants (first resonance) and a circle of larger size
in the real-positive quadrants (second resonance). This indicates that the closed feedback loop is only conditionally stable
with relatively low gain margin. Considering the case of the control unit with the inerter (solid line) the first peak of the OL-
FRF is shifted at about λ¼ 0:3 due to the effect of the inerter. The solid line in Fig. 4(b) shows that the circle of the first
resonance in the real-negative quadrants is about three times smaller than the one of the classical configuration without the
inerter thus it has a gain margin about three times bigger than the classical control unit.
Table 2
Non-dimensional parameters used in the simulations.

Parameter Value

Mass ratio μ 0:1
Natural frequency ratio ν 0:5
Damping ratio of the primary system ζ1 0:01
Inertance δ 2
Damping ratio of the inertial actuator ζ02 0:1
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Fig. 5 shows the maximum stable gain of the feedback loop obtained from Eq. (14) as a function of the damping ratio of
the inertial actuator ζ02 and the inerter coefficient δ. The graph shows that the maximum stable gain increases as both the
damping ratio and inerter coefficient increase. The use of an inerter in this application is particularly appealing in the light of
the fact that a relatively large inertance can be achieved with a small increase of the total mass of the control unit [49].

4.2. Performance

The performance of the controller is assessed in terms of the reduction of the kinetic energy of the system under control
when excited by a broadband white noise force. The solid line in Fig. 6 shows the PSD of the kinetic energy of the primary
system when the feedback gain, α, is zero.

Since the mass of the actuator is only 10% the mass of the primary system the spectrum of the kinetic energy is
dominated by the resonant response of the primary system and the passive effect of the actuator is negligible.

As shown by the dashed line in Fig. 6, as the feedback gain is increased, significant attenuation is initially obtained at
resonance frequency of the primary system for both configurations without (a) and with (b) the inerter.

At gains approaching the stability limit (dotted line), however, there is also a significant enhancement of the vibration at
the natural frequency of the actuator, due to the positive feedback in this frequency region caused by the phase response of
the actuator. Comparing Fig. 6(a) and (b) it can be noticed that for the control unit with the inerter the resonance of the
 
Fig. 4. (a) Bode and (b) Nyquist diagrams of the open loop FRF given in Eq. (13) when δ¼ 0 (dashed line) and δ¼ 2 (solid line) for the same value of ζ02 ¼ 0:1
and normalised to have the same maximum magnitude.
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Fig. 5. Maximum stable gain as a function of the damping ratio ζ02 and the inerter coefficient δ.
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actuator is shifted down in frequency thus, as shown in the previous subsection, the control system exhibits a greater gain
margin which improves the control performance allowing a greater reduction in the spectrum of the kinetic energy of the
primary system.

If the total kinetic energy of the primary system is calculated from Eq. (20) its variation with feedback gain, normalised
by the kinetic energy with no control, is shown in Fig. 7 for the case with (solid line) and without (dashed line) the inerter.
The feedback gain in Fig. 7 has been normalised to the value of maximum stable gain. The total kinetic energy initially
decreases as the feedback gain is increased, before increasing again as the maximum stable gain is approached. The
minimum of the kinetic energy is reached when the feedback gain is set to the optimal value given by Eq. (21) and is shown
by the circular markers. From the plot in Fig. 7 it can be clearly seen that when the inerter is added in parallel with the
suspension of the inertial actuator additional 5 dB reduction in the kinetic energy of the primary system can be achieved
compare to the case without the inerter when the gain is set to the optimal value.

To better understand the influence of the inerter on the performance of the control unit, the additional reduction in the
kinetic energy of the primary system due to the effect of the inerter when the gain is set to the optimal value has been
plotted against the inertance δ in Fig. 8.
Fig. 6. PSD of the kinetic energy for zero gain (solid line) when the control gain that guarantees 6 dB gain margin (dashed line) and the maximum stable
gain (dotted line) are implemented. Inertial actuator (a) without and (b) with the inerter δ¼ 2.

