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“When I let go of what I am, I become what I might be.”

Tao Te Ching

Lao Tzu 6th century BC philosopher
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Abstract

Doctor of Philosophy

ACOUSTICS OF HIGH PERFORMANCE

TRANSMISSION-LINE LOUDSPEAKERS

by Hessam Alavi

Acoustically treated, lined ducts are used in a wide range of applications,

one of which is a transmission-line loudspeaker (TLL), which consists of

a long, acoustically-lined, folded duct attached to the rear of the loud-

speaker driver. Consequently, knowledge and understanding of sound

propagation within acoustically treated ducts is essential in order to be

able to create and analyse designs for the intended applications. The low-

frequency driver of a loudspeaker creates pressure fluctuations on both

sides of the diaphragm. Therefore, a loudspeaker cabinet of some sort is

required to control the sound radiation from the rear of the driver and

to prevent the unwanted interference of those sounds with that radiated

from the front of the loudspeaker.

The transmission-line loudspeakers are however, designed and optimized

to control this rear driver radiations by redirecting the pressure at the

back of the driver and use them to extend the overall low-frequency re-

sponse of the loudspeaker system. Transmission-line loudspeakers rely

on the use of sound absorbing materials and, although attempts at mod-

elling the performance of these have been reported in the literature, most

transmission-line loudspeakers are designed empirically, using a combina-

tion of experience and trial-and-error. This project is concerned with cre-

ating and evaluating an engineering method of accurately modelling the

sound propagating inside the transmission-line loudspeaker waveguides.
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Loudspeaker systems inherently suffer from an insufficient low-freque-

ncy response, due to their inefficiency at low-frequencies. Therefore,

TLL rely on the use of sound absorbing materials added on their internal

boundaries to extend their overall response of the loudspeaker at the low-

frequency region. The acoustic load on the driver and the sound radiated

from the open end of the TLL duct both depend upon the propagation of

sound through the duct; and the physical length of the duct determines

the frequencies that can propagate within it. The addition of sound

absorbing materials along the interior boundaries of the TLL reduces the

speed of propagating sound within it, causing the TLL to respond such as

having a much longer internal waveguide, consequently accommodating

far lower frequencies within the TLL duct, extending the overall response

of the loudspeaker system.

The characteristics of sound propagation through a variety of two-dimen-

sional and three-dimensional acoustically lined ducts at low-frequencies

have been analyzed. Analytical models of straight ducts have been com-

pared with the developed numerical models. In this research dissipative

mufflers, that consist of ducts lined on the inside with an acoustically ab-

sorptive material, have been considered. Starting with the propagation

of sound within hard-walled boundary condition ducts, this investigation

moves to the modelling of waveguides treated with locally-reacting acous-

tic liners and next into the analysis of ducts treated with bulk-reacting

acoustic absorbent materials; two kinds of excitations have been consid-

ered, namely pistonic and non-uniform excitation. The impedance mis-

match and acoustic dissipation between the sound absorbing layer and the

free propagation within the duct has been modelled numerically, and the

results have been compared with the in-situ measurements conducted on

a range of acoustically treated and purpose built transmission-line loud-

speakers. A wide range of sound absorbing materials, namely fibrous and

porous absorbers, have been characterized using their flow-resistivity and

acoustic impedance. Based on their individual characteristics, acoustical

optimization was applied on a simple geometry U-shaped TLL duct.
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Chapter 1

Introduction

Loudspeakers are electroacoustical transducers which convert electrical

energy to acoustical sound waves as a result of mechanical vibration of

their diaphragm. The mechanism behind this conversion varies from

loudspeaker to loudspeaker but, in most cases, involves some form of

motor assembly attached to a diaphragm. The alternating force gener-

ated by the motor assembly, in response to the electrical signal, causes

the diaphragm to vibrate. This in turn moves the air in contact with the

diaphragm and gives rise to the radiation of the sound [1].

The low-frequency driver of the loudspeaker creates pressure fluctua-

tion on both sides of the diaphragm. Therefore, a cabinet of some sort

is required to control the sound radiation from the rear of the drive-

unit, and prevent unwanted interference with that radiated from the

front. Transmission-line loudspeaker cabinets are designed to use this

rear driver radiation in order to achieve an extended low-frequency re-

sponse [2].

Transmission-line loudspeakers rely on the use of sound absorbing mate-

rials and, although attempts at modelling the performance of these have

been reported in the literature, most transmission-line loudspeakers are

designed empirically, using a combination of experience and trial-and-

error. This project is concerned with creating and evaluating an engi-

neering method of accurately modelling the sound propagating inside the

transmission-line loudspeaker cabinets [3].
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1.1 Transmission-Line Loudspeakers

The efficiency of loudspeakers is quite poor at low-frequencies and there-

fore loudspeakers suffer by design from an insufficient low-frequency re-

sponse [4–6]. One of the desirable factors for any high-fidelity loudspeaker

system is having a flat frequency response. The transmission-line loud-

speakers (TLL) are designed with the aim to extend the low-frequency

response and consequently achieving the overall flat response for the loud-

speaker [7, 8].

1.1.1 Infinite-Baffle

As mentioned previously, the low-frequency driver of the loudspeaker

creates pressure fluctuation on both sides of the diaphragm. In order to

control the sound radiation from the rear of the drive-unit, one needs to

separate the front and backwards radiations of the drive-unit by mounting

the loudspeaker unit on an infinite-baffle. The receiver therefore only

perceives the front radiation of the drive-unit, as initially intended and

the backwards radiations have been directed away from the receiver by

the infinite-baffle that is dividing the front and backwards radiation of the

drive-unit. Figure 1.1 illustrates the schematic model and the frequency

response function of an idealised infinite-baffle loaded by an ideal drive-

unit.

(a) (b)

Figure 1.1: Infinite-baffle. (a) Schematic model and (b) frequency
response function with second-order roll-off (12 dB/octave slope).
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The infinite-baffle radiates in half-space and has a second order roll-off

or 12 dB/octave slope which can be observed in the frequency response

in Fig. 1.1 (b) at the frequencies below the resonant frequency fs, of the

loudspeaker. Provided a drive-unit capable of true reproduction of the

full range of audible frequencies between 20 to 20k Hz, with a flat fre-

quency response has been mounted on an infinite-baffle, the true sound

reproduction will be achieved. However, due to the limitation in imple-

menting an infinite-baffle in a listening room, this idea for sound repro-

duction is considered impractical.

1.1.2 Infinite-Pipe

A variation of the infinite-baffle for controlling the aforementioned sound

radiations from the rear of the loudspeaker driver, which was explained in

Section 1.1.1, is to have an infinite-pipe attached to the back of the drive-

unit so that the backwards radiations will be controlled by being emitted

inside a pipe extended to infinity. Figure 1.2 illustrates the schematic

model and the frequency response function of an infinite-pipe loaded by

an ideal drive-unit.

(a)

(b)

Figure 1.2: Infinite-pipe. (a) Schematic model and (b) frequency
response function with second-order roll-off (12 dB/octave slope).
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The radiation pattern of the infinite-pipe is unlike the case of the infinite-

baffle explained in Section 1.1.1. The infinite-pipe radiates in full-space

and hence it has 6 dB less in the magnitude of response in comparison

to the infinite-baffle arrangement in Section 1.1.1. However, as in the

previous case, a second order roll-off or 12 dB/octave slope can still be

seen in the frequency response of the infinite-pipe in Fig. 1.2 (b) at the

frequencies below the resonant frequency, fs, of the loudspeaker. The

idea of infinite-pipe also suffers from the practical implementation point

of view, and therefore is also considered impractical.

1.1.3 Sealed-Cabinet

Another idea for controlling the backwards radiations of the loudspeaker

driver is to have a cabinet wrapped around the drive-unit containing

the unwanted backwards radiations. Figure 1.3 illustrates the schematic

model and the frequency response function of a sealed-cabinet loud-

speaker with the volume (V ) loaded by an ideal drive-unit.

(a) (b)

Figure 1.3: Sealed-cabinet. (a) Schematic model and (b) frequency
response function with second-order roll-off (12 dB/octave slope).

However, by introducing a cabinet around the dive-unit, the efficiency

of the loudspeaker output at low-frequencies will be further decreased.

This is due to the added mechanical stiffness to the total loudspeaker

system, which is the spring stiffness of air contained inside the cabinet.

The increased stiffness in return pushes the resonant frequency, fs, of the

loudspeaker to a higher-frequency than that in the cases of infinite-baffle
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or infinite-pipe in Sections 1.1.1 or 1.1.2 respectively. In a closed-box

loudspeaker, the air inside the box acts as a spring, returning the drive-

unit cone to the zero-position in the absence of an audio signal applied

to the driver. In order to reduce the unwanted mechanical stiffness, the

internal volume of the loudspeaker cabinet should be considerably large.

This idea however, is not the most practical solution since that would re-

quire a large loudspeaker cabinet. A 6 dB baffle-step, fb, can be observed

in the frequency response where the wavelength becomes comparable to

that of the size of the loudspeaker cabinet. A second order roll-off or

12 dB/octave slope can also be seen in the frequency response of the

sealed-cabinet in Fig. 1.3 (b) at the frequencies below the cabinet res-

onant frequency, fc, of the loudspeaker. The sealed-cabinet radiation

pattern is a frequency-dependent function. At the frequency range be-

tween the loudspeaker enclosure resonant frequency and the baffle-step,

from fc to fb, where the wavelengths are considerably bigger than the

size of the cabinet, the sealed-cabinet radiates in full-space such as in the

case of the infinite-pipe in Section 1.1.5 and therefore has 6 dB less in

the magnitude response. At frequencies above the baffle-step, fb, where

the size of the cabinet becomes comparable to that from the frequency’s

wavelengths, the loudspeaker system radiates such as in the case for the

infinite-baffle in Section 1.1.1 in half-space and therefore a 6 dB increase

in magnitude of response can be observed.
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1.1.4 Ported-Cabinet

In order to avoid pushing the resonant frequency of the loudspeaker to

a higher-frequency than that in the case of the infinite-baffle or infinite-

pipe in Sections 1.1.1 or 1.1.2 respectively, a port can be added to the

system. Figure 1.4 illustrates the schematic model and the frequency

response function of a ported-cabinet loudspeaker with the volume (V )

loaded by an ideal drive-unit.

(a) (b)

Figure 1.4: Ported-cabinet. (a) Schematic model and (b) frequency
response function with fourth-order roll-off (24 dB/octave slope).

As a result of adding the open-port to the loudspeaker enclosure system,

the resonant frequency has been kept at fs, but a fourth-order roll-off

or 24 dB/octave slope can be observed in Fig. 1.4 (b) at the frequencies

below the resonant frequency, fs, of the loudspeaker. Adding the port

also changes the mechanical system of the loudspeaker from a single-

degree-of-freedom (SDOF ) system in the case of the sealed-cabinet in Sec-

tion 1.1.3 to the two-degree-of-freedom (TDOF ) for the ported-cabinet.

The ported-cabinet radiation pattern is also a frequency-dependent func-

tion. At the frequency range between the resonant frequency of the loud-

speaker and the baffle-step, from fs to fb, where the wavelengths are

considerably bigger than the size of the cabinet, the ported-loudspeaker

radiates in full-space and therefore has 6 dB less in the magnitude of its

response as for the infinite-pipe in Section 1.1.2. At frequencies above

the baffle-step, fb, where the size of the cabinet becomes comparable to

that from the frequency’s wavelengths, the loudspeaker system radiates
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such as in the case for the infinite-baffle in Section 1.1.1 in half-space

and therefore a 6 dB increase in the magnitude of its response can be

observed.

1.1.5 Finite-Pipe Closed-End

A modified case of the sealed-cabinet loudspeaker would be to replace

the cabinet with a closed-end finite-pipe with the same volume (V ).

Figure 1.5 illustrates the schematic model and the frequency response

function of a closed-end finite-pipe with the volume (V ) loaded by an

ideal drive-unit.

(a)

(b)

Figure 1.5: Finite-pipe with closed-end and volume (V ).
(a) Schematic model and (b) frequency response function with second-
order roll-off (12 dB/octave slope). Standing wave resonances due to

the reflection from the closed-end of the pipe have been ignored.

The frequency response of the finite-pipe with the closed-end exhibits

a similarity to the cases of both the sealed-cabinet, as explained in Sec-

tion 1.1.3, and to that of the infinite-pipe as explained in Section 1.1.2. At

the frequencies below the cabinet resonant frequency, fc, the finite-pipe
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behaves such as that in the sealed-cabinet loudspeaker with a second-

order roll-off or 12 dB/octave slope, as can be seen in Fig. 1.5 (b) where

the cabinet resonant frequency, fc, depends on the volume and the sizes

of the individual surfaces that made up the loudspeaker enclosure. At fre-

quencies above the cabinet resonant frequency, fc, the finite-pipe behaves

such as that in the infinite-pipe and radiates in full-space. Therefore, it

has 6 dB less in the magnitude of its response, as can be observed in

Fig. 1.5 (b). It is also worth mentioning that the standing wave reso-

nances due to the reflection from the close-end of the waveguide have

been ignored. Also the main difference between the frequency response

of the finite-pipe with the closed-end and the sealed-cabinet is that the

baffle-step can no longer be seen in the frequency response, which is due

to the shape of the loudspeaker enclosure, since it is similar to that of

the infinite-pipe. Therefore, it exhibits the same response above its fc

frequency.

1.1.6 U-shaped TLL with Open End

Figure 1.6 illustrates the schematic model and the frequency response

function of a U-shaped TLL with an open end and volume (V ) loaded

by an ideal drive-unit, where the length of the TLL duct is Lx = λ/4,

where λ is the wavelength of the lowest frequency of interest.

(a) (b)

Figure 1.6: U-shaped duct with hard-walled internal boundary con-
dition. (a) Schematic model and (b) frequency response function with

fourth-order roll-off (24 dB/octave slope).
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The frequency response of the U-shaped TLL with the hard-walled boun-

dary condition exhibits a fourth-order roll-off or 24 dB/octave slope, as

can be observed in Fig. 1.6 (b) similar to that for the ported-cabinet as

explained in Section 1.1.4. However, the addition of the waveguide behind

the loudspeaker driver has different effects: the waveguides controls the

unwanted sound pressures from the back of the driver and utilizes them

to reinforce the overall low-frequency response of the TLL, and as a

consequence at the low-frequency region from the resonant frequency, fs,

to the baffle-step, fb, the TLL exhibits 6 dB higher in its overall response

in comparison to that of the ported-cabinet in Section 1.1.4, which can

be seen in Fig. 1.6 (b). On the other hand, addition of the waveguide

also deteriorates the flat-frequency response of the U-shaped TLL from

the baffle-step frequency, fb, onwards, and therefore the current peaks

and troughs can be observed in Fig. 1.6 (b). However, these peaks and

troughs can be controlled by carefully optimizing the TLL waveguide

through addition of the right amount of sound absorbing materials on

the internal boundaries of the TLL duct.

1.1.7 Optimized TLL with Open End

A perfect transmission-line enclosure has an infinitely long duct attached

to the back of the driver or a finite length, lined on the inside with the

sound absorbing materials such that all the rear radiations of the loud-

speaker driver is fully absorbed, down to the lowest frequency. Theoreti-

cally, the waveguide at the far-end could be either closed or open with no

difference in the performance of the TLL. However, the packing density

of the sound absorbing material used becomes critical, since too much

absorbent materials will cause reflections of the backward radiations of

the drive-unit, and the loudspeaker system acts as a closed-cabinet with

small volume, whilst insufficient absorbent materials will allow the sound

pressure to pass through to the duct. Consequently, often different sound

absorbing materials with different packing densities have been used along

the length of the duct from the back of the loudspeaker cone inside the

TLL waveguide to the open end of the TLL duct. The peaks and troughs

in Fig. 1.6 (b) in the frequency response of the TLL, which are generally

associated with the addition of the waveguide behind the loudspeaker
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driver, can be controlled by optimizing the transmission-line loudspeaker

cabinet using the correct amount of sound absorbing materials inside the

cabinet. Figure 1.7 illustrates the schematic model and the frequency re-

sponse function of an optimized transmission-line loudspeaker, with the

open end and volume (V ).1

(a) (b)

Figure 1.7: Optimized TLL, lined on the internal boundaries with
porous plastic, bulk-reacting sound absorbing liners. (a) Schematic
model and (b) frequency response function with fourth-order roll-off

(24 dB/octave slope).

In Fig. 1.7 (b) a fourth-order roll-off or 24 dB/octave slope can be ob-

served. The radiation pattern of the TLL is also a frequency-dependent

function and follows the same pattern as in the case of the ported-cabinet

in Section 1.1.4. However, in comparison to the radiation pattern of the

ported-cabinet in Fig. 1.4 in Section 1.1.4, at the frequency range between

the loudspeaker resonant frequency, fs, and the baffle-step, fb, where the

loudspeaker radiates in full-space and has 6 dB less in the magnitude

of its response, in the optimized TLL this low-frequency inefficiency has

been taken care of by the addition of the optimized transmission-line

waveguide behind the loudspeaker driver. This effect is also known as the

doubling effect of the transmission-line in the optimized frequency range

which is generally between fs and fb. Above the baffle-step frequency,

fb, the optimized TLL radiates in half-space since the size of the cabinet

becomes comparable to that from the frequency’s wavelengths. At these

frequencies the acoustically treated transmission-line waveguide absorbs

1Picture is courtesy of Professional Monitor Company PMC.
http : //www.pmc− speakers.com
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all the propagated sound pressure within the duct. Therefore, the loud-

speaker total volume-velocity consists of the direct radiated sound from

the TLL woofer alone. Because the forward and backward radiations of

the loudspeaker drive-unit are out-of-phase with each other, any inter-

action between these two sound pressures in the listening space creates

distortion of the original signal, not intended to be reproduced. Addi-

tionally, because these two sound pressures travel different paths through

the listening space, the sound waves would arrive at the listener’s position

at slightly different times, introducing frequency-dependent interference,

which is again not part of the original sound. These unwanted effects can

be taken care of by carefully optimizing the internal volume of the cabinet

as well as the size-ratio of each of the panels comprising the TLL enclo-

sure, also by optimizing the internal length of the TLL waveguide and

most importantly the interior acoustic treatment in combination with the

optimization of the separating distance between the loudspeaker driver

and the open end of the TLL on the loudspeaker cabinet.

1.2 Literature Review

Transmission-line loudspeaker cabinets consist of a long, acoustically-

lined, folded duct attached to the rear of a loudspeaker driver. The

first documentation of a transmission-line system for obtaining extended

low-frequency reproduction from a moving-coil loudspeaker was made

by A. R. Bailey in 1965 [9]. Bailey’s paper described the use of fibre-

filled pipe, or transmission-line, which extended behind the drive-unit

to absorb the propagation of acoustic sound waves [10]. However, due

to the difficulty of successfully absorbing low-frequency energy, because

of the large wavelengths involved, the length of the TLL duct and the

density of the filling material were arranged such that the TLL waveguide

effectively act such as a low-pass acoustic filter [10]. Thus the mid and

high frequencies were subjected to a large attenuation within the duct

but the low-frequencies re-emerged from the open end of the TLL with

a phase such that the reinforcement with the direct radiated sound from

the woofer would take place [9–11].
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Figure 1.8 illustrates the schematic model of a transmission-line loud-

speaker.

 

Figure 1.8: Schematic model of a TLL.

Bailey’s papers, however, do not include the quantitative analysis of the

combined effect of loudspeaker and fibre-field pipe and the effect of fibrous

tangle on the propagation of an acoustic wave through a pipe (either uni-

form or otherwise) [10]. Later L. J. S. Bradbury in his paper analyzed

the effects of fibrous materials on plane wave propagation in a uniform

pipe by considering the aerodynamic properties of the fibres [12]. The

formulation of a complete model for a transmission-line woofer system

was first made by R. M. Bullock and P. E. Hillman which investigates the

combined driver and uniform pipe system [13]. According to J. Backman

a transmission-line loudspeaker enclosure can be defined as an enclosure

with at least one acoustical wave tube that is not short when compared

to the longest wave lengths reproduced by the loudspeaker, and which

has cross sectional dimensions much smaller than its length [14]. The

length of the transmission-line is selected so that the lowest resonant

frequency (the quarter-wave resonance) is near the free-air resonance of

the driver. The assumption was made that all other dimensions of the

system except the length of the transmission-line are much smaller than

the wave lengths of interest [14]. The concept of the transmission-line

loudspeaker enclosure was introduced at the same time as the bass reflex

loudspeaker in 1936 and described by B. Olney [15]. It also dates back

to the acoustical labyrinth system as described by Bailey [9]. As men-

tioned previously, there are several types of enclosures that qualify for

the term transmission-line. Basically, these are enclosures that are long
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enough in one internal dimension to accommodate at least one-quarter

wavelength of the lowest frequency designed for the system. The path is

usually folded and lined with damping material. The system is normally

open at the end of the transmission-line, but when considerable damping

material is employed there is little radiation from the end of the line or

waveguide. In this case the system performs very much like a large well

damped sealed enclosure. The conventional transmission-line approaches

the bass-reflex loudspeaker, as the length of the waveguide approaches

zero and the area of the labyrinth approaches the cross sectional area of

the enclosure. If the area of the duct goes to zero the system approaches

a sealed enclosure (assuming that the enclosure volume is bigger than

zero) [14]. Another type of transmission-line loudspeaker, with sound

radiated only through a transmission-line is dual-ported speakers. If the

length of both of the ducts equals zero then the dual-port TLL is re-

duced to a conventional coupled-cavity system as described by Backman

[14]. Transmission-line loudspeakers are also characterised by a sound-

radiating at the end of the duct. However, a duct closed at the end

could be used to model elongated loudspeaker enclosures or loudspeakers

with large step changes in their cross-section [14]. Enclosures with one

dimension much larger than the others can be regarded as a transmission-

line loaded with a port small compared to the wave length, and if the

port is long, the system can be regarded as an enclosure loaded with

a transmission-line [14]. This project however, combines the effects of

addition of fibrous or porous sound absorbing materials, bulk-reacting

liners, on the internal boundaries, on the characteristic of sound propa-

gation within a variety of straight, L-shaped and U-shaped TLL ducts.

Within the scope of this investigation, the analytical results of straight

ducts with hard-walled boundary conditions have been compared with

the numerical models of the corresponding TLL waveguides. A selection

of fibrous and porous sound absorbing materials were also investigated

experimentally and their actual physical characteristics such as their den-

sity and flow-resistivity were implemented in the numerical models. Next

in this project the numerical predictions of a variety of straight, L-shaped

and U-shaped TLL ducts, acoustically treated with bulk-reacting liners,

were compared and validated with the in-situ measurements on the sim-

ilar range of ducts treated with the same samples of porous absorbing
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materials. Finally, using the numerical models developed and validated,

novel acoustic treatment within U-shaped transmission-line loudspeaker

has been proposed.

1.2.1 Uniform Duct TLL

Later on, M. Roberts in his paper assumes that at low-frequency that

the pipe only supports plane wave propagation [10]. Therefore, the

one-dimensional solution of the wave equation could be applied (see

Eq. (A.1)).2 The relationship between pressure, p, and particle veloc-

ity, u, is given by the Euler equation, which, in linear form, is as stated

in Eq. (A.2). Therefore the particle velocity at the open end of the pipe,

ul, is as stated in Eq. (A.20). Having these expressions, Roberts derives

the acoustic impedance at the open end of the duct as Zal [10]:

Zal =
pl
ul
, (1.1)

where pl is the pressure at the open end of the duct and ul is the particle

velocity at the open end of the duct. The acoustic impedance at the

driver-end of the duct, Zab|x=0, can also be found to be

Zab
ρc

=
AejkLx +Be−jkLx

AejkLx −Be−jkLx
, (1.2)

where A and B are the magnitudes of the incident and reflected waves

respectively, Lx is the length of the waveguide, k is the acoustic wavenum-

ber, c is the speed of sound in free-air and ρ is the density of air medium.

The electroacoustics analysis of the loudspeaker gives

V = IZeb + φud (1.3)

F = udZms − φI, (1.4)

where V is the terminal voltage (V = 2.83 V AES for 1 W), I is the driv-

ing current, φ = Bvlv is the transduction coefficient or force factor, Zeb is

the blocked electrical impedance, ud is the velocity of driver diaphragm,

2The derivation of one-dimensional solution of the wave equation has been added
to Appendix A.
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F is the net force on the driver diaphragm, Zms is the open-circuit me-

chanical impedance not containing any of the acoustical elements, and

can be found as described in Eq. (2.2). The blocked-electrical impedance,

Zeb, also can be found as described in Eq. (2.5). The driver velocity, ud,

can be found as Eq. (2.3). Roberts in his paper defines the pressure and

particle velocity for the tapered transmission-line loudspeaker cabinet

in terms of the complex wavenumber and the complex speed of sound

respectively [10].

1.2.2 Maximum Sound Reinforcement

The main aim in adding a transmission-line waveguide to a loudspeaker

is to extend the low frequency response of the speaker. Therefore, the

frequency range where the maximum sound reinforcement occurs and the

transmission-line is best effective needs to be determined. For a TLL with

the hard-walled boundary condition on the interior boundaries, the lowest

frequency that can propagate within it is determined by the length of the

internal waveguide, where the lowest frequency has a wavelength, λ, four

times the length of the loudspeaker internal waveguide, as explained by

G. Bank and J. Wright in chapter 7.3 of their book [16]. The wavelength

of the sound, λ, inside the TLL duct can be found using:

λ =
c

f
. (1.5)

Bank and Wright explained that at the frequency where the length of the

transmission-line is equal to quarter of a wavelength, λ/4, the velocity at

the opening would be in-phase with forward radiation from the driver.

Therefore, the maximum reinforcement in the overall volume-velocity

output of the loudspeaker occurs [16]. The practical performance of the

system is also affected by the distance between the driver and the open

end of the TLL on the loudspeaker cabinet. If they are separated by

a distance greater than a quarter of a wavelength, the combination of

volume-velocities will not be purely additive. This principle could also

be applied to any multi-source loudspeaker system. The output of the

TLL below the resonant frequency has similarities to that of the vented

cabinet and therefore a fourth-order roll-off or 24 dB/octave slope can
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be observed in the frequency range below the resonant frequency of the

loudspeaker [16]. Therefore the radiation impedance acting on the back

of the driver, Zab, assuming the labyrinth as a pipe in which only plane

waves propagate through it, becomes:

Zab =
ρc

S

(
Zal + j(ρc/S) tan (kLx)

(ρc/S) + jZal tan (kLx)

)
, (1.6)

where Zab is acoustic impedance on the back of the driver and S is the

cross sectional area of the TLL duct. At low frequencies the radiator can

be treated as a piston (if the line is open ended and as a result radiates

Zal). Therefore:

Zab = 8jω

(
ρr3d
3S2

)
, (1.7)

where rd is the radius of the driver diaphragm. If the line is rigidly

terminated and is used simply as a superior mechanism for suppression

of the rear radiation, as Zal →∞, then Eq. (1.7) becomes [16]

Zab =
ρc

S

(
1

j tan (kLx)

)
. (1.8)

1.2.3 Effect of Sound Absorbing Materials

By lining the labyrinth with a suitable sound absorbent material, the

mid and high frequencies could be attenuated and the significant reso-

nances can be controlled. Roberts in his paper, uses the empirically found

complex wavenumber, dependent on the diameter, density and packing

density of the fibres used as sound absorbing materials [10]. Roberts

outlines that, by lining the internal boundaries of the TLL waveguide

with the sound absorbing materials, the speed of sound propagation in

the duct will be reduced by a factor of the phase relation part of the

empirically found complex wavenumber. In practice this means that the

wavelengths of the signal in the pipe are effectively reduced by the same

factor of the phase relation part. Consequently the required length of

the duct that accommodates the lowest designed frequency is reduced.

