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A FAULT-TOLERANT MECHANISM FOR DESKTOP CLOUD SYSTEMS 

Abdulelah Alwabel 

Cloud computing is a paradigm that promises to move IT another step towards the age of 

computing utility. Traditionally, Clouds employ dedicated resources located in data centres 

to provide services to clients. The resources in such Cloud systems are known to be highly 

reliable with a low probability of failure. Desktop Cloud computing is a new type of Cloud 

computing that aims to provide Cloud services at little or no cost. This ambition can be 

achieved by combining Cloud computing and Volunteer computing into Desktop Clouds, 

harnessing non-dedicated resources when idle.  

The resources can be any type of computing machine, for example a standard PC, but such 

computing resources are renowned for their volatility; failures can happen at any time 

without warning. In Cloud computing, tasks are submitted by Cloud users or brokers to be 

processed and executed by virtual machines (VMs), and virtual mechanisms are hosted by 

physical machines (PMs). In this context, throughput is defined as the proportion of the total 

number of tasks that are successfully processed, so the failure of a PM can have a negative 

impact on this measure of a Desktop Cloud system by causing the destruction of all hosted 

VMs, leading to the loss of submitted tasks currently being processed. The aim of this 

research is to design a VM allocation mechanism for Desktop Cloud systems that is tolerant 

to node failure.  VM allocation mechanisms are responsible for allocating VMs to PMs and 

migrating them during runtime with the objective of optimisation, yet those available pay 

little attention to node failure events.  

The contribution of this research is to propose a Fault-Tolerant VM allocation mechanism 

that handles failure events in PMs in Desktop Clouds to ensure that the throughput of 

Desktop Cloud system remains within acceptable levels by employing a replication 

technique. Since doing so causes an increase of power consumption in PMs, the mechanism 

is enhanced with a migration policy to minimise this effect, evaluated using three metrics: 

throughput of tasks; power consumption of PMs; and service availability. The evaluation is 

conducted using DesktopCloudSim, a tool developed for the purpose by this study as an 

extension to CloudSim, the well-known Cloud simulation tool, to simulate node failure 

events in Cloud systems, analysing node failure with real data sets of collected from Failure 

Trace Archives. The experiments demonstrate that the FT mechanism improves the 

throughput of Cloud systems statistically significantly compared with traditional 

mechanisms (First Come First Serve, Greedy and RoundRobin) in the presence of node 

failures. The FT mechanism reduces power consumption statistically significantly when its 

migration policy is employed. 
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Chapter 1:  Introduction  

Providing computing power as a utility represents a research ambition that dates back to the 

1960s [1], when John McCarthy predicted that computation would become a service 

managed and delivered so consumers had ready access and would pay only for its use. 

Several attempts, such as that by Grid and Clustering computing, have since been developed 

in the hope of achieving this ambition, yet none has so far succeeded.  

The recent emergence of Cloud computing promises to achieve this vision through changing 

the IT sector for small and medium businesses so they are governed by giant third-party IT 

companies. Cloud computing is used by commercial companies to gain profit by selling their 

computing power to the public. It derives from Grid computing [2] and, traditionally, a Cloud 

service provider (CSP) such as Amazon EC2 [3] employs computing resources located in 

data centres to provide services to clients. The resources are dedicated to providing these 

services; that is, they are made for the purpose, with a valid claim to be highly reliable [4]. 

This type of Cloud computing is referred to as Traditional Clouds throughout this study. 

However, the cost of operating Cloud services can be a barrier to many projects aiming to 

reap the benefits of Clouds, for example research projects where the budget is limited. 

Desktop Cloud computing has emerged to fill this gap with the aim of acquiring Cloud 

services from non-dedicated resources – if not for free, then at lower cost. It is a new type of 

Cloud computing that aims to provide Cloud capability by harnessing computing resources 

that would otherwise lie idle. This ambition can be realised by combining Cloud and 

Volunteer computing to form Desktop Cloud systems.  

The main concept of Desktop Cloud computing is the use of computing resources to form 

an infrastructure containing a number of physical machines (PMs), which are then exploited 

to offer services based on the Cloud business model to end users. These PMs can comprise 

any computing resources, from normal PCs to servers. These can be used in a Desktop Cloud 

system when they are idle, determined by when their owners decide to join or leave the 

system. The concept is motivated by the success of Desktop Grid projects such as 

SETI@home [5], harnessing existing computing resources instead of tailor-made resources 

to form a Grid system and, according to Kondo et al., [6], this type of system is a Desktop 

Grid. The new concept combines the term ‘Desktop’ with that of ‘Cloud’, borrowed from 

Traditional Clouds. Throughout this study, a Desktop Cloud is a system that uses non-

dedicated resources.  
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Desktop Clouds have some advantages over Traditional Clouds. The latter have a negative 

impact on the environment, since data centres consume massive amounts of electricity, a 

large part of which is for cooling [7]. Second, Desktop Clouds are more cost effective both 

for CSPs and consumers; there is no need to build further data centres to meet future demand, 

and services, if not free, are accessed more cheaply than those of Traditional Clouds. 

Moreover, they help to reduce energy consumption since they use already-running non-

dedicated resources that would otherwise be idle. Studies have shown that, on average, the 

proportion of local resources lying idle within an organisation is about 80% [8]. Furthermore, 

Traditional Clouds are formed from a limited number of data centres around the globe and 

are therefore inefficient in terms of data mobility, paying little attention to clients’ location 

[9]. Because they are centralised, potentially there could be a single point of failure if a 

provider goes out of business. By contrast, Desktop Clouds offer and manage decentralised 

services. 

1.1 Research Motivation 

In Cloud computing, virtual machine (VM) instances are hosted and run in PMs, so if a PM 

fails all allocated VM instances to it are destroyed. Consequently, a PM failure means that 

all the tasks running on the VM instance are lost, badly affecting throughput. Throughput 

refers to the number of tasks submitted by users that are successfully completed by a Desktop 

Cloud system. The problem of node failure can be addressed by developing a suitable VM 

allocation mechanism, defined as any technique or policy to manage the placement of VMs 

to PMs in Cloud systems [10], and involves the option of migrating a VM or group of VMs 

from the hosted PM to another to optimise Cloud systems by reducing energy requirements 

and power consumption, or enhancing performance throughput.  

In Desktop Clouds, the problem of node volatility is crucial, because the number of node 

failure events may be high [11], so the goal of VM allocation in this context is to design a 

mechanism able to improve the throughput of a Desktop Cloud system in the presence of 

node failure. This research is motivated by the fact that it is considered to be the first attempt 

to tackle this issue by developing a novel mechanism for Desktop Cloud systems. The 

problem of VM allocation can be defined in Desktop Cloud as follows: 

Given n number of PMs available to host, how to allocate m number of VMs 

into n PMs in a way that reduces the effect of failure events on efficiency of 

Desktop Clouds. 
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This research develops a novel Fault-Tolerant (FT) VM allocation mechanism that can 

handle node failure by replicating VM instances, enhanced by developing a novel policy that 

migrates VM instances between PMs during runtime to reduce power consumption. The 

mechanism is evaluated by throughput, power consumption and availability metrics. 

Throughput metrics measure the number of successfully executed tasks submitted by users 

to a Desktop Cloud system; power consumption metrics measure the amount of energy 

consumed by PMs in a Desktop Cloud system; and availability metrics measure the 

computing power of a Desktop Cloud system that is available to serve users’ new requests. 

1.2 Research Hypotheses  

The aim of this research is to improve the outcomes of Desktop Cloud systems, mainly in 

terms of throughput and power consumption. In order to achieve this goal, three research 

hypotheses are tested: 

 Hypothesis H1: The proposed metrics can be employed to evaluate the impact of node 

failure on Desktop Clouds.  

 Hypothesis H2: Employing a replication technique within the FT mechanism will 

improve the throughput of a Desktop Cloud system. 

 Hypothesis H3: Setting a utilisation threshold for online VM migration will reduce 

power consumption in the FT mechanism with an accepted decrease in the throughput 

outcome. 

There are three main experiments that are conducted to test the aforementioned hypotheses, 

the experiments are: 

 Experiment I: Impact of Node Failure. Conducted to demonstrate that throughput, power 

consumption and availability metrics can evaluate the impact of node failure on the 

outcome of Desktop Clouds. It investigates which of First Come First Serve (FCFS), 

Greedy, RoundRobin and Random VM allocation mechanisms yields the best results for 

each metric. The experiment tests the hypothesis H1. 

 Experiment II: Evaluation of the FT Mechanism. Evaluates the FT VM allocation 

mechanism’s improvement of the throughput of a Desktop Cloud system over other VM 

mechanisms tested in the first experiment. It compares the FT mechanisms in terms of 

the best results in each evaluation in the previous experiment and tests the hypothesis 

H2. 
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 Experiment III: Utilisation-Based Migration Policy. Investigates a way to reduce power 

consumption of nodes when the FT mechanism is employed. The mechanism 

implements a replication technique to ensure that, if a VM instance is destroyed when its 

hosted PM fails, there is a working copy on another PM. However, this technique can 

lead to nodes consuming more energy. The experiment tests the hypothesis H3. 

Another experiment was conducted to show that the DesktopCloudSim tool developed for 

this study is capable of simulating node failure, comparing the results of three VM 

mechanism (FCFS, Greedy and RoundRobin) employed in either a Desktop Cloud or a 

Traditional Cloud. Such an experiment can illustrate the difference in outcomes between 

Desktop and Traditional Clouds in terms of throughput, power consumption and availability. 

1.3 Contributions and Publications  

This research focuses on the problem of the highly volatile nature of nodes in order to 

develop a mechanism that reduce the impact of node failure. The major contributions of this 

research are: 

 FT Mechanism. This research developed a novel VM allocation mechanism to be 

used by Cloud management middleware in Desktop Cloud systems. The mechanism 

is tolerant of node failure because it ensures that the number of lost submitted tasks 

is less than under the traditional VM allocation mechanisms available in the literature 

and used in open source Cloud management middleware software such as Eucalyptus 

[12]. The mechanism employs a replication technique to replicate running VM 

instances and allocate them to various PMs, so if a VM is destroyed because of a 

failing PM, there is a replicated VM ready to take its place. 

 Utilisation-Based Migration Policy. The FT mechanism is enhanced in terms of power 

consumption by a novel policy, referred to as the Utilisation-Based Migration Policy 

(UBMP), to migrate VM instances between PMs to reduce the energy consumed by PMs 

in a Desktop Cloud system. The idea is to migrate VM instances from PMs with low 

utilisation to PMs with higher utilisation. PMs with zero utilisation are put into power 

saving mode, because it has been demonstrated by [13] that an idle (i.e. with zero 

utilisation) machine may consume about 70% of the power used when fully utilised. 

Therefore, it is wise to develop the UBMP in order to minimise power consumption by 

Desktop Clouds’ PMs, given that the FT mechanism can cause it to increase because of 

the replication technique. 



Chapter 1. Introduction 

5 

In addition to the aforementioned major contributions, this research provides practical 

contributions as follows: 

 Analysis of Node Failure. This research analyses the number of nodes expected to 

fail in a Desktop Cloud system during a given time, based on failure traces collected 

from online repositories, which record failure events in various Desktop Grid 

systems. This can indicate the expected number of failures in Desktop Cloud systems 

because, as this research shows, PMs in Desktop Grids and Desktop Clouds are 

similar.  

 Evolution Metrics. This research proposes three metrics − throughput, power 

consumption and availability − to evaluate various VM allocation mechanisms. The 

throughput metric measures the number of successfully executed tasks submitted by 

users to a Desktop Cloud system; the power consumption metric measures the 

amount of energy consumed by PMs in a Desktop Cloud system; and the availability 

metric measures the amount of computing power of a Desktop Cloud system 

available to serve users’ new requests. An experiment is conducted to demonstrate 

that these evaluation metrics are able to assess and compare the outcomes of various 

VM allocation mechanisms, namely FCFS, Greedy and RoundRobin. The main 

objective is to demonstrate the need to develop a novel VM allocation mechanism 

able to deal with the challenge of node failure.  

 DesktopCloudSim. CloudSim [14] is a well-known and much-used simulation tool to 

simulate Cloud systems [15]. However, it lacks any ability to simulate node failure, 

which makes it unsuitable for Desktop Cloud systems. Therefore, this research 

extended CloudSim, developing DesktopCloudSim to simulate node failure in both 

Desktop and Traditional Cloud systems. It is stable and available online1 for use by 

other researchers and, although developed mainly to simulate node failure in Desktop 

Clouds, it can also be used to simulate node failure in Traditional Clouds. In addition, 

it enables dynamic joining and leaving of PMs in a system during runtime, a feature 

missing from CloudSim. 

                                                 

1 http://github.com/Abdulelah7/DesktopCloudSim 

http://github.com/Abdulelah7/DesktopCloudSim
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 Traditional Clouds vs. Desktop Clouds. This study conducted an empirical 

experiment using DesktopCloudSim to compare outcomes of Desktop and 

Traditional Cloud systems by means of the proposed evaluation metrics.  

As mentioned, this research has published the following papers: 

1. Alwabel, Abdulelah, Walters, Robert John and Wills, Gary 

Brian (2015), Evaluation Metrics for VM Allocation Mechanisms in Desktop 

Clouds. In, Emerging Software as a Service and Analytics (ESaaSA 2015) 

accepted. 

2. Alwabel, Abdulelah, Walters, Robert John and Wills, Gary (2015), 

DesktopCloudSim: simulation of node failures in the cloud. In, The Sixth 

International Conference on Cloud Computing, GRIDs, and Virtualization 

(Cloud Computing 2015), Nice, Fr, 22-27 Mar 2015. 

This was awarded a top paper prize in the Cloud Computing 2015 conference 

and was invited to be extended as a journal paper for the International 

Journal on Advances in Software.  

3. Alwabel, Abdulelah, Walters, Robert John and Wills, Gary B. (2015), A 

resource allocation model for desktop clouds. In, Chang, V., Walters, 

R. and Wills, G. (eds), Delivery and Adoption of Cloud Computing Services 

in Contemporary Organizations. Hershey, US, IGI Global, pp. 199-218. 

4. Alwabel, Abdulelah, Walters, Robert John and Wills, Gary (2014), 

Evaluation of Node Failures in Cloud Computing Using Empirical Data. In, 

Open Journal of Cloud Computing (OJCC), 1, (2), 15-24. 

5. Alwabel, Abdulelah, Walters, Robert John and Wills, Gary Brian (2014), A 

View at Desktop Clouds. In, Emerging Software as a Service and Analytics 

(ESaaSA 2015) 2014, Barcelona, ES, 03-05 Apr 2014, pp. 55-61. 

6. Almutiry, Omar, Wills, Gary, Alwabel, Abdulelah, Crowder, 

Richard and Walters, Robert John (2013), Toward a framework for data 

quality in cloud-based health information system. In, 2013 International 

Conference on Information Society (i-society), 24-26 Jun 2013, 153-157. 
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7. Alwabel, Abdulelah, Walters, Robert John and Wills, Gary (2012), Towards 

a volunteer cloud architecture. In, UK Performance Engineering 

Workshop (UKPEW 2012), Edinburgh, GB, 2pp. 

8. Alwabel, Abdulelah, Walters, Robert John and Wills, Gary (2012), Towards 

performance evaluation in Volunteer Clouds. In, European Conference on 

Service-Oriented and Cloud Computing (ESOCC2012), 19-21 Sep. 

1.4 Thesis Outline 

This thesis is divided into eight chapters. This first provides an overview of the research 

motivation, the hypotheses research tested and its contribution to the field. The remainder of 

this thesis is organised as follows: 

 Chapter 2 presents an overview of Desktop Cloud computing and related computing 

areas. It starts by explaining the paradigm of Cloud computing. Grid computing is 

introduced next, being considered its forebear; understanding the difference between 

Cloud and Grid computing can help in understanding Desktop Clouds. Because the 

Desktop Grid is discussed as a special type of Grid system that is built on volunteer 

resources, it is beneficial to compare Desktop Cloud systems to Cloud, Grid and 

Desktop Cloud systems. The chapter concludes with research challenges in the area 

of Desktop Clouds. Node failure is introduced as the main research focus, addressed 

by implementing a suitable VM allocation mechanism. 

 Chapter 3 reviews available VM allocation mechanisms developed for either 

Traditional or Desktop Cloud systems. The chapter explains that the VM allocation 

mechanism issue is a concern for research to improve the outcome of a Cloud system. 

The improvement can be either to reduce power consumption, improve performance 

or reduce the impact of data transfer of network. The chapter demonstrates that little 

attention has been paid to the problem of node failure in Cloud computing and 

concludes by stating that the solutions and mechanisms reviewed lack any ability to 

deal with the challenge to throughput of node failure in Desktop Clouds.  

 Chapter 4 proposes a novel mechanism to replicate and allocate VMs to PMs in a 

way that enhances the resilience of Desktop Cloud systems against failure. The 

mechanism employs a replication technique to ensure that a replica is ready if a VM 

is destroyed because of node failure. It is enhanced by the development of a new 

policy that migrates VM instances during runtime in order to reduce power 
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consumption. Several evaluation metrics are presented in the chapter to assess the 

outcomes of the proposed mechanisms to compare them. 

 Chapter 5 presents the methodology used by this research to evaluate the proposed 

mechanism to show it is able to deal with the issue of node failure in Desktop Cloud 

systems. Simulation is used to conduct experiments, using DesktopCloudSim, a 

simulation tool developed by this research as an extension to CloudSim to model 

node failure in Desktop Cloud systems. The chapter presents an analysis of the 

number of failures in the PMs of two Desktop Grid systems to formulate an 

understanding of the expected level of failure in Desktop Cloud systems.  

 Chapter 6 discusses the results obtained from the three experiments to test the 

hypotheses of this research. Each is tested and discussed separately. The first 

demonstrates how node failure affects throughput in Desktop Clouds when using the 

FCFS, Greedy, RoundRobin and Random VM mechanisms. The second 

demonstrates that the FT VM allocation mechanism improves throughput. The third 

demonstrates that a utilisation-based migration policy can reduce the power 

consumption of nodes in Desktop Cloud systems. 

 Chapter 7 presents a discussion of the findings, then positions them alongside related 

findings in the literature, to illustrate that this study’s contribution is to fill gaps in 

the research into Desktop Cloud computing. It starts by discussing the impact of node 

failure in Desktop Clouds, with an analysis of the number of nodes that can fail at 

any given time in both private and public Desktop Cloud systems. Next comes a 

discussion of the difference between Desktop and Traditional Cloud systems, using 

the DesktopCloudSim simulation tool. The proposed evaluation metrics are 

discussed in terms of their ability to assess the VM allocation mechanisms. The 

chapter next discusses the capacity of the designed FT mechanism to tolerate node 

failure in Desktop Cloud systems and to reduce power consumption. Lastly, it 

discusses the limitations of the research.  

 Chapter 8 concludes the study with an outline of the research findings and 

contributions. It presents insights into the directions along which this research can be 

extended in future, and finishes with some final remarks about this research.  
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Chapter 2:  Background 

This chapter provides the study with essential background to Desktop Cloud computing, a 

new type of Cloud computing that employs the concept of the Desktop Grid in the Cloud 

era. We start by introducing Grid computing, legitimately hailed as its forerunner [2]; 

viewing Desktop Grid systems as a new version based on non-dedicated resources illustrates 

the Desktop Cloud concept, because both employ non-dedicated resources. The chapter 

presents a definition of Cloud computing and the characteristics of Cloud systems, whose 

paradigm is based on technologies discussed here. 

The Desktop Cloud is presented as new way to provide services, based on the Cloud business 

model and using resources of any type. The chapter clarifies the ambiguity by comparing 

related systems, the Desktop Grid and the Traditional Cloud systems. Challenges and issues 

are identified, demonstrating why this study focuses on the issue of node failure in Desktop 

Clouds.  

2.1 Grid Computing 

Grid computing is a geographically distributed computational platform integrating large-

scale, distributed, complex and heterogeneous resources working together to form a virtual 

super computer. A Grid system can be defined as flexible, secure and coordinated sharing of 

resources to solve problems in dynamic, multi-institutional virtual organisations [16]. The 

Grid was motivated by the research community’s goal of solving a specific problem via 

sharing computing resources [17]. Resources in Grids may include clusters, storage systems, 

databases or scientific instruments [18]. Building dynamic applications that coordinate 

distributed resources is one of the Grid’s strengths, along with utilisation of resources within 

a particular domain to increase productivity or reduce costs [19] – or both.  Ian Foster [20] 

identifies three essential characteristics of the Grid: 

Decentralised manner: computing resources in Grids are managed and coordinated in a 

decentralised manner. Grids coordinate resources through a multi-institutional virtual 

organisation. 

Standardised protocols: The Grid is a combination of resources from different business 

domains that interact together using standard, open, general-purpose protocols and 

interfaces. The standardisation of protocols and interfaces allows Grid participants to 
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establish resource sharing dynamically. The fundamental issues to be considered in this 

context are authentication, resource discovery and management. 

Nontrivial Quality of Service (QoS): The Grid allows access to coordinated resources with 

respect to various qualities of service such as response time, throughput, availability and 

security. 

2.1.1 Grid Architecture 

Grid computing has evolved through three generations [17]: the first shared high-

performance computing resources via proprietary solutions; and the second introduced 

middleware in order to deal with scalability and heterogeneity. Middleware, in the Grid, 

means the layer that hides the heterogeneity of the underlying infrastructure and provides 

applications with the necessary environment to run. The third generation aimed to adopt a 

service-oriented style and web services to accelerate the move towards an e-science 

infrastructure. Open Grid Services Architecture (OGSA) [21] describes the architecture of a 

service-oriented Grid environment for both scientific and business usage. In addition, it 

defines a set of standards, protocols and interfaces to improve interoperability in grid 

systems.  

Application

Collective

Resource

Connectivity

Fabric

 

Figure 2-1: Grid Architecture 

Figure 2-1 depicts a high-level view of the architecture of Grid computing based on [16]. 

The fabric layer provides access to shared resources, whether physical or logical.  The 

connectivity layer defines the authentication and communication protocols that enable 

exchange of data between Grid resources. The resource layer contains protocols to secure 

negotiation, initiation, control, monitoring, accounting and payment for shared resources. 
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The collective layer defines protocols and services that enable flexibility in the 

implementation of different sharing mechanisms. The application layer contains users’ 

applications, which can use services defined on any layer.  

2.1.2 Desktop Grids 

Desktop Grids are distributed systems that utilise idle resources to perform major 

computation tasks for scientific projects at low cost [22]. Desktop Grids, depicted in Figure 

2-2, share the vision of Grids but use anonymous and untrusted volunteered nodes from the 

Internet, whereas Grids involve well-known organisations. The aim of Desktop Grid is to 

harvest a number of idle desktop computers owned by individuals on the edge of the Internet 

to solve scientific complex problems [23].   

Desktop Grid systems can be of two types: public and private systems. In the public Desktop 

Grid system, people contribute their computers over the Internet by installing a piece of 

software such as BOINC [24], a famous Desktop Grid platform, to take part in scientific 

projects. SETI@home [25] is considered a prime example of a public Desktop Grid system. 

The system relays on resources within an organisation or a group of organisations to take 

advantage of them when they become idle, mainly with a LAN connection. NotreDame 

Desktop Grid [26] is an example of a private Desktop Grid system that uses Condor software 

to oblige staff to join the system when resources are idle [27]. The Desktop Grid proved its 

success in attracting a huge number of participants; one study shows that SETI@home has 

employed more than 330,000 computers  [5]. 

 

Figure 2-2: Desktop Grids, between Volunteer Computing and Grids 

Although the Desktop Grid is considered a special type of Grid computing, there are 

differences between them, as summarised in Table 2-1, based on [23]. This comparison can 

illustrate Desktop Grids in terms of advantages and disadvantages. Resources in Desktop 

Grids are typically non-dedicated computers, while resources in Grids are committed to their 

system and range from clusters to supercomputers, scientific instruments and so on. The 

Grids 

       Volunteer 

Computing 
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resources in both models are heterogeneous, but more heterogeneous in Desktop Grids 

because any type of computing resource is accepted. The connection in a Desktop Grid 

system is quite poor in terms of reliability, with rather limited of bandwidth capability. The 

connection can be over LAN, in private systems, or the Internet, in public systems. By 

contrast, the connection in a Grid system is highly reliable with high speeds and throughput.  

The poor connectivity in a Desktop Grid system decreases the reliability of nodes. In 

addition, contributors of computing nodes within a Desktop Grid system can leave the 

system without prior notification, making expectations of reliability very low compared to 

Grid systems, according to [28].  Resources in both models are heterogeneous, although they 

are highly volatile and unreliable in Desktops Grids. The nodes in Desktop Grids are 

volunteered anonymously by the public; therefore the nodes are untrusted and may include 

malicious nodes. The types of applications that run on Desktop Grid systems are quite 

limited compared to Grid systems, restricted to computation-intensive jobs that are 

independent [18]. 

Table 2-1: Desktop Grids vs. Grids  

 Desktop Grids Grids 

Resource 

- Anonymous desktops or 

laptops etc 

-  Non-dedicated resources 

- Highly heterogeneous 

- Cluster, supercomputer, scientific 

instruments etc 

- Dedicated 

- Intermediate heterogeneous 

Connection 

- Over LAN or Internet 

- Poor connection 

- Poor bandwidth 

- Dedicated 

- High speed 

- High bandwidth 

Trust Anonymous and untrusted Highly trustworthy providers 

Node reliability Very low High 

Jobs 

- Independent 

- Computation-intensive 

- High throughput 

- Independent or dependant  

- Computation-intensive or data-intensive 

- High performance  

2.2 Cloud Computing 

Cloud computing is a new paradigm that promises to deliver computing as a utility, the same 

as electricity [4]. Cloud computing was driven by giant IT companies such as IBM, Google 

and others to gain profit from selling computing power. The main motivation for launching 

Cloud for both CSPs and consumers is cost reduction; the new paradigm can cost just one-

fifth of that for electricity, hardware and bandwidth consumption in traditional IT enterprises 

[29]. Moreover, Cloud users can consume computing power yet pay only for what they use. 
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The term ‘Cloud computing’ became widely known after IBM and Google announced in 

2007 their initiative to participate [30], according to [31]. However, it has been argued that 

Cloud computing is not new, but rather a new IT paradigm that involves a wide range of 

existing technologies [32]. There are several Cloud projects in both academia and industry, 

for example projects from industry such as Amazon EC2,2 Google App Engine3 and 

Microsoft Windows Azure,4 while the Reservoir model [33] and Nebulas [34] are two 

academic Cloud projects.  

Although there are many Cloud projects in both industry and academia, there is no 

well-known and accepted definition of Clouds for various reasons. The first is that 

researchers from different backgrounds, Grid computing for instance, have been involved in 

Cloud computing [35]. Second, the area is in a state of ambiguity due to confusion about the 

exact meaning of the term and its capabilities [36]. Third, the Cloud shares the goal of 

providing computing as utility and achieving high utilisation with other IT paradigms such 

as Grids and Clustering [4]. Finally, Cloud computing employs various technologies, for 

instance Web 2.0, that are still evolving [35].  

Several papers attempt to present a clear definition of the Cloud such as [4], [37], [36], [38], 

[39] and [40]. Nonetheless, the definition of Clouds that will be used in this report is the one 

given by the National Institute of Standards and Technology [40], because this cites its 

essential characteristics as identified by Vaquero et al. [36]:  

Cloud computing is an IT paradigm that enables online access to a pool of shared 

computing resources based on virtualisation technology to allow resources to be 

rapidly provisioned and scaled up and down according to users’ demands based on 

paying per usage basis only. 

                                                 

2 Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/ 
3 Google App Engine. http://code.google.com/appengine/ 
4 Windows Azure. http://www.microsoft.com/windowsazure/ 
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Figure 2-3: Overview of Cloud Structure 

Figure 2-3 shows an overview of the structure of Cloud computing, to be explained in the 

following sections. Typically, the underlying infrastructure of a Cloud consists of one or 

more data centres, each with a huge number of dedicated computing nodes. This type of 

Cloud, which harnesses data centre facilities, is called a Traditional Cloud throughout this 

report.   

2.2.1 Characteristics 

The characteristics, summarised in Table 2-2, illustrate the meaning of Cloud computing: 

 On-demand self-service 

Cloud clients can provision computing capabilities in an automatic self-service 

manner [38], i.e. the consumer can acquire more resources or release them without 

any human interaction. 

 Resource pooling 

Cloud providers pool their resources to serve multiple consumers on a multi-

tenancy basis [35]. The same PM can host more than one at the same time [41] to 

reduce operating cost. 

 Online access and Location independency  

The resources are accessed ubiquitously online using a wide range of devices [40]. 

Cloud clients have no control over where service providers process these services. 

However, they may have a choice over the location at a high level of abstraction, 

for example clients can choose on which continent their data is to be stored on 

Amazon Cloud.  
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 Rapid elasticity and scalability 

Elasticity is the ability to add or remove computing resources over a short timescale 

[29]. Scalability means the ability to scale resources up or down, depending on a 

user’s need. These terms are often conflated because both are identical from the 

perspective of developers on the application layer, yet they are not the same from 

the perspective of middleware management, the aim of which is to achieve high 

scalability by employing elasticity through load balancing techniques. 

 Measured Service 

In Cloud computing, using a server for seven hours costs the same as using seven 

servers for one hour. Consumers in Cloud pay only for their actual usage. 

Therefore, CSPs are required to provide accurate service metrics in order to charge 

users for their usage [32]. 

Table 2-2: Characteristics of Clouds 

Characteristic Definition 

On-demand self-service Gain resource upon request without human interaction [38] 

Resource pooling Assign several VMs to the same PM [35] 

Location independency  Location of where services are processed is hidden [40] 

Elasticity and scalability Gain or release Cloud resources in short time upon user’s request [29] 

Measured services Cloud capabilities should be measured [32] 

2.2.2 Service Delivery Models 

There are three common services provided by Clouds: Software as a Service (SaaS), 

Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). SaaS is a delivery model 

for applications provided by the Cloud, to be run by Cloud users through web tools such as 

web services. This is the most abstract model of services, where users have no control over 

the Cloud infrastructure [42]. An example of an SaaS Cloud is salesforce.com. 

PaaS offers a platform for developing end-to-end life cycle software development [43] that 

contains development environment, sets of applications to allow writing code, a set of ready 

packages to be used by other software and libraries [44]. Google App Engine is a PaaS 

Cloud. The IaaS delivery model allows users to acquire and release infrastructure resources 

(e.g. CPU and storage). Virtualisation enables Cloud providers to meet various Cloud 

consumers’ preferences using the same physical resources. Amazon’s Elastic Compute 

Cloud (EC2) is an example of an IaaS model. 
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2.2.3 Core Technologies  

The architecture of Cloud computing comprises four layers: hardware; infrastructure; 

platforms; and applications layers [45]. These relate to the service delivery models discussed 

before. Loose coupling is a key feature of Cloud architecture, meaning that each layer can 

be developed separately from others. The hardware layer is also known as the data centre 

layer, consisting of all the IT infrastructure required to build Cloud computing. Typically, a 

CSP has one or more data centres containing all physical resources. Issues relating to this 

layer are fault tolerance, hardware configuration and traffic management [46]. The 

virtualisation layer, also known as the infrastructure layer, enables physical resources to be 

shared, and is based on virtualisation technologies. The platform layer allows developing 

application on the Cloud (i.e. PaaS). The application layer enables the delivery of 

applications to end users and, in addition, it supports auto-scaling for applications in order 

to reduce costs and achieve better performance. Cloud is not a new computing technology, 

rather a computing model that employs various technologies. This section discusses the core 

technologies that Cloud relies upon heavily: virtualisation; Service-Oriented Architecture; 

and web services [38]. 

Virtualisation is the process of offering a physical computing resource in a virtual fashion to 

overcome the limitations of the actual resource. It is an essential technology for Clouds that 

allows the providers to offer computing resources as a utility. The Virtual Machine Monitor 

(VMM), or hypervisor, isolates the guest OS from the underlying hardware and allows 

resource multiplexing, that is, running more than one VM on the same PM [42]. However, 

some researchers argue that virtualisation is a feature that is employed heavily in Cloud 

computing but it is not an essential feature according [31]. Section 2.2.1 discusses the 

essential characteristics of Cloud systems illustrating that virtualisation is not necessarily to 

be incorporated in a Cloud system. Therefore, it can be said that a system can be considered 

a Cloud system event if virtualisation is not employed.  

