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Abstract

Using gait as a biometric is of emerging interest. We describe a new model-based moving
feature extraction analysis is presented that automatically extracts and describes human gait
for recognition. The gait signature is extracted directly from the evidence gathering process.
This is possible by using a Fourier series to describe the motion of the upper leg and apply
temporal evidence gathering techniques to extract the moving model from a sequence of im-
ages. Simulation results highlight potential performance benefits in the presence of noise. Clas-
sification uses the k-nearest neighbour rule applied to the Fourier components of the motion of
the upper leg. Experimental analysis demonstrates that an improved classification rate is given
by the phase-weighted Fourier magnitude information over the use of the magnitude informa-
tion alone. The improved classification capability of the phase-weighted magnitude informa-
tion is verified using statistical analysis of the separation of clusters in the feature space.
Furthermore, the technique is shown to be able to handle high levels of occlusion, which is
of especial importance in gait as the human body is self-occluding. As such, a new technique
has been developed to automatically extract and describe a moving articulated shape, the hu-
man leg, and shown its potential in gait as a biometric.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Most people can recognise acquaintances by the way they walk, although it is not
just their gait that identifies them—for example, their hair style or clothing is usually
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recognisable. This research investigates the possibility of recognising people by way
of a gait signature as obtained by computer vision. We first review the field of bio-
metrics and present current approaches to gait recognition by computer vision.
There has been considerable study of gait in a number of fields, although there has
been little cross-fertilisation of ideas between these fields: psychological gait cues
have yet to find deployment elsewhere. Amongst this work, there are emergent tech-
niques aimed at recognising people by their gait. None of these techniques use a
known mechanical topology or medical studies, but concentrate more on heuristic
and statistical metrics. It is however possible to develop a model-based gait extrac-
tion technique from which a metric directly applicable to the mechanics of walking
can be generated. Before the performance advantages associated with such an ap-
proach are detailed, current research in gait and its allied fields shall be reviewed.

1.1. Biometrics

In today’s society, a reliable means of identification is in great demand. Incidents
like releasing a child from a day-care centre to a complete stranger or a welfare re-
cipient claiming benefit under six different identities could have been avoided with
improved means of identification. One study [29] has shown that one area where
technology has enhanced the ability to identify people is biometrics.

A biometric is a measure taken from a living person and used as a method of iden-
tity verification or recognition. This measure can be based on some physiological
characteristic, like a fingerprint, or some aspect of human behaviour, like handwrit-
ing. Currently, the main application for biometrics is in security, for access control.
It is anticipated that the stock of potential applications will increase as the tech-
niques mature. Potential future applications could include immigration control
and surveillance.

The areas currently under research include automatic face recognition, eye (ret-
ina) identification, fingerprints, hand geometry, vein patterns, and voice patterns. In-
deed, the use of retinal recognition is under investigation in the UK for biometric use
in ATM transactions. Recent surveys [11,32] reveal the immense wealth of research
in the field of biometrics, with many applications ranging from banking to security.
Even with the vast range of applications and research in the field of biometrics, gait
has appeared only recently [26].

In many applications of person identification, particularly those involving serious
crime, many established biometrics are obscured. The face may be hidden or at low
resolution; the palm is obscured; the ears cannot be seen. However, people need to
walk so their gait is usually apparent. This motivates using gait as a biometric. The
Oxford Dictionary definition of gait is ‘ Manner of walking, bearing or carriage as one
walks’ suggesting that studies can concentrate on different facets of a person’s walk.
In fact, a unique advantage of gait is ability to operate at a distance, when other bio-
metrics are of too low a resolution to be perceived. Apart from perceptibility, an-
other attraction of using gait is that motion can be difficult to disguise. Consider
for example a robbery situation. The robber will need to make access either quickly,
to minimise likelihood of capture, or without being too obvious, in order not to
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provoke attention. On escape, the robber will either exit at speed (if the crime is
known to have been observed), or in (apparent) leisure. The motion in both cases
is natural, for the subject will either not want to draw attention to themselves or will
want to move quickly. In this case, using gait as a biometric would appear attractive.

Prior lack of research in gait was perhaps due to technological limitation: analy-
sing gait involves processing a sequence of images and only recently have main-
stream architectures and image acquisition been able to offer the requisite
performance. Clearly, there are limits to the use of gait as a biometric. A clearer ex-
amination of the potency of some apparent limitations awaits development of a
practical gait recognition system. However, it is not unlikely that footwear can affect
gait, as can clothing. Equally, physical condition can affect gait such as pregnancy,
affliction of the legs or foot, or even drunkenness. These factors are not new to bio-
metrics: a face can have make-up or spectacles; ears can be obscured by hair. These
can be of natural occurrence, but could also be used for purposes of deception. De-
ception could go further, a subject can wear a mask and in palm recognition it is of
concern that hands can even be cut off. Human perception can be impeded by these
factors, but the major question concerns whether a biometric system can still per-
ceive the underlying characteristics of the biometric, regardless of the presence or ab-
sence of these factors. In the case of gait, this underlying characteristic can be the
musculature which essentially limits the variation of motion. However, factors such
as clothing, footwear, and physical condition must await investigation, since meth-
ods of recognising the basic nature of gait have yet to become established. Similar
to the role of facial expressions or make-up in automatic face recognition, these
factors would appear secondary to the principal drive of study of gait as a potential
biometric.

Other than its availability, or its naturalness, recognising gait is attractive since it
is non-invasive and requires no subject contact, in common with automatic face rec-
ognition and other biometrics. Clearly there is a view that gait can be used to recog-
nise individuals. This view is actually not new: Shakespeare used a rich lexicon
of adjectives to describe gait, including ‘princely,” ‘lion’s,” ‘heavy,” ‘humble,’
‘weary,” ‘forced,” ‘gentle,” ‘swimming,” and ‘majestic.’ Further, in The Tempest
[Act 4 Scene 1], Ceres observes

‘High’st Queen of state, Great Juno comes; I know her by her gait.’
Even more, in Troilius and Cressida [Act 4 Scene 5], Ulysses states

‘Tis he, I ken the manner of his gait; He rises on the toe: that spirit of his
in aspiration lifts him from the earth.’

The former is one of Shakespeare’s many observations concerning the ability to
recognise people by their gait; the latter includes a concise description of Diomedes’
demeanour. Clearly, Shakespeare’s observations are interpreted through current
English usage. However, the earliest dictionary definition of gait suggests a similar
meaning, given in Johnson’s Dictionary of the English Language [13] as ‘The manner
and air of walking’ and the first of the two quotes above is presented as an example
of usage.
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Accordingly, there appears not only to be a view that gait has potential as a bio-
metric, but also that there is application potential too, as gait appears to have several
practical advantages over other biometrics, and some application advantages in
common with them. There have been allied studies, particularly those in medical
studies for reasons of therapy. Also, there have been psychological studies concen-
trating on human capabilities. There have also been computer vision approaches
aimed to model and to track human targets through a sequence of images, though
not usually for recognition. These works are reviewed by [1] and more recently
[20]. Tracking approaches are potentially less suitable for gait as a biometric since
occlusion (temporal and spatial) can complicate implementation greatly.

1.2. Current approaches to automatic gait recognition

In what was perhaps the earliest approach to automatic recognition by gait, [27]
derived a gait signature from the spatio-temporal pattern of a walking person. Here,
in the XT dimensions (translation and time), the motions of the head and of the legs
have different patterns. These patterns were processed to determine the body mo-
tion’s bounding contours and then a five stick model was fitted. The gait signature
was derived by normalising the fitted model for velocity and then by using linear in-
terpolation to derive normalised gait vectors. This was then applied to a database of
26 sequences of five different subjects, taken at different times during the day. De-
pending on the values used for the weighting factors in a Euclidean distance metric,
the classification rate varied from nearly 60% to just over 80%, a promising start in-
deed. Clearly, a model was not used within the study. As such, it would appear dif-
ficult to confirm that the metric was indeed purely related to a subject’s gait.

Later, dense optical flow was used to derive a gait signature [15,16]. This model-
free approach developed a description of instantaneous motion, the shape of motion,
that varied with the type of moving object and type of motion. Applying this descrip-
tion to person recognition, discrimination was accomplished by periodic variations
in the shape of their motion. From a sequence of n + 1 images, n dense optical flow
images are generated. A set of m scalar characteristics (for instance, the centroid of
all moving points) that describe the shape of motion are derived from each optical
flow image. The values of these scalars are arranged to form m time series that rep-
resent the varying motion in the sequence. Each series shares the same fundamental
frequency, or a simple multiple, but with varying phase. These phase measurements
are the basis of the described gait signature. Phase measurements of different se-
quences are made comparable by subtracting a reference phase from the phase of
each of the remaining scalars, and as such there is no need for temporal alignment.
Each sequence is now characterised by m — 1 relative phases, forming a feature vec-
tor that is used to recognise individuals. Classification was accomplished by comput-
ing the mean phase vector for each subject and using it as an exemplar vector. Each
sequence is classified by the Euclidean distance of its phase vector to each exemplar
vector, the sequence being classified as the class of its nearest-neighbour exemplar
vector. The number of features in the feature vector was varied to find the subset
of features that would produce the best classification. Experimentation on a database
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of six subjects found that with as little as three features a good recognition rate
(90.5%) was achieved, plateauing at five features with a rate of 95.2%.

