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Abstract

Using gait as a biometric is of emerging interest. We describe a new model-based moving

feature extraction analysis is presented that automatically extracts and describes human gait

for recognition. The gait signature is extracted directly from the evidence gathering process.

This is possible by using a Fourier series to describe the motion of the upper leg and apply

temporal evidence gathering techniques to extract the moving model from a sequence of im-

ages. Simulation results highlight potential performance benefits in the presence of noise. Clas-

sification uses the k-nearest neighbour rule applied to the Fourier components of the motion of

the upper leg. Experimental analysis demonstrates that an improved classification rate is given

by the phase-weighted Fourier magnitude information over the use of the magnitude informa-

tion alone. The improved classification capability of the phase-weighted magnitude informa-

tion is verified using statistical analysis of the separation of clusters in the feature space.

Furthermore, the technique is shown to be able to handle high levels of occlusion, which is

of especial importance in gait as the human body is self-occluding. As such, a new technique

has been developed to automatically extract and describe a moving articulated shape, the hu-

man leg, and shown its potential in gait as a biometric.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Most people can recognise acquaintances by the way they walk, although it is not

just their gait that identifies them—for example, their hair style or clothing is usually
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recognisable. This research investigates the possibility of recognising people by way

of a gait signature as obtained by computer vision. We first review the field of bio-

metrics and present current approaches to gait recognition by computer vision.

There has been considerable study of gait in a number of fields, although there has

been little cross-fertilisation of ideas between these fields: psychological gait cues
have yet to find deployment elsewhere. Amongst this work, there are emergent tech-

niques aimed at recognising people by their gait. None of these techniques use a

known mechanical topology or medical studies, but concentrate more on heuristic

and statistical metrics. It is however possible to develop a model-based gait extrac-

tion technique from which a metric directly applicable to the mechanics of walking

can be generated. Before the performance advantages associated with such an ap-

proach are detailed, current research in gait and its allied fields shall be reviewed.

1.1. Biometrics

In today�s society, a reliable means of identification is in great demand. Incidents

like releasing a child from a day-care centre to a complete stranger or a welfare re-

cipient claiming benefit under six different identities could have been avoided with

improved means of identification. One study [29] has shown that one area where

technology has enhanced the ability to identify people is biometrics.

A biometric is a measure taken from a living person and used as a method of iden-
tity verification or recognition. This measure can be based on some physiological

characteristic, like a fingerprint, or some aspect of human behaviour, like handwrit-

ing. Currently, the main application for biometrics is in security, for access control.

It is anticipated that the stock of potential applications will increase as the tech-

niques mature. Potential future applications could include immigration control

and surveillance.

The areas currently under research include automatic face recognition, eye (ret-

ina) identification, fingerprints, hand geometry, vein patterns, and voice patterns. In-
deed, the use of retinal recognition is under investigation in the UK for biometric use

in ATM transactions. Recent surveys [11,32] reveal the immense wealth of research

in the field of biometrics, with many applications ranging from banking to security.

Even with the vast range of applications and research in the field of biometrics, gait

has appeared only recently [26].

In many applications of person identification, particularly those involving serious

crime, many established biometrics are obscured. The face may be hidden or at low

resolution; the palm is obscured; the ears cannot be seen. However, people need to
walk so their gait is usually apparent. This motivates using gait as a biometric. The

Oxford Dictionary definition of gait is ‘Manner of walking, bearing or carriage as one

walks’ suggesting that studies can concentrate on different facets of a person�s walk.
In fact, a unique advantage of gait is ability to operate at a distance, when other bio-

metrics are of too low a resolution to be perceived. Apart from perceptibility, an-

other attraction of using gait is that motion can be difficult to disguise. Consider

for example a robbery situation. The robber will need to make access either quickly,

to minimise likelihood of capture, or without being too obvious, in order not to
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provoke attention. On escape, the robber will either exit at speed (if the crime is

known to have been observed), or in (apparent) leisure. The motion in both cases

is natural, for the subject will either not want to draw attention to themselves or will

want to move quickly. In this case, using gait as a biometric would appear attractive.

Prior lack of research in gait was perhaps due to technological limitation: analy-
sing gait involves processing a sequence of images and only recently have main-

stream architectures and image acquisition been able to offer the requisite

performance. Clearly, there are limits to the use of gait as a biometric. A clearer ex-

amination of the potency of some apparent limitations awaits development of a

practical gait recognition system. However, it is not unlikely that footwear can affect

gait, as can clothing. Equally, physical condition can affect gait such as pregnancy,

affliction of the legs or foot, or even drunkenness. These factors are not new to bio-

metrics: a face can have make-up or spectacles; ears can be obscured by hair. These
can be of natural occurrence, but could also be used for purposes of deception. De-

ception could go further, a subject can wear a mask and in palm recognition it is of

concern that hands can even be cut off. Human perception can be impeded by these

factors, but the major question concerns whether a biometric system can still per-

ceive the underlying characteristics of the biometric, regardless of the presence or ab-

sence of these factors. In the case of gait, this underlying characteristic can be the

musculature which essentially limits the variation of motion. However, factors such

as clothing, footwear, and physical condition must await investigation, since meth-
ods of recognising the basic nature of gait have yet to become established. Similar

to the role of facial expressions or make-up in automatic face recognition, these

factors would appear secondary to the principal drive of study of gait as a potential

biometric.

Other than its availability, or its naturalness, recognising gait is attractive since it

is non-invasive and requires no subject contact, in common with automatic face rec-

ognition and other biometrics. Clearly there is a view that gait can be used to recog-

nise individuals. This view is actually not new: Shakespeare used a rich lexicon
of adjectives to describe gait, including �princely,� �lion�s,� �heavy,� �humble,�
�weary,� �forced,� �gentle,� �swimming,� and �majestic.� Further, in The Tempest

[Act 4 Scene 1], Ceres observes

�High�st Queen of state, Great Juno comes; I know her by her gait.�

Even more, in Troilius and Cressida [Act 4 Scene 5], Ulysses states

�Tis he, I ken the manner of his gait; He rises on the toe: that spirit of his

in aspiration lifts him from the earth.�

The former is one of Shakespeare�s many observations concerning the ability to

recognise people by their gait; the latter includes a concise description of Diomedes�
demeanour. Clearly, Shakespeare�s observations are interpreted through current

English usage. However, the earliest dictionary definition of gait suggests a similar

meaning, given in Johnson�s Dictionary of the English Language [13] as �The manner

and air of walking� and the first of the two quotes above is presented as an example

of usage.
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Accordingly, there appears not only to be a view that gait has potential as a bio-

metric, but also that there is application potential too, as gait appears to have several

practical advantages over other biometrics, and some application advantages in

common with them. There have been allied studies, particularly those in medical

studies for reasons of therapy. Also, there have been psychological studies concen-
trating on human capabilities. There have also been computer vision approaches

aimed to model and to track human targets through a sequence of images, though

not usually for recognition. These works are reviewed by [1] and more recently

[20]. Tracking approaches are potentially less suitable for gait as a biometric since

occlusion (temporal and spatial) can complicate implementation greatly.

1.2. Current approaches to automatic gait recognition

In what was perhaps the earliest approach to automatic recognition by gait, [27]

derived a gait signature from the spatio-temporal pattern of a walking person. Here,

in the XT dimensions (translation and time), the motions of the head and of the legs

have different patterns. These patterns were processed to determine the body mo-

tion�s bounding contours and then a five stick model was fitted. The gait signature

was derived by normalising the fitted model for velocity and then by using linear in-

terpolation to derive normalised gait vectors. This was then applied to a database of

26 sequences of five different subjects, taken at different times during the day. De-
pending on the values used for the weighting factors in a Euclidean distance metric,

the classification rate varied from nearly 60% to just over 80%, a promising start in-

deed. Clearly, a model was not used within the study. As such, it would appear dif-

ficult to confirm that the metric was indeed purely related to a subject�s gait.
Later, dense optical flow was used to derive a gait signature [15,16]. This model-

free approach developed a description of instantaneous motion, the shape of motion,

that varied with the type of moving object and type of motion. Applying this descrip-

tion to person recognition, discrimination was accomplished by periodic variations
in the shape of their motion. From a sequence of nþ 1 images, n dense optical flow

images are generated. A set of m scalar characteristics (for instance, the centroid of

all moving points) that describe the shape of motion are derived from each optical

flow image. The values of these scalars are arranged to form m time series that rep-

resent the varying motion in the sequence. Each series shares the same fundamental

frequency, or a simple multiple, but with varying phase. These phase measurements

are the basis of the described gait signature. Phase measurements of different se-

quences are made comparable by subtracting a reference phase from the phase of
each of the remaining scalars, and as such there is no need for temporal alignment.

Each sequence is now characterised by m� 1 relative phases, forming a feature vec-

tor that is used to recognise individuals. Classification was accomplished by comput-

ing the mean phase vector for each subject and using it as an exemplar vector. Each

sequence is classified by the Euclidean distance of its phase vector to each exemplar

vector, the sequence being classified as the class of its nearest-neighbour exemplar

vector. The number of features in the feature vector was varied to find the subset

of features that would produce the best classification. Experimentation on a database

4 D. Cunado et al. / Computer Vision and Image Understanding xxx (2003) xxx–xxx

ARTICLE IN PRESS



of six subjects found that with as little as three features a good recognition rate

(90.5%) was achieved, plateauing at five features with a rate of 95.2%.