The wave amplitude also decays exponentially with distance according to

the magnitude of the attenuation factor in the empirically found complex

wavenumber [10, 16, 17].
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1.2.4 Fibrous Sound Absorbing Materials

Bailey discovered that the behaviour of long-haired wool was very dif-

ferent from that of the other materials and offered far superior acoustic

properties for his particular labyrinth type of loudspeaker design [9, 11].

He found that at a packing density of about 8 kg m−3 the specific acous-

tic impedance of this material above 100 Hz was close to that of air,

so that the effective stiffness of the cabinet was not greatly influenced

by the presence of the fibrous tangle, and yet the wool still had a high

attenuation rate so that the shorter wavelength resonances that might

otherwise have occurred within the cabinet were all damped [12]. On the

other hand, at the low audio frequencies in the region of 30 Hz the wool

appeared to reduce the speed of sound to about half its free-air value so

that the half-wave-length labyrinth necessary to give an improved bass

response was reduced in length from 9 m to 4.5 m for a 30 Hz wave [12].

Bradbury in his paper noted that the main effect which the fibrous ma-

terial has on a sound wave passing through it arises from the drag on the

fibres due to the sound wave [12]. Bradbury added that since the fibre

diameters are much lower than the sound wavelengths at low frequen-

cies, and at the very low air velocities which arise from sound waves, it is

possible to show that this drag is proportional to the velocity of the air

flowing past the fibres. For simple harmonic waves, a parameter ωMf/D

can be introduced where Mf is the mass of fibre per unit volume and

D is the drag parameter, which is the ratio between the characteristic

time required to set the fibres in motion to the period of the sound wave.

When the frequency is sufficiently high so that the aforementioned ratio

is much greater than 1, there is insufficient time during one cycle of a

sound wave for the fibres to be set in motion and, under these circum-

stances, the sound waves pass through an essentially stationary fibrous

frame. In this case the speed of sound is not greatly affected by the

presence of the fibres, but because of the high drag, the sound wave is

strongly attenuated.3 By contrast, at low frequencies when ωMf/D is

much less than 1, the fibres have sufficient time during one cycle of a

3Fibrous material is assumed to have no mechanical stiffness of its own. Neglecting
the stiffness of the fibrous frame requires that E/(Mfc

2) � 1, where E is the stiffness
modulus of the fibrous tangle and c is the speed of sound in free-air. Even for densely
packed fibres, the value of the above ratio has values only in the region of about 0.01.
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wave to become virtually coupled with air movements, and the air and

fibres move as one. Under these circumstances the drag is very small and

the sound waves are only weakly attenuated.

1.2.5 Porous Sound Absorbing Materials

Porous plastic sound absorbing materials are another type of commonly

used bulk-reacting liners. Some of their main physical characteristics

used for the acoustic design and the optimization of the TLL waveg-

uides are their density, Young’s modulus, chemical composition, absorp-

tion coefficient and flow-resistivity which are discussed in more detail in

Chapter 4.

1.3 Project Contributions

The contributions of this research have been listed below.

� COMSOL Multiphysics environment has been used to develop nu-

merical models to analyse the sound propagation behaviour within

a range of rectangular cross-section lined ducts at low-frequencies.4

The created models are capable of correctly predicting the coupling

between the treated region with the bulk-reacting sound absorbing

liners and the free propagating region of the TLL [18].

� The lumped parameter model of the loudspeaker driver was con-

structed and combined with the numerical models of the sound

propagation behaviour within a range of treated TLL as the ex-

citation source. The acoustic impedance at the driver-end of the

duct and the volume-velocity at the open end of the duct also have

been estimated through using the developed numerical models.

� A variety of bulk-reacting sound absorbing materials, comprising of

a range of fibrous and porous absorbers have been characterized by

4Standard numerical techniques within the COMSOL Multiphysics have been em-
ployed. The developed numerical models have been generated using the COMSOL
version 4.2a.
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their flow-resistivity and acoustic impedance. Then extensive in-

situ measurements have been conducted on a variety of treated TLL

in order to get the internal sound pressure and three-dimensional

acoustic-intensity along the length of the duct.

� The prediction results of the numerical models have been then com-

pared and validated with the in-situ measurement results of the

sound pressure and three-dimensional acoustic intensity performed

on a range of treated TLL.

� Finally, the developed numerical models have been used to create

optimized design of transmission-line loudspeaker cabinet.

1.4 Thesis Structure

The structure of the following chapters of this thesis are explained here.

In Chapter 2, the lump parameter model of the TLL driver have been

constructed using the Thiele-Small parameters of the loudspeaker driver.

Next, the sound propagation within a variety of rectangular cross-section

straight lined ducts at low-frequencies with different boundary condi-

tions on their internal boundaries of the TLL have been analyzed using

the analytical models. Analysis of the further complicated ducts such

as L-shaped or U-shaped ducts, treated with the bulk-reacting sound

absorbing liners requires iteratively solving the transcendental equations

describing them, which are analyzed numerically in Chapter 3 and vali-

dated with the in-situ measurements in Chapter 4. In Chapter 3, numer-

ical models deal with the further complicated TLL waveguides in terms

of their geometry such as straight, L-shaped and U-shaped ducts, and

acoustic treatment such as bulk-reacting liners on the internal bound-

aries of the TLL ducts. In Chapter 4 the analytical and numerical models

developed in Chapters 2 and 3 have been validated with the direct mea-

surements results of the sound pressure and three-dimensional acoustic

intensity conducted on a range of treated ducts. In Chapter 5 the numeri-

cal models developed in Chapter 3 have been used to design an optimized

transmission-line loudspeaker cabinet. Chapter 6 gives the results of this

project and concluding remarks. Finally, in Chapter 7, further work is
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suggested in order to improve the analysis and the optimization of the

transmission-line loudspeakers. Appendix A contains the derivation of

a simple acoustics model of sound propagating through the duct and

the derivation of axial wavenumbers. Appendix B contains the detailed

measurement results of the impedance-tube, DC-flow tests, numerical

predictions and the in-situ measurements evaluating a range of treated

TLL. Appendix C shows the detailed comparisons and validation results.

The manuals and data sheets of the equipment used in performing the

measurements in this project are provided in Appendix D.

1.5 Conclusion

In this chapter, the acoustical characteristics of the transmission-line

loudspeakers have been introduced. Different loudspeaker enclosure de-

signs have also been investigated, and their strength and weaknesses

have been briefly explained in Section 1.1. The acoustical reasons be-

hind the design of the transmission-line loudspeakers have also been out-

lined and in general their acoustical advantages and the frequency range

in which the TLL are most effective have also been explained. Gener-

ally, since the loudspeakers have very low-efficiency at low-frequency the

transmission-line waveguides have been used, aiming to extend the over-

all flat-frequency response of the loudspeakers. Looking at the frequency

response of the transmission-line loudspeakers, they behave such as low-

pass acoustic filters; therefore they have been designed such that the mid

and high frequencies were subjected to a large attenuation within the

TLL duct but the low-frequency sounds re-emerge from the open end of

the duct with a phase such that the reinforcement with the direct ra-

diated sound from the woofer would take place. The current literature

regarding the transmission-line loudspeakers and their acoustic designs

have been investigated in Section 1.2. In Chapter 2, the lump parameter

model of a loudspeaker driver has been introduced. Using the Thiele-

Small parameters of the driver some of the more complicated electroa-

coustical parameters such as the total stiffness of the driver suspension

and the damping of the driver suspension have been found. Also, in
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Chapter 2, the analytical models of the transmission-line loudspeakers

are discussed.
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Chapter 2

Analytical Models of TLLs

Lined ducts are used in a wide range of applications, including venti-

lation ducts, sound mufflers, aircraft engine ducts, and electroacoustics

applications such as transmission-line loudspeaker cabinets. Knowledge

and understanding of sound propagation within ducts with and without

treatments is therefore essential in order to be able to create and analyse

designs for the intended applications.

In this chapter, analytical models of simple transmission-line loudspeak-

ers have been looked through. Since the driver lump parameter model

can accurately predict its behaviour in the low-frequency region, using

Thiele-Small parameters of the drive-unit the particle velocity at the

back of the driver diaphragm inside the TLL duct can be predicted.

Next, the characteristics of sound propagation through a variety of two-

dimensional and three-dimensional straight ducts with rectangular cross-

sections at low-frequencies have been investigated. In the presented an-

alytical models, two kinds of driver excitations, namely uniform (pis-

tonic) and non-uniform excitations and three different internal bound-

ary conditions, namely hard-walled, locally-reacting and bulk-reacting,

along the length of the internal boundaries of the waveguides have been

considered. The internal pressures have been plotted for the two and

three-dimensional cases of straight ducts with the hard-walled boundary

conditions.
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Detailed analysis of the TLL ducts (straight, L-shaped and U-shaped),

lined on the inside (internal boundaries) with the acoustic treatments

have been investigated in Chapter 3. Instead of iteratively solving the

transcendental equation describing the internal pressure along the length

of the TLL ducts for each of the aforementioned cases, they have been

solved numerically and are described in Chapter 3.

2.1 Drive-Unit Lump Parameter Model

The driver of the transmission-line loudspeaker has been modelled at

low-frequencies using the lump parameter model of the drive-unit. The

model assumes the motion of the drive-unit as a single degree of freedom

(SDOF ) system and this assumption is valid in the low-frequency region.

Figure 2.1 illustrates the cross section of a loudspeaker driver and its

analogous schematic of a SDOF system.1

(a) (b)

Figure 2.1: (a) Loudspeaker driver cross section and (b) schematic
model of single degree of freedom system.

A lumped element has been described using the idealized building-blocks

such as mass, Mms, spring stiffness, kms, and damper, Rms, to repre-

sent the dynamic response of an electromechanical system (loudspeaker

driver); the basic assumption is that the system’s component being repre-

sented has dimensions much less than the relevant wavelength. A lumped

1Picture is courtesy of Simply Speakers. http : //www.simplyspeakers.com
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Chapter 2. Analytical Models of TLLs

element can be reactive which means it has no dissipation or resistive

which means it has no stored energy. However, in the case of a lumped

parameter model of a driver it has both resistive and reactive parts.

The reactive elements are further categorized as springlike or masslike,

where the springlike components store potential energy and the masslike

components store kinetic energy [19]. The combination of the drive-unit

spider and surround add up to give the stiffness of driver suspension,

kms, and can be modelled as a springlike reactive element. The damping

of the driver suspension, Rms, can be modelled as a resistive component.

The combination of drive-unit cone, dust cap and voice coil add up to

give the effective moving mass of the driver, Mms, and can be modelled

as a masslike reactive component as illustrated in Fig. 2.1. Using the

equation for the mass spring damper in the SDOF system with simple

harmonic motion, it can be written as:

F = jωMmsud +Rmsud +
kmsud
jω

, (2.1)

where F is the force applied to the loudspeaker driver-unit, ud is the

velocity of the driver diaphragm, ω is the angular frequency and equal to

ω = 2πf , f is the frequency parameter and j =
√
−1. The mechanical

impedance (in a vacuum) is Zms = F/ud and can be found using the

equation:

Zms = Rms + j

(
ωMms −

kms
ω

)
. (2.2)

The particle velocity, ud, at the driver position can be found using the

following equation:

ud =
φV

ZebZ + φ2
, (2.3)

where φ = Bvlv is the transduction coefficient, Bv and lv are magnetic

flux density and the length of the voice coil wire in the gap respectively

and V is the terminal voltage. The blocked-electrical impedance, Zeb,

can be found using:

Zeb = Re + jωLe, (2.4)

where Re is the electrical resistance of the driver voice coil and Le is the

electrical inductance of the driver voice coil. The total impedance, Z,
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can be found to be:

Z = Zms + Za, (2.5)

where Za = Zaf +Zab is the total acoustic radiation impedance, Zaf and

Zab are the acoustic radiation impedances in front and on the back of

the driver respectively. The driver volume-velocity is qd = udSd and the

open end volume-velocity is ql = ulSl, where ud and Sd are the particle

velocity and driver diaphragm surface area at position, x = 0, inside the

TLL duct, and ul and Sl are the particle velocity and the cross sectional

area at the open end, at position, x = Lx, along the length of the TLL

waveguide respectively. Assuming that the TLL driver and the open end

of the duct are geometrically close compared to a wavelength, the total

volume-velocity for the straight duct can be found to be:

q = udSd − ulSl, (2.6)

where the minus sign in Eq. (2.6) ensures that the total outward volume-

velocity is positive. The on-axis pressure response at r = 1 m distance

in front of the loudspeaker driver axis (far-field) can therefore be found

to be [1]:

p(r, ω) =
jρckqe−jkr

4πr
, (2.7)

where ρ is the fluid density, c is the speed of sound. The acoustic

wavenumber is k = ω/c, and r is the on-axis distance between the source

(loudspeaker driver) and the receiver (microphone). It is also worth men-

tioning that Eq. (2.7), represents the on-axis pressure for the half-space

radiation such as the baffled case, as explained in Section 1.1.1 of Chap-

ter 1.
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2.1.1 Thiele-Small Parameters of Driver

Using the Thiele-Small parameters of the loudspeaker driver, the lump

parameter model of a drive-unit was constructed. Table 2.1 shows the

Thiele-Small, low-frequency parameters of a Visaton B200 6 Ω driver,

distributed by Visaton the loudspeaker specialist.2

Model
fs Qts Qes Qms Vas Zd P

[Hz] [-] [-] [-] [m3] [Ω] [W]

B200 - 6 Ω 40 0.75 0.83 8.39 0.102 6 70

Xmax Re Le Sd φ Mms Bv
[m] [Ω] [H] [m2] [Np A−1] [kg] [T]

+/− 0.0035 5 0.0005 0.0214 3.9 0.0097 1.2

Table 2.1: Thiele-Small, low frequency parameters of Visaton B200
6 Ω driver.

The physical descriptions and the units of all the variables in Table 2.1

can be found in the list of symbols. The resonant frequency of the driver

in free-air is fs. The Qms is the mechanical Q factor of the driver at

fs, when only the mechanical loss is considered and Mms is the effective

moving mass of the driver [20]. Using the equation of the resonant fre-

quency of the loudspeaker driver, as described in Eq. (2.8) below, the

total stiffness of the driver suspension, kms, was found to be [21]:

fs =
1

2π

(
kms
Mms

)1/2

. (2.8)

Next using the equation of the mechanical Q factor Qms of the loud-

speaker driver system, as described in Eq. (2.9) the damping of the driver

suspension Rms was found to be:

Qms =
(kmsMms)

1/2

Rms
. (2.9)

2Table is courtesy of Visaton the loudspeaker specialist. http : //www.visaton.com
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The force applied to the driver diaphragm F can be found using Eq. (2.1),

or the following equation:

F = φI, (2.10)

where I is the driving current applied to the driver. Therefore the driver

velocity can be found by rearranging Z = F/ud as:

ud =
φI

Z
. (2.11)

The voltage across the driver terminals V can also be found using:

V = ZebI + φud. (2.12)

Therefore, Eq. (2.3) describing the particle velocity at the loudspeaker

driver position (x = 0) can be found using the rearranged form of

Eq. (2.11) substituted for I into Eq. (2.12) to get the equation for driver

velocity in terms of terminals voltage as presented in Eq. (2.3).

2.2 Duct Acoustics Background Theory

Starting with the propagation of sound within 2D hard-walled ducts,

this investigation moves to the analytical models of 3D ducts with hard-

walled boundary conditions. Two kinds of driver excitation have been

considered, namely pistonic and non-uniform excitations. The analyt-

ical models look through straight ducts with rectangular cross-section

with hard-walled and locally-reacting boundary conditions cases on the

interior boundaries of the duct. Adding a waveguide without treatment

on the inside of a loudspeaker cabinet creates a response such as non-

optimized TLL as explained in Section 1.1.6. The equation for pressure

inside the TLL waveguide with the hard-walled boundary conditions can

be expressed as [22, 23]:3

p(x, ω) =
jωρ

γ

(
e−γx − eγ(x−2Lx)

1 + e−2γLx

)
ud, (2.13)

3The derivation of one-dimensional solution of the wave equation has been included
in Appendix A.
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where x is the distance along the length of the TLL duct, ω is the angular

frequency, ρ is the density of the medium, Lx is the length of the TLL

duct, ud is the driver velocity, γ is complex propagation coefficient of a

progressive wave system given by γ = α + jβ, and α is the attenuation

factor and β is the acoustic wavenumber [19]. The particle velocity inside

the TLL duct with the hard-walled boundary conditions also can be

described by [22, 23]:4

u(x, ω) =

(
e−γx + eγ(x−2Lx)

1 + e−2γLx

)
ud. (2.14)

Therefore the ratio of the total velocity ut, which is for the straight duct

equal to ut = ud − uLx, normalized with respect to the velocity at the

back of the driver ud becomes [24]:5

ut
ud

= 1− 2e−γLx

1 + e−2γLx
. (2.15)

Figure 2.2 illustrates the TLL response, where total velocity ut in front

of the loudspeaker is the sum of the driver and open end velocities, which

has been normalized with respect to the driver velocity when the TLL

duct has no acoustic treatment on the interior boundaries, for an ex-

tremely long length waveguide as described by Eq. (2.15) and explained

in detail in Appendix A.
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Figure 2.2: TLL response, total velocity normalized with respect to
driver velocity, with no acoustic treatment on the interior boundaries.

4The derivation of particle velocity inside the TLL duct with hard-walled boundary
conditions is included in Appendix A.

5The derivation of total velocity normalized with respect to the velocity at the back
of the driver is included in Appendix A.
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It can be seen in Fig. 2.2 that the peaks and troughs are tending towards

infinity, since the driver damping and stiffness have not been considered

and no damping or acoustic treatment has been added on the interior

boundaries of the TLL. Another feature in Fig. 2.2 is a 6 dB boost in

the base of the response which is the general characteristic of the TLL.

Figure 2.3 illustrates the schematic model of a transmission-line loud-

speaker, where A and B represent the complex amplitudes of incident

and reflected waves respectively, as described in Eq. (2.16) and explained

in detail in Appendix A.

Figure 2.3: Schematic model of a TLL.

The pressure variation p inside the length of the duct has positive and

negative propagating components and is given by [25]:

p(x, t) = Ae(jωt−γx) +Be(jωt+γx), (2.16)

where γ is the complex propagation coefficient of a progressive wave

system given by γ = α+ jβ, and α is the attenuation factor and β is the

acoustic wavenumber [19]. It should be noted that the TLL ducts are

1 m length and have been excited with a pistonic excitation at the driver

position x = 0, creating plane-wave propagating inside the duct, and also

a pressure-release boundary condition p = 0 |x=Lx at the open end of the

TLL duct x = Lx have been assumed. Figure 2.4 illustrates the sound

propagation within a TLL such as Fig. 2.3, when the length of the duct is

equal to one-quarter of the wavelength of the sound propagating through

it.

In Fig. 2.4, the phase relation, particle velocity and pressure along the

length of a TLL duct can be observed, when it has been excited by a

frequency that has a wavelength four times bigger than the duct length
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Figure 2.4: Duct excited by a frequency with λ = 4 × duct length.
(a) Phase relation between pressure (top left) and particle velocity

(bottom left) and (b) normalized output.

f = 85.7 Hz. The output of the drive-unit and the open end of the duct

are in-quadrature-phase ∅ = +90◦ and the magnitude of the output of the

loudspeaker is dominated by the output of the open end of the waveg-

uide. Hence, a peak on that frequency can be observed in Fig. 2.4 (b).

Figure 2.5 illustrates the sound propagation within a TLL, such as shown

in Fig. 2.3, when the length of the duct is equal to half of the wavelength

of the sound propagating through it.
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Figure 2.5: Duct excited by a frequency with λ = 2 × duct length.
(a) Phase relation between pressure (top left) and particle velocity

(bottom left) and (b) normalized output.

In Fig. 2.5, the phase relation, particle velocity and pressure along the

length of a TLL can be observed, when it has been excited by a frequency

that has a wavelength twice the duct length f = 171.5 Hz. The output

of the drive-unit and the open end of the TLL are in-phase ∅ = 0◦ due

to the fold in the duct (refer to Fig. 2.3), and they are of a similar

magnitude, since there is no damping or acoustic treatment added on

the interior boundaries of the TLL duct [26]. Hence, a 6 dB increase in

the output response of the TLL can be observed in Fig. 2.5 (b) on that
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frequency, also known as the doubling effect in the frequency response

output. Figure 2.6 illustrates the sound propagation within the TLL,

such as shown in Fig. 2.3, when the length of the duct is equal to three

quarters of the wavelength of the sound propagating through it.
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Figure 2.6: Duct excited by a frequency with λ = 4/3 × duct length.
(a) Phase relation between pressure (top left) and particle velocity

(bottom left) and (b) normalized output.

In Fig. 2.6, the phase relation, particle velocity and pressure along the

length of a TLL duct can be seen, when it has been excited by a fre-

quency that has a wavelength 4/3 times bigger than the duct length

f = 257.2 Hz. The output of the drive-unit and the open end of the duct

are in-quadrature-phase ∅ = −90◦ and the magnitude of the loudspeaker

output is dominated by the output of the open end of the waveguide, due

to the fold in the duct (refer to Fig. 2.3). Hence, a peak on the response

of the TLL can be observed in Fig. 2.6 (b) on that frequency. Figure 2.7

illustrates the sound propagation within a TLL such as shown in Fig. 2.3,

when the length of the duct is equal to the full wavelength of the sound

propagating through it.
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Figure 2.7: Duct excited by a frequency with λ = duct length.
(a) Phase relation between pressure (top left) and particle velocity

(bottom left) and (b) normalized output.
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Finally, in Fig. 2.7 the phase relation, particle pressure and velocity along

the length of a TLL can be noticed, when it has been excited by a fre-

quency that has a wavelength equal to the duct length f = 343.2 Hz. The

output of the drive-unit and the open end of the TLL are out-of-phase

∅ = 180◦, due to the fold in the duct (refer to Fig. 2.3), and they are

of a similar magnitude, since there is no damping or acoustic treatment

added on the interior boundaries of the TLL. Hence, a destructive inter-

ference in the total output of the TLL can be observed at that frequency.

The addition of the acoustical treatment within the TLL waveguide how-

ever, has a direct effect on the imaginary length of the transmission-line,

causing significant changes to the overall sound at the open end. By

adding sound absorbers on the internal boundaries of the TLLs, the mid

and high frequencies could be attenuated and the significant resonances

can also be controlled [10]. Acoustic treatments are divided into locally-

reacting and bulk-reacting liners as explained in Section 2.3, where the

bulk-reacting liners are exhibiting far superior sound absorbing charac-

teristics and consequently they are used in the audio applications such as

optimized TLLs, hence, this project focuses on the bulk-reacting treat-

ments. Historically, the fibrous bulk-reacting materials have been used

as an acoustic treatments, as described by Roberts in his paper [10]. By

lining the internal boundaries of the TLL with the acoustic treatment,

the speed of sound propagation in the waveguide will be significantly re-

duced. In practice this means that the wavelengths of the sound signal

in the pipe are effectively reduced. Consequently the required length of

the duct that accommodates the lowest designed frequency is reduced.

The wave amplitude also decays exponentially with the distance accord-

ing to the magnitude of the attenuation factor in the empirically found

complex wavenumber [10, 16]. However, due to the recent advances in

the design and production of porous plastic open-cell foams, with specific

flow-resistivity, density and other relevant physical properties desired, are

far more commonly used by the industry as the acoustic absorbers, as

explained by Wu Qunli [27]. Next, non-uniform excitations as described

in Eq. (2.24) in Section 2.4.5, where one of the two triangles of the rolling

piston has a positive normal acceleration while the other triangle is at rest

and with the unit-velocity at the driver-end, has also been chosen as the
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main source of excitation throughout this project to ensure the excita-

tion of a large number of modes within the TLL waveguides. Finally, the

volume of air in the TLL enclosure, within the loudspeaker waveguides,

constitutes an additive stiffness which is refereed to as an acoustic load.

In low frequencies, this additive stiffness can be considerable compare

with the stiffness of the loudspeaker cone itself. The internal air stiffness

could be very high due to the hard-walled boundary conditions inside the

TLL enclosure, since the present of the hard-walls imposes a boundary

condition of zero particle velocity u = 0, that causes the internal stiffness

to increase. The acoustic load inside the TLL waveguides depends on

the internal volume of the duct, therefore as the size of the loudspeaker

increases so as the acoustic load within the TLL waveguides. However,

in the presented research in order to keep the presented models simple

and robust the internal volume of all straight, L-shaped and U-shaped

TLL waveguides have been kept constant with the same duct length of

1.6 m, and the effect of the acoustic loading of the loudspeaker motion

within the analytical models and numerical predictions have not been

accounted for.
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2.3 Lined Waveguides

There are different possible scenarios of a lined-duct. Figure 2.8 illus-

trates the schematic model of a uniform duct with hard-walled bound-

ary conditions. The pressure-release boundary condition p = 0 |x=Lx has

been assumed for the open end of the duct. The velocity at the duct’s

hard-walled boundary conditions are u = 0 [28, 29].

Figure 2.8: hard-walled duct.

Figure 2.9 illustrates the schematic model of a uniform duct lined with

the locally-reacting boundary conditions on the interior boundaries. An

example of locally-reacting liner would be when each cell in the acoustic

liner behaves such as a “Helmholtz resonance” and therefore reducing

designed frequencies [30].

Figure 2.9: Duct lined with locally-reacting liner.

Figure 2.10 illustrates the schematic model of a uniform duct lined with

the bulk-reacting boundary conditions on the interior boundaries.

Figure 2.10: Duct lined with bulk-reacting liner.
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As can be seen in Fig. 2.10 three distinct propagation modes can be

observed within a lined duct treated with the bulk-reacting acoustic liner.

The main mode propagates in the non-treated region of the duct. The

second mode propagates within the sound absorbing layer[31]. There

is a third mode propagating between the two layers of medium, on the

surface of the sound absorbing liner and the non-treated region of the

duct in the region where the speed of sound is almost the same between

the free-region and sound absorbing layer [32, 33].

2.4 Analytical Models of Waveguides

The analytical models of TLL ducts lined with different acoustic treat-

ments on the interior boundaries and excited with different diaphragm

excitations is presented here [34]. Table 2.2 shows all the different pos-

sible scenarios in terms of acoustic treatments and source excitation,

propagating within a TLL waveguide.

Cases Dimension Boundary Condition Diaphragm movement

Variables
2D hard-walled, Pistonic,
3D Locally-Reacting, Non-Uniform

Bulk-Reacting

1 2D Hard-Walled Pistonic

2 3D Hard-Walled Pistonic

3 2D Hard-Walled Non-Uniform

4 3D Hard-Walled Non-Uniform

5 2D Locally-Reacting Pistonic

6 3D Locally-Reacting Pistonic

7 2D Locally-Reacting Non-Uniform

8 3D Locally-Reacting Non-Uniform

9 2D Bulk-Reacting Pistonic

10 3D Bulk-Reacting Pistonic

11 2D Bulk-Reacting Non-Uniform

12 3D Bulk-Reacting Non-Uniform

Table 2.2: All different possibilities of TLL duct treatments and
driver excitation.