It would appear that the central goal of the work by [16] was to determine what
content of motion aids recognition rather than to develop a biometric metric using
this approach. Although demonstrating that a model-based approach is not neces-
sary to produce good recognition results, [16] expected that ‘discrimination would suf-
fer when the database of individuals became large; simple motion cues could identify
types of gait, but would no longer uniquely identify an individual.’

Another approach [21] was aimed more at generic object-motion characterisa-
tion, using gait as an exemplar of their approach. The approach was similar in func-
tion to spatio-temporal image correlation, but used the parametric eigenspace
approach to reduce computational requirement and to increase robustness. The ap-
proach first derived body silhouettes by subtracting adjacent images, with further
processing to reduce noise. Then, the images were projected into eigenspace, a well
established approach in automatic face recognition. Eigenvalue decomposition was
then performed on the sequence of silhouettes where the order of the eigenvectors
corresponds to frequency content. Recognition from a database of 10 sequences of
seven subjects showed classification rates of 100% for 16 eigenvectors and 88% for
eight, compared with 100% for the (computationally much more demanding) spa-
tio-temporal image correlation approach. Further, the approach appeared robust
to noise in the input images. Clearly, this is a statistical approach; the system can
only learn to classify labelled data. Should the system have been trained erroneously,
then the wrong identification will occur since a unique model of human walking has
not been assumed, rather that humans can be recognised from walking by the suc-
cessive distributions in a sequence of images.

Eigenspace transformation (EST) based on Principal Component Analysis (PCA),
or the Karhunen-Loeve Transform, has been demonstrated to be a potent metric in
automatic face recognition and gait analysis, but without using data analysis to in-
crease classification capability. A new approach combines canonical space transfor-
mation based on Canonical Analysis (CA) or Linear Discriminant Analysis (LDA),
with the eigenspace transformation, for gait analysis [9]. This gives a ‘statistical’ (ar-
ea-based) approach to automatic gait recognition wherein the image sequence is de-
scribed as a whole, and neither by a model- nor by a motion-based approach, but
one which describes the motion content.

Face image representations based on PCA have been used successfully for various
face recognition methods. However, PCA based on the global covariance matrix of
the full set of image data is not sensitive to class structure in the data. In order to
increase the discriminatory power of various facial features, [6] use LDA, also called
CA, to optimise the class separability of different face classes and improve the clas-
sification performance. The features are obtained by maximising between-class and
minimising within-class variations. Unfortunately, this approach has high computa-
tional cost. Moreover, the within-class covariance matrix obtained via CA alone may
be singular. Combining EST with canonical space transformation (CST) reduces the
data dimensionality and optimises the class separability of different gait sequences
simultaneously.
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On five sequences of five people from the Visual Computing Group, University of
California, San Diego [9,15] achieved a classification rate of 85% by CST alone
whereas 100% was achieved with combined EST and CST. Further, the clusters were
better separated by CST, suggesting that the technique would appear suited to larger
databases. A later extension [10] was based on using dense optical flow [16] and again
achieved 100% on the same data, showing that the best performance was achieved by
using dense optical flow which combined both vertical and horizontal motion com-
ponents. However, these techniques remain statistical in basis, describing human
motion by the statistics of a sequence of area distributions rather than any attempt
to match the data to a model.

Recognition of different kinds of gait motion was investigated by [18] and [19].
The trajectories of body parts were extracted from grey-level image sequences, and
feature vectors were then derived from this trajectory information. Optic flow was
used to determine the trajectories of the body parts in [18], whilst [19] modelled sev-
eral body parts and the background as mixture densities to extract the trajectories.
The feature vectors for the gait analysis were formed from the displacements of
the body parts in the x- and y-directions. Classification was performed using Hidden
Markov models, one trained for each kind of gait type. In common with all the sta-
tistical (area-based) approaches discussed in this section, the features derived for the
gait analysis in [18] and [19] are not based on a model of the human body or its mo-
tion. As such, the discriminatory powers of the classification will be limited to the
quantity and quality of the training data available.

1.3. Aims of the research

This paper explores the possibility of extracting a gait biometric from a sequence
of images of a walking subject without using markers. Sophisticated computer vision
techniques are developed, aimed to extract a gait signature that can be used for per-
son recognition. A model-based approach is sought to produce a biometric that has
high fidelity to the original data. Medical studies are used to develop the model. This
is a novel approach to gait recognition by computer vision, as current techniques
have concentrated on heuristic and statistical gait metrics. Naturally, the application
of a model will potentially alleviate the restrictions imposed on statistical (area-
based) approaches, namely that the extracted metric can be directly attributed to hu-
man motion. As such, this would appear to offer the potential for discriminating not
only gait, but also factors that affect gait.

A fundamental assumption within this work is that a model-based approach
should offer suitable potential for automatic gait recognition. Current established
approaches to automatic gait recognition are purely statistical: they derive a discrim-
inatory measure that is based on the motion content in a sequence of images rather
than a model based on the human body and its motion. The inherent advantages of a
model-based approach are the potential ability to handle appearance transforma-
tions and practical effects, such as occlusion. Appearance transformations imply that
an object’s shape will be distorted by the camera’s viewpoint. This can only be han-
dled in area-based approaches by inclusion of marker points in each scene. It is likely
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that a model-based method can handle such a distorted scene without marker points
since it relies on the presence of human motion in the sequence, and as such can in-
herently model its time history/future.

Furthermore, it would appear impossible for an area-based technique to explicitly
handle occlusion. The discriminatory measure derived in statistical techniques is
formed directly from the motion information of pixels in the image sequence. In
the case of an occluded object, where the motion information of the pixels has been
removed in some parts of the sequence, an area-based approach could fail since there
is no model with which to handle the missing information. A model-based technique
can overcome the reduced information by globally integrating the information gath-
ered locally in each image of the sequence. In this way, the importance of the infor-
mation in each individual image is dramatically reduced, so much so that an object
can be missing/occluded in several frames without affecting the extraction of the sig-
nature. The ability to handle occlusion successfully is fundamental to automatic gait
recognition. In practical applications the person can be occluded by accessories such
as briefcases, umbrellas, shopping bags or rucksacks. Also, the human body is self-
occluding in many of its motion types.

Similarly, secondary effects such as footwear and apparel cannot be analysed by
statistical techniques. The description of motion in the image sequence produced by
the statistical (area-based) methods cannot be extrapolated to include these effects as
the description has no basis in the mechanics of human motion. With a model-based
approach, these secondary effects can potentially be accommodated in the feature ex-
traction stage. For instance, a tired person will walk with less flexion of the legs, but
nevertheless the image sequence will still contain a moving person and as such its
model can still be extracted.

Initially, extant computer vision techniques were used to extract a gait biomet-
ric from a sequence of images [5]. Although a gait signature was successfully gen-
erated from the extracted features, there were several strategic problems.
Essentially, the use of extant techniques did not consider the potential perfor-
mance gains possible with sequence-based processing of moving features, being
more concerned with a frame-by-frame approach to moving feature tracking.
New modelling techniques were then developed to solve these problems. Using no-
vel temporal evidence gathering methods, a gait model can be extracted from an
image sequence and a signature based on this model generated totally automati-
cally. We could have improved matters by using one of the new approaches for
background subtraction to isolate moving subjects before analysis but instead
we chose to phrase our new approach as a conventional approach to feature ex-
traction, here targeted at extracting and describing moving shapes, from sequences
of images.

Previous medical studies on gait are reviewed in Section 2. New techniques devel-
oped to overcome the inherent problems discovered in the preliminary study are de-
tailed in Section 3. Section 4 outlines possible further work that would extend the
techniques discussed in the previous section. The conclusions in Section 5 summarise
the work presented in this paper and describe how well the aims of the research have
been met.
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2. Modelling human gait
2.1. Medical studies

The goal of most gait research has been to classify the components of gait. [23]
and [22] produced standard movement patterns for normal people that were com-
pared to the gait patterns for pathological patients [22]. No statistical or mathemat-
ical analysis was performed on the collected data.

Gait was considered by [22] as ‘a total walking cycle’—the action of walking can
be thought of as a periodic signal, with an associated frequency spectrum. [2] exam-
ined the frequency content of kinematic gait data, and showed that normal gait had a
maximum frequency component of 6 Hz. As such, kinematic gait data could be rep-
resented by a limited number of frequency components.

2.2. Gait description

The following terms are used to describe the gait cycle, as given in [23]. Fig. 1 il-
lustrates the terms described. A gait cycle is the time interval between successive in-
stances of initial foot-to-floor contact (‘heel strike’) for the same foot. Each leg has
two distinct periods; a stance phase, when the foot is in contact with the floor, and a
swing phase, when the foot is off the floor moving forward to the next step. The cycle
begins with the heel strike of one foot, the left foot for example. This marks the start
of the stance phase. The ankle flexes to bring the left foot flat on the floor (‘foot-flat’)
and the body weight is transferred onto it. The right leg swings through in front of
the left leg as the left heel lifts of the ground (‘heel-off’). As the body weight moves
onto the right foot, the supporting left knee flexes. The remainder of the left foot,
which is now behind, lifts of the ground ending the stance phase with toe-off.

