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Doctor of Philosophy

A MEMS SENSOR FOR STIFFNESS CHANGE SENSING APPLICATIONS BASED

ON THREE WEAKLY COUPLED RESONATORS

by Chun Zhao

Micro-electro-mechanical (MEM) resonator devices have been widely used to sense small

changes in the properties of the resonator, namely the stiffness and mass of the resonator.

Among these, sensing devices that detect stiffness change have been employed for many

applications, including accelerometers, strain sensors, pressure sensors and force gradient

sensors for imaging microscopy. In recent years, a new sensing approach, which utilises

2 degree-of-feedom (DoF) weakly coupled resonators has been proposed. By measuring

the mode shape changes instead of the frequency shifts, it has been shown that this

type of sensing devices has: 1) orders of magnitude higher sensitivity than conventional

single DoF resonator sensors; 2) common mode rejection capabilities.

This thesis introduces a novel structure, based on three weakly coupled resonators (i.e.

a 3DoF system), in which the stiffness of the resonator in the middle is at least twice

the value compared to the other two identical resonators. The device is intended for

sensing a change in stiffness. With the 3DoF resonator sensing device, another order of

magnitude improvement in the stiffness sensitivity could be demonstrated.

In addition to the novel 3DoF coupled resonator structure, we have also investigated

a few practical aspects of the coupled resonator sensing devices that have not been

addressed in previous research. These aspects include the damping, dynamic range,

nonlinearity and output metrics of the sensor. We have also found a trade-off between

the sensitivity and the dynamic range. To solve this dilemma, a bias operation point

has also been proposed. By using the bias operation point, it was shown in theory that

the linearity of the sensors can also be improved.

Finally, we have also theoretically estimated the vibrational amplitudes and phase de-

lays of each individual resonators within the 3DoF system at the out-of-phase mode

frequency. Furthermore, based on these estimations, we have proposed a feasible self-

oscillating loop structure, which has the capability of automatically locking to the out-

of-phase mode frequency.
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Chapter 1

Introduction

1.1 Motivation of research

Micro-Electro-Mechanical-Systems, MEMS, has attracted a lot of attention in recent

years. Due to the increased miniaturization and the improved performance, comparing

to conventional macroscopic systems, the use of MEMS devices have been extended

from aerospace applications to everyday use (e.g. smart phones). The research interest

in micro-mechanical resonant devices, among all MEMS devices, have been steadily

increasing since the introduction of the first resonant gate transistor [7], due to their

tunability [7], high Q-factor [8], as well as stability against temperature [9] and ageing

[10].

Today, applications of the MEMS resonators span across a wide range of areas, includ-

ing electronic signal filters [11, 12] and oscillators [13]. In addition to these, MEMS

resonators have also been widely used in sensing applications, detecting mass and stiff-

ness change [14]. For the purpose of mass detection, much research has been done

[15, 16, 17, 18]. Stiffness change sensors have been developed for various applications,

such as strain sensing [19, 20, 21], pressure monitoring [22, 23, 24], and the most widely

used atomic force microscopy (AFM) [25, 26, 27]. In addition to these, stiffness change

sensors have also been used to detect small forces, and some applications are magnetic

field sensing (detecting weak Lorentz force) [28, 29], accelerometers (detecting inertial

force) [30, 31], charge detection (electrostatic force) [32, 33] Due to the wide range of

applications, the application for this research is set to be stiffness change sensing and

thus force sensing.

However, the majority of research adopt a single Degree-of-freedom (DoF) resonator

structure. Although it has been demonstrated that 1DoF resonator devices suit well

with the aforementioned applications, they offer little flexibility [34]. As an example,

for some communication applications, a two order response is not sufficient; instead,

1
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higher order bandpass filters are usually more adequate due to their flatter passband,

sharper rolloffs, as well as higher stopband rejections [35]. Therefore, a structure of a

few resonators coupled together has been proposed accordingly. In recent years, coupled

resonators have also gained research interest in sensing applications [36, 37, 38, 39, 40].

The common mode rejection ability [41] makes these sensors attractive. In addition,

among these works, 2DoF resonator sensors [36, 39] utilizing a mode localization effect

[42] have been demonstrated to be two orders of magnitude more sensitive than 1DoF

resonator sensor with frequency shift as output.

It is worth noting that all these sensors mentioned above utilize identical resonators. It

is evident that adding one more resonator to a single resonator sensor can improve the

sensitivity. Attempts have also been made to couple more identical resonators together

to achieve an enhanced sensitivity, namely 15 resonators [43]. But the improvement in

sensitivity has only been another order of magnitude, indicating that adding a further

13 identical resonators is less effective than adding the first resonator. Hence, a more

effective way of improving sensitivity is required.

In addition, there is no systematic investigation of the different output metrics and the

choice of the output signal. Several different output metrics have been used in previous

research, including eigenstate shift [36, 39], fundamental mode frequency shift [37, 40]

and quotient of amplitudes of one mode to that of the same resonator of another mode

[38]. There is also no comparison between different output metrics in terms of, for

instance, sensitivity and linear range. Therefore, an optimum output for this type of

sensor is necessary.

Furthermore, as one of the most important parameters to determine the vibrating be-

haviour of a resonator, damping is usually neglected in the theoretical analysis of a

2DOF resonating sensor. Although it is known from 1DoF resonator sensor theory that

damping can affect the sensitivity [44], resolution [45] and long term stability [46] of a

resonator sensor, the effect on a coupled resonator sensor is still unknown.

Another perspective that is lacking in the literature is the response of the sensor in a

wider span of inputs. Currently, researchers have only focused on the response of the

sensor around a random starting point [39]. With the full image of the output response of

the sensor, we will be able to analyze the dynamic range and nonlinearity specification,

in addition to obtain a more rational choice of bias point.

For coupled resonator sensors, these areas that have not been exploited previously re-

quire detailed theoretical insight. This motivates our research in a novel theoretical

perspective of the coupled resonator sensors. Therefore, the purpose of this thesis is set

to establish the theoretical foundations for future research utilising the 3DoF resonator

system as an ultrasensitive sensor. To achieve this, we have proposed a analytical model

based on transfer functions. From our theoretical analysis of a 3DoF resonator sys-

tem using this model, we are able to solve the aforementioned problems by proposing a
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novel structure. To verify the theoretical model, we have designed and fabricated proof-

of-concept devices. Despite the fact that some attention has been paid to the design

rationale of the proof-of-concept devices, namely the resonator structure, sensing and

actuation transduction, nonlinearity and parasitic capacitance, the selection of dimen-

sions of the devices is not optimized. Future work should focus on the optimization of

the sensors for certain specifications and applications.

1.2 Objectives

Considering the current status of research in this field, the objectives of this research is

listed below:

• Find an effective way to improve the sensitivity of coupled resonator sensors based

on mode localization effect (mode-localized sensors);

• Examine the quantitative effect of damping in mode-localized sensors;

• Investigate the specifications of mode-localized sensors apart from sensitivity, such

as dynamic range, linearity and noise;

• Compare different output signals of mode-localized sensors in terms of sensitivity,

linearity and implementation complexity;

• Propose a self-oscillating loop structure for mode-localized sensors that is capable

of locking to the mode frequency of interest.

1.3 Novelties

The novelties of this research is as follows:

• In this work, we have mainly proposed a novel structure of a resonator sensing

device, which consists of three resonators, weakly coupled through electrostatic

coupling to its neighbouring resonator(s), that can improve the sensitivity of stiff-

ness change or tensile force by orders of magnitude.

Currently, the majority of the resonator sensors are single DoF resonator utilizing

frequency shift as an output signal, and 2DoF weakly coupled resonator devices

adopting a mode-localized sensing scheme. Hence, a 3DoF is a novel structure

itself, due to the enhancement in sensitivity. However, among the few 3DoF weakly

coupled resonator sensors, the other’s work used three identical resonators, and the

improvement in sensitivity is limited. Our novel structure proposed in this research
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utilizes two identical resonators on either side, and the resonator in the middle

has a higher stiffness, typically at least two times higher than the other identical

resonators. It has been shown by the theoretical analysis that this structure can

improve the sensitivity even further, when compared to the 3DoF structures with

three identical resonators.

• In addition to the novel structures, we have utilized the transfer function model, in

conjunction with algebraic method to analyse a coupled resonator system for the

first time. The two methods complements each other well: algebraic method pro-

vides the solutions of mode frequencies and mode localization for systems without

any damping; whereas transfer function method helps describe the modal ampli-

tude behaviour with damping, but need to inherit the mode frequencies solved for

the case without damping. This approach helped us to achieve more novelties.

• It helps the understanding the effect of damping on mode-localized sensors, that is,

the damping adds more nonlinearity to the amplitude ratio. Moreover, by using

this approach, we have analysed the modal amplitude behaviour of the 3DoF

weakly coupled resonator system in a wider span of stiffness perturbations. This

led us to the understanding of the nonlinearity of the amplitude ratio in a wider

span, as well as the dynamic range of the sensor, for the first time.

• As a consequence of using this approach based on transfer function model, we were

also able to analyse the mechanical noise of the amplitude ratio using the transfer

functions for the first time.

• It makes solving the amplitudes of three resonators possible, which then facilitates

us to compare different output metrics, namely amplitude ratio, eigenstate shift

and amplitude difference, as well as the mode frequency shift for the first time.

Further, we have proposed the amplitude ratio as the optimum output metrics, in

terms of linear sensitivity and linearity.

• Based on the transfer function model of the 3DoF coupled resonator system, we

were able to propose a structure of self oscillating loop first time, which has been

demonstrated to be feasible by circuit simulations.

1.4 Publications

Parts of the work presented in this thesis is either based on or to some extent related

to the following list of publications that appear as peer-reviewed journal articles or

proceedings of international conferences:
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• C. Zhao, G. S. Wood, J. Xie, H. Chang, S. H. Pu, and M. Kraft, “A force sensor

based on three weakly coupled resonators with ultrahigh sensitivity,” Sensors and

Actuators A: Physical, vol. 232, pp. 151-162, 2015;

• C. Zhao, G. Wood, J. Xie, H. Chang, S. Pu, and M. Kraft, “A three degree-

of-freedom weakly coupled resonator sensor with enhanced stiffness sensitivity,”

Microelectromechanical Systems, Journal of, vol. PP, no. 99, pp. 1-14, 2015;

• C. Zhao, G. S. Wood, S. H. Pu, and M. Kraft, “Design of an ultra-sensitive MEMS

force sensor utilizing mode localization in weakly coupled resonators,” in 23rd

Micromechanics and Microsystems Europe Workshop, 2012;

• C. Zhao, G. S. Wood, J. B. Xie, H. L. Chang, S. H. Pu, H. M. H. Chong, and

M. Kraft, “A sensor for stiffness change sensing based on three weakly coupled

resonators with enhanced sensitivity,” in Micro Electro Mechanical Systems, 2015,

28th IEEE International Conference on, 2015;

• C. Zhao, G. S. Wood, J. B. Xie, H. L. Chang, S. H. Pu, , and M. Kraft, “Com-

parative study of different output metrics for a three weakly coupled resonator

sensor,” in Solid-State Sensors, Actuators and Microsystems, Transducers 2015,

18th International Conference on, 2015;

• C. Zhao, G. S. Wood, S. H. Pu, and M. Kraft, “A feasibility study for a self-

oscillating loop for a three degree-of-freedom coupled mems resonator force sensor,”

Procedia Engineering, vol. 120, pp. 887-891, 2015 (29th Eurosensors, 2015).

1.5 Organization

This report is organized as follows:

Chapter 2 reviews the current MEMS resonators, in terms of resonator sensor archi-

tecture, resonator types, actuation and sensing technologies, as well as some unwanted

factors of the resonators.

Chapter 3 look into the theoretical fundamentals of this work, including the basics of the

dynamics of the MEMS resonator, capacitive actuator and sensing and the modelling of

the MEMS resonators. These will be used in later research.

Chapter 4 analyses the vibrational behaviour of a three degree of freedom resonator,

including the mode frequencies and mode shape changes (i.e. amplitude ratio). The

theoretical results are verified with simulations of both electrical circuit equivalent of a

3 DOF resonator and finite element modelling.
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Chapter 5 discusses the practical aspects of the 3DoF resonator sensors, such as non-

linearity, dynamic range, output metrics and noise floor. In addition, a bias operation

point is also proposed in this chapter.

Chapter 6 shows the experimental results from two microfabricated proof-of-concept

devices. The experimental results generally agreed well with the theoretical predictions.

Chapter 7 proposes a feasible self-oscillating loop structure. The structure was verified

by electrical circuit simulations.

Chapter 8 concludes the thesis and outlooks the future work of the research.



Chapter 2

Literature Review

2.1 Introduction to resonator sensors

A resonator is a device or system that vibrates with higher amplitudes at certain fre-

quencies, i.e. fundamental mode frequencies, than the adjacent frequencies. The reso-

nance frequency of a single resonator is directly determined by the physical properties

of the resonator, e.g. stiffness and mass [14]. Therefore, when an external stimulus

changes one of the properties of the resonator, the fundamental mode frequency of the

resonator changes, making resonators attractive transducers for mass sensing. This is

demonstrated in Figure 2.1.

Therefore, to measure the quantity of an external stimulus, one intuitive way is to

observe the change in the fundamental frequency. One advantage of this approach is the

quasi-digital output, thus minimizing the inaccuracies arising from generating an analog

output and saving the effort of conversion to digital form [46]. This approach has been

used in many applications, including AFM [27, 49], magnetic field sensing [28, 29] and

mass sensing [47, 50].

An alternative amplitude-modulation approach to measure the quantity of an external

perturbation was proposed in [44]. With this approach, a MEMS resonator sensor is

excited at a fixed frequency ωd near the resonant frequency ω0 with a fixed amplitude,

as shown in Figure 2.2. When the perturbation is for example stiffness, the resonant

frequency shifts accordingly as described previously. Therefore, at the fixed driving

frequency in vicinity to the resonant frequency, the amplitude response of the resonator

changes a value of ∆A, as demonstrated in Figure 2.2.

Compared to a frequency shift as output signal, amplitude change has improved sensi-

tivity given a high Q-factor. Since the sensitivity increases as the Q-factor gets larger,

it appears to be more beneficial in terms of sensitivity for such sensors to maximize the

Q-factor [27].

7
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(a)

(b)

Figure 2.1: Demonstration of frequency shift: a) after the effective mass of the
resonator changes due to the mass loading [47]; b) after the effective stiffness
of the resonator changes due to change of DC voltage thus electrostatic spring
stiffness [48].

However, high Q means longer time for the sensor to settle, as the time constant of the

sensor is given by τs = 2Q/ω0 [27]. Therefore, high Q-factor limits the bandwidth of

the sensor. Another disadvantage of this sensor is that the slope of amplitude against

frequency is not a constant, as the resonance frequency shifts further away from the point

with maximum sensitivity, the sensitivity changes [51], consequently adding burdens to

the calibration process.

Due to the high sensitivity, this approach has been employed in various works, especially

in force microscopy applications, where sensitivity is more important and the disadvan-

tages are not the main issues [44, 51, 52, 53].
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Figure 2.2: Demonstration of amplitude-modulation approach in a single res-
onator [27]. The drive signal is generated at a frequency of ωd next to fun-
damental mode frequency ω0. After a perturbation is introduced shifting the
frequency to ω′0, the amplitude at drive frequency changes by ∆A.

2.2 Coupled resonator sensors

(a) (b)

Figure 2.3: Demonstration of coupled resonator sensors: a) with electrostatic
coupling [39]; b) with mechanical coupling [36].

As the research and development of MEMS resonator sensors matures, the majority of

sensors consist of only one resonator. In order to identify multiple analytes in certain

applications [54, 55], an array of resonators is needed. With single DoF resonator, it

requires a large number of connections to detect the motion of each resonator in the

array [56]. To solve these potential problems, a new type of resonant sensors, where

multiple resonators are coupled together through coupling, as shown in Figure 2.3, has

been proposed [56, 57, 58]. This is useful for emerging biomedical applications such as

chemical substances labelling [54] and DNA hybridization [59].

2.2.1 Sensitivity improvement

To compare the sensitivity, we use normalized sensitivity [60] as a figure of merit (FOM).

If we define the normalized sensitivity with respect to the stiffness change of 1DoF
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Figure 2.4: Demonstration of lumped element model of 1DoF, 2DoF and 3DoF
resonators: a) 1DoF, b) 2DoF and c) 3DoF.

(Figure 2.4(a)), 2DoF (Figure 2.4(b)) and 3DoF (Figure 2.4(c)) as S1DoF , S2DoF and

S3DoF , respectively, the mathematical definitions are given below:

S1DoF =
Normalized output1DoF

∆K/K
(2.1)

S2DoF =
Normalized output2DoF

∆K/K
(2.2)

S3DoF =
Normalized output3DoF

∆K/K
(2.3)

Where ∆K and K denote change in stiffness and stiffness of the resonator, respectively.

Typically, for a 1DoF resonant sensor with a frequency shift, ∆ω, as an output signal, the

normalized output is expressed as ∆ω/ω, where ω is the fundamental resonant frequency.

In the literature, it has been shown that the normalized sensitivity of 1DoF resonator

S1DoF ≈ 1/2 [61], assuming small stiffness change (∆K � K).

Among the coupled resonator sensors, one novel method that monitors the vibration

amplitude change of the resonators is particularly interesting [36, 38, 39]. These sensors

take advantage of a mode localization effect that was first predicted by Anderson’s pio-

neering work [42]. When the theory of mode localization was first introduced, it inspired

many works in the field of solid-state physics, consequently winning Anderson the Nobel

prize in Physics in 1977. Later research [62] demonstrated that when a balance in a
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weakly coupled vibrating structure was broken by an external perturbation, the mode

shape changed accordingly. Despite of these important discoveries, it was only until

recently was the theory applied to MEMS sensing applications.

By measuring the effect of mode localization in a 2DoF weakly coupled resonator system

subject to external stimulus, the quantity of the stimulus can be sensed [36, 39]. It is

also evident that the weaker the coupling strength compared to the stiffness of each

resonator, the stronger mode localization can be observed [39]. The typical output

signal of this type of coupled resonator sensor (mode-localized sensor) is the shift in

eigenstate or eigenvector, ∆u. The normalized output is therefore ∆u/u, where u is

the initial eigenstate. It has also been shown that, compared to conventional 1DoF

resonator sensor with frequency shift as an output, S2DoF is two to three orders of

magnitude higher than S1DoF , hence, two to three orders of magnitude enhancement

in sensitivity can be achieved [36, 39], makes it an alternative approach to improve the

sensitivity.

To attenuate the energy propagation from one side of the chain to the other, it is natural

to insert more energy-storing resonators in between the two identical resonators to in-

crease the insertion loss. In this way, the sensitivity can be further improved compared

to a 2DoF resonator system. One study introduced a total of 15 identical resonators

[43], and the resulting sensitivity improvement is two to three orders of magnitude com-

pared to that of a 2DoF resonator system. However, 15 identical resonators take a large

chip area compared to a smaller number of resonators. Hence, it is imperative to find a

more efficient way of improving the sensitivity even further, without adding too many

resonators to increase the chip size. This leads to the main focus of this research.

As will be shown in later chapters, a 3DoF mode-localized resonant sensor will be re-

ported in this thesis. The normalized output is an amplitude ratio, X1/X3, where X1

and X3 are the vibration amplitude of resonator 1 and 3, respectively. Through analyt-

ical calculations, we can derive:

S3DoF =
X1/X3

∆K/K
= ±γ3 (2.4)

Where the positive or negative sign depending on the sign of ∆K and also mode of

interest. Therefore, γ3 is the absolute value of normalized sensitivity with respect to

normalized stiffness change for a 3DoF mode-localized sensor reported in this thesis.

In addition, since S1DoF ≈ 1/2, fundamental mathematics can show that 2 × γ3 are

the sensitivity improvement of 3DoF mode-localized sensors when compared to 1DoF

resonant sensor. For these reasons, γ3 is the most important parameter in this thesis.

The higher γ3 value indicates a higher sensitivity of the 3DoF resonant sensor, and also

a higher sensitivity improvement compared to the 1DoF counterpart.
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2.2.2 Coupling

Structure-wise, to couple the resonators, one method is through the mechanical structure

[35, 36, 56]. Although mechanical coupling is simple to implement, it has one disadvan-

tage that it cannot be adjusted once fabricated. To solve this problem, another viable

approach is electrostatic coupling spring [63], where the electrostatic spring constant can

be easily adjusted by changing the coupling voltage, making the sensor more flexible.

2.2.3 Output metrics

As for the output metrics for these sensors, eigenstates shift has been employed [36, 39].

To calculate the eigenstate shift, according to [34], it is required to normalize the eigen-

states from the measured amplitudes to unity magnitude, followed by subtraction of the

initial eigenstates from the vector just calculated. This is a complicated mathematical

calculation, hence, making the data processing hardware and software difficult to im-

plement. However, it is still an innovative approach, which improves the sensitivity and

common mode rejection ability compared to mode frequency shift as an output signal.

It has been demonstrated that the sensitivity of the sensor to ambient conditions such

as pressure and temperature is not as significant as that to single sided stimulus [36, 41].

Other researchers [38] employed the vibration amplitude quotient of one resonator at

two different mode frequencies. This approach is novel in the sense that it only requires

to measure the amplitude of one resonator. However, for this approach, it is necessary

to find both resonant frequencies, which is more time consuming than finding only one

resonant frequency for approaches such as eigenstate shift or frequency shift. It should

be noticed that, the quasi-digital nature, as well as the high resolution of frequency sig-

nal makes it useful in some systems [37]. However, the moderate sensitivity compared

to eigenstate shift or amplitude ratios at separate modes is one disadvantage for mode

frequency shift as an output signal. Up to date, there is no systematic investigation of

the advantages or disadvantages of particular output metrics, in terms of specification

such as linear range. Hence, for this emerging technology of coupled resonator sensors,

it is imperative to find a suitable output in order to optimize the performance. Also, for

a particular type of output, there is little research on the dynamic range.

2.2.4 Damping

As for damping, Rayleigh’s damping in particular, the effect on coupled resonator has

been analyzed in [34]. It was shown in theory that the damping would have phase differ-

ences compared to the undamped system, but the impact on sensitivity is insignificant.

However, no quantitative study of the effect of damping has been done so far. Without

the quantitative study of the damping effect, it is difficult to optimize the damping of

the sensor to achieve an optimized performance.
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2.2.5 Other issues

Apart from these issues that need to be addressed, as a new technology, there are

other shortcomings of coupled resonator sensors that need to be improved in the future.

One obvious disadvantage is that the majority of this type of sensors up to date was

operating in vacuum in order to improve the sensitivity of the device. The reason is that

the operating mode frequencies are closer to each other as the coupling strength between

the resonators decreases [34]. To distinguish the operating mode frequency, the anti-

aliasing rule should be satisfied [64]. Because of this, the minimum coupling strength,

which means maximum sensitivity for a specific design, is limited by the bandwidth of

the mode. Therefore, it is necessary to use vacuum to maximize the sensitivity of the

sensor. Another major disadvantages of this type of sensor is that, all the measurement

of coupled resonator sensors up to date are not done in real-time, as frequency sweep is

required to find the desired resonant mode frequency. On the contrary, self-oscillating

loop structure used in single DoF resonator sensors is capable of automatically locking

to the fundamental mode [31]. Due to this, the bandwidth of input measurement this

type of resonators were not yet investigated. This inability for real-time measurement

has become a huge obstacle for implementing coupled resonator sensors in commercial

applications.

2.3 Types of resonators

For sensing applications, different types of resonators have been used in the literature

to serve for the purpose of maximizing the performance, such as sensitivity. Generally,

resonators can be divided into two categories, with or without proof mass.

2.3.1 Resonator with proof mass

Typically this type of resonator consists of a proof mass suspended by compliant beams

which act as the springs, as shown in Figure 2.5. Therefore for this type of resonator,

the effective mass is dominated by the proof mass. And the suspension beams contribute

the most to the effective spring constant, since the proof mass can be regarded as a rigid

body. The vibration mode of this type of sensors is usually in-plane flexural mode.

Although not very commonly used in conventional resonators sensors with frequency

or amplitude shift, this type of sensors have been successfully employed in the inertia

sensing applications, namely for gyroscopes [65, 66, 67, 68, 69]. This is due to the

fact that for an angular rate, a larger proof mass gives an increased Coriolis force,

and therefore an enhanced sensitivity. This type of sensor has also been used in AFM

applications [51].
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Figure 2.5: Demonstration of a resonator with proof mass [51].

Generally resonators with proof masses have lower fundamental frequency, due to large

effective mass value. For identical effective stiffness, a proof mass 100 times larger

means 1/10 of the original resonant frequency. Furthermore, the resonance frequency is

insensitive to small mass variations. On one hand this particular trait makes this type

of resonator less attractive for mass sensing applications; on the other hand, it makes

the resonance frequency stable even in presence of small mass variations, for example,

during stiffness change monitoring process.

This type of resonators can be easily integrated with capacitive drive [65, 66] and sensing

[65, 66], as well as piezoresistive sensing [51].

2.3.2 Resonators without proof mass

A less intuitive design of resonators are vibrating structures without clearly distinguished

mass or springs. This type of resonators can be further categorized in terms of vibration

modes, such as flexural, lateral and bulk mode. However, despite the fact that lateral [70]

and bulk [47, 71] modes have been used for mass and force sensing, and they typically

have high Q-factor even in air, generally they have very high frequency (>1MHz), which

would complicate interface electronics design. Moreover, lateral resonator sensors [70]

require a network analyzer for standing wave measurement, which is not suitable for

commercial use. Therefore, in this section, these resonators are not elaborated in detail.

2.3.2.1 Cantilevers

One of the most commonly used resonator types utilizing the flexural mode is the can-

tilever as shown in Figure 2.6. Due to the simplicity of structure and a wide range

of mode frequencies, in addition to relatively small mechanical nonlinearities and high

Q-factor, it has been widely used in mass [16, 18, 73, 74] and stiffness change sensing

applications, predominantly AFM [25, 26, 27].
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Figure 2.6: Demonstration of a MEMS cantilever resonator [72].

It is worth noting that among the mass sensors, the majority of the sensors utilize the

first fundamental mode of the cantilever, while some work also used higher modes [73].

Due to the improved Q-factor and decreased effective mass of the higher modes, the

sensor exhibites higher sensitivity.

Typically cantilevers are actuated piezoelectrically [25], and their motions are observed

optically [73]. However, the simple structure means that it can also be easily incor-

porated with many other actuation and sensing techniques, including thermal [75] or

capacitive [74] actuation, as well as capacitive [74] and piezoresistive [76] sensing.