Technology helps by providing better agility and flexibility [43], as well as reducing costs 

[41]. Elasticity and resource multiplexing are achieved in Cloud by virtue of virtualisation’s 

maturity [29], allowing better utilisation through resource multiplexing [47]. However, 

although virtualisation has many advantages for Cloud computing, it impacts on the overall 

performance of each virtualised, compared to the actual, machine. It is claimed that the 

overheads for the virtualisation environment ranges from few per cent to about 20 per cent 

of performance on computation aspects [48]. The reason for this variation is the 

implementation of the VMM as well as whether the guest OS is aware of being run on a VM 
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[41]. In addition, virtualisation introduces new security threats in Cloud computing. For 

example, resource multiplexing can allow an attacker to acquire information about a target 

VM on the same PM, using side-channel attack [49]. 

Service-Oriented Architecture (SOA) is an architectural approach to delivering a reusable 

IT service in a higher-level abstraction, independent of its underlying infrastructure [50]. 

However, SOA is not a technology but a guide to business solutions to create computing 

components in such a way as to allow them to be easily reused and extended. It relies on 

WSDL (Web Service Description Language) and SOAP (Simple Object Access Protocol) to 

standardise interaction between different components [51]. This mechanism allows third 

parties (Cloud brokers) to resell these services to end users. Thanks to SOA and 

virtualisation, the underlying infrastructure is abstracted without revealing much to users 

[31].  

Web services may be seen as a way of implementing components on SOA. A CSP exposes 

Cloud services as web services on an SOA basis [35]. Both WSDL and the REST protocol 

are used to describe Cloud API, since they are widely used to describe web services [42]. 

Service orchestration is defined as the automated coordination and management of different 

services, and Cloud computing relies on it to coordinate and deliver scalable and 

self-automated services from other resources. Web-oriented architecture that defines the 

interaction between different web applications is a key concept in Web 2.0; the idea behind 

it is to enhance creativity and to improve collaboration on the web.  

 

Figure 2-4: Cloud and Service Oriented  

Figure 2-4 summarises, based on [2], where Clouds stand in terms of applications and service 

orientations. Virtualisation and SOA enable Cloud providers to abstract their systems and 

thus to isolate consumers from the underlying infrastructure. The services in Cloud 
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computing are web services that interact and are managed according to the service 

orchestration approach. 

2.2.4 Deployment Models 

There are four types of Cloud deployment models, also known as Cloud types: public; 

private; community; and hybrid Clouds. 

 Public Cloud is the popular type in which a Cloud provider offers its services. Amazon, 

Google App Engine and Windows Azure are examples [43]. 

 Private Cloud is the type where a Cloud provider offers services exclusively to a single 

organisation, also known as internal Clouds. Some providers use their own private 

Clouds to test services before offering them to the public [46]. There is various open 

source middleware developed to manage private Cloud, Eucalyptus [12] for example. 

 Community Clouds are formed by a group of organisations with common interests to 

use local infrastructure resources [45]. However, the community Cloud is based on the 

idea of exploiting local infrastructure to offer free or low cost Cloud services. Nebulas 

[34] and Cloud@home [52] are classified as community Clouds. 

 Hybrid Clouds combine two or more Clouds types to achieve maximum cost reduction 

with maximum utilisation. For example, a private Cloud may be used within an 

organisation to process sensitive data, while exploiting public Clouds for cost reduction. 

2.2.5 Cloud Actors  

There are five Cloud actors, according to the Cloud Computing Reference Architecture 

proposed in [53], as depicted in Figure 2-5: 

 Provider: responsible for the management and administration of the physical 

infrastructure of Clouds. The management role includes: maintenance of PMs; 

cooling systems; and VM allocations and resource management. A Cloud provider 

is also known as a CSP. 

 Auditor: ensures and verifies that standards are met within Cloud systems.  The 

Cloud auditor can evaluate the services of a CSP in terms of security controls, 

privacy impact, performance and so on.  

 Consumer: a person or organisation who exploits services offered by CSPs.  
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 Broker: the middleman between a CSP and end users. End users can acquire services 

directly from Cloud providers, but it can be complicated. A broker can help end 

users to aggregate services they need effectively.  

 Carrier: acts as a means of connecting consumers, brokers and providers in a Cloud 

environment.  
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Figure 2-5: NIST Cloud Computing Model 

2.3 Desktop Clouds 

Desktop Cloud computing is the idea of benefiting from the computing resources around us 

to build a Cloud system that achieves better usage of resources than having them lying idle. 

The success of Desktop Grids stimulated the idea of harnessing idle resources to build 

Desktop Clouds, and the term Desktop derives from Desktop Grids, since both are based on 

Desktop PCs, laptops and so on. Similarly, the term Cloud derives from Desktop Clouds, 

providing services based on the Cloud business model.  

Several synonyms for Desktop Clouds have been used in the literature, such as Ad-hoc 

Clouds [54], Volunteer Clouds [11], Non-Dedicated Clouds [55] and P2P Clouds [56]. The 

literature shows that little work has been undertaken in this direction. The Ad-hoc Cloud is 

the idea of harvesting distributed resources within an organisation to form a Cloud [54]. 

Nebula [9],[34] is a project aiming to exploit distributed resources in order to create a 

Volunteer Cloud offering services free of charge. Cloud@home [40],[47] is a project 

representing the @home philosophy of Cloud computing and its goal is to form a new model 
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of Cloud computing to which individual users contribute over the Internet. In addition, Cern 

has announced an initiative to move their Desktop Grid project, called LHC@home, onto 

the Cloud [58]. Moreover, the authors in [55] suggest that non-dedicated resources can be 

exploited by Cloud providers in the event that their local infrastructure cannot meet 

consumer requests at peak times. 

Desktop Clouds have some advantages over Traditional Clouds. First, Traditional Clouds 

have a deleterious impact on the environment since their data centres consume massive 

amounts of electricity [7]. The second advantage is the cost effectiveness of Desktop Clouds 

for both Cloud services providers and their consumers; the former have no need to build new 

data centres to meet future increasing demand, while the latter receives their services at lower 

prices than from Traditional Clouds, if not free. Desktop Clouds help to reduce energy 

consumption since they use already-running, undedicated resources that would otherwise lie 

idle. Some studies show that the average percentage of local resources lying idle within an 

organisation is about 80% [8]. Furthermore, Traditional Clouds are formed from a limited 

number of data centres located around the globe. Therefore, they are inefficient in terms of 

data mobility and pay little attention to clients’ location [9]. Finally, Traditional Clouds are 

centralised, with the potential for a single point of failure issue should a CSP go out of 

business. By contrast, Desktop Clouds manage and offer services in a decentralised manner. 

2.3.1 Scenario  

This section depicts two scenarios in forming Desktop Cloud systems: one is private and 

another public. Suppose a group of universities wishes to benefit from its computing 

resources by forming a Cloud. The resources range from PCs to servers, each called a Cloud 

node, and a node can join the Cloud when it becomes idle. This scenario is motivated by 

Condor [27], middleware for the Desktop Grid with the aim of recycling idle CPU capability 

to solve large scientific problems via a private Desktop Grid system. Users in a Desktop 

Cloud submit their requests to acquire services with their requirements, as stated in the 

service level agreement between a client and the Cloud interface, and these are processed in 

the virtualisation layer lying above the Cloud’s physical nodes. Virtualisation isolates the 

guest operating system from the physical host machine, improving security and preventing 

unauthorised access by the two parties [59]. This system is considered a private Desktop 

Cloud system. 

The other scenario is a public Desktop Cloud that allows people to contribute their own 

computing resources to be used by Cloud clients [60]. This type of system is motivated by 
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projects such as SETI@home [25]. In this scenario, PMs are collected from people 

contributing their computing resources online to join a public Desktop Cloud system to serve 

a particular purpose for a period of time. For example, the purpose may be to serve the 

research field by allowing researchers take advantage of PMs to solve research problems 

requiring a massive number of computers.  

There are two main differences between private and public systems. The first is that 

resources in private systems are limited to system owners, while resources in public systems 

are contributed by the public, so the number of resources in public systems is expected to be 

higher. Second, resources in private systems are mainly connected via LAN connections 

while in public systems they are connected via WAN, so the number of failure events in 

public Desktop Cloud systems may be expected to be higher.  

Table 2-3: Essential Features of Cloud Systems 

Feature Traditional Cloud Desktop Cloud 

Elasticity √ √ 

On-demand self-service √ √ 

Virtualisation √ √ 

Service delivery model √ √ 

Ease of use √ √ 

2.3.2 Desktop Clouds vs. Traditional Clouds 

This section clarifies Desktop Clouds further by comparing them with Traditional Clouds to 

illustrate the similarities and differences. Both possess the same essential features of Cloud 

computing [36], as in Table 2-3. The features are elasticity, on-demand self-service, 

virtualisation, a service delivery model and ease of use. Both of these Cloud types share the 

elasticity feature, meaning that a Cloud’s user can acquire computing services and scale up 

or down according to their need in a short time. The services are online self-service, which 

means that Cloud services can be acquired and released in an automatic way.  Both employ 

virtualisation to separate VMs from PMs. The model of services delivered by Cloud systems 

should implement the ‘pay per use’ base, meaning that Cloud services are delivered on a 

time-based contract between a CSP and customers. Users of Desktop Clouds are not 

expected to pay for their usage, but can achieve services on the same principle. For example, 

a Desktop Cloud’s user can gain a couple of VMs, for example for three hours, similar to 

what happens in Traditional Clouds. The ‘ease of use’ principle means that clients can use a 

specific service without the need to make many changes to their work. Both Traditional 

Clouds and Desktop Clouds let their users harness services without making significant 

changes to their code. 
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Table 2-4: Traditional Clouds vs. Desktop Clouds 

Feature Traditional Clouds Desktop Clouds 

Resources Dedicated Non-dedicated and volatile 

Cost Relatively high Cheap 

Location Limited  Distributed 

Services Reliable and available Low availability and unreliable 

Heterogeneity Heterogeneous Very heterogeneous 

However, there are several differences, as depicted in Table 2-4. The first is in the resource 

layer; the Desktop Cloud is made of resources that are non-dedicated, that is, they are not 

made as part of the Cloud infrastructure. The physical nodes in Desktop Clouds are expected 

to be highly volatile, due to the fact that they can fail without prior warning. The failure of 

nodes can be the result of machines crashing, connectivity problems or the owner of a PM 

decides to leave the Cloud. High volatility of resources can have a negative impact on 

availability and performance [11]. By contrast, the infrastructure of Traditional Clouds 

consists of a large number of computing resources located in data centres made to serve 

clients in the Cloud. Moreover, resources in Desktop Clouds can be distributed around the 

globe, so anyone can contribute from anywhere, while resources in Traditional Clouds are 

limited to the location of the data centre hosting them. Although resources in both Desktop 

Clouds and Traditional Clouds are both heterogeneous, they are more so in Desktop Clouds. 

2.3.3 Desktop Clouds vs. Desktop Grids 

The vision of providing computing services as utility services is shared by Grids and Clouds. 

In addition, many researchers assert that Cloud computing evolved from Grid computing 

[2]. This has caused some confusion between Grids and Clouds and several papers have been 

published that compare and contrast Grids with Clouds, such as [2], [37],  [36] and [61]. 

This comparison helps to understand the differences.  

Table 2-5 summarises the similarities and differences: first, they both rely on dedicated 

resources that are highly reliable. In fact, some of the Grid infrastructure can be used as parts 

for Cloud infrastructure. In addition, Clouds implement virtualisation to abstract PMs. 

Virtualisation enables resource multiplexing, meaning that more than one VM can be 

assigned to the same physical node. Clouds offer services on a ‘utility basis’, which means 

that users gain services and pay only for their actual usage, whereas the Grids business model 

is based on a ‘project oriented’ model, whereby every client is assigned a certain time to use 

a particular service, whether or not the client actually uses it [2]. As mentioned before, Grid 

computing was devised to serve and solve some research problems in research communities, 

so it is quite normal to have a single-purpose Grid project. For example, neuGrid is a Grid 
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project that enables neuroscientists to carry out research regarding degenerative brain 

diseases [62]. Cloud computing, on the other hand, offers services to a wide range of 

customers for various purposes. In addition, both Grids and Clouds can achieve QoS 

guarantees, but at different levels. For the former, at the application level users can 

implement some sort of mechanisms to ensure QoS, while for the latter it is granted by CSPs. 

Table 2-5: Grids vs. Traditional Clouds 

Feature Grids Traditional Clouds 

Resources Dedicated and reliable Dedicated and reliable 

Resource multiplexing Not employed Employed 

Business model Project oriented  Pay per use  

Application domain Research projects Various purposes 

Quality of service Guaranteed (at application level) Guaranteed by CSPs 

Desktop Clouds can be conflated with Desktop Grids in a similar way to Clouds and Grids. 

Table 2-6 shows a summary of the comparison of Desktop Clouds with Traditional Clouds 

on one side, and Grids and Traditional Clouds on the other. The resources have similar 

features, being non-dedicated and unreliable in both Desktop Grids and Desktop Clouds.  

Table 2-6: Desktop Grids vs. Desktop Clouds 

Feature Desktop Grids Desktop Clouds 

Resources Non-dedicated Non-dedicated 

Infrastructure Unreliable Unreliable 

Resource sharing Not supported Supported 

Business model Project oriented Cloud model 

Application domain Research projects Generic purposes 

In fact, a Desktop Cloud can be built on top of a Desktop Grid infrastructure. However, 

Desktop Clouds employ virtualisation that enables resource sharing between users via 

resource multiplexing. Finally, Desktop Clouds follow the business model offered by 

Traditional Clouds in terms of scalability and elasticity. Users in Desktop Clouds can acquire 

VMs as they desire, and scale them up or down according to their needs. Desktop Grids 

employ the ‘project oriented’ concept that is used by Grids. The Desktop Grids’ main 

application domain is research projects, because researchers use idle resources to help them 

solve complex research problems. This goal is shared with Desktop Clouds, but can be more 

generic. For example, Desktop Clouds can be used by CSPs in Traditional Clouds when a 

CSP owned data centre cannot meet user demand. Thus, Desktop Clouds can have a more 

generic purpose than Desktop Grids, by virtue of the business model that enables them to 

deal with several clients. 
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Table 2-7: Desktop Clouds vs. Large-Scale Systems 

 Desktop Cloud Traditional Cloud Grid Desktop Grid 

Elasticity √ √ X X 

Virtualisation √ √ X X 

Idle resources √ X X √ 

Ease of use √ √ X X 

Table 2-7 shows a summary of comparisons between Desktop Clouds and Traditional 

Clouds, and between Grids and Desktop Grids. Both Clouds rely heavily on virtualisation. 

In addition, both let their users harness services without making significant changes to their 

code. However, this is not the case in Grids and Desktop Grids, where users are expected to 

know in depth the middleware used in order to harness the services offered [2]. Both Desktop 

Clouds and Desktop Grids depend on computing resources when they become idle. 

2.3.4 Research Challenges  

This section describes several research issues that need further attention in Desktop Clouds. 

Some of these challenges are inherited from Cloud computing, while others are driven by 

the highly volatile resources employed, a legacy of Desktop Grids. Table 2-8: Research 

Challenges summarises the issues of Grids, Desktop Grids, Cloud and Desktop Clouds; 

Desktop Clouds inherit the challenges and issues of these systems. 
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Table 2-8: Research Challenges 

Computing Model Challenges References 

Grids 

Interoperability [16][63] 

Quality of service  [64][19][17] 

Security & authentication [65][17] 

Scalability [17][19] 

Resource management [19][16] 

Desktop Grids 

Resource management  [66][67] 

Nodes availability  [22][68] 

Performance prediction & metrics [66][22] 

Resource volatility  [23][68][69] 

Traditional Clouds 

Security & trust [49][70][71] 

Migration to Cloud [29][72] 

Interoperability & portability  [32][43][73] 

Resource management [43][32][46] 

Pricing models [74][32][75] 

Availability  [29][76][77] 

Desktop Clouds 

Security [55][11] 

QoS [34][78] 

Resource contribution  [11] 

Node volatility  [79][55][11]  

Resource management [52][55] 

2.3.4.1 Security 

Security is a major concern preventing organisations from moving onto the Cloud [42]. 

Ristenpart et al. show that an attacker can uncover the actual location of a particular VM 

[49], and a cross-VM side channel attack can reveal critical information about the targeted 

VM by placing a malicious VM on the same PM. Further concerns arise in Desktop Clouds, 

as both consumers and contributors are from the public, so security can be a major issue in 

this context. In addition to the threats previously mentioned for the Cloud, both consumers 

and contributors themselves take on risk when they join a Desktop Cloud. A contributor can 

put his own data at risk by allowing access to a virtual image located in his machine. 

Likewise, consumers are vulnerable to malicious contributors; nodes in Desktop Clouds are 

more vulnerable to outside attack due to weaknesses in local antivirus software and firewalls.  

Virtualisation can be vital in order to isolate the host completely from guest operating 

systems and, thus, prevent any unwanted access from either party. Trust mechanisms can be 

employed in this matter. For example, a Desktop Cloud can maintain a behaviour table which 

contains information about both consumers and contributors. The table can be used to decide 

which parties are trustworthy enough to join the cloud. Furthermore, Desktop Clouds should 
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rely on autonomous mechanisms such as sandbox or certification in order to prevent various 

attacks from participants [80]. 

2.3.4.2 Quality of Service 

Desktop Cloud systems are only expected to offer services at a low level of reliability and 

availability, due to the fact that they depend on unreliable volunteered resources that can join 

or leave the system without prior warning for various reasons [55], so the quality of service 

can be affected hugely [34]. Traditionally, CSPs provide services to end users based on a 

Service level agreement (SLA) contract between them to ensure metrics of quality of 

services are met.  

The authors in [78] propose C@H as the QoS management approach to ensure that it is 

guaranteed in Desktop Cloud systems. However, there is no actual evidence provided to 

support their claim. For example, the availability of the service should be at least up to a 

certain level, and the availability of individual nodes is considered a primary issue [11]. It is 

estimated that in volunteer projects resource non-availability can reach 50% [22], yet the 

availability of each individual node can affect the service quality of Desktop Cloud system. 

Andrzejak et al. propose a technique to predict the availability of a group of high volatility 

resources [81]. This prediction can help to estimate when a PM will leave the system but 

does not, however, provide any guarantee that the quality of service is meets the SLA. 

2.3.4.3 Resource Contribution  

Another issue to be considered in Desktop Clouds is how to motivate people to become 

involved in Desktop Cloud systems; the research is mainly into how to motivate people to 

contribute their computing resources to be part of a Desktop Cloud system [11]. There are 

obvious reasons why people wish to contribute their computing resources to research 

projects such as SETI@home, for instance for the sake of improving knowledge. It may be 

said that convincing people to contribute to Desktop Grids is far easier than getting them to 

contribute to Desktop Clouds. A contributor needs only to install a piece of software, BOINC 

software for instance, on a SETI@home system to run small batches of jobs, but it is more 

complicated to be a part of a Desktop Cloud, as people need to install virtualisation software. 

Some would be reluctant to do so, especially those with no experience in computer science. 

A study might be carried out to obtain the public’s opinion on what would make people join 

a Desktop Cloud system. This survey would help to develop approaches to stimulate joining 

them, for instance by introducing a credit scheme for contributors: the more a contributor 
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offers their available resources in a Desktop Cloud system, the more credit they accrue to 

secure benefits from the system; for example, credit might be spent by the contributor on 

high priority access to services.  

2.3.4.4 Node Failures 

One of the main issues in Desktop Clouds is the high rate of node failure during run time 

[82]. Desktop Clouds are only expected to offer services at a low level of reliability as they 

depend on unreliable computing resources that can join or leave the Cloud without prior 

warning, yet this increases the risk of node failure [55]. In Cloud computing, VM instances 

are hosted and run in PMs so, if a PM fails, all VM instances allocated to it are destroyed. 

Consequently, PM failure means all the tasks running on the VM instance are lost.  

The problem is crucial in Desktop Clouds as the number of node failure events can be high, 

including events that cause the node to leave the Cloud for any reason. PMs can leave 

without warning if they become busy with local tasks, moreover they are connected to the 

system via unreliable connections, further increasing the risk of failure. Devising a fault 

tolerance mechanism is essential, and to increase the efficiency of Desktop Clouds this 

challenge demands attention. Accordingly, this research focuses on solving the issue of node 

failure by designing a novel mechanism that ensures that, in the presence of node failure, 

jobs submitted to a Desktop Cloud system are completed. 

2.3.4.5 Resource management 

Resource management is an open field for research in Desktop Clouds [54]. It can play an 

important role in improving the performance of Desktop Clouds [78]. Resources in Desktop 

Clouds are highly heterogeneous, so managing them is considered problematic. 

Virtualisation plays a key role in Desktop Clouds because it virtualises contributed resources 

and delivers them to users as VMs. Desktop Clouds face the challenge of developing a VM 

allocation mechanism that is able to: a) manage non-dedicated, heterogeneous resources; b) 

deliver a virtualised machine to the upper layer in Desktop Clouds; and c) provide a fault 

tolerance policy that can deal with the issue of high levels of node failure. 

It has been pointed out that the absence of central management in Desktop Clouds causes a 

major issue in terms of reliability and state maintenance in the event of failure [82]. The 

infrastructure of Desktop Cloud contains nodes that are highly volatile. Therefore, fault 

recovery mechanisms are crucial in order to improve reliability in this environment [11]. In 

addition, Desktop Clouds require a means of interacting with other Clouds for data migration 
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or to gain extra computing resources [52]. However, the authors in [83] point out that none 

of the available open-source Cloud management middleware provide a resilience feature for 

Cloud systems.  

2.3.5 Desktop Cloud Architecture 

According to the authors in [84], the architecture of a Desktop Cloud system is divided into 

four layers: (i) the service layer is a front-end between Desktop Cloud and users; (ii) the 

virtual layer is responsible for provisioning VMs; (iii) the physical layer is responsible for 

managing resources found in the resource layer; and (iv) the resource layer contains 

resources that form the underlying infrastructure. Each computing node joining the Cloud is 

called a Desktop Cloud node. Users in the framework can be individual consumers from any 

domain. 

Virtual Layer

Service layer

Physical layer

Users

Resource 
Layer

 

Figure 2-6: Abstract of Desktop Cloud Framework 

2.3.5.1 Service Layer 

The service layer, Figure 2-7, provides IaaS services via an interface to customers based on 

an SOA approach [50]. The business model in Desktop Clouds is similar to that of 

Traditional Clouds, aiming to provide scalable computing services to users. The layer 

accepts various tasks from Cloud users. Users should be authenticated in the ‘authentication’ 

entity before they can be granted access to services. The tasks are interpreted in the ‘task 

analyser’ to decide whether to accept them or not, given the available resources. The 
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‘scheduler’ is responsible for implementing the scheduling policy, assigning a task to a VM 

[85]. VMs are provided by the virtual layer.  

authenticationService 
Layer

task analyser scheduler

 

Figure 2-7: Service Layer 

2.3.5.2 Virtual Layer 

The virtual layer, Figure 2-8, is responsible for provisioning, managing and controlling VMs. 

In the IaaS Cloud, users can gain computing resource in virtualised forms, involving the 

creation of a virtual layer between users and PMs. The ‘VM manager’ component provides 

VMs to Cloud users upon request. The first step to take is virtual placement, allocating a 

virtual machine to a PM. A VM placement mechanism must take into consideration that the 

infrastructure of Desktop Clouds consists of highly diverse resources. The VM manager can 

assign more than one VM to the same PM (VM consolidation) in order to preserve power 

and improve resource utilisation. The authors in [86] show that VM consolidation can help 

in reducing the power consumed by physical resources. The ‘VM monitor’ observes the 

behaviour of VMs used by users to ensure the SLA is not violated. The security of VMs is 

crucial. The security component works to protect both the host and guest operating systems 

from unauthorised access, as virtual technology isolates the guest operating from the host 

system [87]. 

vm monitorsecurityVirtual 
Layer

vm manager

 

Figure 2-8: Virtual Layer 

2.3.5.3 Physical Layer 

The physical layer considers managing computing nodes that form the infrastructure of 

Desktop Clouds. The layer contains three components, interacting with each other as shown 

in Figure 2-9. The ‘discovery’ keeps track of all available resources in the Cloud. The 

‘aggregator’ decides which resources are preferable to serve users’ requests. For example, a 

ranking table can be used to classify various resources according to their behaviour in the 

past to decide which is more reliable [55]. The ‘allocator’ is in charge of allotting VMs to 

physical resources. It can implement a VM allocation mechanism with the aim of providing 
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better performance. The component should be able to cope with a high resource fault rate by 

employing suitable fault tolerance mechanisms.  

 aggregatorPhysical 
Layer

allocatordiscovery

 

Figure 2-9: Physical Layer 

2.4 Summary 

This chapter presented an overview of Cloud computing and related computing models: Grid 

and Desktop Grid. It showed that there is no consensus on what ‘the Cloud’ actually means, 

so outlining the essential features of Clouds is crucial to understanding what is Cloud 

computing. Computing resources in Cloud computing are available online upon request. 

Elasticity is a crucial feature, meaning that users can scale resources up in a short time yet 

still only pay for what they consume.  

This chapter presented the Desktop Cloud as a new type of Cloud computing. Its 

infrastructure is made up of non-dedicated idle resources. Distinctive characteristics of 

Desktop Clouds are: low cost, non-dedicated and heterogeneous resources, and the low 

quality of services. Several research issues were discussed in the area of Desktop Cloud 

systems. Node failure is identified as being one of the major obstacles to the advance of 

Desktop Cloud systems, and can be solved by implementing a fault tolerance mechanism 

that ensures an acceptable level of service without interruption.  

The next chapter reviews related works developed in the area of Cloud computing in the 

literature that can be used to tackle the issue of node failure in Desktop Cloud systems. 

 



Chapter 3. Literature Review 

31 

Chapter 3:  Literature Review 

The previous chapter introduced Desktop Clouds, a new type of Cloud that aims to harness 

computing PMs to provide Cloud services when idle, and identified the research challenges 

to be tackled. This study focuses on how to design a VM allocation mechanism to improve 

throughput in Desktop Cloud systems in the presence of node failure. 

This chapter starts by explaining the meanings given to the term VM allocation mechanism 

in the literature, as there is no consistent definition. This is because the mechanism may 

contain several techniques such as VM placement and VM migration. This leads researchers 

to adopt different terms, as this chapter describes. The next section proposes a taxonomy and 

survey of the various VM allocation approaches to the VM allocation problem. They can be 

divided into five types: heuristic; power aware; performance aware; network aware; and 

failure aware.  

3.1 VM Allocation Mechanism  

There are various synonyms for and interpretations of the VM allocation mechanism in 

Cloud computing, because the paradigm is relatively new and there is no consensus about 

either the Cloud or its components [36]. This section explains the meaning of a VM 

mechanism and shows how related areas of research are confused with VM allocation, 

although outside its scope.  

3.1.1 Definitions 

A VM allocation mechanism can be defined as any technique or policy to manage the 

placement of VMs to PMs in Cloud systems. It involves the option of migrating a VM or 

group of VMs from the hosted PM to another with the aim of optimising Cloud systems by 

reducing energy, reducing power consumption or enhancing performance throughput. There 

are several processes involved in the VM allocation mechanism, namely VM Provisioning, 

PM selection, VM consolidation, VM monitoring and VM migration.  

Van et al., define VM provisioning as the stage of providing VM instances to Cloud users or 

brokers in order to process tasks [10]. A VM instance is one of a number of VM classes, 

each assigned a certain CPU power and RAM, for users to select. 

PM selection is the process of selecting a suitable PM to host a VM instance. It is also termed 

‘resource selection’, as in [82]. VM placement is the step of actually instantiating and 
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allocating a VM instance to the PM chosen at the PM selection step [88]. VM consolidation 

is the process of allocating more than a single VM instance to a PM, made possible in Cloud 

computing by virtualisation technology [89]. Its aim is to improve resource utilisation by 

assigning as many VMs as possible to the same PM. A synonym for VM consolidation is 

‘server consolidation’, as used in [90], or ‘VM multiplexing’, as in [91]. 

VM monitoring is a module to check currently running VM instances in order to optimise 

the Cloud system by triggering VM migration to prevent degradation of the VM performance 

due to resource overload, to improve the quality of service or to reduce power consumption 

by improving resource utilisation [92]. VM migration is the process of migrating a VM 

instance from its hosted PM to another to achieve various objectives such as reducing power 

consumption or improving performance in processing Cloud applications [93]. Thanks to 

virtualisation technology, a VM instance can be migrated either live or non-live from one 

PM to another. Live migration refers to moving a VM instance during run time without the 

need to pause, so the process of VM migration can be conducted with minimum impact on 

VM performance [94].  

3.1.2 Scope   

There is confusion and misunderstanding about the definition of the VM allocation 

mechanism. For example, some researchers term it the ‘VM provisioning mechanism’, as do 

Meng et al., [91], because its main goal is to provision VM instances to end users on request. 

‘VM management’ is another term for the VM allocation mechanism, as in [10], referring to 

the process of allocation and migration of VM instances. Although the term is attractive to 

describe the steps required to instantiate VMs, it might be confused with the role of VM 

monitor on VM management platforms such as KVM [95]. In addition, Verma et al., term it 

‘VM placement’, referring to a phase within the VM allocation mechanism [96]. Similarly, 

the term ‘VM mapping mechanism’ is used by Calheiros et al., to describe the VM allocation 

mechanism, although it is a step within the mechanism [97]. The term ‘VM resource 

allocation’ is used in the literature in work by [98], for example. Similarly, the term ‘VM 

allocation policy’ is used by [89] to refer to the mechanism and ‘VM placement policy’ by 

[99]. However, this researcher considers that these studies, and similar, all fall into the area 

of VM allocation mechanisms. 

This study focuses on designing a mechanism of several stages to ensure an acceptable level 

of successfully executed tasks in the presence of node failure. Therefore, its scope is limited 

to the perspective of CSPs. Other research areas can easily be confused with this field, 
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because the term ‘Cloud’ involves the study of many dimensions by researchers of varying 

backgrounds. For example, the study of reducing running costs for end users in Cloud 

computing is sometimes called ‘resource allocation in the Clouds’, as mentioned by [100]. 

Their work concerns the reduction in the Cloud of the number of requested VM instances by 

end users, in order to cut their costs, since fewer running VMs and shorter duration of usage 

are major factors of charges. However, such works are considered beyond the scope of this 

study, which is concerned only with the techniques, mechanisms and approaches to help 

CSPs to improve performance, reduce power consumption … etc. This is the technical side 

of Cloud systems.  

Another research area that is beyond the scope of the VM allocation problem is task 

scheduling techniques. These are employed by CSPs or Cloud brokers to distribute Cloud 

tasks to a list of available VM instances [101], for instance the work that has been done by 

[102]. This research area is easily confused with the VM allocation area because they are 

both typical research issues in Cloud computing and both may have the same goal, such as 

reducing running costs, at certain times. Another research area that is similar but beyond the 

scope of this study is the VM spot market, the notion of CSPs offering VM instances at a 

lower price than usual. Researchers try to design and develop mechanisms, often called 

resource allocation policies or mechanisms, as in [103], that let Cloud users specify their 

requirements and desired budget using VM instances. The mechanisms then identify, 

negotiate and locate VM instances to fit these requests.  

3.2 Taxonomy of VM Allocation Mechanisms 

The previous section defined the VM allocation mechanism and the steps involved, while 

the previous chapter explained that developing VM allocation mechanisms for Cloud 

systems is an open area for further research. This subsection proposes a taxonomy of earlier 

studies tackling the problem of VM allocation. This divides the studies into five types, 

according to their purpose. 

3.2.1 Heuristic Approaches 

In Cloud computing, the problem of VM allocation mechanism can be formulated as follows. 

