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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT
Aeronautics, Astronautics and Computational Engineering

Doctor of Philosophy

Space debris cloud evolution in Low Earth Orbit

by Francesca Letizia

The Earth is surrounded by inoperative objects generated from past and current space
missions. Because of the high orbital speed, even the impact with small fragments is
a hazard to operational spacecraft as it could lead to the partial or complete loss of
the mission. Therefore, it is important to assess the collision risk due to space debris
considering small fragments, which are usually not included in space debris modelling
because their large number would make simulations extremely complex. In this work,
an analytical approach is developed to describe the evolution of debris clouds created by
fragmentations in Low Earth Orbit. In contrast to traditional approaches, which follow
the trajectory of individual fragments, with the proposed method the cloud behaviour
is studied globally, so that the presence of small fragments can be modelled. This give a
deeper insight into the dynamics of debris clouds and reduces the computational effort
needed to estimate the consequences of a collision. A standard breakup model is used
to describe the dispersion of the fragments in terms of characteristic length, area-to-
mass ratio and velocity. From the velocity distribution, the fragment spatial dispersion
is derived. The cloud density is expressed by a continuous function that depends on
the altitude and that is set as initial condition for the orbit propagation. Based on an
analytical approach proposed in the literature for interplanetary dust and spacecraft
swarms, the fragment cloud evolution in time is derived through the continuity equa-
tion, which is used to describe the variation of debris density considering the effect of
atmospheric drag. The approach has been extended to express the cloud density as a
function of multiple orbital parameters and to model additional perturbations such as
the Earth’s oblateness. The method has been validated through the comparison with the
traditional numerical propagation and then applied to study many breakup scenarios.
The proposed approach proves to be flexible and able to study the collision risk coming
from several breakup events and to evaluate the vulnerability of different targets. It is
also applied to derive an index of the environmental criticality of spacecraft.
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Introduction

The term space debris indicates the collection of all non-operative objects in orbit around
the Earth. Space debris includes spent rocket bodies and inactive satellites, but also
fragments generated by destructive events (such as collisions and explosions) and objects
released during operations. More than 16 000 objects (including active satellites) are
catalogued and tracked by radar from the Earth (IADC, 2013). For objects in Low Earth
Orbit (LEO), it is usually considered that they can be tracked if their size is larger than
5-10 cm (Xu et al., 2009). In addition to this, there is a much larger population of small
objects that cannot be tracked, but that can still be a serious hazard in case of collision
with operational spacecraft, due to the high orbital speed. As a reference, at the altitude
of the International Space Station (ISS), space debris moves with a speed of around
7 km s−1. At this speed, a collision with a 1 cm object releases the same amount of energy
of an hand grenade or the same energy associated with the crashing of a small car
travelling at 40 km/h. This simple example shows how a collision with a piece of space
debris, even a very small one, may affect the correct functioning of a spacecraft or cause
the failure of a mission and thus a relevant loss for its owner. Moreover, any collision
generates new fragments that may collide with other objects: if the debris density is
too high, this mechanism may produce more objects than the ones than decay from
their orbits. This uncontrolled growth of space debris, often called the Kessler syndrome
(Kessler and Cour-Palais, 1978), may interfere with the future exploitation of the space
around the Earth and with the sustainability of space activities. This is problematic
since space infrastructures have become essential for our society, as in the case of the
Global Positioning System (GPS) and telecommunication systems.

Obtaining a reliable picture of the space debris environment and understanding its
evolution are two key elements to evaluate the collision risk for operative spacecraft,
to analyse possible mitigation strategies and to suggest future policies to increase the
sustainability of the space sector. Current studies of space debris evolution (Liou et al.,
2013b) have focussed mostly on objects larger than 10 cm, which are considered the
most dangerous ones in case of collision as they are able to create new large fragment
clouds. The reason for the choice of this specific cutoff size is twofold. On one hand,
only trackable objects are included, so that the models’ forecast can be verified with
observable data. On the other hand, the threshold limits the number of objects to be
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included in the simulation, so that they are still manageable with current computing
capabilities. However, as anticipated, also objects smaller than 10 cm can represent a
threat to operational spacecraft. It is usually considered that any object larger than 1 cm

can destroy a satellite in case of collision and that any object larger than 1mm can cause
anomalies (Krisko, 2007). Differently from large objects, small pieces of debris cannot
be tracked and, therefore, cannot be avoided by manoeuvres. For this reason, McKnight
et al. (2014) classify the fragments in this size range as lethal non-trackable objects and
identify them as the leading detrimental factor to the safety of operational spacecraft.

The inclusion of small fragments in debris modelling could be useful to obtain a more
complete picture of the debris environment, but the large number of objects included in
the simulation and the uncertainty on their characteristics should be carefully consid-
ered. It is estimated that the number of objects between 1 cm and 10 cm is around several
hundred thousand, whereas the number of objects between 1mm and 1 cm is larger than
100 million (IADC, 2013). These numbers suggest that the modelling techniques adopted
for large objects may not be suitable also for small ones. For large objects, a determin-
istic approach is usually adopted: each object is studied individually, evaluating the
evolution of its trajectory under the effect of relevant perturbations and its probabil-
ity of collision with other objects. If this approach were extended to small objects, the
computational time would be proportional to the total number of objects and it would
grow exponentially as the size threshold is reduced. Some existing debris models deal
with this issue by grouping a certain amount of small fragments in representative objects
(Rossi et al., 1995b). These synthetic objects are propagated similarly to the large ones
(i.e. individually) and the distribution of small objects is reconstructed a posteriori. With
this approach, the dependence of the required computational resources on the number
of objects is weaker, but not removed because the debris objects (real and synthetic) are
still propagated individually.

The current work investigates an alternative approach to the propagation evaluating
the feasibility of formulations that do not focus on single debris objects, but rather
on fragments’ distributions. These kinds of methods already exist, for example, for
Geosynchronous Earth Orbit (GEO), whereas this work focusses on LEO as this is the
region of space where the debris density is maximum and where most fragmentations
have occurred. The research questions that arise are then:

• which modelling techniques are able to describe the long term evolution of space
debris in LEO without requiring the propagation of single objects?

• which level of accuracy and which computational resources are associated with
this technique?

• how can this technique be used to assess the collision risk to operational satellites?
• which new analyses on the collision risk are enabled by the novel modelling tech-

nique?

xxx



The starting point to answer to the first question is the work by McInnes (1993), who
proposed to study the debris population in terms of its spatial density, applying the
continuity equation to model the effect of atmospheric drag and the creation of new
objects due to collisions. This approach has two main advantages. First, it is able to
arrive at an analytical expression for the debris density as a function of altitude and
time, meaning that with a very limited computational effort it is possible to model the
evolution of space debris including objects of any size. Second, the formulation in spatial
density allows for a natural connection to the computation of the collision probability,
as it will be shown later. For these two reasons, the approach by McInnes (1993) is set
as the cornerstone of the propagation method proposed in this work. Some important
variations and extension to the work by McInnes (1993) have been developed in this
work. First, whereas McInnes (1993) studies the global debris population, the focus
of this work is on modelling single fragmentation events. The idea behind this shift
in scope is that the current work aims to develop an approach that could be used by
satellite operators to assess the increase in the collision risk for their spacecraft as a result
of a fragmentation or to identify under which conditions a fragmentation is more likely
to affect their satellite. For these applications, single fragmentation events need to be
modelled. In addition, adopting this point of view, the proposed propagation method
does not want to compete with established debris models (Sdunnus et al., 2004), but
rather to extend their capabilities by improving the representation of small debris objects.
The second important difference with respect to McInnes (1993) is that in this work the
propagation with the continuity equation has been extended to multiple dimensions. In
this way, the debris spatial density is not expressed as a function of the altitude only,
but also the dependence on other variables, such as the fragments’ area-to-mass ratio
and orbital parameters, can be considered. This increases remarkably the applicability
of the method, extending the orbital regions where it can be used, the length of the time
span that can be simulated, the number of perturbations that can be modelled.

The second research question was addressed by setting up a comparison with traditional
numerical propagation methods and simulating different breakup scenarios. Validation
cases with different classes of fragmentations, different levels of energy, and different
breakup locations were studied. It will be shown how the proposed approach is suitable
to study the region of LEO with the highest density of space debris and the highest
number of operational spacecraft. As already mentioned, the two core concepts in the
work by McInnes (1993), namely the representation in spatial density and the availability
of an analytical solution, contribute to the reduction of the request of computational
resources, both in terms of time and RAM. This means that many breakup scenarios can
be simulated without the use of supercomputers. This point is particularly relevant if
one aims to develop a method that can be adopted by general users where the availability
of supercomputer facilities cannot be assumed. Moreover, as it will be discussed in the
following, reducing the request of computational resources does not mean only running
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a simulation faster, but making new analyses possible and suggesting new points of
view for the study of the consequences of fragmentations.

The third point focusses on the transition from describing only the evolution of a frag-
ment cloud to studying how it interacts with other objects. The formulation in spatial
density allows the common analogy with the kinetic theory of gases (Su and Kessler,
1985b) to be adopted to estimate the collision probability for a spacecraft crossing the
fragment cloud. The kinetic theory of gases requires not only information on the cloud
density, but also on the relative velocity between the objects in the cloud and the space-
craft crossing it. Also for this point, an analytical formulation should be sought to keep
the computational resources low. An expression based on the orbital configuration of
the fragment cloud and the one of the spacecraft will be discussed and validated.

Finally, several possible applications of the proposed method will be discussed. These
range from the estimation of the effect of fragmentations on a specific spacecraft to the
extended analysis of which fragmentation conditions lead to the largest increase in the
collision probability for a set of targets. It will be also shown how the proposed method
can be used to build a tool to quickly asses the effect of a fragmentation on the space
environment and on operational spacecraft. Thanks to its limited computational time,
the analytical method discussed in this work can also be the basis of an environmen-
tal index that ranks spacecraft depending on the severity of the consequences of their
breakup on other satellites.

Contributions

The contents of this thesis have been presented in different journal articles and confer-
ence papers. The following list provides a brief overview of the topics discussed in each
work.

• F. Letizia, C. Colombo, H. G. Lewis, and C. R. McInnes. Debris cloud evolution in
Low Earth Orbit. In 64th International Astronautical Congress, Paris, France, Septem-
ber 2013. International Astronautical Federation. IAC-13.A6.P.12
Poster presentation: best poster in the Space Debris symposium and short-listed
for the award of best poster. The paper presents the preliminary formulation of
the method to describe the effect of atmospheric drag on debris clouds.

• F. Letizia, C. Colombo, and H. G. Lewis. Analytical model for the propagation of
small debris objects after a fragmentation event. In 24th AAS/AIAA Space Flight
Mechanics Meeting. AAS/AIAA, January 2014a. AAS 14-324
Oral presentation. The paper presents an improvement in the definition of the
initial condition for the analytical propagator, which enhances the method’s ro-
bustness.
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• F. Letizia, C. Colombo, and H. G. Lewis. Analytical model for the propagation of
small debris objects clouds after fragmentations. Journal of Guidance, Control, and
Dynamics, 38(8):1478–1491, 2015c
The article discusses in detail the formulation of the model for the evolution of
space debris clouds under the effect of atmospheric drag. The validation through
the comparison with numerical propagation is presented and an example of ap-
plication is reported.

• F. Letizia, C. Colombo, and H. G. Lewis. Continuity equation approach for the
analysis of the collision risk due to space debris clouds generated by a fragmen-
tation event. In 65th International Astronautical Congress, Paris, France, September
2014b. International Astronautical Federation. IAC-14.A6.P.31
Poster presentation: short-listed for the award of best poster. The paper introduces
the formalisation of how the analytical approach can be applied to compute the
collision probability for a spacecraft crossing a debris cloud.

• F. Letizia, C. Colombo, and H. G. Lewis. Small debris fragments contribution to
collision probability for spacecraft in Low Earth Orbit. In Space Safety is No Acci-
dent, 7th IAASS Conference, pages 379 – 387. Springer International Publishing, May
2015d. ISBN 978-3-319-15981-2
Oral presentation: winning paper of the competition organised by the Space Gener-
ation Advisory Council. The paper discusses possible applications of the analytical
approach to study different collision scenarios.

• F. Letizia, C. Colombo, and H. G. Lewis. Collision probability due to space debris
clouds through a continuum approach. Journal of Guidance, Control, and Dynamics,
2015i. doi: 10.2514/1.G001382. Accessed 10 September 2015
The article presents in detail the method to compute the collision probability for
a spacecraft crossing a fragment cloud, showing also the validation performed
with the comparison with a traditional numerical approach. It also introduces the
modelling of the distribution in latitude.

• C. Colombo, A. Wittig, F. Letizia, and R. Armellin. Density of debris fragments
through differential algebra and averaged dynamics. In 25th AAS/AIAA Space Flight
Mechanics Meeting. AAS/AIAA, January 2015. AAS 15-391
Oral presentation. The paper discusses the problem of debris cloud propagation
in regions different from Low Earth Orbit by adopting the formulation in terms of
spatial density, but using differential algebra instead of the continuity equation to
model the cloud evolution.

• F. Letizia, C. Colombo, and H. G. Lewis. Continuity equation method for debris
cloud evolution. In Key Topics in Orbit Propagation Applied to SSA, April 2014c
Oral presentation. The talk introduces the extension of the continuity equation
method to multiple dimensions to improve the method accuracy and increase its
applicability.
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• F. Letizia, C. Colombo, and H. G. Lewis. Multidimensional extension of the con-
tinuity equation method for debris clouds evolution. Advances in Space Research,
2015a. doi:10.1016/j.asr.2015.11.035. Accessed 8 December 2015
The article discusses in detail the extension of the approach to multiple dimensions,
presenting the applications to the modelling of the effect of the Earth’s oblateness,
the description of the distribution of the fragments in area-to-mass ratio and in
eccentricity.

• F. Letizia, C. Colombo, and H. G. Lewis. 2D continuity equation method for space
debris cloud collision analysis. In 25th AAS/AIAA Space Flight Mechanics Meeting.
AAS/AIAA, January 2015g. AAS 15-293
Oral presentation. The paper extends the computation of the collision probability
to the case where the continuity equation is formulated in multiple dimensions.

• F. Letizia, C. Colombo, and H. G. Lewis. Density based approach for collision risk
computation. In 25th International Symposium on Space Flight Dynamics, October
2015h
Poster presentation. The paper introduces a formulation where, differently from
the previous cases, the representation in terms of spatial density is applied right
after the breakup. This allows the simulation of large fragmentation events. The
application to a real explosion is discussed.

• F. Letizia, C. Colombo, and H. G. Lewis. Density approach to debris propagation.
In Key Topics in Orbit Propagation Applied to SSA, October 2015f
Oral presentation. The talk gives a general overview of the method and its ap-
plication to real fragmentation events and to the definition on an environmental
index.

In addition, the following papers are in preparation:

• F. Letizia, C. Colombo, and H. G. Lewis. Improved continuity equation method
for space debris cloud collision analysis, 2015e. Manuscript in preparation
The paper discusses the computation of the collision probability when the formu-
lation with multiple variables is adopted. Some applications of the method are
presented.

• F. Letizia, C. Colombo, H. G. Lewis, and H. Krag. Assessment of breakup severity
on operational satellites, 2015j. Manuscript submitted for publication
The paper proposes an environmental index to rank different breakups depending
on their effect on active satellites.

Structure of the thesis

The outline of the current work is as follows. Chapter 1 provides a brief introduction to
debris modelling. Chapter 2 introduces the analytical model, and describes the results
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obtained with the model on the propagation of debris clouds produced by breakups with
different energies and in different location. The comparison with traditional propagation
methods is presented. Chapter 3 discusses how the method can be used to study the
collision probability for a target crossing the fragment cloud produced by a breakup.
The method is applied to study some real breakups and to analyse how the collision
probability of a spacecraft is affected by the fragmentation conditions. Chapter 4 explains
the extension of the continuity equation method to multiple dimensions and shows some
cases when the new formulation is beneficial. Chapter 5 presents the computation of
the collision probability for the case with the propagation with multiple variables and
some applications to computation of the collision probability of different satellites are
shown. Finally, Chapter 6 explores the feasibility of a formulation where the propagation
of single objects is completely removed and how this can be applied to develop an
environmental index for spacecraft. Further details on validations, implementation and
mathematical proofs are given in Appendix A and B.
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1
Space debris modelling

Since the launch of Sputnik in 1957, around 6600 satellites have been placed in orbit
around the Earth and around 3600 are still in orbit now.1 However, less than one third
of these satellites are still operational; the others are currently orbiting, out of control,
occupying useful slots and representing a threat of collision with operational spacecraft.
A public catalogue2 is maintained to keep track of objects in orbit and avoid collisions. In
addition to intact spent satellites, also objects released in different phases of missions are
in orbit. The catalogue contains any object larger than 5-10 cm in LEO and larger than 1m

in GEO. As of 2011, active satellites represent the 5.6% of the catalogued objects, inactive
spacecraft are the 16.3% and 10.5% of the catalogue is formed by the spent rocket bodies
used to insert the satellites in their orbits (IADC, 2013). The remaining population is
made by objects released during launch and operation (11.3%) and a large part (56.3%)
by fragmentation debris, which is all the objects produced by collisions and explosions
(e.g. caused by remaining fuel in rocket bodies or by failed batteries).

This classification of objects makes it evident that, quoting Chobotov (2002), space debris
is a “self-perpetuating” issue as any space mission generates new objects. For this reason,
all the major space agencies are involved in the definition of guidelines to limit the debris
proliferation, for example by requesting the removal of fuel from rocket bodies after the
injection in orbit (rocket passivation) or by defining some protected regions that should
be left clear at the end of the mission (e.g., the 25-year rule that prescribes spacecraft in
LEO to decay or to reach a graveyard orbit within 25 years of the end of the mission).

1ESA, About Space Debris, [Online] last access 22 September 2015
2Space Track catalogue available at https://www.space-track.org, last access 22 Septeber 2015

1
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Figure 1.1: Estimated spatial density of objects larger than 1mm as a function of altitude
according to the MASTER 2009 population.

While it is not clear if these measures are sufficient to stabilise the debris population, two
important events raised the attention even more on the space debris issue. The first one
is the infamous Chinese anti-satellite test in 2007: a satellite, Fengyun-1C, with a mass
of 880 kg, was intentionally destroyed generating almost 2000 new catalogued objects,
increasing the spatial density of objects at the fragmentation altitude by more than 60%
(Pardini and Anselmo, 2007). The orbit of the destroyed satellite made the event even
more serious: at 863 km, where the fragmentation occurred, atmospheric drag, the only
available natural sink mechanism for space debris, is not very effective and the fragments
will stay in orbit for a long time (Pardini and Anselmo, 2011). Moreover, the specific
orbit, sun-synchronous3, was already the region of space with the highest debris density
because of its particular interest for Earth observation missions, and because it has been
affected by other fragmentation events in the past (Figure 1.1).

The second important event took place in 2009 and it was the collision between two
satellites, Cosmos 2251 and Iridium 33, that generated more than 2000 new catalogued
objects (Pardini and Anselmo, 2014). The collision occurred at an altitude (789 km) close
to the one of the Chinese test, resulting in similar problems in terms of the fragment
orbital life. While the Cosmos satellite was already non operational before the collision,
Iridium 33 was still functioning. In theory, it could have manoeuvred to avoid the impact,
but it was moved, for operational purposes, in the direction of the abandoned spacecraft
because the operators did not have accurate information on the position of Cosmos 2251
(Pardini and Anselmo, 2011). Even if many close approaches between the two satellites

3The plane defined by a sun-synchronous orbit keeps a constant angle with respect to the Sun, so that a
spacecraft on this orbit passes above a specific place on the Earth surface always at the same time of the day;
this is particularly useful for Earth observation missions as it allows multiple observations with similar
lighting conditions.
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were predicted, they were not considered at high risk. This shows how uncertainty plays
a very important role in debris studies and models should consider this aspect in their
predictions (Finkleman, 2014).

Besides the event in 2009, three other collisions were documented between satellites
and catalogued fragments (Pardini and Anselmo, 2014). In addition, since 2012, in at
least six occasions, a collision between an uncatalogued piece of debris and a satellite
was proposed as an explanation of satellite anomalies (NASA Orbital Debris Program
Office, 2012a, 2015, 2012b, 2013). One example is the breakup of Iridium 47 on 7th June
2014, when ten new pieces of debris were observed: the difference in the orbital period
among the fragments suggests that an event with considerable energy took place. More
recently, in February 2015, the satellite DMSP-F13 supposedly exploded in orbit due
to a malfunctioning of a battery, producing 160 new objects that were added to the
debris population (Berger and Gruss, 2015); this forced all satellite operators to assess
the resulting collision risk to their own missions (Berger, 2015).

Historically, since 1961, 142 fragmentations occurred in LEO: this data is derived from
the detailed list in (Orbital Debris Program Office, 2014) valid until 2003 and the analysis
of the updates published on the Orbital Debris Quarterly News4. Figure 1.2 shows the
distribution of the number of events and of the produced fragments with semi-major
axis and inclination. As anticipated, it appears clearly how the region between 700 and
900 km is the most affected by breakups, especially in the subset of sun-synchronous
orbits (inclination between 90 and 100 degrees).

The effect of fragmentations is not limited to the orbits where they happened, but rather
they affect the global debris environment. For example, in March 2012, the six astro-
nauts of the ISS sheltered in the Soyuz spacecraft as a precaution during a close passage
of a fragment generated by the 2009 Cosmos-Iridium collision. More recently, on 27th

October 2014, the ISS performed another manoeuvre to avoid a 8 cm fragment generated
as well by the Cosmos-Iridium collision. This shows how crucial it is to predict the
motion of objects generated by a fragmentation event and evaluate their effect on the
collision risk in the long term. The models used for this purpose usually discriminate
the objects considering their size, both for implementation reasons and for practical con-
siderations. In LEO, radar can track objects larger than 5-10 cm, whereas the population
of centimetre-sized objects can be statistically derived from radar data and the number
of even smaller objects is inferred from impact records (Xu et al., 2009). The reference
population for most debris analyses usually includes objects larger than 10 cm, even
though some studies that consider objects down to 5 cm (White and Lewis, 2014) and
1 cm (Martin et al., 2004; Walker et al., 2000, 2002) are available. The choice of defining
a threshold value for the fragments’ size is motivated by the fact that they are usually

4For the fragmentations described in the Orbital Debris Quarterly News the number of produced frag-
ments was updated by checking https://www.space-track.org. Data retrieved between June and July
2015.
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Figure 1.2: Distribution of events (blue) and number of generated fragments (red) for
the breakups in LEO in semi-major axis a and inclination i between year 1961 and year
2015. The values are expressed as percentage of the total number of events (142) and
fragments (16115).

considered the most dangerous impactors, i.e. the ones able to generate large debris
clouds and to influence the long term evolution of the debris population (Rossi et al.,
2015a). This limitation is also introduced because the number of small objects is so large
(Figure 1.3) that considering all of them would make simulations extremely expensive in
terms of computational time. For this reason, even if the radar technology is evolving, so
that it will be possible to track smaller and smaller objects, Crowther (2013) highlighted
that in the future the problem of space debris may also involve how to manage a large
database of objects both in terms of computational time and avoiding false alarms5.

Besides the capabilities of radar, a cutoff on the dimension of the modelled space de-
bris objects is usually introduced for computational reasons. This partial representation
of space debris environment may result in an underestimation of the collision risk for
operational satellites. Even though very small fragments (< 1 cm) can in theory be neu-
tralised using shields6 (Crowther, 2013), there is a large population of objects between
1 and 10 cm that is considered extremely dangerous. They are too large for shields but
too small to be tracked, and thus they pose a risk to operational spacecraft (Wiedemann

5This is partially happening already now as in the case of the Cosmos/Iridium collision. In that case,
the operators were receiving a large amount of alerts for close encounters that they got used to ignore.

6In practice, this is currently done only on the ISS.
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Figure 1.3: Estimated cumulative spatial density of objects in LEO as a function of their
size according to the MASTER 2009 population.

et al., 2013) as it may cause spacecraft anomalies (McKnight and Di Pentino, 2013) or
even more serious damage to satellites (Krisko, 2007). For example, Giacomuzzo et al.
(2010) has shown that, for satellites similar to COSMO-SkyMed,7 the largest damage
would be generated by objects in the size range between 1mm and 1 cm. Recently, McK-
night et al. (2014) highlighted how the so-called lethal non-trackable objects may become
the leading factor in the decrease of flight safety.

White and Lewis (2014) showed that the effect of remediation measures is not the same
on the population of objects larger than 10 cm and on objects between 5 and 10 cm as the
latter may still increase even when the former is supposed to decrease. For this reason
and because of the potential threat represented by small objects, an increasing effort is
currently underway to obtain a better understanding of their contribution to the debris
population. For example, Krisko et al. (2015) has compared the modelling of fragments
with size between 1mm and 1 cm in the space debris models used by NASA and ESA

(respectively, ORDEM and MASTER), finding substantial differences in the values of the
predicted flux both at the ISS orbit and for a typical sun-synchronous orbit. This suggests
the importance of further analysis on how small objects are generated and handled in
the models. It also demonstrates the evolution towards including them in space debris
environment prediction.

The inclusion of small fragments and the request for quick estimations of the space de-
bris evolution result in the formulation of simplified models of debris dynamics, which
is, instead, quite complex. The objects produced by explosions and collisions have larger
area-to-mass ratio than common satellites, so fragments are highly affected by the per-
turbative forces whose intensity depends on the cross-sectional area (e.g. atmospheric

7An Earth observation constellation formed by four identical medium-sized satellites in sun-
synchronous orbits (97.9◦) at a nominal altitude of 619 km.
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1. space debris modelling

drag and solar radiation pressure) (Colombo and McInnes, 2011a). Perturbing accelera-
tions are sometimes neglected when dealing with satellite motion, which can be studied
using the analytical expression provided by the Keplerian laws of planetary motion. On
the other hand, the study of effect of perturbations is essential to predict space debris
motion. The next Section describes in detail how perturbations affect the evolution of a
fragment cloud generated by a collision or an explosion.

1.1 Perturbations and debris cloud evolution

Space debris is present in all regions of space where missions operate, ranging from
LEO to GEO, and the perturbations to which space debris is exposed vary largely across
the different regions. In GEO, debris motion is affected by the Earth’s oblateness, by the
effect of the Moon and the Sun, and by the solar radiation pressure. For this reason, the
consequences of a fragmentation in GEO are highly affected by the longitude of the event
and can result in localised increases in the debris density (Anderson and Schaub, 2014).
In LEO the drivers of the debris evolution are the Earth’s oblateness and the atmospheric
drag, which is the only natural way debris objects are removed from their orbits, to
re-enter and burn in the atmosphere.

(a) Ellipsoid (b) Toroid (c) Band

Figure 1.4: Phases of debris cloud evolution as classified by Jehn (1991). The simulation
refers to a collision on a parent orbit with inclination equal to 30◦.

Besides the effect of perturbations on the global debris population, it is important to
study the effect of perturbations on a cloud of debris fragments, generated by a frag-
mentation event (collision or explosion) in LEO. The evolution of a debris cloud can be
split into three main phases (Figure 1.4), each one with different geometry and different
driving forces (Ashenberg, 1994; McKnight, 1990). A fragmentation event generates a
number of objects that initially forms a dense ellipsoidal cloud (Figure 1.4a). At the mo-
ment of the event, all the fragments have the same position, equal to the fragmentation
location; their velocity is, instead, different depending on how the fragmentation en-
ergy is distributed among the fragments. This process is described by breakup models,
which will be discussed in detail in Section 2.1. As the fragments have different initial
velocity, their energy, and therefore their orbits, are different. This causes the cloud to
be stretched along the parent orbit, forming a ring around the Earth. Considering the
cloud globally, the mean anomaly, M , is quickly randomised. In this phase, which lasts
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1.2 space debris models overview

only few orbits, the orbital perturbations are negligible and the dynamics of the system
can be studied by applying the two-body problem equations. In particular, the orbital
parameters of the fragments are often assumed to be constant in this phase.

In the following phases, perturbations become more relevant. Without perturbations
the fragments would maintain a ring shape, which is characterised by a point, named
the pinch point, where all the fragments pass and which corresponds to the breakup loca-
tion (Chobotov, 1990). This geometry is changed by the effect of the Earth’s oblateness,
which causes the nodal precession of the orbits: the argument of periapsis ω and of the
longitude of the ascending node Ω are modified with time, with a rate that depends on
the fragment’s orbital parameters. As in the previous phase, each fragment has different
orbital parameters and so each orbit is modified (i.e. rotated) at a different rate. For
this reason, the pinch point disperses; the spreading of ω transforms the ring into a flat
torus (Figure 1.4b), which covers the area between the smallest perigee and the largest
apogee; the diffusion of Ω creates a band around the Earth, limited in latitude by the
value of inclination of the parent orbit (Figure 1.4c). This transition can last between
some months to some years depending on the altitude and the inclination of the orbit.

Once the band has formed, ω and Ω can be considered random: this means that the
forces acting on ω,Ω, as the Earth’s oblateness, are not relevant over the long term (Rossi
et al., 1998a). Atmospheric drag becomes the most important perturbation in this phase
as it causes the fragment decay, but its effect is highly dependent on the altitude. At high
altitude (> 800 km), also the luni-solar perturbation and the solar radiation pressure
may affect the fragment evolution, especially for objects with a large area-to-mass ratio
A/M .

1.2 Space debris models overview

Different models are used to study the risk due to space debris in different time scales.
When short-term analyses are performed, the purpose of these models is to provide a
quick estimation of the evolution of the resulting debris cloud and of the collision risk
due to a recent breakup. This can be done by exploiting the fact that the perturbations
can be neglected in the first phase of the cloud evolution, so it is possible to write purely
analytical models to describe how the cloud volume changes with time (Ashenberg, 1992;
Chobotov, 1990; Heard, 1976; Jehn, 1991). These methods are based on the linearisation
of the equations of relative motion of the fragments with respect to the parent orbit:
they are very fast in computing the collision risk, but they can only be used for a few
revolutions after the fragmentation event. In fact, even if some formulations take into
account the short-term effect of perturbations (Ashenberg, 1992), they are not able to
describe the cloud evolution once the fragments are spread around the Earth.

7



1. space debris modelling

Numerical methods are required to follow the evolution of space debris on the long term
and account for the effect of perturbations. Long term studies (100-200 years) usually
aim to model not only a single event but the global debris population. This is done to
evaluate the efficacy of present and proposed policies to reduce the risk to operating
satellites. These kinds of studies require models and methods able to deal with a variety
of phenomena, such as the description of the fragmentation of an object, the study of
the dynamics of fragments, the computation of collision risk among fragments and with
other spacecraft, and the representation of the surrounding environment. The models
in this category are called debris environment models or debris evolutionary models. Some
extensive lists of the available models were compiled by Chobotov (2002) and Sdunnus
et al. (2004), where the rationale of each model is described.

As an example, the Space Debris Mitigation (SDM) model by Rossi et al. (1995b) prop-
agates the objects included in the provided initial debris population considering the
effect of gravitational and non-gravitational forces. In detail, the so-called Fast Orbit
Propagator (FOP), included in SDM, integrates the evolution of the object orbital parame-
ters considering the geo-potential, third body perturbations, the effect of solar radiation
pressure (including shadows), and the effect of drag. The result of the propagation is
used to compute the collision probability among the objects. Two different algorithms
for the collision probability computation are included in SDM: one, fully analytical, can
be applied only to orbit with low eccentricity, and a second one, cube developed by
NASA, that can be applied to any orbital regime. In addition to the propagators and algo-
rithms for the computation of the collision probability, SDM includes a breakup model
to simulate the production of objects due to explosions and collisions; a traffic model
that describes launch routines; mitigation model that describe end-of-life strategies (e.g.
graveyard orbits) and Active Debris Removal (ADR) scenarios (e.g. the removal of a fixed
number of objects among the largest uncontrolled ones).

A similar approach is used also in the debris model by the University of Southampton,
Debris Analysis and Monitoring Architecture for the Geosynchronous Environment
(DAMAGE) (Lewis et al., 2012), that uses a semi-analytical propagator to model the effect
of atmospheric drag, solar radiation pressure, Earth gravity harmonics (J2, J3 and J2,2)
and luni-solar gravitational effect.

As seen from the two examples of SDM and DAMAGE, evolutionary debris models make
some assumptions on natural phenomena (e.g. atmosphere model, solar flux), future
activities (e.g. number of launches, compliance with mitigation guidelines, active re-
moval) and debris evolution (e.g. criteria for collision, number of fragmentation events
per year). All these elements and the lack of an extensive amount of experimental data
introduce a degree of uncertainty (Dolado-Perez et al., 2015), whereas space debris mod-
els are required to provide sufficiently accurate and reliable information for decision
making. This is true both in the short term, for example in case of a collision avoidance
manoeuvre, and over the long term, to define policies and guidelines to use space in
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a safe and sustainable way. For this reason, the Monte Carlo method is used in debris
modelling: each scenario of debris evolution is run between 10 and 1000 times to obtain
reliable statistical data (Anselmo et al., 1999; Jenkin and Gick, 2005; Krisko, 2007; Rossi
et al., 1995b). This dramatically increases the computational time and limits the variety
of the possible analyses.

As a reference, the computational time with DAMAGE is around 90 minutes for a single
run of a scenario of 200 years. The largest contribution to the simulation time comes from
the computation of the collision probability and the propagation of the fragments’ trajec-
tory, in particular to consider the effect of atmospheric drag and luni-solar perturbations.
Extending this approach to small fragments results in a prohibitive computational time:
for example, if in DAMAGE all the fragments down to 2mm are followed, the computa-
tional time required to simulate one day of evolution is equal to one real day.8

1.3 Statistical and simplified methods

The necessity of reducing the computational time has promoted the development of
different techniques for debris propagation. For example, SDM by Rossi et al. (1995b)
provides an alternative propagator, called Debris Cloud Propagator (DCP), where the
propagation of fragments in LEO is simplified in three ways:

• only the most relevant perturbations, i.e. drag, are considered to study the frag-
ment motion,

• the dynamics are modelled by analytical expressions, such as the ones obtained
by King-Hele (1987) to describe the secular effect of atmospheric drag,

• only some representative objects are propagated.

This propagator is included not only in SDM, but also in an alternative statistical model
STochastic Analog Tool (STAT), which proposes a simple mathematical model for the
debris evolution (Rossi et al., 1998a). The debris population is divided into bins of
semi-major axis, eccentricity and object size, and only a single representative object per
bin is propagated. The result of the propagation is used to estimate how fragments move
among the bins. The launch/retrieval frequency and explosion and collision rates for
each bin are computed, so that the evolution of the object number per bin Ni is obtained
from

dNi

dt
=(launches)i − (retrievals)i+

+
∑
j

{(explosions)j→i + (propagation)j→i}+
∑
jk

(collisions)jk→i.
(1.1)

8Hugh G. Lewis, Senior lecturer at the University of Southampton, personal communication.
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The computation of the collision risk is computed starting from the density in each bin,
considering not average values, but extracting numbers from a Poisson distribution to
reflect the fact these events are rare and using a constant average value would alter the
final result. Different launch routines can be implemented to simulate different traffic
models and, similarly, the retrieval frequency models the compliance with regulations
and active removal missions.

A similar point of view is adopted in the model Space Debris Prediction and Analysis
(SPDA) (Nazarenko, 2002). Nazarenko (1997) and Smirnov et al. (2001) divide the objects
into so-called classes of size, perigee altitude, eccentricity, inclination, ballistic coefficient.
The number of objects in each class Nj is obtained from

∂Nj

∂t
= −Wj

∂Nj

∂r
−Nj

∂Wj

∂r
+ Ṅj , (1.2)

where Wj is the radial velocity of the objects and Ṅj the rate of variation in the number
of objects due to external causes. As in Rossi et al. (1998b), the single objects are not
propagated and only the evolution of the number of objects per class is studied. Smirnov
et al. (2001) explain how this approach enables the study of the debris population with-
out any constraint on the fragment size as the method performance is independent from
the number of objects. In addition, in SPDA single breakups are not modelled, but rather
an annual increase in the fragment number is computed. In SPDA, the computation of
the collision probability is obtained applying the analogy with the kinetic theory of gas.
According to this analogy, the number of collisions is function of the object density and
the distribution of velocity among the objects. Both the density and the distribution of
velocity are derived from the values of Nj and the definition of the classes, so that the
study of individual objects is not required.

Another option to reduce the computational load of the simulation is to build simplified
models based on the full numerical ones. The two examples in the previous section,
SDM and DAMAGE, can be considered high-fidelity models, able to predict in a quasi-
deterministic way the position of the propagated objects. However, the desired output
is often only the knowledge on the general trend of debris evolution in response to the
variation of some parameters, such as the traffic routines or the compliance with regu-
lations. This can be done by starting from a variational approach such as the ones in
Equation 1.1 and Equation 1.2. For example, Kebschull et al. (2013); Radtke et al. (2013)
have shown how the parameters in the evolution Equation 1.1 can be obtained through a
fitting process of a full numerical model (LUCA in their case). This means that the output
of the simplified model is coherent with the full numerical one, but the simulation time
is strongly reduced, so that the simulation of a whole scenario of the evolution of the
global debris population is performed in the order of seconds. Similarly, SPDA can be
used to precompute the terms of an engineering model (SPDA-e) that allows for a fast
evaluation and visualisation of the debris evolution (Nazarenko and Menshikov, 2001).
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In the same way, the simplified model FADE uses the results of DAMAGE full model to
estimate the terms in Equation 1.1 (Lewis et al., 2009).

More recently, the output of DAMAGE was used to build the simplified model CONCEPT

(CONsequences of Cloud Evolution Prediction Tool) (Rossi et al., 2013), which is able to
study the consequences of a single collision event. Although the current implementation
considers only objects larger than 10 cm, this approach can be extended to smaller frag-
ments. The simulation of the fragmentation event is divided into two phases. In the first
one, which is valid for all the tested scenarios, the background debris population is built
from multiple runs of DAMAGE, whose output is stored in bins of altitude, right ascension
and declination: for each bin the distribution of relevant quantities (e.g. spatial density,
collision probability, object type, mass, area, orbital parameters) is stored. Secondly,
CONCEPT is used to simulate a specific event. It is able to estimate the most likely param-
eters (i.e. mass and energy) for a fragmentation event. At this point, DAMAGE is used
again to generate the debris cloud and to numerically propagate only the new fragments;
at each time step the distributions stored in the bins are updated with the contribution
from the new cloud, so that it is possible to assess the impact of the simulated event
on the global population. As the background population is not actually propagated,
but derived from DAMAGE, CONCEPT requires only five minutes to propagate a typical
scenario for 200 years.

These last examples rely on several runs of a full model, whose output is then stored
and used by the simplified model. This implies that, if part of the full model changes
(for example, the breakup model), it should be run again to obtain updated parameters.

1.4 Analytical methods

Another way of reducing the computational time is to use analytical models, able to
express directly the debris evolution without requiring long numerical integration. As
explained in Section 1.1, in the first phase of the cloud evolution the perturbations play a
minor role, so that the analytical keplerian motion is a good approximation of the cloud
evolution. This was exploited by Chobotov (1990) who proposed a method based on
the linearised equations for relative motion to describe the short-term evolution of the
volume of a debris cloud, given the initial dispersion due to the breakup model. The
volume of the cloud was then used to compute the fragment spatial density and the
resulting collision probability for a spacecraft crossing the cloud. Chobotov (1990) also
described the evolution of the cloud volume under the effect of the Earth’s oblateness,
so that it can be applied in the first days after the collision, when the resulting fragment
cloud is quite dense and it can largely increase the local collision risk. A similar approach
was also proposed by Hoots and Hansen (2014), who described the evolution of the cloud
bounds in the two-body problem to define the most dangerous areas for operational
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satellites. It is important to stress that, as perturbations are not considered, this approach
is valid only in the first days of cloud evolution and it is applied only in GEO.

A more radical analytical approach was proposed by Valk et al. (2009b), who wrote a
Hamiltonian formulation for the dynamics of space debris under the effect of gravity
potential (considering J2 and J22), luni-solar perturbation, and solar radiation pressure
(Valk et al., 2009a). Drag is not considered, as it is not a conservative force, so this model
is not applicable for LEO, but it allows a fast evaluation of the debris population in GEO

over several hundreds of years. Similarly, Izzo (2006) proposed a method that describes
the debris population globally through the definition of some density functions. In the
examples shown in (Izzo, 2006; Izzo and Valente, 2004) the propagation of the population
was performed by studying how the density functions in ω andΩ change under the effect
of the Earth’s oblateness. Since also in this case drag is not considered, the method is
suitable to describe the GEO region, but not LEO.

However, LEO can be considered as the most crucial area for space debris studies. First
of all, the density of fragments is much higher in LEO than in GEO (Figure 1.1). In some
regions, e.g. synchronous orbits, it is likely to be very close to the critical value, where
the density is so high that the collisions among fragments create more new objects than
the ones that are removed by drag (Kessler and Cour-Palais, 1978; Liou, 2011). Secondly,
the ISS is in LEO and its protection from space debris is essential both for the presence
of astronauts and for the delicate experiments, which need to be interrupted in case
of collision avoidance manoeuvres (Foster, 2001). Finally, the relative velocity is much
higher in LEO than in GEO and so collisions tend to be more dangerous (Chobotov, 2002).

A simple analytical model for the LEO debris population was proposed by Talent (1992),
who developed a so called particle-in-a-box approach. According to the model, the rate of
change of the number of objects in LEO (N ) can be described by the differential equation

Ṅ = A+BN + CN2 (1.3)

where A,B,C are, respectively, the coefficients of deposition, removal, and collision, which
are derived from the physical properties of LEO. The approach has a very low computa-
tional effort, but it cannot be easily extended to study single fragmentation events. An
alternative analytical approach is described in the following section.

1.5 Continuity equation method

Another fully analytical model applicable in LEO is the one proposed by McInnes (1993).
The central idea of this approach is considering the debris population as a fluid with
continuous properties. In this way, the analysis of the single objects is abandoned and
the fragment density becomes the only parameter of the study. This concept was present
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already in Heard (1976), who was among the first to transfer the idea of a continuum ap-
proach from stellar dynamics to space debris modelling. Whereas Heard (1976) focussed
on the description of the spreading of a cloud right after the breakup, McInnes (1993)
studied the long term evolution of the debris density under the effect of perturbations.

This is obtained through the continuity equation, a traditional approach of fluid dynam-
ics, where it is used to link the fluid density with its velocity. Similarly, when applied in
astrodynamics, it provides a description of the change in the density of a dispersed set
starting from the knowledge of the velocities of the particles. In particular, if n represents
the fragment density, the continuity equation can be written as

∂n

∂t
+∇ • f = ṅ+ − ṅ− (1.4)

where ∇ indicates the divergence. ∇ • f accounts for the slow/continuous phenomena
(e.g. drag effect) and ṅ+ − ṅ− the fast/discontinuous event (e.g. the injection of new
fragments due to the release of operational debris objects during launches). Once the
initial distribution of n is known, the continuity equation is used to obtain its evolution
with time, with very low computational effort.

The method is quite general and it has also been applied to describe the evolution of
interplanetary dust (Gor’kavyi, 1997; Gor’kavyi et al., 1997), nano-satellites constella-
tions (McInnes, 2000) and high area-to-mass spacecraft (Colombo and McInnes, 2011b)
as, in all these cases, continuous and/or discontinuous phenomena have to be described
(Table 1.1).

Table 1.1: Summary of the application for the continuity equation method. a and e are
the orbit semi-major axis and eccentricity; r is the distance from the central body; Φ the
angle between the Sun-Earth line and the direction of the orbit pericentre.

Application Solution space Slow phenomena Fast events Ref.

Interplanetary dust (a, e) Poynting-Robertson drag Gravitational scattering (Gor’kavyi, 1997)
Planetary resonances Mutual collisions (Gor’kavyi et al., 1997)

Space debris (r, t) Atmospheric drag Mutual collisions (McInnes, 1993)
Launches

Nanosatellites (r, t) Atmospheric drag Launches and failures (McInnes, 2000)

High A/M objects (e,Φ) Earth’s oblateness - (Colombo and McInnes, 2011b)
Solar radiation pressure

What it is interesting to observe from Table 1.1 is that the continuity equation can be
used to find the evolution of the system both in the physical space (such as for space
debris and nanosatellites) and in the phase space (such as for interplanetary dust and
high A/M objects). This makes the method very flexible as it is possible to describe the
evolution of the system in the space with the most convenient formulation.

Focussing on the application to the space debris population (McInnes, 1993), the method
is written to model the evolution of the global population in the long term. Drag effect
and mutual collisions are modelled and studied separately. In particular, mutual colli-
sions are assumed to be the driving factor in the evolution and so most of the analysis
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on future scenarios is carried out neglecting drag and considering only the objects at
altitudes higher than 750 km. However, the possibility of treating atmospheric drag in
the model is what makes the method unique as it can be applied in LEO.

Note how the terms in Equation 1.4 have the same meaning as the ones in Equation 1.2,
observing that the second and the third term in Equation 1.2 can be obtained from
Equation 1.4 considering the dependence on the radial distance only and writing the
divergence in Cartesian coordinates. This suggests that a model based on the continuity
equation is intrinsically a statistical model, so it presents the same advantages of this
kind of models. These include a reduction in the computational time, the possibility of
including objects of any size and a more natural connection to the statistical nature of
the problem (i.e. fragment distribution with uncertain initial conditions) (Nazarenko,
2002).

Starting from the important results of McInnes (1993), the present work aims to move the
scope from the global debris population to a single fragmentation event. This is required
to develop a method that can be used by operators to study the effect of a specific
breakup and to rank spacecraft depending on how their fragmentation would affect
other satellites. On the other hand, an analytical method of the global debris population
could be useful to estimate general trends in the evolution of the debris density, for
example, identifying which orbital regions are the closest to the critical density. For
that application, the analytical model would face additional challenges as the modelling
of discrete events (e.g. launch routines, active debris removal missions), through the
terms ṅ+, ṅ− in Equation 1.4. In this work, instead, those terms are considered equal
to zero and the focus is on the modelling of perturbations and on the study of how the
debris cloud interacts with other spacecraft. As these two aspects are relevant also for a
model of the global population, the current work could also be regarded as an essential
initial step in the development of a more general model. In addition, the analytical
model proposed in this work can already be exploited by the evolutionary models to
include small fragments in their analysis. In fact, the evolutionary models are able to
predict, in a stochastic sense, when, where and how a new fragmentation will occur.
These elements are used by the model to generate the new large fragments, but they
can also be passed as inputs to the analytical model to produce the small fragments and
follow their evolution. By accounting also for the contribution of small fragments, the
evaluation of the consequences of a single event can be improved and the estimation of
the collision risk can be more accurate. On the other hand, the computational resources
required by the simulations are less dependent on the number of studied fragments
since the state variable of the problem is the density.

Changing the application from the evolution of the total population to a single event
requires some important changes to the method proposed by McInnes (1993). First of
all, the method should be able to simulate the production of fragments due to a collision;
then, the arbitrary initial distribution used by McInnes (1993) should be substituted
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with the actual distribution of fragments; only at this point the propagation based on
the continuity equation can be applied to obtain an analytical expression for the cloud
evaluation and a fast evolution of the collision risk for operative spacecraft.

Summary

The study of space debris aims to clarify the sustainability of space activity both in the
short term (e.g. the rise in the collision risk due to a recent breakup) and over very
long term. Recent events such as the Chinese anti-satellite test in 2007 and the collision
between Cosmos 2251 and Iridium 33 in 2009 have highlighted the danger coming from
fragmentation events able to contaminate large regions of space.