It would appear that the central goal of the work by [16] was to determine what

content of motion aids recognition rather than to develop a biometric metric using

this approach. Although demonstrating that a model-based approach is not neces-
sary to produce good recognition results, [16] expected that ‘discrimination would suf-

fer when the database of individuals became large; simple motion cues could identify

types of gait, but would no longer uniquely identify an individual.’
Another approach [21] was aimed more at generic object–motion characterisa-

tion, using gait as an exemplar of their approach. The approach was similar in func-

tion to spatio-temporal image correlation, but used the parametric eigenspace

approach to reduce computational requirement and to increase robustness. The ap-

proach first derived body silhouettes by subtracting adjacent images, with further
processing to reduce noise. Then, the images were projected into eigenspace, a well

established approach in automatic face recognition. Eigenvalue decomposition was

then performed on the sequence of silhouettes where the order of the eigenvectors

corresponds to frequency content. Recognition from a database of 10 sequences of

seven subjects showed classification rates of 100% for 16 eigenvectors and 88% for

eight, compared with 100% for the (computationally much more demanding) spa-

tio-temporal image correlation approach. Further, the approach appeared robust

to noise in the input images. Clearly, this is a statistical approach; the system can
only learn to classify labelled data. Should the system have been trained erroneously,

then the wrong identification will occur since a unique model of human walking has

not been assumed, rather that humans can be recognised from walking by the suc-

cessive distributions in a sequence of images.

Eigenspace transformation (EST) based on Principal Component Analysis (PCA),

or the Karhunen-Loeve Transform, has been demonstrated to be a potent metric in

automatic face recognition and gait analysis, but without using data analysis to in-

crease classification capability. A new approach combines canonical space transfor-
mation based on Canonical Analysis (CA) or Linear Discriminant Analysis (LDA),

with the eigenspace transformation, for gait analysis [9]. This gives a �statistical� (ar-
ea-based) approach to automatic gait recognition wherein the image sequence is de-

scribed as a whole, and neither by a model- nor by a motion-based approach, but

one which describes the motion content.

Face image representations based on PCA have been used successfully for various

face recognition methods. However, PCA based on the global covariance matrix of

the full set of image data is not sensitive to class structure in the data. In order to
increase the discriminatory power of various facial features, [6] use LDA, also called

CA, to optimise the class separability of different face classes and improve the clas-

sification performance. The features are obtained by maximising between-class and

minimising within-class variations. Unfortunately, this approach has high computa-

tional cost. Moreover, the within-class covariance matrix obtained via CA alone may

be singular. Combining EST with canonical space transformation (CST) reduces the

data dimensionality and optimises the class separability of different gait sequences

simultaneously.
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On five sequences of five people from the Visual Computing Group, University of

California, San Diego [9,15] achieved a classification rate of 85% by CST alone

whereas 100% was achieved with combined EST and CST. Further, the clusters were

better separated by CST, suggesting that the technique would appear suited to larger

databases. A later extension [10] was based on using dense optical flow [16] and again
achieved 100% on the same data, showing that the best performance was achieved by

using dense optical flow which combined both vertical and horizontal motion com-

ponents. However, these techniques remain statistical in basis, describing human

motion by the statistics of a sequence of area distributions rather than any attempt

to match the data to a model.

Recognition of different kinds of gait motion was investigated by [18] and [19].

The trajectories of body parts were extracted from grey-level image sequences, and

feature vectors were then derived from this trajectory information. Optic flow was
used to determine the trajectories of the body parts in [18], whilst [19] modelled sev-

eral body parts and the background as mixture densities to extract the trajectories.

The feature vectors for the gait analysis were formed from the displacements of

the body parts in the x- and y-directions. Classification was performed using Hidden

Markov models, one trained for each kind of gait type. In common with all the sta-

tistical (area-based) approaches discussed in this section, the features derived for the

gait analysis in [18] and [19] are not based on a model of the human body or its mo-

tion. As such, the discriminatory powers of the classification will be limited to the
quantity and quality of the training data available.

1.3. Aims of the research

This paper explores the possibility of extracting a gait biometric from a sequence

of images of a walking subject without using markers. Sophisticated computer vision

techniques are developed, aimed to extract a gait signature that can be used for per-

son recognition. A model-based approach is sought to produce a biometric that has
high fidelity to the original data. Medical studies are used to develop the model. This

is a novel approach to gait recognition by computer vision, as current techniques

have concentrated on heuristic and statistical gait metrics. Naturally, the application

of a model will potentially alleviate the restrictions imposed on statistical (area-

based) approaches, namely that the extracted metric can be directly attributed to hu-

man motion. As such, this would appear to offer the potential for discriminating not

only gait, but also factors that affect gait.

A fundamental assumption within this work is that a model-based approach
should offer suitable potential for automatic gait recognition. Current established

approaches to automatic gait recognition are purely statistical: they derive a discrim-

inatory measure that is based on the motion content in a sequence of images rather

than a model based on the human body and its motion. The inherent advantages of a

model-based approach are the potential ability to handle appearance transforma-

tions and practical effects, such as occlusion. Appearance transformations imply that

an object�s shape will be distorted by the camera�s viewpoint. This can only be han-

dled in area-based approaches by inclusion of marker points in each scene. It is likely
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that a model-based method can handle such a distorted scene without marker points

since it relies on the presence of human motion in the sequence, and as such can in-

herently model its time history/future.

Furthermore, it would appear impossible for an area-based technique to explicitly

handle occlusion. The discriminatory measure derived in statistical techniques is
formed directly from the motion information of pixels in the image sequence. In

the case of an occluded object, where the motion information of the pixels has been

removed in some parts of the sequence, an area-based approach could fail since there

is no model with which to handle the missing information. A model-based technique

can overcome the reduced information by globally integrating the information gath-

ered locally in each image of the sequence. In this way, the importance of the infor-

mation in each individual image is dramatically reduced, so much so that an object

can be missing/occluded in several frames without affecting the extraction of the sig-
nature. The ability to handle occlusion successfully is fundamental to automatic gait

recognition. In practical applications the person can be occluded by accessories such

as briefcases, umbrellas, shopping bags or rucksacks. Also, the human body is self-

occluding in many of its motion types.

Similarly, secondary effects such as footwear and apparel cannot be analysed by

statistical techniques. The description of motion in the image sequence produced by

the statistical (area-based) methods cannot be extrapolated to include these effects as

the description has no basis in the mechanics of human motion. With a model-based
approach, these secondary effects can potentially be accommodated in the feature ex-

traction stage. For instance, a tired person will walk with less flexion of the legs, but

nevertheless the image sequence will still contain a moving person and as such its

model can still be extracted.

Initially, extant computer vision techniques were used to extract a gait biomet-

ric from a sequence of images [5]. Although a gait signature was successfully gen-

erated from the extracted features, there were several strategic problems.

Essentially, the use of extant techniques did not consider the potential perfor-
mance gains possible with sequence-based processing of moving features, being

more concerned with a frame-by-frame approach to moving feature tracking.

New modelling techniques were then developed to solve these problems. Using no-

vel temporal evidence gathering methods, a gait model can be extracted from an

image sequence and a signature based on this model generated totally automati-

cally. We could have improved matters by using one of the new approaches for

background subtraction to isolate moving subjects before analysis but instead

we chose to phrase our new approach as a conventional approach to feature ex-
traction, here targeted at extracting and describing moving shapes, from sequences

of images.

Previous medical studies on gait are reviewed in Section 2. New techniques devel-

oped to overcome the inherent problems discovered in the preliminary study are de-

tailed in Section 3. Section 4 outlines possible further work that would extend the

techniques discussed in the previous section. The conclusions in Section 5 summarise

the work presented in this paper and describe how well the aims of the research have

been met.
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2. Modelling human gait

2.1. Medical studies

The goal of most gait research has been to classify the components of gait. [23]
and [22] produced standard movement patterns for normal people that were com-

pared to the gait patterns for pathological patients [22]. No statistical or mathemat-

ical analysis was performed on the collected data.

Gait was considered by [22] as �a total walking cycle�—the action of walking can

be thought of as a periodic signal, with an associated frequency spectrum. [2] exam-

ined the frequency content of kinematic gait data, and showed that normal gait had a

maximum frequency component of 6Hz. As such, kinematic gait data could be rep-

resented by a limited number of frequency components.

2.2. Gait description

The following terms are used to describe the gait cycle, as given in [23]. Fig. 1 il-

lustrates the terms described. A gait cycle is the time interval between successive in-

stances of initial foot-to-floor contact (�heel strike�) for the same foot. Each leg has

two distinct periods; a stance phase, when the foot is in contact with the floor, and a

swing phase, when the foot is off the floor moving forward to the next step. The cycle
begins with the heel strike of one foot, the left foot for example. This marks the start

of the stance phase. The ankle flexes to bring the left foot flat on the floor (�foot-flat�)
and the body weight is transferred onto it. The right leg swings through in front of

the left leg as the left heel lifts of the ground (�heel-off�). As the body weight moves

onto the right foot, the supporting left knee flexes. The remainder of the left foot,

which is now behind, lifts of the ground ending the stance phase with toe-off.

