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ABSTRACT

This paper investigates repeated security games with unknown (to
the defender) game payoffs and attacker behaviors. As existing
work assumes prior knowledge about either the game payoffs or the
attacker’s behaviors, they are not suitable for tackling our problem.
Given this, we propose the first efficient defender strategy, based on
an adversarial online learning framework, that can provably achieve
good performance guarantees without any prior knowledge. In par-
ticular, we prove that our algorithm can achieve low performance
loss against the best fixed strategy on hindsight (i.e., having full
knowledge of the attacker’s moves). In addition, we prove that our
algorithm can achieve an efficient competitive ratio against the op-
timal adaptive defender strategy. We also show that for zero-sum
security games, our algorithm achieves efficient results in approxi-
mating a number of solution concepts, such as algorithmic equilib-
ria and the minimax value. Finally, our extensive numerical results
demonstrate that, without having any prior information, our algo-
rithm still achieves good performance, compared to state-of-the-art
algorithms from the literature on security games, such as SUQR
[19], which require significant amount of prior knowledge.
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1. INTRODUCTION

In the recent years, security games have been widely used in many
areas of artificial intelligence [24]. These games typically consist
of a Stackelberg model in which the defender allocates a limited
number of resources to protect a set of targets based on a ran-
domized strategy, while the attacker, upon learning the strategy,
chooses an optimal subset of targets to attack. Motivated by anti-
terrorist patrolling, earlier work on security games typically fo-
cuses on one-shot game models, e.g., [22, 12]. However, recently,
there has been a surge of interests in addressing various security
domains involving repeated interactions between the defender and
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a bounded-rational attacker. These repeated security game mod-
els are motivated by many important real-world problems such as
wildlife patrolling [26] and illegal fishing monitoring [11]. Due to
the repeated manner of the games, one-shot models are not suit-
able to tackle these problems, since they do not take into account
the learning and adaptive behaviour of the attackers. As such, new
solutions are required to address this challenge within the repeated
security games. In the literature on security games, such solutions
typically assume a specific bounded-rationality attacker behavior
model (e.g., the Quantal Response (QR) model) in order to predict
the future behaviour of the attacker. However, as pointed out by Kar
et al. [14], these bounded-rationality models suffer from a number
of limitations. Particularly, they fall short in capturing adaptive at-
tackers, who can adversarially change their attacking strategy over
time based on the defender’s past actions. Unfortunately, attackers
are typically adaptive in real scenarios, making such approaches
unsuitable to tackle real problems.

Although Kar et al. [14] refined the attacker behavior model and
took into account the adaptive behaviour of attackers, such type
of approaches still has a number of shortcomings, namely: (i) it
assumes that the attacker’s behaviour model, along with all the fea-
tures/patterns that affect the model, is known a priori; (ii) it assumes
that the attacker payoffs are known by the defender in advance; and
(iii) it is computationally intractable and only local optimal strat-
egy can be computed, therefore no theoretical performance guar-
antee can be provided. However in real-scenarios, attackers are
not necessarily following a particular model and it is very hard to
predict their behaviors. Moreover, it is widely recognized that the
defender usually does not know the attacker’s payoffs (Kiekintveld
et al. [15], Blum et al. [3]). In fact, the defender may even not pre-
cisely know her own payoffs due to uncertainties in some domains.
For example, in wildlife poaching or illegal fishing domains, the
payoff of a target (i.e., a subarea) at each round depends on the
amount and types of species showing up, which is random and dif-
ficult to estimate due to too much uncertainty in nature.

To overcome these issues, we propose a novel defender strategy
for repeated security games, namely Follow the Perturbed Leader
with Uniform Exploration (or FPL-UE for short), which is a vari-
ant of the celebrated Follow the Perturbed Leader (FPL) algorithm,
a state-of-the-art method from the online learning theory litera-
ture [13]. In particular, we show that the defender’s patrolling prob-
lem in repeated security games can be formulated as a combinato-
rial adversarial online learning problem, where at each round, an
opponent (i.e., the attacker) adversarially sets a multidimensional
vector of positive rewards, and the learner (i.e., the defender) can
only choose to see a subset of entries of this vector (i.e., targets
to protect), while the rest remains unrevealed. The learner’s re-
ward is the sum of the revealed entries, and her goal is to efficiently



maximise the total rewards against this adaptive and adversarial op-
ponent (for more details, see, e.g., [6]). The current state of the art
of the literature is the method proposed by Neu and Bartok [19]."
However, their algorithm works only when the learner suffers loss
(i.e., the goal is loss minimisation), while in our case, as we will
show in Section 2, the learner collects rewards (i.e., the goal is
reward maximisation). As Neu and Bartok noted explicitly in the
paper, their algorithm, in particular, a key lemma in proving the
regret guarantee, cannot be directly adapted for the reward sce-
nario to guarantee fast regret convergence. As such, the FPL algo-
rithm of Neu and Bartok cannot be directly applied to our setting.
Against this background, we propose a new analysis for the reward
maximisation scenario. In particular, we show that FPL-UE, which
augments the algorithm in [19] with more ingredient of exploration
and exploits the structures of security games, can provide efficient
and provable performance guarantees for the defender in a repeated
security game. Our numerical evaluation based on simulations also
show the advantage of our algorithm and the failure of convergence
of the algorithm in [19] when dealing with reward maximization
cases.

