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Over the last decades, there has been a rapid growth in the size and complexity of

electronic circuits. Since the clock speed of microprocessors is saturated around 3 GHz,

computers are no longer able to keep up with the simulation challenges and new simula-

tion approaches are required. SPICE-like simulation algorithms have many intrinsically

sequential elements. With the availability of multi-core systems, several attempts have

been made to speed up the circuit simulation process, in terms of parallelising the device

evaluation or the matrix solution phase. However, these methods have resulted in lim-

ited speed-ups or compromised accuracy. Another existing issue is the barrier between

device evaluation and matrix solution phases, which prevents the whole simulation pro-

cess being parallelised.

Most of the existing attempts on parallelising circuit simulation algorithm are based on

the conventional and coarse grained methods. We propose new very fine-grained parallel

approaches for the matrix solution and device evaluation phases with the possibility of

mixed analysis of the two phases to totally parallelise the simulation process. Instead

of the conventional direct matrix solvers we use highly parallel iterative methods. The

motivation behind this approach is the availability of new parallel platforms and ar-

chitectures for highly parallel and distributed simulations. SpiNNaker project is one

of the new architectures which aims to model large-scale spiking neural networks on a

massively parallel million-core system. The purpose of this work is proposing very fine-

grained parallel approaches and preparing the ground work for performing the proposed

methods on highly parallel structures.

In this work, the matrix solution part of the circuit simulation process is performed using

a Jacobi-type iterative method. The proposed fine-grained parallel method distributes

the solution of circuit equations across a large number of light-weight processors by allo-

cating one processor to each circuit equation. The device modelling process is inherently

a parallel task since modelling each device can be done independently. For the device

modelling phase, we use the Secant method instead of conventional Newton-Raphson

iterations to avoid the calculation of partial derivatives at each iteration.

The proposed methods are applied to a number of benchmark matrices and test cir-

cuits and are optimised to work best on sparse systems. Simulation results confirm



iv

the functionality of the proposed Jacobi-type iterations in the parallel solution of ma-

trix equations. Compared to a conventional direct matrix solution (LU-factorisation),

the proposed fine-grained parallel iterative method performs better as the size of the

problem increases with a speed-up of around 2.5x for the largest example matrix. Fur-

thermore, by replacing the computationally intensive Newton-Raphson iterations for the

device evaluation phase with the Secant method, which benefits from a much simpler

algorithm, the simulation time is improved by a factor of 3 to 4 for the example circuits.

Finally, simultaneous evaluation of the proposed parallel iterative method for matrix

solution and the Secant method for device evaluation, to replace the conventional direct

solution and Newton-Raphson iterations, resulted in a significant improvement in the

simulation time of the under test circuits. The simulation results suggest that compared

to the conventional sequential algorithm, the proposed fine-grained parallel approach

has achieved an overall speed-up of 16x and 22x for the two test circuits.
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Chapter 1

Introduction

1.1 Computer Simulation

Before electronic circuits became as large and complicated as they are nowadays, com-

putational methods had very little contribution in analysis and design of electronic

networks. Designers could synthesise a network using a simple and routine procedure.

They just needed to set up the network on a breadboard, apply test stimuli and measure

responses. Then, some modifications were made based on the circuit’s behaviour until

the system met the desired specifications [17, 18].

When integrated circuits with complicated structures and quite a large number of ele-

ments were introduced and access to computers became more pervasive, the situation

changed. Experimental approaches were no longer feasible and new approaches were

needed to simplify and accelerate the simulation process. The alternative approach was

to simulate electronic circuits using computer methods. Integrated circuits made the

fabrication of faster computers possible and fast computers made the design of integrated

circuits easier. In other words, technological progress led to the design of very large net-

works containing a large number of interconnected transistors on a small chip and such

a huge network could not be synthesised by experimental methods. Recently, relatively

powerful computers have become accessible which make computational methods more

and more important. Nowadays, many of designers treat the simulated circuits as the

objective reality and expect the real circuit to emulate the simulation [17, 18, 3].

In addition to the advancements in computer technologies, some major innovations in

numerical mathematics such as sparse matrix solution methods, linear methods for the

solution of differential equations, sensitivity analysis techniques, optimisation methods,

and parallel algorithms and structures have had important impacts on all aspects of

Computer Aided Design (CAD) process. After the advent of computer based methods,

many circuit analysis programs were developed, some of them are still in use today, and

1
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a few of them are widely used in research projects as well as industry to simulate and

design electronic circuits [17, 19].

Simulation Program with Integrated Circuits Emphasis (SPICE) from the University of

California at Berkeley is one of the standard computer programs which has become

dominant in circuit analysis field and is widely used for both academic and industrial

purposes [20, 21].

Most of the general purpose circuit simulation programs provide the following capabili-

ties:

• Direct Current (DC) analysis: can be used for linear or nonlinear circuits and

determines the operating point of the circuit with inductors shorted and capacitors

opened.

• Alternating Current (AC) small signal analysis: computes the frequency domain

response of the circuit. It first determines the operating point of the system,

then models all the nonlinear devices with their linear small signal equivalent, and

finally analyses the circuit over a specified frequency range.

• Transient Analysis: to obtain the time domain response of the circuit. This analy-

sis computes the transient output variables as a function of time over the specified

time intervals. The initial conditions are determined by a DC analysis.

In addition, some circuit simulators provide a variety of other functions such as pole/zero

analysis, noise analysis, and sensitivity analysis [22].

Circuit simulation is one of the areas in which there have been a considerable amount

of research during the last few years to accelerate the simulation process. Over the past

decades, designers mostly relied on advancements in computer architecture to speed up

circuit simulation applications such as SPICE. However, approaches such as increasing

the clock frequency and using new architectures at the expense of area and power have

faced some physical limitations such as clock frequency and power [23, 24]. Recently,

using parallel algorithms on multi-core and many-core systems have become more of

interest for researchers [25, 26, 27, 28] and several works have been done especially to

parallelise the circuit simulation algorithms in order to speed up the circuit simulation

process [29, 12, 30].

1.2 Introduction to Circuit Analysis

All circuit analysis programs consist of three main parts: the input part, the simulator

part, and the output part. The role of the input or network description part is to describe
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the circuit, describe the excitations, and also control the analysis. The simulator or

network analysis part performs the main computational task which includes different

analysis modes. The output or postprocessor part stores the results obtained from

analyses. These results can be used for displaying the analysed data and comparing

different analyses [17, 19]. In the current work, we are interested in the second part of

circuit analysis programs: the simulator.

Analysing a circuit is the act of computing node voltages and branch currents for a

specific excitation. The most common method for equation formulation of electronic

circuits is using Kirchhoff Current Law (KCL) in conjunction with branch constitutive

equations. There are specific methods to construct the equations and matrices describing

the systems, among which Nodal Analysis (NA) and Modified Nodal Analysis (MNA)

methods are widely used. To automate the formulation process, a stamp for each element

is defined using the network element stamp method which in fact shows the contribution

of each element to the network description matrix [3, 31, 32]. Matrix construction

methods using element stamps are reviewed in Chapter 2 Section 2.2.3.

When the circuit description matrix is formulated, the next step is solving the matrix of

nonlinear circuit equations to calculate the unknown node voltages and branch currents.

Solving the matrix of nonlinear circuit equations consists of two main phases which are

done iteratively. First, nonlinear circuit elements are approximated by a linear model

using linearisation techniques such as Newton-Raphson (NR) to form a linear matrix

system describing the circuit in the corresponding operating point. This phase is called

device evaluation or linearisation. The second step is to solve the linearised matrix

system in the form of Ax = b where A is the matrix of conductances, x refers to the

vector of unknowns, and b, the Right Hand Side (RHS) vector, is the excitation vector.

This phase is known as matrix solution [17, 3].

Device evaluation is the act of replacing the nonlinear circuit elements with equivalent

linear models to convert the nonlinear equations to linear ones. This is done by using

techniques such as the Secant method or the Newton-Raphson method. The Newton-

Raphson iterative method starts with an initial guess and approximates the nonlinear

curves with a straight line at the operating voltage/current of the element by calculating

the partial derivatives at each iteration. Therefore, this method requires one initial point

and also direct calculation of the derivative of the function at each iteration. The Secant

method is simpler since it does not need the derivative of the function. However, since

it calculates the linear equation by using two points instead of the tangent of the line,

it is relatively slower and also needs two initial points to start [33]. The advantages and

drawbacks of the linearisation techniques will be discussed in Section 4.2 of Chapter 4

in more detail to see which method is more suitable for our specific needs. Later in

Chapter 4 Sections 4.2 and 4.3, the implementations of both methods on real circuits

will be shown.
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The numerical solution methods for linear systems of equations Ax = b, are broadly

classified into two categories: direct methods such as Gaussian elimination and LU-

factorisation and iterative methods such as Jacobi and Gauss-Seidel methods. Direct

methods, based on matrix decomposition, theoretically obtain the exact solution using

a finite number of operations. Because of their robustness and predictable behaviour,

in some cases, direct methods are preferred to iterative methods. Unfortunately, this is

rarely true in real applications because direct methods are impractical due to rounding

errors. The error made in one step, spreads in all the following steps. Indirect methods,

based on iterative processes, use successive approximations to obtain solutions for linear

systems and of course the accuracy of the solution depends on the number of iterations

[34, 35].

In this work, among all the matrix solving methods, the main focus will be mostly on

those methods which are iterative and benefit from parallel algorithms wiht the possi-

bility of being implemented in parallel. Different matrix solution algorithms, techniques

to improve the efficiency of the solution process, their advantages and drawbacks, and

also suitable methods for our specific work are studied in the literature review chapter

Section 2.3.

1.3 Multi-core and Parallel Simulation

The circuit analysis process is a computationally intensive task. It involves various nu-

merical methods to be used in different phases of simulation for tasks such as matrix

solution, calculating partial derivatives, numerical approximations, etc [3]. During the

past few decades, because of the rapid growth in the size and complexity of integrated

circuits, faster simulators were designed to handle the simulation process within a rea-

sonable amount of time. This mainly relied on Central Processing Units (CPUs) with

higher clock speeds. Increasing performance was mainly done by either increasing the

clock speed, which means having more cycles, and/or increasing the number of execu-

tions per cycle. This trend was constantly increasing until about 10 years ago when

the trend slowed down and the CPU clock speed reached around 3 GHz. For the last

few years, there has been only a slight increase in the CPU speed and it seems that the

increasing trend has reached an end and saturated around 3.5 GHz, while the number

of transistors is still steadily increasing [24, 36, 1, 37]. There has always been a growing

demand for faster simulation, higher accuracy, and better performance, which motivates

the designers to speed up the simulation process. Simulations of large Integrated Circuit

(IC) designs may take several days, weeks, or even months. Therefore, one of the most

important bottlenecks in electronic circuits design and verification flow is simulation

[38].
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The trend of CPU performance, the current situation, and anticipated limits until 2015

are shown in Figure 1.1. There are several limitations for speeding up processors’ clock,

among which the most important is power consumption (heat dissipation). While the

number of transistors is increasing, as predicted by Moore’s law, some other factors such

as the clock speed of processors are being saturated around a peak value. Therefore,

single-core simulation is no longer able to progress with the same speed as the size and

complexity of integrated circuits are advancing [24, 39].

Figure 1.1: 35 years of processor trend data [1]

To overcome this issue, designers started to employ multi-threaded and multi-core CPUs

to perform multitasking using parallel programs or by running multiple applications

concurrently. Although both approaches are based on concurrency, multi-threaded CPUs

try to exploit CPU resources at core level by running instructions using multiple threads,

while multi-core approaches mostly focus on scalability by increasing the number of

cores. Even though multi-threaded and multi-core CPUs achieve better performance

compared to single-core processors, there are a number of physical limitations associated

with them and as technology scales further, it is not possible to simply increase the

number of complex cores to keep up with the trend. The alternative is to go from

multi-core to many-core by employing more processors with smaller and less complex

structures. Each small processor in a many-core system has lower performance compared

to the processors in a multi-core architecture; however, the total performance of a many-

core system can be much higher than that of a multi-core one [27, 28, 40, 41].

In recent years, with the availability of multi-core and many-core systems, several at-

tempts have been made to speed up SPICE simulation by taking advantage of parallel

processing to parallelise the device evaluation and matrix solution phases on multi-core
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CPUs, Graphics Processing Units (GPUs), and Field-Programmable Gate Arrays (FP-

GAs). However, these methods have resulted in limited speed-ups and there are still

existing challenges in parallel simulation which have not been addressed [29, 12, 30,

42]. More importantly, the recent developments mostly use coarse-grained parallel ap-

proaches on a small number of processors and do not perform parallelisation on highly

parallel and fine-grained systems. Furthermore, exploiting the mentioned multi-core ap-

proaches has not solved the problem of inherent sequential properties of conventional

SPICE simulations. For example, there is a barrier between NR iterations and the ma-

trix solution phase during the circuit simulation process. These two phases cannot be

done simultaneously because each phase depends on the results from the other phase.

The matrix solution phase cannot start until the device evaluation is finished and the

next device evaluation cannot be performed before the matrix solution process is com-

pleted. This limits the amount of possible parallelisation. Most of the existing research

try to parallelise either the device evaluation phase or the matrix solution phase of the

circuit simulation flow. Despite noticeable results being reported on speeding up either

of the simulation phases, totally parallelising the simulation process is still one of the

main existing bottlenecks.

These limits will be addressed as part of the current work and new approaches will

be proposed to overcome these limits. The main simulation phases will be studied

separately for possible parallel implementations that can lead to a new algorithm for

highly parallel evaluation of the simulation process. Parallelism on multi-core and many-

core architectures and their benefits and challenges will be reviewed in more detail in

Chapter 2 Section 2.4 along with a review on parallel circuit simulation literature from

its early stages to very recent works.

1.4 Research Motivation

Most of the recent research and existing work on parallel circuit simulation focus on

improving the conventional circuit simulation algorithms using their proposed parallel

methods. It seems that not enough attention has been paid to new approaches to replace

the conventional SPICE algorithm and the existing attempts only try to modify and/or

optimise the current conventional SPICE algorithm. The existing parallel approaches

are mostly coarse grained and rely on known and well-studied parallel systems such as

parallel GPU or FPGA architectures.

The SPICE algorithm is still the standard algorithm for circuit simulation purposes after

almost four decades. The original version of SPICE was a program called Computer

Analysis of Nonlinear Circuits Excluding Radiation (CANCER) which was refined and

renamed later to SPICE and released in 1975 at University of California Berkeley. Soon

after, other variations of SPICE were releases such as SPICE2 and SPICE3 which offered
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more simulation capabilities such as including Metal Oxide Semiconductor Field Effect

Transistor (MOSFET) models and the Modified Nodal Analysis method. SPICE is an

open source tool and widely used in educational and commercial applications [43, 44].

The advancements in the circuit simulation and design area and SPICE being an open

source tool, there have been a number of different tools integrated with SPICE to add

more credibilities to SPICE simulations by using new technologies and hardware such as

GPUs, FPGAs, cloud computing, and parallel processing [45, 46, 12, 47, 48]. However,

to the best of our knowledge, most of the attempts to parallelise the SPICE simulation

process are multi-core coarse-grained approaches and no many-core fine-grained work

has been done or reported in this area.

This work proposes new parallel approaches to parallelise and hence speed up the circuit

simulation algorithms on highly parallel many-core systems. The main motivations be-

hind this research are first the nature of the proposed approach which can be performed

in a very fine-grained and highly parallel way and second the recent developments of

massively parallel architectures such as the Spiking Neural Network Architecture (SpiN-

Naker) project. The SpiNNaker project is a massively parallel million-core computer

inspired by the structure of the human brain and designed for modelling large-scale

spiking neural networks [14, 49]. The availability of such a network is in fact the driv-

ing force behind this project and in this work we aim to prepare the ground work for

parallelising circuit simulation process using our very fine-grained proposed approaches

to be implemented on massively parallel systems in future.

1.5 Research Objectives

The current thesis proposes a new method for speeding up the SPICE simulation pro-

cess. The method is based on many-core fine-grained parallelisation by allocating one

processor to each circuit equation. The circuit equations are distributed across a large

number of light-weight parallel processors and evaluated in a completely random (non-

deterministic) order. Conventional parallel methods for SPICE simulation try to par-

allelise the direct matrix solution across a limited number of processors (coarse-grained

parallelisation). In this research, the aim is to employ a large number of light-weight

processors to perform both the device evaluation and matrix solution phases in a mas-

sively parallel form. This not only will speed up the simulation phases by exploiting the

benefits of a highly parallel network of processors but also prepares the groundwork to

tackle some of the current constraints on totally parallelising SPICE.

The device evaluation is conventionally performed using Newton-Raphson iterations

[17, 3]. To avoid the above mentioned barrier between NR iterations and matrix solution

phases, we use a Jacobi-type iterative approach for the matrix solution process and call it

Random Jacobi method. At each device evaluation iteration, the linear equations of the



8 Chapter 1 Introduction

circuit are evaluated on a network of parallel processors independently and in a random

order. As soon as a new entry of the unknown vector is calculated, it is passed to the

linearisation iteration to perform device evaluation without the need for waiting for the

completion of the matrix solution phase. Meanwhile, the processor collects the most up

to date values from other processors to start performing the next iteration. Then, the

device evaluation phase will produce a more precise linear model of the circuit to be

used by the matrix solution process.

The device modelling process can be easily performed concurrently according to its

inherent parallelism. Each nonlinear element can be evaluated independently and its

equivalent linear model is placed in the corresponding location in the matrix system. The

Newton-Raphson method uses numerical evaluation of partial derivatives of nonlinear

functions for the linearisation process, which needs a large amount of computational

effort. To simplify and accelerate this process on a highly parallel network of processors,

we use more simple linearisation techniques such as the Secant method for the device

evaluation phase. An in-depth review and discussion on the proposed parallel matrix

solution and device modelling methods is done in Chapter 4 and Chapter 5.

In this work, a number of simulations on some benchmark circuits are done to perform

the Random Jacobi method on a single-core machine, by Message Passing Interface

(MPI) [50, 51] under Linux on a single-core machine, and by MPI in a highly parallel

form on a cluster of processors.

These simulations were performed to evaluate the functionality of Random Jacobi iter-

ations on many-core systems and the possibility of combining linearisation and Random

Jacobi iterations. Although MPI might not be the best parallel platform for highly

parallel computing because of the problem of communications overhead, we use MPI to

implement the proposed approaches in this work. By taking advantage of the sparsity of

circuit simulation matrices, a specific communication pattern is proposed to decrease the

amount of required communications. Other parallel computing systems such as Open

Multi-Processing (OpenMP) [52] are also introduced in the literature review chapter Sec-

tion 2.4 and the reason behind choosing MPI for this work is explained. By simultaneous

evaluation of parallel and iterative matrix solution phases using the proposed methods,

it is possible to eliminate the existing barrier between the main two phases of the circuit

simulation process and thus speed up the simulation process.

As stated in Section 1.3 of this chapter and will be studied in Section 2.4 of the literature

review chapter in more detail, interest in parallel circuit simulation has been increasing

during the past decade and a number of studies have been done on parallelising SPICE

simulation with the aim of speeding up the process. The motivation of the current work

is to eliminate some of the existing constraints of totally parallelising SPICE simulation

by implementing new methods based on parallel algorithms on highly parallel networks

of processors.
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All in all, the main objectives of this work can be defined as follows:

1. Perform a number of preliminary simulations to evaluate the feasibility of the

Jacobi iterative method when the equations are solved in a non-deterministic order.

Chapter 3 will address this objective.

2. Replace the computationally intensive Newton-Raphson method with a simpler

linearisation approach for the device evaluation phase. This objective will be

tackled in Chapter 4.

3. Evaluate the Random Jacobi iterations on a highly parallel many-core system by

allocating one processor to each circuit equation. This evaluation will be performed

in Chapter 5.

4. Find a suitable communication method to optimise the communication between

the parallel processors for an efficient data exchange. A communication pattern

will be introduced and tested in Chapter 5 to fulfil this objective.

5. Assess the overall speed-up improvement, achieved by the proposed methods, by

simultaneous evaluation of the two main phases of the circuit simulation process

in Chapter 6.

1.6 Thesis Contribution

Later in Chapter 2 Section 2.4.2 it will be shown that a number of recent attempts to par-

allelise SPICE simulation process with the aim of increasing the simulation speed have

resulted in limited speed-ups. In this research, a new approach is proposed to perform

conventional SPICE simulation phases using different techniques based on fine-grained

parallel methods with the aim of eliminating some of the existing limitations on the

amount of possible parallelisation. Unlike the conventional parallel methods, the pro-

posed parallel evaluation of matrix solution process is performed on a very fine-grained

network of processors providing massively parallel processing possibilities. Furthermore,

a simpler linearisation method is proposed instead of the conventional Newton-Raphson

technique and the possibility of combining device evaluation and matrix solution itera-

tions is studied. Overall, the main contribution of the current research is accelerating

the circuit simulation process, which seems to be one of the most important challenges

according to the discussed limitations on processors’ performance with targeting mas-

sively parallel architectures such as SpiNNaker for implementing the proposed parallel

methods in future.

The remainder of this thesis is organised in the following manner. Chapter 2, liter-

ature review, starts with a brief review on SPICE algorithm and then studies matrix

construction methods. Afterwards, the main matrix solution methods along with their
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specifications are covered and a discussion is given on the methods which are more

suitable for the purpose of this research. In the final part of the literature review,

the importance of parallel simulation and the related work in this area are highlighted.

Then, related work in the field of parallel SPICE simulation is reviewed, the current

challenges are addressed, and the necessity of new approaches to overcome the existing

constraints are discussed.

Chapter 3 includes the evaluation of the functionality of the proposed Random Jacobi

iterations by performing some preliminary simulations by Matlab on randomly generated

matrices to confirm the functionality of the method and identify the effective factors on

its performance.

Various device evaluation techniques are investigated and simulated in Chapter 4 to

compare the results of the conventional methods and the proposed methods. This helps

to find out whether or not the proposed methods are appropriate for our work and

worth being employed for the purpose of this work. Advantages and drawbacks of each

technique are discussed and the best method for our specific use is chosen based on the

important criteria for our massively parallel approach.

The proposed iterative method for matrix solution phase is simulated on a single-core

machine, a virtual many-core system, and also a real many-core cluster in Chapter 5.

Simulation results are compared and discussed based on a number of important factors

such as the number of iterations, error margin, and execution time. Moreover, a new

communication pattern is proposed to increase the communication efficiency of parallel

computing using MPI.

InChapter 6, various aspects of mixing the two main phases of simulation, as part of the

aims and objectives of this work, is studied in order to perform simultaneous evaluation

of the two phases, which is currently one of the issues in parallel circuit simulation

algorithms. The circuit equations are evaluated on a fine-grained parallel system of

processors and the required device models are calculated on the same processors, when

they are required, in order to avoid the undesired barriers between the two phases.

Finally, in Chapter 7, which is the conclusion of this work, a summary of the thesis is

given. Then the proposed methods, which are used during the work are briefly reviewed,

and the simulation results are discussed. The achievements of the work are listed and

possible future work and developments are introduced.



Chapter 2

Literature Review

Circuit analysis is concerned with the formulation and solution of the circuit equations

to obtain the node voltages and branch currents of a circuit for a specific excitation.

Because of the advancements during the last few decades and the advent of relatively

large electronic circuits compared to the past, it is necessary to use computer programs

to analyse circuits for higher speed, accuracy, and reliability. The main steps in such

computer programs are: describing the circuit and excitations, formulating network

equations, solving the equations, and finally displaying the analysis results [17, 18].

SPICE, developed by Electronics Research Laboratory of the University of California,

Berkeley (1975), is one of the most powerful general purpose circuit simulation tools

to simulate and analyse the behaviour of integrated circuits [20, 53]. SPICE and its

variants are widely used in electronic circuit simulation and are capable of performing

several types of analysis among which the important ones can be named as nonlinear

DC analysis, transient analysis, AC analysis, and noise and sensitivity analysis.

The main steps of a SPICE simulation can be listed as follows [20]:

• Circuit equation formulation: The simulation process starts with formulating the

circuit description equations using nodal analysis techniques.

• Modelling time varying elements: For transient analysis, based on the current time

point, a model is calculated for each time varying element by numerical integration

techniques.

• Generating a linear model : The behaviour of the nonlinear elements in circuit

equations is modelled by a linear equivalent using linearisation methods to create

a linear system of equations.

• Solving the linear matrix system: The resultant linear system of equations is solved

by matrix solution techniques to obtain the unknown node voltages and branch

currents.

11
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This chapter starts with a brief review of the SPICE algorithm. Then, the equation

formulation process and the construction of the circuit description matrix is discussed in

more detail. A number of methods to construct the matrix system are studied and their

advantages and drawbacks are outlined. Then, automatic equation formulation methods

is discussed and element stamps are introduced. Furthermore, different matrix solution

methods, their advantages, and disadvantages will be reviewed. A brief summary of the

methods will be given and a discussion will be made on the suitability of the reviewed

methods. Finally, the importance of parallel and distributed computing and the existing

challenges in this area are highlighted and attempts to parallelise SPICE simulation

process are reviewed and discussed.

In choosing a suitable matrix solution method, some important aspects such as simplic-

ity, accuracy, speed, and efficiency in terms of cost and storage should be taken into

account. For example, in a specific case, a slower method with the possibility of be-

ing implemented in parallel may be preferred to a relatively faster sequential method

[17, 3, 22].

2.1 The SPICE Algorithm

SPICE simulates the behaviour of electronic circuits by solving the nonlinear differential

equations describing the circuit. The simulation process starts with the formulation of

a set of nonlinear differential equations representing the contribution of circuit elements

by evaluation of KCL at different nodes of the circuit. There are a variety of techniques

to assemble the circuit equations into a matrix form. SPICE uses the MNA technique,

which has some advantages over other conventional methods such as the nodal analysis

and tableau formulation, in handling voltage sources and controlled current sources.

This is discussed later in the matrix construction section in more detail [54, 55].

The nonlinear elements must be approximated with a linear equivalent to be able to

form a linear matrix system. The reason is that because of the presence of nonlinear

elements, the equations cannot be solved analytically and linearisation using numerical

techniques are required to express the nonlinear system in the form of an equivalent

linear system. The linearisation process is done by NR iterations. Using an initial guess

for operating point calculations, the NR method provides a linear approximation for

nonlinear elements. Then, by solving the linear matrix system in the form of Ax = b

for x, a new more precise operating point is obtained. Repeating the solution of matrix

and linearisation of equations at each iteration results in the solution vector x. The stop

criteria for NR iterations are checked at each iteration by a process known as iteration

control to stop iterations if a desired precision is achieved. An iteration control checks

whether all the node voltages and branch currents are within a predefined range for two

successive iterations [54, 55].
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When the solution is obtained for a specific time point, SPICE recalculates the contribu-

tion of time-varying components to form a new set of nonlinear differential equations to

simulate the behaviour of the circuit for the next time step as is the case in performing

a transient analysis [54, 55].