Fig. 7. Reduction in dB of the kinetic energy of the primary system as a function of the control gain g normalised to the maximum stable gain for the
control unit with the inerter b2 ¼ 0:2 kg (solid line) and without (dashed line) inerter.
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The plot shows that a rapid increase in the performance of the control system can be achieved for relatively low values of
the inertance δ while for values greater than 20 only a moderate improvement in the performance can be obtained. The
circular marker in Fig. 8 shows the value of δ considered the simulations.

As already pointed out in the previous section an alternative control strategy to tune the gain α is to maximise the power
absorbed by the controller. Fig. 9 shows the power absorbed by the control unit, Ip, as a function of the normalised feedback
gain for the configuration with (solid line) and without (dashed line) the inerter. Fig. 9 shows that when the control gain is
zero some power is absorbed by the passive damper of the suspension. As the control gain is increased more and more
power is absorbed until a maximum is reached. Comparing the solid and dashed line in Fig. 9 it can be seen that the control
unit with the inerter is able to absorb more power than the classical configuration without the inerter. As also analytically
demonstrated in the previous section, comparing Figs. 7 and 9 it can be notice that maximising the absorbed power results
in the same control gain as minimising the kinetic energy. The control unit could thus be made self-tuneable if an algorithm
that adjusts the control gain to maximise the absorbed power is employed [43].

When the control gain approaches the maximum stable value the active force injects power into the system that is then
dissipated by the passive damper c2. This phenomenon becomes more evident when the ratio between m2 and m1

decreases. Further investigation on the power flows in the system is currently under investigation.
Fig. 8. Improvement in the kinetic energy reduction as a function of δ. The circular marker shows the value of δ considered the simulations.

Fig. 9. The power absorbed by the control unit as a function of the control gain g normalised to the maximum stable gain for the control unit with the
inerter b2 ¼ 0:1 kg (solid line) and without (dashed line) inerter. The two circular markers show the locations of the maxima.
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5. Conclusions

This paper presents a theoretical study on the implementation of a velocity feedback loop to reduce the vibration of a
structure modelled as a single degree of freedom system. The control unit consist of an inertial actuator with a mass
suspended on a spring, a damper and an inerter with an electromechanical transducer in parallel with the suspension. The
actuator is fed with a signal proportional to the velocity measured by a sensor located at the footprint of the control unit. It
is shown that the use of the inerter has the effect of shifting down the fundamental resonance frequency of the control unit.
This allows the use of a relatively stiff spring suspension able to support the static load of the inertial mass and at the same
time improve stability and performance of the control system. The study also consider the tuning of the feedback control
gain in order to either minimise the kinetic energy of the system under control or maximise the power absorbed by the
controller. It has been analytically demonstrated that the two tuning strategies are equivalent.
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Appendix A

See Table A.1.
Table A.1
List of coefficients of Eqs. (20), (29) and (35).

G0 ¼ 2ν � 1þδð Þ2 1þμð Þν3ζ1� 1þδð Þ 1þδþδμð Þν3ζ1� 1þδð Þ2ζ2�δ 1þδð Þ2ζ2� 1þδ þδμð Þν4ζ2�μ 1þδþδμð Þν4ζ2�4 1þδð Þ2ν2ζ21ζ2�4 1þδð Þ2νζ1ζ22
�

þ2 1þδ þδμð Þν2 νζ1þζ2ð Þ 1þδ�2ζ22
� ��

G1 ¼ 4μν3ðð1þδÞ2�ð1þδþδμÞν2Þζ2
F0 ¼ 4 1þδþδμð Þν �4 1þδð Þν2ζ31ζ2�μνζ22�ζ1ζ2 1þδ2�2ν2þν4þ2μν4þμ2ν4�2δ �1þ 1 þμð Þν2� �þ4 1þμð Þν2ζ22

� ��νζ21 μν2þ4 1þδþ 1þμð Þν2� �
ζ22

� �� �
F1 ¼ 8μð1þδþδμÞν2ζ2ð2ð1þδÞνζ1þ2ν2ζ2þ2μν2ζ2�ðνζ1þζ2Þð1þδþν2þμν2þ4νζ1ζ2ÞÞ
F2 ¼ 16μ2ð1þδþδμÞν4ζ22
H0 ¼ �μνζ2ðð1þδÞζ2þ4ν2ζ21ζ2þζ1ðð1þμÞν3þ4νζ22ÞÞ
H1 ¼ 2μ2ν3ζ22
H2 ¼ �16μð1þδþδμÞν3ζ32ðνζ1þζ2Þ
L1 ¼ μνζ2ðð1þδ2�ν2�δð�2þð1þμÞν2ÞÞζ2þ4ð1þδÞν2ζ21ζ2þνζ1ðμν2þ4ð1þδÞζ22ÞÞ
L2 ¼ 2μν3ζ22ð�ð1þδÞμ�4ð1þδþδμÞνζ1ζ2�4ð1þδþδμÞζ22Þ
References