PO AR

0% 50% 100%
Rt Heel Strike Lt Heel Strike Rt Hccll Strike

Rt Stance Rt Swing
Lt Swing Lt Stance
Duration of Total Rt Walking Cycle

E Single-Limb Support
= Double-Limb Support

Rt Stride Length
Rt-Lt Step Length Lt-Rt Step Length

Fig. 1. Relationship between temporal components of the walking cycle and the step and stride lengths
during the cycle.
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The start of the swing phase is when the toes of the left foot leave the ground. The
weight is transferred onto the right leg and the left leg swings forward to strike the
ground in front of the right foot. The gait cycle ends with the heel strike of the left
foot.

Stride length is the linear distance in the plane of progression between successive
points of contact of the same foot. Step length is the distance between successive con-
tact points of opposite feet. A step is the motion between successive heel strikes of
opposite feet. A complete gait cycle is comprised of two steps.

2.3. Characteristics of human gait

From the work carried out by [23] and [22] it can be concluded that if all gait
movements were considered, gait is unique. In all there appear to be 20 distinct gait
components, some of which can only be measured from an overhead view of the
subject.

Murray [22] found ‘the pelvic and thorax rotations to be highly variable from one
subject to another.” These patterns would be difficult to measure even from an over-
head view of the subject, which would not be suited to application in many practical
situations. [22] also suggested that these rotation patterns were not found to be con-
sistent for a given individual in repeated trials. As such, they would not appear suited
to an automated computer vision-based biometric system.

In [23] and [22], ankle rotation, pelvic tipping, and the spatial displacements of the
trunk (vertical oscillation, lateral oscillation, and forward displacement) were shown
to possess individual consistency in repeated trials. Naturally, given the resolution of
most general purpose cameras, the ankle is difficult to extract consistently, let alone
its rotation. Equally, the pelvis can easily be obscured by clothing, making a mea-
surement of its inclination easily prone to confusion and error. The spatial displace-
ments of the trunk are measured from the neck. Thus, the extraction of the these
displacements is hampered by a difficulty in finding the neck consistently and by
the fact that the neck, like the pelvis, is easily obscured by clothing. As such, these
components would be difficult to extract accurately from real images. Again, these
would appear unsuited to an automated system.

Since many features established by medical studies appear unsuited to a computer
vision-based system, the components for this investigation have been limited to the
rotation patterns of the hip and knee. These patterns are possible to extract from real
images and, from medical studies, appear to possess a high degree of individual con-
sistency and inter-individual variability.

2.4. Rotation pattern of the hip

Fig. 2 shows the rotation angles for the hip and knee, as measured by [22]. The
normal hip rotation pattern is characterised by one period of extension and one pe-
riod of flexion in every gait cycle. Fig. 3 gives the average rotation pattern as pre-
sented by [22], generated from a database of 60 subjects. The upper and lower
dotted lines indicate the standard deviation from the mean. In the first half of the
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Fig. 3. Mean hip rotation pattern [22].

gait cycle, the hip is in continuous extension as the trunk moves forward over the
supporting limb. In the second phase of the cycle, once the weight has been passed
onto the other limb, the hip begins to flex in preparation for the swing phase. This
flexing action accelerates the hip so as to direct the swinging limb forward for the
next step. The angle of rotation is measured as the angle between the line joining
the hip and knee, and the line passing through the hip point parallel to the ground.

2.5. Model of legs for gait motion

The potential of the periodic nature of gait for an analytic approach was first in-
vestigated by [14], who performed a feasibility study into using gait as a biometric.
An analytic approach was used, describing the legs and the motion of walking as a
model based on medical and perceptual studies. The human leg was modelled as two
pendula joined in series (Fig. 4). The upper pendulum modelled the thigh and was
suspended between the hip and the knee. The lower pendulum modelled the lower
leg suspended from the knee to the ankle. This pendulum model is backed by
[22]—for normal gait, the duration of successive temporal components and the
length of successive steps are rhythmic.’
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(a) (b)
Fig. 4. (a) Leg outline. (b) Pendulum model of a leg.

Kuan [14] extracted the hip rotation pattern for three subjects from a sequence of
images using computer vision techniques. The rotation patterns were curve fitted
manually to in-fill for missing data points. Fourier analysis was performed on the
rotation patterns, and the magnitude and phase spectra for each subject were exam-
ined. The magnitude plots showed some variation between subjects, whilst the phase
plots exhibited greater variation between subjects. The greater inter-individual vari-
ation of the phase spectra makes the phase information an attractive measure for
recognition. The manner in which the hip inclination changes is of as much interest
as the actual angle itself, and as such both the magnitude and phase information
were of use. Kuan concluded that this model-based approach looked promising,
but as yet insufficient for an automated non-invasive technique.

The frequency information of hip rotation appears to be attractive for recognition
as different walking speeds can be dealt with effectively. When fast walking was con-
sidered by [22] it was found that the increased ground speed was effected by an in-
crease in stride length and reduction in gait period. Both the hip and knee
exhibited greater extensions and flexions throughout the gait cycle in fast walking.
The frequency scaling property of the FT predicts that the effect of a reduction in
the period of the cycle is an expansion in frequency of the spectrum;

ran? ox(12), (1)

where X (jw) is the FT of f(¢), and a is a real constant. Given the relationship shown
above, the spectrum for fast walking might demonstrate the difference in speed by
appearing to be a stretched version of the free walking spectrum, keeping a char-
acteristic envelope for a given individual at different walking speeds—effectively, a
gait signature. The scaling effect of the spectrum for different walking speeds can be
eliminated by normalising the time axis for the hip rotation patterns to the length of
gait cycle in each case; the time scale will cover from 0% to 100% of the walking
cycle. In this way, direct comparisons between spectral data can be made, as the
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Fourier information is now independent of the fundamental frequency of the gait
cycle.

This study uses the model presented in [14] as the leg motion is periodic and each
part of the leg (upper and lower) appears to have pendulum-like motion. Fourier
theory allows periodic signals to be represented as a fundamental and harmon-
ics—the gait motion of the lower limbs can be described in such a way. Accord-
ingly, computer vision techniques were required to extract the measurements
from video sequences in an automatic manner to allow the investigation of remote
gait measurement as a potential biometric. This involved a re-examination of the
basic processes by which the measurements were derived, and new development
thereof.

3. Gait signature by evidence gathering

The preliminary study described in [5] demonstrated positive results in the use of
gait as a biometric measure. A gait signature was extracted, but not automatically,
using computer vision techniques and produced a high correct classification rate
on a small database of subjects. However, the techniques used in [5] had inherent
problems which would be likely to affect more general use of the technique, especially
on a larger database. These are discussed in this section. Novel vision techniques
have been developed specifically to overcome these problems and their motivation,
as well as their implementation, are described. Further experimentation shows
how these novel techniques can extract and describe gait, and results are presented
showing how they can be used to recognise people by their gait. Furthermore, the
new technique extracts the gait signature automatically from the image sequence,
without human intervention, one of the major aims of this work.

3.1. Previous work

The study performed in [5] described a novel model-based approach to gait recog-
nition, using the notion of gait as a periodic signal to create a gait signature. The
lower limbs were modelled as two inter-connected pendula and gait was considered
as the motion of these pendula.

Using image processing techniques, lines representing legs in a sequence of im-
ages were extracted using the standard Hough transform (SHT). The inclination of
the line representing the leg in each frame was collated to create the hip rotation
pattern for the subject. In-filling for missing data points was done by least-squares
analysis of the collected data points to an eighth-order polynomial. This could, in
hindsight, have been achieved by Fourier interpolation. Fourier analysis was per-
formed on the extracted hip rotation pattern using the Discrete Fourier transform
to find magnitude and phase information. The magnitude data and the phase-
weighted magnitude data were classified using the k-nearest neighbour rule. The
phase-weighted magnitude data was found to give a better correct classification
rate than just the magnitude data.
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This model-based approach uniquely gave a signature which could be directly re-
lated to the original image sequence. However, images were analysed singly, without
reference to the whole sequence. As such, the technique would be unable to handle
occlusion, except by interpolation such as by least squares.

Although the extracted hip rotation patterns in [5] concurred with those presented
in medical research [22,23], the idea of gait as a periodic function was not reflected in
the use of a polynomial to model the motion of the thigh. Any periodic signal, with
period 7T, can be represented by a Fourier series (FS). The motion of the thigh is
better represented as an FS rather than by polynomial fitting to the extracted data.
Also, greater noise immunity can be achieved when extracting temporal features in a
sequence of images by including the entire sequence in the evidence gathering pro-
cess. [24] described a Velocity Hough transform (VHT) technique that enables the
concurrent determination of structural and motion parameters of moving parametric
shapes in an image sequence. Essentially, the VHT includes motion within the para-
metric model. The polar representation of a circle radius » with co-ordinates xy, y, in
the first frame and moving with horizontal and vertical velocity, v, and v,, respec-
tively, has x and y co-ordinates at time ¢ as

x(t) = xo + rcos(0) + tv,, (2)

y(t) =y + rsin(0) + tv,, 3)

where 0 is an index to points on the circle’s perimeter. Votes are accumulated in a 5-
dimensional accumulator (xo, y, vy, vy, 7) from edge images of each image in the
sequence. The accumulator maximum corresponds to the best estimates of each of
the parameters describing the moving circle. The VHT was demonstrated to have
superior properties in low to moderate noise compared with a separately applied HT.