Figure 2.1 shows a simplified block diagram for the SPICE simulation process. The

outer block, the dashed box, represents a complete analysis for one time point including

formation of nonlinear differential equations, linearisation of nonlinear elements, and

the solution of the linear matrix system. This process is repeated for all time points

until the required time range is fully covered. The time step is defined based on several

factors and can vary depending on the simulation process [22, 54]. The middle block,

solid line box, includes NR iterations for lineralisation and the matrix solution phase

which is performed several times at each time step to calculate the unknown x vector.

At each NR iteration, when the linear matrix system is generated, there are different

methods to solve the linear system of equations. This step is shown with the inner block,

represented by the dotted box.

SPICE is still the standard circuit simulation tool for almost 40 years. SPICE uses direct

methods for the matrix solution and the NR method for nonlinear device modelling.

There have been several attempts to optimise its algorithm, which have accelerated the

simulation time. However, the conventional SPICE algorithm has not changed much

[22, 54]. The existing attempts for speeding up the SPICE simulation algorithm is

reviewed in this chapter and new approaches and algorithms to accelerate the circuit

simulation process will be introduced in Chapters 4 to 6.

2.2 Matrix Construction

A typical transient SPICE simulation performs analysis on a number of time steps. Each

time step of a transient analysis consists of multiple iterations. Each of these iterations

includes two main steps which are evaluating the circuit devices and putting the device

models in a matrix form and then solution of the resultant matrix [54]. This section

reviews the first step, which is concerned with the construction of the circuit description

matrix.

2.2.1 Classical Methods

The simplest methods for formulating the electronic networks are nodal admittance and

mesh impedance methods which are based on Kirchhoff’s current Law (KCL) and Kirch-

hoff’s Voltage Law (KVL), respectively [17, 32]. Nodal analysis was introduced as the

topological dual of the mesh analysis but it has become more popular for analysing large

electrical systems because of two advantages over the mesh analysis method. Firstly, it
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Figure 2.1: Simplified block diagram of the SPICE simulation process.

does not have the problem of crossover in non-planar systems. Mesh analysis is only

valid for planar systems. A planar network is a network that can be drawn without any

element of the network crossing over another element. The algorithms to test planarity

of a network and also automatic formulation of meshes are complicated. This is the

second reason for the nodal analysis being preferred to the mesh analysis. Although

these methods are quite efficient to evaluate simple circuits and have been used in many

applications successfully, they are not suitable for some applications and cannot handle

all types of elements. For example, classical nodal analysis works based on the sum of

currents flowing away from nodes. The problem is that many practical elements such

as voltage sources are not expressed in terms of currents. To overcome this problem,

it is always possible to use transformations using various theorems such as Thevenin

and Norton transformations or source splitting. However, such transformations are just

practical for hand analysis and are not advantageous for computer based analyses. To
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avoid these restrictions, general formulation methods such as the tableau formulation

and the modified nodal analysis are more of interest [17, 32, 2].

2.2.2 Tableau Formulation

Tableau is the most general formulation method because the solution provides all branch

currents, all branch voltages, and all nodal voltages. The problem is that this method

leads to a relatively large system of equations and complicated sparse matrix solvers

are required to solve it. Tableau formulation needs the concept of graphs and incidence

matrices to construct the systems matrix. The size of the system matrix will be twice

the number of elements plus the number of ungrounded nodes. For example, for the

simple network shown in Figure 2.2, which includes 4 elements and 2 ungrounded nodes,

the matrix size will be 10∗10 (Figure 2.3). This example points out one of the main

difficulties associated with the tableau formulation which leads to a very large system.

In nodal formulation, this simple network can be formulated by using just two equa-

tions. Another main reason to avoid the tableau formulation in practical applications

is the necessity of using graph concepts to generate the system matrix. This makes the

formulation process very complicated while there are other methods which offer simpler

formulation procedures which are introduced in the next section [2, 56].

Figure 2.2: (a) A simple network; (b) Its graph [2].

2.2.3 Modified Nodal Analysis

The nodal approach for formulating circuit equations meets most of the requirements

for an efficient method and therefore has become very popular and is widely used in

computer programs. However, in its basic form, it treats some elements such as volt-

age sources and current dependent elements inefficiently. The modified nodal analysis

resolves the mentioned problems in the nodal analysis while preserving its advantages

[31].

The first step of formulating the circuit equations for a given network by MNA is the

same as the basic nodal analysis method. It should be done by applying KCL to the

ungrounded nodes disregarding the elements that cannot be formulated directly by the
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Figure 2.3: Tableau formulation for the network in Figure 2.2 [2].

nodal method. Then, for voltage sources and other elements, whose currents are con-

trolling variables, the branch currents are introduced as additional variables and the

corresponding branch constitutive relations are considered as additional equations. In

this case, these branch currents will be additional output variables. The system matrix

for MNA has two parts. The first part is the reduced form of the nodal matrix excluding

the contribution of voltage sources, current controlling elements, etc. The second part

contains the contribution of those elements which are not included in the first part of the

network. For each of these elements, one or more additional rows and columns will be

added to the first part (basic nodal matrix). However, it should be emphasised that for

most practical circuits, the number of additional variables and equations to introduce

voltage sources, inductors, etc. is small compared to the number of nodes. Therefore,

the resultant set of variables and equations is large enough to include all the required

information and yet small enough to make the formulation efficient [31, 2, 57, 58].

To represent the circuit equations in a computer program, a formulation method is

needed to introduce the contribution of each element to the matrix equations one by

one. This can be done by using element stamps [17, 3].

An example will show the process of formulating a circuit by MNA and also using

element stamps to add the contribution of elements to the system matrix. Consider the

network in Figure 2.4. It has no specific application but it is suitable to demonstrate

how to set up the modified nodal matrix. An extra node has been added to the network

to show the controlling current of the Current Controlled Voltage Source (CCVS).

The network has 5 ungrounded nodes. Thus, the dimension of its nodal part is 5. The

voltage source and the inductor will each add another row and column to the system

matrix. The CCVS will add two more rows and columns. Altogether, the size of matrix
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Figure 2.4: (a) An example network (b) System matrix set up using MNA [2].

will be 9. At first, the top-left corner 5∗5 matrix should be formed disregarding the

above-mentioned elements. Then, using the element stamps, the voltage source, the

inductor, and the controlled-source are added one by one. The concept of automatic

equation formulation using stamps will be reviewed in the next section. To be more

clear about the contribution of the elements of this specific example, the stamps for the

voltage source, the inductor, and the CCVS are shown in Figure 2.5. This process leads

to a 9∗9 system matrix while the tableau formulation for the same circuit gives an 18∗18

matrix [2].

There are different methods for formulating circuits among which the MNA is preferred.

MNA removes all the limitations of the classic nodal method while preserves its advan-

tages. Besides, compared to the tableau formulation, MNA leads to a relatively smaller

matrix system with a less complicated approach because unlike the tableau method, it

does not need the formation of graphs.
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Figure 2.5: Stamps for elements of the circuit in Figure 2.4. a) Independent voltage
source stamp b) Inductor stamp c) CCVS stamp (the resistor value can be zero) [2].

2.2.3.1 Modelling Nonlinear Elements

For the methods introduced in Section 2.2.3, the Laplace transform is used to explain

various formulation methods. For example, for elements such as capacitors and inductors

Laplace transforms can be used to express element admittances as Yc = sC and YL =

1/sL. When dealing with a linear system and linear elements, it is possible to write the

system in a matrix form but in the presence of nonlinear elements, such as diodes and

transistors, some restrictions exist. The first issue is that it is not possible to express the

characteristics of nonlinear elements in the same symbolic form of linear elements simply

by using the Laplace transform. It is possible to write nonlinear equations but it is not

possible to cast them into a matrix form. Secondly, a system of nonlinear equations

cannot be solved analytically by computer programs. For solving such systems, in most

cases, numerical methods are required, which are generally iterative techniques [17, 3].

In general, there are two main techniques to model nonlinear elements: linear approxi-

mations and numerical iterative methods. The linear approximation or piecewise lineari-

sation method is normally used when there is no equation for the nonlinear behaviour of
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elements and there are only some measured values or the equation is very complicated

[17]. This method models the behaviour of nonlinear elements with multiple linear seg-

ments. In other words, a set of nodal equations is formed and each equation is linearised

separately. The quality of approximation can be improved by increasing the number of

segments. However, this complicates the analysis process. The other method is based

on numerical iterative techniques such as the Newton-Raphson method. In the Newton-

Raphson method, which is most frequently used, the nonlinear system of equations is

transformed into a linear system which changes in each iteration. In this method, at first,

the Newton-Raphson algorithm is applied to each of the nonlinear elements to produce

a linear companion model for each element. Then, equation formulation is performed

while nonlinear elements are replaced by their linear companion models. This is done

by expanding the nonlinear function by Taylor series and only using the linear terms for

the rest of calculations and neglecting the higher orders. This leads to the formation of

a Jacobian matrix which includes the first order partial derivatives of the function. This

iterative approach is usually referred to as Newton-Raphson iteration and expressed by

Equation 2.1, where superscripts denote the iteration number and f and f ′ stand for

the function and its derivative, respectively [17, 3, 33, 59]. Nonlinear device modelling

techniques are discussed in more detail along with examples in Chapter 4 Section 4.2.

xk+1 = xk +∆xk = −f(xk)/f ′(xk) (2.1)

2.2.3.2 Automatic Equation Formulation

In the first part of this chapter, a review was done on matrix construction techniques such

as the Tableau formulation and MNA. The process of MNA is performed by applying

KCL to each circuit node by considering node voltages as unknowns and forming the

corresponding equations and also writing extra equations for branches which include

current dependent elements by considering their currents as extra unknown variables.

However, in practice, matrix construction methods such as MNA do not directly form

the circuit equations to construct the matrix system. Instead, they start by initialising

the A and RHS matrices to zeros and adding the contribution of circuit elements to the

matrix one by one. To make the process automated, element stamps are introduced.

An element stamp is the contribution of a specific element of the circuit to the matrix

system which describes the circuit [3, 2, 6].

Assume a conductance between nodes k and j of a circuit as shown in Figure 2.6a.

Writing the node equations at nodes k and j leads to Equation 2.2, where Σk and Σj are

the sums of the currents leaving nodes k and j, respectively, other than the conductance

current. Therefore, the contribution of conductance G on the matrix system can be

formulated as shown in Figure 2.6b. vk and vj are the corresponding node voltages. In a

similar way, KCL equations for the current source(Ikj), which are shown in Figure 2.6c,
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are formulated by Equation 2.3. The corresponding stamp for the current source can be

seen in Figure 2.6d [3].

node k : Gkj .vk −Gkj .vj +Σk = 0

node j : −Gkj .vk +Gkj .vj +Σj = 0
(2.2)

node k : Ikj +Σk = 0

node j : −Ikj +Σj = 0
(2.3)

Figure 2.6: a) A conductance b) Stamp for the conductance G c) A current source
d) Stamp for the current source I [3]

In a similar manner, it is possible to define stamps for other circuit elements e.g. con-

trolled sources, capacitors, inductors, etc. Some circuit elements such as diodes and

transistors have more complicated i-v characteristics which makes it more difficult to

include their behaviour in circuit equations. In practice, these kinds of elements can be

replaced by an equivalent circuit that consists of simple elements such as conductances,

capacitors, independent sources, and controlled sources, which is in fact an approxima-

tion to the original element. This is called device modelling [3].

Diode current can be formulated as shown in Equation 2.4, where id is the diode current,

Is is the reverse bias saturation current, vd is the voltage across the diode, and λ is a

constant.

id = Is(e
λvd − 1) (2.4)

It is possible to model the diode by an equivalent circuit that consists of a conductance

and a constant current source which will give an approximation of the actual diode,

which is assumed to be between nodes k and j of a circuit. A more accurate diode
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approximation will also include some capacitors and nonlinear conductances. A simple

companion diode model and its corresponding stamp are shown in Figure 2.7. When

the element is nonlinear, the equivalent model can be linearised using linearisation tech-

niques such as NR iterations, where the superscript m denotes the iteration number.

For example, for a diode, the equivalent linear values, which appear in its stamp, are

represented by Equation 2.5 and Equation 2.6 [3]. ∂id
∂vd

is the derivative of the diode

current with respect to its voltage.

Figure 2.7: a) A simplified diode model b) Diode stamp [3]

Gm
d =

∂id
∂vd

|vd=vmd
(2.5)

imds = imd −Gm
d vmd (2.6)

The companion model for a MOS transistor and its stamp are shown in Figure 2.8. The

linearised values in the MOS stamp can be calculated by Equation 2.7 to Equation 2.9

[3].

Gm
1 =

∂ids

∂vds
|vds=vmds,vgs=vmgs (2.7)

Gm
2 =

∂ids

∂vgs
|vds=vmds,vgs=vmgs (2.8)

imds = imd −Gm
1 vmds −Gm

2 vmgs (2.9)

Modelling dynamic elements such as capacitors is slightly different because of the pres-

ence of the derivatives of the function in the circuit equations. There are a number of
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Figure 2.8: a) A simplified MOS transistor model b) MOS transistor stamp [3]

integration methods such as the Backward Euler formula to approximate the derivatives.

A companion model for a capacitor and its stamp are shown in Figure 2.9. It can be

seen that the capacitor can be modelled using a conductance (Gc) and a current source

(ics). The values of the equivalent circuit elements depend on the simulation time point

and need to be updated at the beginning of each time point during a transient analysis

[3, 6].

Figure 2.9: a) Capacitor companion model b) Capacitor stamp [3]

The procedure of dealing with a capacitor (as a time-varying element) in the circuit

simulation process can be summarised by the following steps:
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• DC operating point of the circuit should be found, excluding the effect of capacitor

on the circuit.

• Using integration methods, the differential equation of capacitor should be con-

verted into an algebraic equation at the beginning of each time point during the

transient analysis.

• At each time point, the nonlinear system of equations, which also includes the

capacitor stamp, should be linearised and solved iteratively until convergence is

obtained.

• The results are used to generate a new model for the capacitor to be used in the

next time point [17, 3, 6].

Equation 2.10 and Equation 2.11 represent the linear approximation of the differential

term using the Backward Euler formula. Depending on the approach, h, which is the

time step, can be constant during the simulation or can change adaptively.

ẋ|t=vn+1 = ẋn+1 =
xn+1 − xn

tn+1 − tn
(2.10)

tn+1 − tn = h (2.11)

The procedure of modelling the capacitor by a conductance in parallel with a current

source (equivalent elements in companion model) is shown in Equation 2.12. This means

that the conductance and current source, which model the capacitor, will have the values

stated in Equation 2.13 [3].

i = C
dv

dt
→ v̇ =

1

C
i

→ vn+1 − vn

h
=

1

C
in+1

→ in+1 =
C

h
vn+1 − C

h
vn

(2.12)

Gc =
C

h
, and imcs = −C

h
vnc (2.13)

The same procedure applies to modelling other nonlinear and time varying elements

in the automatic equation formulation process which is explained and discussed in a

number of text books [17, 3, 6].
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2.2.3.3 Properties of Circuit Simulation Matrices

When dealing with large electronic circuits one obvious point about the equivalent matrix

system is that the resulting matrix of conductances, the A matrix, is very sparse. This

is due to the fact that even in very large circuits, each node is only connected to a few

adjacent nodes and therefore most of the entries of any row of the conductance matrix

is zero [6].

As reviewed in the matrix construction part using the MNA technique, there is an

equation for every unknown value (node voltage or branch current) of the circuit. This

means that for circuit simulation matrices, the A matrix is also expected to be square.

Furthermore, the presence of some elements such as dependent voltage and current

sources and elements which produce gain, such as transistors, causes an asymmetric

structure for circuit simulation matrices [6]. Therefore, it can generally be said that

circuit simulation matrices are expected to be large, square, very sparse, and asymmetric.

In Section 2.2 of this chapter, different matrix construction methods are reviewed, the

way of handling nonlinear and time varying elements are introduced, and the step by

step procedure of describing an electronic circuit in a matrix form is explained. In the

next section, a number of different matrix solution approaches will be reviewed.

2.3 Matrix Solution

When the equations describing a circuit are formulated, they can be written in the

matrix form of Ax = b where A is the coefficients matrix, x refers to the vector of

unknowns such as node voltages or branch currents, and b (RHS vector) is the excitations

vector. There are two main approaches to solve these matrix systems: direct methods

and iterative methods. There is a clear distinction between these two methods. Direct

methods obtain the exact solution in a finite number of steps while iterative methods

use a successive process to approximate the solution over an infinite number of iterations

where the exact number of required iterations depends on the required accuracy [17, 3].

In addition, there are some other methods based on combining different matrix solution

algorithms in order to use the advantages of methods in different classes, which are called

hybrid methods. Later in this chapter, the above mentioned matrix solution methods

will be reviewed in more detail.

2.3.1 Direct Methods

This section covers direct matrix solution methods. As it was mentioned in Section

1.2 of the first chapter, direct methods theoretically solve the matrix of equations in a
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(predictable) finite number of steps and obtain an exact solution. But, in real applica-

tions, this is not always true due to rounding errors. An error made in one step spreads

in all the following steps. In other words, even if a unique solution exists, numerical

direct methods can fail to obtain the solution if the number of variables is large, be-

cause rounding errors can accumulate and lead to a wrong solution. In this case, there

will be two alternative ways: using iterative methods (which are discussed in the next

section), or using matrix decomposition methods. Decompositions provide a numeri-

cally stable method to solve a system of linear equations. In fact, they transform the

problems, which are nearly singular, to non-singular ones. Some most frequently used

matrix decomposition methods are Cholesky, QR, LU, and SVD [60]. Solving a system

of equations using decomposition methods can also be classified as a direct method. The

other problem associated with direct methods is the solution time. Large scale problems,

which include thousands of equations and unknowns, can be very time demanding to

solve by standard direct methods. In electronic circuits analysis, the coefficient matrix,

A, is usually asymmetric and very sparse. Therefore, suitable sparse matrix strategies

are needed to handle them. Otherwise, direct methods may face serious problems when

dealing with large sparse systems [34, 60].

2.3.1.1 Classical Gaussian Elimination

Gaussian elimination in its basic form transforms a general system of equations into an

upper triangular system. This process is called the forward elimination. Then, the resul-

tant system can be solved by the backward substitution process. For an n∗n matrix, the

elimination procedure consists of n − 1 steps. At the kth step, an appropriate multiple

of the kth equation is subtracted from all of the equations below it one by one so that

zero elements are introduced below the diagonal element in the kth column. Figure 2.10

shows a schematic diagram for n = 4 [4].

Figure 2.10: Gaussian elimination process for a 4∗4 matrix [4].

As shown in Figure 2.10, the process in each step starts with the diagonal element in

the corresponding equation, which is called the pivotal element or pivot. It is clear that

the elimination process can be continued unless one of the diagonal elements is zero, in
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which case it will break down. According to the elimination procedure, the Gaussian

elimination breaks down at the kth step if and only if the leading principal k∗k minor of

A is singular. For square matrices, if the matrix that corresponds to a principal minor

is a quadratic upper-left part of the larger matrix, then the principal minor is called

a leading principal minor. Hence, the Gaussian elimination will not break down for

some special matrices such as row diagonally dominant, column diagonally dominant,

and positive-definite matrices. It can be shown that the forward elimination and back-

ward substitution processes require n3/3 and n2/2 operations, respectively. Thus, the

Gaussian elimination is an O(n3) algorithm (the number of required operations is of the

order of n3) [6]. A general form of a matrix system undergoing the Gaussian elimination

process in shown in Figure 2.11. One of the disadvantages of this method is the accu-

mulation of errors. Roundoff errors are built up during the successive subtractions and

accumulated in Xn. Then, the error will be magnified during the backward substitution

process especially if there are small values on the diagonal which cause very large values

generated by division.

There is a developed form of the Gaussian elimination, which is called the Gauss-Jordan

(GJ) elimination. Generally, there are some elementary matrix operations e.g. inter-

changing rows, multiplying a row by a non-zero number, and adding a linear combination

of rows to the others. GJ is a technique that applies some of the above mentioned oper-

ations to the matrix of equations. As it is represented in Figure 2.12a, in this method,

an Identity Matrix (I) of the same size of A matrix is added to the matrix system and

will be affected by the same operations which is done on the A matrix. Then, by using

the elementary row operations matrix A is transformed into the diagonal form shown in

Figure 2.12b. A final step of dividing each row of the system by a′ii will convert the A

matrix to an Identity Matrix [6, 5].

Figure 2.11: Gaussian elimination: a) The original matrix system b) Forward elimi-
nation applied c) Backward substitution [5].

By the end of this process, the ci vector will become the solution of the system and the

original Identity Matrix, whose elements were shown by bij , will become the inverse of
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Figure 2.12: Gaussian-Jordan elimination: a) The original matrix system along with
the added Identity matrix b) Matrix of coefficients is converted to a diagonal matrix

by the elementary row operations [5].

the A matrix. Although this method also generates the inverse of the A matrix, which is

not really needed for some applications, it requires more operations than the Gaussian

elimination. The GJ elimination also suffers from rounding errors especially generated

by division when the matrix is close to singular. When the diagonal element is very

small, division will generate a very large row element. Subtracting that large element

from the remaining rows will lead to a significant roundoff error. Thus, most elimination

techniques will include a search and reordering process to find and replace the largest

possible elements on the diagonal prior to division to decrease the effect of the roundoff

error [4, 5].

The process by which the rows or both rows and columns of a matrix are interchanged

in order to put a suitable matrix element in place of the current diagonal element is

called pivoting. GJ without pivoting does not interchange rows or columns and just

multiplies or adds rows. Like the classical Gaussian elimination, the procedure will fail

if the pivot element is zero or becomes unstable if the diagonal element is nearly zero.

By using pivoting, the process becomes stable. Although there are various techniques

to choose a suitable pivot, the largest element of the corresponding row is usually a very

good option. The Gaussian elimination can solve systems with multiple RHS vectors

but when it is necessary to solve the same system for a new RHS vector, the whole

elimination process should be repeated again. Therefore, in practical applications, other

direct methods such as LU-factorisation, which do not manipulate the RHS vector, are

preferred [4, 5].

2.3.1.2 LU-factorisation

There are a number of different matrix factorisation or decomposition techniques for the

solution of linear equations. LU-factorisation (sometimes called LU-decomposition) is
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a widely used direct method in circuit simulation applications which is reviewed in this

section. For the general form of a linear systems of equations, Ax = b, by assuming

that there is a lower triangular matrix L and an upper triangular matrix U so that

A = LU , and diagonal entries of L and U are all non-zeros, the system of equations

can be written as shown in Figure 2.13 and solved in the following manner. The system

can be rewritten in the new form of Ax = LUx = b using L and U matrices. Then, by

setting y = Ux, y must satisfy Ly = b. L is a lower triangular matrix and y can be

obtained easily using forward substitution. After finding y, Ux = y can be solved using

backward substitution to find the solution [6, 61].

Therefore LU-factorisation method consists of three steps:

• Factorisation (of the order of n3/3 operations)

• Forward substitution (of the order of n2/2 operations)

• Backward-substitution (of the order of n2/2 operations)

and it can be seen that, like Gaussian elimination, LU-factorisation is an O(n3) method

[6].

Figure 2.13: LU-factorisation of a square matrix, A [6].

A very important advantage of LU-factorisation compared to Gaussian elimination is

that once the coefficient matrix of a system is factorised for the first time, for new RHS

vectors, the solution can be obtained only by forward and backward substitutions and

there is no need for factorisation. This would be, for example, true for AC analysis in

circuit simulation but not valid for some other types of simulations such as transient

analysis. It should be noted that there are a number of different approaches for the

factorisation part to obtain the L and U matrices and all of them are of the order of

n3/3 operations.

Stability of direct methods such as Gaussian elimination (and LU-factorisaion as a vari-

ant of it) significantly depends on the form of the A matrix and especially the diagonal

values. The general strategy in practical applications is to use pivoting to prevent the

matrix entries becoming too large. There are two main options to choose the pivot

element akk: Partial pivoting (O(n2)), which uses the largest element of only the kth

column as the pivot and Full pivoting (O(n3)) which searches the remaining matrix from
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k to n for the largest absolute value to replace it by the diagonal element as a pivot.

Full pivoting is computationally expensive and is not normally required.

Large electronic circuits are very sparse because of the fact that every element is just

connected to a few nodes and most of the entries of the A matrix in circuit simulation

are zero. Therefore, the simulation process can be accelerated by using sparse matrix

techniques for storage, pivoting, etc [6, 62]. From the computational point of view,

LU-factorisation can be considered as one the most important parts of the conventional

circuit simulation process, which is widely used nowadays. When dealing with sparse

matrices, the elimination process during the factorisation can create non-zero elements at

the positions of originally zero entries. These non-zero entries, known as fill-ins, increase

the memory requirements and also the required computational effort. The number of

fill-ins during the factorisation process can be reduced using the Markowitz Criterion,

which selects suitable pivots to minimise the creation of non-zero entries [63, 64]. The

KLU factorisation method is another variation of the LU-factorisation method, which is

developed for sparse matrices [65].

2.3.2 Iterative Methods

In Section 2.3.1, direct matrix solution methods are covered. These methods provide a

solution to the system of linear equations within a finite number of steps generally of the

order of n3. The term iterative method refers to the techniques that approximate the

solution of a linear system over a successive process and obtain more accurate results at

each iteration. Iterative methods do not guarantee to yield a solution for all systems of

equations but when they converge to an answer, it is usually less expensive than direct

methods [35]. Comparing iterative methods with direct methods, one may ask why

a method that cannot calculate the exact solution is sometimes preferred to one that

obtains the exact solution. The answer is that in some applications, iterative methods

are easier to implement on high performance computers and more suitable for large-

scale problems. The level of accuracy in iterative methods will depend on the number

of iterations. However, for iterative methods, the number of required operations per

iteration is of the order of n2. For very large systems of equations, iterative methods

can be much faster if they can converge to the solution within a reasonable number of

iterations for the required accuracy [35, 5].

Iterative methods are mainly classified into two main groups: stationary and non-

stationary methods, but there are some other methods which are a combination of

both. Stationary methods are older, easy to understand, and easy to implement but

normally not as effective as non-stationary methods, which are a recent development,

and relatively harder to implement [35, 66, 67].
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The structure of the coefficient matrix e.g. being diagonally dominant has a remarkable

impact on the convergence rate of an iterative method. Therefore, in most of the cases,

a second matrix called the pre-conditioner matrix, is used to transform the coefficient

matrix to the one with more desirable structure. Although the pre-conditioning process

includes some extra costs, a good pre-conditioner can effectively improve the convergence

rate of an iterative method [35, 68, 69].

2.3.2.1 Stationary Iterative Methods

Iterative methods that can be expressed in the form of Equation 2.14 are called stationary

iterative methods. B and c are constants and do not depend on the iteration counter,

k. In order to solve Ax = b, iterative methods calculate a sequence of approximate

solutions x(0), x(1), ..., x(k) so that x(k) can be obtained using x(k−1) [35, 7].

x(k) = Bx(k−1) + c (2.14)

The main stationary methods are Gauss-Jacobi, Gauss-Seidel, and Successive Over Re-

laxation (SOR) as a variant of the Gauss-Seidel method. Before studying each of the

methods individually, it should be mentioned that the starting point for all of these

methods is to write the matrix A in the extended form of Equation 2.15 where L and

U are strictly lower and upper triangular matrices and D is a diagonal matrix with no

zeros on the diagonal. Since A is non-singular, this condition is always achievable by

some row reordering. It should be noted that the L and U matrices have zero diagonals

and should not to be confused with the L and U matrices of LU-factorisation [35, 7].