Different models have been developed for the mentioned purposes. For the short term
analysis, the collision probability resulting from a breakup is estimated assuming that
the fragments are in keplerian orbits or considering only the effect of the Earth’s oblate-
ness. This formulation allows a quick estimation of the collision risk, but it is applicable
only for a limited amount of orbits. To the other extreme, evolutionary models are used
to study space debris evolution across hundreds of years. In this case, the scope is not
the single fragmentation event, but the whole debris population. For this reason, el-
ements such as launch routines, compliance with debris mitigation rules needs to be
modelled. The effect of perturbations is taken into account by using numerical methods
to propagate the trajectory of each debris object.

This makes the simulations expensive in terms of computational resources and limits
the number (and, therefore, the size) of the studied objects. Only objects larger than
10 cm are usually followed by evolutionary models, even if smaller fragments can in-
terfere with or destroy a spacecraft. To include small fragments in the simulation, it
is necessary to abandon the numerical propagation of single objects and to alternative
formulations based on global quantities (e.g. spatial density), representative objects or
analytical methods. However, most of the analytical methods available in literature are
only applicable to the GEO region as the effect of drag is not considered. Only methods
that model drag effects can be applied to study the LEO region, where the debris density
and the relative velocities among spacecraft are the highest.

One method applicable in LEO is the one by McInnes (1993). It is based on representing
the fragments in terms of their spatial density, whose evolution under the effect of drag
can be obtained analytically by applying the continuity equation. The method was
originally formulated to model the evolution of the whole debris population, whereas
here it is studied how it can be adapted to follow single breakup events. In this way,
the method proposed in this thesis does not want to substitute the existing evolutionary
models, but rather to expand their capabilities. Evolutionary models are able to model
many phenomena that would be difficult to include in an analytical model. Enabling
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them to consider also the presence of small fragments would also allow them to refine
their analyses and improve the reliability of their forecast.
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2
Analytical approach

The aim of this work is to develop an efficient method to describe the evolution of the
fragment cloud produced by a collision or an explosion in space. The algorithm to
achieve this goal is composed of the following building blocks (Figure 2.1):

• a break up model that generates the fragment properties (i.e. number, mass, area,
speed), given the energy of the fragmentation event;

• a numerical propagator to describe the evolution with time of the fragment orbital
parameters until the analytical propagation becomes applicable;

• a method to translate the information about the orbital parameters of each single
fragment into a continuous density function, useful to compute the collision risk
associated to the cloud;

• a fully analytical propagator to express the evolution with time of the cloud spatial
density in the long term.

In this Chapter, all the blocks of the proposed model, named debris Cloud Evolution in
Low (Earth) Orbit (CiELO), are described in detail. Some applications of the model are
explained and its results are compared to a standard piece-wise numerical propagation.

Breakup

model

Numerical

propagation

Position

fitting

Analytical

propagation

Band

formation

Density

function

Energy Fragments Cloud Density

function

Figure 2.1: CiELO building blocks.
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2. analytical approach

2.1 Breakup modelling

A breakup model translates the initial conditions of an explosion or a collision into the
characterisation of the produced fragments, in terms of number, size, mass, ballistic
coefficient and velocity variation (Johnson and Krisko, 2001; McKnight, 1991). These
parameters, which depend on the energy involved in the fragmentation event and the
nature of the event (i.e., collision or explosion), are required to simulate the evolution
of a fragment cloud.

Breakup models can be classified as (Barrows, 1996; Barrows et al., 1996):

• complex, if the model is based on physical laws and the fragmentation is simulated
through a hydrodynamic code

• semi-analytical, if the model is developed starting from theoretical expressions and
calibrated through experiments

• empirical, if the model is derived from the curve fitting of experimental data.

The first two classes of breakup models provide expressions valid for a large range of
conditions, whereas the empirical models extrapolate from experimental data, which are
limited due to the complexity of tests and the difficulty of varying the testing conditions
(Chobotov, 2002; Johnson and Krisko, 2001). As a result, empirical models are not always
consistent: it has been shown that models with similar expressions but different values
of the parameters provide quite different results that may have a great impact on the
long-term cloud evolution (Martin et al., 2004). In spite of the limited applicability,
empirical models are widely used as they are easy to implement and require limited
computational time. On the other hand, they introduce a level of uncertainty that should
be considered when dealing with the long-term evolution of debris clouds (Dolado-Perez
et al., 2014).

2.1.1 NASA breakup model

The first space debris breakup model was developed by NASA in 1975, by studying the
mass distribution resulting from hypervelocity impacts (Bess, 1975). Since then, different
models have been developed (McKnight, 1990, 1991; Rossi et al., 1995a; Su and Kessler,
1985b), using on-orbit observations and orbital tracking of fragments to improve the
results.

The breakup model adopted in most debris evolutionary models, such as ORDEM, MASTER,
DAMAGE (Sdunnus et al., 2004), is the empirical NASA breakup model, proposed by John-
son and Krisko (2001). The model uses the characteristic length Lc of the fragment as
the independent variable to define the features of the cloud: the fragment properties (i.e.
mass, area, velocity) are not constant for all objects with the same Lc, but their values
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are extracted from distribution functions. This means that the breakup model, at each
run, provides different results for the same initial condition; in particular, a normal dis-
tribution is used to express the dependence of A/M on the characteristic length Lc and
the dependence of the velocity change on the area-to-mass ratio A/M ; the parameters
of the distributions change depending on the characteristic length.

Different expressions are used for explosions and collisions: as the underlying physical
processes are different, the number of fragments and the ejection velocities are not the
same in the two cases. Explosions tend to produce larger fragments with lower speed,
whereas collisions usually generate a large number of very small fragments with high
relative velocities (Barrows, 1996). The model also distinguishes between catastrophic
and non-catastrophic collisions, whether or not the target of the collision is completely
destroyed. Experiments show that this occurs when the impactor kinetic energy per
target mass exceeds 40 J g−1, so this value is set as a threshold in the model (Krisko, 2007).
More recent observations have shown that non-catastrophic collisions were observed
also in cases where the impact energy per target mass exceeded the threshold value
because the NASA breakup model does not consider the effect of the location of impact
(Pardini and Anselmo, 2014). In other words, a collision will have a different effect if
the projectile hits the satellite in the centre of its body or in one of its appendages. As
non-catastrophic collisions are more common, most of the results in the following will
refer to this kind of fragmentation.

The equations of the NASA model, reported in Appendix A.1, fully characterise the cloud,
but some additional steps are needed to simulate a fragmentation event. Firstly, the frag-
ment characteristics are expressed by continuous distribution functions: a discretisation
is required in the implementation to pass from a continuous distribution to a finite set
of fragments. This aspect is discussed in detail in Appendix A.1. The method also does
not take into consideration the conservation of the mass during the fragmentation, so
Krisko (2011) suggests that the distributions need to be modified, but a univocal method
is not prescribed. Moreover, the distribution of velocity obtained by the model expresses
only the velocity magnitude, not its direction. A model of the ejection directions is then
required to study the evolution of the fragment trajectories. Random directions (Pardini
and Anselmo, 2005; Rossi et al., 1995b) or the choice of ejecta directions to conserve the
angular momentum (Chobotov et al., 1988) can be used. Finally, some authors intro-
duce a limit on the maximum ejection velocity (Rossi et al., 2006), or modify the A/M

distribution for low speed collision (Hanada et al., 2009).

2.1.2 Implementation in CiELO

In this work, the NASA breakup model is implemented setting 1mm as lower size limit,
following the recommendations on the correct use of the model (Krisko, 2011). The upper
size limit is set to 10 cm, as the analytical method is applied to study the propagation of
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small fragments. It is assumed that the number of large fragments is always limited, so
that their piece-by-piece propagation is feasible and it is the approach to be followed. As
a consequence, no mass conservation correction is applied in the current implementation
because it affects mainly the distribution of large fragments (Krisko, 2011). Moreover, all
the results refer to the density and the collision probability resulting only from fragments
between 1mm and 10 cm. It is assumed that the contribution from larger fragments is
assessed through alternative traditional approaches. Random direction for the velocity
variation is used and the maximum ejection velocity is set equal to 1.3 vc, where vc is the
collision relative velocity: this is done because without any limit the method generates
a small number of fragments with a very high ejection velocity (in the order 60 km s−1).
This practice is commonly adopted in different implementations of the NASA breakup
model (Rossi et al., 2006).

2.1.3 Comments to NASA breakup model

As introduced, the NASA breakup model does not have a unique implementation. Rossi
et al. (2006) showed the effect of the different implementations of the model among the
different space agencies: for example, in 2006, the number of objects larger than 1mm

was almost double in an ESA implementation compared to a NASA one.1 This partly
explains the scepticism of the detractors of the method. For example, the Russian model
SPDA does not rely on this fragmentation approach. It considers a statistical growth of
the fragment number due to explosions and collisions. Basically, the model avoids the ex-
amination piece-by-piece, where the fragments are individually generated and then their
trajectories are individually integrated with high precision. In fact the breakup model
is not considered to be reliable and accurate enough, therefore the accurate propagation
of a highly uncertain initial condition appears questionable (Nazarenko, 2002).

This is particularly relevant in the range of small objects as the NASA breakup model,
especially in the sub-centimetre range, is based on a limited database, so it is not clear
how representative the model is (Schäfer et al., 2013b). Some authors, such as Jehn
(1996) and Martin et al. (2004), reported large discrepancies in the number of fragments
produced between the NASA breakup model and the Battelle model, which was the frag-
mentation model used in older versions of the ESA MASTER model (Klinkrad et al., 1995).
The Battelle model was formulated in 1993 performing some ground tests and collecting
the fragments to obtain the distributions of the different relevant quantities (e.g. mass,
velocity) (Fucke and Sdunnus, 1993). Later, it was noted that the distributions of velocity
variation and area-to-mass ratio are more easily obtained from on-orbit observations2.
The distributions obtained in this way differ noticeably from the ones predicted by the
Battelle model that was therefore abandoned. The Battelle model contains in any case

1ESA implementation of the NASA breakup model was later corrected.
2Holger Krag, Head of Space Debris Office, ESA, personal communication, May 2015.
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some interesting elements such as an intrinsic check on the conservation of the mass and
a distribution of the area-to-mass ratio that depends on the object size, assuming a shell
shape for large objects and a compact shape for the small ones. On this point, Hanada
et al. (2009) observed how the distribution of small fragments predicted by the NASA

breakup model is compatible with experimental results only for what concerns the size
distribution, but not the mass. A modification of the breakup model was suggested to
change the area-to-mass distribution into a binormal one to consider the presence of low
and high density material. Still now, some studies are ongoing to improve the model,
adding more data points (Liou et al., 2013a) or introducing some physical equations (e.g.,
the momentum conservation) to switch from an empirical to a semi-analytical model
(Schäfer et al., 2013a,b).

However, at the moment no better breakup model is available and the NASA model can
be considered as a standard as it is the most used in space debris models (Dolado-Perez
et al., 2014; Sdunnus et al., 2004) (LEGEND, MASTER, DAMAGE, DELTA, MEDEE). For this
reason, the NASA breakup model is used in this work. Moreover, the analytical method
proposed here does not rely on a specific breakup model: any other model, such as
for example impact (Sorge, 2008), could also be used. In the future, when an updated
breakup model becomes available, only the first block shown in Figure 2.1 will need to
be changed, whereas the other blocks will not require any modification. The flexibility of
the propagation method was validated by applying it to different class of fragmentation
events (i.e. collisions and explosions) and for different levels of energies. The results
for these cases are shown later in this Chapter, but it can be anticipated that the pro-
posed method works with different initial distribution and appears flexible to how the
initial condition is generated. This is one of the advantages of the proposed analytical
approach.

2.2 Numerical propagation and band formation

Once the fragments are generated and their characteristics are defined, the orbital pa-
rameters for each fragment orbit are obtained starting from the information on their
position and velocity. Then, the orbital parameters are numerically propagated using
Gauss’ variational equations to compute the effect of atmospheric drag and the Earth’s
oblateness (Vallado, 2013). The effect of drag is estimated using an exponential density
model

ρ = ρref exp
(
− h− href

H

)
(2.1)

where ρ is the atmosphere density, h is the altitude, and H is the scale height. The refer-
ence values ρref and H depend on the reference altitude href; the values used are from
Vallado (2013). In the present work, href is set to the closest tabulated value to the altitude
where the collision occurs and its value is kept constant for the whole simulation; no
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2. analytical approach

atmospheric rotation is considered and the maximum altitude below which drag is con-
sidered is 1000 km. This simple exponential model represents a rough approximation of
the reality, but this choice is unavoidable as the proposed analytical method requires an
analytical formulation for the atmosphere density. To compare the traditional numeri-
cal approach and the proposed analytical method rather than different density models,
Equation 2.1 is used for both the propagation methods for the validation. It will be
shown in Section 5.4.3 how the proposed method works also when updating the values
of ρref and H for different values of href. This enables to include different (and more
realistic) models of the atmosphere with the only condition that they can be locally ap-
proximated with an exponential fitting, as already suggested by Jehn (1996). Whereas
the modification in Section 5.4.3 is important for the correct application of the method,
the expression in Equation 2.1 is still good for the derivation and the validation of the
analytical method. In particular, using Equation 2.1 both for the numerical propagation
used as a benchmark and as a basis of the derivation of the analytical approach one can
isolate the effect of the analytical formulation on the error.

The variation of orbital parameters due to drag is computed with the expressions derived
by King-Hele (1987) describing the secular variation of the orbital elements. Three
different sets of the equations from King-Hele (1987) are implemented, covering different
range of eccentricity (0.2-0.01,0.01-0.001, and circular orbits). In detail, the expressions of
the average rate of variation in one orbit of the semi-major axis a and of the eccentricity
e are

• 0.01 ≤ e ≤ 0.2

da

dt
= −cdA

M

√
µEaρref exp

(
− a−Rh

H

)[
I0 + 2eI1 +

3

4
e2(I0 + I2) +

e3

4
(3I1 + I3)

]
de

dt
= −cdA

M

√
µE

a
ρref exp

(
− a−Rh

H

)
• 0.001 ≤ e < 0.01

da

dt
= −cdA

M

√
µEaρref exp

(
− a−Rh

H

)[
I0 + 2eI1

]
de

dt
= −cdA

M

√
µE

a
ρref exp

(
− a−Rh

H

)[
I1 +

e

2
(I0 + I2)

] (2.2)

• e < 0.001

da

dt
= −cdA

M

√
µEaρref exp

(
− a−Rh

H

)
de

dt
= 0

where cd is the drag coefficient, A is the cross-sectional area; M is the mass. Indicating
the Earth’s radius with RE , Rh = RE + href. Ik, with

Ik(z) =
1

π

∫ π

0
ez cos θ cos (kθ) dθ k ∈ Z, (2.3)
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2.2 numerical propagation and band formation

is the modified Bessel function of the first kind and order n with argument z = ae
H . The

propagation is stopped when the perigee altitude hp falls below 50 km as, in this case,
the fragment is considered to be re-entering through the atmosphere. More details on
the implementation can be found in Section A.2.

The Earth’s oblateness is included in terms of the long term effect of the zonal harmonic
J2 on the orbital parameters. This choice can be explained with two reasons. Firstly,
over the long term, perturbations such as the Earth’s oblateness, that affect only ω,Ω,
are not relevant, so it is not worth implementing them up to very high precision. Sec-
ondly, as introduced in Section 1.1 and detailed in Section 2.2.1, the effect of the Earth’s
oblateness on the cloud transforms it from a ring into a flat torus around the Earth. The
theoretical descriptions of this transition, which are used to estimate the duration of this
process, consider the effect of J2 only. The secular effect of J2 on the orbital parameters
is expressed by

dω

dt
= ω̇ =

3

2
J2

R2
E

p2
n̄(2− 5

2
sin2 i) (2.4)

dΩ

dt
= Ω̇ = −3

2
J2

R2
E

p2
n̄ cos i. (2.5)

where p = a(1 − e2) is the semi-latus rectum of the orbit, n̄ =
√

µE/a3 is the mean
motion, and i is the orbit inclination.

The fragment orbital parameters are numerically propagated until the last phase of cloud
evolution (the band described in Section 1.1, Figure 1.4c) is reached. In fact, the analytical
method proposed in this Chapter, and based on the equations derived by McInnes
(2000), can be used only to study the long term evolution of the cloud under the effect
of atmospheric drag. This means that it can be applied only once the band is formed,
which is when the mean anomaly M and the angles ω,Ω are randomised. This can be
verified numerically comparing the distribution of the angles (M,ω,Ω) with a uniform
distribution between −π and π. The mean anomaly M is not considered as its dispersion
(transition from the dense ellipsoid, Figure 1.4a, to the ring, Figure 1.4b) is much faster.
The distributions of ω,Ω are evaluated through the Kolmogorov-Smirnov test, which
compares the empirical cumulative distribution function (in this case the fragment angles
coming from the simulation) and a reference cumulative distribution function (CDF)
F (x) (in this case the uniform distribution) (Gentle, 2002). The empirical cumulative
distribution function F̂n(x) counts the number of observations xj with xj ≤ x and it is
defined as

F̂n(x) =
1

n

n∑
j=1

1xj≤x, (2.6)

23



2. analytical approach

where n is number of observations and 1A is the indicator function

1A =

1 if x ∈ A

0 if x /∈ A.
(2.7)

The Kolmogorov-Smirnov distance is the maximum distance between F̂n(x) and F (x)

Dn = sup
x

|F̂n(x)− F (x)|. (2.8)

The null hypothesis of the test is that the samples xj are extracted from the distribution
with cumulative function F (x); it is rejected at level α if

√
nDn > Kα (2.9)

where Kα is found from
Pr(K ≤ Kα) = 1− α, (2.10)

with Pr cumulative distribution function of the Kolmogorov distribution. This procedure
to evaluate the band formation is similar to the one proposed by Jehn (1991), who uses
a chi-squared goodness-of-fit test.

When the hypothesis of uniform distribution is valid for both the angles, so the null
hypothesis is not rejected in both cases, the band is considered formed. However, this
would require all the fragments to be propagated instant by instant, whereas here the
propagation is done fragment by fragment, exploiting the possibility of parallelising
the code and reducing the computational time. For this reason, the proposed approach
requires an a priori criterion to stop the numerical propagation, based only on the knowl-
edge of the initial orbit. Some estimations (Ashenberg, 1994; Chobotov, 1990; McKnight,
1990) are available in literature for this purpose and they rely on the hypothesis that
apsidal and nodal dispersion is complete when the faster fragment, in terms of apsi-
dal/nodal rate, reaches the slowest one.

2.2.1 Period estimation for band formation

Chobotov (1990) states that the last phase (i.e. the band, Figure 1.4c) is reached when
the apsidal and nodal dispersion is complete, so when the faster fragment, in terms of
apsidal/nodal rate, encounters the slowest one. The expressions for secular effect of J2
on the orbital parameters were reported in Equation 2.5. Assuming the fragmentation
event causes mainly a variation in the semi-major axis (∆a) with respect to the initial
semi-major axis a0, the fragment with the minimum initial semi-major axis (a0 − ∆a)
will have the maximum apsidal and nodal rate (ω̇+, Ω̇+); on the other hand, the fragment
with the maximum initial semi-major axis (a0 +∆a) will have the minimum drift rate
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2.2 numerical propagation and band formation

(ω̇−, Ω̇−). The band formation period is then

TCh
ω =

π

|ω̇+ − ω̇−|
TCh
Ω =

π

|Ω̇+ − Ω̇−|
. (2.11)

McKnight (1990) uses a similar approach, but the fastest fragment is compared with the
cloud centre of mass, which is assumed to have the same parameters as the orbit where
the fragmentation event occurred; only Ω is considered to define the band formation:

TMK
Ω =

2π

|Ω̇+ − Ω̇0|
. (2.12)

Ashenberg (1994) starts from similar observations, but his method relies only on the
knowledge of the initial orbit (before the fragmentation event). A weak isotropic explo-
sion is considered, so, as for Chobotov (1990), it is assumed that the velocity variation
(∆v) is much lower than the orbital speed (v0); this allows the expansion of the orbital
elements in ∆v/v0. ∆v is then decomposed into the in-plane and out-of-plane compo-
nents and Gauss’s equations are used to relate the velocity variation to the variation of
the orbital parameters. Indicating with β the out-of-plane angle of ∆v, the estimated
apsidal rate δ ˙̄ω can be written as

δ ˙̄ω ≈ −3

2
J2

R2
E

a3

[
7
(
2− 5

2
sin i2

)
cosβ +

5

2
sin 2i cosu sinβ

]
∆v (2.13)

where RE is the Earth radius and u = ω + ν argument of latitude, with ν true anomaly.
The fastest relative apsidal rate δ ˙̄ωmax is obtained when

tanβ =
5 sin 2i cosu

14(2− 5/2 sin2 i)
; (2.14)

similarly, the fastest relative nodal rate δ ˙̄Ω can be expressed as

δ ˙̄Ω ≈ −3

2
J2

R2
E

a3

(
7 cos i cosβ + sin i cosu sinβ

)
∆v, (2.15)

and the maximum δ ˙̄Ωmax is found for

tanβ = 1/7 tan i cosu. (2.16)

Similarly to Chobotov, the times for the parameter dispersion are then defined as

Tx =
π

ẋ+ − ẋ−
=

π

ẋ0 + |δ ˙̄xmax| − (ẋ0 − |δ ˙̄xmax|)
=

π

2|δ ˙̄xmax|
(2.17)

where x indicates ω or Ω, so

TAs
ω =

π

2|δ ˙̄ωmax|
TAs
Ω =

π

2|δ ˙̄Ωmax|
(2.18)
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Figure 2.2: Days required to form the band, according to Ashenberg (1994), as a function
(a) of the fragmentation altitude with null inclination and (b) of the inclination of the
parent orbit with a fixed altitude of 800 km.

and the time for band formation Tb as the maximum between the two

Tb = max(TAs
Ω , TAs

ω ). (2.19)

The expressions by Ashenberg (1994) are very useful as they allow the evaluation of the
dependence of the band formation period on the orbital parameters of the initial orbit;
the dependence of Tb on the altitude and on the inclination of the initial orbit is shown
in Figure 2.2. It is interesting to observe that Ashenberg’s formulation also assigns a
finite time for the band formation for the cases

i = arcsin

(
2
√
5

5

)
and i =

π

2

that corresponds to the cases for which, respectively,

ω̇ = 0 and Ω̇ = 0.

This occurs because, even if a weak explosion is considered, the fragment velocity vari-
ation will have an out-of-plane component that results in a change in inclination. The
case of a fragmentation cloud produced by a non-catastrophic collision, with energy
equal to 100 J, and parent orbit with inclination equal to π/2 was simulated, numeri-
cally propagating the trajectories of all the fragments to understand the dynamic of their
dispersion. Figure 2.3 shows the distribution of the fragment inclination at the breakup.
The fragments with the highest difference in the inclination from the critical value i+π/2

drive the formation of the band as shown in Figure 2.4, which represents the fragment
distribution in semi-major axis and longitude of the ascending node in three different
time instants, computed with the numerical method.
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Figure 2.3: Empirical cumulative distribution function for the inclination of the frag-
ments generated by a non-catastrophic collision with energy equal to 50 kJ and parent
orbit with inclination equal to π/2.
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Figure 2.4: Fragment distribution in semi-major axis and longitude of the ascending
node in three different time instants for a non-catastrophic collision with energy equal
to 50 kJ. The colour of the marker refer to the inclination difference ∆i with respect to
the inclination of the parent orbit, equal to π/2.

2.2.2 Analytical and numerical estimation of band formation

Some simulations were carried out to compare the different estimations for the band
formation introduced in Section 2.2.1. The analysis starts from the premise that the
expressions for the band formation are useful if they allow the estimation of the re-
quired time for the band formation a priori, without actually simulating the evolution
of all the fragments in the cloud. For this reason, in Equations 2.11 and 2.12 the actual
fastest/slowest fragments are not used, but the reference value of the apsidal and nodal
dispersion are obtained starting from the average velocity variation Deltavavg resulting
from the breakup. The maximum value of the semi-major axis is obtained when the

27



2. analytical approach

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

Time [days]

D
n

of
Ω

Chobotov
McKnight
Ashenberg
2× Ashenberg
Numerical

Figure 2.5: Kolmogorov-Smirnov distance Dn for the ascending node Ω as a function
of time for a fragmentation event at h = 800 km, i = 0◦.

∆vavg is in the direction opposite to the orbital one; the opposite is true to define the
slowest fragment. Computing the energy E for these two cases, it is possible to obtain
the corresponding value of the semi-major axis

E+ = − µE

2a+
=

(v0 −∆vavg)
2

2
− µE

r0
→ a+ (2.20)

E− = − µE

2a−
=

(v0 +∆vavg)
2

2
− µE

r0
→ a−, (2.21)

where r0 is the fragmentation radial distance.

The accuracy of all these analytical expressions can be evaluated by comparing them with
the numerical estimation TKS obtained with the Kolmogorov-Smirnov test; in particular,
the band is considered formed at the time from which the Kolmogorov-Smirnov test is
true for at least 90% of the following instants. 3 The result of the comparison among
different estimations of time for band formation, for a fragmentation event at h = 800 km,
i = 0◦, is shown in Figure 2.5, which presents the value of the Kolmogorov-Smirnov
distance4 for the Ω distribution during cloud evolution. The expression by McKnight
(1990) appears to overestimate the time of band formation. Observe that, besides for the
cases with i = kπ/2 with k ∈ Z, the centre of mass represent neither the fastest nor the
slowest point in the cloud. As a result, the estimation of the band formation time with

3In Figure 2.5 it is evident that the Kolmogorov-Smirnov test presents numerous oscillations that re-
quired the definition stated in the test to set the moment when the band is considered formed. The oscilla-
tions are due to the fact that the result of the test (i.e. the maximum distance between the two cumulative
distributions) is affected by the shape of the empirical cumulative distribution function in such a way that the
same distribution shifted along the domain can obtain different output of the test. The use of a chi-squared
goodness-of-fit test as Jehn (1991) would limit this issue.

4the Kolmogorov-Smirnov distance is used for the visualisation for the sake of simplicity, but the actual
test in matlab is performed as in Equation 2.9 with the significance level set to 0.05
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this approach will always give a larger value than the other two options. As previously
observed, Chobotov (1990) and Ashenberg (1994) provide the same estimation of the
time of band formation, but their value is much lower than the one obtained with the
numerical test. This can be explained by observing that in the formulations by Chobotov
(1990) and Ashenberg (1994), the band formation period is defined as the time required
by the difference in the nodal/apsidal rate to cover π instead of 2π. It was verified that in
this way only an incomplete band is obtained. Correcting Equation 2.19 considering the
time for the dispersion over 2π, the purple curve in Figure 2.5 is obtained (2×Ashenberg),
which is much closer to the numerical value. Another reason why the two methods
(also with the correction of 2π instead of π) underestimate the time of band formation is
because, as explained by Jehn (1991), the band cannot be considered formed when the
fastest particle meets the slowest: at this moment the fragments are not yet uniformly
distributed in ω and Ω, and so their state cannot be described only as a function of the
distance r.

This emerges clearly in Figures 2.6 and 2.7, which refer to a fragmentation event at
h = 800 km, i = 20◦. In Figure 2.6 the distribution of Ω in different times from the
fragmentation is shown: the analytical expressions by Chobotov (1990) and Ashenberg
(1994) state that the band is formed after 33 days, but actually at that time it is still
possible to identify two peaks in the Ω distribution and even at 101 days the distribution
is still not uniform. Figure 2.7 shows an alternative visualisation of the band formation
in the same instants as in Figure 2.6: at 33 days the trace of the parent orbit is still clearly
visible.

To define a stopping criterion for the numerical propagation of the cloud, up to the band
formation, that does not involve a continuous check of the results, several scenarios were
run for different altitudes and inclinations to estimate a safety factor nSF to apply to the
prediction by Ashenberg (1994). nSF = 3 was chosen as a reasonable value, so the band
formation time for the CiELO model is set to

TB = 3Tb. (2.22)

It is interesting to verify what happens if the initial condition is built using different
values of the safety factor nSF . The cloud density profile was compared at four time
intervals with different values of nSF . Figure 2.8 shows the relative error compared to
the results with nSF = 4: the relative error is computed measuring the difference in
the number of fragments in each altitude bin (with a width of 25 km) between the case
nSF = j with j = 1, 2, 3 and the reference profile with nSF = 4. Note that, since the
relative error is computed bin-wise, the peaks in the relative error are due to errors in the
location of the peak in the density profile and not to large differences between the curves.
This was easily verified by comparing the overall shape of the density profiles, evaluating
their integral. The relative error on the integral between the cases with nSF < 4 and
the reference case with nSF = 4 is always lower than 3%, so the method appears quite
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Figure 2.6: Distribution of the ascending node Ω at different time instants for a frag-
mentation event that took place at h = 800 km, i = 20◦. Nf indicates the number of
fragments.
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Figure 2.7: Debris cloud evolution at different time instants for a fragmentation event
at h = 800 km, i = 20◦. The number above each plot indicates the number of days after
the fragmentation.
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Figure 2.8: Relative error on the cloud density profile at four time intervals with four dif-
ferent values of nSF for a fragmentation at 800 km on an equatorial orbit. The reference
profile is obtained with nSF = 4. Tb = 31.8 days.
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robust to the choice of the initial condition. The importance of switching to the analytical
formulation as early as possible during the cloud propagation is motivated by the fact,
as it will be shown later, the computational time of the whole simulation is proportional
to the length of the phase where the numerical simulation of the single fragments is
adopted. For this reason, analyses such as the one in Figure 2.8 may be used to better
understand which is the effect, in terms of the error in the long term propagation, of
anticipating the adoption of the analytical propagation before the band is formed. This
is left for future work.

2.3 Position fitting

Once the band is formed, the information on the fragment positions is translated into a
continuous density function that will be the initial condition for the analytical propaga-
tion method. Several approaches are possible: the first decision to make is whether to
use a distribution function or interpolation to represent the initial density; the second
decision is on which variable is the most significant to be represented.

2.3.1 Distribution function versus interpolation

The initial condition for the fragment density can be built by fitting the distribution of
the fragment altitude with some standard distribution functions. This process can be
performed through the parametric approach, where it is assumed that the functional
form of the fitting function is known and only some parameters need to be calculated
(Gentle, 2002). In this Section, the function to fit is the distribution of fragments in alti-
tude at the time TB . Some standard distribution functions were tested and their fitness
was evaluated through the quantile-quantile plot5 (Figure 2.9a) and the Kolmogorov-
Smirnov statistic, which, as already mentioned in Section 2.2, measures the maximum
distance between the empirical cumulative distribution function of the (simulation) data
and the cumulative distribution function used to fit the data (Figure 2.9b). In particular,
the latter approach allows the quantification of the fitness of different tested distribution
functions and so it provides a criterion to rank them; as a result, the algorithm is able to
choose the best function for each application.

5A quantile-quantile plot compares the quantiles of the tested distribution and the ones of the empirical
CDF. Quantiles are values taken at regular intervals for the inverse function of the CDF of a random variable:
if xα is the α-quantile means that F (xα) = α. In the quantile-quantile plot the two CDF are divided in the
same number q of quantiles. A point (x, y) on the plot represents the quantiles of the second distribution
(y-axis) against the same quantiles of the first distribution (x-axis). If the two distribution are similar, the
points will lie along the line y = x.
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Figure 2.9: (a) Quantile-quantile plot of the generalised extreme value and (b) its cu-
mulative distribution function plotted against the empirical cumulative distribution
function for a fragmentation at 800 km.

0 500 1000 1500 2000
0

1

2

3

4
×10−3

Altitude [km]

Fr
ag

m
en

td
en

si
ty

[1
/k

m
3
]

birnbaumsaunders
extreme value
gamma
generalized extreme value
inversegaussian
logistic
loglogistic
lognormal
nakagami
normal
rayleigh
rician
tlocationscale
weibull

Figure 2.10: Histogram representation of the fragment altitude distribution after the
band formation for a fragmentation at 800 km.

The first advantages of the approach with distributions is that it provides a full analytical
expression for the initial condition6. In addition, the distributions are defined by a very
small number of parameters (maximum 3 in the tested cases) that may be related to
the features of the fragmentation event. However, this approach also present two major
drawbacks. The level of precision of the fit attainable is not very high even for the
distribution functions with the best statistics. Figure 2.10 shows the test performed with
all distributions present in matlab and it can be observed how the tlocationscale is the
distribution that gives the best results, but even in this case the density peak height and
its location are not well captured. Moreover, the value of the distribution parameters

6This can be particularly relevant if the propagation of the cloud is then performed not with the con-
tinuity equation as in this case, but with the differential algebra as in (Colombo et al., 2015; Wittig et al.,
2014)
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and the choice of which distribution is the best to fit the data are highly affected by the
time when the initial condition is built. These two aspects have a large impact on the
reliability of the solution and, therefore, the approach with the distribution functions
was discarded in favour of an interpolation procedure. In particular, a piecewise cubic
interpolation is adopted. This approach does not offer the possibility of relating the
shape of the initial condition to the fragmentation parameters, but ensures that the
density profile is well represented.

2.3.2 Variable for the fitting

The simplest approach to define the initial condition for the analytical propagation
would be to set it equal to the actual distribution of fragments with altitude at the time
of the band formation (TB). This was done in a preliminary version of the model (Letizia
et al., 2013), where the density function was built from the distribution of fragments in
distance from the Earth r or semi-major axis a. However, in this way, the initial condition
depended on the moment when the band is considered formed and on the specific run
of the breakup model used to simulate the fragmentation. This is due to the fact that
the NASA breakup model contains some randomly chosen parameters (e.g. to describe
the dependence of the velocity variation on the fragment area-to-mass ratio). A Monte
Carlo approach can be adopted to give statistical meaning to the results.

Another approach was preferred. The fragment position is not directly used as initial
condition, but the fragments’ orbital parameters (namely, the semi-major axis a, the
eccentricity e, the inclination i) are used to describe the fragment distribution in space,
considering that the other parameters (i.e. the longitude of the ascending node Ω, the
argument of the periaspis ω and the mean anomaly M ) are randomised within the
cloud. In particular, the initial distribution of the orbital parameters is used to build
the probability of finding fragments at a certain altitude. In this way, the dependence on
the band formation time and on the run of the breakup model is reduced. Figure 2.11
presents the comparison among three possible initial conditions; three different runs
of the break-up model are presented, each one plotted with a different colour. One can
see that, in contrast to the simple distribution in h (Figure 2.11c), the probability density
(Figure 2.11a) has only a limited variation with the specific analysed run; moreover, the
distribution in h tends to the probability density if many cases are run and averaged.

Besides the reduced variability, this approach presents another advantage when com-
pared to the distribution in semi-major axis (Figure 2.11b). The probability density
presents a much stronger connection with the computation of the collision probabil-
ity for spacecraft or debris objects crossing the fragment cloud as it will be shown in
Chapter 3.
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Figure 2.11: Comparison among three different distributions that may be used to de-
scribe the initial condition: (a) refers to the probability density, (b) to the semi-major
axis distribution, (c) to distance distribution. Each colour refers to a different run of the
break-up model.

2.3.3 Expressions for the spatial density

Different authors have studied how to express the spatial density of a fragment cloud
given the distribution of the fragments’ orbital parameters (Jehn, 1996; Kessler, 1981;
McInnes and Colombo, 2013; Sykes, 1990). In Section B.1 and B.2 the equivalence be-
tween some of these formulations is shown. All approaches express the probability of
finding a particle, at a certain distance from the central body r and a certain latitude
β, knowing its orbital parameters a, e, i and assuming that the distribution of the other
parameters ω,Ω, ν can be considered random. These expressions depend only on the ge-
ometry, so they have been applied to different problems related to space debris (Kessler,
1990; Su and Kessler, 1985a), the design of disposal trajectories (Jenkin and Gick, 2005),
but also asteroids (Sykes, 1990) and Jupiter’s outer moons (Kessler, 1981). Moreover,
the dependence on the distance and on the latitude can be studied separately, which
is particularly useful in the current application as the evolution of the two parameters
occurs with different time scales and drivers, as it will be discussed in Section 3.2. For
this reason, in this part only the expression related to the distance r is analysed, whereas
the role of latitude will be discussed in Section 3.2.

Using the same notation as Kessler (1981), the spatial density in a particle band can be
expressed as

S(r, β) = s(r)f(β) (2.23)
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where

s(r) =
1

4π2ra2
1√

e2 −
(
r
a − 1

)2 (2.24)

f(β) =
2

π

1√
cos2 β − cos2 i

, (2.25)

where s(r) is the spatial density averaged over all latitudes, and f(β) is the ratio of the
spatial density at latitude β to the spatial density averaged over all latitudes. If only the
dependence on the distance is considered, Equation 2.24 can be used to build the initial
condition n0(r) = s(r).

When modelling a fragment cloud generated by a breakup, the dispersion of the orbital
parameters a, e among the fragments should be considered. This means that Equa-
tion 2.24 cannot be applied directly to describe the density of the cloud using from the
initial value of a, e of the orbit where the fragmentation occurred. Instead, it should be
applied to each fragment to take into account how the energy is distributed among them;
the total density is then obtained by simply summing the contribution of each fragment

n(r) =

NF∑
j=1

nj(r). (2.26)

2.3.4 Validation of the density expression

The expression of the spatial density can be initially tested considering its accuracy in
modelling the initial density profile, which is the distribution of the fragments at the
band formation. This was done both on single runs of the NASA breakup model and on
an average distribution obtained with ten runs of the NASA breakup model.

Figure 2.12 shows the test performed on ten different runs of the NASA breakup model for
a non-catastrophic collision with energy equal to 50 kJ, occurring on a circular equatorial
orbit at 800 km. The grey bars represent the average distribution of fragments from the
numerical propagation; the black lines the profiles obtained applying Equation 2.26 to
each run of the breakup model.

The comparison is expressed in terms of the number of fragments in an altitude shell of
width equal to 25 km and so the result of Equation 2.24, which provides a spatial density,
is multiplied by the volume of the spherical shell

Vshell =
4

3
π(r3+ − r3−) (2.27)

where r± = r±∆r/2with r centre of the altitude bin and∆r bin width. From Figure 2.12
it is possible to observe how the analytical expression captures the general shape of the

36



2.4 analytical propagation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

Altitude [km]

Fr
ag

m
en

tn
um

be
r

Average distribution
Analytical distribution

Figure 2.12: Comparison between the density expressions to represent the average frag-
ment spatial distribution at the band formation obtained with ten runs of the breakup
model.

distribution and, importantly, shows low variability among the different runs. This
observation is important because it confirms that the results obtained with the proposed
analytical method have a limited dependence on the specific run of the breakup model
used to model a fragmentation.

2.4 Analytical propagation

Once the initial fragment density of the band is defined, the continuity equation is
used to analytically derive the fragment density evolution with time. As described in
Section 1.5, the continuity equation can be written as

∂n

∂t
+∇ • f = ṅ+ − ṅ−, (2.28)

where n is the fragment density. In this work, no discontinuous events are considered, so
ṅ+ − ṅ− = 0; the term ∇ • f models continuous phenomena, in this case drag, following
the approach developed by McInnes (2000).

The radial distance r is the only considered coordinate, so a spherical symmetry is
assumed. This assumption and modelling only the drag effect imply that the analytical
propagation becomes applicable after the cloud has formed a continuous band around
the Earth (Figure 1.4c). The vector field has then only one component in the radial
direction

fr = vrn(r, t). (2.29)
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The drift velocity in the radial direction vr is obtained from the expression of drag
acceleration

ad =
1

2

cdA

M
ρ(r)v2 (2.30)

where cd is the drag coefficient of the fragment, which is assumed to be constant and
equal to 2.2 (Vallado, 2013); A is the fragment cross-sectional area; M is the fragment
mass; v is the fragment velocity and ρ(r) is the atmosphere density, which depends on
the radial distance from the Earth as in Equation 2.1. The effect of drag is to reduce the
orbit energy E with a rate equal to

dE
dt

= −vθad (2.31)

where vθ is the transversal velocity that, with the hypothesis of quasi-circular orbits, can
be considered

vθ =

√
µE

r
. (2.32)

Applying again the hypothesis of quasi-circular orbits, the energy variation can also be
written as

dE
dt

=
d

dt

(
− µE

2r

)
=

µE

2r2
vr. (2.33)

Observe that the hypothesis of quasi-circular orbit is essential to the derivation of a
closed-form solution, but it also has an impact on the accuracy of the method as it will
be discussed in Section 2.8. Combining Equations 2.31 and 2.33, the radial velocity can
be written as

vr = −2r2
vθad
µE

; (2.34)

substituting ad and vθ with their expressions in Equations 2.30 and 2.32, and putting
v2 = v2θ + v2r ≈ v2θ , the following expression for the radial velocity is obtained

vr = −√
µEr

cdA

M
ρ(r). (2.35)

Similarly to McInnes (2000), the parameter ε is introduced,

ε =
√
µE

cdA

M
ρref, (2.36)

which collects all the terms that do not depend on r. Observe that here the definition
of ε is slightly different from the original one in McInnes (2000) because, to increase
the numerical accuracy, it is convenient to compute the exponential term always as
exp

(
−h−href

H

)
and not as two separate terms exp

(
− h

H

)
, exp

(
href
H

)
. Putting Rh = RE +

href, the final expression for vr is obtained

vr = −ε
√
r exp

(
− r −Rh

H

)
. (2.37)
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This expression of vr allows the term ∇ • f in the continuity equation (Equation 2.28) to
be rewritten. Using spherical coordinates, the expression for ∇ • f is

∇ • f =
1

r2
∂(r2fr)

∂r
+

1

r sin θ

∂

∂θ
(fθ sin θ) +

1

r sin θ

∂fφ
∂φ

, (2.38)

with θ polar angle and φ azimuthal angle. As only fr 6= 0, Equation 2.28 becomes

∂n(r, t)

∂t
+

1

r2
∂

∂r

[
r2vrn(r, t)

]
= 0. (2.39)

Performing the derivation and collecting the terms with respect to n, Equation 2.39 can
be rewritten as (McInnes, 2000)

∂n(r, t)

∂t
+ vr

∂n(r, t)

∂r
+
[2
r
vr + v′r

]
n(r, t) = 0, (2.40)

where ()′ indicates the derivation with respect to r. Equation 2.40 is a first order linear
partial differential equation that can be solved with the method of characteristics7, whose
solution in this case is

G(r, t) = exp
(r −Rh

H

)
+ ε

√
Rh

H
t, (2.41)

obtained with the approximation

√
r ≈

√
Rh. (2.42)

Also the effect of this approximation is analysed in detail in Section 2.8. Applying this
procedure, McInnes (2000) found an explicit expression for the density evolution,

n(r, t) =
Ψ[G(r, t)]

r2vr
=

Ψ{exp [− r−Rh
H ] + (ε

√
Rh/H)t}

−εr5/2 exp [− r−Rh
H ]

. (2.43)

The function Ψ is obtained from the initial condition n(r, t = 0)

Ψ[G(r, 0)] = n(r, 0)r2vr, (2.44)

and from the characteristics at t = 0

z = G(r, 0) = exp
(r −Rh

H

)
, (2.45)

which can be inverted finding

r̃ = Rh +H log (z) (2.46)
7All the mathematical details on the method of characteristics and its application to Equation 2.28 are

shown in Appendix B.3.
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so that
Ψ(z) = n(r̃(z), 0)r̃2(z)vr(r̃(z)). (2.47)

Equation 2.43 provides a fully analytical expression to compute the effect of drag on the
cloud and the analytical propagation always acts on the cloud globally, not on the single
fragments. Therefore, in this case, the model is analytical in the sense that, once the initial
density is known, the cloud density at any time is immediately known, without any long
term numerical integration of the fragment trajectories, differently from previous models
(Kebschull et al., 2013; Rossi et al., 1995b, 2013).

Moreover, Equation 2.47 shows that no particular operation is needed on the function
n(r, 0), providing large flexibility on the functions that can be used to describe the initial
condition. This means that the initial condition can be easily built, starting from different
kind of fragmentation phenomena. It is important to observe that the shape of the
initial condition is used only as a starting point for the analytical method, which is
able to modify the function shape to follow the cloud evolution as demonstrated in
Appendix B.4.

It is also important to notice that the parameter ε, defined in Equation 2.36, is not constant
for the whole cloud as the fragments have different area-to-mass ratios,A/M . To improve
the accuracy of the model, N bins in area-to-mass ratio are here defined. For each bin,
an average εi is assumed and the corresponding density ni is obtained according to
Equation 2.43; all the partial densities ni are summed to obtain the global cloud density
n.

n(r, t) =
∑
i

ni =
∑
i

Ψ{exp [− r−RH
H ] + (εi

√
RH/H)t}

−εir5/2 exp [− r−RH
H ]

(2.48)

Different definitions of the bins are possible: in particular, two options were tested and
compared:

• same fragment number: the bins in A/M are defined so that each one contains the
same number of fragments at the band formation,

• logarithmically spaced: the edges of the bins are defined as logarithmically spaced
in A/M intervals having as bounds the maximum/minimum of the fragment pop-
ulation at the band formation.

Figure 2.13 shows the method accuracy and the computational time as a function of the
number of bins in A/M , defined with the two described approaches. The accuracy is
measured by two parameters. The first is the mean absolute error between the density
profile obtained with the analytical method and the profile obtained with the numerical
propagation (error on profile, errprof). The second one is the relative error on the density
peak height (errpeak) as explained more in detail in Section 2.5. Figure 2.13 shows that
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2.5 results for cloud propagation

the first approach (same number of fragment in each bin) has a lower error than the
logarithmically spaced bins. Therefore, the first approach is used hereafter. Figure 2.13
allows the optimal number of bins to be chosen and this was set equal to 10: for this
value there is a convenient reduction of the error compared to using a single value of ε
for the whole cloud and the computational time is only slightly affected.
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Figure 2.13: Relative error on density peak, relative error on the total number of frag-
ments and computational time as a function of the number of the number of bins in
A/M . The simulated period is equal to 1000 days.

2.5 Results for cloud propagation

In the remainder of the Chapter the proposed method will be applied to a specific
fragmentation event. Then, the accuracy of the method for many initial conditions will
be assessed and its computational time presented.

The results are expressed in terms of fragment spatial density with units km−3. As
discussed in Section 2.3, the analytical method provides directly the results in spatial
density if Equation 2.24 is used to build the initial condition. The results of the numerical
propagation are translated into a value of spatial density considering the number of
fragments Nf in a spherical shell of radius r and width w, here set equal to 25 km; it is
equivalent to count the fragment distribution in altitude with histograms with width
w. This output can be translated into fragment spatial density n with the following
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Figure 2.14: Alternative representation in terms of fragment number or spatial density
for a fragmentation at 800 km.

expression

n =
Nf

V
V = 4πw

(w2

12
+ r2

)
. (2.49)

The representation with the number of fragments provides an easier physical interpreta-
tion, but the representation in terms of density is preferred because it is independent of
the bin width (Figure 2.14), and it has a direct physical meaning, particularly important
when the method is used to compute values of collision probability.

2.6 Propagation with CiELO

Most of the results in this Chapter refer to a fragmentation generated by a non catas-
trophic collision between a spacecraft and a projectile of 100 g with a collision velocity of
1 km s−1. In this Section, the parent orbit of the spacecraft is equatorial and circular, with
altitude equal to 800 km. The collision generates 2397 fragments, whose area-to-mass
ratio ranges from 0.0298 to 15.4m2 kg−1 in the specific run of the breakup model con-
sidered. In fact, one single run of the NASA breakup model is used to show an example
of the output of the analytical method. Multiple runs of the breakup model are used to
validate the analytical approach in Section 2.7.

The band is considered formed after almost 95 days and then the analytical propagation
is applied, dividing the cloud in 10 bins of A/M . Figure 2.15 shows the cloud density,
obtained with the analytical method, at the band formation (Figure 2.15a), and 1000
days later (Figure 2.15b). At the band formation, Figure 2.15a indicates a distinct peak
(the dark red circle) in the cloud density at the altitude of the breakup. After 1000
days (Figure 2.15b) drag has reduced the peak and also the number of fragments at
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Figure 2.15: Visualisation of cloud density at (a) the band formation and (b) after 1000
days. The plot is not in scale.
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Figure 2.16: Visualisation of cloud density evolution for a fragmentation at 800 km.

low altitudes, below the fragmentation altitude; the density at high altitude is, instead,
almost unchanged. This is shown more clearly in Figure 2.16, which gives an immediate
representation of the persistence of the fragments in orbit. It also allows the estimation
of how the altitude range affected by the fragmentation is reduced with time and this
kind of plot can be used to compare different breakup events.