By combining VHT techniques with the FS representation of the hip rotation, a
feature-based human gait model can be extracted from a sequence of images. This
feature-based model has a high fidelity to the data, with a clear analytic justification.
Evidence gathering using the VHT offers greater immunity to noise and occlusion,
and produces a maximum likelihood estimate of the model parameters. By modelling
the hip rotation as an FS, the gait signature described in [5] can be extracted directly,
without intervention.

3.2. Modelling gait

The VHT is ideally suited for gait analysis as it considers both structural and mo-
tion information simultaneously. As such, features with a specified structure and
demonstrating a particular type of motion can be extracted from a sequence of im-
ages. Other work by [25] has extended the VHT to find moving articulated objects,
providing an excellent feature extraction primer for statistical approaches to gait rec-
ognition, since the technique isolates the moving area of interest. The following sec-
tions describe a gait model that can provide the biometric signature described in [5]
directly from the evidence gathering process. For a given feature, gathering evidence
using VHT techniques requires a structural motion model.
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3.2.1. Motion model of the thigh

The structural model of the thigh presents the edge point values of the model at
any time instant. Fig. 5 shows the model of the thigh used for temporal evidence
gathering. The motion of the model of the thigh is described by the displacement
functions ¢,(¢) and ¢, (¢), which control the movement of the hip, and the inclination
¢(t) which controls the thigh rotation. [23] state that ‘during walking the pelvis re-
mains relatively level.” Therefore, the vertical velocity v,(¢) is described by the aver-
age vertical velocity ¥, only,

o, (t) =V, (4)

where V, reflects the constant slope of the walking surface. The vertical displacement
¢,(t) of the hip can be modelled as

¢, (1) = . (5)

The horizontal motion of the pelvis has two main influences: the average ground
speed and the transverse rotation (about the y-axis) of the hip. The transverse ro-
tation of the hip is characterised by the graph in Fig. 6, which was obtained from
[22]. Even though the mean is not zero, reflecting bias on the measurement process,
the entire cycle can be observed to be sinusoidal in nature. Accordingly, using a
simple cosine to represent the influence of the transverse rotation, the horizontal
velocity v,(¢) can be described by

0,(t) = Vy + A cos(wot + V), (6)

where V; is the average velocity, 4 is the amplitude, and i is the phase of oscillation,
respectively, and o, is the angular velocity of the gait cycle. Using standard trigo-
nometric relations, 4 cos(wopt 4+ ) can be represented in a more simple form as:

A cos(mot + ) = A cos wyt cos Y — A sin wyt sin (7)
= 0.cos wyt — P sin wot, (8)

vy

VX c

Fig. 5. Model of thigh for temporal evidence gathering.
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Fig. 6. Transverse pelvic rotation [22].

where

o= Acosy 9)
and

f=Asiny. (10)

This actually simplifies later parameterisation in evidence gathering as the quanti-
sation of the phase parameter } € [—m,n] is now spread over two magnitude pa-
rameters. These magnitude parameters are more easily quantised as their effect on
the displacement c,(¢) is measured in units of pixels. Integrating Eq. (8) gives the
horizontal displacement of the hip, the constant of integration set to guarantee the
initial position ¢, (¢,(0) = 0) at # = 0. The function c¢,(¢) is given by

Cx(t):—w£+ <th+iSina)01+£C05w01). (11)
0 Wo Wo

3.2.2. Structural model of the thigh

The thigh is described by a point ¢ that represents the hip joint, or pelvis, and a
line passing through ¢ at an angle ¢. The pelvis has horizontal and vertical velocities
v, and v, respectively. These velocities produce the displacement functions ¢,(¢) and
¢,(t) from the initial coordinates of the hip (c.9, ¢y0), as described in Section 3.2.1.
The inclination of the line, ¢, is governed by the hip rotation model. The coordinates
of points on the moving line are given by

e = Cyo + ¢, (t) — Asin (1), (12)

ry = ¢y +¢,(1) + Acos P(t), (13)

where ¢,y and ¢, are the initial coordinate values of the hip and A can take any real
value to produce any point on the line. As in the VHT, Egs. (12) and (13) are used to
map edge points in the image space into an accumulator space whose axes are the
parameters of interest, namely c¢,, ¢,0, Vs, ¥, o, f, a9, by, and ¢;. Edge points from the
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entire sequence are used, the mapping equations reflecting the time instance of the
frame in which the edge points are in. Related edge points in different frames cast
votes for the same parameter values, the ones relating them together.

3.2.3. Creating a gait signature

For a constant walking speed, the hip rotation ¢(¢) is a periodic function with pe-
riod 7. An FS can represent any periodic signal with fundamental frequency
wy = 2n/T. For a real periodic signal, the FS representation can have the form

x(t) =ag+2)  R{qe™"}. (14)
k=1

The function ¢(¢) in Eqs. (12) and (13) can be modelled by the FS in Eq. (14). As
such, the inclination of the thigh is represented by a series of harmonics, as consistent
with observations from earlier medical studies [2] and the earlier model-based ap-
proaches to gait description. Also, Fourier series expansions of experimental data of
actual human locomotion have been used as a basis in modelling human figure
behaviour with emotions for animation purposes [30]. The method developed in [30]
defined a functional model based on the Fourier series expansion of joint data from
actual human behaviour. An extensive variation of movements could be generated
from this functional model. For instance, using the functional models for a normal
walk and a ‘tired’ walk, a parameter s € [0, 1] is used to interpolate between the two
models to produce a walk with different degrees of ‘tiredness.” Expressing exagger-
ated behaviours is achieved through extrapolation (|s| > 1) of the two models.
Similarly to [2], [30] found that the number of harmonics required to model the joint
motions were usually three, and at most seven—‘human locomotions are charac-
terised with a small number of Fourier coefficients.’

Using the rectangular form of a; = by + jc, in Eq. (14) gives an expression for

B(1);

N
$(t) = ay+ 2> _[by cos kaxt — ¢ sin ko], (15)
=1
where N is the number of harmonics. This equation reflects the periodic nature of the
hip rotation.

In [5] a gait signature was constructed from the frequency components of the hip
rotation. As this is a periodic signal, its Fourier Transform (FT) is a train of impulses
at the harmonics of the fundamental frequency. The amplitude of these impulses is
given directly from the coefficients a; of the FS representation:

X(jw) =Y 2mad(w — ko). (16)
k=—00
The FT of any function is a complex number that can be split into magnitude and
phase components using its real and imaginary parts. The FS coefficients a; are the
only complex numbers in Eq. (16). Using the form a; = b; + jc, X (jow) can be writ-
ten in terms of b, and ¢y;
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oo
X(jo) = Z 2nd(w — ko) [by + jex)- (17)
k=—00

From Eq. (17), the magnitude and phase components of the hip rotation pattern can
be found from the FS coefficients 4, and ¢;;

X (jw)| = 2= i 0(w — kwo)y/ b} + 3, (18)

k=—00

arg(X (jo)) = Zx: d(w — k) tan™! <Zk> (19)

k

k=—00

The feature extraction process generates values for the FS coefficients ay, b;, and ¢;.
As such, using Egs. (18) and (19), the gait signature can be directly extracted from
the evidence gathering method: there is now no need to apply separate Fourier
analysis. Accordingly, the frequency-based signature is derived directly from the
whole image sequence using a model-based approach, avoiding the problems in-
herent in the earlier formulation.

3.3. Implementing a VHT to extract a gait model

3.3.1. Reduced gait model extraction by VHT and SHT

A VHT was implemented to extract the gait model described in Section 3.2. Each
edge point in each frame of a sequence produced a set of possible initial coordinates
(40, ¢y0) for a given range of values of the remaining parameters. Eqs. (12) and (13)
produced this set of initial coordinates. The functions ¢,(¢), ¢,(¢), and ¢(¢) (Eqgs. (11),
(5) and (15), respectively) in Egs. (12) and (13) were formed using the values of the
remaining parameters, given the time ¢ of the frame of the current edge point. The
cells in the accumulator space that corresponded to each parameter combination
for the given edge point were incremented. The axes of the accumulator space were
the parameters of the model.

Angeloni et al. [2] showed that the magnitude of the frequency information of
the hip rotation pattern had no significant terms above 5Hz. As such, a full de-
scription of the hip rotation can be achieved with a fifth-order FS. The full gait
model would have the 11 parameters for the hip rotation model, six for the pelvic
model and a final parameter for the gait cycle period 7. Implementing a VHT to
extract this model would require an 18-dimensional accumulator space. With cur-
rent technology, this would be impractical to create and search, even for a small
number of possible values for each parameter. Table 1 lists the parameters along
with the equations in which they are used. The hip has average velocities ¥; and
¥, in the x and y directions, respectively. The horizontal motion of the hip has a
sinusoidal influence whose magnitude and phase is controlled by parameters o
and f (Section 3.2.1). The hip rotation is modelled by an FS with period 7 and
harmonic values of ay, by, and ¢;, where k =0,1,... N and N € [1,5] is the order
of the FS.
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Table 1
Parameters of gait model and the equations they are used in

Parameters Equation

v, o (t) =Vt

Veo 0, B o(t) = — ﬁ + (Kt + & sin wot + ﬁ cos (l)(]l)

(Oh) (Oh) [ON)

Cxo 7y = Co + ¢ (t) — Asin ()

0 ry = ¢y + ¢, (f) + Acos ()

ao, b, ¢ u .