A = L+D + U ⇒ (L+D + U)x = b (2.15)

Gauss-Jacobi Method: By rewriting Equation 2.15 in the form of Equation 2.16, the

Gauss-Jacobi method can be expressed by Equation 2.17 in which k indicates the itera-

tion counter.

x(k+1) = D−1b−D−1(L+ U)x(k), k = 0, 1, . . . (2.16)

x
(k+1)
i =

1

aii
(bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k)
j ), i = 0, 1, . . . , n (2.17)

In the Jacobi method, the equations are examined independently and the x vector, which

is obtained in the kth, iteration is used in the next iteration. For this reason, the Jacobi
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method is known as a method of simultaneous displacement which makes it possible to

analyse equations separately in a parallel way.

Gauss-Seidel Method: By rewriting Equation 2.15 in the form of Equation 2.18, it is

possible to represent the Gauss-Seidel method by Equation 2.19, in which k indicates

the iteration counter [35, 7].

Dx(k+1) = b− Lx(k+1) − Ux(k), k = 0, 1, . . . (2.18)

x
(k+1)
i =

1

aii
(bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j ), i = 0, 1, . . . , n (2.19)

Unlike the Jacobi method for which the equations can be examined simultaneously,

in the Gauss-Seidel method, the equations are examined just one at a time and each

component of the new iteration depends on all the previously computed components.

Therefore, the Gauss-Seidel method is a sequential algorithm. On the other hand, once

a new value is obtained, it is immediately used for the next computations. This provides

relatively faster convergence for the Gauss-Seidel method compared to the Jacobi method

[35, 8, 70].

The Jacobi and Gauss-Seidel algorithms are shown in Figure 2.14.

Figure 2.14: (a) The Gauss-Jacobi algorithm (b) The Gauss-Seidel algorithm [7].

SOR Method: The SOR method is in fact an extended version of the Gauss-Seidel

method. It uses a relaxation factor, ω ∈ (0, 2), to manipulate the convergence rate. In

addition, in cases where the Gauss-Seidel method does not converge, by a proper choice

of ω it is possible to make it converge. However, an extra pre-computation to find a

suitable ω is required and finding an optimal value for ω is not always possible [7, 70].
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2.3.2.2 Non-stationary Iterative Methods

In stationary iterative methods presented by Equation 2.14 in a simple form, the constant

coefficients do not depend on iterations while in non-stationary methods, computations

involve some information that changes at each iteration. Non-stationary iterative meth-

ods are relatively difficult to implement compared to stationary methods. The need for

multiple iteration vectors makes it difficult to apply them to large systems. However,

they often offer faster convergence. It should also be noted that most of the non-

stationary methods are applicable only to symmetric positive definite systems. There

are a few developments of them applicable to asymmetric systems but they also try

to transform the system to a symmetric problem and solve it [8, 70]. Therefore, these

methods are not suitable for the purpose of this work on circuit simulation matrices,

which are asymmetric.

2.3.3 Hybrid Methods

Different methods for solving linear equation systems vary in different aspects such as

simplicity, ease of implementation, amount of required computations, storage, conver-

gence rate, accuracy, etc. and it is very important to choose a suitable method that

works efficiently for a given problem. Sometimes, a combination of methods, called a

hybrid method, is used for specific problems in order to take advantage of different meth-

ods. For example, [8] has introduced a hybrid method which is a combination of two

iterative methods. Although it is not related to the circuit simulation field, it clearly

shows that how combining two methods can increase the efficiency.

In the above mentioned paper [8], the convergence rate of two different iterative methods

are represented and analysed separately. The first method is a stationary iterative

method called Sparse Iterative Method (SIM) which is a Jacobi-type iterative method.

An adaptive relaxation method is used to modify SIM to achieve more convergence

rate and numerical stability. The second method is a non-stationary iterative method

called Bi-Conjugate Gradient Stabilized (BiCGSTAB). The rate of convergence for this

method has been improved by pre-conditioning the coefficient matrix and it has been

shown that a suitable pre-conditioner for this method is the matrix which is used in the

SIM method [8].

It is shown that, in general, stationary methods have a faster initial convergence rate

which slows down when approaching the accurate solution. On the other hand, the

non-stationary technique benefits from a linear convergence rate. A hybrid technique

is then introduced which at initial steps uses the fast convergence rate of stationary

methods and after a pre-defined number of iterations switches to the non-stationary

method. The introduced techniques have been applied to two different systems and the
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results have been given [8]. Their simulation results of analysing methods individually

and then applying a hybrid method to one of the systems are shown in Figure 2.15 [8].

Figure 2.15: (a) SIM method versus modifies SIM using adaptive relaxation
(b) BiCGSTAB method versus pre-conditioned BiCDSTAB (c) SIM-AR versus

BiCGSTAB-precon [8].

Figure 2.15.a shows that the SIM method does not converge for this case but applying an

adaptive relaxation scheme makes it converge. It can be seen that the convergence rate

of the Sparse Iterative Method with Adaptive Relaxation (SIM-AR) method is quite fast

during the first ten iterations but after that is slows down. In Figure 2.15.b it is repre-

sented that using a suitable pre-conditioner matrix in the Pre-conditioned Bi-Conjugate

Gradient Stabilized (BiCGSTAB-precon) method, leads to a substantial improvement in

the convergence rate of the BiCGSTAB method. It can also be noticed that except for a

few iterations, the convergence rate is almost linear. Figure 2.15.c shows the simulation

result of applying the hybrid method to the same system. The hybrid method initially

starts with the SIM-AR method and after a pre-defined number of iterations, which in

this case is around 12-13 iterations, switches to the BiCGSTAB-precon method. It is

obvious that the hybrid method obtains the result with a considerably faster convergence

rate compared to the other two methods [8].
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2.3.4 Discussion on Matrix Solution Methods

Matrix solution methods are mainly classified in two categories: direct methods and

iterative methods. Each of these categories consists of several different approaches,

which have their own advantages and disadvantages. It is not possible to prefer one of

the approaches over the other one and different applications may choose either of them

as a suitable approach. In general, the pros and cons of direct and iterative methods

can be represented as follows [6, 70]. It is assumed that the matrices are non-singular.

Direct Methods:

• Pros

1. The solution (if it exists) can always be found. When the coefficient matrix

is close to singular, the direct solution process may be affected by generation

of large values and cannot obtain the correct solution.

2. There is a fixed number of operations to find the solution and the order of

operations is generally of O(n3).

3. The obtained solution is exact (neglecting roundoff errors).

• Cons

1. Accumulation of roundoff errors may cause big errors that can prevent the

process to find the solution.

2. Not suitable for large sparse matrices. The number of operations and growth

of roundoff error increases as the size of the problem becomes larger.

3. The solution process cannot be manipulated by the user. There are a fixed

number of operations that need to be completed before getting to the solution.

Iterative Methods:

• Pros

1. Roundoff error is not as problematic as in direct method cases because gener-

ally the iterations are only approximations of the exact solution and roundoff

errors only affect the convergence speed not the quality of approximation.

2. Suitable for large sparse systems. The total required operations per iteration

is of the order of O(n2) and the sparsity of the matrix will simplify the

calculations per iteration.

3. The user can intervene in the solution process. This can be done for example

by using a relaxation factor or deciding when to stop the iterations to obtain

an approximation of the solution.
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• Cons

1. The solution process may not converge in cases where the coefficient matrix

is not strictly diagonally dominant.

2. The solution is an approximation. To get closer to the exact solution, more

iterations are required.

3. The number of required iterations is unknown and depends on the desired

accuracy.

It should be noted that for some methods such as Jacobi-type algorithms, according to

the nature of their algorithm, a high degree of parallelisation is possible. Nowadays,

the availability of parallel computing machines has given the opportunity to researchers

to focus on parallel methods in order to speed up the solution process. In the parallel

computing area, there are also different approaches based on different parallelisation

methods and parallel machines architectures. Depending on the type of problem and the

desired specifications, one can use a synchronous or asynchronous architecture, shared or

local memory, a small or large number of processors, etc. Using a suitable parallelisation

technique for the problems with a high possibility of being parallelised can possibly lead

to a considerable speed-up compared to the sequential systems.

In the next chapter, the concentration will be more on Jacobi-type iterative methods

and their parallel evaluations on many-core machines.

2.4 Parallel Circuit Simulation

2.4.1 Parallel and Distributed Computing

Traditional sequential computers are designed to work based on a single CPU. The

problem is divided into a series of instructions and only one instruction is executed at

a time. By recent technological progress, very large-scale problems have been raised.

Thus, faster machines and more efficient methods are required to be able to solve them

within a reasonable time [10].

Nowadays, parallel and distributed computing is an area of interest for researchers be-

cause of its promising results to speed up the evaluation process for large-scale problems.

The trends in the past 20 years for the application and efficiency of parallel computing,

shows a bright future for parallelism. Basically, parallel computing methods break the

problem into small parts that can be analysed simultaneously using several CPUs work-

ing in parallel (Figure 2.16). There are different approaches for parallelising problems

such as parallelising the existing serial algorithms or trying to implement the algorithms

on multi-core or many-core machines. However, there are some challenges related to par-

allel computing which do not exist in traditional serial methods and machines [70, 9].
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Figure 2.16: Parallelisation; distribution of a problem over several CPUs [9].

2.4.1.1 Parallelisation Issues

Although parallelisation can lead to a considerable speed-up in analysing very large-scale

problems, there are some issues related to implementation of parallel methods on parallel

computers which make the design and analysis process relatively difficult compared to

the serial context [70, 10].

• Task allocation: the first issue is the process of dividing the bigger problem into

smaller tasks and distributing them quite equally (load balancing) over different

processors.

• Communication: when using several processors in parallel, a processor sometimes

requires to send/receive intermediate computational results to/from one or more

other processors. This communication between processors needs to be done in a

way that does not affect the efficiency of the whole process.

• Synchronisation: another issue is synchronisation of the computational results ob-

tained by different processors. There are two main classifications here. In some

methods, processors work synchronously which means that there are some prede-

fined time points based on system’s clock on which the computations of processors

are completed and some intermediate results are available. The problem is that, a

processor may need to wait for the arrival of specific data from other processors.

This waiting time, can affect the performance of the computation. Some other

methods work on an asynchronous basis. In this case, it is not required for a

processor to wait at some predetermined time points to get data from other pro-

cessors. However, implementation of such algorithms is relatively more difficult

[70, 10].
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2.4.1.2 Parallel Computing Systems

To classify a parallel computer, there are several aspects that should be considered. In

this section, some important parameters for describing a parallel computer are reviewed

briefly [70, 10, 71].

• Processors: type and number of processors are different in different computing

systems. Some of these systems have thousands of small processors while in some

others there are just a small number of processors (order of 10) which are relatively

more powerful.

• Control: almost all of parallel computing systems have a sort of central control

but with different level of controlling. In some systems, the control mechanism

just loads the program and data to processors and then processors are quite inde-

pendent to work on their tasks. In some other systems, processors are controlled

with a high level of details and receive step by step instructions from the central

controlling system.

• Synchronous or asynchronous operation: in synchronous operations there is a

global clock which synchronises the operation of processors but some systems use

an asynchronous method independent of system’s clock.

• Interconnection and memory organisation: an important aspect of a parallel com-

puter is the method a processor uses to communicate with other processors in

order to exchange data.

According to these specifications, parallel computers are broadly classified into two cat-

egories. In the first category, the system benefits from a shared memory. All processors

have access to the shared memory and are able to read from or write to the memory.

The problem arises when two or several processors try to read or write at the same time.

This can be solved by switching systems which, roughly speaking, define some orders of

access to the shared memory for processors (Figure 2.17a). This can lead to a longer

access time by increasing the number of processors. A good example for this class can be

Open Multi-Processing (OpenMP) which is an Application Programming Interface (API)

that supports multi-platform shared memory multiprocessing programming in C, C++,

and Fortran, on most processor architectures and operating systems [52]. In the second

category, which is called distributed memory, processors have their own local memory.

In this system, processors have to communicate by sending or receiving messages to

other processors in order to have access to their local memories (Figure 2.17b). If the

communication is performed based on the system’s clock, the method is called systolic.

If the processors perform their activities according to the messages they receive disre-

garding the global clock, the method is called MPI, which is an asynchronous operation

[70, 10].
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In MPI, data is passed (sent/received) using different function calls and there are several

communication topologies such as send, receive, broadcast, scatter, gather, etc. to

transfer data between two or more processors [50, 51, 72].

Figure 2.17: Processors communication for (a) shared (b) distributed memory organ-
isation [10].

2.4.1.3 Speed-up

One may think that when a problem is distributed for example on p processors, the

speed of computation process should increase by a factor of p. It cannot be correct

because it is not possible to parallelise the entire problem. Usually a fraction of the

whole work can be performed in parallel. Furthermore, as mentioned in Section 2.4.1.1,

there are some factors in parallel computing which affect the efficiency of the system.

By using Amdahl’s law [73, 74], it is possible to calculate the speed-up from the sequential

system to the parallel system. According to this law, the speed-up (Sp) for p processors

is shown by Equation 2.20 where fp is the fraction of work which can be carried out in

parallel.

Sp =
p

fp + (1− fp)p
=

1

(1− fp) +
fp
p

(2.20)

It can be seen that, if fp is small, the speed-up is not considerable. While, for bigger

values of fp (close to 1) a better speed-up can be expected [70, 75].

2.5 Parallel SPICE

The SPICE algorithm is intrinsically sequential. By the rapid technology progress in

large scale electronic circuits design and very large and complex systems being intro-

duced, circuit simulation process is becoming more and more time demanding. There-

fore, speeding up the SPICE algorithm has been a point of interest for researchers during

the last decades which has led to new approaches and techniques for parallelising the



Chapter 2 Literature Review 39

SPICE algorithm with the aim of accelerating the simulation process. These works have

focused on different parts of the SPICE algorithm and targeted a range of issues related

to parallelising the SPICE simulation process. As will be reviewed later in this section,

there have been a number of different attempts to parallelise SPICE [12, 30, 38, 76].

Although these works have made improvements and speed-ups in different parts of the

simulation process, still there are some constraints on totally parallelising the SPICE

algorithm.

In this work, we focus on one of the issues which limits the parallelisation of the SPICE

algorithm. One of the problems associated with parallelisation of the circuit simulation

algorithm is the presence of nonlinear elements in electronic circuits. When dealing with

nonlinear elements, there are two distinctive phases. The first phase is linearising the

nonlinear elements and equations and the second phase is solving the matrix equation.

Linearisation process is normally done iteratively using the Newton-Raphson method.

After converting the nonlinear equations to linear ones, the matrix equation describing

the system should be solved. Linearisation process (device evaluation phase) for each

element can be performed separately in a parallel way. This step must complete before

the matrix solving process can start. The next device evaluation phase must start after

the previous matrix solving phase is completely done. This creates two barriers between

device evaluation and matrix solution phases, which limit the amount of parallelisation

as shown in Figure 2.18 [11].

In the next section, there will be a review of the existing work on parallelising the

SPICE simulation process, the existing limitaions and issues will be addressed, and the

proposed methods to overcome some of the problems will be introduced to be discussed

and investigated in more detail in the next chapters.

Figure 2.18: Barriers between device evaluation and matrix solution phases [11].

2.5.1 Existing Work

Circuit simulation is a computationally intensive process especially when it comes to the

design and verification of Very Large Scale Integration (VLSI) circuits. Although the
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availability of faster processors and development of different simulation tools accelerate

the simulation process, there is a continuous demand for higher speed and accuracy. In

order to keep up with the trend of increasing size and complexity of electronic circuits

and device models, electronic circuit designers try to deliver high performance simulation

tools. During the last few years, the clock frequency of CPUs saturated around 3.5 GHz

and it seems that single processors and sequential algorithms are no longer able to keep

up with the advancements in electronic circuits design. Therefore, parallel simulation

has become a point of interest for circuit designers [24, 38].

Although during the recent years the need for parallel circuit simulation has become more

obvious, it has been an interesting topic for researchers even a few decades ago. There

were early attempts in the 80s and 90s to develop parallel circuit simulation algorithms

on a single-core or multiple cores [77, 78, 79, 80]. For example, in 1988, a parallel

circuit simulator was implemented which used a multiprocessor computer with shared

memory to perform parallel circuit simulation by using direct methods and partitioning

the system matrix. They reported around 4 to 7 times speedup for their test circuits

compared to single processor simulations [77]. Another example focuses on the model

evaluation phase and highlights the fact that device evaluation is a computationally

intensive task and can be parallelised to speed up the simulation process. A simple

formula is introduced to assess the cost of loading models to the system matrix and

balance the load across multiple processors. A speedup of almost 3x is reported for

model evaluation using their proposed methods [80].

In recent years, several attempts have been reported to parallelise the device evalua-

tion and/or matrix solution processes and a variety of algorithms and hardware de-

signs have been proposed for this purpose on multi-core CPUs, GPUs, and FPGAs

[29, 12, 30, 38, 42, 11]. WavePipe is a coarse-grained parallelism approach which simul-

taneously calculates the circuit solution in multiple adjacent time points using multiple

threads. It works based on two proposed methods called backward and forward pipelin-

ing. Backward pipelining performs extra calculations by moving backwards along the

time points to provide larger future time steps. Forward pipelining performs predictive

computing in the direction of forward time steps. Simulation results on some benchmark

circuits show around 2 times speed-up [29]. Some other works have focused on paral-

lelising the matrix solution phase on FPGAs by parallelising the KLU matrix solver as a

direct method to solve a linear matrix of equations [12]. The device evaluation phase is

a computationally intensive part of the SPICE simulation process because each device

should be evaluated separately and this needs to be repeated at the beginning of each

time step. A parallel approach for device evaluation phase has been proposed by [30]

to exploit the natural parallelism of the independent evaluation of each device to accel-

erate the device evaluation phase using GPUs. Multi-algorithm parallel simulation and

multi-thread simulation using OpenMP are among other attempts to parallelise some

parts of the SPICE simulation process [42, 11].
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There is also more recent work within the last few years on parallel circuit simulation

which addresses some new challenges in this area and shows the existing interest on this

topic [81, 45, 82, 83]. A development of a parallel circuit simulation algorithm on a

GPU has been done in [81]. This work highlights the challenges related to using shared-

memory in parallel simulations, proposes a partitioning based approach on distributed-

memory, and shows limited speed-ups on multi-core systems [81]. In another study, a

very specifically designed simulator for massively repeated small circuits is represented

which is suitable for simulating systems with repetitive patterns such as SRAMs [45].

Some very recent works are also introduced on parallel circuit simulation on FPGAs

and GPUs [46, 84]. However, most of the recent work also concentrates on speeding

up the direct matrix solution methods such as LU-factorisation by either improving

the algorithm itself and making it more efficient for sparse matrices or by parallelising

the direct matrix solution approaches on multi-core systems such as GPUs and FPGAs

[65, 84]. To the best of our knowledge, there is no recent work on parallelising circuit

simulation algorithms using new approaches rather than improving the conventional

simulator. This can be because of the limited speedups than can be achieved using the

current parallel architectures and all the recent attempts are trying to utilise the available

multi-core/many-core platforms. As it was pointed out in the Research Motivation

section (Section 1.3), the main driving force behind the current work is the availability

of massively parallel platforms such as SpiNNaker which motivated us to work on new

approaches based on very fine-grained Jacobi-type iterative solution to replace the direct

matrix solver which is being claimed to be the bottleneck of the parallel circuit simulation

[81, 84].

Although there is an ongoing interest in parallel circuit simulation and there have been

a number of very recent attempts in this area, the existing works mainly concentrate

on one of the simulation phases, device evaluation or matrix solution. As discussed,

since device evaluation is easier to parallelise, most of the current research is on matrix

solution and various parallel implementations of direct matrix solutions. In this work,

a Jacobi-type iterative method is used for the matrix solution phase in order to use the

benefits of parallel matrix solution phase and also iterative solution to overcome some of

the existing challenges. The proposed method is based on non-deterministic evaluation

of Jacobi iterations on highly parallel systems. Apart from recent attempts on parallel

circuit simulation, there are also attempts on speeding up iterative numerical solutions

such as Jacobi iterations on highly distributed systems. The most recent work among

them reports an implementation of asynchronous Jacobi method on parallel systems

using MPI, OpenMP, SHMEM [85]. Although this is not in parallel circuit simulation

field and also simplifies the general Jacobi solver by making some assumptions to avoid

dealing with an explicit conductances matrix (A), the concept is very close to a part of

the work used in this thesis for parallel circuit simulation on highly distributed systems

using Jacobi-type iterative approaches for matrix solution phase.
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2.5.2 Parallel SPICE Simulation Challenges

As reviewed in the previous section, there are a number of different attempts and re-

search on parallelising circuit simulation process. Although all of them report speed-ups

by employing new approaches, there are still limitations on totally parallelising the simu-

lation process by focusing on both of the main simulation phases. Besides some existing

issues, such as the barrier between the main simulation phases, have not been solved

yet. Circuit simulation is an iterative process which has two main phases: device evalu-

ation to model and linearise nonlinear elements and matrix solution to solve the linear

equations describing the circuit.

The model evaluation phase is very straightforward to parallelise due to the inherent

parallelism of independent evaluation of each element. However, conventional circuit

simulation tools perform this by the Newton-Raphson method which involves calculation

of partial derivatives. In order to create linear models for nonlinear devices, at each

NR iteration, partial derivatives of nonlinear equations needs to be calculated using

numerical integration methods which demands a high amount of computations [12].

Unlike the device evaluation phase, matrix solution is very difficult to parallelise due to

the asymmetric and irregular structure of circuit simulation matrices. Circuit simulation

tools such as SPICE use direct methods for the matrix solution phase. As introduced

earlier in Section 2.4.2.1, a number of attempts have been made to parallelise the matrix

solution phase of SPICE simulation by using different approaches such as partitioning,

block simulation, parallel multi-algorithms, etc. However, parallelising this stage is one

of the main bottlenecks of the simulation process [12].

Apart from the issues related to each simulation phase, there is another important chal-

lenge connected to parallel circuit simulation which has remained unsolved and severely

limits the total parallelisation of the SPICE algorithm. At each time point of the circuit

analysis process, the model evaluation and matrix solution phases need to be performed

several times until the solution is obtained with the desired accuracy. Therefore, matrix

solution cannot start until device evaluation has finished and the next device evaluation

cannot begin until the matrix solution phase has obtained a solution. Although the de-

vice evaluation and matrix solution phases have been parallelised individually, the above

mentioned gap between the two simulation phases prevents the complete parallelisation

of the simulation process [11].

The current work aims to contribute to the solution of these challenges by proposing

new approaches to each of the main solution phases and then using the advantages of

these approaches to prepare the ground for totally parallelising the SPICE algorithm by

removing some of the existing constraints.
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2.6 Summary

This literature review chapter started with a brief review of the SPICE algorithm. Ma-

trix construction techniques and automatic equation formulation were studied. There

are a number of different methods for matrix construction among which MNA is widely

used in circuit simulation tools because it not only leads to a smaller matrix size but

also provides solutions for some unsolved issues existing in other matrix construction

techniques. Then, the two main approaches for matrix solution (direct solutions and

iterative methods) were reviewed and the advantages and drawbacks of each method

and their variants were introduced.

In the last section of this chapter, parallel circuit simulation was reviewed. Several

attempts at parallelising circuit simulation process were addressed. Although these

works present a number of different approaches to parallelise the simulation process,

which have led to considerable speed-ups, there are still some unsolved issues which are

not addressed in the literature.

The current work targets some of these existing challenges and proposes new approaches

for performing the two main simulation phases and also removing some of the existing

constraints on totally parallelising the circuit simulation process. The main idea is

using a parallel and iterative matrix solution method in conjunction with parallel model

evaluation techniques to perform the two phases simultaneously on a highly parallel

network of light-weight processors. An in depth study of the proposed methods along

with the simulation results on benchmark circuits is done in the next chapters.
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Random Jacobi Iterations

SPICE-like algorithms use direct methods such as LU-factorisation for the matrix solu-

tion phase. As discussed in Chapter 2 Section 2.3.4, direct and iterative matrix solution

methods have their own advantages and drawbacks. Iterative methods, in some cases,

fail to converge to the correct solution. However, for diagonally dominant matrices,

iterative methods converge to a solution and total operations required per iteration is of

the order of n2. On the other hand, direct solutions face problems handling large-scale

and sparse matrices. Direct methods such as LU-factorisation have order n3 operations.

Therefore, if the number of iterations required for an iterative solution is much less

than n, iterative solutions will be computationally less expensive. Besides, for large

sparse matrices, the L and U factors can become dense because some of the zeros might

be replaced by non-zero entries during the factorisation process. Apart from memory

requirements, computations of triangular L and U systems also become costly.

Another issue associated with the direct matrix solution process in SPICE simulations

is the undesired barrier between the device evaluation and matrix solving phases. This

is because a direct solution generates the solution vector as a whole at the end of the

solution process. Therefore, the next linearisation process cannot start until the matrix

solution process is completely done. At each NR iteration, the nonlinear circuit model

is linearised then the system of linear equations is solved. The matrix solution part also

cannot start before the device evaluation process is completed. These gaps limit the

amount of parallel work in the simulation process [35, 70, 11].

By using a Jacobi-type iterative method and evaluating the circuit equations in a parallel

way and completely random (non-deterministic) order, it is possible to provide the NR

iterations with the new entries of the unknown vector as soon as a new entry is calculated.

The reason is that in Jacobi-type iterative methods each row of the matrix system can

be evaluated independent of the other rows. Therefore, the Jacobi method is very easy

to parallelise.

45
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In this chapter, first, a number of test matrices are generated for our simulations. Then,

the non-deterministic evaluation of the Jacobi iterative method is reviewed and simula-

tions are performed using Matlab. All Matlab simulations in this work are done using the

software version 7.11.0.584(R2010b). on the test matrices, which are specifically gener-

ated for the purpose of our preliminary investigations. Gauss-Seidel, normal Jacobi, and

Random Jacobi algorithms are applied to the test matrices. As briefly mentioned in the

introduction chapter Section 1.4, we call our proposed iterative matrix solution approach

the Random Jacobi method because it evaluates the equations in a non-deterministic

(random) order independently on a large number of parallel processors. However, in this

chapter the parallel Random Jacobi method is simulated on a single-core to investigate

its functionality first. Moreover, the effects of randomness of the execution order of

Jacobi iterations and some parameters which may affect its efficiency have been studied.

3.1 Generating Test Matrices for the Preliminary Simula-

tions

To investigate the functionality of the Random Jacobi iterations in comparison with the

Gauss-Seidel and normal Jacobi iterations, we generated some test matrices specifically

for the purpose of our preliminary evaluations. All these test matrices are square,

asymmetric, and sparse(as it is expected from a circuit simulation matrix) and are listed

in Table 3.1 along with their specifications.