2.3.2.2 Fixed-fixed beam

Another widely used structure of resonator for flexural mode is fixed-fixed beam, as

shown in Figure 2.7(a). Due to the high longitudinal stiffness, it can provide two orders

of magnitude improvement in stability to the large force gradient compared to cantilevers

[51]. Therefore, it has been favoured for force sensing applications that require high

stability in the presence of large force gradient [79].

Furthermore, another variant of fixed-fixed beam widely used is double-ended tuning fork

(DETF), as shown in Figure 2.7(b). Due to the increased balance in vibration, DETFs

usually have enhanced Q-factors [46]. It has been used to gauge modulated strain in

different applications, including a strain sensor [20], electrometer [78], accelerometer [31]

and pressure sensor [80].

Typically fixed-fixed beam resonators have high fundamental mode frequencies and high

mechanical nonlinearities, due to a relatively high first order effective stiffness.
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(a)

(b)

Figure 2.7: Examples of a MEMS fixed-fixed beam resonators: a) standard
fixed-fixed beam [77]; b) a double-ended tuning fork (DETF) [78].

For actuation and motion pick-up, capacitive schemes have been most widely used [20,

78], while piezoresistive detection approach has also been used [19]. In what follows, the

choice of actuation and motion pick-up techniques is discussed.

2.4 Transducer technologies

A transducer is a device or structure that transfers energy from one domain to another,

e.g. electrical to mechanical domain. As for MEMS resonators, actuating the micro

resonators mechanically using electrical energy, as well as detecting the mechanical vi-

bration of the resonators with easy-to-process electronic signals, requires transducers

that converts the energy between electrical and mechanical domains. A common type

of transducer, the capacitive transducer, is shown in Figure 2.8.
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(a)

(b)

Figure 2.8: Demonstration of capacitive transducers: (a) parallel plate trans-
ducer [74] and (b) comb transducer [81].

2.4.1 Actuation

Due to the small dimensions of MEMS resonators, a large excitation force could break

the structure, or take the resonator to strongly non-linear region. Therefore, it is nat-

ural to actuate a MEMS resonator with a well controlled weak force, usually converted

from another energy domain. The common actuators to drive the resonators include:

capacitive, thermal and piezoelectric actuation.

For piezoelectric actuation, an externally applied electric field changes the shape of the

piezoelectric material, thereby actuating the resonator in the desired direction. Using

piezoelectric approach, it is able to drive the resonators without any DC voltage, thereby

providing instantaneous AC forces in response of alternating electric field [82]. This

is one distinctive advantage over capacitive method. However, piezoelectric actuation

requires extra piezoelectric materials in the device, e.g. AlN [83], thus complicating the

fabrication process and adding extra cost. Moreover, large voltages are usually necessary

to obtain a sufficient actuation [82].

Thermal actuation is based on the property of a material that is subject to thermal

extension or compression when heated or cooled. This approach is easy to implement,

only consume low voltages compared to piezoelectric actuation [82]. But the long time

constant for heating or cooling in thermal actuation, in the range of µs [84] ultimately
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limits the response of the resonators. Because of this, the commercial success of thermal

actuation scheme is relatively limited compared to academia research.

Thanks to its simplicity to fabricate without extra materials, capability to integrate

with interface electronics systems, and low cost, the most popular method in MEMS

devices is capacitive actuation, or electrostatic force actuation. It has the drawbacks

such as nonlinear forces, pull-in instability [85] and an AC force could appear at double

frequency. However, the performance of a capacitive transduction can normally be

optimized, with careful design, the negative effects can be negligible.

There are two ways of implementing capacitive actuation. One is parallel plate, the

other is the comb finger (Figure 2.8(a) and Figure 2.8(b)). The plates move in different

directions for these two geometries: parallel plates move vertically to the plate, whereas

comb fingers move parallel to the plate. Both techniques have been used in various

resonator sensing applications, e.g. using parallel plate [31, 78] and comb drives [86].

Although comb fingers are capable of providing the weaker nonlinear force, thus allowing

a few time improvement in maximum displacements [87], parallel plate actuators are

more favourable in applications where large actuation forces are required for limited

device size, due to larger actuation forces provided by parallel plate actuator with an

equal volume and capacitor gap [82].

2.4.2 Motion pick-up

Sensing of the mechanical vibration of the resonator using electrical instruments, is

essentially the reverse process of energy conversion from electrical to mechanical domain.

Currently, methods to monitor the vibrating motion of resonators, such as piezoelectric

[70], optical [73] exist in the literature. However, due to the complexity of construction,

it shall not be discussed in this section. The simple-to-implement approaches include

capacitive and piezoresistive sensing.

It is known that the dimensions of a structure change due to mechanical stress applied.

For a conducting material, the change in dimensions results in a change of electrical

resistance. Utilizing this effect, piezoresistors are embedded to the support of resonators

to monitor the stress at the support of vibrating resonators where the change of stress

is the most significant. The main advantage of piezoresistive sensing is that it doesn’t

require complex interface circuitry compared to capacitive sensing. Therefore it has

been widely used in various resonator applications [51, 76]. However, due to the noisy,

temperature dependent nature of resistors, it is not suitable for applications where high

resolution and temperature stability is essential.
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For capacitive sensing, the basic principle is to measure the change in capacitance due

to the displacement of the resonator. Despite of the same problems as capacitive ac-

tuation, such as nonlinearity and pull-in instability (see Section 2.5.1), in addition to

parasitic capacitances [88], capacitive sensing has been a popular choice to detect the

displacement of MEMS resonators [78, 81], because of the improved noise performance,

power consumption it offers and its simplicity of implementation [82].

As capacitive actuation, there are two ways of implementing capacitive motion sens-

ing, parallel plate and comb fingers. Figures 2.8(a) and 2.8(b) show micro-fabricated

resonators with capacitive pick-up using parallel plate and comb fingers, respectively.

Similar to capacitive actuation, parallel plate capacitive motion pick-up has distinctive

disadvantages such as nonlinearity compared to comb fingers. However, normally the

gap between the plates is one fraction of the overlap length (∼ 1/10), assuming the

same initial value of capacitance, parallel plates offer higher response (∼ 10 times) to

the same displacement.

2.5 Nonidealities of MEMS resonator

Practical MEMS resonators have, sometimes undesired, nonidealities associated, such

as instabilities [89, 90], nonlinearities [91] and parasitics [92].

2.5.1 Instabilities

Figure 2.9: The figure shows the lever-sample displacement versus the force
between the sample and the cantilever tip [93]. The lever-sample displacement
increases as the cantilever gets closer to the sample surface. After an attractive
regime for normal force sensing, a “snap-in” or “jump-to-contact” occurs in
region (iii) where the force gradient exceeds the spring constant of the cantilever.
In this region, the force abruptly changes, due to a sudden change in the distance
between the tip and the sample, therefore indicating the tip jumps to contact
with the surface.
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There is a “jump-to-contact” [89] effect in dynamic AFM applications, where the restor-

ing stiffness of the cantilever is not sufficient to overcome the downward atomic force

(Van der Waals force) gradient, the tip jumps to the surface of the sample [93], as shown

in Figure 2.9. When this happens, the vibration of the resonator stops, thus the mea-

surement has to be interrupted. This instability also happens in capacitive actuation

and sensing, as known as the “pull-in” effect [90].

To avoid the “jump-to-contact” phenomenon, one approach is to change the orientation

of the resonator, so that the resonator is vertical to the sample surface rather than the

conventional parallel [94]. Using this approach, the force gradient is applied on the

longitudinal direction of the vibrating beam. Due to the larger longitudinal stiffness

compared to the lateral stiffness, the instability is alleviated [51, 79, 95].

The electrostatic force instability can be circumvented by making sure that the electro-

static force is always smaller than the restoring force of the resonator. To achieve this,

it is imperative to keep the DC voltage value smaller than the pull-in voltage, which is

given by (for a parallel plate actuator) [7]:

VPI =

√
8

27

Keffd3

ε0A
(2.5)

where Keff is the effective mechanical stiffness, d is the zero voltage gap between parallel

plate, A is the area of the plate, ε0 is the permittivity of free space.

In addition to this, it is essential to ensure that the electrostatic force gradient, which

is inversely proportional to (d− x)3 (x being the maximum amplitude), is smaller than

the effective mechanical stiffness of the resonator [82]. In this regard, it is also necessary

to use small amplitude compared to the spacing d to prevent pull-in.

2.5.2 Nonlinearities

Nonlinearities exist in electrostatically actuated microresonators in two forms, a) me-

chanical nonlinearity and b) electrostatic nonlinearity [91]. Due to the nature of the

nonlinearities, it can also be divided into two groups, a) spring-hardening nonlinearity

and b) spring-softening nonlinearity [96], as shown in Figure 2.10. It can be shown

that mechanical nonlinearity is typically a spring-hardening nonlinearity, whereas the

electrostatic nonlinearity is generally spring-softening [97].

As demonstrated in Figure 2.10, both nonlinearities become more severe as the max-

imum amplitude increases, and can potentially lead to instabilities in some frequency

region. Therefore, the nonlinearities ultimately sets the maximum stable amplitude of

the MEMS resonator. This conflicts the desire of high amplitude for higher sensitivity
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Figure 2.10: The figure shows two types of nonlinearities of MEMS resonators:
a) spring-hardening nonlinearity, where the spring is “hardened” as the ampli-
tude increases, thus tilting the resonance peak towards a higher frequency; b)
spring-soften nonlinearity, where the spring is “softened” with increasing am-
plitudes, hence pushing the resonance peak to a lower frequency [96].

for resonator sensor with amplitude change as output. Hence, the nonlinearities should

be minimized for some sensing applications.

To reduce the nonlinearity or enhancing the maximum linear amplitude, two approaches

have been proposed [96]. One way is to use “L-shaped” beams instead of “I-shaped”

beams. It is demonstrated in [96] that the “L-shaped” beams allow more flexibility and

stress release at one support, thus improving the maximum linear amplitude compared

to “I-shaped” beams. Another viable method is to use appropriate DC voltage, so that

the spring-softening nonlinearity introduced by capacitive actuation can cancel out the

spring-hardening nonlinearity, thus improving the linearity.

2.6 Parasitics

Electrical characterization of MEMS resonators working at high frequencies becomes in-

creasingly complicated at higher operating frequencies due to the parasitic elements [98].

Without proper control of the parasitics, the electrical signals through the parasitic ele-

ments can sometimes dominate the electrical measurements, as shown in Figure 2.11(b).

The most significant of the parasitic elements at lower frequency is the feedthrough ca-

pacitance, marked as C0 in Figure 2.11(a). The sources of the feedthrough capacitance
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(a)

(b)

Figure 2.11: Demonstration of parasitic elements and their effects: (a) Equiva-
lent electrical model of MEMS resonator with parasitic components [92]. and (b)
effect of increasing feedthrough capacitance for MEMS resonators, potentially
swamping the motion of the resonator [98].

include the capacitance of the capacitive transducer, interconnects and electrical packag-

ing [98]. Therefore, it is impossible to completely eliminate the feedthrough capacitance.

To reduce the effect of the feedthrough capacitance, one method is to decrease the ca-

pacitive overlapping area [99]. An alternative method is to compensate the feedthrough

current using a capacitor with the same value as the feedthrough capacitance. It was

reported that this can be achieved by either using a twin resonator [98] or an unreleased

resonator [100]. Another viable method is to measure two sets of data, with and with-

out DC bias [48]. It was demonstrated that the measured admittance of the MEMS

resonator can calculated as the admittance with DC bias subtracted from that without

DC bias, thus the effect of parasitic feedthrough capacitance can be cancelled.

Apart from the feedthrough capacitance, another parasitic element that is worth noticing

is the Cpad in Figure 2.11(a). For electrical characterization of the resonator, the output

of the resonator is directly connected to a preamplifier. Therefore, the parasitic Cpad

contributes to the total input capacitance of the amplifier. This in effect lowers the

flat band noise gain of the amplifier, hence deteriorates the stability and the maximum

bandwidth of a stable preamplifier [101].
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2.7 Summary

In this chapter, MEMS resonator sensors are reviewed. The working principles of differ-

ent types of resonator sensors are also described, including single resonator sensors and

coupled resonator sensors. Previous literature have demonstrated that mod-localized

coupled resonator sensors are more sensitive than single resonator sensors. In addition,

we have shown that γ3 is the most important parameter for the 3DoF mode-localized

sensor in this thesis, as it indicates the normalized sensitivity, as well as the improvement

in sensitivity compared to the 1DoF resonant sensors. Further, types of micromechan-

ical resonators, transducer technologies for actuation and sensing of the motion of the

resonator, as well as nonidealities of MEMS resonators in sensors in literature are also

reviewed. These would provide insight into the design rationale of our resonator sensors.

In Chapter 3, we will cover the fundamental theories of the MEMS resonator sensors,

especially the fundamental theory of coupled resonator sensors.
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Fundamental Theory

3.1 MEMS resonator dynamics

Figure 3.1: Fixed-fixed beam model with parameters

To understand the physics and working principle of a MEMS resonator sensor, we will

start with the dynamics of micro-resonators. Among various build of MEMS resonator

in the literature discussed in Chapter 2, the most common type is bending beams with

uniform rectangular cross-section, shown in Figure 3.1.

The dominant differential equation of motion for a transversally vibrating beam, without

external force, is given by [102]:

∂2

∂x2
[EI

∂2d(x, t)

∂x2
] + ξ

∂d(x, t)

∂t
+

∂

∂x
[T
∂d(x, t)

∂x
] + ρA

∂2d(x, t)

∂t2
= 0 (3.1)

In Equation 3.1, d(x) is the deflection of the beam at the position of x (0 ≤ x ≤ L) in

the z -axis, E is the young’s modulus of the material, ξ is the damping, T is the axial

tension applied to the beam (including residual stress), ρ is the density of the material,

A is the constant beam cross-sectional area, A = wt in this case, P (x) is the transverse

load applied. It is worth noting that I is the moment of inertia of the beam, which is

dependant of the direction of vibration. If it is defined that the resonator only moves in

the z -axis as shown in Figure 3.1, I = w3t/12.

The solution of Equation 3.1 can be transformed into the form of an equation of motion

in the z -axis of an unforced spring-damper-mass system given by [103]:

25
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M
∂2z(t)

∂t2
+ c

∂z(t)

∂t
+Kz(t) = 0 (3.2)

where the equivalent effective mass and spring constant are given by [104]:

Meff =

∫ L

0
ρAu2(x)dx (3.3a)

Keff =

∫ L

0
EI

(
∂2u(x)

∂x2

)2

dx+

∫ L

0
T

(
∂u(x)

∂x

)2

dx (3.3b)

Therefore, a beam with transversal vibrations can be modelled as a single DoF spring-

damper-mass system.

Figure 3.2: Beam with one end fixed and the other end subject to vertical
movement.

For a given boundary conditions of two ends of the beam, the mode shape u(x) is a given

function [105]. For instance, for a resonator with proof mass (as shown in Figure 2.5),

the suspension beam has one end fixed and the other end subject to vertical movement,

as shown in Figure 3.2. The fundamental mode shape is given by [105]:

u(x) =
3x2

L2
− 2x3

L3
, 0 < x < L (3.4)

Substituting Equation 3.4 into Equation 3.3, we are able to obtain the effective mass

and spring constant of this type of beam for the fundamental mode:

Meff = 0.371ρwtL (3.5a)

Keff =
Ew3t

L3
+

1.2T

L
(3.5b)

As described in the previous chapter, nonlinearities exist in suspension beams. Taking

the nonlinearities into consideration, the equation of motion of a resonator without any

force applied becomes [104]:
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Meff
∂2z(t)

∂t2
+ ceff

∂z(t)

∂t
+Keffz(t)

+

EA
2L

(∫ L

0

(
∂u(x)

∂x

)2

dx

)2
 z3(t) = 0

(3.6)

If we define the third order nonlinear spring constant Keff,3 as:

Keff,3 =
Ewt

2L

(∫ L

0

(
∂u(x)

∂x

)2

dx

)2

(3.7)

For a suspension beam with one end fixed and the other end subject to vertical move-

ment, Keff,3 becomes:

Keff,3 =
0.72Ewt

L3
(3.8)

With the fundamental mode shapes of cantilevers and fixed-fixed beams given in [82],

we are able to calculate the coefficients for the effective mass, spring constant and third

order nonlinear spring constant of the three types of beams, as listed in Table 3.1.

Coefficients of
Fixed-fixed

beam

Cantilever

beam

Suspension beam for

resonator with proof mass

Effective mass (×ρwtL) 0.40 0.25 0.37

Effective spring constant

without tension (×Ew
3t

L3
)

198 3 12

Modification of spring

constant by tension (×T
L

)
4.9 1.2 1.2

Third order nonlinear

spring constant (×Ewt
L3

)
11.90 0.68 0.72

Table 3.1: Calculated coefficients for the first resonant mode of different types
of beams based on the mode shapes given in [82]

Given the same dimensions of the beam and material, thus Young’s modulus, from the

table, it can be seen that fixed-fixed beam has the highest effective mass and spring

constant, while the cantilever beam has the lowest. If the beams are subject to an

identical tensile force, the fixed-fixed beam has the lowest normalized stiffness change,

while cantilever beam has the highest.
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As for the mechanical nonlinearity, the fixed-fixed beam has the strongest mechanical

nonlinearity, whereas cantilever and suspension beam for resonator with proof mass have

more than 10 times weaker mechanical nonlinearity than that of the fixed-fixed beam.

It was demonstrated that by employing a stress releasing tether, the nonlinearities of a

fixed-fixed beam can be reduced [96].

3.2 Capacitive transducer

Figure 3.3: Demonstration of parallel plate capacitive transducer.

In Chapter 2, different transduction techniques are discussed and compared. Due to

the simplicity of implementation, low cost, as well as low noise and power consumption,

capacitive transduction is the choice for our research. For the implementation, we chose

parallel plate actuator and motion pick-up because of its larger actuation force and

motional current, respectively. The effect of nonlinearity will be reduced using double-

sided parallel plate and differential sensing, as will be discussed later.

3.2.1 Capacitive actuator

For capacitive actuation, the actuation force is essentially an electrostatic force, which

is given by [82]:

F =
1

2
V 2 dC

dx
(3.9)

where V,C, d, x are the voltage difference on the opposite plates, capacitance, gap be-

tween the parallel plates and displacement, respectively. Suppose that an AC voltage

with an angular frequency of ω and an amplitude of vac is applied to the stator, and that

a DC voltage of Vdc is applied to the rotor, so that V = vac sinωt − Vdc. Equation 3.9

then becomes:
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F =
1

2
(Vdc − vac sinωt)2 dC

dx

=
1

2
(V 2
dc − 2Vdcvac sinωt+ v2

ac sin2 ωt)
dC

dx

=
1

2

[
(V 2
dc +

1

2
v2
ac)− 2Vdcvac sinωt+

1

2
v2
ac cos 2ωt)

]
dC

dx

(3.10)

It can be seen that in addition to a force component at desired driving frequency of

ω, there is also a DC force component, as well as an AC force component at twice

the driving frequency, 2ω. The DC part sets the quiescent point of the resonator. To

minimize the double frequency component, vac � Vdc is assumed, so that the second

order harmonic part can be neglected compared to the force components at ω and DC.

In the analysis followed, the double frequency component will be neglected under this

assumption.

For parallel plate actuators with given cross-sectional area of A, air gap of d and di-

electric constant in air of ε0, if the stator remains stationary and the rotor has a small

displacement x in the x -axis, the capacitance is:

C =
ε0A

d+ x
(3.11)

Therefore,

dC

dx
= − ε0A

(d+ x)2

= −ε0A

d2
+

2ε0A

d3
x− 3ε0A

d4
x2 +

4ε0A

d5
x3 − · · ·

(3.12)

Assuming that vac � Vdc, the total actuation force can be obtained from Equations 3.10

and 3.12:

Ftotal ≈
(
V 2
dc

2
− Vdcvac sinωt

)
dC

dx

≈ −
V 2
dc

2

ε0A

d2
+ Vdc

ε0A

d2
vac sinωt

+
V 2
dc

2

(
2ε0A

d3
x− 3ε0A

d4
x2 +

4ε0A

d5
x3 − · · ·

) (3.13)

Here a transduction factor, η = Vdc(dC/dx), is defined as the AC force to AC voltage

ratio. For different types of actuation geometries, the transduction factor is different.
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It can be seen from Equation 3.13 that the electrostatic actuation force is a constant AC

force superimposed by a DC force and displacement-x-dependent forces. As mentioned

above, DC force sets the operating point of the resonator. However, a sufficiently large

DC force will cause pull-in instability [82]. We shall leave the DC force for now and

analyse the other two components in what follows.

The AC actuation force equals to:

Fac = Vdc
ε0A

d2
vac sinωt ≡ ηA,P vac sinωt (3.14)

We shall define ηA,P as the actuation transduction factor [82], which is essentially the

coefficient of the transformation from electrical energy to mechanical energy, as shown

in Equation 3.14. Therefore the actuation transduction factor of parallel plates is:

ηA,P = Vdc
ε0A

d2
(3.15)

As for the forces dependent on the displacement x, it shows that the parallel plate

actuator can also act like a spring, a nonlinear spring in particular, due to higher order

terms with respect to x. Neglecting terms with order higher than 3, the behaviour of a

nonlinear spring can be mathematically approximated by [106]:

Fe ≈ −Kex(1 +K2ex+K3ex
2) (3.16)

The equivalent linear spring constant is therefore:

Ke = −
V 2
dcε0A

d3
(3.17)

It can be seen that a parallel plate capacitive actuator has a negative spring constant,

therefore, by using a parallel plate actuator to drive a MEMS resonator, effectively it

will reduce the total stiffness.

In addition, the nonlinear terms are:

K2e =
3

2d
(3.18a)

K3e =
2

d2
(3.18b)

We shall analyze these nonlinear terms further in later sections.
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3.2.2 Capacitive motion pick-up

For a parallel plate motion pick-up, as shown in Figure 3.3, when a DC voltage difference

of V is applied across the parallel plates, the displacement of the moving plate will cause

a change in capacitance. Consequently, the charge across the capacitor changes, resulting

in a current. If we define the motional current as the current resulting from the motion

of the moving plate, supposing a positive DC voltage is applied on the moving plate,

while the stationary plate is virtually grounded, this motional current caused by the

charge alternation on the stationary plate is expressed as:

i = −∂Q
∂t

= −∂(CV )

∂t
= −V ∂C

∂t

= −V ∂C
∂x

∂x

∂t

= −V
(
−ε0A

d2
+

2ε0A

d3
x− 3ε0A

d4
x2 +

4ε0A

d5
x3 − · · ·

)
ẋ

(3.19)

Neglecting the nonlinear terms, the motional current can be approximated as:

i ≈ V ε0A

d2
ẋ ≡ ηS,P ẋ (3.20)

Here we define the sensing transduction factor, ηS,P , which is the quotient of the motional

current divided by the velocity of the moving plate, and can be expressed as:

ηS,P = V
ε0A

d2
(3.21)

In addition to the motional current, the electrostatic force present between the sensing

electrodes will also introduce an electrostatic spring as discussed in Section 3.2.1. If it

is used to sense the motion of a MEMS resonator, the parallel plate motion pick-up will

also lower the effective stiffness.

To minimize the nonlinear motional current generated by the parallel plates, one way is

to use differential sensing based on a symmetrical parallel plates structure, as shown in

Figure 3.4.

Suppose a DC voltage V is applied on the moving plate, while the stationary plates are

grounded, and the plates are all identical, it is not difficult to find that the differential

current cancels out the odd order terms of x, thus reducing the nonlinearity.

Another advantage of differential sensing is that it can reduce the common mode effect,

such as feedthrough signal through parasitic capacitance [107], and also increase the

signal to noise ratio.
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Figure 3.4: Demonstration of symmetrical differential capacitive motion pick-
up. The cross sectional areas are identical for three plates, so are the gaps in
between.

3.2.3 Electrostatic coupling

Figure 3.5: Demonstration of parallel plate electrostatic coupling.

As demonstrated in Section 3.2.1, the electrostatic force between a parallel plate ac-

tuator behave like a spring restoration force. Therefore, it was demonstrated that the

electrostatic coupling could be used to couple the resonators [39, 63, 108]. To realize

the electrostatic coupling, only a DC voltage is applied across the parallel plate. An

electrostatic coupling utilising parallel plate structure is shown in Figure 3.5.

For both parallel plates are moving as shown in Figure 3.5, the total force exerted to

the plate on the left can be obtained using previous results, neglecting terms with order

higher than 3:

Ftotal ≈
V 2
dc

2

ε0A

d2

+
V 2
dc

2

[
2ε0A

d3
(x1 − x2) +

3ε0A

d4
(x1 − x2)2 +

4ε0A

d5
(x1 − x2)3

] (3.22)
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It can be seen from the mathematical expression that the linear coupling spring constant

can be written as:

Kc = −
V 2
dcε0A

d3
(3.23)

It is also worth noticing that, when the dimensions are the same, and the same DC

voltage is applied, the DC electrostatic force from the actuator and the coupling are the

same but have the opposite sign. In addition, the second order terms in Equations 3.13

and 3.24 have the opposite signs. In situations when x2 � x1, the second order terms

have approximately the same magnitude.

3.2.4 Symmetrical double sided capacitor structure

Figure 3.6: Demonstration of symmetrical double sided capacitor structure. The
cross sectional areas are identical for three plates, so are the gaps in between.

From the theoretical analysis in previous sections, we can analyze the total force exerted

to plate 2 for a symmetrical double sided capacitor structure as shown in Figure 3.6.

Suppose a Vdc is applied on plate 2, a sinusoidal voltage vac sinωt with vac � Vdc is ap-

plied on plate 1 and plate 3 is grounded. The total force on plate 2 can be approximated

as:

Ftotal ≈ ηA,P vac sinωt+
ε0V

2
dcA

d3
x1

+
ε0V

2
dcA

d3
(x1 − x2)−

3ε0V
2
dcA

2d4
[x2

1 − (x1 − x2)2] +
2ε0V

2
dcA

d5
[x3

1 + (x1 − x2)3]

(3.24)

It becomes clear that a symmetrical structure as shown in Figure 3.6 will provide dis-

tinctive advantages for the plate 2. For instance, the DC force cancels out, so that
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the maximum displacement to reach pull-in state is increased. This had already been

demonstrated in [109].

Another advantage is that the dominating second order nonlinearity from the actuator is

reduced. Consequently, reducing the total nonlinearities. In special cases where x2 � x1,

the second order term is negligible, the third order term becomes dominant.