More in detail, the evolution of the density profile in time is shown in Figure 2.17, where
the colours refer to different values of the area-to-mass ratio (A/M ). For low A/M

values there is always a distinct peak in the density profile and the peak shifts towards
lower altitude with time. For high A/M , instead, the peak is quickly eroded and the
fragments tend to be spread up to high altitudes. This is in agreement with the results
by McInnes (2000). The number of fragments at the band formation is equal to 1740,
which means that 27% of the fragments generated by the collision decay before the band
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Figure 2.17: Evolution of the cloud density as a function of time after the band forma-
tion, for a fragmentation at 800 km.

formation. The analytical method predicts that after 1000 days, 1420 are still in orbit,
against the result of 1357 obtained with the numerical integration: the relative error in
the estimation of the fragment number is around 10%, so the analytical method can be
considered a reasonable approximation.

Figure 2.18b presents an analysis of the peak height and location for each A/M bin. In
Figure 2.18a the value of the peak height is normalised by the value at the band formation.
In this way, the relative reduction of the peak for each A/M bin can be appreciated.
During the 1000 days of propagation, the height of the density peak is reduced by 34%
for the whole cloud, with the largest reduction for the bins with the largest A/M . The
peak location is basically unchanged (Figure 2.18b) for the cloud globally, whereas it
undergoes a large variation for fragments with high area to mass ratio A/M . This is due
to the fact that, for the particular choice of the bin definition, the curves referring to high
A/M values are flatter (Figure 2.17) and the altitude corresponding to the peak (i.e. the
point with the highest density) changes discontinuously.

Further, the shape of the density function is affected by drag, which acts differently at
low and high altitudes. For this reason, the fragment density is reduced by 33% in 1000
days at an altitude lower or equal to the parent altitude 800 km and only by 10% for
higher altitudes. As the peak is reduced with time, the band of altitudes that contains
68.27%8 of the population increases its amplitude with time (Figure 2.19).

8The specific value of the percentage is taken from the definition of normal distribution, where 68.27%
of the values lie within one standard deviation from the mean
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Figure 2.18: Evolution of the density peak height and location for a fragmentation at
800 km. The value of the peak height is normalised with the value at band formation.
The colours refer to different values of the area-to-mass ratio and in black the value for
the cloud globally is reported.
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Figure 2.19: Evolution with time of the amplitude of the altitude band around the peak
that contains 68.27% of the population for a fragmentation at 800 km.
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Figure 2.20: Computational time for a PC with 4 CPUs at 3.40 GHz.

2.7 Comparison with numerical propagation

The analytical method for the cloud propagation was compared in terms of computa-
tional time and accuracy. When the numerical propagation is used, the trajectory of each
fragment is propagated individually using the semi-analytical propagator described
in Section 2.2. It models the effect of the atmospheric drag, using the equations by
King-Hele (1987), and of the Earth’s oblateness considering only the term with J2.

The numerical method used as a benchmark is certainly very simple, but this choice is
motivated by wanting to study the error introduced by the continuity equation alone.
This requires using the same models of perturbations for both cases. Future work will
repeat the validation considering a more refined model of the atmosphere and addi-
tional perturbations such as solar radiation pressure, which can affect the fragments’
trajectories at altitudes larger than 800 km.

2.7.1 Computational time

The computational time for the numerical and the proposed analytical methods is pre-
sented in Figure 2.20: the intervals reported in the diagram refer to the fragmentation
shown in Figure 2.16, which produces a cloud, composed initially by 2397 fragments
and which is propagated up to five years after the band formation, with a time step of
1.5 days.

The measured computational times refer to a PC with 4 CPUs at 3.40 GHz; both codes are
written in matlab and parallelised with matlab built-in functions. The values in Fig-
ure 2.20 are the average times obtained over twenty runs of the simulation. For both the
analytical and the numerical propagator, the breakup model requires 0.64 s to generate
the cloud. For the analytical method, the main contribution to the computational time
is given by the numerical propagation until the band formation (11.32 s), while the time
to build the initial condition (0.75 s) and the one for the final (analytical) propagation
(0.65 s) are negligible. On the other hand, the full numerical propagation takes 28.15 s as
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2.7 comparison with numerical propagation

the simulation time for the numerical propagation depends on the number of fragments
and the length of the simulated period9. In the case of the analytical method, these
dependencies are still present, but in a weaker form. In fact, the number of fragments
affects only the time for the propagation up to the band formation; the length of the
simulation affects the computational time only if a certain time step is prescribed as in
the case in Figure 2.20. This was done to measure the computational time with typical
settings for the cases where the value of density is then used to compute the collision
probability for a target crossing the cloud. As will be explained in Chapter 3, this re-
quires dividing the studied time span into a convenient number of time steps. If, instead,
the analytical method is used only to know the fragment density at a given time, a time
step equal to the whole time span can be used, further reducing the time of the analytical
propagation.

From the data in Figure 2.20 it is possible to observe a reduction of the computational
time equal to 52% for a simulation of five years. This suggests the analytical approach can
be an efficient tool to simulate different collision scenarios. In addition, it is important to
highlight that the reduction in the computational time is only part of the advantages in
terms of the use of computational resources. In fact, the formulation in spatial density
allows the information of a fragmentation to be stored in a file of limited size compared
to the case when the value of the orbital parameters of all the fragments need to be
saved. This means that expensive cases with tens or hundreds of thousands of objects
are generated on high performance computing systems but their results, expressed in
spatial density, can be saved into file whose size is manageable on normal machines
both in terms of RAM and physical memory. This allows the study of the impact of a
simulated fragmentation on a different set of targets in a very fast way as it will be shown
in Chapter 3.

2.7.2 Measure of the method accuracy

Four possible indicators of the method accuracy where considered:

• errpeak, which measures the relative error of the peak height, comparing the maxi-
mum density value for the analytical nA and numerical propagation nN ,

errpeak =
|max (nA)−max (nN )|

max (nN )
(2.50)

9Observe here that the numerical propagation has a large overhead as the time to launch the integration
and propagate the fragments for 90 days up to the band formation requires a computational time (11.32 s)
equal to 41.1% of the total computational time for five years of integration (28.15 s). In the case of the
propagation up to band formation, 90% of the computational time is spent inside the matlab built-in
function ode45. In general, the codes are only partially optimised in terms of performance as it was preferred
to maintain a high level of readability (e.g. with an extensive use of structures).
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• errtot, which measures the relative error of the total number of fragments obtained
by integrating the density curve

errtot =
|
∫
nA dh−

∫
nN dh|∫

nN dh
. (2.51)

• errprof, which measures the mean absolute error between the two density profiles

errprof =

∫
|nA − nN | dh∫

nN dh
. (2.52)

• R2, the coefficient of determination, which in statistics indicate how well the data
(nN ) fit a model (nA); in formulas, indicating with nF the number of fragments,
and with j a point in the altitude grid

n̄N =
1

nF

nF∑
j=1

nN,j SStot =
∑
j

(nN,j − n̄N )2 SSres =
∑
j

(nN,j − nA,j)
2

R2 = 1− SSres
SStot

.

(2.53)

The first metric, errpeak, is a local property, whereas the other three consider the global
shape of the density profile. This means that the error on on the peak in itself can be
a misleading figure because it can be very low for curves with similar maximum value
but different peak location. For this reason, its value is meaningful only when the global
metrics are small. The second metric, errtot, is the one with the strongest connection with
the physics of the problem, but it also has the disadvantage that, in theory, it could be
equal to zero even if the compared curves have different profiles, but the same integral.
For this reason, the third metric was preferred to evaluate the method accuracy as errors
in different directions do not compensate themselves. Observe that the indicator errprof,
differently from errpeak and errtot, is not a relative error as its meaning is closer to a mean
squared error. Finally, it was observed that R2 and errprof give consistent results, so only
the former will be shown in the following. As it will be clarified later in this Section, the
method is considered applicable when both the value of errpeak and the one of errprof

are below 0.2. This corresponds to a good visual agreement between the density profiles
obtained with the two different propagation method and a value of errtot lower than 5%.
Alternative evaluations of the accuracy may be based on the estimation of the decayed
objects.

It is important to highlight that the error between the analytical and the numerical
propagation is due to two factors:

1. the difference between the spatial distribution of fragments and the density profile
obtained from the fitting procedure (Section 2.3),

2. the error due to the propagation method in itself (Section 2.4).
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Moreover, if the method is used to study a specific breakup, more runs of the NASA

breakup model may be required to obtain a reliable representation of the initial condition.
The next sections will try to highlight the contribution to the error from the different
sources and the sensitivity of the results to the run of the NASA breakup model.

2.7.3 Example case: fragmentation at 800 km

The comparison presented here refers to the case studied in Section 2.6, a fragmentation
generated by the non-catastrophic collision with energy of 50 kJ, on an equatorial and
circular parent orbit, with altitude equal to 800 km. The collision generates 2397 frag-
ments and the band is considered formed at TB = 95 days; the analytical propagation is
applied defining 10 bins in A/M .

Figure 2.21 compares the results between the numerical and the analytical propaga-
tion, using the expression of the spatial density introduced in Section 2.3. The grey bars
indicate the distribution obtained from the numerical propagation of the fragment gener-
ated by averaging ten runs of the breakup model. The initial condition for the analytical
method is built starting from the average distribution at the band formation. Figure 2.21
shows how the analytical propagation follows the evolution of the cloud density very
well, correctly representing the reduction of the spatial density due to drag.

The results with a single run of the breakup model are very similar, as shown in Fig-
ure 2.22: also in this case, the analytical propagation follows the global evolution of the
cloud very well. It is also possible to observe that the distribution obtained from the
numerical propagation is less smooth than the one in Figure 2.21. This does not happen
for the analytical method because, as explained in Section 2.3, building the initial condi-
tion with the expressions for the spatial density in Equation 2.24 makes the method less
sensitive to the random parameters in the NASA breakup model. This result suggests
that the density profile built on a single run of the breakup model can be considered
representative of the fragmentation event without requiring to run the breakup model
multiple times.

Figure 2.23 shows the evolution of the error defined in Section 2.7.2 for the case with a
single run of the NASA breakup model. Focussing in particular on the evolution of errprof,
it is possible to notice that the error is already high at the band formation, meaning a
major contribution to the error is given by the difference between the spatial distribution
of the fragments and the density profile obtained with the fitting. This is related to the
smoothing behaviour of the analytical method described in Figure 2.22 and it, therefore,
suggests that a proper validation of the method should be done, using multiple runs of
the NASA breakup model, as it will be shown later in this Section.

Finally, Figure 2.24 shows in detail the propagation of each A/M bin: for the sake of
clarity, the number of A/M bins was reduced to four in this case. The colours refer to
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Figure 2.21: Fragment spatial density for a fragmentation at 800 km, for multiple runs
of the NASA breakup model.
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Figure 2.22: Fragment spatial density for a fragmentation at 800 km, for a single run of
the NASA breakup model.
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Figure 2.23: Evolution of the cloud density as a function of time after the band forma-
tion, for a fragmentation at 800 km.

different values of the area-to-mass ratio; solid lines indicate the result of the numerical
propagation, dashed lines the analytical one. It is possible to observe that the analytical
model performs quite well in all the bins, even if its accuracy decreases for highA/M bins.
This is due to the fact that high A/M bins correspond to a high mean eccentricity, so the
hypothesis of circular orbits, required to write vr as in Equation 2.37, introduces a certain
level of error. The issues associated with this hypothesis are discussed in Chapter 2.8,
but it is interesting to observe here that the dependency of mean eccentricity on the
area-to-mass ratio is a product of how the velocity distribution is written in the NASA

breakup model (Johnson and Krisko, 2001).

2.7.4 Range of applicability

The applicability of the method was tested varying the initial orbit of the impacted
spacecraft, both in inclination and in altitude. When not differently specified, the results
refer to ten runs of the NASA breakup model. The runs are averaged summing the
number of fragments in the same altitude bin over the different runs and dividing the
total number by the number of runs.

Figure 2.25 shows the value of errors after 1000 days from the band formation for incli-
nations ranging from 0 to 90 degrees: the value is always lower than 0.15, so the method
follows correctly the cloud evolution for all the inclination values.

The applicability of the analytical method was also evaluated at different altitudes. For
the validation, ten runs of the breakup model are used to simulate a fragmentation; the
resulting debris cloud is followed up to 1000 days after the band formation, when the
difference with the numerical propagation is measured.
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Figure 2.24: Evolution of the cloud density as a function of time after the band for-
mation, for a fragmentation at 800 km. The colours refer to different values of the
area-to-mass ratio; solid lines indicate the result of the numerical propagation, dashed
lines the analytical one. Each bin contains the same number of fragments.
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Figure 2.25: Accuracy of the method, measured by the relative error after 1000 days
from the band formation, as a function of the inclination of the orbit where the frag-
mentation occurs (with fixed altitude equal to 800 km).
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Figure 2.26: Accuracy of the method, measured by errtot after 1000 days from the band
formation, as a function of the altitude of the orbit where the fragmentation occurs
(with fixed inclination equal to 0◦).
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Figure 2.27: Accuracy of the method, measured by errprof after 1000 days from the band
formation, as a function of the altitude of the orbit where the fragmentation occurs (with
fixed inclination equal to 0◦).
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Figure 2.28: Accuracy of the method, measured by R2 after 1000 days from the band
formation, as a function of the altitude of the orbit where the fragmentation occurs
(with fixed inclination equal to 0◦).

The result of the validation is shown in the Figures 2.26, 2.27, 2.28 where, respectively,
the value of errtot, errprof, and R2 for different values of the collision altitude are shown
to demonstrate the equivalence of their results as anticipated at the beginning of the
Section. In particular, from Figures 2.27 and 2.28 one can observe how the accuracy of
the method is good only for altitudes equal or larger than 800 km, where errprof is always
lower than 0.15 and R2 above 0.9510. This region of LEO is actually very interesting for
space debris studies as it is the one where the debris density is highest and where future
events may be expected (Rossi et al., 2015a). The region is also where important remote
sensing missions with large spacecraft are operating from sun-synchronous orbits. At
these altitudes, the effect of solar radiation pressure also becomes relevant for the debris
motion, therefore an extension of the present model may aim to include this effect in the
analytical propagation.

At lower altitudes, even for very small values of eccentricity, the analytical method
presents a large error. This is de to the fact that the hypothesis of circular orbits for the
fragments introduces an unacceptable error on the results because the effect of drag is
different along an orbit as will be discussed in Section 2.8. An extension of the method
to include the effect of the eccentricity in the analytical propagation is presented in
Chapter 4.

Focussing on the altitude range where the method accuracy is acceptable, it is interesting
to study how the results of the analytical propagation depend on the breakup model. It
was observed that, in the case of the analytical propagation, the results obtained with
a single run of the breakup model seem very close to the ones obtained with multiple

10In the case of R2, numbers close to 1 indicate that the profiles obtained with the two propagators are
similar.
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Figure 2.29: Relative error of the analytical model at different altitudes. The error is
measured against the numerical propagation of a fragment cloud built averaging the
output of ten runs of the breakup model; the initial condition for the analytical model
is built using only the information in each single run of the breakup model. The error
bars indicate, therefore, the variability of the error when different runs of the breakup
model are used.

runs of the breakup model. This can be verified using the average results obtained from
the multiple runs of the breakup model as a reference for the debris cloud evolution and
comparing it with the predicted density profile obtained starting from a single run of
the breakup model.

The results for this analysis are shown in Figure 2.29: the graph on the left refers to
the error, errprof, on the density profile in orbit after 1000 days; the curves on the right
refer to errpeak. The error bars are defined by the maximum and the minimum error
among the ten initial density distributions obtained with the analytical propagation and
the initial condition set from only one run of the breakup model. The bars indicate,
therefore, the variability of the error when different runs of the breakup model are used.

From the curve for errprof it is possible to observe that the variability with the run of
the breakup model is very limited. For errpeak, instead, the variability seems larger, but
the error is low in absolute terms. This demonstrates that the analytical model gives
a reliable representation of the cloud evolution, even when a single run of the NASA

breakup model is used.

Figure 2.30 shows a comparison of the density profile after 1000 days for six different
collision altitudes: at low altitudes (< 700 km) the analytical method largely underes-
timates the drag effect, where the analytical method is expected to overestimate the
collision probability. It is interesting to observe that the error is large in relative terms,
but small in absolute terms as, for example, in the case at 500 km only 123 fragments
are left after 1000 days and the error on the peak is of five fragments. The drag effect is,
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instead, overestimated in the case at 700 km. For all the cases at high altitudes (≥ 800 km)
there is a very good agreement between the numerical and the analytical propagation.

As already mentioned, the threshold value for the errors was fixed at 0.2 and this limit
can be used to estimate the maximum simulation time length at different altitudes. Fig-
ure 2.31 shows the result of this analysis: for a fragmentation at 500 km the errors are
smaller than 0.2 for less than ten days; for the cases up to 700 km the maximum simu-
lation length is always lower than six months, while for the cases at 850 km and higher
altitudes the method is able to model the cloud evolution for more than 10 years.

In conclusion, the method accuracy is affected by the fragmentation altitude. Above
800 km, it is accurate enough to predict the cloud evolution in the long term (more than
some years); at lower altitudes, its applicability is limited to short times, but in any case
it can be used as a preliminary tool to model collision scenarios as for low altitudes only
a few fragments survive on the long term.

2.7.5 Results for different fragmentation energies

All the previous cases refer to a non-catastrophic collision of 50 kJ caused by the impact
with a projectile of 100 g with a relative velocity of 1 km/s with respect to the target.
These values of mass and relative velocity are on the low part of the possible values, so
it is important to study the performance of the analytical method also for higher values
of energy.

In particular, the case with collision energy equal to 50 kJwas compared with other three
cases where the value of the projectile mass, its relative velocity or both were increased.
The resulting density profiles are shown in Figure 2.32: the grey curve indicates the
profile at the band formation, whereas the blue and the red one indicate the density
profile after 1000 days from the band formation respectively using the numerical or the
analytical propagation. In all cases it is possible to observe a good visual agreement
between the numerical and the analytical propagation. Observe that for the case 2, with
Mp = 100 g and vc = 2km/s, and case 3, with Mp = 400 g and vc = 1km/s, the value of
fragment density is very similar because they have the same level of energy, expressed by
the parameter Me in the breakup model, and the same number of produced fragments
(Nf = 6781). However, the collision velocity has a direct impact on the maximum
variation of the fragment orbital parameters because of the saturation on the maximum
ejection velocity that was set equal to 1.3 times the impact velocity (Section 2.1). For case
4, Mp = 400 g and vc = 2km/s, 19179 fragments are generated.

It is useful to visualise the error for the four different cases to understand how the
method accuracy depends on the fragmentation energy. Figure 2.33 shows the value
of errprof at the band formation and 1000 days later for the four cases in Figure 2.32.
In this case, a single run of the NASA breakup model was used and this explain why
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Figure 2.30: Cloud density after 1000 days from the band formation for six different
collision altitudes. The grey bar represent the result of the numerical propagation, the
black line the result of the analytical propagation. The number of fragments still in
orbit after 1000 days, according to the numerical propagation, is reported on top of
each graph.
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Figure 2.31: Applicability of the method, measured by the maximum simulation length,
as a function of the fragmentation altitude. The maximum simulation length for each
error is the one for which it becomes larger than the threshold value of 0.2.
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Figure 2.32: Cloud density profiles after 1000 days from the band formation for four
different fragmentations at 800 km.
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Figure 2.33: Dependence of errprof on the collision energy Me at the time of band for-
mation (t0) and after 1000 days (tf ). Single run of the breakup model.
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Figure 2.34: Eccentricity distribution among the fragments after the breakup for four
different fragmentations.

the error for the case with Me = 0.1 kg is higher than the values in Figure 2.27. From
Figure 2.33 one can observe a clear dependence of the error on the fragmentation energy;
in particular, the higher the energy, the lower the error. This can be explained by the
fact that the higher the energy the larger the number of produced fragments, and so the
analytical method is more efficient in representing the fragment distribution. The role
of the number of fragments is confirmed by two factors:

• the two cases with the same energy (and then same fragment number), but differ-
ent projectile mass and velocity have the same level of error,

• the dependence of the error on the energy is already present at the band formation.

59



2. analytical approach

The result that the method accuracy improves for larger values of energy was not fully
expected. In fact, if the collision velocity increases, also the maximum variation of
the orbital parameters, including the eccentricity, increases. If a large fraction of the
fragments have eccentricity very different from zero, then the accuracy of the method
could be affected as the long term propagation of the cloud density is obtained with the
hypothesis that the fragments are on circular orbits.

However, Figure 2.34 shows that the eccentricity distribution among the fragments is
quite similar for the four tested cases. Even if the maximum value of eccentricity depends
on the impact velocity (0.8 for vp = 2km/s, 0.4 for vp = 1km/s), the empirical cumulative
distribution functions of the studied cases are practically identical up to e = 0.06, so up
to 60% of the fragments in the cloud. The fraction of fragments with e > 0.1 is around
20% for all the cases; in the case with vp = 2km/s just a small 3% of the fragments have
eccentricity between 0.4 and 0.8, and this percentage does not seem to affect the accuracy
of the method. Future work may investigate if there is a limit in the increment of energy
so that the large variation of the orbital parameters start to become detrimental to the
method accuracy.

2.7.6 Results for an explosion case

Finally, the analytical method was applied to describe a different kind of fragmentation
event, an explosion. According to the NASA breakup model (Johnson and Krisko, 2001),
the number of fragments larger than a certain size Lc is equal to

Nf (Lc) = 6S (Lc[m]/1[m])−1.6 (2.54)

where S is a non-dimensional empirical factor between 0.1 and 1. S = 1 is used to model
the explosions of upper stages with masses between 600 and 1000 kg; 0.1 < S < 1 is
used to model other explosions, but no further details on the value of S are available in
literature.

S = 1 was used in this application, so the resulting number of generated fragments
with size between 1mm and 10 cm is equal to 378 335. This number is much larger
than in the case of the weak non-catastrophic collision studied in Sections 2.7.3 and
2.7.4 and this caused some issues in terms of the numerical simulation of the trajectory
of each fragments. This process requires, in fact, a large amount of RAM and it was
not possible to run the simulation on a standard workstation equipped with 16GB of
RAM. Instead, ir idis, the high performance computing facility of the University of
Southampton, was used for this simulation. The full numerical propagation of the
cloud required 40 minutes on ir idis using 12 processors with 4GB of RAM each; the
computational time for the analytical method is instead less than two minutes, with 1.6
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Figure 2.35: Fragment spatial density for an explosion at 800 km. The grey bar repre-
sent the result of the numerical propagation, the red line the result of the analytical
propagation.

minutes for the propagation up to the band formation and 1.46 seconds for the long
term propagation.

The results for this case are shown in Figure 2.35: also in this case the analytical method
matches very well with the output from the numerical propagation. In particular, both
errprof and errpeak are equal to 0.11 after 1000 days from the band formation. This low
level of error can be explained by two factors, each one connected to the two sources of
error discussed in Section 2.7.2. First, as anticipated in Section 2.1, explosions tend to
produce fragments with lower relative velocity than collisions. In particular, the peak
in the velocity distribution is at 60m/s for the explosion in Figure 2.35, whereas it is
around 380m/s for the non-catastrophic collisions studied in Sections 2.7.3 and 2.7.4.
A lower relative velocity means that the fragments are in orbits with lower eccentricity
and so they are closer to the hypothesis of circular orbits introduced in the analytical
propagation. The second factor that explains the low level of error is the high number of
fragments generated by the explosion; this contributes to reduce the difference between
the spatial distribution of the fragments and the density profile obtained from the fitting
process.

In conclusion, the results for the explosion case are important because they demonstrate
that the analytical approach can be applied to any fragmentation event; they also show
that the analytical approach is robust to the choice of the breakup model as similar level
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of accuracy are reached for different fragment distributions. Moreover, this analysis con-
firms that the modelling of a non-catastrophic collision of 50 kJ is the most demanding
scenario among the tested ones. For this reason, the weak non-catastrophic collision is
used also in the following as a benchmark to evaluate the method applicability.

2.8 Effect of the model hypotheses

The results in Section 2.7.4 clearly show that the method accuracy reduces for low frag-
mentation altitudes and this practically sets a limit on the method applicability. Con-
sidering a limit of 0.2 on accuracy indicators, the analytical approach is applicable at
altitudes higher than 800 km. To understand what affects the method’s accuracy at low
altitudes, it is useful to analyse the method hypotheses and their effect. Based on this
analysis, an improvement to the method will be developed in Chapter 4.

Two assumptions were introduced to obtain the analytical solution in Equation 2.43:

1. the fragments are on circular orbits (Equation 2.37),
2. the radial distance of the fragments can be approximated with a fixed distance in

the square root in the expression for the radial velocity (Equation 2.42).

The contribution of each hypothesis is studied in Figure 2.36, where the variation in the
semi-major axis after one period due to drag is plotted as a function of the semi-major
axis. The plot is obtained considering that, starting from the altitude where the fragmen-
tation occurs (in this case Rh = RE+500 km), it is possible to compute the maximum
eccentricity that a fragment can have, given the semi-major axis of its orbit. In fact, all the
fragments’ orbits must include the point of fragmentation, which, in the two extreme
cases, can be the apogee (Figure 2.36a) or the perigee (Figure 2.36b) of the fragment
orbit. The maximum eccentricity is then the one associated with one of these two ex-
treme cases: the fragmentation altitude is at the apogee for fragments with semi-major
axis lower than the one of the parent orbit, whereas the fragmentation altitude is at the
perigee for fragments with semi-major axis higher than the initial one

emax =

1− Rh
a , a ≥ Rh

Rh
a − 1, a < Rh

. (2.55)

Knowing both the initial semi-major axis and the eccentricity, the altitude decay of the
fragment in one period can be computed (Equations 2.2), using as a reference a value
of the area-to-mass ratio equal to 0.5m2 kg−1. Figure 2.36 shows the variation of the
semi-major axis in one orbit as a function of the orbit semi-major axis for the fragments
produced by a fragmentation at 500 km; the vertical lines indicate the eccentricity.

The different colours indicate different hypotheses in the computation of the fragment
decay, whereas the dashed/solid lines refer to different hypotheses on the atmospheric
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Figure 2.36: Variation of the semi-major axis in one orbit as a function of the orbit semi-
major axis with different hypotheses for the integration, considering a fragmentation
at 500 km. The vertical lines refer to eccentricity values. (a) refers to semi-major axis
values lower than the fragmentation altitude, (b) to higher semi-major axis values. The
vertical lines refer to eccentricity values.

model. The dashed lines are obtained with the hypothesis thatRh, ρ0,H are computed at
the fragmentation altitude and then kept constant for the whole simulation, as explained
in the method description in Chapter 2. The solid lines refer to the integration updating
at each time step the parameters of the atmosphere, considering the actual value of the
fragment altitude.

The blue curve indicates the variation of the semi-major axis a obtained through numer-
ical integration of Gauss’ equations for a and the eccentricity e. The blue dashed line is,
therefore, the reference curve that represents the results of the numerical propagation
used to validate the analytical one.

The red curve is obtained through numerical integration of Gauss’ equations for a and
the eccentricity e, but assuming

√
r ≈

√
Rh: as shown in Figure 2.36, this hypothesis

introduces a small but acceptable error as already found by McInnes (2000), who es-
timated that the expression of the characteristic lines is accurate to order 1× 10−2 for
altitudes below 1000 km.

The green curve represents the effect of the hypothesis e = 0, which is the integration
only of

vr = −ε
√
a exp

(
− a−Rh

H

)
, (2.56)

and it is possible to observe that the fragment decay is underestimated, both at high and
at low altitude. This is due to the fact that neglecting the eccentricity in the exponential
term corresponds to applying an incorrect value of the density to compute the drag effect.
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2. analytical approach

In fact, using only the value of the semi-major axis, the information on the passage with
low perigee, given by the eccentricity, is lost and the predicted decay is zero.

For example, for a fragment with semi-major axis equal to RE+1000 km and correspond-
ing eccentricity equal to 0.007, Gauss’s equations estimate a reduction of the semi-major
axis of 4.40 km in 94 minutes. Introducing the approximation

√
r ≈

√
Rh, the predicted

decay is 4.24 km, so the relative error is less than 4%. On the other end, with the hypoth-
esis of circular orbits, the predicted decay is almost zero (0.11 km) and so the effect of
drag on the cloud is largely underestimated.

This effect is stronger at low altitudes where a small variation in altitude results in a
larger variation in density compared to what happens at higher altitude; in other words,
at low altitudes the eccentricity value above which the decay is strongly underestimated
is lower than at high altitude.

This can be verified by plotting the variation of the atmospheric density ρ for two orbits
with the same low eccentricity (e.g., e = 0.01) and different semi-major axes, as shown
in Figure 2.37. The x-axis represents the angular coordinate from the perigee to apogee;
the y-axis indicates the relative error between the actual density value computed with
the exponential model and the value of ρ at an altitude equal to the semi-major axis, such
as it is done in the analytical model with the hypothesis of circular orbit. For the case at
low altitude, the relative error arrives up to 2, so Equation 2.56 cannot be considered a
good representation of the cloud evolution.

One could expect drag to affect the eccentricity distribution in such a way that the average
eccentricity is reduced with time because of the progressive circularisation of the orbits.
Actually, as shown in Figure 2.38, drag reduces the number of fragments, but especially
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Figure 2.37: Relative error on the atmospheric density along one orbit for two non-
circular orbits (e = 0.01).
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2.8 effect of the model hypotheses

those with low eccentricity as they also have low semi-major axis. The fragments with
high eccentricity instead also have high energy and their decay is slow; their presence
drives the average eccentricity to increase (for example, in the case in Figure 2.38 from
0.05 to 0.08). This means that the error due to eccentricity always increases with the
simulation time.

This observation can be extended to all altitudes value; moreover, it is also interesting
to observe how the eccentricity distribution is affected by the fragmentation altitude.
Figure 2.39 shows the quantiles of the eccentricity distribution for different altitudes
after 1000 days since the band formation. In general, 75% of the fragments have an
eccentricity value lower than 0.15, but the value is dependent on the altitude as at low
altitudes, as seen in the previous case in Figure 2.38, the fragments with low eccentricity
decay more quickly.

Summary

The proposed analytical method, CiELO, is formed by four main building blocks. The
generation of the fragments due to a collision or an explosion is described through a
breakup model that defines how the energy of the fragmentation event is distributed
among the fragments and specifies their characteristics (e.g. mass, size). In this work,
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Figure 2.38: Evolution of the eccentricity distribution as a function of time, after the
band formation, for a fragmentation at 500 km.
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Figure 2.39: Quantiles of the eccentricity distribution as a function of the altitude, 1000
days after the band formation, for a fragmentation at 500 km.

the NASA breakup model (block 1) is used considering only the fragment with size
between 1 mm and 10 cm. Once the fragments are generated, their orbital parameters are
numerically propagated (block 2) to model the short initial phase of the cloud evolution
when the Earth’s oblateness has the dominant effect. The numerical propagator is based
on semi-analytical techniques and each fragment trajectory is considered separately.
The numerical propagation implemented in the code models the secular effect of the
Earth’s oblateness, considering the J2 term only, and the effect of the atmospheric drag,
considering the average variation of the parameters along one orbit. In particular, the
effect of drag is implemented on different orbital regimes in terms of eccentricity. The
numerical propagation is stopped once the fragments are spread and form a band around
the Earth. The time required to form a band around the Earth can be estimated through
some expressions available in literature that provide a stop criterion that does not require
any continuous check on the fragment propagation. Once the fragments form a band
around the Earth, it is possible to change the point of view from the single fragments
to the whole cloud. This requires the conversion of the information on the position of
all the fragments into a continuous density function (block 3). Different approaches are
possible here, depending on the use of distribution functions or fitting functions, which
give the best results. The long term evolution of the cloud is obtained by applying the
continuity equation to model the effect of the atmospheric drag (block 4). Assuming that
the system can be considered spherically symmetrical, it can be studied through only
one coordinate, the radial distance from the Earth r. Using an exponential model for the
atmosphere and assuming that the fragments are in quasi-circular orbits it is possible to
obtain an analytical formulation for the evolution of the fragment spatial density with
time. The analytical method was used to model the resulting fragment spatial density
after a collision. It allows the effective visualisation of the persistence of the fragments
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2.8 effect of the model hypotheses

in orbit depending on their initial energy. It is also able to show the different evolution
of the profile density for low and high values of area-to-mass ratios.

The performance of the analytical model was assessed through the comparison with
the results obtained using a numerical propagator such as the one used to follow the
fragments’ trajectories from the breakup to the band. The performance was evaluated
both in terms of computational time and accuracy. For what concerns the computational
time, a reduction larger than 50% was observed for the simulated case. Moreover, the
formulation in spatial density allow the information on the fragmentation to be stored in
a more efficient way than saving the state of each fragment at each time step. Therefore,
the analytical method requires not only less computational time, but also less mem-
ory. The accuracy of the method was measured by two indicators. The first, errprof,
measures the mean error between the integral of the density profile obtained with the
analytical approach and the numerical one. The second indicator, errpeak, measures, in-
stead, measures the relative error between the peaks of the two curves. These indicators
were chosen because together they provide information on the ability of the analytical
method to capture both the global shape of the density profile and its most important
local feature.

Different fragmentations were simulated to assess the method accuracy. Different values
of the collision energy were also simulated as well the case of an explosion: for all
these cases the larger the number of fragments, the lower the error. It was found that
the fragmentation inclination has no substantial influence on the accuracy whereas the
fragmentation altitude has a large impact. In fact, the error becomes large at low altitude,
limiting the method applicability to fragmentations at 800 km and above. It was shown
how this error is related to the hypothesis that all fragments are on circular orbits.
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3
Collision probability through a

fragment cloud

The analytical approach can be used to describe the evolution of a fragment cloud, so it
can be applied to study how the cloud affects the collision probability for near spacecraft.
In particular, the proposed analytical method will be applied to study the consequences
of fragmentations occurring on orbits with any inclination and altitude between 800 and
1000 km. The comparison with the numerical propagation, described in Section 2.7, has
shown that this is the region where the analytical method can be applied with a good
level of accuracy for simulations over several years. This region of space is particularly
interesting because it presents the highest density of space debris population (so it is
reasonable to study fragmentations originating from this region).

The consequences of a fragmentation are evaluated considering the resulting collision
probability for spacecraft crossing the cloud. This requires a way to relate the fragment
spatial density to the collision probability for the target spacecraft and it will imply
estimating the relative velocity between the target and the fragment cloud. Most of the
following analysis will consider only cases when the fragment band has already reached
the band configuration and, therefore, the long term effect of a fragmentation is here
studied. Moreover, only the debris density related to small fragments, between 1mm

and 10 cm, is considered.
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3. collis ion probability through a fragment cloud

3.1 Analogy with gas kinetic theory

The collision probability for a spacecraft crossing a fragment cloud can be computed
following the analogy with the kinetic gas theory (McKnight, 1990; Su and Kessler,
1985a). According to this analogy, the collisions between a target and a background
population, such as fragments in a cloud, can be modelled similarly to the collisions
among molecules within an inert gas (Jenkin, 1996). The collision probability is then
obtained by modelling the collisions as a Poisson process.

The use of Poisson process to model rare events is very common as it can be demonstrated
that the probability that an event with low success probability occurs in a given interval
of time ∆t is a Poisson process with rate λ, if certain hypotheses are respected (Ross,
2013). Using NE to indicate the number of events in the time interval ∆t = [0, t] (divided
in subintervals ∆tH ), the hypotheses are the following:

1. NE(0) = 0,
2. the numbers of events occurring in non-overlapping time intervals are indepen-

dent or, in other words, what happens in a time interval has no impact on what
happens in another non-overlapping time interval,

3. the probability of collision during a certain time interval is proportional to the
length of the time interval and not on its position along the considered time span,

4. P{NE(∆tH) = 1} = λ∆tH+o(∆tH), the probability of exactly one event occurring
in a given time interval of length ∆tH is equal to λ∆tH plus a quantity that is small
compared to ∆tH ,

5. P{NE(∆tH) ≥ 2} = o(∆tH), the probability of multiple events happening in a
certain time interval is small.

In the case of a debris cloud, hypothesis 2 can be translated into assuming that the
motion of the fragments is random. This means, as highlighted by Jenkin (1996), that
this method should not be used in the first phases of the cloud evolution, when the
fragments’ trajectories are highly correlated. In this application, as anticipated, the focus
will be mostly on the phase when the fragments have reached the band configuration,
so the analogy is applied at a late stage of the cloud evolution, when the motion of the
fragments has already been randomised. Hypothesis 3 can be related with having a
large enough number of fragments, so that the cloud can be considered as a continuum.

The parameter λ is a constant that needs to be determined and it is set in such a way that
λ∆t is equal to number of collisions N in the time interval ∆t. It is computed similarly
to what is done for inert gases, considering the volume swept by the target in a given ∆t

N = n(r, t)∆vσc∆t (3.1)
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3.1 analogy with gas kinetic theory

where n(r, t) is the value of the fragment spatial density, ∆v is the average relative
velocity between the targets and the fragments, and σc the collisional cross-sectional
area (Chobotov, 2002; Jenkin, 1996; Kessler, 1981). The product Φ = n(r, t)∆v is often
indicated as the flux of particles. The approach in Equation 3.1 has been criticized, for
example by Chan (2008), who observed that the spatial density of the fragments and the
mean free path of the target have a very different ratio in the case of gases and in the one
of space debris. In any case, other approaches to compute of collision probability, such
as the one proposed by Chan (2008), are applicable if they are based on a dependence
of the number of collisions on the fragment spatial density.

Observe that this method also assumes that there is no interaction among the objects in
the cloud. In particular, collisions among the fragments in the cloud are not considered.
It is useful to remind that the propagation method based on the continuity equation
may take into account this contribution through the term ṅ+ in Equation 2.28 as done
by McInnes (1993).

Once that an expression for the rate λ = N/∆t of the Poisson process is obtained, it is
possible to write the probability of collision considering that for a Poisson process

P{NE(∆t) = 0} = e−N , (3.2)

which expresses the probability that no event (collision) occurs in the considered time
interval. Therefore, the cumulative collision probability for the target spacecraft in the
time interval ∆t is equal to

pc(t) = 1− exp (−N) = 1− exp (−n(r, t)∆vσc∆t). (3.3)

The parameter σ is usually defined considering the dimensions of both the colliding
objects (Kessler, 1981), but here only the target spacecraft area AT is considered because
the fragments are much smaller than it, so σc ≈ AT . The relative velocity ∆v needs to be
estimated without having information on the orbital parameters of the single fragments,
but knowing only their spatial density n(r, t), obtained with the CiELO method described
in Chapter 2, and the fact that the fragments are randomised in ν, ω,Ω. A method to
estimate the relative velocity ∆v is discussed in detail in Section 3.3. For what concerns
the spatial density n(r, t), as anticipated, it is obtained from the analytical propagation,
so only its dependence on the altitude is retained, whereas, in reality, the distribution of
fragments may depend also on the latitude. Section 3.2 explains why the dependence
on the latitude can be neglected for long term studies of the collision probability.
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3. collis ion probability through a fragment cloud

3.2 The role of latitude in the long term propagation

As stated in Section 2.3, the correct representation of the cloud spatial density also
requires to consider the distribution in latitude. However, in this work a constant dis-
tribution in latitude is assumed, similarly to what was done by Kessler (1990). This
approximation is chosen because the purpose of this method is to study the long term
(i.e. years) effect of a fragmentation, whereas the latitude of a target spacecraft crossing
the cloud evolves in a much shorter time scale (i.e. hours). Following the target lati-
tude would require very short time steps for the integration, vanishing or reducing the
advantage of having a fast propagator for the fragment cloud.

This approach was criticised by Hujsak (1993) as it masks the difference between two
satellites crossing the same fragment cloud, but having different orbital inclinations.
Assuming that both the orbits are completely inside the fragment cloud, the spacecraft
with the highest inclination will spend a longer time in zones with high spatial density,
compared to the one with low inclination. It is, therefore, important to note that the
analytical method is also able to deal with the distribution in latitude. In fact, applying
the general solution for a 2D formulation of a continuity equation problem to the current
application, the expression for the density (Equation 2.43) can be written as

ñ(r, β, t) = ñ0(ri, βi)
vr(ri, βi)vβ(ri, βi)

vr(r, β)vβ(r, β)
(3.4)

where ñ0 is the initial distribution, ri, βi are functions obtained by inverting the char-
acteristic lines at initial time t = 0, vr, vβ are respectively the expression of dr/dt and
dβ/dt due to the effect modelled by the continuity equation, i.e., drag. Therefore in this
case, where the effect of drag on quasi-circular orbits is considered,

dr

dt
= −ε

√
RH exp

(r −RH

H

)
(3.5)

dβ

dt
= 0 (3.6)

meaning that vr depends only on r and the distribution in latitude is not directly affected
by drag. As a result, Equation 3.4 can be written as

ñ = ñ0(ri, β)
vr(ri)

vr(r)
. (3.7)

The expression for ñ0(ri, βi) is simply the ones discussed in Section 2.3, given, among
others, by Kessler (1981) and Sykes (1990)

ñ0(ri, βi) = S(ri, β) = s(ri)f(β) (3.8)
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3.2 the role of latitude in the long term propagation

and finally

ñ(r, β, t) = f(β)
s(ri)vr(ri)

vr(r)
. (3.9)

Similarly to what is done for s(r) in Section 2.3, f(β) can be built from the distribution
of the fragments at the time of band formation.

In this work, as explained before, the choice was not to follow the evolution of the target
latitude: what is relevant for the study is knowing if the target spacecraft is inside or
outside the fragment band, as visualised in Figure 3.1a; if the spacecraft is inside, the
collision probability is computed using an average value of the fragment density, which
depends only on the distance and not on the latitude.

Initially, the average density value was computed through the integral average of f(β)
on its domain

f̄lin =
1

2βmax

∫ βmax

−βmax

f(β) dβ

=
1

2βmax

∫ βmax

−βmax

2

π

1√
cos2 β − cos2 βmax

dβ (3.10)

where βmax is the maximum latitude covered by the band, which, as will be shown
later, is related to the fragmentation inclination. This integral can be solved using the
non-diverging expression for f proposed Kessler (1981) and so

f̄lin =
1

sinβmax
. (3.11)

This value can be alternatively obtained considering the geometry of the problem. In
fact, the volume of the band can be obtained by subtracting from the volume of the
sphere (Vsph = 4

3πr
3) two spherical sectors whose spherical caps have height equal to η

(Vsec =
2
3πr

2η). η can be related to the angle βmax (Figure 3.1b)

η = r − r sin(βmax) (3.12)

so that the final expression for the band volume is

Vband =
4

3
πr3 − 2

2

3
r2r(1− sinβmax) =

4

3
πr3 sinβmax

= Vsph sinβmax.
(3.13)

At this point, f̄lin can be computed again, now with the meaning of a scaling factor
between the two volumes,

Vsph

Vband
=

1

sinβmax
= f̄lin. (3.14)
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3. collis ion probability through a fragment cloud

(a) Fragment band

r
η

βmax

(b) Geometry of the band volume

Figure 3.1: Fragment band and its geometrical description.

This approach, which seems validated by the geometrical observation in Equation 3.14,
would give a correct scaling factor only if β had a linear evolution with time. As this
is not true, the correct dependence of β on time should be considered and the average
density value should be found by computing once the integral average of f(β) over one
orbital period. This factor can then be used to rescale the spatial density at any time,
applying again the hypothesis that the fragments’ and the target’s inclinations are not
changing. The dependence of the latitude β on the orbital parameters is expressed by

β = arcsin (sin (ω + ν) sin i) (3.15)

where ω, ν, i refer to the argument of perigee, the true anomaly and the inclination of
the target spacecraft crossing the cloud. Introducing the argument of latitude u = ω+ ν

and writing the expression for the case of circular orbit, the scaling factor of the spatial
density can be computed as

f̄ =
1

π2

∫ umax

−umax

du√
cos2 (β(u))− cos2 (βmax)

(3.16)

where β(u) is given by Equation 3.15. βmax is the maximum latitude covered by the band.
For non-equatorial orbits, βmax is set equal to the inclination where the fragmentation
occurs iF if iF ≤ π/2 and equal to π − iF otherwise. This follows from the band char-
acterisation proposed by McKnight (1990) and the observation that, with the current
hypotheses (e.g. non-rotating atmosphere), the fragment inclination is not affected by
drag and is thus constant. For equatorial orbits, βmax is set equal to the maximum in-
clination reached by the fragments due to the breakup.1 umax is equal to π if iT ≤ iF ;
umax = arcsin (sin(βmax)/|sin iT |) otherwise.

This approach was tested by performing a simulation where the spatial density and the
collision probability (pc,f(β)) are computed considering the dependence on the latitude

1This can be done for any inclination of the parent orbit. This approach was compared, for different
inclinations, with the results obtained setting the maximum covered latitude equal to the parent orbit
inclination. The latter gives actually a distribution closer to the observed one and is, therefore, implemented.
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Figure 3.2: Relative error on the collision probability due to the averaging in latitude
for a simulation case with iT = iF = 60 degrees.

and using a very short time step, equal to five minutes.2 In this way, for each target orbit
there are at least 20 integration points and the value of β can be considered representative
of the time-step. This result is compared to the simulation run with a time step equal
to one day, where only the dependence on the geocentric distance is considered and the
scaling factor from Equation 3.16 is applied. The collision probability obtained in this
way is indicated with pc,f̄ .

The result of the comparison is presented in Figure 3.2: it shows the relative error

∆pc
pc

=
|pc,f̄ − pc,f(β)|

pc,f(β)
(3.17)

introduced by Equation 3.16 on the collision probability. The simulation refers to a target
with inclination equal to iT = 60 degrees crossing a cloud generated from an orbit with
equal inclination (iF = 60 degrees). It is possible to observe how the difference between
the two methods is limited, with the relative error that oscillates around a value equal to
0.004. Therefore, Equation 3.16 is an effective way to model the long term evolution of
the collision probability without following the target latitude. This is shown in Figure 3.3
where the evolution of f̄ as a function of iF , for a fixed iT , is shown. When iT > iF ,
the target spends only a part of its orbit within the cloud; the part is lower and lower
for decreasing values of the inclination of the orbit where the fragmentation occurred.
In this configuration, the target always crosses the part of the cloud with the highest
density (with respect to the variation in latitude). When iT < iF the target is always
inside the fragment band, but as iF increases, the target is farther from the region with

2Observe that using this large number of points results in a remarkable increase in the RAM required
to run the simulation in a such a way that a high-performance computing cluster was required for this vali-
dation. If the analytical method is instead used on a normal machine, then a reasonable, higher, time-step
needs to be chosen.
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Figure 3.3: Variation of f̄ with the fragmentation inclination iF for a fixed target incli-
nation equal to 60 degrees.

the highest fragment density. When iF = iT the target is always inside the fragment
band and it crosses the region with the maximum density, so f̄ reaches the highest value.
In this way, the remark by Hujsak (1993) on how the target inclination affects its collision
probability is addressed. For this reason, this approach will be used in the following
results where the spatial density is always computed as S(r) = f̄s(r).