Matrix name Size Sparsity

MTX0020 20 80%
MTX0050 50 90%
MTX0100 100 90%
MTX0500 500 95%
MTX1000 1000 90%

Table 3.1: Test matrices for preliminary simulations.

To generate these test matrices, first the required criteria for our matrix is defined such

as its size, sparsity, values range, etc. The sparsity rate is equal to the number of zero

elements divided by the number of all elements of the matrix. A bigger sparsity percent-

age means a more sparse matrix.Then, a matrix with the desires size is generated with

random values between 0 and 1 for its elements. This is done using the rand(n) function

of Matlab which returns an n-by-n matrix of random numbers [86]. The elements of the

matrix is shifted by 0.5 unit and multiplied by a pre-defined range coefficient to generate

negative values within the desired range. The obtained matrix is multiplied (point to

point) into another matrix with the same size which only has 0 and 1 elements with

the required sparsity rate. This will generate a sparse matrix within the required range

and with the desired sparsity. Finally, the diagonal elements are modified to be bigger
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than the other elements of the same row. A final check is done to make sure that the

matrix is diagonally dominant, complies with the needed sparsity, and converges to the

solution. The relevant Matlab codes are included in Appendix A, Section A.1.

The test matrices are not strictly diagonally dominant but the absolute value of the

diagonal element is bigger than all of the other elements in the corresponding row.

Although the test matrices are not strictly diagonally dominant, they have been tested

to make sure that by applying iterative methods they converge to a solution and do not

diverge.

3.2 Applying Iterative Algorithms to Test Matrices

In this section, the functionality of the Random Jacobi iteration method is examined and

its efficiency is compared to the Gauss-Seidel and normal Jacobi methods. Simulations

are performed using Matlab.

3.2.1 Convergence Comparison

In iterative solutions, as one of the stop criteria, the Euclidean norm is compared to a

pre-defined threshold at each iteration to stop the iterations as soon as the desired ac-

curacy is obtained. In our preliminary simulations, the simulations are performed for a

fixed number of iterations in order to check the convergence but in the main simulations

the Euclidean norm will be used as one of the stop criteria. Equation 3.1 shows calcu-

lation of the Euclidean norm in which solVect is the solution vector, xVect represents

the vector of unknowns calculated at each iteration, and eNorm is the Euclidean norm

between these two vectors. The Euclidean norm or Euclidean distance between two vec-

tors shows how close the two vectors are and is obtained by calculating the square root

of the sum of the square of the differences between all the corresponding elements of

the two vectors. In order to check the convergence of the solution vector to the correct

solution, the Euclidean norm is calculated at each iteration as a convergence measure.

eNorm =∥ solV ect− xV ect ∥=

√√√√ n∑
i=1

(solV ecti − xV ecti)2 (3.1)

Figure 3.1 shows the simulation results of applying the iterative methods on 4 test

matrices with different sizes ranging from 50 to 1000. The initial guess vector is the

same for all of the simulations and equal to a vector of all ones. The x axis represents

the number of iterations and the y axis stands for the Euclidean norm between the

correct solution vector, and the answer which is obtained at each iteration.
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Figure 3.1: Comparing the convergence speed of Gauss-Seidel, normal Jacobi, and
Random Jacobi iterations for four different test matrices.

For the simulation results in Figure 3.1, the algorithm by which the Random Jacobi

method has been performed evaluates the matrix equations in a random order at each

iteration so that each equation is calculated only once. At the beginning of the Random

Jacobi iterations, a random vector with the size equal to the number of rows of the A

matrix is generated. The equations evaluation order is based on this random vector.

In fact, in this case, it is the same as normal Jacobi iterations and the only difference

is in the order of evaluation of the equations. Since, unlike the Gauss-Seidel method,

the solution vector is updated at the end of each iteration in Jacobi-type methods, it is

expected that the Random Jacobi and Normal Jacobi methods obtain the same solutions

within the same number of iterations. However, the Gauss-Seidel algorithm updates the

solution vector right after solving each equation, which leads to a faster convergence.

The Matlab code for the algorithm of each method is included in Appendix A, Section

A.2.

It can be seen in Figure 3.1 that the Gauss-Seidel method converges faster because of

updating the solution vector several times at each iteration (every time an equation

is solved). However, this makes Gauss-Seidel a sequential algorithm, which cannot be
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implemented in parallel. On the other hand, although the Jacobi method is slower, it can

be easily performed in parallel due to the fact that each equation is solved independently

and the update is done at the end of each iteration. For the same reason, the order of

evaluation is important in the Gauss-Seidel method while it does not affect the solution

in the Jacobi-type methods.

Figure 3.2 shows the performance of Gauss-Seidel and Jacobi methods on a test matrix

for three separate simulations in which the order of evaluation of the equations is different

each time. As represented, the convergence pattern is the same for the Jacobi method

for the three different simulations, as the corresponding graphs follow identical patterns,

while changing the order of the evaluation of equations affects the convergence rate of

the Gauss-Seidel method. Therefore, when using the Gauss-Seidel method, the solution

depends on the order in which equations are evaluated and this is because of the existing

dependency between the equations.

Figure 3.2: The effect of the order of the evaluation of equations on the convergence
of Gauss-Seidel and Jacobi methods. For each method, the simulation was repeated for

three times.

3.2.2 Effects of Parallel and Non-deterministic Evaluation

In Section 3.2.1, it was shown that the normal Jacobi and Random Jacobi methods

behave identically when applied to the test matrices. However, that was the case in

which a random vector, which includes all the row numbers, was used to determine

the evaluation order and each equation was evaluated only once per iteration. When

performing Jacobi iterations on many-core systems for solving the matrix equations in
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parallel, the situation is quite different. In this section, we simulate the functionality

of parallel and non-deterministic evaluation of matrix equations when the equations are

solved by Jacobi iterations and investigate the effect of this random evaluation on the

convergence of the iterations in a number of different situations.

In the following case studies, the simulation results of different situations which may

occur during non-deterministic evaluation of the Jacobi iterations on parallel systems

are shown. The graphs for normal Jacobi and Gauss-Seidel methods are the same as

previous simulations and are represented only for comparison purposes. These case

studies aim to highlight some issues and also benefits concerned with parallel Random

Jacobi iterations on a highly parallel network of processors. It should be noted that

these issues can occur for any other simulation methods and are not specific to Random

Jacobi iterations.

When performing parallel Jacobi iterations on many-core systems, failure of a processor

causes the corresponding row of the matrix not to be evaluated. This generates a

constant error when calculating the Euclidean norm. As the number of failures increases,

the value of the Euclidean norm becomes bigger and bigger due to more equations not

being evaluated. This might prevent the system to converge to the correct solution if

the stop criteria are not satisfied because of the error developed by the failure of one

or more processors. This problem can occur for any parallel system of processors and

suggests that appropriate fault detection and correction methods need to be employed.

However, this work mostly concentrates on the functionality of the proposed methods

in the preliminary simulations.

Figure 3.3 shows the effect of the failure of processors on the convergence of a test matrix

of size 100. When all the processors work properly, convergence of the Random Jacobi

is the same as normal Jacobi. In Random Jacobi iterations, when some processors fail, a

constant error can be seen in the value of the Euclidean norm because the corresponding

rows are not calculated and updated with new values for the unknown vector. For this

specific example, when one row, two rows, and three rows do not update, the final

Euclidean norm values are 0.52, 1.21, and 1.60, respectively while it is 0.01 for normal

operation of the Random Jacobi method for a fixed number of iterations equal to 25.

Lack of communication between processors can also affect convergence of the Random

Jacobi iterations when they are evaluated using distributed memory many-core systems.

In this case, one or more processors may not be able to provide a new entry for the

unknown vector in some of iterations due to poor communications, delay in calculating

new values, etc. Figure 3.4 shows cases in which some of the processors do not update

at some of the iterations. In other words, a particular processor may not update a

new entry in a specific iteration because of, for example, communication issues but in

other iterations it works properly. As can be seen in Figure 3.4, although improper

update of some processors decreases the convergence speed, unlike the case of failure in
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Figure 3.3: The effect of failure of some processors on the convergence of the Random
Jacobi method.

processors (Figure 3.3), the system converges to the solution without a constant error

in the Euclidean norm.

In the simulations shown in Figure 3.4, the processors that do not update are chosen

randomly at each iteration and the effect of improper update of two, four, and six

processors on the convergence of the Random Jacobi method is represented. Figure 3.5a,

shows five different evaluations of Random Jacobi iterations on the 100∗100 test matrix.

For this particular example, when the stop criterion for the convergence of the methods is

defined as Euclidean norm < 0.2, the number of iterations for each method to converge

is shown in Figure 3.5b. The Gauss-Seidel method converges in eight iterations, the

normal Jacobi method converges in 14 iterations, and the number of iterations for the

Random Jacobi method has an average of 20 iterations for five different simulations.

The number of iterations for the Random Jacobi method in this case varies between 17

and 23 and depends on the rows which are not updated because of the failure. It should

be noted that, in this example, the Gauss-Seidel and normal Jacobi iterations operate

without any fault in processors but the Random Jacobi method experiences some faults

in the parallel working processors at each iteration.
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Figure 3.4: The effect of improper update of some processors on the convergence of
the Random Jacobi method.

The reason for the Gauss-Seidel method being faster than the Jacobi method (converges

with fewer iterations) is that it solves equations one by one in a sequential order and

updates the solution vector immediately after solving each equation. However, the

Jacobi method updates the solution vector after all the equations are evaluated (which

can be done in parallel). When performing Jacobi iterations in a parallel and non-

deterministic order by independent evaluation of the equations on separate cores, some

cores may complete their tasks sooner than the others and have time to update their

values more than once in one iteration. This makes it closer to the Gauss-Seidel case and

as represented in Figure 3.6, as the number of the cores that update more than once at

each iteration increases, the number of iterations required for convergence decreases. For

example, the Jacobi method converges to the solution with 17 iterations for the example

matrix in Figure 3.6. When 25% of the processors update more frequently, the number

of iterations decreases to 16 and for 75% of the processors with more frequent updates,

it reaches to twelve iterations, which is very close to ten iterations of the Gauss-Seidel

method.

The results show that modelling the parallel evaluation of the Random Jacobi method on

many-core parallel systems converges to the solution even if a few number of processors
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Figure 3.5: Convergence of Random Jacobi iterations when 10% of the processors do
not update at each iteration.

do not update properly in some iterations. However, failure of one or more processors

causes a constant error which might prevent the system converging to the solution.

Thus, this case is a more serious issue to be taken into consideration when evaluating

Random Jacobi on real many-core systems. On the other hand, parallel evaluation of

the Jacobi method can lead to a faster convergence if properly implemented using a

suitable communication pattern to update their solution as soon as it is ready.

3.2.3 Initial Guess Vector

In this section, the effect of choosing a suitable initial guess vector has been simulated

on the 100*100 test matrix for four different initial guess vectors. Figure 3.7 shows the

convergence graphs for the Gauss-Seidel, normal Jacobi, and Random Jacobi for initial

guess vectors of all 0s, all 1s, all 4s, and all -4s. It should be noted that for this specific

matrix, the values of the solution vector are in the range of -1 and 1. A more precise

distribution of the solution vector is represented in Figure 3.8, which shows that most
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Figure 3.6: Convergence of Random Jacobi iterations when some processors update
more frequently.

of the solution vector elements are quite close to zero. As expected, for a fixed number

of iterations, which is 25 for this simulation, a better initial guess vector, which is all 0s

for this case, results in a smaller value for the Euclidean norm of the solution compared

to initial guesses such as all 4s or all -4s. However, with a less precise initial guess,

although the number of required iterations for convergence increases and bigger values

for Euclidean norm is obtained, the system still converges to the correct solution and

does not diverge.

3.3 Euclidean Norm Calculation

When using iterative methods, there should be some stop criteria to terminate the

iterations at some point during the simulation. These can be based on accuracy, number

of iterations, simulation time, or a combination of them. In Section 3.2, the simulations

on test matrices were performed only for a fixed number of iterations. In this section, for
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Figure 3.7: The effect of the initial guess vector on the convergence of iterative
methods.

Figure 3.8: Distribution of the solution vector elements for the test matrix of Fig-
ure 3.7.
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our simulations on test matrices, two factors will be used as stop criteria: the maximum

iteration number and the Euclidean norm. In fact, the main factor is the Euclidean norm

but in case of oscillation, divergence, or very low convergence rates, another criterion

is needed to stop the iteration. This is where the maximum iteration number becomes

important.

The Euclidean norm can be calculated in two different ways. The first way is by com-

paring the solution vector at each iteration with the real solution of the system. The

iterations stop when the Euclidean norm between those vectors is smaller than a pre-

defined threshold. The second method is by comparing the solutions for the last two

consecutive iterations. The first method is more reliable because the result is being

compared to the real solution of the system but is applicable only if the solution of the

system is known, which is not the case for most of the simulations. If, for example, an

iterative method is being used as the matrix solution technique for the simulations, the

system solution is not known and the Euclidean norm should be calculated based on

the results obtained within the last two iterations. Although in this method there is no

need to know the solution to check convergence, there is the danger of converging to a

wrong solution.

The two methods are simulated on a test matrix of size 100 for solving the matrix by

Gauss Seidel, normal Jacobi, and Random Jacobi iterations. The two stop criteria are

the maximum number of iterations, which is set to 50, and the Euclidean norm with the

threshold of 10−2.

Figure 3.9 shows the simulation results when the Euclidean norm is calculated by the

first method, comparing the results at each iteration with the real solution of the system.

In this case, the convergence is obtained in 15 iterations for the Gauss-Seidel method

and 26 iterations for the Jacobi method as represented in Figure 3.9. The value at

iteration zero stands for the Euclidean norm between the solution and the initial guess.

In Figure 3.10, the Euclidean norm is obtained by comparing the solutions in the last

two successive iterations. It can be seen that the number of iterations required for

convergence using this approach is 14 and 29 for the Gauss Seidel and Jacobi methods,

respectively. In this case, the Euclidean norm between the results of two successive

iterations needs to be smaller than 10−2 in order to stop the iterations. To make sure

that the obtained result is the correct solution, the Euclidean norm between the results

and the real solutions is calculated which is equal to 0.0148 for the Gauss Seidel method

and 0.0049 for the Jacobi iterations. It shows that with the second Euclidean norm

calculation method, the Jacobi method has stopped before its Euclidean norm (0.0148)

becomes smaller than the threshold (0.01) because the Euclidean norm between the two

successive iterations (0.0094) has already become smaller than the threshold. For the

same reason, more Jacobi iterations are required in the second approach. It should also

be noted that for the second approach, there is no value for iteration zero because at
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least the result of the first iteration is needed in order to start calculating its norm with

the initial guess.

Figure 3.9: Iteration stop criterion: The Euclidean norm between the solution at each
iteration and the real solution.

Figure 3.10: Iteration stop criterion: The Euclidean norm between the solutions of
the last two successive iterations.

Simulation results of Euclidean norm calculation methods for the other test matrices

are shown in Table 3.2 for the first method and in Table 3.3 for the second method

of Euclidean norm calculation. Same as the previous example for the test matrix size
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100, these results also confirm that both methods converge to the solution although

with different number of required iterations. Moreover, the number of iterations in the

second method is slightly more than the number of iterations in the first method. For

the simulations performed in the current work, since the final solution is not known, the

second approach for the Euclidean norm calculation will be used.

Size Jacobi iterations Jacobi eNorm Gauss iterations Gauss eNorm

20 12 0.0088 7 0.0086
50 20 0.0091 8 0.0067
500 23 0.0083 13 0.0059
1000 41 0.0085 22 0.0075

Table 3.2: Iteration stop criterion: Euclidean norm between the solution at each
iteration and the real solution.

Size Jacobi iterations Jacobi eNorm Gauss iterations Gauss eNorm

20 14 0.0064 9 0.0027
50 22 0.0099 9 0.0080
500 25 0.0068 14 0.0071
1000 43 0.0093 23 0.0091

Table 3.3: Iteration stop criterion: Euclidean norm between the solutions of the last
two successive iterations.

3.4 Summary and Discussion

When comparing different iterative methods for solving linear systems of equations, one

important aspect to consider is the rate of convergence. For a sequence of iterations,

which converges to a solution, an iterative method would be preferred if it obtains the

correct solution with less error (less Euclidean norm in this work) and with a smaller

number of iterations. In this chapter, important factors of the convergence rate of

iterative methods are studied. The effect of the equation evaluation order on the Jacobi

iterative method is investigated. The aim is to assess the effect of evaluating equations

in a completely random order, on the convergence of Jacobi iterations as would be the

case in evaluating Jacobi iterations on a highly parallel network of processors working

asynchronously and independently.

The Gauss-Seidel, normal Jacobi, and Random Jacobi methods are applied to several

test matrices and simulated by Matlab on a sequential machine. Simulation results

show that the Random Jacobi method obtains the correct solution within the same

number of iterations that normal Jacobi method does. Since the aim of this work is

to perform parallel Jacobi iterations on a massively parallel network of processors, the

effects of possible faults which can arise in parallel computing applications have also

been examined.
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When performing Random Jacobi iterations on a highly parallel system by allocating one

processor to each circuit equation, although with a slightly more number of iterations,

the system converges to the correct solution even if some nodes do not update properly

in some of the iterations due to poor communications or delays. However, if one or more

processors never update because of a fault, the system may not converge to the solution.

Overall, preliminary simulation results suggest that Random Jacobi iterations function

properly as an iterative method for solving matrix systems. According to the results

obtained in this chapter, evaluation of Random Jacobi iterations on circuit simulation

benchmark matrices on parallel platforms will be examined and discussed in Chapter 5.

Conventional matrix solution in circuit simulation algorithms are mostly done using

direct solution methods which have very limited capabilities for highly parallel imple-

mentations because of the sparse and irregular structures of circuit simulation matrices.

The contribution of this chapter to the thesis is to study the Jacobi iterative method

with a random and non-deterministic order of evaluation as a matrix solution technique

which can be implemented using highly parallel algorithms. It was shown to converge

to the solution within a limited number of iterations and with the possibility of all the

equations being evaluated independently and massively in parallel and thus is suitable

for our proposed highly parallel matrix solution approach which will be introduced in

Chapter 5.





Chapter 4

Device Evaluation

Device evaluation is the process of determining the contribution of circuit elements to

the system matrix along with linearising the nonlinear elements. At each time step of

the circuit analysis process, companion models of linear and nonlinear circuit elements

in the form of conductances and current sources need to be calculated and assembled

into the conductance matrix and the RHS vector, respectively. In this chapter, first

the SPICE algorithm for device modelling is reviewed and the potential parallelisation

of this phase is considered. Then, some other algorithms, which benefit from simpler

implementations for nonlinear devices, are studied and their advantages and disadvan-

tages are discussed compared to the conventional nonlinear device evaluation, which is

done by the Newton-Raphson method in SPICE simulations. Besides, both methods are

analysed in conjunction with direct and iterative matrix solution methods to evaluate

their functionality and performance. According to the simulation results of some of our

test circuits, the proposed approach, which needs less computational effort, functions

properly with both direct and iterative solutions although with a higher number of it-

erations. The device evaluation phase is very straight forward to parallelise due to the

possibility of independent evaluation of each device. Therefore, performing the suggested

device evaluation method on a highly parallel system along with the parallel evaluation

of the proposed iterative matrix solution method will be used as the preliminary basis

for parallel evaluation of the SPICE algorithm.

4.1 Device Modelling

At each time step of the circuit simulation process, to calculate the unknown node

voltages and branch currents, it is necessary to construct a matrix system in the form

of Ax = b and solve it for x. The whole procedure is an iterative process which consists

of several steps.

61
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First, the contribution of all circuit elements should be added into the matrix system

using the automatic equation formulation techniques described in Chapter 2 Section

2.2.3. The nonlinear behaviour of elements is modelled with linear equivalents and the

resultant linear algebraic system of equations is solved. In a transient circuit analysis

process, there are two main nested loops, as shown in Figure 4.1. The outer loop

computes new values for time-variant elements such as capacitors at the begining of every

new time point when doing a transient analysis. The inner loop, which is normally NR

iterations, linearises the nonlinear equations and solves the linear matrix of equations. It

repeats approximating more accurate models based on the most recent values obtained

from the matrix solution phase until the iterations converge to a solution with a pre-

defined accuracy [6].

Figure 4.1: Circuit analysis flowchart [6]

This chapter focuses on a part of the inner loop which calculates linear models for

nonlinear elements. SPICE uses the NR method to model nonlinear elements. Within

the inner loop, the contribution of elements such as resistors and constant sources needs
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to be calculated only once since their values remain constant throughout the simulation

process. Nonlinear element models, however, must be updated at each NR iteration

because of the dependency of their values on node voltages. SPICE finds the operating

points of nonlinear elements using NR iterations in order to generate a linear model

for them. To construct the linear matrix system, stamps of each element are added to

the corresponding matrix nodes based on the element terminals and connections. For

example, Figure 4.2 shows how the stamps of a two-terminal element (diode) and a

three-terminal element (transistor) will sit in the matrix system [12, 54].

As represented in Figure 4.2, for example, the two-terminal nonlinear device will fill

four elements of the matrix of conductances, A, and two elements of the RHS vector.

However, since there is a nonlinear dependency between the voltage and current of such a

device, a linear model needs to be evaluated for it and plugged into the matrix system to

have a linear matrix system. This is where numerical methods are required to generate

linear approximations for the nonlinear device.

Figure 4.2: Assembling a diode and a transistor into a matrix system using their
stamps [12]

4.2 Linear Approximation of Nonlinear Elements

4.2.1 The Newton-Raphson Method

Newton-Raphson is a numerical iterative method which is used for nonlinear equation

solution and root finding purposes. It works based on linear approximations. Figure 4.3

shows the NR iterations to find the root of the function f(x) [13].

The iterative process starts with an initial guess (point 1) which needs to be fairly close

to the solution. Then the nonlinear curve is approximated by a line (the tangent to

the curve at point 1). When working with a well-behaved function, this will lead to a
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Figure 4.3: Finding the root of a function, f(x), using the Newton-Raphson method
[13].

new point, 2, which is a more accurate approximation. The tangent of the function is

again calculated using the new value and this process is repeated until converging to the

solution [87, 13].

Consider the simple circuit in Figure 4.4a, which contains a diode as a nonlinear element.

Figure 4.4: a) A simple diode circuit b) Graphs of the equations.
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By applying KCL to the only node of the circuit and writing the diode current equa-

tion in terms of its terminal voltages as a branch current equation, Equation 4.1 and

Equation 4.2 represent the system of equations describing the circuit.

G.Vd + id = Ig (4.1)

id = Is(e
λvd − 1) (4.2)

The first equation is linear and is shown by a line with the slope of −G on the i− v axis

in Figure 4.4b. The second equation is nonlinear and shows the nonlinear behaviour of

the diode by a curve on Figure 4.4b. The current (id) and voltage (vd) corresponding to

the intersection point of these two equations are the solutions of the circuit. In order to

find the correct values for the unknown current and voltage, the nonlinear curve is first

approximated by a line to convert the system of nonlinear equations to a linear algebraic

system of equations. The Newton Raphson method needs a starting point which is shown

by M0 with the coordinates of (v0d,i
0
d). The curve is approximated by a line tangent to it

at pointM0. The slope of the line is equivalent to the conductance in diode’s stamp in its

companion model as explained in Chapter 2 Section 2.2.3. This is noted by Gd and can

be found by calculating the value for the derivative of the diode current (Equation 4.3)

at v0d. It is shown by a red line, which intercepts the linear equation at point M1. This

is the first approximation of the solution and can be obtained by solving the linear set

of equations.

Gd =
∂id
∂vd

= λIse
λvd (4.3)

For the next NR iteration, M1 is used as the starting point and in the same way, the

next approximation of the solution is calculated. This process repeats until it converges

to the solution within a pre-defined accuracy. The number of required iterations depends

on a number of factors. For a higher accuracy, more iterations are required and better

initial guess values will lead to quicker convergence which means fewer iterations.

The unknown values of the diode circuit in Figure 4.4a are (id) and (vd). Assume that the

other elements and parameters have the values: G = 0.1s, Ig = 100mA, Is = 10−12A,

and λ = 40 and the initial guess for the node voltage is v0d = 1.0v which results in

i0d = 0.0265A.

Table 4.1 shows the number of NR iterations required to find the solution with two

different error margins and initial guess sets. The first column, error margin, is in fact

the threshold to stop the iterations and as it gets smaller more iterations are required

to converge to the solution. The second column, initial guess, shows the starting value
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for the diode voltage which is normally a reasonable guess. The more accurate the

initial guess, the fewer the number of iterations required for convergence. Although the

iterations converge to the solution with both initial guesses, it can be seen that a closer

starting value can notably accelerate the solution process. For example, when the error

margin is defined as 10−3, with a starting point of vd = 1v, 18 iterations are required to

find the solution (vd = 0.6v) while a starting point of vd = 0.7v, which is much closer to

the solution, will only need six NR iterations to converge.

Error margin Initial guess vd Number of iterations Solution set

10−3 1.0v 18
vd = 0.6096v
id = 0.0405A

10−5 1.0v 20
vd = 0.6097v
id = 0.0390A

10−3 0.7v 6
vd = 0.6096v
id = 0.0404A

10−5 0.7v 8
vd = 0.6097v
id = 0.0390A

Table 4.1: Number of NR iterations for the diode circuit in Figure 4.4.a

The NR method is reasonably fast and in most cases converges to the solution but it

also has a number of drawbacks. When dealing with well-behaved functions, it does not

have convergence issues but in some cases, such as the two cases shown in Figure 4.5,

it may face serious convergence issues. Another downside of the method is that the

evaluation of the partial derivatives (Equation 4.3) is needed at each NR iteration for

linear approximation, which increases the required calculations per iteration. In the

next sections of this chapter, some alternative methods to replace the NR methods are

investigated. The aim is to employ simpler linearisation methods without the need for

calculating partial derivatives at every iteration.

Figure 4.5: Newton-Raphson convergence issue caused by a) a local extremum b) a
nonconvergent cycle [13].
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4.2.2 Fixed Slope Approach

To avoid the calculation of partial derivatives at each linearisation iteration, it is possible

to calculate the slope of the tangent to the nonlinear function, which approximates the

curve, only once at the first NR iteration and continue the rest of NR iterations with

that fixed value. In other words and as an example for the diode circuit shown in

Figure 4.4, the first value of the linear parameter for diode is calculated (G0
m) in the

first NR iteration and and there is no need for the calculation of the derivative of the

function in the next NR iterations. This is graphically represented in Figure 4.6 for the

example diode circuit. As can be seen, the slope of the line approximating the curve

at point M0 remains constant during all NR iterations. Although this simplifies the

calculations, it can considerably affect the convergence rate of the iterations.

Figure 4.6: Using constant slopes in the G0 approach

Table 4.2 shows a comparison between the number of iterations required to converge to

the solution with specific error limits when using the normal NR method and the fixed

slope (G0) approach. The initial guess for the node voltage is v0d = 0.7v in both cases.