[1] H. Frahm, Device for damping vibrations of bodies, U.S. Patent, 989,958, 1911.
[2] J.P. Den Hartog, Mechanical Vibrations, 4th ed. McGraw-Hill, New York, 1956.
[3] T. Asami, O. Nishihara, A.M. Baz, Analytical solutions to H1 and H2 optimization of dynamic vibration absorbers attached to damped linear systems,

Journal of Vibration and Acoustics 124 (2002) 284–295.
[4] S.H. Crandall, W.D. Mark, Random Vibration in Mechanical Systems, Academic Press, New York, 1963.
[5] Y. Iwata, On the construction of the dynamic vibration absorber, Japanese Society of Mechanical Engineering 820 (1982) 150–152.
[6] S. Krenk, Frequency analysis of the tuned mass damper, Journal of Applied Mechanics 72 (2005) 936–942.
[7] O. Nishihara, T. Asami, Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude

magnification factors), Journal of Vibration and Acoustics 124 (2002) 576–582.
[8] O. Nishihara, H. Matsuhisa, Design of a dynamic vibration absorber for minimisation of maximum amplitude magnification factor (derivation of

algebric exact solution), Transactions of the Japan Society of Mechanical Engineers, Series C 62–614 (1997) 3438–3445.
[9] G.B. Warburton, Optimum absorber parameters for various combinations of response and excitation parameters, Journal of Earthquake Engineering and

Structural Dynamics 10 (1982) 381–401.
[10] H. Yamaguchi, Damping of transient vibration by a dynamic absorber, Transactions of the Japan Society of Mechanical Engineers, Series C 54 (1988)

561–568.
[11] M. Zilletti, S.J. Elliott, E. Rustighi, Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation,

Journal of Sound and Vibration 331 (2012) 4093–4100.
[12] L. Zuo, S.A. Nayfeh, Minimax optimization of multi-degree-of-freedom tuned-mass dampers, Journal of Sound and Vibration 272 (2004) 893–908.
[13] P. Gardonio, M. Zilletti, Integrated tuned vibration absorbers: a theoretical study, The Journal of the Acoustical Society of America 134 (2013) 3631–3644.
[14] P. Gardonio, M. Zilletti, Sweeping tuneable vibration absorbers for low-mid frequencies vibration control, Journal of Sound and Vibration 354 (2015)

1–12.
Please cite this article as: M. Zilletti, Feedback control unit with an inerter proof-mass electrodynamic actuator, Journal of
Sound and Vibration (2016), http://dx.doi.org/10.1016/j.jsv.2016.01.035i

http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref1
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref2
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref2
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref2
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref2
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref3
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref4
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref4
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref5
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref5
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref6
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref6
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref6
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref7
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref7
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref7
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref8
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref8
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref8
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref9
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref9
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref9
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref10
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref10
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref10
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref11
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref11
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref12
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref12
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref13
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref13
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref13
http://dx.doi.org/10.1016/j.jsv.2016.01.035
http://dx.doi.org/10.1016/j.jsv.2016.01.035
http://dx.doi.org/10.1016/j.jsv.2016.01.035


M. Zilletti / Journal of Sound and Vibration ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 13
[15] M. Zilletti, P. Gardonio, Experimental implementation of switching and sweeping tuneable vibration absorbers for broadband vibration control, Journal
of Sound and Vibration 334 (2015) 164–177.