3.3 Modelling of MEMS resonators

To understand the linear response to the external actuation, it is helpful to model the

MEMS resonator with a simple model, neglecting the nonlinearities. As demonstrated in

Section 3.1, a linear MEMS resonator can be modelled as a lumped spring-damper-mass

system, as shown in Figure 3.7.

Figure 3.7: Spring-damper-mass system of a single resonator.

Based on this system, we can model the resonator using a transfer function model and

an equivalent electrical circuit model. The transfer function modelling is a good tool to

analytically solve the differential equations for coupled resonators; whereas the electrical

circuit model is suitable for simulations, and it provides insight for integration of MEMS

resonators with electrical measurement systems.

3.3.1 Transfer function model

Consider a linear resonator, with M , c and K as the effective mass, damping and stiffness

of the resonator, respectively, and F as the external force. The equation of motion can

be written as:

Mẍ+ cẋ+Kx = F (3.25)

Suppose the resonator is driven by a parallel plate capacitive actuator with a trans-

duction factor of ηA,P , the actuation force is F = ηA,P v sinωt. Performing Laplace

transformation, Equation 3.25 can be rewritten as:
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(Ms2 + cs+K)x(s) = F (s) = ηA,P v(s) (3.26)

where x(s) is the vibration amplitude of displacement in the s-domain. Let s = jω, the

transfer function is:

x(jω)

v(jω)
=

ηA,P
M(jω)2 + cjω +K

(3.27)

If the output is the amplitude of velocity U(jω) instead of the amplitude of displacement

x(jω), then the transfer function is:

U(jω)

v(jω)
=

ηA,P jω

M(jω)2 + cjω +K
(3.28)

If this resonator employs capacitive sensing, with a transduction factor of ηS,P , then the

transfer function from AC voltage input to motional current is:

i(jω)

v(jω)
=

(ηA,P )(ηS,P )jω

M(jω)2 + cjω +K
(3.29)

This equation demonstrates the mechanical characteristics of the MEMS resonator. This

leads to the modelling of the mechanical resonator in the electrical domain.

3.3.2 Electrical modelling of MEMS resonators

(a)

(b)

Figure 3.8: Equivalent RLC circuit model for MEMS resonator: a) simple equiv-
alent circuit model for MEMS resonator; b) a more complex equivalent circuit
model for MEMS resonator with feedthrough capacitor and load impedance.

Equation 3.29 can be rewritten as:
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YR =
i(jω)

v(jω)
=

(ηA,P )(ηS,P )jω

M(jω)2 + cjω +K

≡ 1

Leffjω +Reff + 1/(jωCeff)

(3.30)

where, YR is the admittance of the resonator. And Leff , Reff and Ceff are defined as:

Leff =
M

(ηA,P )(ηS,P )

Reff =
c

(ηA,P )(ηS,P )

Ceff =
(ηA,P )(ηS,P )

K

(3.31)

This demonstrates that the MEMS resonator is equivalent to a series RLC circuit with

components value of Leff , Reff and Ceff . The simple equivalent RLC model is shown in

Figure 3.8(a).

However, due to the parasitic capacitance between the drive node to the sense node,

some current runs parallel to the MEMS resonator. Furthermore, the input impedance

of the interfacing circuitry, as well as parasitic capacitance from the sense node to the

ground, becomes the load of the RLC circuit. Taking these into consideration, a more

complex model of the equivalent circuit is shown in Figure 3.8(b).

3.3.2.1 Feedthrough capacitance

From the equivalent circuit model, it can be seen that the feedthrough capacitor brings

an extra zero into the total admittance, therefore usually an anti-resonance can be

discovered [98]. To ensure minimum effect of the feedthrough capacitance, the following

conditions should be satisfied:

ReffCft �
1

ω0
(3.32a)

Cft � Ceff (3.32b)

Condition 3.32a ensures that the phase is roughly 0◦ at main resonant frequency ω0.

Condition 3.32b ensures that the anti-resonance frequency is much higher than the

fundamental mode frequency of the resonator, thus reducing the effect of anti-resonance.
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3.3.2.2 Load impedance

We neglect the effect of feedthrough capacitance for the analysis of load impedance. The

load is normally a preamplifier with resistive and capacitive components. Therefore,

the load impedance will not have any impact on the inductance part of the resonator.

However, the resistive component of the load increases the dissipation, which leads to

higher damping coefficient and therefore lower quality factor, as well as higher power

dissipation. Therefore, a type of preamplifier with negligible input resistance is necessary.

Furthermore, the capacitive components of the load is in series with the equivalent

capacitance of the resonator, making the effective capacitance lower than that of the

unloaded resonator, which causes the resonant frequency to be higher than unloaded

resonator. However, the input capacitance is usually in the order of pF, while the

equivalent capacitance is usually lower than fF, therefore, the effect of the capacitive

load can be neglected.

3.4 Summary

In this chapter, fundamental theories of MEMS resonators, including resonator dynam-

ics, transduction technologies (including electrostatic coupling) and resonator modelling

are covered. We have laid the theoretical foundations for future analysis of a 3DoF

coupled resonator sensor. We have also demonstrated three different types of beams

used for resonator structures, and compared certain specifications such as stiffness and

mechanical nonlinearity of these beams. In addition, capacitive transduction, as well

as electrostatic coupling are discussed. We have also demonstrated the advantages of

differential motion pick-ups and double sided structures, such as reducing the electro-

static nonlinearities. Finally, we have covered two models for the physical modelling of

a MEMS resonator.





Chapter 4

Vibrational Behaviour Analysis of

3DOF Coupled Resonator System

4.1 Introduction

It was demonstrated that by employing mode localization effect in a weakly coupled

resonator sensor, substantial improvement in sensitivity of the sensor [36, 39, 108] can

be observed compared to single resonator with frequency shift as output. Therefore,

an intuitive approach is to use a 3DoF resonator system to improve the sensitivity

further from a 2DoF system. The intuition is that by adding one more energy storage

component, the insertion loss of the component attenuates the energy propagation down

the chain, making the energy more confined when perturbations are introduced. Hence,

intuitively, adding more resonators makes the mode localization stronger than a 2DoF

system.

Before proceeding to employ a 3DoF resonator system for sensing applications, it is nec-

essary to study the modal behaviour of a 3DoF resonator system, i.e. mode frequencies

and amplitudes. It should be pointed out that the amplitudes are proportional to the

drive forces of the resonators. Hence, for the sake of generality, to gauge the change in

mode amplitudes, we used amplitude ratios, eliminating the factor of the drive forces.

To theoretically analyze the modal behaviour of a 3DoF system, two methods are used

in this chapter. One is a method using a basic algebraic method. The mathematics for

this method is tedious for analysis with damping, therefore it is suitable for analysing

ideal systems without any damping.

The other is a novel approach utilising transfer function model of the MEMS resonator

as demonstrated in Chapter 3, which, according to the author’s knowledge, has not been

used in previous analysis of a coupled resonator system. Opposed to the algebraic ap-

proach or the matrix approach used in [34] without damping, this approach necessitates

39
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the inclusion of damping, otherwise the maximum vibration amplitude will not converge.

This enables the analysis of a more practical coupled resonator systems. In addition,

the transfer function model also allows the mechanical noise analysis. Furthermore, this

approach also enables system level analysis including feedback, as shall be seen in later

chapters. The theoretical results are verified by simulation.

4.2 3DoF coupled resonator behaviour analysis without

damping

To analyze the behaviour of a 3DoF resonator system, the algebraic method is used in

this section.

4.2.1 Unperturbed case

First consider an ideal, undamped, 3DoF weakly coupled resonator system as shown in

Figure 4.1. The masses are totally identical, M1 = M2 = M3 = M , spring constants

satisfy K1 = K3 = K,Kc1 = Kc2 = Kc, and K2 ≥ 2K. Thus the resonator in the middle

is different from its neighbouring resonators in terms of stiffness. In addition, we assume

that no force is applied, F1 = F2 = F3 = 0.

Figure 4.1: A spring-mass model of a 3DoF system.

With Ẍi = −ω2Xi (i = 1, 2, 3), Equations of motion can be written as:

−M1ω
2X1 = −(K +Kc)X1 +KcX2 (4.1a)

−M2ω
2X2 = −(K2 + 2Kc)X2 +KcX1 +KcX3 (4.1b)

−M3ω
2X3 = −(K +Kc)X3 +KcX2 (4.1c)
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To analyze the behaviour of the system, the equations shall be solved. However, the

system is underdetermined with 4 unknowns and only 3 equations. It can be found that

Xi 6= 0, i = 1 and 3, therefore, we can define the following:

r1 =
X2

X1
, r2 =

X2

X3
(4.2)

It is not difficult to obtain the following from Equations 4.1a to 4.1c:

Kcr1[Kcr
2
1 + (K2 −K +Kc)r1 − 2Kc] = 0 (4.3)

and

Mω2 = K +Kc −Kcr1 (4.4)

Using basic algebra, it can be seen that there are three solutions of r1 to Equation 4.3,

one negative, one zero and one positive. These solutions correspond to three solutions

of ω, meaning that there are three distinctive modes of the system:

• The positive solution of r1 corresponds to the first mode with the lowest frequency.

It is not difficult to find that the three resonators vibrate in-phase at this frequency;

• The solution r1 = 0 corresponds to the second mode with resonator 2 remains

stationary while the resonators on either sides vibrate out-of-phase, having a phase

difference of 180◦;

• The negative solution of r1 corresponds to the third mode having the highest

resonant frequency. At this frequency, each resonator is out-of-phase with its

neighbouring resonator, so resonators 1 and 3 are in phase, but out-of-phase with

resonator 2.

This conclusion matches with the description of vibration modes of a 3DoF vibratory

system in [35]. If we assume weak coupling as the following:

|Kc| <
K

10
≤ K2 −K

10
(4.5)

Once Equation 4.5 is satisfied, the vibration amplitudes of resonators 1 and 3 are trivial

compared to that of resonator 2 for the third mode. Therefore, the modes of interest for

the purpose of this work are the first two modes, which we will refer to as the in-phase

and out-of-phase modes, respectively.
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Due to the symmetry of Equations 4.1a and 4.1c, X1 = X3 for the in-phase mode and

X1 = −X3 for the out-of-phase mode.

4.2.2 Perturbed case with stiffness perturbation to resonator 3

Figure 4.2: A spring-mass model of a perturbed 3DoF system, with perturbation
occurring to resonator 3.

First we consider a case with a negative perturbation occurring to resonator 3 with

∆K < 0, the equations of motion become:

−M1ω
2X1 = −(K +Kc)X1 +KcX2 (4.6a)

−M2ω
2X2 = −(K2 + 2Kc)X2 +KcX1 +KcX3 (4.6b)

−M3ω
2X3 = −(K + ∆K +Kc)X3 +KcX2 (4.6c)

To solve Equations 4.6a to 4.6c for weak coupling (satisfying Equation 4.5), using the

defined ratios (Equation 4.2), divide Equation 4.6a by X1 and Equation 4.6c by X3.

Subtracting the resulting equations, we can obtain:

r2 = r1 +
∆K

Kc
(4.7)

It can be seen from Equations 4.6a to 4.6c that the amplitudes do not equal zero,

Xi 6= 0, i = 1, 2, 3. Therefore r1,2 6= 0. Substituting Equation 4.7 into Equations 4.6a

and Equation 4.6b, and eliminating Mω2, we can obtain:

Kcr1[Kcr
2
1 + (K2 −K +Kc)r1 − 2Kc]

+ ∆K[Kcr
2
1 + (K2 −K +Kc)r1 −Kc] = 0 (4.8)
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Before proceeding to solve the cubic equation, it is important to find the loci of the

possible roots of Equation 4.8 with changing ∆K < 0. We are able to plot the root loci

[110] for Equation 4.8 as shown in Figure 4.3:

Figure 4.3: Root locus of r1 for ∆K < 0.

where Z1,2 are the solution to equation:

Kcr
2
1 + (K2 −K +Kc)r1 −Kc = 0 (4.9)

and P1,2,3 are the solution to equation:

r1(Kcr
2
1 + (K2 −K +Kc)r1 − 2Kc) = 0 (4.10)

To verify this, a Matlab simulation is run. For the simulation, K2 = 2K and K = 50Kc.

The root locus of r1 is shown in Figure 4.4. It can be seen that the simulation results

agree with the theoretical predictions.

Figure 4.4: Matlab simulated root locus of r1 with for ∆K < 0.
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Three separate segments of root locus indicate that there are always three distinctive

solutions of r1 for Equation 4.8. It can also be seen in the figure that all three solutions

for r1 with any ∆K < 0 are real numbers.

a) Out-of-phase mode: for a solution r1,op of Equation 4.8 on the blue segment of the

root locus (shown in Figure 4.4, 0 < r1,op < Z1), corresponding to a real ∆K < 0, there

must be a real value Rop that satisfies:

∆K = Kcr1,opRop Rop < 0 for K < 0 (4.11)

Substituting Equation 4.11 into Equation 4.8, it can be seen that for r1,op, the following

condition should also be satisfied:

F(r1,op) = r2
1,op +

K2 −K +Kc

Kc
r1,op −

2 +Rop

1 +Rop
= 0 (4.12)

It can be concluded from fundamental theorems for a quadratic function F that, for a

0 < r1,op < Z1 that satisfies F(r1,op) = 0 to exist, F(0)F(Z1) < 0 should be satisfied. We

are able to find the resulting range of Rop < −2. This indicates that 0 < (2 +Rop)/(1 +

Rop) < 1.

Assumption weak coupling, expressed in mathematical form as:

|Kc| <
K

10
<
K2 −K

10
(4.13)

Solving Equation 4.12, the following relationship between r1 and Rop can be found:

r1,op ≈
Rop + 2

Rop + 1

Kc

K2 −K +Kc
(4.14)

Substitute Equation 4.14 into Equation 4.11, we can obtain:

∆K = RopKcr1,op ≈
R2

op + 2Rop

Rop + 1

K2
c

K2 −K +Kc
(4.15)

Solving Rop from Equation 4.15, we are able to obtain Rop as a function of ∆K:

Rop ≈
−2 + γ3δK −

√
(γ3δK)2 + 4

2
(∆K < 0) (4.16)
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where,

γ3 =
K(K2 −K +Kc)

K2
c

, absolute normalized sensitivity (4.17a)

δK =
∆K

K
, normalized stiffness perturbation (4.17b)

Here we have obtained the mathematical expression of the normalized sensitivity γ3 first

time in the thesis. Equation 4.17a is the most important expression in the thesis, and

will be used throughout the thesis.

From Equation 4.7, it can be shown that:

r2,op

r1,op
= 1 +Rop (4.18)

Substitute Equation 4.16 into Equation 4.18, it can be found that:

X1

X3

∣∣∣∣
op

=
r2,op

r1,op
= 1 +Rop ≈

γ3δK −
√

(γ3δK)2 + 4

2
(4.19)

For ∆K < 0, it is not difficult to see that at this mode, X3/X1 < 0. Thus this solution

corresponds to the out-of-phase mode. With the Rop solved, r1,op can also be obtained

using Equation 4.11. The angular frequency for the out-of-phase mode can therefore be

deduced from Equation 4.4:

ωop ≈

√
1

M

[
K +Kc +

1

2
(∆K − α+

√
∆K2 + α2)

]
(4.20)

where

α =
2K2

c

K2 −K +Kc
(4.21)

Following the same process, the amplitude ratio and mode frequency for ∆K > 0 can

also be calculated. It can be demonstrated that Equations 4.19 and 4.20 are also valid

for positive perturbations provided that |∆K| � K2 −K +Kc.

b) In-phase mode: as for this mode, similar procedure for deriving the out-of-phase mode

frequency can be applied. We are able to approximate the in-phase mode frequency as:

ωip ≈

√
1

M

[
K +Kc +

1

2
(∆K − α−

√
∆K2 + α2)

]
(4.22)



46 Chapter 4 Vibrational Behaviour Analysis of 3DOF Coupled Resonator System

Provided that |∆K| � K2 −K +Kc is satisfied. At the in-phase mode frequency:

X1

X3

∣∣∣∣
ip

=
r2,ip

r1,ip
= 1 +Rip ≈

γ3δK +
√

(γ3δK)2 + 4

2
(4.23)

Alternatively, we can model the 3DoF resonator system using matrix form, then the

amplitude ratios and the mode frequencies can be obtained by solving the corresponding

eigenvalue problem [34]. Matlab can solve the eigenvalue problems using ”eig” function.

Hence, by modelling the system using matrix, we can then obtain the eigenvalues and

amplitude ratios using a Matlab programme (an example code is attached in Appendix

C). Comparing the solution of the Matlab programme to our derived results, we can

then verify the mode frequencies and amplitude ratios. First the matrix mathematical

form of the 3DoF resonator can be written as:

λ


X1

X2

X3

 =


K+Kc
M −Kc

M 0

−Kc
M

K2+2Kc
M −Kc

M

0 −Kc
M

K+∆K+Kc
M



X1

X2

X3

 (4.24)

where λ is the eigenvalue of the 3×3 matrix on the right hand side of the equation, from

which the mode frequency ω can be obtained (ω =
√
λ). The amplitude ratios can be

obtained from the eigenstates ([X1 X2 X3]T).

The values used for the Matlab simulation are listed in Table 4.1. These values are

used for the simulation because they are very close to the design values of one of the

tested devices. From the simulated results using Matlab, it can be demonstrated that

our solution using the algebraic approach is very accurate, with maximum relative error

lower than 1.2% for amplitude ratio and 4× 10−6% for mode frequencies.

Table 4.1: Values used in the Matlab simulation

Component Value

K 57.62N/m

Kc -0.69N/m

K2 199.55N/m

M 6.94µg

4.2.3 Perturbed case with stiffness perturbation to resonator 1

Now we consider the situation where a perturbation is introduced to the spring of res-

onator 1. Due to the symmetry of the system about resonator 2, we are able to directly
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(a) In-phase mode amplitude ratio (b) Out-of-phase mode amplitude ratio

(c) In-phase mode frequency (d) Out-of-phase mode frequency

Figure 4.5: Comparison between theoretically estimated values using algebraic
method (black) and Matlab simulated values (red) of amplitude ratios and mode
frequencies, for stiffness perturbations to resonator 3: a) in-phase mode ampli-
tude ratio, b) out-of-phase mode amplitude ratio, c) in-phase mode frequency
and d) out-of-phase mode frequency.

Figure 4.6: A spring-mass model of a perturbed 3DoF system, with perturbation
occurring to resonator 1.

use the results derived previously, provided that |∆K| � K2 −K +Kc is satisfied.

a) Out-of-phase mode: for the out-of-phase mode, the mode frequency is:

ωop ≈

√
1

M

[
K +Kc +

1

2
(∆K − α+

√
∆K2 + α2)

]
(4.25)

Amplitude ratio at this frequency is:
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X3

X1

∣∣∣∣
op

≈
γ3δK −

√
(γ3δK)2 + 4

2
(4.26)

Therefore,

X1

X3

∣∣∣∣
op

≈ 2

γ3δK −
√

(γ3δK)2 + 4
≈
−γ3δK −

√
(γ3δK)2 + 4

2
(4.27)

b) In-phase mode: for the in-phase mode, the mode frequency is:

ωip ≈

√
1

M

[
K +Kc +

1

2
(∆K − α−

√
∆K2 + α2)

]
(4.28)

At the in-phase mode:

X3

X1

∣∣∣∣
ip

≈
γ3δK +

√
(γ3δK)2 + 4

2
(4.29)

Therefore,

X1

X3

∣∣∣∣
ip

≈ 2

γ3δK +
√

(γ3δK)2 + 4
≈
−γ3δK +

√
(γ3δK)2 + 4

2
(4.30)

It can be seen that in terms of amplitude ratios, by comparing Equation 4.27 to Equa-

tion 4.19 and Equation 4.30 to Equation 4.23, mathematically, a positive perturbation

∆K > 0 in resonator 1 is equivalent to a negative perturbation −∆K < 0 in resonator

3, vice versa.

However, as far as the mode frequency is concerned, the same perturbation in resonator

1 or 3 has the same effect.

Combining these two reasons, amplitude ratio detection has the capability of detecting

the position of the perturbation, whereas frequency shift detection does not. This conclu-

sion can be helpful in future research for which knowing the position of the perturbation

is important.

To verify these expressions, Matlab calculations without any assumptions were per-

formed. The parameters for the simulation were identical to the calculations in the

previous section (shown in Table 4.1), except that the perturbations was stiffness per-

turbations to resonator 1. The theoretical results (Equations 4.25, 4.28, 4.27 and 4.30)

are compared to the Matlab calculated results, and plotted in Figure 4.7. It can be seen

from the theoretical results agreed well with the Matlab simulation results.
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(a) In-phase mode amplitude ratio (b) Out-of-phase mode amplitude ratio

(c) In-phase mode frequency (d) Out-of-phase mode frequency

Figure 4.7: Comparison between theoretically estimated values using algebraic
method (black) and Matlab simulated values (red) of amplitude ratios and mode
frequencies, for stiffness perturbations to resonator 1: a) in-phase mode ampli-
tude ratio, b) out-of-phase mode amplitude ratio, c) in-phase mode frequency
and d) out-of-phase mode frequency.

4.2.4 Perturbed case with stiffness perturbation to resonators 1 and 3

Figure 4.8: A spring-mass model of a perturbed 3DoF system, with perturbation
occurring to both resonator 1 and 3.

Consider the 3DoF system is perturbed by two perturbations at the same time, as

shown in Figure 4.8. We shall now define K ′ = K + ∆K1. Hence the effective stiffness

perturbation to resonator 3 is ∆K ′ = ∆K3 −∆K1.

Now substitute K ′ for K and ∆K ′ for ∆K into the equations of motion (Equations 4.6a

to 4.6c), and follow the same procedure as shown in section 4.2.2, assuming ∆K1,2 � K,
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we can obtain:

X1

X3

∣∣∣∣
op

≈
γ3δK

′ −
√

(γ3δK ′)2 + 4

2
(4.31a)

ωop ≈

√
1

M

[
K ′ +Kc +

1

2
(∆K ′ − α+

√
∆K ′2 + α2)

]
(4.31b)

X1

X3

∣∣∣∣
ip

≈
γ3δK

′ +
√

(γ3δK ′2) + 4

2
(4.31c)

ωip ≈

√
1

M

[
K ′ +Kc +

1

2
(∆K ′ − α−

√
∆K ′2 + α2)

]
(4.31d)

where

δK ′ =
∆K ′

K
=

∆K2 −∆K1

K
(4.32)

To verify Equations 4.31a to 4.31d, Matlab simulations using the values listed in Table

4.1 were run. A constant stiffness perturbation ∆K2 = −0.0346 was introduced to

resonator 3, while the varying stiffness perturbations was introduced to resonator 1.

Hence in the following figures, the normalized stiffness perturbations ∆K/K was in fact

∆K1/K. It can be seen that Equations 4.31a to 4.31d can be regarded as accurate

estimations of the amplitude ratios and mode frequencies.

It can be seen from Equations 4.31a and 4.31c that the amplitude ratios are functions of

perturbation difference ∆K2−∆K1. Whereas it can also be seen from Equations 4.31d

and 4.31d that the mode frequencies change with both perturbations. This indicates

that the amplitude ratios have the capability of common mode rejection compared to

the frequency shifts, which was also concluded in other similar research [36, 41].

Another significance of Figures 4.9(a) and 4.9(b) is that, it demonstrated that the am-

plitude ratio curves can be translated, hence the starting point for the varying stiffness

perturbations can be biased. It should also be noticed that the biased starting point

can be altered by changing ∆K2. This shall be used later.

4.2.5 Summary

It has been demonstrated that with the balance broken, two modes of interest are dis-

turbed; i.e. both the mode shapes and frequencies change, while the order of the modes
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(a) In-phase mode amplitude ratio (b) Out-of-phase mode amplitude ratio

(c) In-phase mode frequency (d) Out-of-phase mode frequency

Figure 4.9: Comparison between theoretically estimated using algebraic method
and Matlab simulated values of amplitude ratios and mode frequencies, for
stiffness perturbations to both resonators 1 and 3: a) in-phase mode amplitude
ratio, b) out-of-phase mode amplitude ratio, c) in-phase mode frequency and d)
out-of-phase mode frequency.

in frequency domain remain unchanged due to frequency veering [62], so called mode

localization occurs [62].

From the analysis, it can be shown that the amplitude ratios have two advantages com-

pared to frequency shifts: (a) they can be used to detect the position of the perturbation;

(b) they have the capability of common mode rejection.

4.3 3DoF coupled resonator behaviour analysis with damp-

ing

The previous analysis using algebraic approach provides no information regarding how

the system would respond if damping is present. Furthermore, the algebraic analysis

assumed no external driving forces, which is not practical in MEMS resonator systems.

Combining the two reasons, a more complete analysis of the behaviour of a 3DoF coupled

resonator system using transfer function model is necessary.

4.3.1 Coupled resonator models

The spring-mass-damper model of a damped 3DoF coupled resonator system is shown

in Figure 4.10.
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Figure 4.10: A spring-mass-damper model of a damped 3DoF resonator system,
with external forces applied

Assuming that all the springs are linear, the equations of motion can be written as:

M1Ẍ1 + c1Ẋ1 + (K1 +Kc1)X1 −Kc1X2 = F1 (4.33a)

M2Ẍ2 + c2Ẋ2 + (K2 +Kc1 +Kc2)X2 −Kc1X1 −Kc2X3 = F2 (4.33b)

M3Ẍ3 + c3Ẋ3 + (K3 +Kc2)X3 −Kc2X2 = F3 (4.33c)

Performing Laplace transform in all of the equations above, and rearranging:

[M1s
2 + c1s+ (K1 +Kc1)]X1(s) = Kc1X2(s) + F1(s) (4.34a)

[M2s
2 + c2s+ (K2 +Kc1 +Kc2)]X2(s) = Kc1X1(s) +Kc2X3(s) + F2(s) (4.34b)

[M3s
2 + c3s+ (K3 +Kc2)]X3(s) = Kc2X2(s) + F3(s) (4.34c)

According to the Equations 4.34a, 4.34b and 4.34c, we are able to sketch the block

diagram of the forced and damped 3DoF coupled resonator, as displayed in Figure 4.11.