Error margin number of NR iterations number of G0 iterations

10−3 6 18

10−5 8 147

Table 4.2: Convergence comparison of the NR and the fixed slope iterations for the
diode circuit in Figure 4.4a

Simulation results show that for the error margins of 10−3 and 10−5, the fixed slope

method requires 18 and 147 iterations, respectively. Compared to the results in Section

4.2.1, which were six and eight iterations for the same cases, it is seen that many more

iterations are required in G0 approach. Although the fixed slope method requires fewer

calculations, the results in Table 4.2 suggest that when more accuracy is required, the
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number of iterations dramatically increases for this approach which makes it unsuitable

for linearisation purposes when high accuracies are required.

4.2.3 The Secant Method

Another linear approximation technique, which also works based on slopes of the function

and has simpler calculations compared to the NR method, is the Secant method. Unlike

the NR method which requires calculations of function derivatives at each iteration, the

Secant method uses ‘difference’ instead of the actual ‘differentiation’. It means that

the Secant method uses two adjacent points to approximate the curve by a line passing

through these points. Like the NR method, the Secant method does not guarantee

convergence but converges for well-behaved functions. The Secant method needs two

initial starting points and has slower convergence rate than the NR approach. However,

it benefits from simpler calculations since there is no need for calculation of partial

derivatives. The procedure of linear approximation by the Secant method is shown in

Figure 4.7.

Figure 4.7: Linear approximation using the Secant method

At each Secant iteration for the example diode circuit, Gd can be calculated using

Equation 4.4. Comparing it to Equation 4.3 shows that evaluation of the derivative of

the diode current is not required but two distinct initial points are needed to start the

first approximation. Simulation results of applying the Secant method on the example

diode circuit using the two starting points of v0d = 0.8v and v1d = 0.7v is represented in

Table 4.3 and compared to the NR method (v0d = 0.7v).

Gn+1
d =

ind − in−1
d

vnd − vn−1
d

(4.4)
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Error margin Number of NR iterations Number of Secant iterations

10−3 6 9

10−5 8 11

Table 4.3: Convergence comparison of NR and Secant iterations for the diode circuit
in Figure 4.4a with the first initial guess set.

Unlike the fixed slope approach, the Secant method shows a better performance. The

number of iterations for the Secant method is quite close to the NR method while none

of the two initial guesses were closer to the solution than the NR case. Table 4.4 shows

the same simulation using Matlab (All Matlab simulations in this work are done using

the software version 7.11.0.584(R2010b)) for a new set of initial guesses as v0d = 0.75v

and v1d = 0.65v, which results in the same number of iterations for the Secant compared

to the NR method. This was just a simple example for illustration purposes and a few

other examples are presented in the next section for a better comparison.

Error margin Number of NR iterations Number of Secant iterations

10−3 6 6

10−5 8 8

Table 4.4: Convergence comparison of NR and Secant iterations for the diode circuit
in Figure 4.4a with the second initial guess set.

4.3 Case Studies on NR and Secant Methods

In this section, the NR and Secant methods are compared using some example circuits

and their simulation results, which are discussed in more detail including the circuit

diagram, matrix construction, and linearisation process.

4.3.1 Case Study # 1

Consider the circuit in Figure 4.8 which has one MOS transistor with a number of

conductances and voltage sources. By using device stamps and the MNA method, the

matrix system, which describes the circuit, is constructed and shown in Equation 4.5 and

Equation 4.6. There are two zero elements on the diagonal of the conductance matrix

because of the presence of voltage sources. Therefore, in the first place, it is necessary to

resolve this issue by rearranging the matrix to a form that has non-zeros on the diagonal

in order to use iterative matrix solution methods. This is done by exchanging row 1 by

row 7 and also row 5 by row 6 for this specific example. In the unknown vector, there
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are five voltages for five circuit nodes and two currents which are the currents passing

through the voltage sources. G1, G2, and imds are the corresponding terms for the

stamp of the MOS transistor and change value at each linearisation iteration according

to the terminal voltages and also the current of the MOS transistor. The values of other

elements stay fixed for the duration of the simulation at each time point.

Figure 4.8: An example circuit with one MOS transistor

A =



gd −gd 0 0 0 0 1

−gd gd + gl +G1 G2 −G1 −G2 0 0 0

0 0 gb1 + gb2 0 −gb1 0 0

0 −G1 −G2 G1 +G2 + gs 0 0 0

0 0 −gb1 0 gb1 1 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0


(4.5)

x =



v1

v2

v3

v4

v5

ivs

ivdd


, RHS =



0

−imds

0

imds

0

vs

vdd


(4.6)

The current of the MOS transistor is given by Equation 4.7 where k′ is a constant, w and

l are the MOS channel width and length respectively, and vth is the threshold voltage

[88]. The MOS stamp values, G1, G2, and imds, can be calculated using Equation 4.8,

Equation 4.9, and Equation 4.10, respectively.

id =
k′

2

w

l
(2(vgs − vth)vds − v2ds) (4.7)
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G1 =
∂id
∂vds

= 2k′(vgs − vth − vds) (4.8)

G2 =
∂id
∂vgs

= 2k′vds (4.9)

imds = id −G1vds −G2vgs (4.10)

By assuming the following values for circuit elements and constants:


vth = 0.7 k′ = 200e− 6 w/l = 2

vdd = 3 vs = 2

gb1 = 5e− 4 gb2 = 1e− 5 gl = 3.33e− 5

gd = 3.33e− 5 gs = 2e− 4

and then by rearranging the matrix system to have non-zeros on the diagonal of the

conductance matrix. The linearised matrix system for the first iteration of calculating

the circuit’s operating point will be equal to the system shown in Equation 4.11 and

Equation 4.12.

A =



1 0 0 0 0 0 0

3.33e− 5 3.06e− 4 1.2e− 4 −3.6e− 4 0 0 0

0 0 5.1e− 4 0 −5e− 4 0 0

0 −2.4e− 4 −1.2e− 4 5.6e− 4 0 0 0

0 0 0 0 1 0 0

0 0 −5e− 4 0 5e− 4 1 0

3.33e− 5 −3.33e− 5 0 0 0 0 1


(4.11)

x =



v1

v2

v3

v4

v5

ivs

ivdd


, RHS =



3

1.74e− 4

0

−1.74e− 4

2

0

0


(4.12)

Now, the matrix system of linear equations is ready to be solved to provide new x values

for the calculation of more accurate linear models for the MOS transistor in the next

linearisation iteration. The matrix solution part can be done using either a direct or an

iterative process. For device modelling also it is possible to use either the NR or the
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Secant method. The possible combinations of these methods will lead to four different

approaches, represented in Figure 4.9, which will be simulated and the results will be

compared. It should be noted that the stop criteria based on the accuracy of the solution

vector is the same for all simulations in order to have a fair comparison.

Figure 4.9: Four different methods to perform device modelling and matrix solution.

The simulation results of using a direct method for matrix solution and NR for device

evaluation, which normally is the case for conventional SPICE simulations, are shown

in Table 4.5. The same simulation has also been done using the Jacobi iterative method

in conjunction with NR iterations and the simulation results are shown in Table 4.6. In

both tables, the top row represents the iteration number. The unknown node voltages

and branch currents are listed in the first column and their values at each iteration

can be found in the corresponding column to that iteration. The initial guess for NR

iterations is the same for both cases and is shown in Table 4.7.

The number of Jacobi iterations used for this simulation is seven and is chosen to be the

same as the number of equations. As reviewed in Chapter 2 Section 2.3, direct solutions

such as the LU-factorisation have O(n3) operations and iterative solutions such as the

Jacobi method have O(n2) operations per iteration. So, if the number of iterations is

equal to the problem size, both methods will be of the order of n3. As the size of the
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Iteration number 1 2 3 4

v1 3.0000 3.0000 3.0000 3.0000
v2 0.5126 0.5211 0.5212 0.5212
v3 1.9608 1.9608 1.9608 1.9608
v4 0.3291 0.3263 0.3263 0.3263
v5 2.0000 2.0000 2.0000 2.0000
ivs −19.60µ −19.60µ −19.60µ −19.60µ
ivdd −82.91µ −82.62µ −82.62µ −82.62µ

Table 4.5: Solution to the circuit in Figure 4.8 using the NR method along with a
direct matrix solver

Iteration number 1 2 3 4 5

v1 3.0000 3.0000 3.0000 3.0000 3.0000
v2 0.5013 0.5207 0.5209 0.5212 0.5212
v3 1.9608 1.9608 1.9608 1.9608 1.9608
v4 0.3241 0.3247 0.3262 0.3263 0.3263
v5 2.0000 2.0000 2.0000 2.0000 2.0000
ivs −19.60µ −19.60µ −19.60µ −19.60µ −19.60µ
ivdd −83.30µ −82.73µ −82.62µ −82.62µ −82.62µ

Table 4.6: Solution to the circuit in Figure 4.8 using the NR method along with the
Jacobi method as an iterative matrix solver

v1 v2 v3 v4 v5 ivs ivdd

3.0000 0.5000 1.8000 0.2000 2.0000 −30µ −50µ

Table 4.7: Starting values for simulation results in Table 4.5 and Table 4.6

problem increases, if the number of iterations is much smaller than the problem size,

the iterative solution will have O(n2) operations.

By looking at the simulation results, it can be seen that the NR method along with the

direct matrix solver (Table 4.5)converges to the solution within three iterations while

it takes four iterations for the NR method with the iterative matrix solver (Table 4.6).

These two iterations are highlighted in the tables.

It is worth mentioning that the terms v2, v4, and vdd, which are the drain voltage, the

source voltage, and the current of the MOS transistor, change value at each iteration

and the other terms converge to their final value at the first iteration. Therefore, for the

next sets of simulation results for this example, only the values of these three variables

will be presented.

Table 4.8 and Table 4.9 show the simulation results for using the Secant method for

device evaluation in conjunction with direct and iterative matrix solvers, respectively.

The number of Jacobi iterations used for this simulation is also 7. As discussed before,

the Secant method needs two sets of starting points, which are listed in Table 4.10.
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Iteration number 1 4 9 10 11

v2 0.5548 0.5269 0.5213 0.5212 0.5212
v4 0.3151 0.3244 0.3262 0.3263 0.3263
ivdd −81.50µ −82.43µ −82.62µ −82.62µ −82.62µ

Table 4.8: Solution to the circuit in Figure 4.8 using the Secant method and a direct
matrix solver

Iteration number 1 4 8 9 10

v2 0.5337 0.5275 0.5212 0.5212 0.5212
v4 0.2948 0.3207 0.3262 0.3263 0.3263
ivdd −82.92µ −82.01µ −82.62µ −82.62µ −82.62µ

Table 4.9: Solution to the circuit in Figure 4.8 using the Secant method and the
Jacobi method as an iterative matrix solver

v1 v2 v3 v4 v5 ivs ivdd

Set#1 3.0000 0.4000 1.6000 0.2000 2.0000 −25µ −40µ
Set#2 3.0000 0.5000 1.8000 0.1500 2.0000 −30µ −50µ

Table 4.10: Starting values for simulation results in Table 4.5 and Table 4.6

The results show that the Secant method with the direct matrix solution converges

within ten iterations (Table 4.8) and with the iterative matrix solution, it converges

within nine iterations (Table 4.9). It should be recalled that with the NR method instead

of the Secant method, three and four iterations for the same circuit were required to

converge to the solution. NR obviously converges with fewer iterations but it should also

be considered that NR is computationally more complicated than the Secant method

because of the need for the numerical evaluation of derivatives. Therefore, execution

time measurements are needed to verify which method has been faster. The non-linear

device modeling phase for the test circuits using Newton-Raphson and Secant methods

had to be done manually in the Matlab code. Therefore, the examples have relatively

small sizes. Also, time measurement has been done using the tic and toc functions of

Matlab which measure the elapsed time between tic and toc [86]. The Matlab codes for

the four different approaches are included in the Appendix A, Section A.3.

The simulation results of the execution time for each method along with the number

of iterations required for convergence is given in Table 4.11. The results show that,

according to the number of iterations, the NR method along with both matrix solution

approaches converges with fewer iterations. However, by looking at the execution times,

it can be seen that the Secant method performs better with a much less simulation time.

Another important point to consider is that these simulations are being done sequentially

and the Jacobi-type iterative solution performs much better on parallel platforms for

large sparse systems. Therefore, even better results for the Secant method along with
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the Jacobi matrix solution is expected for parallel simulations. This will be evaluated

on real parallel platforms in Chapter 6 Section 6.2.

Methods Iterations Execution time (ms)

NR with Direct matrix solution 3 113.2
NR with 7 Jacobi iterations 4 131.4

Secant with Direct matrix solution 10 28.8
Secant with 7 Jacobi iterations 9 64.5

Table 4.11: Number of iterations and execution time required to obtain the solution
by different methods for the test circuit in Figure 4.8.

4.3.2 Case Study # 2

As the second example, a MOS differential pair with resistive loads will be investigated.

Figure 4.10 shows a circuit with two MOS transistors, a few resistors, and voltage and

current sources.

Figure 4.10: A MOS Differential Pair

The circuit has eight nodes and three unknown currents through the voltage sources.

Therefore, the size of the conductance matrix is expected to be eleven. The values of

circuit elements and constants used for these simulations are as follows:
vth = 0.7 k′ = 200e− 6 w/l = 5

vd = 5 vs1 = 2.5 vs1 = 2.5 is = 1.50m

gb11 = 1e− 4 gb21 = 1e− 4 gb12 = 1e− 6 gb22 = 1e− 6

gd1 = 2e− 4 gd2 = 2e− 4

The matrix of conductances, A, after rearranging and also the RHS vector, b, before the

first NR iteration are represented in Figure 4.11. One initial guess vector set for NR

iterations and two sets for the Secant method can be found in Table 4.12.
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Figure 4.11: A and RHS matrices for the circuit in Figure 4.10

Unknowns NR Secant 1 Secant 2

vg10 2.5 2.5 2.5
vg1 2 1.7 2
vd1 1 0.8 1
vs12 0.5 0.6 0.5
vd2 1 0.8 1
vg2 2 1.7 2
vg20 2.5 2.5 2.5
vdd 5 5 5
ivs1 10µ 20µ 10µ
ivs2 10µ 20µ 10µ
ivdd 1.20m 1.00m 1.00m

Table 4.12: Starting values for simulation results of the test circuit in Figure 4.10

The circuit is simulated with NR and Secant methods for device evaluation and direct

and iterative methods for matrix solution. The simulation results in terms of the number

of iterations required for convergence and execution time for each case are presented in

Table 4.13.

The simulation results in Table 4.13 show almost the same behaviour for case number

2 circuit as the circuit in case number 1 with slightly different quantitative results. As

for the number of iterations to converge to the solution, the NR method works better

than the Secant approach. As it is seen in Table 4.13, the first three rows, which

include the results for the NR method along with different matrix solution methods,

converge to the solution with fewer number of iterations compared to the last three
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Methods Iterations Execution time (ms)

NR plus Direct matrix solution 4 150
NR plus 10 Jacobi iterations 7 208
NR plus 50 Jacobi iterations 4 238

Secant plus Direct matrix solution 9 44
Secant plus 10 Jacobi iterations 23 215
Secant plus 50 Jacobi iterations 10 285

Table 4.13: Number of iterations and execution time required to obtain the solution
by different methods for the test circuit in Figure 4.10.

rows, which represents the same simulations using the Secant method. However, the

Secant approach still has a better overall execution time due to its simpler computations.

Based on our measurements, the Jacobi method performs slightly less effective for this

example compared to the previous one. The reason is that the Jacobi iterative method

is being evaluated on a sequential system, which is not suitable for its parallel algorithm.

However, comparing the execution times of the Secant method along with the iterative

matrix solution, which is 215 ms, with the NR method along with a direct solution,

which is 150 ms, shows that although an inefficient Jacobi method is used, the results

are close. A parallel evaluation of the methods will be performed in Chapter 6 Section

6.2.

4.4 Summary and Discussion

To linearise the nonlinear elements in order to form a linear system of equations, there

are a number of different numerical approaches, which approximate the nonlinear func-

tion with a linear equivalent model by iterative processes. The NR approach is a widely

used method for this purpose which uses a starting point and makes approximations

by calculating derivatives of the function to model curves with lines at specific oper-

ating points. NR is reasonably fast but needs extra computational effort to evaluate

partial derivatives at each iteration. The secant method, on the other hand, benefits

from simpler calculations since it works based on numerical ‘difference’ by using two

initial points instead of calculating partial derivatives at each iteration for linearisa-

tion purposes. The Secant method normally converges slower than NR but with fewer

computations required per iteration.

As a part of the research objectives for this thesis, in this chapter alternative simpler

techniques for device evaluation were investigated. It was shown that the device evalu-

ation phase, which is a parallel task by its nature, can be performed using the Secant

method, which benefits from a simpler algorithm compared to the conventional Newton-

Raphson ietartions. Newton-Raphson iterations is widely used for device evaluation in

circuit simulation algorithms and normally converges much faster to the solution than
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other methods such as Secant. However, we believe that using the Secant method, with

its much simpler algorithm, in conjunction with our proposed iterative parallel matrix

solution approach, which will be reviewed in Chapter 5, can lead to a quicker conver-

gence. Therefore, the contribution of this chapter is to study the possibility of using the

Secant method for the device evaluation phase in our proposed method.

To evaluate the functionality and performance of the two methods, two example circuits

with MOS transistors as nonlinear elements were simulated in this chapter. Simulation

results show that NR converges to the solution in fewer iterations than the Secant

method but the Secant method is less time demanding due to its simpler algorithm.

The test circuits were simulated by both of the linearisation techniques for the device

evaluation phase and in each case the matrix solution phase is done with both direct

(LU-factorisation) and iterative (Jacobi) methods on a sequential system.

The NR method along with the direct matrix solution converged to the circuit solution

with less than half of the iterations required for the Secant method along with the

direct matrix solution to obtain the circuit solution. However, the simulation time for

the Secant method was almost four times better than the NR method. The simulation

times for the test circuits have decreased from 113 ms and 150 ms to 29 ms and 44 ms,

respectively. This shows that by using the Secant method instead of NR, a speed-up of

4x is achieved when a direct matrix solution is used.

Simulations were also performed by using iterative approaches for the matrix solution

phase. Although our proposed iterative method functions properly and obtains the

solution within a few iterations, its best performance is achieved when it is evaluated on

a parallel system. However, when simulated on a sequential system, its simulation times

are quite close to the ones from the direct solution. It is expected that by performing

simulations on parallel systems, even better results can be obtained for the proposed

solution method. This will be investigated in Chapter 6.
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Parallel Matrix Solution

In recent years, parallel evaluation of SPICE to speed up the simulation process has

been an interesting topic for researchers which was briefly reviewed in Chapter 2 Section

2.4.2. Although these attempts to parallelise the SPICE algorithm have resulted in

limited speed-ups and accelerated matrix solution or device evaluation phases, some

inherent sequential issues of the SPICE simulation process have remained unsolved. As

discussed before in Chapter 2 Section 2.4.2., the barrier between NR iterations and the

matrix solution phase limits the amount of possible parallelism [11].

In this work, a Jacobi-type iterative method (the Random Jacobi) has been proposed

which can solve matrix equations on a massively parallel system in a completely non-

deterministic order. This not only does parallelise the matrix solution process using

a fine-grained approach by allocating one processor to each circuit equation, but also

provides the groundwork (as will be seen in Chapter 6) for decreasing some of the

parallelisation limitations caused by the barrier between the linearisation and the matrix

solution phases.

In this chapter, the proposed Random Jacobi iterative method for the matrix solution

phase is applied to a number of test circuits on a highly parallel system. The iterative

Jacobi-type methods is evaluated using real circuit simulation matrices on single-core,

virtual many-core, and real many-core systems. The proposed pattern for decreasing

the amount of required communication is tested and the effect of asynchronous commu-

nication is investigated. The results will be presented, compared, and discussed in the

final section.

5.1 Test Matrices

To apply matrix solution algorithms, we have used a number of test matrices which are

either from the University of Florida Sparse Matrix Collection [89] or extracted from

79
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real SPICE simulations.

The University of Florida Sparse Matrix Collection contains a large and actively growing

set of sparse matrices that arise in real applications. It covers a wide spectrum of

matrices arising from problems in a variety of fields including circuit simulation which

can be accessed and used by a number of different programming languages such as

Matlab, Fortran, C/C++, etc. For the specific use of this work, which focuses on

iterative solutions, the test matrices were required to have RHS vectors as well. This

criterion limited the number of matrices which were useful for our simulations from

this collection. We chose a number of matrices with different sizes and sparsities which

had RHS vectors. In the collection, the matrices have been stored in a specific format

containing only the location of non-zero elements. For the specific use of this work, we

read them with Matlab and (if required) reordered each matrix to a diagonal (preferably

diagonally dominant) form using Matlab and saved them in separate text files in a plain

format. A list of the Florida Sparse Matrix Collection matrices used in this work is

provided in Table 5.1. Matrix names are listed in the first column, the second and third

columns of the table include the size and the sparsity rate of the matrices, an the fourth

column shows that whether or not the matrix is reordered to avoid zeros appearing on

the matrix diagonal.

Matrix name Size Sparsity Reordered

mesh1e1 48 87% NO

pivtol 102 97% Y ES

Trefethen 150 150 91% NO

Trefethen 200b 199 93% NO

mesh3e1 289 98% NO

Table 5.1: Test matrices from the Florida Sparse Matrix Collection.

Another set of matrices used in this thesis is obtained from SPICE simulations. To

extract real circuit simulation matrices from SPICE simulations the following steps are

taken. First, in order to manipulate the internal processes of the SPICE simulation,

we use Ngspice [90] under Linux (Ubuntu). By manipulating some lines in the Ngspice

source code, it is possible to save the linear circuit matrix calculated by SPICE at the

beginning of each NR iteration. This is the matrix which should be solved at each

NR iteration to provide new entries for the next linearisation phase until the desired

accuracy is achieved. The matrix is in the specific format shown in Figure 5.1 which

only stores the location of non-zero elements.

This should be converted to an easily readable full matrix format. The presence of

voltage sources and controlled sources can generate zeros on the diagonal of the matrix

when modelling the circuit matrix using the MNA method, which can force the iterative
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Figure 5.1: Format of the matrices extracted from Ngspice simulations

solution to stop because of the division by zero. To avoid these undesired zeros on the

matrix diagonal, after saving the matrix, it is reordered to a diagonal (preferably diag-

onally dominant) form. Table 5.2 shows the list and specifications of the test matrices

extracted from SPICE simulations.

Matrix name Size Sparsity Reordered

Raz1418 5 28% Y ES
op design 9 63% Y ES
cir919res 11 76% Y ES
oplab 12 68% Y ES

Table 5.2: Test matrices from Ngspice Simulations.

The test matrices extracted from SPICE simulations which are listed in Table 5.2 are

related to just one iteration of the whole simulation process. During a complete circuit

simulation process, the circuit matrix is generated and solved several times at each

NR iteration and this process itself is repeated for every time step of the transient

analysis. Therefore, for a complete simulation, there will be thousands of these matrices

generated and solved for each circuit. In the next sections, for some of the test circuits

in Table 5.2, a number of matrices at different time points and different NR iterations

will be extracted to apply the matrix solution algorithm to them. This will be similar

to a transient analysis simulation in which the matrix system needs to be solved several

times at each time point. The solution vector for each iteration will be used as the initial

guess vector for the iterative matrix solution in the next iteration.
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5.2 Applying the Random Jacobi Method to Test Matrices

The functionality of Random Jacobi iterations was studied in Chapter 3 Section 3.2.

It was shown that non-deterministic evaluation of matrix equations using the Random

Jacobi iterative method results in the same convergence speed and accuracy as the

normal Jacobi iterative method. Using Random Jacobi iterations would be the case

in which the equations are evaluated asynchronously and independently on a parallel

network of processors. In this section, the Random Jacobi method is examined on a

number of real circuit matrices extracted from benchmark circuits or SPICE simulations.

Parallelising the SPICE simulation process using the Random Jacobi iterative method

for solving the system matrix and then combining it with the NR iterations is discussed.

Then, the proposed method for solving the system matrix is simulated on single-core

and many-core machines and the results are compared and discussed. Simulation on

virtual and real multi-core machines have been performed using MPI.

The Random Jacobi iterative method is applied to the test matrices on single-core and

many-core systems and the outcomes are compared to see the effect of the parallel eval-

uation of Jacobi iterations in a non-deterministic order on its convergence rate. When

performing iterations, the two stop criteria are a pre-defined maximum iteration number

and the Euclidean norm of the solution vectors obtained at each two successive itera-

tions. For the following experiments, the stop threshold is set to be 10−5 with a fixed

maximum iteration number of 200. If the Euclidean norm becomes smaller than the

threshold value or the number of iterations reaches its maximum value, the system will

stop iterating. If the first case happens, the final x values from each processor are con-

sidered as the solution vector. If the second case happens, the iterative matrix solution

process will be considered as ‘nonconvergent’ which needs more iterations to converge

to the solution (for all of our test matrices, the iterative matrix solution converged in

less than 100 iterations).

5.2.1 Test Matrix Set #1

The first set of test matrices are extracted from real circuits by Ngspice simulations

as listed in Table 5.2. As explained in the literature review chapter Sections 2.2 and

2.3, during the SPICE transient analysis of a circuit, at each NR iteration, a nonlinear

system of equations is constructed and then converted to a linear system in a matrix

form of Ax = b. Then, the matrix system is solved for x and a new system of equations

is constructed based on the most up-to-date version of the x vector and this process

is repeated until the solution is obtained with a desired accuracy. Therefore, at each

time point, the matrix solution phase needs to be performed several times and then

repeated for several time points. Based on the transient analysis time range and also

the required accuracy, there might be thousands of matrix solution tasks during each
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transient analysis. In the conventional SPICE algorithm, the matrix solution phase is

performed by direct methods such as LU-factorisation, which have some drawbacks as

previously highlighted in the literature review Section 2.3.4.

The performance of iterative methods increases when a suitable initial guess vector is

available. For time dependent and nonlinear problems, circuit simulation algorithms

have two processes to generate the linear matrix system, which should be solved in

the matrix solution phase. First, time stepping to generate linear models for time

varying elements during a transient analysis and secondly, a linearisation process such

as Newton-Raphson to deal with nonlinear elements. These are part of an outer loop

for which normally a good initial vector is available from previous iterations. Therefore,

normally a small number of iterations is required to obtain the approximate solution of

the linear matrix system [54, 70].

Figure 5.2: Transient analysis of cir919res circuit using Ngspice and the output text
files containing extracted matrices.

In this section, the proposed iterative method will be applied to test matrices extracted

from several time points and NR iterations of a transient circuit simulation. To do

so, a transient SPICE simulation on the under test circuit is performed and a number

of matrix sets at the beginning of the matrix solution phase is extracted from some

randomly chosen NR iterations. In order to extract intermediate matrices from Ngspice

simulation process it is required to modify the ”cktload.c” file in the Ngspice source

code to dump the A and RHS matrices into an output text file at the beginning of each

matrix solution iteration. Then, by performing a transient analysis on our under test

circuit, two text files will be generated (matdump.txt and rhsdump.txt) which contain

the A and RHS matrix values. A screen shot of an example simulation on one of our
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test circuits (cir919res) is presented in Figure 5.2. The contents of matdump.txt and

rhsdump.txt files are also shown in Figure 5.3.