0> Pk Sk o) =ap+2 Z[bk coskwot — ¢ sin kwot]
k=1
T wy =%

For the purposes of testing, a reduced gait model was used; a first-order FS was
used for the hip rotation model, reducing the model to 10 parameters. [7] described a
method to reduce the storage space required by conventional Hough transforms that
is directly applicable to the VHT. The accumulator space can be reduced to two 2-
dimensional spaces, one representing the c,oc,0 accumulator and the other for data
storage. The range of values for the remaining ‘search’ parameters were combined
exhaustively. For a given combination of these parameters, each frame in the se-
quence was then analysed in turn. Edge points from each frame incremented cells
in the 2D accumulator indexed by values for the initial coordinates (c,c,) for
the current combination of the remaining parameters. For any combination of the
search parameters an edge point, at a given time instance, is mapped onto a line
in the c,oc 0-plane. Bresenham’s line drawing algorithm [4] was used to cast the votes
in the accumulator space. Once all the frames had been processed, the accumulator
space was searched for a peak. A second 2D accumulator was used to store the peak
value and the values of the parameters that related to it. The peak in the first space
was compared with the peak in the second at the same coordinates (cy,c,0). If the
new peak was greater, the parameter information and peak height in the second ac-
cumulator space was updated to that of the newer peak. The approach naturally se-
lects the largest object, as usual in evidence gathering, though the accumulator space
could be weighted so as to cause selection of a different feature. Note that with this
technique, instances of the model that have the same initial coordinates (¢, ¢,0) can-
not be found, as one will overwrite the others (though this can be avoided in imple-
mentation). This method offered a reduction in storage space of the accumulator,
from a 10-dimensional space to two 2-dimensional spaces (for the reduced model).
There was negligible effect on the computation time since to create the first 2D accu-
mulator space the 10-dimensional parameter space must be exhaustively searched.

In order to provide a basis for comparison, a technique based on extant work was
used. As described in [24], the VHT demonstrates greater noise immunity compared
with the traditional temporal feature extraction method, the Hough Transform
Tracking (HTT) method. For a given feature, the HTT method applies the SHT
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to each frame in a sequence to extract the static parameter values the feature at the
time instances given by each frame. The temporal parameters are calculated from the
static parameters by interpolation. The next section compares the performance in
noise of the VHT and HTT when applied to extract the human gait model described
earlier.

3.3.2. Performance in noise

A sequence of synthetic images was produced using the reduced gait model, and a
VHT was implemented to extract the gait model parameters. An example is shown in
Fig. 7(a) where the long line indicates the position of the simulated leg. The short line
is for display only, depicting the position of the hip. Varying amounts of uniformly
distributed, black and white noise were added to the sequence, and the model was
extracted using both VHT and HTT techniques. The noise was added randomly
to each image in the sequence such that each image had the same amount of noisy
points, but in different positions. Fig. 7 shows examples of uniformly distributed,
black and white noise added to an example image with levels of 14% and 42%. In
the latter case it is impossible to determine the line in the static image by human
vision.

The VHT to extract the reduced human gait model was implemented as described
in Section 3.3.1. A restricted range of values for each parameter was used in order to
maintain the computational time at an acceptable level. The HTT was performed by
applying the SHT to each image in a given sequence, using established performance
constraints [31]. The parameters p and ¢ of the most prominent line extracted from
each frame, along with the time value ¢ for that frame, were used to calculate the
parameters of the human gait model. Least-squares analysis was used to fit this data
to the model.

The extracted model parameters were compared against the actual values of the
parameters used to produce the synthetic images, giving a Euclidean distance metric
to quantify the performance of the extraction technique. Since all of the parameters

(a) Original image (b) 14% added noise (c) 42% added noise

Fig. 7. Demonstrating uniformly distributed, black and white noise added to an image.
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did not have the same quantisation in the VHT implementation, the Euclidean dis-
tance metric could not be calculated merely as the root of the sum of squared differ-
ences in each set of extracted parameters. For example, a difference of unity in the
value of initial x coordinate ¢,; would not be as significant as that same difference
in the value of harmonic weight b;. As such, the difference for each parameter value
was normalised by dividing it by its quantisation value as used in the VHT. There-
fore, the Euclidean distance D between each model instance is given by

where P is the number of parameters in the human gait model, x; and y; represent the
ith parameter as extracted by the VHT and HTT, respectively, and ¢; is the quan-
tisation of the ith parameter. Table 2 lists the quantisation values for each param-
eter. Note that these values were determined through experimentation to give the
most satisfactory results. In this way, the Euclidean distance D given by Eq. (20)
represents the distance in accumulator space. For instance, a value of D = 50 for two
given extracted models implies that their parameters were an average distance of 50
cells apart in the accumulator space. Using the quantisation values given in Table 2,
this distance D = 50 produces a 50 pixel difference in values for the initial x-coor-
dinate ¢, or a difference of 0.5 radians (28.6°) in the harmonic weight b,.

Fig. 8 shows the performance of the VHT and the HTT techniques in extracting
the model parameters from the synthetic images with noise levels of 2%, 5%, and
then from 10% up to 42% in 2% steps. As Fig. 8 demonstrates, the VHT moving fea-
ture extraction method found the exact parameter values for the gait model even in
noise levels of 42%, wherein the static image of Fig. 7(c) the line could not be seen.
The performance of the HTT deteriorated at around the 30% level of noise. The ex-
tracted parameter values for the gait model were found to be progressively further
away from the actual values as the noise level was increased above 30%. The ex-
tracted model parameters for the 34% case were found to be quite far from the actual
values, compared to the distances for noise levels immediately above and below. This
appears due to the random process in which the noise was added, leading to there
being a line extracted in one of the images that was sufficiently out of place to effect
the least squares analysis to produce more distant parameter values. Similarly, the
comparatively small distance for the 38% case was due to the added noise affecting
the line extraction to find lines not too distant from the original. The least squares
analysis was able to produce parameter values that were not as erroneous as for

Table 2

Quantisation values used in the VHT and GA implementations
Parameters Quantisation value g;
Vos Ves oty By €05 €0 1 (pixel)
ao, by, ¢k 0.01 (radians)

T 0.04 (s)
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Fig. 8. Results of noise trials for VHT and HTT moving feature extraction techniques.

the surrounding levels of noise. This demonstrates the dependence of the HTT meth-
od on the structural information in every the frame of a sequence—one image with
missing data will mislead the extraction of the model parameters. It can also be
viewed to demonstrate practical advantage since the noise gives a varying back-
ground. Clearly, the VHT technique focuses better on the moving object and is less
distracted by background information.

Like all Hough-based processes, the VHT suffers from a high computational com-
plexity and storage cost. For problems of low dimensionality, Hough-based ap-
proaches to feature extraction are quick and precise, but it becomes rapidly
unfeasible to create and search an accumulator as the number of parameters to es-
timate increases. Using the technique for fast contour recognition presented in [7],
the storage and peak detection problem was reduced to that of two 2-dimensional
accumulator spaces (see Section 3.3.1). The computational complexity remains as
an exhaustive search of the parameter space was still required.

3.3.3. Implementation by genetic algorithm

Extracting model instances from images is effectively a problem in optimising the
defining function of the model for a given set of edge points. A Genetic Algorithm
(GA) [8] is an optimisation method that is shown to consistently outperform many
other search methods in solving hard optimisation problems. For a satisfactory sized
parameter space, the VHT implementation took the order of days to run on a P75
PC. The GA based VHT to extract the human gait model takes approximately 20 min
on the same parameter space, offering a speed-up factor of approximately 100. As
such, all further experimentation was performed using a GA based implementation.

In this GA implementation, each individual’s chromosome was the binary coding
of the parameters of the gait model. Each parameter was represented by n bits which
gave an integer index to a position within a specified range. Naturally, the value of n
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controlled the resolution for each parameter. The fitness was derived from the num-
ber of edge points matching those calculated for the (moving) template described by
the current values within the chromosome. The fittest individuals were selected as
those that had a greater probability that a spin of a biased roulette wheel would se-
lect them. Crossover was set to occur with a probability of 0.7 and mutation with a
probability equaling the reciprocal of the maximum population (the effect of which
was to complement the mutated bit). New generations were evolved until the stop-
ping criterion was satisfied where the stopping criterion was either when the average
fitness had evolved to 95% of the maximum fitness in the population, or when 200
generations had been reached. The final values provided by the GA were used to ini-
tiate a fine-grained VHT search.