Furthermore, our approach also enjoys the following advantages:
(1) it does not require any prior knowledge about attacker’s be-
haviour, and thus, is suitable for handling any types of attackers;
(ii) it does not require any prior knowledge about the game pay-
offs either, and thus, can deal with payoff uncertainty; and (iii) it
has efficient theoretical performance guarantees. In particular, the
algorithm assumes an arbitrary attacker, and puts no assumptions
on their behaviour. It then efficiently balances between exploration
(i.e., learn which strategy is the best against the particular attacker)
and exploitation (maximises the total utility over time). To do so, at
each round, our algorithm calculates a mixed strategy that is a care-
ful combination of uniform random distribution (for exploration)
and a distribution derived from solving an optimisation problem
(for exploitation) with perturbed values (i.e., with some artificially
added noise). By doing so, we show that FPL-UE can provably
achieve low-regret (i.e., performance loss) bounds, compared to
that of the best fixed strategy on hindsight.

In particular, we show that the regret bound of FPL-UE is at
most O(+/T) in total within T time steps. This sub-linear regret
implies that the average regret per time step is converging to 0 as
T tends to infinity. Thus, the behaviour of FPL-UE converges to
the best fixed strategy (i.e., the best response to the attacker’s strat-
egy) on hindsight, with a convergence rate of O(%) We fur-
ther show that within zero-sum security games (which are well-
motivated by many real-world applications [11]), if both the de-
fender and attacker use FPL-UE to make their actions, they can
achieve an approximate (algorithmic) equilibrium. We also show
that the minimax value, which is a powerful solution concept of the
zero-sum games, can also be approximated with provable approxi-
mation guarantees, by using FPL-UE against a simulated user, who
also uses FPL-UE to make decisions. As such, our work contributes
to the state of the art in the following aspects:

e We provide a novel approach, based on online combinato-
rial optimisation, for designing efficient defender strategies
in repeated security games. Our approach does not require
additional prior knowledge about the attacker and the envi-
ronment, and can be applied against adaptive attackers. Our
approach is the first defender strategy for repeated security
games that enjoys provable theoretical performance guaran-
tees.

"We refer the reader to [6, 20] for a more detailed survey of the
combinatorial online learning literature.

e We also show that for an important sub-class of repeated se-
curity games, namely the zero-sum games, we can approxi-
mate the algorithmic equilibrium and the minimax value of
the game by applying our strategy for both sides.

o Finally, by using extensive numerical evaluations, we demon-
strate that our algorithm, while it does not require any prior
knowledge, can still achieve competitive performance, com-
pared to the defender strategy generated using the Subjective
Utility Quantal Response (SUQR) model [21], a state-of-the-
art attacker behavior model that has been tested in real-world
repeated security games for protecting wildlife and fishery
[4, 7], which heavily relies on the existence of prior knowl-
edge. We also show that the additional uniform exploration
step in our algorithm is essential, as it significantly outper-
form the existing version of Neu and Bartok [19] in practice.

1.1 Additional Related Work

Our work is potentially related to two lines of research in security
games. One line of work deals with uncertainties in security games,
including payoff uncertainties, attacker surveillance and behavior
uncertainties [23, 15, 1, 21]. These works either require strong
model assumptions (e.g., the Quantal Response assumption) or are
too conservative (e.g., the robust optimization approach). More-
over, the models are typically computationally hard and few theo-
retical guarantees can be given. In contrast, our approach requires
no prior knowledge and is efficient. Another line of work is the
recent research on learning in security games, but they are all dif-
ferent from ours. [3] considers the setting with unknown attacker
payoffs and studies the defender’s problem of learning the Stack-
elberg mixed strategy by attacker-best-response queries. Their set-
ting, goal and approach are different from ours. [2] considers re-
peated security games with varying attacker types captured by dif-
ferent payoff matrices and uses the online learning approach, but
they assume full knowledge of the game payoffs and perfect ratio-
nality of the attackers. Also, their algorithm is not computationally
efficient. (Klima et al [16, 17]) consider repeated border patrolling
with an online learning approach. They experimentally applied sev-
eral known learning algorithms, but with no theoretical analysis.

2. PROBLEM FORMULATION

In this section, we first describe the repeated security game setting
and discuss the assumption of information available to the defender.
We then show how to formulate the repeated security game as an
adversarial online combinatorial optimisation.

The Game: We consider a repeated security game played between
a defender and an attacker. The defender has k& security resources
and needs to protect n (with n >> k) targets, while the attacker
also has multiple attack resources and can attack at most m targets
at the same time. We use [n] to denote the set of all targets. A
defender pure strategy is a subset of [n], with cardinality ar most
k, indicating the set of protected targets in the pure strategy. Al-
ternatively, we may use a binary vector v € {0,1}" to denote a
generic defender pure strategy, where entry ¢ is 1 if and only if tar-
get 4 is protected in this pure strategy. Throughout this paper, we
will use an n-dimensional binary vector to denote a pure strategy,
and V C {0,1}" to denote the set of all defender pure strategies.
Therefore, ||v||1 < k for any v € V. However, set V needs not to
be the set of all v’s satisfying ||v||1 < k due to possible schedul-
ing constraints in practice (see [12] for examples). Naturally, we
assume that any target can be protected by at least some v € V. A
defender mixed strategy is simply a distribution over V. Similarly,
we use a € {0, 1}" to denote a generic attacker pure strategy and



For all t = 1,2,...,T, repeat

1. The defender computes a mixed strategy from which
she samples a pure strategy v+ € V to play.

2. The attacker plays a pure strategy at € A;

3. The defender gets a utility depending on both v¢, a; and
potential uncertainties of U}*, U for all ¢ € [n].

4. The defender observes feedbacks from the targets she
visited in the pure strategy v¢;

Figure 1: The Repeated Security Game Procedure

set A to denote the set of all attacker pure strategies. Naturally,
[la|]1 < m for any a € A. Given that target 7 is attacked, the de-
fender gets utility U € [—0.5,0.5] if target i is covered and gets
Ut € [~0.5,0.5] if 4 is uncovered.* As a standard assumption, we
assume U7 > U}, i.e., covering a target is strictly better for the
defender than uncovering it. We allow uncertainties of U; and U}*,
since they can be random, potentially depending on environmental
factors. The game is played for 7" rounds (see Figure 1).