3.3 Collision velocity estimation

To keep the formulation simple and dependent only on the radial distance, a set of
hypotheses is introduced to obtain the expression of the relative velocity ∆v. If a single
fragment is considered, ∆v can be obtained from the rule of cosines

∆v2 = v2T + v2F − 2vT vF cosφ (3.18)

where vT and vF are respectively the orbital velocities of the target and of the fragment
with respect to the central body; φ is the angle between the two vectors vT and vF. vT
is known from the propagation of the target trajectory; vF is a piece of information that
is lost with the analytical propagation. However, the propagation of the fragment cloud
is done under the hypothesis of quasi-circular orbits, so

vF ≈ vcirc =

√
µE

r
. (3.19)

The angle φ can be related to the geometry of the two orbits. In fact, the intersection
between two circular orbits with the same radius can be represented by the spherical tri-
angle in Figure 3.4 where B is the ascending node of the target orbit and C the ascending
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Figure 3.4: Generic spherical triangle.

node of the fragment orbit. Therefore,

B = iT C = π − iF ; (3.20)

also a = ∆Ω, so the spherical triangle can be solved with the law of cosines to find the
angle A

cosA = sinB sinC cos a− cosB cosC (3.21)

= sin (iT ) sin (iF ) cos (∆Ω) + cos (iT ) cos (iF ) (3.22)

Equation 3.22 can be used to provide a unique value of φ for a given configuration of
target and fragments in terms of their inclinations. Given that Ω is uniformly distributed
among the fragments, the average relative velocity ∆v̄, can be found computing the
integral mean of the function

∆v =
√
v2T + v2F − 2vT vF [sin (iT ) sin (iF ) cos (∆Ω) + cos (iT ) cos (iF )] (3.23)

for ∆Ω from 0 to 2π. By setting

χ = v2T + v2F − 2vT vF cos (iT ) cos (iF ) η = 2vT vF sin (iT ) sin (iF ) (3.24)

the average value of the relative speed can be written as

∆v̄ =
2

π

√
χ+ ηE

[
2η

χ+ η

]
, (3.25)

where E[x] is the complete elliptic integral of the second kind. E[x] is implemented
in matlab by the function ellipke, which can be evaluated with different values of
tolerance. A trade-off analysis between the computational time and the accuracy was
performed leading to the choice of the tolerance equal to 1000ε, with ε the machine
epsilon. For this value of tolerance, a single evaluation of E[x] requires 3.8× 10−5 s

and the relative error compared to the value with tolerance equal to ε is lower than
0.9× 10−12.
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Figure 3.5: Relative error in the estimation of the relative velocity between target and
fragments for several configurations with variation (a) in inclination and (b) in altitude.

The approximation for ∆v was validated for different geometries of the target and frag-
ment orbits. The results of the validation are shown in Figure 3.5, where the metric used
to measure the method accuracy is

errrel =

∫
|∆vA −∆vN | dt∫

∆vN dt
, (3.26)

where ∆vN is the estimation of the velocity obtained using a numerical procedure that
computes the distance and the relative velocity between the target and each fragment
as explained in Appendix A.3; ∆vA is the analytical estimation obtained from Equa-
tion 3.25. Basically, Equation 3.26 measures if the analytical approximation is able to
capture the average value of the relative velocity, which is considered to be the most
relevant parameter in a long-term study of the collision probability.

Figure 3.5a refers to different combinations of inclinations for the target (iT ) and the
fragments (iF ), while their initial altitude is the same and equal to 800 km. As one could
expect, Equation 3.25 does not work for equatorial orbits, where ∆Ω is not defined; for
those cases errrel ≈ 0.3, whereas it is lower than 0.08 for all the other cases.

Figure 3.5b shows the results for different choices of the orbit inclinations, with ∆i =

iF − iT , and of the target altitude, with the fragmentation starting again at 800 km. Also
in this case the error is generally low, but it tends to increase with the altitude difference
for orbits with the same inclination. In addition, it was verified that errrel is lower than
10% for all cases discussed in the rest of the Chapter.

Finally, it is interesting to compare the numerical and the analytical methods for the rela-
tive velocity also in terms of computational time. The numerical procedure is explained
in details in Appendix A.3, but it can be summarised by saying that, at each time step,
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the code identifies which fragments can intersect the target orbit based on a filter that
computes their perigee and apogee. Then the geometrical intersection between the two
orbital planes is derived, finding the nodal line, where the velocity of the two objects
is measured. In other words, the used numerical procedure approximates the search
for the minimum distance between two orbits checking only along the nodal line. This
avoids introducing any numerical algorithm to find the zero (or the minimum) of a func-
tion, keeping the method purely geometrical. Nevertheless, checking the intersections
between the target orbit and the thousand fragment orbits requires around 0.5 s at each
time step for a fragmentation with 2397 fragments3. This means that when the relative
velocity is computed for simulations for five years with a time step equal to 1.5 days,
the numerical method requires around 647 s, whereas the analytical method uses only
0.17 s4. In other words, the time required by the numerical method for one step is the
same that would be required by the analytical one to estimate the relative velocity for
15.5 years of simulation with a time step of 1.5 days. These figures demonstrate very
clearly the advantage of adopting an analytical method based on a formulation in terms
of spatial density: whereas for the propagation of a fragment cloud the difference in
the computational time between the numerical and the analytical methods is small in
absolute terms, but when the collision probability is computed the difference becomes
noticeable.

3.4 Collision probability computation

Thanks to the analytical estimation of the relative velocity, it is now possible to compute
the average number of collisions N in a time interval ∆t as in Equation 3.1

N = n∆vAT∆t

and the resulting collision probability as in Equation 3.3

pc = 1− exp (−N).

The target mass and size were set considering the average values among possible targets
(Rossi et al., 2013); in particular,

AT = 11m2 MT = 2322 kg.

The propagation of the target starts from the moment when the fragment band is formed.
Some examples of the results obtained during the validation process are presented in

3on a PC with 4 CPUs at 3.40 GHz; in this case the code is not parallellised
4both the values are obtained as average on five cases and refer to the time for the computation of the

relative velocity only, not considering the time for the density propagation.
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(a) F(30,800)T(30,800), ∆v = 4.744 km/s.
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(b) F(60,800)T(90,800), ∆v = 9.905 km/s.
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(c) F(60,800)T(30,700), ∆v = 7.618 km/s.
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(d) F(60,800)T(30,900), ∆v = 7.565 km/s.

Figure 3.6: Comparison between the number of collisions estimated with the numerical
propagation (in grey) and with the analytical one (in black). The time is measured from
the instant of band formation.

Figure 5.4, which shows the distribution of the relative velocity ∆v among the fragments
for different cases, indicated with the notation

F(iF ,aF −RE)T(iT ,aT −RE),

where F refers to the orbital parameters of the fragmentation parent orbit and T to the
ones of the target spacecraft crossing the cloud.

Figure 3.6 shows the number of collisions N predicted by applying the analogy with the
kinetic theory of gases using the value of density n and relative velocity ∆v obtained
from the numerical propagation (in grey) and the analytical one (in black), where the
average velocity is used. Four cases with different inclinations and altitudes are shown.
In all cases, as a result of the approximation of the velocity, the analytical method is
able to capture the average behaviour, but not the high frequency oscillations. The
oscillations derive from the relative velocity and are due to the fact thatΩ is not uniformly
distributed among the fragments that intersect the target orbit. The resulting difference
in the cumulative collision probability is in any case minimal.
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Figure 3.7: Notation and definition of the reference volume.

3.5 Collision probability before the band formation

Equation 3.3 is used to compute the collision probability after the band is formed, but
one may want to apply it also in the previous phase of the debris cloud evolution. It
is important to remember the recommendation from Jenkin (1996) against using the
analogy with the kinetic theory of gases in the early phase of the cloud evolution, when
the motion of the fragments is still highly correlated. Therefore, the results in this section
will require further analysis to understand if the analogy is applicable and, if not, to
identify a more suitable formulation. In this work, the interest is in understanding how
to express a value of spatial density from the numerical propagation and whether the
method to compute the relative velocity is applicable also before the band formation.

The value of spatial density can be obtained from the numerical propagation in the
following way. As the numerical propagation of the fragments is performed in terms of
the evolution of their orbital parameters, the first step is to convert the orbital parameters
into spherical coordinates (r, ϕ, β). The domain of integration is then divided in a grid
in (r, ϕ, β) and the number of fragments in each cell of the domain is computed. Finally,
the value of spatial density is obtained by dividing the number of fragments in a cell by
the volume of the cell itself.

Adopting the notation as in Figure 3.7, where θ = π/2− β, the volume of a cell is given
by

V =

∫ θ+

θ−

∫ ϕ+

ϕ−

∫ r+

r−

r2 sin θ drdθdϕ =

[
r3

3

]r+
r−

[ϕ]ϕ+ϕ− [− cos θ]
θ+
θ−

(3.27)

where θ = π
2 −β and the values of the extremes of integrations depend on the grid used

to discretise the domain.
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Figure 3.8: Representation of the cloud in the plane (r, φ). The red cross represent the
position of the target and the dashed line the possible values of the longitude during
the time step. Fragmentation and target are initially at 800 km and their inclinations are
respectively 60 and 20 degrees.

This method could be adopted directly to obtain the value of n in Equation 3.3, choosing
the value of density in the cell occupied by the target at a certain time. This is represented
in Figure 3.8, where the cross indicates the position of the target at a certain time in the
space of altitude and longitude ϕ. However, it was observed in Section 3.2 that the
value of latitude (and in this case also of longitude) are not representative of the whole
time step as they evolve in a much shorter time scale. For this reason, at each time step,
the full osculating orbit of the target is reconstructed and the value of the fragment
density is evaluated (and averaged) for different values of true anomaly. This means
that in Figure 3.8 the value of spatial density should be evaluated along the dashed line
(variation of ϕ) and its average used for the computation of the collision probability.

For the velocity, Equation 3.23

∆v∆Ω =
√
v2T + v2F − 2vT vF [sin (iT ) sin (iF ) cos (∆Ω) + cos (iT ) cos (iF )]
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Figure 3.9: Relative velocity between the target and the fragment cloud before the band
formation. The band is considered formed at around 290 days.

is still applied, but, in this case, it is not possible to assume that ∆Ω is uniformly dis-
tributed between −π and π. Therefore, Equation 3.23 is applied using for ∆Ω the differ-
ence between the target longitude of the ascending node ΩT and the value of Ω corre-
sponding to the peak in the distribution in ΩF . To obtain a gradual transition towards
the value of the relative velocity adopted when the fragments are distributed (∆vdis),
the relative velocity is computed as

∆v = αdis∆vdis + (1− αdis)∆v∆Ω (3.28)

where αdis is a factor that measures how distributed the fragments are and, for the mo-
ment, it is simply set proportional to the elapsed time from the fragmentation αdis =

t/TB . The validation for this approach to the velocity estimation is shown in Figure 3.9,
which presents in blue the value of the average relative velocity obtained with the numer-
ical procedure, and in red the approximation obtained with the assumptions introduced
in this Section. Figure 3.9 refers to a fragmentation on an orbit with inclination equal
to 60 degrees and inclination of the target orbit equal to 20 degrees; for both the frag-
mentation and the target the initial altitude is equal to 800 km. Similar results were
found also with different inclination and altitude combinations. In all cases, knowing
the distribution of Ω among the fragments allows the oscillations in ∆v to be followed.
Whereas the average behaviour of the relative velocity is well captured, the damping of
the oscillations (due to the progressive distribution of the fragments) is overestimated
by the analytical approach. Future work will focus on an improvement of the descrip-
tion of the evolution of the cloud before the band formation to derive a more accurate
estimation of the relative velocity.

Finally, Figure 3.10 shows the resulting collision probability for the target both before
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Figure 3.10: Resulting cumulative collision probability for a target at 800 km and orbital
inclination equal to 20 degrees crossing a cloud generated by a fragmentation at 800 km
and 60 degree of orbital inclination.

and after the band formation. The change in the slope of the curve when switching from
one formulation to the other is very evident and unnatural. This behaviour is due to a
difference of around one order of magnitude in the fragment density encountered by
the target. This suggests that the computation of the fragmentation density in the first
phase should be improved. Techniques available in literature may be adopted, such as
the description of the cloud volume or of the position of its edges or the approach to
compute the collision probability within a pinched torus proposed by Jehn (1996). As
further investigation on this point is required, in the following we will always refer only
to the computation of the collision probability after the band is formed.

A final comment on the computational time can clarify the advantage, given by the
analytical method, of working directly with the spatial density. The time required for the
numerical propagation is around 33 s on a machine with 4 CPUs and for a fragmentation
of around 3000 fragments, plus 29 s to convert the information on the orbital parameters
into the value of spatial density measured on a grid 100×100×100 in r, φ, β. On the other
hand, the propagation with the analytical equation requires only 2.64 s and the output
is in spatial density, so it can be directly used to compute the collision probability. This
suggests the interest in extending the applicability of the analytical method to earlier
stages of the cloud evolution. Some results on this point will be shown in Section 4.2
and Chapter 6.
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3.6 collis ion scenarios

3.6 Collision scenarios

Thanks to its limited computational time and its good accuracy, the proposed method
can be applied to study the collision probability due to small fragments in many different
scenarios. The method is applied to three different cases

• to study the impact of a breakup on different target spacecraft,
• to build, for each target spacecraft or for a whole set of targets, a map of collision

probability, by varying the inclination and the altitude of the simulated breakup,
• to generate a matrix of influence among a set of targets.

The results presented in this work are obtained using as targets the one listed in Ta-
ble 3.1. They were extracted from a list prepared by IFAC-CNR, ISTI-CNR and University
of Southampton for a study sponsored by ESA (Rossi et al., 2013). The objects in Table 3.1
are the ten spacecraft with the largest collision probability, sorted by their semi-major
axis.

Table 3.1: List of target spacecraft (Rossi et al., 2013) for the analysis of the collision
probability.

ID Target hp [km] ha [km] i [deg] Mass [kg] Size [m]

SC1 ESA-4419 816.0959 818.9741 98.73 4090 6.91
SC2 ESA-3308 818.5311 832.9389 98.83 2490 5.17
SC3 ESA-3331 804.0385 858.8315 98.83 1000 4.46
SC4 ESA-2218 822.4681 865.8019 70.90 3220 4.49
SC5 ESA-1761 946.4051 986.0649 82.91 1420 4.06
SC6 ESA-2332 934.9528 998.1172 82.95 1420 4.06
SC7 ESA-1291 964.0951 990.5749 82.95 1420 4.06
SC8 ESA-2172 960.1156 1005.754 82.93 1420 4.06
SC9 ESA-2961 968.9735 999.8965 82.94 1420 4.06

SC10 ESA-115 1099.8350 1099.8350 63.00 1000 2.41

3.6.1 Single event simulation

The first application of the method is the evaluation of the consequences of a breakup on
the target list in Table 3.1, considering the collision probability associated with fragments
larger than 1mm and smaller than 10 cm.

For this application, two recent small breakups are considered (NASA Orbital Debris
Program Office, 2014), whose parameters are reported in Table 3.2. The value in the
last column is an estimation of the parameter Me used in the NASA breakup model as a
measure of the energy of the breakup (Johnson and Krisko, 2001). For non-catastrophic
collisions, Me is defined as the product of the mass of the smaller object Mp and the
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3. collis ion probability through a fragment cloud

Table 3.2: Parameters of two recent small breakups (NASA Orbital Debris Program
Office, 2014).

Spacecraft hp [km] ha [km] i0 [deg] NLc>5 cm Me [kg] NF

Cosmos 1867 775 800 65 35 2.665 28138
Cosmos 2428 845 860 71 9 0.436 7235

square of the collision velocity vc (Krisko, 2011)

Me[kg] = Mp[kg]v
2
c [km/s]/1[km/s].

From this parameter, the fragment size distribution for a collision can be described by
the expression

Nf (Lc) = 0.1(Me)
0.75L−1.71

c (3.29)

where Lc is the fragment characteristic length and Nf (Lc) the number of fragments
of size equal or larger than Lc. If vc is unknown, the parameter Me can be estimated
considering that the number of fragments added to the debris population catalogue is
known for the two breakups (respectively 35 objects for Cosmos 1867 and 9 objects for
Cosmos 2428)5. Therefore, assuming that the tracked fragments are larger than 5 cm,
the value of Me is obtained inverting Equation 3.29 and the number of fragments NF

in the desired size range (1mm-10 cm) is then obtained applying again Equation 3.29
with the computed value of M . Observe that the total number of fragments shown
in Table 3.2 is very large and there is not a general consensus on the reliability of the
NASA breakup model in the studied size range. Some modifications of the model are
available in literature (Hanada et al., 2009), but the original NASA model is used because
the purpose of this work is not to develop a new breakup model, but rather to show the
possible applications and the advantages of using an analytical formulation based only
on the spatial density. The implementation of the NASA model used in this work was
validated with the comparison to the available data on other implementations (Rossi
et al., 2006) as shown in Appendix A.1.

The effect of the breakups on the target in the list is shown in Figure 3.11, which shows
the cumulative collision probability caused by fragments larger than 1mm from the time
of band formation up to five years afterwards. The study of a single case in Figure 3.11
for the Cosmos 1867 event was obtained with an average computational time equal to
9.45 minutes on a cluster with 4 processors; the average computational time is equal
to 7 minutes for the Cosmos 2428 cases. Most of the propagation time is required for
the propagation of the fragments from the breakup to the band, so the computational
effort is required only once to generate the fragment cloud, which can be saved and
superimposed on each target spacecraft trajectory.

5Values updated from https://www.space-track.org/ in July 2015.
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Figure 3.11: Resulting cumulative collision probability from the two breakups on the
targets in Table 3.1. The time is measured from the instant when the band is considered
formed.

For the first breakup (Cosmos 1867), the resulting collision probability pc is shown in
Figure 3.11a: it is possible to observe that the first four spacecraft in the list are the most
affected by the fragmentation. This is explained by two factors: firstly, SC1 and SC2
have the largest cross-sectional area, and secondly the first four spacecraft are both at
the lowest altitudes and the shortest radial distance from the fragmentation location. A
similar behaviour can be observed for the second breakup (Cosmos 2428) in Figure 3.11b,
which shows the effect of inclination. In fact, the inclination of Cosmos 2428 is very
similar to the one of SC4, which, in this case, has a slightly higher collision probability
than SC2 even if the latter has a larger cross-sectional area.

3.6.2 Maps of collision probability

The collision risk for a spacecraft can also be studied from a different point of view: in-
stead of focussing on a single breakup, the location of the simulated breakup is changed
to highlight the effect of the breakup conditions on the collision probability. In particu-
lar, here the altitude and the inclination of the fragmentation are varied and this allows
defining the most dangerous regions for a collision to occur for all the targets in Table 3.1.
Other parameters (e.g. time, fragmentation energy) may be considered with the same
approach for a sensitivity study.

Figure 3.12 shows, for example, the result of a study performed for the spacecraft SC4
for fragmentations of 50 kJ, including all the fragments down to 1mm. The peak in
the collision probability is slightly above the altitude of the spacecraft semi-major axis
(aSC4 = RE+844 km) and for inclinations iF where sin(iF ) = sin(iSC4). Under this
condition, the spacecraft will spend a part of its orbit at latitudes where the cloud density
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3. collis ion probability through a fragment cloud

is maximum. The collision probability is high also for inclinations where sin(iF ) >

sin(iSC4) because in these cases the spacecraft is always inside the band formed by the
fragments. As expected, fragmentations at higher altitudes than SC4 have a larger effect
than the ones at lower altitudes. In fact, over time drag tends to reduce the fragments’
altitude and the fragments initially at altitudes higher than SC4 decay towards the target
orbit.

The same analysis was performed for all the targets in Table 3.1: for each spacecraft a map
such as the one in Figure 3.12 for SC4 is computed and then they are summed to obtain
the global map in Figure 3.13, where the markers indicate the targets. It is possible to
observe two peaks in the collision probability, corresponding to the two bands in altitude
where the targets are grouped: the first from 817 to 844 km for SC1-4, the second from
966 to 984 km for SC5-9. Observing the first peak in altitude (h ≈ 840 km), it is possible
to notice that the distribution of collision probability is not symmetrical around the peak:
in fact, fragmentations at higher altitudes (e.g. 880 km) have a larger effect than the ones
at lower altitudes (e.g. 800 km) as already discussed for Figure 3.12. It is also possible to
observe that the collision probability is still relatively high around h = 820 km, mainly
because of the presence of SC1, whose large cross-sectional area has a large influence
on the total collision probability.

As observed in Figure 3.11b and Figure 3.12, the fragmentations with sin(iF ) = sin(iT )

have a large effect on the total collision probability because of the distribution of objects
with latitude. Eight out of ten spacecraft in Table 3.1 have sin(iT ) ≈ sin(82◦) = sin(98◦),
so at these inclinations two clear bands of high collision probability are present. Similar
to Figure 3.12, the collision probability is high also in the whole inclination band between
80 and 100 degrees, which corresponds to fragmentations for which all the targets are
always inside the fragment band.

A map such as the one in Figure 3.12 is obtained with a computational time equal to
3.66 hours in average, over the ten cases, on a cluster with 4 processors. The process
can be easily automated and parallelised to study a list of targets and obtain a global
map as the one in Figure 3.13. These maps may be useful to study both operational
and non-operational targets to understand under which conditions a fragmentation has
the largest effect on the spacecraft. Moreover, the global maps can highlight the most
critical areas in terms of influence on the whole spacecraft population or on the satellites
of an operator. For example, an operator may use this visualisation to understand the
vulnerability of their fleet to fragmentations in specific orbital regions. Large operators
may also be interested in evaluating if these orbital regions are populated by spent satel-
lites or rocket bodies and get an insight on which objects would be the most beneficial
to remove from the operators perspective. A development on this idea is presented
in Chapter 6 where an environmental index for spacecraft is presented. Note that the
number of targets used to build the global map can be increased or some representative
objects of the whole population can be chosen. Whenever the list of targets is updated,
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Figure 3.12: Cumulative collision probability map for SC4 for fragmentations of 50 kJ,
including all the fragments down to 1mm. The marker indicates the orbital parameters
of SC4. Simulated period equal to five years.
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Figure 3.13: Total cumulative collision probability map for the targets in Table 3.1 for
fragmentations of 50 kJ, including all the fragments down to 1mm. The markers indi-
cate the targets. Simulated period equal to five years.
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the map needs to be computed again because the terms in the equation for the collision
probability depend on the selected targets. In contrast, the propagation of the debris
clouds, resulting from the breakups defined by the grid in semi-major axis and inclina-
tion, can be saved and stored. In this way, the computational time required to study a
different target on the same grid is strongly reduced.

3.6.3 Influence matrix

Finally, similarly to what was done by (McKnight and Lorenzen, 1989), an influence
matrix is proposed to study the following situation: a small breakup caused by a non-
catastrophic collision with one of the spacecraft in Table 3.1, generates a fragment cloud
that can interfere with other spacecraft. Each spacecraft in Table 3.1 is treated as a po-
tential target and its collision probability due to the fragment cloud is computed after
a certain time. This process is repeated running through the whole list of spacecraft in
Table 3.1 to obtain a picture of how each spacecraft affects the collision probability of the
other ones in the list. In the whole analysis, it is assumed that the collision probabilities
are independent and each case is studied separately.

Figure 3.14 shows the resulting influence matrix for the spacecraft in Table 3.1 consid-
ering a fragmentation of 50 kJ and plotting the resulting collision probability after five
years. It is important to specify that, as the proposed method is able to provide an ana-
lytical expression for the density only after the band is formed, the collision probability
is computed starting from that moment. This means that the collision probability may
be underestimated for satellites such as SC5-SC9 that have very similar orbits and that
may start to interact before the band is formed.

The sum of the collision probabilities, over all the targets, due to the same source can
be used as an index of the spacecraft influence; similarly, the sum of the collision prob-
abilities for one target from all the sources can be used as an index of its vulnerability.
In formulas, I(i, j) is the element of the influence matrix that expresses the cumulative
collision probability of the object j due to a fragmentation starting from the object j. For
a generic object k, the two indices are obtained from

Influence(k) =
Ntot∑
j=1

I(k, j)

Vulnerability(k) =
Ntot∑
i=1

I(i, k).

Both these values are shown in Figure 3.15. As one can expect, the influence is very
strong among satellites on similar orbits such as the already cited group SC5-SC9 and
the group SC1-SC4. SC10 has, instead, the lowest influence because it is in an orbit with
lower inclination than the other objects and, therefore, its fragmentations affect a smaller
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Figure 3.14: Influence matrix showing the cumulative collision probability for ten stud-
ied spacecraft.
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Figure 3.15: Sum of the generated collision probability for the scenarios in Figure 3.14.
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Figure 3.16: Influence matrix showing the cumulative collision probability for ten stud-
ied spacecraft in case of catastrophic collisions.
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Figure 3.17: Sum of the generated collision probability for the scenarios in Figure 3.16
(catastrophic collisions) considering fragments larger than 1 cm.
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range of latitudes. A high vulnerability is registered for SC1, which is in a lower orbit
than the other spacecraft and which has a much larger cross-sectional area. This explains
why it is affected by all the fragmentations originating from the other spacecraft. On the
other hand, SC10 is the least vulnerable target because of its high altitude (with more
than 115 km of separation between its semi-major axis and the one of the closest object)
and because of its small cross-sectional area.

The computational time required to generate Figure 3.14 is equal to 645 s on a PC with
8 CPUs at 3.40 GHz. The process is fully automatic and parallelised, so the number of
spacecraft in the list can be extended to obtain a more complete picture of the mutual
influence among what are considered the most critical objects in the debris population
in LEO.

Similar results can be obtained also simulating catastrophic collisions instead of non-
catastrophic ones, as shown in Figures 3.16 and 3.17. In these simulations, a fixed impact
velocity equal to 10 km/s is set as input of the breakup model and the mass of the projec-
tile is neglected. In addition, the threshold on the fragment size was changed from 1mm

to 1 cm: this was done because the number of fragments generated by a catastrophic
collision according to the NASA breakup model is extremely large. For example, if the
fragmenting satellite has a mass equal to 1000 kg, more than two million objects larger
than 1mm are generated. Increasing the threshold size to 1 cm, only 40 000 are generated.
This number is still much larger than the number of fragments in the cloud created by
the non-catastrophic collision studied in Figure 3.14 and this explains why the cumula-
tive collision probability is still higher than the previous case. The results in Figure 3.16
are interesting because they show how the kind of fragmentation affects the ranking of
the analysed spacecraft. When catastrophic collisions are considered, the driving factor
for the influence is the mass, as can be seen from the results of the two spacecraft with
the largest mass (i.e. SC1 and SC4).

Summary

The results obtained with the analytical method can be used to estimate the additional
collision probability for a spacecraft due to the objects produced by the studied frag-
mentation. For this purpose, the analogy with the kinetic theory of gases can be applied:
according to this theory, the collision probability can be modelled as a Poisson process
with the number of collisions per unit of time proportional to the fragment spatial den-
sity and to the average relative velocity between the target and the fragments. The value
of density is known from the analytical propagation, so the method described here can
be applied only after the fragments have dispersed and formed a band around the Earth.
For the velocity, an additional analytical method was introduced. The method is based
on computing the relative velocity between the target and a single fragment assuming
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3. collis ion probability through a fragment cloud

that both are on circular orbits. In this case, their relative velocity depends on their
inclinations, which are known, and on the difference in the longitude of the ascending
node Ω between the two orbits. This last value is not known for the single fragment,
but the fact that the fragments within the cloud are uniformly distributed in Ω can be
used to obtain the average value of the relative velocity. This approach was tested in
many different orbital configurations for the target and the fragmentation, changing
their orbital inclination and altitude. Except for the cases where both the target and the
fragmentation are on equatorial orbits, the method works well with an average relative
error lower than 10%. As the analytical method for the velocity relies only on the infor-
mation available from the analytical propagation, they can be combined to obtain a fast
way to evaluate the collision probability for a spacecraft crossing a fragment cloud. As
the collision probability is studied on a time span of some years, the latitude of the target
is not followed and, therefore, the variation on the cloud density with latitude is not
considered. Instead, an average value across the latitude range is used. The proposed
analytical method was applied to study three different cases and demonstrate the flexi-
bility of the approach. For all the applications, a set of interesting targets was selected; in
particular, the targets were chosen among the catalogue of space debris objects, picking
the ones with the highest collision probability. It is important to remark that the purpose
of this chapter was not to identify the most critical objects in the debris population, but
rather to show how the analytical method can be used in some real-world application.
In the first case, the data from some recent breakups was used to simulate the produced
fragment clouds and the resulting collision probability for the studied targets. The pur-
pose of these simulations was to understand which objects, among the monitored ones,
were the most exposed in the occurrence of a fragmentation events and which param-
eters have the largest impact on the collision probability. For the second application,
a large number of fictitious fragmentations was simulated, changing in each case the
altitude or the inclination of the orbit where the fragmentation occurs. The collision
probability for each target and the cumulative probability were then computed obtaining
what was called a collision map. These maps are effective in visualising the most critical
conditions for a fragmentation to happen considering its effect on one or more targets.
These maps can be used, for example, to suggest areas in the LEO region to keep as clean
as possible because a fragmentation originating there would have a large impact on the
existing debris population. Finally, in the last application, the selected objects from the
debris catalogue were used both as sources and targets of fragmentations. In fact, as
these objects have the highest collision probability, they are the ones more likely to be
hit by another piece of debris generating a new debris cloud. The effect of these clouds
on the other objects in the set was simulated to study the mutual influence among the
targets. In this way, it was possible to identify the most exposed object and the one with
the largest influence. These analyses may be useful to rank potential targets of active
debris removal missions. In all the three cases, the analytical method presents a much
lower computational time than a fully numerical simulation. For this reason, a large
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3.6 collis ion scenarios

number of collision scenarios could be launched (and stored), enabling new analyses on
the resulting collision probability considering the contribution of small fragments.

95





Part of the content of this Chap-
ter was submitted to publication in
F. Letizia, C. Colombo, and H. G.
Lewis. Multidimensional extension
of the continuity equation method
for debris clouds evolution. Ad-
vances in Space Research, 2015b.
doi:10.1016/j.asr.2015.11.035. Ac-
cessed 8 December 2015.

4
Density propagation with multiple

variables

As shown in Chapter 2, the proposed approach based on the continuity equation pro-
vides an accurate description of the evolution of clouds produced by fragmentation
events at different inclinations. Therefore, it was applied in Chapter 3 to study many
different scenarios of collisions to understand, for example, which objects, in case of
fragmentation, are more likely to have a large impact on the global collision risk for
operational satellites.

However, the current formulation of the method can only be applied to fragmentation
events at 800 km or higher, because at lower altitudes the hypothesis of circular orbits in
Chapter 2 introduces a large error on the evolution of the cloud density. This limit can
be relaxed by switching to a multi-dimension formulation of the problem. This will also
allow other limitations of the proposed model to be dealt with, such as the need of the
numerical propagation to model the fragment spreading due to the Earth’s oblateness,
and the division of the cloud in area-to-mass bins.

Following the approach by Gor’kavyi et al. (1997), the continuity equation can be written
in any phase space by simply writing the divergence in rectangular coordinates, regard-
less the nature of the phase space variables. This approach is chosen because the effect
of perturbations is usually described in terms of their impact on the orbital parameters
(through Gauss’ equations). Therefore, the problem is written in the space defined by
the relevant orbital parameters to use the expression directly on the variation of the
orbital parameters and to avoid complex transformations to a physical 3D space. The
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4. density propagation with multiple variables

results can then be translated into physical coordinates by using expressions such as the
equation of the spatial density as a function of the orbital parameters in Equation 2.24.

4.1 Formulation of the continuity equation in multiple dimen-
sions

The continuity equation is written as

∂n

∂t
+∇ • f = ṅ+ − ṅ−; (4.1)

writing the divergence in rectangular coordinates and considering m generic variables
(α1, . . . , αm), the Equation 4.1 becomes

∂n

∂t
+

∂n

∂α1
vα1 + · · ·+ ∂n

∂αm
vαm +

[∂vα1

∂α1
+ · · ·+ ∂vαm

∂αm

]
n = ṅ+ − ṅ−, (4.2)

where vαj is the rate of variation of the variable αj . The sink and source terms are
neglected also in this case (ṅ+ − ṅ− = 0), so applying the method of characteristics the
following system of ODEs is obtained

dt

ds
= 1

dα1

ds
= vα1(α1, . . . , αm)

...
dαj

ds
= vαj (α1, . . . , αm)

...
dαm

ds
= vαm(α1, . . . , αm)

dn

ds
= −

[∂vα1

∂α1
+ · · ·+ ∂vαm

∂αm

]
n(α1, . . . , αm, t).

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

The characteristic lines of the problem are obtained by solving the Equations 4.3-4.6,
which depend on the specific formulation of the problem (which gives the actual expres-
sions for vα1 , . . . , vαm). On the other hand, the formal expression of n(α1, . . . , αm, t) can
be written for any problem. It can be obtained by dividing Equation 4.7 by any of the
Equations 4.4-4.6. For example, dividing by Equation 4.4, the result is

dn

dα1
= − 1

vα1

[∂vα1

∂α1
+ · · ·+

∂vαj

∂αj
+ · · ·+ ∂vαm

∂αm

]
n (4.8)
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where it is possible to separate the variables, so that

dn

n
= − 1

vα1

[∂vα1

∂α1

]
dα1 + · · · − 1

vα1

[∂vαj

∂αj
+ · · · − 1

vα1

[∂vαm

∂αm

]
dα1. (4.9)

In the right hand side, in each term starting from the second one dα1/vα1 can be rewritten
using Equation 4.5

dα1

vα1

=
dαj

vαj

,

with αj one of the m coordinates. Equation 4.9 becomes

dn

n
= − 1

vα1

[∂vα1

∂α1

]
dα1 + · · · − 1

vαj

[∂vαj

∂αj

]
dαj + · · · − 1

vαm

[∂vαm

∂αm

]
dαm, (4.10)

that can be easily integrated into

log(n) = − log(vα1) + · · · − log(vαj ) + · · · − log(vαm) + k (4.11)

where k is a constant of integration. Finally,

n =
K∗∏m
j vαj

. (4.12)

K∗ is a constant (K∗ = exp k) that is obtained from the initial condition at t = 0

n0(α1, . . . , αm) = n(α1, . . . , αm, t = 0) (4.13)

as

K∗ = n0(α̃1, . . . , α̃m)
m∏
j

vαj (α̃1, . . . , α̃m). (4.14)

In Equation 4.14 α̃j indicates the function obtained by inverting the characteristic lines
G at initial time t = 0. So, for example, if from Equations 4.3-4.4 it is possible to write
the characteristic line for αj as

G(αj , t) = f(αj) + g(t) (4.15)

with g(0) = 0, then
α̃j = f−1(G(αj , t)), (4.16)

with f−1 inverse of f .

In the next Sections, this formulation will be applied to three different cases to

• model the effect of the Earth’s oblateness, i.e. the evolution from the ellipsoid
phase (Figure 1.4a) to the band phase (Figure 1.4c),

• include the distribution in area-to-mass ratio A/M of the fragments for the propa-
gation under the drag effect, once the band is formed (Figure 1.4c),
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4. density propagation with multiple variables

• include the distribution in eccentricity in the propagation under the drag effect,
once the band is formed (Figure 1.4c).

4.2 Modelling of the effect of the Earth’s oblateness

As discussed in the previous sections, the Earth’s oblateness is the dominant perturba-
tion on the fragment cloud evolution before the band formation (Figure 1.4). The secular
and long-term effect of zonal spherical harmonics of the second order J2 on the orbital
parameters can be written as (Vallado, 2013)

Ω̇ = −3

2
J2

R2
E

p2
n̄ cos i (4.17)

ω̇ =
3

2
J2

R2
E

p2
n̄

(
2− 5

2
sin2 i

)
. (4.18)

where RE is the Earth’s radius, p is the semi-latus rectum of the orbit p = a(1− e2), n̄ is
the mean motion n̄ =

√
µE/a3, and i is the orbit inclination.

The continuity equation can be applied to model this phase of the cloud evolution by
writing the problem in the phase space defined by the semi-major axis (a), the longitude
of the ascending node (Ω) and the argument of the perigee (ω). Three possible formula-
tions are possible. In the first case, it is assumed that the effect of drag can be neglected
and the spreading of the cloud is evaluated only on the angles ω and Ω, considering that
the distribution in a is constant. In the second case, the effect of drag is considered, so
that the cloud density is a function not only of the two angles, but also of the semi-major
axis. Finally, a third approach is presented where only one angle and the semi-major
axis are used as variables of the problem.

4.2.1 Earth’s oblateness only

For simplicity, it is assumed that the effect of drag can be neglected during the initial
phase of the cloud evolution, which usually lasts a couple of months. This assumption
follows the phased approach proposed by McKnight (1990) to study space debris cloud
evolution as explained in Chapter 1. This approach was adopted, for example, by Jehn
(1991) and Ashenberg and Broucke (1993) to describe how the debris cloud spreads
under the effect of the Earth’s oblateness, without considering other perturbations. In-
troducing the approximation that drag can be neglected, the variation of the semi-major
axis is null (va = 0). Nevertheless, the information on the distribution of a is required
to calculate the variation of Ω and ω as in Equations 4.17 and 4.18. Introducing

λ =
3

2

√
µEJ2R

2
E ,
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4.2 modelling of the effect of the earth’s oblateness

the expressions of the variation of the parameters are



vα1 = va = 0

vα2 = vΩ = − λ

a7/2
cos i

vα3 = vω =
λ

a7/2

(
2− 5

2
sin2 i

)
,

(4.19)

(4.20)

(4.21)

Since a is constant, the characteristic lines are easily found as



Ga(a, t) = a

GΩ(Ω, t) = Ω +
λ

a7/2
cos (i) t

Gω(ω, t) = ω − λ

a7/2

(
2− 5

2
sin2 i

)
t

(4.22)

(4.23)

(4.24)

that are of the form
G(α, t) = f(α) + g(t), g(0) = 0

as introduced in Section 4.1. As f , in this case for all the three variables, is simply the
identity, the expressions obtained inverting the characteristics at the initial time are
identical to the characteristics, so


ã = Ga(a, t)

Ω̃ = GΩ(Ω, t)

ω̃ = Gω(ω, t)

(4.25)

(4.26)

(4.27)

The density of the cloud can be written as in Equation 4.12

n(a,Ω, ω, t) = n0(ã, Ω̃, ω̃)
vΩ(ã)vω(ã)

vΩ(a)vω(a)
; (4.28)

as a is constant, also vΩ and vω can be simplified and therefore

n(a,Ω, ω, t) = n0(a, Ω̃, ω̃) (4.29)

= n0

[
a,Ω+

λ

a7/2
cos (i) t, ω − λ

a7/2

(
2− 5

2
sin2 i

)
t

]
. (4.30)

The dependence of Ω̃ and ω̃ on t is linear, so n is computed extremely easily as it corre-
sponds to a simple translation of the domain of the initial conditions.
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4. density propagation with multiple variables

4.2.2 Earth’s oblateness and atmospheric drag (3D)

If the drag effect is considered, the variation of the semi-major axis is not zero. As
explained in Chapter 2, the radial velocity of a fragment due to drag can be expressed
as in Equation 2.37

vr = −ε
√
r exp

(
− r −Rh

H

)
;

also in this case, the hypothesis of circular or quasi circular orbits is kept, so r ≈ a.
Therefore, Equation 2.37 can be used to express the variation of the semi-major axis
substituting r with a. The expressions for the other parameters (Ω, ω) are unchanged
with respect to Equations 4.20 and 4.21, so the system of ODEs is

dt

ds
= 1

da

ds
= −ε

√
a exp

(
− a−Rh

H

)
dΩ

ds
= − λ

a7/2
cos (i)

dω

ds
=

λ

a7/2

(
2− 5

2
sin i2

)
dn

ds
= −

[
∂va
∂a

+
∂vΩ
∂Ω

+
∂vω
∂ω

]
n(a,Ω, ω, t).

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

The characteristic for a is the one already obtained for r starting from the expression for
vr as in Equation 2.37, so

Ga(a, t) = exp
(a−Rh

H

)
+ ε

√
Rh

H
t;

obtained, as before, with the approximation
√
a ≈

√
Rh.

The second characteristic of the system is obtained by dividing Equation 4.33 by Equa-
tion 4.32

dΩ

da
=

vΩ
va

=
λ cos i

ε

exp
(
a−RH

H

)
a4

(4.36)

whose solution can be expressed as

GΩ(Ω, a) = Ω− λ

ε
cos i

[
Γ(a)− Γ(a0)

]
(4.37)

as already obtained by McInnes (1994). We take here the occasion to explicitly write Γ(a)
to amend a typo in the original paper

Γ(a) =
− exp

(
a−RH

H

)
H
(
2H2 +Ha+ a2

)
+ r3 exp

(
−RH

H

)
Ei
[
a
H

]
6H3a3

(4.38)
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4.2 modelling of the effect of the earth’s oblateness

where Ei(z) is the exponential integral function, defined as

Ei(z) = −
∫ ∞

−z

exp (−u)

u
du. (4.39)

As ω and Ω have the same dependence on a, also the characteristic for ω is expressed
through the function Γ and only the constant factor is different. In particular, the expres-
sion for ω is

Gω(ω, a) = ω +
λ

ε

(
2− 5

2
sin i2

)[
Γ(a)− Γ(a0)

]
.

Therefore, also in this case is possible to write an explicit expression for n

n(a,Ω, ω, t) = n0(ã, Ω̃, ω̃)
va(ã)vΩ(ã)vω(ã)

va(a)vΩ(a)vω(a)
(4.40)

with 
ã = Rh +H log (Ga(a, t))

Ω̃ = GΩ(Ω, ã)

ω̃ = Gω(ω, ã).

(4.41)

(4.42)

(4.43)

Note that in this case the initial condition is not simply translated across the domain,
but, as the semi-major axis decreases with time, the initial distribution is modified with
time as expressed by Equation 4.40.

4.2.3 Earth’s oblateness and atmospheric drag (2D)

If the purpose of the method is to obtain the long term evolution of the cloud, the
scope of the description of the effect of the Earth’s oblateness is to estimate when the
band (Figure 1.4c) is formed and to have at the time a faithful representation of the
fragment distribution with the orbital parameters. This can be achieved with a simplified
expression of Equation 4.40 that considers the semi-major axis a and only one angle
between Ω and ω. The angle to be chosen is the slowest in spreading during the band
formation. Following (Ashenberg, 1994), for each altitude and inclination of the parent
orbit is possible to know a priori which angle drives the band formation. For example, if
Ω is the relevant angle to determine the time for band formation, the equations for this
case are the same as the 3D case, but as ω can be disregarded, the expression for n is
simplified to

n(a,Ω, t) = n0(ã, Ω̃)
va(ã)vΩ(ã)

va(a)vΩ(a)
.

4.2.4 Results

The analytical modelling of the initial phase of the cloud evolution was validated through
the comparison with the results obtained with the numerical integration. The domain
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Figure 4.1: Evolution of the distribution of the semi-major axis, for a fragmentation at
800 km and i = 30◦, from the fragmentation to 150 days after the event.

is divided into cells with width equal to 25 km in semi-major axis and 3.6 degrees in the
two angles ω and Ω. The number of fragments NF in each cell, according to the different
propagator, is counted and compared. The cloud analysed in the following is generated
by a breakup in a circular orbit with altitude equal to 800 km and inclination equal to 30
degrees. The cloud evolution is followed from the breakup up to 150 days later, when
the transition to the band can be considered complete.

Figures 4.1, 4.2, 4.3 show respectively the evolution of the distributions in a, ω, Ω for
the proposed analytical methods and for the numerical propagation. The accuracy in
the description of the distribution in a is the most relevant figure to consider as it has
a direct impact on the estimated value of the spatial density. From Figure 4.1 one can
observe how neglecting the effect of drag leads to an overestimation of the number of
objects with low semi-major axis. The same two indicators introduced in Section 2.7 are
used to estimate the method accuracy. The first, errprof (Equation 2.52), measures the
mean error on the density profile along the altitude (h)

errprof =

∫
|nA − nN | dh∫

nN dh
.
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Figure 4.2: Evolution of the distribution of the argument of the perigee, for a fragmen-
tation at 800 km and i = 30◦, from the fragmentation to 150 days after the event.

Table 4.1: Accuracy and computational time tc for the three approaches to the mod-
elling of the initial evolution of a fragment cloud. ∆t = 150 days. Errors measured on
the distribution of the semi-major axis.

Method errprof errpeak tc [s]

Earth’s oblateness only 0.33 0.38 0.18
Earth’s oblateness + atmospheric drag (2D) 0.07 0.11 0.08
Earth’s oblateness + atmospheric drag (3D) 0.06 0.08 0.37

The second, errpeak (Equation 2.50), measures the relative error on the peak height, com-
paring the maximum density value for the analytical nA and numerical propagation
nN ,

errpeak =
|max (nA)−max (nN )|

max (nN )
.

Table 4.1 shows the value of the two indicators for the different propagation methods. It
appears clearly that the assumption that drag can be neglected in the first phase of the
cloud evolution is not valid.

Figure 4.2 shows how the spreading of ω is well captured, but, as expected, neglecting
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Figure 4.3: Evolution of the distribution of the longitude of the ascending node, for
a fragmentation at 800 km and i = 30◦, from the fragmentation to 150 days after the
event.

drag leads also in this case to an overestimation of the number of fragments. Figure 4.3
shows the evolution of the distribution of Ω. Observe that in this case the initial con-
dition was modified substituting the real initial distribution where all fragments have
Ω = 0 with a Gaussian distribution. This was done to avoid numerical issues such as
instabilities, even if some anomalous peaks are still presents (e.g. the one at -5 degrees
at t = 150 days). In fact, the method of characteristics derives the state at a given time
by checking the value of the initial condition along the corresponding characteristic, so,
with the current implementation, numerical instabilities may arise if the initial condition
is equal to zero in all the domain expect in one point.

In terms of computational time, all the analytical approaches are much faster than the
numerical propagation. The average running time over ten simulations, as measured by
matlab built-in functions and for a PC with 4 CPUs at 3.4GHz, is reported in Table 4.1;
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4.3 modelling of the area-to-mass distribution

for the numerical propagation the average computational time is equal to 55 s1. Includ-
ing drag doubles the computational time, but the numbers are so low that there is no
practical convenience in using the model with the Earth’s oblateness only. On the other
hand, reducing the number of parameters gives a larger speed-up while keeping a better
level of accuracy.

Given the performance both in terms of accuracy and computational time, the applica-
tion of the continuity equation to the initial phase of the cloud evolution appears promis-
ing. Future work will aim to use the analytical propagation to describe the spreading of
the angles ω and Ω and asses when the band is formed. Another application could be
the description of the cloud density in coordinates such as geocentric distance, longitude
and latitude to allow for an analytical estimation of the collision probability also before
the band formation.

4.3 Modelling of the area-to-mass distribution

In the 1D approach with the continuity equation for the description of drag effect pro-
posed by McInnes (1993), all the constants of the problem are collected in the parameter
ε defined in Equation 2.36

ε =
√
µE

cdA

M
ρref;

however, A/M is not the same for all the fragments in a debris cloud. Figure 4.4 shows
the distribution of A/M obtained by one simulation, with the NASA breakup model,
of a non-catastrophic collision with energy equal 50 kJ. According to the model, the
distribution of A/M is a log-normal distribution with mean value and standard devi-
ation that depend on the fragment size (Johnson and Krisko, 2001). In particular, the
simulated case presents a minimum value equal to 0.0288m2 kg−1, a maximum value of
15.3978m2 kg−1 and a peak of the distribution around 0.4m2 kg−1.

The formulation by (McInnes, 1993) does not consider this distribution of A/M , which
has instead a large impact on the fragment evolution. The novel extension to 2D ex-
plained in Section 4.1 can be applied to consider the area-to-mass ratio as an additional
parameter in the continuity equation, thus improving the description of the drag effect.
The equation that describes the evolution of A/M is simply

d(A/M)

dt
= 0,

which means that the shape and the attitude of the fragments do not change with time,
while the evolution of the fragment distance is described by Equation 2.37.