The set of VMs and the set of PMs may be seen as a version of a Bin Packing problem [104]; 

in its classic form this means packing objects of different volumes into the least possible 

number of bins [105]. The problem is how to place multiple VMs into the fewest PMs to 

achieve better utilisation and to minimise power consumption. However, the problem needs 
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further attention because it involves another vector. If it exceeds a certain level, the number 

of VMs placed in each PM can cause performance degradation in VMs [106], resulting in 

more SLA violations. It can also lead to PMs consuming more energy than normal due to a 

state of over-utilisation [89]. Therefore, the Bin Packing problem has to be extended to 

involve the allocation of as many VMs as possible to the same PM with two restrictions: 

non-violation of SLA and non-excessive power consumption due to over-utilisation [88]. 

Several Bin Packing heuristic solutions for VM placement were evaluated by [98], who 

investigated the First Fit (FF), Least Fit First (LF) and Next Fit (NF) algorithms for node-

selection decisions in Traditional Clouds. Their experiments showed that the LF algorithm 

is slightly better in terms of usage. Similar work was undertaken to evaluate the FF, NF and 

Best Fit (BF) algorithms with regard to performance by [107], who concluded that the BF 

algorithm performs best. However, the heuristic algorithms cannot guarantee better results, 

as aforementioned studies showed, therefore VM allocation policies need to define several 

steps to achieve better results. These heuristic approaches are criticised for being unable to 

guarantee the optimal solution, as stated by [10]. 

Such heuristic solutions can be applied to PM selection only for VM placement or VM 

migration steps, although the VM allocation mechanism should also be responsible for 

monitoring running VM instances in order to migrate VM instances during run time in order 

to optimise Cloud systems, according to [108], [104], [98] and [82]. The FCFS, Greedy and 

RoundRobin VM allocation mechanisms are implemented in open source resource 

management for Cloud computing such as Eucalyptus, OpenNebula and Nimbus according 

to [108] and [109]. These offer VM placement and may also be used to optimise Cloud 

systems by reducing power consumption or improving performance. However, Eucalyptus 

and Nimbus only employ static VM placement using FCFS or Greedy mechanisms in order 

to select the proper PM to host a new VM instance, thus incurring no disadvantage, according 

to [109]. 

The FCFS mechanism [110] allocates a VM to the first available PM that can accommodate 

it. In Cloud systems, the FCFS mechanism employs the FF heuristic solution for VM 

placement, while Eucalyptus uses it to place a VM instance with the first available PM able 

to accommodate it [111]. The FCFS mechanism cannot be used to serve any allocation 

objectives such as improving resource utilisation or bandwidth optimisation.  

The Greedy mechanism, based on the Greedy algorithm [112], allocates a VM to the PM 

with the highest level of utilisation. In this context the Greedy mechanism employs the BF 
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solution, which is the PM with highest utilisation level in a pool of PMs. If the chosen PM 

cannot accommodate the new VM, then the next most utilised PM will be allocated. Nimbus 

employs the Greedy mechanism to place a new VM instance at the PM with highest 

utilisation level, if able to do so to improve utilisation of Clouds’ PMs; however, it does not 

employ any VM migration steps to migrate the VM instances during run time. It can be 

effective during runtime by optimising running PMs, migrating VMs in PMs with low levels 

of utilisation to more heavily utilised PMs, however, it can also lead to over-utilised PMs, 

adversely affecting performance in running VMs, according to [89]. 

RoundRobin, based on the RoundRobin scheduling algorithm [113], is a VM allocation 

mechanism that allocates a set of VMs to each available physical host on a rotating basis 

with the aim of distributing PMs’ loads. It employs the LF heuristic solution, so selects the 

PM with the least used resources (CPU and RAM) to host VM instances for initial placement 

or migration. The RoundRobin mechanism can be used during runtime to migrate VM 

instances from one PM to another just to ensure that the load is distributed among Clouds’ 

PMs; however, it may be argued that it leads PMs to consume more energy, because it does 

not pay attention to improving resource utilisation and results in many under-utilised PMs.  

3.2.2 Power-Aware Approaches  

The literature shows that the focus is on how to minimise the power consumed by physical 

nodes in order to maximise revenue for CSPs. Researchers are motivated to tackle the issue 

because power in data centres accounts for a large proportion of maintenance costs [114]. 

The idea is that better utilisation leads to more servers that are idle, so can be switched to 

power saving mode (e.g. sleep, hibernation) to reduce their energy consumption. According 

to Kusic et al., an idle machine uses as much as 70% of the total power consumed when it is 

fully utilised [13].  

Srikantaiah et al., studied the relationship between energy consumption, resource utilisation 

and performance in resource consolidation in Traditional Clouds [106]. The researchers 

investigated the impact of resource high utilisation on performance degradation when 

various VMs are consolidated at the same physical node, introducing the notion of optimal 

points. They argued that there is a utilisation point that allows placement of several VMs at 

the same physical node without affecting performance. Once this point is reached in a PM, 

no new VMs are placed, and the proposal is to calculate this optimal point of utilisation then 

to employ a heuristic algorithm for VM placement, since the authors defined the 

consolidation problem as a multi-dimensional Bin Packing problem and showed that the 
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consumption of power per transaction results in a ‘U’-shaped curve. They found that CPU 

utilisation at 70% was the optimal point in their experiment, but that it varied according to 

the specification of the PMs and workload. The approach is criticised because the technique 

adopted depends heavily on the type of the workload and the nature of the targeted machines 

[115].  

Verma et al., presented ‘pMapper’, a power-aware framework for VM placement and 

migration in virtualised systems, where the monitoring engine collects current performance 

and power status for VMs and PMs in case migration is required [96]. The allocation policy 

in pMapper employs mPP, an algorithm that places VMs on servers with the aim of reducing 

the power they consume. The algorithm has two phases. The first is to determine a target 

utilisation point for each available server based on their power model. The second is to 

employ a First Fit Decreasing (FFD) heuristic solution to place VMs on servers with regard 

to the utilisation point of each. The optimisation in the framework considers reducing the 

cost of VM migration from one server to another. The migration cost is calculated by a 

migration manager for each candidate PM in order to determine which node is chosen. The 

work is criticised as it does not strictly comply with SLA requirements [86]; the proposed 

allocation policy deals with static VM allocation where specifications of VMs remain 

unchanged. This is not the case in Cloud computing, where clients can scale up or down 

dynamically. In addition, it requires prior knowledge of each PM in order to compute the 

power model. 

Meng et al., proposed a VM provisioning approach to consolidate multiple VM instances for 

the same PM in order to improve resource utilisation and thus reduce the energy consumed 

by under-utilised PMs [91]. A VM selection algorithm was developed to identify compatible 

VM instances for consolidation. Compatible VM instances are those with similar capacity 

demand, defined as their application performance requirement, and these are grouped into 

sets allocated to the minimum number of PMs. It can be argued that consolidating compatible 

VM instances to the same PMs will have a small negative effect on applications assigned to 

each VM instance and thus keep SLA requirements from being violated. The study found an 

improvement of 45% in resource utilisation.  

The authors in [89] and [32] devised an algorithm to allocate VM instances to PMs at data 

centres with the goal of reducing power consumption in PMs without violating the SLA 

agreement between a Cloud provider and users. The researchers argued that assigning a 

group of VMs to as few PMs as possible will save power [116]. The energy-aware resource 

algorithm [86] has two stages: VM placement and VM optimisation. The VM placement 
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technique aims to allocate VMs to PMs using a Modified Best Fit Decreasing (MBFD) 

algorithm. This is based on the Best Fit Decreasing (BFD) algorithm that uses no more than 

11/9 * OPT + 1 bins (OPT is the optimal number of bins) [117].  

The MBFD algorithm sorts VMs into descending order of CPU utilisation in order to choose 

power-efficient nodes first. The second stage is the optimisation step responsible for 

migrating VMs from PMs that are either over- or under-utilised. However, VM migration 

may cause unwanted overheads, so should be avoided unless doing so reduces either power 

consumption or performance, so the authors set lower and upper thresholds for utilisation. If 

the total utilisation of the CPU of a PMs falls below the lower threshold, this indicates that 

the host might consume more energy than it needs. Similarly, if the utilisation exceeds the 

upper threshold then the performance of the hosted VMs may deteriorate. In this case, some 

VMs should migrate to another node to reduce the level of utilisation. The authors concluded 

that the Minimisation of Migrations (MM) policy could save up to 66% of energy, with 

performance degradation of up to 5%. It was found that the MM policy minimised the 

number of VMs that have to migrate from a host in the event of utilisation above the upper 

threshold. 

Graubner et al., proposed a VM consolidation mechanism based on a live migration 

technique with the aim of saving power in Cloud computing [115]. They developed a 

relocation algorithm that periodically scans available PMs to determine which PM to migrate 

VM instances from, and which PM to migrate them to. The approach was found to save up 

to 16% of power when implemented in the Eucalyptus platform, however the relocation 

process was unclear, with no further explanation of when it is triggered during run time 

[118]. 

The authors in [119] proposed GreenMap, a power-saving VM-based management 

framework under the constraint of multi-dimensional resource consumption in clusters and 

data centres. GreenMap dynamically allocates and reallocates VMs to a set of PMs within a 

cluster during runtime. There are four modules in the framework: clearing; locking; trade-

off; and placement. The clearing module is responsible for excluding VMs inappropriate for 

dynamic placement, for instance those with unpredictable or rapid variation in demand. The 

locking module monitors SLA violations caused by the workload, in which event the module 

will switch to a redundant VM for execution. The trade-off module evaluates the potential 

of a new placement generated by the placement module in respect of performance and cost 

trade-off. The placement module performs a strategy for reallocating live VMs to another 

physical resource to save power, based on a configuration algorithm. The algorithm starts 
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by randomly generating a new placement configuration. The placement module then delivers 

the configuration to the trade-off module. The experiment showed that it is possible to save 

up to 69% of power in a cluster, with some performance degradation, but it did not consider 

the overheads of the placement module.  

The authors in [118] proposed an energy-saving mechanism developed and implemented for 

a private Cloud called Snooze, tested using a dynamic web workload. The authors argued 

that it differed from other power-aware VM mechanisms in two aspects, in that it was applied 

and tested in a realistic Cloud environment, and that it takes dynamic workload into 

consideration. A monitor unit was introduced periodically to check running PM; any under- 

or over-utilised nodes were reported to a general manager module to issue a migration 

command. There are four VM allocation policies: placement; overload relocation; underload 

relocation; and consolidation.  

The placement policy allocates new VM instance requests to PMs using RoundRobin 

scheduling, which distributes the load to PMs in a balanced way. The overload policy scans 

PMs to check if a PM is overloaded with VM instances and, if so, searches for a PM that is 

only moderately loaded to accommodate these VM instances in all-or-nothing way (i.e. 

migrate all running VMs or none). The migration command is sent to the migration policy 

for straightforward execution. Similarly, the underload policy issues a migration command 

to migrate VMs from under-utilised PM in an all-or-nothing way. The mechanism managed 

to save up to 60% of power, the experiment concluded, but it was conducted in a 

homogenous infrastructure, that is, it assumed that all PMs have the same computing 

capacity. In addition, the all-or-nothing method may be a drawback as it leads to PMs being 

overloaded, which may cause performance degradation in instances of hosted VM.  

3.2.3 Performance-Aware Approaches 

Van et al., proposed a virtual resource manager focused on maintaining service levels while 

improving resources utilisation via a dynamic placement mechanism [10]. The manager has 

two levels: a local decision module and a global decision module. The first is concerned with 

applications, as the manager deals with complex N-tier levels in, for instance, online 

applications that require more than one VM instance to process. The global decision module 

has two stages: the VM placement stage, concerned with allocating a VM to a specific PM 

with the goal of improving resource utilisation; and the VM provisioning stage of scheduling 

applications to VMs (i.e. sending applications to be processed by VM instances). 
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The authors in [120] proposed a novel VM placement approach of two phases: candidacy 

and placement. The former elects a list of PMs eligible to accommodate VM instances, 

choosing the candidate PM on the basis of migration capability, network bandwidth 

connectivity and user deployment desire, which should be available beforehand. Available 

PMs have a four-level hierarchy representing an ordering system of PMs available to be 

candidates. The latter phase selects one of the candidate PMs from the first phase to host a 

VM instance on the basis of low-level constraints. The authors argue that the first phase can 

help to reduce the time spent choosing the most suitable PM. However, this work requires 

prior knowledge of user deployment of VM instances, which is not supported in CSPs. CSPs 

usually offer different classes of VM instances for end users to choose between. Asking 

further questions regarding user preferences is not economically viable. 

The authors in [88] proposed a VM placement technique that employs the FF heuristic 

solution to maximise revenue for CSPs under performance constraints, expressed as an SLA 

violation metric measuring performance degradation of VM instances caused by using the 

FF mechanism to improve resource utilisation. The proposed system has two managers: the 

global manager decides which PM hosts a VM instance; and the local manager is concerned 

with scheduling VM instances within the hosted PM. The global manager employs a 

decision-making policy for each candidate PM’s viability for hosting a VM instance in such 

a way as to improve resource utilisation.  

Calcavecchia et al., proposed the Backward Speculative Placement as a novel VM placement 

technique [121]. The VM placement technique has two phases: continuous deployment and 

ongoing optimisation. The continuous deployment phase allocates a VM instance to the PM 

with the highest demand risk, a scoring function to measure the level of dissatisfaction with 

a PM at the final unit of time. It is, however, not clearly explained how this is awarded. The 

ongoing optimisation phase migrates VM instances hosted to a PM with high risk demand 

to another PM with a low score, as long it is able to accommodate the VM instances. The 

Backward Speculative Placement technique was able to decrease the execution time of 

submitted tasks. 

3.2.4 Network-Aware Approaches  

The authors in [99] proposed a VM placement and migration approach to minimise the effect 

of transfer time of data between VM instances and data storage. In Cloud computing, a CSP 

can provide VM instances to end users to process data while these data are stored in different 

locations, for example Amazon EC2 and Amazon S3. Therefore, the approach developed 
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takes network I/O requirements into consideration when VM placement is applied. In 

addition, the VM migration policy is triggered when the time required to transfer data 

exceeds a certain threshold. Network instability is the main reason for this increase of time, 

and the threshold is stated in the SLA agreement. The study showed that the time taken to 

complete the task fell, on average, due to the placement of VM, depending on location.  

A novel traffic-aware VM placement technique was developed by [122] with the goal of 

improving network scalability. The mechanism employs a two-tier approximate algorithm 

to place VM instances with PMs in such a way that significantly reduces the aggregate traffic 

in datacentres. The two-tier algorithm partitions VMs and PMs separately into clusters. The 

VMs and PMs are matched individually in each cluster. The partitioning step is achieved 

using a classical min-cut graph algorithm that assigns each VM pair with a high mutual 

traffic rate to the same VM cluster. Having VM instances with a high traffic rate in the same 

cluster of PMs means that traffic is exchanged only through that cluster, which can reduce 

the load upon switches at a data centre. 

Purlieus [123] is a resource allocation tool developed to improve the performance of 

MapReduce jobs and to reduce network traffic by paying attention to the location of 

resources. MapReduce enables the analysis and processing of large amount of data in a quick 

and easy way [124]. Purlieus employs VM placement techniques that allocate VM instances 

to PMs according to their location. Purlieus was able to reduce the execution time of jobs by 

50% for a variety of types of workload. 

The authors in [125] studied the VM allocation problem from the network perspective [125]. 

They proposed a novel VM placement mechanism that considers network constraint, which 

is the variation in traffic demand time. Its goal is to minimise the load ratio across all network 

cuts by implementing a novel mechanism, the two-phase connected component-based 

recursive split, to choose the PM with which to place a VM instance. It exploits the recursive 

programming technique to formulate a ranking table of each VM instance that is connected. 

The PM with the least connected ranks of associated VMs is selected to host a new VM 

instance, but the proposed mechanism is for static VM placement only, thus it does not 

consider moving VM instances around during run time to reduce the cut load ratio.  

The authors in [126] introduced S-CORE, a scalable VM migration mechanism to reallocate 

VM instances to PMs dynamically with the goal of minimising traffic within a datacentre. 

They showed that S-CORE can achieve cost reductions in communication of up to 80% with 

a limited amount of VM migration. S-CORE assigns a weight for each link in a datacentre, 
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taking into consideration the amount of data traffic routed over these links. If the line weight 

exceeds a certain threshold, then some VM instances with high traffic load have to migrate 

to another PM using a different link. Such an approach avoids traffic congestion on core 

links at data centres to prevent any degradation in the performance of a Cloud system. 

3.2.5 Failure-Aware Approaches 

The aforementioned studies investigated various VM allocation mechanisms with the aim of 

minimising power consumption, improving performance or reducing the traffic load in 

Cloud systems. However, they all fell short of providing a mechanism tolerant of failure 

events in Clouds’ PMs. Therefore, these VM allocation techniques are neither practical to 

employ nor to implement in a Desktop Cloud system. The following subsection reviews 

several studies that have tackled the issue of node failure. 

A wide range of techniques and approaches has been developed to tackle node failure issues 

in Desktop Grid systems, because a node within a Desktop Grid system can voluntarily join 

or leave the system, increasing the probability of node failure, heightening the risk of losing 

results. For example, the authors in [127] developed a fault-tolerant technique in Desktop 

Grid systems that employs replication of applications to avoid losing them in failure events. 

Another approach was proposed by [128], based on the mechanism of application migration. 

This checks applications periodically during runtime, and in the event of node failures all 

associated application are restored and migrated to another node. However, this is not 

practical in this study because it is concerned with the applications level and violates the 

concept of the Cloud computing paradigm that isolates the infrastructure layer from the 

service layer to prevent CSPs from having control over services run by end users. 

Machida et al., proposed a redundancy technique for server consolidation [129]. The focus 

was on complex online applications requiring several VM instance for each application, and 

the technique offers k fault tolerance with the minimum number of physical servers required 

for application redundancy [129]. It relies on replicating an application a times and running 

it for k number of VM instances. The number of VM instances is calculated on the basis of 

the requirements of application a, but requires full knowledge of and access to the 

applications and services that run on VM instances in order to replicate them. This, again, 

violates the concept of Cloud computing whereby CSPs are prevented from being able to 

access and control the applications of end users. Furthermore, the approach assumes that all 

physical servers have the same computing capacity, impractical in the era of Cloud 

computing where PMs are usually quite heterogeneous. 
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The authors in [130] proposed the BFTCloud, a fault-tolerant framework for Desktop Cloud 

systems that tackles the specific malicious behaviour of nodes known as Byzantine faults: 

machines that provide deliberately wrong results. The framework employs a replication 

technique with a primary node by 3 * f, where f is the number of faulty nodes at run time. 

The framework considers failure probability as the mean to choose primary nodes and their 

replicas in respect of QoS requirements. Byzantine faults are identified by comparing the 

results reported by a primary node with those of its replica; if the results are inconsistent 

then they will be sent to another node to process and compared to detect which machine is 

behaving suspiciously. However, the calculation of failure probability is not clearly given. 

In addition, although the framework was said to be for Desktop Cloud systems, it does not 

possess the essential feature of employing virtualisation to keep the service layer isolated 

from the physical layer; in fact, the technique is to replicate tasks by sending one to a primary 

node and its 3* f replicas of nodes. Another issue worth mentioning about the BFTCloud 

mechanism is the notion of f, which means that the number of faulty nodes should be known 

before run time. However, this technique is impractical since the number of node failures in 

such distributed systems is unpredictable and difficult to calculate [131].  

The authors in [132] addressed the issue of node failure in hybrid Clouds, that is, private and 

public Clouds. The problem is formulated as follows: a private Cloud with limited resources 

(i.e. PMs) has a certain number of nodes with a high failure rate. The question is how to 

minimise the dependency of public Clouds to achieve better QoS, given that sending 

workload to a public Cloud costs more. The authors proposed a failure-aware VM 

provisioning for hybrid Clouds, a ‘time-based brokering strategy’, to handle failure of nodes 

in private Clouds by redirecting tasks required long term into a public Cloud. The decision 

to forward a task to a public Cloud is based on the duration of the request; if longer than the 

mean request duration of all tasks, then it will be forwarded. Although the proposed strategy 

considers that a public Cloud solves the issue of node failure in private Clouds, the issue is 

not answered unless the reliability of this public Cloud can be guaranteed. 

The review of VM mechanisms in this section shows that the design of a fault-tolerant VM 

allocation mechanism remains an open research problem that needs to be tackled in Cloud 

environments with faults, such as in Desktop Cloud systems. 

3.3 Summary 

The VM allocation mechanism considers the placement of new VM instances to Cloud PMs 

and their migration around PMs to achieve optimisation objectives such as resource 
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utilisation. This chapter explained the processes involved in designing a VM allocation 

mechanism. Several related areas of research were presented yet excluded, being beyond the 

scope of the VM allocation problem. 

Table 3-1: Summary of Taxonomy of VM Allocation Mechanisms 

Approach Focus References 

Heuristic Solutions 
Compare several heuristic solutions [98],[107] 

Review Cloud management tools [108],[109] 

   

Power-Aware 

Study the relationship between energy consumption, 

resource utilisation and performance in Traditional Clouds 
[106] 

Improve resource utilisation  [91],[32],[115],[118] 

Reduce power consumption with acceptable effect upon 

performance 
[96]  

Reduce power consumption with acceptable number of 

SLAs violations 
[32],[119] 

   

Performance-Aware 

Improve resource utilisation with focus on performance 

metric 
[10] 

Reduce execution time  [120],[121] 

Reduce the impact of VM degradation [88] 

   

Network-Aware 

Reduce the transfer time between VMs [99] 

Reduce traffic rate  [122],[123],[126] 

Minimise load ratio on networks  [125] 

   

Failure-Aware 

Fault-tolerant techniques for Desktop Grid systems [127],[128] 

Replication techniques for Traditional Cloud systems [129] 

Tackle the Byzantine fault issues [130] 

Study node failures in hybrid Clouds [132] 

 

The chapter provided a literature review of works proposed to improve the outcome of Cloud 

systems. These can be classified into: studies employing a heuristic solution to tackle the 

VM allocation problem as a Bin Packing problem; studies proposing to reduce power 

consumption in Clouds’ nodes; studies that try to improve the performance of Cloud 

systems; studies introduced to reduce the impact on network and bandwidth; and studies 

tackling the issue of node failure in Cloud systems. Table 3-1 provides a summary of 

reviewed works according to the taxonomy presented in this chapter. 

However, this review of the literature reveals that none of these works are appropriate for 

implementation in a Desktop Cloud system that tolerates failure events in PMs, and the next 

chapter presents a novel VM allocation mechanism that is able to do so. 
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Chapter 4:  A Fault-Tolerant VM Allocation 

Mechanism  

The previous chapter reviewed the various techniques and mechanisms proposed to enhance 

the outcome of Cloud systems in terms of enhancing performance and reducing power 

consumption and network traffic, together with some fault-tolerant approaches. However, it 

revealed that none of these mechanisms can tackle the issue of node failure in Desktop Cloud 

systems. In Traditional Clouds, PMs are assumed to be of high reliability [4], making the 

possibility of node failure quite small. However, the case is different in Desktop Clouds 

because the nodes are expected to be highly volatile, as described in section 2.3.4.4. This 

chapter proposes a Fault-Tolerant (FT) VM allocation as a new mechanism to handle node 

failure during runtime.  

This chapter starts by discussing the allocation problem from two perspectives: from 

research and from Desktop Cloud’s experience of high failure rates in PMs. The former deals 

with the problem as an optimisation problem without sufficient attention to node failure, 

while the latter approach takes this into consideration. The proposed mechanism employs a 

replication technique to reduce the impact of node failure on throughput, yet this causes PMs 

to consume more power, so the FT mechanism incorporates a migration policy to reduce 

power consumption. The chapter concludes with throughput, power consumption and 

availability metrics that may be used to assess and evaluate the FT VM allocation 

mechanism.  

4.1 VM Allocation Problem  

In Cloud computing, VM instances are hosted and run in PMs, so if a PM fails, all allocated 

VM instances to it are destroyed. Consequently, PM failure means all the tasks running on 

the VM instance are lost, badly affecting the throughput outcome. In Desktop Clouds, the 

problem is crucial because the number of node failure events can be high, therefore the goal 

of VM allocation in this context is to design a mechanism that can improve the throughput 

of a Desktop Cloud system in the presence of node failure.  

Multi-criteria optimisation problem is a problem that is evaluated by two or more conflicting 

criteria. In the context of VM allocation problem in Desktop Cloud system, the problem is 

formulated as multi-criteria through two factors: throughput and power consumption. 

Throughput is improved using fault-tolerant mechanism using a replication technique which 
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increases the power consumed by nodes. Therefore, the mechanism is extended to reduce 

power consumption with an accepted penalty on throughput outcome. One way to overcome 

the issue of node failure is to replicate VM instances, so that if a VM instance is destroyed 

there is a replica available to continue processing tasks. However, there are several obstacles 

when designing such a mechanism. Consolidation of new requested VMs to improve 

resource utilisation is considered a challenge in Traditional Clouds [104]. Another challenge 

in Traditional Clouds is the migration of running VM instances with an aim to improve 

performance or resource utilisation [108]. Summarised, the challenges in designing a VM 

allocation mechanism for Desktop Cloud systems based on [82] and [92] are: 

Challenge 1. Replication of VM instances with the aim of reducing the impact of node 

failure on throughput.  

Challenge 2. Selection of a PM to host a replicated VM. 

Challenge 3. Response to a failing PM. 

Challenge 4. Implementation of a migration policy of VM instances during runtime to 

reduce the impact of the replication technique.  

Therefore, the FT mechanism is designed to take into consideration the aforementioned 

challenges. The first two tackle the proposed mechanism. This creates a VM replica for each 

requested VM and consolidates it to a PM already hosting a VM. The third challenge is dealt 

with by the FT mechanism, locating a VM replica of the destroyed VM in order to make it 

primary and, in turn, to create a replica. The last challenge requires the FT mechanism to 

employ a migration policy that aims to reduce power consumption by improving resource 

utilisation. Therefore, the FT mechanism incorporates a novel policy termed the Utilisation-

Based Migration Policy (UBMP), a dynamic live migration policy to migrate VM instances 

to PMs to improve resource utilisation and thus reduce the power they consume in a Desktop 

Cloud system. 

4.2 Overview of Cloud Management Platform 

An overview is given in this section to explain how the proposed mechanism can be 

employed in a Desktop Cloud system. In Cloud computing, end users can submit their tasks 

to a Cloud system to be processed in a VM or list of VM instances. A Cloud scheduler 

distributes assigning tasks to VM instances, managed by an allocator. In IaaS Cloud systems, 

the Cloud allocator receives requests from users who may stipulate the number of desired 

VM instances along with the specification of each VM instance. The allocator employs a 

VM allocation mechanism that places, migrates and replicates VM instances.  
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Figure 4-1 depicts an overview of a management platform to which a scheduler sends tasks 

submitted by users to VM instances, managed by an allocator. The allocator keeps 

monitoring the running VM instances while they process tasks until released by users. In the 

Cloud system, there is a pool of PMs ready to accommodate VM instances. Several 

open-source Cloud management platforms exist, such as OpenStack [133] and  Eucalyptus 

[12], that are able to be integrated with the proposed VM allocation mechanism to manage 

a Desktop Cloud system.  
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Figure 4-1: System Overview 

The proposed mechanism aims to improve throughput in the presence of node failure by 

replicating VM instances when requested by Cloud users, incorporating a migration policy 

that aims to improve resource utilisation.  
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Figure 4-2: FT Mechanism 
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4.3 FT Mechanism 

The FT allocation model is depicted in Figure 4-2. The mechanism is a failure-tolerant 

technique that works by replicating the requested VMs. VM instances are created and hosted 

on a PM and remain working there until released by the user who requested them. If a PM 

is reported as failing, the mechanism responds by locating a replica in order to make it 

primary and creating a new VM replica. The mechanism starts by receiving from a user a 

new VM request that specifies its required computing capabilities (CPU and RAM). The 

request is sent to the VM Replica module, which creates two VM instances: a primary VM 

that is sent to the PM Selection module to select a PM host it, and a VM is replica that is sent 

to the VM Consolidation module to try to allocate the replicated VM onto a PM already 

hosting another VM(s). The following explains each module of the mechanism further. 

4.3.1 VM Replication 

The VM Replication module is responsible for replicating the requested VM in order to 

improve the resilience of the mechanism in the event of failure. When a new request arrives, 

the module will replicate the request to create two VM versions: one a primary VM and the 

other a VM replica. The replication technique is based on the idea that more than one version 

of the VM will run simultaneously. There are two constraints for this technique: the first is 

that the VM has to be hosted by a PM that does not host the primary VM. This is to ensure 

that there is at least one version of the VM running in the event of failure. The second 

constraint is that it is necessary to try to consolidate the replicated VM instance with another 

VM instance to improve resource utilisation, given the replication technique’s disadvantage 

of increasing the power consumed by PMs, so if possible the replica has to be allocated to a 

PM already hosting a VM(s).  

This method will improve resource utilisation and minimise the effect on the availability of 

PMs. When the VM Replication module receives a VM request, it sends it to the PM 

Selection to choose a PM to host the primary version of the new VM. The replica is sent to 

the VM Consolidation module to consolidate it to a PM already hosting a VM. The VM 

Replication module ensures that a VM and its replica will not be assigned to the same PM 

by assigning VMs the same VM identity. This is to let the VM Consolidation module 

recognise them and thus avoid assigning a replica to the primary VM. VM replicas are 

updated frequently by the VM Monitor to keep them synchronised with their primary VMs. 
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Figure 4-3: PM Selection Policy 

4.3.2 PM Selection 

The PM Selection module is responsible for the selection of a PM from a pool of available 

PMs to host a VM request. The LF heuristic solution is employed to choose a PM with the 

least utilisation. The selected PM has to be able to accommodate this VM, and the policy is 

shown in Figure 4-3. The step is required to minimise the number of affected primary VM 

instances in the event of PM failure. The PM Selection module may receive another request 

to select a PM for a VM replica, because the VM Consolidation module could not consolidate 

it to a utilised PM. Once the PM is picked up, it and its VM will be sent to the VM Placement 

in order to finish the allocation process. 

 

Figure 4-4: VM Consolidation Policy 

 

set pmList = list of available PMs 

 

vm = getVmRequest() 

selectedPM = pmList.get(0) 

 

for i = 1 to pmList.number 

 tmpPM = pmList.get(i) 

 if  ((utility(tmpPM) < utility(selectedPM)) && 

  (suitableToHost(tmpPM, vm) == true) ) 

   then selectedPM = tmpPM 

 end if 

end for 

 

return selectedPM 

 

set workingPmList = list of working PMs 

 

replicaVM = getVmRequest() 

consolidatedPM = null 

 

for i = 0 to workingPmList.getSize() 

 tmpPM = workingPmList.get(i) 

 if ((utility(tmpPM) > utility(consolidatedPM)) && 

  (suitableToHost(tmpPM, replicaVM) == true) ) 

   then consolidatedPM = tmpPM 

 end if 

end for 

 

return consolidatedPM 
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4.3.3 VM Consolidation   

The VM Consolidation module is responsible for the allocation of a VM replica to a PM. 

The VM replica request is sent from the VM Replicate. The VM Consolidation module is a 

decision-making policy that employs the BF heuristic solution to select a PM with the 

highest utilisation level to host the VM replica, and the policy is described in Figure 4-4. 

The motivation for this step is to improve utilisation and minimise the number of running 

PMs. If a no VM instance is hosted to a PM then the PM is put onto a power save mode to 

reduce power consumption. This approach is demonstrated to be effective in saving power 

in Traditional Clouds, according to [86].  

However, it is not always possible to find a PM that is already hosting a VM (or list of VMs) 

to host the replica, since there is a possibility that all candidate PMs are unable to 

accommodate the replica as they do not have sufficient computing capability. The VM 

Consolidation module obtains a list of all PMs that host VMs, then a decision is made on 

whether to allocate the replica to one of the listed PMs. If this is affirmative (i.e. a PM is 

found), then the VM Placement module will be informed and will allocate the replica to the 

identified PM. If the answer is negative, no PM can host it, so a new request will be sent to 

the PM Selection module in order to select a new one.  