One might wonder why repeated security games can be viewed

as an online reward maximization problem since at the first glance,
security games seem a loss minimization problem, i.e., the defender
wants to minimize the loss from attack. Some thoughts reveal that
this is actually not true, because the defender actively seeks to catch
attackers in security games. In particular, at each round, the at-
tacker attacks several targets. Then the defender’s task is precisely
to find these attacked targets and convert their states from “‘unpro-
tected" to “protected”, by which her utility converts from U to Uy,
or equivalently, gains a reward U7 — U;*(> 0). As shown later, our
mathematical formulation formalizes this intuition.
Information and Behaviour Assumptions: The amount of infor-
mation (or knowledge) players possess in a game has a profound
influence on their equilibrium behaviour. Previous work in secu-
rity games mostly assumes plenty knowledge for the defender and
attacker. They know the payoff structures of the game, or at least
the range of payoffs in some uncertain settings; And they know
each other’s actions or behavior models. However, as we men-
tioned above, in some important domains like wildlife poaching or
illegal fishing, the value of a target at each round is unknown a pri-
ori and depends on random environmental factors. Moreover, even
given the payoffs, it is still hard to predict the attackers’ behaviours.
This is due to at least two reasons: (i) the attacker may have differ-
ent knowledge and constraints from what the defender thought; (ii)
the attacker may be irrational to any extent.

Instead, our model adopts a completely different perspective —
we do not require the defender to have any knowledge regarding the
payoffs in advance. More practically, we assume the defender can
only observe the real-time utilities at those targets where a patroller
is sent. On the other hand, the only requirement for the attacker
is that, he cannot observe the defender’s move at current round,
i.e., players move simultaneously at each round. This is reasonable
because each round models a single-shot game. Furthermore, we
assume that the defender is an expected utility maximiser. Finally,
our algorithm requires no behaviour model for the attacker. Put
differently, the attacker could be a utility maximiser or be irrational
to any extent; could know the payoff structure or may be uncertain
about the game to any level; could be totally adversarial, or could
be a random player.

Utility Model and Problem Formulation: Given any defender
and attacker pure strategy v; and a; at time ¢, the defender’s utility
is:

u(ve, ar) = Zie[n] veiaeUf + Zie[n](l —vei)as: U

2Here, “0.5" is for normalization reason.

where the first [second] term is the utility from protected [unpro-
tected] targets. We rewrite the utility as follows:

u(ve, ae) = Zie[n] veaan[US = Uil + Zie[n] as,: Ui
vt - re(ar) + Clas)

&)
where 74 (a;) € R™ satisfying r¢,; = a.:[Uf — U] € [0, 1] (since
0.5 > U7 > Ui* > —0.5) and C(at) = >2;cp, ariUi" both
depend only on the attacker strategy a;. Here “-” denotes vector
inner product, as will be used throughout the paper.

Eq. (1) provides another view of a repeated security game. That
is, given the attacker’s strategy at any round, the defender’s task
is to “collect" positive reward using k resources. This naturally
connects to combinatorial adversarial online learning settings [6].
Note that if 7 is drawn independently from the same distribution
for any ¢, then r; is stochastic and this case admits efficient and
regret-tight algorithms [10, 18].

In this paper, however, we consider that 7 (a) is chosen adver-
sarially. This is due to the following reasons. First, it is consistent
with the nature of defender-attacker interactions especially when
the attacker is adaptive. Second, due to irrationality and defender’s
incomplete knowledge of the attacker as well as uncontrollable en-
vironmental factors affecting payoffs, it is very difficult to estimate
a distribution for r¢. Therefore, we take the worse-case analysis and
assume that the reward is chosen adversarially. Let F; denote the
history information of the game by time ¢ (inclusive), and Fo de-
note no history information at all. We allow 7 to depend on JF;_1
but not vy, i.e., the defender’s play at round ¢. Given ax,...,ar,
we are interested in finding an online policy v1 (Fo), ..., vr (Fr—1)
(possibly randomized) that maximizes the defender’s expected util-

ity E [Zthl u(ve, at)} where the expectation is taken over the ran-

domness of the policy and environment. Alternatively, we aim at
minimizing the defender’s regret, defined as:

T T
Rr = max u(v,a;) — E Zu(vt,at):|

vEY
t=1 t=1
T T

= max re-v—E Zrt‘vt ) 2

veEY

t=1 t=1

where the first term max,cy Zthl r¢-v is the utility of the optimal
hindsight pure strategy,? and serves as a benchmark. Therefore, this
gives a regret minimization formulation with linear reward function
r¢ - v; where r, € [0, 1]™ may be adversarially chosen.