3.4. Performance factor analysis

Due to the random nature of a GA, repeated trials of a GA on the same data set
are not guaranteed to produce the same result. This problem is further compounded
if the solution space is complex, containing many local peaks and valleys. Similarly,
if the problem is unimodal with a large peak compared to the surrounding space, a
GA will also have problems in finding consistent solutions. With the SHT for lines
and circles, the complex solution space can be smoothed by correct quantisation of
the parameters [31]. Even with this smoothing of the parameter space, it has not been
possible to extract consistent results when using a GA to find geometric primitives in
images [17]. In the work by [17], trials were repeated 100 times for a given image and
the parameters of the extracted shape were calculated as an average of the repeated
trials.

Due to the high dimensionality of the gait model, it is not possible to find optimal
quantisation values for the various parameters with the methods used by [31]. Also,
averaging the parameters determined in repeated trials [17] would not produce a vi-
able solution. Due to the complexity of the solution space, the GA is likely to find
one of the many false peaks that are due to anomalies present over the entire se-
quence, in at least one of the repeated trials. Accordingly, averaging a set of param-
eter values would be detrimental in finding an accurate solution.

Also, increasing the ‘run time’ of the GA with the intention of finding even fitter
solutions would not be adequate. The increased run-time could be achieved by ex-
tending the termination criteria—increasing the proportion of the highest fitness va-
lue on the population that the average fitness of the population must reach in order
for convergence, and hence termination, to occur. The effect of this would be an in-
crease in the number of solutions with the highest fitness value, rather than an in-
crease in the highest fitness value. The genes of the fittest chromosome would be
more thoroughly propagated throughout the population, and the decreasing proba-
bility of mutation p,, would ensure no deviation from these genes. In this way, if the
GA finds a false peak it will remain there and that solution would spread throughout
the population. As such, the method that has been employed has been to run 10 trials
on each sequence, with the same set of parameters, and select the trial with the high-
est fitness as the solution for that sequence.
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3.4.1. GA performance for occluded features

A characteristic of the VHT is that it can extract temporal features in scenes where
the feature has been occluded. This is attractive in extracting human gait models as
the human body is self-occluding in almost all its motions. As such, the GA based
VHT for gait analysis, GAVHT, was tested for the presence or absence of this char-
acteristic, at increasing levels of occlusion. The experimentation was performed on
sequences of edge images of walking subjects. The Canny edge detector with hyster-
esis thresholding was used to produce the edge images from the greylevel sequences.
The reduced human gait model (Section 3.3) was used in this performance experi-
ment. The parameters of the model were quantised with the values given in
Table 2. Also, the GA was implemented with a chromosome population of 500.

A major advantage of the VHT method of moving feature extraction over the tra-
ditional static, frame-by-frame moving feature extraction is its improved perfor-
mance in sequences where the feature has been occluded in some frames. As such,
an analysis of the GAVHT’s performance in extracting the gait model for an oc-
cluded subject was performed to verify that this occlusion immunity characteristic
of the VHT extraction method had been maintained in its translation to a GA.
Fig. 10 shows the extracted model for the unoccluded sequence for subject CM using
the GAVHT. The model used only a first-order FS to represent the hip rotation.

As Fig. 10 shows, the inclination of the hip is tracked throughout the cycle al-
though without much precision. This was due to the low order of FS used to model
the motion of the hip rotation, but for the purposes of this exercise it was sufficient.

The subject CM in Fig. 10 was occluded by simulating a column in the centre of
the field of view of the camera, between the subject and the camera. The illusion was
created by setting the pixels with the column to zero (black). Fig. 9 shows an example
of this process, with the column width set to 90 pixels, representing almost two fifths
of the image width.

A series of tests was then conducted on the sequence in Fig. 10. The same param-
eterisation and initialisation was used in all the tests, with the variable parameter be-
tween each sequence being the width of the occluding column. The width was varied
from 10 pixels to 150 pixels in increments of 20 pixels. The model parameters ex-
tracted by the GAVHT for the occluded sequences were compared against those

Fig. 9. Example of occluded image.
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F10 F11 F12

Fig. 10. Extracted reduced human gait model using GA implementation of VHT techniques for subject
CM.

extracted from the unoccluded sequence. The performance of the GA for gait anal-
ysis in extracting the model from these occluded sequences was measured using the
method described in Section 3.3.2. Fig. 11 shows the performance of the GAVHT for
the occluded sequences. As the graph in Fig. 11 demonstrates, the performance of
the GAVHT as the occluding column is widened remains comparable to its perfor-
mance in the unoccluded sequence. The accuracy of the model parameter extraction
deteriorates as the column width increases beyond 110 pixels, which represents al-
most half the image width. As such, the GA implementation of the VHT for gait
analysis is shown to possess improved performance for occluded objects, which is
characteristic of VHT techniques for extracting temporal features.

Fig. 12 shows the extracted model for an occluded sequence, with an occluding
column width of 90 pixels, for subject CM. The subject was completely occluded
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Fig. 11. Performance of GAVHT for occluded sequences with varying width of occluding column.

in four frames (F6, F7, F8, and F9) of the sequence, and partly occluded in two
frames (F5 and F10): accordingly, the feature of interest was missing in 50% of
the data available. Even with this amount of missing data, the subject’s hip rotation
was extracted with the parameter values only a single accumulator cell’s distance
apart from those extracted in Fig. 10, the unoccluded sequence. The initial x-coordi-
nate of the hip was also the same as that found in Fig. 10, as well as the horizontal
and vertical velocities, V; and ¥, respectively, the period T, and the parameter o.
Small discrepancies between the two extracted models occurred in the values of
the parameter f and the initial y-coordinate. Table 3 summarises the extracted pa-
rameter values.

3.5. Recognition results

A CCD array camera on a tripod without a shutter was used to collect data, and
its output was recorded on a video recorder. The camera was situated with a plane
normal to the subject’s path in an environment with controlled illumination. Data
collection was performed indoors, with lighting at a constant level. Subjects walked
in front of a plain, static background. Each subject wore a special set of trousers
that had a stripe down the middle of the outside of each leg. The new technique
does not actually rely on the stripe as the front of the leg equally would be ex-
tracted. However, the presence of the stripe allows clearer assessment of extraction
accuracy. In this way the camera-side leg could be distinguished visually from the
other leg at all times. Fig. 13 shows an example image of a walking person used in
this study.

Each subject was asked walk past the camera a total of ten times. From these ten
sequences, the first and last three were discarded and only the middle four sequences
were used for experimentation. In the first few sequences the subject would be getting
comfortable with the experiment, and in the last few the subject would be anxious to
finish the experiment. As such, the middle four sequences were considered to offer the
most consistent walking cycles.
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F10 F11 F12

Fig. 12. Extracted thigh model for subject CM from an occluded sequence, with the occluding column
width of 90 pixels.

Table 3
Extracted gait model parameters for unoccluded and occluded sequences of subject CM, from Figs. 10 and
12, respectively

Sequence Hip model Hip rotation model T

o B Cx0 0 Ve v, ay by Cy
Unoccluded -5 3 219 63 118 1 0 0.16 -0.02 1.12
Occluded -5 2 219 64 118 1 0 0.16 —-0.01 1.12

Analysis used images between successive heel-strikes of the same foot, ensuring
time alignment so that phase information could be compared and that subjects
were not recognised by the speed of their walk. In these initial studies, to obtain
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Fig. 13. Example image of a walking subject, subject 3.

meaningful information about the rotation pattern, it was essential that each subject
travelled at a constant velocity. Room was given to allow the subjects to accelerate to
a comfortable, constant walking speed before entering the field of view of the cam-
era. The video sequences were digitised into the PGM image format. Resolution was
reduced by halving the image size to 128 x 128 in order to speed processing.

Recognition analysis using the GAVHT, was initially performed on the walking
sequences for ten subjects. Edge images of the sequence were produced by applying
the Canny edge detector with hysteresis thresholding to the images. The GAVHT
was used to extract a maximum likelihood estimate of the parameters for the thigh
model (Section 3.2) in a given sequence. As an initial analysis of the performance of
these novel techniques, the gait model extracted from the walking sequences de-
scribed the hip rotation with a second-order FS. The full fifth-order FS was not used
so as to reduce the complexity of the parameter search space. The parameters of the
model were quantised with the values in Table 2, and the GA was again implemented
with a chromosome population of 500.

3.5.1. Extracting the gait model

Fig. 14 presents the extracted thigh model superimposed over the original se-
quence of images for subject IM. The inclination of the thigh appears to have been
found precisely in the majority of the frames. The model extraction showed less ro-
tation than the leg in the first frame of the sequence and then aligned itself with the
thigh in the second frame, only to over-shoot in the third. The accuracy was regained
in the fourth frame. In frames eight and nine, the estimated motion of the thigh was
not sufficiently fast to follow the true motion of the thigh in this part of the gait cycle.
This inaccuracy was most likely due to the use of just two harmonics to model the
thigh motion. As stated before, the motion of the thigh contains useful harmonic
content up to the fifth harmonic. The model extraction in the last frame of the se-
quence shows the correct inclination, but the position of the thigh appears to trail
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F10 F11 F12

Fig. 14. Walking sequence with extracted thigh model for subject IM. Frames run from left to right, and
top to bottom.

the hip. This was an inaccuracy in the estimation of the horizontal displacement of
the hip (see Section 3.2.1) rather than an error due to the hip rotation model. Note
that the estimated location of the hip was marked by a line normal to the long line
representing the thigh.