36



Chapter 2. Analytical Models of TLLs

2.4.1 TLL Assumptions Made and Carried Throughout

the Project

The straight, L-shaped and U-shaped TLL uniform ducts considered in

this research in 2D/3D cases of the numerical predictions or the in-situ

measurements, have been designed and built with the square cross sec-

tional area with the dimension of 0.3× 0.3 m2 and internal length of 1.6 m

along (x-axis), and have hard-walled boundary conditions along the inte-

rior boundaries, and have been excited with a pistonic excitation at the

driver position x = 0 with unit-velocity of 1 m s−1, and pressure-release

boundary condition p = 0 |x=Lx at the open end of the transmission-line

waveguides x = Lx for all the TLL ducts, unless it is been stated other-

wise in the description of a specific figure.

2.4.2 Case 1: 2D Duct, Hard-Walled Boundary Condition

and Pistonic Excitation

Assume a duct of width Ly and length Lx, with excitation at driver

position x = 0, acoustically hard-walled at y = 0 and y = Ly, and a

pressure-release boundary at the open end of the duct at x = Lx. The

pressure p(x, y)ejωt is as shown in Eq. (2.17) and illustrated in Fig. 2.11

below [35, 36]. Figure 2.11 shows a 2D duct, with hard-walled boundary

conditions on the interior boundaries as described for the cases 1 and 3

in Table 2.2.
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Figure 2.11: 2D duct, hard-walled case.

Suppose the driver velocity u(y) = ud is a constant; therefore there is

a pistonic excitation propagating through the duct. Then only mode

order 0 is excited, and the pressure field for a single frequency along the
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duct could be described by [22, 37]:6

p(x, y)

ρc2
= −j ud

c

sin (k (x− Lx))

cos (kLx)
, (2.17)

where ρ is the fluid density, c is the speed of sound, and k = ω/c is

the acoustic wavenumber. The parameters x and y refer to the locations

along the length Lx and width Ly of the duct. Eq. (2.17) is the trigono-

metric representation of Eq. (A.17) presented in Appendix A, which is

the exponential form of the particle pressure along the length of the TLL

with rectangular cross section, pistonic excitation, hard-walled boundary

conditions along the interior boundaries and a pressure-release bound-

ary condition at the open end of the waveguide. Figure 2.12 shows the

analytical results of pressure variation along the length of the duct, for

2D/3D cases [38].

Figure 2.12: Pressure variation along the length of the duct (x-axis),
for 2D/3D cases with hard-walled boundary conditions and pistonic

excitation.

In Fig. 2.12 the pressure variation along the length of the TLL duct can

be analyzed as the frequency increases. As the frequency progresses and

the wavelength of the propagating sound shortens, a greater number of

full-wavelengths can be observed to propagate within the pipe [39]. Also,

at the low-frequency a natural decay of the sound pressure amplitude

along the length of the duct can be observed with the lowest magnitude

6The derivation of one-dimensional solution of the wave equation is given in Ap-
pendix A.
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at the 1.6 m length of the duct, which is due to the assumption of a

pressure-release boundary condition at the open end of the duct.

2.4.3 Case 3: 2D Duct, Hard-Walled Boundary Condition

and Non-Uniform Excitation

Suppose now there is a source excitation such as a “rolling piston” at the

driver position x = 0, which can be described by:

u(y) = ud
2

Ly

(
y − Ly

2

)
, (2.18)

as sketched in Fig. 2.13 below. Figure 2.13 shows the schematic model

of a rolling piston described in Eq. (2.18) for a non-uniform excitation

described for 2D ducts in case 4 in Table 2.2.

yL

( )u y

y

dudu O

Figure 2.13: Schematic model of rolling piston for the 2D case.

The acoustic pressure is therefore described by [40, 41]:7

p(x, y)

ρc2
= −2jud

c

∞∑
n=1

k

kxn
εn

(
(−1)n − 1

(nπ)2

)
· · ·

× cos

(
nπy

Ly

)
sin (kxn (x− Lx))

cos (kxnLx)
,

(2.19)

where the first term in brackets has the effect of removing all even-

numbered modes. In this case there is no mode 0 excitation. All odd-

numbered modes are excited, although only the lowest orders will be

7The derivation of acoustic pressure for a 2D case with hard-walled boundary con-
ditions is an extension to the derivation of Eq. (2.17) given in Appendix A.
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cut-on. The axial wavenumbers kxn can be defined by [42]:8

kxn =

(
k2 −

(
nπ

Ly

)2
)1/2

, (2.20)

where n is mode index number and the normalization factor, ε, is de-

scribed to ensure the average value of the mode shape function across

the duct cross section is unity and is given by:

ε =

{
1 for n = 0,

2 for n 6= 0.
(2.21)

Figure 2.14 shows the analytical results of pressure variation along the

length of a 2D duct, with hard-walled boundary conditions on the interior

boundaries and non-uniform excitation.

Figure 2.14: Pressure variation along the length of the duct (x-axis),
for a 2D case with hard-walled boundary conditions and non-uniform

excitation.

Once again in Fig. 2.14 the pressure variation along the length of the

TLL duct can be analyzed as the frequency increases similar to the case

in Fig. 2.12. As the frequency progresses and the wavelength of the

propagating sound shortens, a greater number of full-wavelengths can be

observed to propagate within the pipe [39]. Also, at the low-frequency

a much more pronounced natural decay of the sound pressure amplitude

along the length of the duct can be observed with the lowest magnitude at

8The derivation of axial wavenumbers is given in Appendix A.
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the 1.6 m length of the duct which is due to the assumption of a pressure-

release boundary condition at the open end of the duct in conjunction

with the non-uniform excitation in a 2D duct which causes the excitation

of higher order modes, which invariably pushes the decay envelope to a

higher frequency range than that in Fig. 2.12. It has to be noted that

the cut-on modes will be dominant, so the summation can be terminated

at:

N =
kLy
π
. (2.22)

Figure 2.15 shows the analytical results of pressure variation along the

cross section of the duct (y-axis), in the mid-point along the length of the

duct for a 2D uniform duct, hard-walled boundary conditions along the

interior boundaries and non-uniform excitation at the driver position.

Figure 2.15: Pressure variation along the 0.3 m cross-section of the
duct (y-axis), in the mid-point along the length of the TLL, 2D case

with hard-walled boundary conditions and non-uniform excitation.

In Fig. 2.15 the pressure variation along the 0.3 m cross section of the

2D TLL duct (y-axis), in the mid-point along the length of the duct,

with hard-walled boundary conditions and non-uniform excitation can

be observed. There is a nodal line along the centre of the cross section

of the duct which is the same as the frequency progresses [39]. Also, at

low-frequencies a natural decay of the sound pressure amplitude along the

internal boundaries of the cross section of the duct can be observed which

is due to the hard-walled boundary conditions at the internal boundaries

of the duct.
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2.4.4 Case 2: 3D Duct, Hard-Walled Boundary Condition

and Pistonic Excitation

Now assuming a duct of width Ly, height Lz and length Lx, with excita-

tion at x = 0, acoustically hard-walled at y = 0, y = Ly, z = 0, z = Lz,

and a pressure-release boundary condition at x = Lx. The pressure varia-

tion p(x, y, z)ejωt for the 3D duct with hard-walled boundary conditions

on the interior boundaries and pistonic excitation can be found using

Eq. (2.23). Figure 2.16 shows the schematic model of a 3D duct with

hard-walled boundary conditions on the interior boundaries as described

for cases 2 and 4 in Table 2.2.
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Figure 2.16: 3D duct, hard-walled case.

Suppose u(y, z) = ud is a constant, so there is a pistonic excitation at

the driver position x = 0 along the waveguide. Then only mode order 0

is excited, and the pressure field within the 3D duct is:

p(x, y, z)

ρc2
= −j ud

c

sin (k (x− Lx))

cos (kLx)
, (2.23)

which is identical to Eq. (2.17) for the 2D duct for case 1 in Section 2.4.2.

2.4.5 Case 4: 3D Duct, Hard-Walled Boundary Condition

and Non-Uniform Excitation

Suppose now there is excitation such as a rolling piston, described by:

u (y, z) = ud
2

Ly

(
y − Ly

2

)
2

Lz

(
z − Lz

2

)
. (2.24)
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Comparing Eq. (2.24) above with Eq. (2.18) for case 3 in Section 2.4.3,

it can be noticed that Eq. (2.24) has another transverse direction z,

associated with it. In this case there is no mode 0 excitation and there

are two transverse directions, y and z, which require two mode indices,

n and m, associated with the aforementioned directions respectively. All

odd-numbered modes are excited, although only the lowest orders will be

cut-on. Therefore, the axial wavenumbers can be defined by:

kxnm =

(
k2 −

(
nπ

Ly

)2

−
(
mπ

Lz

)2
)1/2

, (2.25)

where kxnm is the axial wavenumber in the x-direction along the length

of the TLL, with the indices n and m, associated with their respective

directions [43, 44]. The acoustic pressure is therefore given by:9

p (x, y, z)

ρc2
= −4jud

c

∞∑
n=1

∞∑
m=1

k

kxnm
εnεm

(
(−1)n − 1

(nπ)2

)(
(−1)m − 1

(mπ)2

)
· · ·

× cos

(
nπy

Ly

)
cos

(
mπz

Lz

)
sin (kxn (x− Lx))

cos (kxnLx)
,

(2.26)

where εn and εm represent the predefined function ε as explained in

Eq. (2.21) in Section (2.4.3), and associated with the transverse direc-

tions, y and z indicated by the two mode indices, n and m. Note that only

the cut-on modes will be dominant, so the summation can be terminated

for the cut-off modes. Cut-off modes have:(
nπ

Ly

)2

+

(
mπ

Lz

)2

> k2. (2.27)

Figure 2.17 shows the pressure variation along the length of a 3D uniform

duct with hard-walled boundary conditions along the interior boundaries

and non-uniform excitation.

Once again in Fig. 2.17 the pressure variation along the length of the TLL

duct can be analyzed as the frequency increases similar to the cases in

Fig. 2.12 and Fig. 2.14. As the frequency progresses and the wavelength of

the propagating sound shortens, a greater number of full-wavelengths can

9The derivation of acoustic pressure for a 3D case with hard-walled boundary con-
ditions is an extension to the derivation of Eq. (2.19) in Chapter 2.
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Figure 2.17: Pressure variation along the length of the duct (x-axis),
of a 3D case with hard-walled boundary conditions and non-uniform

excitation.

be observed to propagate within the pipe. Also, at low-frequencies a much

more pronounced and very steep natural decay of the sound pressure

amplitude along the length of the duct can be observed with the lowest

magnitude at the 1.6 m length of the duct which is due to the assumption

of a pressure-release boundary condition at the open end of the duct in

conjunction with the non-uniform excitation in a 3D duct which causes

the excitation of higher order modes, which invariably pushes the decay

envelope to a higher frequency range than that in Fig. 2.12 and Fig. 2.14.
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2.4.6 Case 5: 2D Duct, Locally-Reacting Boundary Con-

dition and Pistonic Excitation

Next, there is a 2D duct as in cases 1 and 3, but with locally-reacting

(LR) lined-walls (BC )at y = 0 and y = Ly, where the dimensionless

admittance has been defined as Ai = ρc/Zi [45]. Here Zi is the wall

impedance Z with index i, and the pressure is p(x, y)ejωt. Figure 2.18

shows the schematic model of a 2D case with locally-reacting walls and

a pressure-release boundary condition and an open end.
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Figure 2.18: 2D duct with locally-reacting walls and a pressure-
release boundary condition at the open end.

2.4.7 Eigenvalues

There exists an infinite set of transverse eigenvalues kyn, which are solu-

tions to the equation [46]:10(
kyn +

k2A1A2

kyn

)
sin (kynLy) + jk (A1 +A2) cos (kynLy) = 0. (2.28)

It should be noted that all of the eigenvalues are complex, therefore only

those which have a positive real part and a negative imaginary part have

been considered.

10The transcendental Eq (2.28) is been solved numerically in Chapter 3 and its result
has been implemented into the numerical models to get the p0 at the x = 0 driver
position and ul at the x = Lx open end of the TLL.
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2.4.8 Axial Wavenumbers

For each of the transverse eigenvalues kyn, there is a unique axial wavenum-

ber kxn given by:

kxn =
(
k2 − k2yn

)1/2
. (2.29)

All of the wavenumbers are also complex. The square root has been de-

fined such that they all have a positive real part and a negative imaginary

part. There is no longer a clear cut-off condition; all modes contain a de-

cay factor. Now suppose there is pistonic excitation such as u(y) = ud, at

the driver position x = 0 with a constant value. Therefore, the pressure

field can be described as [47]:

p(x, y)

ρc2
= −j

∞∑
n=0

k

kxn

Ly
Φn

Fnφn(y)
sin (kxn (x− Lx))

cos (kxnLx)
, (2.30)

where φn(y) is described by:

φn(y) = cos (kyny)− jkA1

kyn
sin (kyny) , (2.31)

where A1 is the dimensionless surface admittance along the x-axis from

x = 0 to x = Lx, as illustrated in Fig. 2.18, and the normalization factor

Φn is:

Φn =

Ly∫
0

|φn(y)|2 dy, (2.32)

and Fn is defined by:

Fn =
ud
Lyc

Ly∫
0

φn(y)dy. (2.33)

It is worth mentioning that Eq. (2.30) describing the internal pressure

along the length of the TLL ducts has been solved numerically and de-

scribed in detail in Chapter 3.
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2.4.9 Case 7: 2D Duct, Locally-Reacting Boundary Con-

dition and Non-Uniform Excitation

Suppose u(y) is a non-uniform excitation. Therefore the pressure field is

the same as Eq. (2.30) for case 5 with pistonic excitation in Section 2.4.6.

It is also worth mentioning that φn(y) is the same as Eq. (2.31) as in

case 5 and the normalization factor Φn is also the same as Eq. (2.32) as

mentioned previously in Section 2.4.6. However, Fn can be defined by:

Fn =
1

Lyc

Ly∫
0

u(y)φn(y)dy. (2.34)

Table 2.2 describes different cases of treated TLL waveguides, cases 1 to

4 of have been explained in Sections 2.4.2 to 2.4.5 which deal with the

TLL ducts with the hard-walled boundary conditions on their internal

boundaries. Sections 2.4.6 and 2.4.9 explain cases 5 and 7, of Table 2.2,

where cases 5 to 9 look into the case where the pressure fields within

the TLL ducts have been treated with the locally-reacting liners. These

have been added to this chapter for the purpose of completeness, since

the bulk-reacting sound absorbing materials have far superior acoustical

properties in terms of the absorption of the unwanted sound pressures.

Therefore, the optimized transmission-line loudspeakers are acoustically

treated with the bulk-reacting sound absorbing liners due to the better

acoustical performance of the bulk-reacting liners in comparison to the

locally-reacting treatments. However, instead of looking into the cases

9 to 12 analytically and iteratively solving the transcendental equations

describing the internal pressure along the length of the TLL ducts for

cases 9 to 12, they have been solved numerically and are described in

Chapter 3.

2.5 Conclusion

In Chapter 2, the lump parameter model of the loudspeaker driver and

the background theory of TLL ducts were introduced in Sections 2.1 and

2.2 respectively. Next, in Section 2.3, lined waveguides were looked at.

The investigation continued with the analytical models of waveguides in
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Section 2.4, and different possible scenarios were introduced in Table 2.2.

The detailed analytical models of cases 1 to 5 and 7 from Table 2.2 have

been looked at, and the pressure variation along the length of the TLL

duct for cases 1 to 4 have been plotted in Sections 2.4.2, 2.4.3 and 2.4.5

respectively. In Chapter 3, the pressure field for the remaining cases in

Table 2.2, have been looked at using the standard numerical techniques

within the COMSOL Multiphysics environment through a series of de-

veloped numerical models.
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Numerical Models of TLLs

Standard numerical techniques within the COMSOL Multiphysics envi-

ronment have been used to investigate the characteristics of sound prop-

agation within a range of treated ducts. The modelling procedure in

the COMSOL software is controlled through the model builder window,

which includes a model tree with all the functionality and operations

for building and solving the numerical models as well as displaying and

exporting the results [18].

The numerical results were initially validated against the results of the

analytical models for the basic cases of sound propagation within a TLL,

since the analytical models look into the basic forms of the ducts, namely

uniform straight ducts, with a variety of acoustic treatments, hard-walled

and locally-reacting sound absorbing liners, and a variety of source ex-

citations, namely pistonic and non-uniform excitation, as explained in

detail in Chapter 2. Therefore, the numerical models begin with the in-

vestigation of some of the basic TLL ducts for the purpose of comparison

and validation with the analytical results from Chapter 2.

The numerical predictions progress to more complicated cases of the

ducts, namely L-shaped and U-shaped, lined on the interior boundaries

with bulk-reacting acoustic liners. The results of these complicated cases

were then compared with the in-situ measurement results. The in-situ

tests were conducted on the similar cases of ducts treated with the same
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sound absorbing materials as described in detail in Chapter 4 using a va-

riety of measurement techniques and microphone probes from Microflown

Technologies.

3.1 Numerical Models of TLL

Beginning with the hard-walled case of different duct shapes, namely

straight, L-shaped and U-shaped ducts, the numerical models advance

to modelling of the same ducts treated with locally-reacting and bulk-

reacting sound absorbing liners. The 3D duct geometries under consid-

eration, straight, L-shaped and U-shaped ducts, have been drawn using

the Solidworks 3D drawing package. The 3D geometries then have been

transferred to the COMSOL Multiphysics environment using the function

live-link interface for Solidworks. Next, using the function form union

within COMSOL each waveguide geometry was unified. The sound ab-

sorbing materials of interest within the scope of this project have been

assigned to the internal boundaries of each duct geometries. Within the

scope of this project, the acoustic characteristics of a range of fibrous

and porous sound absorbing materials were investigated as outlined in

Tables 4.1 and 4.2 in Chapter 4, Section 4.1. The numerical models were

designed with the aim of characterizing the sound propagation within a

variety of treated TLL ducts. Therefore, the relevant physics, pressure

acoustics, within COMSOL was selected for the purpose of these analyses.

Two separate pressure acoustic models were added into the physics of the

numerical models in COMSOL. One model to predict the sound propa-

gation within the free acoustic medium and another pressure acoustics

model for prediction of sound behaviour within the sound absorbing layer

of the ducts. Next, the boundary conditions of different surfaces inside

and outside the TLL ducts were specified depending on their location,

where each boundary behaves as a sound-hard-boundary also known as

the hard-walled boundary condition, such as all the external and internal

layers of the duct, or a sound-soft-boundary also known as the pressure-

release boundary condition, where the pressure is zero, such as the open

end of the TLL waveguide. Therefore p(x, ω) = 0 |x=Lx , since the TLL

waveguide experiences a sudden expansion in its cross sectional area. In
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the numerical models, the TLL driver was specified as a piston with the

normal inwards acceleration, selecting one-end of the TLL duct [48, 49].

Depending on the numerical model, either a uniform acceleration as a

pistonic source of excitation or a non-uniform source of excitation was

chosen, as outlined in Table 2.2 and based on the analytical models de-

veloped in Chapter 2, Section 2.4.3 and represented in Eq. (2.18) and

illustrated in the schematic Fig. 2.13.

3.1.1 Modelling Porous Materials

Depending on the numerical model, whether it is designed to model the

sound propagation in a lined-duct treated with porous or fibrous ma-

terials, the first pressure acoustic model (which predicts the behaviour

of propagation within the lined section of the duct) was set differently

[50–52]. For the case when the duct is treated with the porous materials

the coefficient of Wu Qunli were used in the fluid model of COMSOL for

the macroscopic empirical models based on the paper by Wu [27]. The

specific flow-resistivity per unit thickness, σ values, were measured at the

Centre of Acoustic-Liner Technology of Alenia Aermacchi and have been

added in the COMSOL models [53]. The values for density ρ and speed

of sound c have been set to be taken from the material at 20◦C. The

temperature has been defined as 293.15 K and the absolute pressure as

105 Pa. The pressure acoustics model 1 is based on the following equation

[18]:

∇.−1

ρ̃
(∇p− q)− k̃2p

ρ̃
= Q, (3.1)

where ∇ = ∂
∂x î+ ∂

∂y ĵ + ∂
∂z k̂ is the three dimensional Cartesian coordi-

nates, ρ̃ is the air density defined by Eq. (3.3). The total pressure is

defined as p = p0 + p′, where p0 is the ambient pressure and p′ is the

unsteady component of the pressure, q is the dipole source, Q is the

monopole source. The acoustic wavenumber is defined as k̃2 = (ω/c̃)2,

where ω is the angular frequency and c̃ is the speed of sound. Therefore

[18]:

c̃ = c

(
1 + C1

(
ρ
f

σ

)−C2

− jC3

(
ρ
f

σ

)−C4
)−1

, (3.2)
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and

ρ̃ =
ρc

c̃

(
1 + C5

(
ρ
f

σ

)−C6

− jC7

(
ρ
f

σ

)−C8
)
, (3.3)

where f is the frequency, C1 − C8 are the constants and σ is the flow-

resistivity. These equations, which describe the pressure acoustics model

within the COMSOL environment, are based on the Delany and Bazley

model in their paper [54]. It should be noted that the parameters ρ̃, c̃

and k̃2 in Eqs (3.1), (3.2) and (3.3) could contain complex values and

therefore they have been denoted by (˜) [31]. In modelling the treated

TLL with the porous materials, the coefficients C1 to C8 have been taken

from the Wu Qunli’s model [27, 52, 55]. Table 3.1 shows the comparison

between the two different coefficient values of Wu Qunli and Delany and

Bazley which were used in the numerical models of the porous and fibrous

materials respectively [27].1

Coefficients Wu Qunli Delany and Bazley

C1 0.188 0.0978

C2 0.554 0.700

C3 0.163 0.189

C4 0.592 0.595

C5 0.209 0.0571

C6 0.548 0.754

C7 0.105 0.087

C8 0.607 0.732

Table 3.1: Comparison of coefficients of Wu Qunli with Delany and
Bazley.

Next, the imported geometries within COMSOL environment was meshed.

The free-tetrahedral elements conform best to any random geometry and

therefore have been chosen for this purpose. The size of the elements had

to be small enough to resolve the highest frequency of interest so that

any characteristic behaviour in the sound propagation could be observed

and analyzed. Next, in the study setting of the numerical models, the

frequency range of interest and its distribution steps were specified to be

20 to 1000 Hz, with the distribution of a single frequency. In the com-

pile equation of the solver section, the frequency domain of the pressure

acoustic models were chosen to be studied. The relative tolerance of the

1This table is courtesy of Wu Qunli from the paper [27].
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models was set and optimized in the stationary solver, which controls

the rate of divergence by setting the termination of the iterative solver

processes for the direct linear system solvers. Finally, In the memory

allocation factor, the amount of memory used by the computers and the

type of solver were chosen to be 1.2 Gbit and MUMPS solver respectively,

which controls directly the computational cost function. The MUMPS

solver refers to the parallel sparse direct linear solver and it stand for the

MUltifrontal Massively Parallel sparse direct Solver, which works on gen-

eral systems of the form Ax = b and is designed for the solution of large

sparse systems of linear algebraic equations on distributed memory paral-

lel computers. The software implements the multifrontal method, which

is a version of Gaussian elimination for large sparse systems of equations,

especially those arising from the finite element method (FEM ). The FEM

uses subdivision of a whole problem domain into simpler parts, called fi-

nite elements, and variational methods from the calculus of variations to

solve the problem by minimizing an associated error function. Analogous

to the idea that connecting many tiny straight lines can approximate a

larger circle, FEM encompasses methods for connecting many simple el-

ement equations over many small subdomains, named finite elements, to

approximate a more complex equation over a larger domain. The subdi-

vision of a whole domain into simpler parts has several advantages such

as accurate representation of a complex geometry, inclusion of dissimilar

material properties, easy representation of the total solution and captur-

ing the local effects within a complex geometry. The MUMPS solver uses

several preordering algorithms to permute the columns and thereby min-

imize the fill-in. The MUMPS solver is multithreaded on platforms that

support multithreading and also supports solving on distributed memory

architectures and it includes out-of-core capabilities which can minimizes

the internal memory usage of the computer [18].2 Other modelling op-

tions including boundary element method (BEM ) where the modelling is

concentrating on the surface boundaries of the object under considera-

tion, and therefore can not resolve the characteristic of sound propagation

within the free-region of a TLL waveguide such as that in this project,

2The information regarding the MUMPS solver is courtesy of COMSOL Multi-
physics help base on the COMSOL version 4.2a.
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or finite-difference time-domain (FDTD) which is mainly used for mod-

elling computational electrodynamics were also considered, but finally

the MUMPS solver which uses the FEM was chosen.

3.1.2 Modelling Fibrous Materials

For the case when the duct is treated with the fibrous materials the

coefficients of Delany and Bazley were implemented in the fluid model

of COMSOL for the macroscopic-empirical-models based on their paper

[54]. The specific flow-resistivity, σ values, of the fibrous samples, were

measured at the Centre of Acoustic-Liner Technology of Alenia Aerma-

cchi and have been used to create the required Rf values in Pa s m−2

in COMSOL. The values for density ρ, and speed of sound c, were set to

be taken from the materials. Temperature has been defined as 293.15 K

and absolute pressure as 105 Pa. The governing equations and the rest

of the procedure was the same as for the case of porous sound absorbing

materials and follows the same sequence as Eqs (3.1), (3.2) and (3.3).

3.1.3 Meshing Comparison

One of the important considerations in numerical modelling is the mesh-

ing of the geometry under consideration. Apart from controlling the

frequency resolution of the numerical predictions, the size of the meshed

elements has a direct effect on the computational cost-function. After

comparing different meshing methods, such as free-tetrahedral, swept-

and-mapped, as illustrated in Figs 3.1 and 3.2. Finally, the free-tetrahedral

node meshing method was chosen to create the unstructured tetrahedral

mesh [18]. The numbers, sizes and distributions of the elements were

controlled by first choosing the user-controlled mesh system and then

directly controlling the size and distribution subnodes functions in the

numerical models. Using the geometric-entity-level function the area of

each geometry was set for the specific meshing size and methods. The

geometric domains, where the unstructured tetrahedral mesh have been

created were defined using the domain-selection function in the COM-

SOL environment. In order to keep the numerical models accurate and

robust, the entire-geometry option was set to create the unstructured
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free-tetrahedral mesh for the entire geometry, and the computational cost-

function of the models are manageable for any ordinary computer when

the models are meshed with the maximum resolution. The mesh quality

can be conclusively determined based on the following factors within a

numerical model. Starting with rate of convergence, the greater the rate

of convergence, the better the mesh quality, which is an indication that

the correct solution has been achieved faster. An inferior mesh quality

may leave out certain important phenomena such as the boundary layer

that occurs in fluid flow. In this case the solution may not converge or the

rate of convergence will be impaired. Next, solution accuracy, a better

mesh quality provides a more accurate solution. For example by refining

the mesh at certain areas of the geometry where the gradients are high,

thus increasing the fidelity of solutions in the region. On the other hand,

if a mesh is not sufficiently refined then the accuracy of the solution is

more limited. Thus, mesh quality is dictated by the required accuracy.

Finally CPU time required, which is a necessary and yet undesirable fac-

tor. For a highly refined mesh, where the number of cells per unit area is

at maximum, the CPU time required will be relatively large. Therefore,

time will generally be proportional to the number of elements.
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3.1.4 Scaling the Geometry

To scale the geometry during the meshing operation, the x-scale, y-scale,

and z-scale of the imported geometries were set to positive real numbers.

If any of the scale factors were not equal to one, the software scales the

geometry in the x, y, and z directions before meshing; after meshing,

it restores the geometry and the meshed element to fit the original size

[18]. Figure 3.1 shows the comparison between the free-tetrahedral mesh

and the swept-and-mapped mesh along the length of the straight duct in

z-axis.