1The fact that the computational time is longer in this case than for the long term simulations studied
in Section 2.8 is due to the fact that in the short time simulated here only a few fragments decay.
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Figure 4.4: Area-to-mass ratio distribution for a non-catastrophic collision of 50 kJ.

In this case, using the same notation as in Section 4.1,

α1 = r

α2 =
A

M

vα1 = vr = −ε
√
Rh exp

(
− r −Rh

H

)
vα2 = vA/M = 0

α̃1 = r̃ = Rh +H log (G(r, t))

α̃2 =
˜(
A

M

)
=

A

M

where the expression of the characteristic for r, Gr(r, t), is the same as in Equation 2.41

Gr(r, t) = exp
(r −Rh

H

)
+ ε

√
Rh

H
t

and vr depends on A/M through ε as shown in Equation 2.36. The final expression for
the fragment density, applying Equation 4.12, is

n(r,A/M, t) = n0(r,A/M)
vr(r̃, A/M)

vr(r,A/M)
.

4.3.1 Results

Figure 4.5 compares the results of the analytical propagation with the output of the
numerical one. The results are expressed in terms of spatial density, which, in the case
of the numerical propagation, is obtained by counting the number of objects in spherical
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Figure 4.5: Evolution of the cloud density (n) profile as a function of time after the band
formation TB (TB = 95 days) for a fragmentation at 800 km, i = 0 degrees.

shells with thickness equal to 20 km. Figure 4.5 shows how the 2D formulation follows
the evolution of the cloud well and represents a significant improvement of the 1D
approach for treating A/M : after 1000 days from the band formation, the relative error
on the peak (errpeak) is equal to 49% for the 1D method and 20% for the 2D one.

However, it has to be noted that treating A/M as an additional dimension of the problem
increases its complexity and the required computational time. In particular, it is possible
to keep the 1D formulation of the problem and divide the fragments into Nb bins in
area-to-mass ratio, as introduced in Chapter 2. Figure 4.6 shows the density at 1000 days
for a fragmentation at 800 km for different formulations of the problem: both including
5 and 10 bins is possible to obtain a result similar to the 2D approach around the peak
area.
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Figure 4.6: Density profile at 1000 days after the band formation TB (TB = 95 days) for
a fragmentation at 800 km, i = 0 degrees for different propagators and relative error
measured with respect to the value obtained with the numerical propagation nN .

4.4 Modelling of the eccentricity distribution

The method explained in Chapter 2 is based on the hypothesis that the fragments are
on circular orbits: this allows a full analytical solution for the spatial density evolution
under the drag effect to be obtained. However, this also limits the applicability of the
method to altitudes equal to and higher than 800 km. In fact, at lower altitudes, even
in the case of a small value of eccentricity, the atmosphere density changes so largely
along one single orbit that Equation 2.37 is not accurate anymore. For this reason, the
eccentricity should be included as a variable in the propagation. In particular, the prob-
lem is formulated here in terms of the evolution of the debris cloud in the phase space
defined by the semi-major a and the eccentricity e. In this case, the cloud spatial den-
sity, in [1/km3], is computed a posteriori with the expressions , such as Equation 2.24,
that express the probability of finding a fragment at a certain distance given its orbital
parameters and that were used in the fitting process explained in Section 2.3.

In order to study the debris cloud density as a function of a and e, an expression of their
rate of variation, respectively va and ve, is required. They both can be obtained from the
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4.4 modelling of the eccentricity distribution

expression for the variation of the orbital parameters in one orbit

∆a = −2π
cdA

M
a2ρref exp

(
− a−RH

H

)[
I0 + 2eI1 +O(e2)

]
(4.44)

∆e = −2π
cdA

M
aρref exp

(
− a−RH

H

)[
I1 +

e

2
(I0 + I2) +O(e2)

]
; (4.45)

derived by King-Hele (1987) for orbits whose eccentricity is between 0.01 and 0.1. It
is assumed that the other orbital parameters are unchanged under the hypothesis the
Earth’s rotation is neglected. In indicates the modified Bessel function of the first kind
and order n with argument z = ae/H , where H is the scale height coming from the
exponential model of the atmosphere; Ik(z) can be defined by the contour integral

Ik(z) =
1

2πi

∮
e(z/2)(t+1/t)t−k−1 dt; (4.46)

for k ∈ Z the definition can be simplified in

Ik(z) =
1

π

∫ π

0
ez cos θ cos kθ dθ. (4.47)

Therefore, the expression of the velocities is

va = −√
µEa

cdA

M
ρ0 exp

(
− a−RH

H

)
f(a, e,H)

ve = −
√

µE

a

cdA

M
ρ0 exp

(
− a−RH

H

)
g(a, e,H)

(4.48)

where
f(a, e,H) = I0 + 2eI1 +O(e2)

g(a, e,H) = I1 +
e

2
(I0 + I2) +O(e2).

(4.49)

Introducing the parameter ε as in Equation 2.36, the resulting system of equations is

dt

ds
= 1

da

ds
= −ε

√
a exp

(
− a−RH

H

)
f(a, e,H)

de

ds
= − ε√

a
exp

(
− a−RH

H

)
g(a, e,H)

dn

ds
= −

[∂va
∂a

+
∂ve
∂e

]
n(a, e, t)

(4.50)

(4.51)

(4.52)

(4.53)

that, however, does not admit an analytical solution. Two approximations are, therefore,
introduced:

√
a ≈

√
RH (4.54)

and
f(a, e,H) ≈ f(RH , e,H) g(a, e,H) ≈ g(RH , e,H); (4.55)
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4. density propagation with multiple variables

the impact of these approximations on the accuracy of the trajectory evolution was
verified and considered acceptable, as shown in Figure 4.7. It shows the relative error
on the semi-major axis erra and on the eccentricity erre

erra =
ã− aN
aN

erre =
ẽ− eN
eN

where (ã, ẽ) are the values of the orbital parameters obtained by introducing the ap-
proximations in Equations 4.54 and 4.55, and (aN , eN ) are the values obtained from the
numerical propagation, without any approximation. In all cases shown in Figure 4.7, the
semi-major axis is set equal to RE + 700 km while four different values of eccentricity are
considered. The error is very low for the first two cases (e = 0.010 and e = 0.037), whose
curves lay on the x-axis in Figure 4.7. In general, the error is lower than 1% both for the
semi-major axis and for the eccentricity for all the cases except the one with e = 0.092,
whose perigee is equal to 50 km, the threshold value below which the fragments are
considered to be re-entering. These fragments are likely to re-enter much faster than the
other ones, so also their impact on the propagation of the cloud is limited in time.

Even with the approximations in Equations 4.54 and 4.55 it was not possible to obtain
an analytical solution as the complexity of the problems derives from the fact that the
evolution in a and e are coupled through the Bessel functions. A detailed discussion on
the issues related to find a solution for the system can be found in Appendix B.5. One
attempt to approximate the problem is to decouple the equations by assuming a constant
eccentricity ve = 0. This is still a strong hypothesis on the eccentricity, but compared
to the 1D approach, the 2D formulation takes into account the eccentricity distribution
and uses this information to correct the evolution of the semi-major axis, although its
derivative is considered to be zero. On the other hand, neglecting the evolution of the
eccentricity and setting e = e0 implies that the effect of drag is overestimated. In fact,
drag gradually reduces the orbit eccentricity and keeping a constant value is equivalent
to predicting a higher velocity at the perigee and so a larger reduction of the semi-major
axis.

The impact of this approximation is evaluated in Figure 4.8, which shows the evolution
of the semi-major axis as a function of a time according to Equation 4.45, in blue, the
approximation in Equation 4.55 in red, the evolution of the semi-major axis for a constant
value of e = e0 in f(RH , e,H) in green and the circular orbit case in purple. In the case
of perigee altitude equal to 500 km, the relative error introduced by setting e = e0 is
around 0.5% so still much lower than the one with hypothesis of circular orbit.
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Figure 4.7: Relative error on the semi-major axis a and on the eccentricity e resulting
from the approximation in Equation 4.55 for fixed semi-major axis equal to RE + 700
km and different values of eccentricity.
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Figure 4.9: Distribution of semi-major axis and eccentricity, for a fragmentation at
700 km, at the band formation (92 days after the fragmentation).

The equations used to model the cloud evolution are

α1 = a (4.56)

α2 = e (4.57)

vα1 = va = −
√
µRH

cdA

M
ρ0 exp

(
− a−RH

H

)
f(RH , ẽ(a),H) (4.58)

vα2 = ve = 0 (4.59)

α̃1 = ã = H log
[
(exp

(a−RH

H

)
+ εf(RH , ẽ(a),H)

√
RH

H
t
]

(4.60)

α̃2 = ẽ = e. (4.61)

Note that an heuristic was adopted in Equation 4.58, introducing ẽ(a) that expresses
a reference value of the eccentricity for each value of the semi-major axis. This means
that, given a value of the semi-major axis aj , ẽ(aj) is the constant value associated with
it. The value of ẽ(a) can be obtained starting from the initial distribution n0(a, e) at the
band formation: the function e0 is built assigning to each value of the semi-major axis
the value of eccentricity where the density is maximum; for example, for a = aj

ẽ(aj) = ej : nj = n0(aj , ej) = max (n0(aj , e)).

The resulting function for the case at 700 km is shown in Figure 4.9. This approximation
is kept for the whole simulation.
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Figure 4.10: Visualisation of cloud density (in number of fragments) at the band forma-
tion (TB = 92 days) and after 1000 days for two propagation methods.
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4.4.1 Results

The result of the numerical propagation in terms of density in the phase space of a and
e is shown in Figure 4.10a: the domain is divided into cells with width equal to 25 km

in semi-major axis and 0.005 in eccentricity; the plot shows the number of fragments
NF in each cell. The plot on the left refers to the moment of band formation; it is easy
to recognise the v-shaped distribution of eccentricity with semi-major axis, which is
an alternative representation of the well known Gabbard diagram (Portree and Loftus,
1999). The v-shaped curve is centred on the altitude of the parent orbit: the leg on the left
represents the fragments whose orbits have the fragmentation location as apogee, the
leg on the right those with the fragmentation location as perigee. The plot on the right
refers instead to the cloud density at 1000 days after the band formation: the number
of fragments is reduced and the fragments with low semi-major axis are on circular
orbits, therefore one leg of the v-shaped distribution disappears. The same plots can
be obtained also with the analytical approach in 2D (Figure 4.10b) which provides a
distribution of fragments that is extremely similar to the numerical simulation. The
most evident difference in the density after 1000 days from the band formation is that
the analytical approach underestimates the number of fragments with e ≈ 0.

This is even clearer from Figure 4.11 that shows the distributions of semi-major axis
and eccentricity for the numerical propagation and for the 2D analytical approach at
the different time instants. After 1000 days from the band formation, the distribution
of the semi-major axis is well captured (Figure 4.11); on the other hand, the analytical
approach is not able to represent the peak at e ≈ 0 in the eccentricity distribution. This
happens because the analytical propagation is obtained starting from the equation

de

dt
= 0

so the progressive reduction of eccentricity is lost.

Despite this error, it is possible to see from Figure 4.12 how the 2D approach repre-
sents in any case a remarkable improvement compared to the 1D method described in
Chapter 2. Figure 4.12 shows the evolution with time of the spatial density different
altitudes, normalised by the value at the initial time, for a fragmentation at 800 km. The
results obtained with three different propagation techniques are shown: the numerical
propagation (solid line), the 1D analytical propagation (dashed line), and the 2D ana-
lytical propagation (dotted line). The main difference among the propagation methods
is visible at the fragmentation altitude (in blue). Whereas the 2D analytical method is
able to follow the rate of variation obtained with the numerical propagation, the 1D
method predicts a much steeper reduction of the density. This happens because the 1D
approach assumes that all fragments are on circular orbits, so the contribution of the
objects with semi-major axis larger than the one of the parent orbit is not well modelled.
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Figure 4.11: Distribution of semi-major axis and eccentricity, for a fragmentation at
700 km, at the band formation (TB = 92 days) and after 1000 days.
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axis and eccentricity.
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4. density propagation with multiple variables

These fragments, which represent the right branch of the v-shaped distribution in Fig-
ure 4.10, have the perigee of their orbits close to the breakup location, so they contribute
to the density at the fragmentation altitude. With the 1D approach all the fragments at
the peak location are treated in the same way because of the hypothesis e = 0, so the
peak appears to move towards lower altitudes. With the 2D approach the information
on the eccentricity is kept, so the method can distinguish between the fragments that
have the breakup location closer to their perigee, which are less affected by atmospheric
drag. In this way, the correct rate in the peak evolution is obtained.

Figure 4.13 shows the cloud density profile after 1000 days from the band formation
for a fragmentation at six different altitudes. The value of spatial density for the nu-
merical propagation is obtained dividing the altitude in bins with width equal to 25 km,
counting the number of fragments in each bin and dividing by the volume of the corre-
sponding spherical shell. For the numerical propagation ten runs of the breakup model
were performed to take into account the random parameters within the model. At high
altitudes the accuracy of the 1D and the 2D formulation is similar. At 700 km only the
2D method is able to identify the correct peak location and the relative error on the peak
height (errpeak) is halved. The case of a fragmentation at 600 km shows that even the
2D approach is not able to obtain an accurate prediction of the cloud evolution at such
low altitudes. Note, however, that, if the fragmentation happens at very low altitude,
the number of fragments after 1000 days is very low, so even the use of a continuum
approach is questionable for such a limited number of samples.

Using the same measure of the method accuracy introduced in Section 2.7.2, the relative
error on the density peak (errpeak) and on the mean error along the profile (errprof) for
the methods are plotted in Figure 4.14. Setting also in this case a threshold value at 0.2,
which corresponds to a good visual agreement between the density profile obtained
with the numerical propagation and the one with the analytical one, the 1D approach
is applicable above 800 km and the 2D approach instead can be applied from 700 km

and the average error on the respective ranges of applicability is similar. This extends
the applicability of the method in a such a way that it can be applied along most of the
altitude range of the sun-synchronous orbits, where the debris density is the highest
and where there are many critical objects in terms of possible future fragmentations.

An important consequence of this improvement in the modelling is that, when the 2D
formulation is adopted, the propagation with the continuity equation can be applied
to study the evolution of a debris cloud for longer time periods. Figures 4.15 and 4.16
show an example of the results obtained, with a single run of the NASA breakup model,
for a fragmentation at 700 km and one at 800 km. For the second case, the agreement is
still very good, whereas for the case at 700 km there is clear discrepancy between the
numerical and the analytical method. However, in contrast from what happens using
the 1D approach at 700 km, the analytical propagation now overestimates the value of
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Figure 4.13: Cloud density after 1000 days from the band formation for six different
collision altitudes.
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agation and the one from the analytical one for a fragmentation at 700 km.
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Figure 4.16: Comparison between the density profile obtained with the numerical prop-
agation and the one from the analytical one for a fragmentation at 800 km.
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the spatial density. This means that the method will give a conservative estimation of
the collision probability for a spacecraft crossing the debris cloud.

The improvement in the results is associated with an increase in the computational time
that can be evaluated from Figure 4.17, which shows the time required to estimate the
cloud density 1000 days after the band formation. The measured computational times
refer to a PC with 4 CPUs at 3.40 GHz and the numbers in Figure 4.17 represent to the
average time over ten runs. All the codes are written in matlab and parallelised. The
propagation with the 2D formulation requires more than double the time of the 1D
(1.34 s compared to 0.66 s), but the computational time is still lower than the numerical
propagation. The final step of conversion from the density in the (a, e)-plane into the
spatial density in 1/km3 appears quite expensive (2.17 s). One can observe that, for
applications when the propagation method is used to compute the collision probability
for a spacecraft crossing the cloud, the value of n is required only at the target altitude, so
the computation would be faster. On the other hand, when the cloud propagation is used
for such application, it is not sufficient to know the state of the cloud at the final time,
but a fine time step should be adopted. As at each time step the fit of a 2D function is
performed, the operation could be expensive, so future work will investigate alternative
implementations. In any case, it is important to highlight that the running time is only
a part of the computational effort required by a simulation. The main advantage of the
proposed approach is that describing the problem in terms of spatial density instead of
studying the position of each objects reduces the required RAM. This means that large
fragmentations (e.g. with more than 10000 fragments) can be simulated on normal PCs,
without the use of supercomputers.

The saving in the computational time achieved also with the 2D approach suggests that
it also can be applied to study many different fragmentation scenarios to understand
which conditions affect the most the debris environment and the collision probability
for operational spacecraft.

Summary

The proposed method based on the continuity equation was originally formulated in
one dimension, considering only the dependence of the debris fragment density on
the distance from the Earth. Actually, the method can be easily extended to multiple
dimensions, using as additional variables physical parameters (such as the area-to-mass
ratio) or orbital parameters. This last case is particularly interesting because it allows
the effect of perturbations to be included through the classical formulation derived from
Gauss’ equations. The multi-dimensional formulation of the continuity equation was
applied to three cases. Firstly, it allows the modelling the effect of the Earth’s oblateness
on the debris cloud in the first phase of its evolution. Different options for the modelling
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were discussed and the following conclusions were drawn: firstly, the effect of drag
should also be included in the first phase of the cloud evolution; secondly, depending on
the application, it is possible to model the problem using the semi-major axis as variable
and only one angle, either ω or Ω, choosing the one with the slowest dispersion. These
two observations allow the optimal balance to be obtained in the trade-off between
accuracy and computational time. Secondly, the 2D formulation of the method was
used to describe the effect of the atmospheric drag on the debris cloud considering
the distribution of the area-to-mass ratio across the cloud. This is done by treating this
parameter as an additional variable of the propagation. The obtained results are coherent
with the ones from the 1D formulation with the division in area-to-mass bins, proving
the validity of the approach. However, the previous 1D formulation is more convenient
in terms of computational time and it is therefore preferred. Finally, the method was
used to include the dependence on eccentricity in the modelling of the atmospheric
drag. A very simple model was formulated assuming a constant distribution of the
eccentricity. It was observed that this already improves the results in such a way that
the applicability of the analytical method can be extended to 700 km. In this way, the
proposed continuous approach can be applied to study the whole region of space where
the debris density is maximum.
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5
Collision probability with the

formulation in multiple variables

The propagation method based on the 2D formulation of the continuity equation, out-
lined in Section 4.4, can be used for the long term evolution of the spatial density of
a cloud generated by a breakup occurred between 700 and 1000 km in altitude. As in
the 1D case, the information on the spatial density can be used to assess the collision
probability for spacecraft crossing the fragment cloud.

Also in this case, the collision between a spacecraft and the fragments in a cloud is
modelled as a Poisson process, so that the cumulative collision probability can be written
as in Equation 3.3

pc = 1− exp (−N) = 1− exp (−nσc∆v∆t)

where n(r, t) is the fragment spatial density derived from n(a, e, t), σc is the collisional
cross sectional area, and ∆v the average relative velocity between the target and the
fragments.

The fragment spatial density is known thanks to the analytical method explained in
Section 4.4; as with the 1D formulation, an analytical expression is available only after the
fragment band is formed, so the collision probability will be studied from that moment
onwards. Similarly to the 1D case, an analytical expression is sought for the relative
velocity: it should be based only on the knowledge of the distribution of the fragments
in the phase space (a, e), given by the analytical propagation, and it should exploit the
fact that the fragments are uniformly distributed in M,ω,Ω.
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5. collis ion probability with the formulation in multiple variables

5.1 Collision velocity estimation

The 2D analytical expression for the velocity can be obtained in a similar way to the one
for the 1D version of the method, which was explained in Chapter 3. The same steps are
retraced to understand how to include the additional information on the eccentricity.

5.1.1 Relative velocity between the target and a single fragment

To understand how the relative velocity can be estimated, it is useful to start from a
simplified case with only one fragment. The relative velocity between two objects can
be written with the law of cosines as

∆v =
√

v2T + v2F − 2vT vF cosφ (5.1)

where vT and vF indicate the magnitude of the two velocity vectors, respectively for
the target and for the fragment, with respect to the central body. For the moment it
is assumed that vT and vF are known and the attention is focussed on φ, which is the
angle between the two vectors. Kessler (1981) provides a way to estimate this angle
starting from the orbital parameters of the two objects exactly in the same situation
studied in this work, i.e. one object is a target object whose orbital parameters are
completely known and the second object is part of a set where ν, ω,Ω were randomised
by the effect of perturbations. It is important to highlight that not knowing all the
parameters for the second object means that multiple solutions for φ should be expected.
In particular, according to Kessler (1981), φ can be obtained by solving the spherical
triangle in Figure 5.1

cosφ = sin γT sin γF + cos γT cos γF cos (αT − αF ) (5.2)

where the subscript T refers to the target and F to the fragment. The two angles γ and
α are defined respectively as

cos2 γ =
a2(1− e2)

r(2a− r)
cosα =

cos i

cosβ
(5.3)

where r and β are the altitude and the latitude where we would like to estimate φ, that
is at the target location.

Considering all possible choices for the signs of γ and α, there are 16 possible com-
binations that can be reduced to eight considering the property of symmetry of the
trigonometric functions (Kessler, 1981). These eight possible combinations can all be
described by

cosφ = ± sin γT sin γF ± cos γT cos γF cos (αT ∓ αF ) (5.4)
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Figure 5.1: Definition of the angles between the velocity vectors according to Kessler
(1981).
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Figure 5.2: Velocity diagrams

where now the angles are always taken in absolute value. Out of the eight combinations,
only four are compatible with the geometry of the problem. Note that, since no informa-
tion is available on ν, ω,Ω, it is not possible to further reduce the number of solutions,
except for simple equatorial, circular cases. Therefore, with this method, the relative
velocity between the target and a fragment is the average among the four possible values
associated with the four possible values of φ.

To understand how to reduce Equation 5.4 to only four possible solutions, it is convenient
to consider a simplified case when the target is on a circular and equatorial orbit, and
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5. collis ion probability with the formulation in multiple variables

the fragment is on a circular orbit with the same radius as the target. In this case

cos2 γT = 1 sin γT = 0 αT = 0 αF = ±iF

and
cosφ = ± cos iF . (5.5)

It is easy to observe that only one sign of cosφ in Equation 5.5 is admissible, depending
on the direction of motion of the target and of the fragment along their orbits. For
example, Figure 5.2a shows the two vectors vT and vF on the (y, z)-plane in the case
that ΩF = 0; the angle φ is equal to the inclination of the fragment orbit. This is true also
for the case with ΩF = π (shown in grey in Figure 5.2a) and so, in this situation, the
correct choice is the positive sign for cosφ in Equation 5.5.

Also relaxing the hypothesis on iT = 0, it is possible to obtain a similar velocity diagram,
as shown in Figure 5.2b. In this case

cosφ = ± cos (iT ∓ iF ) (5.6)

and also here only the positive sign is compatible with the problem geometry; the sign
in the cosine captures the two possible values of φ due to the different possible values
of Ω. Therefore, the information on the inclination of target and fragment orbits can
be used to decide the sign for cosφ: positive, if they are both on direct or retrograde
orbits (same direction of motion); negative otherwise. The condition on the sign of cosφ
allows the only four possible values for φ to be selected to estimate ∆v, depending on
the difference in inclination between the two orbits.

The formulation from Kessler (1981) is a useful starting point for the current application,
but it requires some modifications to consider two aspects. Firstly, it introduces a depen-
dence on the target latitude β, which is not followed in the propagation because of its
fast evolution compared to the time scale of the problem. As already observed, in the
current case, the value of the latitude β at a certain time instant is not representative of
the entire time step as it is much longer than one orbit. Following the target trajectory
with a very fine time step (i.e. shorter than one orbit) would result in a unnecessary
large computational effort, so the formulation should be modified to consider an average
value for β or to be independent of it. Secondly, the value of ∆v is found by averaging
the four possible solutions compatible with the problem geometry, whereas in our case
it would be convenient to exploit the fact that there is a large number of fragments that
occupy all the possible geometrical configuration, rather than performing the average
operation for each fragment.
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5.1 collis ion velocity estimation

5.1.2 Relative velocity between the target and a cloud of fragments

Kessler (1981) applies the expressions to a small number of objects1, so the value of the
relative velocity is found as an average of all the possible values from Equation 5.2. In the
case of space debris clouds there are thousands of objects with (Ω, ω) equally distributed
among them. In this case, averaging among the extremes of the distribution leads to a
systematic error because the relationship between the angle φ and the distributed angles
(Ω, ω) is not linear. This was observed considering in particular the dependence of φ on
the difference in the longitude of the ascending nodes ∆Ω in the case of two circular
orbits,2 and it was used in Chapter 3 to express the relative velocity in the 1D case. There
it was found that φ can be rewritten as

cosφ = sin (iT ) sin (iF ) cos (∆Ω) + cos (iT ) cos (iF ). (5.7)

Given that Ω is uniformly distributed among the fragments, the average relative velocity
∆v̄, can be found computing the integral mean3 of the function

∆v =
√
v2T + v2F − 2vT vF cos γF [sin (iT ) sin (iF ) cos (∆Ω) + cos (iT ) cos (iF )] (5.8)

for ∆Ω from 0 to 2π. Observe that in Equation 5.8 the term cos γF from Kessler (1981)
was reintroduced to consider that in the studied collision scenarios the fragments are
usually in non-circular orbits.4 Similarly to what was done in Chapter 3, by setting

χ = v2T + v2F − 2vT vF cos γF cos (iT ) cos (iF ) η = 2vT vF cos γF sin (iT ) sin (iF )

the average value of the relative speed can be written as

∆v̄ =
2

π

√
χ+ ηE

[
2η

χ+ η

]
, (5.9)

where E[x] is the complete elliptic integral of the second kind.

5.1.3 Orbital parameter distribution

The expression in Equation 5.9 was obtained assuming vT and vF as known. This is
true for the target, whose trajectory is numerically propagated and whose parameters
are all known. However, the velocity of the single fragments is not known because the
analytical propagation provides the distribution of the fragments in the (a, e)-plane, so
this is the only available information to estimate the fragment velocity. Given that the

1The eight outer moons of Jupiter.
2We are assuming that the inclination i and the longitude of the ascending node Ω are the parameters

that drive the value of φ because they define the difference in the two orbital planes.
3Integral mean of a generic function f obtained from 1

b−a

∫ b

a
f(x) dx

4while the target is still assumed to be in a circular orbit
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5. collis ion probability with the formulation in multiple variables

information on the velocity of the fragments is required at the intersection of the target
orbit, vF can be estimated computing the orbital speed at the target latitude for an object
with given semi-major axis

vF =

√
2µ

(
1

rT
− 1

2aF

)
. (5.10)

Equation 5.10 is applied to all the points in the (a, e)-plane, so Equation 5.8 is actually a
matrix expression

∆v =
√

v2T + vF
2 − 2vT vF cosγF [sin (iT ) sin (iF ) cos (∆Ω) + cos (iT ) cos (iF )] (5.11)

with vF and γF varying across the domain.

The scalar single value of ∆v, which will then be used in Equation 3.3 to estimate the
collision probability, is finally obtained through a weighted average using the density
as a weighting factor

∆v̄ =

∫∫
n(a, e)∆v(a, e) dade∫∫

n(a, e) dade
. (5.12)

The estimation is refined by considering which combinations of (a, e) actually corre-
spond to orbits that intersect the target trajectory. A matrix C(a, e) can be defined in the
following way

C(aj , ek) =

1, if aj(1− ek) ≤ rT ≤ aj(1 + ek)

0, otherwise

and then Equation 5.12 becomes

∆v̄ =

∫∫
C(a, e)n(a, e)∆v(a, e) dade∫∫

C(a, e)n(a, e) dade
. (5.13)

5.2 Validation

Equation 5.13 provides a fast method to estimate the average relative velocity between
the target and the fragments once the target trajectory and the cloud density are known.
On the other hand, some hypotheses were introduced to deal with the lack of information
about the parametersω andΩ. For this reason, the approach was validated with the same
numerical procedure used as a benchmark for the 1D case and detailed in Appendix A.3.
The numerical estimation is based on the computation of the minimum distance along
the nodal line between the orbit of the target and the one of each fragment (Figure 5.3).
When the distance is below a certain threshold (e.g. 10 km), the relative velocity between
the target and the fragment is computed and stored to estimate the average value.
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Figure 5.3: Distribution of the distance from the target orbit among the fragments at
the band formation for two simulated cases. The cases are indicated with the notation
F(iF ,aF −RE)T(iT ,aT −RE).
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Figure 5.4: Relative velocity∆vN distribution among the fragments with distance lower
than 50 km at the band formation for two simulated cases. The cases are indicated with
the notation F(iF ,aF −RE)T(iT ,aT −RE).

The validation process was carried out for different combinations of target altitudes and
inclinations with respect to the parent orbit from which the cloud is generated. The
target mass and size were set considering the average values among possible targets
(Rossi et al., 2013); in particular,

AT = 11m2 MT = 2322 kg.

The propagation of the target starts from the moment when the fragment band is formed.
Some examples of the results obtained during the validation process are presented in
Figure 5.4, which shows the distribution of the relative velocity ∆v among the fragments
for different cases, indicated with the notation

F(iF ,aF −RE)T(iT ,aT −RE),
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Figure 5.5: Relative error in the estimation of the relative velocity between target and
fragments for several configurations with variation (a) in inclination and (b) in altitude.
Propagation time equal to five years.

where F refers to the orbital parameters of the fragmentation parent orbit and T to the
ones of the target spacecraft crossing the cloud. It is possible to observe how the value of
∆v is affected by the inclination of the target orbit and by the one of the fragmentation
orbit. Keeping in mind the velocity diagram in Figure 5.2b, in the case F(60,800)T(60,800)
the maximum ∆v (i.e. the one when fragments and target have opposite directions of
motion) is much larger than in the case F(30,800)T(30,800) and this is reflected in the
distribution of the velocity in Figure 5.4. While in Figure 5.4a a dependence on the
semi-major axis is visible, in Figure 5.4b the value of ∆v appears less correlated with the
semi-major axis. This suggests that for increasing inclination values other parameters
play a major role, As larger inclination means slower band formation and larger orbital
plane differences, the distribution may be explained as a result of the non-uniform
distribution of the longitude of the ascending nodes among the fragments that intersect
the target orbit.

The results of the validation are shown in Figure 5.5 that presents the average relative
error on a five-year simulation for different combinations of the target and the fragment
inclination and altitude. As in Chapter 3, the accuracy of the approach is measured by
computing

errrel =

∫
|∆vA −∆vN | dt∫

∆vN dt
, (5.14)

where ∆vN is the estimation of the velocity obtained using the numerical procedure and
∆vA is the analytical estimation described in Section 5.1.

Focussing on the variation of inclination, it can be observed that the error is usually
low, with an average value, among the 100 tested cases, equal to 0.0095. The error is
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Figure 5.6: Comparison between the reference relative velocity ∆vN in grey and the
analytical estimation ∆vA in black. The time is measured from the band formation.

maximum for the cases with the same value of inclination for target and fragment cloud;
the maximum error is equal to 0.0876.

Figure 5.6 is useful to better understand the numbers in Figure 5.5. Figure 5.6 represents
the value of the reference relative velocity (in grey) and of the analytical estimation (in
black) along the considered time window. In Figure 5.6a, the case F(30,800)T(60,800) with
errrel = 0.005 is presented: the reference relative velocity oscillates with time because
the target’s and the fragments’ orbits have different inclination, and, therefore, they are
subject to different precession rates of their orbital planes. In addition, as Ω is not equally
distributed among the fragments close to the target orbit, the average ∆Ω between the
target and the fragments changes with time. On the other hand, the analytical estimation
changes much more slowly. In fact, considering the expressions in Equations 5.1 and
5.13, one can observe that having removed the dependence on the latitude, ∆v varies
only following the (slow) evolution of the target orbital parameters and of the cloud
density. Figure 5.6b shows the case F(30,800)T(30,800) with errrel = 0.039: in this case
target and fragments have the same inclination, so the oscillations are less defined than
in the previous case.

Figure 5.7 shows the distribution of φ as a function of ∆Ω for the case F(30,800)T(30,800)
at t = 500 days after the band formation. Each grey dot represents a fragment and
the light grey dashed line indicates the average φ among all fragments; the white dots
represent the fragments with distance smaller than 50 km and the black dashed line
indicates the average φ obtained from this set of fragments. Finally, Equation 5.7, the
analytical expression for the dependence of φ on ∆Ω, is plotted in blue and the average
value is indicated with the dashed blue line. As expected, the fragments are distributed
along the theoretical line in black; the dispersion across the line is due to the effect of
the fragment argument of perigee ω, which is not described in Equation 5.7.
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Figure 5.7: Distribution of φ as a function of ∆Ω for the case F(30,800)T(30,800) at
t = 500 days.
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Figure 5.8: Comparison between the reference relative velocity ∆vN in grey and the
analytical estimation ∆vA in black. The time is measured from the band formation. TB

= 203 days in a and TB = 669 days in b.

It is also interesting to observe the two particular cases in Figure 5.8 that represents the
estimated relative velocity for the case F(63,800)T(63,800) and F(90,800)T(90,800). These
cases are interesting because for these values of inclination ω̇ and Ω̇ due to the Earth’s
oblateness are null. One could expect that the band would not form in these cases, but
actually the breakup causes a dispersion of the initial inclination of the fragments, so
that they spread and a band is formed also for fragmentation originating from these
critical values of inclination, though in a longer time.

Still, the fragments with inclination very close to 63◦ or 90◦ will have a very slow variation
of ω and Ω respectively and this can be observed in Figure 5.8 as the delay in approaching
the asymptotic value given by the analytical method. This behaviour is more evident for
the case at 90◦ (errrel = 0.117) than for the one at 63◦ (errrel = 0.066) because Ω defines
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Figure 5.9: Relative error in the estimation of the relative velocity for the cases with
iT = iF .

the orbital plane and has, therefore, a greater influence than ω on the value of the relative
velocity.

5.2.1 Error for target and fragmentation with the same inclination

It was observed in Figure 5.5 that the error is maximum for the cases where iT = iF .
The reason for this behaviour can be inferred by the comparison of Figure 5.6a and
Figure 5.6b: as already discussed, when iT 6= iF , the evolution of ∆v presents some
oscillations around an average value that is well captured by the analytical approach;
in the case iT = iF , instead, the value predicted by the analytical method acts as an
asymptotic value, so the ∆v is always underestimated (Figure 5.8a) or overestimated
(Figure 5.8b). This explains why the error is larger for the cases with iT = iF . This
behaviour is due to the fact that the initial ∆Ω between the target and the fragments
that cross its orbit is constant as for the orbit i is the same and so Ω̇. For the same
fragmentation, the value of the relative velocity will be underestimated or overestimated
depending on the initial value of ΩT .

Figure 5.9 shows the value of the error on a fine grid with a simulation every two degrees
of inclination; the plot shows only the values for i ∈ [0, π/2] because the part for i ∈
[π/2, π] is symmetrical. The curve clearly shows that for some inclinations the relative
error reaches a very large value that can affect the reliability of the results. As already
observed in Figure 5.8, excluding the equatorial case, the largest values of error are
registered for those inclinations associated with a slow band formation.

For the equatorial case, the causes of the large error are still under investigation. The
preliminary analysis seems to suggest that the probability of finding the fragments at
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the target altitude should be included in Equation 5.13. This can be done by exploiting
again Equation 2.24 that express the probability of finding an object at a certain altitude
given its semi-major axis and eccentricity.

For the cases with slow band formation, it may be beneficial to correct the evolution of
the ∆v describing the approach towards the asymptotic value ∆va with the classical
expression of the transient for a first order system (Baruh, 1999)

∆v(t) = ∆va + k exp

(
− t

τ

)
. (5.15)

The parameters k and τ need to be estimated from the initial (real) value of ∆v and so
they require to run once, at the band formation, the numerical method to estimate ∆v.
Indicating with ∆v0 the value of ∆v at the initial time, k is simply

k = ∆v0 −∆v.

τ instead is the time constant of the problem and it can be estimated by looking at
the evolution of the ∆v from the breakup to the band formation. In detail, inverting
Equation 5.15 to find τ , one gets

τ =
−t

log (∆v(t)−∆va
k )

that can be evaluated at the breakup where both

t = −TB and ∆v(t) = ∆vB

are known. In fact, TB is the time for the band formation and ∆vB is the relative velocity
between the target and an object on the parent orbit of the fragmentation. An example
of the results obtained with this approach is shown in Figure 5.10, which refers to the
case with i = 84◦.

Besides this numerical correction, also some analytical corrections were tested: they are
based on the equation for Ω̇ and the fragment inclination distribution. They give good
results for some values of inclinations, but they are not yet robust enough to be applied
generally. In any case, this suggests the existence of a link between the evolution of ∆v

and the dispersion of Ω. Future work will further investigate this aspect with the aim of
reaching a full analytical formulation.

5.2.2 The case at 84 degrees

Figure 5.9 shows the value of the relative error on the estimation of the velocity for the
cases with iT = iF . In particular, it could be interesting to study why the maximum
error is observed at 84 degrees. The process of formation of the band can be split into
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Figure 5.10: ∆v evolution for the case i = 84◦ and correction.

two steps: the fragment with the fastest nodal rate reaches the same Ω as the slowest
one, then the fragments’ Ω spreads within the band to reach a uniformly distributed
configuration. The first phase can be described considering the difference between the
minimum and the maximum rate of variation of ω and Ω within the cloud. As the focus
is on the case at 84 degrees, only the effect of Ω will be considered. The variation of Ω is
given by Equation 2.5

Ω̇ = −3

2
J2

R2
E

p2
n̄ cos i

where J2 is the second zonal harmonic coefficient for the Earth’s gravitational potential,
RE is the Earth’s radius, p is the orbit semilatus rectum, n̄ the orbital mean motion and i

the orbit inclination. Within a cloud, the element that affects Ω̇ the most is the semi-major
axis a, present both in the p = a(1− e2) and in n̄ =

√
µ/a3, as shown in Figure 5.11.

To highlight the effect of inclination, the hypothesis that all fragments have the same
semi-major axis is introduced. After the breakup, the fragments will have a certain
dispersion in inclination (as shown also in Figure 5.11). For a case with low inclination
cos (i) will have the same sign for all the fragments. The process of the band formation
will follow an evolution such as the one in Figure 5.12a, where each arc represents a
different time instant. The innermost arc represents the dispersion of Ω in the cloud at
the initial time, whereas arcs with larger radius indicate later time instants. In the case
of 90◦ half of the fragments will have Ω̇ > 0 and the other half Ω̇ < 0, so the process of
the band formation is such as in Figure 5.12b. Observe here that, even if the absolute
value of Ω̇ is lower for the case with i = π/2, the band formation requires a similar
amount of time because the band expands in two directions. The value of inclination
where this behaviour starts to occur depends on the initial fragment spreading caused
by the breakup. For the case studied in Figure 5.9, which represents a non-catastrophic
collision with a projectile mass equal to 100 g and relative velocity equal to 1 km/s, the
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Figure 5.11: Distribution of Ω̇ across the cloud as a function of semi-major axis and
inclination for a fragmentation on an orbit with 30 degrees of inclination.

(a) 84◦ (b) 90◦

Figure 5.12: Representation of the band formation for two clouds at different inclina-
tions.

maximum ∆i is equal to 4.26◦ among the fragments with perigee altitude larger than
50 km.

One could expect this value to have a strong dependence of the collision energy: this is
true only if the absolute maximum inclination difference is registered; the dependence
is less strong if only the fragments with perigee altitude hp larger than 50 km and the
value of 0.95 quantile are considered. This means that the transition in the behaviour of
the time for the band formation is expected to occur always around the same values of
inclinations.

For the case with projectile mass equal to 100 g and v = 1km s−1, the estimated time
(at the breakup) for the band closure from the value of Ω̇ among the fragments with
hp > 50 km and ∆i within the 0.95 quantile is shown in Figure 5.14, where the maximum
value is not at 90◦, but, in this case, around 88◦.
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Figure 5.14: Time for band clousure.

5.3 Collision probability computation

As in Chapter 3, the analytical estimation of the relative velocity allows computing the
average number of collisions N in a time interval ∆t as in Equation 3.1

N = n∆vσc∆t

and the resulting collision probability Equation 3.3

pc = 1− exp (−N).
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Figure 5.15: Comparison between the number of collision estimated with the numerical
propagation (in grey) and with the analytical one (in black).

Figure 5.15 shows the number of collisions N predicted applying the analogy with the
kinetic theory of gases using the value of density n and relative velocity ∆v obtained
form the numerical propagation (in grey) and the analytical one (in black). Four cases
with different inclinations and altitudes are shown, finding similar results to the one
obtained with the 1D approach in Figure 3.6. Also in this case one can observe the high
frequency oscillations due to the fact that Ω is not uniformly distributed among the
fragments that intersect the target orbit.

As an example, the results for the case F(60,800)T(60,700) are shown in detail. The
considered debris cloud is formed by 2397 fragments, whose dynamics are studied for
three years after the band formation TB , which is equal to 286 days in this case.

Figure 5.16 shows the evolution of the cloud density in the (a, e)-plane; the white ver-
tical line represents the target altitude and the two inclined lines define the limits of
the region on the (a, e)-plane that contains the fragments that can affect the target. Fig-
ure 5.17 shows instead the temporal evolution of the target altitude hT , the fragment
spatial density at the target altitude nT , the average relative velocity ∆v and the collision
probability pc. It is possible to observe how nT decreases in the first two years because
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Figure 5.16: Evolution of the cloud density in the (a, e)-plane for the case
F(60,800)T(60,700). Bin size equal to 25 km in a and 0.04 in e.
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Figure 5.17: Temporal evolution of the target altitude hT , the fragment density at the tar-
get altitude nT , the average relative velocity ∆v and the cumulative collision probability
pc.
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during this period the fragments a low altitudes (left branch of the v-shaped distribution
in Figure 5.16) are removed by the effect of drag. Afterwards, the density value is almost
constant because the fragments that are still in orbit are less affected by drag. At the
same time, the relative velocity increases as the target moves slowly to lower altitudes
and the average semi-major axis increases. As a result, the collision probability grows
with a slowly decreasing slope.

The result was obtained in 140.98 s on a PC with 4 CPUs at 3.40 GHz; most of the time
was spent for the 2D analytical propagation (101.11 s): as mentioned in Chapter 4 this
time could be reduced by changing how the initial condition is translated across the
domain. The estimation of the relative velocity requires only 3.57 s.

5.4 Collision scenarios for the 2D approach

Similarly to what was done with 1D formulation of the method in Chapter 3.6, also with
the 2D approach it is possible to study several fragmentation scenarios. In this case,
using the 2D approach allows fragmentations at lower altitudes to be studied, covering
the whole region of LEO where the debris density is the highest. Moreover, this extension
in the method applicability can be exploited to study the impact of fragmentation also
on active satellites, whose number is maximum at altitudes between 750 and 800 km. In
fact, also because of the presence of the Iridium constellation, this altitude band con-
tains around 17% of all the active satellites in LEO (Union of Concerned Scientists, 2014).
Therefore, whereas the percentage of satellites in LEO within the band of applicability
of the 1D formulation (800-1000 km) is equal to 8.7%, for the 2D approach (700-1000 km)
this percentage is equal to 30.23%. The percentage becomes much larger (63.89%) if only
satellites heavier than 50 kg are considered. This Chapter will show how the method
based on continuity equation can be used to study the impact of breakups not only on
the debris population, but also on active satellites.

5.4.1 Single event simulations

As in the 1D case, the method is used to study the collision probability between frag-
ments, resulting from some breakups, and a list of targets. The list used here is the same
as in Section 3.6.1 (Table 3.1) and the parameters for the fragmentation are the one of
the breakup of COSMOS 1867 (NASA Orbital Debris Program Office, 2014). The orbit
of the satellite is between 775 and 800 km, so at the limit of the applicability of the 1D
formulation; the inclination is equal to 65◦.

Figure 5.18 shows the evolution of the cumulative collision probability for ten target
spacecraft (Table 3.1), comparing the results obtained with the 2D (solid line) and the
1D formulation (dashed line). It is possible to observe how the ranking of the spacecraft
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Figure 5.18: Cumulative collision probability resulting from the fragmentation of Cos-
mos 1867 for the ten target spacecraft in Table 3.1: the solid line represents the result
obtained with the 2D formulation, the dashed line the one with the 1D formulation.
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Figure 5.19: Cumulative collision probability resulting from the fragmentation of Cos-
mos 2428 for the ten target spacecraft in Table 3.1: the solid line represents the result
obtained with the 2D formulation, the dashed line the one with the 1D formulation.
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is the same (i.e. SC1 is the most affected spacecraft in both cases), but the 2D model
computes higher collision probability values. This is related to the value of the cloud
density encountered by a target along its orbit. This value is higher for the 2D than for
the 1D method that, at this altitude, tends to overestimate the effect of drag, This was
observed, for example, in Figure 4.12, where it was shown how the 1D approach predicts
a steeper reduction of the cloud density around the peak. This behaviour results in an
underestimation of the collision probability. When the fragmentation altitude is higher,
as in the case of Cosmos 2428 (845-860 km) shown in Figure 5.19, the differences between
the two models are reduced.

Another analysis that can be performed with the proposed method is to assess the effect
of a fragmentation on the environment. The approach described in this Section can be
used by spacecraft operators to have a quick estimation of the consequences of a newly
discovered breakup.

The simulation of the fragmentation starts from the estimation of the input parameters
required by the NASA breakup model, which are the kind of event (i.e. explosion, non-
catastrophic collision, catastrophic collision), the class of object involved in the breakup,
and the level of energy of the event. The first parameters are usually known as, when
new objects are observed, their origin is often identified. The kind of fragmentation can
be determined considering that explosions and collisions result in a different distribu-
tion of energy. Explosions tend to produce larger fragments with lower speed compared
to collisions. Finally, the energy level of the event can be estimated knowing the number
of objects added to the catalogue and assuming that they are larger than a threshold
value (e.g. 5 cm). In the case of an explosion no further information is required, whereas
for collision also the impact velocity needs to be estimated or otherwise an average
value is used. In the current implementation, an average collision velocity equal to 10
km/s is used. The event is simulated producing all the fragments down to 1mm. To
identify which regions of space are the most affected by a given fragmentation, a grid
in semi-major axis and inclination is defined. Each cell defines a fictitious spacecraft
with given semi-major axis and inclination, for which the collision probability with the
fragment cloud is computed. Average values for the spacecraft area and mass are used
to describe its trajectory evolution. These values are the same as the ones mentioned at
the beginning of this Chapter, namely AT = 11m2 and MT = 2322 kg.

The collision probability is computed starting from the moment when the fragment
cloud is spread around the Earth forming a band. The resulting cumulative collision
probability at the end of the time window is plotted as a function of the semi-major
axis and the inclination to highlight which orbital regimes are the most affected. This
graph is indicated as the effect map. The resulting map can be coupled with a database
of spacecraft or space debris objects, such as the one in (Union of Concerned Scientists,
2014), to identify which are the most exposed targets. The idea here is not to propagate
all the possible targets, but rather to use the information in the produced effect map. This

144



5.4 collis ion scenarios for the 2d approach

can be done by defining an index of exposure (η) and assigning it to all the spacecraft
in the database. The index used here is composed of two elements: first, the value of
the cumulative collision probability, obtained from the effect map, at the nominal orbit
of the satellite; second, the mass of the satellite, taken as an indirect measure of the
target cross-sectional area. The index is obviously an approximation because it does
not consider the variation of the orbit during the years when the cumulative collision
probability is computed; moreover, it implicitly assumes that all the spacecraft have
the same area-to-mass ratio A/M . Nevertheless, it can give a first indication on which
satellites are the most affected by a fragmentation event and then the result can be refined
studying the collision probability for each target.