Fig. 1. Relationship between temporal components of the walking cycle and the step and stride lengths

during the cycle.
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The start of the swing phase is when the toes of the left foot leave the ground. The

weight is transferred onto the right leg and the left leg swings forward to strike the

ground in front of the right foot. The gait cycle ends with the heel strike of the left

foot.

Stride length is the linear distance in the plane of progression between successive
points of contact of the same foot. Step length is the distance between successive con-

tact points of opposite feet. A step is the motion between successive heel strikes of

opposite feet. A complete gait cycle is comprised of two steps.

2.3. Characteristics of human gait

From the work carried out by [23] and [22] it can be concluded that if all gait

movements were considered, gait is unique. In all there appear to be 20 distinct gait
components, some of which can only be measured from an overhead view of the

subject.

Murray [22] found �the pelvic and thorax rotations to be highly variable from one

subject to another.� These patterns would be difficult to measure even from an over-

head view of the subject, which would not be suited to application in many practical

situations. [22] also suggested that these rotation patterns were not found to be con-

sistent for a given individual in repeated trials. As such, they would not appear suited

to an automated computer vision-based biometric system.
In [23] and [22], ankle rotation, pelvic tipping, and the spatial displacements of the

trunk (vertical oscillation, lateral oscillation, and forward displacement) were shown

to possess individual consistency in repeated trials. Naturally, given the resolution of

most general purpose cameras, the ankle is difficult to extract consistently, let alone

its rotation. Equally, the pelvis can easily be obscured by clothing, making a mea-

surement of its inclination easily prone to confusion and error. The spatial displace-

ments of the trunk are measured from the neck. Thus, the extraction of the these

displacements is hampered by a difficulty in finding the neck consistently and by
the fact that the neck, like the pelvis, is easily obscured by clothing. As such, these

components would be difficult to extract accurately from real images. Again, these

would appear unsuited to an automated system.

Since many features established by medical studies appear unsuited to a computer

vision-based system, the components for this investigation have been limited to the

rotation patterns of the hip and knee. These patterns are possible to extract from real

images and, from medical studies, appear to possess a high degree of individual con-

sistency and inter-individual variability.

2.4. Rotation pattern of the hip

Fig. 2 shows the rotation angles for the hip and knee, as measured by [22]. The

normal hip rotation pattern is characterised by one period of extension and one pe-

riod of flexion in every gait cycle. Fig. 3 gives the average rotation pattern as pre-

sented by [22], generated from a database of 60 subjects. The upper and lower

dotted lines indicate the standard deviation from the mean. In the first half of the
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gait cycle, the hip is in continuous extension as the trunk moves forward over the

supporting limb. In the second phase of the cycle, once the weight has been passed

onto the other limb, the hip begins to flex in preparation for the swing phase. This

flexing action accelerates the hip so as to direct the swinging limb forward for the

next step. The angle of rotation is measured as the angle between the line joining

the hip and knee, and the line passing through the hip point parallel to the ground.

2.5. Model of legs for gait motion

The potential of the periodic nature of gait for an analytic approach was first in-

vestigated by [14], who performed a feasibility study into using gait as a biometric.

An analytic approach was used, describing the legs and the motion of walking as a

model based on medical and perceptual studies. The human leg was modelled as two

pendula joined in series (Fig. 4). The upper pendulum modelled the thigh and was

suspended between the hip and the knee. The lower pendulum modelled the lower

leg suspended from the knee to the ankle. This pendulum model is backed by
[22]—�for normal gait, the duration of successive temporal components and the

length of successive steps are rhythmic.�

Fig. 3. Mean hip rotation pattern [22].

Fig. 2. Hip (a) and knee (b) rotation angles.
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Kuan [14] extracted the hip rotation pattern for three subjects from a sequence of

images using computer vision techniques. The rotation patterns were curve fitted

manually to in-fill for missing data points. Fourier analysis was performed on the

rotation patterns, and the magnitude and phase spectra for each subject were exam-

ined. The magnitude plots showed some variation between subjects, whilst the phase

plots exhibited greater variation between subjects. The greater inter-individual vari-

ation of the phase spectra makes the phase information an attractive measure for

recognition. The manner in which the hip inclination changes is of as much interest
as the actual angle itself, and as such both the magnitude and phase information

were of use. Kuan concluded that this model-based approach looked promising,

but as yet insufficient for an automated non-invasive technique.

The frequency information of hip rotation appears to be attractive for recognition

as different walking speeds can be dealt with effectively. When fast walking was con-

sidered by [22] it was found that the increased ground speed was effected by an in-

crease in stride length and reduction in gait period. Both the hip and knee

exhibited greater extensions and flexions throughout the gait cycle in fast walking.
The frequency scaling property of the FT predicts that the effect of a reduction in

the period of the cycle is an expansion in frequency of the spectrum;

f ðatÞ$F 1

jajX
jx
a

� �
; ð1Þ

where X ðjxÞ is the FT of f ðtÞ, and a is a real constant. Given the relationship shown

above, the spectrum for fast walking might demonstrate the difference in speed by

appearing to be a stretched version of the free walking spectrum, keeping a char-

acteristic envelope for a given individual at different walking speeds—effectively, a

gait signature. The scaling effect of the spectrum for different walking speeds can be
eliminated by normalising the time axis for the hip rotation patterns to the length of

gait cycle in each case; the time scale will cover from 0% to 100% of the walking

cycle. In this way, direct comparisons between spectral data can be made, as the

Fig. 4. (a) Leg outline. (b) Pendulum model of a leg.
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Fourier information is now independent of the fundamental frequency of the gait

cycle.

This study uses the model presented in [14] as the leg motion is periodic and each

part of the leg (upper and lower) appears to have pendulum-like motion. Fourier

theory allows periodic signals to be represented as a fundamental and harmon-
ics—the gait motion of the lower limbs can be described in such a way. Accord-

ingly, computer vision techniques were required to extract the measurements

from video sequences in an automatic manner to allow the investigation of remote

gait measurement as a potential biometric. This involved a re-examination of the

basic processes by which the measurements were derived, and new development

thereof.

3. Gait signature by evidence gathering

The preliminary study described in [5] demonstrated positive results in the use of

gait as a biometric measure. A gait signature was extracted, but not automatically,

using computer vision techniques and produced a high correct classification rate

on a small database of subjects. However, the techniques used in [5] had inherent

problems which would be likely to affect more general use of the technique, especially

on a larger database. These are discussed in this section. Novel vision techniques
have been developed specifically to overcome these problems and their motivation,

as well as their implementation, are described. Further experimentation shows

how these novel techniques can extract and describe gait, and results are presented

showing how they can be used to recognise people by their gait. Furthermore, the

new technique extracts the gait signature automatically from the image sequence,

without human intervention, one of the major aims of this work.

3.1. Previous work

The study performed in [5] described a novel model-based approach to gait recog-

nition, using the notion of gait as a periodic signal to create a gait signature. The

lower limbs were modelled as two inter-connected pendula and gait was considered

as the motion of these pendula.

Using image processing techniques, lines representing legs in a sequence of im-

ages were extracted using the standard Hough transform (SHT). The inclination of

the line representing the leg in each frame was collated to create the hip rotation
pattern for the subject. In-filling for missing data points was done by least-squares

analysis of the collected data points to an eighth-order polynomial. This could, in

hindsight, have been achieved by Fourier interpolation. Fourier analysis was per-

formed on the extracted hip rotation pattern using the Discrete Fourier transform

to find magnitude and phase information. The magnitude data and the phase-

weighted magnitude data were classified using the k-nearest neighbour rule. The

phase-weighted magnitude data was found to give a better correct classification

rate than just the magnitude data.
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This model-based approach uniquely gave a signature which could be directly re-

lated to the original image sequence. However, images were analysed singly, without

reference to the whole sequence. As such, the technique would be unable to handle

occlusion, except by interpolation such as by least squares.

Although the extracted hip rotation patterns in [5] concurred with those presented
in medical research [22,23], the idea of gait as a periodic function was not reflected in

the use of a polynomial to model the motion of the thigh. Any periodic signal, with

period T , can be represented by a Fourier series (FS). The motion of the thigh is

better represented as an FS rather than by polynomial fitting to the extracted data.

Also, greater noise immunity can be achieved when extracting temporal features in a

sequence of images by including the entire sequence in the evidence gathering pro-

cess. [24] described a Velocity Hough transform (VHT) technique that enables the

concurrent determination of structural and motion parameters of moving parametric
shapes in an image sequence. Essentially, the VHT includes motion within the para-

metric model. The polar representation of a circle radius r with co-ordinates x0, y0 in
the first frame and moving with horizontal and vertical velocity, vx and vy , respec-
tively, has x and y co-ordinates at time t as

xðtÞ ¼ x0 þ r cosðhÞ þ tvx; ð2Þ

yðtÞ ¼ y0 þ r sinðhÞ þ tvy ; ð3Þ
where h is an index to points on the circle�s perimeter. Votes are accumulated in a 5-

dimensional accumulator (x0; y0; vx; vy ; r) from edge images of each image in the

sequence. The accumulator maximum corresponds to the best estimates of each of

the parameters describing the moving circle. The VHT was demonstrated to have

superior properties in low to moderate noise compared with a separately applied HT.

By combining VHT techniques with the FS representation of the hip rotation, a

feature-based human gait model can be extracted from a sequence of images. This

feature-based model has a high fidelity to the data, with a clear analytic justification.
Evidence gathering using the VHT offers greater immunity to noise and occlusion,

and produces a maximum likelihood estimate of the model parameters. By modelling

the hip rotation as an FS, the gait signature described in [5] can be extracted directly,

without intervention.