[16] F. Fahy, P. Gardonio, Sound and Structural Vibration, Radiation, Transmission and Response, 2nd ed. Academic Press, Oxford, UK, 2007.
[17] S.J. Elliott, Global vibration control through local feedback, in: D. Wagg, I. Bond, P. Weaver, M. Friswell (Eds.), Adaptive Structure: Engineering Appli-

cations, John Wiley & Sons Ltd., Chichester2007, pp. 59–87.
[18] S.J. Elliott, P. Gardonio, T.C. Sors, M.J. Brennan, Active vibroacoustic control with multiple local feedback loops, The Journal of the Acoustical Society of

America 111 (2002) 908–915.
[19] C. González Díaz, P. Gardonio, Feedback control laws for proof-mass electrodynamic actuators, Smart Materials and Structures 16 (2007) 1766.
[20] A. Preumont, Vibration Control of Active Structures, Kluwer Academic, London, 2002.
[21] S.J. Elliott, M. Serrand, P. Gardonio, Feedback stability limits for active isolation systems with reactive and inertial actuators, Transactions of the ASME,

Journal of Vibration and Acoustics 123 (2001) 250–261.
[22] L. Benassi, S.J. Elliott, Active vibration isolation using an inertial actuator with local displacement feedback control, Journal of Sound and Vibration 278

(2004) 705–724.
[23] C. Paulitsch, P. Gardonio, S.J. Elliott, Active vibration control using an inertial actuator with internal damping, The Journal of the Acoustical Society of

America 119 (2006) 2131–2140.
[24] J. Rohlfing, S.J. Elliott, P. Gardonio, Feedback compensator for control units with proof-mass electrodynamic actuators, Journal of Sound and Vibration

331 (2012) 3437–3450.
[25] M.C. Smith, Synthesis of mechanical networks: the inerter, IEEE Transactions on Automatic Control 47 (2002) 1648–1662.
[26] Y. Hu, M.Z.Q. Chen, Performance evaluation for inerter-based dynamic vibration absorbers, International Journal of Mechanical Sciences 99 (2015)

297–307.
[27] P. Brzeski, E. Pavlovskaia, T. Kapitaniak, P. Perlikowski, The application of inerter in tuned mass absorber, International Journal of Non-Linear Mechanics

70 (2015) 20–29.
[28] P. Brzeski, T. Kapitaniak, P. Perlikowski, Novel type of tuned mass damper with inerter which enables changes of inertance, Journal of Sound and

Vibration 349 (2015) 56–66.
[29] M.C. Smith, F.-C. Wang, Performance benefits in passive vehicle suspensions employing inerters, Vehicle System Dynamics 42 (2004) 235–257.
[30] M.Z.Q. Chen, C. Papageorgiou, F. Scheibe, W. Fu-cheng, M.C. Smith, The missing mechanical circuit element, IEEE Circuits and Systems Magazine 9

(2009) 10–26.
[31] Y. Shen, L. Chen, X. Yang, D. Shi, J. Yang, Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension,

Journal of Sound and Vibration 361 (2016) 148–158.
[32] P. Li, J. Lam, K.C. Cheung, Control of vehicle suspension using an adaptive inerter, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of

Automobile Engineering (2015).
[33] M.Z.Q. Chen, K. Wang, S. Zhan, L. Chanying, Realizations of a special class of admittances with strictly lower complexity than canonical forms, IEEE

Transactions on Circuits and Systems I: Regular Papers 60 (2013) 2465–2473.
[34] M.Z.Q. Chen, K. Wang, Y. Zou, J. Lam, Realization of a special class of admittances with one damper and one inerter for mechanical control, IEEE

Transactions on Automatic Control 58 (2013) 1841–1846.
[35] K. Wang, M.Z.Q. Chen, Y. Hu, Synthesis of biquadratic impedances with at most four passive elements, Journal of the Franklin Institute 351 (2014)

1251–1267.
[36] S. Evangelou, D.J.N. Limebeer, R.S. Sharp, M.C. Smith, Control of motorcycle steering instabilities, IEEE Control Systems 26 (2006) 78–88.
[37] S. Evangelou, D.J.N. Limebeer, R.S. Sharp, M.C. Smith, Mechanical steering compensators for high-performance motorcycles, Journal of Applied