The index η for a spacecraft j for a given fragmentation is computed as

ηj = 1− [1− pc(aj , ij)]
Mj
MT (5.16)

where aj , ij are its semi-major axis and inclination; pc is the map of collision probability
in the effect map, so pc(aj , ij) is the value for the spacecraft nominal orbit; Mj is the
satellite mass and MT is the reference value used to obtain pc. This expression for η was
chosen because it can be related to the cumulative collision probability for the studied
spacecraft. In fact,

1− η = [1− pc(aj , ij)]
Mj
MT (5.17)

log (1− η) =
Mj

MT
log [1− pc(aj , ij)]; (5.18)

for a Poisson process 1− pc = exp (−N), so

1− η = [1− pc(aj , ij)] exp

(
Mj

MT

)
= exp (−N) exp

(
Mj

MT

)
(5.19)

and given the expression for N

1− η = exp

(
−n∆vσc∆t

Mj

MT

)
. (5.20)

Rewriting σc as

σc =
AT

MT
MT

Equation 5.20 becomes

1− η = exp

(
−n∆v∆t

AT

MT

MT

MT
Mj

)
and using the assumption that A/M is the same for all the satellites

1− η = exp (−n∆vσc,j∆t) ⇒ η = 1− exp (−n∆vσc,j∆t) ≈ pc,j . (5.21)
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It is important to underline that Equation 5.21 is not the exact collision probability for
the spacecraft j because the effect of the different values of the satellite area and mass
on the trajectory evolution are not considered.

The method was applied to study the fragmentation of the satellite DMSP-F13 occurred
in February 2015. As a result of the event, probably due to a malfunctioning of a battery,
160 new objects were added to the catalogue5. At the moment of fragmentation, the
spacecraft was in an orbit with an altitude between 844 and 856 km, with inclination
equal to 98.8 degrees.

Assuming the objects to be larger than 5 cm and applying the equations of the NASA

breakup model for explosions, 83 598 fragments larger than 1mm are expected. In fact,
according to the NASA breakup model (Krisko, 2011), the distribution of fragments with
size is given by

Nf = 6S L−1.6
c , (5.22)

where Nf indicates the number of fragments larger than the characteristic length Lc. S
is a dimensionless parameter that depends on the exploding body. This parameter can
be used to tune the explosion, so that setting Lc equal to 5 cm, Nf is equal to the number
of new observed objects (i.e. 160). In this way, S = 0.221 is obtained. Applying again
Equation 5.22 with S = 0.221 and Lc = 1mm, Nf = 83598 is obtained. The estimated
total mas of the fragments is equal to 8.17 kg, so compatible with the explosion of a
battery.

The analysis of the effect of the breakup on the different orbital regimes is shown in
Figure 5.20. It presents the effect map described in this Section considering 15 years of
the cloud evolution. Figure 5.20 clearly shows that the most affected regions are the
ones with altitude slightly lower than the one where the explosions occurred and with
inclination i such that sin i ≈ sin iF , with iF = 98.8 degrees inclination of DMSP-F13.
With this orbital configuration, the target spacecraft crosses the cloud at the latitude
extremes of the band, where the density is maximum. The orbits within 50 km below
the fragmentation appear to be affected for any value of their inclination: as the frag-
mentation occurred at 98.8 degrees of inclination, the band extends up to 81.2 degrees
in latitude. This means that all objects with i such that sin i ≤ sin iF will spend their
whole orbits within the fragment cloud. On the other hand, objects with sin i > sin iF

will spend a portion of their orbits outside the fragment band. This explains why in
Figure 5.20 the collision probability is lower for orbits with i = 90 degrees than for the
adjacent values of inclination. The collision probability is still higher for i = 90 degrees
than for i = 70 degrees because in the first case the target crosses the latitudes with the
highest fragment density.

Figure 5.20 shows also the ten most affected spacecraft as extracted from the database in
(Union of Concerned Scientists, 2014). The spacecraft are indicated in Figure 5.20 with

5Data retrieved from https://www.space-track.org on 14 September 2015
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Figure 5.20: Effect map and top affected spacecraft for the explosion of DMSP-F13 from
the database in (Union of Concerned Scientists, 2014).

Table 5.1: Top affected spacecraft for the explosion of DMSP-F13 from the database in
(Union of Concerned Scientists, 2014).

Spacecraft SATCAT a [km] i [deg] m [kg] η

USA-144 25744 800 63.4 18000 0.044150
USA-182 28646 714.5 57.01 14500 0.021326

MetOp-A 29499 820.5 98.7 4193 0.016808
Persona-2 39177 723.5 98.3 7000 0.016794
MetOp-B 38771 820.5 98.7 4085 0.016379

Spot 5 27421 825 98.6 3030 0.012175
Radarsat-2 32382 792 98.6 2924 0.011876
Meteor-M2 40069 823.5 98.81 2778 0.011168
Meteor-M 35865 819 98.6 2700 0.010856

Worldview 2 35946 766 98.5 2800 0.010201
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a marker whose colour is related to the spacecraft exposure η, with the darkest markers
associated with the highest values of η. The value of η for each spacecraft and their
semi-major axis, inclination, and mass are reported in Table 5.1. For the top two space-
craft (USA-144 and USA-182), the dominant factor is the mass as these spacecraft have
a mass at least double than any other object in the list. It is important to highlight that
both satellites belong to classified projects by the United States National Reconnaissance
Office6, meaning that two-line elements are not available and their parameters (both
orbital and physical) are deducted by the observations of amateur satellite observers.
For this reason, the reliability of the data on these satellites is much lower than the other
ones in the list. In any case, as in this work the main focus is on the description of the
method to analyse a fragmentation, these spacecraft were kept in the database, using the
values provided in (Union of Concerned Scientists, 2014). Within the hypotheses of the
proposed approach, high mass translates into high cross-sectional area, so USA-144 and
USA-182 dominates the η rank even if their orbits are not in the regions most affected
by the fragmentation. For the other spacecraft in Table 5.1, the orbit parameters play a
major role. For example, MetOp-A presents a higher value of η than Persona-2 even if its
mass is much lower (4193 kg versus 7000 kg) because its orbits lies in one of the regions
with the highest cumulative collision probability.

The approach was tested also with a different satellite database, DISCOS7 (Flohrer et al.,
2013), Database and Information System Characterising Objects in Space, maintained
by ESA. Also in this case, the database8 was pre-filtered to keep only spacecraft with
perigee higher than 700 km, apogee lower than 1000 km, mass larger than 900 kg. In ad-
dition, only spacecraft launched in the past ten years are considered, assuming that this
threshold can be used to study only active satellites. Observe that this criterion removes
Spot 5 from the database as it was launched in 2002, whereas includes Persona-1 that
was launched in 2008, but failed some months after the launch. For the reasons already
mentioned, USA-144 and USA-182 are not present in DISCOS. Besides these differences in
the database, Figure 5.21 and Table 5.2 show coherent results with the previous database.
Observe that the effect map in Figure 5.21 is not exactly the same as in Figure 5.20 as
different runs of the breakup model were used. In addition, the numbers in Table 5.2 are
different from the ones in Table 5.1 because the same spacecraft have different parame-
ters (both for the orbit and for the mass) in the two databases. The results appear robust
to this variation, with similar ranking in Table 5.1 and Table 5.2. In Table 5.2, as the space-
craft have more similar masses than the one in Table 5.1, the combined effect of mass,
semi-major axis, and inclination can be better appreciated. Eight out of ten spacecraft
have inclination very close to the one of DMSP-F13, so this parameter appears extremely
relevant in identifying the most affected spacecraft. Observe also from Table 5.2 that
analysing only the spacecraft features (i.e. mass, altitude, inclination) does not allow

6NASA National Space Science Data Center, http://nssdc.gsfc.nasa.gov/, last access 25 September
2015.

7https://discosweb.esoc.esa.int
8Data retrieved on 17 June 2015
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Figure 5.21: Effect map and top affected spacecraft for the explosion of DMSP-F13 from
DISCOS database.

Table 5.2: Top affected spacecraft for the explosion of DMSP-F13 from DISCOS database.

Spacecraft SATCAT a [km] i [deg] m [kg] η

MetOp-A 29499 820.24 98.7 4086 0.009357
MetOp-B 38771 820.34 98.7 4086 0.009357
Persona-1 33272 720.44 98 7000 0.009163
Persona-2 39177 720.44 98.2 7000 0.009163
Meteor-M 35865 818.44 98.5 2755 0.006319

Meteor-M2 40069 823.24 98.8 2755 0.006319
Lotos-S 36095 905.24 67.2 7000 0.005421

Cosmos 2502 40358 905.34 67.2 7000 0.005421
Radarsat 2 32382 791.74 98.6 2300 0.005199

Wordlview 2 35946 765.74 98.4 2615 0.005178
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deriving directly how affected each spacecraft is or ranking them. The proposed method
enables the translation of qualitative statements (e.g. spacecraft with altitude closer to
the fragmentation one are highly affected) into a quantitative assessment of the risk for
any object.

It is also important to highlight that DISCOS actually contains information on the objects’
cross-sectional area: this value could be used to remove the hypothesis that all objects
have the area-to-mass ratio and obtain more reliable results. Future work will investigate
this option. For the moment, it was preferred to develop a tool that can be easily used
by any operator exploiting the availability of a database such as the one in (Union of
Concerned Scientists, 2014) which is publicly available online, whereas DISCOS requires
a license.

For this reason, it is also important to briefly discuss the software structure and its
computational requirements. All the code is currently written in matlab and it reads
an input file with data on fragmentations (i.e. the orbital parameters of the fragmenting
objects, the number of new detected objects, the class of breakup). The user then selects
which case to simulate, the length of the simulated period (e.g. 15 years), the requested
output and if the top affected spacecraft should be identified. In this case, also the
name of the file containing the database with potential targets should be provided. A
run starts with the simulation breakup and the propagation of the cloud density; the
collision probability for each synthetic target is computed and, finally, if requested, the
analysis of the target database is performed. Intermediate files are saved after the cloud
propagation and after the computation of the collision probability, so that, respectively,
analyses with different grids of the effect map and with different target database can be
performed without re-running the whole simulation.

5.4.2 Maps of collision probability

As an opposite point of view with respect to the analysis in Figures 5.20 and 5.21, one
can select a target and study under which conditions a fragmentation is more likely to
affect it. The output of the analysis is similar to the maps in Figures 5.20 and 5.21, but
in this case the target is real and several fictitious fragmentations are simulated. In the
1D case in Chapter 3.6 this approach was used to study the risk for objects in the debris
population, whereas it is applied here on active satellites assuming that no manoeuvres
are performed during the analysed time.

Figure 5.22 and Figure 5.23 show the cumulative collision probability after five year for,
respectively, Landsat 8 and a satellite from the Iridium constellation; the parameters of
the satellites are reported in Table 5.3. The simulated fragmentation is a non-catastrophic
collision produced by a projectile of 100 g and collision velocity equal to 1 km s−1, so with
collision energy equal to 50 kJ. In both cases, the most critical fragmentations are the
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Table 5.3: Parameters of the studied active satellites.

Satellite a [km] i [deg] M [kg]

Landsat 8 702 98.2 18000
Iridium 777 86.4 14500
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Figure 5.22: Cumulative collision probability after five years for Landsat 8. The sim-
ulated fragmentations are non-catastrophic collisions with collision energy equal to
50 kJ. The marker indicates the orbital parameters of Landsat 8.
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Figure 5.23: Cumulative collision probability after five years for a satellite in the Iridium
constellation. The simulated fragmentations are non-catastrophic collisions with colli-
sion energy equal to 50 kJ. The marker indicates the orbital parameters of the studied
satellite.
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ones occurring just above the satellite initial altitude, with the highest values of collision
probability within a band of 75 km. As observed in Chapter 3, the collision probability
is maximum for those inclination iF close to sin iF = sin iT because in these conditions
the target crosses the fragment cloud at the latitudes where the fragment density is
maximum. The values of collision probability are higher for Landsat because of its
larger cross-sectional area. The analysis performed on Landsat 8 and an Iridium satellite
can be easily extended to multiple targets to estimate the effect of a fragmentation on a
set of satellites or objects in the debris population.

The output is obtained in two phases. First, all the fragmentations are simulated and the
resulting fragment density with time is stored. When the 1D approach is used9 the file
size with the density history is 125 MB, whereas for the 2D case the file is 845 MB. This
size is still manageable for modern machines but it obviously results in longer loading
time (54.81 s versus 4.35 s for the 1D case).The increase in the computational effort is
justifiable if one wants to extend the scope of the analysis. In total, one map is obtained
in 14 s for the 1D method and in 270 s for the 2D one, out of which more than 213 s are
used for the computation of the relative velocity.

5.4.3 Performance at low altitudes

The approach of the collision maps was tested also on targets at lower altitudes than the
ones of the fragmentations. In fact, whereas there is a limit on the fragmentation altitude
due to the effect of the eccentricity on the accuracy of the analytical method, there should
be no limits on the target orbit, whose evolution is obtained numerically. However, the
collision map of the Hubble Space Telescope (h = 557 km, i = 28.5◦) in Figure 5.24
shows a non-physical result as the collision probability is maximum at 900 km and it
does not have a smooth variation with altitude. The reason for this unexpected result
was investigated by checking the profile of the spatial density from fragmentations at
different altitudes.

Figure 5.25 shows that according to both the analytical propagation and the numerical
one, after 1000 days from the band formation the spatial density at 500 km is higher
for higher values of the fragmentation altitude. This means that the error that causes
the wrong results in Figure 5.24 is present in both the propagators. What is common
between the two propagators and explains the error is that the exponential model of the
atmosphere is used with constant reference values for H and ρref.

Figure 5.26 shows the predicted value of the atmospheric density with different reference
altitudes normalised with the value of density at that altitude: it is possible to observe
that the predicted density tends to have an error larger than 20% for altitudes with more
than 200 km of separation from the altitude where the parameters of the model (ρref,H)

9To obtain a map of around 150 cells, with a time step of 1.5 days
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Figure 5.24: Cumulative collision probability after five years for Hubble Space Tele-
scope. The simulated fragmentations are non-catastrophic collisions with collision
energy equal to 50 kJ.
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Figure 5.25: Evolution of the density profile for three fragmentations with different
initial altitudes. The dark line represents the result from the analytical propagation, the
light one from the numerical.
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Figure 5.26: Predicted value of the atmospheric density with different reference alti-
tudes normalised with the value of density at that altitude.

are defined. This has an impact on the propagation of the trajectories of fragments far
from the fragmentation location and this error is present both in the analytical and in the
numerical propagation. As the exponential model underestimates the value of density
at distant altitudes, in the current analysis the effect of drag is underestimated, so the
method is conservative with the current formulation. However, this error can lead to
not physical behaviour in the cloud evolution as the observation that the density value
at 500 km is higher for fragmentations originated at 1000 km than ones at 800 or 700 km.
In practice, this limits the applicability of the method to scenarios where the difference
between the fragmentation altitude and the target latitude is smaller than 200 km. In
the collision maps, the domain is larger than 200 km, but the results seem in any case
coherent if the target is inside the studied domain, so this is set as constraint for the
method applicability.

This limitation can be removed using different reference values of the atmospheric model
for different altitudes. In particular, this requires changing the numerical propagation in
such a way that the values of ρref,H are updated as the propagated object moves across
the bands where the parameters are defined. Also in this case, the values of href, ρref,H

are the ones in (Vallado, 2013). Also the analytical propagation should be changed defin-
ing ε not any more as a single scalar value that depends on the fragmentation altitude,
but as a vector defined in each point of the integration domain. An example of the re-
sults that can be achieved with this modification is shown in Figure 5.27, which presents
the density profile for a fragmentation at 800 km obtained using constant values for the
atmospheric parameters or varying them with altitude, both for the analytical and the
numerical propagation. When the parameters of the atmospheric model vary with al-
titude, as expected, the fragment density at low altitudes (h < 500 km) goes rapidly to
zero. Moreover, it is possible to observe that also with this formulation the analytical
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Figure 5.27: Density profiles for a fragmentation at 800 km using constant values for
the atmospheric parameters or varying them with altitude. The dark line indicates the
analytical propagation, the light line the numerical one.
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Figure 5.28: Cumulative collision probability after five years for Hubble Space Tele-
scope. The simulated fragmentations are non-catastrophic collisions with collision
energy equal to 50 kJ. The parameters of the atmospheric model change with altitude.
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5. collis ion probability with the formulation in multiple variables

model follows very well the density profile obtained with the numerical propagation.
With this implementation, the extraneous peak in the collision maps are removed as
shown in Figure 5.28 that presents again the analysis on the Hubble Space Telescope,
but with the modification to the atmospheric model. The new implementation is al-
ready used for the results in Chapter 6 and future work will investigate in detail the
performance of the new formulation for different values of the fragmentation altitude
and inclination.

5.4.4 Comments on the implementation

As already discussed in Section 3.3, using the analytical method allows an important
reduction of the computational time. For example, the preparation of target maps with
a fully numerical approach (both for propagation and computation of the velocity) re-
quires a computational time larger than two hours on a cluster with 12 processors. Be-
sides the saving in time (that could be irrelevant if high performance computing facilities
are used or if the code is optimised), the real benefit from using the analytical method is
that it allows many simulations to be manageable with a normal PC reducing the need of
high performance computing facilities, and easily reproducible. In fact, the computation
of the relative velocity with the numerical method can be quite intensive in terms of CPU;
moreover if one wants to save all the data relative to the propagation of the cloud in
terms of the fragment orbital parameters, the file can reach easily a size around 100 MB
for small cases (3000 fragments) and up to some GB for fragmentation with hundred
thousands of objects. This makes it more difficult to store the information and also to
load it and reuse it. All these problems are not present with the analytical method as the
information is always stored in terms of spatial density, so the size of the file depends
on the grid used to describe the domain, but not on the number of fragments. For exam-
ple, the case DMSP-F13 is stored in a file of 4 MB and it can be easily loaded to perform
different analyses. Also for this reason the analytical method may be integrated in a
global debris model without having a large impact on the computational effort of the
simulation.

Summary

The 2D formulation of the continuity equation allows the information on the fragment
distribution with eccentricity to be included in the propagation. This can be used not
only to extend the applicability of the method to lower altitudes, but also to improve the
estimation of the relative velocity between the target and the fragment cloud. In fact, it
was possible to use the knowledge of the fragment distribution in semi-major axis and
eccentricity, and the hypothesis that the fragments are uniformly distributed in Ω and
ω to obtain an analytical expression for the relative velocity between the target and the
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5.4 collis ion scenarios for the 2d approach

cloud. The validation of the 2D approach has shown that the average relative error is
lower than 1% for the cases when target and fragmentation have different orbital inclina-
tions; the average error is instead equal to 8.5% when the value of inclination is the same.
This result was explained by observing that in the latter case the analytical approach
estimates an asymptotic value for the relative velocity, which is reached with a certain
delay depending on the rate of spreading of the fragments. For this reason, the worst
cases can be found around 63◦ and 90◦ where, respectively, ω̇ and Ω̇ due to the Earth’s
oblateness are null. For these case it is suggested to numerically correct the relative
velocity by modelling its evolution as the transient for a first order system. Further work
is required to effectively connect the fragment spreading and the value of the relative
velocity, and obtain a fully analytical formulation. The 2D formulation of the continuity
equation approach was applied to study many collision scenarios as done with the 1D
version. In addition, the recent explosion of DMSP-F13 was also studied evaluating the
effect of the breakup on the collision probability in the near orbital regions. Using the 2D
formulation enables linking the collision map with a database of active satellites, which
are numerous in the altitude band 700-800 km of altitude, where the 1D method is not
applicable. Using the 2D formulation, instead, it is possible to identify which spacecraft
are the most affected by the explosion. Collision maps similar to the ones for the 1D case
were obtained also with the 2D method, but in this case, they were prepared for active
satellites instead of debris objects. This shows how the continuum approach is flexible
and can give an insight on the collision risk for many different applications. Finally,
some tests on spacecraft at low altitude (e.g. Hubble Space Telescope) were performed,
finding some non-physical results. The reason for this was identified in the choice of the
atmospheric model: not updating the coefficients in the model leads to an inaccurate
description of the decay of the cloud at low altitudes. This behaviour can be fixed by
introducing the dependence of the coefficients on the altitude. With this correction,
the applicability of the method is extended and the accuracy of the prediction of the
collision probability improved.
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6
Density-only formulation and its

applications

In Chapter 4 it was explained how the formulation of the continuity equation into mul-
tiple dimensions can be used to model the first phase of the cloud evolution, under the
dominant effect of the Earth’s oblateness. It is a natural development then to combine
the analytical description of the first phase of the cloud evolution with the one of the
effect of drag after the band formation. In this way, a purely analytical description of the
cloud evolution would be available, applicable both for short and long term analyses.
This would make possible to simulate a fragmentation cloud drastically reducing the
impact of the number of fragments on the simulation cost. In this Chapter, some ideas
on how this objective can be reached are presented. The preliminary results show a good
potential for this technique and confirm once more the convenience of the description
of debris clouds in terms of spatial density. Further development and validation are
suggested as future work.

6.1 Formulation

The purpose of this Chapter is to evaluate the feasibility of a propagation method for the
long term evolution of debris clouds where the numerical propagation of single objects is
completely removed. A way to achieve this goal is to combine the analytical model of the
effect of the Earth’s oblateness, described in Section 4.2, with the description of the effect
of atmospheric drag presented in Section 2.4 and Section 4.4. It is convenient to represent
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Figure 6.1: Building blocks for the two propagation methods.

once more the block diagrams of the two approaches to understand how to combine
them (Figure 6.1). For the first phase, the transition from a dense configuration to the
band, the model of the Earth’s oblateness requires as input the energy of the breakup
and gives as an output a distribution in a,Ω, ω; no numerical integration is performed.
In the following phase, once the band is formed, the long term propagation under the
effect of the atmospheric drag requires knowing the distribution in a, e and the division
in area-to-mass A/M bins. As a first attempt to solve the problem, the eccentricity e and
the area-to-mass ratio were included in the first phase of the propagation, together with
a, ω,Ω. In this way, the initial condition for the long term propagation could be easily
obtained by integrating n(a, e, A/M,Ω, ω) on Ω and ω. However, this attempt was not
successful as the computation becomes prohibitive because the data is represented with
a variable with five dimensions. Using 100 grid points for the orbital parameters and 10
bins for the A/M , the simulation was not feasible on a PC with 16 GB of RAM. Future
work may try to revise this approach and devise a better numerical implementation to
cope with the increase in the number of dimensions. An alternative way could be also to
test the application of the analytical propagation before the band formation as already
suggested in Chapter 2.

A different approach was studied, focussing only on the long term propagation. The
limit in the models discussed in Chapter 2 and in Section 4.4 is that the continuity equa-
tion is applied only once the band is formed, so the numerical propagation is used to
describe the transition to the band. This introduces a dependence of the method perfor-
mance on the number of fragments. To remove this dependence, alternative modelling
techniques are required. Given this basis, the problem becomes how to describe the
passage from the initial distribution of fragments in a and e at the breakup to the one
when the band is formed (Figure 6.2) without integrating their trajectories. This can
be done by applying a method similar to the one embedded in the continuity equation.
When the continuity equation is solved with the method of characteristics, the value
of the solution at a certain time is obtained by reshaping the initial condition according
to the change prescribed by the conservation of the solution along the characteristics.
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Figure 6.2: Visualisation of cloud density at the breakup and at the band formation TB .

Similarly, in this case one may think about how the (a, e)-plane should change from the
initial time of breakup to the time of band formation TB to reproduce the evolution in
Figure 6.2. The approach that is applied is similar to one developed by (Cordelli et al.,
1995), where a cloud is divided in bins and a point of each bin is obtained by applying a
semi-analytical propagator.

The change in n(a, e) from the breakup to TB is due to the effect of atmospheric drag only
as the Earth’s oblateness affects the distribution of ω and Ω, but not a and e. Therefore,
only the effect of atmospheric drag is required for reshaping of the initial condition,
whereas the model of the Earth’s oblateness could be used to estimate the duration
of the transition phase. To simplify the problem, in this work, the transformation of
the initial condition is obtained neglecting the variation of eccentricity during TB and
considering only the change in semi-major axis due to drag. Note that in this work
TB is still defined starting from the expressions by Ashenberg (1994) in Equation 2.19.
However, as anticipated, it should be possible to exploit the information available on the
phase of the cloud spreading under the effect of the Earth’s oblateness to assess directly
when the band is formed. This point is left for future work.

For each point in the a-axis where n0 is defined, the variation of a during the time span
TB is computed by applying the numerical propagation method described in Section 2.2.
Observe that the variation in a depends on the area-to-mass ratio, so the computation
should be repeated for each A/M bin. In this way, the distortion of the a-axis is obtained
and the distribution n0 is changed accordingly. In other words, the transformation of
the initial condition is obtained by defining as many objects as the discretisation points
of the semi-major axis times the number of A/M bins. Each object has initial semi-major
axis equal to one point along the a-axis, eccentricity equal to zero, and area-to-mass ratio
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Figure 6.3: Resulting semi-major axis a1 for the initial values of semi-major axis a0 for
all the A/M bins for a propagation time equal to TB .
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Figure 6.4: Distribution of the fragments in the (a, e)-plane at the band formation com-
pared with the density reconstructed with the proposed procedure.

equal to one of the A/M bins. The evolution of the semi-major axis of the so-defined
objects is studied over a time span equal to ∆t = TB and the final value of the semi-major
axis is used to reshape the initial condition. Figure 6.3 shows the resulting value of
semi-major axis a1 for the initial values of the semi-major axis a0 along the grid where
n0(a, e) is defined. The different colours refer to the different A/M bins in which the
fragment cloud is divided.

Once each value of the initial grid is mapped onto its modified value, the distribution
nB = n(a, e, TB) is obtained from the initial one n0 = n(a, e, 0) with the following
algorithm. Let aj indicate the j-th point in the original grid and ak its modified value
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Figure 6.5: Building blocks for the two versions of the density-only method.

after TB ; if ak < 0 the fragments originally at aj have re-entered and so n(a, e, TB) is
not updated; if ak > 0, n(ak, e, TB) = n(aj , e, 0). By applying this procedure, the result
in Figure 6.4 is obtained: the distribution obtained with the reshaping process appears
similar to the numerical one as the reduction of the left branch is well captured. At this
point, all the required information is available to proceed with the long term propagation
both in 1D (Figure 6.5a) and in 2D (Figure 6.5b).

In both cases, the simulation starts with the breakup model and the definition of the
initial condition in terms of the orbital parameters distribution (Parameter fitting in Fig-
ure 6.5). In this way n0 is defined and the transformed value at the band formation nB

is obtained with the reshaping process described in this Section. In the case of the 1D
propagation, nB(a, e) needs to be converted into a spatial density using Equation 2.24,
similarly to what is discussed in Section 2.3. In the case of the 2D propagation, nB(a, e) is
used directly as the initial condition of the long term analytical propagation based on the
continuity equation. As with the version of the 2D propagation discussed in Section 4.4,
the conversion into spatial density is performed a posteriori. The new formulation of the
model is indicated in the following as density-only method because, differently from the
previous cases, the problem is formulated in terms of density right after the breakup.
With this modification, the computational effort of the model becomes independent on
the number of fragments contained in the cloud.
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Figure 6.6: Fragment spatial density for a fragmentation at 800 km.

6.2 Results

The density-only method, in its 1D version (Figure 6.5a), was tested with the same refer-
ence fragmentation used in Section 2.5, which is produced by a non-catastrophic collision
with a projectile of mass equal to 100 g and relative velocity equal to 1 km s−1 and results
in 2397 fragments at the breakup.

Figure 6.6 compares the density profile obtained from the all analytical approach with
the one of the 1D method described in Chapter 2 (indicated as density for band phase) and
with the distribution obtained from the numerical propagation with a single run of the
breakup model. We can see how the behaviour of the density-only method is very similar
to the one where the density is used only in the band phase. Same results were obtained
for other values of inclinations (i.e. 30◦ and 60◦) suggesting that, as observed with the
density for band phase approach, the accuracy does not depend on the inclination. Further
analysis, such as the one presented in Chapter 2.5, is required to assess more precisely
the accuracy of the method and its dependence on inclination, altitude, and energy of
the fragmentation. This analyses will be subject of future work.
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Figure 6.7: Number of fragments produced by a non-catastrophic collision with a pro-
jectile of 100 g as a function of the impact velocity vc.

6.3 Applicability to large clouds

The debris cloud models described in Chapters 2 and 4 (density for band phase) rely on
the numerical propagation of single objects to describe the evolution during the band
formation. Even if this numerical propagation covers only a short fraction of the whole
simulated time period, it limits the size of the clouds that can be analysed with a normal
PC. The limitation is connected with the availability of RAM required to follow thousands
of fragments.

In the case of non-catastrophic collisions, the number of fragments produced by a
breakup depends on the collision velocity vc. Figure 6.7 shows the dependence on
the number of the produced fragments on the collision velocity for a non-catastrophic
collision with a projectile of 100 g. A way to test the density-only approach is to simulate
breakups with increasing collision velocity to evaluate its computational time and as-
sess whether, adopting this formulation, its dependence on the number of fragments is
removed. Figure 6.8 shows the computational time for the simulation of breakup clouds
resulting from non-catastrophic collisions with vc between 1 and 8 km/s and total frag-
ment number ranging between 2000 and 12 000. In all case, the computational time was
always around 11 s on a machine with 4 CPUs and 16 GB of RAM. There is only a weak
dependence of the computational time on the number of fragments and this is due to
the process of grouping the fragments into the A/M bins; once this phase is complete,
the problem is formulated purely in spatial density and its propagation is independent
of the number of fragments. This aspect makes the proposed density-only method very
promising for evaluating many collision and explosion scenarios with different energies.
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Figure 6.8: Computational time with the density-only method for non-catastrophic col-
lisions with projectile mass equal to 100 g and different collision velocity vc.

6.4 Example of application: environmental index

The ability of the density-only formulation to model large debris clouds with limited
computational effort (both in terms of simulation time and RAM) makes it suitable to
simulate a large number of breakup scenarios. This can be useful to rank different
breakup conditions and build an environmental index able to quantify the influence of a
specific satellite or of a piece of debris on the safety of the whole environment. This kind
of indices may become particularly relevant once the technology would enable active
debris removal missions: in that scenario, it would be essential to know which spacecraft
should be removed first to have the largest global beneficial effect. Several authors have
proposed different approaches to the problem and highlighted the relevance of having
a quantitative measure of the environmental effect of an object in orbit (Bastida Virgili
and Krag, 2013; Lang et al., 2013; Rossi et al., 2015b; Utzmann et al., 2012). Rossi et al.
(2015a), for example, simulated 46 different fragmentations, considering location and
targets representative of the distribution of intact objects in orbit. For each scenario 25
Monte Carlo runs were performed studying the number of objects present in orbit in
the 200 years following the fragmentation. Similarly, Rossi et al. (2015b) introduced a
criticality index, which depends on the background debris density, the object residual
lifetime, the mass, and its orbital inclination. Similar parameters were identified also by
Utzmann et al. (2012). A different approach was presented by Lewis (2014) where the
proposed environmental index is computed considering the spacecraft orbital region,
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the implementation of mitigation measures and the long term effect of the selected
measure.

A different point of view is adopted in this work. The consequences of the breakup of
specific spacecraft are evaluated in terms of the effect on an a set of target objects. The in-
dex presented in this Chapter, Environmental Consequences of Orbital Breakups (ECOB),
was developed in collaboration with ESA Space Debris Office. The formulation of the
index derives from the interest of ESA in evaluating the effect of fragmentations specifi-
cally on active satellites, so those will define the target set. This allows to assess how a
breakup affects the operational aspects of space debris activities, namely if an increase
in close conjunction alerts and collision avoidance manoeuvres should be expected. In
addition, using active satellites as reference targets for the environmental index means
that the consequences of a fragmentation are related to a potential loss for the spacecraft
operators. From ESA perspective, an environmental index could also be applied, prior
to launch, to support the licensing phase in the evaluation of the planned post-mission
disposal strategies. For example, a licence system connected to an environmental index
can distinguish between a CubeSat in orbit at 700 km at low inclination and a 4000 kg

satellite in a polar orbit at 800 km. As the environmental impact of a potential breakup
involving the two spacecraft is different, a different level of reliability of the post-mission
disposal may be requested.

The proposed method CiELO, in its density-only variation, allows the space of the most
relevant spacecraft parameters (i.e. altitude, orbital inclination, and mass) to be mapped
onto a value of environmental index, enabling to identify the most critical orbital configu-
rations. This approach requires two steps. First, the potential sources of fragmentations
and which kind of fragmentation to simulate should be defined. Second, the target
set should be represented in such a way that the propagation of all the active satellites’
trajectories is not required. The next Sections will explain in detail how these tasks are
performed. Observe that the structure of the index can be applied also with different
cloud propagation methods than CiELO, given that they are able to provide the cloud
spatial density with time. As an example, it could be applied in GEO, where different
analytical propagation methods are available, to study fragmentations within the GEO

protected region and in the GEO graveyard orbit.

6.4.1 Sources of fragmentation

To keep the severity index as general as possible, a set of fictitious sources is defined to
map the space of parameters for any possible space object; in other words, a large set of
virtual fragmentations is created. In particular, a grid in semi-major axis, inclination,
and spacecraft mass was used. The extremes of the grid in semi-major axis are limited
by the applicability of the method: the highest limit is set equal to 1000 km as for higher
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altitudes it will not be justifiable to model the atmospheric drag and not the solar ra-
diation pressure. The lowest limit depends on the analytical formulation used for the
propagation: as the 2D formulation of the method is used, the lower limit is set equal
to 700 km. The choice of using the 2D formulation is due to the fact that can accurately
model the cloud evolution for a longer period than the 1D approach1. For the source
spacecraft mass, a grid between 100 kg and 10 000 kg was defined. Observe that the
only way to consider the effect of the fragmenting mass within the NASA breakup model
requires simulating catastrophic collisions and not explosions or non-catastrophic colli-
sions. For all the simulated collisions the breakup of a spacecraft (rather than a rocket
body) is assumed, even if in the size range of interest the impact of this hypothesis is
minimal2. The collision velocity is set equal to 10 km s−1, which is an average value for
LEO and which was used also by Rossi et al. (2015a). The mass of the colliding projectile
is neglected. Using the NASA breakup model, the simulation of a catastrophic collision
involving a mass equal to 1000 kg results in the generation of almost seven million frag-
ments larger than 1mm. Even if the density-only formulation is only weakly dependent
on the number of fragments, this large value results in a long computational time only
for the initialisation of the cloud. For this reason, the lowest cut-off size of the fragments
was set to 1 cm for the results discussed in this section.

6.4.2 Target set

The effect of the virtual fragmentations is assessed on a set of spacecraft targets. The
selection of the possible targets follows an approach similar to the one proposed by Rossi
et al. (2015a) to define representative fragmentations. The cross-sectional area Ac was
identified as the most relevant parameter for a target. For this reason, the distribution
of cross-sectional area across the LEO region was studied; also in this case, the semi
major axis was limited to 700 km ≤ a ≤ 1000 km as in the definition of the potential
fragmentation sources. DISCOS3 database is used to extract the data of satellites orbiting
in this region. As in Section 5.4.1, only satellites launched in the last ten years are
included in the list, assuming that this criterion filters out inactive spacecraft. The
studied LEO region is divided into cells in semi-major axis and inclination, applying
the same grid used for the discretisation of possible fragmentation sources. For each
cell, the cumulative cross-sectional area

∑
Ac is computed. The result of this analysis

is shown in Figure 6.9, where the cells with the highest
∑

Ac are the most vulnerable in
case of fragmentations.

Once the distribution of Ac is known, the target set can be defined by selecting for each
cell in Figure 6.9 a representative spacecraft for which the collision probability is computed.

1In addition to using the 2D formulation of the method, all the results relative to the environmental
index are obtained updating the parameters of the atmospheric model, as explained in Section 5.4.3.

2The kind of object involved in the fragmentation affects the definition of the parameters of fragments
larger than 8 cm only.

3Stijn Lemmens, Space Debris Analyst, ESA, personal communication, 17/06/2015
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Figure 6.9: Distribution of cross-sectional area in the cells in semi-major axis and incli-
nation. Data from DISCOS.
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(a) Cell 1 (90◦, 800 km)
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(b) Cell 2 (90◦, 700 km)

Figure 6.10: Evolution with time of the semi-major axis of the objects in a cell (in grey).
The coloured line refer to the representative object (Ac closest to average value).

As it will be shown later, the environmental index is obtained combining the collision
probability for each target, weighting their contribution depending on the share of Ac

of the cell they represent. A fixed number of target can be used or the code can select
the appropriate number of targets to represent a given percentage of the total Ac. In the
results shown in Section 6.4.7 the second approach is used, setting the percentage equal
to 90% of the total Ac.

Two main options for the selection of targets exist. The first one identifies a real object
among the ones in the cell that is going to be used to represent the cell. The identification
can be done, at the moment, choosing among the object with the maximum/minimum
Ac within the cell or the one with Ac closest to the average value in the cell. The second
option defines a synthetic object with Ac and mass equal to the average values in the cell,
semi-major axis and inclination equal to the centre of the cell.
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(b) Cell 2 (90◦, 700 km)

Figure 6.11: Evolution with time of the semi-major axis of the objects in a cell (in grey).
The coloured line refer to the representative object (synthetic object).

Figure 6.10 and Figure 6.11 show the evolution of the semi-major axis of the represen-
tative object (coloured line) and of all the objects in the cell (in grey) for the two cells
with the highest cumulative cross-sectional area. In Figure 6.10, the representative ob-
ject is selected as the one with Ac closest to average value in the cell, whereas in the
second case, Figure 6.11, a synthetic target is defined. As expected, a synthetic object
has an evolution more representative of the whole cell. Moreover, choosing a synthetic
object offers a more robust representation of the satellite population with time. In fact,
the input population changes with time because of the launch of new satellites. This
would require to re-run the algorithm for the selection of representative targets after
each launch. However, one can assume that the development of space activities in LEO

will be similar also in the future, with comparable missions to the current ones in each
orbital regime. One could then expect a limited variation of the average cross-sectional
area and mass. A tolerance on their value may be introduced to decide when the se-
lection of the targets needs to be repeated. The other two options for the choice of the
representative object, namely maximum and minimum Ac within a cell, could be used
only to define the worst/best case, but one has to consider that Ac has a direct impact not
only on the dynamics, through the effect of atmospheric drag, but also on the collision
probability.

Figure 6.10 and Figure 6.11 were also used to assess if the propagation of the target trajec-
tory is really required or if the orbit can be considered unperturbed. The object from cell
2 (90◦, 700 km) is the one that experiences the maximum variation of the semi-major axis,
equal to 40-50 km, depending on the object definition; for the other cells the variation is
lower than 15 km. Given these numbers and the fact that the propagation of the targets’
trajectories is not expensive in terms of computational time, it was decided to keep the
effect of atmospheric drag and Earth’s oblateness in the description of the targets’ trajec-
tories. An alternative approach could be not to propagate the targets assuming that if
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they are active satellites, their altitude may be controlled during mission lifetime. The
evaluation of this option is left for future work.

6.4.3 Index definition

The purpose of the current analysis is to rank the sources of fragmentations evaluating
their impact on a set of targets (i.e. the representative objects). As only the consequences
of a breakup are evaluated, proposed environmental index ECOB is defined as a simple
sum of the collision probability on each target multiplied by the weighting factor, if used.
When synthetic objects are used, the index is simply

ecob =

Ntar∑
j=1

wjpc,j (6.1)

where
wj =

(Ac)cell,j
(Ac)tot

(6.2)

is the ratio between the sum of Ac in the j−th cell and the total Ac on the whole target
list; pc,j is the cumulative collision probability of the representative object of the j−th
cell over the considered simulated time; Ntar is the total number of representative objects.
When the representative object is chosen among one of the real satellites, Equation 6.1
may be modified in

ecob =

Ntar∑
j=1

kjwjpc,j (6.3)

with

kj =
¯(Ac)cell,j

(Ac)SC,j
, (6.4)

to take into account the used value of Ac is different from the average value in the cell.

Observe that the wj are constant for the whole simulation, meaning that it is assumed
that for the whole simulated time span the distribution of cross-sectional area will be
constant. As mentioned before, this is equivalent to assume that, for the studied period,
the space activities in the LEO region will be similar to the current ones.

6.4.4 Preliminary results

Some preliminary runs were performed using six reference targets and a coarse grid
with a step equal to 50 km for the semi-major axis and 30 degrees in inclination. The
purpose of these runs is to analyse the general structure of the index.
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6.4.5 Effect of selection criteria

In Section 6.4.2 different options for the selection of the targets were discussed. Fig-
ure 6.12 represents the value of ECOB computed on the coarse grid. It shows the com-
parison between the use of real spacecraft or synthetic objects to define the target set.
When real spacecraft are used, the satellite with Ac closest to the cell average is selected.
The targets are superimposed to Figure 6.12 and indicated with the markers. The colour
indicates the value of the index for a fragmenting spacecraft with values of semi-major
axis and inclination equal to the ones of the centre of the cell. The mass of the virtual
fragmenting spacecraft is equal to 1000 kg. One can observe how the distribution of the
index is qualitatively similar because the value of Ac used in the two cases are close. This
means that both the trajectory evolution and the computation of the collision probability
will give similar results. This result can be interpreted also as a proof of the method
robustness as the variation in semi-major axis and inclination within a single cell appear
to have a limited impact on the final result.

Effect of propagation time As introduced in Section 6.4, ECOB is function of the propa-
gation time as it is obtained as the sum of the cumulative (over time) collision probability
of the reference targets. The variation of the index with time was studied by producing
a heat map similar to the ones in Figure 6.12 after different propagation periods. Fig-
ure 6.13 shows the results obtained after 5, 15, and 25 years. In this case, no weighting
factor is applied to compose the index, so that the dependence on the time is more ev-
ident. In this way, one can observe that with longer time of propagation the relative
importance of fragmentations at higher altitudes increases. This is expected because if
the time of propagation is longer, the fragments at lower altitudes may have the time to
decay from the region where the targets are.

Effect of the mass As explained in Section 6.4, ECOB depends on the mass of the frag-
mentation that determines the number of fragments in the debris cloud and its spatial
density. One simulation, with propagation time equal to 25 years, was run to evaluate
the variation of the index with semi-major axis and breakup mass of the fragmenting
object. This setup was chosen to allow the comparison with the Environmental Critical-
ity (EC) by Kebschull et al. (2014b) where the variation of the index with inclination is
not considered. For the mass a log-spaced grid was used. The results of the simulation
are shown in Figure 6.14.

Similarly to Figures 6.12b and 6.13c, also in Figure 6.14 the dependence on the semi-major
axis is dominated by the distribution of the targets. The dependence on the mass is also
easy to explain as when a spacecraft with larger mass fragments, a larger number of
objects is produced and a larger collision probability is registered. For comparison, the
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Figure 6.12: Heat map for the criticality index for two different sets of targets. Frag-
mentation mass equal to 1000 kg. The markers indicate the reference targets.
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Figure 6.13: Heat map for the criticality index at three different time instants. Fragmen-
tation mass equal to 1000 kg. The markers indicate the reference targets.
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Figure 6.14: Heat map for ECOB as a function of the semi-major axis and the fragmenting
mass.
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Figure 6.15: Heat map for EC as a function of the semi-major axis and the fragmenting
mass. Figure by Jan Siminski.
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results obtained with the EC defined by Kebschull et al. (2014b) are shown in Figure 6.154.
It is important to highlight that EC is based on very different principles from the ones
used in ECOB, so the comparison can be only qualitative. In fact, the EC measures the
change in the collision probability for the whole population (spacecraft, rocket bodies
and debris) due to the fragmentation of a specific object, whereas ECOB considers only
the collision probability for a selected set of objects representing the active satellites. In
addition, in EC, several different fragmentation epochs are considered for a breakup,
whereas in ECOB the effect of time is not present because the background debris popu-
lation is not considered. Finally, EC takes into account the feedback effect, which is when
a fragmentation triggers other new breakups, as the debris environment evolution is
studied with the model SANE (Kebschull et al., 2014a), whereas ECOB describes the in-
teraction of a single fragment cloud with the selected targets. Besides these differences,
Figure 6.15 shows a similar dependence on the mass and on the semi-major axis. If the
feedback effect were dominant in this time scale, then Figure 6.15 would show a stronger
dependence on the mass and a dependence on the semi-major axis driven by the altitude
and not by the target distribution. This suggests that the feedback effect is not particularly
relevant for simulation of 25 years.

A closer look on the results in Figure 6.14 reveals that the dependence of the index ECOB

on the mass M is predictable. Figure 6.16 shows the dependence of the index on the
mass for different altitudes and one can observe how the curve is a straight line in the
log-log representation. In particular, it can be found that

ecob(M) =

(
M

Mref

)0.75

· ecob(Mref), (6.5)

where the exponent 0.75 is a direct results of the NASA breakup model. In fact, according
to the model (Johnson and Krisko, 2001), the number of produced fragments larger than
a given characteristic length is equal to

Nf (Lc) = 0.1(M)0.75L−1.71
c

with M equal to the sum of the target mass and the projectile mass in the case of catas-
trophic collisions.

6.4.6 Index computation

The observation in Equation 6.5 is important because it allows the required number of
simulations to be reduced, simplifying the computation of the index for a generic object.
In fact, the index can be computed through simulations using a single reference value
for the mass (i.e. 10 000 kg) and a grid in semi-major axis and inclination.

4Jan Siminski, Graduate Trainee, ESA, personal communication, 19/06/2015
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Figure 6.16: Index dependence on the mass for different altitudes.

Post-processing The value of the index on the plane of semi-major axis and inclination,
with a fixed value of mass, can be stored and scaled to the value of the mass of the
analysed fragmenting object. Then, finding the value of the index at the semi-major axis
and inclination of the analysed object becomes a problem of fitting the surface defined
by the value of ECOB in the grid of semi-major axis and inclination. The advantage of this
approach is that the computational effort is required only to generate the surface (which
as described in Section 6.4 is assumed to be slowly-changing if the development of space
activities does not change abruptly). In this way, the reference surface is computed and
stored, and severity index for all the objects in a database, such as DISCOS, can be quickly
computed in post-processing, with a fitting procedure. Given the pairs {(x∗

i , z
∗
i )}i, where

x∗
i is a point of the grid in semi-major axis and inclination and z∗i is the corresponding

value of ECOB, the goal is to use these values to define a surfaceZ = {(xi, zi)}i defined on
the whole domain. Three options for the fitting were identified and tested with matlab.

• interpolation (Figure 6.17), which finds the value zi at each point xi of the do-
main using the values z∗i at the nearest grid points; the number of the considered
near grid points depends on the interpolation scheme (e.g. bilinear, bicubic, bihar-
monic) and in any case the value of the surface at the grid points is equal to the
initial values, so that Z(x∗i ) = z∗i ;

• local regression smoothing methods (Figure 6.18), which uses least squares re-
gression techniques in combination with a weighting function that gives larger
importance to closer data points when computing the value zi of a generic point
xi in the domain5; in this case is not assured that Z(x∗i ) = z∗i ;

• polynomial curve (Figure 6.19), which fits the data with a polynomial function in
two dimensions, up to degree five.

5A description of the method can be found at http://uk.mathworks.com/help/curvefit/

smoothing-data.htmlhttp://uk.mathworks.com/help/curvefit/smoothing-data.html, last access 5 Jan-
uary 2016.
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Table 6.1: Methods for surface fit.

Method Adj. R2 Storable Parametric

Interpolation (1) (Yes) (Yes)
Local regression smoothing 0.9966 (Yes) No

Polynomial 0.9687 Yes Yes

In the three figures, the black dots represent the computed values of the index whereas
the coloured surface is obtained by the different fitting methods. In all cases, repre-
sentative targets are used, for a propagation time of 25 years and a fixed value of the
fragmenting mass equal to 1000 kg.

The main features of the comparison are summarised in Table 6.1. In the case of in-
terpolation, matlab offers different options for the curve to use (e.g. linear, cubic, or
bi-harmonic spline): in any case the adjusted R2 is obviously equal to one as Z(x∗i ) = z∗i ,
so this cannot be used as a measure of the quality of the fit. Figure 6.17 shows in any case
how, even with a coarse grid, the interpolation provides a good representation of the
surface. The interpolation does not give a strictly parametric expression of the surface
Z, but analytical methods can be easily implemented to describe the surface. When
matlab is used, the output of the fit can be stored in a special type of variable and
reused to compute the index for different objects. When matlab is not used, it may be
necessary to recompute the local interpolation for each object, but the operation is not
expected to be computationally expensive.