4.3.4 VM Placement 

The VM Placement module simply allocates the received VM to the received PM. The 

Allocated PMs list contains all working PMs; that is, all PMs hosting at least one VM 

instance. The module updates the Allocated PMs list with this PM if it does not already 

contain the PM. For example, if the sent VM and PM come from the VM Consolidation 

module, then the received PM has already been added to this. The VM Monitor module 

updates the list if a PM becomes free (i.e. no VM is hosted to it), and the PM is removed. 

The VM list contains all VM instances currently running. The created VM instance is ready 

to process tasks submitted by end users in a Desktop Cloud system. If a VM is released by 

its user, then the VM Monitor module removes it from the VM list. 

4.3.5 VM Monitor  

The VM Monitor module scans and monitors VM instances while they are being used to 

process tasks and it has several roles. The first is periodically to checkpoint [134] primary 

VM instances in order to keep replicated VMs well synchronised with their primary 

instances, using an asynchronous replication technique proposed by [135]. This keeps 
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replication overheads to the minimum. When a VM is released by its user, it will be 

destroyed and removed from the VM list. If a working PM becomes idle, thus not hosting a 

VM, then the module will remove it from the Allocated PMs list. 

Another role is periodically to check the status of each running PM. If a PM fails, it means 

all VMs associated with this PM are also destroyed. The VM instances can be either VM 

primaries or replicas, so the VM Monitor will obtain the information from the VM list in 

order to provide replicas. If the destroyed VM is a replica, then the module will create a new 

VM replica. If the destroyed VM is a primary, then the module will make its replica a 

primary and create a new replica. In both cases, the VM Monitor will send a replication order 

for each destroyed VM to the VM consolidation for replication. This step is important to 

avoid reaching complete failure status, which means failure of a primary VM and its replicas 

at the same time. However, there is still a risk of complete failure status if the PM that hosts 

a primary VM fails at the same time as the PM that hosts the replica.  

4.4 Utilisation-Based Migration Policy 

The previous section introduced the FT mechanism that focuses on improving throughput 

by replicating VM instances. However, the mechanism lacks the ability to migrate VM 

instances dynamically around PMs with the aim of improving resource utilisation and thus 

reducing power consumption. This section enhances the FT mechanism by implementing a 

Utilisation-Based Migration Policy (UBMP), a dynamic policy that migrates VM instances 

to improve utilisation with only a minimal effect on the throughput outcome of Desktop 

Cloud systems. The mechanism is depicted in Figure 4-5. The mechanism remains the same 

as described in the previous section apart from the VM Monitor and the VM Migration, which 

are explained in the forthcoming subsections. 

VM 
Consolidation

VM Placement
VM Replica

Yes (VM, PM) 

PM Selection

No (VM Replica)

VM, PM

update
VM Replia

VM instance

Select PMPM Pool
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VM Migration

Get VMs

Migrate VM to PM
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VM Monitor

PM Fail

Get VM
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Figure 4-5: Dyncamic FT Mechanism with UBMP 



Chapter 4. FT Mechanism 

52 

4.4.1 VM Monitor 

The role of the VM Monitor module is extended in this FT mechanism to be able to issue 

migrate orders to the VM Migration module to move VM instances from under-utilised PMs 

to other working PMs. If a working PM fails, the module responds by replicating VM 

instances that are allocated to that PM. The replicated VM instances are sent to the VM 

Consolidation module to have PMs selected for them. In addition, the VM Monitor 

periodically scans all working PMs to let the VM Migration module move VM instances 

from one PM to another. It keeps the VM Migration module updated with the lists of working 

PMs and running VM instances.  

4.4.2 VM Migration 

The VM Migration communicates with the VM monitor to obtain a list of the PMs hosting 

VMs to migrate VM instances. The UBMP is depicted in Figure 4-6. If the utilisation level 

of a PM is below a threshold, termed util, all VMs are set to be migrated to another candidate 

PMs. These candidate PMs are those whose utilisation levels are above util. These are sorted 

in descending order according to their utilisation level and, if able to accommodate a VM 

instance, the highest is selected from all PMs with a utilisation level below util. If not capable 

(because the CPU or available RAM is inadequate for a VM instance or a particular PM does 

not host a version of the VM instance) then the next PM from the list is checked. This process 

is repeated for all PMs with utilisation levels below util and stored in an ‘under-utilised PMs 

list’. The UBMP stops this mechanism in two cases: the first is if no PMs from the candidate 

list is able to host a VM allocated to a PM from the under-utilised PMs list, and the second 

is if there is no PM on the under-utilised PMs list because all VM instances have been 

migrated to other PMs in the candidate list. 
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Figure 4-6: UBMP 

The utilisation threshold plays a key role in the trade-off between resource utilisation versus 

throughput, because consolidating many VM instances to the same PM increases the risk of 

complete failure status, where the primary and its replicated VM instances are destroyed at 

the same time when their hosted PMs fail simultaneously. Therefore, it can be a challenge 

to find the utilisation threshold that provides both resource utilisation and minimal reduction 

of throughput. In this context the utilisation threshold is based on a ‘try and check’ basis by 

setting various threshold levels and comparing the results, as sections 5.3.1 and 6.3 explain. 

A live migration approach is employed in this migration policy. Alternatively, there are 

non-live migration approaches and techniques involving a process of suspension of a VM 

instance, then migration to the destination PM and finally resumption [136]. However, this 

is unsuitable because non-live migration approaches can take longer than live, increasing the 

risk of a PM failing during migration, so they are inappropriate for fault-prone systems such 

as Desktop Clouds. Nevertheless, the migration of VM instances incurs the penalty of 

performance degradation during runtime. According to [137], during migration this can rise 

to 10% of the performance of the VM. The FT mechanism employs the Xen [138] hypervisor 

deployed in Desktop Clouds’ PMs because it enables VM live migration. The maximum 

underutilisedPMsList = getUnderutilisedPM(uti) 

 

for i = 0 to underutilisedPMsList.getSize() 

 underutilisedPM = underutilisedPMsList.get(i) 

  

 //get list of VMs allocated to this PM 

 migratingVMsList = 

underutilisedPM.getAllocatedVMslist() 

  

 //list of PMs that can accommodate 

 candidatePMsList = getCanidatePMsList(uti) 

  

 // sort PMs according to utilisation 

 sort(candidatePMsList) 

  

 candidatePM = getPMtoMigrate(candidatePMsList, 

migratingVMsList) 

  

 if (candidatePM != null) then 

  migrate(candidatePM) 

  

 //no more candidate PMs 

 else then 

  end for 

   

 end if 

end for 
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acceptable performance degradation when a VM instance is being migrated is regarded as 

10% for this study. 

4.5 Evaluation Metrics 

The efficiency of Cloud computing is determined by a set of evaluation metrics. Employing 

efficient metrics for Cloud computing is vital in order to optimise the outcome of Cloud 

systems. It has been shown that there is no systemic analysis of evaluation metrics for Cloud 

Computing [139]. The diversity of architectures of Cloud providers requires that good 

performance metrics are platform-independent [140]. However, the literature shows that 

several studies have assessed the service provided by the Cloud from the prospective of 

consumers. Most of the literature (such as by [141], [142] and [143]) focuses on the 

cost-performance of services in order to adopt a better decision-making policy to help 

customers choose a service provider according to their requirements. For example, some 

customers can tolerate some performance degradation in exchange for a low cost service.  

From the perspective of the service provider, there is a need for an evaluative approach to 

assess the behaviour of the infrastructure used. The evaluation approach can be employed to 

improve the quality of service [109] or reduce maintenance costs [118]. Evaluation 

approaches of virtualisation technology cannot be employed in Cloud computing, because 

they are restricted to their hypervisor and do not aim to measure the performance of IaaS 

Clouds [141]. Various works have been proposed in the literature to evaluate the outcome 

of VM mechanisms, such as: power consumption, as in [106]; network traffic, as in [99]; 

and SLA violations, as in [10]. The evaluation metrics are proposed to investigate and 

evaluate the outcomes of a Desktop Cloud system, namely throughput, power consumption 

and availability.  

4.5.1 Throughput 

Most studies in the literature focus on the performance notion, including attributes such as 

response and average turnover time, such as [144] and [142]. Researchers fail to focus on 

node failure because they assume that PMs in Cloud systems are highly reliable [145] and, 

since most VM allocation mechanisms and techniques rely on PMs in Cloud systems being 

thus, throughput is not studied despite being an important measure of the outcome of a Cloud 

system in the presence of node failure. The throughput metric calculates the ratio of 

successfully completed tasks submitted by end users for execution in a Cloud system to the 

total number of submitted tasks [146], calculated as follows: 
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 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 100 ∗
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑎𝑠𝑘𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠
 (1) 

4.5.2 Power Consumption 

The power consumption metric considers the amount of energy consumed by each PM in 

the infrastructure layer of a Cloud system [119]. The authors in [86] use power consumption 

as one of the metrics of the outcomes of their energy-aware mechanism for Cloud computing. 

Energy efficiency can be defined as the number of instructions, in billions, executed per 

Watt-hour [147]. The Standard and Performance Evaluation Corporation (SPEC) 

community released a SPECpower metric of power consumption [148]. SPECpower is a 

Java application that generates a set of transactions completed per second, calculating the 

energy consumed from the total number of operations in Watt-hours. Energy consumption 

is considered a metric for evaluating the FT mechanism in Desktop Clouds, given as follows: 

 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  ∑ 𝑝𝑜𝑤𝑒𝑟(𝑃𝑀𝑖)

𝑛

𝑖=0

 (2) 

where power is a function using the SPECpower metric to calculate the current power 

consumption of a PM according to its utilisation level. Power consumption is, in this thesis, 

measured in kilowatt-hours (kWh). Cloud computing promises to improve resource 

utilisation through resource multiplexing (i.e. assigning more than one VM to the same PM). 

It has been shown that there is a linear relationship between utilisation and power 

consumption [149], therefore measuring power consumption reflects better resource 

utilisation on the part of the FT mechanism. Better resource utilisation means fewer PMs to 

host VM instances, and PMs with no VM instances (i.e. with 0% of resource utilisation) are 

switched to a power saving mode in order to preserve energy.  

4.5.3 Availability 

Availability means how much computing power of PMs in a Cloud system is available to 

accommodate new VM requests. Evaluating the availability of PMs can reflect the impact 

of using a replication technique. In addition, failure of nodes can affect the availability of 

Desktop Cloud systems. A question in this context is whether the employed VM allocation 

mechanism can help in improving node availability. The availability is calculated as the ratio 

of computing power available for each PM against the maximum computing availability of 

all PMs. The availability is given as follows: 
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𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
∑ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑃𝑀𝑖)

𝑛
𝑖=0

𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
 

4.6 Summary 

A novel fault-tolerant VM allocation mechanism designed to tolerate the node failure 

prevalent in Desktop Cloud systems was presented in this chapter. The FT mechanism is 

intended to ensure that the impact of node failure on the throughput of a Desktop Cloud 

system is kept to the minimum, and is enhanced by incorporating a migration policy based 

on utilisation level that reduces power consumption in Desktop Cloud systems with only 

minimal impact on throughput. The proposed mechanism can be evaluated by three metrics: 

throughput; power consumption; and availability. 

The chapter started by explaining the problem of allocation mechanisms. The problem has 

been discussed before in the literature but is here extended to improve throughput. The 

throughput outcome of a Desktop Cloud can be adversely affected by node failure events. 

Several challenges of designing a fault-tolerant mechanism were discussed and an overview 

given of a platform to manage a Desktop Cloud system. The FT mechanism was designed 

to improve throughput by implementing a replication technique for VM instances, however 

this can lead to higher power consumption by PMs, so it was extended to minimise this 

negative impact. The Utilisation-Based Migration Policy (UBMP) was designed for the FT 

mechanism to reduce its power consumption. 

The introduction of three metrics concluded the chapter: throughput; power consumption; 

and availability. Throughput is the number of tasks successfully completed during runtime. 

The availability metric is employed to capture the effect of the replication technique 

employed by the FT mechanism. The metrics will be used in this study to assess the FT 

mechanism through simulation experiments.  

The next chapter presents the methodology of this research into the implementation and 

evaluation of the proposed mechanism. 
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Chapter 5:  Research Methodology 

Previous chapters reviewed and discussed the research gaps and issues in Cloud computing. 

Section 2.3 showed that the infrastructure level of Desktop Cloud systems comprises nodes 

that are volatile and prone to failure without prior notification, making it challenging to 

ensure that throughput in a Desktop Cloud system remains at an acceptable level. Chapter 4 

proposed a new VM allocation mechanism that employs a replication technique running VM 

instances to reduce the negative impact of node failures on throughput in Desktop Cloud 

systems. 

This chapter presents the methodology of this research to evaluate and test the proposed 

fault-tolerant VM mechanism. It starts by explaining the potential of using simulation as a 

mean of evaluating VM allocation mechanisms using three metrics: throughput; power 

consumption; and availability. CloudSim is a widely used simulation tool developed to 

simulate Cloud systems with the aim of demonstrating several Cloud issues and evaluating 

the proposed solutions. However, node failure events are not simulated in CloudSim. 

DesktopCloudSim was developed in this study to overcome this issue by allowing for the 

augmenting of failure in a Cloud’s nodes during runtime.  

Furthermore, real traces of node failures of Desktop Grid systems were collected from the 

Failure Trace Archive (FTA), an online repository providing an archive of several distributed 

systems. The selected Desktop Grid systems are NotreDame and SETI@home systems.  The 

traces of such Desktop Grid systems can be read by DesktopCloudSim in order to simulate 

the behaviour of nodes in a Desktop Cloud system. An analysis of the FTA traces is proposed 

and discussed next to demonstrate that node failure in such systems can be quite high, thus 

it is an issue that needs attention. The design of experiments conducted in this research 

explains how they are undertaken, including: the specification of a simulated Desktop Cloud 

system; the workload of tasks submitted to get the simulate system working; the number and 

details of requested VM instances; and how the evaluation metrics (throughput, power 

consumption and availability) are calculated during the simulation.  

The final section presents a baseline experiment conducted to answer the following question: 

 What is the difference between Desktop Clouds and Traditional Clouds in terms of 

throughput, power consumption and availability? 

 The experiment is carried out by implementing three VM allocation mechanisms: the FCFS; 

Greedy; and RoundRobin mechanisms, as explained in section 3.2.1. Each was run for four 



Chapter 5. Research Methodology 

58 

different Cloud scenarios: the NotreDame Desktop Cloud system; NotreDame Traditional 

Cloud system; SETI@home Desktop Cloud system; and SETI@home Traditional Cloud. 

The results are analysed and discussed in the discussion subsection.  

5.1 Simulation 

Simulation means the simplified imitation of a set of processes comprising a particular 

system over a period of time in order to understand or improve that system [150]. 

Researchers find it difficult to predict the behaviour of systems due to complexity, leading 

to the use of simulation [151]. These can serve several purposes such as education, training, 

entertainment and experimentation [150].  

Simulation may be preferable to conducting experimentation for several reasons. First, 

studying the effect of modifications on real systems is likely to be more expensive than 

conducting experiments in a simulated environment. However, simulations can still be costly 

and may require extra computing power [151]. Second, simulation can save a great deal of 

time, especially when investigating the effects of different modification on a specific aspect 

in a real system. Added to this, simulation can produce results that would take a long time, 

maybe years, to be obtained in a real system. Third, researchers have more control over 

simulated environments, allowing them to adjust conditions for a better understanding of 

specific aspects of the proposed change. Finally, in many cases the targeted system does not 

yet exist, making simulation the practical alternative. 

Many leading organisations as well as many researchers around the world use simulation of 

Cloud Computing to study multiple issues and proposed solutions to optimise Clouds. For 

example, HP Labs in USA uses Cloud simulation tools to investigate resource provisioning 

and energy efficient techniques in data centres [14]. The next subsection describes CloudSim 

as the desired simulation tool for conducting experiments this research.  

5.1.1 CloudSim 

CloudSim is a Java-based discrete event simulation toolkit designed to simulate Traditional 

Clouds [152]. A discrete system is a system whose state variables change over time at 

discrete points, termed ‘events’ [153]. The tool was developed by a leading research group 

in Grid and Cloud computing, the CLOUDS Laboratory at the University of Melbourne in 
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Australia.5 The simulation tool is based on both the GridSim [154] and SimJava [155] 

simulation tools.  

GridSim enables modelling and simulation of Grid computing to allow the study of possible 

ways and techniques to improve the effectiveness and performance of Grids. It is expensive 

and time consuming to build a ready-to-use Grid infrastructure [154], moreover, researchers 

with access to such infrastructure are limited to a certain number of resources and domains, 

thus the tool is of benefit. GridSim is based on the SimJava environment, while SimJava is 

a graphical user interface for simulating and modelling complex systems based on the 

discrete event simulation kernel [155], enabling the construction of discrete event simulation 

models for fairly generic systems.  

Table 5-1: CloudSim vs. Grid Simulation Tools 

Simulation Tool Multi-Layering Virtualisation Popularity Stability 

SimGrid Not supported Not supported Widely used Stable 

GroudSim supported supported Limited use In progress 

CloudSim supported supported Widely used Stable 

CloudSim tool was selected as the simulation toolkit to conduct experiments in this study 

for various reasons. First, CloudSim is claimed to be more effective in simulating Clouds 

than SimGrid [156] and GroudSim [157], as illustrated in Table 5-1. The reason is that 

CloudSim allows segregation of multi-layer service abstraction (i.e. IaaS, PaaS and SaaS 

services). This is an important feature of CloudSim that most Grid simulations do not 

support. Researchers can study each abstraction layer individually without affecting others. 

Second, virtualisation is much employed in the Cloud paradigm, unlike Grid, therefore the 

majority of Grid simulations do not take virtualisation of resources into consideration, 

making them a less attractive choice [152]. Third, CloudSim is implemented in a highly 

modular way that makes it extensible for further modification. Finally, CloudSim is 

reviewed and updated frequently to detect any bugs. The current and stable version of 

CloudSim is version 3.0.3, an indication that the tool is quite stable. It is used and tested by 

various researchers from different research groups and domains, including industry.  

                                                 

5http://www.cloudbus.org/ 
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Table 5-2: Comparison of Cloud Simulation Tools 

Simulation Tool Release Date Programming Language Open Source Energy Efficiency 

CloudSim 2009 Java √ Supported 

MDCSim 2009 Java × Supported 

GreenCloud 2010 C++ √ Supported 

iCanCloud 2012 C++ √ Not supported 

Table 5-2 lists the most common Cloud simulation tools along with their release date and 

the programming language for implementation: MDCSim [158]; GreenCloud [159]; and 

iCanCloud [160]. The table also shows whether the mentioned simulation tool is open source 

or not. Energy efficiency in the table means whether or not the simulation tool enables the 

design and investigation of power-saving solutions.  

MDCSim is a commercial, discrete-event simulation tool developed at Pennsylvania State 

University to simulate multi-tier data centres and complex services in Cloud computing. It 

has been designed with three-level architecture, including a user-level layer, a kernel layer 

and communication layer for modelling the different aspects of a Cloud system. MDCSim 

can analyse and study a cluster-based data centre with in-depth implementation of each 

individual tier. The tool can help in modelling specific hardware characteristics of different 

components of data centres such as servers, communication links and switches. It enables 

researchers to estimate the throughput, response times and power consumption. However, as 

the simulation tool is a commercial product, it is unsuitable to run experiments, such as this 

research. 

GreenCloud is another cloud simulation framework, implemented in C++ and focused on 

the area of power consumption and its measurement. The tool was developed on top of Ns2, 

a packet-level network simulation tool [161]. Having the tool implemented in C++ makes it 

feasible to simulate a large number of machines (100,000 or more), while Java is assumed 

to be able to handle only 2GB memory on 32 bit machines. However, CloudSim was able to 

simulate and instantiate 100,000 machines in less than 5 minutes with only 75 MB of RAM, 

according to [15]. Although GreenCloud can support a relatively large number of servers, 

each may have only a single core. In addition, the tool pays no attention to virtualisation, 

storage and resource management. Such limitations make it an undesirable choice to run 

experiments for this research.  

iCanCloud is a C++ based open source Cloud simulation tool based on SIMCAN [162], a 

tool to simulate large and complex systems. It was designed to simulate mainly IaaS Cloud 

systems, such as instance-based clouds like EC2 Amazon Cloud. iCanCloud offers the 

ability to predict the trade-off between performance and cost of applications for specific 
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hardware to advise users about the costs involved. The tool has a GUI feature and can be 

adapted to different kinds of IaaS Cloud scenarios. However, iCanCloud does not enable 

researchers to study and investigate energy efficiency solutions, making it unsuitable for this 

research. 
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Figure 5-1: CloudSim Architecture 

Figure 5-1 shows the architecture [152] of CloudSim, simulating the environment of a Cloud 

system. The architecture contains several layers ranging from network level to service layers. 

User Interface Structures layer contains a cloudlet that represents Cloud-based application 

services processed by the Virtual Machine. This layer simulates the role of a Cloud broker 

in serving and providing Cloud services to end users, as it is a SaaS Cloud. In this layer, end 

users can submit their tasks to be processed and executed in VMs. Tasks are simulated by 

CloudSim in the form of cloudlets, each of which is assigned a computing processing value, 

termed ‘cloudlet length’, expressed in millions of instructions (MI).  The PaaS Cloud is 

simulated in the VM Services layer. The layer is in charge of execution requests by users, in 

the Cloudlet Execution component, as well as managing VMs for them by VM Management. 

Each VM instance has computing power in millions of instructions per second (MIPS) and 

RAM capabilities. Each VM instance processes a range of cloudlets, and the time required 

to execute and finish each depends on the Cloudlet Scheduler.  

The Cloud Services layer is the stage for modelling the VM allocation mechanism. 

Researchers can extend this layer in order to investigate their VM allocation mechanisms in 
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data centres. It simulates the management of providing the VM instances in the VM 

Provisioning component. Each VM instance is allocated to a PM; a CPU Allocation 

computing power in MIPS; Memory Allocation in gigabytes; and Storage Allocation size in 

gigabytes.  

The Cloud Resources layer contains Events Handling, which handles events passing between 

simulation entities such as hosts, data centres and Cloud brokers. Each Data Centre 

component can contain a number of host coordinated by the Cloud Coordinator. The Cloud 

Resources layer can be extended in order to simulate Desktop Clouds by changing the 

behaviour of physical nodes. The Network Layer simulates the network level in Cloud 

systems, which allows simulating Network Topology such as links and switches. 

Communications and messages between network elements are simulated in Message Delay 

Calculation. 

Table 5-3: CloudSim Entities 

System Entity Role 

Cloudlet Simulation of services and applications 

VM Simulation of virtual machines instances 

PM Simulation of physical machines 

Broker Simulation of Cloud brokers 

Data Centre Simulation of data centres 

CloudSim is comprised of a range of entities (listed in Table 5-3: CloudSim Entities) that 

represent a component or module within a Cloud system. Each entity can contact other 

entities by sending events to the targeted entity. Each event is triggered at a given time to be 

executed during run time, and serves a particular task.  

Table 5-4: Host Features in CloudSim 

Specification Measure 

CPU MIPS 

Number of Cores Integer number 

RAM Gigabyte 

Storage Gigabyte 

Bandwidth Megabyte 

A Cloud’s PM is simulated in CloudSim as a host entity, which has several features as listed 

in Table 5-4. A VM instance is simulated in CloudSim as a VM entity. In CloudSim, a Cloud 

broker can request and set the number of VM instances during run time. The features, 

mentioned in Table 5-5, of a VM instance can be set by Cloud brokers. 
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Table 5-5: VM Features in CloudSim 

Specification Unit 

CPU GB 

RAM GB 

Storage MB 

Bandwidth GB 

CloudSim tool offers several features for researchers. The features are: (1) simulation and 

modelling of large-scale Cloud systems on a single computer machine; (2) a platform to 

simulate and control separately components in Cloud environment such as data centres, 

brokers, services, scheduling policies and VM allocation mechanisms; and (3) support 

modelling of network connections among and between simulated system entities. 

Although CloudSim is considered the most mature Cloud simulation tool [15], it falls short 

by failing to provide several important features. It does not simulate the performance 

variations of simulated VMs when they process tasks [163]. Second, service failures such as 

those in tasks during running time and complex overhead of complicated tasks are not 

simulated [164]. Furthermore, it lacks the ability to simulate dynamic interaction of nodes 

in the infrastructure level; it only allows static configuration of nodes that remain without 

change during run time. Lastly, node failures are not included in the CloudSim tool.  

A simulation is suitable for this research because there is no actual Desktop Cloud on which 

to run experiments. In addition, the simulation enables control of the configuration of the 

model to study each evaluation metric. In this research, CloudSim is used to simulate the 

resource management model. CloudSim allows altering the capabilities of each host 

machines located in the data centre entity in the simulation tool. This feature is highly useful 

in experimentation, as it is needed to set the infrastructure (i.e. physical hosts) to be of an 

unreliable nature. Extending CloudSim to enable simulation of node failures instead of 

building a new simulation of Desktop Clouds can serve the research community by enabling 

other researchers to use the extended tool for their research. In addition, it further helps to 

make CloudSim tool the desired simulation tool by encouraging researchers to use or extend 

it for experiments.   
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Figure 5-2: DesktopCloudSim Abstract 

5.1.2 CloudSim Extensions  

There are several extensions of CloudSim that have been developed to overcome the 

limitations of CloudSim tool. The extensions are NetworkCloudSim [165], WorkflowSim 

[164], DynamicCloudSim [163], FederatedCloudSim [166] and InterCloud [167].  

NetworkCloudSim is an extension simulation tool based on CloudSim to enable the 

simulation of communication and messaging aspects in Cloud computing. The focus of the 

tool is on the network flow model for data centres and network topologies, bandwidth 

sharing and the network latencies involved. It also enables the simulation of complex 

applications such as scientific and web applications that require interconnections between 

them during run time. Such features can allow further accurate evaluation of scheduling and 

resource provisioning mechanisms in order to optimise the performance of Cloud 

infrastructure.  

WorkflowSim is a new simulation extension that has been published recently as an extension 

for CloudSim tool. The tool was developed to overcome the shortage of CloudSim in 

simulating scientific workflow. The authors of WorkflowSim added a new management 

layer to deal with the overhead complex scientific computational tasks, arguing that 

CloudSim fails in simulating the overheads of such tasks such as queue delay, data transfer 
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delay, clustering delay and postscripts. This issue may affect the credibility of simulation 

results. They also point out the importance of failure-tolerant mechanisms in developing task 

scheduling techniques. WorkflowSim focuses on two types of failures: tasks failure and job 

failure. A task contains a number of jobs, so failure in a task causes a series of jobs to fail. 

However, our work differs from WorkflowSim in the failure event and its impact. The focus 

of this research is on the infrastructure level, containing nodes hosting VMs, whereas its 

authors were interested in the service level, that is, tasks and applications. It can be argued 

that service providers should consider developing failure-tolerant mechanisms to overcome 

such events in the infrastructure level.  

DynamicCloudSim is another extension for CloudSim tool. Its authors were motivated by 

the fact that CloudSim lacks the ability to simulate instability and dynamic performance 

changes in VMs during runtime.  This can have a negative impact on the outcome of 

computational intensive tasks, which are quite sensitive to the behaviour of VMs. The tool 

can be used to evaluate scientific workflow schedulers, taking into consideration variance in 

VM performance. In addition, the execution time of a given task is influenced by the I/O-

bound such as reading or writing data. Its authors extended instability to include task failure. 

Performance variation of running VMs is an open research challenge, but beyond the scope 

of this study. 

FederatedCloudSim [166] is an extension tool in the CloudSim toolkit to enable the 

simulation of federated Clouds using difference federation scenarios, while respecting SLAs. 

According to Goiri et al., Cloud Federation is the idea of bringing many CSPs together in 

order to avoid the case of over-demand for Cloud services by letting a CSP rent out CSPs to 

other computing facilities [168]. FederatedCloudSim enables researchers to simulate and 

study various ways to standardise interfaces and communications between CSPs in a 

federated Cloud. Such a tool can help to study optimisation solutions for exchanging Cloud 

services between CSPs without violation of SLAs. InterCloud is another simulation tool that 

has been developed to simulate Cloud federation, based on the CloudSim tool. However, 

InterCloud falls short of providing sufficient simulation capabilities of SLAs, compared to 

FederatedCloudSim. 

5.1.3 DesktopCloudSim 

DesktopCloudSim is an extension tool developed by this research to simulate failure events 

in the infrastructure level based on CloudSim simulation tool. Simulation is necessary to 

investigate issues and evaluate solutions in Desktop Clouds because there is no real Desktop 
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Cloud systems available to run experiments. In addition, simulation enables control of the 

configuration of the model to study each evaluation metric. In this research, CloudSim is 

extended to simulate the resource management model. CloudSim allows the alteration of the 

capabilities of each host machine located in the data centre entity of the simulation tool. This 

feature is useful in experimentation, as it is needed to set the infrastructure (i.e. physical 

hosts) as unreliable.  This can be achieved by extending the Cloud Resources layer in the 

simulation tool. Figure 5-2 depicts the layered architecture of CloudSim combined with an 

abstract of the DesktopCloudSim extension.  

DesktopCloudSim extends CloudSim tool with version 3.0.3, the most recent version of 

CloudSim that is stable until 2015. Thanks to the high flexibility of CloudSim, 

DesktopCloudSim does not modify the original code of CloudSim tool but provides a new 

package, implemented in Java, of new classes that often extend those of CloudSim.  

DesktopCloudSim extended CloudSim by adding the following modules: “Data Centre”, 

“Events Handling”, and “VM Provisioning”. The “Data Centre” module was modified by 

adding “Host” as being a new “SimEntity” that can be modified dynamically during run 

time. This makes the simulation of node failing possible in DesktopCloudSim. “Events 

Handling” module was also extended by adding new events to simulate adding or removing 

PMs during run times. In addition, some VM events were added as well such as “VM 

replicate” in order to enable simulation of VM replication technique. The module of “VM 

Provisioning” was modified by implementing a novel allocation policy called 

“DesktopAllocationPolicy” that implements the FT mechanism proposed by this research. 

In addition, “VM monitor” module was extended by adding new monitoring policies that 

work with new allocation policy to let VM instances migrate from a PM to another. In 

addition, the monitor module enables destroying VM instances during run time as a result of 

node failure. 
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Figure 5-3: DesktopCloudSim Model 

Figure 5-3 illustrates the components of DesktopCloudSim that read FTA trace files, as 

explained later in this chapter. The trace files contain the failure events of PMs. The Failure 

Analyser component analyses the files of failures to send failure events to Failure Injection 

component. The Failure Injection component receives failure events from the Failure 

Analyser and inject failures into associated PMs during run time by sending events to 

Available PMs component.  The Available PMs contains a list of PMs that are ready to be 

used, so if a PM fails then it is removed or, if a PM joins, it is added. The Failure Injection 

component informs the VM Mechanism unit if a PM fails, to let it restart the failed VMs on 

another live node or nodes. The VM Provisioning component provisions VMs instances to 

be allocated to PMs selected by Select PM. The VM Mechanism controls which PM hosts a 

VM instance. The VM Mechanism creates restart VM instances. In addition, the VM 

Mechanism can replicate a running VM instance, if required. 

5.2 Analysis Method 

The results of experiments were analysed using SPSS V21, because it is well-accepted and 

widely used as a statistical analysis tool by many researchers in different disciplines [169]. 

The Kolmogorov-Smirnov (K-S) test of normality was used to determine whether the studied 

data follow a normal distribution or not. The test was used because it is suitable for a medium 

number of samples, as was the sample size of 180 samples, as explained later in section 

5.3.2. If the critical value (p-value) obtained from the normality test was greater than 0.05, 

it indicated that the data were normally distributed, otherwise the data did not follow a 

normal distribution. 