Figure 4.11: The block diagram of a forced 3DoF system

The s dependant gains are defined to be:

H1(s) ≡M1s
2 + c1s+ (K1 +Kc1) (4.35a)
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H2(s) ≡M2s
2 + c2s+ (K2 +Kc1 +Kc2) (4.35b)

H3(s) ≡M3s
2 + c3s+ (K3 +Kc2) (4.35c)

Let s = jω, we are able to obtain the transfer functions in the matrix form:

 X1(jω)

X2(jω)

X3(jω)

 = H

 F1(jω)

F2(jω)

F3(jω)

 (4.36)

where

H =

 H11(jω) H12(jω) H13(jω)

H21(jω) H22(jω) H23(jω)

H31(jω) H32(jω) H33(jω)

 (4.37)

By applying Mason’s rule [111] to the block diagram shown in Fig. 4.11, we are able to

obtain the following transfer functions:

H11(jω) =
H2(jω)H3(jω)−K2

c

D(jω)
(4.38a)

H22(jω) =
H1(jω)H3(jω)

D(jω)
(4.38b)

H33(jω) =
H1(jω)H2(jω)−K2

c

D(jω)
(4.38c)

H12(jω) = H21(jω) =
H3(jω)Kc

D(jω)
(4.38d)

H23(jω) = H32(jω) =
H1(jω)Kc

D(jω)
(4.38e)

H13(jω) = H31(jω) =
K2
c

D(jω)
(4.38f)

where

D(jω) = H1(jω)H2(jω)H3(jω)− [H1(jω) +H3(jω)]K2
c (4.39)

As described in Chapter 3, a single resonator can be modelled into an RLC circuit. By

applying the transfer functions, we can build an electronic RLC circuit equivalent to a

3DoF coupled resonator system, as demonstrated in Figure 4.12.
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Figure 4.12: The electronic circuit model of a forced 3DoF system

Like the single resonator, the masses are modelled as inductors, damping as resistors

and springs as capacitors. The three voltage sources are forces sources. The effective

value can be calculated from Equation 3.31. This is a similar to the model of a 3DoF

resonator system proposed by [35].

4.3.2 Perturbed case with stiffness perturbation to resonator 3

4.3.2.1 Frequency response

Figure 4.13: A spring-mass-damper model of a balanced 3DoF resonator system
perturbed by a stiffness perturbation to resonator 3.

Consider a balanced 3DoF resonator system perturbed with a stiffness perturbation to

resonator 3, with M1 = M2 = M3 = M , K1 = K,K2 ≥ 2K,Kc1 = Kc2 = Kc and

K3 = K + ∆K, |∆K| � K, as shown in Figure 4.13. Also suppose that the resonator

system is weakly coupled, thus Equation 4.5 is satisfied, and is only driven by F1, and

F2 = F3 = 0.

As for the damping, since the perturbation is weak with |∆K| � K, while the mass is

identical, we can assume that the damping of resonator 1 and 3 is the same, c1 = c3 = c.

In addition, it can be demonstrated by equivalent circuit model simulations that the

damping of resonator 2 has a negligible effect on the frequency response, i.e. mode

frequencies and Q-factor of the in-phase and out-of-phase modes. The values used for

the simulation are listed in Table 4.2 and the equivalent circuit model for this simulation

in PSpice is presented in Figure 4.14. The schematic is identical to Figure 4.12, except

that only V1 was used as assumed, and that large resistors were used in parallel to C1,2,3
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for convergence of the simulation. The coupling capacitors used were negative so that

the electrostatic coupling can be modelled.

Table 4.2: Values and conditions for the simulations varying damping of res-
onator 2

Component Values
Mechanical model

equivalent

L 0.489MH M

C 0.254fF K

C2 84.8aF K2/K = 3

Cc -19.07fF K/Kc = −75, γ3 = 11174

R 0.44MΩ c, Q = 100k

R2

0.44MΩ

44MΩ

c2 = c

c2 = 100c

∆C
0fF

−0.25pF

∆K = 0

∆K/K = −1× 10−3

Figure 4.14: Equivalent circuit model schematic used for simulation in PSpice
for simulations with perturbations to resonator 3.

It can be seen from Figure 4.15 that by increasing the damping of resonator 2 by two

orders of magnitude, the change in the mode frequencies and the Q-factors are less than

1%, which can be neglected. Therefore, for the simplicity of the following analysis, we

shall assume that c1 = c2 = c3 = c. The transfer functions can be written as:

H1(s) = Ms2 + cs+ (K +Kc) (4.40)

H2(s) = Ms2 + cs+ (K2 + 2Kc) (4.41)

H3(s) = Ms2 + cs+ (K +Kc + ∆K) (4.42)

Due to damping, the quality factor will be a finite value, hence leading to a finite

bandwidth of each mode. When one mode is in close vicinity to the other, the modes will

interfere with each other, therefore mode aliasing occurs. To illustrate the effect of mode

aliasing, a simulation using the RLC equivalent circuit as shown in Figure 4.12 was run.

A quality factor of the modes of Q = 5000 in vacuum was assumed; this is a conservative

estimation compared to similar resonant devices [39, 112]. The conditions and values
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Figure 4.15: Demonstration that the damping of resonator 2 has a negligible
effect on the frequency response of the in-phase and out-of-phase modes: a)
without perturbation; b) with stiffness perturbation to resonator 3, ∆K/K =
−1 × 10−3. It can be seen that increasing the damping of resonator 2 by 100
times does not significantly change the frequency responses of resonators 1 and
3 of the in-phase and out-of-phase modes.

used for the simulations are listed in Table 4.3. Four simulations were performed for

varying values of γ3,K/Kc and ∆K/K; the frequency response of the resonators 1 and

3 measured by the motional currents with 15mV driving voltage are shown in Fig.

4.16. Comparing Fig. 4.16(a), 4.16(b), 4.16(c) and 4.16(d), it is noticed that when the

mode frequency difference decreases, the mode aliasing becomes more severe, eventually

resulting in merged modes for one resonator (Fig. 4.16(b)) and both resonators (Fig.

4.16(c)). The difficulty in identifying the mode of interest, i.e. the out-of-phase mode, in

case of severe mode aliasing (e.g. as shown in Fig. 4.16(c)) can lead to the sensor being

unable to operate as intended. To avoid severe mode aliasing, an anti-aliasing condition

should be satisfied:

∆ω > 2×∆ω3dB (4.43)
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Table 4.3: Values and conditions for the simulations demonstrating mode alias-
ing

Simulation Component values Mechanical model equivalent

a) to d)

L = 0.489MH M

C = 0.254fF K

C2 = 84.8aF K2/K = 3

R = 8.77MΩ Q = 5000

a) Cc = −3.81fF, ∆C = 0fF K/Kc = −15, γ3 = 435, ∆K/K = 0

b) Cc = −12.72fF, ∆C = 0fF K/Kc = −50, γ3 = 4950, ∆K/K = 0

c) Cc = −19.07fF, ∆C = 0fF K/Kc = −75, γ3 = 11174, ∆K/K = 0

d) Cc = −19.07fF, ∆C = −0.17pF K/Kc = −75, γ3 = 11174, ∆K/K = −1.5× 10−3
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(c) γ3 = 11174, ∆K/K = 0
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(d) γ3 = 11174, ∆K/K = −1.5× 10−3

Figure 4.16: Simulated frequency responses resonators 1 and 3 using and equiv-
alent electrical RLC network model (as shown in Figure 4.12) with a quality
factor of 5000 and varying parameters: a) γ3 = 435, ∆K/K = 0, b) γ3 = 4950,
∆K/K = 0, c) γ3 = 11174, ∆K/K = 0, d) γ3 = 11174, ∆K/K = −1.5× 10−3.
The theoretically calculated frequency difference and the 3dB bandwidth of the
modes are also shown in the figure. The mode distortion caused by the mode
aliasing effect can be seen in b) and c); this is due to the relatively small fre-
quency difference between the in-phase and out-of-phase modes. The mode
aliasing effect reduces for larger mode frequency differences.

Once the anti-aliasing condition is fulfilled, and assuming weak coupling (Equation 4.13),

the mode frequencies with damping can be approximated using Equations 4.20 and 4.22.
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This is verified by simulations using equivalent RLC circuit. The values used for the

simulation are listed in Table 4.4.

Table 4.4: Values used in the simulation to demonstrate the mode frequencies
with damping

Component Value Mechanical model equivalent

L 0.489MH M

C 0.254fF K

C2 84.8aF K2/K = 3

Cc -19.07fF K/Kc = −75, γ3 = 11174

R 8.77MΩ Q = 5000
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Figure 4.17: Simulation results showing the in-phase and out-of-phase mode
frequencies as a function of normalized stiffness: a) simulated with a quality
factor of 5000, and theoretically calculated mode frequencies using Equations
4.20 and 4.22; b) simulated and calculated mode frequency difference, ∆ω =
ωop−ωip. The blue lines in both figures mark the boundary of ∆ω = 2×∆ω3dB.
Regions where the anti-aliasing condition is satisfied are marked in both figures.
The blue shaded area in a) shows the region where mode aliasing is so severe that
the in-phase and out-of-phase modes cannot be differentiated. The theoretically
calculated mode frequencies match well with simulated values, however, the
error tends to grow when the frequency difference decreases in value.

As demonstrated in Fig. 4.17, Equations 4.20 and 4.22 can still be regarded as accurate

estimations of mode frequencies for ∆ω ≥ 2 × ∆ω3dB, with relative errors less than

25ppm. Therefore, for the following analysis, we shall use Equations 4.20 and 4.22 for

the out-of-phase and in-phase mode frequencies.
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4.3.2.2 Mode localization

For the case with damping, the symmetry of the amplitude ratios at the in-phase and out-

of-phase mode frequencies, shown in Figure 4.5 is still valid. This can be demonstrated

in Figure 4.18. Hence, without loss of generality, we shall analyse the amplitude ratio of

the out-of-phase mode in this section. In addition, for sensors to achieve high sensitivity,

a branch with higher slope is chosen, in this case, ∆K < 0 as shown in Figure 4.18.
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Figure 4.18: Demonstration of the symmetry of the amplitude ratios at the
in-phase and out-of-phase mode frequencies.

Suppose the system is driven only by F1 and F2 = F3 = 0, when the anti-aliasing

condition (Equation 4.43) and weak coupling assumption (Equation 4.13) is satisfied,

we can approximate the displacement and velocity amplitude ratio at the out-of-phase

mode frequency, for negative ∆K < 0, as:

∣∣∣∣U1(jωop)

U3(jωop)

∣∣∣∣ =

∣∣∣∣X1(jωop)

X3(jωop)

∣∣∣∣ =

∣∣∣∣H11(s)

H31(s)

∣∣∣∣ =

∣∣∣∣H2(s)H3(s)−K2
c

K2
c

∣∣∣∣
≈

∣∣∣∣∣γ3(∆K/K)−
√
γ2

3(∆K/K)2 + 4

2
+ j

γ3

Q

∣∣∣∣∣
(4.44)

To verify Equation 4.44, the same simulation as in the previous section was run, with

electrical circuit parameters listed in Table 4.5. The stiffness perturbations are chosen

so that the condition of anti-aliasing is fulfilled.

It can be seen from Fig. 4.19 that the simulated results agree well with Equation 4.44,

with relative error smaller than 1%. Therefore, Equation 4.44 can be considered as an

accurate estimation of amplitude ratio with damping when the anti-aliasing condition

is satisfied.

It can be seen from the mathematical expression that the amplitude ratio with damping

is larger than that without any damping. Furthermore, the phase difference between

the two resonators can be modified by the finite Q-factor because of damping. However,
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Table 4.5: Values used in the simulation to demonstrate the amplitude ratios
with damping

Component Value Mechanical model equivalent

L 0.489MH M

C 0.254fF K

C2 84.8aF K2/K = 3

Cc

−12.72fF

−19.07fF

K/Kc = −50, γ3 = 4950

K/Kc = −75, γ3 = 11174

R 8.77MΩ Q = 5000
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Figure 4.19: Simulated amplitude ratios together with the amplitude ratios
calculated according to Equation 4.44 and a quality factor of Q = 5000.

it can be noticed that the effect of a given damping can be reduced by increasing the

amplitude ratio value without damping. This will be elaborated in later chapters.

4.3.3 Other perturbed cases

a) Stiffness perturbation to resonator 1: due to the symmetry of resonator 1 and 3, the

behaviour of the system of the perturbed case with a negative stiffness perturbation

∆K < 0 introduced to resonator 1, and driven only by F3, F1 = F2 = 0 can be analysed

by a similar approach. The mode frequencies can still be approximated by Equations

4.20 and 4.22. When anti-aliasing condition is satisfied, the amplitude ratio of the

out-of-phase mode, for the negative ∆K < 0 can be approximated by:

∣∣∣∣U3(jωop)

U1(jωop)

∣∣∣∣ =

∣∣∣∣X3(jωop)

X1(jωop)

∣∣∣∣ =

∣∣∣∣H33(s)

H13(s)

∣∣∣∣ =

∣∣∣∣H1(s)H2(s)−K2
c

K2
c

∣∣∣∣
≈

∣∣∣∣∣γ3(∆K/K)−
√
γ2

3(∆K/K)2 + 4

2
+ j

γ3

Q

∣∣∣∣∣
(4.45)
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b) Stiffness perturbation to both resonators 1 and 3: now consider the balanced 3DoF

resonator system is perturbed with ∆K1 to resonator 1, and a negative perturbation

∆K3 < 0 to resonator 3. A similar approach as shown in Section 4.2.4 by defining

K ′ = K + ∆K1 is used. Hence the effective stiffness perturbation to resonator 3 is

∆K ′ = ∆K2 −∆K1.

Now substitute K ′ for K and ∆K ′ for ∆K into the transfer functions (Equations 4.40

to 4.42), and follow the same procedure as shown in Section 4.3.2, assuming |∆K1| <
|∆K2| � K and anti-aliasing condition is satisfied, we can obtain the mode frequencies

and the amplitude ratio at the out-of-phase mode frequency:

ωop ≈

√
1

M

[
K ′ +Kc +

1

2
(∆K ′ − α+

√
∆K ′2 + α2)

]
(4.46a)

ωip ≈

√
1

M

[
K ′ +Kc +

1

2
(∆K ′ − α−

√
∆K ′2 + α2)

]
(4.46b)

∣∣∣∣U1(jωop)

U3(jωop)

∣∣∣∣ =

∣∣∣∣X1(jωop)

X3(jωop)

∣∣∣∣ ≈
∣∣∣∣∣γ3(∆K ′/K)−

√
γ2

3(∆K ′/K)2 + 4

2
+ j

γ3

Q

∣∣∣∣∣ (4.46c)

where

δK ′ =
∆K ′

K
=

∆K2 −∆K1

K
(4.47)

To verify the modal behaviour of the 3DoF weakly coupled resonator system (Equations

4.46b, 4.46b and 4.46c), a simulation with equivalent RLC circuit model was run. The

values used in the simulation were the same as listed in Table 4.4. In addition, a

constant stiffness perturbation ∆K2/K = −0.001 was introduced to resonator 3. The

stiffness perturbation to resonator 1 ∆K1/K was varied, and was in fact identical to the

normalized stiffness perturbations in the following figures. The mode frequencies and

amplitude ratios were depicted in Figure 4.20(a) and Figure 4.20(b), respectively. It can

be seen from the figures that the theoretical estimations can be regarded accurate, with

relative errors smaller than 0.2% for amplitude ratios and 0.003% for mode frequencies.

It can be seen from the simulations with damping that the concept of setting the op-

erating point, as discussed in Section 4.2.4, can also be used for practical cases with

damping. It should be pointed out that by intentionally introducing a bias stiffness

perturbation, ∆K2 to resonator 3 in this case, the regions with undistinguishable modes

was translated (comparing Figure 4.20(a) to Figure 4.17(a)), allowing the extension of

the dynamic range. This will be discussed further later in Section 6.5.2.
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Figure 4.20: Simulated values together with the theoretical values calculated
according to Equations 4.46b, 4.46b and 4.46c, for stiffness perturbations to
both resonator 1 and 3, of: a) mode frequencies and b) amplitude ratios.

4.4 FEM simulations

To verify the theoretical calculations for MEMS resonators, a 3DoF weakly coupled

resonator device was built and simulated in Coventorware. The 3DoF resonator device

used in the simulation is demonstrated in Figure 4.21.

Figure 4.21: A 3DoF resonator device used in the FEM simulations. M1, M2
and M3 indicate three proof masses of three resonators separated by air gaps.
The coupling is realized through electrostatic springs, and actuation is realized
through capacitive forces.

For this verification purpose, the choice of the design parameters of the device were

arbitrary. The parameters of the device is listed in Table 4.6.
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Table 4.6: Dimensions of the device

Parameter Design Value Unit

Device layer thickness 50 µm

Suspension beam lengths

(resonator 1, 2 and 3)
450 µm

Suspension beam width

(resonator 1 and 3)
7 µm

Suspension beam width

(resonator 2)
19 µm

Gaps between resonators 6 µm

Gaps between resonator

and electrode
6 µm

Proof mass 300×300 (µm)2

Tether length 150 µm

Electrode for force

perturbation overlap
130 µm

In the simulations, nonlinearity of the mechanical springs was excluded to ensure linear

springs. To couple the resonators, a DC voltage of 80V was applied to resonators 1 and

3, while resonator 2 was grounded. This created a K/Kc ≈ 15, satisfying weak coupling

conditions.

Stiffness perturbation was realized through two ways, one is axial electrostatic force, as

shown by Equation 3.5b; the other one is spring softening by applying a DC voltage on

the perturbation electrode. This is to demonstrate that the stiffness perturbation can

be introduced by both approaches.

4.4.1 Mode localization

To demonstrate the mode localization, a mode analysis was performed. For this simu-

lation, an extra pulling electrostatic force was applied to resonator 1, so that a ∆K > 0

was introduced to resonator 1. Before applying the electrostatic force, resonators 1 and 3

are completely identical. At the out-of-phase mode frequency, as shown in the balanced

situation in Figure 4.22, the vibration amplitudes of resonators 1 and 3 are identical.

After applying the electrostatic force to resonator 1, the elastic energy was localized to

resonator 1, leading to a larger vibration amplitude of resonator 1 compared to resonator

3, mode localization occurred, as shown in the Figure 4.22.

4.4.2 Modal behaviour without damping

To demonstrate the vibration behaviour of the resonators without damping of a 3DoF

weakly coupled MEMS resonator device, an extra electrostatic force was applied to
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Figure 4.22: Demonstration of mode localization effect of a 3DoF resonator
device in FEM simulations. After introducing an electrostatic tensile force to
resonator 1, the balance of the 3DoF device was broken, leading to energy
localization to resonator 1, mode localization occurred.

resonator 1 to introduce a positive ∆K > 0 to resonator 1. The simulated vibration am-

plitude ratio X1/X3, as well as mode frequencies of the in-phase and out-of-phase modes,

as a function of the normalized stiffness perturbation are plotted in Figures 4.23(a) and

4.23(b), respectively. The theoretical amplitude ratios, out-of-phase and in-phase mode

frequencies were calculated using Equation 4.27, Equation 4.26 and Equation 4.28, re-

spectively, and plotted in the figures as well.
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Figure 4.23: Simulated amplitude ratio and mode frequencies together with the
theoretically calculated values assuming no damping, as a function of positive
stiffness perturbations to resonator 1.
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It can be seen from Figure 4.23 that the simulated results agreed well with the theoretical

calculations, with relative errors less than 1% for amplitude ratios and 4% for mode

frequencies, indicating that the theoretical estimations are accurate. It should be noticed

that the mode frequencies simulated by FEM tool were smaller than theoretical values.

This may be caused by the elastic energy stored in the anchor.

From the simulations, it can be seen that for a normalized stiffness perturbation of

∆K/K ≈ 0.0042, which corresponded to an electrostatic force of 46µN, the change in

the out-of-phase mode frequency was approximately 24.6/11012.3 = 0.22%, while the

change in amplitude ratio was 18.15, which was over three orders of magnitude more

drastic than the change in mode frequency. Therefore it can be concluded that by using

amplitude ratio as output, for this device, the improvement in sensitivity can reach three

orders of magnitude. Therefore, it can be seen that this resonator device can be used

for high sensitivity force sensing applications.

4.4.3 Modal behaviour with damping

For this simulation, no extra electrostatic force was applied in the axial direction of

the beam. Instead, a DC voltage was applied to the perturbation electrode, causing a

softening stiffness perturbation ∆K < 0 to resonator 3. In addition, damping was intro-

duced, leading to a Q = 5000, identical to the previous simulations using an electrical

RLC circuit.

Due to the limited bandwidth of the modes, mode aliasing should occur if the mode

frequency difference does not satisfy the anti-aliasing condition. To demonstrate this,

a frequency response was simulated. An arbitrary AC drive voltage was applied to the

actuation electrode. The simulated frequency response is shown in Figure 4.24.

After ensuring mode aliasing was insignificant by altering the DC voltage on the per-

turbation electrode, amplitude ratio and mode frequencies as a function of normalized

stiffness perturbation were plotted in Figures 4.25(a) and 4.25(b), respectively. Theo-

retical amplitude ratios, mode frequencies of the out-of-phase and in-phase modes were

calculated using Equation 4.44, Equation 4.26 and Equation 4.28, respectively, and plot-

ted in Figure 4.25 for comparison.

It can be seen that outside of the area with strong mode aliasing, the simulated results

agreed well with the theoretical calculations, indicating accurate theoretical estimations.

Similar to the previous simulations, it was demonstrated that, for the same stiffness per-

turbation, the change in amplitude ratio was three orders of magnitude more responsive

than the mode frequency shifts. For instance, as shown in Figure 4.25(b), for a change

in ∆K/K of 0.00175, the change of normalized frequency (∆ω/ω) is approximately
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Figure 4.24: Simulated frequency responses: a) without stiffness perturbation;
b) with negative ∆K/K = −0.00245 stiffness perturbation to resonator 3. It can
be seen that without any stiffness perturbation, strong mode aliasing occurred
since ∆f < 2f3dB, out-of-phase mode and in-phase mode were difficult to distin-
guish; whereas when mode aliasing was reduced with ∆K/K = −0.00245, out-
of-phase mode can be distinguished, since anti-aliasing condition ∆f > 2f3dB

was satisfied.
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Figure 4.25: Simulated amplitude ratio and mode frequencies together with the
theoretically calculated values with limited Q-factor of Q = 5000, as a function
of negative stiffness perturbations to resonator 3.

9.18 × 10−4; whereas for the same amount of change in ∆K/K, the change in normal-

ized output (amplitude ratio X1/X3) is approximately 7.5, as shown in Figure 4.25(a).

Hence, the improvement in normalized sensitivity is over three orders of magnitude.

4.5 Summary

In this chapter, we have analysed the vibrational behaviour of a 3DoF resonator systems

in theory, with and without damping. For the analysis without damping, we have
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used algebraic method; whereas for the analysis with damping, we have used a transfer

function method.

As can be seen from the analysis, when a stiffness perturbation is introduced into the

system, namely to resonator 1 or/and 3, the mode frequencies and the amplitude ratio

of the in-phase and out-of-phase modes changes with the stiffness perturbation. The

changes in mode frequencies and amplitude ratios can be accurately predicted by our

theoretical formulas provided that weak coupling is satisfied.

In addition, it can be concluded from the discussion in this chapter, that amplitude ratios

have the following advantages: (a) ability to detect the position of the perturbation and

(b) capability of common mode rejection.

Furthermore, damping was included in the analysis. It was demonstrated that mode

aliasing can occur when the in-phase and out-of-phase modes are too close to each

other. This should be avoided for sensor implementation, as strong mode aliasing can

potentially lead to inability of identifying the mode of interest. It was also demonstrated

that the mode aliasing was reduced as the frequency difference between the two modes

increased. This will aid us in the MEMS sensor design to minimize mode aliasing.





Chapter 5

3DoF Weakly Coupled

Resonators as a Sensor

5.1 Introduction

From the vibrational behaviour analysis, it was shown that the amplitude ratio change

was more significant compared to the mode frequency shifts, when a stiffness perturba-

tion was introduced to a 3DoF weakly coupled resonator device. In addition, in the dis-

cussion in Chapter 4, we have demonstrated, in theory, the common mode rejection and

position detection capabilities by measuring mode shape changes instead of frequency

shift. This demonstrated that a 3DoF resonator device, as shown in Figure 5.1 as an

example, could be an alternative to the conventional single resonator sensor, but with

much improved sensitivity, common mode rejection and position detection capabilities.

Figure 5.1: An example 3DoF weakly electrostatically coupled resonator sensor.

However, the output metrics have not yet been compared, thus an optimum output is

yet to be proposed. Furthermore, other important performance specifications have not

been discussed for this type of sensor, such as dynamic range. Therefore, in this chapter,

69



70 Chapter 5 3DoF Weakly Coupled Resonators as a Sensor

we shall discuss in theory the output metrics, in addition to the practical specification

of the sensor, namely the dynamic range, linear sensitivity, nonlinearity and noise floor.

The discussion may be helpful for future device optimization.

5.2 Dynamic range

For the 3DoF resonator sensor in Figure 5.1, as shown in Figure 4.16, the frequency

difference between the in-phase and out-of-phase mode is dependent on both γ3 and

∆K/K. Therefore, for a given quality factor and γ3 value, due to the mode aliasing,

the anti-aliasing condition (Equation 4.43) sets a boundary for the maximum stiffness

perturbation. Perturbation values beyond the boundary potentially result in severe

mode aliasing effects as shown in Figure 4.16(c).

It was also demonstrated in Figure 4.17 that, Equations 4.20 and 4.22 can still be

regarded as accurate estimations of mode frequencies for ∆ω ≥ 2×∆ω3dB, with relative

errors less than 25ppm. Neglecting this small error, the difference between the in-phase

and out-of-phase modes can be expressed as:

∆ω = ωop − ωip ≈
√
K

M

√(
∆K

2K

)2

+

(
1

γ3

)2

(5.1)

The 3-dB bandwidth, for a given finite quality factor Q, is given as:

∆ω3dB =
1

Q

√
K

M
(5.2)

Substituting Equations 5.1 and 5.2 into Equation 4.43, and rearranging:

(
∆K

K

)2

>

(
4

Q

)2

−
(

2

γ3

)2

(5.3)

Therefore, for negative perturbations ∆K/K < 0 (to either resonator 1 or 3), and for

γ3 ≥ Q/2, the upper boundary of the dynamic range of the sensor is found to be:

∆K

K
< −2

√(
2

Q

)2

−
(

1

γ3

)2

(5.4)

This equation makes sure that all ∆K < 0 satisfies the anti-aliasing condition (Equa-

tion 4.43), and the regions with undistinguishable modes (as shown in Figures 4.17(a))

can be avoided. For γ3 < Q/2, any ∆K will satisfy the anti-aliasing condition. Thus in

this situation, the dynamic range will not be limited by the mode aliasing effect.
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Furthermore, the noise floor of the device and the interface circuitry sets the minimum

detectable amplitude of the resonators; consequently a limitation of the maximum mea-

surable amplitude ratio can be introduced. Thus, the lower boundary of the dynamic

range of the device is determined as:

∆K

K
> −Max Amplitude Ratio

γ3
(5.5)

Therefore, it can be seen that the value of γ3 should not be arbitrarily large due to its

influence on the dynamic range of the sensor.