Figure 5.3: The A and RHS matrices extracted from Ngspice simulation into the
matdump.txt and rhsdump.txt files.

A number of sample matrices are extracted from different NR iterations at various time

points of the transient analysis and solved them using the Random Jacobi iterative

method in a highly parallel form using MPI on a many-core cluster1. The simulation

results are shown in Table 5.3. Time Point and NR Iteration show which time point of

the transient analysis and which Newton-Raphson iteration is used to extract matrices

and solve them. The Iterations column shows the number of iterations to converge to the

1Details of our fine-grained highly parallel simulations using MPI and C++ on a single core machine
and also a many-core cluster are provided in Appendix B
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solution according to the stop criterion, which is the Euclidean norm becoming smaller

than 10−5 for these simulations.

Matrix name Size Time Point NR iteration Iterations

op design 9 1 1 5
1 2 3
1 3 1
5 1 13
5 2 4
5 3 1

oplab 12 2 2 30
2 3 10
2 4 11
3 2 11
4 2 19

cir919res 11 0 3 3
0 4 3
0 5 3
0 13 1
4 2 3

Table 5.3: The Parallel Random Jacobi method applied to the circuit matrices from
different iterations of various time points of a transient analysis.

It can be seen that the proposed iterative method is able to solve the system of equations

at each Newton-Raphson iteration after the linearisation phase in a small number of

iterations. Besides, by looking at the results more closely, one can see the effect of using

the solution of the previous iteration as the starting point of the current iteration in

accelerating the iterative process. For example, in the simulation results of the first

test matrix, op design, there are three matrices from time point number 1 which are

solved in three successive NR iterations. The first matrix requires five iterations, the

second three and the third one. This means that, for each time point, as the simulation

proceeds, fewer iterations for matrix solution are required.

For the simulations of the first test matrix set, since the matrix sizes are small, it is not

possible to have a proper execution time measurement to compare the iterative solution

performance with other approaches. In the next section, another set of test matrices

with relatively larger sizes will be used for run time comparison.

5.2.2 Test Matrix Set #2

The second set of matrices used for our simulations is some benchmark matrices from the

University of Florida Sparse Matrix Collection in Table 5.1, which are sparse asymmetric

square matrices with RHS vectors.
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5.2.2.1 Single-core Simulations

Table 5.4 shows the simulation results of applying Random Jacobi iterations to the

second test matrix set on a single processor with a sequential algorithm written in C++.

For each test matrix, its size, the number of iterations required to satisfy convergence

criteria, and the value of Euclidean norm between the solutions of the last two iterations

are also given in the table. The C++ code of the algorithm which is used for the iterative

methods is included in Appendix A, Section A.4. All the matrix solution process is

executed on a single processor (Intel CPU, 2.67 GHz, under Windows 7, 64-bit) and

equations are solved on this single processor one by one in a sequential manner as

represented in Figure 5.4. At the beginning of the algorithm, the A matrix and its RHS

vector are read from two text files. In order to simulate the randomness in evaluating

equations in Jacobi iterations, at the start of each iteration, a random vector containing

numbers from 1 to n (matrix size) is generated and the order in which the equations

are evaluated is based on this random vector. This leads to a non-deterministic order of

evaluation of the equations.

Matrix name Size Iterations Euclidean norm

mesh1e1 48 57 0.00000881
pivtol 102 25 0.00000700

Trefethen 150 150 95 0.00000905
Trefethen 200b 199 28 0.00000795

mesh3e1 289 64 0.00000982

Table 5.4: The Random Jacobi method on a single-core.

Figure 5.4: A highly parallel structure: one processor per circuit equation.

These results will be compared to the results of parallel simulation of the Random Jacobi

method on many-core systems. We are practically performing a sequential evaluation

of Jacobi iterations and the Jacobi iterative method is best suited for parallel evalua-

tions. Therefore, the simulation results of Gauss Seidel iterations, which is basically a

sequential algorithm, on the same single processor are also included to have some extra

measures to compare with the parallel simulation results. The simulation results for the

Gauss Seidel method on single processor is presented in Table 5.5.

The execution times of the Gauss Seidel and the Random Jacobi methods on a single

processor are presented in Table 5.6. Times are shown in seconds. As expected, the
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Matrix name Size Iterations Euclidean norm

mesh1e1 48 11 0.00000740
pivtol 102 12 0.00000869

Trefethen 150 150 13 0.00000822
Trefethen 200b 199 9 0.00000105

mesh3e1 289 19 0.00000984

Table 5.5: The Gauss Seidel method on a single-core.

Gauss Seidel method with its sequential algorithm performs much faster than the Ja-

cobi method, which is more suitable for parallel implementations. The results will be

compared to parallel simulation results in the next sections.

Matrix name Size Gauss Seidel Exe. Time† Random Jacobi Exe. Time†

mesh1e1 48 0.011 0.049
pivtol 102 0.039 0.065

Trefethen 150 150 0.067 0.396
Trefethen 200b 199 0.084 0.219

mesh3e1 289 0.299 0.999

Table 5.6: Execution time comparison of the Gauss Seidel and Random Jacobi itera-

tions on a single processor. † The unit for time measurement is Seconds.

5.2.2.2 Virtual Many-core Simulations

In this section, the Random Jacobi iteration is evaluated with the same set of data using

MPI under Ubuntu on a single processor. Details of using MPI and C++ programming

for the simulations of this section can be found in Appendix B, Section B.1. To make the

evaluation process virtually parallel, for each test matrix, the number of virtual cores

is set to be equal to the number of matrix equations (matrix size). In other words, one

virtual processor has been allocated to each circuit equation. As with the single processor

case, there is only one processor for the solution of all equations (Figure 5.4). However,

in this section the evaluation of equations on the single core is done virtually in parallel.

The simulation results are shown in Table 5.7. Using the same algorithm, the number of

iterations to converge to the solution is the same as the sequential evaluation on a single

processor but the execution time is considerably more. Simulation results show that the

virtual parallel system, which is used for running MPI, has serious issues in handling

parallel processing. As the size of test matrices increased, for the last two test matrices,

the virtual parallel system was unable to obtain a solution and stopped working at some

point. Therefore, the virtual parallel system seems not to be a suitable platform to

run MPI for highly parallel simulation purposes. Based on the results obtained in this

section, MPI on virtual parallel processors will not be used for our parallel simulations
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and the main concentration will be on the parallel simulations on real parallel platforms,

which is discussed in the next section.

Matrix name Size Iterations Euclidean norm Exe. Time†

mesh1e1 48 57 0.00000888 40.08
pivtol 102 25 0.00000700 45.32

Trefethen 150 150 95 0.00000905 285.20

Table 5.7: Random Jacobi using MPI on a virtual parallel network of processors.
† The unit for time measurement is Seconds.

5.2.2.3 Real Many-core Simulations

To perform Random Jacobi iterations using real parallel processors, the test matrices

have been examined on the Iridis2 Computer Cluster using MPI. Iridis cluster has 750

compute nodes with dual 2.6 GHz Intel processors and each compute node has 16 CPUs

per node with 64 GB of memory. For the details of MPI environment, MPI functions and

directives, which are used in these simulations, and how it is incorporated in C/C++

programming environment on the Iridis cluster see Appendix B.

At the beginning of the MPI program, according to the number of matrix rows, which

will determine the number of required parallel processors (for example n), the ranks

from 0 to n− 1 is given to the processors. This is shown in Figure 5.5.

Figure 5.5: A highly parallel structure: one processor per circuit equation.

Processors P#0 to P#n−1 are responsible for solving the equations Eq#1 to Eq#n, respec-

tively. Processor P#0 solves the first equation for x1 as the unknown variable, assuming

that other x values are known from the initial condition at the beginning of iterations

and later from the solutions obtained by other processors. The same procedure is taken

by other processors for their corresponding equations. As a new value is calculated by

a processor it needs to be sent to all other processors so that they can use the new data

for a more accurate evaluation of the next iteration.

2Iridis is the supercomputer of the University of Southampton. The latest generation is called Iridis4.
More information can be found in Appendix B, Section B.2
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Figure 5.6 shows how each processor communicates with all other processors at each

iteration for a network containing 6 parallel processors.

Figure 5.6: Communication between processors for the parallel Random Jacobi
method.

The matrix solution algorithm is similar to the one used in Section 5.2.2.2 for which some

parts of its C code including the MPI commands and directives can be found in appendix

B, Section B1. The flowchart in Figure 5.7 shows the parallel Jacobi matrix solution

process using MPI on Iridis. After the initialisation step, the processor with rank 0,

receives the maximum number of iterations and the value for the Euclidean norm as the

iteration control criteria. Then using the MPI Bcast function, which is a communication

routine in MPI, it broadcasts the number of processors, the number of iterations, and

the Euclidean norm to all other processors. The rank 0 processor then reads matrix

entries for the A matrix and RHS vector in Ax = b matrix system and scatters each

row of the matrix system using the MPI Scatter routine to the corresponding processor

according to the row number and the processor rank. At this time, each processor has

received a complete equation as a row of the matrix system. Then the Random Jacobi

iterations start. Each processor calculates one of the entries of the unknown vector, x,

and collects the other entries of the unknown vector from all other processors using the

MPI Allgather function, which is a collective routine in MPI communication.

At this step, the convergence criteria should be checked. The Euclidean norm between

the obtained solutions for the unknown vector in the last two successive iterations is

calculated and compared to the predefined value for stopping the iterations. The second

factor to be checked is the maximum number of iterations. The Random Jacobi iterations

will be repeated until at least one of the stop criteria is met.

When doing Jacobi iterations using MPI on a real parallel network of processors by hav-

ing one processor per matrix equation, the order of equations evaluation is completely

non-deterministic and there is not any control on the evaluation process and communi-

cation between processors. This is a very good example of evaluation of Random Jacobi

iterations.
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Figure 5.7: Parallel Jacobi Matrix Solution Process Using MPI on Iridis.

The simulation results for performing the Random Jacobi method are given in Table 5.8.

By comparing the number of iterations with the results in Table 5.4, It can be seen that

evaluation of Random Jacobi iterations on single-core and many-core systems results in

the same number of iterations for the same stop criteria but with different simulation

times, which will be compared in Figure 5.8.

In Section 5.2.2, three iterative approaches are discussed for the matrix solution process.

The Gauss Seidel and Jacobi methods on a single-core and the Random Jacobi iterations

on a highly parallel many-core system. Figure 5.8 compares the execution times of these
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Matrix name Size Iterations Euclidean norm Exe. Time†

mesh1e1 48 57 0.00000890 0.073
pivtol 102 26 0.00000817 0.148

Trefethen 150 150 95 0.00000911 0.188
Trefethen 200b 199 28 0.00000796 0.253

mesh3e1 289 64 0.00000983 0.330

Table 5.8: Random Jacobi using MPI on a parallel many-core cluster. † The unit
for time measurement is Seconds.

Figure 5.8: Execution time comparison for 4 different matrix solution approaches.

methods on the test matrices of this section and also represents the execution time when

matrices are solved by a direct method (LU-factorisation) on a single processor.

The direct method, LU-factorisation, performs better on matrices with smaller size but

its performance declines as the matrix size increases. The Jacobi method on a single-

core, as expected, has the worst performance since it is suitable for parallel applications.

The Gauss Seidel method performs better than LU-factorisation when the size of the

matrix increases. However, although the Gauss-Seidel approach scales better than LU-

factorisation, it seems that it is still not scaling well with the problem size. For example,

when the matrix size is increased from 199 to 289, the simulation time of the Gauss-

Seidel method is increased by almost a factor of 4. The Parallel Random Jacobi on a

many-core system has the worst performance when the problem size is small but it is

seen that it performs much better when the matrix size increases. Besides, the parallel
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Random Jacobi method scales better than the other three methods with the problem

size. There is only a slight increase in its simulation time when the matrix size has

changed from 150 to 199 and then 289.

5.2.3 Optimising the Communication Between Processors

The simulation results in Figure 5.8 show parallel evaluation of Jacobi iterations on our

many-core cluster by allocating one processor to each circuit equation. These results

shows quite a good performance for parallel matrix solution especially when used for

large matrices. Instead of evaluating the whole problem by a single processor or a few

number of processors, each equation is solved by one processor. Therefore, the time

required for solving equations should be much shorter than the single processor case.

However, the communication between the processors becomes very important in highly

parallel computing. Although the required computational effort is distributed across a

large number of processors, communication is a major part of the execution time. At

each iteration, every single processor communicates with all other processors to provide

them with its new x value and collect the most up-to-date x values from other processors.

The process of iterative solution of the linear equation system can be optimised for a

number of factors such as communications and computations. This involves reducing

the required communication between the processors and simplifying the computations

when possible.

As discussed in the literature review Section 2.2.3.3, because in electronic circuits each

node is connected only to a few adjacent nodes, circuit simulation matrices are very

sparse and even very large matrices have only a few non-zero elements in each row. This

means that for solving a circuit equation, only a few entries from other equations are

required based on the structure of the A matrix. Therefore, basically, each processor

needs to send/receive updates only to/from a few other processors. This can notably

decrease the amount of required communications. Besides, in its primary form, the

Euclidean norm as a stop criteria is calculated by each processor for the whole solution

vector. However, each processor only needs to calculate the Euclidean norm for its own

x value for every two successive iterations to stop iterating when it has converged.

As a simple example to review the optimisation process, consider a matrix system of

six equations as shown in Figure 5.9. Each equation will be handled by one processor.

Thus, six processors (P0 to P5) are allocated to the equations. The initial guess vector

and the solution vector are represented by xinitial and xsolution, respectively.

According to the first row of the matrix, which is assigned to P0, the corresponding x

value is calculated by Equation 5.1. Except for the diagonal element in the first row,

there is only one non-zero element in this row and other elements of the first row are

zero. Hence, as it can be seen in Equation 5.1, the processor with rank 0 only needs
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Figure 5.9: A 6 by 6 test matrix.

updates of the x3 element of the x vector, which is calculated by the processor with rank

3 at each iteration. Moreover, the first column of the A matrix shows that processors

P3 and P5 do not need to receive updates of the x0 from P0 because their corresponding

element in the first column is equal to zero. Therefore, the processor with rank 0 only

needs to receive the x value from P3 and send its x value to P1, P2, and P4. Equation 5.2

to Equation 5.6 show the required calculations by other processors for obtaining their

corresponding x values.

P0 : x
n+1
0 =

1 + xn3
2

(5.1)

P1 : x
n+1
1 =

xn0 − xn5
−2

(5.2)

P2 : x
n+1
2 =

−xn0
3

(5.3)

P3 : x
n+1
3 =

2xn4 − xn5
4

(5.4)

P4 : x
n+1
4 =

xn0 + xn1
2

(5.5)

P5 : x
n+1
5 =

1

1
(5.6)

Based on the location of the non-zero elements of the matrix, the required send/receive

pattern for this matrix system is represented in Table 5.9. As explained, each proces-

sor does not need to communicate with all other processors and it exchanges data only

with the required processors. This can become even more important when dealing with

large matrices. Considering the fact that circuit simulation matrices are very sparse,

employing this communication pattern can significantly decrease the required commu-

nications. Such a communication pattern is represented in Figure 5.10. Compared

to the Figure 5.6, the new pattern needs significantly less communications. The light
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dashed arrows stand for the communications which are no longer required due to the

new communication pattern obtained based on the sparsity pattern of the test matrix.

Processor Send to receive from

P0 P1 and P2 and P4 P3

P1 P4 P0 and P5

P2 − P0

P3 P0 P4 and P5

P4 P3 P0 and P1

P5 P1 and P3 −

Table 5.9: Send/Receive pattern for reducing the required communication.

Figure 5.10: Communication between processors for the parallel Random Jacobi
method when using the proposed optimised pattern.

A pre-analysis process is required to generate the correct pattern for a more efficient

communication. For sparse matrices, the required pre-processing is expected to be neg-

ligible compared to the amount of reduction in the communications and thus leads to

a better performance. This will be investigated on test matrices. This pre-analysis

algorithm can be integrated into the matrix construction and solution process as a com-

munication optimisation stage in our proposed iterative approach. At each time point,

once the matrix constructed, its sparsity pattern will remain the same throughout the

iterative solution process. Therefore, the pre-analysis process needs to be performed

only once in order to obtain the best pattern to decrease the communication between

processors as shown in Figure 5.11. The optimisation stage will have the conductance

matrix as its input and based on the locations of the non-zero elements, will generate

two sets of data as its output, called send and receive buffers which will determine each

processor needs to communicate with which other processors.

For previous simulations, since all the processors needed to communicate with each

other, all-to-all MPI communication routines such asMPI Allgather were used. For the

introduced optimised communication, MPI Send and MPI Receive routines are used

as one-to-one communication directives. According to the number of non-zero elements
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Figure 5.11: Pre-analysing the circuit matrix structure to obtain a suitable pattern
to reduce required communications between processors.

in each row and column, the number of sends and receives are determined. Then, based

on the locations of the non-zero matrix entries and their values, two vectors as send

and receive buffers are created containing the rank of the processors involved in the

communication and the value which is being sent or received. Since at each iteration,

each processor only sends its own x value to the required destinations, the send buffer

has only two elements: sender’s rank and the x value. The length of the receive buffer

can vary depending on the non-zero pattern of the matrix.

Although all-to-all communications, which are completely performed and controlled by

the system, might have better performance than one-to-one communications, which are

controlled by the user, it is expected that by reducing the number of communications

per iteration, a better performance can be obtained overall. However, there will be a

tradeoff between the sparsity of the matrix and the required pre-processing.

Coming back to the above example, the x values in the first iteration will be calculated

using the initial guess vector without the need to communicate with other processors.

For this example, the first set of x values is shown by Equation 5.7.
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x10 = 1.00, x11 = 0.00, x12 = −0.33, x13 = 0.25, x14 = 1.00, x15 = 1.00 (5.7)

Now, to proceed with the second iteration, these values should be exchanged between

processors that need them based on the send/receive pattern in Table 5.9. Send and

receive buffers for each processor in the end of the first iteration are presented in Fig-

ure 5.12. The processor with rank 3, for example, needs to send its x value of 0.25 to

the processor with rank 0 and receive the x value of 1.00 from the processor with rank

4 and also the x value of 1.00 from the processor with rank 5. Table 5.10 shows the

simulation results at some iterations of the matrix solution process.

Figure 5.12: Send and receive buffers for exchanging data between processors.

Initial value Iteration 1 Iteration 3 Iteration 6 Iteration 10

x0 1 1.00 0.62 0.47 0.46
x1 1 0.00 0.18 0.27 0.26
x2 1 −0.33 −0.20 −0.15 −0.15
x3 1 0.25 0.00 −0.07 −0.06
x4 1 1.00 0.31 0.35 0.36
x5 1 1.00 1.00 1.00 1.00

Table 5.10: The solution vector of the matrix system obtained in different iterations.

The simulation results of performing the matrix solution phase by the parallel Random

Jacobi method using the optimised communication pattern are shown in Table 5.11. It

can be seen that for three of the test matrices there is an improvement in the solution

time while for the other two matrices the execution time has become worse.
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Matrix name Size Iterations Exe. Time†

mesh1e1 48 57 0.067
pivtol 102 26 0.052

Trefethen 150 150 95 0.385
Trefethen 200b 199 28 0.450

mesh3e1 289 64 0.252

Table 5.11: Random Jacobi using MPI on a parallel many-core cluster with optimised

communication. † The unit for time measurement is Seconds.

Figure 5.13 shows the comparison between execution times of the Random Jacobi itera-

tion with normal and optimised communications. For a better comparison, the runtime

of the LU-factorisation method is also included in the graph. An interesting observa-

tion is that the runtime improvement has happened notably in the test matrices named

pivtol, mesh1e1, and mesh3e1 and according to the test matrices properties table (Ta-

ble 5.1), which is given in Section 5.1, these two matrices are very sparse. Therefore,

based on the suggested communication pattern, the required communication between

processors for these two matrices are very low. Furthermore, comparing the results of

two different approaches for the Random Jacobi method with the LU-factorisaion shows

that the results of the iterative solution when the size of the matrix becomes large are

comparable to the direct method and even become better for the largest test matrix.

To investigate the effect of sparsity of the test matrices on the amount of communications

required for our proposed optimised communication pattern, a number of test matrices

were needed with specific properties so that their size and also the number of iterations

need to be the same to eliminate the effect of size and iteration number on the execution

time. For this purpose, four test matrices are generated all with the same size equal

to 250∗250, all converge to the solution within 19 iterations, and the difference is in

their sparsity rates which are set to be 95%, 75%, 55%, and 35%. Simulations results

are shown in Table 5.12. The execution time of the test matrix M250 95, which is the

most sparse matrix among all with the sparsity rate of 95%, is the shortest execution

time equal to 0.96s. On the other hand, the test matrix M250 35, which is the least

sparse matrix among all with the sparsity rate of 35%, has the longest execution time

equal to 5.5s. This confirms the effect of sparsity on the execution time because of its

effect on the amount of required communication between the processors in the proposed

communication pattern.

5.2.4 Time Measurement

In the current work, several different sequential and parallel algorithms are used on

different single-core and multi-core systems. In order to compare the performance of the

tested methods, it is required to have a time measurement method which measures the

simulation time in the same way for all the algorithms on different platforms. We used
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Figure 5.13: Execution time comparison for three different matrix solution methods.

Matrix name Size Iterations Sparsity Exe. Time†

M250 95 250 19 95% 0.96
M250 75 250 19 75% 2.83
M250 55 250 19 55% 4.25
M250 35 250 19 35% 5.50

Table 5.12: Effect of sparsity on matrix solution time using the optimised communi-

cation pattern. † The unit for time measurement is Seconds.

sequential simulations by Matlab, sequential and parallel simulations by C/C++, and

parallel simulations using MPI on a cluster. Therefore, real wall times (elapsed times)

are used for the simulation time of different algorithms.

In Matlab, there is a stopwatch timer to measure the performance. Its uses tic and toc

functions to measure the elapsed time between two points of the algorithm. In other

words, it returns the real execution time between the two points. In C/C++, the clock

function is used to measure the processor time consumed by the program. To make

the performance measurement similar to the one used in Matlab, the value returned by

the clock function should be compared to a previously stored value as the start time.

This means that the clock function should be called at the beginning and the end of the
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algorithm and the difference between the two time values should be calculated as the

real execution time. In MPI, there is no global time measurement due to the fact that

there is no control on the parallel processors running the parallel algorithm. However,

it is possible to use a function called MPI Barrier to block all the processes that have

reached this point and then all the processes will start at the same time as the last

process reaches the point. Then, the wall time of each process can be measured using

another MPI directive called MPI Wtime which returns the elapsed time on the calling

processor. As in the previous cases, in order to measure the real execution time between

the two points of the algorithm, MPI Wtime should be called twice (at the beginning

and end of the algorithm). Examples of the time measurement methods can be found

in the codes provided in Appendix A.

5.3 Summary and Discussion

In this chapter, Random Jacobi iterations were tested on different test matrices using a

single-core machine, a virtual many-core system, and a real many-core cluster. Simula-

tions show that performing Random Jacobi iterations on a massively parallel network

of processors by allocating one processor per circuit node results in the same number

of iterations and almost the same Euclidean norm as performing it on single-core or

virtual multi-core machines. The virtual parallel system is found not to be a suitable

platform for highly parallel simulations as the number of required processors increases.

Therefore, most of the simulations, comparisons, and discussion are made on the results

from the single-core and real many-core evaluations.

A number of simulations are performed on the execution time of the direct and iterative

matrix solutions. When the size of the test matrices are small, the direct solution, LU-

factorisation, on a single-core performs better than the iterative solutions. However, it

does not scale with the problem size. The Gauss-Seidel method performs better than

the Jacobi method on a single-core as expected due to the parallel nature of the Jacobi

method. The Gauss-Seidel method also performs much better than the LU-factorisation

as the size of matrices increase. Our proposed parallel Random Jacobi iterations on a

many-core system obtains better results for bigger circuits. For example, when the size

of the matrix is 150, the execution time of the parallel Random Jacobi method is twice

the execution time of the LU-factorisation method but for the matrix size of 289, it

performs two times faster than the LU-factorisation method.

Furthermore, by exploiting the sparsity pattern of the test matrices, it is shown that an

optimised communication pattern can be used for evaluating sparse matrices on highly

parallel systems to reduce the amount of required communications between processors

and hence reduce the solution time. An extra reduction in the simulation time is achieved

for the matrices with a higher rate of sparsity.
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To the best of our knowledge, there is no work reported in the circuit simulation area

with this level of fine-grained parallelisation for the matrix solution phase. The con-

ventional matrix solution techniques for circuit simulation use direct methods which

are very difficult to paralleise. Our proposed iterative method can be performed in a

highly parallel way by solving each of the matrix equations on a separate processor in-

dependently and thus providing a very fine-grained algorithm for the matrix solution

phase.



Chapter 6

Simultaneous Analysis of the Two

Simulation Phases

In the last two chapters, the two main phases of the circuit simulation process, de-

vice evaluation and matrix solution, were discussed and new approaches were proposed

for parallel and distributed evaluation of circuit equations on many-core systems. As

reviewed in Chapter 2 Section 2.4.2, one of the factors which limits the possibility of

totally parallelising SPICE-like algorithms is the barrier between these two phases. It

was shown that each phase on its own can be simulated in parallel in order to increase

the simulation speed. However, there are some limitations on evaluating the two phases

simultaneously. In the conventional circuit simulation algorithm, at each NR iteration,

the device evaluation phase needs to be completely finished before the matrix solution

phase starts. Also the next NR iteration cannot start until the matrix solution phase

is done and new values for the unknown vector are available. This is the main bottle-

neck to totally parallelising the circuit simulation process. In this chapter, the specific

properties of the proposed methods are used to mix the matrix solution and device eval-

uation phases and perform a simultaneous evaluation of the two phases to speed up the

simulation process and investigate the possibilities for eliminating the above mentioned

barrier. The proposed algorithm is applied on test circuits and simulation results are

compared and discussed in the final section of this chapter.

6.1 Properties of the Proposed Methods

By looking at NR iterations more closely, it can be seen that the main reason for a barrier

between the device modelling and matrix solution phases is the nature of direct matrix

solvers implemented in the SPICE algorithm. Although direct matrix solutions are

widely used in circuit simulation algorithms, Jacobi type iterative approaches for matrix

solution purposes can be performed totally in parallel on a many-core system. Therefore,

101
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by evaluating each of the circuit equations on a distinct processor, the unknown values

of the circuit can be evaluated independently and calculated asynchronously across a

large number of parallel cores. The advantage of such a parallel and asynchronous com-

putation is that there is no need for the total completion of the matrix solution phase

to pass the obtained values to the device evaluation process. As soon as a value for

one of the unknowns of the circuit is obtained, it can be used by the device modelling

iterations to produce a more accurate model. Then, as a new linear model is generated,

the processors which are at the beginning of their calculations can use the more up to

date values of linear models. Figure 6.1a illustrates this difference. One can see that

there is an undesired stop during the matrix solution process in NR iterations due to

the unavailability of new values for the next device modelling iteration. Although de-

vice evaluation and matrix solution phases in conventional methods can be performed

in parallel separately, this barrier between the two phases limits the amount of possible

parallelisation. It can be seen in Figure 6.1b that this issue can be resolved by employing

a parallel and iterative matrix solver which regularly exchanges data with the linearisa-

tion phase without forcing it to stop its calculations. By mixing the two phases of the

simulation, it is possible to accelerate the overall simulation process by eliminating the

undesired stops of the NR iterations.