(a) (b)

Figure 3.1: Comparison of different meshing methods. (a) Free-te-
trahedral and (b) swept-and-mapped meshing.

The scaling factors allow the generation of meshes that are anisotropic,

and it is useful if the mesh generator creates many elements due to a

thin geometry or if the mesh generation fails due to large aspect ratios

in the geometry [18]. One of the first thing to consider in meshing is how

to break the geometry into small pieces. There are different standard

meshing techniques, but one of the most commonly used methods is

the free-tetrahedral. As can be seen in Fig. 3.1 (a) the elements along

the length of the duct have a tetrahedral setup whereas in Fig. 3.1 (b)

the elements across the length of the TLL have a rectangular structure.

Figure 3.2 shows the comparison of different meshing techniques, namely

free-tetrahedral and swept-and-mapped, and meshing resolution (mesh-

size) on the cross sections of transmission-line waveguides considered in
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this research.3

(a) (b) (c)

Figure 3.2: Comparison of cross section of different mesh size. (a) Fr-
ee-tetrahedral mesh, (b) extra-fine free-tetrahedral mesh and (c) swe-

pt-and-mapped meshing method.

It has to be mentioned that in the swept-and-mapped method, first the

cross section of the duct was meshed. The sound absorbing layer was

meshed using the free-triangular meshing, and the free-region of the duct

was mapped such that each node was located exactly on the position of

the microphone during the in-situ measurements on the same duct, hence

creating a matrix structure of 5 by 5 elements. Next the same pattern as

the meshed cross section was swept through the whole structure of the

duct. It can also be observed in Fig. C.7 in Appendix C, that in the swept-

and-mapped method of meshing, the geometry of the elements along the

length of the duct is rectangular whereas in the free-tetrahedral meshing

method the geometry of elements is unstructured tetrahedral meshes. It

was finally decided that for the numerical model under consideration the

benefit of using the swept-and-mapped method in minimizing the compu-

tational cost-function is negligible. Hence, the more numerically accurate

choice, the free-tetrahedral meshing, was chosen and carried forward for

the rest of the numerical modelling. The unstructured free-tetrahedral

meshing with a small enough element is proven to conform best to any

random geometry, hence improving the accuracy of the numerical pre-

dictions.

3The detailed numerical results of different meshing methods have been added to
Appendix C.
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3.1.5 Relative Tolerance of Models

Another important factor in the computational cost-function of the nu-

merical models is relative-tolerance which controls the speed of the di-

vergence in the numerical model. The relative-tolerance has an adverse

effect on the computational cost-function. As it decreases the computa-

tional cost-function increases and therefore it had to be optimized such

that it does not compromise the accuracy of the numerical predictions

and yet keeps the computational cost-function under control.

58



Chapter 3. Numerical Models of TLLs

3.2 Comparison of Numerical Predictions and

Analytical Models

Starting with the comparison of the pressure variation at the three dif-

ferent positions at the centre points of the cross section of the TLL wave-

guide, this investigation moves to the comparison of the numerical and

analytical results. As explained in Section 2.4.1 the TLLs have 1.6 m

length with the hard-walled boundary conditions with a pistonic exci-

tation with unit-velocity and pressure-release boundary condition at the

open end of the waveguides, unless it is been stated otherwise in the

description of a specific figure. Figure 3.3 shows the comparison of the

analytical results for the pressure variation at the centre points of the

cross section for three different positions, namely drive-unit x = 0, half-

way in the middle of the TLL x = Lx/2 and at the open end of the

straight duct x = Lx.
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Figure 3.3: Comparison of analytical results at three different posi-
tions at the centre points across the cross-section of a straight duct.
Drive-unit position x = 0 (blue line), middle of TLL along the length
x = Lx/2 (red line) and the open end of the waveguide position x = Lx

(green line).

As can be seen in Fig. 3.3 the pressure amplitudes representing the driver

(blue line) and middle positions (red line) decay as the frequency pro-

gresses; with the driver position having a higher amplitude than the

middle position as expected, since it is located directly in front of the

excitation source in the duct. The assumption of the pressure-release
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boundary condition causes the pressure variation at the open end to be a

constant zero p = 0 |x=Lx . Figure 3.4 shows the comparison of analytical

and numerical results at centre points of the cross section positions at

the drive-unit, half-way in the middle of the TLL, end of the waveguide

and along the centre line of a straight TLL duct.
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Figure 3.4: Comparison of the analytical and numerical results in
a straight duct. (a) Drive-unit position, (b) middle of duct, (c) end
of duct and (d) along the centre line of the duct length. Analytical

results (dashed line) and COMSOL results (dot dashed line).

It can be seen from the results in Fig. 3.4 that the presented numerical

model is capable of correctly predicting the characteristics of sound prop-

agation behaviour within the TLL waveguide with hard-walled boundary

conditions and pistonic excitation.
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3.3 Case 10: 3D Straight Duct, Bulk-Reacting

Boundary Condition and Pistonic Excita-

tion

Next, the two-dimensional results of the pressure fluctuation along the

length of the acoustically treated straight duct, excited with the pistonic

source can be observed in Fig. 3.5 below, which is case 10 in Table 2.2.

Figure 3.5 shows the results of a numerical model of pressure variation

along the length of the straight duct, lined with a bulk-reacting liner

sample RG50/135 (pink foam), for frequencies 100, 200, 300, 400, 600,

700, 800 and 900 Hz.

0 0.4 0.8 1.2 1.6
0

10

20

30

40

50

60

70

Length (m)

SP
L

 (
dB

 r
e 

20
 µ

Pa
)

 

 

COMSOL 100 Hz
COMSOL 200 Hz
COMSOL 300 Hz
COMSOL 400 Hz
COMSOL 600 Hz
COMSOL 700 Hz
COMSOL 800 Hz
COMSOL 900 Hz

Figure 3.5: Numerical results of pressure variation, along the length
of a straight duct, treated with sample RG50/135, for frequencies 100,

200, 300, 400, 600, 700, 800 and 900 Hz.

As expected Fig. 3.5 shows that the pressure variations decay along the

length of the waveguide; also their amplitudes drop considerably as the

frequency progresses [56]. There is almost a 25 dB decrease in the am-

plitude of the 600 Hz (solid pink line) in comparison to the 100 Hz (solid

blue line) at 0.8 m, half way along the length of the TLL waveguide. It

can be concluded that from 400 Hz onwards a lined duct with this size

(0.3× 0.3× 1.6 m height by width by length), and this amount of sound

absorbing materials (0.3×0.15×1.6 m height by width by length), expe-

riences a high absorption along the duct, behaving as a low-pass acoustic
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filter, which confirms the general theory of the transmission-line loud-

speakers. Also the pressure variation at all the frequencies tends to zero

at the open end of the ducts which is due to the assumption of a pressure-

release boundary condition in the numerical models. Figure 3.6 shows

the comparison of numerical predictions for the sound pressure variation

along the length of a straight TLL duct, lined with the bulk-reacting

liners, sample RG50/135 (pink foam) and RX33/160 (green foam), for

the frequencies 63, 125, 250, 500 and 1000 Hz.
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Figure 3.6: Comparison of numerical predictions of pressure varia-
tion along the length of a straight duct lined with samples RG50/135
(pink foam) (dot dashed line) and RX33/160 (green foam) (solid line),

along the length, for frequencies 63, 125, 250, 500 and 1000 Hz.

It can be seen in Fig. 3.6 that the numerical predictions of the straight

TLL duct lined with the same amount of two different sound absorbing

materials, sample RG50/135 (pink foam) or RX33/160 (green foam),

follows the same pattern and has almost the same values for the range of

frequencies presented with the similar absorption pattern along the duct

length, and there is no sudden change in the sound pressure variations

along the length of the duct as the frequency progresses.
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3.4 Straight Duct Models

Next, the numerical models are used to analyse the straight ducts with

different internal boundary conditions along the interior boundaries of

the waveguide. Figure 3.7 shows the duct geometry and the meshed

element size of the straight duct, meshed with the unstructured free-

tetrahedral method. At the cross section of the duct two triangles can

also be observed, which represent the drive-unit of the TLL duct.

(a) (b)

Figure 3.7: Straight duct. (a) Duct geometry and (b) size of the
elements meshed with unstructured free-tetrahedral method.

A uniform layer of sound absorbing liner has been added to the internal

boundaries along the length of the duct creating a layer wrapped around

the free-region of the duct. There are two distinct regions that can be

observed in Fig. 3.7: (1) the free-medium region in the centre of the duct

which is filled with air and has two triangles at the beginning of the

duct cross section representing the rolling piston motion as described in

Eq. (2.24) in Section 2.4.5, and (2) a region representing the sound ab-

sorbing layer with a uniform thickness wrapped around the free-medium

region. Figure 3.8 shows the acoustic pressure level variation along the

length of the straight TLL duct, lined on the inside with the bulk-reacting

acoustic liner, sample RG50/135, excited with a non-uniform excitation

source, presented for the frequencies 300 and 1000 Hz respectively.4

It can be observed in Fig. 3.8 that the non-uniform excitation with unit-

velocity at the driver-end has been modelled with a particular case of

4The detailed numerical results of straight duct models have been added to Ap-
pendix B.
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(a) (b)

Figure 3.8: Sound pressure level variation along the length of straight
duct, with a non-uniform excitation, treated with sample RG50/135.

(a) 300 Hz and (b) 1000 Hz.

excitation which has been chosen to excite a large number of modes within

the TLL as described in Eq. (2.24) in Section 2.4.5, where one of the two

triangles of the rolling piston has a positive normal acceleration while the

other triangle is at rest. It can also be seen, as the frequency advances

and the wavelength of the sound propagating shortens, in Fig. 3.8 (b)

that the pressure variation along the duct tends to zero after a short

distance away from the drive-unit (sound source in the duct). Figure 3.9

shows the isosurface acoustic pressure level variation along the length

of the straight duct, lined with the bulk-reacting acoustic liner, sample

RG50/135, excited with a non-uniform excitation source, presented for

frequencies 200 and 300 Hz respectively.5

Once again in Fig. 3.9 all the features previously mentioned for the sound

pressure level variation in Fig. 3.8, can be seen here but are more pro-

nounced. A distinct triangular region of high-pressure illustrated with the

dark-red colour in the isosurface plot, which represents the TLL driver as

described in Eq. (2.24) in Section 2.4.5, can be observed to be wrapped

by a region of low-pressure, which propagates through the waveguide.

As mentioned in Sections 3.1.3 and 3.1.4, meshing is one of the most

important considerations of any numerical modelling. The quality of the

meshed structure with regards to the geometry under consideration and

the frequency range of interest has been determined by the COMSOL

environment and is presented in Fig. 3.10 below for the case of a straight

5The detailed numerical results of straight duct models have been added to Ap-
pendix B.
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(a) (b)

Figure 3.9: Isosurface sound pressure level variation along the length
of straight TLL duct, with non-uniform excitation at the driver-end,
treated with sampleRG50/135 (pink foam). (a) 200 Hz and (b) 300 Hz.

TLL duct, acoustically treated with the bulk-reacting sample RG50/135,

excited with a non-uniform source. Figure 3.10 shows the mesh quality

along the length and the cross section of the straight duct, lined with

bulk-reacting liner sample RG50/135 (pink foam), with non-uniform ex-

citation.

(a) (b)

Figure 3.10: Mesh quality along the length and the cross section
of a straight duct, with non-uniform excitation, treated with sample

RG50/135.

The quality of the meshed structure with regards to the geometry under

consideration and the frequency range of interest has been determined by

the COMSOL environment and has been presented in Fig. 3.10, for the

case of straight duct, acoustically treated with the bulk-reacting sample

RG50/135, excited with a non-uniform source.
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3.5 L-Shaped Duct Models

The numerical results advance to consider the L-shaped duct. A uniform

layer of sound absorbing liner has been added to the internal boundaries

of the duct creating a second region wrapped around the free-medium, air

region of the duct. Figure 3.11 shows the L-shaped duct geometry wire

frame, with its drive-unit cross section which consist of two triangles, as

well as duct centre line and the internal and external elements mesh size.

(a) (b)

(c) (d)

Figure 3.11: L-shaped duct. (a) Duct geometry wire frame, (b) duct
centre line, (c) external elements mesh size and (d) internal elements

mesh size.

A uniform layer of sound absorbing liner has been added to the internal

boundaries along the length of the duct creating a layer wrapped around

the free-region of the duct. There are two distinct regions that can be

observed in Fig. 3.11 (a): (1) the free-medium region in the centre of the

duct which is filled with air and has two triangles at the beginning of the

duct cross section representing the rolling piston motion as described in
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Eq. (2.24) in Section 2.4.5, and (2) a region representing the sound ab-

sorbing layer with a uniform thickness wrapped around the free-medium

region. Figure 3.12 shows the acoustic pressure level variation along the

L-shaped duct, with a non-uniform excitation, lined with bulk-reacting

sound absorbing liner sample RG50/135 at frequency 200 Hz.6

Figure 3.12: Variation of sound pressure level along the length of
an L-shaped duct, with a non-uniform excitation at the driver-end,

treated with the sample RG50/135 at 200 Hz.

A high-pressure region at the bend of the L-shaped duct can be observed

at 200 Hz, in Fig. 3.12, with the concentration at the corner of the bend.

Figure 3.13 shows the isosurface sound pressure level variations along

the length of the L-shaped duct, lined with a bulk-reacting liner sample

RG50/135, with a non-uniform excitation, at the frequencies 118 and

190 Hz.

(a) (b)

Figure 3.13: Variation of isosurface sound pressure level along the le-
ngth of an L-shaped TLL duct, with a non-uniform excitation, treated

with the sample RG50/135. (a) 118 Hz and (b) 190 Hz.

6The detailed numerical results of L-Shaped duct models have been added to Ap-
pendix B.
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In Fig. 3.13 the isosurface sound pressure level variations at 118 Hz and

190 Hz can be seen with more pronounced features. Figure 3.14 shows

the mesh quality along the length and the cross-section of the L-shaped

duct, lined with a bulk-reacting liner sample RG50/135 (pink foam), with

a non-uniform excitation.

(a) (b)

Figure 3.14: Mesh quality of an L-shaped duct treated with the
bulk-reacting liner sample RG50/135 (pink foam), with a non-uniform

excitation. (a) Duct length and (b) duct cross-section.

The quality of the meshed structure with regards to the geometry under

consideration and the frequency range of interest has been determined by

the COMSOL environment and has been presented in Fig. 3.14, for the

case of an L-shaped TLL duct, acoustically treated with the bulk-reacting

sample RG50/135, excited with a non-uniform source at the driver-end

of the duct.
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3.6 U-Shaped Duct Models

The numerical results advance to consider the U-shaped duct. A uniform

layer of sound absorbing liner has been added to the internal boundaries

of the duct creating a second region wrapped around the free-medium, air

region of the duct. Figure 3.15 shows the U-shaped duct geometry wire

frame, with its drive-unit cross section which consist of two triangles, as

well as duct centre line and the internal and external elements mesh size.

(a) (b)

(c) (d)

Figure 3.15: U-shaped duct. (a) duct geometry wire frame, (b) duct
centre-line, (c) external elements mesh size and (d) internal elements

mesh size.

As in Fig. 3.11 (a) there are once again two distinct regions that can be

observed in Fig. 3.15 (a): (1) the free-medium region in the centre of

the duct and (2) a region representing the sound absorbing layer with a

uniform thickness wrapped around the free-medium region. Figure 3.16

shows the U-shaped duct geometry, normal accelerations 1 and 2, sound

soft boundary, acoustic pressure models 1 and 2 respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.16: (a) U-shaped duct, (b) acoustic pressure model 1 and 2,
(c) normal acceleration (rolling piston), (d) normal acceleration (rolling
piston), (e) sound soft boundary condition (open end of the duct),
(f) free-region of duct, (g) sound absorbing layer, and (h) combination

of free-region and sound absorbing layer.
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The U-shaped duct geometry can be seen in Fig. 3.16 (a) where the

pressure acoustic regions of the U-shaped duct, one and two, within the

COMSOL environment can be observed in Fig. 3.16 (b), (f), (g) and (h).

The TLL drive-unit represented by a rolling piston, containing two trian-

gles can also be observed in Fig. 3.16 (c) and (d). Finally, the open end

of the U-shaped duct can be seen in Fig. 3.16 (e). Figure 3.17 shows the

acoustic pressure level variation along the U-shaped duct, with a non-

uniform excitation at the driver-end, lined on the interior boundaries with

the bulk-reacting sound absorbing liner sample RG50/135 (pink foam),

at the frequency 260 Hz.7

Figure 3.17: Variation of sound pressure level along the length of
a U-shaped duct with a non-uniform excitation, treated with sample

RG50/135 at 260 Hz.

The acoustic pressure level propagation within the U-shaped duct can be

observed in Fig. 3.17 with a high-pressure region at the top corner of the

bend of the U-shaped TLL at 260 Hz, with the concentration at the top

corner of the bend. Figure 3.18 shows the isosurface acoustic pressure

level variation along the length of the U-shaped duct, lined on the interior

boundaries with the bulk-reacting acoustic liner sample RG50/135 (pink

foam), with a non-uniform excitation, for a selected frequencies 180 Hz

and 310 Hz.

In Fig. 3.18 the isosurface acoustic pressure level variation along the

length of the U-shaped duct at 180 Hz and 310 Hz can be seen with more

pronounced features. In Fig. 3.18 (a) the duct is accommodating the

propagation of a full wavelength within its length, from driver position

7The detailed numerical results of U-Shaped duct models have been added to Ap-
pendix B.

71



Chapter 3. Numerical Models of TLLs

(a) (b)

Figure 3.18: Variation of isosurface sound pressure level along the
length of a U-shaped TLL with non-uniform excitation, treated with

sample RG50/135. (a) 180 Hz and (b) 310 Hz.

at x = 0 to the open end at x = Lx, where the first half of the duct

length is accommodating a low-pressure region and the second half of

the duct length is a high-pressure region. As the frequency progresses

in Fig. 3.18 (b), a high-pressure region at the top corner of the bend

can be observed with the pressure concentration at the top corner of the

TLL and in the bottom corner a low-pressure region concentrated on

the bottom corner can be observed. Figure 3.19 shows the mesh quality

along the length of the U-shaped duct (side view), with a non-uniform

excitation, lined with the bulk-reacting liner sample RG50/135.

(a) (b)

Figure 3.19: Mesh quality along the length of the U-shaped duct
with a non-uniform excitation, treated with sample RG50/135.

The quality of the meshed structure with regards to the geometry under

consideration and the frequency range of interest has been determined by

the COMSOL environment and is presented in Fig. 3.19, for the case of a

72



Chapter 3. Numerical Models of TLLs

U-shaped TLL duct, acoustically treated with the bulk-reacting sample

RG50/135, excited with a non-uniform source.

3.7 Modelling Limitation

There is a number of factors that contribute to the limitations of the

numerical models. First, the 3D geometries under consideration, which

are being drawn using SolidWorks 3D drawing package. There are many

known and documented problems in transferring the 3D geometries be-

tween the SolidWorks and COMSOL environments. The drawing ca-

pability of the COMSOL package is quite limited and therefore a more

versatile drawing environment, SolidWorks, has been used to offer more

comprehensive controls over the 3D geometries drawn for the purpose of

this project. However, the lines and parts of the imported geometries

into the COMSOL software are numbered automatically by COMSOL

and sometimes in a non-sequential order. This in turn creates problems

when trying to evaluate the geometry under the consideration along those

connected lines or parts. The numerical models use the results of a num-

ber of different measurements, one of which is the flow-resistivity, (σ)

values, which is inserted for the Rf values in the COMSOL and therefore

any inaccuracy in those data supplied by the Centre of Acoustic-Liner

Technology Alenia Aermacchi will directly affect the accuracy of the nu-

merical models. Another measurement result used in the presented nu-

merical models are the coefficients of Delany and Bazley [54] used for the

modelling of the fibrous absorbing materials and the coefficients of Wu

Qunli [27] used for the modelling of porous absorbing materials. These

measurements of the coefficients of Delany and Bazley or Wu Qunli, were

conducted a long time ago with the measurement limitations of their own

time and any inaccuracy of those experimental data will again directly

affect the outcome of the numerical models presented here. In order to

keep the computational cost-function of the presented models as low as

possible, a pressure-release boundary condition has been assumed for the

modelling of sound propagation at the open end of the duct. For the

correct modelling of the open end however, the TLL should have been

placed in a large cube, representing the listening room in which the TLL

73



Chapter 3. Numerical Models of TLLs

would be used; large enough to accommodate at least three or four full-

wavelengths of the lowest-frequency of interest, 20 Hz, for the purpose

of audio applications, and it should use the model definition of perfectly

matched layer within the COMSOL environment instead of the sound

soft boundary representing the pressure-release boundary condition for

the open end of the duct. However, by adding this to the models, the

size to aspect ratio would become considerably larger and in order to

maintain the same modelling resolution the computational cost-function

would increase considerably, which has been avoided in the models pre-

sented. It should also be noted that the pressure-release boundary con-

dition is an acceptable and accurate approximation for the low-frequency

range of interests as is the case in this project.

3.8 Conclusion

In this chapter, the numerical model of the transmission-line loudspeak-

ers have been looked at in Section 3.1. The acoustic characteristics of

sound propagation within the porous and fibrous absorbing materials

were numerically modelled in Sections 3.1.1 and 3.1.2 respectively. Next,

different meshing methods were compared in Section 3.1.3, and the scal-

ing method of the geometries under consideration and the effect of rela-

tive tolerance on the computational cost-function were introduced in Sec-

tions 3.1.4 and 3.1.5 respectively. The numerical results of a straight duct

with hard-walled boundary conditions were compared with the analytical

models in Section 3.1.3. The acoustic pressure variation along the length

of the straight duct treated with the bulk-reacting liner with pistonic ex-

citation, which is case 10 in Table 2.2, has been analyzed in Section 3.3.

Finally, different duct shapes, namely straight, L-shaped and U-shaped

treated with bulk-reacting sound absorbing materials with a non-uniform

excitation, which is case 12 of Table 2.2, were analyzed in Sections 3.4,

3.5 and 3.6 respectively. In Chapter 4 the numerical method has been

benchmarked against measurement results, and it has been shown that

the method can correctly predict the acoustic coupling between both the

free-medium and the sound absorbing layer. However, there are a num-

ber of factors that increase the inaccuracy of numerical predictions. The
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assumption of a pressure-release boundary conditions at the open end of

the TLL ducts contributes to the lack of complete accuracy between the

numerical prediction and the in-situ measurements at that region of the

duct, as discussed in detail in Section 3.7. The more comprehensive nu-

merical model, however, should consider the end-correction for the duct

by placing the TLL into a room, at least three or four times bigger than

the size of the full-wavelength of the lowest-frequency of interest, and it

should use the model definition of a perfectly matched layer within the

COMSOL environment instead of the sound soft boundary representing

the pressure-release boundary condition for the open end of the duct. The

next assumption in the numerical model was that the driver motion at the

low-frequency can be modelled as a uniform pistonic movement. There-

fore, a uniform pistonic excitation was considered as the excitation source

for the driver of the TLL in the numerical analysis. The uniform pistonic

excitation of COMSOL models was later replaced by the lumped param-

eter model of the driver described in Chapter 2 to accurately predict the

behaviour of the driver at the low-frequency which was the frequency

range of interest in this project. However, numerical models capable of

designing the transmission-line loudspeakers for the audio applications,

should include the full audible frequency range 20 to 20k Hz. Therefore

the driver modelling can no longer be satisfied by employing the lumped

parameter model of the driver, since the lumped parameter model can

only accurately predict the driver behaviour in the low-frequency range.

Therefore, instead a full numerical driver model should be added to the

models of the TLL.
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Chapter 4

Experiments on TLLs

In this chapter, the analytical and numerical models presented in the

previous Chapters 2 and 3 respectively, have been validated with direct

measurements conducted on a variety of treated waveguides in order to

get the internal sound pressure and three-dimensional acoustic-intensity

along the length of the TLL ducts. The experimental validation began

with carefully selecting a range of bulk-reacting sound absorbing materi-

als, namely fibrous and porous absorbing materials, to be used for lining

the internal boundaries of a range of ducts, namely straight and U-shaped

ducts, built for the validation purpose.

Using the impedance-tube in the ISVR laboratory, impedance measure-

ments were conducted on the selected range of fibrous and porous sound

absorbing samples. The impedance data were then compared with the

Delany and Bazley [54] and Wu Qunli [27] methods which were applied

to the flow-resistivity measurements of the same range of fibrous and

porous materials respectively, and conducted in the Centre of Acoustic-

Liner Technology of Alenia Aermacchi in Italy using a DC-flow test, and

have been used in Chapter 3 to construct the numerical models of the

treated TLL.

Finally, a variety of microphone probes, namely PU-match and USP-

regular, from Microflown Technologies were used to directly measure the

in-situ sound pressure and three-dimensional acoustic-intensity inside a

range of waveguides treated with a variety of bulk-reacting liners that

had been previously selected and verified.
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4.1 Sound Absorbing Samples

The sound absorbing characteristics of the selected range of the bulk-

reacting liners were measured with a series of tests. Figure 4.1 shows the

selected range of fibrous and porous sound absorbing materials used in

lining the interior boundaries of a variety of TLL waveguides [57].

Figure 4.1: Sound absorbing samples. Samples are RX30/080,
RX33/160, RX33/190, RX39/200, RX41/150, RG50/100, RG50-

/135, RG50/230 and needled felt - F1O.

Tables 4.1 shows the range of porous materials selected for lining the

internal boundaries of the constructed TLL waveguides.

Sample Code Colour
Thickness Density Hardness

[m] [kg m−3] [N m−2]

1 RX30/080 Light-Blue 0.048 30 80

2 RX33/160 Green 0.051 33 160

3 RX33/190 Aqua 0.054 33 190

4 RX39/200 Sky-Blue 0.051 39 200

5 RX41/150 Grey 0.050 41 150

6 RG50/100 Gold 0.051 50 100

7 RG50/135 Pink 0.051 50 135

8 RG50/230 White 0.051 50 230

Table 4.1: Porous materials selected for lining the ducts.

The sample codes of each of the porous materials contains the informa-

tion regarding its density, Young’s modulus (hardness) and its chemical
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composition codes which can be seen in Table 4.1. The first two let-

ters of each sample code represent the chemical composition code of that

material. Samples with two different chemical compositions, namely RX

and RG, were chosen and can be observed in Table 4.1 [50]. There are

two sets of numbers in each sample code which represent the density and

the Young’s modulus of the samples respectively. The first two digits or

the first set of numbers represent the density and the last three digits or

second group of numbers represents the Young’s modulus of each of the

porous materials. Table 4.2 shows the range of fibrous materials selected

for lining the internal boundaries of the constructed TLL waveguides.

Sample Name Code Colour
Thickness Density

[m] [kg m−3]

1 Needled-Felt F1O Black/Blue 0.008 17.75

2 Cotton-Felt F1B White 0.042 4.1

3 Polyester-Wrap S6B White 0.0255 10.04

4 Polyester-Wrap S6C White 0.014 42.64

Table 4.2: Fibrous materials selected for lining the ducts.