Using the parameters of the gait model extracted from the walking sequence, the
hip rotation pattern was given by Eq. (15) without the need for curve fitting. Fig. 15
shows the extracted hip rotation pattern for the gait cycle of subject IM shown in
Fig. 14. The extracted rotation pattern also compared well with the generalised
hip rotation pattern presented in medical research [22].

The GAVHT’s ability to handle occlusion was again demonstrated in the extrac-
tion of the thigh model for the gait cycle of subject DC, shown in Fig. 16. The
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Fig. 15. Hip rotation pattern extracted with the thigh model for the sequence in Fig. 14.

extracted thigh model matches well the expected position of the moving thigh even
though the subject’s hand was occluding the top of the thigh in the some of the
frames of the sequence. In the first frame of the sequence, the extracted inclination
appeared to be in advance, but in the second frame the model extraction aligned
itself precisely with the leg. A similar pattern occurred in the next two frames,
where the model extraction appeared to trail the thigh in the third frame and
aligned accurately in the fourth. Frames five, six, and eight showed a precise ex-
traction of the thigh, whilst frame seven showed the model to have a greater rota-
tion than the leg. In frames nine to eleven, the thigh inclination was extracted with
precision, but again in frame twelve the extraction described a greater rotation than
the thigh.

In Fig. 16, the estimated position of the hip was extracted with accuracy in the
first two frames, and then again in the middle four frames. In the remaining frames
the hip position appeared to trail the expected location of the hip, which was deemed
to be intersection of the front of the stripe with the waist line.

Fig. 17 shows the hip rotation pattern for the sequence in Fig. 16 as described by
the extracted parameters of the gait model.

3.5.2. Fourier analysis

The frequency information of the hip rotation was extracted directly from the ev-
idence gathering process. Eqs. (18) and (19) were used to calculate the magnitude
and phase of the frequency spectrum using the FS coefficients. For the gait cycle
of subject DC in Fig. 16, a second-order FS was used to model the hip rotation.
The magnitude and phase plots for this FS are shown in Fig. 18. Note that the Fou-
rier transforms reflect around 0 Hz. From the magnitude plot, it can be seen that in-
formation above the second harmonic is meaningless as the magnitude drops to zero
at and beyond the third harmonic. Accordingly, for k-nearest neighbour classifica-
tion the metric used to calculate the Euclidean distance D between test feature vec-
tors and training feature vectors was based on the components between 0 and +2 Hz.

Fig. 19 shows the magnitude and phase plots for the FS describing the hip rota-
tion pattern for the gait cycle of subject IM in Fig. 14.
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F10 F11 F12

Fig. 16. Walking sequence with extracted thigh model for subject DC. Frames run from left to right, and
top to bottom.

3.5.3. Classification results

For the classification analysis, two measures were compared; the Fourier magni-
tude and the phase-weighted Fourier magnitude. Walking sequences for ten subjects
were used, each subject having four walking sequences; three training sequences and
one test sequence. The measure for each test sequence was compared against those
for the training sequences. The k-nearest neighbour rule was used to classify the dif-
ferences in these measures for £ = 1 and k& = 3. Table 4 summarises the correct clas-
sification rates (CCR) for the two measures. Unlike the earlier study [5], the nearest
neighbour classification led to the same classification performance as the 3-nearest
neighbour rule.
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Fig. 17. Hip rotation pattern extracted with the thigh model for the sequence in Fig. 16.
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Fig. 18. Magnitude and phase plots for hip rotation as described by FS coefficients for gait cycle of subject
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Table 4
Overall classification performance
No. of nearest neighbours Magnitude CCR Phase-weighted magnitude CCR
k=1 80% 100%
k=3 80% 100%

Classification analysis showed that the phase-weighted Fourier magnitude offered
a better classification rate (100%) than just the Fourier magnitude (80%), verifying
earlier work in [5]. This suggests that subjects are recognised not only by flexion,
but also by the time when it occurs; both the phase and the magnitude of the oscil-
latory motion would intuitively appear to describe a particular pendulum better. Di-
rect generation of the Fourier information from the evidence gathering process was
possible using the FS coefficients, and as such no further transform processing was
required. Using this evidence gathering technique, improved classification rates, of
100% for both k =1 and k = 3, were achieved compared to those obtained using
the computer vision techniques in [5], on the same data being 80% and 90% for
k=1 and k = 3, respectively.

3.5.4. Statistical analysis

A statistical analysis was performed on the experimental data to establish a basis
for the improved classification performance of the phase-weighted Fourier magni-
tude metric over the Fourier magnitude metric. A statistical measure was required
that described the distribution of subject, or class, clusters in the feature space.
The separation S between due to class means, normalised with respect to class co-
variances, was used. The separation S;; between subjects i and j is given by

= im - m)[*5 ] 21

where m; is the mean and X, is the covariance of class i. This measure is the first term
of the Bhattacharyya-distance.
The mean signature m; for each class i is calculated by

1 M—1 .
ml,k:M;X]‘ka k:Oala"'va (22)

where M is the number of experiments for class i, N is the number of harmonics (as
used in Eq. (15)) and x’ is an M x N data matrix of signatures for class i. The co-
variance matrix X; is given by

1 M—1 ) ]
==Y (xj—m) (xj - m). (23)
M =
The data matrix x’ for each subject was generated using the Fourier magnitude
metric and the phase-weighted Fourier magnitude metric. Figs. 20(a) and (b) illus-
trate the separation S as calculated from the Fourier magnitude metric and the
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Fig. 20. Separation S of mean subject signatures, normalised with respect to subject covariances.

phase-weighted Fourier magnitude metric, respectively. The separation was nor-
malised to be in the range [0,1]. As Fig. 20 shows, the phase-weighted Fourier
magnitude metric demonstrates a greater separation between the mean signature of
each subject in the database than the Fourier magnitude metric, as the points are
much brighter in Fig. 20(a) than they are in Fig. 20(b).

Using the separation S, the average class separation was calculated for both met-
rics. Table 5 shows that the phase-weighted Fourier magnitude metric has a greater
average distance between subjects than the Fourier magnitude metric. This suggests
that a better CCR could achieved using the phase-weighted Fourier magnitude met-
ric over the Fourier magnitude metric, a suggestion that is supported by the classi-
fication results in Table 4. The average separation between subjects for a given metric
indicates its relative performance to other metrics on a given database. It would be
difficult to use this measure to estimate generalisation capability (the size of popula-
tion that the metric could perform satisfactorily on) since new subject signatures
could naturally lie outside the space defined by the current set of gait signatures.
Clearly, since the average distance is larger for the phase-weighted data than it is
for the magnitude data, the phase-weighted data would appear to be able to handle
a larger population with equal performance (should the signatures fall within the
space already defined) since the potential for confusion is much less than for magni-
tude data alone. However, the improved CCR of the phase-weighted Fourier

Table 5
Average separation between subjects for Fourier magnitude metric and phase-weighted Fourier magnitude
metric

Metric Average separation

Fourier magnitude 0.105
Phase-weighted Fourier magnitude 0.219
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magnitude signature over the Fourier magnitude signature has been predicted
through a statistical analysis of the experimental data.

4. Further work

The aims of the research initially outlined were fulfilled. In this process, several
areas were identified for further study. Preliminary experimentation was performed
into investigating the extension of the human gait model itself to encompass other
limbs. Including the lower legs, or even the torso or arms, into the model has several
implications. Firstly, there is the problem of how to handle the ever increasing di-
mensionality of the model. GAs offer one solution to the dimensionality problem.
Also, the relative independence of each limb can be explored to maximise paralleli-
sation of the model extraction. Secondly, given the extraction of multiple limbs there
exists the problem of how this information can be combined to achieve the best dis-
criminatory power in the classification process.

Also, the pre-processing of the images can be investigated for more reliable and
accurate extraction of model parameters. Some pre-processing techniques and their
potential implications are discussed.

Application of the technique described in Section 3 to a wider database is required
to verify and improve the recognition performance. Also, the effects of footwear,
running, weight-bearing, and loose apparel (and without stripes) on the classification
rate requires study. In this research the data for each subject was obtained in the
same session. This is not representative of a practical application and therefore sub-
ject data should be obtained on different occasions. This will allow the variability of
signatures for a given individual to be assessed to establish possible class bounds. It
would also appear worthwhile to assess the potential effect of background, though
the simulation tests in noise (Section 3.3.2) have indicated good ability to handle
background. Clearly, imagery with multiple moving people will require a new strat-
egy to interpret the accumulator space.

The extraction of the human gait model from different camera perspectives of the
walking subject must be addressed and evidence gathering techniques for these alter-
native view points developed. Work by [3] extracted 3D trajectories of moving ob-
jects in a scene. This work assumed all motion to be contained in a given
(ground) plane, allowing the 3D trajectories to be tracked with a single camera. Ap-
plication of this tracking technique to gait model extraction from varying camera
perspectives requires investigation.