3.2. Modelling gait

The VHT is ideally suited for gait analysis as it considers both structural and mo-
tion information simultaneously. As such, features with a specified structure and

demonstrating a particular type of motion can be extracted from a sequence of im-

ages. Other work by [25] has extended the VHT to find moving articulated objects,

providing an excellent feature extraction primer for statistical approaches to gait rec-

ognition, since the technique isolates the moving area of interest. The following sec-

tions describe a gait model that can provide the biometric signature described in [5]

directly from the evidence gathering process. For a given feature, gathering evidence

using VHT techniques requires a structural motion model.
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3.2.1. Motion model of the thigh

The structural model of the thigh presents the edge point values of the model at

any time instant. Fig. 5 shows the model of the thigh used for temporal evidence

gathering. The motion of the model of the thigh is described by the displacement

functions cxðtÞ and cyðtÞ, which control the movement of the hip, and the inclination
/ðtÞ which controls the thigh rotation. [23] state that �during walking the pelvis re-

mains relatively level.� Therefore, the vertical velocity vyðtÞ is described by the aver-

age vertical velocity Vy only,

vyðtÞ ¼ Vy ; ð4Þ
where Vy reflects the constant slope of the walking surface. The vertical displacement

cyðtÞ of the hip can be modelled as

cyðtÞ ¼ Vyt: ð5Þ
The horizontal motion of the pelvis has two main influences: the average ground

speed and the transverse rotation (about the y-axis) of the hip. The transverse ro-

tation of the hip is characterised by the graph in Fig. 6, which was obtained from

[22]. Even though the mean is not zero, reflecting bias on the measurement process,

the entire cycle can be observed to be sinusoidal in nature. Accordingly, using a

simple cosine to represent the influence of the transverse rotation, the horizontal

velocity vxðtÞ can be described by

vxðtÞ ¼ Vx þ A cosðx0t þ wÞ; ð6Þ
where Vx is the average velocity, A is the amplitude, and w is the phase of oscillation,

respectively, and x0 is the angular velocity of the gait cycle. Using standard trigo-

nometric relations, A cosðx0t þ wÞ can be represented in a more simple form as:

A cosðx0t þ wÞ ¼ A cosx0t cosw � A sinx0t sinw ð7Þ
¼ a cosx0t � b sinx0t; ð8Þ

Fig. 5. Model of thigh for temporal evidence gathering.
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where

a ¼ A cosw ð9Þ
and

b ¼ A sinw: ð10Þ
This actually simplifies later parameterisation in evidence gathering as the quanti-

sation of the phase parameter w 2 ½�p; p� is now spread over two magnitude pa-
rameters. These magnitude parameters are more easily quantised as their effect on

the displacement cxðtÞ is measured in units of pixels. Integrating Eq. (8) gives the

horizontal displacement of the hip, the constant of integration set to guarantee the

initial position cx0 (cxð0Þ ¼ 0) at t ¼ 0. The function cxðtÞ is given by

cxðtÞ ¼ � b
x0

þ Vxt
�

þ a
x0

sinx0t þ
b
x0

cosx0t
�
: ð11Þ

3.2.2. Structural model of the thigh

The thigh is described by a point c that represents the hip joint, or pelvis, and a

line passing through c at an angle /. The pelvis has horizontal and vertical velocities

vx and vy , respectively. These velocities produce the displacement functions cxðtÞ and
cyðtÞ from the initial coordinates of the hip (cx0; cy0), as described in Section 3.2.1.

The inclination of the line, /, is governed by the hip rotation model. The coordinates

of points on the moving line are given by

rx ¼ cx0 þ cxðtÞ � k sin/ðtÞ; ð12Þ

ry ¼ cy0 þ cyðtÞ þ k cos/ðtÞ; ð13Þ
where cx0 and cy0 are the initial coordinate values of the hip and k can take any real

value to produce any point on the line. As in the VHT, Eqs. (12) and (13) are used to

map edge points in the image space into an accumulator space whose axes are the
parameters of interest, namely cx0, cy0, Vx, Vy , a, b, a0, bk, and ck. Edge points from the

Fig. 6. Transverse pelvic rotation [22].
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entire sequence are used, the mapping equations reflecting the time instance of the

frame in which the edge points are in. Related edge points in different frames cast

votes for the same parameter values, the ones relating them together.

3.2.3. Creating a gait signature

For a constant walking speed, the hip rotation /ðtÞ is a periodic function with pe-

riod T . An FS can represent any periodic signal with fundamental frequency

x0 ¼ 2p=T . For a real periodic signal, the FS representation can have the form

xðtÞ ¼ a0 þ 2
X1
k¼1

Rfakejx0ktg: ð14Þ

The function /ðtÞ in Eqs. (12) and (13) can be modelled by the FS in Eq. (14). As

such, the inclination of the thigh is represented by a series of harmonics, as consistent
with observations from earlier medical studies [2] and the earlier model-based ap-

proaches to gait description. Also, Fourier series expansions of experimental data of

actual human locomotion have been used as a basis in modelling human figure

behaviour with emotions for animation purposes [30]. The method developed in [30]

defined a functional model based on the Fourier series expansion of joint data from

actual human behaviour. An extensive variation of movements could be generated

from this functional model. For instance, using the functional models for a normal

walk and a �tired� walk, a parameter s 2 ½0; 1� is used to interpolate between the two
models to produce a walk with different degrees of �tiredness.� Expressing exagger-

ated behaviours is achieved through extrapolation (jsj > 1) of the two models.

Similarly to [2], [30] found that the number of harmonics required to model the joint

motions were usually three, and at most seven—�human locomotions are charac-

terised with a small number of Fourier coefficients.�
Using the rectangular form of ak ¼ bk þ jck in Eq. (14) gives an expression for

/ðtÞ;

/ðtÞ ¼ a0 þ 2
XN
k¼1

½bk cos kx0t � ck sin kx0t�; ð15Þ

where N is the number of harmonics. This equation reflects the periodic nature of the

hip rotation.

In [5] a gait signature was constructed from the frequency components of the hip

rotation. As this is a periodic signal, its Fourier Transform (FT) is a train of impulses

at the harmonics of the fundamental frequency. The amplitude of these impulses is
given directly from the coefficients ak of the FS representation:

X ðjxÞ ¼
X1
k¼�1

2pakdðx � kx0Þ: ð16Þ

The FT of any function is a complex number that can be split into magnitude and

phase components using its real and imaginary parts. The FS coefficients ak are the
only complex numbers in Eq. (16). Using the form ak ¼ bk þ jck, X ðjxÞ can be writ-

ten in terms of bk and ck;
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X ðjxÞ ¼
X1
k¼�1

2pdðx � kx0Þ½bk þ jck�: ð17Þ

From Eq. (17), the magnitude and phase components of the hip rotation pattern can

be found from the FS coefficients bk and ck;

jX ðjxÞj ¼ 2p
X1
k¼�1

dðx � kx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2k þ c2k

q
; ð18Þ

argðX ðjxÞÞ ¼
X1
k¼�1

dðx � kx0Þ tan�1 ck
bk

� �
: ð19Þ

The feature extraction process generates values for the FS coefficients a0, bk, and ck.
As such, using Eqs. (18) and (19), the gait signature can be directly extracted from

the evidence gathering method: there is now no need to apply separate Fourier
analysis. Accordingly, the frequency-based signature is derived directly from the

whole image sequence using a model-based approach, avoiding the problems in-

herent in the earlier formulation.

3.3. Implementing a VHT to extract a gait model

3.3.1. Reduced gait model extraction by VHT and SHT

A VHT was implemented to extract the gait model described in Section 3.2. Each
edge point in each frame of a sequence produced a set of possible initial coordinates

ðcx0; cy0Þ for a given range of values of the remaining parameters. Eqs. (12) and (13)

produced this set of initial coordinates. The functions cxðtÞ, cyðtÞ, and /ðtÞ (Eqs. (11),
(5) and (15), respectively) in Eqs. (12) and (13) were formed using the values of the

remaining parameters, given the time t of the frame of the current edge point. The

cells in the accumulator space that corresponded to each parameter combination

for the given edge point were incremented. The axes of the accumulator space were

the parameters of the model.
Angeloni et al. [2] showed that the magnitude of the frequency information of

the hip rotation pattern had no significant terms above 5Hz. As such, a full de-

scription of the hip rotation can be achieved with a fifth-order FS. The full gait

model would have the 11 parameters for the hip rotation model, six for the pelvic

model and a final parameter for the gait cycle period T . Implementing a VHT to

extract this model would require an 18-dimensional accumulator space. With cur-

rent technology, this would be impractical to create and search, even for a small

number of possible values for each parameter. Table 1 lists the parameters along
with the equations in which they are used. The hip has average velocities Vx and