The fibrous samples are manufactured with different thicknesses. In or-

der to have flow-resistivity data consistent and comparable with those of

the porous samples measured, the fibrous materials were all rearranged to

have 0.051 m thickness prior to the DC-flow tests. Physical characteris-

tics such as the specific flow-resistivity per unit thickness, surface normal

impedance, reflection coefficient and magnitude of absorption coefficient

of the samples, were found using the DC-flow tests and impedance-tube

measurements respectively. Accurate flow-resistivity measurements re-

quires a fully calibrated DC-flow rig. The DC-flow tests were therefore

performed by the external collaborator at the Centre of Acoustic-Liner

Technology of Alenia Aermacchi in Italy. The flow-resistivity values were

measured for a range of flow-speed as shown in Tables 4.3, 4.4 and 4.5

in Section 4.4. The flow-resistivity data, σ values, of the selected range

of fibrous and porous sound absorbing samples were then combined with

either the Delany and Bazley [54] or the Wu Qunli [27] coefficients and

their corresponding methods respectively, for the cases of the TLL ducts

lined on their internal boundaries with the fibrous or porous samples,

and compared with the impedance-tube measurements, conducted in the
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ISVR laboratory. The measured flow-resistivity data were used to con-

struct the numerical models presented in Chapter 3 which models the

sound propagation within a variety of hard-walled cases and treated TLL

[58]. Finally, in Chapter 4, the numerical predictions of treated TLL

waveguides from Chapter 3 have been compared and validated with the

direct measurement results of the sound pressure and 3D sound-intensity

measured in-situ on a variety of treated TLL ducts.

4.2 Surface Normal Impedance of Sound Ab-

sorbing Samples

Surface normal impedance, absorption coefficient and magnitude of re-

flection coefficient for a range of fibrous and porous materials were mea-

sured using an impedance-tube in the ISVR laboratory. ISO 10534 spec-

ifies a method for the determination of the sound absorption coefficient,

reflection factor and surface impedance or surface admittance of materi-

als and objects and this procedure was followed [59].1 Figure 4.2 shows

the ISVR impedance-tube test rig.

Figure 4.2: ISVR impedance-tube test rig.

The Impedance-tube rig used in the measurements has a length of l = 1 m

and cross sectional diameter of ∅ = 0.1 m. The impedance values of the

1BS EN ISO 10534-1:2001 “Acoustics – Determination of sound absorption coef-
ficient and impedance in impedance tubes – Part 1 Method using standing wave ratio”.
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samples were determined for the surface normal sound incidence by evalu-

ating the standing wave pattern of the plane-wave propagating inside the

tube, which was generated by the superposition of an incident sinusoidal

plane-wave, with the plane-wave reflected from the test object [60–62].

This method can be used for the determination of the sound absorption

coefficient of sound absorbers with the normal sound incidence [61]. In

using the impedance-tube, the wavenumbers are k = 2πf/c, where f is

the frequency parameter of the sound signal and c is the speed of sound

in the medium. Therefore the reflection coefficient of the samples Rs,

can be found using:

Rs =
ejkx1 −Hejkx2
He−jkx2 − e−jkx1 , (4.1)

where x1 and x2 are the first and second locations of the microphone

inside the impedance-tube respectively. The transfer function H can be

expressed as H = H1/H2, which is the ratio of the transfer functions H1

and H2, corresponding to x1 and x2, the microphone locations inside

the impedance-tube duct. Therefore the impedance of the sample Zs

becomes:

Zs =
1 +Rs
1−Rs

. (4.2)

The absorption coefficient of the samples αs also becomes:

αs = 1− |Rs|2. (4.3)

By rearranging Eq. (4.2) the real part of the sample impedance R can be

found to be:

Rs =
Zs − 1

Zs + 1
, (4.4)

now combining Zs = R + jX with the Eqs (4.4) and (4.3) gives the

following expression for the absorption coefficient of the samples αs:

αs =
4R

(1 +R2) +X2
. (4.5)

This method can further be used for the determination of the acous-

tical surface impedance or surface admittance of the sound absorbing

materials [63]. The impedance-tube method is well suited for parame-

ter studies and for the design of sound absorbers, because only a small
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sample of the absorber materials is needed which should be the size of

the cross-sectional area of the impedance-tube duct [50]. There are some

characteristic differences between this method and the measurement of

sound absorption in a reverberation room based on IS0 354 [64].2 The

impedance tube-method can be used for the determination of the reflec-

tion factor and also the impedance or admittance of the samples. In

the impedance-tube measurement the sound incident is normal to the

test object surface whereas for the reverberation room method the sound

incidents arrive at the test object at random angels of incidents. The re-

verberation room method will, under idealized conditions, determine the

sound absorption coefficient of the samples for random sound incidences.

The impedance-tube method on the other hand relies on the existence of

a plane incident sound wave and gives exact values under this condition

(measuring and mounting errors excluded). The evaluation of the sound

absorption coefficient in a reverberation room is based on a number of

simplifying and approximate assumptions concerning the sound-field and

the size of the absorber under consideration. Consequently sound absorp-

tion coefficients exceeding the value of 1 are sometimes obtained using

the reverberation room method. Figure 4.3 shows the magnitude of the

reflection coefficient of a range of porous and fibrous absorbing materials

which have been measured respectively using the impedance-tube of the

ISVR.
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Figure 4.3: Magnitude of reflection coefficient of a selected range
of sound absorbing materials. (a) Porous samples: RX30/080,
RX33/160, RX33/190, RX39/200, RX41/150, RG50/100, RG50/135
and RG50/230 and (b) fibrous samples: needled felt - F1O, cotton felt

- F1B, polyester wrap - S6B and polyester wrap - S6C.

2BS EN ISO 354:2003 “Acoustics – Measurement of sound absorption in a rever-
beration room”.
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The magnitude of the reflection coefficients of a range of porous materials

can be observed in Fig. 4.3 (a) and it can be seen that they all follow the

same pattern of decrease in their magnitude with increasing frequency.

In Fig. 4.3 (b) fibrous samples polyester wrap - S6B, polyester wrap -

S6C and needled felt - F1O shows a similar decrease of their magnitude

of reflection coefficients except for a trough in the frequency range of

515 − 640 Hz in the response of the needled felt - F1O which could be

associated with an error such as sudden increase of the noise floor which

had occurred during the measurement of that particular sample. The

cotton felt - F1B sample shows a much more pronounced decrease from

the frequency of 320 Hz onwards which could be associated with high

absorption of that particular sample above that frequency, otherwise it

follows the same pattern as the rest of the fibrous samples. Figure 4.4

shows the absorption coefficients for a range of porous and fibrous ab-

sorbing materials respectively measured in the impedance tube of the

ISVR.
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Figure 4.4: Absorption coefficient of a selected range of sound
absorbing materials. (a) Porous samples RX30/080, RX33/160,
RX33/190, RX39/200, RX41/150, RG50/100, RG50/135 and RG-
50/230 and (b) fibrous samples needled felt - F1O, cotton felt - F1B,

polyester wrap - S6B and polyester wrap - S6C.

It can be seen from Fig. 4.4 (a) that all porous samples follow the same

pattern similar to the case for the magnitude of reflection coefficients

of the samples in Fig. 4.3 (a). The porous samples, exhibit a gradual

increase in their absorption coefficient as the frequency advances. In

Fig. 4.4 (b) fibrous sample polyester wrap - S6B, polyester wrap - S6C and

needled felt - F1O shows a similar increase of their absorption coefficients

except for a peak in the frequency range of 515 to 640 Hz in the response
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of the needled felt - F1O which could be associated with an error such

as a sudden increase of the noise floor which had occurred during the

measurement of that particular sample. The cotton felt - F1B sample

shows much more increase from the frequency of 320 Hz onwards which

could be associated with high absorption of that particular sample above

that frequency, otherwise it follows the same pattern as the rest of the

fibrous samples.
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4.3 Flow-Resistivity of Samples

Specific flow-resistivity per unit thickness of the same range of fibrous

and porous sound absorbing materials were found.3 The samples were cut

into cylinders of ∅ = 0.1 m in diameter, which is the internal diameter

of the flange of the DC-flow rig. The samples were then sent to the

Centre of Acoustic-Liner Technology of Alenia Aermacchi in Italy. The

test was done using the Aermacchi’s DC-flow test rig Raylometer-tube,

to measure the flow-resistivity per unit thickness of the sound absorbing

samples. Figure 4.5 shows the Aermacchi DC-flow rig. The flange of the

Raylometer-tube is loaded with sample of porous material [53].4

Figure 4.5: Aermacchi DC-flow rig loaded with porous sample.

The air flow was pumped into a monitored tube with the controlled pres-

sure and velocity, in a controlled environment. The regularized air then

3Resistivity is equal to resistance per unit thickness of the sound absorbing samples.
4Picture is courtesy of Alenia Aermacchi, Centre of Acoustic-Liner Technology.

http : //www.aleniaaermacchi.it
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passes through the flange which contains the sample of sound absorb-

ing material. The air was pumped downstream and the air pressure was

measured before and after it passed through the sample of sound absorb-

ing materials. The whole system is completely calibrated and controlled

by computer. The difference in the air pressures, before and after it

has passed over each of the sound absorbing samples, is then divided by

the air flow-speed to give the flow-resistivity value for that specific air

velocity for each of the different materials [65]. The flow-resistivity per

unit thickness σ = ∆p/u is measured in MKS Rayls at the specified in-

creasing flow-speeds in m s−1 relative to the two different measurements

performed on each side of each of the absorbing samples (two surfaces

areas 1 and 2 of each sample). This was performed by inserting each

sample twice from each side into the Raylometer-tube. Figure 4.6 shows

the Aermacchi DC-flow rig.5

Figure 4.6: AermacchiDC-flow rig.

The flow-resistance of the samples are corrected to standard environ-

mental conditions, for the temperature of 21.11◦C and the atmospheric

5Picture is courtesy of Alenia Aermacchi, Centre of Acoustic-Liner Technology.
http : //www.aleniaaermacchi.it
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pressure of 1013.25 mbar. The air velocity is regulated at certain speeds

and with certain intervals, which in turn gives the value for the flow-

resistivity per unit thickness of each sample at that particular flow-speed.

At a high flow-speed of u = 3 m s−1 the differential pressure transducer

was sometimes subjected to the overloads; therefore the measured flow-

resistance decreases with the flow-speed. In order to minimize the mea-

surement error, the system is completely airtight and measurements were

performed on both sides (both surface areas) of each sample of sound

absorbing material. The flow-resistivity of the samples were measured

for the flow-speeds of 0.2, 0.4, 0.6, 1.05, 1.5, 2 and 3 m s−1. For the

purpose of electroacoustics applications such as loudspeaker design as in

this project, the flow-resistivity values corresponding to the flow-speed

of zero has been considered. The flow-resistivity values corresponding

to the air flow-speeds of 0, 0.01, 0.02, 0.03, 0.04 and 0.05 m s−1 were

found by extrapolating the line from the straight section of each graph

(the part that exhibits increases in σ values) in Fig. B.3, B.4 and B.5

backwards to zero.6 Table 4.3 shows the flow-resistivity values for the

samples RX30/080, RX33/160, RX33/190 and RX39/200 respectively

in MKS Rayls, extrapolated downwards to zero air flow-speed, measured

using the DC-flow test.

Flow- Light Blue Green Aqua Sky Blue
Speeds RX30/080 RX33/160 RX33/190 RX39/200
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.00 45700 30200 48600 35000

0.01 46700 30600 49300 35400

0.02 47600 31100 50100 35900

0.03 48600 31500 50800 36300

0.04 49600 31900 51500 36800

0.05 50500 32400 52200 37300

Table 4.3: Flow-resistivity σ values for samples RX30/080, RX33-
/160, RX33/190 and RX39/200 in MKS Rayls extrapolated downward

to zero air flow-speed.

6The complete flow-resistivity data, measured in the Centre of Acoustic-Liner Tech-
nology Alenia Aermacchi, is been included in Appendix B.
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Table 4.4 shows the flow-resistivity values for samples RX41/150, RG-

50/100, RG50/135 and RG50/230 respectively in MKS Rayls, extrapo-

lated downwards to zero air flow-speed, measured using the DC-flow test.

Flow- Grey Gold Pink White
Speeds RX41/150 RG50/100 RG50/135 RG50/230
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.00 38200 25500 32900 32000

0.01 38700 25900 33400 32800

0.02 39200 26400 33900 33600

0.03 39700 26800 34400 34400

0.04 40200 27200 34900 35200

0.05 40700 27600 35400 36000

Table 4.4: Flow-resistivity σ values for samples RX41/150, RG50-
/100, RG50/135 and RG50/230 in MKS Rayls extrapolated downward

to zero air flow-speed.

Table 4.5 shows the flow-resistivity values for samples cotton felt - F1B,

needled felt - F1O, polyester wrap - S6B and polyester wrap - S6C re-

spectively in MKS Rayls, extrapolated downwards to zero air flow-speed,

measured using the DC-flow test.

Flow- Cotton-Felt Needled-Felt Polyester- Polyester-
Speeds F1B F1O Wrap S6B Wrap S6C
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.00 152000 441000 10600 5820

0.01 153000 443000 10600 5850

0.02 154000 444000 10700 5880

0.03 154000 446000 10700 5910

0.04 155000 447000 10800 5940

0.05 156000 449000 10800 5970

Table 4.5: Flow-resistivity σ values for samples cotton felt - F1B,
needled felt - F1O, polyester wrap - S6B and polyester wrap S6C in

MKS Rayls extrapolated downward to zero air flow-speed.

It can be seen from Tables 4.3 and 4.4 that the flow-resistivity per unit

thickness of porous materials is more or less consistent and in the same

range of values whereas the fibrous samples have a wide range of values,

as can be seen in Table 4.5. The cotton felt - F1B and needled felt -
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F1O have much higher values than those of porous samples whereas the

flow-resistivity per unit thickness of polyester wrap - S6B and polyester

wrap S6C has lower values than those of porous samples. It is worth

mentioning that the flow-speeds of the Aermacchi Raylometer-tube have

been optimized for the aeroacoustic applications and therefore it has

been designed for much higher flow-speeds than those of interest in this

project. In this research on the acoustics of the TLL however, the low-

flow-speeds are of particular interest and therefore the average of the two

measured flow-resistivity per unit thickness for each of the specific air

flow-speeds were found and the trend of the flow-resistivities for each of

the materials were then extrapolated backwards to zero flow-speed to give

the variation of flow-resistivity corresponding to the flow-speeds of 0 to

0.05 m s−1 as presented in Tables 4.3, 4.4 and 4.5. It is also notable that

in order to keep the position of the test articles in the DC-flow rig, it was

necessary to insert each sample in the upper part of the Raylometer-tube,

interposing between the tube flanges a mesh, characterised by negligible

flow-resistance, clamped between the rubber sealing.
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4.4 Estimating Absorption Coefficients from Mea-

sured Flow-Resistivity

The propagation of sound in an isotropic homogeneous material is de-

termined by two complex quantities, the characteristic impedance Z0

and the propagation coefficient γ [66]. For a plane-wave propagation in

a given direction, the isotropy requirement may be relaxed since most

available fibrous or porous sound absorbing materials can be considered

to be sufficiently homogeneous for practical purposes [54]. Delany and

Bazley showed that for a duct uniformly lined with the sound absorbing

materials of surface normal-incidence impedance Zs and a finite thick-

ness h as shown in Fig. 4.10 the surface normal-incidence impedance Zs

is given by [54]
Zs
Z

=
Zb cosh (γh) + Z sinh (γh)

Z cosh (γh) + Zb sinh (γh)
, (4.6)

where the complex propagation coefficient of a progressive wave system

is the quantity γ = α+jβ where α is the attenuation factor and non-zero

for lossy media and β is the phase relation and represents k which is the

acoustic wavenumber in the propagation direction, where k = ω/c and

j =
√
−1 [19]. By determining the surface normal-incidence impedance

of the samples Zs for two different values of backing impedance or two

different values of thickness h of the liner by measurement or prediction,

both the characteristic impedance Z and the propagation coefficient γ

may be evaluated. A particular case of Eq. (4.6) of interest in this thesis

is when Zb =∞ for a rigidly backed medium. In Eq. (4.6) letting Zb →∞
we get:

Zs = Z coth (γh) , (4.7)

where coth (γh) is:

coth (γh) =
eγh + e−γh

eγh − e−γh . (4.8)

The Delany and Bazley empirical relations containing coefficients R,X,α

and β can also be found to be [54]:

R = ρc

(
1 + 0.0571

(
ρf

σ

))−0.754
, (4.9)
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X = −0.087ρc

(
ρf

σ

)−0.732
, (4.10)

α = 0.189
ω

c

(
ρf

σ

)−0.595
, (4.11)

β =
ω

c

(
1 + 0.0978

(
ρf

σ

)−0.7)
, (4.12)

where ρ is the density of the air medium, c is the speed of sound in air,

f is the frequency parameter, σ is the flow-resistivity and the angular

frequency is ω = 2πf . Therefore the characteristic impedance Z and

complex propagation coefficient γ will be:

Z = R+ jX, (4.13)

and

γ = α+ jβ, (4.14)

where α is the attenuation factor, β is the acoustic wavenumber [19].
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Table 4.6 shows the comparison of empirical relations between acoustical

properties and flow-resistivity from three independent studies Delany and

Bazley, Dunn and Davern and Wu Qunli [27].7

Acoustical
Delany and Bazley Dunn and Davern Wu Qunli

properties

(R1/ρc)− 1 0.0571τ−0.754 0.114τ−0.369 0.209τ−0.548

X1/ρc −0.087τ−0.732 −0.0985τ−0.758 −0.105τ−0.607

α1/k 0.189τ−0.595 0.168τ−0.715 0.163τ−0.592

(β1/k)− 1 0.0978τ−0.700 0.136τ−0.491 0.188τ−0.554

Table 4.6: The comparison of empirical relations from three inde-
pendent studies Delany and Bazley, Dunn and Davern and Wu Qunli.

The empirical relations of acoustical properties have been expressed with

a non-dimensional variable τ = ρf/σ, where f is the frequency param-

eter, σ is the flow-resistivity of the samples and ρ is the density of air

medium. The coefficients of Delany and Bazley have been found by exper-

imenting on mainly the fibrous samples and the coefficients of Wu Qunli

have been found by experimenting on mainly the porous plastic open-

cell samples. However, the coefficients of Dunn and Davern have been

found by experimenting on foams but it focuses on different range of flow-

resistivity values. Table 4.7 shows the correlation coefficients of acoustical

properties in Table 4.6 with the non-dimensional variable τ [27].8

Acoustical Correlation
properties coefficient

(R1/ρc)− 1 0.85

X1/ρc 0.95

α1/k 0.99

(β1/k)− 1 0.94

Table 4.7: Correlation coefficients of acoustical properties and flow-
resistivity.

The characteristic impedance and the propagation coefficient of the porous

plastic open-cell foams correlate well with the flow-resistivity. The corre-

lation coefficients of acoustical properties are shown in Table 4.6 with the

7This table is courtesy of Wu Qunli from the paper [27].
8This table is courtesy of Wu Qunli as described in the paper [27].
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non-dimensional variable τ ranges from 0.85− to 0.99 shown in Table 4.7.

In this research the Wu Qunli’s coefficients have been used in the nu-

merical models of ducts lined on the interior boundaries with the porous

sound absorbing materials and the Delany and Bazley’s coefficients have

been used for the models of ducts lined with the fibrous samples. The

empirical relations established by Wu Qunli in Table 4.6 are suitable for

the calculation of acoustical properties of porous plastic open-cell foams

with medium flow-resistivity. Dunn and Davern’s results, however, are

suitable only for the calculation of acoustical properties of foams with

low flow-resistivity [27].
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4.4.1 Estimating Absorption Coefficient of Fibrous Sam-

ples Using the Delany and Bazley Method

Figure 4.7 shows the comparison of measured absorption coefficients

using the impedance-tube with the empirical absorption coefficients of

Delany and Bazley in conjunction with the measured flow-resistivity val-

ues from DC-flow test for a selected range of fibrous materials.
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Figure 4.7: Comparison of absorption coefficient of fibrous materi-
als. Impedance-tube measurements (solid line) and empirical absorp-
tion coefficient of Delany and Bazley combined with the flow-resistivity
measurements (dot dashed line). (a) Needled felt - F1O, (b) cotton felt

- F1B, (c) polyester wrap - S6B and (d) polyester wrap - S6C.

As can be seen in Fig. 4.7 (a) needled felt - F1O, the empirical absorp-

tion coefficient and the impedance-tube measurement, are more or less

following the same trend as the frequency progresses, with the empirical

absorption coefficient (dot dashed line) showing a gradual increase in its

response whereas the impedance-tube measurement (solid line) in com-

parison showing a smooth peak; overestimating the empirical result by

about 0.06 between the frequency range of 130 to 323 Hz, followed by

a decrease in its response underestimating the empirical data by about

0.08 between the frequency range of 370 to 520 Hz. The impedance-tube
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measurement then experiences a sudden peak of about 0.3 in magni-

tude between the frequency range of 520 to 635 Hz, and from that point

onwards the impedance-tube data start to steadily decrease again and

underestimate the empirical results by about 0.13 at 800 Hz. Once again

in Fig. 4.7 (b) cotton felt - F1B, the empirical absorption coefficients and

the impedance-tube measurements, are following the same trend through

out the whole frequency range, with the impedance-tube data underes-

timating the empirical result by about 0.1 in the frequency range of 230

to 332 Hz followed by a 0.15 overestimation between the frequency range

of 332 to 560 Hz. From that point onwards the impedance-tube result

follows the same trend as the empirical absorption coefficient, where fi-

nally the impedance-tube data underestimates the empirical results by

about 0.05. In Fig. 4.7 (c) polyester wrap - S6B, the empirical absorp-

tion coefficients and the impedance-tube measurements, are following the

same trend through out the whole frequency range once again, with the

impedance-tube data underestimating the empirical result by about 0.04

in the frequency range of 240 to 750 Hz, and from that point onwards

the impedance-tube measurements start to exhibit steady increase and

overestimate the empirical results by about 0.15 at 800 Hz. A sharp peak

that can be noticed at the 20 Hz region is due to the noise floor below

the resonant frequency of the impedance-tube drivers [67]. Similarly in

Fig. 4.7 (d) polyester wrap - S6C, the empirical absorption coefficients

and the impedance-tube measurements, are following the same trend

through out the whole frequency range, with the impedance-tube data

underestimating the empirical data by about 0.04 in the frequency range

of 260 to 740 Hz, and from that point onwards the impedance-tube data

start to increase and overestimate the empirical results by about 0.03 at

800 Hz. A sharp peak that can be noticed at the 20 Hz region is due

to the noise floor below the resonant frequency of the impedance-tube

drivers [39, 68]. As can be seen in Fig. 4.7, overall for all the fibrous

samples the empirical data, which is the combination of the Delany and

Bazley method applied into the flow-resistivity measurements, and the

impedance-tube measurements follow the same trend and show a close

agreement throughout the whole frequency range [69].
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4.4.2 Estimating Absorption Coefficient of Porous Sam-

ples Using the Wu Qunli Method

Figure 4.8 shows the comparison of measured absorption coefficients

using the impedance-tube with the empirical absorption coefficients of

Wu Qunli in conjunction with the measured flow-resistivity values from

the DC-flow test for a selected range of porous materials [50, 66].

As can be seen in Fig. 4.8 (a) sample RX30/080, the empirical absorp-

tion coefficient and the impedance-tube measurement are more or less

following the same trend along the frequency range presented, with some

peaks and troughs in the impedance-tube measurement at the low fre-

quency region up to the 410 Hz which could be associated with the noise

floor during the impedance-tube measurement of that particular sample.

From that point onwards the impedance-tube data in comparison starts

to exhibit a steady increase and overestimate the empirical data by about

0.1 at the 800 Hz frequency. Similarly, in Fig. 4.8 (b) sample RX33/160,

the empirical absorption coefficient and the impedance-tube measure-

ment are following the same trend, with the impedance-tube measure-

ment overestimating the empirical data by about 0.1 uniformly along the

frequency range presented. Once again in Fig. 4.8 (c) sample RX33/190,

the empirical absorption coefficient and the impedance-tube measure-

ment are following the same trend along the frequency range presented,

with are some peaks and troughs in the impedance-tube measurement

at the low frequency region up to the 150 Hz which could be associated

with the noise floor during the impedance-tube measurement of that par-

ticular sample, where the peaks and troughs around the 20 Hz region is

due to the noise floor below the resonant frequency of the impedance-tube

drivers. From that point onwards the impedance-tube measurement over-

estimates the empirical result by about 0.03 along the whole frequency

range presented. Once again In Fig. 4.8 (d) sample RX39/200, the em-

pirical absorption coefficient and the impedance-tube measurement are

following the same trend along the frequency range presented, with are

some peaks and troughs in the impedance-tube measurement at the low

frequency region up to the 107 Hz which could be associated with the

noise floor during the impedance-tube measurement of that particular

sample, where the peaks and troughs around the 20 Hz region is due
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Figure 4.8: Comparison of absorption coefficient of porous mate-
rials. Impedance tube measurements (solid line) and empirical ab-
sorption coefficient of Wu Qunli combined with the flow-resistivity
measurements (dot dashed line). (a) RX30/080, (b) RX33/160,
(c) RX33/190, (d) RX39/200, (e) RX41/150, (f) RG50/100,

(g) RG50/135 and (h) RG50/230.
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to the noise floor below the resonant frequency of the impedance-tube

drivers. From that point onwards the impedance-tube measurement over-

estimates the empirical result by about 0.13 along the whole frequency

range presented. Samples RX41/150, as can be seen in Fig. 4.8 (e),

show a close similarity between the empirical absorption coefficient and

the impedance-tube measurement along the frequency range presented,

with the impedance-tube measurement exhibiting a steady increase in

comparison in the frequency range of 150 to 800 Hz where it is over-

estimating the empirical result by about 0.13. In Fig. 4.8 (f) sample

RG50/100, the empirical absorption coefficient and the impedance-tube

measurement are following more or less the same trend along the fre-

quency range presented, with some peaks and troughs in the impedance-

tube measurement at the low-frequency region up to 280 Hz which could

be associated with the noise floor during the impedance-tube measure-

ment of that particular sample. From that point onwards the impedance-

tube measurement overestimates the empirical result by about 0.08 until

it finally overestimates the empirical result to about 0.2 at 800 Hz. In

Fig. 4.8 (g) sample RG50/135, the empirical absorption coefficient and

the impedance-tube measurement are once again following the same trend

in the frequency range presented, with the impedance-tube measurement

exhibiting a higher magnitude of absorption coefficient along the whole

frequency range and overestimating the empirical result by about 0.09 at

the frequency of 280 Hz, and steadily increasing the difference to about

0.24 at 800 Hz frequency. A sharp peak that can be noticed at the

20 Hz region is due to the noise floor below the resonant frequency of the

impedance-tube drivers. Finally, in Fig. 4.8 (h) sample RG50/230, the

empirical absorption coefficient and the impedance-tube measurement

exhibit less similarity with each other, specially in comparison with the

other porous samples presented in Fig. 4.8. Apart from some erratic be-

haviour in the frequency range of 138 to 345 Hz in the impedance-tube

response, from that point onwards it exhibits a steady increase in its

magnitude in comparison to the empirical result presented to about 0.26

at 800 Hz frequency. It should be noticed that in Fig. 4.8, despite the fact

that all samples show more or less close and reasonable agreement with

the empirical results yet they are overestimating the empirical results in

all cases presented.
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4.5 Experimental Evaluation of TLL

Using a variety of microphone probes, namely PU-match and USP-regular,

from Microflown Technologies and their specifically designed measure-

ment methods, the in-situ measurements on a range of the TLL waveg-

uides, namely straight and U-shaped ducts, treated with a variety of

porous plastic open-cell foams, bulk-reacting liners, were conducted to

find the sound pressure and three-dimensional sound-intensity within the

TLL cabinets [70, 71]. Figure 4.9 illustrates the schematic model of the

measurements conducted on a variety of acoustically treated uniform

straight and U-shaped ducts considered in this research for evaluating

the characteristic of sound propagation inside the waveguides.
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Figure 4.9: Schematic model of in-situ measurements for evaluating
a range of acoustically treated straight and U-shaped waveguides.