The results of each experiment were tested using adequate statistical tests. First of all, all 

tests were repeated measures because the same input data, which is node failure events, were 

used for every experiment.  If the results of an experiment were normally distributed, then 
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the parametric test repeated t-test was used to compare the results of the two VM 

mechanisms.  If the results were not normally distributed, then the non-parametric Wilcoxon 

test was applied to compare the results of the two mechanisms.  

In case there were comparisons between more than two VM mechanisms, there were two 

steps to test the results. If the results followed a normal distribution, then the first was to 

conduct the parametric repeated one-way ANOVA test to show whether there was a 

statistically significantly difference. If there was, then the second step was to run a number 

of post-hoc tests, repeated t-tests, to compare each pair of VM mechanisms.  The number of 

post-hoc tests was calculated as the number of compared VM mechanisms -1. The critical 

value p-value was corrected using the Bonferroni correction method [169] which is 

0.05/number of post-hoc tests. 

If the results did not follow a normal distribution, then the non-parametric Friedman's test 

was applied to compare the results of more than two VM mechanisms to see if there was a 

statistically significantly difference. If the test showed a difference, then a number of 

post-hoc tests were used to compare each pair of VM mechanisms, with the Bonferroni 

correction method was applied as explained before. However, in this case the post-hoc tests 

were conducted using the non-parametric Wilcoxon test because the results were not 

normally distributed. 

5.3 Experimental Design 

This section explains the design of all experiments conducted in this research because they 

share the same design. However, the next chapter presents the setting of each experiment in 

separate sections, apart from these common aspects. The next subsection presents the 

experiments conducted to evaluate the work of this research, along with the associated 

hypotheses. Next, the actual traces of node failures used in the simulation are presented. 

These data were studied to illustrate the percentage of node failures on an hourly basis. The 

specification of Desktop Cloud’s nodes, tasks of workload and the VM instances are then 

presented because they remained the same in all conducted experiments.  

5.3.1 Experiments and Research Hypotheses 

There were three experiments conducted in this research: 

 Experiment I: The Impact of Node Failure: the first experiment was conducted to 

demonstrate that throughput, power consumption and availability metrics can evaluate 
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the impact of node failures on the outcome of Desktop Clouds. It investigated which VM 

allocation mechanism of the FCFS, Greedy, RoundRobin and Random mechanisms 

yielded the best results for each evaluation metric. The experiment was to test the 

following hypothesis: 

The proposed metrics can be employed to evaluate the impact of node 

failure on Desktop Clouds 

 Experiment II: Evaluation of the FT Mechanism: the second experiment evaluated the 

proposed VM allocation mechanism in improving the throughput of a Desktop Cloud 

system compared to other VM mechanisms tested in the first experiment. The experiment 

compared the FT mechanisms in terms of yielding the best results in each evaluation 

metric from the previous experiment. The experiment was to test the following 

hypothesis: 

Employing a replication technique within the FT mechanism will 

improve the throughput of a Desktop Cloud System 

 Experiment III: Utilisation-Based Migration Policy: the third and last experiment of this 

research investigated a way to reduce power consumption of nodes when the FT 

mechanism is employed. The FT mechanism implemented a replication technique to 

ensure that, if a VM instance is destroyed because its hosted PM fails, there is another 

copy of this VM instance working on another PM. However, this replication technique 

can lead nodes to consume more energy. The experiment tested the following hypothesis: 

Setting a utilisation threshold for online VM migration will reduce 

power consumption in the FT mechanism with an accepted decrease in 

the throughput outcome 

Another experiment was conducted, as presented and discussed at the end of this chapter. It 

was a baseline experiment conducted to show that the DesktopCloudSim is capable of 

simulating node failures by comparing the results of three VM mechanism (FCFS, Greedy 

and RoundRobin) when employed in a Desktop Cloud compared to when employed in a 

Traditional Cloud. Such an experiment can illustrate the difference in outcome between 

Desktop Clouds vs. Traditional Clouds in terms of throughput, power consumption and 

availability metrics. It is worth mentioning that all of the aforementioned experiments 

simulate IaaS Cloud systems which was explained in section 2.2.2. 
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5.3.2 Failure Trace Archive Data Set 

The FTA6 is a public repository containing traces of several distributed and parallel systems 

[170]. The archive includes various systems including Grid computing, Desktop Grid, peer-

to-peer (P2P) and High-Performance Computing (HPC). The archive contains timestamp 

events that are recorded regularly for each PM in the targeted system. Each event has a state 

element that refers to the state of the associated PM. For example, an event state can be 

unavailable, which means the PM is down at the time of the event. The unavailable state is 

considered a failure event throughout the experiment. The failure of a PM in an FTA does 

not necessarily mean that this node is down. For example, a PM in a Desktop Grid system 

can be become unavailable because its owner decides to leave the system at that time. Table 

5-6 shows the four state definitions for PMs. A PM is considered a failure in the experiment 

if it is unavailable, used by its owner or it is over-utilised.  

Table 5-6: PM State 

State Code FTA Definition Experiment Definition 

0 Unavailable Failure 

1 Available Not failing 

2 User present Failure 

3 CPU threshold exceeded Failure 

The FTA provides several traces for Desktop Grid systems at the University of Notre Dame, 

SETI@home, UC Berkeley CAD, San Diego Supercomputer Centre and University of Paris 

South. However, this work is limited to two systems: Notre Dame and SETI@home FTAs, 

because they contain sufficient failure traces for PMs. There are other data sets of Cloud 

systems that can be used to simulate Cloud systems, for example trace files provided by 

Google [171]. However, these data sets are not appropriate for this research because they 

cannot be used to simulate Desktop Cloud systems since the reliability of nodes provided by 

these sets is quite high.  

                                                 

6http://fta.scem.uws.edu.au/ 
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Table 5-7: Number of PMs per Month 

Month Number Of PMs 

1 432 

2 479 

3 503 

4 473 

5 522 

6 601 

The Notre Dame FTA was collected from the University of Notre Dame. The trace represents 

an archive of a pool of heterogeneous resources that ran for six months during 2007 [26]. 

Each month is provided separately, representing the behaviour of PMs located in the 

University of Notre Dame. The number of PMs varied from one month to another. Table 

5-7: Number of PMs per Month lists the number of PMs of each month in the NotreDame 

FTA. The second trace archive is SETI@home FTA. The FTA has a large pool of resource 

(more than 200 thousand nodes) that were run for a year in 2008/09 [172]. The nodes in 

SETI@home are highly heterogeneous because most of these computing nodes are denoted 

by the public over the Internet. The archive of SETI@home contains traces of more than 

100,000 nodes. However, a few of them have sufficient data to simulate a Cloud system for 

six months. Therefore, 875 nodes has been selected from SETI@home FTA which are those 

with trace files with sufficient failure events to simulate SETI@home Desktop Cloud for six 

months among other traces of SETI@home nodes.  

Although the FTA archive provides traces of the behaviour of PMs, it needs some analysis 

to calculate the failure events. Several researchers have studied the failure events in the FTA 

archive, such as [26], [131], [173] and [174]. The literature shows that the focus is on the 

availability time behaviour of PMs; availability, in this context, means the time a machine 

remains able to serve. Studying the behaviour of nodes can discover a statistical model of 

availability in Desktop Grids [131] that can help predict the availability of machines to 

improve PM selection mechanisms, as mentioned in [173]. However, these works are not 

suitable for this research for two reasons. The first is that the focus is on the number of 

machines that fail, rather than the availability time. Second, the literature considers a 

machine as failed when it becomes unavailable, however in this simulation a machine is 

considered failed when it becomes unavailable or when its owner uses the machine, as 

mentioned above. Therefore, an analysis of node failure events of NotreDame and 

SETI@home systems is presented.   

Failure means the percentage of nodes that fail in a given hour (h) divided by the total 

number of nodes in an FTA, as follows: 
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𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (ℎ) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑃𝑀𝑠 𝑎𝑡  ℎ

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑀𝑠
 ∗ 100              

Study of the failure events is needed in this study to allow their simulation in a Desktop 

Cloud, since both Desktop Grids and Desktop Clouds can harness similar nodes. In addition, 

analysis of nodes failures can yield some benefits in optimising failure tolerance techniques. 

For example, failure events can help choose the appropriate number of replicas created for 

each primary VM instance, using the technique.  

Table 5-8: Descriptive Results for Node Failures of NotreDame and SETI@home Systems 

 NotreDame  SETI@home 

N 4320 4320 

Mean 6.26 % 13.67 % 

Median 4.66 % 12.47 % 

Std Dev 5.61 % 5.84 % 

Minimum 0 % 3.43 % 

Maximum 84.86 % 76.77 % 

Table 5-8 shows a summary of results of analysis failure traces for NotreDame and 

SETI@home traces for six months. The table shows a summary of 4320 hours (6 months * 

30 days * 24 = 4320 hours) including mean, median, standard deviation (Std Dev), minimum 

and maximum failure ratio in each hour. The Kolmogorov-Smirnov normality test was 

conducted on NotreDame and SETI@home results to show if they were normality 

distributed. The test showed that both were significantly different from normal distribution, 

p < .05. Two methods were employed to find the best distribution to fit the distribution of 

failure analysis results. The first method was a visual method including P-P plots and 

Probability Density Function (PDF).  The second method was by conducting the goodness 

of fit test, which includes the Kolmogorov-Smirnova, the Anderson-Darling and Chi-

Squared tests.  
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Figure 5-4: PDF Function for NotreDame Failure Analysis 

 

Figure 5-5: P-P Plot for Distribution Fitting for NotreDame Failure 

NotreDame failure analysis results were tested against the Gamma, Weibull and Erlang 

distributions. Both Figure 5-4 and Figure 5-5 show visually that the Gamma distribution fits 

better than the others. It is worth mentioning that x in Figure 5-4 means the percentage of 

nodes failing among working nodes in hour h, while f(x) means the cumulative distribution 

of the percentage x [151] . In other words, f(x) represents the probability of nodes failing at 

variable x in hour h. For example, the probability of about 8% of NotreDame nodes to fail 

in a given hour is about 0.1 as it is showed in Figure 5-4.  
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Table 5-9 confirms this finding, because all three goodness of fit tests show that the Gamma 

distribution fits the data best, shape = 1.2434 and scale = 5.0343.  

Table 5-9: Goodness of Fit Tests for NotreDame FTA Analysis Results 

Distribution 
Kolmogorov-Smirnov Anderson-Darling Chi-Squared 

Statistic Rank Statistic Rank Statistic Rank 

Gamma 0.03403 1 259.45 1 15.885 1 

Weibull 0.04693 2 272.14 2 68.331 2 

Erlang 0.23122 3 1017.3 3 1861.9 3 

Similar to the NotreDame failure results, SETI@home failure analysis results were tested 

against the Gamma, Weibull and Chi-Squared distributions. Both Figure 5-6 and Figure 5-7 

show visually that the Gamma distribution fits better than other distribution. Table 5-10 

confirms this finding because all three goodness of fit tests show that Gamma distribution 

fits the data best, shape = 3.3951 and scale = 3.0377. These findings are consistent with 

previous studies such as [175] and [174] which confirm that Gamma distribution is the best 

fit of failures in Desktop Grid systems. 

 

Figure 5-6: PDF function for SETI@home Failure Analysis 
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Figure 5-7: P-P Plot for Distribution Fitting for SETI@home Failure 

Table 5-10: Goodness of Fit Tests for SETI@home FTA Analysis Results 

Distribution 
Kolmogorov-Smirnov Anderson-Darling Chi-Squared 

Statistic Rank Statistic Rank Statistic Rank 

Gamma 0.02339 1 3.0501 1 38.142 1 

Chi-Squared 0.03887 2 26.204 3 150.33 2 

Weibull 0.04577 3 22.334 2 185.62 3 

 

Another way is to look at the average failure percentage is as hourly failure over a period of 

24 hours. This means calculating the average failure percentage of NotreDame machines 

during h=1, h=2... h=24 over a period of six months. The same applies to SETI@home. This 

analysis can give an idea of the behaviour of machines in the NotreDame and SETI@home 

Desktop Grids. Figure 5-8 and Figure 5-9 show the percentage failure range every hour of 

the day for the NotreDame and SETI@home failure traces. For example the minimum failure 

percentage of machines in NotreDame Desktop Grid in Hour 1 was 0%, while the maximum 

was 23%, as depicted in Figure 5-8. The NotreDame failure analysis shows that the range 

was 0% to 31% per hour, on average. Hours 15 and 14 recorded the highest failure at 84% 

and 75%, respectively.  The failure range for SETI@home was more consistent, 6% to 30% 

of machines failing per hour. Hour 1 was exceptional, between 10% and 77%. 
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Figure 5-8: Failure Range for NotreDame FTA 

 

Figure 5-9: Failure Range for SETI@home FTA 

Figure 5-10 depicts the average percentage of machines failing during a particular hour of 

the 24 hour period over six months for both NotreDame and SETI@home. For NotreDame, 

the lowest mean machines failure was in Hour 6, at 3%, while the highest was in Hour 17, 

at just above 9%. For SETI@home, the lowest figure was 9.5%, in Hour 9, and the highest 

was 21.5% in Hour 1. Overall, on an hourly basis, it seems that machines in the SETI@home 

Desktop Grid tended to fail more than the NotreDame machines. This is confirmed by the 

average percentage of machines that failed per hour: 13% of SETI@home and 6% of 

NotreDame. Connectivity issues are seen to be the main reason why failure events of nodes 

in SETI@home run at more than double the average in the NotreDame system; nodes in the 
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latter are connected mainly by the local network, which makes the probability of a node 

going down less than its counterpart in SETI@home system, which is mainly connected over 

the Internet.  

 

Figure 5-10: Average Failure Percentage for NotreDame and SETI@home FTAs 

In short, this section presented a failure study of two Desktop Grid systems: the NotreDame 

system, considered an example of private system; and the SETI@home system, considered 

a public system. This study demonstrated that about 6.26% of nodes in a private Desktop 

Cloud system are expected to fail per hour of working time and about 13.67% of nodes per 

hour in a public Desktop Cloud system. Therefore, it is recommended to consider node 

failure as an issue when developing a VM allocation mechanism. Also, this study can help 

to predict the number of node failures, which can help in devising a policy to migrate VM 

instances from PMs that are expected to fail. 

5.3.3 Hardware Specification of PMs 

Although the FTA archive provides failure events for PMs, it does not offer sufficient detail 

regarding their hardware specifications, only reporting the number of PMs along with event 

traces of failure. It is quite important for this research to have different capabilities of 

machines for two reasons. The first is to evaluate various VM mechanisms accurately. For 

example, Greedy mechanism will behave just like FCFS when allocating VM instances if 

there is no different capabilities of each PM. The second reason is to evaluate the power 

consumption of nodes when the power varies according to utilisation level of PMs. If there 
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is no diversity of specifications of PMs, this may mislead the judgement of power penalty of 

using replication technique. The capabilities are assigned randomly because the FTA archive 

does not provide hardware specifications of PMs so the random assignment can simulate the 

specification of PMs of NotreDame and SETI@home systems. Therefore, a list of several 

common computer machines have been collected online for use as PMs of the simulated 

Desktop Cloud systems. Table 5-11 gives the machine brand name and hardware 

specification, namely the CPU in MIPS, number of cores, RAM, hard and disk. The selected 

machines are quite heterogeneous in order to provide a similar infrastructure to that of a 

Desktop Cloud system, which is expected to be diverse. The specifications of PMs remained 

unchanged in all experiments conducted. Each run of an experiment and the hardware 

specification of the PMs were read from a text file. 

Table 5-11: Hardware Specifications of PMs 

Machine Brand Name 

Machine Specification 

CPU (MIPS) Core 

Number 

RAM (GB) Hard 

Disk 

(GB) 

Colfax International CX2266-N2 2400 4 16 400 

Dell PowerEdge 2950 III 2833 8 16 73 

Fujitsu Siemens Computers PRIMERGY TX150 S5 2666 2 4 160 

HP Proliant DL160 G5 3000 8 16 80 

Intel Platform SE7520AF2 Server Board 3600 2 4 36 

SuperMicro 6025B-TR+ 3000 4 8 36 

In addition, each machine was assigned a benchmark of power consumption according to its 

utilisation level, from 10%, 20% up to 100%, namely the SPECpower benchmark, technical 

name SPECpower_ssj2008, developed by the SPEC [148]. Power consumption varies from 

machine to machine on the basis of this benchmark and each in the table has a listed 

consumption for certain utilisation levels, retrievable online from the SPEC website.  

5.3.4 Task Workload 

DesktopCloudSim needs tasks to be submitted in order to be processed and executed in a 

group of VM instances provisioned by a Desktop Cloud system. Therefore, to simulate these 

tasks in the experiments, tasks were collected online from PlanetLab and analysed by 

CoMon tool [176]. PlanetLab tasks were submitted for 24-hour run time on 03/03/2011, and 

the sum of tasks was submitted in the form of cloudlets at every hour of the 24-hour run time 

to analyse their failure percentage on an hourly basis. There were 1052 of cloudlets 

submitted every hour for a period of 24 hours (i.e. during a single run of each experiment). 

Cloudlet length was randomly assigned to the values reported in Table 5-12.  
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Table 5-12: Cloudlet Length  

Cloudlet Length (MI) 

180 * 104 

252* 104 

360* 104 

432* 104 

504* 104 

576* 104 

648* 104 

However, the number of tasks and details remained the same during the runtimes of all 

experiments, because the focus of this research was to study the impact and behaviour of 

different VM mechanisms. Therefore, setting the task workload the same without changing 

was helpful in obtaining more accurate results of VM mechanisms and thus acquiring a better 

understanding. During every 24-hour run time, DesktopCloudSim read the task data as a list 

of cloudlets from a directory, containing them to ensure they remained the same.  

5.3.5 VM instances 

Open Virtualisation Format (OVF) is an open standard for packaging, distributing and 

describing VM hardware characteristics [177]. The OVF is described for being open, secure, 

portable, efficient and extensible set of descriptive files. Some characteristics that are 

described by OVF files can include CPU, memory, network cards, bandwidth and hard disks. 

However, this research focusses on CPU, RAM memory and disk when considering 

allocation. Although there are other features to be considered. For example, VM bandwidth 

is an important feature to be considered. Resource bandwidth cannot be simulated in this 

research because there are no actual trace files of node’s bandwidth that can used to run 

simulations. 

Table 5-13 reports on four pre-configured VM instances that a Cloud user can request to 

process cloudlets. The type of VM instance was set randomly to various configurations in 

order to have a better understanding of the allocation process provided by each tested VM 

allocation mechanism, similar to that explained in section 5.3.3. During the run time of the 

experiments, there were 700 instances of VM requested to process submitted cloudlets. The 

type of each requested VM instance was assigned randomly to the four VM types. Each 

Cloudlet was submitted by the cloudlet scheduler in DesktopCloudSim to a running VM 

instance to be processed. In the simulation, a time-shared scheduling policy [178] is 

employed to submit cloudlets to VM instances. This scheduling policy of cloudlets means 

that multiple cloudlets can be processed simultaneously. The estimated finish time (eft) 
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required to execute a cloudlet c processed by a VM, vm, using time-shared scheduler is given 

as follows: 

 𝑒𝑓𝑡(𝑐) = 𝑐𝑡 +
𝑐𝑙

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝑐𝑜𝑟𝑒𝑠(𝑐)
 (3) 

where eft(c) denotes the estimated finish time of cloudlet c, ct denotes current simulation 

time, cl means the cloudlet length in MI, and cores(c) is the number of CPU cores needed to 

process cloudlet c. Capacity is the computing power in MIPS provided by a VM vm, 

calculated as follows: 

 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  
∑ 𝑣𝑚(𝑖)𝑐𝑎𝑝

𝑛𝑝
𝑖=1

max (∑ 𝑐𝑜𝑟𝑒𝑠(𝑗), 𝑛𝑝)𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑠
𝑗=1

 (4) 

where np is the number of cores that vm, 𝑣𝑚(𝑖)𝑐𝑎𝑝 is the CPU power of core i of vm, and 

max (∑ 𝑐𝑜𝑟𝑒𝑠(𝑗), 𝑛𝑝)𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑠
𝑗=1  is the maximum cloudlet length of all submitted cloudlets to 

vm.  

It is worth mentioning that the number of VMs remained unchanged in all experiments. Each 

VM instance was allocated to a PM using a VM allocation mechanism. The VM mechanism 

was changed from time to time to test the behaviour of each mechanism in the presence of 

node failure.  

Table 5-13: VM Instance Types 

VM Type 
VM Specification 

CPU (MIPS) RAM (GB) 

Micro 500 .633 

Small 1000 1.7 

Medium 2000 1.85 

Large 2500 3.75 

5.3.6 Evaluation Metrics  

This section explains the metrics mentioned in section 4.5 from the perspective of the 

DesktopCloudSim simulation tool. The first metric is throughput, the number of successfully 

executed tasks to the total number of processed tasks. The throughput metric is given as 

follows:  

 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
∑ 𝑠𝑐

∑ 𝑝𝑐
 (5) 

The throughput of cloudlets is in percentage form in order to reflect the impact of node 

failure on the number of successfully executed tasks submitted by Cloud users, where sc 
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denotes successful executed cloudlet and pc denotes a processed cloudlet. Processed 

cloudlets are any cloudlet that has been sent to a VM for processing. There is a chance that 

a cloudlet will not be successfully processed in which case the associated VM is destroyed 

as a result of its hosted PM failing during the execution time of the cloudlet. Power 

consumption was calculated in the experiment as follows: 

 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = ∑ 𝑝𝑢(𝑝𝑚𝑖)

𝑛

𝑖=1

 (6) 

Power consumption was calculated as total power consumption by nodes in a Cloud system 

per day, the 24-hour running time of an experiment set. The power consumption is given in 

kilowatt-hours (kWh) per day, where n stands for the number of PMs in a Desktop Cloud 

system, and 𝑝𝑢 is the given power consumption of node i in the simulation run, depending 

on the utilisation u of the target PM i.  Each PM has a listed power consumption according 

to its utilisation level. For example, a SuperMicro PM can consume about 0.223 kWh when 

its utilisation is 30%. The power consumption of a PM varies from one machine to another, 

depending in two factors: first, the type of the measured machine and, second, its utilisation 

level, detailed on the SPEC website as mentioned in section 5.3.3. Power consumption is 

given in the form of the total power consumed by PMs in a Desktop Cloud system for 24 

hours, and the availability metric is given as follows: 

 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∑
𝑎𝑣𝑙(𝑝𝑚𝑖)

𝐶𝑃𝑈(𝑝𝑚𝑖)

𝑛

𝑖=1

 (7) 

where 𝐶𝑃𝑈(𝑝𝑚𝑖) is the total CPU power in MIPS for the PM with id i, n denotes the total 

number of PMs in a Desktop Cloud system, 𝑎𝑣𝑙(𝑝𝑚𝑖) is the current availability of a PM 

with id = i in MIPS. The current availability is given as follows: 

  𝑎𝑣𝑙(𝑃𝑀𝑖) =  𝐶𝑃𝑈(𝑃𝑀𝑖) −  ∑ 𝐶𝑃𝑈(𝑣𝑚𝑗)

𝑚

𝑗=1

 (8) 

where m means the number of hosted VMs to the PM 𝑝𝑚𝑖,and 𝐶𝑃𝑈(𝑣𝑚𝑗) is the computing 

power, in MIPS, of a VM vm with id j, hosted to the PM 𝑝𝑚𝑖. 

5.3.7 Experiment Methodology  

The experiment was run 180 times, each simulating a day’s (i.e. 24 hours) running of FTA 

nodes, as discussed in section 5.3.2, in a Desktop Cloud system for each VM allocation 

mechanism: once for a public Cloud and once for a private Cloud. Each simulation gave 
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results on an hourly basis for each metric. In total there were 180 simulation runs × 4 VM 

mechanisms × 3 metrics × 2 Desktop Types, which provided 4320 records that were analysed 

in this experiment. There were two input data sets for the simulation tool DesktopCloudSim, 

as discussed in section 5.1.3. The first was the FTA files to simulate nodes in the 

infrastructure, along with failure event times in two scenarios. One scenario used NotreDame 

trace files to simulate a private Desktop Cloud, and the other simulated a public Desktop 

Cloud by using SETI@home FTA files. The second input data set was a workload of tasks 

submitted by users for processing in VMs, as mentioned in section 5.3.4. 

The FTA files provided the numbers and IDs of nodes. However, the specifications of nodes 

were missing from the archive; as a result, they were set randomly for the PMs. The missing 

specifications were technical, such as CPU power, RAM and hard disk size. The type and 

specification of the PMs are mentioned in section 5.3.3. The number of requested VM 

instances was 700 instances, to be run for 24 hours. VM instances were classified into micro, 

small, medium and large VM types, as offered by Amazon EC2. Each VM instance received 

an equal series of tasks to process in a given workload. 

Failure Analyser
Failure Trace

Nodes Specification
Create Nodes

Failure Injection
Failure Events Node Fail

VM Mechanism

VM Provisioning

VM Restart

Node Join

Execution
VM InstanceWorking PM

 

Figure 5-11: VM Mechanism Steps 

If a node failed in the experiment, then all hosted VMs were destroyed, as Figure 5-11 

depicts.  

The destruction of a VM caused all running tasks on the VM to be set as ‘failing’. The lost 

VM was started again and allocated to another PM to process tasks. However, if there was a 

replica for the failing VM, this continued executing the tasks, as discussed in section 5.3.5. 

A new replica was instantiated and allocated to a PM. The simulation was run using Eclipse 

Software Development Kit V4.2.0 on a Mac i27 (CPU = 2.7 GHz Intel Core i5, 8 GB MHz 

DDR3) running OS X 10.9.4. The results were analysed using Microsoft Excel 2011, IBM 

SPSS Statistics v22 software and OriginLab Origin 8. 
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5.4 Baseline Experiments 

This experiment compared Desktop Clouds to Traditional Clouds using three metrics: 

throughput; power consumption; and availability. The experiment was to answer the 

following research question: 

What is the difference between Desktop Clouds and Traditional Clouds in terms 

of throughput, power consumption and availability? 

To investigate the comparison in depth, the evaluation metric was studied 12 times, six for 

the Desktop Cloud and six for the Traditional Cloud. Each VM mechanism was used once 

for Desktop Cloud and once for the Traditional Cloud. The 12 sets are reported in Table 

5-14. NotreDame Clouds represent private Clouds, both Desktop and Traditional Clouds, 

while SETI@home Clouds represent public Clouds, both Desktop and Traditional Clouds.  

Table 5-14: Baseline Experiment Sets 

VM Mechanism NotreDame Scenario SETI@home Scenario 

FCFS Desktop vs. Traditional Desktop vs. Traditional 

Greedy Desktop vs. Traditional Desktop vs. Traditional 

RoundRobin Desktop vs. Traditional Desktop vs. Traditional 

The reliability of Cloud nodes is 99.99% in Traditional Clouds, according to Vishwanath 

and Nagappan (2010). This high level of reliability leads to a high throughput level, close to 

100%. The FCFS, Greedy and RoundRobin mechanisms are implemented as explained in 

section 3.2.1. None of these mechanisms, however, employ a replication technique. 

5.4.1 FCFS VM Mechanism  

The FCFS mechanism indicated that a mean of about 99.99% of submitted cloudlets was 

successfully executed in NotreDame Traditional Cloud, while it was about 82.66% in 

NotreDame Desktop Cloud. For SETI@home Clouds, the throughput was 99.99% in 

Traditional Clouds. The throughput value in SETI@home Desktop Cloud was about 

82.04%. Throughput results are reported in Table 5-15 and Table 5-16. 
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Table 5-15: Descriptive Results, FCFS Mechanism, NotreDame Clouds 

 Desktop Clouds Traditional Clouds 

Metric Mean Median Var Std Dev Mean Median Var Std Dev 

Throughput 82.66% 82.2% 40.32 6.35 99.99% 99.99% n/a n/a 

Power Consumption 533 kWh 538 kWh 867 29.45 523 kWh 530 kWh 826 28.74 

Availability 85.03% 84.59% 4.21 2.05 85.29% 85.17% 4.46 2.11 

Table 5-15 and Table 5-16 report power consumed by nodes in Desktop and Traditional 

NotreDame Clouds and SETI@home Clouds. For NotreDame Clouds, nodes consumed an 

average of 533 kWh per day, but an average of 523 kWh when the FCFS mechanism was 

used in NotreDame Traditional Cloud. The Kolmogorov-Smirnov Test of normality was 

conducted on the results of power consumption NotreDame Clouds. The test showed that 

the results were statistically significantly non-normal, p < .05, therefore the non-parametric 

test for two related sample Wilcoxon signed ranks test was used. According to the test, nodes 

in NotreDame Desktop Cloud consumed statistically significantly more power (median = 

538 kWh) than nodes in NotreDame Traditional Cloud (median = 530 kWh), 𝑍 =

 −6.89, p < .001, at the 95% level of confidence. The case is different for the power 

consumption metric in SETI@home Desktop and Traditional Clouds because the results 

were normally distributed, p > .05. The paired T-test showed that, on average, nodes within 

SETI@home Desktop Cloud consumed statistically significantly less power (mean = 507 

kWh, SE = .86) than their counterparts in Traditional Clouds (mean = 518 kWh, SE = .49), 

𝑡(179) =  −12.04, p < .001, at the 95% level of confidence. 

Table 5-16: Descriptive Results, FCFS Mechanism, SETI@home Clouds 

 Desktop Clouds Traditional Clouds 

Metric Mean Median Var Std Dev Mean Median Var Std Dev 

Throughput 82.04% 83.28% 20.23 4.5 99.99% 99.99% n/a n/a 

Power Consumption 507 kWh 506 kWh 131.85 11.48 518 kWh 519 kWh 43.81 6.62 

Availability 91.81% 91.8% .05 .23 93.42% 93.42% .03 .16 

Nodes in the NotreDame Traditional Cloud were statistically significantly more available to 

host new VMs (median = 85.17%) than nodes in the Desktop Cloud (median = 84.59%), 

according to Wilcoxon test, 𝑍 =  −4.96, p <  .001, at the 95% level of confidence. Results 

of the availability of nodes in SETI@home were statistically significantly normally 

distributed. Nodes in SETI@home Traditional Cloud (mean = 93.42%, SE = .01) were more 

available than in Desktop Cloud (mean = 91.81%, SE = .02), 𝑡(179) =  −32.57, p < .001, 

at the 95% level of confidence. 
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5.4.2 Greedy VM Mechanism  

The mean and the median of throughput for NotreDame Desktop Cloud were 92.47% and 

93.1% when the Greedy mechanism was employed, while the throughput for NotreDame 

Traditional Cloud was close to 100%, as Table 5-17 shows.  

Table 5-17: Descriptive Results, Greedy Mechanism, NotreDame Clouds 

 Desktop Clouds Traditional Clouds 

Metric Mean Median Var Std Dev Mean Median Var Std Dev 

Throughput 92.47% 93.1% 18.34 4.28 99.99% 99.99% n/a n/a 

Power Consumption 638 kWh 641 kWh 738 27.16 685 kWh 690 kWh 796 28.21 

Availability 86.22% 86.23% 3.01 1.76 86.57% 86.55% 3.2 1.79 

Table 5-18 shows that the average throughput of SETI@home Desktop Cloud was about 

81.80%. This demonstrated that the average throughput of Desktop Clouds was about 7.52% 

less than Traditional Clouds for private Clouds and about 18.19% less for public Clouds. 

According to the Kolmogorov-Smirnov test of normality, the results of power consumption 

results when the Greedy mechanism was employed for both Desktop and Traditional 

NotreDame Clouds were significantly non-normal, p < .05. Therefore, Wilcoxon test was 

again used to compare the power consumed by nodes in both NotreDame Desktop and 

Traditional Clouds and showed that the Desktop Cloud consumed statistically significantly 

less power (median = 641 kWh) than the Traditional Cloud (median = 690 kWh), 𝑍 =

 −11.6, p < .001, at the 95% level of confidence. The Wilcoxon test was also used to 

evaluate power consumption in SETI@home Clouds because results were significantly non-

normal, p < .05,   showing that nodes in SETI@home Desktop Cloud consumed 

statistically significantly less power (median = 696 kWh) than nodes in SETI@home 

Traditional Cloud (median = 835 kWh), 𝑍 =  −11.64, p < .001, at the 95% level of 

confidence. 