The conventional SPICE algorithm uses NR iterations for linearisation purposes. In our

simulations for mixing the two phases of circuit analysis process, the Secant method

is used for linearisation along with our iterative matrix solution approach. Parallel

processors will start solving their corresponding equations independently and where it

is required, the device models will also be calculated by the same processors. Therefore,

simultaneous evaluation of the two phases will be possible.

6.2 Simultaneous Evaluation

It needs to be recalled that we are using a many-core system for the matrix solution phase

to evaluate a parallel and asynchronous Jacobi-type solution on a highly distributed

network of processors. Each circuit equation is allocated to one distinct processor in the

many-core parallel system. Therefore, the process of finding the unknown elements of the

circuit is based on simultaneous solution of the n circuit equations rather than a regular

matrix solving procedure. There is no global matrix and the rows of the matrix system

(circuit equations) are distributed across a large number of parallel processors and solved

locally. Each core is meant to continuously calculate the value of one of the unknown

variables and update its value by gathering the values of other required variables from

the corresponding cores. The device modelling phase can also be continuously performed

on the same cores based on the new values.
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Figure 6.1: a) Undesired stops of the linearisation phase when using direct matrix
solution methods b) Possibility of resolving the issue by using a parallel and iterative

matrix solver

6.2.1 Circuit Equations and Linear Device Models

To have a better understanding of the proposed method, it is applied to one of the

test circuits from Chapter 4 Figure 4.10. The circuit has eleven unknown variables

(eight node voltages and three branch currents). Since some of the nodes or branches

are connected to constant sources, calculation of their values are straight forward. To

distribute the solution across parallel cores using the proposed mixed method, each of

the circuit equations should be assigned to one core to be evaluated continuously. Here

are the required calculations, which need to be done by each core, to obtain the solution

of their corresponding unknown element:

core #1:

Equation 6.1 shows the calculations that core #1 needs to continuously perform in

order to calculate the value of ivs1 as one of the circuit unknowns. gb11 has a fixed

value (conductance) and remains constant for the duration of the simulation. At the

beginning of the process, vg1 and vg10 are equal to values of the initial guess vector

and for the rest of the process will be obtained from the cores which are allocated to

calculate them. Therefore, as soon as new values are ready for vg1 and vg10 from the

corresponding cores, they will be passed to the core #1 and a new more accurate value

will be computed for ivs1 based on these most recent values. It should be noted that

there is no need for linearisation computations on this core since its equation does not

include any elements that need nonlinear device modelling.
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ivs1 = gb11(vg1 − vg10) (6.1)

core #2:

The node voltage vg1 is calculated by core #2 using Equation 6.2. gb11 and gb12 have

constant values and the value of vg1 only depends on changes of vg10, which will be

provided by its corresponding core. Again, there is no need for device modelling.

vg1 = (gb11vg10)/(gb11 + gb12) (6.2)

core #3:

The drain voltage vd1 of transistor M1 is calculated by Equation 6.3. All the G and

ids values stand for the linear models of nonlinear elements. According to the proposed

method, in order to calculate an unknown variable on one of the cores, it is expected to

have the node voltage and branch currents provided by the other nodes. Therefore, to

be able to perform device modelling at the same time as equation solution, these terms

need to be expressed in terms of constants and known voltages and/or currents which

is quite straight forward. For example, according to element stamps and companion

models, G21 can be expressed by Equation 6.4, which is in terms of some constants

and node voltages from other cores. In Equation 6.4, w, l, and k′ are constants, vd1 is

available from the same core, and vs12 should be obtained from the core #4. The other

two transistor models which should be calculated by core #3 are shown in Equation 6.5

and Equation 6.6.

vd1 =
(G11 +G21)vs12 + gd1vdd + (−G21)vg1 − ids1

gd1 +G11
(6.3)

G21 =
w

l
k′(vd1 − vs12) (6.4)

G11 =
w

l
k′((vg1 − vs12)− vth − (vd1 − vs12)) (6.5)

ids1 = id −G11(vd1 − vs12)−G21(vg1 − vs12) (6.6)

In the same manner, nodes 4 to 11 will be evaluating Equation 6.7 to Equation 6.14.

core #4:

vs12 =
ids + ids2 − is +G21vg1 +G11vd1 +G12vd2 +G22vg2

G11 +G21 +G12 +G22
(6.7)
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core #5:

vd2 =
(G12 +G22)vs1 + gd2vdd + (−G22)vg2 − ids2

gd2 +G12
(6.8)

core #6:

vg2 = (gb21vg20)/(gb21 + gb22) (6.9)

core #7:

ivs2 = gb21(vg2 − vg20) (6.10)

core #8:

ivdd = gd1vd + gd2vd2 − (gd1 + gd2)vdd (6.11)

core #9:

vg10 = 2.5 (6.12)

core #10:

vg20 = 2.5 (6.13)

core #11:

vdd = 5 (6.14)

All the cores will keep calculating their allocated variables and collect the required up-

dates from other cores as they are available until the iteration stop criteria are achieved.

6.2.2 Highly Parallel and Simultaneous Evaluation

In this section, the process of simultaneous evaluation of the device modelling and matrix

solution phases on a highly parallel system is reviewed. The device evaluation can be

performed on the same set of cores which are doing the matrix solution process. The

number of required processors is still equal to the number of circuit equations. Each

node solves its corresponding equation and also needs to calculate the required linear

models for nonlinear devices. There might be repeating calculations of the same device

model on a number of different cores but there is no need for extra communications

to obtain the required device models. In other words, there is not a separate device

evaluation phase. The equations are solved in parallel and independently on the parallel

cores and each core calculates its required device models as needed.

For example, in the test circuit of Figure 4.10, eleven cores are required in total to per-

form the computations of the eleven circuit equations. As explained, apart from solving

their corresponding rows, some cores will also calculate the required device models. As
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an example, the required calculations of cores number 3, 4, and 8 are represented in de-

tail in Figure 6.2. The arrows stand for communicating with other cores and the entries

inside the boxes show the required device models for the cores. Core number 3 solves the

third row of the circuit matrix to calculate vd1. To do so, it needs to continuously obtain

the new values for vs12, vdd, and vg1 from cores 4, 11, and 2 respectively. Besides, core

number 3 needs to calculate G11, G21, and ids1 as linear device models of transistor M1.

Core 4, requires relatively more work communicating with four other cores to obtain

their x values and also calculating the device models for transistors M1 and M2. Core 8,

however, only needs to obtain three x values from other cores and does not need device

evaluation.

Figure 6.2: Communications and calculations required for cores number 3, 4, and 8
in Figure 4.10

The simulations of the proposed approach are performed on a cluster of parallel cores

(the Iridis cluster, Appendix B, Section B.2) by allocating one processor to each cir-

cuit equation as discussed and presented in Figure 6.2. The device evaluation phase

is performed using the Secant method and the matrix solution process is done using

the proposed parallel Random Jacobi iterations. Like the simulations in Chapter 5 for

device evaluation, 10 and 50 Jacobi iterations are used for the two sets of simulations

for the under test differential pair circuit.

Simulation results show that highly parallel evaluation of the circuit equations using the

proposed methods obtains the solution with the same number of iterations performed

on single-core but with considerably less execution time, as presented in Table 6.1.
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Methods used Iterations Execution time (ms)

Secant plus 10 Jacobi iterations (parallel) 23 9
Secant plus 50 Jacobi iterations (parallel) 10 26

Table 6.1: Number of Secant iterations and execution time required to obtain the
solution by a highly parallel evaluation.

In order to compare the results with single-core simulations in Table 4.13 of Chapter 4,

all the results are shown in Figure 6.3. As it is seen, the proposed method on a parallel

system performs considerably better than single-core simulations. For the case in which

the Secant method along with ten Random Jacobi iterations are used, the execution

time is only 9 ms which is much faster than the the simulations of the same methods

on a single-core with the execution time of above 200 ms. Furthermore, compared to

the fastest method on a single-core, which is the Secant method along with the direct

matrix solution with the execution time of 44 ms, our result shows a speed-up of almost

5x for this specific test circuit.

Figure 6.3: Execution time comparison for the differential pair MOS test circuit in
Figure 4.10

This approach is also applied to the other test circuit (the simple single MOS circuit

in Figure 4.8). Compared to the results represented in Chapter 4 (Table 4.11), which

includes the results for evaluation of the proposed iterative approach on a single-core,

a considerable decrease in the simulation time is also achieved for this test circuit.

Figure 6.3 shows the simulation results. Among the first four execution times, which are

the results from Chapter 4, simulations which are done with the Secant methods instead

of NR, have better results in terms of the simulation times. Also, the secant method

with the direct matrix solution (3) has the best execution time (28.2 ms). It can bee

seen that evaluating our proposed method on a real parallel system of processors (5)
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has resulted in 5 ms for the whole simulation time which is almost six times better than

the best result in Chapter 5 on a single-core. Compared to the execution time of our

proposed method on a single-core system (64.5 ms), its parallel evaluation shows more

than a 12x speed-up.

Figure 6.4: Execution time comparison for the single MOS test circuit in Figure 4.8

6.3 Implementation Considerations

The sizes of the test circuits used in this chapter for simultaneous evaluation of the

two simulation phases are quite small compared to the real world examples. Although

in Chapter 5 Section 5.2.2, relatively bigger matrices for the simulations of the matrix

solution phase were used, we had a number of limitations for performing our simulations

on bigger test matrices. Most of the circuit simulation benchmarks only include the

conductance matrix (A) and do not have an RHS vector. This is due to the fact that

conventional circuit simulation algorithms use direct matrix solutions, which do not

need the manipulation of the RHS vector, while iterative solutions need the RHS vector

to be constantly used as a part of the solution process. Therefore, for the matrix

solution simulations, we had to limit our selection of benchmark circuits to the ones

with an RHS vector. For the simultaneous evaluation approach in this chapter, we

replaced the Newton-Raphson iterations with the Secant method and the direct matrix

solution approach with an iterative approach. Consequently, the device models had to

be manually calculated and therefore, simple non-linear device models and small circuits

that could be handled by hand calculations are used. These small examples are used to

demonstrate the applicability of the proposed methods on parallel systems. For bigger
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circuits and examples of the possible scalability, automatic formulation of our method

and its implementation in the SPICE algorithm is required which is beyond the scope

of the current work. However, with relatively bigger example sizes only for the matrix

solution part, in Chapter 5 Section 5.2.2 we showed that our fine-grained solution scales

better with the size of the problem compared to the single-core direct approaches.

The motivation behind our work on highly parallel fine-grained systems is the availability

of massively parallel platforms during the last few years. When performing simulations

on massively parallel systems, there are a number of implementation and applicability

related points to consider. In Chapter 3 Section 3.2.2, it was shown that our Jacobi-

type matrix solution algorithm converges to the solution (with a few more iterations)

even if some processors do not function properly in some iterations. It was also shown

that if a processor fails completely, the system may or may not converge to the solution

depending on the convergence criteria. Therefore, a fault tolerant system is required

for implementing parallel algorithms on many-core systems. SpiNNaker, as our target

architecture and the driving force behind this research, has a processor disposition which

allocates some processors as reserve for fault situations. Each SpiNNAker core has 18

processors. One processor is assigned an operating system support role, 16 processors

are given application support roles, and the last processor is used as the fault-tolerant

spare processor [14, 49]. The implementation costs of performing massively parallel

algorithms to accelerate SPICE simulation is also an important point to consider. The

costs involved in such a project are accessibility of a massively parallel architecture, the

programming efforts required for the proposed algorithms, and implementation of the

algorithms in the SPICE simulation process. The SpiNNaker architecture is the target

for the implementation of the current work for a massively parallel approach for speeding

up the circuit simulation process. The proposed algorithms for the device evaluation

and matrix solution phases and also the optimised communication which uses a pre-

analysis process are already formulated in this work using C/C++ and simulated on

the Iridis supercomputer. However, a great amount of engineering work is required to

implement these methods on the SpiNNaker architecture and then include them in the

SPICE simulation process which we believe can be studied further in future projects.

6.3.1 Discussion of Implementation on SpiNNaker

In this section the many-core architecture of SpiNNaker is reviewed and the specifica-

tions which we believe make SpiNNaker a suitable candidate as a target system for this

research are highlighted.

The SpiNNaker project is primarily designed to provide a massively parallel million-

core platform which can be used to model the human brain. The main novelty in the

SpiNNaker architecture is its specifically designed communication infrastructure which

allows a very large number of communications for sending and receiving very small
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packets. The SpiNNaker machine consists of a large number of nodes and each node

contains a SpiNNaker chip multiprocessor. The architecture of a SpiNNaker node is

shown in Figure 6.5. Each node incorporates 18 ARM processors, 96 kB of local memory,

and 128 MB of shared memory, a packet router, and peripherals. The nodes are arranged

in a two dimensional mesh topology in which every node is connected to 6 other nodes

as shown in Figure 6.6. Figure 6.7 shows a possible SpiNNaker machine topology in

which the mesh is folded to form its specific architecture [14, 15, 16, 91].

Figure 6.5: Principal architectural components of a SpiNNaker node [14].

The optimised communication of the SpiNNaker machine, which uses hardware and

software controlled routines, allows very fast communication with low lecel error control

possibilities. The role of the packet router is to inspect each packet to check its source and

then route it to any local processor or any of other 6 neighbour cores using bidirectional

links. One of the 18 processors in the SpiNNaker chip is always reserved to be used

for fault tolerant purposes. Furthermore, if any of the links fails, there are emergency

routing possibilities in hardware and software to control the error. The hardware can

create a new path to the destination using alternative routes. This is possible because

every link in the SpiNNAker two dimensional topology can be replaced by an alternative

path consisting of two other links. Then the software will monitor it. If the failure

repeats, new routes will be established and some of the communications load will be
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Figure 6.6: Spinnaker multiprocessor architecture [15].

Figure 6.7: The SpiNNaker machine. [16].

handled by the alternative routes. If the failure becomes permanent, then all the traffic

will be handled by the established routes [16, 91].

The following properties of the SpiNNaker architecture highlight the specifications needed

for evaluation of the proposed highly parallel circuit simulation algorithm. In the pro-

posed algorithm, a many-core architecture is required with efficient communications
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between the processors. Each processor solves one of the equations and exchanges data

(which is a very small packet) with a few other processors based on the sparsity pat-

tern of the system matrix. Moreover, when using a large number of parallel processors,

fault-tolerance and error handling are very important to keep the process stable. The

SpiNNaker machine also offers a fault tolerant system suitable for our highly parallel

algorithms.

6.4 Summary and Discussion

The proposed methods for matrix solution and device evaluation phases were simulated

simultaneously on two test circuits using a highly parallel network of processors. Based

on the proposed fine-grained parallel approach, the number of required parallel pro-

cessors is equal to the number of circuit equations. Each processor is responsible for

solving its corresponding row and if needed it, calculates the required device models.

For both test circuits we observed more than 10x speed-up for parallel evaluation of

our proposed method compared to its single-core simulation. Moreover, compared to

the fastest method of Chapter 5, which was the Secant method along with the direct

matrix solution, the simulation time is improved by a factor of more than 5x. Finally,

comparing our results with the conventional NR iterations along with the direct matrix

solution on a single-core suggests that the simulation times for the two test circuits have

improved by factors of 16x and 22x.

There are a number of important points about parallel and simultaneous evaluation of

the two circuit simulation phases which should be highlighted:

• When using the parallel Jacobi iterative method for matrix solution, although by

increasing the number of matrix solution iterations, the number of circuit solution

iterations decreases, it does not necessarily mean that the execution time will

also be improved by using more Jacobi iterations. Matrix solution iterations are

performed in each iteration of circuit simulation iterations which can be NR or

Secant based on the simulation method. For example in Table 6.1, it can be seen

that the Secant method with 10 Jacobi iterations has obtained the circuit solution

within 23 iterations while with 50 Jacobi iterations it has obtained the solution

in 10 iterations. However, the simulation time of the first case is 9 ms while for

the second case it is 26 ms. This suggests that the values obtained by 10 Jacobi

iterations are accurate enough to proceed to the next circuit simulation iteration

and there is no need for a high number of Jacobi iterations. This can become more

important as the size of the problem increases. This is due to the fact that the

order of computations for the Jacobi method is N2. If the required iterations to

converge to the solution is equal to N , then the overall computations becomes of
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order of N3. When the number of Jacobi iterations is negligible compared to the

problem size, the whole matrix solution problem becomes of the order of N2.

• Avoiding the solution of a global matrix system in the form of Ax = b and instead

evaluating each equation independently on a separate processor using our proposed

methods makes it possible for each processor to calculate its required linear models

when required. Therefore, there is no need for a separate device evaluation phase

and hence there are no undesired stops in the simulation process. Recalling the fact

that circuit simulation matrices are very sparse and each node is only connected to

a few elements, each processor only performs a limited amount of extra calculations

for device evaluation, which has now even become more simplified by using the

Secant methods instead of NR.

We used the specific properties of our proposed approach based on random Jaconi

method for matrix solution purposes. An iterative matrix solution approach is pro-

posed which can be combined with the device evaluation phase to decrease the amount

of undesired stops between the two simulation phases, which happen in conventional cir-

cuit simulation algorithms. To the best of our knowledge, there is no similar work with

this level of fine-grain parallelisation and more importantly with simultaneous evalua-

tion of the device evaluation and the matrix solution phases. The current work suggests

a new approach to possibly replace the conventional approaches and provide the ground

work for future works on targeting massively parallel platforms, such as SpiNNaker, to

speed up the circuit simulation process.
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Conclusions

This thesis provides new approaches for the main phases of the circuit simulation process

and shows that the conventional circuit simulation algorithm can be performed using

new alternatives which benefit from ease of implementation on highly parallel systems

with simpler algorithms in order to speed up the simulation process. Conventional direct

matrix solution is replaced with a parallel and iterative approach and also the compu-

tationally intensive linearisation process using NR iterations is replaced with simpler

approaches which can be efficiently performed on fine-grained parallel systems. In the

first part of this chapter, a summary of the thesis is given. The second part covers the

main ideas which shaped the building blocks of this research and represents the main re-

sults, achievements, and contributions. Finally, in the last part, a number of suggestions

are made as the future work and possible developments of the current research.

7.1 Summary

The current work reviews the existing work and literature in circuit simulation area.

Different matrix solution methods are studied and parallel systems and approaches are

discussed. For the purpose of this specific work, iterative matrix solution methods are

preferred over the direct ones.

Two main iterative methods (Gauss-Seidel and Jacobi) and our proposed iterative ap-

proach called Random Jacobi, which is based on non-deterministic evaluation of normal

Jacobi iterations, are studied. A number of preliminary simulations are performed to

compare the functionality of Random Jacobi, normal Jacobi, and Gauss-Seidel itera-

tions. Simulation results show that the Random Jacobi method obtains exactly the

same result as the normal Jacobi approach. The Gauss-Seidel method, as expected,

converges fasted than either of them. However, according to the nature of this work

based on parallel evaluation of matrix equations, Jacobi-type algorithms are preferred

according to their inherent parallelism.

115
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This work performs independent and distributed evaluation of KCL at each circuit node

rather than solving the conventional circuit description matrix system. This would

be a case in which circuit equations should be evaluated independently and in a non-

deterministic order. Therefore, the simulations are performed on a number of benchmark

matrices on a highly parallel network of processors by allocating one processor per circuit

equation. The results are compared to the ones from the single-core and also the virtual

many-core evaluations. Simulation results show that parallel evaluation of the Random

Jacobi method for the matrix solution phase results in the same number of iterations

required for the convergence compared to the single-core solution. Furthermore, as the

size of matrices increases, the proposed parallel and iterative solution performs better

than both the single-core iterative solution and also the LU-factorisation method as the

conventional direct solution approach.

For the device evaluation phase, it is proposed to use simpler linearisation techniques

compared to the conventional NR iterations to avoid the calculation of partial deriva-

tives at each iteration. The proposed Secant method has a much simpler algorithm

compared to the NR method. Although the Secant method obtains the linear model in

more iterations, simulation results show that its overall execution time is less than NR

iterations.

The parallel Random Jacobi iterations for the matrix solution phase and the Secant

method for the device evaluation phase are used simultaneously on two test circuits

to evaluate the functionality of mixed simulation of the two proposed methods. This

is conventionally done using LU-factorisation and NR iterations. Simulation results

represent a significant improvement in the execution time of the simulations by using

the proposed parallel iterative method. The simulation time has improved by a factor

of more than 15x when comparing the LU-factorisation along with the NR method on

a single-core with the Random Jacobi iterations along with the Secant method on a

parallel many-core system.

7.2 Novel Contributions

Following the objectives mentioned in the introduction chapter, the main achievements

and novel contributions of this thesis can be highlighted as follows:

• To fulfil objectives 1 and 3: Non-deterministic evaluation of the Jacobi

iterative method on highly parallel many-core systems to replace the

conventional direct matrix solution methods such as LU-factorisation.

Direct matrix solution methods are widely used in conventional circuit simulation

algorithms. However, in this work it was shown that using direct matrix solutions

causes undesired stops between the two main simulation phases. The possibility
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of replacing direct matrix solution methods with a fine-grained parallel iterative

solution was assessed to distribute the system solution across a large number of

parallel processors. A non-deterministic evaluation of the Jacobi iterative method

was used for this purpose. This was initially tested in Chapter 3, as a part of the

first objective of this research, to confirm the functionality of the proposed non-

deterministic evaluation of the Jacobi iterative method. Then, according to the

simulation results on a number of test matrices we observed that the proposed it-

erative solution functions properly when evaluated on a highly parallel system and

obtains the solution within the same number of iterations as the single-core case.

This was shown in Table 5.4 and Table 5.8 in Chapter 5. However, the execution

time has improved significantly compared to the single-core simulations. As the

size of test matrices increases, the parallel iterative solution performs better and

for the largest test matrix obtains the solution 2 times and 3 times faster than the

direct method and single-core iterative method, respectively. The overall results

of the simulations were presented in Section 5.2.2.3 of Chapter 5 in Table 5.8 and

Figure 5.8 to fulfil the third objective stated in the introduction chapter. Further-

more, compared to the conventional direct solution method, LU-factorisation, it

was shown that the proposed Jacobi type iterative solutions performs faster than

the direct solution as the size of problem increases. To the best of our knowledge,

there is no work in the circuit simulation area with this level of fine-grained par-

allelism for the matrix solution phase. We believe that, with the availability of

massively parallel platforms such as SpiNNaker, novel approaches based on very

fine-grained parallel methods will become of more interest in speeding up the cir-

cuit simulation process.

• To address objective 2: Use of simple device evaluation techniques in

circuit simulation algorithms in conjunction with an iterative matrix

solution to replace the computationally intensive conventional Newton-

Raphson method.

SPICE-like circuit simulation algorithms use NR iterations to model the behaviour

of the nonlinear elements. Although it is a widely used method with a high conver-

gence rate, it suffers from the high amount of calculations required for numerically

solving the partial derivatives. In this thesis in Chapter 4, a much simpler ap-

proach was used based on the Secant method for linearisation purposes and was

integrated with the proposed iterative matrix solution. This was highlighted in the

introduction chapter as the second objective of this work. The simulation results,

which were given in Chapter 4 Table 4.11 and Table 4.13 showed that the Secant

method converges to the solution with more iterations compared to the NR method

(almost 3 times more iterations). However, due to the Secant method’s simple al-

gorithm without the need for calculating partial derivatives at each iteration, its

total execution time is less than or equal to the NR method’s execution time with
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a factor of (4x to 1x). It should be reminded that for these simulations, the it-

erative matrix solution is performed sequentially, while it works best on parallel

systems. Therefore, as claimed in Chapter 4, and achieved in Chapter 6, which

will be shown as a part of objective 5, even better results obtained by parallel and

simultaneous evaluation of the two phases. In the proposed highly parallel circuit

simulation approach, the aim is to break problems into a large number of simple

tasks to be evaluated on a highly parallel system. It was shown that, the Secant

method can be a suitable candidate for the proposed fine-grained method when

used in conjunction with our highly parallel iterative matrix solution approach.

• To accomplish objective 4: Introduction of an optimised communica-

tion pattern for parallel MPI simulations suitable for sparse matrices

to decrease the required communication between processors.

The proposed parallel many-core simulation which was used in this thesis requires

extensive data exchange between processors. Since the circuit simulation matrices

are very sparse, an optimised pattern for the proposed iterative matrix solution

method was introduced and used in Chapter 5 Section 5.3 which works best for

sparse matrices. The simulation results, which were shown in Table 5.11 and Figure

5.13 of Chapter 5, confirmed that by using the proposed pattern, we can improve

the solution time for sparse matrices. These simulation results cover the fourth

objective of this thesis. For example, for the largest test matrix the execution time,

when the optimised communication pattern was used, was improved 23% and 61%

compared to the non-optimised parallel matrix solution and direct matrix solution,

respectively. However, for dense matrices, the amount of pre-calculations required

for extracting the correct pattern dominates the improvement in the solution time.

Therefore, the proposed optimisation pattern is only useful for sparse matrix sys-

tems. Simulations results in Table 5.12 of Chapter 5 show that for the same matrix

size and solution iterations, when the sparsity rate of matrices changed from 35%

to 95%, a 5x improvement is achieved in the matrix solution time using the pro-

posed communication pattern. The communication optimisation can be integrated

as an intermediate stage between matrix construction and matrix solution phases

to generate a communication pattern between processors to minimise the required

amount of communications.

• To fulfil objective 5: Simultaneous evaluation of the two main simulation

phases to overcome the existing issue of parallelising the whole circuit

simulation process caused by the barrier between the two phases.

According to the circuit simulation literature, all circuit simulation algorithms

evaluate the two main circuit simulation phases (device evaluation and matrix so-

lution) separately. This is because of the barrier between the device evaluation
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and matrix solution phases. The use of an iterative matrix solution method in this

work made it possible to perform a simultaneous evaluation of the two proposed

methods on a highly parallel system, which was covered in the Chapter 6 of this

thesis. The Random Jacobi method was used instead of direct methods for the ma-

trix solution phase and the Secant method instead of NR iterations for the device

evaluation phase. Combining the two methods and performing the simulation on a

very fine-grained system of parallel processors by allocating one processor per each

circuit equation, as the fifth objective of this work, led to even more improvement

in simulation times compared to the sperate evaluations of each of the methods.

Simulation results were presented in Figure 6.3 and Figure 6.4 of Chapter 6. For

example, for one of the test circuits which was used for these simulations, conven-

tional NR iterations with the direct matrix solution on a single-core resulted in

150 ms for the execution time. The simulation time was decreased to 9 ms when

simultaneous evaluation was performed using the proposed methods. This shows

more than a 15x speed-up for parallel simulation of the under test circuit. Also,

for the other test matrix, an speed-up of 22x is achieved. It was shown that this

is a suitable parallel approach to eliminate the barrier between the device evalua-

tion and matrix solution phases, which is one of the unsolved issues in this area.

