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Abstract. We describe a new CSeq module for the verification of multi-threaded
C programs with dynamic thread creation. This module implements a variation
of the lazy sequentialization algorithm implemented in Lazy-CSeq. The main
novelty is that we do not bound here the number of round-robin schedules in an
execution and the loops that do not contain a thread creation statement are not
unwound (and thus unboundedly many iterations can be considered). As in Lazy-
CSeq the number of thread creations per run is bounded as well as the depth of
recursive calls. For the experiments we use CPAChecker as backend.

The description below follows the general SVCOMP requirements, but is the same
as for SVCOMP’15 (and this paper is not meant to become part of the proceedings).

1 Introduction

The tool CSeq [2, 3] is a modular framework for the verification of multi-threaded C
programs with dynamic thread creation that is based on sequentialization: the input
concurrent program is translated into a corresponding sequential one and then the ver-
ification is performed on this last one by using existing verification tools. Modules of
CSeq implement eager sequentialization schemes [6, 8, 9] and lazy sequentialization
schemes targeted to bounded model checking [4, 5].

The module Lazy-CSeq [5] implements a lazy sequentialization for bounded pro-
grams that avoids the recomputation of local states of the first lazy scheme [7] and is
allows to explore the runs of the starting concurrent program up to a bounded number
of context switches (arranged in rounds of a round-robin schedule). The new module
UL-CSeq does not bound the number of rounds and can handle also unbounded pro-
grams. In particular, we still bound the number of threads in a run and the depth of the
recursion in recursive function calls, however we keep the cycles (i.e., we do not unroll
them) if they do not contain thread creation statements. The resulting program has a
finite control flow graph and thus is suitable for the tool CPAChecker [1] that we use in
our experiments.
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2 Verification Approach

Overview. Our sequentialization scheme schedules the different threads in a round-
robin fashion until all the threads terminate. It runs the threads across unboudedly many
rounds. We bound the number of possible threads in the program and this is indirectly
achieved by unrolling the loops that contain thread creation statements. The overall
structure of the translation has a main driver and a function for each thread. The purpose
of the driver is to call in an infinite while-loop the thread functions according to a
round-robin schedule repeatedly. At each iteration a whole round of contexts (one for
each thread) is executed.

For each thread, we maintain the program locations at which the previous round’s
context switch has happened and thus the computation must resume in the next round.
To ensure the correctness of resuming from previous context switch, we also keep a
global variable to store the current mode in the thread simulation: resume, execute, or
suspend. To avoid the recomputation of the local states when a thread is resumed, we
declare the local variables of class static (i.e., persistent) and keep track of the program
counter for each thread.

Heap allocation needs no special treatment during the sequentialization and can be
delegated entirely to the backend model checker.

Main driver. The following is the main driver with bound of two on thread creations:

while (1) {
__cs_simulate = 0; /+*thread simulation mode is on resumex/
main_thread() ; /*main threadx/
_ _cs_simulate = 0;
if (__cs_activethread_1) thr_1(__cs_args_1); /*thread 1x/
__cs_simulate = 0;

if (__cs_activethread_2) thr_2(__cs_args_2); /*thread 2x/
}

Thread translation. The sequentialized program also contains a function (thread func-
tion) for each thread instance (including the original main). The code shared by multiple
threads is duplicated for each of them such that each thread has its own code.

In the translation, we inject a guard for each statement to control the resume, exe-
cution and suspension of each thread. The injected code is

if (__cs_simulate == |l /xexecutex/
(__cs_simulate == 0 && __cs_pc_1 == curr_pc)){/*resumex/
__cs_simulate = 1;
if (__VERIFIER_nondet_bool()){ /xcontext switch guessx*/
__cs_pc_1l = curr_pc; /+xsave program locationx/
__cs_simulate = 2; } /*suspend this threadx*/
else { /* execute statement x/ }

This control code on resuming makes the control to skip all the statements up to the
program counter at the last context switch. On positioning at the corresponding state-
ment, the mode changes to execution, and the statements are executed until a context
switch happens, and then the mode changes to suspend. In this mode, we skip the in-
structions until returning to the main driver. Context switching are nondeterministically
guessed in the execution mode before each statement is executed.



If- and while-statements also require to inject a similar code to guard the condition.

3 Architecture, Implementation, and Availability

Architecture. UL-CSeq is implemented as a source-to-source transformation tool in
Python (v2.7+). Ituses the pycparser (v2.14, https://github.com/eliben/
pycparser) to parse a C program into an abstract syntax tree (AST). The sequential-
ized program can then be processed independently by any sequential verification tool
for C. UL-CSeq has been tested with CPAChecker (v1.4, http://cpachecker.
sosy—lab.org/).

A small script bundles up translation and verification. This script first invokes the
translation which sequentializes a concurrent program into a sequential one, then it calls
CPAChecker to analyze the sequentialized program. The script returns TRUE (safe) or
FALSE (unsafe) according to the analysis of CPAChecker.

Availability and Installation. UL-CSeq can be downloaded from http://users.
ecs.soton.ac.uk/gp4/cseqg/ul-cseg-svcompl6.tar.gz;italsorequires
installation of the pycparser. In the competition we used CPAChecker as a sequen-
tial verification backend; this must be installed in the directory of UL-CSeq. CPAChecker
also requires the installation of Java Runtime Environment. For the competition, a com-
pressed version of CPAChecker is included, and it can be used when unzipped. The
wrapper script for the tool on the BenchExec repository is ulcseq. py.

Call. For the competition, UL-CSeq should be called in the installation directory as
follows:

./ul-cseq.py —-i<file> --spec<specfile> —--witness<logfile>

Since UL-CSeq is not a full verification tool but only a concurrency pre-processor,
we only compete in the Concurrency category.
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