Table 5-18: Descriptive Results, Greedy Mechanism, SETI@home Clouds 

 Desktop Clouds Traditional Clouds 

Metric Mean Median Var Std Dev Mean Median Var Std Dev 

Throughput 81.80% 81.93% 16.1 4.01 99.99% 99.99% n/a n/a 

Power Consumption 694 kWh 696 kWh 615 24.79 834 kWh 835 kWh 25.9 5.01 

Availability 92.59% 92.6% .1 .31 93.42% 93.42% .03 .16 

The results of the availability metric for NotreDame Clouds were non-normal, as the 

Kolmogorov-Smirnov test showed, p < .05. Therefore, the Wilcoxon test was applied to 

compare the availability of nodes and showed that nodes of NotreDame Traditional Clouds 
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were statistically significantly more available to host new VMs (median = 86.55%) than their 

counterparts in Desktop Clouds (median = 86.23%), 𝑍 =  −6.57, p <  .001, at the 95% 

level of confidence. It is worth mentioning that the difference was quite small, at less 

than .5%. The results of node availability for Desktop and Traditional SETI@home Clouds 

were normally distributed, according to the Kolmogorov-Smirnov test, p > .05. Therefore, 

the paired T-test was conducted to compare the availability notation. The test showed that 

there was a statistically significant difference between availability of nodes in Desktop 

(mean = 92.59%, SE = .02) and Traditional Clouds (mean = 93.42%, SE = .01), 𝑡(179) =

 −32.57, p < .001, at the 95% level of confidence. 

5.4.3 RoundRobin VM Mechanism  

The average throughputs of the NotreDame and SETI@home Desktop Clouds were about 

89.14% and about 80.45% when the RoundRobin mechanism was employed, as reported in 

Table 5-19 and Table 5-20. The throughput of NotreDame and SETI@home Traditional 

Clouds remained close to 100%, similar to that reported when the FCFS and Greedy 

mechanisms were used. 

Table 5-19: Descriptive Results, RoundRobin Mechanism, NotreDame Clouds 

 Desktop Clouds Traditional Clouds 

Metric Mean Median Var Std Dev Mean Median Var Std Dev 

Throughput 89.14% 89% 16.47 4.06 99.99% 99.99% n/a n/a 

Power Consumption 1884 kWh 1883 kWh 22236 149012 2000 kWh 1999 kWh 14513 120.47 

Availability 81.98% 81.91% 2.55 1.6 81.63% 81.58% 2.48 1.57 

The Kolmogorov-Smirnov test showed that the power consumption distribution of the 

Desktop and Traditional NotreDame Clouds was significantly non-normal, p < .05, while 

normally distributed, p > .05. Therefore, the Wilcoxon test was used to compare the power 

consumed by nodes in NotreDame Clouds and the paired T-test was conducted to study the 

power consumption results in SETI@home Clouds. For the NotreDame Desktop Cloud, the 

Wilcoxon test showed that the nodes in the Desktop Cloud consumed statistically 

significantly less power (median = 1883 kWh) than nodes in Traditional Cloud (median = 

1999 kWh), 𝑍 =  −11.55, p < .001, at the 95% level of confidence. For SETI@home, 

paired T-test showed that the average (mean = 2216 kWh) power consumed by nodes 

Desktop Cloud was less than the power consumed by Traditional Clouds’ nodes (mean = 

2387 kWh). However, the T-test showed that the results were not statistically significant, 

because the critical value p > .05. 
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Table 5-20: Descriptive Results, RoundRobin Mechanism, SETI@home Clouds 

 Desktop Clouds Traditional Clouds 

Metric Mean Median Var Std Dev Mean Median Var Std Dev 

Throughput 80.45% 81.04% 16.11 4.01 99.99% 99.99% n/a n/a 

Power Consumption 2216 kWh 2215 kWh 2184.53 46.74 2387 kWh 2387 kWh 866.41 29.44 

Availability 88.83% 88.84% .1 .31 90.32% 90.3% .05 .21 

The results of availability of NotreDame Clouds’ results did not follow a normal distribution, 

therefore the Wilcoxon test was used for the evaluation. The test showed that nodes were 

statistically significantly more available in the NotreDame Desktop Cloud (median = 

81.91%) than the NotreDame Traditional Cloud (median = 81.58%), 𝑍 =  −6.43, p < .001, 

at the 95% level of confidence. However, the difference between the availability of Desktop 

and Traditional nodes was very small, at .3%. The situation was the opposite for the 

SETI@home Clouds because fewer computing nodes in the Desktop Cloud were ready to 

host new VMs (mean = 88.83%, SE = .02) than nodes in the Traditional Cloud (mean = 

90.32%, SE = .02), 𝑡(179) =  −53.24, p < .001, as the T-test revealed at the 95% level of 

confidence. 

5.4.4 Discussion 

The experiment was conducted to study the difference in outcomes of Desktop Cloud 

systems and Traditional Cloud systems in terms of throughput, power consumption and 

availability. The FCFS, Greedy and RoundRobin VM allocation mechanisms in the literature 

were applied individually to four types of Cloud systems: NotreDame Desktop Cloud; 

NotreDame Traditional Cloud; SETI@home Desktop Cloud; and SETI@home Traditional 

Cloud. The experiment demonstrated that the throughput of a Cloud system is highly 

impacted by node failure. In the NotreDame Desktop Cloud, the private Cloud scenario, at 

least 7% of submitted tasks were lost when the Greedy mechanism was employed, due of 

node failure, whereas this measure was as little as .01% in the NotreDame Traditional Cloud. 

The number of missing tasks actually increased to about 18% in the SETI@home Desktop 

Cloud, remaining consistent in the SETI@home Traditional Cloud. The throughput of 

Traditional Clouds remained unchanged, as the experiment assumed no node failures would 

occur in Traditional Clouds since it has been demonstrated that the reliability of nodes in a 

Traditional Cloud system over a single day’s running time is about 99.99%. 

The experiment showed that the difference between nodes in Desktop Clouds and 

Traditional Clouds in terms of power consumption was limited, even in the presence of node 

failure events. For example, using the FCFS mechanism, the difference was only about 10 
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kWh between NotreDame Desktop and Traditional Clouds, and between SETI@home 

Desktop and Traditional Clouds. The power consumption when the Greedy mechanism was 

employed was similar to NotreDame Desktop and Traditional Clouds, at just 50 kWh 

average per running day. Such figures show that power consumption in both Desktop and 

Traditional Clouds is not affected by node failure, because power consumption is directly 

affected by number of requested VM instances and utilisation of hosting nodes.  

The availability of nodes to host new VM instances is affected by node failure, as there are 

fewer nodes to host VM instances. The experiment confirmed this by comparing the 

availability of nodes in Desktop Cloud systems with Traditional Cloud systems; for example, 

the availability of nodes in SETI@home Desktop Cloud when the RoundRobin mechanism 

was used was 2% less than in the SETI@home Traditional Cloud. However, the impact of 

node failure is quite small because the VM instances play the key role in the availability 

metric.  

The results demonstrate that throughput can be clearly affected by node failures in Desktop 

Clouds no matter which VM was employed. Therefore, it is crucial to develop a fault-tolerant 

VM mechanism that can improve the throughput of Desktop Cloud systems. According to 

the experiment and results, it can be said that DesktopCloudSim is able to simulate node 

failures in Cloud systems and thus the tool is capable of simulating Desktop Cloud systems. 

 

Figure 5-12: NotreDame Summary Results 

Figure 5-12 and Figure 5-13 summary the range and average throughput results of the used 

mechanisms for NotreDame and SETI@home systems. “Node Alive” in the graph means 

the number of nodes that remain live during the run time of the experiment out of the total 

number of running PMs. The figures demonstrate the validity of the simulation tools to 
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produce valid results when node failure events are applied. For NotreDame system, 

augmenting the simulation tool with about 90% – 94% remaining alive yields results that are 

almost similar for each mechanisms in terms of throughput. FCFS mechanism was slightly 

different by about 7% due to the fact that FCFS mechanism is expected to produce poor 

throughput according the literature (section 3.2.1). The same applies also for the 

SETI@home case where the throughput output was affected negatively because the failure 

rate increased. Therefore, it can be concluded that DesktopCloudSim tool simulates the 

effect of node failures as it is expected.  

 

Figure 5-13: SETI@home Summary Results 

5.5 Summary 

This chapter explained the approach to be used to conduct experiments in this study. It 

showed that simulation can be an effective method of investigating research problems and 

evaluating proposed solutions. There is no real Desktop Cloud system, however, so using 

simulation to model these systems is justified. CloudSim is a well-known tool to simulate 

Cloud systems, but cannot simulate node failure although this feature is essential in this 

study to simulate Desktop Cloud systems. Therefore, the DesktopCloudSim tool was 

developed as an extension to CloudSim in order to simulate Desktop Clouds, and a brief 

explanation of the statistical analysis tests to be conducted in analysing results was 

presented. 

The chapter also explained the design of experiments conducted in this study. Node failure 

events in DesktopCloudSim are simulated using real traces collected from the FTA archive. 

This provides failure events of nodes in NotreDame and SETI@home Desktop Grid systems. 

The failure data of NotreDame and SETI@home were studied in order to demonstrate that 
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in such resources it is the norm rather than the exception. The specification of nodes in each 

simulated Desktop Cloud system, the NotreDame and SETI@home Desktop Cloud, was 

reported. In addition, an explanation followed on the workload of tasks submitted to a 

Desktop Cloud system.  

Table 5-21: Private Cloud Systems 

 Desktop Clouds Traditional Clouds 

Metric FCFS Greedy RoundRobin FCFS Greedy RoundRobin 

Throughput 82.66% 92.47% 89.14% 99.99% 99.99% 99.99% 

Power Consumption 533 kWh 638 kWh 1884 kWh 523 kWh 685 kWh 2000 kWh 

Availability 85.03% 86.22% 81.98% 85.29% 86.57% 81.63% 

Table 5-22: Public Cloud Systems 

 Desktop Clouds Traditional Clouds 

Metric FCFS Greedy RoundRobin FCFS Greedy RoundRobin 

Throughput 82.04% 81.80% 80.45% 99.99% 99.99% 99.99% 

Power Consumption 507 kWh 694 kWh 2216 kWh 518 kWh 834 kWh 2387 kWh 

Availability 91.81% 92.59% 88.83% 93.42% 93.42% 90.32% 

Baseline experiments concluded the chapter to show that DesktopCloudSim may be used to 

investigate the difference between Desktop Clouds and Traditional Clouds in the light of the 

evaluation metrics: the throughput outcome of the submitted workload; the energy consumed 

by nodes; and the availability of nodes to host new VM requests. These showed that 

throughput is greatly influenced by node failure, but that its influence on power consumption 

and availability is limited.  The results obtained for a private Desktop Cloud system 

(NotreDame system) are reported in Table 5-21, while Table 5-22 reports the results of a 

public Desktop Cloud system (SETI@home system). 

The next chapter presents the evaluation experiments conducted based on the methodology 

proposed in this chapter. 
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Chapter 6:  Experiment Results 

Section 5.3.2 presented an analysis of node failure events occurring in the Desktop Grid 

nodes of NotreDame and SETI@home systems in order to demonstrate the probability of 

node failure in a Desktop Cloud system. Section 3.2 Chapter 3: reviewed the VM allocation 

techniques employed in Cloud systems, mainly Traditional Clouds. Section 3.2.5 showed 

that these VM mechanisms cannot handle node failure in Desktop Clouds, which explains 

the need to develop one that is tolerant of this problem. Section 4.3 proposed a new VM 

mechanism, the FT mechanism that recognises node failure. However, it seemed to consume 

a great amount of power, therefore section 4.4 proposed a utilisation-migration technique to 

help reduce the power consumption of nodes in Desktop Cloud systems when the FT 

mechanism is employed.  

The main objective of this chapter is to examine through experiment three research 

hypotheses: 

H1: The proposed metrics can be employed to evaluate the impact of node failure 

on Desktop Clouds 

H2: Employing a replication technique within the FT mechanism will improve 

the throughput of a Desktop Cloud system  

H3: Setting a utilisation threshold for online VM migration will reduce power 

consumption in the FT mechanism with a decrease of 2% in the throughput 

outcome 

Section 5.3 explained how these experiments were conducted with the DesktopCloudSim 

simulation tool. The results of each experiment are described and analysed in a separate 

section. The first experiment demonstrates how node failure affects the throughput of 

Desktop Clouds when using VM mechanisms (FCFS, Greedy, RoundRobin and Random 

mechanisms) gathered from the literature. The second experiment demonstrates the 

effectiveness of employing the FT VM allocation mechanism in terms of improving 

throughput. The third section demonstrates how the UBMP can reduce the power 

consumption of nodes in Desktop Clouds when the FT mechanism is employed. Finally, a 

summary of the findings of this chapter is presented. 
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6.1 Experiment I: The Impact of Node Failure 

Four VM allocation mechanisms – FCFS, Greedy, RoundRobin and Random – were 

compared using the evaluation metrics (discussed in section 4.5) in Desktop Clouds, 

specifically in instances of failure. The experiment was conducted in order to study the 

impact of node failure on throughput, power consumption and availability in Desktop 

Clouds. This experiment was conducted to test Hypothesis H1: 

The proposed metrics can be employed to evaluate the impact of node failure on 

Desktop Clouds 

This experiment aimed to answer the following research questions: 

Q1.1- What is the impact, if any, of node failure on throughput? 

Q1.2- Which VM allocation mechanism yields the highest throughput of the 

tested mechanisms in Desktop Clouds? 

Q1.3- Which VM allocation mechanism consumes the least power of the tested 

mechanisms in Desktop Clouds? 

Q1.4- Which VM allocation mechanism yields the best availability of the tested 

mechanisms in Desktop Clouds? 

Each evaluation metric is analysed separately in a different section to report the results of 

both private and public Desktop Cloud scenarios (as discussed in section 5.3). The private 

Desktop Cloud is represented by the NotreDame data set and the public Desktop Cloud is 

represented by SETI@home data set. The following subsection describes the methodology 

of this experiment. The second section describes and analyses the results of the experiment. 

The results are described for each evaluation metric separately. Finally, a discussion of the 

findings of this experiment is presented in the last subsection. 

6.1.1 Results 

The results were analysed in three subsections, according to the evaluation metrics: 

throughput, power consumption and availability. Throughput was calculated as in equation 

(5). Power consumption was calculated as in equation (6). Availability was calculated as in 

equation (7).  
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6.1.1.1 Throughput 

Table 6-1 shows a summary of the descriptive results obtained when measuring the 

throughput metric for each VM allocation mechanism for the NotreDame Cloud. The 

Kolmogorov-Smirnov (K-S) test of normality showed that the normality assumption was not 

satisfied, because the results of FCFS and Greedy mechanisms were statistically 

significantly non-normal: P < .05. Therefore, the non-parametric test of Friedman’s ANOVA 

was used to test which mechanism would yield the highest throughput. This confirmed that 

throughput varied statistically significantly from mechanism to mechanism:𝑋𝐹
2(3) =

 397.14, 𝑃 <  .001, at the 95% level of confidence. Mean, median, variance (Var), standard 

deviation (Std Dev) and standard error (SE) are reported in Table 6-1. 

Table 6-1: Impact of Node Failure on Throughput Metric, NotreDame Cloud 

Mechanism Mean (%) Median (%) Var Std Dev SE K-S Test 

FCFS 82.66 82.2 40.32 6.35 .47 P = .034 

Greedy 92.47 93.1 18.34 4.28 .32 P< .001 

RoundRobin 89.14 89 16.47 4.06 .30 P = .2 

Random 90.63 90.63 13.15 3.63 .27 P = .2 

Six post-hoc analyses with Wilcoxon pairwise comparison tests were conducted to test if 

each mechanism was statistically significantly different from others. Note that six tests were 

required to compare six pairs of mechanisms listed in Table 6-2. The level of significance 

was adjusted to be 0.008 using the Bonferroni correction method [169], because six post-

hoc tests were required (.05/6 ≈ .008). Table 6-2 shows a statistically significant difference 

between each mechanism and its counterparts. Therefore, it can be said that the Greedy 

mechanism gave the highest throughput statistically significantly, since it has the median 

with the highest value at93.1%. 

Table 6-2: Pairwise Comparisons: Impact of Node Failure on Throughput Metric, NotreDame Cloud 

Pairwise Mechanism Comparison Wilcoxon Test 

FCFS vs. Greedy P < .008 

FCFS vs. RoundRobin P < .008 

FCFS vs. Random P < .008 

Greedy vs. RoundRobin P < .008 

Greedy vs. Random P < .008 

RoundRobin vs. Random P < .008 

The aforementioned VM mechanisms were also tested when applied to a public Cloud using 

the SETI@home dataset. Table 6-3 reports on the mean, median, variance (Var), standard 
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deviation (Std Dev), standard error (SE) and the K-S test. According to the K-S normality 

test, the results did not follow a normal distribution: P < .05. Friedman’s ANOVA test 

indicated that there was a significant difference between the tested mechanism, 𝑋𝐹
2(3) =

 266.24, 𝑃 <  .001, at the 95% level of confidence.  

Table 6-3: Impact of Node Failure on Throughput Metric, SETI@home Cloud 

Mechanism Mean (%) Median (%) Var Std Dev SE K-S Test 

FCFS 82.04 83.28 20.23 4.5 .34 P < .001 

Greedy 81.80 81.93 16.1 4.01 .3 P = .2 

RoundRobin 80.45 81.04 16.11 4.01 .3 P = .004 

Random 83.72 84.33 12.83 3.58 .27 P = .006 

Similar to the results with the NotreDame Desktop Cloud, six pairwise Wilcoxon tests were 

applied, as shown in Table 6-4. The tests showed that there were statistically significant 

differences between all pairs except the FCFS vs. Greedy mechanisms, where they indicated 

that the difference was not statistically significant: P > .008. However, this does not affect 

the overall finding because of the results for the Random mechanism, which was statistically 

significantly different from the others. Therefore, it can be said that the Random mechanism 

gave the highest throughput statistically significantly (median = 84.33%). 

Table 6-4: Pairwise Comparisons, Impact of Node Failure on Throughput Metric, SETI@home Cloud 

Pairwise Mechanism Comparison Wilcoxon Test 

FCFS vs. Greedy P >.008 

FCFS vs. RoundRobin P < .008 

FCFS vs. Random P < .008 

Greedy vs. RoundRobin P < .008 

Greedy vs. Random P < .008 

RoundRobin vs. Random P < .008 

6.1.1.2 Power Consumption 

This section evaluates the FCFS, Greedy, RoundRobin and Random mechanisms in terms 

of power consumed by nodes in Desktop Clouds. The mechanisms were implemented in a 

private Cloud using the NotreDame data set in order to be tested. Friedman’s ANOVA test, 

which was applied to the power consumption results, showed that there was a statistically 

significant difference between the tested mechanisms:𝑋𝐹
2(3) =  540, 𝑃 <  .001, at the 95% 

level of confidence. Friedman’s ANOVA test was selected because the power consumption 

results were not normally distributed, since the critical value (P-value) was <.05 for the 
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FCFS and the Greedy mechanisms. Table 6-5 reports on the mean, median, variance (Var), 

standard deviation (Std Dev), standard error (SE) and the K-S test of normality. 

Table 6-5: Impact of Node Failure on Power Consumption Metric, NotreDame Cloud 

Mechanism Mean (kWh) Median (kWh) Var Std Dev SE K-S Test 

FCFS 533 538 867 29.45 2.2 P < .001 

Greedy 638 641 738 27.16 2.03 P = .005 

RoundRobin 1884 1883 22237 149 11.12 P = .2 

Random 1368 1369 6946 83.35 6.12 P = .2 

Table 6-6 summarises the results of pairwise comparison of the Wilcoxon test conducted to 

study which mechanism consumed the least power. This showed that there was a statistically 

significant difference between each pair mechanism. Therefore, it can be said that when the 

FCFS mechanism was employed, the nodes consumed the least power statistically 

significantly (the median is 538 kWh). 

Table 6-6: Pairwise Comparisons, Impact of Node Failure on Power Consumption Metric, NotreDame Cloud 

Pairwise Mechanism Comparison Wilcoxon Test 

FCFS vs. Greedy P < .008 

FCFS vs. RoundRobin P < .008 

FCFS vs. Random P < .008 

Greedy vs. RoundRobin P < .008 

Greedy vs. Random P < .008 

RoundRobin vs. Random P < .008 

The same mechanisms were evaluated in terms of power consumption when the mechanisms 

were employed in a public Cloud using SETI@home data set. Table 6-7 reports on the mean, 

median, variance and K-S test. Both the Greedy and Random mechanisms were statistically 

significantly non-normally distributed: P <.05. Therefore, the non-parametric Friedman’s 

ANOVA test was applied to test if there was a significant difference between the results. 

The test showed that there was indeed a statistically significant difference: 𝑋𝐹
2(3) =

 540, 𝑃 <  .001, at the 95% level of confidence. 
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Table 6-7: Impact of Node Failure on Power Consumption Metric, SETI@home Cloud 

Mechanism Mean (kWh) Median (kWh) Var Std Dev SE K-S Test 

FCFS 507 506 131.85 11.48 .86 P = .2 

Greedy 694 696 614.7 24.79 1.85 P = .015 

RoundRobin 2217 2215 2185 46.74 3.84 P = .2 

Random 1533 1534 3263 57.12 4.26 P = .002 

Pairwise comparisons tests were conducted to find out which mechanism consumed the least 

power, as shown in Table 6-8. There were statistically significant differences between the 

tested pairs of mechanisms. Therefore, it can be said that, when the FCFS mechanism was 

employed, the nodes consumed the least power statistically significantly (the median is 506 

kWh). 

Table 6-8: Pairwise Comparisons, Impact of Node Failure on Power Consumption Metric, SETI@home 

Cloud 

Pairwise Mechanism Comparison Wilcoxon Test 

FCFS vs. Greedy P < .008 

FCFS vs. RoundRobin P < .008 

FCFS vs. Random P < .008 

Greedy vs. RoundRobin P < .008 

Greedy vs. Random P < .008 

RoundRobin vs. Random P < .008 

6.1.1.3 Availability 

Table 6-9 shows a summary of the descriptive results obtained when measuring the 

availability metric for each VM allocation metric in NotreDame Cloud. According to the 

K-S test of normality, the results did not follow a normal distribution: P < .05. The 

non-parametric test, Friedman’s ANOVA, was used to test if there was a statistically 

significant difference between the results. It confirmed that availability varied statistically 

significantly from mechanism to mechanism: 𝑋𝐹
2(3) =  510.78 , 𝑃 <  .001, at the 95% level 

of confidence. Mean, median, variance (Var), standard deviation (Std Dev) and standard 

error (SE) are reported in Table 6-9. 
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Table 6-9: Impact of Node Failure on Availability Metric, NotreDame Cloud 

Mechanism Mean (%) Median (%) Var Std Dev SE K-S Test 

FCFS 85.03 84.59 4.21 2.05 .15 P < .001 

Greedy 86.22 86.23 3.09 1.76 .13 P < .001 

RoundRobin 81.98 81.91 2.44 1.6 .12 P < .001 

Random 80.69 80.55 3.5 1.87 .14 P < .001 

Six Wilcoxon pairwise comparison tests were used to find out if there was a statistically 

significant difference between the Greedy mechanism, with the highest availability, and the 

other VM mechanisms. The level of significance was set to 0.008 using the Bonferroni 

correction method (.05/6 ≈ .008). Table 6-10 shows that there was a statistically significant 

difference between each pair of VM mechanisms. Therefore, it can be said that Greedy 

mechanism outperformed other mechanisms statistically significantly in terms of availability 

by looking at the median (86.22%). 

Table 6-10: Pairwise, Impact of Node Failure on Availability Metric, NotreDame Cloud 

Pairwise Mechanism Comparison Wilcoxon Test 

FCFS vs. Greedy P < .008 

FCFS vs. RoundRobin P < .008 

FCFS vs. Random P < .008 

Greedy vs. RoundRobin P < .008 

Greedy vs. Random P < .008 

RoundRobin vs. Random P < .008 

The availability of nodes was tested in a public Cloud using the SETI@home dataset when 

the FCFS, Greedy, RoundRobin and Random mechanisms were employed. The K-S test of 

normality showed that the results of mechanisms were normally distributed: P > .05, as in 

Table 6-11. Therefore, the repeated measure ANOVA test[169] was used to study the effect 

of the mechanisms on the availability metric for SETI@home Cloud. Mauchly’s test [169] 

indicated that the assumption of sphericity had been violated: 𝑥2(5) =  58.57, 𝑝 <  .05. 

Therefore, the degree of freedom was corrected by the Greenhouse-Geisser [169]estimates 

of sphericity (𝜀 = .82).The test showed that the availability of nodes in the Clouds was 

affected statistically significantly by the employed VM allocation mechanism: 

F(2.45, 438.65)  =  8265.29, p < .05, at the 95% level of confidence. Mean, median, 

variance (Var), standard deviation (Std Dev) and standard error (SE) are reported in Table 

6-11. 
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Table 6-11: Impact of Node Failure on Availability Metric, SETI@home Cloud 

Mechanism Mean (%) Median (%) Var Std Dev SE K-S Test 

FCFS 91.81 91.8 .06 .23 .17 P = .2 

Greedy 92.59 92.6 .1 .31 .02 P = .2 

RoundRobin 88.83 88.84 .1 .31 .02 P = .2 

Random 88.67 88.65 .12 .34 .03 P = .2 

The repeated measure ANOVA test showed that the availability varied statistically 

significantly. Six pairwise comparisons using the paired T-test [169] were conducted. The 

level of significance was adjusted to 0.008, using the Bonferroni correction. The results of 

post-hoc paired T-test tests showed that there were statistically significant differences 

between node availability for each VM mechanism, as shown in Table 6-12. Therefore, it 

can be said that the Greedy mechanism has the highest availability of nodes, statistically 

significantly, when employed in a public Cloud. 

Table 6-12: Pairwise Comparisons, Impact of Node Failure on Availability Metric, SETI@home Cloud 

Pairwise Mechanism Comparison Paired T-Test 

FCFS vs. Greedy P < .008 

FCFS vs. RoundRobin P < .008 

FCFS vs. Random P < .008 

Greedy vs. RoundRobin P < .008 

Greedy vs. Random P < .008 

RoundRobin vs. Random P < .008 

6.1.2 Discussion 

Table 6-13 summarises the findings of the experiment conducted to compare the behaviour 

of four VM mechanisms: the FCFS; Greedy; RoundRobin; and Random mechanisms. This 

was in view of three metrics: throughput; power consumption; and availability. The Greedy 

mechanism was the mechanism that yielded the highest throughput level in a private Cloud, 

and the Random mechanism when used in a public Cloud. In terms of power consumption, 

the FCFS mechanism came first in both the private and public Clouds. The Greedy 

mechanism was the best in both private and public Clouds in terms of node availability.  
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Table 6-13: Summary of Impact of Node Failure Using Evaluation Metrics 

 VM Mechanism 

Metric Private Cloud Public Cloud 

Throughput Greedy Random 

Power Consumption FCFS FCFS 

Availability Greedy Greedy 

In terms of throughput, the FCFS mechanism gave very low values, 82% on average. Such 

figures mean that 18% of submitted tasks were lost due to node failure in the NotreDame 

Desktop Cloud. The reason is that the FCFS mechanism allocates many VMs to a single PM: 

thus, if the PM fails, the number of lost VMs is quite high. In contrast, the Greedy mechanism 

gave the highest average value, at 92% on average. The Random and RoundRobin VM 

mechanisms gave throughput results of an average 91% and 89% for the NotreDame and the 

Desktop Cloud, respectively. On average, the percentage failure on the NotreDame Desktop 

Cloud was 6%, as mentioned in section 5.3.2. 

It is showed in Figure 6-2 the range of throughput metric results for each VM mechanism. 

According to the figure, the FCFS mechanism yielded a minimum value of only 70% 

throughput, whereas minimum values for Greedy, RoundRobin and Random mechanisms 

were 80%. Note that the small dots in the figure represent the actual value of throughput 

obtained in the experiment.  

 

Figure 6-1: Throughput Range for VM Mechanisms for NotreDame System 
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SETI@home Desktop Cloud. Another interesting finding is that the average throughput of 

the Greedy, RoundRobin and Random VM mechanisms decreased by 9–11% from the 

NotreDame Desktop Cloud level when employed in the SETI@home Desktop Cloud. The 

FCFS mechanism also decreased, but by a very small amount(less than .2%). The 

explanation is that the FCFS was not affected by node failure figures as long it was above 

6% (in the NotreDame Desktop Cloud case) and below 14% (in the SETI@home Desktop 

Cloud case). 7% of submitted tasks were lost when node failure was low (the NotreDame 

case), compared to 16% when it was high (the SETI@home case). Such lost tasks figures 

emphasise the need to design a VM allocation mechanism that is tolerant of node failure; 

furthermore, Figure 6-2 shows that the range of throughput outcomes for the evaluated 

mechanisms is quite small. The throughput of the Random mechanism, the best VM 

mechanism in SETI@home, drop only to just below 75%. 

 

Figure 6-2: Throughput Range for VM Mechanisms for SETI@home System 

The power consumed by nodes seems to be consistent across both the NotreDame and the 

SETI@home Desktop Cloud scenarios: The FCFS mechanism consumed the least power in 

both Desktop Clouds, at on average 533 kWh and 507 kWh, respectively. The Greedy 

mechanism came a close second, with figures of 638 kWh and 694 kWh. These figures are 

low compared to those of the Random and RoundRobin mechanisms, because the FCFS and 

the Greedy mechanisms improved utilisation by allocating as many VMs as possible to the 

same PM. By contrast, the RoundRobin mechanism distributed VMs to as many as possible 

PMs to balance the load. This meant that many PMs hosted VMs at low utilisation levels. 

The RoundRobin mechanism consumed more power in the SETI@home Desktop Cloud 

(2217 kWh) than in the NotreDame (1884 kWh), because the number of physical nodes was 

greater in the former.  
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Similarly, the results of the availability metric were consistent across both the NotreDame 

and the SETI@home Desktop Clouds, since the Greedy mechanism had the highest resource 

availability. It is worth mentioning that there was no great difference between the best 

mechanism, the Greedy mechanism, and the worst, the Random mechanism, at only 5%. 

Such a minor difference for both private and public Desktop Clouds may mean that the 

mechanism employed plays only a small role in improving resource availability.  

Table 6-14: Evaluation Metrics for Desktop Cloud Systems 

 Private System Public System 

Metric FCFS Greedy RoundRobin Random FCFS Greedy RoundRobin Random 

Throughput 82.66% 92.47% 89.14% 90.63% 82.04% 81.80% 80.45% 83.72% 

Power 

Consumption 

533 

kWh 

638 

kWh 
1884 kWh 

1368 

kWh 

507 

kWh 

694 

kWh 
2217 kWh 

1533 

kWh 

Availability 85.03% 86.22% 81.98% 80.69% 91.81% 92.59% 88.83% 88.67% 

Table 6-14 presents a summary of results obtained from this experiment. The answer of 

Question Q1.1 is that node failure reduced throughput in both private and public Desktop 

Cloud systems, no matter which mechanism was employed. In answer to Question Q1.2, it 

was found that Greedy VM allocation is the mechanism yielding the highest throughput 

when employed in a private Desktop Cloud system. The FCFS mechanism was the answer 

to Question Q1.3, being the one that consumed the least power. The Greedy mechanism was 

indeed the answer to Q1.4, as it yielded the greatest availability of PMs, when employed in 

private and public Desktop Cloud systems. By answering the above research questions the 

experiment demonstrated that metrics are able to evaluate the impact of node failure on a 

Desktop Cloud system and that there is a need to develop a novel VM mechanism that can 

cope with its issue of node failure. 