This type of regret notion with optimal fixed strategy is common
within the online learning theory literature [5, 6]. The underlying
reason is that it is typically impossible to learn the optimal (adap-
tive) strategy (see [5, 6, 13]). In fact, as the attacker can arbitrarily
(and adversarially) change his choice of a; at each ¢, the optimal
strategy at round ¢ against that a; can be independent from the his-
tory. As such, there is simply no way to predict a; from the previ-
ous observations, and thus, the optimal adaptive strategy cannot be
learned.

On the other hand, the best fixed strategy on hindsight can be
efficiently learned with access to previous observations. A key in-
tuition behind this is that as we play more and more rounds, no
matter how adversarial the attacker will be in the next round, his
choice of a; for that particular round will have less effect on the
performance of the best fixed strategy on hindsight, compared to
the many previously played rounds.

3Notice that there always exists an optimal hindsight pure strategy
even we optimize over the set of mixed strategies.



It is worthwhile to note that while the best fixed strategy (on
hindsight) is more efficiently learnable, its performance can be arbi-
trarily bad, compared to that of the optimal adaptive strategy. How-
ever, we will show that it is not in our case. Particularly, in the next
section we will propose a defender strategy that can achieve both
low regret against the best fixed strategy, and provable convergence
to a near-optimal adaptive strategy.

3. A LOW-REGRET DEFENCE STRATEGY

In this section, we propose FPL-UE, an FPL-based online learning
algorithm for efficiently determining a low-regret defence strategy.
To do so, we first brief the main concept of FPL. We then detail the
modifications Neu and Bartok introduced to make FPL suitable for
combinatorial online learning problems. Finally, we describe FPL-
UE. Note that while FPL-UE inherits the main design spirit from
FPL, our main contribution is to provide the theoretical guarantee
for our setting. In fact, FPL has become an algorithm design con-
cept in online learning literature and there is a family of FPL-based
algorithms, which all share similar concept. The key challenges for
designing these algorithms lie at the convergence analysis of the
algorithm for different settings (which is also the case here).

The FPL algorithm: This type of online learning approach main-
tains a reward estimate 7 ; for each target ¢ and round ¢, with
71,; = 0. Let 7 be the vector of these estimates at round ¢, and
let z = (1, ..., 2n) be a random vector such that each z; ~ exp(n)
is independently drawn from the exponential distribution exp(n)
with parameter 1 to be specified. At each round, the algorithm
chooses a defender pure strategy v,

vy = arg meaé({v (e + 2) 1, )

which collects the maximum estimated reward perturbed by the
noise vector z. Since z is random, we will view v; as a random
vector as well. After observing the reward 7; ; at any chosen target
1, the corresponding reward estimates of the chosen target at round
t + 1 can be updated as follows:

Tt,i
Dt,i

Teql,e = e, + (¢, %)

where 1I(t,4) is an indicator function indicating whether target i
was chosen at round ¢, and py ; is the probability that target ¢ was
chosen within that round. Note that the term %H(t, i) is an un-

"ti](t,4)] = 74,4), and it is more

Dt,i
preferred in the online learning literature, compared to the directly
observed reward value 7; ;. This is due to convenience of theoret-
ical analysis. However, while I(¢, 1) is fully observable (i.e., we
either choose target ¢ or not), p; ; cannot be computed efficiently,
as it cannot be expressed in a closed form. To overcome this issue,
Neu and Bartok proposed a method, called Geometric Re-sampling
(GR), to estimate the value of 1/p; ;, and can be described as fol-
lows (see Algorithm 1):

biased estimator of r+,; (since E[

The GR algorithm: The algorithm is based on the following obser-
vation: at round ¢, v; ; takes value 1 with probability p; ;, therefore
if we simulate strategy v, denoted as U in Algorithm 1, for enough
trails, the number of trails needed for ; to hit value 1 for the first
time is a geometric distribution with mean 1/p; ;. The GR algo-
rithm precisely follows this observation and estimates 1/p;; by
simulating enough trails of ¥ until v; hits 1. However, since there
is a positive probability that v; = 1 will never happen, GR might
not ever stop in the worse case, making the algorithm computation-
ally inefficient. To overcome this issue, GR truncates the number

Algorithm 1 The GR Algorithm

Input: n € RT, M € ZT, 7€ R™, t €N;
Output: K(t) :={K(¢t,1),...,K(t,n)} € Z"
1: Initialize Vi € [n] : K(t,4) =0,k = 1;
2: for k=1,2,....M do
3:  Repeat step 4 ~ 10 in Algorithm 2 once just to produce v as
a simulation of v;.

4: foralli € [n] do

5: ifk < Mandv; = 1and K(t,:) = 0 then
6: Set K (t,1) = k;

7: else if £ = M and K (¢,47) = 0 then

8: Set K (¢,1) = M,

9: end if

10:  end for

11:  if K(t,i) > Oforall ¢ € [n], then break;

12: end for

Algorithm 2 The FPL-UE Algorithm

Parameter: n € RT, M c Z*, v € [0,1];
1: Initialize the estimated reward 7 = 0 € R";
2: Pick the set of exploration strategies £ = {v1,...,vn} such
that target ¢ is protected in pure strategy v;.
3: for t=1,...,T do

4:  Sample flag € {0,1} such that flag = 0 with prob. ;

5:  if flag = 0 then

6: Let v; be a uniform randomly sampled strategy from E;

7. else

8: Draw z; ~ exp(n) independently for ¢ € [n] and let
2= (21,sy2n);

9: Let v; = arg maxyev{v - (F+ 2)};

10:  endif

11:  Adversary picks r¢ € [0,1]™ and defender plays v,.

