The University of Southampton
University of Southampton Institutional Repository

Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure

Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure
Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure
Recent studies hypothesize that some submarine slides fail via pressure-driven slow-slip deformation. To test this hypothesis, this study derives pore pressures in failed and adjacent unfailed deep marine sediments by integrating rock physics models, physical property measurements on recovered sediment core, and wireline logs. Two drill sites (U1394 and U1399) drilled through interpreted slide debris; a third (U1395) drilled into normal marine sediment. Near-hydrostatic fluid pressure exists in sediments at site U1395. In contrast, results at both sites U1394 and U1399 indicate elevated pore fluid pressures in some sediment. We suggest that high pore pressure at the base of a submarine slide deposit at site U1394 results from slide shearing. High pore pressure exists throughout much of site U1399, and Mohr circle analysis suggests that only slight changes in the stress regime will trigger motion. Consolidation tests and permeability measurements indicate moderately low (~10-16–10-17 m2) permeability and overconsolidation in fine-grained slide debris, implying that these sediments act as seals. Three mechanisms, in isolation or in combination, may produce the observed elevated pore fluid pressures at site U1399: (1) rapid sedimentation, (2) lateral fluid flow, and (3) shearing that causes sediments to contract, increasing pore pressure. Our preferred hypothesis is this third mechanism because it explains both elevated fluid pressure and sediment overconsolidation without requiring high sedimentation rates. Our combined analysis of subsurface pore pressures, drilling data, and regional seismic images indicates that slope failure offshore Martinique is perhaps an ongoing, creep-like process where small stress changes trigger motion.
slope failure, pore pressure, Lesser Antilles, permeability
7986-8011
Hornbach, Matthew J.
868e7176-2820-455f-ad97-24434b9d98cb
Manga, Michael
924be86d-0d11-410f-be8e-a3cf637af295
Genecov, Michael
20e95946-d1ec-4451-aa04-012ba7c8db50
Valdez, Robert
81a1f942-1c1b-448f-ac98-00705201fa20
Miller, Peter
bb11921e-ddeb-4b88-870f-4f2a1d95fb93
Saffer, Demian
6fd2b25f-3d8f-45cd-b063-2255867b94cd
Adelstein, Esther
f50e481b-ed1e-431a-8421-7af8694bfee5
Lafuerza, Sara
f9dc0c05-40a3-4725-925b-8cf089faf01e
Adachi, Tatsuya
38904f0f-a2d7-4278-bf75-35f27d246414
Breitkreuz, Christoph
46b7cc88-af0d-4561-b6a0-cc1e24c26c93
Jutzeler, Martin
3ff7423b-ed16-439c-ad5b-1822b72d7b8c
Le Friant, Anne
cfb10a7b-5725-4c9e-a3b1-1ad6211c1bb9
Ishizuka, Osamu
1fb98a88-bff7-4200-a09d-92ddf1616058
Morgan, Sally
b090da90-e450-482d-a174-1da3c7c1483f
Slagle, Angela
075e0c8f-2ae8-4c51-bb18-90ff8b9161c9