5.3 Output metrics

In Chapter 4, the vibrational amplitude ratio X1/X3 and mode frequencies change of a

3DoF device subject to a stiffness perturbation was demonstrated. It was shown that,

for the same stiffness perturbation, the change in amplitude ratio was orders of magni-

tude more significant than that of mode frequencies. However, whether the amplitude

ratio is the optimum output signal is still to be investigated. In this section, we shall

compare different output metrics, namely mode frequency shift, amplitude ratio, eigen-

state shift and amplitude difference, in terms of their linear sensitivity and linear range

(nonlinearity error less than 5%).

For demonstration purposes, the stiffness perturbations ∆K were introduced to res-

onator 3 and ∆K < 0. And the amplitudes of the out-of-phase mode were chosen due

to the symmetry of the in-phase and out-of-phase modes.

Due to the complexity in calculating eigenstate shift and amplitude difference analyt-

ically, we shall extract the linear sensitivity and linear range from simulation results.

The simulation was run using the equivalent electrical circuit model as shown in Fig-

ure 4.12. The values used for the simulation are listed in Table 5.1, so that they are

close to the values used in the experiment. The motional current amplitudes were used

in the simulations to represent the velocity amplitudes of each resonator.

Table 5.1: Values used in the simulation to verify theoretical estimations

Component Value Mechanical model equivalent

L 0.397MH M

C 0.318fF K

C2 87.6aF K2/K = 3.6

Cc −9.09fF K/Kc = −28.6, γ3 = 2117

R 0.57MΩ Q = 6000

vac 8mV Actuation voltage to match with experiment
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5.3.1 Mode frequency

From the simulation values used, it can be seen that all ∆K ≤ 0 shall be within the

dynamic range. Hence we are able to approximate the mode frequencies using Equations

4.20 and 4.22. From Figure 4.5, it can be seen that for negative stiffness perturbations to

resonator 3, the frequency of the in-phase mode is more responsive than that of the out-

of-phase mode. Hence here we shall only consider the mode frequency of the in-phase

mode.

From fundamental mathematics, it can be seen that for large ∆K, the in-phase mode

frequency is a linear function, and the linear scale function can be approximated as:

∆fip

f0
≈ 1

2

∆K

K
(5.6)

where,

f0 =
1

2π

√
K

M
(5.7)
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Figure 5.2: Linearized (black) and simulated (red) in-phase mode frequency, as
well as the nonlinearity error, as a function of normalized stiffness perturba-
tions. The nonlinearity error decreased as the normalized stiffness perturbation
increased in absolute value.

It can be seen from Figure 2 that the nonlinearity error decreased as the normalized

stiffness perturbation increased in absolute value. For ∆K/K < −0.002, the nonlinearity

error was less than 2%, which can be regarded as negligible. Hence, the linear sensitivity

was -0.5 for normalized stiffness perturbations ∆K/K < −0.002.
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5.3.2 Vibration amplitude ratio

From the derivations in Appendix A, we are able to approximate the amplitude ratios of

|X2|/|X1| and |X2|/|X3|. The theoretical and simulated values are plotted in Figure 5.3.
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Figure 5.3: Simulated and theoretically estimated amplitude ratio of |X2|/|X1|
and |X2|/|X3|. It demonstrates that the vibration amplitude of resonator 2 is
orders of magnitude lower than that of either resonator 1 or 3 at the out-of-phase
mode frequency.

It can be seen from Figure 5.3 that the amplitude of resonator 2 is at least an order of

magnitude lower than either resonator 1 or 3. It should be pointed out that, typically,

the motional current of resonator 1 is in the sub-nA region 1. Therefore, the amplitude

of resonator 2 is in the 1pA range or less, thus is more difficult to detect in practice.

Hence, the amplitude ratios involving resonator 2 are not practical in real applications,

thus are neglected from the amplitude ratio analysis.
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Figure 5.4: Linear (black) and simulated (red) amplitude ratios, |X1/X3|, as a
function of normalized stiffness perturbations, as well as the nonlinearity error.
It can be seen that the nonlinearity error decreased as the absolute value of
∆K/K increases.

1This is calculated by dividing the output voltage amplitude measured (as shown in Figure 6.12) by
the current to voltage gain of the electrical circuit, which is 1.32GΩ
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The expression of the amplitude ratio |X1|/|X3| at the out-of-phase mode frequency

was derived and given by Equation 4.44. For comparison purposes, the theoretical and

simulated amplitude ratios for the same scenario as the previous simulations are plotted

in Figure 5.4.

The linear sensitivity extracted from the simulated results was 2117, and the linear range

for nonlinearity error smaller than 5% was ∆K/K < −0.002.

5.3.3 Eigenstate shift

Eigenstate shift was used in [36, 39] as the output signal for a mode localized sensor.

This was derived using a ”classical perturbation method” [34]. Despite the fact that

calculating the eigenstate shifts requires a larger amount of computation effort compared

to simple vibration amplitude or mode frequency shifts, it was demonstrated that it was

an accurate prediction of the mode localization effect [34]. Hence, we shall discuss the

eigenstate shift as the output signal for a 3DoF weakly coupled resonant sensing device.

It can be seen from Figure 5.3 that the amplitude of resonator 2 is typically orders of

magnitude lower than that of either resonator 1 or 3 at the out-of-phase mode frequency.

Because of this reason, the vibration amplitude of resonator 2 would have negligible effect

in calculating the magnitude of the eigenstates. If excluding the amplitude of resonator 2

completely from the eigenstate calculation, the normalized eigenstates Xn, for a stiffness

perturbation ∆K to resonator 3, can be approximated as:

Xn ≈


−

AR√
1 + AR2

0

1√
1 + AR2


(5.8)

where AR is the amplitude ratio of X1/X3, which is defined by Equation 4.44.

Suppose the initial eigenstate without any stiffness perturbations is Xn0 at the out-of-

phase mode frequency. The eigenstate shift ∆X can be expressed as [34]:

∆X =

∣∣∣∣Xn −Xn0

Xn0

∣∣∣∣ (5.9)

It can be seen from the simulation results that, excluding the amplitude of resonator 2,

|X2|, indeed has negligible effect on calculating the eigenstate shift. This is demonstrated

by the simulated results shown in 5.5.
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Figure 5.5: Figure showing calculated eigenstate shift from simulated mode am-
plitude values, as well as a linear fit and nonlinearity error. The eigenstate shifts
were calculated including the amplitude of resonator 2, |X2|, (green) and com-
pletely neglecting |X2| (red). No significant differences were noticed, indicating
insignificant impact of resonator 2.

The linear sensitivity extracted from the simulated results was found to be 380.5, and

the linear range with less than 5% nonlinearity error was −0.001 < ∆K/K < 0.

5.3.4 Vibration amplitude difference

Due to the slopes of the curve of X1 and X3 having opposite signs for ∆K < 0, as shown

by Figures A.1 and A.2, the vibration amplitude difference can provide improved sensi-

tivity. The simulated and linearized amplitude differences are plotted against normalized

stiffness perturbations in Figure 5.6. Also plotted in the figure is the nonlinearity error

of the amplitude difference as output signal.
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Figure 5.6: Theoretical calculated (black) and simulated (red) vibration ampli-
tude differences between resonators 1 and 3 as a function of normalized stiffness
perturbations. The theoretical estimations matched well with simulated values.

The extracted linear sensitivity from the simulation results was 703nA, and the linear

range for less than 5% nonlinearity error was −0.001 < ∆K < 0. For the circuit board
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in our experiment with 13.2M transimpedance gain and a further 40dB voltage gain, the

resulting theoretical linear sensitivity would be 928V.

5.3.5 Summary

Table 5.2: Output metrics summary from simulation results

Output Linear sensitivity Linear range (nonlinearity error < 5%)

Frequency shift 0.5 ∆K/K < −0.002

Amplitude ratio (|X1|/|X3|) 2117 ∆K/K < −0.002

Eigenstate shift 380.5 −0.001 < ∆K/K < 0

Amplitude difference (|X1| − |X3|) 928V −0.001 < ∆K/K < 0

To summarize, the linear sensitivity and the linear range of the four different output

metrics are listed in Table 5.2. It can be seen from Table 5.2 that the amplitude ra-

tio |X1|/|X3| of the out-of-phase mode has the higher linear sensitivity for negative

stiffness perturbations to resonator 3, compared to the other output metrics for the

mode-localized sensor, such as frequency shift and eigenstate shift. In addition, the am-

plitude ratio |X1|/|X3|, as well as the frequency shift, has larger linear range compared to

eigenstate shift and amplitude difference. Furthermore, the amplitude ratios are simpler

to calculate than the eigenstate shifts, therefore, it requires less computational effort,

thus leading to less complicated electronics.

It should be pointed out that amplitude difference |X1| − |X3| is another interesting

output signal, as it has high sensitivity at the expense of narrow linear range. Moreover,

it is also easy to calculate, hence requiring simpler electronics.

To summarize, amplitude ratio |X1|/|X3| was the optimum output metric in terms of

linear sensitivity and linear range, thus was used in our research as the output signals

of the 3DoF weakly coupled resonator sensor.

5.4 Linear sensitivity

For the example 3DoF resonator sensor for stiffness change sensing shown in Figure 5.1,

within the dynamic range, assuming the device is perturbed with a negative stiffness

perturbation ∆K to resonator 3 and driven from the actuation electrode, we shall restate

the expression of amplitude ratio:



Chapter 5 3DoF Weakly Coupled Resonators as a Sensor 77

∣∣∣∣U1(jωop)

U3(jωop)

∣∣∣∣ =

∣∣∣∣X1(jωop)

X3(jωop)

∣∣∣∣ =

∣∣∣∣H11(s)

H31(s)

∣∣∣∣ =

∣∣∣∣H2(s)H3(s)−K2
c

K2
c

∣∣∣∣
≈

∣∣∣∣∣γ3(∆K/K)−
√
γ2

3(∆K/K)2 + 4

2
+ j

γ3

Q

∣∣∣∣∣
(5.10)

From the electrical RLC simulations results (Figure 4.19), it can be seen that when

|γ3∆K/K| > 10, the amplitude ratio can be regarded as a linear function of the normal-

ized stiffness perturbations. Mathematically, we can approximate the linearised scale

function as:

∣∣∣∣U1(jωop)

U3(jωop)

∣∣∣∣ =

∣∣∣∣X1(jωop)

X3(jωop)

∣∣∣∣ ≈ −γ3∆K

K
(5.11)

Equation 5.11 is the linearized scaling function of the sensor. The linear sensitivity of

the sensor (the ratio of the change in amplitude ratio to the normalized stiffness change)

can therefore be expressed by:

S3DoF = ∂

∣∣∣∣X1(jωop)

X3(jωop)

∣∣∣∣/∂ (∆K

K

)
= −γ3 (5.12)

Thus −γ3 is the linear sensitivity of the device.

5.5 Theoretical sensitivity improvement

It is surmised that the linearized scale function, Equation 5.11, can be regarded as a

good estimation of the amplitude ratio2. Therefore, neglecting the nonlinearity error, the

linear sensitivity of the 3DoF resonant sensor, for negative ∆K/K, can be approximated

by:

S3DoF =
∂(Amplitude ratio)

∂(∆K/K)
= − γ3

= − K(K2 −K +Kc)

K2
c

(5.13)

This is the same expression as discussed in Section 2.2.1. The sensitivity to normalized

stiffness change of a conventional resonant sensor (i.e. 1DoF) with frequency shift output

is given by Equation 5.14 [61]:

2The a nonlinearity error is less than 10% for an amplitude ratio larger than 5 from the nonlinearity
example simulations shown in later sections, i.e. Section 5.6
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S1DoF =
∂(Relative frequency shift)

∂(∆K/K)
=

1

2
(5.14)

With the assumptions stated in Equation 4.5, the value for γ3 is at least 100, thus the

improvement in sensitivity is at least two orders of magnitude.

For a 2DoF resonant mode-localized sensor for stiffness change sensing applications, the

sensitivity to a stiffness change can be approximated by [39]:

S2DoF =
∂(Eigenstates shift)

∂(∆K/K)
≈ K

4Kc
(5.15)

Given identical K and Kc values, and with the assumption stated in Equation 4.5,

comparing Equations 5.13 and 5.15, it is noticed that the sensitivity of a 3DoF resonator

sensor is improved by 4(K2 −K +Kc)/Kc, which is found to be at least 40 times.

It can be seen from the comparison that the 3DoF mode-localized sensors has the high-

est sensitivity among the three. The sensitivity improvement is proportional to a key

parameter γ3, which is determined by the stiffness K, K2 and Kc. The larger value

of K/Kc and (K2 − K + Kc)/Kc, the higher sensitivity compared to 1DoF and 2DoF

resonant sensors can be achieved.

5.6 Nonlinearity

Despite the fact that the amplitude ratio can be approximated as a linear function of

the stiffness change for large normalized stiffness perturbations, from Equation 5.10 it

can be seen that the amplitude ratio is a non-linear function of the normalized stiffness

perturbation ∆K/K. It can also be seen that the nonlinearity is attributed to: a) the

intrinsic nonlinearity of the expression even without the presence of damping; b) the

damping due to the γ3/Q term. Equation 5.10 can therefore be rewritten as:

∣∣∣∣U1(jωop)

U3(jωop)

∣∣∣∣ =

∣∣∣∣X1(jωop)

X3(jωop)

∣∣∣∣ =

∣∣∣∣∣−
√
γ2

3(∆K/K)2 + 4− γ3(∆K/K)

2
+ j

γ3

Q

∣∣∣∣∣
= − γ3∆K

K
(1 + ε1 + ε2) (5.16)

where ε1 is the intrinsic nonlinearity term and ε2 is a second nonlinearity term introduced

by damping.
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5.6.1 Intrinsic nonlinearity

To theoretically estimate the intrinsic nonlinearity term ε1, we shall assume zero damping

and therefore infinite Q-factor. The Taylor expansion of the amplitude ratio without

damping can be written as:

∣∣∣∣X1(jωop)

X3(jωop)

∣∣∣∣
Q→∞

=

∣∣∣∣∣γ3∆K

K
+

K

γ3∆K
−
(

K

γ3∆K

)3

+ · · ·

∣∣∣∣∣
= − γ3∆K

K
(1 + ε1) (5.17)

Neglecting all higher order terms, ε1 can be approximated by:

ε1 ≈
(

K

γ3∆K

)2

(5.18)

It can be seen from Equation 5.18 that the nonlinearity error ε1 increases with decreasing

value of (γ3∆K/K)2.

To demonstrate the influence of the nonlinearity, the same electrical equivalent simula-

tion as in the previous section is run, with varying capacitance Cc, corresponding to Kc

in the mechanical model, and thus resulting in different K/Kc and γ3 values. All the

values used in the simulation are listed in Table 4.5, except that R = 0.44MΩ, result-

ing in a Q = 100k, which can be regarded as negligible. The results are presented in

Figure 5.7.

It can be seen from Figure 5.7 that the amplitude ratio under the assumption of infinite

quality factor can be approximated using the linearized scale function (Equation 5.11),

with negligible nonlinearity errors (less than 1%) for amplitude ratio larger than 10;

however, the nonlinearity error increases as the stiffness perturbation approaches zero.

Figures 5.7(a) and 5.7(b) show the results for two exemplary values of γ3; it can be seen

that for the same stiffness perturbation, a larger γ3 results in better linearity.

Figure 5.7 also indicates that Equation 5.18 can be regarded as an accurate estimation

of the nonlinearity error.
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Figure 5.7: Simulated amplitude ratios for a) γ3 = 4950 and b) γ3 = 11174
showing the linearized scale function given by Equation 5.11, as well as the
nonlinearity error. The nonlinearity error of the simulated amplitude ratio is
calculated by comparing the simulated amplitude ratio to the linearized scale
function, whereas the theoretical nonlinearity error is calculated using Equa-
tion 5.18. The dashed lines at the bottom of the diagram mark a nonlinearity
error of 1%, which was regarded as negligible. The nonlinearity increases when
the stiffness perturbation approaches zero. For the same stiffness perturbation,
a larger γ3 value results in a smaller nonlinearity error.

5.6.2 Nonlinearity by damping

To estimate the nonlinearity of the amplitude ratio, we assume the nonlinearity term ε1

can be neglected, then Equation 5.16 can be rewritten as:

∣∣∣∣X1(jωop)

X3(jωop)

∣∣∣∣ ≈ ∣∣∣∣γ3∆K

K
+ j

γ3

Q

∣∣∣∣
≈ − γ3∆K

K
(1 + ε2) (5.19)

If the normalized stiffness perturbation is ∆K/K > 2/Q, ε2 can be approximated as:

ε2 ≈
1

2

(
1

Q

K

∆K

)2

(5.20)

To demonstrate the nonlinearity error with damping, the simulated amplitude ratios in

section 4.3.2.2 were compared to the linearized scale function given by Equation 5.11.
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Figure 5.8: Simulated amplitude ratios compared to the linearized scale func-
tion given by Equation 5.11. The nonlinearity errors are also plotted for a)
γ3 = 4950 and b) γ3 = 11174. The total theoretical nonlinearity error was
estimated by calculating ε1 + ε2, where ε1 and ε2 are given by Equations 5.18
and 5.20, respectively. The nonlinearity errors determined by simulation match
the theoretical predictions well. The difference between the nonlinearity error
with and without damping is described by the term ε2.

The total theoretical nonlinearity error was calculated as ε1 + ε2, where ε1 and ε2 are

given by Equations 5.18 and 5.20, respectively. The results are plotted in Figure 5.8.

Due to the relatively large γ3 value, the condition ∆K/K > 2/Q is satisfied within the

dynamic range; therefore, the simulation results show a good agreement with the theo-

retical estimations. Furthermore, they show that even with damping, the linearized scale

function can still be regarded as a good linear approximation, with a total nonlinearity

error smaller than 1% when the amplitude ratio is larger than 20.

5.7 Noise floor

Assuming the noise of the sensing device is Gaussian and the noise of resonator 1 and 3

are not correlated, the output noise power of the 3DoF sensor, equivalent to the variance

of the amplitude ratio |X1/X3|, can be derived according to [113]:
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∣∣∣∣X1

X3

∣∣∣∣2
noise

= σ2

(∣∣∣∣X1

X3

∣∣∣∣)
=

∣∣∣∣X1

X3

∣∣∣∣2
[(

σ(X1)

X1

)2

+

(
σ(X3)

X3

)2
]

=

∣∣∣∣X1

X3

∣∣∣∣2
[
X2
n,1

X2
1

+
X2
n,3

X2
3

]
(5.21)

where σ2(f) is the variance of function f , which by definition equals to the noise power;

X2
n,i (i = 1, 3) is the noise power of the ith resonator. Hence the signal-to-noise ratio

(SNR) is:

SNR =

∣∣∣∣X1

X3

∣∣∣∣2
/∣∣∣∣X1

X3

∣∣∣∣2
noise

=

(
X2
n,1

X2
1

+
X2
n,3

X2
3

)−1

=
SNR1 × SNR3

SNR1 + SNR3
(5.22)

It can be seen from Equation 5.22 that the output SNR increases as the SNR of resonator

1 and/or 3 improves.

The noise power of resonator 1 and 3 is dominated by two parts, mechanical-thermal

noise of the resonators and the electrical-thermal noise of the interface electronics [114].

Therefore, the SNR of resonator 1 and 3 can be written as:

SNRi =
SNRm,i × SNRe,i

SNRm,i + SNRe,i
, i = 1 or 3 (5.23)

where SNRm,i and SNRe,i are the mechanical and electrical SNR of the ith resonator,

respectively. Therefore, to calculate the SNR, we shall analyze the mechanical and

electrical noise floor, respectively.

5.7.1 Mechanical noise floor

To theoretically calculate the mechanical noise, the transfer function model of the 3DoF

resonator sensor was used. There are three sources of mechanical noise forces, Fn,i, i =

1, 2 and 3. Thus the block diagram of the model with noise input is shown in Figure 5.9.

The noise power in terms of displacement near the out-of-phase mode of the rth resonator

Xmn,i (i = 1 to 3) can be evaluated as [64]:
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Figure 5.9: Block diagram of a 3DoF resonator sensing device

X2
mn,i =

1

2π

∫ ωop+∆ω

ωop−∆ω

3∑
r=1

F 2
n,rH

2
irdω (5.24)

Where Hir is the transfer function from rth input to ith output, which was expressed

by Equations 4.38a to 4.38f, and the power spectral density of the thermal driving force

is given by [114, 115]:

F 2
n,r = 4kBTCr, r = 1, 2, 3 (5.25)

Where kB, T and Cr are the Boltzmann constant, ambient temperature and damping

coefficient of rth resonator, respectively.

Suppose C1 = C2 = C3 = C, the noise power of the displacement of resonators 1 and 3,

expressed as X2
n1 and X2

n3, respectively, are calculated as:

X2
n1 =

2kBTC

π

∫ ωop+∆ω

ωop−∆ω
(H2

11 +H2
12 +H2

13)dω (5.26a)

X2
n3 =

2kBTC

π

∫ ωop+∆ω

ωop−∆ω
(H2

31 +H2
32 +H2

33)dω (5.26b)

5.7.2 Electrical noise floor

For a standard transimpedance amplifier to convert the motional current to voltage, the

input-referred current noise power spectral density can be expressed as [64]:

i2n = i2na +

(
Rm +Rf
RmRf

)2

e2
na +

(
4kBT

Rf

)2

(5.27)



84 Chapter 5 3DoF Weakly Coupled Resonators as a Sensor

where ina, ena, Rm and Rf are the current noise, voltage noise spectral density of the

op-amp, equivalent motional resistance of the resonator and feedback resistance, respec-

tively. Given the sensing transduction factor ηS [82] of the device and the 3dB bandwidth

of the out-of-phase mode f3dB, the electrical SNR of resonator 1 and 3 within the 3dB

bandwidth can therefore be calculated as:

SNRe,i =
X2
i η

2
S

i2n,if3dB
, i = 1 or 3 (5.28)

As will be shown in the experimental results, for a biased 3DoF resonator sensor, within

the 3dB bandwidth, for resonator 1 with larger vibration amplitude, the mechanical noise

from the resonators is the dominant noise source, whereas outside of the bandwidth, the

total noise was mainly attributed to the electronic noise. But for resonator 3 having a

smaller vibration amplitude, the electrical noise dominated. The ultimate limit of the

output noise power was imposed by electrical noise from the interface electronics.

5.8 Bias point

As discussed in this chapter, for practical sensors utilizing a 3DoF weakly coupled res-

onator system, a few practical issues limit the performance of the sensor. For instance, a

trade-off exists between the linear sensitivity and the dynamic range, this can be shown

by the mathematical expressions: from Equation 5.4, it can be seen that for a given

Q-factor of the out-of-phase mode, a smaller γ3 is desired for larger dynamic range;

whereas from Equation 5.11, it was shown that a large γ3 is preferred for enhanced

linear sensitivity.

To relax this trade-off, we propose a bias approach. The theoretical foundation of

this approach was demonstrated in Section 4.3.3. By intentionally applying a stiffness

perturbation to resonator 3, the region with undistinguishable modes can be translated

out of the desired dynamic range, thus relaxing the restrictions of the γ3 values for

higher sensitivity. Furthermore, by applying a negative bias point, the linearity can be

improved, as shown in Figure 5.8.

However, the bias point cannot be arbitrarily chosen, as for the more optimum bias

point in terms of dynamic range and linearity, the amplitude ratio is often large. This

makes the smaller vibration amplitude difficult to detect. Moreover, as shown in the

theoretical derivation of the noise floor, larger amplitude ratio also leads to higher noise

floor, as shown by Equation 5.21.
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5.9 Summary

To summarize, we have discussed some of the practical considerations for the actual

sensors for stiffness change applications. Because of the mode aliasing effect and the

noise floor, the dynamic range of the sensor would be limited by Equations 5.4 and 5.5

for stiffness perturbations ∆K < 0 introduced to resonator 3.

Furthermore, we have compared some of the possible output metrics of the sensor, and

came to a conclusion that amplitude ratio has the largest linear range, as well as improved

sensitivity compared to conventional eigenstate shift as an output signal. Therefore, for

this research, we shall use amplitude ratio as the output signal.

In what follows, we have theoretically estimated the linearity of amplitude ratio as a

function of the stiffness perturbations, as well as nonlinearity errors and the sources.

In addition, we have identified that the noise comes from mechanical structures and elec-

tronic interface. Then we proposed formulas to calculate the mechanical and electrical

noise floor of the sensor, which can be useful for future research.

Finally we have proposed a bias point approach to relax the trade-off between the linear

sensitivity and dynamic range, while also improving the linearity of the sensor.
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Figure 6.1: SEM image of a microfabricated prototype 3DoF resonator sensing
device

To serve the purpose of verifying the theoretical predictions, proving the concept, and

to demonstrate the sensitivity improvement of a 3DoF resonator device as a sensor, we

have designed a batch of MEMS devices and tested them experimentally. Two different

designs were fabricated and tested. However, due to the effect of anti-resonance caused

by feedthrough capacitance (as discussed in Section 3.3.2.1) of one of the designs, which

could lead to inaccurate measurements of the amplitudes, thus is not included in this

chapter. The design discussed in this chapter, as shown in Figure 6.1, included dif-

ferential capacitance measurement capabilities, which reduces the effect of feedthrough

capacitance.

87
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Since the devices were for proof-of-concept purposes, they were intended neither to

achieve a certain sensitivity or resolution performance, nor for a particular application.

Therefore the selection of design parameters for the devices was somewhat arbitrary and

not optimized. However, some design considerations put into the device design may be

helpful for future optimization of the sensor. Therefore they are still discussed in this

chapter.

In what follows, the test of the devices were carried out electrically under vacuum envi-

ronment, which was intended for high Q-factors, hence reducing the mode aliasing effect.

The experimental results of two devices were also presented in this chapter to compare

with the theoretical predictions. The experiments in this chapter included: a) the ampli-

tude ratio with respect to normalized stiffness perturbation, to prove their relationship

(Equation 4.44 and Figure 4.19), as well as the nonlinearity errors (Equation 5.16 and

Figure 5.8); b) frequency response measurements, to demonstrate the effect of mode

aliasing (Figure 4.16), as well as the dynamic range of stiffness perturbation limited by

the mode aliasing effect (Section 5.2); c) noise calculations (Section 5.7); d) comparative

investigations of different output metrics, to prove the simulations in Section 5.3.