4.1. Extending the human gait model

The most basic extension to the human gait model is the addition of the lower leg.
This entails the addition of a second moving line, with a periodically changing incli-
nation, to the structural model. Similarly, the knee rotation must be included in the
motion model. The position of the fulcrum (knee) for this second moving line (shin)
is controlled by the motion and structure of the original line (thigh). To calculate the
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position of the knee, the thigh requires a length ¢/. Similarly, the shin can be given a
length kI, allowing even further extension to the inclusion of the foot. The extended
human gait model is shown in Fig. 21. The motion model for the human gait model
remains as described in Section 3.2.1, but with the addition of the knee rotation 6(¢).
As with the hip rotation ¢(¢), the knee rotation 6(¢) can be modelled by a FS:
L
0() =ap+2 Z[bk cos kmgt — ¢ sin kwyt], (24)
=1
where L is the number of harmonics used to describe the knee rotation 60(¢). The
structural model for the human gait model requires a slight modification to ac-

commodate the addition of the lower leg. An arbitrary point r on the model is now
described by

_ {c(t) +u() 0<a<tl,

K(1) + ip(t) 11 <A<t +kl, (25)

where ¢/ and k/ are the lengths of the thigh and shin, respectively, ¢(¢) is the position
vector of the pelvis, u(¢) is the unit vector of the direction of the thigh, k(¢) is the
position vector of the knee, p(¢) is the unit vector of the direction of the shin, and A
can take any real value between 0 and ¢/ + kI. The values of k(¢) and p(¢) are given by

k() = c(t) + tlu(r), (26)

p(1) = (= sin[p(z) — 0(1)], cos[g (1) — 0(1))), (27)

where ¢(¢) is the hip rotation and 0(¢) is the knee rotation.

vy

Fig. 21. Extended human gait model, including thigh and shin.
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The GA for gait analysis was modified to extract the extended gait model de-
scribed above. Fig. 22 shows this extracted model for subject RW. Both the rotation
of the thigh and knee were modelled by second-order FS in the model extraction in
Fig. 22. The inclination of the thigh appears to have been precisely extracted
throughout the majority of the sequence. Frames four and ten show the thigh extrac-
tion to have a greater rotation than perceived for subject’s thigh. The rotation of the
knee appears to have been extracted with less accuracy. This is especially evident in
frames four, five, and seven to nine. This could be due to its dependence on the pre-
cision of the thigh extraction. Also, from the medical studies described in chapter 2,
the knee rotation characteristically has a rapid and large change in inclination over
the latter part of the gait cycle, as it goes into flexion then extension. This behaviour
will not have been faithfully reproduced by the second-order FS used to represent the
knee rotation in this extraction. The greatest inaccuracies in the model extraction
seem to have been in the motion of the pelvis. Slight inaccuracy in the extracted av-
erage velocity V; resulted in the model extraction falling behind in the final frames,

F10 F11 F12

Fig. 22. Extracted human gait model for subject RW, model extended to include lower leg.
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eleven and twelve. Improved extraction of the two rotation patterns with a higher
order FS would improve on the determination of the pelvic motion parameters.
However, this example was sufficient to demonstrate the potential for expansion
of the model.

By extending the human gait model to include the lower leg, the rotation pattern
of the knee can be used as another possible feature in the classification process. [12]
have shown that using orthogonal features can improve classification rates. In this
work, it was shown that using several orthogonal feature measures to produce an ex-
tended feature vector gave improved recognition of faces. Taken individually, the
measures did not correctly classify all test images. When each measure was given
an equal weight in an extended feature vector, all test images were correctly classi-
fied. This extended feature vector could be applicable to gait recognition.

Indeed, [16] demonstrated that an increased number of features in the feature vec-
tor improved correct classification rates for gait recognition. Their approach ex-
tracted a feature vector based on a number of scalars characterising the shape of
motion in a sequence of images. Using only a single phase feature, correct classifica-
tion rate was 90.5%, increasing to a maximum of 95.2% with five features. Although
experimentation was only performed on a limited database, the potential of increas-
ing the number of features in the feature vector to improve classification rate in gait
recognition is clearly demonstrated.

4.2. Pre-processing of image data

Relatively little pre-processing was performed on the images in the walking se-
quence; only the Canny edge operator was applied to produce edge images of the in-
put data. Essentially, the human gait model describes a moving line whose
inclination is constrained by a periodic signal and velocity governed by some initial
conditions and characteristics. Further work could explore the effect on the model
parameter extraction when the evidence gathering process is performed on line im-
ages rather than edge images. These line images can be produced by SHT for lines.
Due to the nature of the voting method in the SHT, in complex noisy scenes contain-
ing many various sized lines the shortest lines are unlikely to be detected. As such,
the use of the SHT for producing line images is limited.

A pyramidal approach to the Hough transform for lines, the Hierarchical Line
Finder (HLF), was proposed by [28], wherein a Hough transform was performed
at the base of the pyramid and the detected line segments were then reaccumulated
at each level of the pyramid. The HLF suffered from a quantisation effect in the re-
accumulation. Further to this approach, the Hierarchical Hough transform [33]
(HHT) combines a hierarchical framework with a local-to-global line detection
scheme to ensure that small, but meaningful, lines are not lost. Again the Hough
transform is performed at the base of the pyramid and in the upper levels a merging
process, based on distance discrimination between lines, is used to merge similar lines
together. This avoids the quantisation effect of a re-accumulation at each level.
Fig. 23 shows HHT applied to an image, and the extracted lines superimposed on
the original image.
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(a) Original image (b) HHT line extraction (c) Extracted lines superim-
posed on original image

Fig. 23. Line extraction using the HHT for lines.

(a) Original image (b) SHT line extraction (c¢) Extracted lines superim-
posed on original image

Fig. 24. Line extraction using the SHT for lines.

Comparing the line extraction of the HHT with the results of the SHT applied to
the same image (Fig. 24), shows that the HHT line extraction produces a less noisy
image. Examination of the trailing right foot of the subject demonstrates that the
HHT extracted the contour of the sole of the foot, whilst this feature was missed
by the SHT. The HHT could be used as a second stage of pre-processing to the
GA for gait analysis. Accordingly, this promotes the investigation into a technique
that incorporates HHT methodology for extracting temporal features—a Hierarchi-
cal Velocity Hough transform (HVHT), perhaps.

5. Conclusions

Previous work in [5] showed that a feature-based method could be used for gait
recognition. It also showed that a gait signature based on the phase-weighted Fou-
rier magnitude offered an improved correct classification rate over one based on just
the Fourier magnitude or phase. Although these techniques achieved positive results,
there were several strategic problems. The work described in this paper sets about
solving those problems.

Greater immunity to moderate noise and feature occlusion when extracting
temporal features in a sequence of images was achieved by using VHT evidence
gathering techniques. All the frames in the image sequence were used in the
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evidence gathering process, allowing the concurrent extraction of both structural
and temporal parameters of the feature. An improved human gait model was de-
scribed, having both a structural and temporal description of the upper leg. The
hip rotation was modelled by a FS, paralleling earlier medical studies that de-
scribed gait as a periodic signal. This FS description of the thigh motion allowed
the generation of the gait signature directly from the evidence gathering process,
via the FS coefficients.

A VHT for extracting the human gait model was implemented, and its perfor-
mance was compared with the traditional Hough transform tracking (HTT) method
for extracting temporal features from image sequences. Testing on a synthetic set of
images, the VHT implementation was found to have better noise immunity than the
HTT method.

Applying VHT methods to extract this new human gait model from a sequence of
images required a high dimensional parameter space to be created and searched,
which was unfeasible with current technology. A GA was implemented to perform
this search, effectively using a multi-frame template matched across the entire se-
quence of images to extract model instances. The GA reduced the computational
time to an acceptable level. The GA was applied to a sequence of images in which
the subject had been (synthetically) occluded in some frames of the sequence. The
extracted model parameters were shown to be comparable to those extracted from
the unoccluded sequence. This demonstrated that the GA possessed the VHT’s char-
acteristic immunity to occlusion.

The experimental results for a database of ten subjects showed that the GA for
gait analysis could extract parameters for the human gait model with a high fidelity
to the original image data. Fourier analysis was not required to be performed on the
hip rotation patterns of the subjects to obtain their Fourier magnitude and phase
components. This information was generated directly from the FS describing the
hip rotation. Gait signatures were formed using the magnitude information alone
and the phase-weighted magnitude information. Classification was done using the
k-nearest neighbour rule, and the results verified that an improved CCR (100%)
was achieved when using the phase-weighted magnitude information rather than just
the magnitude information (80%). A statistical analysis has shown how the phase-
weighted Fourier data improves performance over the magnitude data, by resulting
in much greater cluster separation as such confirming improved classification perfor-
mance.

Using VHT techniques implemented as a GA for gait analysis, a gait signature
was extracted from a walking sequence of images that was formed from parameters
found directly in the evidence gathering process. The gait signature was generated
using five parameters from the human gait model—the second-order FS representing
the hip rotation. This biometric measure was found to give good discriminary per-
formance on a small database of subjects. The gait signature as generated by this no-
vel temporal feature extraction technique gave a perfect CCR (100%) and it is not
unlikely that future experimentation on a larger database will predicate further im-
provement on the current model to match this performance, perhaps along the lines
suggested as further work.
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