Vy in the x and y directions, respectively. The horizontal motion of the hip has a

sinusoidal influence whose magnitude and phase is controlled by parameters a
and b (Section 3.2.1). The hip rotation is modelled by an FS with period T and

harmonic values of a0, bk, and ck, where k ¼ 0; 1; . . . ;N and N 2 ½1; 5� is the order

of the FS.
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For the purposes of testing, a reduced gait model was used; a first-order FS was

used for the hip rotation model, reducing the model to 10 parameters. [7] described a

method to reduce the storage space required by conventional Hough transforms that

is directly applicable to the VHT. The accumulator space can be reduced to two 2-

dimensional spaces, one representing the cx0cy0 accumulator and the other for data

storage. The range of values for the remaining ‘search’ parameters were combined

exhaustively. For a given combination of these parameters, each frame in the se-

quence was then analysed in turn. Edge points from each frame incremented cells
in the 2D accumulator indexed by values for the initial coordinates ðcx0; cy0Þ for

the current combination of the remaining parameters. For any combination of the

search parameters an edge point, at a given time instance, is mapped onto a line

in the cx0cy0-plane. Bresenham�s line drawing algorithm [4] was used to cast the votes

in the accumulator space. Once all the frames had been processed, the accumulator

space was searched for a peak. A second 2D accumulator was used to store the peak

value and the values of the parameters that related to it. The peak in the first space

was compared with the peak in the second at the same coordinates ðcx0; cy0Þ. If the
new peak was greater, the parameter information and peak height in the second ac-

cumulator space was updated to that of the newer peak. The approach naturally se-

lects the largest object, as usual in evidence gathering, though the accumulator space

could be weighted so as to cause selection of a different feature. Note that with this

technique, instances of the model that have the same initial coordinates ðcx0; cy0Þ can-
not be found, as one will overwrite the others (though this can be avoided in imple-

mentation). This method offered a reduction in storage space of the accumulator,

from a 10-dimensional space to two 2-dimensional spaces (for the reduced model).
There was negligible effect on the computation time since to create the first 2D accu-

mulator space the 10-dimensional parameter space must be exhaustively searched.

In order to provide a basis for comparison, a technique based on extant work was

used. As described in [24], the VHT demonstrates greater noise immunity compared

with the traditional temporal feature extraction method, the Hough Transform

Tracking (HTT) method. For a given feature, the HTT method applies the SHT

Table 1

Parameters of gait model and the equations they are used in

Parameters Equation

Vy cyðtÞ ¼ Vyt

Vx, a, b cxðtÞ ¼ � b
x0

þ Vxt
�

þ a
x0

sinx0t þ
b
x0

cosx0t
�

cx0 rx ¼ cx0 þ cxðtÞ � k sin/ðtÞ

cy0 ry ¼ cy0 þ cyðtÞ þ k cos/ðtÞ

a0, bk , ck
/ðtÞ ¼ a0 þ 2

XN
k¼1

½bk cos kx0t � ck sin kx0t�

T x0 ¼ 2p
T

18 D. Cunado et al. / Computer Vision and Image Understanding xxx (2003) xxx–xxx

ARTICLE IN PRESS



to each frame in a sequence to extract the static parameter values the feature at the

time instances given by each frame. The temporal parameters are calculated from the

static parameters by interpolation. The next section compares the performance in

noise of the VHT and HTT when applied to extract the human gait model described

earlier.

3.3.2. Performance in noise

A sequence of synthetic images was produced using the reduced gait model, and a

VHT was implemented to extract the gait model parameters. An example is shown in

Fig. 7(a) where the long line indicates the position of the simulated leg. The short line

is for display only, depicting the position of the hip. Varying amounts of uniformly

distributed, black and white noise were added to the sequence, and the model was

extracted using both VHT and HTT techniques. The noise was added randomly
to each image in the sequence such that each image had the same amount of noisy

points, but in different positions. Fig. 7 shows examples of uniformly distributed,

black and white noise added to an example image with levels of 14% and 42%. In

the latter case it is impossible to determine the line in the static image by human

vision.

The VHT to extract the reduced human gait model was implemented as described

in Section 3.3.1. A restricted range of values for each parameter was used in order to

maintain the computational time at an acceptable level. The HTT was performed by
applying the SHT to each image in a given sequence, using established performance

constraints [31]. The parameters q and / of the most prominent line extracted from

each frame, along with the time value ti for that frame, were used to calculate the

parameters of the human gait model. Least-squares analysis was used to fit this data

to the model.

The extracted model parameters were compared against the actual values of the

parameters used to produce the synthetic images, giving a Euclidean distance metric

to quantify the performance of the extraction technique. Since all of the parameters

Fig. 7. Demonstrating uniformly distributed, black and white noise added to an image.
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did not have the same quantisation in the VHT implementation, the Euclidean dis-

tance metric could not be calculated merely as the root of the sum of squared differ-

ences in each set of extracted parameters. For example, a difference of unity in the

value of initial x coordinate cx0 would not be as significant as that same difference

in the value of harmonic weight b1. As such, the difference for each parameter value
was normalised by dividing it by its quantisation value as used in the VHT. There-

fore, the Euclidean distance D between each model instance is given by

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP�1

i¼0

xi � yi
qi

� �2

vuut ; ð20Þ

where P is the number of parameters in the human gait model, xi and yi represent the
ith parameter as extracted by the VHT and HTT, respectively, and qi is the quan-

tisation of the ith parameter. Table 2 lists the quantisation values for each param-

eter. Note that these values were determined through experimentation to give the

most satisfactory results. In this way, the Euclidean distance D given by Eq. (20)

represents the distance in accumulator space. For instance, a value of D ¼ 50 for two

given extracted models implies that their parameters were an average distance of 50

cells apart in the accumulator space. Using the quantisation values given in Table 2,
this distance D ¼ 50 produces a 50 pixel difference in values for the initial x-coor-
dinate cx0, or a difference of 0.5 radians (28.6�) in the harmonic weight b1.

Fig. 8 shows the performance of the VHT and the HTT techniques in extracting

the model parameters from the synthetic images with noise levels of 2%, 5%, and

then from 10% up to 42% in 2% steps. As Fig. 8 demonstrates, the VHT moving fea-

ture extraction method found the exact parameter values for the gait model even in

noise levels of 42%, wherein the static image of Fig. 7(c) the line could not be seen.

The performance of the HTT deteriorated at around the 30% level of noise. The ex-
tracted parameter values for the gait model were found to be progressively further

away from the actual values as the noise level was increased above 30%. The ex-

tracted model parameters for the 34% case were found to be quite far from the actual

values, compared to the distances for noise levels immediately above and below. This

appears due to the random process in which the noise was added, leading to there

being a line extracted in one of the images that was sufficiently out of place to effect

the least squares analysis to produce more distant parameter values. Similarly, the

comparatively small distance for the 38% case was due to the added noise affecting
the line extraction to find lines not too distant from the original. The least squares

analysis was able to produce parameter values that were not as erroneous as for

Table 2

Quantisation values used in the VHT and GA implementations

Parameters Quantisation value qi

Vy , Vx, a, b, cx0, cy0 1 (pixel)

a0, bk , ck 0.01 (radians)

T 0.04 (s)
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the surrounding levels of noise. This demonstrates the dependence of the HTT meth-

od on the structural information in every the frame of a sequence—one image with

missing data will mislead the extraction of the model parameters. It can also be

viewed to demonstrate practical advantage since the noise gives a varying back-
ground. Clearly, the VHT technique focuses better on the moving object and is less

distracted by background information.

Like all Hough-based processes, the VHT suffers from a high computational com-

plexity and storage cost. For problems of low dimensionality, Hough-based ap-

proaches to feature extraction are quick and precise, but it becomes rapidly

unfeasible to create and search an accumulator as the number of parameters to es-

timate increases. Using the technique for fast contour recognition presented in [7],

the storage and peak detection problem was reduced to that of two 2-dimensional
accumulator spaces (see Section 3.3.1). The computational complexity remains as

an exhaustive search of the parameter space was still required.

3.3.3. Implementation by genetic algorithm

Extracting model instances from images is effectively a problem in optimising the

defining function of the model for a given set of edge points. A Genetic Algorithm

(GA) [8] is an optimisation method that is shown to consistently outperform many

other search methods in solving hard optimisation problems. For a satisfactory sized
parameter space, the VHT implementation took the order of days to run on a P75

PC. The GA based VHT to extract the human gait model takes approximately 20min

on the same parameter space, offering a speed-up factor of approximately 100. As

such, all further experimentation was performed using a GA based implementation.

In this GA implementation, each individual�s chromosome was the binary coding

of the parameters of the gait model. Each parameter was represented by n bits which

gave an integer index to a position within a specified range. Naturally, the value of n

Fig. 8. Results of noise trials for VHT and HTT moving feature extraction techniques.
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controlled the resolution for each parameter. The fitness was derived from the num-

ber of edge points matching those calculated for the (moving) template described by

the current values within the chromosome. The fittest individuals were selected as

those that had a greater probability that a spin of a biased roulette wheel would se-

lect them. Crossover was set to occur with a probability of 0.7 and mutation with a
probability equaling the reciprocal of the maximum population (the effect of which

was to complement the mutated bit). New generations were evolved until the stop-

ping criterion was satisfied where the stopping criterion was either when the average

fitness had evolved to 95% of the maximum fitness in the population, or when 200

generations had been reached. The final values provided by the GA were used to ini-

tiate a fine-grained VHT search.

3.4. Performance factor analysis

Due to the random nature of a GA, repeated trials of a GA on the same data set

are not guaranteed to produce the same result. This problem is further compounded

if the solution space is complex, containing many local peaks and valleys. Similarly,

if the problem is unimodal with a large peak compared to the surrounding space, a

GA will also have problems in finding consistent solutions. With the SHT for lines

and circles, the complex solution space can be smoothed by correct quantisation of

the parameters [31]. Even with this smoothing of the parameter space, it has not been
possible to extract consistent results when using a GA to find geometric primitives in

images [17]. In the work by [17], trials were repeated 100 times for a given image and

the parameters of the extracted shape were calculated as an average of the repeated

trials.

Due to the high dimensionality of the gait model, it is not possible to find optimal

quantisation values for the various parameters with the methods used by [31]. Also,

averaging the parameters determined in repeated trials [17] would not produce a vi-

able solution. Due to the complexity of the solution space, the GA is likely to find
one of the many false peaks that are due to anomalies present over the entire se-

quence, in at least one of the repeated trials. Accordingly, averaging a set of param-

eter values would be detrimental in finding an accurate solution.

Also, increasing the �run time� of the GA with the intention of finding even fitter

solutions would not be adequate. The increased run-time could be achieved by ex-

tending the termination criteria—increasing the proportion of the highest fitness va-

lue on the population that the average fitness of the population must reach in order

for convergence, and hence termination, to occur. The effect of this would be an in-
crease in the number of solutions with the highest fitness value, rather than an in-

crease in the highest fitness value. The genes of the fittest chromosome would be

more thoroughly propagated throughout the population, and the decreasing proba-

bility of mutation pm would ensure no deviation from these genes. In this way, if the

GA finds a false peak it will remain there and that solution would spread throughout

the population. As such, the method that has been employed has been to run 10 trials

on each sequence, with the same set of parameters, and select the trial with the high-

est fitness as the solution for that sequence.
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3.4.1. GA performance for occluded features

A characteristic of the VHT is that it can extract temporal features in scenes where

the feature has been occluded. This is attractive in extracting human gait models as

the human body is self-occluding in almost all its motions. As such, the GA based

VHT for gait analysis, GAVHT, was tested for the presence or absence of this char-
acteristic, at increasing levels of occlusion. The experimentation was performed on

sequences of edge images of walking subjects. The Canny edge detector with hyster-

esis thresholding was used to produce the edge images from the greylevel sequences.

The reduced human gait model (Section 3.3) was used in this performance experi-

ment. The parameters of the model were quantised with the values given in

Table 2. Also, the GA was implemented with a chromosome population of 500.

A major advantage of the VHT method of moving feature extraction over the tra-

ditional static, frame-by-frame moving feature extraction is its improved perfor-
mance in sequences where the feature has been occluded in some frames. As such,

an analysis of the GAVHT�s performance in extracting the gait model for an oc-

cluded subject was performed to verify that this occlusion immunity characteristic

of the VHT extraction method had been maintained in its translation to a GA.

Fig. 10 shows the extracted model for the unoccluded sequence for subject CM using

the GAVHT. The model used only a first-order FS to represent the hip rotation.

As Fig. 10 shows, the inclination of the hip is tracked throughout the cycle al-

though without much precision. This was due to the low order of FS used to model
the motion of the hip rotation, but for the purposes of this exercise it was sufficient.

The subject CM in Fig. 10 was occluded by simulating a column in the centre of

the field of view of the camera, between the subject and the camera. The illusion was

created by setting the pixels with the column to zero (black). Fig. 9 shows an example

of this process, with the column width set to 90 pixels, representing almost two fifths

of the image width.

A series of tests was then conducted on the sequence in Fig. 10. The same param-

eterisation and initialisation was used in all the tests, with the variable parameter be-
tween each sequence being the width of the occluding column. The width was varied

from 10 pixels to 150 pixels in increments of 20 pixels. The model parameters ex-

tracted by the GAVHT for the occluded sequences were compared against those

Fig. 9. Example of occluded image.
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extracted from the unoccluded sequence. The performance of the GA for gait anal-

ysis in extracting the model from these occluded sequences was measured using the

method described in Section 3.3.2. Fig. 11 shows the performance of the GAVHT for

the occluded sequences. As the graph in Fig. 11 demonstrates, the performance of

the GAVHT as the occluding column is widened remains comparable to its perfor-
mance in the unoccluded sequence. The accuracy of the model parameter extraction

deteriorates as the column width increases beyond 110 pixels, which represents al-

most half the image width. As such, the GA implementation of the VHT for gait

analysis is shown to possess improved performance for occluded objects, which is

characteristic of VHT techniques for extracting temporal features.

Fig. 12 shows the extracted model for an occluded sequence, with an occluding

column width of 90 pixels, for subject CM. The subject was completely occluded

Fig. 10. Extracted reduced human gait model using GA implementation of VHT techniques for subject

CM.

24 D. Cunado et al. / Computer Vision and Image Understanding xxx (2003) xxx–xxx

ARTICLE IN PRESS



in four frames (F6, F7, F8, and F9) of the sequence, and partly occluded in two

frames (F5 and F10): accordingly, the feature of interest was missing in 50% of
the data available. Even with this amount of missing data, the subject�s hip rotation

was extracted with the parameter values only a single accumulator cell�s distance

apart from those extracted in Fig. 10, the unoccluded sequence. The initial x-coordi-
nate of the hip was also the same as that found in Fig. 10, as well as the horizontal

and vertical velocities, Vx and Vy respectively, the period T , and the parameter a.
Small discrepancies between the two extracted models occurred in the values of

the parameter b and the initial y-coordinate. Table 3 summarises the extracted pa-

rameter values.

3.5. Recognition results

A CCD array camera on a tripod without a shutter was used to collect data, and

its output was recorded on a video recorder. The camera was situated with a plane

normal to the subject�s path in an environment with controlled illumination. Data

collection was performed indoors, with lighting at a constant level. Subjects walked

in front of a plain, static background. Each subject wore a special set of trousers
that had a stripe down the middle of the outside of each leg. The new technique

does not actually rely on the stripe as the front of the leg equally would be ex-

tracted. However, the presence of the stripe allows clearer assessment of extraction

accuracy. In this way the camera-side leg could be distinguished visually from the

other leg at all times. Fig. 13 shows an example image of a walking person used in

this study.

Each subject was asked walk past the camera a total of ten times. From these ten

sequences, the first and last three were discarded and only the middle four sequences
were used for experimentation. In the first few sequences the subject would be getting

comfortable with the experiment, and in the last few the subject would be anxious to

finish the experiment. As such, the middle four sequences were considered to offer the

most consistent walking cycles.

Fig. 11. Performance of GAVHT for occluded sequences with varying width of occluding column.
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Analysis used images between successive heel-strikes of the same foot, ensuring

time alignment so that phase information could be compared and that subjects

were not recognised by the speed of their walk. In these initial studies, to obtain

Fig. 12. Extracted thigh model for subject CM from an occluded sequence, with the occluding column

width of 90 pixels.

Table 3

Extracted gait model parameters for unoccluded and occluded sequences of subject CM, from Figs. 10 and

12, respectively

Sequence Hip model Hip rotation model T

a b cx0 cy0 Vx Vy a0 b1 c1

Unoccluded )5 3 219 63 118 1 0 0.16 )0.02 1.12

Occluded )5 2 219 64 118 1 0 0.16 )0.01 1.12
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meaningful information about the rotation pattern, it was essential that each subject

travelled at a constant velocity. Room was given to allow the subjects to accelerate to

a comfortable, constant walking speed before entering the field of view of the cam-

era. The video sequences were digitised into the PGM image format. Resolution was
reduced by halving the image size to 128� 128 in order to speed processing.

Recognition analysis using the GAVHT, was initially performed on the walking

sequences for ten subjects. Edge images of the sequence were produced by applying

the Canny edge detector with hysteresis thresholding to the images. The GAVHT

was used to extract a maximum likelihood estimate of the parameters for the thigh

model (Section 3.2) in a given sequence. As an initial analysis of the performance of

these novel techniques, the gait model extracted from the walking sequences de-

scribed the hip rotation with a second-order FS. The full fifth-order FS was not used
so as to reduce the complexity of the parameter search space. The parameters of the

model were quantised with the values in Table 2, and the GA was again implemented

with a chromosome population of 500.

3.5.1. Extracting the gait model

Fig. 14 presents the extracted thigh model superimposed over the original se-

quence of images for subject IM. The inclination of the thigh appears to have been

found precisely in the majority of the frames. The model extraction showed less ro-
tation than the leg in the first frame of the sequence and then aligned itself with the

thigh in the second frame, only to over-shoot in the third. The accuracy was regained

in the fourth frame. In frames eight and nine, the estimated motion of the thigh was

not sufficiently fast to follow the true motion of the thigh in this part of the gait cycle.

This inaccuracy was most likely due to the use of just two harmonics to model the

thigh motion. As stated before, the motion of the thigh contains useful harmonic

content up to the fifth harmonic. The model extraction in the last frame of the se-

quence shows the correct inclination, but the position of the thigh appears to trail

Fig. 13. Example image of a walking subject, subject 3.
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the hip. This was an inaccuracy in the estimation of the horizontal displacement of

the hip (see Section 3.2.1) rather than an error due to the hip rotation model. Note
that the estimated location of the hip was marked by a line normal to the long line

representing the thigh.