Mechanics 74 (2006) 332–346.
[38] F.-C. Wang, M.-K. Liao, B.-H. Liao, W.-J. Su, H.-A. Chan, The performance improvements of train suspension systems with mechanical networks

employing inerters, Vehicle System Dynamics 47 (2009) 805–830.
[39] J.Z. Jiang, A.Z. Matamoros-Sanchez, R.M. Goodall, M.C. Smith, Passive suspensions incorporating inerters for railway vehicles, Vehicle System Dynamics

50 (2012) 263–276.
[40] F.-C. Wang, M.-F. Hong, C.-W. Chen, Building suspensions with inerters, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of

Mechanical Engineering Science 224 (2010) 1605–1616.
[41] X. Dong, Y. Liu, M.Z.Q. Chen, Application of inerter to aircraft landing gear suspension, Proceedings of the 34th Chinese Control Conference (CCC), 2015,

pp. 2066–2071.
[42] M.Z.Q. Chen, Y. Hu, L. Huang, G. Chen, Influence of inerter on natural frequencies of vibration systems, Journal of Sound and Vibration 333 (2014)

1874–1887.
[43] M. Zilletti, S.J. Elliott, P. Gardonio, Self-tuning control systems of decentralised velocity feedback, Journal of Sound and Vibration 329 (2010) 2738–2750.
[44] M. Zilletti, S.J. Elliott, P. Gardonio, E. Rustighi, Experimental implementation of a self-tuning control system for decentralised velocity feedback, Journal

of Sound and Vibration 331 (2012) 1–14.
[45] M. Zilletti, P. Gardonio, S.J. Elliott, Optimisation of a velocity feedback controller to minimise kinetic energy and maximise power dissipation, Journal of

Sound and Vibration 333 (2014) 4405–4414.
[46] D.E. Newland, An Introduction to Random Vibrations, Spectral & Wavelet Analysis, Third edition ed. Dover Publications, Inc., Mineola, New York, 1975.
[47] S.J. Elliott, M. Zilletti, P. Gardonio, Apparatus and method of vibration control, Patent, WO2011114165 A1, 2011.
[48] R.S. Langley, A general mass law for broadband energy harvesting, Journal of Sound and Vibration 333 (2014) 927–936.
[49] Y. Hu, M.Z.Q. Chen, Z. Shu, L. Huang, Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution, Journal of

Sound and Vibration 346 (2015) 17–36.
Please cite this article as: M. Zilletti, Feedback control unit with an inerter proof-mass electrodynamic actuator, Journal of
Sound and Vibration (2016), http://dx.doi.org/10.1016/j.jsv.2016.01.035i

http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref14
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref14
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref14
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref15
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref16
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref16
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref16
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref16
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref17
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref17
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref17
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref18
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref19
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref20
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref20
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref20
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref21
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref21
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref21
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref22
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref22
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref22
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref23
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref23
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref23
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref24
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref24
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref25
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref25
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref25
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref26
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref26
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref26
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref27
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref27
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref27
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref28
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref28
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref29
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref29
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref29
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref30
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref30
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref30
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref31
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref31
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref32
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref32
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref32
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref33
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref33
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref33
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref34
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref34
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref34
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref35
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref35
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref36
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref36
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref36
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref37
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref37
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref37
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref38
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref38
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref38
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref39
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref39
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref39
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref40
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref40
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref40
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref41
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref41
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref42
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref42
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref42
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref43
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref43
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref43
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref44
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref44
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref45
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref45
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref46
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref46
http://refhub.elsevier.com/S0022-460X(16)00064-X/sbref46
http://dx.doi.org/10.1016/j.jsv.2016.01.035
http://dx.doi.org/10.1016/j.jsv.2016.01.035
http://dx.doi.org/10.1016/j.jsv.2016.01.035

	Feedback control unit with an inerter proof-mass electrodynamic actuator
	Introduction
	Mathematical model
	Stability and performance
	Stability of the controller
	Energy and power formulation

	Numerical simulations
	Stability
	Performance

	Conclusions
	Acknowledgements
	Appendix A
	References