12 Run GR(n, M, 7,t): estimate ' as K (t,);

13:  Update 7(i) < 7(i) + K (t,4)r:1(t, 1); where I(¢,i) = 1
for ¢ satisfying v, ; = 1; I(¢,4) = 0 otherwise;

14: end for

of trials with a finite value M, and all the K (¢, ) in Algorithm 1,
that have not been set yet, will be set to be M (steps 7,8). This
truncation introduces a bias for the estimation of 1/p;, ;. However,
the bias can be properly handled (see Lemma 5 in Section 7).

The FPL-UE algorithm: As mentioned earlier, it is not possible to
directly apply FPL and GR to our settings. A key reason behind this
is that the value of p; ; can be arbitrarily small. While this is not a
problem for loss minimisation, it turns out to be a major challenge
within our setting. As such, we overcome this issue by introduc-
ing additional fraction of uniform exploration to the algorithm. In
particular, instead of solely relying on Eq. (3) to determine the de-
fender pure strategy, we uniformly randomly choose a vector v
from some pre-specified set £ with carefully chosen probability
v > 0, while sets v; to be the solution of Eq. (3) only with prob-
ability (1 — ). This seemingly “arbitrary" modification actually
allows us to provide effective theoretical analysis of convergence,
and interestingly, our extensive simulations also show the necessity
of the uniform exploration component — our algorithm outperforms,
and in some cases significantly outperforms, the algorithm of Neu
and Bartok in the repeated security game setting (see Section 4 and
6 for more details).

Given all these, the FPL-UE algorithm (Algorithm 2) can be de-
scribed as follows. At each round ¢, our algorithm either does a
uniform random exploration with probability -y (step 6) or plays an
FPL strategy with probability 1 —~ (steps 8, 9). Then the algorithm
estimates the reward of round ¢ by GR after playing the strategy v
and observing reward (step 11 — 13). Notice that, when updating 7



(step 13), the 7’th entry is updated only when v ; = 1, i.e., target ¢
is visited. Otherwise, it keeps unchanged.

4. PERFORMANCE ANALYSIS

Given the description of FPL-UE, we now investigate the theoret-
ical properties of the algorithm. In particular, our main theoretical
result is the following guarantee of both computational efficiency
and regret bound for FPL-UE.

THEOREM 1. FPL-UE runs in poly(n, k,T') time if the defender
can best respond to any reward vector in poly(n, k) time*. The re-
gret Ry of FPL-UE is upper bounded as:

k(logn + 1)

Ry <~ymT + QTkefM% + + pmT min(m, k).

In particular, with n = 1/m];52%n'f{jnl>k}, vy = \/‘;iT and M =

ny/ 2L log(Tk), Ry is at most O (\/ka min{m, k} log n).

The constant of the polynomial is approximately 2. We note that
the convergence ratio depends on parameters that are specific to
security games, for example, the number of attacker resources m.
This translates to the upper bound of the sum of the reward vec-
tor. Our analysis explores such structure and provides better con-
vergence ratio for security game settings than state-of-the-art algo-
rithms (see Section 6 for more details). As a special case, when
m = n, this is the general combinatorial adversarial online learn-
ing problem for reward maximisation with semi-bandit feedback,
and for such general settings, FPL-UE achieves regret upper bound
O (k+/nTlogn), which matches the bound for the loss case in the
state-of-the-art work [19]. We defer the detailed proof to Section 7.

We now investigate the performance of FPL-UE, compared to
that of the optimal (adaptive) strategy on hindsight. This is the best
possible defending strategy one can hope — at each round, the de-
fender can first observe the attacker’s move and then play a best
response. Let A = {a1, ..., ar} denote any attacker strategy over
T rounds. Recall that a; € {0,1}" is the attacker’s strategy at
round ¢ with ||a.||1 < m. Let OPT(A) denote the total rewards
of the optimal (adaptive) defender strategy on hindsight against A,
and let F'PL(A) denote the expected total rewards of the defender
by applying FPL-UE.> As we explained at the end of Section 2, it
is generally not possible to provide any theoretical guarantee for
FPL(A), when compared with OPT'(A). Interestingly, we show
that FPL-UE can gain an “almost” £ fraction of OPT'(A) in re-
peated security game settings.

PROPOSITION 2. Assuming no schedule constraints, we have

FPL(A) > %OPT(A) ~0 (\/ka min{k, m} log n) .

Generally, FPL(A) and OPT(A) are of order T, so the term
@] (\/ Tmk min{k, m} log n) is relatively negligible. Due to space

limitations, all the proofs, except for the proof of Theorem 1, are
deferred to the online appendix of the paper. In what follows, we
will detail a number of implications of these theoretical results,
from a game theoretic perspective.

“This holds widely in security games.

>Note that reward # defender utility, due to the extra, uncontrol-
lable and generally negative, term C'(a:) (see Equation 1). We
compare the algorithm performance using rewards, due to two rea-
sons: 1. C(a¢) is uncontrollable by any algorithm; 2. reward is
positive, thus the ratio in Proposition 2 is meaningful.