Using the parameters of the gait model extracted from the walking sequence, the

hip rotation pattern was given by Eq. (15) without the need for curve fitting. Fig. 15

shows the extracted hip rotation pattern for the gait cycle of subject IM shown in

Fig. 14. The extracted rotation pattern also compared well with the generalised

hip rotation pattern presented in medical research [22].

The GAVHT�s ability to handle occlusion was again demonstrated in the extrac-
tion of the thigh model for the gait cycle of subject DC, shown in Fig. 16. The

Fig. 14. Walking sequence with extracted thigh model for subject IM. Frames run from left to right, and

top to bottom.
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extracted thigh model matches well the expected position of the moving thigh even
though the subject�s hand was occluding the top of the thigh in the some of the

frames of the sequence. In the first frame of the sequence, the extracted inclination

appeared to be in advance, but in the second frame the model extraction aligned

itself precisely with the leg. A similar pattern occurred in the next two frames,

where the model extraction appeared to trail the thigh in the third frame and

aligned accurately in the fourth. Frames five, six, and eight showed a precise ex-

traction of the thigh, whilst frame seven showed the model to have a greater rota-

tion than the leg. In frames nine to eleven, the thigh inclination was extracted with
precision, but again in frame twelve the extraction described a greater rotation than

the thigh.

In Fig. 16, the estimated position of the hip was extracted with accuracy in the

first two frames, and then again in the middle four frames. In the remaining frames

the hip position appeared to trail the expected location of the hip, which was deemed

to be intersection of the front of the stripe with the waist line.

Fig. 17 shows the hip rotation pattern for the sequence in Fig. 16 as described by

the extracted parameters of the gait model.

3.5.2. Fourier analysis

The frequency information of the hip rotation was extracted directly from the ev-

idence gathering process. Eqs. (18) and (19) were used to calculate the magnitude

and phase of the frequency spectrum using the FS coefficients. For the gait cycle

of subject DC in Fig. 16, a second-order FS was used to model the hip rotation.

The magnitude and phase plots for this FS are shown in Fig. 18. Note that the Fou-

rier transforms reflect around 0Hz. From the magnitude plot, it can be seen that in-
formation above the second harmonic is meaningless as the magnitude drops to zero

at and beyond the third harmonic. Accordingly, for k-nearest neighbour classifica-
tion the metric used to calculate the Euclidean distance D between test feature vec-

tors and training feature vectors was based on the components between 0 and +2Hz.

Fig. 19 shows the magnitude and phase plots for the FS describing the hip rota-

tion pattern for the gait cycle of subject IM in Fig. 14.

Fig. 15. Hip rotation pattern extracted with the thigh model for the sequence in Fig. 14.
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3.5.3. Classification results

For the classification analysis, two measures were compared; the Fourier magni-
tude and the phase-weighted Fourier magnitude. Walking sequences for ten subjects

were used, each subject having four walking sequences; three training sequences and

one test sequence. The measure for each test sequence was compared against those

for the training sequences. The k-nearest neighbour rule was used to classify the dif-

ferences in these measures for k ¼ 1 and k ¼ 3. Table 4 summarises the correct clas-

sification rates (CCR) for the two measures. Unlike the earlier study [5], the nearest

neighbour classification led to the same classification performance as the 3-nearest

neighbour rule.

Fig. 16. Walking sequence with extracted thigh model for subject DC. Frames run from left to right, and

top to bottom.
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Fig. 17. Hip rotation pattern extracted with the thigh model for the sequence in Fig. 16.

Fig. 18. Magnitude and phase plots for hip rotation as described by FS coefficients for gait cycle of subject

DC in Fig. 16.

Fig. 19. Magnitude and phase plots for hip rotation as described by FS coefficients for gait cycle of subject

IM in Fig. 14.
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Classification analysis showed that the phase-weighted Fourier magnitude offered

a better classification rate (100%) than just the Fourier magnitude (80%), verifying

earlier work in [5]. This suggests that subjects are recognised not only by flexion,

but also by the time when it occurs; both the phase and the magnitude of the oscil-

latory motion would intuitively appear to describe a particular pendulum better. Di-

rect generation of the Fourier information from the evidence gathering process was

possible using the FS coefficients, and as such no further transform processing was

required. Using this evidence gathering technique, improved classification rates, of
100% for both k ¼ 1 and k ¼ 3, were achieved compared to those obtained using

the computer vision techniques in [5], on the same data being 80% and 90% for

k ¼ 1 and k ¼ 3, respectively.

3.5.4. Statistical analysis

A statistical analysis was performed on the experimental data to establish a basis

for the improved classification performance of the phase-weighted Fourier magni-

tude metric over the Fourier magnitude metric. A statistical measure was required
that described the distribution of subject, or class, clusters in the feature space.

The separation S between due to class means, normalised with respect to class co-

variances, was used. The separation Si;j between subjects i and j is given by

Si;j ¼ ½mi �mj�
Ri þ Rj

2

	 
�1

½mi �mj�T ; ð21Þ

where mi is the mean and Ri is the covariance of class i. This measure is the first term

of the Bhattacharyya-distance.
The mean signature mi for each class i is calculated by

mi;k ¼
1

M

XM�1

l¼0

xi
l;k; k ¼ 0; 1; . . . ;N ; ð22Þ

where M is the number of experiments for class i, N is the number of harmonics (as
used in Eq. (15)) and xi is an M � N data matrix of signatures for class i. The co-

variance matrix Ri is given by

Ri ¼
1

M

XM�1

l¼0

ðxi
l �miÞT xi

l

�
�mi

�
: ð23Þ

The data matrix xi for each subject was generated using the Fourier magnitude
metric and the phase-weighted Fourier magnitude metric. Figs. 20(a) and (b) illus-

trate the separation S as calculated from the Fourier magnitude metric and the

Table 4

Overall classification performance

No. of nearest neighbours Magnitude CCR Phase-weighted magnitude CCR

k ¼ 1 80% 100%

k ¼ 3 80% 100%

32 D. Cunado et al. / Computer Vision and Image Understanding xxx (2003) xxx–xxx

ARTICLE IN PRESS



phase-weighted Fourier magnitude metric, respectively. The separation was nor-

malised to be in the range [0,1]. As Fig. 20 shows, the phase-weighted Fourier

magnitude metric demonstrates a greater separation between the mean signature of

each subject in the database than the Fourier magnitude metric, as the points are

much brighter in Fig. 20(a) than they are in Fig. 20(b).

Using the separation S, the average class separation was calculated for both met-

rics. Table 5 shows that the phase-weighted Fourier magnitude metric has a greater

average distance between subjects than the Fourier magnitude metric. This suggests
that a better CCR could achieved using the phase-weighted Fourier magnitude met-

ric over the Fourier magnitude metric, a suggestion that is supported by the classi-

fication results in Table 4. The average separation between subjects for a given metric

indicates its relative performance to other metrics on a given database. It would be

difficult to use this measure to estimate generalisation capability (the size of popula-

tion that the metric could perform satisfactorily on) since new subject signatures

could naturally lie outside the space defined by the current set of gait signatures.

Clearly, since the average distance is larger for the phase-weighted data than it is
for the magnitude data, the phase-weighted data would appear to be able to handle

a larger population with equal performance (should the signatures fall within the

space already defined) since the potential for confusion is much less than for magni-

tude data alone. However, the improved CCR of the phase-weighted Fourier

Fig. 20. Separation S of mean subject signatures, normalised with respect to subject covariances.

Table 5

Average separation between subjects for Fourier magnitude metric and phase-weighted Fourier magnitude

metric

Metric Average separation

Fourier magnitude 0.105

Phase-weighted Fourier magnitude 0.219
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magnitude signature over the Fourier magnitude signature has been predicted

through a statistical analysis of the experimental data.

4. Further work

The aims of the research initially outlined were fulfilled. In this process, several

areas were identified for further study. Preliminary experimentation was performed

into investigating the extension of the human gait model itself to encompass other

limbs. Including the lower legs, or even the torso or arms, into the model has several

implications. Firstly, there is the problem of how to handle the ever increasing di-

mensionality of the model. GAs offer one solution to the dimensionality problem.

Also, the relative independence of each limb can be explored to maximise paralleli-
sation of the model extraction. Secondly, given the extraction of multiple limbs there

exists the problem of how this information can be combined to achieve the best dis-

criminatory power in the classification process.

Also, the pre-processing of the images can be investigated for more reliable and

accurate extraction of model parameters. Some pre-processing techniques and their

potential implications are discussed.

Application of the technique described in Section 3 to a wider database is required

to verify and improve the recognition performance. Also, the effects of footwear,
running, weight-bearing, and loose apparel (and without stripes) on the classification

rate requires study. In this research the data for each subject was obtained in the

same session. This is not representative of a practical application and therefore sub-

ject data should be obtained on different occasions. This will allow the variability of

signatures for a given individual to be assessed to establish possible class bounds. It

would also appear worthwhile to assess the potential effect of background, though

the simulation tests in noise (Section 3.3.2) have indicated good ability to handle

background. Clearly, imagery with multiple moving people will require a new strat-
egy to interpret the accumulator space.

The extraction of the human gait model from different camera perspectives of the

walking subject must be addressed and evidence gathering techniques for these alter-

native view points developed. Work by [3] extracted 3D trajectories of moving ob-

jects in a scene. This work assumed all motion to be contained in a given

(ground) plane, allowing the 3D trajectories to be tracked with a single camera. Ap-

plication of this tracking technique to gait model extraction from varying camera

perspectives requires investigation.