6.2 Device design

6.2.1 Device structure

An SEM micrograph of a fabricated prototype chip of the 3DoF MEMS resonator de-

vice is shown in Figure 6.1. The system consists of three resonators, coupled to its

neighbouring resonator through electrostatic springs.

6.2.1.1 Electrostatic coupling

Electrostatic coupling was used due to its good controllability of the coupling strength as

discussed in previous sections. To realize the electrostatic spring, as shown in Figure 6.2,

each resonator is placed next to its neighbour with an air gap in between. When a DC

voltage was applied to resonators 1 and 3, whereas resonator 2 was grounded, electro-

static springs were created. The spring constants can be easily altered by changing the

DC voltage value.

In addition to the electrostatic spring, a parallel-plate capacitive actuation was also

used. The nominal gap of this parallel-plate transducer was designed to be identical

to that of the electrostatic spring. This in essence created a symmetrical double sided

capacitor structure as discussed in Section 3.2.4. Hence, the second order nonlinearity

term that exists in the electrostatic springs can be significantly reduced, as demonstrated

by Equation 3.24. However, the third order nonlinearity term still remains.
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Figure 6.2: A zoomed-in image of the electrostatic coupling within the 3DoF
resonator sensing device. The image was tilted 90 degrees from Figure 6.1 for
better presentation. Therefore, the air gap shown here is horizontal.

As shown by Equation 3.24, a larger air gap d gives a smaller nonlinearity for a given

displacement, thus a larger air gap is preferred for increasing the displacement range for

linear electrostatic spring. However, a larger gap also means that a higher voltage is

required to obtain the same coupling strength, as shown by Equation 3.23.

6.2.1.2 Resonator design

Figure 6.3: An SEM image of the resonators from angle. The suspension beams,
proof mass, air gap for electrostatic coupling and tether structure have been
indicated in the image.

Relatively large proof masses were used to obtain low resonant frequencies (in the kHz

range), and to make the proof masses less prone to random fabrication variations, as

an important assumption is that all masses are equal. An SEM image of the resonator

structure is shown in Figure 6.3.

For each resonator, four suspension beams were attached to each proof mass so that

out of plane tilting is minimized. The suspension beams have one end fixed, while the
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other end moves perpendicular with respect to the beam length. This type of beam was

used due to the moderate linear spring constant and nonlinearity, and more importantly

the capability of integrating proof masses, compared to other types of suspension beams

such as fixed-fixed beam and cantilever.

The effective linear spring constant of each beam is given by Equation 3.3b. Assuming

that no axial force or residual stress, the effective mechanical spring constant of the

resonators can be calculated as:

Km = 4× Ew3t

L3
(6.1)

where E,w, t, L are Young’s modulus, width, thickness and length of each supporting

beam, respectively.

A low mechanical stiffness of the resonator was desired in our design, as a smaller Km

gives a lower resonant frequency (in the kHz range), simplifying the interface circuitry

while retaining high sensitivity.

6.2.1.3 Tether

(a) Tether structure

Direction of

vibration
Proof mass

T/2 T/2

T/2 T/2

Electrodes

Tether

x

y

Beam 1

Beam 2

Beam 3 Beam 4

(b) Schematic of a resonator with tether

Figure 6.4: Figures showing: a) a zoomed-in SEM image showing the tether
structure; b) schematic of the resonator with tether.

Furthermore, to demonstrate the axial force sensing capability of the device, a tether

structure [51] was used in our design to allow the transmission of an axial electrostatic

force to the suspension beams (Figure 6.4). In addition, the tether should impede the

movement of the electrode attached to the bottom of the suspension beams when the

resonator is vibrating, so that the electrostatic force is kept as constant as possible. To
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achieve these, the tether was made wide in the x -axis (170µm), but thin in the y-axis

(5µm) in our design.

a) Thin tether: as for the force transmission, the tether was made thin in the y-axis.

This is explained as follows. The tether, which is a cantilever beam in essence, has a

stiffness of [82]:

Ktether =
Etw3

t

4L3
t

(6.2)

where E, t, wt, Lt are the Young’s modulus, the thickness of the device, the width in

the y-axis and effective length of tether, respectively. The longitudinal stiffness of the

suspension beam is given by [82]:

Klong =
Etw

L
(6.3)

where w and L are the width in the x -axis and the length of the suspension beam.

When testing the force sensing capability, two different DC voltages, with a voltage

difference of ∆V , are applied to the resonator and the electrode below, generating an

electrostatic force in the negative y-axis pulling the resonator:

T =
ε0Ae∆V

2

2d2
e

(6.4)

To applied forces in the negative y-direction, the tether and the suspension beams act

similarly to two springs in parallel [51]. Ideally, the tether does not absorb any force

applied in the y-axis, so that all the forces can be measured by the resonator. Hence,

the tether was designed to be thin, ensuring that nearly all the force applied is absorbed

by the suspension beams.

By making the tether thin, we are able to assume that the entire electrostatic force

is transmitted to the resonators for measurement. For example, the shortest effective

length of the tether is 60µm, with the width of the tether of 5µm, gives a maximum

stiffness of the tether Ktether = 538N/m. Whereas in the y-axis, suspension beams 1 and

3 are in series, therefore the effective longitudinal stiffness is Klong = 2.48× 104N/m for

the parameters of device 2 (will be shown in Table 6.1). This indicates that more than

97.9% of the force applied is absorbed by the suspension beams, with less than 2.1% of

the force exerting on the tether.
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Moreover, as demonstrated in [96], the tether structure would act as an axial stress

release element, which reduces the third order mechanical nonlinearity. Therefore, the

tether should be thin, so that the stress relief is more efficient.

b) Long tether: long tether design ensures that the tether has a high mechanical stiff-

ness in the x -direction, therefore, the movement of the junction of the tether and the

suspension beams in the x -axis can be neglected. In addition, when the displacement of

the resonator in the direction of vibration is small compared to the length of the beam,

the movement of the resonator in the y-axis is also negligible. Consequently, the tether

efficiently constraints the movement of the electrode attached to the suspension beams,

and thus it can also be regarded as a fixed end for the two suspension beams attached.

6.2.1.4 Actuation and motion pick-up

An AC voltage, with a small amplitude compared to the fixed DC voltage on resonators

1 and 3, was applied to the electrode next to resonator 1. This created an alternating

electrostatic force on resonator 1, driving the 3DoF resonator sensor with only one

actuation force.

(a) Comb finger structure (b) Arrangement of dif-
ferential comb fingers

Figure 6.5: Images showing: a) a zoomed-in SEM image showing the single comb
finger structure; b) an optical image of one of three resonators with differential
comb finger arrangements.

To sense the motions of resonators 1 and 3, two sets of comb fingers were attached to

the resonators on either side. The SEM image of one set of comb fingers is shown in

Figure 6.5(a) Differential capacitive sensing was realized through the arrangements of

the comb fingers, shown in Figure 6.5(b). It can be seen that the two sets of comb

fingers attached to the proof mass were on different side of those attached to the stator.

Hence the movement in one direction results in opposite change of capacitance, thus

realizing differential sensing. The length of the comb fingers were 90µm; this ensures
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that the comb fingers will not vibrate. The overlap length was designed to be 70µm to

get sufficient current to be measured with a standard transimpedance amplifier (TIA).

6.2.1.5 Design values

The design values of the two devices characterized are summarised in Table 6.1. To

assist the understanding of the values, a schematic of the 3DoF prototype device with

dimension notations is shown in Figure 6.6.

Figure 6.6: Schematic of the prototype of the 3DoF resonator sensing device
with notations of the dimensions.

It should be pointed out that, the smallest beam width achievable with an acceptable

yield in the fabrication process used was 5µm, the minimum aspect ratio was 1:70,

resulting in a beam length of 350µm. Therefore, the beams were designed to achieve the

minimum stiffness for device 1, which was desired for high sensitivity. As for device 2,

it served the purpose of demonstrating the capability of the fabrication process, hence

we have pushed the design parameters over the limit. It also showed that it is possible

to fabricate compliant beams.
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Table 6.1: Dimensions of the devices

Parameter
Design Value

Unit
Device 1 Device 2

Device layer thickness 30 µm

Suspension beam lengths (resonator 1, 2 and 3) (L) 350 300 µm

Suspension beam width (resonator 1 and 3) (w) 5 4 µm

Suspension beam width (resonator 2) (w2) 7.5 5 µm

Comb finger length 90 µm

Tether length (Lt) 170 µm

Tether width (wt) 5 µm

Gaps between resonators (d = dc) 4.5 3.5 µm

Gaps between resonator and electrodes, between comb

fingers (d = db)
4.5 3.5 µm

Gaps between resonator and force electrodes (d = de) 4.5 µm

Proof mass dimensions 360×360 (µm)2

Mass values (M) 6.94 6.87 nkg

Cross sectional area of electrostatic coupling and

perturbation electrode A = Ac = Ab

360× 22 (µm)2

Comb finger overlap cross sectional area Acf 70× 22 (µm)2

Cross sectional area of electrode for electrostatic

force Ae

160× 22 (µm)2

For other design values, as stated at the start of the chapter, the selections were rather

arbitrary, since this is only a proof-of-concept design. Further optimization is required

if the device were to be used for specific applications.

6.2.2 Perturbation design

6.2.2.1 Stiffness perturbation by spring softening

When DC voltages were applied to resonators 1 and 3, electrostatic springs were also

created between the resonators and the driving electrodes, as well as the sensing elec-

trodes. Neglecting the higher order terms of the electrical spring stiffness, the effective

stiffness of resonator 3 can be approximated as:

Keff = Km +Ke ≈
4Ew3t

L3
−
ε0(AV 2

b + 6×AcfV
2
cf )

d3
(6.5)

where Km is the mechanical stiffness of the suspension beams, Ke is the total electrical

spring stiffness arising when a bias voltage is applied on the resonator proof mass, Acf is

the cross-sectional area of the comb finger overlap, Vb is the voltage difference between

the proof mass of resonator 3 and neighbouring electrode, and Vcf is the voltage difference

between the resonator proof mass and stationary comb fingers.
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It is noticed from Equation 6.5 that by altering the voltage on the electrode on the right,

hence changing Vb, we can modify the effective stiffness of the resonator. Therefore, we

are able to perturb the coupled resonator system with a stiffness change by altering Vb.

This is effectively adding negative stiffness perturbations to resonator 3 by spring soft-

ening. Neglecting higher order terms, the perturbation in stiffness can be approximated

as:

∆K ≈ −ε0A

d3

[
(Vb + ∆Vb)

2 − V 2
b

]
(6.6)

It should be pointed out that in presence of the perturbation voltage, the proof mass

moves out of its rest position due to the electrostatic force, resulting in a small change in

capacitive gap d. However, due to the relatively small perturbation voltages applied in

the experiments, the calculated resultant displacement was negligible compared to the

air gap. For instance, for device 1, the perturbation voltage was smaller than 12V, the

DC displacement was below 40nm, which was less than 1% compared to the designed

air gap of 4.5µm. Therefore Equation 6.6 serves as a good first order approximation of

the introduced stiffness perturbations.

Random fabrication variances in dimensions lead to an intrinsic imbalance in the system.

Because of the proof masses design, the mass variances were supposed to be negligible

compared to the proof masses, therefore ignored in the analysis; only the effect of vari-

ances in stiffness is considered. The variances in dimensions lead to an offset in stiffness;

neglecting higher order terms, the normalized stiffness perturbation is deduced as:

∆K

K
≈ −ε0A

d3

[
(Vb + ∆Vb)

2 − V 2
b

]
/Keff −Offset (6.7)

where Keff is the effective stiffness of the resonator given by Equation 6.5.

6.2.2.2 Stiffness perturbation by axial tensile force

For the other part of the experiment, the stiffness of resonator 1 was perturbed by an

axial force along the length of the beams. This was achieved by the tether design as

shown in Figure 6.4(b).

When two different DC voltages are applied to the resonator and the electrode below,

an electrostatic force is generated in the negative y-axis pulling the resonator. Due to

the relatively large length of the electrode in the x -axis of 160µm compared to the air

gap of 4.5µm, the fringe field can be neglected. Assuming small displacements in the

y-axis, the tensile force for the resonator T in terms of voltage difference ∆V between

the resonator and the electrode, cross-sectional area of electrode Ae, air gap de and

dielectric constant of vacuum ε0 is given by [82]:
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T =
ε0Ae∆V

2

2d2
e

(6.8)

For an applied force in the y-axis, the two identical suspension beams (beams 3 and 4

in Figure 6.4(b), are in parallel. Hence the tensile force T is evenly distributed to the

two suspension beams. Furthermore, the suspension beams 1 and 3 are in series, so are

suspension beams 2 and 4. Therefore, the tensile force applied on each suspension beam

equals to T/2, thus introducing stiffness perturbations to the resonator, as shown by

Equation 3.3b. Hence for each suspension beam, the effective spring constant is given

by:

Kbeam =
Etw3

L3
+

0.6T

L
(6.9)

The stiffness perturbation introduced by the tensile force, normalized to the effective

stiffness of the resonator Keff (given by Equation 6.5), is therefore:

∆Kforce

Keff
=

2.4T

LKeff
(6.10)

If Vc is the coupling voltage applied to resonator 1 and 3, Ve is the voltage applied to

for electrostatic force perturbation, the tensile electrostatic force exerted to resonator 1

can be calculated from Equation 6.8:

∆T1 =
ε0Ae(Vc − Ve)2

2d2
e

(6.11)

It should be pointed out that Ve = 0 for resonator 3, hence this also introduces an tensile

force to resonator 3, which can be calculated as:

∆T3 =
ε0AeV

2
c

2d2
e

(6.12)

As discussed in Section 4.3.3, for perturbations applied to both resonator 1 and 3, the

effective perturbation is the difference. Therefore the effective perturbation force can be

calculated as:

∆T =
ε0Ae[(Vc − Ve)2 − V 2

c ]

2d2
e

=
ε0Ae(V

2
e − 2VcVe)

2d2
e

(6.13)
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The resulting perturbation is therefore:

∆Kforce

Keff
=

2.4∆T

LKeff
=

1.2ε0Ae(V
2
e − 2VcVe)

KeffLd2
e

(6.14)

It should be pointed out that, due to the high longitudinal stiffness of the suspension

beams, the elongation of the beams are trivial compared to the beam length L. The

resulting stiffness perturbation by strain change is therefore neglected. Hence we can

assume that the stiffness perturbation is caused solely by the electrostatic force.

6.3 Fabrication process

(a)

b)

Device layer

Handle layer

BOX layer

Photoresist

(b)

(c)

(d)

(e)

Figure 6.7: The process flow of the single mask SOI process: a) deposition
and patterning of photoresist, b) DRIE etching, c) overetching, d) photoresist
removal and dicing, e) HF solution release

The 3DoF resonator devices were fabricated using a single mask silicon on insulator

(SOI) process with a structural layer of 30µm thickness. The process flow is briefly

summarised here (a more detailed description is provided in [116]), it comprised the

following main steps:

1. Spincoating of photoresist on the front side of the SOI wafer, and patterning of

the photoresist using a photomask, Figure 6.7a.

2. Deep reactive ion etch (DRIE) to define the device layer structure, Figure 6.7b,

3. Overetch step by DRIE, utilizing the notching effect [117, 118], Figure 6.7c.
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The notching only occurred when the trenches were narrower than a critical width,

which was experimentally determined to be 16µm. The bottom of all trenches

narrower than 16µm, including those between comb fingers, parallel plates and the

majority of proof masses (due to release holes), were thus deliberately overetched

and released. Structures with a larger area, such as the proof masses, were not

completely released during this step; a small part on the edge of the proof masses

was intentionally designed so that the proof masses and suspension beams were

protected from shocks occurring during the dicing step.

To avoid the suspension beams from being overetched, the beams were placed well

apart, much further away than the critical gap width of 16µm, from any other

structures. Therefore, negligible notching occurred at the bottom of these beams,

and thus were not released in this step.

Due to the overetch step, stiction of the proof mass and other structures to the

handle wafer was avoided during a final wet release step removing the buried oxide

(BOX) layer [119, 120].

4. Removing the photoresist, followed by dicing, Figure 6.7d. The BOX layer is

retained in this step, so the fragile resonators structures will not be damaged

during the dicing process.

5. Wet etching using HF solution to release the moving structures, including suspen-

sion beams and the edge of the proof masses, Figure 6.7e.

6.4 Experimental methodology

6.4.1 Device configuration

Figure 6.8: Test configuration of the prototype 3DoF resonator sensing device
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A prototype 3DoF resonator sensor was fabricated and configured as shown in Fig.

6.8 for characterization. The same DC voltage was applied to both proof masses of

resonators 1 and 3, to ensure identical coupling, thus Kc1 = Kc2.

An AC drive voltage was applied to the actuation electrodes on the left, so only F1 was

applied to the system, thus satisfying F2 = F3 = 0.

A DC voltage was applied to the driving electrodes on the right. This created a DC

voltage change in Vb, equivalent to the ∆Vb term in Equation 6.6.

Differential sense currents were obtained from the comb fingers dedicated for motion

sensing, and then fed to the interface circuitry for further processing.

6.4.2 Electrical test set-up

To electrically test the chip, the chip was mounted on a chip carrier by normal double

sided adhesive tape and wire bonded to the contacts. The details of wire bonding can

be found in Appendix E. The chip carrier was then inserted into a socket on a printed

circuit board (PCB). The design considerations of the PCB board will be discussed

later. The circuit board was placed into a customized vacuum chamber with electrical

feedthroughs. The ambient pressure was 20µTorr ensuring minimum air damping loss,

so a high quality factor could be obtained. The experimental set-up is shown in Fig.

6.9.

PCB
power
supply

Coupling
voltage
source

Power
amplifier

Drive signal
generator

Perturbation
voltage source

Customized
vacuum
chamber

Figure 6.9: Experimental set up for 3DoF sensor characterization

To drive the resonators, a sinusoidal AC voltage with adjustable frequency was generated

from the signal generator. The peak to peak value was altered for different DC voltages,

to ensure driving the resonators in the linear region.
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6.4.2.1 Circuit board design considerations

To pick up the motional currents of the resonators, standard transimpedance amplifiers

(TIAs) were used to convert and amplify the differential motional currents to differential

voltage signals. The reason why TIAs were used is that the input impedance of the TIA is

inversely proportional to the open loop gain of the amplifier, thus is typically negligible.

Therefore, it reduces the loading of the resonators to a minimum. The amplifier used

for the TIAs are AD8065 from Analog Devices Inc, amplifying the sub-nano ampere

motional currents from the resonators to µV voltages. The feedback network of the TIA

consists of two resistors connected in series, while each resistor is parallel to a capacitor.

The capacitors were used to prevent the TIA circuit from the self-oscillation because of

the parasitic input capacitance Cin. A larger capacitance is favoured for stability, while

reducing the bandwidth for a given feedback resistor. In addition, a larger feedback

resistance value is preferred for larger gain and lower input-referred current noise. But

this would result in a more harsh trade-off between the bandwidth and stability. For this

reason, two resistors were placed in series, relaxing the trade-off as well as increasing the

gain. The values of the resistors and capacitors were chosen to be 3.3MegΩ and 0.2pF,

achieving enough bandwidth (>100kHz considering the resonant frequency of 20kHz of

the resonators) and a 6.6MegV/A current gain.

The differential signals were further amplified by subsequent instrumentation amplifiers

(INAs) (AD8421, Analog Devices Inc). By using the INAs, differential signals were

amplified by 100 times, to a measurable level of hundreds of millivolts, whereas the

common mode signals such as the feedthrough signals, were suppressed to the sub-

millivolt range, which can be regarded as negligible. The detailed current amplifying

circuit of one channel is presented in Figure 6.10.

Figure 6.10: Detailed schematic of the current amplifying circuit of one channel.
Cin is the input parasitic capacitance of the op-amp.
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A D-sub connector was used as an I/O port for the electrical signals. Several switches

were used to control the drive signals. The whole board is shown in Figure 6.11.

Figure 6.11: Demonstration of the prototype circuit board for measurement.

6.4.3 Experimental method

A real-time measurement method was employed in our work. Motional currents were

used to measure the motion of resonators 1 and 3. With both resonators vibrating at

the same frequency, the ratio of the motional currents equals the amplitude ratio.

A two-channel oscilloscope (DSO6032A from Agilent Technologies) was used for measur-

ing the voltage amplitudes of the resonators simultaneously. By altering the frequency

of the drive signal in 0.01Hz steps, two distinct peaks in the amplitudes could be found,

i.e., the in-phase and out-of-phase modes. The out-of-phase mode could be identified

by the phase difference between the resonators. Then, the applied frequency was main-

tained at the out-of-phase mode frequency for the oscilloscope to measure the amplitudes

over 500 cycles. The oscilloscope computed the mean value of the amplitudes of both

resonators, which were then used to calculate the amplitude ratios. Figure 6.12 shows

the typical real-time response of the resonators 1 and 3 respectively (in this case, this

shows the transient response of device 2). It can be clearly seen that, after changing the

perturbation stiffness, the amplitude ratio changed dramatically.

Additionally, the mode frequencies were recorded as displayed by the signal generator.

It is worth noting here that the third mode was neglected in the analysis due to the fact

that, in the experiment, this mode could not be detected as the amplitudes of resonators

1 and 3 were below the noise level.
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(a) 0.45V perturbation voltage (b) -0.9V perturbation voltage

Figure 6.12: Typical transient response of the resonators 1 and 3 of device 2:
a) 0.45V of perturbation voltage, b) -0.9V perturbation voltage was applied,
respectively.

6.5 Experimental results

6.5.1 Experimental results of device 1

The testing of device 1 was intended to demonstrate the response of a 3DoF weakly

coupled resonator sensor to stiffness changes caused by electrostatic spring softening.

To demonstrate this, Ve was set to 0V, Vb was altered to introduce variable stiffness per-

turbations, and 5 different coupling voltages Vc were used and are listed in the following

table. Ve, Vb and Vc were applied to the electrodes as shown in Figure 6.8.

Table 6.2: Coupling voltage applied and calculated K/Kc and γ3 values

Coupling voltage (V) K/Kc γ3

30 83.5 17073

34.5 62.4 9656

40 45.7 5250

45 35.7 3259

50 28.5 2117

6.5.1.1 γ3 and offset values extraction

Before proceeding to illustrate the functionality of the sensor, it is important to quan-

tify the γ3 values, since the performance of the sensor, e.g. sensitivity (Equation 4.17a),

depends critically on this parameter. In addition, the offset values in stiffness pertur-

bations ∆K/K were characterized due to its importance in analysing the measurement

results.

To approximate the γ3 and offset values from the measurement data, the linearized scale

function Equation 5.11 was utilized. Both the γ3 and offset values were estimated by
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fitting the measured data for amplitude ratios larger than 20 to a linear function. The

slope of the line was expected to be a good approximation of −γ3 and the intersection

of the line to the horizontal axis was regarded as a good estimation of the offset value.

The estimated γ3 values and offset values are listed in Table 6.3. The ∆K/K values

in the following sections were deduced using Equation 6.7 including the experimentally

estimated offset values.

Table 6.3: Extracted values of γ3 and offset

Coupling

voltage (V)
Extracted γ3

Extracted offset of

∆K/K

30 13558 3.8× 10−3

34.5 9118 2.6× 10−3

40 5534 9.1× 10−4

45 3538 −5.7× 10−4

50 2512 −2.7× 10−3

6.5.1.2 Frequency response

Frequency sweep measurements were performed to find out the dynamic range and Q

factor of the resonator structures. An example frequency response, for 30V coupling

voltage, with strong mode aliasing (out of the dynamic range) and weak mode aliasing

(in the dynamic range) is shown in Figure 6.13.

It can be seen that, for 4.85V perturbation voltage, the corresponding stiffness pertur-

bation ∆K/K was calculated as −0.23 × 10−3 according to Equation 6.7. Two modes
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Figure 6.13: Measured frequency response of resonators 1 and 3, with 30V
coupling voltage, corresponding to K/Kc = 83.5 and γ3 = 17073. a) For a per-
turbation voltage of 4.85V, equivalent to ∆K/K = −0.23× 10−3, strong mode
aliasing occurs and therefore the out-of-phase mode was difficult to identify; b)
for a perturbation voltage of 4.15V, equivalent to ∆K/K = −0.69×10−3, weak
mode aliasing occurred and the out-of-phase mode could be identified.
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were close to each other, thus a strong mode aliasing effect was observed, as shown in

Fig. 6.13(a). When we changed the perturbation voltage to 4.15V, hence decreasing

the value of ∆K/K to −0.69× 10−3, the frequency difference between the in-phase and

out-of-phase modes became larger, as predicted by Equation 5.1, the mode aliasing effect

became weaker, and the in-phase and out-of-phase modes could be identified, as shown

in Fig. 6.13(b).

The frequencies of the in-phase and the out-of-phase modes were found to be 14925.42Hz

and 14930.41Hz, respectively; while the calculated corresponding mode frequencies were

14414.76Hz and 14419.90Hz, respectively; hence there is good agreement between mea-

sured and theoretical values.

The measured 3dB bandwidth of the out-of-phase mode was 2.4Hz; from this, the quality

factor could be calculated as approximately 6221 in vacuum, which was sufficiently close

to the assumed quality factor of 5000 in the analytical derivations in Chapter 4.

6.5.1.3 Output metrics

First we shall compare the different output metrics. To demonstrate this, we have used

50V as the coupling voltage. This is to ensure that any ∆K/K ≤ 0, is within the

dynamic range of the sensor, as discussed in Section 5.2.

The drive voltage was chosen to be 8mV, ensuring that the amplitudes are within the

range for linear springs. The vibration amplitudes of resonators 1 and 3 at the out-of-

phase mode frequency were recorded for calculating amplitude ratios, eigenstate shifts

and amplitude differences. The in-phase mode frequencies were also recorded as an

output signal. The measured mode frequencies, as well as calculated amplitude ratios,

eigenstate shifts and amplitude differences from the measured amplitudes are plotted in

Figures 6.14 to 6.17. Also plotted in the figures are the extracted linearized function

and the nonlinearity errors.

From the measured results, we can summarize the linear sensitivity and linear range in

Table 6.4. Comparing the results in Tables 6.4 and 5.2, it can be seen that the measured

results agreed well with the theoretical and simulation results.

Table 6.4: Output metrics summary from measurement results

Output Linear sensitivity Linear range (nonlinearity error < 5%)

Frequency shift 0.54 ∆K/K < −0.001

Amplitude ratio (|X1|/|X3|) 2512 ∆K/K < −0.002

Eigenstate shift 308 −0.001 < ∆K/K < 0

Amplitude difference (|X1| − |X3|) 841V −0.001 < ∆K/K < 0

From the measurement results, it can also be seen that the amplitude ratio has the

highest sensitivity, and second largest linear range, among the dimensionless output
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Figure 6.14: Measured in-phase mode frequency shift as a function of normalized
stiffness perturbation, together with a linear fitted function and nonlinearity
error. The linear sensitivity was 0.54.