Talling, Peter J.
1cbac5ec-a9f8-4868-94fe-6203f30b47cf
Fraass, Andrew
ca5d7103-9fa7-447f-a573-40af571f854c
Watt, Sebastian F. L.
c7dd9b63-320c-4bf3-8fca-b1bc0e137548
Stroncik, Nicole A.
a17f2b07-df8f-4f12-b713-17f780398a28
Aljahdali, Mohammed
2458a19c-a85d-459a-99fb-4884077d1919
Boudon, Georges
e836e5cd-5c6d-45da-bd28-ade2811a2af5
Fujinawa, Akihiko
c89bc5bf-fefb-48c6-b682-640200796c28
Hatfield, Robert
bbbdbf37-504f-45ce-b624-f17d732fbabf
Kataoka, Kyoko
bc65fb75-e69a-4082-a29d-6fc551d02bad
Maeno, Fukashi
e6b44220-a9b4-41c2-96cb-a9459db01ec2
Martinez-Colon, Michael
a8b602bb-bf61-4cb5-8761-25e1b7c70530
McCanta, Molly
c708ce5c-8874-45ca-a293-84944132ebee
Palmer, Martin
d2e60e81-5d6e-4ddb-a243-602537286080
Stinton, Adam
5620d56b-3ff8-48f1-bb2b-275dcfc5ed22
Subramanyam, K.S.V.
5241383d-c4e9-4cce-818d-fe378c7af759
Tamura, Yoshihiko
02df326e-6eb0-4f00-8ba7-e8f55e1880a8
Villemant, Benoît
f1edbfd4-e14f-4813-bd75-c928e2cf2e51
Wall-Palmer, Deborah
c99bfc4a-a64f-489f-93d2-3517beafd554
Wang, Fei
d74a565b-35c9-43af-95ba-06782f81a561
Hornbach, Matthew J.
868e7176-2820-455f-ad97-24434b9d98cb
Manga, Michael
924be86d-0d11-410f-be8e-a3cf637af295
Genecov, Michael
20e95946-d1ec-4451-aa04-012ba7c8db50
Valdez, Robert
81a1f942-1c1b-448f-ac98-00705201fa20
Miller, Peter
bb11921e-ddeb-4b88-870f-4f2a1d95fb93
Saffer, Demian
6fd2b25f-3d8f-45cd-b063-2255867b94cd
Adelstein, Esther
f50e481b-ed1e-431a-8421-7af8694bfee5
Lafuerza, Sara
f9dc0c05-40a3-4725-925b-8cf089faf01e
Adachi, Tatsuya
38904f0f-a2d7-4278-bf75-35f27d246414
Breitkreuz, Christoph
46b7cc88-af0d-4561-b6a0-cc1e24c26c93
Jutzeler, Martin
3ff7423b-ed16-439c-ad5b-1822b72d7b8c
Le Friant, Anne
cfb10a7b-5725-4c9e-a3b1-1ad6211c1bb9
Ishizuka, Osamu
1fb98a88-bff7-4200-a09d-92ddf1616058
Morgan, Sally
b090da90-e450-482d-a174-1da3c7c1483f
Slagle, Angela
075e0c8f-2ae8-4c51-bb18-90ff8b9161c9
Talling, Peter J.
1cbac5ec-a9f8-4868-94fe-6203f30b47cf
Fraass, Andrew
ca5d7103-9fa7-447f-a573-40af571f854c
Watt, Sebastian F. L.
c7dd9b63-320c-4bf3-8fca-b1bc0e137548
Stroncik, Nicole A.
a17f2b07-df8f-4f12-b713-17f780398a28
Aljahdali, Mohammed
2458a19c-a85d-459a-99fb-4884077d1919
Boudon, Georges
e836e5cd-5c6d-45da-bd28-ade2811a2af5
Fujinawa, Akihiko
c89bc5bf-fefb-48c6-b682-640200796c28
Hatfield, Robert
bbbdbf37-504f-45ce-b624-f17d732fbabf
Kataoka, Kyoko
bc65fb75-e69a-4082-a29d-6fc551d02bad
Maeno, Fukashi
e6b44220-a9b4-41c2-96cb-a9459db01ec2
Martinez-Colon, Michael
a8b602bb-bf61-4cb5-8761-25e1b7c70530
McCanta, Molly
c708ce5c-8874-45ca-a293-84944132ebee
Palmer, Martin
d2e60e81-5d6e-4ddb-a243-602537286080
Stinton, Adam
5620d56b-3ff8-48f1-bb2b-275dcfc5ed22
Subramanyam, K.S.V.
5241383d-c4e9-4cce-818d-fe378c7af759
Tamura, Yoshihiko
02df326e-6eb0-4f00-8ba7-e8f55e1880a8
Villemant, Benoît
f1edbfd4-e14f-4813-bd75-c928e2cf2e51
Wall-Palmer, Deborah
c99bfc4a-a64f-489f-93d2-3517beafd554
Wang, Fei
d74a565b-35c9-43af-95ba-06782f81a561