4.1. Extending the human gait model

The most basic extension to the human gait model is the addition of the lower leg.

This entails the addition of a second moving line, with a periodically changing incli-

nation, to the structural model. Similarly, the knee rotation must be included in the

motion model. The position of the fulcrum (knee) for this second moving line (shin)

is controlled by the motion and structure of the original line (thigh). To calculate the
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position of the knee, the thigh requires a length tl. Similarly, the shin can be given a

length kl, allowing even further extension to the inclusion of the foot. The extended

human gait model is shown in Fig. 21. The motion model for the human gait model

remains as described in Section 3.2.1, but with the addition of the knee rotation hðtÞ.
As with the hip rotation /ðtÞ, the knee rotation hðtÞ can be modelled by a FS:

hðtÞ ¼ a0 þ 2
XL

k¼1

½bk cos kx0t � ck sin kx0t�; ð24Þ

where L is the number of harmonics used to describe the knee rotation hðtÞ. The
structural model for the human gait model requires a slight modification to ac-

commodate the addition of the lower leg. An arbitrary point r on the model is now

described by

r ¼ cðtÞ þ kuðtÞ 06 k < tl;
kðtÞ þ kpðtÞ tl6 k6 tlþ kl;



ð25Þ

where tl and kl are the lengths of the thigh and shin, respectively, cðtÞ is the position
vector of the pelvis, uðtÞ is the unit vector of the direction of the thigh, kðtÞ is the

position vector of the knee, pðtÞ is the unit vector of the direction of the shin, and k
can take any real value between 0 and tlþ kl. The values of kðtÞ and pðtÞ are given by

kðtÞ ¼ cðtÞ þ tluðtÞ; ð26Þ

pðtÞ ¼ ð� sin½/ðtÞ � hðtÞ�; cos½/ðtÞ � hðtÞ�Þ; ð27Þ
where /ðtÞ is the hip rotation and hðtÞ is the knee rotation.

Fig. 21. Extended human gait model, including thigh and shin.
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The GA for gait analysis was modified to extract the extended gait model de-

scribed above. Fig. 22 shows this extracted model for subject RW. Both the rotation

of the thigh and knee were modelled by second-order FS in the model extraction in

Fig. 22. The inclination of the thigh appears to have been precisely extracted

throughout the majority of the sequence. Frames four and ten show the thigh extrac-
tion to have a greater rotation than perceived for subject�s thigh. The rotation of the

knee appears to have been extracted with less accuracy. This is especially evident in

frames four, five, and seven to nine. This could be due to its dependence on the pre-

cision of the thigh extraction. Also, from the medical studies described in chapter 2,

the knee rotation characteristically has a rapid and large change in inclination over

the latter part of the gait cycle, as it goes into flexion then extension. This behaviour

will not have been faithfully reproduced by the second-order FS used to represent the

knee rotation in this extraction. The greatest inaccuracies in the model extraction
seem to have been in the motion of the pelvis. Slight inaccuracy in the extracted av-

erage velocity Vx resulted in the model extraction falling behind in the final frames,

Fig. 22. Extracted human gait model for subject RW, model extended to include lower leg.
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eleven and twelve. Improved extraction of the two rotation patterns with a higher

order FS would improve on the determination of the pelvic motion parameters.

However, this example was sufficient to demonstrate the potential for expansion

of the model.

By extending the human gait model to include the lower leg, the rotation pattern
of the knee can be used as another possible feature in the classification process. [12]

have shown that using orthogonal features can improve classification rates. In this

work, it was shown that using several orthogonal feature measures to produce an ex-

tended feature vector gave improved recognition of faces. Taken individually, the

measures did not correctly classify all test images. When each measure was given

an equal weight in an extended feature vector, all test images were correctly classi-

fied. This extended feature vector could be applicable to gait recognition.

Indeed, [16] demonstrated that an increased number of features in the feature vec-
tor improved correct classification rates for gait recognition. Their approach ex-

tracted a feature vector based on a number of scalars characterising the shape of

motion in a sequence of images. Using only a single phase feature, correct classifica-

tion rate was 90.5%, increasing to a maximum of 95.2% with five features. Although

experimentation was only performed on a limited database, the potential of increas-

ing the number of features in the feature vector to improve classification rate in gait

recognition is clearly demonstrated.

4.2. Pre-processing of image data

Relatively little pre-processing was performed on the images in the walking se-

quence; only the Canny edge operator was applied to produce edge images of the in-

put data. Essentially, the human gait model describes a moving line whose

inclination is constrained by a periodic signal and velocity governed by some initial

conditions and characteristics. Further work could explore the effect on the model

parameter extraction when the evidence gathering process is performed on line im-
ages rather than edge images. These line images can be produced by SHT for lines.

Due to the nature of the voting method in the SHT, in complex noisy scenes contain-

ing many various sized lines the shortest lines are unlikely to be detected. As such,

the use of the SHT for producing line images is limited.

A pyramidal approach to the Hough transform for lines, the Hierarchical Line

Finder (HLF), was proposed by [28], wherein a Hough transform was performed

at the base of the pyramid and the detected line segments were then reaccumulated

at each level of the pyramid. The HLF suffered from a quantisation effect in the re-
accumulation. Further to this approach, the Hierarchical Hough transform [33]

(HHT) combines a hierarchical framework with a local-to-global line detection

scheme to ensure that small, but meaningful, lines are not lost. Again the Hough

transform is performed at the base of the pyramid and in the upper levels a merging

process, based on distance discrimination between lines, is used to merge similar lines

together. This avoids the quantisation effect of a re-accumulation at each level.

Fig. 23 shows HHT applied to an image, and the extracted lines superimposed on

the original image.
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Comparing the line extraction of the HHT with the results of the SHT applied to

the same image (Fig. 24), shows that the HHT line extraction produces a less noisy

image. Examination of the trailing right foot of the subject demonstrates that the

HHT extracted the contour of the sole of the foot, whilst this feature was missed

by the SHT. The HHT could be used as a second stage of pre-processing to the

GA for gait analysis. Accordingly, this promotes the investigation into a technique
that incorporates HHT methodology for extracting temporal features—a Hierarchi-

cal Velocity Hough transform (HVHT), perhaps.

5. Conclusions

Previous work in [5] showed that a feature-based method could be used for gait

recognition. It also showed that a gait signature based on the phase-weighted Fou-
rier magnitude offered an improved correct classification rate over one based on just

the Fourier magnitude or phase. Although these techniques achieved positive results,

there were several strategic problems. The work described in this paper sets about

solving those problems.

Greater immunity to moderate noise and feature occlusion when extracting

temporal features in a sequence of images was achieved by using VHT evidence

gathering techniques. All the frames in the image sequence were used in the

Fig. 23. Line extraction using the HHT for lines.

Fig. 24. Line extraction using the SHT for lines.
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evidence gathering process, allowing the concurrent extraction of both structural

and temporal parameters of the feature. An improved human gait model was de-

scribed, having both a structural and temporal description of the upper leg. The

hip rotation was modelled by a FS, paralleling earlier medical studies that de-

scribed gait as a periodic signal. This FS description of the thigh motion allowed
the generation of the gait signature directly from the evidence gathering process,

via the FS coefficients.

A VHT for extracting the human gait model was implemented, and its perfor-

mance was compared with the traditional Hough transform tracking (HTT) method

for extracting temporal features from image sequences. Testing on a synthetic set of

images, the VHT implementation was found to have better noise immunity than the

HTT method.

Applying VHT methods to extract this new human gait model from a sequence of
images required a high dimensional parameter space to be created and searched,

which was unfeasible with current technology. A GA was implemented to perform

this search, effectively using a multi-frame template matched across the entire se-

quence of images to extract model instances. The GA reduced the computational

time to an acceptable level. The GA was applied to a sequence of images in which

the subject had been (synthetically) occluded in some frames of the sequence. The

extracted model parameters were shown to be comparable to those extracted from

the unoccluded sequence. This demonstrated that the GA possessed the VHT�s char-
acteristic immunity to occlusion.

The experimental results for a database of ten subjects showed that the GA for

gait analysis could extract parameters for the human gait model with a high fidelity

to the original image data. Fourier analysis was not required to be performed on the

hip rotation patterns of the subjects to obtain their Fourier magnitude and phase

components. This information was generated directly from the FS describing the

hip rotation. Gait signatures were formed using the magnitude information alone

and the phase-weighted magnitude information. Classification was done using the
k-nearest neighbour rule, and the results verified that an improved CCR (100%)

was achieved when using the phase-weighted magnitude information rather than just

the magnitude information (80%). A statistical analysis has shown how the phase-

weighted Fourier data improves performance over the magnitude data, by resulting

in much greater cluster separation as such confirming improved classification perfor-

mance.

Using VHT techniques implemented as a GA for gait analysis, a gait signature

was extracted from a walking sequence of images that was formed from parameters
found directly in the evidence gathering process. The gait signature was generated

using five parameters from the human gait model—the second-order FS representing

the hip rotation. This biometric measure was found to give good discriminary per-

formance on a small database of subjects. The gait signature as generated by this no-

vel temporal feature extraction technique gave a perfect CCR (100%) and it is not

unlikely that future experimentation on a larger database will predicate further im-

provement on the current model to match this performance, perhaps along the lines

suggested as further work.
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