Figure 6.15: Measured amplitude ratio (quotient of vibration amplitudes of
resonator 1 and 3) as a function of normalized stiffness perturbation. Also
shown is a linear fitted function and the nonlinearity error. The linear linear
sensitivity was 2511.91.

Figure 6.16: Measured eigenstate shift as a function of normalized stiffness
perturbation, along with linear fitted function and nonlinearity error. The linear
sensitivity was 308.25.
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Figure 6.17: Measured amplitude difference of resonator 1 and 3 as a func-
tion of normalized stiffness perturbation, as well as a linear fitted function and
nonlinearity error. The maximum linear sensitivity was 841V.

signals. Therefore it can be concluded that amplitude ratio is an optimum output for

the 3DoF resonator sensor in terms of sensitivity and linearity. Whereas amplitude

difference can be another attractive output as it gives a very high sensitivity, which is

technically incomparable to the other three due to the different unit, at the expense of

a smaller linear range.

Hence, we have used amplitude ratio as the output for the 3DoF weakly coupled res-

onator sensor.

6.5.1.4 Dynamic range

To avoid strong mode aliasing as shown in Figure 6.13(a), the anti-aliasing condition

given by Equation 4.43 should be satisfied. For the bandwidth measured in the experi-

ment, the minimum frequency difference required was:

∆ω > 2×∆ω3dB = 4.8Hz (6.15)

Mode frequency measurements were carried out for coupling voltages of 30V, 34.5V, 40V

and 45V, to find the boundary of the perturbation values to satisfy Equation 6.15. The

case with 50V coupling voltage was not analysed here since all negative stiffness per-

turbations satisfied Equation 6.15, hence were all in the dynamic range. The frequency

differences versus stiffness perturbations are plotted in Figure 6.18, together with the

theoretically calculated frequency differences Equation 5.1e using extracted γ3 and offset

values listed in Table 6.3. The measured frequencies matched well with the theoretical

calculations.

The lower boundary of the dynamic range was limited by the noise of the resonator

and the associated circuitry interface, as discussed in Section 5.2. In our experiment,
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Figure 6.18: Measured and theoretically calculated frequency differences (Equa-
tion 5.1) with different coupling voltages: a) 30V coupling voltage, b) 34.5V cou-
pling voltage, c) 40V coupling voltage, d) 45V coupling voltage. The measured
frequency differences matched well with the theoretical calculations.

Table 6.5: Dynamic range in terms of normalized change in stiffness

Coupling voltage (V) Extracted γ3
Upper boundary

of ∆K/K

Lower boundary

of ∆K/K

dynamic range

of ∆K/K

30 13358 −6.54× 10−4 −3.78× 10−3 3.12× 10−3

34.5 9118 −6.07× 10−4 −5.49× 10−3 4.89× 10−3

40 5534 −5.89× 10−4 −9.05× 10−3 8.46× 10−3

45 3538 −5.58× 10−4 −14.77× 10−3 14.2× 10−3

for decreasing perturbations, the amplitude of resonator 3 became smaller, consequently

limiting the maximum amplitude ratio that could be detected. The measured output

noise for resonator 3 without driving signal was approximately 3mVrms. This was

measured using the averaging acquirement function of the oscilloscope. To ensure a

signal to noise ratio of at least 10dB, the minimum detectable voltage amplitude from

resonator 3 was regarded as at least 30mV, resulting in maximum amplitude ratios

between approximately 50 to 52 in four different measurement sets.



108 Chapter 6 Experimental Validation of Theorem

The boundaries of the dynamic range of the sensor for different coupling voltages are

listed in Table 6.5.

6.5.1.5 Amplitude ratio and sensitivity analysis
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Figure 6.19: Measured and theoretically estimated amplitude ratio using Equa-
tion 4.44 with different coupling voltages: a) 30V coupling voltage, b) 34.5V
coupling voltage, c) 40V coupling voltage, d) 45V coupling voltage. The mea-
surement results matched well with theoretical predictions.

The estimated theoretical amplitude ratios using extracted γ3 values, measured quality

factor and Equation 4.44 are depicted in Figure 6.19, together with fitted offset values

introduced by fabrication variances.

From Figure 6.19, it can be seen that the measured results matched well with the

theoretical predictions, with a relative error smaller than 5% in all cases.

The measurement result also showed that a smaller coupling voltage lead to a higher

amplitude ratio for a given perturbation stiffness, thus a higher sensitivity. The lin-

ear sensitivity of the sensor, extracted from the measurement data, together with the

sensitivity calculated using design values are listed in Table 6.6.
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Table 6.6: Sensitivity analysis

Coupling voltage (V)
Linear sensitivity extracted from

measured data

Sensitivity calculated using

design parameters
Relative error

30 −13558 −17073 −20.59%

34.5 −9118 −9656 −5.57%

40 −5534 −5250 5.40%

45 −3538 −3259 8.56%

The discrepancies between measured and ideal data were attributed to fabrication vari-

ances, and due to the high sensitivity of the device, small parameter variations were also

amplified.

6.5.1.6 Nonlinearity

To calculate the total nonlinearity errors, the measured data was compared to the lin-

earized scale function Equation 5.11. The results are plotted in Figure 6.20 (the next

page).

From Figure 6.20, it is found that the theoretically estimated nonlinearity errors matched

well with the measured errors. Also, as predicted by theory, the nonlinearity error tended

to increase as the stiffness perturbation approached zero; and with decreasing γ3 value,

the maximum nonlinearity error in the dynamic range increased. Nonetheless, for a

wide span of stiffness perturbations, the sensor provides good linearity, with a typical

nonlinearity error smaller than ±2%.

6.5.1.7 Discussion

From the measurement results, we obtained the linear sensitivity of the sensor (device

1). Comparing the measured linear sensitivity to the state-of-the-art resonator sensors

reported in the literature, a significant improvement in sensitivity is noticed. A brief

comparison of the sensitivity is shown in Table 6.7.

Table 6.7: Sensitivity comparison with the state-of-the-art resonator sensors for
stiffness change

Reference Sensitivity Type

[61] 0.5 1DoF resonant sensor

[108] ∼ 20 2DoF resonant sensor

[121] ∼ 275 2DoF resonant sensor

Our work ∼ 13558 3DoF resonant sensor

It is seen from Table 6.7 that the improvement in sensitivity was significant: compared

to the conventional single resonator sensor with frequency shift output, the improvement
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(b) Nonlinearity with 34.5V coupling voltage
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(c) Nonlinearity with 40V coupling voltage
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(d) Nonlinearity with 45V coupling voltage

Figure 6.20: Comparison of measured amplitude ratio to linearized scale func-
tion (Equation 5.11) with different coupling voltages: a) 30V coupling voltage,
b) 34.5V coupling voltage, c) 40V coupling voltage, d) 45V coupling voltage.
The nonlinearity error was calculated by comparing the measured amplitude
ratio to linearized scale function given by Equation 5.11 and displayed in blue.
The theoretical nonlinearity error was calculated using, ε1 + ε2, where ε1 and
ε2 were calculated using Equation 5.18 and Equation 5.20, respectively. The
theoretically estimated nonlinearity errors matched well with measured errors.

was over four orders of magnitude; whereas the improvement in sensitivity compared to

the 2DoF sensor utilizing mode localization was over 49 times.

It can be found from the measurement results that the dynamic range was not large (Ta-

ble 6.5). This was due to a relatively high value of minimum detectable stiffness change.

One way to enhance the dynamic range is to add a perturbation bias intentionally, so

that any further perturbation in stiffness, will result in a total value of perturbation

in stiffness larger than the minimum detectable level. Hence the minimum detectable
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stiffness change is ultimately limited by the noise floor of the sensing system (e.g. device

and interface electronics).

Another property of the sensor is that the nonlinearity of sensor is not trivial for a

stiffness perturbation approaching zero. This could be alleviated by adding a stiffness

perturbation bias intentionally to a point above which nonlinearity error is tolerable for

the intended applications.

Combining these two reasons, bias stiffness perturbations can be a good strategy to

improve both dynamic range and in range linearity. To demonstrate this, we tested the

functionality of device 2.

6.5.2 Experimental results of device 2

To test device 2, three DC voltages were used in the experiment: a) a fixed coupling

voltage of Vc = 12V was applied to resonators 1 and 3, while resonator 2 was grounded,

hence the resonators were electrostatically coupled; b) a variable voltage Vb, the value

of which will be discussed later, was used to bias the 3DoF sensor to an appropriate

operating point; c) a variable voltage Ve < 0 was used to apply a tensile force on

resonator 1. This is shown in Figure 6.8.

6.5.2.1 γ3 and offset values extraction

Before proceeding to demonstrate the force sensor, γ3 and stiffness offset values were

extracted due to their importance in analysing the experimental results as mentioned

above. γ3 indicates the sensitivity in particular, as shown by Equation 4.17a.

As shall be seen later in Figure 6.22, unlike device 1, the amplitude ratio bent downward

from a linear function for amplitude ratios larger than 20, we were unable to use the

same extraction approach as for device 1. Therefore, we used an alternative approach,

that is to fit the amplitude ratios smaller than 20 to Equation 4.44. To do this, the

Q-factor of the device 2 was measured from frequency responses. The 3dB bandwidth of

the out-of-phase mode was found to be 0.48Hz, the quality factor was 28653, as shown

in Figure 6.21.

While ensuring the mode aliasing effect was negligible and with Ve kept at 0V, the bias

voltage Vb, as shown in Figure 6.8, was altered to change ∆K/K for γ3 and offset extrac-

tion. The amplitude ratios were recorded for different ∆K/K, and the amplitude ratio

curve was fitted to Equation 4.44, as shown in Figure 6.22. The extracted values of γ3

and the offset in normalized stiffness are 29119 and 5.16×10−4, respectively. Compared

to the theoretically calculated value of γ3 = 39557 from the designed dimensions, the

relative error is approximately 26%, this is due to the variances introduced during the

fabrication process.
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Figure 6.21: Measured frequency response of resonator 1 and 3 under two dif-
ferent perturbation conditions: a) Vb = 0.4V and Ve = 0V, shown in solid lines;
b) Vb = 0.4V and Ve = −28.5V, shown in dotted lines. The quality factor was
calculated to be 28653.
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Figure 6.22: Measured amplitude ratios (in red dots) were fitted to Equa-
tion 4.44 to extract γ3 and offset value in normalized stiffness perturba-
tion. The fitted curve is shown in black. The extracted γ3 = 29119 and
offset = 5.16× 10−4.

6.5.2.2 Bias point selection

A bias stiffness perturbation ∆Kbias was intentionally introduced in the experiment, in

order to avoid the mode aliasing effect, thus to improve both dynamic range and in-range

linearity. This was achieved by applying a fixed bias voltage Vb. To reduce the mode

aliasing effect, the anti-aliasing condition Equation 4.43 should be satisfied.

A mode frequency measurement was carried out to find the range of perturbation voltage

Vb that satisfies Equation 4.43. The results are shown in Figure 6.23. It is shown that

a perturbation voltage of Vb ≤ 0.5V satisfied the anti-aliasing condition.
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Figure 6.23: Measured (black) and theoretically calculated (red) frequency dif-
ference as a function of perturbation voltage Vb. The theoretical frequency
differences were calculated using equation Equations 4.20 and 4.22 with γ3, off-
set value extracted and the designed dimensions. 2f3dB = 0.96Hz is marked
with a blue line in the figure. Measured frequency differences match well with
theoretical calculated values.

Moreover, as shown by previous simulation results, a negative ∆Kbias with larger magni-

tude, therefore, a lower Vb, is desired for improved linearity. In the meantime, however,

as shown in Equation 5.21, a larger |∆K| leads to a larger |X1/X3|, hence leading to

larger noise in the amplitude ratio. Therefore, to balance the trade-off, Vb = 0.4V was

used for perturbation. The corresponding normalized stiffness perturbation ∆Kbias/K

and amplitude ratio were 1.91× 10−4 and 5.75, respectively.

6.5.2.3 Force measurement

The main purpose of testing device 2 was to demonstrate the functionality of the 3DoF

weakly coupled resonator device for axial force sensing applications. To demonstrate

this functionality, electrostatic forces along the beam length were created by applying

Ve to the electrode for resonator 1.

With Ve < 0 applied, a tensile force was exerted on resonator 1, which added a positive

stiffness perturbation to resonator 1. As discussed in Section 4.3.3, this in effect was

equivalent to decreasing ∆K to resonator 3. Hence the frequency difference ∆f increased

and the mode aliasing effect could be neglected, as shown by the dotted curves in

Figure 6.21. It can also be seen from Figure 6.21 that negligible spring nonlinearity

was present; therefore the assumption of linear springs can be regarded as valid.

By varying Ve, we were able to measure the amplitude ratios. Using Equation 6.13,

the effective tensile forces applied were calculated. Hence, we can obtain the theoretical
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amplitude ratio using Equations 4.44 and 6.14. Figure 6.24 shows the measured am-

plitude ratios and linearized scale function, given by Equation 5.11, together with the

nonlinearity error. It can be seen from Figure 6.24 that the measured amplitude ratio

matched well with the linearized scale function, with a nonlinearity error smaller than

10% for all the data points. The linear force sensitivity was found to be 4.9×106/N. The

theoretical force sensitivity is calculated to be 6.6× 106/N. The relative error compared

to theoretical prediction is −26%, which is attributed to fabrication tolerances.
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Figure 6.24: Measured amplitude ratios and the linearized scale function with
respect to the applied tensile force. The measured amplitude ratios matched
well with the linearized scale function, with nonlinearity error smaller than 10%
for all the data points. The force sensitivity is found to be 4.9× 106/N.

A comparison of sensitivity to other state-of-the-art resonant force sensors is listed in

Table 6.8. It can be seen that significant improvement in sensitivity of at least two to

three orders of magnitude was achieved.

Table 6.8: Sensitivity comparison with state-of-the-art resonant force sensors

Reference Type Sensitivity expression Sensitivity (/N)

[31]
1DoF resonator with differential

sensing and leverage

∂(∆f/f)

∂T
8995

[121] 2DoF resonant sensor
∂(Eigenstates shift)

∂T
1478

Our work 3DoF resonator sensor
∂(Amplitude ratio)

∂T
4.9× 106

6.5.2.4 Force resolution and dynamic range

Since any motion caused by mechanical noise (as discussed in Section 5.7) went through

the same amplification stages on the printed circuit board, the output mechanical SNR

of the ith resonator is:
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SNRm,i =
V 2
i Keff

kBT (2ωopηsRfGINA)2
, i = 1 or 3 (6.16)

where Vi is the rms-value of the output voltage of the ith resonator and GINA are the

differential gain of the instrumentation amplifiers.

From Equations 5.27 and 5.28, the electrical SNR at the output can be computed as:

SNRe,i =
V 2
i

(
√

2in,iRfGINA)2
, i = 1 or 3 (6.17)

The noise spectral density was measured using a two channel dynamic signal analyser

(35670A by Agilent Technologies) without any driving signal applied, while Vc = 12V,

Vb = 0.4V and Ve = 0V were retained. Averaging of 50 measurement results were used

to reduce the measurement variation, hence the peak caused by the mechanical noise

could be found. The theoretical noise was calculated using Equations 6.16 and 6.17,

together with the equations in section 5.7. It can be seen from Figure 6.25 that the

measurement results and theoretical predictions agreed well. Therefore we were able to

evaluate the noise power based on the theoretical noise.
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Figure 6.25: Output voltage noise spectral density of resonators 1 and 3 com-
pared to the theoretically estimated noise density. The measured noise floor
agreed well with theoretical calculations.

Assuming an ambient temperature of 290K, using the sensing transduction factor, ηs =

4.01×10−8A/(m·rad/s), calculated using the designed value from Table 6.1, Rf = 6.6MΩ

and GINA = 100 as designed, when Vb = 0.4V and Ve = 0V, resulting in an amplitude

ratio |X1/X3| = 5.75, the SNRs can be calculated from the noise power within 3dB

bandwidth (f3dB = 0.48Hz) using the measured output signal. The evaluated SNR and

noise power are listed in Table 6.9.
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Table 6.9: Theoretical noise evaluation of the 3DoF sensor

Noise type
Measured

signal power

Evaluated

SNR (dB)

Evaluated

Noise power

Mechanical noise

(resonator 1)
0.53 (V2) 84.80

1.76× 10−9

(V2)

Mechanical noise

(resonator 3)

1.60× 10−2

(V2)
84.80

5.30× 10−11

(V2)

Electrical noise

(resonator 1)
0.53 (V2) 87.18

1.02× 10−9

(V2)

Electrical noise

(resonator 3)

1.60× 10−2

(V2)
71.98

1.02× 10−9

(V2)

Amplitude ratio

noise
33.11 71.72 2.23× 10−6

It can be seen from Table 6.9 that the electrical noise of resonator 3 (the resonator

with smaller amplitude) ultimately sets the noise floor of the amplitude ratio. Due to

the fact that the thermal-electrical noise can be regarded as uniformly distributed in

a wide frequency span, the amplitude ratio noise can also be regarded as white noise.

Therefore, from Table 6.9, we can evaluate the minimum resolvable force of the sensor

near the bias point as:

〈T 〉min =
〈Amplitude ratio〉min

Force sensitivity

=

√
2.23× 10−6/0.48

4.9× 106
N/
√

Hz

= 4.40× 10−10N/
√

Hz (6.18)

where 〈Amplitude ratio〉min is the evaluated noise power spectral density of the ampli-

tude ratio.

To estimate the dynamic range of the 3DoF sensor, suppose a bandwidth of 10Hz, the

minimum detectable force is 1.39nN. For a maximum force of 7.6µN in the experiment,

a dynamic range of approximately 74.8dB can be achieved.

6.5.2.5 Nonlinearity

From the measurement results, it can be noticed that the nonlinearity error of the 3DoF

device started off decreasing in value as the amplitude ratio increased, as shown in

Figure 6.26, which was in agreement with the theoretical predictions.

However, the linearity of the 3DoF sensor tended to deteriorate as the amplitude ratio

increased, as shown in Figures Figure 6.24 and 6.26. It should be noticed that this
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Figure 6.26: Measured amplitude ratio and the linearized scale function Equa-
tion 5.11 as a function of normalized stiffness perturbation. Nonlinearity error
was also calculated and shown in the figure. Nonlinearity error decreased in
value as the amplitude ratio increased.

nonlinearity was found to be insignificant for the device 1. One possible reason for this

is that the air gap between the resonators was 3.5µm in this design, smaller compared

to 4.5µm of device 1. For example, when amplitude of resonator 1 is significantly higher

than resonator 3 (larger than 30 times), the nonlinearity of Kc1 becomes larger than

that of Kc2, making the assumption of Kc1 = Kc2 invalid for larger amplitude ratios.

6.6 Summary

In this chapter, an experiment to verify the theoretical predictions of a 3DoF weakly

coupled resonator device as a sensor for stiffness change applications, including tensile

force sensing, is demonstrated. The design of a proof-of-concept device with 3DoF

electrostatically coupled resonator structure is presented, along with the fabrication

process and the electrical experimental set-up. The devices were for proof-of-concept.

Despite so, some design considerations such as differential sensing, double parallel plate

and L-shaped beam designs can be helpful for future optimization of the device.

The experimental results from two fabricated devices are also presented in this chapter.

In general, the measurement results agreed well with our theoretical predictions. For

instance, from the measurement results, it was demonstrated that the amplitude ratio

|X1|/|X3| was the optimum output signal in terms of linear sensitivity and linear range,

when compared to other output metrics such as eigenstate shift and frequency shift.

The most significant discovery from the experimental results was that a 3DoF weakly

coupled resonator device can provide much higher sensitivity than a conventional single

DoF resonator sensor or a 2DoF weakly coupled mode-localized resonant sensors. At



118 Chapter 6 Experimental Validation of Theorem

least 49 times improvement in sensitivity for stiffness change applications (device 1) and

two orders of magnitude enhancement in force sensitivity (device 2) were observed in the

experiments. This makes the novel 3DoF weakly coupled resonator sensor an attractive

alternative for ultra-high sensitivity applications.

From the measurement results, the feasibility of utilising a bias point was also demon-

strated. This allows the manipulation of the working range for optimizing the perfor-

mance of the sensor.

In addition, the noise level of the force sensor was also theoretically estimated based on

the noise spectrum density measurement. Hence the dynamic range was also calculated

based on the noise estimation. From the proof-of-concept design (device 2), a dynamic

range of 74.8dB was achieved. This is also promising for future optimization.

However, one disadvantage of the device was the nonlinearity. From the measurement

results of both device 1 and 2, it was shown that the nonlinearity of the device was not

trivial in a wide range. This requires more optimization in the future.



Chapter 7

Self-oscillating Loop

Throughout this dissertation, it was repeatedly stated that this research is intended

to lay the theoretical foundation of the 3DoF weakly coupled resonator as a stiffness

change sensor. Some practical problems still remains unsolved to this point, e.g. no

self-oscillating loop control circuit structure existed in the literature. Hence, in this

chapter, we shall propose a feasible structure for constructing such a loop, potentially

enabling automatic locking to the resonance mode of interest.

7.1 Introduction

For the experimental method in this research, one major problem exists currently, that is

the observer has to adjust the frequency of the drive signal to the out-of-phase mode fre-

quency, so that the amplitudes of resonators 1 and 3 at the out-of-phase mode frequency

could be measured, when a stiffness perturbation is introduced. Since the tuning of the

drive frequency to the exact mode frequency can be time consuming, this makes the

device impractical for applications where fast changing stiffness change or force change

should be monitored. Therefore, it is imperative to develop a self-oscillating loop or

self-sustained oscillation loop, which automatically locks the resonator system to the

out-of-phase mode, even when a stiffness perturbation is present.

In the literature, self-oscillating loop has been used for single DoF resonators [31, 81,

122, 123, 124], in order to keep the resonators always excited at the desired resonant

frequencies. However, to the author’s knowledge, there is no report on a self-oscillating

loop design for a weakly coupled resonator system.

In what follows, we shall propose an approach to design the self-oscillating loop that

automatically finds the out-of-phase mode frequency of a 3DoF weakly coupled resonator

system, and discuss the feasibility of such a feedback loop.
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7.2 Theory

Figure 7.1: Typical structure of a self-oscillating loop, where H(jω) and G(jω)
are the transfer functions of the resonant structure and electrical feedback, re-
spectively.

For a self-sustained oscillator as shown in Figure 7.1, the oscillation start-up condition

is derived from the Barkhausen criterion [125]:

∠[H(jω0)G(jω0)] = 0 (7.1a)

|H(jω0)G(jω0)| > 1 (7.1b)

where ω0 is the oscillator’s desired angular frequency. However, as the oscillation grows,

the maximum amplitude of the oscillation would be limited by either a nonlinearity

or an amplitude limit set by the designer [81]. Since the nonlinearity of the resonant

structure is not desired in our 3DoF resonator sensor, the amplitude of oscillation is

intentionally limited to a level well within the linear region of the springs. This can

be achieved by designing an automatic level controller circuit, i.e. the automatic gain

control (AGC) [124]. With the AGC in effect, the feedback gain block G(jω) is reduced

as the amplitude of the oscillation grows. When the amplitude of oscillation reaches the

desired value, the magnitude of the feedback loop gain |H(jω0)G(jω0)| = 1.

As opposed to the fact that the design of the AGC and the variable gain feedback is

well documented in the literature, the self-oscillating loop has not yet been achieved for

a coupled resonator system. This is because of that the transfer function of a coupled

resonator system has not been discussed in the literature so far. For a 3DoF weakly

coupled resonator system, when |γ3(∆K/K)| > 10:

|γ3(∆K/K)| ≈
√
γ2

3(∆K/K)2 + 4 (7.2)
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From Equation B.2b in Appendix B, it can be seen that in this case, U1(jωop) has a

phase difference of approximately 0 degrees compared to F1. Hence, the motional current

is in-phase with the AC drive voltage. Thus if we use the amplitude of the motional

current of resonator 1, which is proportional to U1 as the signal to feedback, the total

phase shift of the electrical feedback should be 0 degrees.

7.3 Simulation to demonstrate the feasibility

7.3.1 Self-oscillating loop schematic

Figure 7.2: Simplified schematic of the self-oscillating loop, including the MEMS
resonators.

The entire configuration of the self-oscillating loop, including the MEMS resonator, is

shown in Figure 7.2.

The electrical feedback includes a standard transimpedance amplifier (TIA) and a vari-

able gain structure in conjunction with an amplitude detector. The standard tran-

simpedance amplifier was used to convert the motional currents into voltages.

The variable gain stage used the voltage converted from the motional current of the

resonator 1 as the input, with the gain controlled by the amplitude of the same resonator,

it reduces gain for the increasing amplitude, and increases the gain for the decreasing

amplitude. Hence, the oscillation can be maintained. To realize this function, a structure

based on the circuit proposed by [126] was used. An amplitude detector, shown as

the amplitude detector in Figure 7.2 was employed to generate the control signal. A

voltage controlled resistor, which is a MOSFET working in the triode region, as shown

in Figure 7.2 was used to vary the gain.
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7.3.2 Simulation results

The circuit diagram for the simulation is shown in three parts as in Figure 7.3.

(a) MEMS resonator model

(b) Amplitude detection

(c) Variable gain stage

Figure 7.3: Circuit diagram for the self-oscillating loop simulations: a) MEMS
resonator model; b) amplitude detection for the loop gain control; c) variable
gain stage to generate drive voltage.

The first part is the 3DoF RLC circuit model equivalent to MEMS resonator with both

stiffness perturbations to resonators 1 and 3, as shown in Figure 7.3(a). The value for
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the RLC components used for the simulations is listed in Table 4.4. A constant stiffness

perturbation of ∆K/K = −0.001 was introduced to the resonator 3. The normalized

stiffness perturbations shown in the figures below are the stiffness perturbations to res-

onator 1. The TIAs were used to convert the motional currents to voltages V1 and V3,

which is the amplitude of resonator 1 and 3, respectively.

The second part is the amplitude detection circuitry to generate the signal, Vc to control

the loop gain. The control signal, Vc follows the trend of the amplitude change: it

increases as the amplitude increases, decreases as the amplitude decreases. The voltage

fed to the diode was forward biased so that it could detect any small amplitude change.

The set up of this part of circuit is shown in Figure 7.3(b).