The experimental setup in Fig. 4.9 shows the arrangement used to evalu-

ate a range of acoustically treated, on their interior boundaries, straight

and U-shaped uniform TLL cabinets [72]. For the measurements con-

ducted on the straight ducts the Microflown PU-match was used. A

two-ways collocated pressure/velocity sensor which was used in combi-

nation with a specific purpose built two-ways Microflown signal condi-

tioner, as outlined in Section 4.5.2. In the measurements conducted on

the U-shaped ducts, the Microflown USP-regular was used. A four-ways

99



Chapter 4. Experiments on TLLs

collocated pressure and three-dimensional particle velocity sensors, con-

sisting of three individual particle velocity sensors, orthogonally placed,

each measuring the particle velocity from the respected x, y and z di-

rections, which was used in conjunction with the specific four-ways Mi-

croflown signal conditioner as outlined in Section 4.5.5. The straight and

U-shaped ducts were acoustically lined with a variety of porous sound ab-

sorbing materials, namely RX33/160 (green foam) and RG50/135 (pink

foam) as outlined in Table 4.1 in Section 4.1. Design and manufactur-

ing of bulk-reacting liners has advanced recently resulting in far better

controls over their designing with a particular flow-resistivity and den-

sity, consequently the porous materials are more commonly used by the

industry as an acoustic absorbent [27]. Table 4.8 shows the list of equip-

ment used for the experiments on a range of acoustically treated TLL

ducts, to evaluate the in-situ sound pressure and sound-intensity inside

the cabinets [73].

Equipment list Model

CD player Marantz Professional PMD321
Amplifier Yamaha Power Amplifier H5000

Sound card RME Fireface 400
Signal conditioner Microflown signal conditioner 2/4 channels

Microphones Microflown PU-match/USP-regular probes
Data acquisition Standard PC, Adobe Audition
Video recorder Standard camera Canon

Table 4.8: List of equipment used for the in-situ measurements per-
formed on a range of acoustically treated waveguides, namely straight

and U-shaped ducts.

4.5.1 Measurement Precision

The square cross sectional area of the uniform TLL ducts, straight,

L-shaped and U-shaped, had a total internal dimensions of 0.3× 0.3 m2

and consisted of two regions, namely acoustically treated region which

was filled with the variety of porous plastic open-cell foams, bulk-reacting

sound absorbing materials, and the free-region which was filled with

air. The free-region of the TLL ducts had a cross sectional area of

0.2× 0.2 m2, in the straight duct measurements, it was divided into
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squares of 0.05× 0.05 m2 resulting in 25 measurement lines with 0.05 m

distance apart from one another across the length of the duct, as shown

in Fig. 3.2 (c). The exact location of each of these 25 lines across the

length of the TLL waveguide was found with a 3D surface laser with

precision tolerance of ±0.0002 m per metre distance from the 3D laser

unit, using a Bosch GLL 3-80P, as can be seen in Fig. 4.10 [74].9 The

in-situ measurements on a range of acoustically treated TLL ducts were

conducted in the large anechoic chamber of the ISVR in order to sim-

ulate the free-field conditions and therefore eliminating any acoustical

effects that the laboratory environment could have on the sound-field at

the open end region of the TLL ducts [75]. For the in-situ measurements

performed on the U-shaped ducts, the selected free-region of the duct

around the bend as can be seen in Fig. 4.20 was divided into a matrix

of 5 × 5. With spacing of 0.05 m starting from the surface area of the

sound absorbing liners, 72 point measurements were conducted in each of

the five acoustic surface layers inside the U-shaped duct to evaluate the

collocated pressure and 3D particle velocity around the bend of the TLL

duct. The exact location of these 72 points were found using the afore-

mentioned 3D surface laser. Figure 4.10 shows the straight TLL duct rig,

lined on the internal boundaries with a variety of porous plastic open-cell

foams, RX33/160 (green foam), prepared for the in-situ measurements

of sound pressure and 3D sound-intensity in the anechoic chamber to

simulate the free-field condition at the open end of the waveguide.

Figure 4.10: Straight duct lined with sample RX33/160 (green foam)
in the anechoic chamber. The red cross on the surface area of the duct

is one of the positions marked by the 3D surface laser.

9Full technical details of the Bosch GLL 3-80P, 3D surface laser used in the in-situ
measurements can be found at http : //www.lawson− his.co.uk.
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4.5.2 Scan and Paint Method

The straight waveguide has been evaluated using a measurement method

developed by Microflown Technologies and their collocated pressure/ve-

locity probe, PU-match, to measure the sound pressure and particle ve-

locity at any points within the free space of the duct [76]. Figure 4.11

illustrates the physical size of the Microflown PU-match used to directly

measure the sound pressure and particle velocity within a range of acous-

tically treated straight TLL duct.10

Figure 4.11: Physical size of the Microflown PU-match probe.

In order to minimize the physical disturbance of the recording transducer

on the sound-field the Microflown PU-match probe was used [77]. The

microphone was attached to the end of a rod on a rolling stand with

0.07 m distance between the rod and the tip of the microphone. The

miniaturized size of the PU-match probe and the distance between the

microphone and its stand was chosen in order to make sure the acquisi-

tion setup had the minimum effect on the sound-field [78]. The purpose

built microphone stand could be adjusted in height with the range of

0.05 to 0.25 m to cover all the possible points along the length of the

0.2× 0.2 m2 cross section of the straight TLL duct. The straight duct

rig had a square cross section which was lined uniformly with the same

thickness of sound absorbing materials along the interior boundaries of

the duct. Therefore, assuming the centre line of the duct cross section

as the axial frame of reference in the x-axis direction, along the length

of the duct, reduces the required measurement area across the duct cross

10Picture is courtesy of Microflown Technologies. http : //www.microflown.com
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section to one quarter of the total cross sectional area which then could

be mirrored to the other quadrants respectively. Figure 4.12 illustrates

the size of the Microflown PU-match on the purpose built stand used

to directly measure the sound pressure and particle velocity along the

length of the straight TLL duct treated with the variety of bulk-reacting

sound absorbing liners.

Figure 4.12: Microflown PU-match probe on its purpose built stand
inside the straight duct, lined with sample RG50/135 (pink foam).

Figure 4.13 shows the sound pressure, particle velocity and sound-intensity

within the length of the straight TLL duct lined with the porous plas-

tic open-cell foam, sample RG50/135 (pink foam), using the Microflown

PU-match probe for a range of frequencies presented. The in-situ mea-

surements were conducted in the free-region of the TLL which is filled

with air.

In Fig. 4.13, in-situ measurement results exhibit a behaviour such as ex-

periencing a sudden expansion in the acoustic boundary at the open end

of the waveguide which can be seen more prominently specially at the

frequencies of 500 and 1000 Hz where the size of the wavelengths be-

comes comparable to that of the open end of the TLL duct. As can be
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Figure 4.13: In-situ measurement of sound pressure, particle velocity
and sound-intensity within a straight TLL duct acoustically treated
with sample RG50/135 (pink foam), using PU-match for frequencies
63, 125, 250, 500 and 1000 Hz. (a) Sound pressure, (b) particle velocity

and (c) sound intensity.

seen in Fig. 4.13 (a) sound pressure, (b) particle velocity and (c) sound-

intensity, the frequencies 63, 125 and 250 Hz show almost negligible de-

cay along the length of the duct. However, as the frequency progresses

the rate of the decay increases, where at 63 Hz there is almost no de-

cay along the TLL duct length, at 250 Hz there is about 12 dB decay

can be observed. The rate of the decay increases and for the 500 and

1000 Hz, it is about 40 dB. Figure 4.14 shows the pressure variation in

dB re 20 µPa, inside the straight-duct treated with bulk-reacting liner,

sample RG50/135 (pink foam), measured using Microflown PU-match.11

As can be seen in Fig. 4.14 (a) there is a high pressure behind the driver

which drops by about 15 dB at 0.55 m away from the driver. After that

point the pressure starts to rise again to the maximum amount of 75 dB

11The detailed experimental results of in-situ measurements performed on the
straight duct lined with the porous sample RG50/135, for the frequency range of
40 to 1000 Hz has been added to Appendix B.
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(a)

(b)

Figure 4.14: Pressure variation in dB re 20 µPa, for a straight duct
treated with the bulk-reacting sample RG50/135, measured using PU-

match. (a) 90 Hz and (b) 490 Hz.
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at 1.1 m away from the driver and it starts to decay from that point

onwards to the open end of the duct by about 12 dB. In Fig. 4.14 (b)

the pressure magnitude exhibits about 40 dB drops in its value uniformly

along the length of the TLL duct.

4.5.3 Measurement Resolutions

The one dimensional PU-match probe consists of a Microflown acoustical

particle velocity sensor and a collocated miniature sound pressure trans-

ducer Knowles FG series placed without packaging. This transducer is

the smallest available intensity probe, as can be seen in Fig. 4.11 in Sec-

tion 4.5.2. Due to the small size of the probe it is possible to measure the

sound-field with the least amount of acoustical disturbance and with ex-

treme high spatial resolution which otherwise could not be possible [79].

During these measurements the straight-duct was lined on the inside with

a variety of different bulk-reacting liners. The acoustic absorbent treat-

ments were chosen from the selection of fibrous and porous materials with

different densities, ρ, flow-resistivities, σ, and Young’s modulus, E. In the

scan and paint measurement method developed by the Microflown Tech-

nologies, the miniature PU-match probe was used mounted on a purpose

built stand rolling along the length of the duct sweeping the sound-field

from the back of the driver position to the open end of the waveguide,

as can be seen in Fig. 4.12, during the measurements for each of the

samples. In the evaluation and analysis of the measurement data a win-

dowing space frame along the length of the duct had to be chosen with a

reasonable overlapping, in order to correctly resolve the sound-field under

consideration. The choice of windowing space was important since a win-

dow which is too small results in too much overlapping of the measured

data and consequently the results would appear as if the sound-field was

too erratic which would not be a correct representative of the acoustic

sound-field under analysis. On the other hand, a windowing with the size

bigger than necessary would result in huge inaccuracy in resolving the

sound-field under consideration again and consequently should have been

avoided. Figure 4.15 shows the comparison of windowing resolution for

sound pressure results, which was then also applied during the analysis
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of the particle velocity and the sound-intensity data, on the in-situ mea-

surements conducted on straight-duct lined on the interior boundaries

with a sample of a sound absorbing material RG50/135 (pink foam), for

a range of frequencies presented. The solid-line, dash-line and dotted-line

corresponds to 0.1 m, 0.06 m and 0.03 m windowing sections along the

length of the TLL duct respectively.
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Figure 4.15: Comparison of windowing resolution in sound-intensity
within a straight duct treated with sample RG50/135, using Mi-
croflown PU-match. Lines corresponds to 0.1 m (solid lines), 0.06 m
(dashed lines) and 0.03 m (dotted lines) for the frequencies 63, 125,

250, 500 and 1000 Hz.

As can be seen in Fig. 4.15, the 0.03 m windowing represented by the

(dotted lines), shows too erratic behaviour and therefore was excluded

in the analysis of the measurement results. The 0.1 m (solid lines) and

0.06 m (dashed lines) however, show more or less the same trend but

overall the 0.1 m (solid lines) exhibited better representation of the mea-

surement data and therefore it was chosen as the windowing resolution

of the in-situ measurements. The internal cross sectional area of the

TLL ducts were made 0.3× 0.3 m2, lined on the inside with the sound

absorbing materials of 0.05 m thickness. The remaining free-area of the

duct would be 0.2× 0.2 m2 which was divided into a matrix of 5× 5 as

shown in Fig. 3.2 (c). The highest frequency of interest in this project

was 1000 Hz and the broadband excitation signal to the TLL driver was

20 to 2000 Hz; therefore the 0.05 m spacing for the in-situ measurements
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of the sound pressure and sound-intensity along the length of the duct

was sufficient enough to resolve any changes in the acoustic environment

of the sound-field within the TLL waveguide. With the spacing of 0.05 m

starting from the surface area of the sound absorbing liner, 25 lines were

swept to evaluate the collocated pressure and particle velocity along the

length of the straight duct. The measurements were repeated for a vari-

ety of the sound absorbing liners added on the internal boundaries of the

waveguide. The direct measurements were then plotted with zero inter-

polation and have been presented in this chapter. Figure 4.16 illustrates

the sound pressure results for a straight duct treated with the sample

RX33/160 (green foam), for a range of frequencies presented.
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Figure 4.16: Sound pressure results for straight duct, treated with
sample RX33/160 (green foam), for frequencies 63, 125, 250, 500 and

1000 Hz.

The effect of a pressure-release boundary condition at the open end of

the duct, which can be more clearly observed for the frequencies of 500

and 1000 Hz, could be associated with the comparable size of open end

of the duct and the size of the wavelength of the aforementioned frequen-

cies. It can be seen in Fig. 4.16 that the response is similar to that of

Fig. 4.13 (a). At the frequencies of 63, 125 and 250 Hz the magnitude

of the sound pressure shows very little decay along the 1.6 m length of

the duct. However, as the frequency progresses the rate of the decay

increases, where at 63 Hz there is almost no decay along the duct length,

at 250 Hz there is almost 10 dB decay can be observed. The rate of decay

increases further and for the 500 and 1000 Hz, it is about 30 dB.
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4.5.4 Comparison of Scan and Paint and Numerical Pred-

ictions

The results of the scan and paint measurement method have been com-

pared with the numerical predictions of evaluating the straight duct

treated on the internal boundaries with the different sound absorbing

materials which have been developed and presented in Chapter 3. Fig-

ure 4.17 illustrates the comparison between the numerical predictions

and the direct measurements of sound pressure along the length of the

straight-duct, treated with sample RX33/160 (green foam), for a range

of frequencies presented. Solid lines in the figure correspond to the COM-

SOL results and dashed lines correspond to the in-situ measurement re-

sults.
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Figure 4.17: Comparison of the numerical prediction and the in-situ
measurements of sound pressure along the straight-duct length, treated
with sample RX33/160 (green foam), for frequencies 63, 125, 250, 500
and 1000 Hz. COMSOL results (solid lines) and measurement results

(dot dashed lines).

In Fig. 4.17 a pistonic excitation was considered as the source excita-

tion in the numerical model. The in-situ measurement results exhibit

a pressure-release boundary condition p = 0 |x=Lx at the open end of

the duct which can be observed more clearly at the frequencies of 500

and 1000 Hz. This could be associated with the comparable physical

size of the open end of the duct and the wavelengths of the aforemen-

tioned frequencies [80]. These findings also correspond well with the

known and published theory about the principle behind the acoustically

treated transmission-line waveguides. As the theory states, and due to
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the difficulty of successfully absorbing low-frequency energy because of

the large wavelengths involved, the length of the TLL duct and the den-

sity of the filling material were arranged such that the TLL waveguide

effectively acts such as a low-pass acoustic filter [10]. Thus the mid and

high frequencies were subjected to a large attenuation within the duct

but the low-frequencies re-emerged from the open end of the TLL with

a phase such that the reinforcement with the direct radiated sound from

the woofer would take place [9–11]. In Fig. 4.17 frequencies 63, 125 and

250 Hz exhibit close similarity in their trends between the numerical pre-

diction and the direct measurements. The comparison of the 250 Hz

is almost the same apart from the dissimilarity at the open end of the

duct. It is also worth mentioning that in all of the numerical predictions

illustrated in Chapter 3, a pressure-release boundary condition at the

open end of the TLL duct has been assumed. Therefore the acoustic-

impedance at the open end of the duct is Zal = 0, and consequently the

acoustic pressure at the open end is p = 0 |x=Lx . This acoustical condi-

tion was assumed since a duct with a small opening experiences a sudden

expansion in the cross sectional area of the duct; therefore the pressure at

the open end of the duct tends to zero. This assumption was also made to

keep the numerical models presented in Chapter 3 as robust as possible,

which has been explained in more detail in Chapter 3. In Fig. 4.17 the

500 and 1000 Hz on the other hand show far less similarity in their com-

parison of the magnitude of the sound pressure between the predicted

and measured values. Figure 4.18 illustrates the comparison between the

numerical results and direct measurements of sound pressure along the

straight-duct length, treated with sample RG50/135 (pink foam), for a

range of frequencies presented. Solid lines in the figure correspond to the

COMSOL results and dashed lines correspond to the in-situ measurement

results.

As in the previous case in Fig. 4.17, the in-situ measurement results

exhibit a pressure-release boundary at the open end of the duct. This

effect can be observed more clearly for the frequencies of 500 and 1000 Hz,

which is due to the sudden expansion in the acoustic boundary at the

open end of the waveguide. In Fig. 4.18 frequencies 63, 125 and 250 Hz

exhibit close similarity in their trends between the numerical prediction

and direct measurements, with the comparison of 250 Hz being almost
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Figure 4.18: Comparison of numerical prediction and direct mea-
surements of sound pressure along the straight duct, treated with sam-
ple RG50/135 (pink foam), for the frequencies 63, 125, 250, 500 and
1000 Hz. COMSOL results (solid lines) and measurement results (dot

dashed lines).

the same apart from the prediction at the open end of the duct, which was

due to the assumption of a pressure-release boundary condition for the

open end of the duct. The 500 Hz shows far less similarity in comparison

of magnitude of the sound pressure between the predicted and measured

values. The 1000 Hz has almost identical response for both prediction and

measurements from 0.7 to 1.5 m across the length of the duct. It has to

be noticed that Fig. 4.17 and Fig. 4.18 are showing the comparison of two

different porous plastic sound absorbing liners with their corresponding

numerical predictions, and as can be seen both treatment show very good

agreement with the numerical predictions.
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4.5.5 In-situ Sound Intensity Method

The U-shaped duct has been evaluated using a measurement method

developed by Microflown Technologies and their collocated pressure/ve-

locity USP-regular probe to measure the sound pressure and three di-

mensional particle velocity within the free space of the duct [81]. The

3D half inch USP-regular probe consists of three orthogonally placed

Microflown acoustic particle velocity sensors and a collocated miniature

sound pressure microphone at their centre. The actual sensor configu-

ration without its cap has a volume less than 0.005 × 0.005 × 0.005 m3.

Figure 4.19 shows the Microflown USP-regular probe and the location

of the collocated miniature pressure transducer and three orthogonally

placed particle velocity sensors, used to directly measure the sound pres-

sure and the 3D particle velocity within the U-shaped duct.12

Figure 4.19: Physical size of the Microflown USP-regular sensor and
the configuration of the three orthogonally placed particle velocity sen-
sors and the collocated miniature pressure transducer in their centre

can be observed.

Any acoustic sound-field can be described by two complementary acous-

tic properties: the sound pressure (scalar value) and the particle velocity

(vector value) [82]. The USP-regular probe of the Microflown is capa-

ble of directly measuring the acoustic particle velocity in the sound-field

under consideration, and is used as an acoustic-vector-sensor (AVS ). Us-

ing the USP-regular probe and the measurement technique developed by

Microflown Technologies, the three dimensional sound-intensity, energy,

power and acoustic-impedance can be measured in-situ, under realistic

12Picture is courtesy of Microflown Technologies. http : //www.microflown.com
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conditions for the near-field measurements. Also, the USP-regular, can be

used within closed cavities, such as ventilation ducts or TLL waveguides,

without the need for anechoic conditions and the problems of pressure

over intensity index has been resolved for this sensor. It should also

be noted that, the susceptibility of the USP-regular, compared to other

microphones, to the background noise and the reflections is −40 dB.13

Figure 4.20 shows the schematic model of the U-shaped duct analysed in

this project, the selected area around the bend shows the location where

the detailed in-situ measurements were conducted.

Figure 4.20: Schematic model of the U-shaped duct. The selected
area was analysed in details with conducting the in-situ measurements
of sound pressure and 3D acoustic-intensity for the frequency range of

40 to 1000 Hz.

The acoustic behaviour of sound propagation within a straight TLL duct

lined on the inside (the internal-boundaries) with a variety of sound ab-

sorbing materials has been measured directly and analysed earlier in Sec-

tion 4.5.2. Next, the focus was placed on the sound behaviour around the

bends inside the U-shaped transmission-line loudspeaker cabinets. Here

an assumption has been made that the acoustical behaviour within the

straight sections of the TLL duct before and after the bend area is similar

to the corresponding parts described earlier in Section 4.5.2. Figure 4.21

shows the comparison of the in-situ measurements using the Microflown

USP-regular probe and the numerical prediction of pressure variation in-

side the U-shaped duct, for the frequencies of 300, 345 and 390 Hz.14

13The USP-regular information are courtesy of Microflown Technologies.
http : //www.microflown.com

14Detailed experimental results of the in-situ measurements performed on the
U-shaped duct for the frequency range of 40 to 1000 Hz has been added to Appendix B.
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Figure 4.21: Comparison of in-situ measurement using USP-
regular sensor with numerical predictions of pressure variation inside
the U-shaped duct lined with the sample RX33/160 (green foam).
(a) 300 Hz, (b) 300 Hz, (c) 345 Hz, (d) 345 Hz, (e) 390 Hz, and (f) 390
Hz; (a), (c) and (e) correspond to the in-situ measurements and (b),

(d) and (f) correspond to the numerical predictions.
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The comparison of the in-situ measurements, using the USP-regular probe

and the numerical prediction, of pressure variation around the bend re-

gion inside the U-shaped duct can be observed in Fig. 4.21 at three

different frequencies, where Fig. 4.21 (a), (c) and (e) refer to the in-

situ measurements and Fig. 4.21 (b), (d) and (f) represent the numerical

results. Comparing the results in Fig. 4.21 (a) with the selected area

in Fig. 4.20, it can be seen that at 300 Hz, there is a low-pressure re-

gion around the tip of the separating panel in the U-shaped duct, and a

high-pressure region encapsulating it concentrated on the internal back

panel of the TLL loudspeaker with the highest pressure concentration at

the two right-side corners of the bend area. The concentration of high

pressure around the bend and more specifically in the right-side corners

are expected since the top right corner is in front of the loudspeaker

drive, excitation source, creating an obstacle in front of the movement

of the sound pressure and the bottom right corner is again causing the

change in the direction of the sound pressure. Comparing the results in

Fig. 4.21 (a) and (b), it can be seen that they do not matching com-

pletely at this frequency, 300 Hz. Despite the fact that, the same as in

Fig. 4.21 (a) a low-pressure region can be noticed around the separating

panel of the U-shaped duct and a high-pressure region with its concentra-

tion on the top right corner as can be observed in Fig. 4.21 (b), it is clear

that the high-pressure region in Fig. 4.21 (b) no longer encapsulates the

low-pressure region. The low-pressure region also seems to have spread

across both top and bottom sections of the duct. The amplitude differ-

ence of the excitation source between the in-situ measurement and the

numerical results could be associated as the main cause of this inaccuracy

at this particular frequency. In Fig. 4.21 (c) as the frequency progresses

to 345 Hz, the low-pressure region located around the separating panel

in Fig. 4.21 (a) is growing, creating two distinct regions of high-pressures

concentrated on the two right-side corners of the waveguide bend. In

Fig. 4.21 (d), the numerical results exhibit a very close similarity with

the in-situ measurement at this particular frequency. In Fig. 4.21 (e) as

the frequency increases further to 390 Hz, the low-pressure region around

the separating panel in Fig. 4.21 (a) is growing even further, but since

the frequency is getting close to the standing wave frequency within the

bend area in the U-shaped duct distinct high and low-pressure regions
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have been created at the two right-side corners of the duct bend. Once

again comparing Fig. 4.21 (f) with (e) a close similarity can be observed

showing that the numerical result is following the same pattern as the in-

situ measurement at that frequency. The distinct high and low-pressure

regions as a result of the standing wave pattern within the bend area of

the duct as discussed in Fig. 4.21 (e) can be observed more clearly in

Fig. 4.21 (f).

4.5.6 Measurement Resolutions

Using the measurement method developed by Microflown Technologies,

the in-situ sound-intensity, and the USP-regular sensor was used in the

U-shaped bend region inside the TLL duct to directly measure the sound

pressure and three dimensional particle velocities resulting in the direct

measurements of the three dimensional acoustic-intensities. Detailed ex-

perimental results of the in-situ measurements performed on the acousti-

cally treated U-shaped duct have been added in Appendix B. The internal

cross sectional area of the TLL ducts were made 0.3 × 0.3 m2, lined on

the inside with the sound absorbing materials of 0.05 m thickness. The

remaining free-region of the duct therefore would be 0.2× 0.2 m2 which

was divided into a matrix of 5 × 5. With spacing of 0.05 m starting

from the surface area of the sound absorbing liners, 72 point measure-

ments were conducted in each of the five acoustic surface layers inside

the U-shaped duct to evaluate the collocated pressure and 3D particle

velocity around the bend of the TLL duct. It should also be noted that

in the results presented in Section 4.5.5 the white grids correspond to

the exact location of the Microflown USP-regular sensor which was used

for the measurements conducted on each position in each of the acoustic

layers. The direct results of the consecutive points have been interpo-

lated to create the surface plots of the acoustic behaviour of the sound

propagation within the U-shaped region of the TLL waveguide.
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4.6 Measurement Limitation

There was a number of different factors in the measurements conducted

that created and increased the measurement errors. One of the main

limiting factors was the precision of the microphone locations during

the measurements in all of the TLL waveguides. In the scan and paint

method used for the measurement conducted on the straight ducts and

presented in Section 4.5.2 the PU-match microphone was mounted at

the end of a 7 m long rod which was rolled backward from the driver

position at x = 0 to the open end of the duct at x = Lx. Due to the

long length of the rod also including the microphone stand, the micro-

phone was vibrating as it was rolled backwards to the open end of the

waveguide hence reducing the accuracy of the measurements. In the in-

situ sound-intensity method used for the measurements conducted on the

U-shaped ducts, the position of the USP-regular microphone mounted on

a miniature tripod was changed for each measurement point. Due to the

required high number of repetition of the microphone alignments, there

was a possibility of mis-aligning the 3D-sensor at some of the locations.

Next in the list of limiting factors was the signal-to-noise ratio during

the data acquisition. For the scan and paint method the measurement

was performed in the anechoic chamber whereas for the U-shaped duct

measurements the tests were performed in the listening room laboratory.

Therefore the noise floor was considerably higher than the measurement

done in the anechoic chamber. Another limiting factor was the inher-

ent microphone inaccuracy that each and every microphone suffers from.

The general inaccuracy in the repeatability of the measurement condi-

tions was another limiting factor in the measurement errors. Also the

loudspeaker drivers never behave completely pistonic; hence modelling

the drive-unit with the pistonic excitation introduces further inaccuracy

and error between the numerical predictions and the direct measure-

ments conducted and presented in Chapter 4. The next error factor was

the measured low-frequency response of the sound-field inside the TLL

ducts which were directly affected by the resonant frequency of the loud-

speaker driver. In measuring the U-shaped ducts, the point by point

measurement technique was used. The separation distance between the

measurement points was another limitation factor. In the case of the scan
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and paint method which was used for the straight duct measurements the

microphone was rolled backwards from the back of the driver position to

the open end of the duct. Finally, the availability of the measurement

facilities, laboratories and equipment could be the other main factors in-

creasing the overall limitation of these presented measurements. Within

the scope of this project it became necessary to liaise with many different

companies to borrow equipment and samples and to conduct measure-

ments in parts in collaboration. The measurement equipment had to be

borrowed from the manufacturer the Microflown Technologies, since the

variety of the measurement probes used were extremely expensive and

beyond the available budget for this project. Therefore the measure-

ment equipment was used for a very short period of time. Consequently,

extensive in-situ measurements could not be performed on all range of

available sound absorbing materials. The analysis could be further solid-

ified by adding further extensive data acquisition on the range of treated

waveguides.