6.2 Experiment II: Evaluation of the FT Mechanism 

The first experiment showed that 7% of workload in a private Desktop Cloud and 16% of 

that in a public Desktop Cloud can be lost as a result of node failure. Such figures emphasise 

the need to implement a fault-tolerant VM allocation mechanism. The second experiment 

was conducted to evaluate the FT VM mechanism proposed in section 4.3 using the 

evaluation metrics: throughput; power consumption; and availability. This experiment 

compared the FT mechanism with that which gave the best results in each evaluation metric 

in the previous experiment. The experiment tested Hypothesis H2: 
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Employing a replication technique within the FT mechanism will improve the 

throughput of a Desktop Cloud system  

The experiment aimed to answer the following questions: 

Q2.1 - What is the impact of employing the FT mechanism on the power consumed 

by nodes with a Desktop Cloud system?  

Q2.2 - What is the impact of employing the FT mechanism on the availability of 

Desktop Clouds’ nodes?  

Each evaluation metric is analysed in a separate section. Each reports the results of both a 

private Desktop Cloud, represented by the scenario of the NotreDame data set, and a public 

Desktop Cloud, represented by the scenario of the SETI@home data set. The following 

subsection describes the methodology of this experiment, while the next describes and 

analyses the results of the experiment. The results are reported for each evaluation metric 

separately. The last subsection discusses the findings of this experiment. 

6.2.1 Results 

Similar to the previous results, each evaluation metric is analysed in a separate subsection. 

Each section reports the results of both private and public Desktop Clouds. Throughput was 

calculated as given in equation (5). Power consumption was calculated as in equation (6). 

Availability was calculated as in equation (7). 

6.2.1.1 Throughput 

When the Greedy mechanism was employed the NotreDame Desktop Cloud yielded a higher 

throughput than with the FCFS, RoundRobin and Random VM mechanisms, as shown in 

section 6.1.1.1. Therefore, this was selected to be compared with the FT mechanism in order 

to evaluate its efficiency. According to the K-S test, the results of the mechanisms were not 

statistically significantly normal: p < .05. Therefore, the Wilcoxon test was applied to 

compare their median throughput. The test showed that the FT mechanism yielded a 

throughput level (median = 99.99%) that was better, statistically significantly, than the level 

of the Greedy mechanism (median = 93.37%) by 6%: 𝑍 =  −11.57, p < .001, at the 95% 

level of confidence. The mean, median, variance (Var), standard deviation (Std Dev) and 

standard error (SE) are reported in Table 6-15. 
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Table 6-15: Throughput Metric for FT Mechanism 

Cloud Type Mechanism Mean (%) Median (%) Var Std Dev SE K-S Test 

Private Cloud 
Greedy 92.47 93.37 18.34 4.28 .32 P < .001 

FT 99.89 99.99 .09 .29 .02 P < .001 

Public Cloud 
Random 83.72 84.33 12.83 3.58 .27 P = .006 

FT 99.88 99.99 .1 .32 .02 P < .001 

For the public Cloud, the Random mechanism was selected for comparison with the FT 

mechanism because, according to section 6.1.1.1, it gave the highest throughput results. The 

K-S normality test showed that the normality assumption of results was violated: P < .05. 

Therefore, the Wilcoxon test was conducted to establish whether there was a statistically 

significant difference between the results of the Random and the FT mechanisms. The test 

showed that there was indeed a statistically significant difference between them: 𝑍 =

 −11.64, p < .001, at the 95% level of confidence. The mean, median, variance (Var), 

standard deviation (Std Dev) and standard error (SE) are reported in Table 6-15. Therefore, 

it can be concluded that the throughput of both private and public Desktop Clouds improved 

statistically significantly when the FT VM allocation mechanism was employed. 

6.2.1.2 Power Consumption 

This section compares the results of power consumed by nodes in private and public Desktop 

Clouds under the FT mechanism and the FCFS mechanism. The FCFS mechanism was 

selected for comparison because it consumed the least power in private and public Clouds, 

as section6.1.1.2 showed. The mean, median, variance (Var.), standard deviation (Std Dev) 

and standard error (SE) are reported in Table 6-16 for the two Cloud types. According to the 

Wilcoxon test, nodes in private Clouds consumed (median = 533 kWh) less power, 

statistically significantly, when the FCFS mechanism was used than when the FT mechanism 

(median = 1108 kWh) was used: 𝑍 =  −11.64, p < .001, at the 95% level of confidence. 

Likewise, nodes in public Clouds consumed statistically significantly less power when the 

FCFS mechanism (median = 506 kWh) was used than the FT mechanism (median = 1312 

kWh), 𝑍 =  −11.64, p < .001, at the 95% level of confidence. 

Table 6-16: Power Consumption Metric for FT Mechanism 

Cloud Type Mechanism Mean (kWh) Median (kWh) Var Std Dev SE K-S Test 

Private Cloud 
FCFS 533 538 867.4 26.45 2.2 𝑃 < .001 

FT 1112 1108 1185.42 34.43 2.57 𝑃 = .011 

Public Cloud 
FCFS 507 506 131.85 11.48 .86 𝑃 = .2 

FT 1309 1312 1124.04 33.53 2.5 𝑃 = .006 
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Therefore, it can be concluded that the power consumption of the PMs of both private and 

public Desktop Clouds increased statistically significantly when the FT VM allocation 

mechanism was employed, compared to the FCFS mechanism. 

6.2.1.3 Availability 

This subsection studies the impact of replication technique used by the FT mechanism on 

availability of nodes in Desktop Clouds by comparing the FT mechanism with the Greedy 

mechanism in private (NotreDame) and public (SETI@home) Desktop Clouds. For the 

private Cloud, the results of the availability metric were not statistically significantly normal: 

p < .05. Therefore, the Wilcoxon test was conducted to compare the median of availability 

output. Nodes in the NotreDame Desktop Cloud were statistically significantly more 

available when the Greedy mechanism (median = 86.22%) was used than when the FT 

mechanism was used (median = 74.68%): 𝑍 =  −11.64, p < .001, at the 95% level of 

confidence. For the SETI@home Desktop Cloud, the T-test was applied to compare the 

means of the Greedy and the FT mechanisms, because the results followed a normal 

distribution: p > .05.The test showed that availability of nodes when the Greedy mechanism 

was employed (mean = 92.59%, SE = .02) was statistically significantly better than when 

the FT mechanism was employed (mean = 85.28%, SE = .04) was used:𝑡(179) =

 194.09, p < .001, at the 95% level of confidence. Table 6-17 reports the mean, median, 

variance (Var), standard deviation (Std Dev) and standard error (SE) availability metric 

results for the Greedy and the FT mechanisms for private and public Clouds. 

Table 6-17: Availability Metric for FT Mechanism 

Cloud Type Mechanism Mean (%) Median (%) Var Std Dev SE K-S Test 

Private Cloud 
Greedy 86.22 86.23 3.09 1.76 .13 P < .001 

FT 74.35 74.68 10.51 3.24 .24 P < .001 

Public Cloud 
Greedy 92.59 92.6 .1 .31 .02 P = .2 

FT 85.28 85.33 .44 .67 .05 P = .2 

6.2.2 Discussion 

This experiment demonstrated that the FT mechanism improved the throughput of private 

and public Desktop Clouds. The FT mechanism increased the throughput of NotreDame 

Desktop Cloud by 6% above that achieved using the Greedy mechanism, as the average 

outcome of throughput was 99.89% when the FT mechanism was used, and increased 

throughput (mean = 99.88%) of the SETI@home Desktop Cloud by 16% above that 

achieved with the Random VM mechanism. The FT mechanism uses a replication technique 
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that ensures that there are at least two copies of the same VM running on different PMs. So, 

if a PM fails there are copies of the hosted VMs of this PM running on another PM(s). 

However, there is a chance that both the primary VM and the replica of a VM fail at the 

same time if their hosted PMs fail simultaneously. The probability is influenced by two 

factors: the number of PMs running and the number of node failure events. However, the 

probability is slight, since the proportion of lost tasks in private and public Desktop Clouds 

is .11% and .12% respectively, as the experiment showed.  

The experiment also studied the effectiveness of the FT mechanism in terms of power 

consumption. It doubled the number of running VMs, thus more power was consumed. 

Nodes in the NotreDame Desktop under the FT mechanism (mean = 112 kWh) consumed, 

on average, more than that under the FCFS mechanism (mean = 533 kWh). Similarly, the 

amount of power consumed by SETI@home Desktop Clouds when the FT mechanism was 

used (mean = 1309 kWh) was, on average, 120% that under the FCFS mechanism (507 

kWh). The explanation for the FT mechanism consuming large amounts of power is that the 

FT mechanism always doubles the number of VMs running and ensures that the primary 

VM and its replica are never allocated to the same PM which increases the power 

consumption even further, as described in section 4.3.4. Figure 6-3 and Figure 6-4 show the 

range of power consumption by nodes when the FCFS and FT mechanisms were employed 

in the NotreDame and SETI@home Desktop Clouds, respectively. They show that under the 

FT mechanism consumption was 1200–1400 kWh in both Desktop Clouds, while the range 

under the FCFS mechanism was only 450–600 kWh. This demonstrates the need to 

implement a policy within the FT mechanism to reduce power consumption by nodes in 

Desktop Clouds. 

 

Figure 6-3: Power Consumption Range for FCFS and FT in NotreDame System 
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Figure 6-4: Power Consumption Range for FCFS and FT in SETI@home System 

The availability of nodes in Desktop Clouds was also assessed in this experiment. 
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private and public Desktop Cloud systems statistically significantly more than traditional 

VM allocation mechanisms. However, the replication technique employed meant the 

improvement comes at a price, the consumption of considerable power. Question Q2.1 is 

answered by saying that the FT mechanism led to greater energy consumption by PMs in 
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is adopted to minimise this effect. In addition, the experiment showed that availability was 

affected by using the replication technique, answering Question Q2.2. 

6.3 Experiment III: Utilisation-Based Migration Policy 

The third experiment aimed to decrease the amount of power consumed by nodes when the 

FT mechanism was employed. The previous experiment showed that the nodes of Desktop 

Clouds consumed a considerable amount of power when the FT mechanism was used, 

because it replicated the running VMs. This experiment tried to find a utilisation threshold 

to enable a reduction of the power consumption with minimal loss of throughput in the 
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Desktop Cloud system. Section 4.4 explained that UBMP can help reduce by improving the 

utilisation level of these nodes. Hypothesis H3 was investigated in this experiment: 

Setting a utilisation threshold for online VM migration will reduce power 

consumption in the FT mechanism with an accepted decrease in the throughput 

outcome 

There are several questions relating to the aforementioned hypothesis that this experiment 

aimed to answer: 

Q3.1 –What is the most suitable node utilisation threshold to reduce consumption 

of power with minimal impact on throughput? 

Q3.2 –What is the impact of online VM migration policy on the throughput of a 

Cloud system?  

In order to find the most suitable utilisation threshold to reduce power consumption with 

minimal reduction of throughput, an online migration policy was implemented. The 

following section describes the methodology of this experiment, while the next analyses the 

results. Third, there is a discussion of the experiment findings.  

The experiment sets a utilisation threshold at eight values, as listed in Table 6-18, and ran 

each utilisation threshold separately. The maximum utilisation is set to 70%, because this 

level is mentioned as the optimum utilisation threshold for power consumption by [106]. In 

addition, setting the utilisation level above 70% can cause extra overheads due to the number 

of VM migrations required. The PMs running were scanned periodically. If a PM was under-

utilised at the set threshold value, then all hosted VMs were migrated to another PM. The 

results of throughput and power consumption metrics were analysed in order to find which 

utilisation threshold gave the best results.  



Chapter 6. Experiment Results 

108 

Table 6-18: Utilisation Threshold Values 

Utilisation Threshold  

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

6.3.1 Results 

The results of throughput and power consumption metrics of NotreDame Desktop Cloud are 

analysed in the first subsection in order to find the best throughput-power consumption trade. 

The second subsection analyses the results of SETI@home Desktop Cloud. (5). Power 

consumption was calculated as in equation (6).  

6.3.1.1 NotreDame Desktop Cloud 

According to the K-S normality test, the results of the throughput metric shown in Table 

6-19 did not follow a normal distribution: P-value < .05. Therefore, Friedman’s ANOVA 

was selected to test if there was a statistically significant difference between results. 

Friedman’s ANOVA test showed that throughput varied significantly from one mechanism 

to another: 𝑋𝐹
2(7) =  538.37, 𝑃 <  .001, at the 95% level of confidence. Mean, median, 

variance (Var), standard deviation (Std Dev) and standard error (SE) are reported in Table 

6-19. However, the results demonstrated that changing the utilisation level from 10% to 70% 

had only a slight impact on throughput. 
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Table 6-19: Throughput Metric results for NotreDame Cloud for FT Mechanism with Different Utilisation 

Utilisation Mean (%) Median (%) Var Std Dev SE K-S Test 

0% 99.89 99.99 .09 .29 .02 P < .001 

10% 99.91 99.99 .06 .23 .01 P < .001 

20% 99.86 99.99 .12 .35 .03 P < .001 

30% 99.8 99.99 .29 .54 .4 P < .001 

40% 99.68 99.99 .6 .77 .6 P < .001 

50% 99.34 99.71 1.65 1.28 .1 P < .001 

60% 99.25 99.52 1.69 1.3 .1 P < .001 

70% 99.28 99.57 1.26 1.12 .08 P < .001 

According to the K-S normality test, the results of the power consumption metric shown in 

Table 6-20did not follow a normal distribution, because the results of both 0% and 30% were 

that P <. 05. Therefore, Friedman’s ANOVA was selected to test the null hypothesis, which 

is that there was no statistical significant difference between the results. The null hypothesis 

was rejected, because 𝑋𝐹
2(7) =  692.78, 𝑃 <  .001, at the 95% level of confidence. Mean, 

median, variance (Var), standard deviation (Std Dev) and standard error (SE) are reported in 

Table 6-20. The mean and the median of power consumption when the utilisation threshold 

was set to 40% consumed statistically significantly the least power. Therefore, seven 

pairwise post-hoc tests were conducted to confirm whether there was a statistically 

significant difference between the results when the utilisation level was 40%, compared with 

other levels. The Wilcoxon test was applied in the seven post-hoc tests and showed indeed 

that there were statistically significant differences between the results of the power 

consumption metric when the utilisation threshold was 40% and when the threshold was set 

to 0%, 10%, 20%, 30%, 40%, 50%, 60% and 70%, when P-value < .0018. The level of 

significance was adjusted to 0.0018 using the Bonferroni correction, because 28 post-hoc 

tests were needed to confirm that there was a statistically significant difference between each 

utilisation threshold in the experiment. That made the critical value P = .05/28 = .0018. 

Therefore, it can be concluded that the power consumption of nodes when the utilisation 

threshold is set to 40% has a minimal effect on throughput in the NotreDame Desktop Cloud.  

Table 6-20: Power Consumption Results for NotreDame Cloud for FT Mechanism with Different Utilisation 

Utilisation Mean (kWh) Median (kWh) Var Std Dev SE K-S Test 

0% 1112 1108 1185.42 34.43 2.57 𝑃 = .011 

10% 1109 1106 1210 34.78 2.59 P = .02 

20% 1103 1102 1342 36.63 2.73 P = .2 

30% 1049 1060 2343 48.41 3.61 P < .001 

40% 989 989 1933 43.96 3.28 P = .2 
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50% 1117 1117 6791 82.41 6.14 P = .2 

60% 1170 1168 5948 77.12 5.75 P = .2 

70% 1170 1166 5996 77.44 5.77 P = .2 

6.3.1.2 SETI@home Desktop Cloud 

The results shown in Table 6-21 for the throughput metric for the SETI@home Desktop 

Cloud were not normally distributed, according to the K-S normality test: P <.05. So, 

Friedman’s ANOVA was applied to test the null hypothesis, which was that there was no 

statistically significant difference between throughput outcomes at various utilisation 

thresholds. The test rejected the null hypothesis, because 𝑋𝐹
2(7) =  1158.22, 𝑃 <  .001, at 

the 95% level of confidence. Mean, median, variance (Var), standard deviation (Std Dev) 

and standard error (SE) are reported in Table 6-21. The median of throughput values under 

the mechanism when utilisation was set to 0%, 10%, 20%, 30% and 40% was within the 

accepted range, at 99.2% or above. However, this was not the case when the utilisation 

thresholds were at 50%, 60% and 70%, as the median of throughput values decreased to less 

than 96%.  

Table 6-21: Throughput Metric Results for SETI@home Cloud for FT Mechanism with Different Utilisation 

Utilisation Mean (%) Median (%) Var Std Dev SE K-S Test 

0% 99.88 99.99 .1 .32 .02 P < .001 

10% 99.99 99.99 .01 .02 .01 P < .001 

20% 99.9 99.99 .01 .01 .01 P < .001 

30% 99.88 99.88 .05 .04 .02 P < .001 

40% 99.24 99.33 .32 .02 .04 P < .001 

50% 95.55 95.83 3.55 .04 .14 P = .02 

60% 91.1.7 92.02 7.26 .2 .2 P = .2 

70% 91.52 91.52 8.03 .21 .21 P = .2 

The results of the power consumption metric for SETI@home Desktop Cloud were not 

normally distributed, according to the K-S normality test: P <.05. So, Friedman’s ANOVA 

was applied to test whether there was a statistically significant difference between nodes’ 

power consumption when different utilisation thresholds were applied. The test rejected the 

null hypothesis, because𝑋𝐹
2(7) =  1158.22, 𝑃 <  .001, at the 95% level of confidence. 

Mean, median, variance (Var), standard deviation (Std Dev) and standard error (SE) are 

reported in Table 6-22. As the table shows, nodes consumed less power when utilisation was 

set to 30% and 40%, because they consumed similar to the median of 1003 and 1033 kWh 

when utilisation was set at 30% and 40%, respectively. Several post-hoc analyses with 

Wilcoxon signed-rank tests were conducted with a Bonferroni correction applied, giving a 
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significance level adjusted to P = .05/28 = .0018. Although the post-hoc tests showed a 

statistically significant difference between the results when utilisation was set to 30% and 

40%, it showed no statistically significant difference between the results (i.e. when the 

utilisation level = 30% versus utilisation level = 40%). Therefore, it can be concluded that 

nodes consumed the least power in SETI@home when the utilisation level was set to 30% 

or to 40%. 

Table 6-22: Power Consumption Results for SETI@home Cloud for FT Mechanism with Different 

Utilisation 

Utilisation Mean (kWh) Median (kWh) Var Std Dev SE K-S Test 

0% 1309 1312 1124 33.53 2.5 P = .006 

10% 1255 1259 955 30.9 2.3 P = .001 

20% 1209 1210 577 24.01 1.79 P = .2 

30% 1005 1003 1096 33.11 2.47 P = .2 

40% 1036 1033 1516 38.94 2.9 P = .2 

50% 1347 1344 5196 72.09 5.37 P = .2 

60% 1509 1512 1823 42.69 3.18 P = .2 

70% 1509 1513 1488 38.57 2.88 P = .064 

6.3.2 Discussion 

This experiment tried to find a utilisation threshold to help to reduce the power consumed 

by nodes. It was shown in section 4.4 that improving utilisation can reduce power 

consumption. However, the main problem with node failure is that allocating many VMs to 

the same PM may affect throughput if the PM fails. Therefore, this experiment was 

conducted in two types of Desktop Clouds, private and public, in order to find a utilisation 

threshold that reduced power consumption yet maintained an acceptable level of throughput.  

In the NotreDame Desktop Cloud system, changing the threshold values from 0% to 70% 

caused a minor degradation of the throughput metric of only .5% maximum. In order for 

tasks to be completely lost, reducing throughput, the host of the primary VM and the host of 

its replica have both to fail at the same time, which did not happen in the case of NotreDame 

Desktop Cloud for two reasons. The first reason is that the level of node failure was not high, 

at a rate of only 6% of nodes per hour. The second reason is that even if several VMs were 

allocated to the same PM, this did not necessarily mean that their replicas were allocated to 

a single PM; they would be allocated to different PMs. This would make the chances very 

low that two PMs, one hosting a primary VM and the other the replica VM, would fail at the 

same time. Therefore, the selection of the utilisation threshold depended only on the power 
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consumption metric. Table 6-20 shows the power consumption of NotreDame nodes. Nodes 

consumed the least power when the utilisation threshold was set to 40%.  

It may be asked why the nodes consumed more power when utilisation was set to 50%, 60% 

and 70%. This was because of what may be termed ‘over migration’, meaning migrating 

VMs from nodes with a utilisation level below the threshold value to another node(s), 

without actually increasing the utilisation threshold. For example, suppose the utilisation 

threshold is set to 70%. In the case of a node with 60% utilisation, all hosted VMs have to 

migrate, yet there is the possibility that no nodes can accommodate them because they are 

almost fully occupied (the threshold is set to 70%). Therefore, these VMs might go to nodes 

with lower utilisation thresholds, or might even be allocated to nodes hosting no VM at all.  

 

Figure 6-5: Power Consumption According to Utilisation Thresholds 

In the SETI@home Desktop Cloud it is a slightly different case, because throughput varied 

according to the utilisation threshold, as Table 6-21 shows. Utilisation thresholds with values 

at 50%, 60% and 70% were excluded because they have less than acceptable levels of 

throughput. Nodes in the SETI@home Desktop Cloud consumed the least power when the 

utilisation power was set at 30% or 40%, and this can be statistically concluded, as shown 

in section 6.3.1.2. Nevertheless, the difference between these two values in terms of power 

consumption is quite small, at only 3% of power. Therefore, it may be said that the utilisation 

threshold is 40%, because it is the same figure as in the case of the NotreDame Desktop 

Cloud, as depicted in Figure 6-5.It is worth mentioning that the power saved in the case of 

SETI@home was 20%, on average, while it was 10% in the NotreDame Desktop Cloud. The 

reason behind the double saving in the SETI@home Desktop Cloud is the double number of 

nodes of SETI@home (872 nodes) compared to the NotreDame Desktop Cloud (472 nodes), 
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as stated in section 5.3.2. Therefore, it may be said that a utilisation threshold is beneficial 

as the number of Desktop Clouds grows ever greater. 

 

Figure 6-6: Throughput According to Utilisation Thresholds 

In addition, Figure 6-7 and Figure 6-8 demonstrate the range of power consumption when 

the FT mechanism was employed with different utilisation threshold levels for the 

NotreDame and SETI@home Desktop Clouds. The figures are box plots of the power 

consumed for nodes, from the experiment. The small dots represent the daily average power 

consumption for a Desktop Cloud node, while the two ends of each box plot represent the 

maximum and minimum values. Figure 6-8 shows that having utilisation thresholds at 30% 

and 40% clearly outperforms other thresholds by far; even the maximum power consumption 

values were below the minimum power consumption achieved using other utilisation 

thresholds. Such notation confirms the finding that a utilisation threshold at 40% can be 

beneficial when the number of running nodes in a Desktop Cloud system is great.  
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Figure 6-7: Power Consumption Range for FT Mechanism with Different Utilisation Thresholds in 

NotreDame System 

 

Figure 6-8: Power Consumption Range for FT Mechanism with Different Utilisation Thresholds in 

SETI@home System 

Utilisation is used in this migration technique. If a PM has utilisation above zero but below 

a certain level, all VMs allocated to this PM will be migrated to another in order to improve 

utilisation. Question 3.1 is answered by identifying a critical utilisation level of 40%. At this 

level there is optimal trade-off between throughput and power consumption. The experiment 

found that setting this threshold in UBMP statistically significantly reduced power 

consumption by about 20%, with the penalty of a maximum drop in throughput of 2%, 

answering Question 3.2. 

6.4 Chapter Summary 

This chapter presented the evaluation part of this research, including the methodology of 

each experiment, the obtained results and analysis. Three experiments were conducted. The 

first experiment aimed at evaluating the impact of node failure on Desktop Cloud systems 

using the metrics of throughput, power consumption and availability. Four VM allocation 

mechanisms – the FCFS, Greedy, RoundRobin and Random, as retrieved from the literature 

– were implemented in this experiment to find which gave the best results in each evaluation 

metric separately, once in a private Desktop Cloud (using NotreDame dataset) and once in a 

public Desktop Cloud (using the SETI@home dataset). The results showed that the Greedy 

mechanism gave the best results for throughput, but for of availability the private Desktop 

Cloud gave the best results, in both private and public Desktop Clouds. The Random 

mechanism gave the best results for throughput in a public Desktop Cloud. The FCFS 

mechanism consumed the least power in both private and public Desktop Clouds. The 
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experiment emphasised that throughput in a Desktop Cloud system may be reduced due to 

node failure events. 

The second experiment studied the proposed mechanism, the FT mechanism, which aimed 

to improve throughput in a Desktop Cloud system. The first experiment showed that node 

failure can reduce throughput by up to 20% of submitted tasks. This experiment compared 

the outcome of Desktop Cloud systems when the FT mechanism was employed against the 

best mechanisms obtained from the first experiment. According to the results, the FT 

mechanism managed to improve throughput in both private and public Desktop Clouds. 

However, such improvements came at a price, represented by the increase of power 

consumed by Desktop Clouds’ nodes. Such an increase shows the need to implement a 

solution to reduce the power consumed by nodes. 

The third experiment tried to find a solution to the power consumption issue in the FT 

mechanism by setting a utilisation threshold to trigger migration of VMs, with the aim of 

improving resource utilisation. The results showed that power may be saved when the 

utilisation level was set to 40%. In a public Desktop Cloud, on average 20% was saved as a 

result of implementing the OUMP. The three experiments confirmed the three hypotheses: 

H1: The proposed metrics can be employed to evaluate the impact of node failure 

on Desktop Clouds 

H2: Employing a replication technique within the FT mechanism will improve 

the throughput of a Desktop Cloud system  

H3: Setting a utilisation threshold for online VM migration will reduce power 

consumption in the FT mechanism with a decrease of 2% in the throughput 

outcome  

The next chapter discusses the findings of this research to review them alongside the 

challenges of Desktop Clouds introduced in section 2.3.4. The research contributions are 

described, with the aim of showing how they match and overcome the research gaps in the 

field of Desktop Clouds. 





Chapter 7. Discussion 

117 

Chapter 7:  Discussion of Research Findings 

Chapter 2 introduced the Desktop Cloud as a new type of system that employs idle computer 

nodes as PMs, discussing several the research challenges brought about by Desktop Cloud 

computing that need to be tackled before it can represent a viable alternative to Traditional 

Cloud computing. Node failure was identified as something to be solved and Chapter 3 

reviewed various VM allocation mechanisms, policies and solutions proposed in the field of 

Cloud computing to show that none can be employed in Desktop Clouds to solve this issue. 

Chapter 4 proposed a novel fault-tolerant mechanism to reduce the effect of node failure on 

the outcomes of a Desktop Cloud system.  

Chapter 5 presented the methodology of this research to test the proposed VM mechanism 

in order to reflect its effectiveness in three metrics: throughput; power consumption; and 

availability. Chapter 6 gave the results of experiments based on the methodology of Chapter 

5 to test the hypotheses of this research, and explained how each experiment was conducted.  

This chapter discusses the findings of this research and positions them alongside related 

findings in the literature. The discussion illustrates that the contribution of this research is to 

fill gaps in the research into Desktop Cloud computing and it starts by discussing the impact 

of node failure in Desktop Clouds, with an analysis of the number of nodes that can fail at 

any given time in either private or public Desktop Cloud systems. Next comes a discussion 

of the difference between Desktop and Traditional Cloud systems using the 

DesktopCloudSim simulation tool. The proposed evaluation metrics are discussed in terms 

of their ability to assess VM allocation mechanisms. The chapter next discusses the capacity 

of the designed FT mechanism to tolerate node failure in Desktop Cloud systems. Further, a 

discussion proposes how the UBMP can be employed by the FT mechanism to reduce power 

consumption. Lastly, the chapter discusses the limitations of the research. 

7.1 Impact of Node Failure 

Several studies into Desktop Cloud computing point out that node failure can have a negative 

impact upon the outcomes of a Desktop Cloud system [11], [60], [180], but none gives 

sufficient evidence to support this claim, thus this research first investigated through 

empirical study the impact of node failure using real-world failure traces. This research 

employed a simulation tool to evaluate the outcome of Desktop Cloud systems using 

throughput, power consumption and availability metrics.  
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7.1.1 Failure Analysis 

In this research, a study of node failures in PMs at Desktop Grids systems was carried out: 

(1) to compare failures events in private and public Desktop Clouds; (2) give figures to 

explain throughput variations in different VM allocation mechanisms; and (3) analyse the 

failure to help researchers to design a prediction mechanism to migrate VM instances from 

PMs that are predicted to fail before they fail. The studies concluded that node failure in 

public Desktop Grid systems is double that of private Desktop Grid systems, as section 5.3.2 

demonstrated. However, related failure studies focus on the time between failures in PMs in 

Desktop Grid systems. The findings of Kondo et al., [22] were that, on average, the failure 

ratio was similar to that in this study for private Desktop Grid systems; however, their 

Desktop Grid system differed from that in this research, although considered a private 

system. They conducted an experiment to study how long a host would remain available 

before it failed in the Diego Supercomputer Centre Desktop Grid system, examining 220 

hosts over a period of 28 days. The study showed that, on average, 5% of hosts failed. 

However, the study did not focus on the number of nodes failing but the duration that a node 

remained live.  

The ratio of node failure in public Desktop Cloud systems can reach double that in private 

Desktop Cloud systems. There are several reasons. First, participants are under no obligation 

to remain working in a public system, unlike in private systems where regulations may be 

imposed to ensure that nodes remain connected. For example, a university can require every 

computer node belonging to it to join the system, Desktop Cloud or Grid, when it becomes 

idle. Another reason is that PMs in public systems are connected via the Internet, which 

increases the probability of connectivity failure, while PMs in private systems usually have 

a LAN connection. Furthermore, the number of nodes joining a public Desktop Cloud system 

can be high, which means there are more PMs to fail. 

The failure study conducted by this study makes a twofold contribution to the field of 

Desktop Cloud research. First, the study focuses on the number of nodes failing during a 

given time period (in this case, hourly). Having figures of failing nodes available can yield 

better knowledge about how to design a VM allocation mechanism. For example, section 

5.3.5 showed that the number of VM replications required is identical in both private and 

public Desktop Clouds and can rise if the number of failing nodes is higher, as section 6.2 

revealed. The second advantage is that having statistical failure trends helps to predict when 

a PM is going to fail. This can be employed in the migration policy UBMP in order to let a 

VM instance migrate from a PM that is predicted to fail soon to another PM. Such prediction 
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studies have been proposed in the area of Desktop Grids such as [172], [181] and [173], yet 

not in the area of Desktop Clouds.  

7.1.2 DesktopCloudSim 

Simulation was the methodology adopted by this study to evaluate the solution proposed for 

a VM mechanism tolerant to node failure. Simulation was also used to test the hypotheses, 

as demonstrated in section 5.3. Therefore, this research has extended use of the well-known 

Cloud simulation tool, CloudSim. Section 5.45.3 showed that it assumes that PMs in a 

simulated Cloud system are reliable, with no node failure, thus it does not simulate node 

failure. This study developed DesktopCloudSim as an extension tool of CloudSim in order 

to simulate node failure and thus simulate Desktop Cloud systems.  

Previous sections discussed node failure in private and public Desktop Cloud systems. This 

section discusses its effect on the outcomes of a Desktop Cloud system, specifically the 

throughput metric. Therefore, a baseline experiment was conducted to assess the impact of 

node failure by using DesktopCloudSim to compare outcomes of Traditional Cloud and 

Desktop Cloud systems. It illustrated the impact of node failure on throughput outcomes and 

showed that DesktopCloudSim is capable of simulating node failure. Section 5.4 describes 

the experiments in order to answer the following question:  

What is the difference between Desktop Clouds and Traditional Clouds in terms 

of throughput, power consumption and availability? 

The baseline experiment tested three VM allocation mechanisms (FCFS, Greedy and 

RoundRobin) by implementing each once in simulated Desktop Cloud systems and once in 

simulated Traditional Cloud systems in order to answer the previous question. The 

experiment concluded that the main difference is in terms of throughput, which was affected 

badly by node failure regardless of the mechanism employed. This comparison of Desktop 

and Traditional Cloud systems using empirical data is considered the first step in this field, 

so there are no other studies with which to compare the findings. Nevertheless, it can be said 

that node failure can cause a decrease in the throughput metric of a Desktop Cloud system 

by reducing the number of successfully processed tasks, as section 5.4.4 demonstrated. 