It is caused by the nature of the conventional direct matrix solution approaches

that needs completion of each phase in order to start the next phase. To the best

of our knowledge, this work is the first attempt to propose a novel approach for

massively parallel evaluation of the circuit simulation algorithm using iterative

matrix solution methods and can be the ground work for future developments of

highly parallel circuit simulators. By employing more efficient massively parallel

platforms in terms of communication between processors even better results can

be achieved.

7.3 Future Work

The current work introduces new approaches for evaluating the main phases of the circuit

simulation algorithm. This thesis mainly discusses the preliminary evaluations to con-

firm the functionality of the proposed methods and measures their performance. Based

on the areas studied in this work, further research can be done from both the hardware

and software points of view to improve the algorithms and develop the proposed methods

on other parallel platforms.

In this thesis, MPI was used for highly parallel evaluation of the circuit equations on

a cluster of processors by allocating one processor to each circuit equation. We believe

that for the preliminary research purposes, using MPI is an appropriate approach to

manage the communications between the parallel processors. However, to decrease the

communications overhead and perform the communication between the processors in a
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more efficient way, it is possible to use other platforms for parallel processing such as

FPGAs or other massively parallel computing architectures such as SpiNNaker.

This research is in fact a proof of concept for performing the SPICE-type circuit sim-

ulation algorithms, which have been almost unchanged for four decades, using new

approaches to accelerate the process of circuit simulation. It was shown that it is pos-

sible to replace the conventional direct matrix solution with a very fine-grained and

highly parallel Jacobi-type iterative solution and then combine it with the simultane-

ous evaluation of the device modelling phase which led to some promising results for

speeding up the circuit simulation process. However, simple test circuits and benchmark

matrices are used in simulations. A substantial amount of work is required to evaluate

the proposed methods for large test circuits using, for example, a whole BSIM model

for MOS transistors. Therefore, a massively parallel system with specific properties is

required to implement the proposed parallel circuit simulation algorithms with more

accurate models for very large test circuits. The availability of a more efficient way of

communication also has the benefit of performing the equation solutions asynchronously

and calculating a local convergence instead of a global convergence until the required

accuracy is achieved. SpiNNaker, a novel massively parallel computing platform inspired

by the working of the human brain, can be a suitable candidate as a massively parallel

platform for further developments of the current work.



Appendix A

Simulations and codes

This appendix includes the diagrams, codes, and extra details about the simulations.

A.1 Generating Test Matrices by Matlab

Matlab code for generating test matrices with desired specifications:

1 %%%%%%%%%%%%%%% Random Sparse Matrix Generator %%%%%%%%%%%%%%%
2 % 1. a square random matrix with desired size is generated %
3 % with the element values between 0 and 1 %
4 % 2. by a shift of half a unit and then timing the matrix by %
5 % 10, the values range will be between -5:5 %
6 % 3. another square matrix with the same size is generated %
7 % with a desired sparsity rate of ’spc’ %
8 % 4. by multiplying two matrices, a sparce matrix is obtained%
9 % 5. the matrix is made diagonally dominant %
10 % 6. a random RHS vector is generated %
11 % 7. the solution is calculated using direct matlab methods %
12 % 8. the matrices are saved. %
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14

15 matSize = 1000; % matrix size
16 spc = 0.90; % sparsity coefficient*100 = (percent of zero elements)
17 rhsspc = 0.90; % rhs vector sparsity
18 acoef = 05; % range coefficient of matrix A
19 rhscoef = 10; % range coefficient of RHS vector
20 sumCoef = 0.15; % coefficient of diagonal element
21 infostr = ’size=1000; sparsity=90%; sumCoef = 0.15, A:(-5:5); Z:(-10:10)’;
22

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24

25 inimat = rand(matSize); % initial matrix range:(0:1)
26 inimat = (inimat-0.5).*acoef; % random matrix range:(-0.5:0.5)*acoeff
27

28 % generating a random sparse matrix
29 zerone=rand(matSize);
30 for i=1:matSize
31 for j=1:matSize
32 if i==j

121
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33 zerone(i,i)=1;
34 elseif zerone(i,j)>spc
35 zerone(i,j)=1;
36 else
37 zerone(i,j)=0;
38 end
39 end
40 end
41 mndd = inimat.*zerone % matrix not diagonally dominant
42 mnddt = mndd’; % transpose of mndd to be used for "max"
43 [maxval,maxind]=max(abs(mnddt)) % returns max value and max indice
44 % of each column
45

46 % finding suitable additional value for diagonal elements
47 nzre = zeros(1,matSize); % number of none-zero row elements
48 for m=1:matSize
49 for n=1:matSize
50 if m˜=n
51 if mndd(m,n) ˜= 0
52 nzre(1,m)=nzre(1,m)+1;
53 end
54 end
55 end
56 end
57 % sum >> the added value to make the diagonal elemnt dominant
58 sum = nzre.*sumCoef;
59

60 % making the matrix diagonally dominant
61 for i=1:matSize
62 if maxind(i)˜=i
63 if mndd(i,maxind(i))>= 0
64 tempval=mndd(i,maxind(i))+sum(1,i);
65 else
66 tempval=mndd(i,maxind(i))-sum(1,i);
67 end
68 mndd(i,maxind(i))=mndd(i,i);
69 mndd(i,i)=tempval;
70 else
71 if mndd(i,i)>= 0
72 mndd(i,i)=mndd(i,i)+sum(1,i);
73 else
74 mndd(i,i)=mndd(i,i)-sum(1,i);
75 end
76 end
77 end
78 A_matrix = mndd % diagonally dominant matrix
79

80 % Generating RHS vector (excitations)
81 b_matrix = rand(matSize,1);
82 b_matrix = (b_matrix-0.5).*rhscoef;
83 rhssp = rand(matSize,1); % rand vectro for sparsity of RHS
84 for i=1:matSize
85 if abs(rhssp(i,1))<rhsspc
86 b_matrix(i,1)=0;
87 end
88 end
89 solution = (A_matrixˆ-1)*b_matrix % the exact X vector
90 largest = max(solution)
91

92 % check if the matrix is diagonally dominant
93 ddcount = 0;
94 elcount = 0;
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95 for p=1:matSize
96 ddsum = 0;
97 for q=1:matSize
98 if (p ˜= q)
99 ddsum = ddsum + abs(A_matrix(p,q));
100 if (abs(A_matrix(p,p)) < abs(A_matrix(p,q)))
101 elcount = elcount+1;
102 end
103 end
104 end
105 if (abs(A_matrix(p,p)) < ddsum)
106 ddcount = ddcount+1;
107 end
108 end
109 elcount
110 ddcount
111

112 %save(’MTX0020_s80_r05_sc0.50_n01.mat’, ’A_matrix’, ’b_matrix’,...
113 % ’solution’, ’matSize’, ’spc’, ’infostr’)
114 % s: size, r: range, sc: sumCoef, n: number
115

116

and checking the convergence of the test matrices:

1 %%%%%%%%%%%%%%% Convergence Check - Jacobi %%%%%%%%%%%%%%%
2

3 load MTX0020_s80_r05_sc0.30_n01.mat
4 a = A_matrix;
5 z = b_matrix;
6 sol = solution’;
7

8 %%%%%%%%%%%%%%%%%%%%% applying methods %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 mat_size = size(a,1); % matrix size
10 rep = 50; % number of iterations
11 th = 1e-2;
12

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% Jacobi
14 x=[]; % the solution
15 x_init=ones(1,mat_size); % initial value
16 i=0;
17 norm_x = 10;
18 while ((i < rep) && (norm_x > th)) % iterations
19 i = i + 1;
20 display([’-- iteration ’ num2str(i) ’--’]);
21 for j = 1:mat_size % calculations for each row
22 sum=0;
23 for k = 1:mat_size
24 if j˜=k
25 sum=sum+a(j,k)*x_init(k);
26 end
27 end
28 x(j)=(z(j)-sum)/a(j,j); % new values
29 end
30

31 dif_x = x - x_init;
32 norm_x=sqrt(dif_x*dif_x’);
33 norm_xp(i)=norm_x;
34 x_init=x; % updating outside loop
35 end
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36

37 x;
38 grid on;
39 plot(norm_xp, ’or’,’MarkerFaceColor’,’r’,’MarkerSize’,5);
40 display(’*** Jacobi done ***’);

A.2 Convergence Comparison of the Iterative Methods

Matlab code for convergence comparison of three iterative matrix solution methods:

Jacobi, Gauss-Seidel, and Random Jacobi.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% Jacobi
2 x=[]; % the solution
3 x_init=ones(1,mat_size); % initial value
4 dif_x0=x_init-sol;
5 norm_x0=sqrt(dif_x0*dif_x0’);
6 norm_xp(1)=norm_x0;
7 for i = 1:rep % iterations
8 display([’-- iteration ’ num2str(i) ’--’]);
9 for j = 1:mat_size % calculations for each row
10 sum=0;
11 for k = 1:mat_size
12 if j˜=k
13 sum=sum+a(j,k)*x_init(k);
14 end
15 end
16 x(j)=(z(j)-sum)/a(j,j); % new values
17 end
18 x_init=x; % updating outside loop
19 dif_x=x-sol;
20 norm_x=sqrt(dif_x*dif_x’);
21 norm_xp(i+1)=norm_x;
22 end
23 x;
24 grid on;
25 plot(plt, norm_xp, ’or’,’MarkerFaceColor’,’r’,’MarkerSize’,5);
26 display(’*** Jacobi done ***’);
27

28 %%%%%%%%%%%%%%%%%%%%%%%% Gauss-Seidel
29 y=[]; % the solution
30 y_init=ones(1,mat_size); % initial value
31 dif_y0=y_init-sol;
32 norm_y0=sqrt(dif_y0*dif_y0’);
33 norm_yp(1)=norm_y0;
34 for m = 1:rep % iterations
35 display([’-- iteration ’ num2str(m) ’--’]);
36 for n = 1:mat_size % calculations for each row
37 sum=0;
38 for p = 1:mat_size
39 if n˜=p
40 sum=sum+a(n,p)*y_init(p);
41 end
42 end
43 y(n)=(z(n)-sum)/a(n,n); % new values
44 y_init(n)=y(n); % updating inside loop
45 end
46 dif_y=y-sol;
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47 norm_y=sqrt(dif_y*dif_y’);
48 norm_yp(m+1)=norm_y;
49 end
50 y;
51 hold on
52 grid on
53 plot(plt, norm_yp, ’--m’);
54 display(’*** Gauss-Seidel done ***’);
55

56 %%%%%%%%%%%%%%%%%%%%%%%%%%%% Random Jacobi
57 r=[]; % the solution
58 r_init=ones(1,mat_size); % initial value
59 dif_r0=r_init-sol;
60 norm_r0=sqrt(dif_r0*dif_r0’);
61 norm_rp(1)=norm_r0;
62 ran_vector=randperm(mat_size); % creating non-deterministic order
63 % of equation evaluation
64 for d = 1:rep % iterations
65 display([’-- iteration ’ num2str(d) ’--’]);
66 for e = 1:mat_size % calculations for each row
67 g=ran_vector(1,e);
68 sum=0;
69 for f = 1:mat_size
70 if g˜=f
71 sum=sum+a(g,f)*r_init(f);
72 end
73 end
74 r(g)=(z(g)-sum)/a(g,g); % new values
75 end
76 r_init=r; % updating outside loop
77 dif_r=r-sol;
78 norm_r=sqrt(dif_r*dif_r’);
79 norm_rp(d+1)=norm_r;
80 end
81 r;
82 hold on;
83 plot(plt, norm_rp);
84 display(’*** Random Jacobi done ***’);
85

86 title([’Matrix size: ’ num2str(matSize) ’, Sparsity: ’ num2str(spc*100) ’%’]);
87 legend(’normal Jacobi’,’Gauss-seidel’,’Random Jacobi’);
88 xlabel(’Iterations’);
89 ylabel(’Euclidean Norm’);
90 hold off

A.3 Newton-Raphson and Secant Methods Comparison

This section included the Matlab codes we used for performing our simulations on the

device evaluation and matrix solution phases to compare the functionality and perfor-

mance of Newton-Raphson and Secant methods when are used along with a direct matrix

solution (LU) and an iterative matrix solution (Jacobi) (Figure 4.9).

Two of the Matlab codes are included in this section which contain the algorithms used

for the four mentioned methods.

Newton-Raphson with a direct method:



126 Appendix A Simulations and codes

1 % Newton-Raphson for device modelling
2 % and
3 % Direct method (LU) for matrix solution
4

5 A = zeros(7,7); % to keep the A matrix
6 b = zeros(7,1); % to keep the RHS matrix
7

8 % Linear elements (conductances and independent voltage source)
9 gd = 3.3333e-5; gl = 3.3333e-5; gs = 2e-4;
10 gb1 = 5e-4; gb2 = 1e-5;
11 vdd = 3;
12

13 % initial guess (for unknown node voltages and branch currents)
14 v1 = 3; v2 = 0.5; v3 = 1.8;
15 v4 = 0.2; v5 = 2;
16 ivs = 30e-6; ivdd = 50e-6;
17

18 % constants
19 vth = 0.7; kp = 200e-6; wl = 2; % NMOS
20

21 % calculating the operating point
22 % rep = 7; % number of jacobi iterations
23 mat_size = size(A,1);
24 x=[]; % the solution in jacobi iterations
25 st = tic;
26 for titer=1:10
27 % device modeling and linearization (Newton_Raphson) -----------
28 % mos values
29 vgs = v3 - v4; vds = v2 - v4;
30 i_m = 0.5*kp*wl*(2*(vgs - vth)*vds - vdsˆ2);
31 % G1 = 2*kp*(vgs - vth - vds);
32 [G1,err] = derivest(@(vds) 0.5.*kp.*wl.*(2.*(vgs - vth).*vds - vds.ˆ2),vds)
33 % G2 = 2*kp*vds;
34 [G2,err] = derivest(@(vgs) 0.5.*kp.*wl.*(2.*(vgs - vth).*vds - vds.ˆ2),vgs)
35 imds = i_m - G1*vds - G2*vgs;
36

37 % Forming the A and b matrices
38 % A matrix with exchanged rows 6,5 and 1,7.
39 A = zeros(7,7);
40 A(7,1) = gd; A(7,2) = -gd; A(7,7) = 1;
41 A(2,1) = -gd; A(2,2) = gd+gl+G1; A(2,3) = G2; A(2,4) = -G1-G2;
42 A(3,3) = gb1+gb2; A(3,5) = -gb1;
43 A(4,2) = -G1; A(4,3) = -G2; A(4,4) = G1+G2+gs;
44 A(6,3) = -gb1; A(6,5) = gb1; A(6,6) = 1;
45 A(5,5) = 1;
46 A(1,1) = 1;
47 % rhs matrix with exchanged row 6 and 7
48 b = zeros(7,1);
49 b(2,1)= -imds; b(4,1) = imds; b(5,1) = 2; b(1,1) = 3;
50

51 % Direct matrix solution (LU) -----------------------------
52

53 y = splv(A,b);
54 yvect(:,titer)=y;
55

56

57 % updating new results ----------------------------------------
58 v1 = y(1,1); v2 = y(2,1); v3 = y(3,1);
59 v4 = y(4,1); v5 = y(5,1); v6 = y(6,1);
60 iv = y(7,1);
61

62 tm(titer) = toc(st);



Appendix A Simulations and codes 127

63 end
64 tm = toc(st)
65

66

1 function x = splv(A, b)
2

3 % splv The solution to a square, invertible system.
4 % x = splv(A, b) uses the PA = LU factorization
5 % computed by splu to solve Ax = b.
6

7 [P, L, U] = splu(A);
8 [n, n] = size(A);
9

10 % Permute the right hand side.
11 b = P*b;
12

13 % Forward elimination to solve L*c = b.
14 c = zeros(n, 1);
15 for k = 1:n
16 s = 0;
17 for j = 1:k-1
18 s = s + L(k, j)*c(j);
19 end
20 c(k) = b(k) - s;
21 end
22

23 % Back substitution to solve U*x = c.
24 x = zeros(n, 1);
25 for k = n:-1:1
26 t = 0;
27 for j = k+1:n
28 t = t + U(k, j)*x(j);
29 end
30 x(k) = (c(k) - t) / U(k, k);
31 end

and Secant with an iterative method:

1 clear all
2 clc
3

4 A = zeros(7,7); % to keep the A matrix
5 b = zeros(7,1); % to keep the RHS matrix
6

7 % Linear elements (conductances and independent voltage source)
8 gd = 3.3333e-5; gl = 3.3333e-5; gs = 2e-4;
9 gb1 = 5e-4; gb2 = 1e-5;
10 vdd = 3;
11

12 % initial guess set 1
13 v1a = 3; v2a = 0.4; v3a = 1.6;
14 v4a = 0.2; v5a = 2;
15 ivsa = 25e-6; ivdda = 40e-6;
16

17 % initial guess set 2
18 v1b = 3; v2b = 0.5; v3b = 1.8;
19 v4b = 0.15; v5b = 2;
20 ivsb = 30e-6; ivddb = 50e-6;
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21

22 % constants
23 vth = 0.7; kp = 200e-6; wl = 2; % NMOS
24

25 % calculating the operating point
26 rep = 7; % number of jacobi iterations
27 mat_size = size(A,1);
28 x=[]; % the solution in jacobi iterations
29 st = tic;
30 for titer=1:15
31 % device modeling and linearization (Secant) -----------
32 % mos values
33 vgsa = v3a - v4a; vdsa = v2a - v4a;
34 vgsb = v3b - v4b; vdsb = v2b - v4b;
35 i_ma = 0.5*kp*wl*(2*(vgsa - vth)*vdsa - vdsaˆ2);
36 i_mb = 0.5*kp*wl*(2*(vgsb - vth)*vdsb - vdsbˆ2);
37 G1 = (i_mb - i_ma)/(vdsb-vdsa);
38 G2 = (i_mb - i_ma)/(vgsb-vgsa);
39 imds = i_mb -G1*vdsb - G2*vgsb;
40

41 % Forming the A and b matrices
42 % A matrix with exchanged rows 6,5 and 1,7.
43 A = zeros(7,7);
44 A(7,1) = gd; A(7,2) = -gd; A(7,7) = 1;
45 A(2,1) = -gd; A(2,2) = gd+gl+G1; A(2,3) = G2; A(2,4) = -G1-G2;
46 A(3,3) = gb1+gb2; A(3,5) = -gb1;
47 A(4,2) = -G1; A(4,3) = -G2; A(4,4) = G1+G2+gs;
48 A(6,3) = -gb1; A(6,5) = gb1; A(6,6) = 1;
49 A(5,5) = 1;
50 A(1,1) = 1;
51 % rhs matrix with exchanged row 6 and 7
52 b = zeros(7,1);
53 b(2,1)= -imds; b(4,1) = imds; b(5,1) = 2; b(1,1) = 3;
54

55 % iterative matrix solution (Jacobi) -----------------------------
56

57 % initial value
58 % use initial guess just in the first iteration
59 % in other iterations, the last obtained x vector is used as initial guess
60 % to use the initial guess for NR as starting point of Jacobi
61 if (titer == 1)
62 %x_init = ones(1,mat_size);
63 x_init = [3;0.5;1.8;0.2;2;30e-6;50e-6];
64 end
65

66 i=0;
67 while (i < rep) % iterations
68 i = i + 1;
69 %display([’-- iteration ’ num2str(i) ’--’]);
70 for j = 1:mat_size % calculations for each row
71 sum=0;
72 for k = 1:mat_size
73 if j˜=k
74 sum = sum + A(j,k)*x_init(k);
75 end
76 end
77 x(j,1) =(b(j) - sum) /A(j,j); % new values
78 end
79 x_init = x; % updating outside loop
80 jacvect(:,i,titer) = x;
81 end
82 xvect(:,titer)=x;
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83

84 %%% Updating new results
85

86 v1a = v1b; v2a = v2b; v3a = v3b;
87 v4a = v4b; v5a = v5b; ivsa = ivsb;
88 ivdda = ivddb;
89

90 v1b = x(1,1); v2b = x(2,1); v3b = x(3,1);
91 v4b = x(4,1); v5b = x(5,1); ivsb = x(6,1);
92 ivddb = x(7,1);
93

94

95 end
96 tm = toc(st)

A.4 C++ Code for Iterative Solution Algorithms on Single

Core

Part of the C++ code we used in our simulations to perform normal Jacobi, Random

Jacobi, and Gauss-Seidel algorithms is included in this section.

i f ( SJ Switch == 0) cout<< ”\n∗∗∗ Jacobi I t e r a t i o n s ∗∗∗\n\n\n” ;
i f ( SJ Switch == 1) cout<< ”\n∗∗∗ Gauss S e i d e l I t e r a t i o n s ∗∗∗\n\n\n” ;
i f ( SJ Switch == 2) cout<< ”\n∗∗∗ Random I t e r a t i o n s ∗∗∗\n\n\n” ;

double s t a r t t = c lo ck ( ) ;

double exeTime , exeTimeh ;

srand ( 2 ) ; // seed ing the random func t i on

tempSol = in i tGues s ;

i = −1;

eNormTemp = 10 ;

for ( int rv=0; rv<matSize ; ++rv ) randVector . push back ( rv ) ;

// us ing b u i l t−in random genera tor :

random shuf f l e ( randVector . begin ( ) , randVector . end ( ) ) ;

// i t e r a t i o n loop

while ( i<numIterat ion && eNormTemp>th ){
i++;

normCheck = tempSol ;

for ( j =0; j<matSize ; j++){ // row loop

rn = randVector [ j ] ;

i f ( SJ Switch == 0 | | SJ Switch == 1) rn = j ;

sum = 0 ;

for ( k=0; k<matSize ; k++){
i f ( rn !=k )

sum = sum + Matrix [ rn ] [ k ]∗ tempSol [ k ] ;

}
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// c a l c u l a t i n g new va l u e s f o r the e lements o f row ” j ”

s o l u t i o n [ rn ] = (RHS[ rn ]−sum)/Matrix [ rn ] [ rn ] ;

// updat ing the s o l u t i o n vec t o r f o r S e i d e l

i f ( SJ Switch == 1) tempSol = s o l u t i o n ;

}

// updat ing the s o l u t i o n vec t o r f o r Jacob i

i f ( SJ Switch == 0 | | SJ Switch == 2) tempSol = s o l u t i o n ;

// c a l c u l a t i n g ENorm

di fAddres s = subMat ( so lu t i on , normCheck ) ;

for (m=0; m<matSize ; m++) difMat [m] = di fAddres s [m] ;

delete [ ] d i fAddres s ;

eNormTemp = eucNorm( difMat ) ;

// Adding new ENorm to ENorm vec to r

eNorm . push back (eNormTemp ) ;

}
r e q I t e r = i +1;

exeTime = ( c l o ck ( ) − s t a r t t )/CLOCKS PER SEC;

exeTimeh = ( c l o ck ( ) − s t a r t h )/CLOCKS PER SEC;
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Message Passing Interface

Message Passing Interface or MPI is a library of functions and macros for highly par-

allel distributed memory environments which can be used with a number of different

programming languages such as C/C++, Fortran, and Java. [50]. In this work we used

MPI for our many-core simulations on both virtual many-core and real many-core sys-

tems and used C++ programming for its implementation. In this appendix, we will

review how MPI is incorporated in our C++ code for our highly parallel simulations on

Iridis cluster and provide examples and screen shots of the processes and simulations.

B.1 Virtual Many-core Simulations using MPI

In order to incorporate MPI in a C++ program a number of steps are required to make

use of MPI library. The MPI header file needs to be included in the beginning of the

C++ code. Then MPI should be initialised and communication environment including

the number of parallel processors and the rank of each processor should be defined.

Then, MPI directives can be used for message passing between processors, and in the

end, MPI should be finalised in order to clean up all MPI state. Figure B.1 shows parts

of our parallel Jacobi iterative matrix solution code using MPI to solve one of our test

matrices (size 102). The MPI parts of the code are highlighted. We ran these simulations

under Ubuntu (version 11.10). Because we have used MPI library in our code we need

to execute it with MPI commands as shown in Figure B.2. The mpicc command is used

to compile our C code (jacobi mpi.c, which contains MPI functions, and generate the

executive file. Then it is run using the mpirun command with the desired number of

virtual parallel processors (102 for this example).

131
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Figure B.1: Implementation of MPI in C++ program.

B.2 The Iridis Computer Cluster

This appendix highlights the technical aspects of the Iridis computer cluster. The cur-

rent version, Iridis 4, is the fourth generation cluster of the University of Southampton,

one of the largest computational facilities in the UK. In November 2013, Iridis 4 was

ranked 179th in the world in the TOP500 list. Iridis provides High Performance Com-

puting facilities in a professionally managed service environment and is available to the

University’s entire research community.

Iridis is primarily designed as a batch service for users who need to run either distributed

memory parallel jobs, or multiple resource-intensive sequential jobs. The main source of
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Figure B.2: Compiling and running MPI on virtual many-cores.

information on the Iridis 4 service is User Support wiki accessible to registered users. As

well as documentation on how to access and use the service, it has information on train-

ing courses, background information on the facility, user forums and links to sources of

further information. System Status page reports current status of the system, scheduled

system maintenance and any ongoing problems/accidents.

IRIDIS 4 Components:

• 750 compute nodes with dual 2.6 GHz Intel Sandybridge processors;

• Each compute node has 16 CPUs per node with 64 GB of memory;

• 4 high-memory nodes with two 32 cores and 256 GB of RAM;

• 24 Intel Xeon Phi Accelerators;

• 3 login nodes with 16 cores and 125 GB of memory;

• In total 12320 processor-cores providing 250 TFlops peak;

• 1.04 PB of raw storage with Parallel File System;

• InfiniBand network for interprocess communication;

• Moab HPC Suite - advanced workload management system from Adaptive Com-

puting;

MPI is the most popular environment for running parallel jobs, particularly for multi-

node jobs. OpenMPI is the recommended implementation and versions for both the

Intel and gcc compilers are available by selecting the appropriate environment module,

with Intel as the default. Intel MPI is also available as an alternative to OpenMPI.
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Support for shared-memory parallelism using OpenMP is available within both Intel and

GNU Compilers, and as Iridis 4 has 16 cores per node may offer an attractive option for

parallel execution of critical sections of a code.

B.3 Real Many-core Simulations using MPI on Iridis

Iridis uses Linux operating system. To execute our parallel MPI algorithm to Iridis, we

need to submit a job script along with our C code. The commands to be run need to be

placed in a script file. An example of the script file we used to submit a parallel job to

run out algorithm on 102 processors is shown in Figure B.3 which contains information

such as number of nodes/processors required, maximum wall time, path to the directory

containing the code, and commands to compile and run the C code. When the simulation

is completed, the results is saved to an output text file.

Figure B.3: An example of scripts used to submit parallel MPI jobs to Iridis.



Appendix C

Paper Presented in DAC 2013

This appendix includes the paper submitted to DAC (Design and Automation Confer-

ence) 2013, and accepted to be presented in poster session as a short paper.
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