S. ZERO-SUM SECURITY GAMES

In this section, we consider zero-sum security games. Such games
can be found in many real-world scenarios, e.g., the illegal fishing
monitoring [11]. We first start with the estimation of an approxi-
mate algorithmic equilibrium in repeated zero-sum security games.
We then investigate how to estimate the minimax value of the game.
Let V = {v1,...,vr} denote a strategy of the defender over
T rounds. Suppose for now that the attacker is also a utility max-
imiser. Now, consider a pair of defender-attacker strategies (V, A).
Let Up(V, A) denote the expected performance (i.e., the total util-
ity) of the defender strategy V' against the attacker strategy A. Note
that the expected performance of attacker strategy A against V' is
—Up(V, A).
Approximate Algorithmic Equilibrium: A direct implication of
Proposition 2 is the estimation of an approximate algorithmic (or
program) equilibrium, which is the approximate version of the pro-
gram equilibrium introduced by Tennenholtz [25]. It can be defined
as follows:

DEFINITION 1. For any € > 0, the strategy profile (V, A) is
a e-approximate algorithmic equilibrium of the game if and only
if for any V' and A’, we have Up(V', A) < Up(V, A) + ¢ and
Up(V,A) <Up(V,A") +e.

Consider the case when both the defender and the attacker applies
FPL-UE to choose their actions. Let

n—=k

€= mT 4+ 3v/kmT min{m, k} logn “)

COROLLARY 3. Assume min{k,m}logn > 3 and no sched-
ule constraints. The strategy profile (FPL-UE, FPL-UE) (i.e., both
players use FPL-UE) is an e-approximate algorithmic equilibrium
of the repeated zero-sum security game, where € is defined as in
Eq. (4).

Minimax Value of the Game: In zero-sum games, the minimax (or
maxmin) value of the game is a powerful solution concept, which
provides a guarantee we can achieve even in the worst case sce-
nario, and it is well known that the minimax value exists and can be
efficiently computed, e.g., by linear programming [9]. In particular,
let v/a denote a defender/attacker mixed strategy, and u* denote
the minimax value of the zero-sum security game. From von Neu-
mann’s Minimax Theorem, we have u* = max, mina, u(v, a) =
min, maxy u(v, a). However, the minimax value cannot be cal-
culated without having the full knowledge of the game, which un-
fortunately is indeed the case in our setting. Nevertheless, we can
approximate this value by the FPL-UE strategy.

COROLLARY 4. Assume min{k,m}logn > 3. Suppose that
both the defender and attacker apply FPL-UE to make their ac-
tions. We have:

u

- UD(FPL,FPL)‘ <

km min{m,k}(logn+1)
T 3\/ A

where Up (FPL, FPL) denotes the utility of the defender applying
FPL-UE against a FPL-UE attacker.

That is, to estimate the mimimax value of the game, we just need
to simulate a game against an FPL-UE attacker and consider the
average utility. Indeed, as 7" tends to infinity, the approximation
gap converges to 0. Note that since the simulated attacker is not
a real one, we still do not need to have any prior knowledge about
real attackers. In fact, we only consider a simulated attacker, whose
actions can be fully simulated. On the other hand, we require the
knowledge of the payoff matrix (i.e., what is the payoff of each



action pairs of the players) to calculate the minimax value of the
game. This assumption, however, is reasonable, as in the zero-
sum games, the payoff of the attacker is negative version of the
defender’s payoff. Thus, this assumption does not require prior
knowledge about the attacker either.

6. NUMERICAL EVALUATIONS

‘We run our algorithm against a number of commonly seen attacker
models with simulations. In our simulations, the payoffs U;’s and
U;*’s are randomly generated. In particular, for any target ¢ € [n],
we first drawn two numbers a,b € [—0.5,0.5] uniformly at ran-
dom, and then set U7 = max(a,b) and U} = min(a,b), thus
the condition Uy > U}" is satisfied. Note that the defender has no
a-priori knowledge about these payoffs.

We test our algorithm against different types of attackers, which
together represent the majority of typical attacking models. Purely
for the purpose of modeling the attacker’s reaction to our algorithm,
we also generate the attacker’s payoffs in a similar fashion as the
defender’s payoffs, except that the attacker’s payoff is higher if a
target is uncovered. We consider 5 different types of attackers:’

e Uniform: an attacker with a uniformly random mixed strat-
egy;

e Adversarial: an attacker with the maximin mixed strategy.
That is, the attacker is fully adversarial — he only cares about
minimizing the defender’s utility;

e Stackelberg: the attacker always plays the optimal follower
pure strategy of the Strong Stackelberg Equilibrium;

e BestResponse: at round ¢, the attacker best responds to the
mixed strategy 3°'_} v;/(t — 1), i.e., the empirical defender

mixed strategy in history;

e QuantalResponse (QR): the attacker also responds to the
empirical defender mixed strategy, but by a QR model [21].

Note that some attacker types are informationally very powerful,
e.g., the BestResponse type knows all the payoffs as well as all the
defender’s past actions, while some may have very little knowledge
(e.g., the Uniform type); Some types play mixed strategies (e.g.,
Adversarial type ) while some play pure strategies (e.g., Stackel-
berg type); Some types are rational while some are not. Also note
that our algorithm does not know which type of attackers we are
facing. The simulation aims to test the “robustness" of the algo-
rithm against varied types of attackers.