Moreover, the throughput of public Desktop Cloud is less than that of a private Desktop 

Cloud. The node failure ratio plays a key role in the variation of throughput outcomes 

between private and public Desktop Cloud systems; section 5.3.2 showed that the average 

node failure ratio in a public Desktop Cloud is at least double that in a private Desktop Cloud 

system. 
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7.1.3 Evaluation Metrics 

Section 4.5 proposed throughput, power consumption and availability metrics to evaluate 

the outcome of a VM allocation mechanism in Desktop Cloud systems. Section 6.1 showed 

the results of an experiment conducted to test the Hypothesis H1: 

The proposed metrics can be employed to evaluate the impact of node failure on 

Desktop Clouds. 

Throughput means the number of successfully completed tasks. Throughput is an important 

metric in designing VM allocation mechanisms in Desktop Clouds, unlike Traditional 

Clouds; because of node failure issue. The authors in [182] consider it an important factor 

for Desktop Grids for this reason. A finding of this study confirmed that node failure affects 

throughput when using a VM allocation mechanism. The experiment compared four VM 

allocation mechanisms: FCFS, Greedy, and RoundRobin, the usual mechanisms in 

open-source Cloud management platforms, with a fourth mechanism, Random, which is a 

naïve mechanism that randomly selects and assigns VM instances to PMs. The experiment 

showed that, regardless of which of the four VM allocation mechanisms was employed, 

throughput was affected by node failure because when a failure occurs in a PM, all hosted 

VM instances are destroyed. Therefore, the tested VM allocation mechanisms cannot be used 

to reduce the effect of node failures since they do not employ a replication technique. It is 

clear that there is a real need to design a mechanism able to mitigate the effects of node 

failure during runtime by employing replication.   

The power consumption metric concerns the amount of energy consumed by PMs in a 

Desktop Cloud system. It is considered an important factor by which to evaluate the 

behaviour of a VM allocation mechanism in Traditional Cloud systems in order to reduce 

maintenance costs, as discussed in section 3.2.2, so it is crucial to consider power 

consumption when it comes to assessing VM mechanisms. Experiment I was conducted to 

compare the usual VM allocation mechanisms. It was seen that FCFS consumed the least 

power because it allocates VM instances on a BF basis; the literature shows that this solution 

improves resource utilisation, reducing power consumption according to [183]. Therefore, 

it is recommended that this is employed in the FT solution of this study in order to improve 

resource utilisation.  

The availability metric measures the amount of computing power of a Desktop Cloud system 

for new requests from users. It is important to consider availability in designing a VM 

allocation mechanism to assess the consequences of employing a replication technique, 
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because this increases the number of running VM instances so there is less free computing 

power of PMs available to serve new requests to accommodate VM instances. So, the 

availability metric is used in this study to assess the impact of employing a replication 

technique. 

7.2 FT mechanism  

The FT mechanism developed in this study is considered to be the first attempt to tackle 

node failure in Desktop Clouds, and it is compared to traditional VM allocation mechanisms 

since there are no others available. However, these pay little attention to node failure and 

thus do not employ replication techniques. The authors in [184] identified the need to 

implement a fault tolerance policy as one of the challenges facing design middleware for 

Desktop Cloud systems and the findings of this research, as presented in section 2.3.4.4, 

confirm this finding. Chapter 4 proposed a new VM mechanism tolerant of node failure. The 

mechanism employed a replication technique, which is regarded as resilient of node failure. 

Its main strategy is that, no matter how many nodes fail during runtime of a VM instance, 

there is always a replica for a particular VM ready to take over.  

Table 7-1: FT Mechanism vs. Related Works 

Criteria  

Mechanism 
Throughput Performance Cost Utilisation Faulty Resources 

FT Mechanism √ X √ √ √ 

Work by [106] X √ X √ X 

MBFD Algorithm [86] X √ √ √ X 

RoundRobin Policy [118] X X √ X X 

FF Policy [185] X √ X √ X 

The FT mechanism is effective in improving throughput, utilisation of PMs and reducing 

running costs in the presence of node failures. Running costs is handled by the FT 

mechanism by reducing power consumption. However, the mechanism does not pay 

attention to performance of running service. A summary of comparison between the FT 

mechanism and related works is listed in Table 7-1 using these criteria. The related works 

were presented in chapter 3. 

Throughput in the table is related to faulty resources. Therefore, it is overseen by related 

works, discussed in chapter 3, because high reliability of nodes is assumed. Utilisation is 

considered by this work in order to reduce power consumption with a goal to reduce running 

costs. This goal is shared with related works as discussed in section 3.2.2. However, the 

work presented by this research differs by the fact that it trades off between improving 
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throughput by using replication technique and reducing power by improving utilisation. 

Although, the FT mechanism improves throughput in the presence of node failures and 

reduces power consumption, the mechanism, however, pays no attention to the performance 

criteria. Performance can involve response time, SLA violations .. etc, as it is discussed in 

section 3.2.3. The FT does not consider performance because the main focus in this research 

is to improve throughput in faulty resources. In addition, it can be argued that in faulty 

systems, such as Desktop Grids and Desktop Clouds, performance is ignored in return for 

improving throughput according to [186]. Related works, listed in the table, focus on the 

performance because they are developed for Traditional Cloud systems which assumed high 

reliability of nodes. Nevertheless, the FT mechanism is considered a step to improve 

throughput that can be followed by extensions to improve performance as future works.  

7.2.1 Static FT Mechanism  

The first phase of the mechanism is the static mechanism, which aims to improve only 

throughput. The mechanism of PM selection for both primary and replica VM instances 

plays a key role for two reasons. The first is that it can help to reduce the number of destroyed 

primary VM instances. The second is to reduce the power consumed PMs by improving 

resource utilisation. Section 4.3 explained that the FT mechanism employs a BF heuristic 

solution to select PMs with highest utilisation level to accommodate VM replicas. According 

to [183], this heuristic can improve resource utilisation by stacking VM instances to the same 

PM(s), leading to a reduction in power consumption.  

The LF heuristic solution is employed to select PMs to host primary VMs in the FT 

mechanism in order to distribute primary VM instances to PMs. The aim of using this 

heuristic method is to improve the resilience of the mechanism against node failure, because 

fewer primary VM instances being destroyed leads to a smaller effect on throughput. 

Therefore, the PM selection phase in the FT mechanism aims for a trade-off between 

throughput, using the LF solution, and power consumption, using the BF solution. 

Throughput increased, according to section 6.2. The second hypothesis of this research. H2 

was tested in the section: 

Employing a replication technique within the FT mechanism will improve the 

throughput of a Desktop Cloud System  

Experiment I was conducted to examine this hypothesis, which demonstrated that the FT 

mechanism statistically significantly improved throughput outcome in Desktop Cloud 

systems in comparison to other traditional VM allocation mechanisms. It can be seen that 
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the FT mechanism reduced the effect of node failure in both private Desktop Clouds (with a 

low level of node failure) and public Desktop Clouds (with higher level of node failure). The 

FT mechanism ensures that there is always a replica for a running VM instance. If a node is 

reported as failing, then the mechanism scans the VM instances to check and replicate if one 

is found destroyed. The throughput outcome of the FT mechanism was kept above 99% in 

both private and public systems. Complete failure status is reached when there is loss of 

throughput in the mechanism and means that both the PM hosting a primary VM instance 

and its replica fail at the same time. From the experiment, it can be seen that the probability 

of complete failure status is about 0.11% when the average failure of nodes is about 6.26% 

(as in private Desktop Cloud systems) and about 0.12% when the average failure of nodes is 

about 13.67% (as in public Desktop Cloud systems). 

7.2.2 UBMP 

The second experiment demonstrated that the static FT mechanism improved the throughput 

of both private and public Desktop Cloud systems. However, this mechanism causes PMs to 

consume energy, because it pays little attention to resource utilisation. This raises the 

question in this context whether throughput outcome is affected if primary VM instances 

stack together. The FT mechanism was extended to include the UBMP, implemented as a 

dynamic method to migrate VM instances in order to improve resources utilisation during 

runtime. The third experiment was conducted to investigate the hypothesis H3:  

Setting a utilisation threshold for online VM migration will reduce power 

consumption in the FT mechanism with an accepted decrease in the throughput 

outcome. 

The hypothesis employs “accepted” term to describe the decrease of throughput outcome 

because the maximum decrease can reach up to 2%, in worst case, of all submitted tasks. 

Such figure is considered accepted in Desktop Cloud systems in return for the power saving 

of about 20%. It was pointed out by [86] that about 3% of SLA violations is accepted in 

Traditional Cloud in return for a power saving of about 30%. Therefore, the same figure can 

be applied to Desktop Cloud systems by stating that a downgrade of about 2% of throughput 

outcome in return for 20% of power consumed by nodes seemed to be accepted.  

The experiment tried several utilisation thresholds from 0 to 70% in order to find the 

optimum point for the trade-off between throughput and power consumption for both private 

and public Desktop Cloud systems. It can be seen from the experiment that increasing 

utilisation can result in a decrease in throughput for a Desktop Cloud system, as 
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demonstrated in section 6.3. It may also be claimed that increasing resource utilisation 

increases the risk of total failure; as there are more VM instances stacked to fewer PMs, 

failure of a single PM can cause multiple VM instances to fail at the same time. 

When the failure ratio is relatively low (in the case of a private Desktop Cloud), increasing 

utilisation to 70% has a minor impact (less than 1%) on throughput, as shown by the third 

experiment. However, there are other dimensions that affect throughput, namely the number 

of PMs and the number of VM instances running. The availability metric can be used in this 

context to solve the issue; it can be seen that when the level of failure in a Desktop Cloud is 

quite low (6% or less), increasing utilisation will not decrease throughput provided 

availability is above 86%, as demonstrated in section 6.3.  

The migration of VM instances, as used in the UBMP, has two drawbacks. The first is 

performance degradation during migration, as discussed in terms of Traditional Cloud 

computing by authors such as [86], which can cause violations of SLA between CSPs and 

users. There is still the same issue of performance degradation in Desktop Cloud systems, 

but its impact can be ignored because users of such systems expect a poorer quality of service 

in return for the low cost of exploiting services from Desktop Cloud systems. The second 

drawback of using online migration is the data transfer impact upon network because of 

moving VM instances around PMs. However, the authors in [78] adopt an approach to VM 

transfer mechanism that can reduce the impact of migration upon the network. Their work 

is useful in two ways: it helps to reduce the cost of keeping primary VMs and their replicas 

synchronised, and to minimise the data required to transfer to PMs when failure occurs. 

The authors in [92]  state that allocating many VMs to the same PM can cause performance 

degradation of these VM instances. However, the FT mechanism is not concerned with this 

possible issue, because (1) performance degradation of VM instances is tolerable from the 

point of view of the end users; and (2) some researchers (according to [93] argue that the 

performance degradation from consolidating VMs to the same PM is quite limited and thus 

can be ignored.  

7.2.3 Running Cost 

The cost of running an entire Desktop Cloud system needs further attention in order to study 

if it is worth choosing over Traditional Cloud systems. This research addresses power 

consumption as a metric for the outcome of the proposed mechanism. Indeed, power 

consumption contributes large amount of running costs in both Desktop and Traditional 

Cloud systems [2]. However, there are several factors that can affect the cost of running both 
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Desktop Grid and Desktop Cloud systems [187]. First of all, the cost of purchasing hardware 

to run and monitor systems and consequently the cost of maintaining these machines. In 

addition, the salary of staff who install and program of software for Desktop Cloud systems 

can be quite high. Finally, network bandwidth contribute as well to the overall cost of 

running Desktop Cloud systems. 

Therefore, it can be said that although this research tackles the problem of running Desktop 

Cloud system by reducing power consumed by nodes within a system. There is still a need 

for further investigation and comparison study between Traditional and Desktop Cloud in 

order to demonstrate the cost effectiveness of Desktop Cloud systems.   

7.2.4 Design Challenges  

Section 4.1 presented several challenges that need to be considered when a VM allocation 

mechanism is designed. The challenges are discussed in this section to demonstrate that the 

FT mechanism has solved them.  

Challenge 1. Replication of VM instances with the aim of reducing the impact of node 

failure on throughput.  

The FT mechanism replicated VM instances. It improved throughput in private and 

public Desktop Cloud systems statistically significantly better than the FCFS, Greedy, 

RoundRobin and Random VM allocation mechanisms. 

Challenge 2. Selection of a PM to host a replicated VM. 

The FT mechanism adopted a heuristic solution to select a PM for VM replicas. The 

adopted mechanism aimed to improve resource utilisation in order to save power. 

Challenge 3. Response to a failing PM. 

When a failure is detected, the FT mechanism responds by allocating VM copies of all 

VM instances that were running on that failed PM in turn. When a VM instance is found 

to have been destroyed, the mechanism identifies its copy. If the VM copy is a primary, 

the mechanism creates a replica and allocates it to a PM. If it is a replica, the mechanism 

makes it a primary then creates a new replica and selects a PM for it. 

Challenge 4. Implementation of a migration policy of VM instances during runtime to 

reduce the impact of the replication technique.  
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The UBMP was developed to overcome this challenge. This research has demonstrated 

it is able to reduce power consumption significantly statistically more than the static FT 

mechanism.  

7.3 Limitations 

This section presents several limitations of this research, classified into three subsections: 

experimental assumptions concerned with shortages of experiments; limitations of 

simulation discussing the possibility of testing the proposed work in a real-world system; 

and the quality of service overseen by this research. 

7.3.1 Experiment Assumptions 

Experiments were run through simulation, by augmenting failure traces to a simulated 

Desktop Cloud system. The failure traces are real-world traces collected from real systems 

used to simulate systems. The tasks are also real-world traces collected to simulate tasks 

submitted by end users to a Desktop Cloud system. However, there are some details missing 

from the simulation, such as the number of requested VM instances and hardware 

specifications of PMs in the system. Therefore, a number of requested VM instances is 

assumed, as explained in section 5.3.5, along with the specification of PMs, as section 5.3.3 

showed. Results obtained from experiments will be more accurate if these details are 

gathered from real-world systems. 

Furthermore, it is assumed that when a node fails, it is reported directly to the system in 

order to response with no delay. However, such an assumption needs further attention 

because the time required to discover a failing PM may lead to an increased possibility of 

complete failure. In addition, it is assumed throughout the experiments that improving 

resource utilisation leads to a reduction in power. However, this is not always the case in 

Desktop Cloud systems. For example, in the case of public Desktop Clouds it may be 

otherwise, because improving resource utilisation does not mean that resources with no 

utilisation will be in power saving mode, as there is no control over the owners to abide by 

this policy.  

7.3.2 Simulation  

Another limitation of this research is that the FT mechanism was tested on simulated systems 

and not applied to real Desktop Clouds. It may be argued that applying the proposed solution 
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to a real system would demonstrate further issues and give further support to the proposed 

work [153]. This is difficult to achieve because there is no actual Desktop Cloud system that 

can used for this purpose, highlighted as a valid reason for using simulations by [151]. In 

addition, it would be time consuming to build a real Desktop Cloud system in order to apply 

the mechanism, quite beyond the time limits of this research. Nevertheless, it is 

recommended that FT mechanism is applied and tested on a real Desktop Cloud system by 

integrating the proposed mechanism with open-source Cloud management middleware such 

as Eucalyptus or OpenNebula. 

7.3.3 Quality of Service 

Although the proposed mechanism can tolerate node failure, the mechanism has a negative 

impact on the quality of service provided to users because of the migration policy and VM 

check-pointing. It has been shown that the migration of VM and VM check-pointing can 

cause performance degradation and increase the cost of data transfer [55]. Furthermore, the 

node selection phase for VM placement and migration increases the time when the number 

of PMs is large.   

All of these factors can contribute to low quality of service for users of Desktop Cloud 

systems. Although it is stated in this study that users of such systems usually tolerate this in 

return for low running costs, it has not focused on assessing this quality of service. The 

throughput metric can help to evaluate the number of lost tasks, but the time required to 

complete a task can be useful in reflecting the quality of service. Other metrics to be 

considered in order to evaluate quality of service is bandwidth and latency. It is pointed out 

that these are important metrics for VM allocation mechanism from the network point of 

view [92].  

7.4 Summary 

This chapter presented a discussion of the findings of this research. It started with a 

discussion of analysis findings of node failures in order to explain the impact of node failure 

upon the outcomes of Desktop Cloud systems. The node failures were gathered from 

real-world systems used in DesktopCloudSim in order to simulate Desktop Cloud systems. 

The impact of node failure was evaluated using three metrics (throughput, power 

consumption and availability). In summary, node failure affects mainly the throughput 

outcome, regardless which VM allocation mechanism is employed, if no replication 

technique is used.  
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The FT mechanism was developed to fill this gap. The chapter discussed the improvement 

in throughput when the FT mechanism was used in a static way. However, the FT mechanism 

can cause PMs to consume more energy as a result of replicating VM instances. Therefore, 

the UBMP, online migration mechanism, was developed and employed to increase resource 

utilisation, leading to reduced power consumption by PMs in a Desktop Cloud system. The 

UBMP had to balance the throughput and power consumption metrics, as although 

increasing the resource utilisation threshold can decrease power consumption it also 

increases the risk of complete failure, which reduces throughput. In short, the FT mechanism 

is considered to be a first attempt to improve throughput in Desktop Cloud systems with 

some consideration being given to the reduction of power consumption.  

This chapter’s final section of discussed the limitations of this research. These can be 

summarised into: those involving the experiment inputs; those about just the simulation; and 

those about the quality of service.  

The next chapter presents the conclusion of this research. It introduces future work that can 

overcome these limitations. Researchers still face challenges in making Desktop Clouds a 

viable solution. 

 



Chapter 8. Conclusion 

129 

Chapter 8:  Conclusion and Future Work 

The first section of this chapter provides a summary of research into failure-tolerant VM 

allocation mechanisms for Desktop Cloud systems. Its conclusion revisits the objectives of 

this study and presents Desktop Cloud computing as a novel type of Cloud computing and 

node failure as a research challenge. It states the metrics proposed to evaluate VM allocation 

mechanisms; the throughput improvement as a result of employing the FT mechanism 

developed by this research; and the ability of this study to improve this mechanism further 

by reducing power consumption. The second section of the chapter identifies future 

directions along which to pursue this research. It concludes with remarks about this research. 

8.1 Research Conclusion   

This section outlines the contribution of this study to advancing the field of Desktop Cloud 

research. This represents a new type of Cloud computing that provides services through 

non-dedicated resources. These can be any form of computing devices, such as PCs and 

laptops, to be used mainly when they become idle. The new direction attempts to combine 

two computing models, Cloud computing and Volunteer computing, in order to form a Cloud 

system with the goal of providing services at little or no cost to end users. Section 2.3 

introduced Desktop Clouds as a new type of Cloud with several challenges to be tackled 

before it represents a practical proposition.  

High node volatility was identified as a research challenge affecting the outcomes of Desktop 

Cloud systems. Section 2.3.4.4 outlined that such issues can be resolved by developing a 

proper VM allocation mechanism. Section 3.2 reviewed the state-of-the-art methods 

proposed in the literature. However, this demonstrated that little attention has been paid to 

the issue of node failure in VM allocation mechanisms and that the literature falls short of 

providing a plausible VM allocation mechanism for Desktop Cloud systems in the presence 

of node failure. Therefore, in section 4.3 this research proposed an FT mechanism as a novel 

VM allocation mechanism able to cope with the issue of node failure. The FT mechanism 

was improved further by developing, in section 4.4, a novel migration policy to improve 

utilisation of PMs during runtime.  

The aim of this research is to improve the outcomes of Desktop Cloud systems, mainly in 

terms of throughput. In order to achieve this goal, several research hypotheses were tested: 
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 Hypothesis H1: The proposed metrics can be employed to evaluate the impact of 

node failure on Desktop Clouds 

 Hypothesis H2: Employing a replication technique within the FT mechanism will 

improve the throughput of a Desktop Cloud system 

 Hypothesis H3: Setting a utilisation threshold for online VM migration will reduce 

power consumption in the FT mechanism with a decrease of 2% in the throughput 

outcome 

Three experiments were conducted to test these hypotheses: 

 Experiment I. The Impact of Node Failure: to demonstrate that throughput, power 

consumption and availability metrics can evaluate the impact of node failures on the 

outcomes of Desktop Clouds.  

 Experiment II. Evaluation of the FT Mechanism: to evaluate the FT mechanism in 

improving the throughput of a Desktop Cloud system compared to other VM 

mechanisms tested in the first experiment.  

 Experiment III. Utilisation-Based Migration Policy: to find the utilisation threshold that 

achieves a trade-off between increasing resource utilisation and decreasing throughput.    

The main contributions of this research are in developing a novel VM allocation mechanism 

that is tolerant of faults occurring in PMs in Desktop Cloud systems and enhancing it with a 

novel migration policy to improve resource utilisation. In addition, this study has provided 

an analysis of the number of node failures at any given time and proposed evaluation metrics 

for the outcomes of VM allocation mechanisms in the presence of node failure, developing 

a tool to simulate Desktop Cloud systems now available for use by other researchers. The 

following sections provide a summary of the study’s findings and other contributions. 

8.1.1 Node Failure  

It was outlined in this research that PMs in Desktop Cloud systems are, for several reasons, 

quite volatile. PMs can leave the system without prior notification if they become busy with 

local tasks, moreover they are connected to the system via unreliable connections, increasing 

the risk of failure. This research analysed the number of failures in real-world failure traces 

in two Desktop Grid systems: NotreDame and SETI@home systems. Studying such systems 

gives an idea of the extent of node failure in Desktop Cloud systems, because both Desktop 

Grid and Desktop Clouds may employ the same infrastructure.  
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The challenge of node failure was investigated further by simulating Desktop Cloud systems 

and evaluating the impact of node failure. DesktopCloudSim is a simulation extension tool 

developed by this research to conduct experiments in a simulated Desktop Cloud system. 

The impact of node failure was assessed by answering the following research question:  

What is the difference between Desktop Clouds and Traditional Clouds in terms 

of throughput, power consumption and availability? 

This was answered by stating that node failure can affect Desktop Cloud systems by 

decreasing throughput, thus the experiment demonstrated the need to develop a new VM 

allocation mechanism able to improve throughput in the presence of node failure. It also 

proved that DesktopCloudSim, the extension tool developed by this research to simulate 

node failure, is able to simulate Desktop Cloud systems.  

8.1.2 Evaluation Metrics 

Throughput, power consumption and availability metrics were proposed to evaluate VM 

allocation mechanisms in Desktop Cloud systems. Experiment I was conducted to 

investigate this claim by evaluating four mechanisms: FCFS; Greedy; RoundRobin and 

Random. The experiment tested the following hypothesis:  

The proposed metrics can be employed to evaluate the impact of node failure on 

Desktop Clouds. 

In order to test it, the experiment addressed the following research questions: 

Q1.1 What is the impact, if any, of node failure on throughput? 

Q1.2 Which VM allocation mechanism yields the highest throughput of the 

tested mechanisms in Desktop Clouds? 

Q1.3 Which VM allocation mechanism consumes the least power of the tested 

mechanisms in Desktop Clouds? 

Q1.4 Which VM allocation mechanism yields the best availability of the tested 

mechanisms in Desktop Clouds? 

Question Q1.1 was answered by stating that node failure reduced throughput in both private 

and public Desktop Cloud systems, no matter which mechanism was employed. In answer 

to Question Q1.2, it was found that Greedy VM allocation is the mechanism yielding the 

highest throughput when employed in a private Desktop Cloud system. This mechanism was 
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also the answer to Question Q1.3, being the one that consumed the least power, and indeed 

to Q1.4, as it yielded the greatest availability of PMs, when employed in a public Desktop 

Cloud system. By answering the above research questions the experiment demonstrated that 

metrics are able to evaluate the impact of node failure on a Desktop Cloud system and that 

there is a need to develop a novel VM mechanism that can cope with its issue of node failure. 

8.1.3 Throughput Improvement 

This research contributes to the field of Desktop Cloud computing by developing a novel 

VM allocation mechanism, termed the FT mechanism, able to improve throughput in the 

presence of node failure. The experiment tested the following, Hypothesis H2: 

Employing a replication technique within the FT mechanism will improve the 

throughput of a Desktop Cloud System.  

In order to test this hypothesis, the research answered the following research questions: 

Q2.1 What is the impact of employing the FT mechanism on the power consumed 

by nodes with a Desktop Cloud system?  

Q2.2 What is the impact of employing the FT mechanism on the availability of 

nodes in Desktop Clouds? 

The experiment demonstrated that the FT mechanism improved the throughput of both 

private and public Desktop Cloud systems statistically significantly more than traditional 

VM allocation mechanisms. However, the replication technique employed meant the 

improvement comes at a price, the consumption of considerable power. Question Q2.1 was 

answered by saying that the FT mechanism led to greater energy consumption by PMs in 

Desktop Cloud systems than other mechanisms, therefore it is recommended that a technique 

is adopted to minimise this effect. In addition, the experiment revealed that availability was 

affected by using the replication technique, answering Question Q2.2. 

8.1.4 Power Saving  

Experiment II showed that the FT mechanism consumes a considerable amount of power, a 

result of little attention being directed at resource utilisation during runtime. This was 

improved by implementing a migration policy to improve resource utilisation with an 

acceptable degree of loss of throughput. Experiment III was conducted to assess the UBMP 
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mechanism developed by this study to achieve the goal of the optimal trade-off between 

resource utilisation and decreased throughput. Hypothesis H3 was investigated: 

Setting a utilisation threshold for online VM migration will reduce power 

consumption in the FT mechanism with an accepted decrease in throughput. 

There are several related research questions that this experiment answered: 

Q3.1 What is the most suitable node utilisation threshold to reduce consumption 

of power with minimal impact on throughput? 

Q3.2 What is the impact of online VM migration policy on the throughput of a 

Cloud system?  

Utilisation is used in this migration technique. If a PM has utilisation above zero but below 

a certain level, all VMs allocated to this PM will be migrated to another in order to improve 

utilisation. The experiment answered both questions by identifying a critical utilisation level 

of 40%. At this level there is optimal trade-off between throughput and power consumption. 

The experiment found that setting this threshold in UBMP statistically significantly reduced 

power consumption by about 20%, with the penalty of a maximum drop in throughput of 

2%. 

8.2 Future Work 

The work carried out by this study can be extended into several promising areas in Desktop 

Clouds. First, several enhancements can be applied to the FT mechanism. Second, it can be 

investigated how to stimulate people to take part in Desktop Cloud systems. The last way is 

to look into the prospect of running applications on Desktop Cloud systems.    

8.2.1 Mechanism Enhancement 

One of the features of Desktop Cloud systems is that the PMs are widely distributed around 

the globe. This can be beneficial to the FT mechanism in reducing the impact on networks 

and improving response times. This direction of research can be extended further by 

developing a location-aware policy for the FT mechanism to select a PM to host a VM for a 

user in such a way that it is close as possible to the user. The same principle can be used in 

the UBMP policy to choose PMs for migration that are close to those from which VMs are 

migrating. Such a policy for the node selection and migration phases can help to reduce the 

overheads on the network.   
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Studies such as [172] propose approaches to predict node failure in Desktop Grids. This idea 

can be extended by the UBMP mechanism to trig the migration of VM instances from PMs 

just before they fail as it is predicated. This can be useful in two ways. The first advantage 

is that it will improve throughput and the second that it reduces the impact on the network, 

because there will be fewer new VM instances to create either primaries or replicas for failed 

VMs.   

To improve prediction by node failure approaches, a technique based on experience may be 

employed by the FT mechanism. This can learn from experience in the short-term and long-

term phases. For the former, it can observe the number of failures either to increase the 

number of required replicas, if the level of failures is quite high, or to destroy them if they 

are too few to reduce power. In the longer term, the technique can create a table to classify 

nodes according to their history of reliability. For example, a possible way is to assign nodes 

with a history of high reliability as primary nodes and those with low reliability as hosts to 

replicate VM instances.  

Another step is to integrate the proposed mechanism into open-source Cloud middleware 

software, such as Eucalyptus. This can open up further avenues on which to undertake 

research into developing Cloud middleware suitable for Desktop Clouds and thus to conduct 

further experiments with real-world Desktop Cloud systems.  

Another dimension to consider for future research is the number of running VM instances. 

The question of whether the number of running VM instances affects the outcomes of a 

Desktop Cloud system in the presence of node failure seems a feasible research question. 

Similarly, the issue about the relationship between the number of running VMs and that of 

the PMs available in a Desktop Cloud system might be raised, to improve the FT mechanism 

by employing a load-aware enhancement.  

The UBMP policy showed that it can reduce power consumption with an acceptable level of 

throughput downgrade. However, a future goal could be to improve it by finding the 

optimum level of trade-off between resource utilisation and decrease in throughput. In 

addition, the number of migrations needed to be executed during runtime can have a negative 

impact on a network. Therefore, the UBMP can be investigated further by adding the new 

goal of minimising the number of migrations of VM instances. In short, a feasible future 

improvement to the UBMP is to find the optimum balance of improved resource utilisation 

and migration, along with minimal decrease in throughput.  



Chapter 8. Conclusion 

135 

8.2.2 Stimulate Contributors 

An issue for further attention is how to motivate people to join Desktop Cloud systems as 

contributors or customers. There are some obvious reasons why people contribute their 

computing resources to research projects such as SETI@home, for instance for the sake of 

improving knowledge. It may be said that convincing people to contribute to Desktop Grids 

is much easier than getting them to contribute to Desktop Clouds. A contributor needs only 

to install a piece of software, BOINC software for instance, on a SETI@home system to run 

small batches of jobs, while it is more complicated to be a part of a Desktop Cloud, where 

people need to install virtualisation software. Some would be reluctant to do so, especially 

those with no experience in computer science. 

A study might be carried out to ascertain public opinion on what would make people join 

Desktop Cloud systems. This survey would help to develop approaches to stimulate joining 

them, for instance by introducing a credit scheme for contributors: the more a contributor 

offers their available resources in a Desktop Cloud system, the more credit they accrue to be 

used to secure benefits from the system. For example, credit might be spent by the 

contributor to allow them high priority access to services.  

The authors in [188] propose having a market for people to sell their computing resources 

over the Internet as part of a Desktop Cloud system. This idea opens up another research 

window on the potential to achieve this ambition. For example, a decision policy might be 

used to help people decide whether to sell their resources at a given time if the offered price 

is right. The policy can calculate the running cost of a PM, mainly power consumption, in 

order to assess whether it is profitable to join the Desktop Cloud system.  

8.2.3 Application Type 

According to Marosi et al., it is important for Desktop Cloud systems to deal with various 

types of applications [11]. However, an open issue for researchers to investigate is the kind 

of applications can be run on Desktop Cloud systems. Applications that require a rapid 

response time are not appropriate for such systems. In addition, the question can be raised 

about the ability of a Desktop Cloud to accommodate long-term issues such as web services 

in the presence of node failure. 

The type of applications running on VM instances can monitored to assess the quality of 

service provided and to check that they are not undertaking malicious behaviour, which can 

provide an extra level of security. Researchers have promising opportunities to develop a 
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means of monitoring Desktop Cloud systems, and to apply and test existing mechanisms 

developed for Traditional Clouds. 

8.3 Final Remarks  

Desktop Clouds are derived from the paradigm of Cloud computing, employing computing 

resources when they become idle in order to provide Cloud services at less expense. To work 

towards Desktop Clouds becoming a viable Cloud model, this research has focused on 

tackling the challenge of node failure. A novel failure-tolerant VM allocation mechanism 

was developed throughout that evaluated by throughput, power consumption and availability 

metrics through DesktopCloudSim, the simulation tool. The outcome is a VM allocation 

mechanism that can be employed in Desktop Cloud systems to reduce the impact of node 

failure. The mechanism was improved further by developing the UBMP mechanism, which 

improves resource utilisation in order to save energy. The mechanism can stimulate further 

innovation in Desktop Cloud computing so it represents a real alternative to Traditional 

Clouds. 
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