When regression methods are applied, the whole shape of the surface is described. In
this case matlab offers two options for the regression model: a linear or a quadratic
one. The value of the adjusted R2 is good, but this method is not parametric, has a more
complex formulation and does not seem to offer any additional advantage compared to
the interpolation. For this reason, the regression methods were discarded.

The third method, the polynomial curve, combines the positive features of the two
previous approaches. Firstly, it describes the whole curve, so the coefficients needs
to be computed only once and then the equation can be applied for the computation
of the index for any object. Secondly, once the equation is obtained, it is completely
independent from any programming language. However, the performance in terms of
adjustedR2 were not considered sufficient. Figure 6.19 shows the result for a polynomial
curve of fifth order both in x and y: the polynomial representation appears to smooth the
curve, especially at the peak. For these reasons, the local interpolation was preferred.

Tool structure The observations in the previous sections help defining the structure of
the tool to compute the environmental index. This can be divided into two parts: first,
the computation of index using a set of targets and a reference mass for the fragmentation
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Figure 6.17: Index interpolation with biharmonic spline.

700
800

900
1000

0
50

100
150

2

3

×10−3

a−RE [km]i [deg]

In
de

x

Figure 6.18: Index fit through a local regression smoothing method.
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Figure 6.19: Index fit to a polynomial curve.

179



6. density-only formulation

on a predefined grid in semi-major axis and inclination; second, the computation of the
index for different fragmenting spacecraft and rocket bodies.

The first part of the tool uses the method based on the continuity equation and it is
highly computationally expensive, so that the super-computer facilities of the University
of Southampton, iridis, are required. Once this phase is concluded, the output consists
in the matrix plotted in Figure 6.12, which can be easily saved and exported in different
formats (e.g. ASCII file), depending on the user platform. The matrix represents the
input of the code that actually computes the environmental index for the objects of
interest. The code performs the fitting of the surface using a local interpolation method
and rescaling the index depending on the mass of the studied objects. The code can
receive as an input a file containing the list of the objects to analyse. For example, the
results in Section 6.4.7 are obtained using as a database the data extracted from DISCOS

(Flohrer et al., 2013) considering objects in orbits between 700 and 1000 km. For each
object its kind (i.e. rocket body, spacecraft, other) and its year of launch are specified, so
that the user can choose to study only a subset of the list. A maximum number of the
objects to study can also be specified.

Computational time The tests with the coarse grid were used also to assess the compu-
tational time required by the simulations and identify the most effective parallelisation
strategy to run cases with fine grids. Figure 6.20 shows the computational time for the
cases as in Figures 6.12-6.13. The computational time refers to a machine with 4 CPUs;
the whole code is written in matlab and exploits its built-in parallel statements (e.g.
parfor). The histogram in Figure 6.20 shows the computational time for the three main
functions in the code

• propTarget propagates the target trajectories for the desired time frame consider-
ing drag and J2;

• buildLayer simulates a catastrophic collision for a given breakup mass in each
cell and compute the cloud spatial density, including fragments down to 1 cm, for
the whole desired time window

• addCollProb computes the collision probability for each target and the value of
the index on the studied grid applying a weighting factor, if specified.

Applying the same settings to compute a case with a fine grid as the one used in Sec-
tion 6.4.7 would require more than 22 hours of computation with 4 CPUs (that is 3.6 days
in CPU time) assuming that the simulation is still manageable in terms of RAM6.

For this reason, it was decided to use ir idis, the super-computer facilities at the Uni-
versity of Southampton, to run the simulations with fine grids. The computation of one
layer was divided into columns (simulations with the same semi-major axis), which are
launched as separate jobs, each one with 12 processors allocated (the maximum). In this

6This was not verified.
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Figure 6.20: Computational time on a PC with 4 CPUs for a layer with coarse grid.

way one exploits not only the parallel features in matlab, but also the possibility of
running multiple jobs at the same time. The submission of the jobs is fully automatised
with a simple bash script. The whole setting allows obtaining a full layer in a period of
time between one and three hours (depending on the availability of processors on the
server). The real computational time (summing the running time of each job) would be
around 19 hours (equal to almost six days of CPU time).

6.4.7 Results

Once the structure of the index was set, some simulations with a fine grid in semi-major
axis and inclination were run. In this case, the grid is spaced of 10 km in semi-major
axis and 10 degrees in inclination. The same grid is used both for the generation of the
fragmentations and for the selection of the representative targets. Using, as before, the
threshold of 90% for the representedAc, 15 targets are identified, as shown in Figure 6.21.
These targets are derived from the data from DISCOS considering only spacecraft (no
rocket bodies) in orbit between 700 and 1000 km, and launched in the last ten years. A
reference breakup mass equal to 10 000 kg was used.

As already presented in Figure 6.9, the cross-sectional area is not uniformly distributed
across the whole LEO region: active satellites are mostly concentrated in polar orbits
and this explains the distribution of the targets in Figure 6.21. The concentration of
targets at latitudes around 80 degrees results in a much higher index in these regions.
For fragmentations at these latitude, the targets can spend a large part of their orbits
in the area (the extremes of the band) where the spatial density is maximum. The map
appears quite symmetrical with respect to i = 90 degrees, so the possibility of reducing
the grid in inclination to [0, 90◦] may be investigated in the future. For what concerns
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Figure 6.21: Resulting index for catastrophic collisions with breakup mass equal to
10 000 kg. Collision probability measured on the 15 targets indicated by a marker. Prop-
agation time equal to 25 years.

the semi-major axis, a high density of targets around 800-850 km makes this region the
one with the highest environmental index.

The map in Figure 6.21 was combined with a database generated from DISCOS that con-
tains all objects in orbits between 700 and 1000 km7 to evaluate the environmental index
of objects already in orbit. Note that in this case, differently from the list used to define
the target set, there is no filter on the launch date, and both rocket bodies (RB) and pay-
loads (PL) are present. In this way, the index can be used to assess the environmental
impact of both failed/not planned disposal strategies for payloads and of not sufficient
passivation measures for rocket bodies8.

As in Figure 6.21, Figure 6.22 represents the value of ECOB computed for a reference mass
equal to 10 000 kg, and propagation time equal to 25 years, but in this case a contour plot
is used to represent the surface obtained with the interpolation. The markers indicate
the ten objects with the highest environmental index among the ones in the database.
In particular, the location of the marker indicates the object orbital parameters and the
size of the markers is proportional to the object mass. In this case, the markers have all
similar size because all objects belong to the same family as shown in Table 6.2. The
objects in Table 6.2 are sorted by the value of the environmental index ECOB, whereas
the ID in the first column is related to the object mass, with ID = 1 for the most massive
object in the database. All objects in Table 6.2 belong to the same family, SL-16 R/B: they
combine high mass and orbits within the most critical regions.

7Stijn Lemmens, Space Debris Analyst, ESA, personal communication, 25/06/2015
8The failure of a rocket body due to insufficient passivation measures may be modelled more accurately

by an explosion than by a collision. As discussed in Chapter 2, the two classes of fragmentation produce
fragments with a different distribution in size and in energy. For this reason, future work may investigate
the difference in ECOB if explosions are modelled instead of catastrophic collisions.
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Figure 6.22: Contour plot of the environmental index for a breakup mass equal to
10 000 kg. The markers indicate the ten objects with the highest environmental index,
from DISCOS data. The size of the marker is proportional to the mass of the object.
Propagation time equal to 25 years.

Table 6.2: Top ten objects with the largest environmental index ECOB among DISCOS
data considering all objects in orbits between 700 and 1000 km. h̄ = a−RE .

ID COSPAR Name Type h̄ [km] i [deg] Mass [kg] ECOB

2 2004-021B SL-16 R/B RB 845 70.9997 9000 0.032896
3 2007-029B SL-16 R/B RB 845 70.9753 9000 0.032837
1 2000-006B SL-16 R/B RB 841 71.0029 9000 0.032679
7 1990-046B SL-16 R/B RB 844 70.9989 8226 0.030711
5 1992-093B SL-16 R/B RB 842 71.0226 8226 0.030682
10 1993-016B SL-16 R/B RB 843 71.0068 8226 0.030667
9 1988-102B SL-16 R/B RB 840 71.0004 8226 0.030476
4 1985-097B SL-16 R/B RB 838 71.0039 8226 0.030420
6 1987-041B SL-16 R/B RB 835 71.0084 8226 0.030223
8 1988-039B SL-16 R/B RB 828 71.0160 8226 0.029394

183



6. density-only formulation

The same analysis was performed also considering only spacecraft launched at least ten
years ago. The results are shown in Table 6.3 and Figure 6.23. Also in this case, most
objects belong to the same family (Cosmos satellites) with the exception of Envisat. It
presents a much larger environmental index due to its large mass.

6.4.8 Comparison with other formulations

The proposed index ECOB was compared to the other environmental index formulations
developed in the framework of the ESA study Fragmentation Consequence Analysis for LEO

and GEO Orbits.

Comparison with EC and FOM As already mentioned, EC is the index developed by
Kebschull et al. (2014b). EC is based on the computation of the change in the collision
probability for the whole debris population due to the fragmentation of a selected object.
A catastrophic collision is simulated at different time instants within the considered
time window and its effect on the global debris population is obtained by applying an
analytical model of the debris evolution, SANE. The proposed index of criticality takes
into account both the consequences of the fragmentation cimpact and its probability of
happening crisk

ec = crisk · cimpact =

tf∑
t=t0

[
(crisk)t · (cimpact)t

]
, (6.6)

where t0 and tf are the extremes of the considered time interval. The probability of a
fragmentation happening is computed as

(crisk)t = ΦAc (t− t0), (6.7)

with Φ flux of the background debris population on the object’s orbit. The value of
Φ is obtained with SANE as the product of the debris density at the object’s orbit and
the relative velocity between the objects and the debris population. The effect of the
fragmentation is computed as

(cimpact)t =

tend∑
t=tfrag

(∆p)∆τ =

tend∑
t=tfrag

(Φfrag − Φno frag)Ac (t− tfrag), (6.8)

where Φfrag and Φno frag are respectively the flux in the scenario with the studied frag-
mentation and the flux without the fragmentation and ∆τ = tend − tfrag.

Radtke et al. (2014) compares EC with an alternative index developed by airbus (Utz-
mann et al., 2012). The index by airbus, called Figure Of Merit (FOM), is computed
as

fom = ΦAcM
0.75∆torb (6.9)
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Figure 6.23: Contour plot of the environmental index for a breakup mass equal to
10 000 kg. The markers indicate the ten objects with the highest environmental index,
considering only spacecraft launched more than ten years ago. The size of the marker
is proportional to the mass of the object. Propagation time equal to 25 years.

Table 6.3: Top ten objects with the largest environmental index ECOB among DISCOS data
considering only spacecraft launched more than ten years ago and in orbits between
700 and 1000 km. h̄ = a−RE .

ID COSPAR Name Type h̄ [km] i [deg] Mass [kg] ECOB

20 2002-009A Envisat PL 766 98.3338 8111 0.028247
32 2002-056A Cosmos 1656 PL 801 98.2865 3680 0.018946
39 1990-046A Cosmos 2082 PL 845 71.0418 3221 0.015260
36 1984-106A Cosmos 1603 PL 846 71.0240 3221 0.015245
34 1985-097A Cosmos 1697 PL 848 70.9634 3221 0.015166
40 1988-039A Cosmos 1833 PL 842 71.0020 3221 0.015163
38 1987-041A Cosmos 1844 PL 846 70.9001 3221 0.015133
37 1987-027A Cosmos 1943 PL 850 70.9178 3221 0.015092
35 1985-042A Terra PL 824 71.1123 3221 0.014349
25 1999-068A Adeos 2 PL 703 98.2107 5190 0.013461
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Figure 6.24: Correlation between the proposed index ECOB and FOM.

where Φ, in this case with units [m−2 yr−1], is the debris flux in the object’s orbit, Ac and
M are respectively the cross-sectional area and the mass of the object, ∆torb [ yr] is the
remaining orbital lifetime.

The index ECOB proposed in this work was computed for the top 20 objects with the
highest criticality according to EC (Radtke et al., 2014): the list of objects is reported in
Table 6.4 and for each object the criticality estimated by the three methods is shown. Note
that it is more interesting to study the ranking obtained with the different approaches
more than the numerical value of the indices for the studied cases. For this reason, the
results were analysed studying the correlation among the methods. Firstly, Figure 6.24
shows the correlation between the proposed index ECOB and FOM. The results show a
good coherence between the two methods except for the case of Envisat and MetOp-A.
For Envisat, the large difference may be explained by the fact that FOM takes into account
the exposure of the object to the background population (ΦAc). This term is particularly
relevant for Envisat as its orbit is within the most affected region by the Iridium-Cosmos
fragmentation. On the other hand, the value for MetOp-A may be explained by the fact
that, as it is an operational spacecraft, in FOM its orbital lifetime is computed as

∆torb = ∆tact + 25

where ∆tact is the remaining mission duration. In this way, its orbital lifetime results
much shorter than Envisat, f MetOp-A is on a orbit with higher altitude. The distinction
between active and not-active satellites is not trivial; moreover, one can be interested in
evaluating the environmental impact of a spacecraft without considering post-disposal
manoeuvres exactly to assess how necessary those manoeuvres are. For this reason,
active and inactive objects are treated in the same way in the computation of ECOB.
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6. density-only formulation
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Figure 6.25: Correlation between the proposed index ECOB and EC.

Figure 6.25 shows the analysis on the correlation between EC and the proposed index
ECOB. Also in this case it is important to remark that the two indices rely on very different
models. In both cases it is true that not only the mass plays an important role in the value
of the index, but also the orbital region. However, for ECOB this refers to the interaction
with the reference targets, whereas for EC also the effect of the background population
is considered. Observing the results in Figure 6.25 there is an evident difference in the
evaluation of the objects with ECOB between 0.03 and 0.04. These objects are all SL-16
R/B with similar mass and similar orbits. For this reason, their ECOB (and also their
FOM) is similar. However, the ranking with EC is very different, with four objects with
the highest criticality and the other ones with the lowest criticality among all the 20
tested objects. This result is explained by the lack of interpolation between cells in the
evaluation of the background population within SANE (Radtke et al., 2014). A small
difference is present also in the evaluation of Cosmos 2360: with ECOB this object is
less critical than objects with smaller mass (i.e. Argos and Resurs O1-N4) because its
inclination is such that it is not in the most critical area. On the other hand, EC does not
consider the dependence on the inclination, so the object is ranked 7th versus 13th with
ECOB.

It can be concluded that ECOB gives consistent results as a small change in the orbit
results in a small change in ECOB. This does not happen with EC, but the behaviour can
be easily fixed by implementing the interpolation of the background population. The
dependence on the inclination, not present in FOM and in SANE, appears relevant in ECOB.
On the other hand, differently from ECOB, FOM allows for an immediate computation,
whereas EC for a very long-term analysis of fragmentations (e.g. more than 100 years).

Comparison with CONCEPT The tool developed by the University of Southampton,
independently from this work, CONCEPT, is based on the capabilities of the evolutionary
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Figure 6.26: Correlation between the proposed index ECOB and the criticality index
computed in DAMAGE.

model, DAMAGE, and a two-stage process to evaluate the criticality of a given object.
Firstly, the evolution of the background population is simulated with DAMAGE and its
state at different time steps is saved and stored. Secondly, the fragmentation of the
object is superimposed to the scenario, by propagating all fragments produced by the
breakup and larger than 10 cm. At each time step CONCEPT evaluates the probability of
a collision for the fragments, so that consequent events can be modelled. The criticality
index Cdam is based on the difference in the total number of objects between the case
with fragmentation and the reference case with no breakup. A Monte Carlo approach
is adopted to give statistical meaning to the results. An alternative criticality index Pcon

is defined; it indicates the probability that a run with the fragmentation has a larger
number of objects than the reference scenario (Lewis, 2015).

Table 6.5 presents a subset of the objects analysed by Lewis (2015): only objects in LEO in
orbits between 700 and 1000 km were analysed. Table 6.5 shows for each object its main
features and the criticality as computed in DAMAGE, CONCEPT, and with the proposed
index ECOB.

Analysing the results more in detail, Figure 6.26 shows the correlation between the
criticality index computed by DAMAGE and ECOB. The two methods appear to give
different results, especially for the three objects (ID 4, 7, 12) highlighted in the figure.
These three objects have relative high altitude that results in a long orbital lifetime of
their fragments. The simulation time frame is equal to 200 years versus only 25 years
for ECOB, so this may explain the difference in the results as 25 years may not be enough
to observe the large effect of the altitude. However, this does not explain why the index
C for ID 1 and ID 8 is not as high as for ID 4.
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Figure 6.27: Correlation between the proposed index ECOB and the criticality index
computed in CONCEPT.

Figure 6.27 shows the comparison with the criticality index computed in CONCEPT. Also
in this case there is not a strong correlation between the indices. The large difference in
the evaluation of the object with ID 12 is due to the fact that this object generates a large
feedback effect when CONCEPT is used.9 This object has a large mass, so it produces a large
cloud with fragments with long orbital lifetime due to the high initial altitude. For this
reason, the fragments can collide with other objects and generate new fragmentations.
This behaviour was partially present also in the simulation with DAMAGE and it is the
reason why this object has a such a large criticality index according to the analysis by
Lewis (2015). In the proposed index ECOB the feedback effect cannot be modelled, so this
can explain the difference in the results.

Comparison with CSI Rossi et al. (2015b) define a criticality index that takes into
account four key-elements: environmental dependence, lifetime dependence, mass, and
inclination. All these factors are combined in one index, Ξ, that is called the Criticality
of Spacecraft Index. The expression of Ξ is

Ξ =
M

M0

D(h)

D0

life(h)
life(h1000)

1 + kΓ(i)

1 + k
,

where

• M
M0

factors in the mass of the analysed spacecraft M , divided by a reference mass
M0 = 10 000 kg

• D(h)
D0

considers the effect of the environment through D(h), which is the spatial
density of objects at the orbital altitude h, normalised by D0, the spatial density of
objects at 770 km

9Hugh G. Lewis, University of Southampton, personal communication, 09/07/2015.
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Figure 6.28: Correlation between the proposed index ECOB and Ξ as defined by Rossi
et al. (2015b).
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Figure 6.29: Analysis of the components of Ξ for the objects in Table 6.6.

• life(h)
life(h1000)

compares the expected orbital lifetime of the object given its orbital alti-
tude h to the orbital lifetime of an object with h1000 = 1000 km

• 1+kΓ(i)
1+k , with k = 0.6 and Γ(i) = (1− cos i)/2, considers the effect of inclination.

The objects evaluated by Rossi et al. (2015b) and their value of Ξ are listed in Table 6.6,
where also the value of ECOB is reported. Figure 6.28 shows clearly that the two indices
predict very different criticality for the objects in Table 6.6. As in the case of CONCEPT,
the same kind of object (a SL-16 R/B at high altitude) presents a much higher criticality
index than the others.
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Figure 6.30: Contour plot of the environmental index ECOB for a breakup mass equal to
10 000 kg and objects from Table 6.6. The size of the marker is proportional to the mass
of the object.

The simple expression ofΞ allows to analyse in detail the reason of this result. Figure 6.29
compares the four components of Ξ for all the tested objects. The spacecraft with ID1
presents the largest mass, the longest lifetime, and the most critical inclination among
all 15 objects. When ECOB is computed the mass and the inclination contribute to a large
value of the criticality index, but the altitude actually reduces the criticality of the object.
In fact, its orbit appears to be far from the ones with the largest effect on the selected
targets (Figure 6.30). The opposite happens for the objects with ID 10, 11, 13, which have
a large ECOB because they are in an orbital region with a large influence on the reference
targets, but a small Ξ because of their orbital lifetime. The same observation explains the
negative correlation in the cluster of objects10 in the bottom left of Figure 6.28: for these
objects, ECOB increases when their altitude decreases because their distance from the
targets’ orbits decreases, whereas Ξ increases if the altitude increases. This observation
reflects the fact that two indices are measuring the environmental impact on two distinct
set of objects: ECOB only active satellites in a medium term timespan, whereas Ξ on the
whole LEO region with an indefinite timespan. Both descriptions are possible, but it
should be clarified which is more relevant to rank the criticality of space objects.

Summary

The extension of the continuity equation to multiple dimensions made it possible to
describe also the first phase of the cloud evolution in an analytical way. This could

10These objects have orbital parameters similar to Cosmos satellites launched in 1976, 1986, 1988; however,
the mass in Table 6.6 does not match the data in DISCOS database, so it was not possible to identify the
objects.
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could be used to build a fully analytical method, totally independent of the number of
fragments. A first attempt to include all the parameters of the problem (a, e,Ω, ω) in
a single propagation did not give the expected results because of RAM issues. There-
fore, an alternative approach was designed based on mapping the initial distribution in
(a, e) of the fragments into the distribution at the band formation. The method shows
very similar accuracy to the previous formulation of the continuity equation method in
Chapters 2 and 4, so it seems valuable to perform an extensive validation also for this
formulation. Moreover, it was shown that applying the density-only method it is possible
to simulate also clouds with a large number of fragments with no RAM issues and with
almost constant computational time. This capability makes the density-only formulation
very interesting as one could simulate also large breakups, such as the recent observed
breakups, on a normal PC with no need of supercomputing facilities. Another proposed
application is the computation of an environmental index. A grid of possible breakups
is defined by considering different values of mass, semi-major axis, and inclination. For
each breakup, the density-only propagation is applied to describe the evolution of the
fragment cloud and estimate the increase in the collision probability for active satellite.
The value of the index on the grid points is then interpolated and adjusted for the space-
craft mass, so that the index can be computed for any spacecraft. The results obtained
with the proposed approach were compared with other environmental indices defined
in the literature and the differences among the approaches were highlighted.
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7
Conclusions

This Chapter provides a short summary of the main findings of the thesis together with
a discussion on its limitations and on possible development of the method in the future.

7.1 Summary of the thesis

The current work has investigated the formulation of an analytical model for the dy-
namics of space debris clouds. The purpose of an analytical formulation is to include
all the relevant fragments produced by a breakup, considering for example also small
objects, the ones smaller than 10 cm, that are usually neglected in space debris modelling.
In fact, their number is so large that following each object individually with a purely
numerical method would result in a prohibitive computational time. For this reason,
some techniques such as the introduction of representative objects, which collect a set
of small fragments, were proposed in the past. In this work, the point of view of the
analysis has been changed from the description of the trajectories of individual objects to
the evolution of the whole space debris cloud. This was done by using the cloud spatial
density as the parameter of study, including all the fragments larger than 1mm. In this
way, the spatial density accounts for all the objects that can interfere with a mission by
creating anomalies; other thresholds (e.g. 1 cm) can be used to consider only the frag-
ments that have the potential of destroying a satellite in case of collision. The advantage
of this approach is that it has a more direct connection with the statistical nature of the
problem, in particular for what concerns the computation of the collision probability for
a spacecraft crossing the cloud.
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Model formulation The proposed method is based on four main parts

• a breakup model, which defines the characteristics of the fragments depending on
the energy and the typology of the breakup event;

• a numerical propagator, which describes the trajectories of the fragments in the
first phase of the cloud evolution, dominated by the Earth’s oblateness, until they
spread around the Earth;

• a fitting function, which converts the information on the positions of the single
fragments into a continuous function;

• a purely analytical propagator, which follows the cloud in its long term evolution.

The analytical propagator is based on the continuity equation, following and expanding
the method proposed by McInnes (1993) to describe the effect of atmospheric drag on a
set of objects.

Model validation The proposed method has been extensively validated through the
comparison with the results obtained by applying a numerical propagator to follow also
the long term evolution of the cloud. The results have been compared in terms of the
resulting spatial density as this value is then used to compute the collision probability
within the cloud. The proposed method has been tested under different conditions
by changing the kind of breakup event, the breakup energy, the inclination and the
altitude of the event. The accuracy of the method has been measured by the relative error
on the total integral of the spatial density and on the peak of the density distribution.
In the case of the numerical method, ten runs of the breakup models were used to
obtain statistical relevant data, whereas this is not required by the analytical model. The
proposed method shows a good level of accuracy for most of different tested conditions,
but fails at altitudes lower than 800 km. For low altitudes, in fact, one of the assumptions
introduced to obtain an analytical expression for the density, namely that the fragments
are on circular orbits, introduces a large error on the prediction of the effect of the
atmospheric drag. On the other hand, in the region above 800 km the method shows a
combination of good level of accuracy and reduced computational time with respect to
the numerical propagation. This is particularly interesting as the region above 800 km is
where the debris density is the highest and where many important missions for Earth
observation can be found. Having a method to estimate the collision probability in this
orbital regimes considering also the contribution of small objects could be, therefore,
particularly interesting for operators of such important missions.

Method applications Given the positive outcome of the validation process, the method
has been applied to compute the collision probability for a spacecraft crossing a debris
cloud in many different scenarios. This requires, first of all, a way to compute the colli-
sion probability given the density of objects in a region of space. Poisson’s distribution
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and the analogy with the kinetic theory of gases was used for this purpose. To avoid
assuming a fixed impact angle, an analytical approximation of the average relative ve-
locity between the fragments in the cloud and a spacecraft passing through it has been
developed.

Three possible applications of the method were identified:

• the study of real breakups in terms of the increase in the collision probability for
a set of objects in the debris and satellite population;

• the study of collision maps, for the same set of objects, evaluating their exposure to
fragmentations with different values of inclination and altitude;

• the study of the influence among these targets, assessing how a fragmentation
starting from one object is able to affect the collision probability of another one.

In all three cases the analytical method offers an important reduction in the computa-
tional time and gives an interesting insight on the contribution of small fragments to the
collision risk. For example, the collision maps help identifying under which conditions a
fragmentation is more likely to have a large impact on a set of targets and highlighting
which regions of space should be kept as clean as possible. On the other hand, the study
of the influence among the target can be useful to identify good candidates for active
debris removal missions.

Extension to multiple dimensions The limitation in applicability to altitudes lower
than 800 km has been tackled by expressing the evolution of the cloud density as a
function not only of the altitude, but of two parameters (the semi-major axis and the
eccentricity). In fact, following the method by Gor’kavyi (1997), the continuity equation
admits a natural extension to multiple dimensions. The dimensions do not have to be
physical ones, so that the problem can be written in the most convenient set of coor-
dinates and then translated into a physical spatial density a posteriori. This approach
has been applied to describe the cloud evolution considering the effect of the Earth’s
oblateness (using the semi-major axis, the argument of perigee, and the longitude of as-
cending node as variables), the distribution of area-to-mass ratio and eccentricity within
the cloud. This last case, in particular, allows the applicability of the method to be ex-
tended to orbits between 700 and 800 km. As a result, the method can be applied to study
the whole region of high debris density and the one with the largest number of active
satellites. Some applications of the method exploiting the new scope were presented:
also in this case, the analytical method offers a relevant reduction in the computational
time, enabling new analyses on the consequences of a fragmentation event.

Density-only formulation The potential of the method is fully exploited if the numer-
ical propagation of single objects is completely removed. An attempt in this direction
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was done describing the transition to the band as a distortion of the initial fragment dis-
tribution. The preliminary results obtained with this approach are extremely interesting
because they present a level of accuracy equal to the formulation with the numerical
propagation and a computational time only very weakly dependent on the number of
fragments. This allows simulating clouds with a very large number of fragments. It also
enable to perform a large number of simulations to compute an environmental index
to quantify the effect of specific fragmentations on a set of relevant targets (e.g. active
satellites).

Main findings The main results of the work can be summarised in the following list:

• an analytical method for the description of the evolution of space debris clouds
generated by breakups has been developed; the method is based on the representa-
tion of the problem in terms of spatial density and it uses the continuity equation
to obtain an analytical solution to the problem of the cloud long term evolution
under the effect of atmospheric drag;

• three versions of the method have been devised: in the first one, the fragment
density is function of the altitude only and the long term effect of atmospheric
drag is studied; in the second one, the density can be expressed as a function
of the most suitable parameters, depending on the modelled perturbation (e.g.
semi-major axis and eccentricity for the case of atmospheric drag); in the third
version, the cloud is modelled through its density right after the breakup, with two
different propagation techniques for short term and long term evolution, without
computing the trajectory of single fragments;

• the performance of the method has been evaluated finding a good level of accuracy
for altitudes larger than 700 km and the ability of simulating different breakups
not only in terms of fragmentation location, but also of breakup type and energy;

• the method has been extended to assess also the collision probability for a space-
craft crossing the fragment cloud, developing an analytical estimation of the rela-
tive velocity between the spacecraft and the cloud;

• the method has been applied to model many different scenarios of collisions prov-
ing the flexibility of the new approach and its ability of enabling new analyses on
the collision risk due to small fragments;

• an environmental index to assess the consequences, on active satellites, of a frag-
mentation in LEO has been developed and applied to different databases of space-
craft.
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7.2 Limitations of the work

The research here presented has clearly shown the two main advantages of the proposed
method. Firstly, switching to a representation in terms of spatial density appears a natu-
ral formulation of the problem as it offers not only a reduction in the computational time,
but especially a strong connection with the phisics of the problem and the analysis of
the resulting collision probability. Secondly, applying the continuity equation provides
an analytical solution to the problem while still keeping a certain degree of flexibility on
the modelling. Nevertheless, also some limitations of the method have been identified.

Most critical phase in the cloud evolution The proposed method is mostly applied
only once the cloud is spread to form a band. However, other authors (Hoots and Hansen,
2014; Theil and Sdunnus, 2003) focus on the earlier phases of the cloud evolution, when
the cloud is less diluted and the spatial density is higher. In that case, the cloud is lo-
calised, so the conditions for crossing are much stricter, but, when they are respected, the
resulting collision probability is much higher. Therefore, modelling also this part of the
cloud evolution would be particularly relevant when studying the collision probability
for a target in an orbit very close to the one of the fragmentation. In this case, which
could be represented, for example, by a breakup within a constellation, neglecting the
phase before the band formation may result in missing the most important part of the
cloud evolution.

Band formation Another problem related with applying the method only once the
band is formed is the estimation of the time for the band formation. As discussed in
Chapter 2, the expressions available in literature describe the process of the cloud en-
veloping the Earth, but not the actual spreading of the fragments to reach a uniform
distribution. For this reason, a safety factor was introduced; however, using this factor
hides a gap in the modelling of the initial evolution of the cloud. Ideally, a better estima-
tion of the time for band formation should be sought starting either from the equation
for ω̇ and Ω̇ applied to the fragments generated by the breakup or from the application
of the analytical model to the cloud spreading. In any case, Chapter 2 showed a weak
dependence of the density profile on the time for band formation, so this suggests that
additional work is required to understand from which point of the cloud evolution the
method starts to be applicable.

Perturbation modelling The current version of the method is able to model the effect
of the Earth’s oblateness, relevant in the short time, and the one of atmospheric drag,
relevant in the long time. However, at the altitudes where the method is used (h >

700 km) and especially for h > 800 km also the effect of solar radiation pressure should
be considered. Moreover, the effect of drag is described through a very simplified model
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that has shown already some of its limits. In Section 5.4, a solution to the problem
of the atmospheric model has been presented, which could lead to the inclusion of
atmospheric models different from the exponential. In any case, the largest advantage
of the application of the continuity equation is obtained when an analytical solution of
the problem is obtained. This limits the number of the perturbations that it is possible
to include and also the level of complexity of their models. This may also limit the
practical application of the method if other perturbations, besides the atmospheric drag,
are found to noticeable affect the cloud density profile. This limitation may be partially
overcome by keeping only the description in terms of spatial density, but using other
methods rather than the continuity equation to propagate the spatial density with time.

Single events versus background population The study of the collision probability
was developed considering only the effect of the new fragments produced by a specific
fragmentation event without considering the background population. However, if one
focusses on the phase after the band formation, the new fragments occupy roughly
the same volume (except for the effect of the maximum latitude) of the background
population that outnumbers the fragments in the new cloud. This means that all the
results involving the collision probability should be read in a relative way with respect
to a baseline scenario without the studied breakup. This also suggests that the most
natural context of application of the analytical model is within a global model of the
space debris environment. In this framework, the analytical formulation can be used to
the describe the production, the evolution and the accumulation of small fragments in
the debris population.

7.3 Future works

The analysis of the limitations of the work has already suggested some possible elements
for the development of the work and they are here discussed starting from the closest
one to the formulation proposed in this work.

Updated parameters for the exponential atmospheric model The analysis at the end
of Chapter 5.4 has shown that the present implementation of the exponential atmo-
spheric model may lead to wrong results for what concerns the predicted density at low
altitudes. It was also shown that this behaviour can be easily corrected both in the numer-
ical and in the analytical propagator by using at each altitude band the corresponding
values of the parameters in the atmospheric mode. Therefore, a new campaign of vali-
dation is required to the estimate the method accuracy. If the validation has a positive
outcome, the method will have an extended scope as it could be applied to study the
collision probability for spacecraft a low altitude (e.g. Hubble Space Telescope). In ad-
dition, changing the atmosphere parameters across different altitude bands may enable
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to include more realistic atmospheric models, with the condition what locally (within
each altitude band) they can be approximated by exponential functions.

Density-only formulation Similarly to the case just discussed, also the results in Chap-
ter 6 on the density-only formulation suggest to perform a detailed validation of this
approach, studying the dependence of the accuracy on parameters such as the breakup
altitude, and the energy and kind of fragmentation. The density-only approach appears
very promising, so it is worth investigating if its result may be improved, for example,
considering the distribution of eccentricity when the initial condition is reshaped into the
distribution at the band formation.

Band formation The description of the first phase of the cloud evolution, under the
effect of the Earth’s oblateness, should be improved. This task is twofold: firstly, it should
be possible to estimate more accurately the process of the band formation; secondly, a
formulation to assess the collision probability also in this phase should be obtained.

Eccentricity, perturbations and alternative propagation methods Chapter 4 presented
some possible ways to account for the distribution of eccentricity within the cloud, but
the hypotheses introduced to obtain an analytical solution are still quite strong and
the evolution of the eccentricity is not modelled. A new analytical formulation may
be obtained with further work on the expressions in Appendix B.5; otherwise, other
propagation methods, such as differential algebra, may be applied. A preliminary study
in this direction is under development (Colombo et al., 2015).

The modelling of the cloud with Finite Element Methods (FEM) could be another inter-
esting option as it would keep the advantageous point of view of describing the problem
in terms of spatial density, but it would also allow more complex expressions for the
perturbations to be considered and it could leverage the existing numerical methods to
obtain an efficient implementation.

Besides this radical change, a careful evaluation of the possibility of including additional
perturbations (especially solar radiation pressure) already in the continuity equation
should be undertaken. A campaign of validation with a more refined modelling of
perturbations than the one used in this work can help identifying which elements (e.g. a
more realistic atmospheric model) can provide the largest improvement to the accuracy.

Environmental index The environmental index proposed in Chapter 6 has given in-
sight into the effect of different breakups on active satellites. A further formalisation
of the index may include levels such as the severity number defined in (European Co-
operation for Space Standardisation, 2009) to evaluate different failure modes. In that
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case, four levels of severity are defined (i.e. catastrophic, critical, major, negligible) that
could be related to the value of the environmental index. Observe that the connection
between the environmental index and the severity levels cannot be done by setting a
simple numerical threshold for the index. In fact, the absolute value of the index will
change every time that the target set is redefined. The connection to the severity levels
may be done by identifying for each level a reference fragmentation (e.g. the breakup
of Envisat to represent a catastrophic level of severity). When another spacecraft is evalu-
ated, its index is compared to the ones of the reference fragmentations to assess its level
of severity. This would also give an immediate meaning to the value of the index.

Inclusion in evolutionary models The aim of evolutionary models is to define possi-
ble scenarios of the debris population depending on parameters such as the frequency
of launches, the compliance with debris mitigation rules, the solar activity. They are
able to simulate breakup events, identifying the most likely values for their energy and
their location, but they cannot follow all the objects in a fragment cloud. The analytical
approach can give these methods this ability, so that the description of space debris
population can be more accurate by including also small fragments. A reference in
this attempt could be the work by Wiedemann et al. (2011) where it is described how
in MASTER fragmentation clouds can be plugged in by the user to study the resulting
increase in spatial density. Similarly, the analytical model could be integrated with an
evolutionary method in the following way. The evolutionary model determines the
conditions for a breakup to happen, defining the values of the breakup energy, altitude
and inclination. The breakup model is used to generate all the fragments down to a
minimum size (e.g. 1mm). The fragments larger than 10 cm are followed individually,
whereas the smaller ones are treated in terms of spatial density. The propagation of the
spatial density is obtained analytically by using the continuity equation. In this case,
going back to the original formulation by McInnes (1993), the continuity equation may
be applied on the whole population of small fragments. With this setting, it may be rele-
vant to model also the interaction among the small fragments and to treat differently the
collision risk coming from large (≤ 10 cm), medium (1 cm−10 cm), and small fragments.

Software implementation Throughout the thesis, the emphasis was put on the reduc-
tion in the computational time that can be achieved by adopting the proposed propa-
gation method. However, the whole code is currently implemented in an interpreted
language as matlab, which presents much longer running times than compiled lan-
guages. The choice of using an interpreted language in this work was motivated by the
fact that this kind of programming languages offers a short development time. Once
that the full approach has been developed and the obtained results prove valuable, it
could be worth implementing the model with a compiled language to further reduce the
computational time. Moreover, such an implementation would facilitate the distribution
of the software in the form of tools (e.g. one for the assessment of the consequences of a
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fragmentation, one for the computation of the environmental index) that could be tested
and used by operators and space agencies.
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A
Validations & Implementation

A.1 Breakup model

The NASA breakup model was introduced in 1998 and, in comparison with the previous
NASA models, presents a better estimation of the generation of small fragments (< 10 cm)
and the adoption of area-to-mass ratio A/M distribution; the latter parameter is of par-
ticular relevance, as the A/M value is related with the time each object will spend in
orbit before being removed by atmospheric drag (Johnson and Krisko, 2001).

A.1.1 Implementation

The model uses the characteristic length Lc of the fragment as the independent variable
to set most of the cloud characteristics (i.e., number of fragments, A/M , mass), except
the velocity, which depends on the A/M . The definition of Lc is clearly explained by
Krisko et al. (2008): it is based on radar measuring techniques and it was chosen as the
independent parameter as it can be easily related to hypervelocity tests and on-orbit
observations. The applicability of the NASA breakup model, in terms of characteristic
length of fragment generated, is set between 1mm and 1m (Krisko, 2011). In the follow-
ing, the equations applied in CiELO are given.

Collisions can be classified in two categories: catastrophic and non-catastrophic. A
collision is called catastrophic if it causes the complete fragmentation of both the impactor
and the target; experiments show that this occurs when the impact energy per target
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mass exceeds 40 J g−1 (Krisko, 2007). The number of produced fragments Nf of a given
size and larger depend on the reference mass Me of the collision,

Nf (Lc[m]) = 0.1(Me)
0.75L−1.71

c . (A.1)

In the above equation, Lc is in metres and the value of Me is defined as follows

Catastrophic collision: Me[kg] = Mt[kg] +Mp[kg]

Non catastrophic collision: Me[kg] = Mp[kg](vc[km/s]/1[km/s])2

where Mt is the target mass, Mp is the projectile mass, vc the relative impact velocity
between the projectile and the target1

For what concerns the implementation in CiELO, the characteristic length is divided into
100 bins equally spaced on a logarithmic scale between 1mm and 10 cm: the number
of fragments for each bin is computed and once each fragment is assigned to one bin,
its characteristic length is defined using the built-in matlab function rand to extract a
random value for Lc within the bin.

For each Lc it is possible to define the distribution of A/M . Here the model distinguishes
between objects larger than 11 cm and smaller than 8 cm, as different data have been used
to build the model in the two ranges. For larger objects, the decay rates of catalogued
objects was studied to express the dependence of A/M on Lc; different expressions
are provided for upper stages and for spacecraft. For smaller objects, the results of
hypervelocity impact tests have been implemented into the NASA model. In the original
paper (Johnson and Krisko, 2001), a bridge function is said to be used to connect these
two ranges, but no details on its formulation are given.

Figure A.1 shows the prescribed value of the mean µ and of the variance σ of the A/M

distribution as a function ofLc. The dashed vertical lines limit the two regions that needs
to be linked by the bridge function and it is possible to observe that the distributions for
Rocket Bodies (RB) and Spacecraft (SC) are very different for any value of Lc. In absence
of a precise definition of the bridge function, it was decided to extend the validity of the
expressions for large fragments down to 8 cm, observing that at least in two cases (µ for
SC and σ for RB) the functions tend to be continuous for Lc = 8 cm. It will be shown in
Section A.1.2 that this choice gives results coherent with other implementations of the
model.

1For non-catastrophic collision, Johnson and Krisko (2001) report Me[kg] = Mp[kg]vc[km/s] while
Krisko (2011) Me[kg] = Mp[kg](vc[km/s])2. A discussion with the authors (Paula Krisko, Senior Scientist at
Jabobs Technology, personal communication (email), June 2013) allowed verifying that the second equation
is the correct one, even if many current debris models were using the expression in (Johnson and Krisko,
2001).
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Figure A.1: Value of the mean µ and of the variance σ of the A/M distribution as a
function of Lc. The dashed vertical lines limit the two regions that needs to be linked
by the bridge function. The three lines refer to large objects, Lc > 11 cm, distinguishing
between rocket bodies and spacecraft, and small objects, Lc < 8 cm.

As here the focus is mainly on small objects, only the expressions for objects smaller
than 8 cm are shown. The distribution of A/M is written as

DA/M (λc, χ) = N (µA/M (λc), σA/M (λc), χ); (A.2)

DA/M represent the distribution of χ as a function of λc, where

λc = log10(Lc)

χ = log10(A/M)

and N represents the normal distribution function

N (µA/M , σA/M , χ) =
1√

2πσA/M

exp

(
−
(χ− µA/M )2

2σ2
A/M

)
,

whose parameters (i.e. µA/M mean value and σA/M standard deviation) depend on the
characteristic length

µA/M =


−0.3, λc ≤ −1.75

−0.3− 1.4(λc + 1.75), −1.75 < λc < −1.25

−1.0, λc ≥ −1.25

(A.3)

σA/M =

0.2, λc ≤ −3.5

0.2 + 0.1333(λc + 3.5), λc > −3.5.
(A.4)
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Figure A.2: Distribution of fragments in orbital parameters for a non catastrophic colli-
sion with energy equal to 50 kJ.

The built-in matlab function randn is used to generate (pseudo)random numbers
drawn from a normal distribution.

The average cross-sectional area A is modelled as

A =

0.540424L2
c , Lc < 0.001 67m

0.556945L2.0047077
c , Lc ≥ 0.001 67m

(A.5)

and so the mass is simply M = A/(A/M).

Then, the ∆v distribution is obtained as a function of the A/M and, also in this case, the
distribution is modelled as a lognormal distribution

D∆V (χ, ξ) = N (µv(χ), σv(χ), ξ) (A.6)

where ξ = log10 (∆v) and

µv = 0.2χ+ 1.85

σv = 0.4.

A check is implemented to verify that the velocity variation is lower than 1.3 vc: this is
done because without any limit the method generates a small number of fragments with
very high ejection velocity (in the order 60 km s−1). The function randn is called until the
resulting velocity is lower than the threshold value. The velocity direction is randomly
chosen using the function rand, which picks (pseudo)random numbers from a uniform
distribution, to generate the velocity unit-vector.
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An example of the resulting distributions in terms of semi-major axis a and eccentricity
e is shown in Figure A.2 that refers to the mean over five multiple runs of the NASA

breakup model considering an energy of 50 kJ.

A.1.2 Validation

The implementation of the NASA breakup model in CiELO was compared with the avail-
able data on other implementations by space agencies. In particular, the document
prepared by Rossi et al. (2006) for an Inter-Agency Space Debris Coordination Com-
mittee (IADC) meeting in 2006 was used as a reference as it contains the results of the
implementations from five space agencies: ASI, CNSA, DLR, ESA, NASA. The document
defines two scenarios, one explosion and one catastrophic collision, for which the im-
plementation of the breakup model are compared in terms of the resulting distribution
in fragment size, mass, area, and velocity variation.

Explosion case The fragmented object is a 1000 kg rocket body and the results include
any object equal or larger than 1mm. Table A.1 summarises the number of objects larger
than a given size according to the different agencies.

It is evident that there is a difference between the implementation in CiELO and the others
for what concerns the generation of fragments equal or larger than 1m. Firstly, following
what stated by Krisko (2011), in the implementation in CiELO 1m is the largest possible
size for objects generated by a fragmentation, whereas from the document by Rossi et al.
(2006) appears that ESA arrives to generate objects larger than 10m and NASA larger than
3m. One can conclude that they apply some modifications to the original equations of
the breakup model (Johnson and Krisko, 2001; Krisko, 2011), whose expressions are not
available in literature. It is likely that these modifications are connected to the procedure,
introduced in (Krisko, 2011), to assure that the mass is conserved through the fragmen-
tation. The mass conservation affects the generation of large fragments (> 10 cm), so it
is not implemented in CiELO. Besides this difference, the implementation of the NASA

breakup model in CiELO appears from the values in Table A.1 for Lc < 1m and from the
distributions shown in Figure A.3.

Collision case This scenario describes a catastrophic collision involving a rocket body
with target mass equal to 1000 kg, projectile mass equal to 10 kg and impact velocity
of 10 km/s. The resulting distribution in fragment size, area, mass, and velocity varia-
tion are shown in Table A.2 and Figure A.4. Also in this case it is possible to observe
a good agreement between the results obtained with CiELO and the ones from other
implementations2.

2ESA implementation of the NASA breakup model was updated after 2006, when the results by (Rossi
et al., 2006) were obtained.
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Table A.1: Size distribution for the different implementation of the NASA breakup model
for an explosion involving a rocket body with mass equal to 1000 kg (Rossi et al., 2006).

ASI CNSA DLR ESA NASA CiELO

Lc > 1mm 378581 37865 1217054 324886 434928 378568
Lc > 1 cm 9403 960 11724 8159 10731 10312
Lc > 10 cm 234 32 230 206 248 253
Lc > 1m 7 9 0 6 8 1
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Figure A.3: Distribution of fragments in size, area, mass, and velocity variation for an
explosion involving a rocket body with mass equal to 1000 kg. Data for ASI, DLR, ESA
and NASA from Rossi et al. (2006).
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Table A.2: Size distribution for the different implementation of the NASA breakup model
for a catastrophic collision involving a rocket body with target mass equal to 1000 kg,
projectile mass equal to 10 kg and impact velocity to 10 km/s (Rossi et al., 2006).

ASI CNSA ESA NASA CiELO

Lc > 1mm 2416795 2416790 4723391 2957159 2416783
Lc > 10 cm 850 935 1539 862 1017
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Figure A.4: Distribution of fragments in size, area, mass, and velocity variation for a
catastrophic collision involving a rocket body with target mass equal to 1000 kg, pro-
jectile mass equal to 10 kg and impact velocity to 10 km/s. Data for ASI, ESA and NASA
from Rossi et al. (2006).
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A.2 Propagation of drag effect

The effect of drag is modelled using King-Hele (1987)’s expressions for the secular varia-
tion of the orbital elements in one orbit. In particular, considering only the expression for
eccentricity e ≤ 0.2, these are the expressions for the average variation of the semi-major
axis a and the eccentricity e

• 0.01 ≤ e ≤ 0.2

da

dt
= −cdA

M

√
µEaρref exp

(
− a−Rh

H

)[
I0 + 2eI1 +

3

4
e2(I0 + I2) +

e3

4
(3I1 + I3)

]
de

dt
= −cdA

M

√
µE

a
ρref exp

(
− a−Rh

H

)
• 0.001 ≤ e < 0.01

da

dt
= −cdA

M

√
µEaρref exp

(
− a−Rh

H

)[
I0 + 2eI1

]
de

dt
= −cdA

M

√
µE

a
ρref exp

(
− a−Rh

H

)[
I1 +

e

2
(I0 + I2)

] (A.7)

• e < 0.001

da

dt
= −cdA

M

√
µEaρref exp

(
− a−Rh

H

)
de

dt
= 0

where cd is the drag coefficient, A is the cross-sectional area; M is the mass and, indicat-
ing the Earth’s radius with RE , Rh = RE+href; Ik indicates the modified Bessel function
of the first kind and order k with argument z = ae/H .