Baselines: We choose two algorithms as baselines. The first
is the FPL algorithm of Neu and Bartok [19], a state-of-the-art
algorithm for combinatorial adversarial online learning. As Neu
and Bartok pointed out, the regret bound for their FPL algorithm
can only be proved in the cost minimization scenario. Neverthe-
less, we use it as a baseline to see how it compares to FPL-UE
and how it performs in repeated security games where the goal
is to maximize reward. Another baseline is the Subjective Utility
Quantal Response (SUQR) attacker behavior model [21], a state-
of-the-art human behavior model in security games that captures
the attacker’s bounded rationality. SUQR model has been tested in
several human behavior experiments of security games in Amazon
Mechanical Turk (AMT), and is shown to outperform the strong
Stackelberg equilibrium strategy and maximin strategy when play-
ing against real-world humans [21, 8, 14]. In our simulation, at

®In the following description, if the attacker plays a mixed strat-
egy, our simulation samples a pure strategy each round from the
described mixed strategy to play.

each round 7", the SUQR model first looks at all the attack records
from the past 7" — 1 rounds and then learns the attacker’s behavior
model based on these history records and the attacker’s payoffs. As
aresult, the SUQR model will be refined each round with more his-
tory records. After learning the attacker’s SUQR behavior model,
the defender then computes an optimal mixed strategy against the
behavior model and samples a pure strategy to play.

We note that it is not completely fair to compare FPL-UE with
SUQR because SUQR requires much more defender prior knowl-
edge (e.g., past attack records and attacker payoffs) than FPL-UE.
Nevertheless, we aim to examine how competitive FPL-UE is when
compared with SUQR.

We set n = 100 and £ = 10 in all our simulations, and test
the convergence of the average regret (i.e., regret divided by T") for
various m. We translate the defender utility of SUQR to regret (See
Equation (2)). Figures 2, 3 and 4 show the case form = 1, m = 5,
and m = 15 respectively, within 1000 rounds. Note that average
regret is upper-bounded by m. All these figures are the conver-
gence plots for one randomly generated game instance, however
we do emphasize that the general convergence trend is almost the
same across the simulated instances except that the initial rounds
in the figures may vary among different instances. Since the abso-
lute value of regret at a fixed round 7" differs across different game
instances, so averaging the regret over games destroys the conver-
gence lines. So we only present one randomly chosen instance here.
As an interesting side note, when m = 15, the defender has less re-
sources than the attacker. To our knowledge, experiments for such
cases have not been done before. We use it as a burden test for the
robustness of our algorithm.

From the figures we know that FPL-UE converges in all these
cases, while FPL fails to converge (at least within 1000 rounds)
when played against Stackelberg type and BestResponse type. These
figures clearly show that FPL-UE outperforms FPL. One interest-
ing phenomenon is that FPL-UE always significantly outperforms
FPL when playing against Stackelberg type and BestResponse type
in all the instances we generated. Notice that these two cases are
the “difficult" cases for online learning algorithms. The Stackel-
berg type always plays the same pure strategy over the whole game,
therefore the best hindsight strategy is to protect the most valuable
attacked targets, achieving a very high reward. Thus the algorithm
takes longer time to converge, mainly due to the compensation for
the big loss at the initial rounds where exploration happens mostly.
While for the BestResponse type, the attacker is always adaptive to
the algorithm. The comparison on these “difficult” types shows the
advantage of FPL-UE over FPL.

One surprising observation is that, though requiring much more
defender prior knowledge, SUQR does not obviously outperform
FPL-UE. In fact, SUQR only weakly outperforms FPL-UE when
playing against the Uniform type and QuantalResponse type. This
is natural because these two types exactly lie at the realm of the
SUQR model. For all the other three types, SUQR does not exhibit
obvious advantage. In fact, when the attacker is totally adaptive,
i.e., the BestResponse type, FPL-UE actually shows some weak
advantage. We attribute this to the carefully designed adaptivity
nature of the FPL-UE algorithm.

Finally, we observe that the regret against the BestResponse or
Stackelberg type (the two difficult cases) with m = 15 is about 1.2
which approximates the regret upper bound (mivk;k’g” ~ 1.8).
Interestingly, this empirically shows that the algorithm approxi-
mates the upper bound regret when played in these hard cases.
To summarize, depending on the rationality level, attacker strat-
egy type and the amount of information the attacker has about the
past games, the algorithm can converge at different rates, but will
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always be upper bounded by the regret bound.

7. PROOF OF THEOREM 1

We now turn to prove Theorem 1. To do so, we first describe the
following lemmas. Lemma 5, as proved in [19], captures the esti-
mation bias of Geometric Re-sampling.

LEMMA 5. [19] B(7: | Fie1) = (1 — (1 — pe.j)M)re 5.

In addition, the following lemma is a simple observation about the
reward vector r; of round ¢.

LEMMA 6. ||r¢||1 < m foranyt.
PROOF. Since r;; > 0, we have
Irells = > rei= Y aalUf U < Y ars <m.
i€(n] i€(n] i€(n]
O
To analyse the algorithm, we first describe some notations. Let

Te, where 7 ; = K(t,i)r::1(t,1) = K(t,i)rs,ive,:, denote the
estimation of the reward at round ¢. Let

t—1
of 7 = argmaxv- (37 + 2), ©)
j=1

denote the FPL strategy played before estimating 7 (Step 9 in Al-
gorithm 1). For the purpose of analysis, define the following hind-
sight strategy (imagine the defender can get the estimation 7 before

she plays a strategy at round ¢)

t
~FPL ~
v = argmaxo - ( E 1 T+ 2). (6)
i=

L st ~FPL
=0

st .
Therefore, we have v{;;" = o} where “=" means stochasti-

cally equal due to the randomness of z.” Let q;; = E(vf; *)
be the probability that target i is protected in strategy v ¥, and

Gr,i = E(0/ ") be the probability that target i is protected in strat-
egy o1 TF. Therefore gi11,: = Gr:. Notice that vf 7% is not the
only possible strategy played at round ¢ — with probability ~, the
defender plays a uniformly randomly sampled pure strategy from
set E. Let p:;; = E(ve,;) denote the probability that target i is
protected at time ¢ in Algorithm 1. Due to the 7 fraction of uni-
form exploration, we have p;,; > T for any ¢, i since each target is
protected by at least one pure strategy in E.