The third part is the variable gain stage, which was used to generate the drive voltage

Vd. The gain control element was a P-channel MOSFET. To ensure that the MOSFET

was always on, the gate voltage was biased to −1VDC. The small amplitude of Vout

ensured that the transistor was always in the triode region, hence the transistor can be

used as a variable resistor controlled by Vc. The rDS of the transistor decreases as the

voltage Vc increases, thereby decreasing the loop gain. The generated voltage Vd was

then fed back to drive the MEMS resonators. The circuit schematic of this part is shown

in Figure 7.3(c).

Without any drive signal, except for a short pulse current source to kick start the

oscillation, the transient responses of the resonator 1 and 3 within the self-oscillating loop

are shown in Figures 7.4(a) and 7.4(b), respectively. From the start of the simulation,

t = 0, the normalized stiffness perturbation to resonator 1 was ∆K/K = 10−3. From

t = 1, the normalized stiffness perturbation suddenly changed to ∆K/K = 2× 10−4. It

can be seen from the figures that the amplitude of the resonator 1 was kept constant

due to the automatic gain control, while the change in the amplitude of resonator 3 can

be clearly seen.

The steady state transient responses of the resonators 1 and 3, under the two stiffness

perturbations, are shown in Figures 7.5(a) and 7.5(b), respectively. It can be seen from

Figures 7.5(a) and 7.5(b) that the phase differences between the amplitudes of resonators

1 and 3 are close to 180 degrees.

In addition to the transient response, we shall examine the oscillation frequencies of the

self-oscillating loop, to see whether the feedback is able to track the out-of-phase mode

frequencies when the perturbation is changed. The simulated period of one cycle for each

stiffness perturbation was calculated by evaluating the time period for approximately

140 cycles (which is within a 0.01 second window) in the simulation, and dividing that

time by the number of cycles. The oscillation frequencies were then calculated from

the period of a cycle. The oscillation frequencies calculated from the simulations as a

function of the stiffness perturbation is plotted and compared to theoretical out-of-phase

mode frequencies (Equation 4.46b) in Figure 7.6.
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Figure 7.4: Simulated transient responses of: a) resonator 1 and b) resonator 3,
subject to changing stiffness perturbation to the resonator 1.
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Figure 7.5: Simulated steady state transient responses of the resonators 1 and 3
with different stiffness perturbations to the resonator 1: a) ∆K/K = 10−3 and
b) ∆K/K = 2× 10−4.

It can be seen from Figure 7.6 that the oscillation frequencies of the self-oscillating

loop agreed well with the theoretical out-of-phase mode frequencies, with relative errors

smaller than 0.003%. Hence, it can be concluded that the self-oscillating loop can track

the out-of-phase mode frequency.
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Figure 7.6: The oscillation frequencies of the self-oscillating loop calculated
from the simulations compared to the out-of-phase mode frequencies of the
3DoF resonators (Equation 4.46b).

Furthermore, the amplitude ratios are also calculated from the simulation results. The

steady state amplitude ratios from the self-oscillating loop as a function of the normalized

stiffness perturbations were plotted and compared to the theoretical amplitude ratio

(Equation 4.46c) in Figure 7.7.
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Figure 7.7: The steady state amplitude ratios from the self-oscillating loop
calculated from the simulations compared to the theoretical amplitude ratios of
the 3DoF resonators (Equation 4.46c).

It can be seen from Figure 7.7 that the simulated steady state amplitude ratios satisfied

with the theoretical predictions, with relative error smaller than 2%. This demonstrates

the feasibility of the self-oscillating loop while maintaining the functionality of the 3DoF

weakly coupled resonators.

7.4 Discussions

The current structure successfully demonstrated the feasibility of the self-oscillating loop

for a 3DoF weakly coupled resonator system, while maintaining the sensing capabilities



126 Chapter 7 Self-oscillating Loop

of the device. This would enable the real time sensing for a 3DoF coupled resonator

device.

However, it should be pointed out that the amplitude ratios still have a relative error

of approximately 2%, the reason for this could be the other modes that has not fully

diminished at the “stead state”. Hence, the future optimization of the self-oscillating

loop can focus on approaches to damp the other modes.

Moreover, the time constant to reach a steady state, as well as the oscillation start

up time, for the current configuration is quite long. For instance, it can be seen from

Figure 7.4(b) that the time constant is larger than 0.1s, this would practically limit the

bandwidth of the quantity to be measured to less than 10Hz. Therefore, it is important

to decrease the time constant in the future.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In summary, compared to the objectives listed in Section 1.2, we have mainly achieved

the following:

• Proposed a novel structure that is able to improved the sensitivity of the mode-

localized sensors effectively. The resonant sensing device, which consists of three

resonators, weakly coupled through electrostatic coupling to its neighbouring res-

onator(s), can improve the sensitivity of stiffness change or tensile force by orders

of magnitude, namely 49 times for stiffness change sensors and 544 times for tensile

force sensing. In terms of minimum detectable force, the calculated noise floor of

the 3DoF mode-localized force sensor is 0.44nN/
√

Hz. In addition, by adopting

the bias method, a dynamic range of 74.8dB could be achieved.

The key to improve the sensitivity for the 3DoF mode-localized sensor is to make

the middle resonator at least two times stiffer, while tuning the stiffness of the

coupling element at least 10 times weaker, than that of the outer resonator. In

this way, a high γ3 value can be achieved, as proposed by a key equation, Equa-

tion 4.17a.

• In this work, we have used a transfer function based approach in conjunction with

an algebraic method. The algebraic method is used to solve the mode frequencies

without damping. The transfer function based approach extends the theory to

the practical case with damping. Using the transfer function model, we show that

damping has an effect on the nonlinearity of the output of the sensor, as well as

the dynamic range.

The dynamic range and nonlinearity of the sensor were investigated. The expres-

sions for dynamic range are given by Equations 5.3 and 5.5; the expressions for

127



128 Chapter 8 Conclusions and Future Work

nolinearity are estimated by Equations 5.18 and 5.20. From the expressions, it can

be noticed that the sensitivity. γ3, also affects the dynamic range and nonlinearity.

Hence the value of γ3 should be carefully designed. In addition, with the transfer

functions, we were able to derive the signal-to-noise ratio of the sensor, as shown

in Section 5.7. This approach can also be used on 2DoF mode-localized sensors,

or for mass sensor analysis.

• Furthermore, in Sections 5.3 and 6.5.1.3, we have shown by theory and measure-

ment results that the amplitude ratio is the optimum output signal for 3DoF

mode-localized sensors, over eigenstates shift and mode frequency shift. Due to

the similarities between 2DoF and 3DoF systems, we also believe that the am-

plitude ratios are the optimum output signal for 2DoF mode-localized sensors for

stiffness changes. We have also shown that the amplitude difference can be an

attractive output signal as well.

• Finally, in Chapter 7, based on the derivations using the transfer function model,

we proposed a feasible self-oscillating loop structure that is capable of automat-

ically locking to the out-of-phase mode frequency, hence enabling real-time mea-

surements using the sensor.

However, there are other problems that need to be addressed for weakly coupled-mode

localized sensors. First of all, we have demonstrated that from 1DoF to 2DoF and

3DoF resonant sensors, the sensitivity has been improved. However, would 4DoF sensor

improve the sensitivity even further? Second, both 2DoF and 3DoF sensors are based on

amplitude detections, which has inherently lower resolution to frequency shifts. Third,

the high sensitivity of mode-localized sensors, including 2DoF and 3DoF, is based on

high Q-factor of the resonant modes. It is important to improve the intrinsic Q-factor

of the resonators without vacuum environment. Fourth, the common mode rejection

capabilities of 3DoF has not been demonstrated, despite that it could be demonstrated

in theory. These thoughts lead to the following future work beyond the thesis.

8.2 Future work

8.2.1 Extension of the theory

Due to the similarities of the 3DoF mode-localized sensors to other coupled resonant sen-

sors, we believe that this mixed approach can be a universal approach for such systems.

It can be extended and utilized in analysing other coupled resonant sensors as well, e.g.

4DoF mode-localized sensors. Since we have successfully shown that the sensitivity can

be improved from 1DoF to 2DoF, then to 3DoF, it is natural to extend the number of

resonators to 4 or more to achieve even higher sensitivity.
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8.2.2 Resolution enhancement

For the mode-localized sensors, essentially an amplitude detection based approach is

used as an output, instead of measuring the frequency shift. However, typically, the

resolution of amplitude detection is orders of magnitude lower than that of the frequency

shift detection. This is a drawback of the mode-localized sensors. Despite of orders of

magnitude enhancement in sensitivity, the resolution of the sensor could still be the same

or even lower than the conventional 1DoF sensor. Hence, it is important to optimize

the resolution of amplitude detection for mode-localized sensors. One approach could

be the noise shaping circuit using Sigma-Delta modulators, since the resonant frequency

of the mode-localized sensor presented in this thesis is relatively low (less than 20kHz).

8.2.3 Optimization of the device design

As repeatedly stated throughout this dissertation, the design rationale of the device

parameters is lacking in this research. Hence, future work should concentrate more on

the optimization of the parameters. As discussed in the device design sections of this

dissertation, a few trade-offs exists in the selection of parameters. Therefore, in the

future, design should balance the trade-offs by prioritizing the specifications according

to the applications.

Currently, there are a few limits to the performance of the device, a major one of

which is the Q factor of the resonators. As discussed in the dissertation, the Q factor

limits the sensitivity, linearity and dynamic range. However, for some applications

where working in the atmosphere or a liquid is required, it is imperative to optimize the

existing structure to lower the damping, or choose another structure that has low loss

intrinsically, such as Lamé mode resonators [127].

Furthermore, another aspect that is lacking in this research is the frequency or amplitude

stability of the resonators. The main reason is that this alone would require a long time

to optimize. This process would involve the optimization of the fabrication process,

structure, and even interface electronics for compensation.

8.2.4 Common mode rejection ability

It has been shown in previous studies [36, 41] that a 2DoF mode-localized sensor can

provide improved common mode rejection compared to single DoF resonator sensor.

The common mode interference to the sensing process studied included pressure and

temperature changing. Based on the previous studies, it will be a very interesting topic

to study the common mode rejection abilities of a 3DoF resonator sensing system. The

sensitivity of the output amplitude ratio can be obtained for a known change in ambient

temperature, pressure or humidity.





Appendix A

Vibration Amplitudes

A.1 Vibration amplitude of resonator 3

We consider the resonator device example in Figure 5.1, driven by an AC voltage on the

actuation electrode, and the driving force bing F1. In addition, we suppose a stiffness

perturbation ∆K < 0 is applied to resonator 3. From Equations 4.38a to 4.38f, we are

able to obtain the vibrational amplitudes of resonators 1, 2 and 3.

Due to the symmetry of the in-phase mode and out-of-phase mode as shown in Figure 4.5,

without loss of generality, only out-of-phase mode is discussed here. Assuming that the

device is in the dynamic range, thus Equations 4.43 and 5.3 are satisfied, the frequency

of the out-of-phase mode is given by Equation 4.20. Substituting Equation 4.20 into

Equation 4.38f, we are able to approximate the vibrational displacement amplitude, X3,

and velocity amplitude, U3, of resonator 3 at the out-of-phase mode, respectively:

|X3|op ≈
∣∣∣∣KQ

(
−j
√
γ2

3(∆K/K)2 + 4− γ3

Q

)∣∣∣∣−1

|F1| (A.1a)

|U3|op ≈
∣∣∣∣KQ

(
−j
√
γ2

3(∆K/K)2 + 4− γ3

Q

)∣∣∣∣−1

|ωopF1| (A.1b)

where α and γ3 are defined in Equation 4.21 and Equation 4.17a, respectively.

To verify the mathematical estimations, a simulation is run using the equivalent electrical

circuit model as shown in Figure 4.12. The values used for the simulation are listed in

Table A.1. The motional current amplitudes were used in the simulations to represent

the velocity amplitudes of each resonator.

The simulated vibration amplitudes of resonator 3 at the out-of-phase mode frequencies

are plotted in Figure A.1. The theoretical values were calculated using Equation A.1b

and compared to the simulated values. It can be seen from Figure A.1 that the theoretical
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Table A.1: Values used in the simulation to verify theoretical estimations

Component Value Mechanical model equivalent

L 0.489 MH M

C 0.254 fF K

C2 84.8 aF K2/K = 3

Cc −19.07 fF K/Kc = −75, γ3 = 11174

R 0.88 MΩ Q = 50000

vac 15 mV Arbitrary actuation voltage

estimations agree well with the simulations, with relative errors less than 1.3% for all

values.
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Figure A.1: Theoretical calculated vibration amplitudes of resonator 3 (black)
and simulated vibration amplitudes by electrical equivalent model (red) as
a function of normalized stiffness perturbations. The theoretical estimations
match well with simulated values.

A.2 Vibration amplitude of resonator 1

Since the amplitude ratios are given by Equation 4.44, we are able to approximate the

vibration amplitude of resonator 1, displacement amplitude X1 and velocity amplitude

U1 as:

|X1|op ≈

∣∣∣∣∣∣∣∣∣∣∣
γ3(∆K/K)−

√
γ2

3(∆K/K)2 + 4

2
+ j

γ3

Q

K

Q

(
−j
√
γ2

3(∆K/K)2 + 4−
γ3

Q

)
∣∣∣∣∣∣∣∣∣∣∣
|F1| (A.2a)
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|U1|op ≈

∣∣∣∣∣∣∣∣∣∣∣
γ3(∆K/K)−

√
γ2

3(∆K/K)2 + 4

2
+ j

γ3

Q

K

Q

(
−j
√
γ2

3(∆K/K)2 + 4−
γ3

Q

)
∣∣∣∣∣∣∣∣∣∣∣
|ωopF1| (A.2b)

To verify the mathematical expressions, the same simulation was run. The simulated re-

sults are plotted in Figure A.2, along with the theoretical estimations. The relative errors

between the theoretical and simulated values is less than 2% for all stiffness perturbation

values, indicating that the theoretical calculations can be regarded as accurate.
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Figure A.2: Theoretical calculated vibration amplitudes of resonator 1 (black)
and simulated vibration amplitudes by electrical equivalent model (red) as
a function of normalized stiffness perturbations. The theoretical estimations
match well with simulated values.

A.3 Vibration amplitude of resonator 2

In addition, the displacement and velocity amplitudes of resonator 2 can also be approx-

imated at the out-of-phase mode frequency:

|X2|op ≈

∣∣∣∣∣∣∣∣∣∣∣
∆K + α−

√
∆K2 + α2

2Kc
− j

K

KcQ

K

Q

(
−j
√
γ2

3(∆K/K)2 + 4−
γ3

Q

)
∣∣∣∣∣∣∣∣∣∣∣
|F1| (A.3a)

|U2|op ≈

∣∣∣∣∣∣∣∣∣∣∣
∆K + α−

√
∆K2 + α2

2Kc
− j

K

KcQ

K

Q

(
−j
√
γ2

3(∆K/K)2 + 4−
γ3

Q

)
∣∣∣∣∣∣∣∣∣∣∣
|ωopF1| (A.3b)
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The results from the same simulation as above are plotted alongside the theoretically

calculated results in Figure A.3. It can be seen that the theoretical values are very

close to the simulated errors, with typical relative errors less than 8%. However, the

maximum relative error was approximately 8% when the simulated normalized stiffness

perturbation was ∆K/K = 4×10−3. The larger errors compared to the previous results

was caused by the low values in the amplitude. This error was reduced to less than 1.5%

when simulated with an AC driving voltage that was 10 times larger. Therefore, we are

able to conclude that the theoretical estimations can be regarded accurate.
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Figure A.3: Theoretical calculated vibration amplitudes of resonator 2 (black)
and simulated vibration amplitudes by electrical equivalent model (red) as
a function of normalized stiffness perturbations. The theoretical estimations
match well with simulated values.
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Phase Delays

B.1 Phase delay of resonator 3

We consider the resonator device example in Figure 5.1, driven by an AC voltage on the

actuation electrode, and the driving force bing F1. In addition, we suppose a stiffness

perturbation ∆K < 0 is applied to resonator 3. From Equations 4.38a to 4.38f, we are

able to obtain the phase delays of resonators 1, 2 and 3.

Due to the symmetry of the in-phase mode and out-of-phase mode as shown in Figure 4.5,

without loss of generality, only out-of-phase mode is discussed here. Assuming that the

device is in the dynamic range, thus Equations 4.43 and 5.3 are satisfied, the frequency

of the out-of-phase mode is given by Equation 4.20. Substituting Equation 4.20 into

Equation 4.38f, we are able to approximate the phase delay of the displacement, X3,

and velocity, U3, of resonator 3 at the out-of-phase mode, compared to the drive signal,

respectively:

∠ |X3|op ≈ − arctan

(
−
√
γ2

3(∆K/K)2 + 4

−γ3/Q

)
(B.1a)

∠ |U3|op ≈ − arctan

(
−
√
γ2

3(∆K/K)2 + 4

−γ3/Q

)
+ 90◦ (B.1b)

The simulated phase delays of the motional current of the resonator 3 at the out-of-phase

mode frequencies are plotted in Figure B.1. The theoretical values were calculated using

Equation B.1b and compared to the simulated values. It can be seen from Figure B.1

that the theoretical estimations agree well with the simulations, with absolute errors

less than 1.1◦ for all values.

135



136 Appendix B Phase Delays

Table B.1: Values used in the simulation to verify theoretical estimations

Component Value Mechanical model equivalent

L 0.489 MH M

C 0.254 fF K

C2 84.8 aF K2/K = 3

Cc −19.07 fF K/Kc = −75, γ3 = 11174

R 8.77 MΩ Q = 50000

vac 15 mV Arbitrary actuation voltage
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Figure B.1: Theoretical calculated phase delays of the resonator 3 motional
current (black) and simulated values by electrical equivalent model (red) as
a function of normalized stiffness perturbations. The theoretical estimations
match well with simulated values.

B.2 Phase delay of resonator 1

We are also able to approximate the phase delays of the displacement of resonator 1, X1

and velocity of resonator 1, U1 as:

∠ |X1|op ≈ arctan

(
2γ3/Q

γ3(∆K/K)−
√
γ2

3(∆K/K)2 + 4

)

− arctan

(
−
√
γ2

3(∆K/K)2 + 4

−γ3/Q

) (B.2a)

∠ |U1|op ≈ arctan

(
2γ3/Q

γ3(∆K/K)−
√
γ2

3(∆K/K)2 + 4

)

− arctan

(
−
√
γ2

3(∆K/K)2 + 4

−γ3/Q

)
+ 90◦

(B.2b)

To verify the mathematical expressions, the same simulation was run. The simulated

results are plotted in Figure B.2, along with the theoretical estimations. It can be seen
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from Figure B.2 that the absolute differences between the simulated values and the

theoretical values were smaller than 0.8◦, which can be regarded as accurate.
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Figure B.2: Theoretical calculated phase delays of the resonator 1 motional
current (black) and simulated values by electrical equivalent model (red) as
a function of normalized stiffness perturbations. The theoretical estimations
match well with simulated values.

It should be noticed that, when γ3(∆K/K) < −10, the following can be approximated:

γ3(∆K/K)−
√
γ2

3(∆K/K)2 + 4 ≈ −2
√
γ2

3(∆K/K)2 + 4 (B.3)

Therefore, for ∆K/K values that satisfies γ3(∆K/K) < −10, Equation B.2b can be

approximated to be 0◦. Hence, the phase delay of the motional current of the resonator 1,

is approximately in-phase with the drive signal. This conclusion is particularly important

in designing the self-oscillating loop.

B.3 Phase delay of resonator 2

In addition, the displacement and velocity phase delays of the resonator 2 can also be

approximated at the out-of-phase mode frequency:

∠ |X2|op ≈ arctan

(
− 2K/Q

∆K + α−
√

∆K2 + α2

)

− arctan

(
−
√
γ2

3(∆K/K)2 + 4

−γ3/Q

) (B.4a)
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∠ |U2|op ≈ arctan

(
− 2K/Q

∆K + α−
√

∆K2 + α2

)

− arctan

(
−
√
γ2

3(∆K/K)2 + 4

−γ3/Q

)
+ 90◦

(B.4b)

The results from the same simulation as above are plotted alongside the theoretically

calculated results in Figure B.3. It can be seen that the theoretical values are very close

to the simulated errors, with absolute errors less than 1.1◦ for all stiffness perturbations.

Therefore, we are able to conclude that the theoretical estimations can be regarded

accurate.
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Figure B.3: Theoretical calculated phase delays of the resonator 2 motional
current (black) and simulated values by electrical equivalent model (red) as
a function of normalized stiffness perturbations. The theoretical estimations
match well with simulated values.



Appendix C

Matlab Code for Solving

Eigenvalues and Eigenstates

The following Matlab code is used to solve eigenvalues and eigenstates for 3DoF res-

onators with perturbations only to resonator 3. The values used in the code are the

same as listed in Table 4.1. The Matlab code for the other cases can be easily derived

from this code. Please note that this may not be the optimum code for this purpose.

1 % -----------------------------%

2 % Matlab code

3 % -----------------------------%

4 k=57.6233; % Stiffness of outer resonator

5 kc= -0.6904; % Stiffness of coupling

6 km =199.5481; % Stiffness of middle resonator

7 m=6.9351E-09; % Masses of all resonators

8 dk = -0.17287:0.0069148:0.17287; % Stiffness perturbations

9

10 for i=1:51

11 Dk=dk(i); % Stiffness perturbation element

12 alpha =2*kc^2/(km-k+kc); % Alpha value for calculating frequencies

13

14 % -----------------------------%

15 % Matlab calculation of amplitude ratios and mode frequencies

16 % -----------------------------%

17 A=[k+kc,-kc ,0;-kc ,km+2*kc,-kc;0,-kc,k+kc+Dk]/m;

18 % Matrix define

19 [v,d]=eig(A); % Solving the eigenstates and eigenvalues

20 % v is the eigenstate , d is the eigenvalue

21 ratioinphase(i)=v(1,1)/v(3,1); % In -phase mode amplitude ratio

22 ratiooutphase(i)=abs(v(1,2)/v(3,2)); % Out -of -phase mode amplitude ratio

23 finphase(i)=sqrt(d(1,1))/2/pi; % In-phase mode frequency

24 foutphase(i)=sqrt(d(2,2))/2/pi; % Out -of -phase mode frequency

25

26 % -----------------------------%

27 % Theoretical estimations of amplitude ratios and mode frequencies

28 % -----------------------------%

29 theoreticaloutphase(i)

30 =abs(((km-k+kc)/(kc^2)*Dk-sqrt (((km-k+kc)/(kc^2))^2*(Dk^2)+4))/2);

31 % Theoretical out -of-phase mode amplitude ratio
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32 theoreticalinphase(i)

33 =((km -k+kc)/(kc^2)*Dk+sqrt (((km-k+kc)/(kc^2))^2*(Dk^2) +4))/2;

34 % Theoretical in-phase mode amplitude ratio

35 fthoutphase(i)=sqrt([k+kc +1/2*(Dk -alpha+sqrt(Dk^2+ alpha ^2))]/m)/2/pi;

36 % Theoretical out -of-phase mode frequency

37 fthinphase(i)=sqrt([k+kc +1/2*(Dk-alpha -sqrt(Dk^2+ alpha ^2))]/m)/2/pi;

38 % Theoretical in-phase mode frequency

39

40 % -----------------------------%

41 % Calculating the relative errors

42 % -----------------------------%

43 e1(i)=( theoreticaloutphase(i)-ratiooutphase(i))/ratiooutphase(i);

44 e2(i)=( theoreticalinphase(i)-ratioinphase(i))/ratioinphase(i);

45 e3(i)=( fthoutphase(i)-foutphase(i))/foutphase(i);

46 e4(i)=( fthinphase(i)-finphase(i))/finphase(i);

47

48 end



Appendix D

Construction Guide for

Customized Vacuum Chamber

In this work, we have used a customized vacuum chamber to provide an ambient pressure

as low as 20µTorr. This customized vacuum chamber has advantages such as low cost

and portability. The following brief steps and Figure D.1 and Figure D.2 can be a guide

on how to build a such vacuum chamber.

Figure D.1: Schematic drawing of the customized vacuum chamber.

Figure D.2: Photo of the customized vacuum chamber.
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First of all, the main body of the vacuum chamber should be big enough to hold the

interface circuit board inside. In our case, the maximum size of the PCB board is 80mm

× 80mm, therefore, a nipple with an ID of 100mm and a length of 100mm, as well as two

LF-type of mechanical connection interface was used as the main body of the vacuum

chamber.

After choosing the main body, the next task is to find out the number of I/O pins required

for the PCB board. Then the part of the electrical feedthrough can be determined from

the suppliers catalogue. In our case, a maximum number of 9 I/O pins were required.

Hence we have chosen a 9-pin D-sub as the electrical feedthrough. We then found the

cheapest part with the 9-pin D-sub connector. However, the diameter of the vacuum

flange was 40mm, with a KF-type mechanical connection interface.

To connect the main body to the electrical feedthough, an adapter was needed because

of different types of mechanical connection interface and different diameters. In our case,

LF to KF reducing nipple was used.

As for the connection to the pump, two types of vacuum pump were used in our study,

one with a 40cm diameter, KF-type of connection interface; and the other one with

a 40cm diameter, CF-type of connection interface. Therefore, we implemented two

adapters for each interface. To connect to the DN40KF pump, the LF to KF reducing

nipple was used; to connect to the DN40CF pump, a further CF to KF adapter was

used.

For the parts, we have used Lewvac (http://www.lewvac.co.uk/) as our supplier. More

information of the parts can be found on the website.

http://www.lewvac.co.uk/


Appendix E

Wire Bonding

The chips were wire bonded to a 28-pin J-lead ceramic chip carrier (JLCCC), and the

bonding diagram is shown in Figure E.1. Since in our design, one single chip contains

two devices, therefore the wire bonding diagram were split into two halves: the top

and bottom halves. The top half represent devices without electrode for force sensing,

whereas the bottom half shows the bonding diagram for a device with electrode for force

sensing function, hence there was a slight difference in the bonding diagram.

Figure E.1: Wire bonding diagram of a typical chip fabricated by Northeastern
Polytechnical University (NPU), showing the bonding diagram of two different
chip designs: top half without electrode for force sensing; bottom half with
electrode for force sensing.

To illustrate this further, the electrical connections for two devices with or without

electrode for force sensing are shown in Figure E.2. The electrical connections show
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a typical configuration. However, thanks to the symmetry of the devices, the actual

configuration can be mirrored.

(a) Without electrode for force sensing

(b) With electrode for force sensing

Figure E.2: Diagrams of electrical connections of NPU devices: a) device with-
out electrode for force sensing; b) device with electrode for force sensing.
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