With the hypothesis of a non-rotating atmosphere, the inclination of the orbit does not
change; similarly, the argument of the perigee and the longitude of the ascending node
do not change. It was already shown by Jehn (1996) that the spreading of the fragments
in inclination is limited compared to the distribution in semi-major axis and eccentricity.
In addition, the variation of inclination of the fragments’ orbits was estimated. This was
done using once more the analytical expressions by King-Hele (1987). Only the case
of west-to-east winds was considered and the equations for objects with e ≤ 0.2 were
applied. The aerodynamic force due to the atmosphere rotation is normal to the orbital
plane and it is written as

fn =
ρvcdA

2M
rw sin i cosu (A.8)

where w is the wind speed. The resulting rate of variation of the inclination is

di

dt
= −ρvr2wcdA

2M
√
µp

sin i cos2 u. (A.9)
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Figure A.5: Variation of the fragment inclination after 1000 days from the breakup for
a fragmentation at 700 km on a polar orbit.

Equation A.9 expresses that the inclination continuously decreases over time. For quasi-
circular orbits, the average di

dt over a revolution is equal to

di

dt
≈ −1

4
ρrwcd

A

M
sin i. (A.10)

This expression was applied to evaluate the variation in inclination, using as value of the
wind speed the fitting function by Vilhena de Moraes (1994). It expresses the variation
of the atmosphere rotation with altitude as

w = wE

[
Bhp + C − 2.5 exp 1.47 + 1.610−4hp

]
(A.11)

where wE is the Earth’s angular rate, hp is the perigee height in [km] and B,C are con-
stants. Their values can be found putting the atmosphere rotation equal to 0.7 rev/day
at 500 km and equal to 0 at 900 km. In this way, Equation A.11 is applicable for hp going
from 200 to 900 km. The values of the constants are

B = 0.000196202 C = 12.38057431.

Figure A.5 shows the variation in the fragments’ inclination after 1000 days for a frag-
mentation at 700 km and on a orbit with inclination equal to 90 degrees; the average
variation is equal to −0.0906 degrees. For this reason, the variation of inclination is not
considered.
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A.2.1 Implementation

The rate of variation of the parameters is obtained by dividing the average variation in
one orbit by the orbital period

dα

dt
=

∆α

T
α = a, e.

Finally, the obtained equations of the dynamics are integrated in matlab using the
ode45 function, which is a variable step integrator based on an explicit Runge-Kutta(4,5)
method (also known as Dormand-Prince pair).

The propagation is stopped when the perigee altitude hp gets below 50 km as, in this
case, the fragment is considered to be re-entering through the atmosphere. This is im-
plemented in matlab by setting an event function that checks the value of the perigee
during the integration. The event functions are used also to manage the switch among
different regions of eccentricity as in Equation A.2. It is interesting to observe that the im-
plementation with event functions, indicated with khs, reduces the computational time
by 50% compared to the implementation where the value of the eccentricity is checked
directly within the function with the dynamics. On the other hand, khs is slower than
implementing only one branch of the dynamics, but it allows an improvement of the
method accuracy as it will be shown later.

A.2.2 Validation

The accuracy of the integration based on King-Hele (1987)’s formulation was evaluated
by comparing its results with a full implementation of Gauss’ equation (Vallado, 2013)
and with the integration in Cartesian coordinates. The results of this comparison are
summarised in Table A.3, which shows the computational time and relative error with
respect to the Cartesian result for the different formulations of the dynamics. The results
are obtained by computing the evaluating the evolution of the orbit of an object with
mass equal to 1 kg and cross-sectional area equal to 10 cm2 for one month; only the effect
of drag is considered here. The results refer to the simulation of trajectories with fixed
perigee altitude, set equal to 500 km, and different values of eccentricity, chosen to cover
all the different ranges defined by King-Hele (1987)’s formulation (Equation A.2). The
computational time is measured using a PC with 4 CPUs; the relative error is measured
on the final value of the semi-major axis.

It is possible to observe how King-Hele (1987)’s formulation presents a very good level
of accuracy together with a remarkable reduction in the computational time, both com-
pared to the integration in Cartesian coordinates and to Gauss’ equations. On average
Gauss’ equations allow a reduction of the computational time around two orders of
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Table A.3: Computational time and relative error with respect to the Cartesian result
for the different formulation of the dynamics.

Computational time [s] Relative error

hp e Cartesian Gauss kh khs Gauss kh khs

500 0.0005 73.1190 5.7314 0.0094 0.0772 2.90E-08 2.42E-08 1.96E-08
500 0.01 72.4265 4.9480 0.0098 0.0967 2.83E-08 7.61E-08 6.47E-08
500 0.021 70.5236 4.2254 0.0094 0.0451 2.80E-08 9.15E-09 9.15E-09
500 0.25 47.6288 0.2948 0.0092 0.0663 2.65E-08 3.84E-08 3.84E-08

magnitude compared to the Cartesian coordinates, whereas khs and kh present re-
spectively a reduction of three and four orders of magnitude. The relative error on the
semi-major axis is of the same order of magnitude for Gauss, khs, kh. As expected, the
relative error is lower for khs than kh for e < 0.02.

A.3 Geometric procedure for velocity estimation

In Chapters 3 and 5 two analytical approximations of the relative velocity between the
fragments and a spacecraft (target), crossing the fragment cloud, were introduced. Equa-
tions 3.25 and 3.25 provide a fast method to estimate the average relative velocity, but
some hypotheses were introduced to deal with the lack of information about the param-
eters ω and Ω. For this reason, the approach was validated adopting an independent,
numerical procedure based on knowledge of all the orbital parameters both for the target
and for the fragments.

The reference average velocity at any time of the analysis is computed with the following
work-flow (Figure A.6):

1. the orbital plane of the target is intersected by the orbital plane of each fragment
2. the line obtained from the intersection of the planes is used to find the intersections

between the line itself and the orbits
3. the two pairs of points obtained are checked measuring their distance
4. if the distance is lower than a given threshold value (10 km in this case) the relative

velocity between the target and the fragment at the intersection point is computed
and stored

5. the average value among all the stored velocities is computed and used as reference
value.

The approach is similar to computation of the Minimum Orbital Intersection Distance
(MOID), defined as “a measure for the distance between the orbits of an asteroid and of the
Earth, not considering the positions that the bodies occupy in them” (Bonanno, 2000). In
fact, also with the method used in this work to estimate the relative velocity, the check is
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Figure A.6: Sketch of the validation procedure.

not made on the current positions of target and fragments because, as discussed already
for the latitude, comparing the target and the fragment positions at only one instant
is not representative of the whole time step. In other words, this approach computes
the relative velocity considering that if the orbits of two objects intersect, then the two
objects will both be at the intersection point at a certain time as the information of the
distribution of the objects along the orbit is already contained in the expression of the
spatial density.

The distance between the orbit of the target and the one of a fragment is computed
starting from the output of the numerical propagation performed with a semi-analytical
method, Planetary Orbital Dynamics (PlanODyn) (Colombo, 2015), based on averaged
Gauss’ equations for the evolution of the orbital parameters.

A.3.1 Equations

At a certain time t, the vectors of the orbital parameters of both the objects are known.
From the orbital parameters, position and velocity can easily expressed in the perifocal
system, which is the reference system centred in the Earth, with (x, y)-plane coincident
with the orbital plane and the x-axis directed towards the pericentre (Bate et al., 1971).

The following symbols

(r)PF,T (v)PF,T (r)PF,F (v)PF,F
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are introduced to indicate the distance and the velocity of the target (T ) and the fragment
(F ) in their respective perifocal systems. Then, a rotation matrix R, with

RT = R(iT , ωT ,ΩT ) RF = R(iF , ωF ,ΩF ),

can be used to transform the components of these vector in a Geocentric Equatorial
Intertial (GEI) (Bate et al., 1971)

rT = RT (r)PF,T vT = RT (v)PF,T rF = RF (r)PF,F vF = RF (v)PF,F.

From these vectors it is possible to compute the angular momentum vectors (h)

hT = rT × vT hF = rF × vF

that are perpendicular to their respective orbital planes. The line of intersection between
the two planes is found by identifying the direction perpendicular to both the normals
to the plane, so in this case

n = hT × hF .

The line of intersection, or nodal line, n can be projected back to the two perifocal systems

(n)PF,T = R−1
T n (n)PF,F = R−1

F n,

so that the problem becomes finding, on each perifocal plane, the intersection between
a line and the ellipse representing the orbit. The problem is solved considering that the
points of intersection will have true anomaly equal to

νi = arctan

[
(ny)PF
(nx)PF

]
+ kπ k = 0, 1

where (nx)PF and (ny)PF indicate respectively the first and the second component of the
vector (n)PF,. Once the true anomaly is known, the position and the velocity in the points
are known too, and they can be projected onto the GEI to measure the distance between
the distance between the two couples of points.

A.3.2 Validation

The geometrical procedure for the computation of the relative velocity here described
basically assumes that the point of minimum distance between two orbits lays on the
nodal line. This may not be true for orbits with very similar inclination and different
eccentricity, so the method needs to be validated through the comparison with a nu-
merical method based on MOID computation. With the MOID approach, an optimisation
problem needs to be solved for any pair target-fragment and once the point of minimum
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Figure A.7: Validation of the geometrical procedure for the computation of the relative
velocity through the comparison with a numerical method based on MOID computation.
(a) Whole cloud; (b) fragments with distance from the target lower than 50 km.

distance is identified, the velocity of both object in that point is computed. The resulting
relative velocity is then computed and compared with the one obtained with the geo-
metrical method. The results for this comparison in the case where both the target and
the fragments are on orbits inclined of 30 degrees is shown in Figure A.7; similar results
were obtained for different orbital configurations.

One can observe from Figure A.7a that for high distance the two methods predict dif-
ferent values and, as expected, the MOID is always lower than (or equal to) the distance
measured along the nodal line. On the other hand, zooming the graph to lower values
of distance as in Figure A.7b shows a very good agreement between the two method.
The advantage of the geometrical approach is that it is much faster than the MOID com-
putation: the average running time for the MOID computation between a target and a
cloud of 2397 fragments (such as the one used in Figure A.7) is equal to 78.57 s on a
PC with 4 CPUs at 3.40 GHz; the time for the geometrical approach is, instead, 12.9 s.
Considering that the reference relative velocity needs to be computed at each time step
during the validation process, using the geometrical approach results in a substantial
saving in time.

A.4 Implementation of J2 effect

In Chapter 4 three different approaches to model the effect of the Earth’s oblateness
were presented. When the effect of drag is neglected (Section 4.2.1), the formulation is
particularly simple as it was found

n(a,Ω, ω, t) = n0(a,Ωi, ωi),
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Figure A.8: Representation of the motion of the point where the density is measured
at different time instants.
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Figure A.9: Representation of the domain translation.

which means that the spatial density in the point (a,Ω, ω) at the time t is the same as
the one at the initial time in the point (a,Ωi, ωi), where

Ω̃ = Ω + f(a, t) (A.12)

ω̃ = ω + g(a, t), (A.13)

where f and g are the functions that express the rate of variation of the parameters,
respectively Equation 4.23 and Equation 4.24, derived in Section 4.2.

Figure A.8 represents this process: the contour plot shoes the initial condition n0 and
the green marker indicates the point (0, 0). The value of density at (0, 0) at a time instant
tj is obtained using Equations A.12 and A.13 to find Ω̃j and ω̃j , so that n(a, 0, 0, tj =

n0(a, Ω̃j , ω̃j). This is equivalent to a translation of the domain along the characteristic
lines as shown in Figure A.9.

When drag is neglected, the initial distribution n0 at a certain semi-major axis is constant.
For this reason, the cloud is divided into as many slices in (Ω, ω) as many point in the
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Figure A.10: Representation of the simplified local linear fit.

discretisation of the semi-major axis. As the semi-major axis is constant, each slice evolves
independently from the others. In matlab this is translated into the following simple
code, where, in this case, a1v=a0v because drag is neglected.

1 for jnd = 1: ngrid

% find the closest value in semi -major axis

[~,iav] = min(abs(a1v(jnd)-a0v));

6 % compute the shift for the angles

O1new = O0v (1)+rateOmega(a1v(jnd),a0v(jnd));

o1new = o0v (1)+rateomega(a1v(jnd),a0v(jnd));

% find the closest points in angle grid

11 [~,iO] = min(abs(O1new -O0v));

[~,io] = min(abs(o1new -o0v));

vettO = [iO:nel ,1:iO -1];

vetto = [io:nel ,1:io -1];

16 % find the new value of density

n2d(jnd ,:,:) = n02d(iav ,vettO ,vetto);

end

The method outlined above corresponds to an order-zero fit to the nearest neighbour
because in line 17 the initial value n0 is used directly to assign the value n at a different
time. This formulation appears prone to numerical instability. The performance of the
method, in terms of numerical dissipation, can be improved by using more than one
vertex to compute the value of the density, but still without performing a full 2D fit of the
surface. The way to perform this task, indicated in the following as local fit, is represented
in Figure A.10, where the black grid represent the initial reference and the red one the
resulting after a certain time of propagation. Considering the point P , with the previous
method it would get the value in A, which is the nearest point. The contribution of all

222



a.4 implementation of J2 effect

−100 0
100 −100

0
100

0

500

1000

ω [deg]
Ω [deg]

a
−
R

E
[k

m
]

Figure A.11: Representation of the motion of the point where the density is measured
at different time instants.

the neighbouring (B,C,D) can be easily added. The distance between P and the four
points is used to perform a weighted average. As the translation of the domain is rigid,
the value found for one point is valid for all the points in the grid.

In the case where the atmospheric drag is considered, the cloud is still divided in (Ω, ω)

slices. At each time step, the value at a semi-major axis is obtained using the initial
distribution in (Ω, ω) from a different slice Figure A.11. The approach of the local fit,
explained in Figure A.10, can be extended to multiple dimensions to consider the change
in a due to the effect of drag. Observe that in these cases the distances to be compared
need to be normalised as they present very different absolute values. The computational
time for all the cases are reported in Table A.4; the measured computational times refer
to a PC with 4 CPUs at 3.40 GHz.

Table A.4: Computational time in seconds for J2 implementation methods.

Method Fit No fit Local fit

Only J2 - 0.09 0.15
Drag +J2 (3D) 19.64 0.51 0.33
Drag +J2 (2D) 1.14 0.08 -
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Demonstrations

B.1 Equivalence of Sykes’ and Kessler’s formulations

The spatial density as a function of the distance r and the latitude β is written by Kessler
(1981) as

S(r, β) = s(r)f(β)

with
s(r) =

1

4π2ra
√
(r − rp)(ra − r)

(B.1)

where rp and ra are respectively the pericentre and the apocentre

rp = a(1− e) ra = a(1 + e); (B.2)

the dependence on the latitude is expressed by

f(β) =
2

π sinα cosβ
(B.3)

where
cosα =

cos i

cosβ
. (B.4)
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In Sykes (1990) the expressions for s and f are instead

s(r) =
k

a2r

1√
e2 −

(
r
a − 1

)2 (B.5)

f(β) =
1

2π2

1√
cos2 β − cos2 i

, (B.6)

where k is defined as a constant of normalisation.

The two formulations are actually identical as it can be seen by transforming the ex-
pressions by Kessler (1981) into the same notation as in Sykes (1990). Starting from
the expression for the distance, the expressions for the pericentre and the apocentre in
Equation B.2 can be inserted into Equation B.1 obtaining

s(r) =
1

4π2ra
√

(r − rp)(ra − r)
= s(r) =

1

4π2ra
√
[r − a(1− e)][a(1 + e)− r]

;

the argument of the square root can be manipulated in the following way

[r − a(1− e)][a(1 + e)− r] = [r − a+ ae][a+ ae− r] = [ae− (a− r)][ae+ (a− r)] =

= a2e2 − (a− r)2 = a2
[
e2 − (r − a)2

a2

]
= a2

[
e2 −

(r
a
− 1
)2]

, (B.7)

so that
s(r) =

1

4π2

1

ra2
1√

e2 −
(
r
a − 1

)2 ,
which is the same as Equation B.5 besides the normalisation.

For what concerns f(β), the expression for α in Equation B.4 can be used to rewrite the
term sinα cosβ in Equation B.3 obtaining

sinα cosβ =
√

1− cos2 α cosβ =

√
1− cos2 i

cos2 β
cosβ =

√
cos2 β − cos2 i,

so Equation B.3 becomes
f(β) =

2

π

1√
cos2 β − cos2 i

,

that, besides a constant, is equal to the equation in Sykes (1990).

B.2 Derivation of the expression of the spatial density

The expression of the spatial density can be obtained starting from the hypothesis of the
mean anomaly M equally distributed as done by McInnes and Colombo (2013). In this
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case the density nM (M) will be constant with M and the follow condition holds∫ 2π

0
k dM = 1. (B.8)

The first step is to obtain the distribution with the true anomaly ν. Starting from the
definition of M

M = E − e sinE, (B.9)

with E eccentric anomaly, dM can be written as

dM =

(
dE

dν
− e cosE

dE

dν

)
dν (B.10)

=

[ √
1− e2

1 + e cos ν
− e

e+ cos ν

1 + e cos ν

√
1− e2

1 + e cos ν

]
dν (B.11)

=
(1− e2)

3
2

(1 + e cos ν)2
dν. (B.12)

Therefore,

nν(ν) =
(1− e2)

3
2

(1 + e cos ν)2
(B.13)

which is identical to the expression by McInnes and Colombo (2013), beside a constant
term due to the different choice in the normalisation.

The following step is the translation into a distribution in r. Starting from the definition
of r the expression for dν is found.

r =
a(1− e2)

1 + e cos ν
⇒ dr =

a(1− e2)

(1 + e cos ν)2
e sin ν dν (B.14)

It is convenient to express sin ν as

sin ν =
√

1− cos2 ν =

√
1− 1

e2

[a
r
(1− e2)− 1

]2
(B.15)

=
√

1− e2
a

er

√
e2 −

(r
a
− 1
)2

(B.16)

so that
dν =

(1 + e cos ν)2

(1− e2)
3
2

r

a2
1√

e2 −
(
r
a − 1

)2 dr. (B.17)

Substituting the expression of dν in Equation B.17 in Equation B.13

∫ 2π

0
k

(1− e2)
3
2

(1 + e cos ν)2
dν = 1 (B.18)
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one obtains ∫ 2π

0
k
r

a2
1√

e2 −
(
r
a − 1

)2 dr = 1 (B.19)

so the distribution nr(r) in r is

nr(r) = k
r

a2
1√

e2 −
(
r
a − 1

)2 . (B.20)

Equation B.20 has as dimensions [1/km]; to obtain a real spatial density other two steps
are required. Firstly, the number of objects in a bin are counted and secondly, the number
is divided by the volume of the shell defined by the altitude bin.

For the first step, a rigorous approach will require

N(r;∆h) =

∫ r+∆h

r
k
r

a2
1√

e2 −
(
r
a − 1

)2 dr; (B.21)

if we consider ∆h → 0,

N(r;∆h) =

∫ r

−∞
k
r

a2
1√

e2 −
(
r
a − 1

)2 dr −
∫ r+∆h

−∞
k
r

a2
1√

e2 −
(
r
a − 1

)2 dr (B.22)

≈ k
r

a2
1√

e2 −
(
r
a − 1

)2∆h. (B.23)

Similarly the volume of the spherical shell of radius r and height ∆h can be written as

V =
4

3
π[(r +∆h)3 − r3] =

4

3
π[3∆hr2 +O(∆h2)] ≈ 4πr2∆h. (B.24)

The spatial density s is finally obtained as

s(r) ≈ nr(r)∆h

4πr2∆h
=

k

4πa2r

1√
e2 −

(
r
a − 1

)2 , (B.25)

which is identical to the expressions by Kessler (1981) and Sykes (1990) apart from a
constant (k = 1 in his expression).

B.3 Method of characteristics

The method of characteristics is a common approach to the solution of Partial Differential
Equation (PDE). For the reader’s convenience, the main points of the method are recalled

228



b.3 method of characteristics

here, following the clear explanation prepared by Levandosky1. The general formulation
of the method of characteristics will be then applied to the case of space debris cloud
propagation.

B.3.1 General formulation

Let’s consider the following equation where the solution u is a function of two variables

a(x, y)ux + b(x, y)uy = c(x, y) (B.26)

The graph of the solution u(x, y) is given by

S ≡ {(x, y, u(x, y))}

and at each point (x, y)

(a(x, y), b(x, y), c(x, y)) • (ux(x, y), uy(x, y),−1) = 0

where • indicates the dot product; the vector (a(x, y), b(x, y), c(x, y)) lies in the tangent
plane to S. Consequently, to find a solution to Equation B.26, one can look for a surface S
such that at each point (x, y, z) on S, the vector (a(x, y), b(x, y), c(x, y)) lies in the tangent
plane. To obtain such a surface, one can start by constructing a curve C parametrized by
s such that at each point on the curve C, the vector

(a(x(s), y(s)), b(x(s), y(s)), c(x(s), y(s)))

is tangent to the curve. In particular, the curve C = {(x(s), y(s), z(s))} will satisfy the
following system of Ordinary Differential Equation (ODE)s:

dx

ds
= a(x(s), y(s)) (B.27)

dy

ds
= b(x(s), y(s)) (B.28)

dz

ds
= c(x(s), y(s)). (B.29)

Such a curve C is known as an integral curve for the vector field (a(x, y), b(x, y), c(x, y)).
For a PDE of the form of Equation B.26, one looks for integral curves for the vector field
V = (a(x, y), b(x, y), c(x, y)) associated with the PDE. These integral curves are known
as the characteristic curves for Equation B.26. These characteristic curves are found by
solving the system of ODE in B.27-B.29. This set of equations is known as the set of
characteristic equations for Equation B.26. Introducing these characteristic equations, it

1Julia Levandosky, First-Order Equations: Method of Characteristics, Lecture notes from the course
Partial Differential Equations of Applied Mathematics, Stanford University, 2002.
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is possible to reduce the partial differential equation to a system of ordinary differential
equations.

B.3.2 Application

Equation 2.28 is equivalent to Equation B.26, so the corresponding ODE system is the
following

dt

ds
= 1 (B.30)

dr

ds
= vr (B.31)

dn

ds
= −

[2
r
vr + v′r

]
n(r, t). (B.32)

From Equation B.30 it is possible to conclude that the parameter s is the time t. Therefore,
Equation B.31 can be rewritten as

dr

dt
= vr = −ε

√
r exp

(
− r −Rh

H

)
; (B.33)

that is integrable by separating the variables. As a result, as McInnes (1993),

t = −1

ε

√
πHErfi

[ √
r√
H

]
+ C,

which is an implicit solution for the orbital radius, where the imaginary error functions
Erfi(z) is defined as

Erfi(z) = 2√
π

∫ z

0
exp (u2) du

and it holds
Erfi(z) = −jErf(jz).

To obtain an explicit solution, it is possible to introduce the approximation
√
r ≈

√
Rh,

approximating the actual distance with the reference altitude for the atmospheric model.
Equation B.33 becomes

dr

dt
≈ −ε

√
Rh exp

(
− r −Rh

H

)
,

whose solution is
exp

(r −Rh

H

)
+ ε

√
Rh

H
t = C̃. (B.34)

This approximation is accurate to order 10−2 for altitude below 1000 km (McInnes, 2000).
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From Equations B.31 and B.32 it is possible to write[2
r
vr + v′r

]dr
vr

= −dn

n

and the left-hand side of the equation can be integrated as∫
1

vr

[2
r
vr + v′r

]
dr = log

( 1

r2vr

)
+ c.

So the evolution of the density is described by

n(r, t) =
Ψ[G(r, t)]

r2vr(r)

where Ψ[G(r, t)] is an arbitrary function of the characteristic functions.

The function Ψ can be obtained from the initial distribution n(r, 0) at t = 0

Ψ(z) = n(r, 0)[r2vr(r)] = n(H log z +Rh, 0)[−εz−1(H log z +Rh)
5/2]

with the independent variable z = G(r, 0) = exp [(r −Rh)/H].

The solution of the evolution equation becomes

n(r, t) =
Ψ{exp [(r −Rh)/H] + (ε

√
Rh/H)t}

−εr5/2 exp [−(r −Rh)/H]
(B.35)

B.4 Modification of the shape of the initial distribution

The analytical method obtained from the continuity equation is able to modify the func-
tion shape to follow the cloud evolution. This point can be demonstrated considering a
case where the initial condition is defined by a normal distribution

n(r, 0) = nm exp [−λ(r −Rh)
2] (B.36)

where nm is a scale factor and Rh is the fragmentation distance as in Chapter 2. The
expression for n in Equation 2.43 can be rewritten as

n(r, t) =nm exp
{
− λ
[
H log

(
exp

[r −Rh

H

]
+ ε

√
Rh

H
t
)]2}

·

·
[
H log

(
exp

[r −Rh

H

]
+ ε

√
Rh

H
t
)
+Rh

]5/2
·

· 1

exp
[
r−Rh

H

]
+ ε

√
Rh

H t

1

r5/2 exp
[
− r−Rh

H

] .
(B.37)

231



b. demonstrations

Introducing

z̃ = H log
(
exp

[r −Rh

H

]
+ ε

√
Rh

H
t
)
+Rh (B.38)

Equation B.37 becomes

n(z̃) =nm exp [−λ(z̃ −Rh)
2]

z̃5/2

exp [ ˜z −Rh/H]
·
(
exp

[ z̃ −Rh

H

]
+ ε

√
Rh

H
t
)
·

·
[
H log

(
exp

[ z̃ −Rh

H

]
− ε

√
Rh

H
t
)
+Rh

]5/2
.

(B.39)

Equation B.39 demonstrates that the shape of the initial condition (nm exp [−λ(z̃ −Rh)
2])

is modified by a factor that depends on the dynamics of the problem.

B.5 2D formulation of drag effect

The continuity equation can be written as

∂n

∂t
+∇ • f = ṅ+ − ṅ−;

in the 2D case, the equation is written in the phase space of semi-major axis a and
eccentricity e, so the vector field f has two components

fa = van(a, e, t) fe = ven(a, e, t),

where va and ve come respectively from Equation 4.44 and Equation 4.45, so

va = −√
µa

cdA

M
ρ0 exp

(
− a−Rh

H

)
f(a, e,H)

ve = −
√

µ

a

cdA

M
ρ0 exp

(
− a−Rh

H

)
g(a, e,H)

(B.40)

where

f(a, e,H) = I0 + 2eI1 +
3

4
e2(I0 + I2) +

e3

4
(3I1 + I3) +O(e4)

g(a, e,H) = I1 +
e

2
(I0 + I2)−

e2

8
(5I1 − I3)−

e3

16
(5I0 + 4I2 − I4) +O(e4).

(B.41)

Following the approach of Gor’kavyi et al. (1997), the divergence in the phase space is
simply written in Cartesian coordinates, so that the continuity equation becomes

∂n

∂t
+

∂n

∂a
va +

∂n

∂e
ve +

[∂va
∂a

+
∂ve
∂e

]
n = ṅ+ − ṅ−. (B.42)
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The terms of sink and source are neglected also in this case, so applying the method of
characteristics the following system of ODEs is obtained

dt

ds
= 1 (B.43)

da

ds
= va(a, e) (B.44)

de

ds
= ve(a, e) (B.45)

dn

ds
= −

[∂va
∂a

+
∂ve
∂e

]
n(a, e, t). (B.46)

B.5.1 First characteristic

As both va and ve depend on both a and e, the first characteristic to solve is the one which
relates a and e:

da

de
=

va
ve

= a
f(a, e,H)

g(a, e,H)
. (B.47)

As in the previous case in 1D, here is necessary to introduce the approximation f(a, e,H) ≈
f(Rh, e,H) and g(a, e,H) ≈ g(Rh, e,H), so that the separation of variables can be ap-
plied to Equation B.47 obtaining

da

a
=

f(Rh, e,H)

g(Rh, e,H)
de. (B.48)

The term f(Rh,e,H)
g(Rh,e,H) cannot be integrated analytically in e, so it is expressed with a Maclau-

rin series expansion centred at e = 0

f(Rh, e,H)

g(Rh, e,H)
≈ 2H

H +Rh

1

e
+

11H3 + 19H2RH + 7HR2
H +R3

h

4H(H +Rh)2
e+O(e2); (B.49)

that holds for low eccentricity. Equation B.49 can be integrated in e obtaining∫
f(Rh, e,H)

g(Rh, e,H)
de ≈ 2H

H +Rh
log e+

11H3 + 19H2RH + 7HR2
H +R3

h

4H(H +Rh)2
e2 +O(e4); (B.50)

The first characteristic can then be written as

K1 +A log e+Be2 = log a (B.51)

with
A =

2H

H +Rh

B =
11H3 + 19H2RH + 7HR2

H +R3
h

4H(H +Rh)2

K1 =
a0

eA0 expBe20

(B.52)
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where a0 = a(t = 0), e0 = e(t = 0).

Equation B.51 fulfils the first requirement for the characteristics as it provides an explicit
expression to compute the value of the characteristic at different stages of the problem
evolution. To fulfil also the second requirement, it should be possible to obtain from
Equation B.51 an explicit expression for a and e. The case for a is straightforward as
from Equation B.51

a = K1e
A expBe2; (B.53)

the expression for e can be obtained introducing the Lambert W -function

e =

√
A

2B
W
[(
2A/2

a

K1

)2/AB

A

]
. (B.54)

The Lambert W -function is the inverse function of

f(W ) = W expW (B.55)

or, in another terms,
α = W (β) (B.56)

is the solution to
β = α exp(α). (B.57)

The Lambert W -function requires to be evaluated numerically, but it is usually imple-
mented in computing software such as in mathematica (where it is called ProductLog)
or in matlab (where it is called lambertw). This means that in theory the solution
can be easily implemented exploiting the built-in Lambert W -function; however, the
computational time is affected by this evaluation, so an alternative expression for the
characteristic may be considered.

Neglecting the term in e2 in Equation B.50 the first characteristic becomes

K1 +A log e = log a (B.58)

where A is the same as before and K1 becomes

K1 =
a0

eA0

as e20 is neglected. In this case, the expressions for a and e are simply

a = K1e
A (B.59)

e =
( a

K1

)1/A
. (B.60)
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b.5 2d formulation of drag effect

The accuracy of these two expressions for the first characteristic can be appreciated from
Figure B.1: the Equations B.40 are solved numerically to find the evolution of a and e

with time. Then, starting from the knowledge of a, Equation B.54 and Equation B.60
are used to obtain the corresponding approximated evolution of e. In Figure B.1 II order
approximation refers to Equation B.54 and I order approximation refers to Equation B.60.
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Figure B.1: Variation of the eccentricity with time with different approximations of
Equations B.40 for two different values of the initial eccentricity and fixed semi-major
axis of 500 km. II order approximation refers to Equation B.54 and I order approximation
refers to Equation B.60.

In the case of e0 = 0.01, the approximation with the Lambert W -function (Equation B.54)
follows very well the numerical solution; the expression from Equation B.60 instead
introduces a relative error of 8% compared to the numerical propagation2. As expected,
the results become worse if the eccentricity is increased up to 0.05 as in Figure B.1b. It
was already observed in Figure 2.39 that in a fragment cloud the 75% of the fragments
have an eccentricity value between 0 and a maximum value that depends on the altitude,
ranging from 0.14 at 500 km to 0.08 at 1000 km. This means that the approximation in
Equation B.54 and Equation B.60 maybe not accurate for all the fragments, but they
represent in any case an improvement compared to the assumption of circular orbits in
Chapter 2.

2The numerical propagation used as a reference for these cases includes the approximations f(a, e,H) ≈
f(Rh, e,H) and g(a, e,H) ≈ g(Rh, e,H).
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B.5.2 Second characteristic

Once the first characteristic is solved, it is necessary to solve the combination of other
two equations from the system of Equations B.43-B.45. The solution of the equation

de

dt
= ve(a, e)

requires a chain of approximations that leads to an expression not able to capture that
the decay depends on the exponential profile of the atmosphere. To keep a correct
representation of this phenomenon, it is necessary to solve the equation

da

dt
= va(a, e).

In detail,
da

dt
= −√

µa
cdA

M
ρ0 exp

(
− a−Rh

H

)
f(a, e(a),H)

≈ −
√
µRh

cdA

M
ρ0 exp

(
− a−Rh

H

)
f(Rh, e(a),H);

(B.61)

where e(a) come from Equation B.54 or Equation B.60. For the sake of simplicity, from
this point onwards only the first term of f is considered, so the previous expression
becomes

da

dt
≈ −

√
µRh

cdA

M
ρ0 exp

(
− a−Rh

H

)
I0(Rh, e(a),H) (B.62)

and separating the variables the following expression is obtained

exp
(
a−Rh
H

)
I0(Rh, e(a),H)

da = −
√
µRh

cdA

M
ρ0 dt. (B.63)

Unfortunately, Equation B.63 does not admit an explicit integral (neither an explicit
expression of an accurate approximation), so with this expression is not possible to
fulfil the requirements for the characteristics as it is not possible to write an explicit
integral, and, as a obvious consequence, it is not possible to invert its expression. For
this reason, the simplified approach described in Section 4.4 was developed. However,
the results in this Section may be used to identify a way to represent the connection
between the semi-major axis and the eccentricity. Alternatively, these expressions may
be integrated and inverted with appropriate numerical methods to obtain the advantage
of working directly on the debris density. This will be subject of future work to extend
the applicability of the method to elliptical orbits.
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C
Research data

Part of the work in this thesis was funded by epsrc (Engineering and Physical Science
Research Council) EP/K503150/1. In line with epsrc policy on research data man-
agement, The data generated for the validation of the propagation method and the
estimation of the relative velocity has been archived and made publicly available. This
chapter describes the structure of the database, the type of data and the relationship
with the results in the thesis. When using any of this data or publishing results derived
from analysis of this database, please cite this thesis or the corresponding published
papers as indicated in the following. Please contact the author for updated references
to the work.

C.1 Access to the data

Access to the database is open to the public but needs to be requested to the University of
Southampton. Please contact Dr. Camilla Colombo (C.Colombo@soton.ac.uk) to request
access.

C.2 Structure of the database

The database is organised in three main directories, respectively named

A-Propagation, with results from Chapters 2 and 4
B-VelocityEstimation, with results from Chapters 3 and 5
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c. research data

C-Applications, with results from Chapters 3, 5 and 6.

All data is saved as matlab .mat and .fig files.

C.2.1 Propagation

The folder A-Propagation contains the result of the numerical propagation of breakup
clouds, considering each fragment individually and describing their trajectories in terms
of the orbital parameters. The folder has three subfolders:

Averaged, with the results from different collision altitudes as summarised in
Figure 2.27 and Figure 4.14,
Energy, with the results from different collision energies as in Figures 2.32-2.34,
Inclination, with results from different inclinations of the parent orbit where

the collision occurs as in Figure 2.25.

In the folder Averaged there are ten files of with name cj.mat, with j going from 1
to 10 indicating the run of the breakup model. Each file loads in matlab a structure,
named cloud, with the following fields

• lc, characteristic length in [m],
• am, area-to-mass ratio in [m2 kg−1],
• mf, fragment mass in [kg],
• vv, velocity variation, ∆v, in [km s−1].

The result of the propagation of these clouds applied to different parent orbits are saved
in subfolders with name hxxxiyy, where xxx should be substituted with the altitude
in [km] and yy with the inclination in degrees. In each folder, the file po.mat is saved:
it is a structure containing the orbital parameters of the fragments in the cloud. Each
orbital parameter represents a field of the structure (e.g. av refers to semi-major axis)
and it is stored as a matrix having as number of columns the number of fragments and
as number of row the number of used instants of time. The value of the time used in the
evaluation of the trajectories are stored as well in the variable po, in the field tv.

In the folder Energy four subfolders can be found, which correspond to the four cases
in Figure 2.32. Also in this case, the subfolders contain a file with the parameters of the
cloud (cloud.mat) and a file with the resulting orbital parameters (po.mat).

Similarly, in the folder Inclination, ten subfolders can be found corresponding to
the simulation of a collision on a equatorial orbit in inc1 and then with inclination
increasing of ten degrees for each case, up to 90 degrees for the case in inc10. Also
in this case, the file with the parameters of the cloud (cloud.mat) and the one with the
resulting orbital parameters (po.mat) are stored.

All the data in the folder A-Propagation was used as a reference for the article
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F. Letizia, C. Colombo, and H. G. Lewis. Analytical model for the propagation of
small debris objects clouds after fragmentations. Journal of Guidance, Control, and
Dynamics, 38(8):1478–1491, 2015c

and

F. Letizia, C. Colombo, and H. G. Lewis. Multidimensional extension of the con-
tinuity equation method for debris clouds evolution. Advances in Space Research,
2015a. doi:10.1016/j.asr.2015.11.035. Accessed 8 December 2015.

C.2.2 Velocity estimation

The folder B-VelocityEstimation contains 100 subfolders corresponding to the cells
in Figure 3.5a and Figure 5.5a. The case VVT0F0 corresponds to the bottom-left corner
of the figure, VVT10F10 to the top-right corner. In this case the relevant data for the
validation in stored in the file pvt.mat, which contains the variable vresults, where the
eighth column is the result of the numerical procedure in Section A.3 and the eleventh
column is the result from Equation 5.9.

All the data in the folder B-VelocityEstimationwas used as a reference for the article

F. Letizia, C. Colombo, and H. G. Lewis. Collision probability due to space debris
clouds through a continuum approach. Journal of Guidance, Control, and Dynamics,
2015i. doi: 10.2514/1.G001382. Accessed 10 September 2015

and

F. Letizia, C. Colombo, and H. G. Lewis. Improved continuity equation method
for space debris cloud collision analysis, 2015e. Manuscript in preparation.

C.2.3 Applications

The folder C-Applications is organised considering the different types of applica-
tions identified:

CollisionMaps, with results as in Figure 3.12 and Figure 5.22;
EffectMaps, with results as in Figure 5.20;
EnvironmentalIndex, with results as in Chapter 6;
InfluenceMatrix, with results as in Figure 3.14;
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c. research data

SingleBreakup, with results as in Figure 5.18.

The directory CollisionMaps is organised in two subfolders, referring respectively to
ActiveObjects and InactiveObjects. The files saved in the folders are .mat file

and a .fig file as the one in Figure 3.12. For what concerns the inactive objects, the ID
of the simulations are coherent with Table 3.1. Each .mat file contains

• the evolution on the clouds generated by each cell (nconK),
• the evolution of the altitude of the studied object (hsv),
• the used time steps (tf),
• the spatial density at the target altitude for each simulated fragmentation (SPDfK),
• the resulting cumulative collision probability (in time) for each simulated fragmen-

tation (collprobK).

These results are part of

F. Letizia, C. Colombo, and H. G. Lewis. Collision probability due to space debris
clouds through a continuum approach. Journal of Guidance, Control, and Dynamics,
2015i. doi: 10.2514/1.G001382. Accessed 10 September 2015

and

F. Letizia, C. Colombo, and H. G. Lewis. Improved continuity equation method
for space debris cloud collision analysis, 2015e. Manuscript in preparation.

The directory EffectMaps contains the data used for the generation of Figure 5.20 (in
the subfolder UCS) and Figure 5.21 (in the subfolder Discos). In the main folder the
file event3.mat contains the matlab variable scenario with the resulting evolution of
the cloud in terms of density (n), on a grid in semi-major axis (a0v) and eccentricity (e0v),
at each time instant (tvet). In each subfolder, the file immap.mat contains the resulting
cumulative collision probability over time. The .fig files of Figure 5.20 and Figure 5.21
are also provided, together with a visualisation of the persistence of the fragments in
orbit, similarly to Figure 2.16. The resulting top ten affected spacecraft, their orbital
parameters and their mass are listed in the file targetlist.txt. These results are part
of

F. Letizia, C. Colombo, and H. G. Lewis. Improved continuity equation method
for space debris cloud collision analysis, 2015e. Manuscript in preparation.

The directory EnvironmentalIndex contains the .fig files of the visualisations of the
environmental index for the objects in the four considered databases:

• cnp... refers to the objects in Table 6.5,
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c.2 structure of the database

• csi... refers to the objects in Table 6.6,
• dis... refers to the objects in Table 6.2 and Table 6.3,
• tubs... refers to the objects in Table 6.4.

The data on the correlation between different couples of indices is also provided. All
the results are part of

F. Letizia, C. Colombo, H. G. Lewis, and H. Krag. Assessment of breakup severity
on operational satellites, 2015j. Manuscript submitted for publication.

The directory InfluenceMatrix contains the data of Figure 3.14 and Figure 3.16, both
for the 1D and for 2D analytical propagation. The .mat files contain the description of
the targets (target), the spatial density at the target altitude for each simulated frag-
mentation (SPDfK), and the resulting cumulative collision probability (in time) for each
simulated fragmentation (collprobK). These results are part of

F. Letizia, C. Colombo, and H. G. Lewis. Collision probability due to space debris
clouds through a continuum approach. Journal of Guidance, Control, and Dynamics,
2015i. doi: 10.2514/1.G001382. Accessed 10 September 2015.

The directory SingleBreakup contains the data of Figures 3.11, 5.18, and 5.19. The re-
sults of the two studied events are saved in two separated subfolders, RBE1 and RBE2.
For each event, the file pototal.mat contains the orbital parameters of all the objects pro-
duced by the fragmentation. The remaining .mat file contain the analysis for each object
in Table 3.1, with similar structure to the file saved in the folder CollisionMaps.
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F. Schäfer, M. Rudolph, and U. Johann. Fragmentation consequence analysis for LEO
and GEO orbits. In GreenOps Progress Meeting, Noordwijk, November 2013b. ESA AO
1/7121/12/F/MOS.

H. Sdunnus, P. Beltrami, H. Klinkrad, M. Matney, A. Nazarenko, and P. Wegener. Com-
parison of debris flux models. Advances in Space Research, 34(5):1000–1005, January
2004.

N. Smirnov, A. Nazarenko, and A. Kiselev. Modelling of the space debris evolution
based on continua mechanics. Space Debris, 2001.

251

http://puma.isti.cnr.it/dfdownloadnew.php?ident=/cnr.isti/2006-A3-1
http://puma.isti.cnr.it/dfdownloadnew.php?ident=/cnr.isti/2006-A3-1
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:LONG+TERM+EVOLUTION+OF+EARTH+ORBITING+OBJECTS#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:LONG+TERM+EVOLUTION+OF+EARTH+ORBITING+OBJECTS#0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.1460&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.1460&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/S0032063398000701
http://www.sciencedirect.com/science/article/pii/S0032063398000701
http://linkinghub.elsevier.com/retrieve/pii/S0032063398000701
http://linkinghub.elsevier.com/retrieve/pii/S0032063398000701
http://dx.doi.org/10.1016/j.asr.2015.05.035
http://dx.doi.org/10.1016/j.asr.2015.02.027
http://linkinghub.elsevier.com/retrieve/pii/S0273117704000754
http://linkinghub.elsevier.com/retrieve/pii/S0273117704000754
http://adsabs.harvard.edu/full/2001ESASP.473..391S
http://adsabs.harvard.edu/full/2001ESASP.473..391S


BIBLIOGRAPHY

M. E. Sorge. Satellite Fragmentation Modeling with IMPACT. In AIAA/AAS Astrodynam-
ics Specialist Conference, pages 1–11, Honolulu, August 2008. AIAA 2008-6265.

S.-Y. Su and D. J. Kessler. Contribution of explosion and future collision fragments to
the orbital debris environment. Advances in Space Research, 5(2):25–34, January 1985a.

S.-Y. Su and D. J. Kessler. Contribution of explosion and future collision fragments to
the orbital debris environment. Advances in Space Research, 5(2):25–34, January 1985b.

M. Sykes. Zodiacal dust bands: Their relation to asteroid families. Icarus, 9, 1990.

D. L. Talent. Analytic model for orbital debris environmental management. Journal of
Spacecraft and Rockets, 29(4):508–513, 1992.

S. Theil and H. Sdunnus. Assessing the short- and long-term collision risk due to frag-
mentation clouds. Acta Astronautica, 53(3):191–201, August 2003.

Union of Concerned Scientists. Satellite database, July 2014. [Online] Retrieved on
04/03/2015.

J. Utzmann, M. Oswald, S. Stabroth, P. Voigt, and I. Retat. Ranking and characteriza-
tion of heavy debris for active removal. In 63rd International Astronautical Congress.
International Astronautical Federation, September 2012. IAC-12-A6.2.8.

S. Valk, N. Delsate, A. Lemaı̂tre, and T. Carletti. Global dynamics of high area-to-mass
ratios GEO space debris by means of the MEGNO indicator. Advances in Space Research,
43(10):1509–1526, May 2009a.

S. Valk, A. Lemaı̂tre, and F. Deleflie. Semi-analytical theory of mean orbital motion for
geosynchronous space debris under gravitational influence. Advances in Space Research,
43(7):1070–1082, April 2009b.

D. A. Vallado. Fundamentals of astrodynamics and applications. Springer, 4th edition, 2013.
Pages 551–573, 619–688. ISBN: 978-1881883180.

R. V. d. Moraes. Non-gravitational disturbing forces. Advances in Space Research, 14(5):
45 – 68, 1994.

R. Walker, P. H. Stokes, J. E. Wilkinson, and G. G. Swinerd. Long-term collision risk
prediction for low earth orbit satellite constellations. Acta Astronautica, 47:707–717,
2000.

R. Walker, C. Martin, P. Stokes, and H. Klinkrad. Sensitivity of long-term orbital debris
environment evolution to the deployment of nano-satellite swarms. Acta Astronautica,
5(1):439–449, 2002.

A. E. White and H. G. Lewis. The many futures of active debris removal. Acta Astronautica,
95:189–197, February 2014.

252

http://arc.aiaa.org/doi/pdf/10.2514/6.2008-6265
http://dx.doi.org/10.1016/0273-1177(85)90384-9
http://dx.doi.org/10.1016/0273-1177(85)90384-9
http://dx.doi.org/10.1016/0273-1177(85)90384-9
http://dx.doi.org/10.1016/0273-1177(85)90384-9
http://www.sciencedirect.com/science/article/pii/001910359090117R
http://arc.aiaa.org/doi/abs/10.2514/3.25493
http://linkinghub.elsevier.com/retrieve/pii/S0094576502002059
http://linkinghub.elsevier.com/retrieve/pii/S0094576502002059
http://www.ucsusa.org/nuclear_weapons_and_global_security/solutions/space-weapons/ucs-satellite-database.html
http://linkinghub.elsevier.com/retrieve/pii/S0273117709001471
http://linkinghub.elsevier.com/retrieve/pii/S0273117709001471
http://www.sciencedirect.com/science/article/pii/S0273117708006807
http://www.sciencedirect.com/science/article/pii/S0273117708006807
http://www.sciencedirect.com/science/article/pii/0273117794900973
http://www.sciencedirect.com/science/article/pii/S0094576500001089
http://www.sciencedirect.com/science/article/pii/S0094576500001089
http://www.sciencedirect.com/science/article/pii/S0094576502000954
http://www.sciencedirect.com/science/article/pii/S0094576502000954


BIBLIOGRAPHY

C. Wiedemann, S. K. Flegel, J. Gelhaus, M. Möckel, V. Braun, and H. Krag. Flux cal-
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