Hornbach, Matthew J., Manga, Michael, Genecov, Michael, Valdez, Robert, Miller, Peter, Saffer, Demian, Adelstein, Esther, Lafuerza, Sara, Adachi, Tatsuya, Breitkreuz, Christoph, Jutzeler, Martin, Le Friant, Anne, Ishizuka, Osamu, Morgan, Sally, Slagle, Angela, Talling, Peter J., Fraass, Andrew, Watt, Sebastian F. L., Stroncik, Nicole A., Aljahdali, Mohammed, Boudon, Georges, Fujinawa, Akihiko, Hatfield, Robert, Kataoka, Kyoko, Maeno, Fukashi, Martinez-Colon, Michael, McCanta, Molly, Palmer, Martin, Stinton, Adam, Subramanyam, K.S.V., Tamura, Yoshihiko, Villemant, Benoît, Wall-Palmer, Deborah and Wang, Fei (2015) Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure. Journal of Geophysical Research: Solid Earth, 120 (12), 7986-8011. (doi:10.1002/2015JB012061).

Record type: Article

Abstract

Recent studies hypothesize that some submarine slides fail via pressure-driven slow-slip deformation. To test this hypothesis, this study derives pore pressures in failed and adjacent unfailed deep marine sediments by integrating rock physics models, physical property measurements on recovered sediment core, and wireline logs. Two drill sites (U1394 and U1399) drilled through interpreted slide debris; a third (U1395) drilled into normal marine sediment. Near-hydrostatic fluid pressure exists in sediments at site U1395. In contrast, results at both sites U1394 and U1399 indicate elevated pore fluid pressures in some sediment. We suggest that high pore pressure at the base of a submarine slide deposit at site U1394 results from slide shearing. High pore pressure exists throughout much of site U1399, and Mohr circle analysis suggests that only slight changes in the stress regime will trigger motion. Consolidation tests and permeability measurements indicate moderately low (~10-16–10-17 m2) permeability and overconsolidation in fine-grained slide debris, implying that these sediments act as seals. Three mechanisms, in isolation or in combination, may produce the observed elevated pore fluid pressures at site U1399: (1) rapid sedimentation, (2) lateral fluid flow, and (3) shearing that causes sediments to contract, increasing pore pressure. Our preferred hypothesis is this third mechanism because it explains both elevated fluid pressure and sediment overconsolidation without requiring high sedimentation rates. Our combined analysis of subsurface pore pressures, drilling data, and regional seismic images indicates that slope failure offshore Martinique is perhaps an ongoing, creep-like process where small stress changes trigger motion.

Text
jgrb51386.pdf - Version of Record
Download (8MB)

More information

Published date: December 2015
Keywords: slope failure, pore pressure, Lesser Antilles, permeability
Organisations: Geochemistry, Marine Geoscience

Identifiers

Local EPrints ID: 387370
URI: http://eprints.soton.ac.uk/id/eprint/387370
PURE UUID: a6e013ee-fefc-481e-867b-9efd195df0a8

Catalogue record

Date deposited: 12 Feb 2016 16:34
Last modified: 14 Mar 2024 22:47

Export record

Altmetrics

Contributors

Author: Matthew J. Hornbach
Author: Michael Manga
Author: Michael Genecov
Author: Robert Valdez
Author: Peter Miller
Author: Demian Saffer
Author: Esther Adelstein
Author: Sara Lafuerza
Author: Tatsuya Adachi
Author: Christoph Breitkreuz
Author: Martin Jutzeler
Author: Anne Le Friant
Author: Osamu Ishizuka
Author: Sally Morgan
Author: Angela Slagle
Author: Peter J. Talling
Author: Andrew Fraass
Author: Sebastian F. L. Watt
Author: Nicole A. Stroncik
Author: Mohammed Aljahdali
Author: Georges Boudon
Author: Akihiko Fujinawa
Author: Robert Hatfield
Author: Kyoko Kataoka
Author: Fukashi Maeno
Author: Michael Martinez-Colon
Author: Molly McCanta
Author: Martin Palmer
Author: Adam Stinton
Author: K.S.V. Subramanyam
Author: Yoshihiko Tamura
Author: Benoît Villemant
Author: Deborah Wall-Palmer
Author: Fei Wang

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×