Now, we are ready to prove the regret upper bound of Algo-
rithm 1. As observed, the algorithm does exploration with prob-
ability « and exploitation with probability 1 — ~. We start from
analyzing the exploitation part. Using the “be-the-leader” lemma
[5] to sequence (71 + 2,72, ..., 7T ), we obtain

T
>
t=1

;[\)ftFPL

~FPL

T
Uy +z«1~)fPL22ﬂ«v+z~v,Vv€V, @)
t=1

where is defined in Equation (6). By rearranging Inequality

"Recall that, two random variable A, B are stochastically equal if
P(A = z) = P(B = z) for any z in the event set.



(7), we have

|:Z Te e (v— vFPL):| < E [z N i v)]
< Blar]
< kE(max z;)
i€(n]
< k(log: +1) ®)

where the second last “<" uses the inequality >, el i?f PL <K

the last “<" uses the fact that E(max;c[n) 2:) < %.

The rest of the proof lies on the following basic intuitions. First,
the played strategy vfPL should not be too “far" from the hind-
sight strategy 7 © ~ since the reward estimations they used are only
slightly different (compare Equation (5) and (6)). Second, the esti-
mated reward 7, hopefully is “close" to the real reward r;. There-
fore, Inequality (8) also roughly conveys that the played strategy
sequence v{ ©” is not too “bad" compared with any pure strategy
v in the scenario of real reward 7.

We first lower bound ¢;,; using gz ; as follows.

Gii = / vflpl‘(z)f(z)dz
z€[0,00]"

_ *v\lﬂ\ll/ oFPE(2) (= — )dz
z€[0,00]"

_ —nuuul/ / UffL(z+?t)f(z)dz
zi € Tt‘l,

_ el / / CAROHOL
zi € Tt‘l,

> —numul/ / 55fL(z)f(z)dz
z; €[0,00]

_ —nll7el =
= € qt,i

> (1 —=nm)g

where the last inequality uses Lemma 6: |[7:||1 < m for any ¢.
Now we bound the difference between E [7; - vf 7] and E [7 - o/ 7*].
Z '/f’\t,iQt,i

E [?t - vy PL|]—}] =

i€(n]
> Z Tt,4Ge,i — MM Z Tt,4Gt,i
i€[n] i€[n]

AV

E [?t o \]—}] — nmmin(m, k)

where we used the fact that 7; and 7,1 are fixed given JF7, therefore
the randomness of v{"*% and 7/FL only comes from z. Taking
expectation over F;, we have

E [?t -vtFPL} >E [ NFPL] — nmmin(m, k) 9)

Now we can upper bound the loss from substituting o '~ in

Inequality (8) by v{ FL.

E[Z?t v—vtFPL):|
t=1
T T
= E[Zﬂ =3P +E D 7 @ PE —of PE)
t=1 =
k(logn+1)

+ nmT min(m, k),

where the “<" is due to the Inequality (8) and (9). Putting all these
together, we can upper bound the regret from the exploitation part:

T
S

t=1

=[5
(re —7%) - (vaFPL

k(logn +1)

IA

+E

Zrt (vvFPL)}

+ nmT min(m, k)

IN

2Tk(1 — L)M 4
n

Now configuring the regret from exploration, which is trivially
upper bounded by m and happens with probability +, we can upper-
bound the total regret as

Rr < fymT+(1—’y)[2Tk(1—%)M

k(1 1

 Kllogn + 1)
n

< 'ymT+2Tk:efM%

k(1 1

 Kllogn + 1)

+ pmT min(m, k)}

+ pmT min(m, k)

k(logn+1)
mT min{m,k}’ v=

Lk mT Jog(Tk),

we obtain the upper bound O (\/ kmT min{m, k} log n) .

By takingn = and M =n

8. CONCLUSIONS

In this paper we proposed FPL-UE, the first defender strategy for
repeated security games assuming no prior knowledge about the
attacker. We proved that our algorithm enjoys a number of com-
pelling theoretical properties. In particular, we showed that FPL-
UE can provably achieve low regret bounds, against both the best
fixed strategy on hindsight, and the optimal adaptive strategy. In
addition, we proved that our main theoretical results have a number
of game theoretic implications, such as the efficient estimation of
algorithmic equilibria and the minimax value of the game (for zero-
sum security games). Our numerical evaluations demonstrated that
FPL-UE is indeed efficient against typical attacker profiles. We
also demonstrated that FPL-UE indeed outperforms the FPL ver-
sion of Neu and Bartok. This justifies the usage of the additional
uniform exploration steps. Furthermore, its performance is com-
parable to that of SUQR, a state of the art of the repeated security
games literature. This result is surprising and significant, as our al-
gorithm does not require any prior knowledge of the attacker, while
SUQR relies much on the existence of such prior information. This
implies that, our algorithm is very useful in real-world situations
where the attacker behaviour model is not available at the begin-
ning, or the attacker does not fully follow some rational behaviour
model. Given this, we argue that our algorithm is more generic,
compared to the state of the art, and thus, can be applied in many
realistic scenarios of repeated security games.
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