4.7 Conclusion

In Chapter 4, direct measurements were conducted on a variety of sound

absorbing materials in order to characterise their behaviour. Using the

ISVR impedance-tube, the impedance measurements were conducted on

the selected range of fibrous and porous sound absorbing samples. Two

different kinds of bulk-reacting samples were chosen, namely fibrous and

porous absorbing materials, for lining of the internal boundaries of a

range of ducts, namely straight and U-shaped ducts. The impedance

measurements were then compared with with the Delany and Bazley [54]

and Wu Qunli [27] methods which were applied to the flow-resistivity

measurements of the same range of fibrous and porous materials respec-

tively, and conducted in the Centre of Acoustic-Liner Technology of Ale-

nia Aermacchi in Italy using a DC-flow test,and have been used in Chap-

ter 3 to construct the numerical models of the treated TLL. Next, the

direct measurements were conducted on a range of treated waveguides in

order to get the internal sound pressure and three-dimensional acoustic-

intensity along the length of the TLL ducts which were then compared
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with the analytical and numerical models, presented in Chapters 2 and 3

respectively. A variety of measurement methods and microphone probes

were used, namely PU-match sensor in combination with the scan and

paint method and USP-regular sensor in combination with the in-situ

sound intensity method, from Microflown Technologies to measure the

straight and U-shaped ducts respectively. Next, in Chapter 5 the devel-

oped numerical models presented in Chapter 3, which have been com-

pared with the direct measurements in Chapter 4, were used to apply

simple optimization on the transmission-line loudspeaker cabinets.
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Optimization of TLLs

In this chapter, the numerical models, presented in Chapter 3 and vali-

dated with the in-situ measurements in Chapter 4, have been used to ap-

ply acoustical optimization on a simple-geometry transmission-line loud-

speaker cabinet. The TLL consists of an acoustically treated waveguide

attached to the back of the loudspeaker driver in order to extend the over-

all low-frequency response of the loudspeaker. The audio performance of

the TLL can be acoustically optimized by accordingly controlling the

internal sound pressure along the length of the TLL waveguide.

The optimization began with carefully selecting a range of bulk-reacting

sound absorbing materials, namely fibrous and porous absorbers, to be

used for lining the internal boundaries of a selection of straight and

U-shaped TLL ducts. The sound absorbing materials were then char-

acterized using their flow-resistivities which were measured in the Centre

of Acoustic-Liner Technology of Alenia Aermacchi in Italy using a DC-

flow test, presented in Chapter 4. The flow-resistivity data were then

used to construct the numerical models of the treated TLL, presented

in Chapter 3 to correctly estimate the effects and the contribution of

the acoustical treatments added into the waveguide at the back of the

transmission-line woofers.

The audio optimization of the TLL can be grouped into the optimization

of the cabinet geometry and the optimization of the internal acoustical

treatments. Transmission line loudspeakers rely on the use of sound ab-

sorbing materials and, although attempts at modelling the performance
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of these have been reported in the literature, most TLLs are designed

empirically, using a combination of experience and trial-and-error. In

this research the effect of cabinet geometry has been ignored and the em-

phasis has been placed on the optimization of the acoustic liners along

the internal boundaries of the transmission-line waveguides.

5.1 Optimization Variables

The TLL designs have been used in a wide range of audio applications

such as high-quality studio monitoring used in the BBC studios and

high-end HiFi audio systems for the audiophiles. Figure 5.1 shows a

cross section of an acoustically treated and fully optimized floor-stand

transmission-line loudspeaker.1

Figure 5.1: An acoustically treated and optimized floor-stand TLL.

As can be seen in Fig. 5.1, the internal tubing of the loudspeaker has

been lined by a selection of the bulk-reacting sound absorbing liners

(porous-plastic open-cell foams). It is also noticeable in Fig. 5.1, that

the thickness of the sound absorbing liner is varying along the internal

length of the waveguide attached to the back of the TLL drivers. To this

1Picture is courtesy of Professional Monitor Company PMC.
http : //www.pmc− speakers.com
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date, any new TLL has been designed by trial and error and prototyping

since the complete understanding of the acoustical behaviour of a treated

transmission-line waveguide has not been available in the literature [83].

One of the main objectives of this project was to find and evaluate a nu-

merical method capable of correct prediction and detailed analysis of the

sound propagation within a treated transmission-line waveguide. The

acoustical optimization parameters are the location, thickness and the

flow-resistivity of the different bulk-reacting sound absorbing liners. In

this project, a simple U-shaped TLL duct, as in Fig. 5.3 (a), has been

chosen. The splitting surfaces and the corner areas inside the TLL waveg-

uides are some of the obvious locations to apply the acoustical treatments

with the variable thicknesses of sound absorbing materials. These loca-

tions are of high priority due to the high concentrations of the acoustic

pressure in those areas as could be seen in Fig. 4.21. The flow-resistivity

values corresponding to different flow-speeds for each of the different lin-

ers has been illustrated and explained in detail in Tables 4.3, 4.4 and 4.5

in Chapter 4. It is worth mentioning that the presented numerical mod-

els can be further enhanced by considering a more comprehensive model

definition within the COMSOL Multiphysics environment which is the

perfectly matched layer, instead of the sound soft boundary for the open

ends of the TLL ducts which represents the pressure-release boundary

condition, so that predictions could include the end-corrections as a re-

sult of any reflection interactions at that region. However, it should be

noted that the pressure-release boundary condition is an acceptable and

accurate approximation for the low-frequency range of interests as is the

case in this project. Also, by further advancing the model definitions

of the numerical models, the computational cost function would have

increased considerably; hence, after consideration the presented models

were opted out of the addition of the perfectly matched layer.

5.2 Cabinet Geometry

The geometrical optimization of the TLL cabinets can be divided into

three main areas, namely cabinet volume, the separating distance be-

tween the loudspeaker driver (sound source) and the open end of the
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TLL duct and the transmission-line length (length of the internal waveg-

uide). Needless to say, all these specific transmission-line cabinet consid-

erations still have to be combined with the general loudspeaker cabinet

design considerations such as the cabinet edge diffractions and the in-

terferences caused by the contribution of the cabinet panels vibration to

the on-axis pressure within the listening sound field, to name but a few.

This project, focuses specifically on the understanding of an acoustically

treated transmission-line waveguide and places emphasis on creating and

validating a numerical model capable of correct prediction and detailed

analysis of the sound propagation within a loaded TLL. Therefore, the

volume of the loudspeaker cabinets have been kept constant and the ef-

fects of the geometrical optimizations on the TLL cabinets have been

ignored. Similarly, the effect of any kind of optimization on the separat-

ing distance between the TLL driver and the open end of the waveguide

has also been ignored.

5.2.1 Transmission-Line Length

The main characteristic of any transmission-line loudspeaker cabinet is

having an internal waveguide attached to the back of the loudspeaker

driver to redirect the backward radiations of the driver and use the gen-

erated pressure in order to extend the overall low-frequency response of

the loudspeaker. The transmission-lines of the TLL cabinets can be di-

vided into two main categories, namely uniform and tapered ducts. This

project investigates the TLL with the uniform ducts. Since the main

focus of this project is on the effects of the acoustical treatments within

the transmission-lines, the physical length of the internal ducts have been

kept constant and the effects of its geometrical optimization has been ig-

nored. However, the addition of the acoustical treatment within the TLL

waveguide has a direct effect on the imaginary length of the transmission-

line, causing significant changes to its overall sound output at the open

end of the duct. Therefore, the overall optimization of the length of the

transmission-line could be divided into two parts, namely optimization of

their internal physical length and the optimization of the acoustical treat-

ments along the internal boundaries of the transmission-line waveguide,

which have been looked at in detail in Section 5.3.3.
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5.3 Acoustic Treatments

Acoustic treatment within the TLL waveguide has a direct effect on the

overall audio performance of any transmission-line loudspeaker. Adding

a suitable sound absorbent material within the internal boundaries of

the TLL duct, the mid and high frequencies could be attenuated and the

significant resonances can be controlled. Roberts in his paper [10] ex-

plains that, an empirically found complex wavenumber dependent on the

diameter, density and packing density of the fibres of the fibrous sound

absorbing samples can be used to model the acoustic treatment within

the TLL waveguide. Roberts also outlines that, by lining the internal

boundaries of the TLL waveguide with the sound absorbing materials,

the speed of sound propagation in the duct will be significantly reduced.

In practice this means that the wavelengths of the sound signal in the

pipe are effectively reduced. Consequently the required length of the

duct that accommodates the lowest designed frequency is reduced. The

wave amplitude also decays exponentially with the distance according to

the magnitude of the attenuation factor in the empirically found complex

wavenumber [10, 16].

5.3.1 Types of Acoustic Treatments

In this category there are two main types of acoustic treatments, based on

their design structure and materials, namely locally-reacting and bulk-

reacting liners, as explained in Section 2.3, in Chapter 2. The bulk-

reacting liners are further divided into two main category, namely fi-

brous and porous absorbing samples, as in Tables 4.1 and 4.2. It is

worth mentioning that the bulk-reacting liners are far more superior to

the locally-reacting liners as an acoustic absorbent material and since

the audio applications such as the optimization of the TLL ducts do

not specifically require the use of the locally-reacting liners, such as the

aeroacoustic applications, then, this project focuses on the use of the

bulk-reacting liners as an acoustic treatment for the optimization. His-

torically, the fibrous bulk-reacting liners have been used as an acoustic

liner such as the research done by Roberts, as described in his paper [10].
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However, more recently, due to the advances in the design and produc-

tion of porous plastic open-cell foams, and also since there are far better

controls in designing a specific porous plastic foam with a particular

flow-resistivity values and density and other relevant physical properties

desired, porous materials are far more commonly used by the industry

as an acoustic absorbent, as explained by Wu Qunli in his paper [27].

5.3.2 Size and Location of Acoustic Treatments

One of the most desirable characteristics of the output (audio sound) from

any loudspeaker is to have an on-axis flat frequency response within the

whole audible frequency range from 20 to 20 kHz, when the measurement

is conducted in an anechoic chamber with the microphone positioned at

1 m distance away from the loudspeaker. The acceptable tolerance for

achieving this objective within the audiophile community is ±3 dB [84].

Therefore, in this project the optimization objective has been set to mini-

mize the variability of the on-axis frequency response of the loudspeakers

1 m away from the loudspeaker front panel. Starting with the TLL

duct completely empty, without any acoustic treatment as in case 1 in

Table 5.1, this investigation moves to the case of a TLL waveguide com-

pletely filled with the sound absorbing materials, as in case 2 in Table 5.1

and then continues to explore the best possible scenario as presented in

Table 5.1. In achieving this the cost function Jp can be defined by the

equation

Jp =
v

η
, (5.1)

where v is the variance of the on-axis pressure and can be defined by:

v =

 1

∆f

20kHz∫
20

(
p2(f)− 〈p2(f)〉

)2
df

1/2

. (5.2)

The on axis pressure is p, ∆f = fmax − fmin and the η = 〈p2(f)〉 and

could be defined by:

η =
1

∆f

20kHz∫
20

p2(f)df. (5.3)
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Figure 5.2 shows the optimization cost functions of a selected range

of U-shaped TLL ducts, varying in their internal boundary conditions

from the TLL ducts with hard-walled boundary (zero acoustic treat-

ment, case 1) to the cases acoustically treated with the bulk-reacting

liners (cases 2 to 10). It is worth mentioning that the description of the

different cases presented in Fig. 5.2 is presented in detail in Table 5.1

below.
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Figure 5.2: Optimization cost functions of a selected range of
U-shaped TLLs. Case 1 exhibit a value of 30.7, whereas case 10 has a

value of 0.67.

It can be seen in Fig. 5.2 that the TLL duct completely filled (case 2 in

Table 5.1), with the value of 3.34, is performing considerably better, al-

most by a factor of 10, than the TLL duct without any acoustic treatment

(case 1 in Table 5.1), with the value of 30.7. Also, it should be mentioned

that the best presented case 10, with the value of 0.67, is almost lower by

a factor of 45 than the worst case 1, with the value of 30.7, in terms of

their variability of the on-axis frequency response in 1 m distance away

from the loudspeaker front panel. Next, the completely filled TLL duct,

case 2, is almost higher by a factor of 5 from the best optimized and

lowest value presented case 10 in terms of their variability value. These

finding indicate, since minimizing the variability of the on-axis frequency

response of the loudspeakers is one of the most desired audio character-

istic for any loudspeaker and consequently one of the main aims for this

project, and by looking at Table 5.1 and Fig. 5.2, that there is a huge

variety of cases and acoustical optimization considerations between cases

2 to 10. Therefore, the knowledge and understanding of the necessary
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and right amount and right location of the sound absorbing liners within

the TLL waveguide becomes crucial for any acoustical consideration in

designing an optimized transmission-line loudspeaker. Table 5.1 shows

the complete descriptions of the acoustic lining and the values of the op-

timization cost-functions Jp of a selected range of treated U-shaped TLL

ducts shown in Fig. 5.2.

Case Acoustic Lining Description Cost Function

1
Hard-walled boundary condition where

30.7
the duct is completely empty.

2
Bulk-reacting boundary condition where

3.34
the duct is completely filled.

3
Single layer of absorber on all

3.23
internal boundaries.

4

Single layer of absorber on all internal

3.19
boundaries, with an extra layer on the

top and bottom corners and on the
end of the separating surface.

5
Single layer of absorber on top and

3.03bottom surfaces, and double layers
on the separating surface.

6
Single layer of absorber on top and

2.78bottom surfaces, and triple layers
on the separating surface.

7
Double layers of absorber on top and

2.70bottom surfaces, and single layer on
the back and separating surfaces.

8
Double layers of absorber on top, bottom

2.61and back surfaces and single layer on
the separating surface.

9
Single layer of absorber on all internal

0.98boundaries, and quadruple layers
covering the open end.

10
Single layer of absorber on all internal

0.63boundaries, and double layers
covering the open end.

Table 5.1: Acoustic lining descriptions and the values of the opti-
mization cost-functions Jp of a selected range of a treated U-shaped

TLL ducts as shown in Fig. 5.2.

A selected range of acoustic linings have been presented in Table 5.1

and Fig. 5.2, which represent a huge possibility and different variety of

the locations and the amount of sound absorbing materials that can be
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added inside the TLL waveguide. Figure 5.3 shows the schematic model

of a TLL duct, along with the 3D geometry of an acoustically treated

TLL with a single layer of sound absorbing liner on all of the internal

boundaries of the duct and double layers of acoustic lining covering the

open end of the waveguide as in cases 1 and 10 respectively in Table 5.1.

(a) (b)

Figure 5.3: (a) Schematic model of a U-shaped TLL duct with hard-
walled boundary condition (as in case 1) and (b) a TLL acoustically
treated with a single layer of sound absorbing liner on all its internal
boundaries and double layers covering the open end (as in case 10).
The dark-grey area corresponds to the free-air medium and the light-

grey area corresponds to the sound absorbing lining.

In Fig. 5.3 (a), a schematic model of a U-shaped duct with hard-walled

boundary conditions on its interior boundaries can be observed. Also, in

this figure an acoustical condition within a TLL waveguide such as that

in case 1 in Table 5.1 can be observed. In Fig. 5.3 (b), the 3D geometry

of a TLL duct, with the dimensions of 0.3× 0.3× 1.6 m can be observed,

acoustically treated with a single layer of sound absorbing material with

the thickness of 0.05 m on its interior boundaries. It should be noted that

the open end of the TLL duct has also been covered by double layers of

acoustic lining. In Fig. 5.3 (b), the dark-grey parts represent the free-

air medium within the TLL duct and the light-grey area represents the

layer of acoustical sound absorbent. Also, in this figure an acoustical

condition within a TLL waveguide such as that in case 10 in Table 5.1

can be observed. Figure 5.4 shows the 3D geometry of an acoustically

treated U-shaped TLLs. In case (a) waveguide is treated with a single

layer of sound absorbing liner on all the internal boundaries apart from
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the separating surface, and the separating surface is encapsulated by

triple layers of sound absorbing liners. The open end of the TLL is

left untreated without any acoustic lining, as in case 6 in Table 5.1. In

case (b) the TLL is lined with a single layer of sound absorbing liner on

all of the internal boundaries and an extra block of acoustic liner on the

top and bottom corners around the U-shaped bend of the duct and the

tip of the separating surface, as in case 4 in Table 5.1.

(a) (b)

Figure 5.4: Acoustically treated U-shaped ducts. (a) Duct treated
with a single layer of sound absorber on all of the internal boundaries
apart from the separating surface, and triple layers of acoustic lining
is encapsulating the separating surface (as in case 6). (b) Duct treated
with single layer of sound absorbing material on all the internal bound-
aries and an extra block of acoustic liner on the top and bottom corners
around the U-shaped bend and the tip of the separating panel (as in
case 4). The dark-grey area corresponds to the free-air medium and

the light-grey area corresponds to the sound absorbing lining.

Once again in Fig. 5.4 (a), the 3D geometry of a TLL duct, with the

dimensions of 0.3×0.3×1.6 m can be observed, acoustically treated with

a single layer of sound absorbing material with the thickness of 0.05 m

on its interior boundaries around the top and bottom and back panel.

Also, it can be seen that the separating panel of the U-shaped duct has

been encapsulated by triple layers of acoustic lining with the thickness of

0.15 m. It should be noted that the open end of the TLL has been left

untreated in this case. In Fig. 5.4 (a), the dark-grey parts represent the

free-air medium within the TLL duct and the light-grey area represents

the layer of acoustical sound absorbent. Also, in this figure an acoustical

condition within a TLL waveguide such as that in case 6 in Table 5.1

can be observed. In Fig. 5.4 (b), the 3D geometry of a TLL duct, with
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the dimensions of 0.3× 0.3× 1.6 m can be observed, acoustically treated

with a single layer of sound absorbing material with the thickness of

0.05 m on its interior boundaries. Also, as can be seen, an extra block

of acoustic lining with the dimension of 0.05 × 0.05 m has been added

to the top and bottom right corners, as well as the tip of the separating

panel within the U-shaped duct. Also, once again the open end of the

TLL duct has been left untreated in this case. In Fig. 5.4 (b), the dark-

grey parts represent the free-air medium within the TLL duct and the

light-grey area represents the layer of acoustical sound absorbent. Also

in this figure, an acoustical condition within a TLL waveguide such as

that in case 4 in Table 5.1 can be observed. Figure 5.5 shows the on-axis

frequency response function of an acoustically optimized U-shaped TLL,

where the duct has been acoustically treated with the sample RG50/135,

with a single layer of acoustic lining on all of its internal boundaries, and

double layers covering its open end as described in case 10 in Table 5.1

and can be seen in Fig 5.3, and has been excited with loudspeaker driver.
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Figure 5.5: On-axis frequency response function of an acoustically
treated U-shaped TLL with the acoustic lining sample RG50/135, as
described in case 10 in Table 5.1 and can be seen in Fig 5.3 with a

driver excitation.

In Fig. 5.5, the on-axis frequency response function of an acoustically op-

timized transmission-line loudspeaker at low-frequency can be observed

as in case 10 in Table 5.1. The on-axis frequency response functions p

were found using the Eq. (2.7) where the total volume velocity q, is the

combination of the driver volume-velocity qd = udSd, and the open end

volume-velocity ql = ulSl, where ud and Sd are the particle velocity and
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driver diaphragm surface area at position x = 0 inside the TLL duct,

and ul and Sl are the particle velocity and the cross sectional area at

the open end, at position x = Lx along the length of the TLL waveguide

respectively, as explained in Section 2.1 [1]. The particle velocity at the

back of the driver ud, was found using the lumped parameter model of

the driver in conjunction with the Thiele-Small parameters of the loud-

speaker driver [1]. The particle velocity at the open end ul, was found

using the numerical predictions as explained in Chapter 3. As mentioned

previously in Section 5.3.2, the most desired audio characteristic of any

loudspeaker system is to have a flat on-axis frequency response at 1 m

distance in front of the loudspeaker front panel within the accepted HiFi

tolerance (±3 dB) [85]. The Thiele-Small, low-frequency parameters of

a Visaton B200 6 Ω driver was used in modelling the loudspeaker driver

of the presented optimized TLL, as in Table 2.1 in Chapter 2. It should

be noted that the resonance frequency, fs, of the driver used, in free-

air is 40 Hz and as can be observed in the frequency response of the

optimized TLL, the resonance frequency has been pushed up to about

70 Hz. The TLL response exhibits 45 Hz at −3 dB, which is increasing

to −0.4 dB at 70 Hz. It can be noticed that the optimized response is

within the acceptable HiFi tolerance of ±3 dB apart from the frequency

range of 117 to 176 Hz, where a −6 dB trough can be observed. This

trough can be optimized by looking at the geometrical optimization of

this TLL cabinet and mainly the separation distance between the sound

source (driver) and the open end of the TLL. However, within the scope

of this project, the geometrical optimization has not been considered, as

explained in Section 5.2. Figure 5.6 shows the comparison of the on-

axis frequency response functions of an acoustically optimized TLL, as

in case 10, with an acoustically hard-walled boundary condition, as in

case 1 from Table 5.1. In case 10 the TLL duct is acoustically treated

with the sample RG50/135, and in both cases 10 and 1 the ducts have

been excited with a loudspeaker driver.

In Fig. 5.6, the comparison of the on-axis pressure responses between

cases 10 and 1 from Table 5.1 has been shown here, where in case 1 the

duct has a hard-walled boundary condition and is completely empty and

in case 10 duct is acoustically treated with the sample RG50/135. Both

cases have a driver excitation. As can be seen in Fig. 5.6, the peaks and
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Figure 5.6: Comparison of the on-axis frequency response functions
of cases 10 and 1 from Table 5.1, where in case 1 the duct has a hard-
walled boundary condition and is completely empty and in case 10 duct
is acoustically treated with the sample RG50/135. Ducts are excited

with a loudspeaker driver.

troughs in the response of the TLL with hard-walled boundary condition,

as in case 1, has been smoothed out in comparison with the response of

the acoustically optimized TLL, as in case 10. The resonance frequency,

fs, of the loudspeaker driver in free-air is 40 Hz whereas the resonance

frequency of case 1 exhibits 0 dB at 50 Hz, and the case 10 exhibits

−3 dB at 44 Hz. From that point their difference increases where at

73 Hz the case 1 shows 12.5 dB, whereas case 10 exhibits −0.4 dB. The

wide trough that can be seen in the response of the case 1 between the

frequency range of 73 to 182 Hz has been completely smoothed out and

been slightly shifted to the lower-frequency range at 58 to 110 Hz for the

case 10. The shift in the frequency range of the aforementioned trough is

due to the acoustic treatments added on the internal boundaries of the

case 10, causing the TLL to act as if it has an imaginary longer internal

length waveguide. It should be noted that the quarter wavelength reso-

nance frequency, λ/4, in the presented TLL duct with the 1.6 m length,

correspond to approximately frequency of ≈ 53.6 Hz, which is lower than

the maximum output seen in Fig. 5.6 for case 1 at about ≈ 72 Hz. This

however, is due to the presence of a very high pressure at the back of the

driver position, x = 0, inside the waveguide causing a reduction of the

driver velocity, resulting in a reduction in the loudspeaker system output,

as can be seen in Fig. 2.4 and explained in details in Section 2.2. There-

fore, the maximum output that can be observed around the frequency

of ≈ 72 Hz is not strictly a resonance frequency of the TLL waveguide.
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Next, from 180 Hz onwards the case 1 experiences an erratic behaviour

which has been smoothed out in case 10 as can be seen in Fig. 5.6.

As expected once again the steep and long trough in the response of

the case 1 in the frequency range of 182 to 273 Hz has been massively

smoothed out by about 20 dB in the response of case 10 and also has

been shifted to the lower-frequency range of 117 to 176 Hz. From 273 Hz

onwards the response of the acoustically hard-walled case 1, shows an

erratic behaviour whereas the optimized TLL, case 10, exhibits a smooth

response, well within the accepted HiFi tolerance (±3 dB), to the end

of the frequency presented. Figure 5.7 shows the comparison of the on-

axis frequency response functions of an acoustically optimized TLL, as

in case 10 in Table 5.1, with the two cases 9 and 2, where in case 9 the

duct has been acoustically treated with a single layer of sound absorbing

liner on all internal boundaries and quadruple layers covering the open

end, and in case 2 the TLL duct is completely filled with the acoustic

absorber. The TLL ducts have been acoustically treated with the sample

RG50/135, with a driver excitation.
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Figure 5.7: Comparison of the on-axis frequency response functions
of cases 10, 9 and 2 in Table 5.1. In all cases the ducts have been
acoustically treated with the sample RG50/135, with a driver excita-

tion.

In Fig. 5.7, the frequency response of case 10 in Table 5.1, the opti-

mized TLL has been compared with the cases 9 and 2. The ducts have

been acoustically treated with the sample RG50/135 (pink foam), with a

loudspeaker driver excitation. Cases 10 and 9 both have a single layer of

acoustic absorbent material with the thickness of 0.05 m on their internal

boundaries. However, in case 10 the open end of the TLL is covered by
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double layers of sound absorbing materials, as can be seen in Fig. 5.3 (b),

but in case 9 the open end is covered by quadruple layers of acoustic ab-

sorbent material, as described in Table 5.1. As their response in Fig. 5.7

indicates, covering the open end with quadruple layers of acoustic liners

instead of double layers has smoothed the trough that can be seen in the

frequency range of 117 to 176 Hz by about 2 dB from −6.39 to −4.45 Hz.

However, the smoothing of this trough has cost the decrease of response

in the frequency range of 44 to 117 Hz in case 9 and consequently this

acoustic lining design is not the current optimum design, as indicated

in Table 5.1. From 117 Hz onwards the cases 9 and 10 exhibit exactly

similar response to the end of frequency presented in Fig. 5.7. Case 2

in comparison is over-damped, behaving as a closed-cabinet, since the

transmission-line has been uniformly filled by the acoustic absorbent ma-

terials sample RG50/135. As a result the resonant frequency, fs, of the

TLL in case 2 has been pushed up to the frequency of 117 Hz as can be

seen in Fig. 5.7. Also, as a result of over-damped condition in case 2 the

peaks and troughs that can be noticed in the response of cases 10 and 9

between the frequency range of 117 to 500 Hz has been smoothed out.

From 500 Hz onwards all three cases 10, 9 and 2 follow the exact same

pattern. As mentioned previously, the smoothing of the frequency range

of 117 to 500 Hz, is at the expenses of pushing the resonant frequency of

the loudspeaker system in case 2 to much higher frequency and therefore

this acoustic design shows very poor ranking in terms of overall optimiza-

tion, as can be seen in Table 5.1. Figure 5.8 shows the comparison of the

on-axis frequency response functions of an acoustically optimized TLL,

as in case 10 in Table 5.1, with the cases 3, 4, 5, 6, 7, and 8 in Table 5.1

in Section 5.3.2. The TLL ducts have all been acoustically treated with

the sample RG50/135, with a driver excitation.

In Fig. 5.8, the frequency response of case 10 in Table 5.1, the optimized

TLL has been compared with the cases 3, 4, 5, 6, 7 and 8. The ducts

have been acoustically treated with the sample of porous plastic open-

cell foam, RG50/135 (pink foam), with a loudspeaker driver excitation.

Case 10 has a single layer of acoustic absorbent material with the thick-

ness of 0.05 m on their internal boundaries; also the open end of the TLL

is covered by double layers of sound absorbing materials, as can be seen

in Fig. 5.3 (b). The description of acoustic lining of cases 3, 4, 5, 6, 7
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Figure 5.8: Comparison of the on-axis frequency response functions
of cases 10, with cases 3, 4, 5, 6, 7 and 8 in Table 5.1. In all cases the
ducts have been acoustically treated with the sample RG50/135, with

a driver excitation.

and 8 has been added in Table 5.1. As mentioned previously in Fig. 5.5,

the resonance frequency, fs, of the driver used, in free-air is 40 Hz and

as can be observed the resonance frequency of cases 3, 4, 5, 6, 7 and 8

has been pushed up to about 53 Hz. From their resonance frequency at

about 53 Hz up to the 500 Hz the responses of the aforementioned cases

show an erratic behaviour, with an almost 15 dB trough in the frequency

range of 117 to 176 Hz apart from the case 6 where the TLL is covered

with a single layer of sound absorber around the duct and triple layers

encapsulating the separating panel of the duct where the aforementioned

trough occurs in the frequency range of 80 to 170 Hz. From 500 Hz on-

wards, all cases including case 10 follow the exact same trend up to the

end of the frequency presented 1000 Hz.

5.3.3 Effect of Acoustic Treatments on Transmission-Line

Length

Since generally any loudspeaker system suffers from an insufficient low-

frequency response, due to their inefficiency at the low-frequencies, the

transmission-line loudspeakers rely on the use of sound absorbing mate-

rials added on their internal boundaries to extend their overall response

of the loudspeaker at the low-frequency region [86]. As mentioned in

Section 5.2.1, one of the main characteristics of any transmission-line

loudspeaker is having an internal waveguide attached to the back of the
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driver to redirect the backward radiations of the driver and use the gen-

erated pressure, as a result of driver movement, to extend the overall

low-frequency response of the loudspeaker. The addition of the acousti-

cal treatment on the internal boundaries of the TLL waveguide also has a

secondary direct effect on the imaginary length of the transmission-line,

causing significant changes to its overall sound output at the open end of

the duct. Figure 5.9 shows the comparison of the on-axis frequency re-

sponse functions of the analytical and the numerical models of a straight

duct with hard-walled boundary condition on the internal boundaries of

the duct. In both models, ducts have a driver excitations.
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Figure 5.9: Comparison of the on-axis frequency response functions
of analytical and numerical models of a straight duct with hard-walled
boundary condition and driver excitation. Analytical result (solid line)

and numerical result (dot dashed line).

In Fig. 5.9, the analytical and numerical models of a straight duct with

the hard-walled boundary condition on the internal boundaries have been

compared. In both cases, ducts have a driver excitations. As can be

seen in Fig. 5.9, the analytical and numerical models follow the exact

same trend throughout the whole frequency range presented. The Thiele-

Small, low-frequency parameters of a Visaton B200 6 Ω driver was used in

modelling the loudspeaker driver of the presented models, as in Table 2.1

in Chapter 2. It should be noted that the resonance frequency, fs, of

the driver used, in free-air is 40 Hz. As can be observed in the frequency

response of the analytical and numerical models in Fig. 5.9, the resonance

frequency has been pushed up to about 48 Hz. A wide trough can be

observed in the frequency range of 70 to 165 Hz, and from that point

onward the response of the models exhibits an erratic behaviour with
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steep peaks and troughs to the end frequency presented. It also should

be noted that these peaks and troughs have been smoothed out by the

addition of the acoustic treatment, optimizing the overall output of the

duct, as can be seen in Fig. 5.5. Figure 5.10 shows the comparison of the

on-axis frequency response functions of a straight and a U-shaped TLL,

(as in case 3 in Table 5.1), where for each of the geometries, two different

scenarios have been considered, namely acoustically treated and hard-

walled boundary conditions. The acoustically treated ducts, straight

and U-shaped, have been lined with a single layer of sound absorber,

sample RG50/135, on their internal boundaries. All cases have driver

excitations.
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Figure 5.10: Comparison of the on-axis frequency response functions
of a straight and a U-shaped ducts (as in case 3 in Table 5.1). For each
geometry both acoustically hard-walled and treated boundary condi-
tions have been considered. The acoustically treated cases have been
lined with the sample RG50/135. All cases have a loudspeaker driver
excitations. Straight duct results (solid line) and U-shaped ducts re-

sults (dot dashed line).

In Fig. 5.10, the comparison of the on-axis frequency response of straight

and U-shaped ducts, (as in case 3 in Table 5.1), can be observed. For

each geometry both acoustically hard-walled and teated boundary con-

ditions have been considered. The acoustically treated cases have been

lined with the sample RG50/135. All cases have a driver excitations. As

can be seen in Fig. 5.10, both straight and U-shaped TLL with either of

their considered acoustic boundary conditions, hard-walled or lined, fol-

low the same trend along the frequency range presented. The resonance

frequency of the straight duct with hard-walled boundary condition ex-

hibits 0 dB at 48 Hz whereas the U-shaped TLL exhibits 0 dB at 50 Hz.
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There is 12.5 dB peak at 73 Hz in the response of both straight and

U-shaped ducts, where the U-shaped duct response is higher by about

1.5 dB. From that frequency, a wide trough can be noticed in the re-

sponses of both ducts where in the case of the straight duct it peaks at

166 Hz and in the case of U-shaped ducts it peaks at 181 Hz. There is

also a close similarity in the responses of the straight and U-shaped duct

that have been acoustically treated throughout the whole frequency range

presented. In both cases, straight and U-shaped duct, the acoustically

treated ducts exhibit shift in their response compared to their hard-walled

scenarios as can be seen in Fig. 5.10 for the trough in the frequency range

of 169 to 275 Hz in the hard-walled cases which has shifted to the lower

frequency range of 120 to 207 Hz in the acoustically treated cases. This

shift in the frequency response of the acoustically lined ducts indicates

that the speed of sound within those ducts has been considerably slowed

down and duct is acting as if it has a much longer internal duct. Fig-

ure 5.11 shows the effect of acoustic treatment on the imaginary length

of the TLL waveguide by comparing two scenarios of acoustically treated

U-shaped TLL with the hard-walled case: when in the first scenario, the

ducts have the same internal length of 1.6 m and in the second scenario,

the acoustically treated U-shaped TLL is 1.6 m and the hard-walled duct

is 2.1 m long.
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Figure 5.11: The effect of acoustic treatment on the imaginary
length of the TLL waveguide. (a) Comparison of acoustically treated
U-shaped TLL with the hard-walled case when both ducts have the
same physical duct length of 1.6 m and (b) comparison of acoustically
treated U-shaped TLL with 1.6 m duct length with the hard-walled

case with 2.1 m duct length.

In Fig. 5.11, the effects of acoustic lining on the imaginary length of the

internal waveguide within a TLL has been illustrated. As can be seen
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in Fig. 5.11 (a), when the length of the hard-walled case is the same as

the acoustically treated U-shaped TLL, 1.6 m for both cases, the steep

trough that can be seen in the response of the hard-walled case in the

frequency range of 169 to 269 Hz, correlates with the damped, yet still

steep trough in the response of the acoustically treated U-shaped TLL

in the frequency range of 117 to 203 Hz. This shift in the frequency re-

sponse of the acoustically treated U-shaped TLL is due to the addition of

acoustic lining, causing the speed of sound within its waveguide to con-

siderably slow down acting as if the treated waveguide had a much longer

internal duct [87]. It should also be noted that the resonance frequency

of the treated U-shaped duct is exhibiting 0 dB at 40 Hz whereas the

resonance frequency of the hard-walled case is 48 Hz. Now in contrast,

in Fig. 5.11 (b), when the length of the hard-walled case is extended to

2.1 m, so its resonance frequency matches the one from the treated duct

with 1.6 m length, at 40 Hz, which is also the resonance frequency of the

driver used (Visaton B200 6 Ω shown in Table 2.1 in Chapter 2), it can

be seen that the aforementioned trough, initially in Fig. 5.11 (a) in the

frequency range of 117 to 203 Hz, has been narrowed and shifted to the

frequency range of 130 to 203 Hz. This clearly indicates the effects of

acoustic treatment on the imaginary length of the waveguide within the

transmission-line loudspeakers corresponding well with the documented

literature, as Roberts also outlines that, by lining the internal boundaries

of the TLL waveguide with the sound absorbing materials, the speed of

propagating sound within the duct will be significantly reduced [10]. In

practice this means that the wavelengths of the sound signal in the pipe

are effectively reduced. Consequently the required length of the duct

that accommodates the lowest designed frequency is reduced. The wave

amplitude also decays exponentially with the distance according to the

magnitude of the attenuation factor in the empirically found complex

wavenumber [10, 16]. Also, it can be easily calculated that for a TLL

duct, acoustically hard-walled boundary condition on the internal bound-

aries, with the length of 2.1 m the lowest frequency that can propagate

within it is 40 Hz. This calculation corresponds well with the documented

requirement for the length of the waveguide which has to be at least a

quarter of a wavelength of the lowest frequency of interest, in this case

40 Hz, since this is the lowest frequency that the drive-unit is capable of
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producing.

5.4 Optimized Transmission-Line Loudspeakers

Finally, applying an acoustic treatment, by considering the optimization

requirements and constraint as explained in Section 5.3, an acoustically

optimized design can be made. Figure 5.12 shows the 3D geometry as well

as the on-axis frequency response function of an acoustically optimized

U-shaped TLL, where the TLL duct has been acoustically treated with

a single layer of acoustic lining on all of the internal boundaries, and

double layers covering the open end as described in case 10 in Table 5.1.

The TLL duct is acoustically treated with the sample RG50/135, and

has a driver excitation.
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Figure 5.12: Acoustically optimized U-shaped TLL. (a) An acous-
tically treated U-shaped TLL with a single layer of sound absorbing
liner on all its internal boundaries and double layers covering the open
end (as in case 10 in Table 5.1). The dark-grey area corresponds to
the free-air medium and the light-grey area corresponds to the sound
absorbing lining. (b) On-axis frequency response function of an acous-
tically treated U-shaped TLL with the acoustic lining sample RG50-

/135, and a driver excitation.

In Fig. 5.12, the on-axis frequency response function of an acoustically op-

timized transmission-line loudspeaker at low-frequency can be observed

as in case 10 in Table 5.1. As mentioned previously in Section 5.3.2, the

most desired audio characteristics of any loudspeaker system is to have

a flat on-axis frequency response at 1 m distance in front of the loud-

speaker front panel within the accepted HiFi tolerance (±3 dB). The

Thiele-Small, low-frequency parameters of a Visaton B200 6 Ω driver
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was used in modelling the loudspeaker driver of the presented optimized

TLL, as in Table 2.1 in Chapter 2. It should be noted that the reso-

nance frequency, fs, of the driver used, in free-air is 40 Hz and as can be

observed in the frequency response of the optimized TLL, the resonance

frequency has been pushed up to about 70 Hz. The TLL response exhibits

45 Hz at −3 dB, which is increasing to −0.4 dB at 70 Hz. It can be no-

ticed that the optimized response is within the acceptable HiFi tolerance

of ±3 dB apart from the frequency range of 117 to 176 Hz, where a −6 dB

trough can be observed. This trough can be optimized by looking at the

geometrical optimization of this TLL cabinet and mainly the separation

distance between the sound source (driver) and the open end of the TLL.

However, within the scope of this project, the geometrical optimization

has not been considered, as explained in Section 5.2. Figure 5.13 shows

a cross section of an acoustically treated and fully optimized bookshelf

transmission-line loudspeaker.2

Figure 5.13: An acoustically treated and optimized bookshelf TLL.

As can be seen in Fig. 5.13, the internal tubing of the loudspeaker

has been lined by a selection of the bulk-reacting sound absorbing liner

(porous-plastic open-cell foams). It is also noticeable in Fig. 5.13, that

the thickness of the sound absorbing liner is varying along the internal

length of the waveguide attached to the back of the TLL drivers.

2Picture is courtesy of Professional Monitor Company PMC.
http : //www.pmc− speakers.com
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5.5 Conclusion

In this chapter the optimization parameters of a transmission-line loud-

speaker was introduced to be the geometrical and the acoustical opti-

mizations. The geometrical optimization of the TLL cabinets was further

divided into three main groups, namely cabinet volume, the separating

distance between the loudspeaker driver and the open end of the TLL and

the length of the internal waveguide as explained in detail in Section 5.2.

It should also be noted, that these specific geometrical optimizations still

have to be combined with the general optimizations of the loudspeaker

cabinet. However, this project focuses specifically on the understand-

ing of an acoustically treated TLL and places emphasis on creating and

validating a numerical model capable of correct prediction and detailed

analysis of the sound propagation within a loaded TLL. Therefore, the

effects of the geometrical optimizations on the TLL cabinets were ig-

nored. The acoustic treatments within the TLL waveguide also have

direct effects on the overall audio performance of the TLL as explained

in detail in Section 5.3. The acoustical optimization parameters were fur-

ther divided into location, thickness and type of different sound absorbing

liners. Also, it was proved that by adding suitable sound absorbing ma-

terials within the internal boundaries of the TLL duct, the mid and high

frequencies could be attenuated and the significant resonances can be

controlled. In Table 5.1 selected cases of the U-shaped TLL ducts have

been looked at, starting from a hard-walled boundary condition case to

the best optimized case, as in case 10. Also in Section 5.3.3 the effects

of sound absorbing materials on the imaginary length of the TLL duct

was looked at. It was also proved that by lining the internal boundaries

of the TLL waveguide with the sound absorbing materials, the speed

of sound propagation in the duct will be significantly reduced, which in

practice means that the wavelengths of the sound signal in the pipe are

effectively reduced. Consequently the required length of the duct that ac-

commodates the lowest designed frequency has been reduced. The wave

amplitude also decays exponentially with the distance according to the

added sound absorbing materials.
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Conclusion

Loudspeakers are electroacoustical transducers converting electrical en-

ergy to acoustical sound waves, as a result of mechanical vibration of their

drivers. In most cases this conversion mechanism involves some form of

motor assembly attached to a diaphragm. The alternating force gener-

ated by the motor assembly, in response to the electrical signal, causes

the diaphragm to vibrate. This in turn moves the air in contact with the

diaphragm and gives rise to the radiation of the sound. The loudspeaker

driver creates acoustic pressure on both sides of the diaphragm. There-

fore, a cabinet of some sort is needed to control the sound radiations

from the back of the loudspeaker driver. Transmission-line loudspeakers

are designed to use the backward radiations of the driver diaphragm,

by redirecting them to re-emerge from the open end of the TLL, conse-

quently extending the overall low-frequency response of the loudspeaker.

Loudspeaker systems suffer from an insufficient low-frequency response,

due to their inefficiency at the low-frequencies. Transmission-line loud-

speakers rely on the use of sound absorbing materials added on the in-

ternal boundaries of their waveguide to extend the overall low-frequency

response of the loudspeaker. Therefore, they are most effective at the fre-

quency range of fs to 1000 Hz, where fs is the resonance frequency of the

TLL driver. The response of the transmission-line waveguides indicates,

that they act such as low-pass acoustic filters; therefore they have been

designed and optimized such that the mid and high frequencies were sub-

jected to a large attenuation within the TLL duct but the low-frequency
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sounds re-emerge from the open end of the duct with a phase such that

the reinforcement with the direct radiated sound from the woofer would

take place as explained in detail in Chapter 1.

Standard numerical techniques within the COMSOL Multiphysics envi-

ronment were used to investigate the characteristics of sound propagation

within a range of rectangular cross-section lined ducts at low-frequencies.

The numerical results were initially validated against the results of the an-

alytical models for the basic cases of sound propagation within a TLL as

explained in detail in Chapter 3. It was shown that the created models are

capable of correctly predicting the coupling between both the free prop-

agating region and the acoustically treated region with the bulk-reacting

sound absorbing liners of the TLL as explained in detail in Chapter 4.

The analytical models looked into the basic forms of the ducts, namely

uniform straight ducts, with a variety of acoustic treatments, hard-walled

and locally-reacting sound absorbing liners, and a variety of source ex-

citations, namely pistonic and non-uniform excitation, as explained in

detail in Chapter 2. Next, the lumped parameter model of the loud-

speaker driver was constructed and combined with the numerical models

of the sound propagation behaviour within a range of treated TLL as a

excitation source. Using the Thiele-Small low-frequency parameters of

the loudspeaker driver, some of the more complicated electroacoustical

parameters such as the total stiffness of the driver suspension and the

damping of the driver suspension were found, as explained in detail in

Chapter 2. The acoustic impedance at the driver-end, inside the TLL

duct and the volume-velocity at the open end of the TLL waveguide

were also estimated using the developed numerical models. A variety

of bulk-reacting sound absorbing materials, comprising of a range of fi-

brous and porous absorbers were characterized by their flow-resistivity

and acoustic impedance. Using the impedance-tube in the ISVR labo-

ratory, impedance measurements were conducted on the selected range

of fibrous and porous sound absorbing samples. The impedance data

were then compared with the Delany and Bazley [54] and Wu Qunli [27]

methods which were applied to the flow-resistivity measurements of the

same range of fibrous and porous materials respectively, and conducted

in the Centre of Acoustic-Liner Technology of Alenia Aermacchi in Italy

using a DC-flow test, and have been used in Chapter 3 to construct
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the numerical models of the treated TLL. Next, the numerical predic-

tions progressed to more complicated cases of ducts, namely L-shaped

and U-shaped, lined on the interior boundaries with bulk-reacting acous-

tic liners. Then extensive in-situ measurements were conducted on a

variety of treated TLL using a variety of microphone probes, namely

PU-match and USP-regular, from Microflown Technologies in order to

directly measure the internal sound pressure and 3D acoustic-intensity

along the length of the TLL ducts. The prediction results of the numer-

ical models were then compared with the in-situ measurement results of

the sound pressure performed on a range of treated TLL as explained in

detail in Chapter 4.

Finally, the developed numerical models were used to apply acoustical

optimization on a simple-geometry transmission-line loudspeaker cabi-

net. The TLL consist of an acoustically treated waveguide attached to

the back of the loudspeaker driver in order to extend the overall low-

frequency response of the loudspeaker. The audio performance of the

TLL can be acoustically optimized by accordingly controlling the inter-

nal sound pressure along the length of the TLL waveguide. The acoustic

treatments within the TLL waveguide have direct effects on the over-

all audio performance of the TLL as explained in detail in Section 5.3.

The acoustical optimization parameters were further divided into loca-

tion, thickness and type of different sound absorbing liners. Also, it

was proved that by adding a suitable sound absorbing material within

the internal boundaries of the TLL duct, the mid and high frequencies

could be attenuated and the significant resonances could be controlled.

In Section 5.3.3, the effects of sound absorbing materials on the imag-

inary length of the TLL duct was looked at. It was also proved that

by lining the internal boundaries of the TLL waveguide with the sound

absorbing materials, the speed of sound propagation in the duct will be

significantly reduced, which in practice means that the wavelengths of the

sound signal in the TLL waveguide are effectively reduced. Consequently

the required length of the duct that accommodates the lowest designed

frequency is reduced. The wave amplitude also decays exponentially with

distance according to the sound absorbing materials used on the internal

boundaries.
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Further Work

The work presented in this thesis can be further continued and improved,

mainly in three areas: the numerical models, the in-situ measurements

performed on the transmission-line loudspeakers and the optimization of

TLL.

7.1 Numerical Models

There is a number of factors that contribute to the limitations of the

numerical models. First, the 3D geometries under consideration, which

are being drawn using SolidWorks 3D drawing package. There are many

known and documented problems in transferring the 3D geometries be-

tween the SolidWorks and COMSOL environments. The drawing ca-

pability of the COMSOL package is quite limited and therefore a more

versatile drawing environment, such as SolidWorks, had to be used to

offer more comprehensive controls over the 3D geometries drawn for the

purpose of this project. However, the lines and parts of the imported

geometries into the COMSOL software are numbered automatically by

COMSOL and sometimes in a non-sequential order. This in turn creates

problems when trying to evaluate the geometry under the consideration

along those connected lines or parts. Further research could be done in

finding a 3D drawing environment that matches better with the COM-

SOL package hence avoiding the aforementioned problems. Next in line of

the numerical limitation is that the numerical models use the results of a
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number of different measurements, one of which is the flow-resistivity, (σ)

values, which is inserted for the Rf values in the COMSOL and therefore

any inaccuracy in those data supplied by the external company, Centre

of Acoustic-Liner Technology Alenia Aermacchi , will directly affect the

accuracy of the numerical models. Also the measure flow-resistivities

were measured for the range of flow speed specifically designed for the

aeroacoustic applications which was not the case in this project. In the

continuation of this project the flow-resistivities could be measured with

the specific flow speed suitable for the purpose of the audio applications.

Another measurement result used in the presented numerical models were

the coefficients of Delany and Bazley [54] used for the modelling of the

fibrous absorbing materials and the coefficients of Wu Qunli [27] used

for the modelling of porous absorbing materials. These measurements

of the coefficients of Delany and Bazley or Wu Qunli, were conducted

a long time ago with the measurement limitations of their own time

and any inaccuracy of those experimental data will again directly affect

the outcome of the numerical models presented here. It would be rec-

ommended to double check those experimental findings of Delany and

Bazley and Wu Qunli with a new round of measurements on the cor-

responding materials. Another numerical limitation was that in order

to keep the computational cost-function of the presented models as low

as possible, a pressure-release boundary condition has been assumed for

the modelling of sound propagation at the open end of the duct. The

assumption of a pressure-release boundary condition at the open end of

the TLL ducts contributes to the lack of complete accuracy between the

numerical prediction and the in-situ measurements at that region of the

duct, as discussed in detail in Section 3.7. For the correct modelling

of the open end however, the TLL should have been placed in a large

cube, representing the listening room in which the TLL would be used;

large enough to accommodate at least three or four full-wavelengths of

the lowest-frequency of interest, 20 Hz, for the purpose of audio applica-

tions, and it should use the model definition of perfectly matched layer

within the COMSOL environment instead of the sound soft boundary

representing the pressure-release boundary condition for the open end of

the duct. However, by adding this to the models, the size to aspect ra-

tio would become considerably larger and in order to maintain the same
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modelling resolution the computational cost-function would increase con-

siderably, which has been avoided in the models presented. It should also

be noted that the pressure-release boundary condition is an acceptable

and accurate approximation for the low-frequency range of interests as is

the case in this project. However, due to the intended application of au-

dio research, it is necessary to look at the full-range of audible frequency,

20 to 20k Hz; therefore the assumption of pressure-release boundary con-

dition would no longer be applicable. Also as mentioned in Section 2.2 the

volume of air in the TLL enclosure constitutes an additive stiffness which

is refereed to as an acoustic load. The acoustic load inside the waveguides

depends on the internal volume of the duct, therefore as the size of the

loudspeaker increases so as the acoustic load within the waveguides. In

this investigation, to keep the presented models simple and robust, the

internal volume of all the TLL waveguides have been kept constant and

with the same duct length. However, the effect of the acoustic loading

of the loudspeaker motion within on the numerical predictions have not

been accounted for, which should be included in the future and further

advanced numerical models of the TLLs.

7.2 In-situ Measurements

There are several different factors in the measurements conducted that

created and increased the measurement errors. One of the main limiting

factors was the precision of the microphone locations during the mea-

surements in all of the TLL waveguides. In the scan and paint method

used for the measurement conducted on the straight ducts and presented

in Section 4.5.2, the PU-match microphone was mounted at the end of a

7 m long rod which was rolled backward from the driver position at x = 0

to the open end of the duct at x = Lx. Due to the long length of the rod

also including the microphone stand, the microphone was vibrating as it

was rolled backwards to the open end of the waveguide hence reducing

the accuracy of the measurements. In the in-situ sound-intensity method

used for the measurements conducted on the U-shaped ducts, the posi-

tion of the USP-regular microphone mounted on a miniature tripod was

changed for each measurement point. Due to the required high number
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of repetitions of the microphone alignments, there was a possibility of

mis-aligning the 3D-sensor at some of the locations. Next in the list

of limiting factors was the signal-to-noise ratio during the data acquisi-

tion. For the scan and paint method the measurement was performed

in the anechoic chamber whereas for the U-shaped duct measurements

the tests were performed in the listening room laboratory. Therefore the

noise floor was considerably higher than the measurement done in the

anechoic chamber. Another limiting factor was the inherent microphone

inaccuracy that each and every microphone suffers from. The general

inaccuracy in the repeatability of the measurement conditions was an-

other limiting factor in the measurement errors. Also the loudspeaker

drivers never behave completely pistonic; hence modelling the drive-unit

with the pistonic excitation introduces further inaccuracy and error be-

tween the numerical predictions and the direct measurements conducted

and presented in Chapter 4. There are different source excitations which

have been considered within the presented numerical models in Chapter3,

such as pistonic or non-uniform excitations. The pistonic source excita-

tions were then further advanced to use the lumped parameter model of

the actual driver used in the measurement using the Thiele-Small low-

frequency parameters of the loudspeaker driver. However, the current

numerical models can be further advanced by including a model of a

full-range loudspeaker driver capable of accurately modelling the driver

in the frequency range of 20 to 20k Hz. The next error factor was the

measured low-frequency response of the sound-field inside the TLL ducts

which were directly affected by the resonant frequency of the loudspeaker

driver. In measuring the U-shaped ducts, the point by point measurement

technique was used. The separation distance between the measurement

points was another limitation factor. A denser measurement with higher

resolution can improve that possible error. In the case of the scan and

paint method which was used for the straight duct measurements the

microphone was rolled backwards from the back of the driver position to

the open end of the duct. It was not possible within the availability of

this project to do an extensive measurement on all ranges of available

sound absorbing materials. The analysis could be further solidified by

adding further extensive data acquisition on the whole range of treated

waveguides.
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Chapter 7. Further Work

7.3 Optimization

In this project the optimization was applied on the simple geometry

U-shaped TLL, and focused only on the acoustical optimization and

the geometrical optimization was completely ignored. Further research

should include the investigation on the effect of geometrical optimization

combined with the acoustical optimization. For example as can be seen

in the on-axis frequency response function of an acoustically optimized

TLL at low-frequency in Fig. 5.5, it can be noticed that the optimized

response is within the acceptable HiFi tolerance of ±3 dB apart from

the frequency range of 117 to 176 Hz, where a −6 dB trough can be

observed. This trough can be optimized by looking at the geometrical

optimization of this TLL cabinet and mainly the separation distance be-

tween the sound source (driver) and the open end of the TLL. Next, the

advanced optimized models should be further validated through a series

of direct comparison with the in-situ measurements on the TLL cabinets

corresponding with the newly developed models. Finally, since this work

could be applied in a wide variety of the applications such as ventila-

tion ducts in the architectural design, sound mufflers in the automotive

engineering or aircraft engine ducts in the aerospace and aeronautical

applications to name but a few, therefore, the future research should also

look into those area in order to cover any specific requirement within

those aforementioned applications.
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Appendix A

Derivations

A.1 Derivation of Analytical Models of TLL

y

z 

Ly

Lz
x 

Figure A.1: Schematic model of straight duct.

Beginning with a simple acoustics model of sound propagating through

the duct at a single frequency ω, the complex form of harmonic solution

for the acoustic pressure of a plane wave, where the pressure variation p

in the duct has positive and negative propagating components, is given

by the following equation [25]:

p(x, t) = