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Abstract
Three-dimensionally structured gold membrane films with nanopores of defined, periodic
geometries are designed and fabricated to provide the spatially localised enhancement of electric
fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and
orientation relative to the pyramid are considered for films in aqueous and air environments,
which allow for control of the position of electric fields within the structure. Designs suitable for
use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium
hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for
creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the
findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the
gold film at a specific location in the cavity to provide electric field control which can
subsequently used for enhancement of fluorescence or Raman scattering of molecules in the
nanopore.

S Online supplementary data available from stacks.iop.org/NANO/27/065302/mmedia
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1. Introduction

Thin films of micro and nanostructured metals are important
for the construction of plasmonic devices and microelec-
tromechanical systems (MEMSs). More specifically, two-
dimensional and three-dimensional gold nanostructures can

potentially be used to create devices for ‘nanofocusing’ of
plasmons to improve surface-enhanced Raman scattering,
(SERS) detection [1]. The fabrication of individual metallic,
pyramidal shells as well as ultra-smooth metal films with
grooves, bumps, pyramids and holes has previously been
demonstrated [2, 3], as has direct raster milling with 5 nm
machining precision in 100 nm thick gold films using a
helium ion microscope (HIM) [4]. Nanoporous thin films are
of much interest for DNA sequencing applications [5]. As
such, routine fabrication of micro and nanostructured thin
films is desirable.

Nanopores offer an attractive technology platform for
single molecule sensing, notably for polymeric molecules
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such as DNA where high resolution and long read lengths are
required for sequencing applications [6–8]. Thus far, three
classes of nanopores have been reported: self-assembled,
solid state and hybrid nanopores based upon a solid-state
framework with a molecular pore [9–11]. Self-assembled
nanopores are fabricated with a nanopore embedded in a lipid
bilayer, for instance an α-haemolysin channel [9]. Solid state
nanopores have been created in silicon substrates [12], alu-
minium oxide substrates [13], high dielectric constant mate-
rials (titanium dioxide and hafnium oxide) [14] and graphene
sheets [15]. Hybrid nanopores are also well established, such
as α-haemolysin nanopores within a slightly larger silicon
nitride nanopore [16]. Molecules that translocate the nanopore
can be detected by electrical or optical approaches [7, 17–19],
thus far the optical approaches have been limited to fluores-
cence methods.

The sensitive direct optical detection of analytes has been
achieved by SERS using metallic nanoparticle structures [20],
lithographically designed arrays [21] or nanoscale motifs
patterned on substrates [22]. In some cases the broad plasmon
resonance of the structure is ‘tuned’ as a function of the shape
or separation. Metallic voids offer a better alternative to these
structures as photons are coupled into these structures yield-
ing localised plasmon cavities [23] and this provides
improved SERS substrates [24]. Using this strategy, some
effort has been made to produce substrates suitable for SERS
based diagnostic methods through the design of mesos-
tructured metallic materials. This has provided a better
understanding as to how the geometry underpins the
enhancements. Recently, metallic structure designs have
emerged where both localised plasmons as well as a strong
coupling to external light is achieved [25–34]. Of these
designs, inverted pyramidal substrates (also known as Klar-
ite®) are now well understood with respect to optimal cavity
size to achieve the so called ‘resonant plasmon cavity’ [25,
28, 29, 35, 36]. The inverted pyramidal structures are created
by an anisotropic KOH etch of (100) silicon wafers with
square apertures aligned along the 〈100〉 direction. Highly
smooth gold surfaces coating over the atomically smooth
silicon faces are considered as optimal for creating the
‘resonant plasmon cavity’, where the polaritons are assumed
to oscillate up and down the sides of the inverted pyramid and
are reflected by the sharp inverted pyramid edge. We have
recently investigated these pyramidal cavities with a view to
develop strategies for the sensitive detection and identification
of low copy numbers of biomolecules, including DNA. In the
course of the investigation, it was established that the detec-
tion could be improved by fabricating structures with highly
smooth gold of sub-50 nm roughness by e-beam evapora-
tion [37].

Here we investigate for the first time the potential to
create a three-dimensional structured and metallic film
membrane with nanopores. This is based upon the highly
efficient SERS substrate with an inverted pyramid geometry;
the chosen design is for Raman interrogation with a 780 nm
operational wavelength with a view to detect single molecules
or particles directly in the pore.

2. Materials and methods

2.1. Theoretical design of pyramidal membranes with a
nanopore

Theoretical simulation of the electric field intensity distribu-
tion within an illuminated gold periodic pyramidal structured
film with a nanopore was evaluated using software suite,
RSoft DiffractMOD, Synopsis Inc. The pyramidal cavities are
1.5 μm×1.5 μm square and 1 μm deep with a pitch of 2 μm.
Figure 1 includes illustrations of the inverted pyramid where
gold is 100 nm on the upper surface and ∼58 nm thick on the
sidewall (and is estimated from the following: sin(angle of the
sidewall) × thickness on the upper surface (nm)) and where
a square hole is drilled at the base of the pyramidal cavity.
The pyramid faces are oriented at an inclination of α=35.3°
to the normal. Each unit cell (each inverted pyramid), as
shown in figure 1(a), is treated as a periodic array and the
transmission line formulation for the boundary condition and
the z-direction is defined as the launch field.

DiffractMOD employs the Rigorous Coupled Wave
Analysis method to obtain the backward diffraction efficiency
of the surface when illuminated by a plane wave from above
(normal to the upper face of the pyramid cavities). A trans-
mission line analysis is applied to an expansion of the refractive
index and Electromagnetic field vectors in Fourier space on a
cell-by-cell basis, across afinemesh superimposed on the three-
dimensional representation of the refractive index.

In our simulation, periodic boundary conditions are used
at the sides and number of harmonics is set to ‘7’ in x and y
coordinate transverse to the primary direction, z. The number
of harmonics is used to expand the refractive index and field
in Fourier space resulting in accurate simulation. Simulations
are performed for a wide spectral range (400 nm to 1500 nm
with 5 nm steps), typically with TM-polarisation. As a figure
of merit, the zero order diffraction efficiency (specular
reflection) is obtained and analysed. The plasmonic properties
of gold coated pyramidal cavities in silicon substrates have
been previously evaluated theoretically [28], but here thin
gold films with similarly sized pyramidal cavities with square
nanopores in the base (free of the silicon substrate) are con-
sidered. Our aim is to establish the impact of the square
nanopore (i) dimension and (ii) orientation with respect to the
pyramid (either in phase with the pyramid base or at 45° to it
(see figure 2)) and the incident angle of the illumination. In
order to obtain a numerical figure of merit for the E-field
density in and around the drilled square hole, an E-field
monitor is applied according to equation (1) which integrates
the field over a pre-defined volume of space:

ò e=U r E r V
1

2
Re d , 1E

V

2[ ( )] ( ) ( )

where E(r) is the electric field, ε(r) is the spatially dependent
permittivity and the integration is performed over V, which is
the volume of monitor set by length and height/width.

Figure 1 includes schematics of three-dimensional views
of the pyramid cavities used for the theoretical simulations
where (a) is where the monitor is placed in the xz-axis bisecting
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directly through the nanopore such that the edge of the lower
edge of the monitor is 0.121 μm below the tip of the pyramid
(as if there were no nanopore (note as the pore size increases
the central position of the pore opening moves upwards in the
z-direction, but for our simulations the monitor is always kept
in the same relative position for all calculations)). As shown in
figure 1(b) the monitor size is 200 nm square and central in the
x-direction; the mesh size used is 0.5 nm. Figure 1(c) is a two-
dimensional view of where the monitors are placed over the
inverted whole pyramid cavity and nanopore in the xy-axis.
The index resolution of the field monitor is set to 1 nm within
the nanopore region. The mesh size is 10 nm.

Figure 2 illustrates how the electric field (E-field) interacts
with the inverted pyramid geometry. Figure 2(a) illustrates the
convention used here in defining the azimuthal rotation of
inverted pyramid and nanopore. The insets of figures 2(b) and
(c) are schematic diagrams representing the top view inverted
pyramid. The inner square box indicates the orientation of the
square nanopore (fn) at the pyramid base relative to the
orientation of the inverted pyramid (fpyr), shown by the outer
square box. For the calculations the key parameters considered
include polarisation state, angle of incidence with respect to the
surface, azimuth angle with respect to the pyramid sides
(fpyr=0° or 45° and the azimuth angle of the nanopore
fn=0° or 45° in the xy-plane (figure 2)).

As illustrated in figure 2(b), for light which is TM-polar-
ised, the orientation of the E-field is considered to be parallel to
the incident plane and yield charge oscillation between the
sidewalls C and D. Figure 2(c) shows the schematic for the TE-
polarised incident illumination; the E-field is perpendicular to
the incident plane and the charge oscillation occurs across the
sidewalls A to B. The arrows indicate the E-field orientations.
Figure 2(d) illustrates where the charge oscillation is expected
to occur when the azimuth angles of the inverted pyramid
(fpyr) and the square nanopore (fn) are rotated to 0° and 45°
with respect to the TM-polarised light. The upper and lower
part of figure 2(d) illustrates the expected E-field orientation for
the various orientations of the pyramid and nanopore relative to
the illumination (i) fpyr=0°, fn=0°, (ii) fpyr=0°,
fn=45°, (iii) fpyr=45°, fn=0°, (iv) fpyr=45°,
fn=45°, as considered for the theoretical simulations.

2.2. Fabrication of pyramidal gold membrane with nanopores

A silicon substrate is used as a template for creating a pyr-
amidal structured, free-standing gold film. These are fabri-
cated by anisotropic wet etching through square openings in a
silicon nitride mask oriented in the 〈110〉 direction on a (100)
silicon wafer to produce in an array of atomically smooth
inverted pyramidal square pits [25, 38]. The substrate used in
this work contains an array of inverted pyramids etched into a
4 mm×4 mm square region on the surface with inverted
pyramids of 1.5 μm×1.5 μm square, 1 μm deep with a pitch
of 2 μm.

Figure 3 displays a schematic of the fabrication approach
for creating the free-standing gold pyramidal film with a

Figure 1. (a) Three-dimensional view of a single unit cell, the gold
inverted pyramid, within the periodic gold film (external view) in
which the spatial E-field monitor (on the xz-axis) at the pore is just
observable. The nanopore is located at the tip of the inverted
pyramid. (b) Larger scale view of the monitor with a 10 nm
nanopore of figure 1(a). The monitor is 200 nm square and is placed
at 0.221 μm below the position of the original tip of the pyramid; the
wider nanopores remain within the monitor area. (c) A cross-
sectional view of a single unit cell in which the spatial xy-axis E-field
monitors are allocated. The cross-sectional view is through the
pyramid mid-way along the two opposite sides of the square opening
at the top to the tip at the bottom. Fifteen monitors are placed 10 nm
apart through the nanopore in order to observe the detail of changes
in the E-field distribution across the nanopore (monitors 1–15). The
lowest monitor is at 0.121 μm below the original tip of the pyramid
(before nanopores of different sizes are included). Further xy
monitors 50 nm apart are placed over the inverted pyramid to
monitor the E-field spatially in the lower part of the cavity (monitors
16–27) and then additional monitors 100 nm apart to the top of the
cavity and above it (monitors 28–33). The monitors are in the XY-
plane and the incident light is normal and in the Z-direction, as
shown by the black arrows. The drawn rectangular box surrounding
the outer surface of the cavity is defined as the simulation region for
the periodic boundary condition.
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nanopore. An Edwards E306A Thermal Evaporator is used to
coat the silicon templates with a 50 nm layer of Teflon® and
then a 100 nm layer of gold (see supplementary information for
images of the Teflon® and gold coated surfaces). Table 1
displays the experimental parameters used for the thermal
deposition of Teflon and gold to achieve the optimal surface
smoothness. After removal of the gold coated substrates from
the evaporation chamber, 30 μl of epoxy is then deposited over
the 4 mm×4mm square region on top of the gold pyramid
cavities using a pipette. Once the epoxy has cured, the epoxy
together with the gold is mechanically separated and lifted
from the Teflon® coated substrate using a razor blade. The
hardened gold-coated epoxy is then placed over a micron-sized
aperture (pinhole or gold transmission electron microscope
(TEM) grid) and the epoxy dissolved carefully away using
acetone. Following removal of the sacrificial epoxy, the gold

film was lifted using the pinhole or TEM grid and subsequently
inserted into an Agar Scientific, AGG3662, scanning electron
microscope (SEM) holder. All SEM imaging in this work was
performed using a Carl Zeiss SMT, Inc., Evo® SEM. Imaging
and subsequent milling of the pyramidal film at the base of the
cavity was achieved using a Carl Zeiss SMT, Inc., Orion® Plus
HIM in a similar approach to that previously reported [4]. For
milling, the working distance used was 4.5 mm, the beam
current was 1 pA and the accelerating voltage was 30 keV. The
sample was loaded into the HIM load lock and subjected to an
8 min plasma clean with an integrated Evactron remote plasma
cleaner (XEI Scientific, Inc.) prior to being transferred to the
HIM chamber. This step helps to remove hydrocarbon con-
tamination from the surface, which can interfere with the
milling action. A suitable pyramid cavity was first located and
centred at a field of view of 900 nm. An image was taken to

Figure 2. (a) Illustrative drawings of the azimuthal rotation of inverted pyramid (fpyr) and nanopore (fn). The first showing the orientation of
the azimuth rotation (fn and fpyr=0°) and the second showing (fn and fpyr=45°) (the dashed lines showing fn and fpyr=0°). The
azimuthal/sample rotation is defined by the angle, fpyr for the inverted pyramid and fn for the square nanopore, the rotation of z-axis of the
sample is with respect to the x-axis. (b) and (c) Illustrative drawings of the E-field oscillation and direction for the TM and TE modes, with
respect to the pyramid cavity orientation. The diagrams are observed from the above the inverted pyramid and the pyramid opening
represented as the top face opening with diagonal cross-lines. The schematic shows how each mode is relative to the pyramidal sidewall: (b)
TM-polarised incident light; the electric charge oscillates between the sidewalls C and D. (c) TE-polarised incident light; the electric charge
oscillates between the sidewalls A and B. (d) Schematic diagrams of the top views of the inverted pyramid with a nanopore as considered
theoretically. The arrow indicates the charge oscillation direction for the TM mode.
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record the appearance of the cavity before milling. The beam
was then blanked and the field of view decreased (magnifica-
tion increased) to 100 nm (512×512 pixels). Subscan mode
at 50% field of view was then selected to define a scan area of
50 nm×50 nm (256×256 pixels). The beam was then raster
scanned across this area with a dwell time per pixel of 3 μs
whilst observing the subscan secondary electron image for
evidence of penetration through the film and formation of the
pore. Following pore formation, the beam was blanked and the
field of view increased (magnification decreased) back to
900 nm. A second image was taken to record the appearance of
the fabricated pore using a relatively short dwell time of 10 μs
to avoid modifying the structure with the imaging beam. HIM
was also used to image the surface of the Teflon coated
Klarite® substrate and the free-standing gold film.

3. Results and discussion

3.1. Design of a square nanopore within a 3D-structured
pyramidal film

The nanopore size and orientation within the free-standing
3D-inverted pyramid film was first considered theoretically to
gain an understanding of the best configuration to achieve

highly localised plasmons trapped inside a nanopore at the
base of the pyramidal cavity. The inverted pyramidal pits
(54.7° from the surface plane) are 1.5 μm square of 2 μm
pitch; these are used as a template for the gold membrane.
Our rationale for choosing this inverted pyramidal device
geometry is the fact that this substrate has previously been
shown to be the best geometry for coupling light, showing a
strong resonant absorption at ∼800 nm [24]—at a wavelength
similar to that used routinely for Raman spectroscopy
(785 nm). As illustrated in figure 1 and as discussed in detail
in the materials and methods section, the two-dimensionally
periodic gold membrane with a nanopore has a thickness of
100 nm on the upper surface. The thickness on the sidewall is
approximately 58 nm, thus the distance through the gold at
the base (tip) of the pyramid is at most 100 nm (prior to
milling). In order to establish the optimal size for a square
nanopore in the base of the pyramid cavity to support a highly
localised and enhanced E-field, theoretical simulations were
performed for various sized square nanopores placed at the tip
of the inverted pyramid. Square nanopores were evaluated
with widths of 10–100 nm size in 10 nm incremental steps.
Simulations were initially performed with air within the
pyramidal cavity and nanopore, then repeated with water
inside the pyramids as this medium was considered the most
appropriate for future experimental operation in a fluidic
system. The refractive index of air is defined as 1 and the
refractive index values used for water were varied as a
function of wavelength [39].

Figure 4 shows results of preliminary calculations in the
form of plots of calculated E-field intensity as a function of
excitation wavelength at the monitor position within the
square nanopore region of the structure. The monitor is
200 nm square and in the xz-direction shown in figures 1(a)
and (b), the nanopore to pyramid orientation with respect to
the TM-polarised light (fpyr=0°, fn=0°) as shown sche-
matically in figure 2(c). The monitor bisects the pore and is
perpendicular to the side of the pyramid sidewall. Figures 4(a)
and (b) show the effect of the size of the square nanopores on
the total E-field intensity across the area of the monitor for the
air, and water environments respectively. The insets show
magnified plots for the E-field intensity at near infrared
wavelengths. This data does not reveal a clear relationship
between the localised E-field intensity at the pore and the size
of nanopore for either background environment (air or water).
The 90 nm sized nanopore provides the highest E-field
intensity for air or water. We see a clear shift in wavelength
between data for air and water, however the spectral shape of
the curves remains very similar. This shift is due to the
change in refractive index affecting the effective propagation
length for the plasmons within the nanopore.

Next, the spatial E-field distribution around the nanopore
region was investigated whereby the nanopore and inverted
pyramid are both at 0° azimuthal angle (see figure 2(a)) at
780 nm excitation wavelength. Figure S1 (supplementary
information) shows the calculated field distribution across the
nanopore region for selected pore sizes (in air and water
environments). The E-field intensity is mainly confined to the
top edge of the pore when the size is 50 nm (figure 5) and

Figure 3. Schematic of the fabrication steps used to produce the free-
standing periodic pyramidal nanostructured gold film with a milled
nanopore.
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smaller (figure S1) (as indicated by the sharp horizontal fea-
tures of the E-field intensity) for the samples in air. Whereas
for the inverted pyramidal gold film, in a water environment
with a 50 nm pore size, the E-field is highly confined inside
the walls of the nanopore. Since the objective here is to
develop a system whereby nano-sized species are to be
interrogated optically in water inside the pore, the 50 nm pore
is considered optimal.

Other wavelengths of light were considered for our
theoretical simulation studies; a video file of the E-field dis-
tribution within the structure as a function of excitation
wavelength for the 50 nm pore size in the water medium is
provided as supplementary information (video 1)—where the
E-field intensity is normalised (with respect to the input
energy). In brief (and as shown in figure 6 for 400 nm,

680 nm 930 nm and 1200 nm), the E-field does not penetrate
the nanopore for illumination wavelengths of 400 nm to
670 nm. The E-field intensity and position in the nanopore
varies for the excitation wavelengths from 680 nm to
1390 nm. Even though the E-field intensity within the nano-
pore illuminated at wavelengths up to and around 930 nm the
E-field intensity distribution is more ‘tightly’ localised for
780 nm. The total E-field intensity in the pore illuminated
with 1200 nm light is ∼14 times higher than for 780 nm.
Figure 5 shows the high spatial localisation of the E-field
across the middle of the 50 nm pore in water when illumi-
nated with 780 nm, the E-field inside the pore is just
observed; thus single molecules passing this intra-nanopore
region would experience higher E-fields during transit.

The E-field intensity and distribution arising from the
geometry of the inverted pyramid to nanopore illuminated
with polarised light were next investigated. Figure 2(a) pro-
vides schematics for the azimuth angle of the pyramid (fpyr)
and nanopore (fn) the arrows shown provide the orientation
of the TM mode of the incident light. First the azimuth angle
(fpyr) is set at 0° or 45° which (according to our results
[25, 28, 29]) corresponds to the critical angle of polarisation
conversion in the inverted pyramid, but in this case where the
structure is a pyramidal film with a nanopore of 50 nm square.
Figure 7(a) is a plot of the total normalised E-field intensity
integrated across the nanopore region (corresponding to the
monitor area shown in figures 1(a) and (b)) as a function of
wavelength. The total E-field inside the nanopore (normalised
against the same input energy for each wavelength) shows a
significant dependence with wavelength (400 nm to 1500 nm)
for fpyr=0°, whereas when fpyr=45° (seen in figure 7(b))
it is independent of wavelength. Thus changing the pyramid
azimuth angle (fpyr) in relation to the square pore edges has a
large impact on total E-field intensity.

Table 1. Conditions used for thermal evaporation of Teflon and gold onto the silicon moulds.

Material
Density
(g cm−3) Z-value (105 g cm−2 s−1) Current (A)

Rate of
deposition (nm s−1) Thickness (nm)

Chamber
pressure (mbar)

Teflon 2.7 8.2 0.9 0.07 50 1×10−6

Gold 19.3 23.2 2.6 0.04 100 5×10−6

Figure 4. Plots of the total integral of calculated E-field across the
nanopore as a function of excitation wavelength (400 nm–1500 nm)
for different sizes of square nanopore in (a) air and (b) water
environments. The size of the nanopore varies from 10 nm to 100 nm
as indicated by the insert. The inset plots are magnified intensities
(by 10 times) for the near infrared region (to scale with the x-axis).

Figure 5. Calculated spatial field distribution of the cross section of
the nanopore at 780 nm operation wavelength. Fields are shown for
the 50 nm nanopore size for both environments; air and water. The
white dotted lines are visual guides for the nanopore and inverted
pyramid. The resolution of the monitor is 0.5 nm.
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At this juncture, it is important to look in detail at the
spatial distribution of the E-field within the nanopore illu-
minated with 780 nm light. Figure 8 shows E-field distribu-
tion for a 50 nm square nanopore illuminated with 780 nm
light, monitored from the top of the nanopore in the xy-axis as

well as in the xz-axis. The results suggest that the E-field
distribution across the nanopore is uniform over the upper
four faces of the pyramid in the vicinity of the nanopore, but
for the case where the square nanopore is out of phase with
the upper pyramid edge (fpyr=0° ,fn=45°) or (fpyr=45°
,fn=0°) there is no penetration of the E-field into the
nanopore. However the E-field penetrates the nanopore for
the cases where the square nanopore edges are in phase with
the upper pyramid edges: for the case (fpyr=0°, fn=0°)
the E-field is localised spatially within the pore. And for the
case (fpyr=45°, fn=45°), the E-field penetrates the pore,
but is less localised. Thus the theoretical study provides
evidence that the incident plane of illuminating light plays a
significant role in determining the E-field intensity inside the
nanopore. This is not so surprising since surface plasmon
polaritons are assumed to oscillate up and down the sides of
the inverted pyramid and will be reflected by the sharp top
edges of the inverted pyramid and square sides of the nano-
pore at the base [25]. However, when the nanopore is in phase
with the pyramid and the polarisation plane of the incident
light is symmetrical to the faces of the pyramid cavity as well
as the nanopore square edges, there is a strong dependence of
E-field as a function of wavelength inside the nanopore
(figure 7).

The E-field intensity across the width of the pyramid was
analysed using higher resolution spatial monitors at a range of
height positions respective to base of the pyramid as depicted
in figure 1(c). The E-field intensity for the structure where
(fpyr=0°, fn=45°) and the incident light is 780 nm varies
as a function of Z-length (height of the device) and is shown
in the plot displayed in figure S3 (supplementary informa-
tion). The E-field intensity inside the cavity of the pyramid is
much higher (∼9 times) compared to the field inside the
nanopore; however, this high field intensity occurs at the
sidewall of the pyramid over a much larger surface area.
Video 2 (supplementary information) shows the E-field
intensity plots for all the monitors over the whole structure.
The maximum total E-field intensity occurs 860 nm above the
tip of the pyramid and is confined to the sidewalls as shown in
figure S3(a). Whilst the E-field intensity is greatest on the
pyramid sidewalls 860 nm above the nanopore, it is antici-
pated that the majority of the molecules traversing the pore
will experience the E-field within the nanopore only.

Figure 6. Calculated spatial field distribution of the cross section of the nanopore in water at (a) 400 nm, (b) 680 nm, (c) 930 nm, (d)
1200 nm. (For 780 nm see figure 5.) (All data shown are normalised against the input energy.) Note that cross-sectional plots of the E-field
intensity across the nanopore in water are also shown in video 2 (supplementary information) as a function of position from monitor 1
(figure 1(c)). The size and resolution of the monitor are 250×200 nm and 1 nm, respectively.

Figure 7. (a) Normalised E-field in the nanopore for monitor shown
in figures 1(a) and (b) as a function of wavelength but where the
orientation of the inverted pyramid and square nanopore are different
(see figure 2(d) for azimuth angle definitions). Solid line is for the
nanopore and inverted pyramid where fpyr=0°, fn=0°, the
dashed line is for fpyr=0°, fn=45°. Figure 7(b) Solid line is for
the nanopore and inverted pyramid where fpyr=45°, fn=0°, the
dashed line is for fpyr=45°, fn=45°.
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3.2. Characterisation of the pyramidal gold membrane with
nanopores

The fabrication of a three-dimensional gold membrane film
using the template method demonstrated here is novel.
Figure 9 displays a SEM image of a 100 nm thick, free-
standing gold film containing an array of nano-sized gold
pyramids suspended over a TEM grid. The TEM grid is
3.05 mm in diameter and contains 19 square apertures per
millimetre. Each square aperture is ∼25 μm wide and on a
∼53 μm pitch. From additional SEM imaging, it is evident
that the pyramidal film remains intact over a region of
approximately 6 mm2. Visible from the images are residual
pyramids scattered over the surface of the TEM grid. These
are likely the result of tears in the gold film allowing the
pyramids be left on the TEM grid during lift-off of the
gold film.

To evaluate the pyramid roughness and structure in more
detail, the film was imaged using a Carl Zeiss SMT, Inc.,
Orion® Plus HIM. Additional images are shown in the sup-
plementary information (figures S4–S6). These additional
evaluations show that the grain structure of the thermally

evaporated gold as visible from the HIM images in figures 10
and figure S5 occurs from the evaporated gold. The average
size of each grain of gold is ∼40 nm. Optimised evaporation
of gold on pyramid cavities have previously been reported by
us [40]. Although there appears to be periodicity in the eva-
porated gold film shown in figures 10 and figure S5, by taking
a single pixel slice across one of the pyramids (one face to
another) as shown in figure S6(a), it is evident that the dis-
tribution of the gold particles is stochastic, as confirmed by
figure S6(b), the Fourier transform of the data from figure S6
(a), showing that there is little periodicity. To verify that
defects in the Teflon deposition on the silicon surface did not
contribute to the observed roughness of the gold, a HIM image
of the Teflon coated inverted pyramids was taken (see figure
S4, supplementary information). The surface of the Teflon is
relatively smooth compared with the gold surface (figure S5),
therefore the small gold clusters seen are similar in size to
those seen by others for ultra-smooth gold [41]. Whilst we
consider that the surface roughness may have an impact on the
E-field intensity, experimental data reported for the inverted
pyramidal structures suggest that the inverted pyramidal
structure out-performs planar structures, notably in coupling
the light (with ∼70% absorption), to provide enhanced levels
of detection [25, 29, 42]. Indeed our own studies suggest that
the intensity of the Raman spectrum obtained for thermally
evapourated and e-beam deposited gold inverted pyramid
structures of the geometry here, are optimal when the gold is
deposited by e-beam methods [37]. However the impact of
surface roughness should not be discounted, as demonstrated
by others where gold motifs of lines (∼10 nm wide) were
investigated [43]. The studies suggest that the SERS effect can
be more pronounced in a spectral region far from the localised
surface plasmon resonance with nanoscale surface roughness
of the gold within the device [42].

Figure 8. Calculated field intensity plots for the top of the nanopore
(the xy-monitor 15 (figure 1(c)), and directly below, the cross-
sectional view xz monitor (figures 1(a) and (b)), with 780 nm
illumination in a water environment, where the orientation of the
inverted pyramid and square nanopore are different (i) fpyr=0°,
fn=0° (see figure 2(d)); (ii) fpyr=0°, fn=45°; (iii) fpyr=45°,
fn=0°; (iv) fpyr=45°, fn=45°. The size and resolution of the
monitor are 250×200 nm and 1 nm, respectively.

Figure 9. Scanning electron micrograph of edge of the gold
pyramidal film suspended over a TEM grid. The pyramid cavities are
on the topside of the film. The film is suspended over the region
illustrated in the left side of the film; the residual pyramids are from
an area of the film where the full structure was not ‘lifted off’ fully
from the silicon mould.
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3.3. Nanopore milling

Using the HIM, a 50 nm×50 nm square hole was milled
though the suspended film using a similar milling technique
that was employed by Scipioni et al [4]. Figure 10 shows
HIM images of a single pyramid before (figure 10(a)) and
after milling (figure 10(b)) the 50 nm×50 nm hole through
the base of a pyramid in free-standing gold. The milling
process took approximately 30 s to complete, with penetration
through the base of the pyramid being detected as a sudden
decrease in the secondary emission from the area being
scanned. As reported previously [4], it was possible to
observe the hole during machining, allowing the milling to be
stopped when the hole had widened sufficiently to cover the
entire scan area. The border of the milled square hole is
visible at the centre of the image in figure 10(b) as a square
white line. This white line in the image (figure 10(b)) is the
result of secondary emission from the sharp edges of the
square hole. The milled hole is measured to be 50±2 nm
wide and the radius of curvature of each corner is approxi-
mately 4 nm–6 nm. Its centre is offset from the apex of the
pyramid by ∼15 nm in the x-axis and ∼35 nm in the y-axis.
Although the more conventional gallium focused ion beam
technique can be used to mill pores with 50 nm dimensions,
the smaller probe size of the HIM leads to more precise
milling, enabling a smaller radius of curvature at the corners
of the square feature and so a pore shape more closely
resembling the simulated structure.

4. Conclusion

These studies provide the first example for the design and
fabrication of a nanopore in the base of three-dimensionally
structured inverted pyramidal gold film. The design has been
optimised here for the use with 780 nm light where

pyramidal cavities of 1.5 μm×1.5 μm square and 1 μm
deep with a pitch of 2 μm with a 50 nm square pore. The
effect of the azimuthal rotation of (i) the inverted pyramid
and (ii) the nanopore on the localised field intensity within
the pore under illumination with linearly polarised light was
examined. It was observed that the azimuth angle of the
inverted pyramid has more impact on the localised field
intensity in the pore as compared to the azimuth angle of the
square nanopore. The spatial E-field intensity and distribu-
tion across the nanopore was considered in detail for the
50 nm pore when the inverted pyramid and nanopore are
both with an azimuth angle of 0°, where the E-field intensity
penetrates the pore, providing a uniform E-field density
through which an analyte could be interrogated during
transit through the pore.

Building upon the theoretical studies, we have also
demonstrated for the first time the successful fabrication of a
free-standing 100 nm thick gold film of arrays of pyramids,
using a template method. In addition, we have showed the
milling of a 50 nm×50 nm square hole through the base of a
free-standing gold film pyramid. We envisage that this
method of thin film fabrication can be extended to other
devices with other geometries for analytical applications
where detection is facilitated by plasmon-enhancement [3],
as well as for the construction of metallic MEMS and
nanoelectro-mechanical systems [44].
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Figure 10. Helium ion microscope image of a single pyramid (a) before and (b) after milling a 50 nm square hole at 45° to the pyramid top
opening. The nanopore is visible in the base of the cavity—as indicated by the black arrow. In this image the pyramid cavities are projecting
downward.
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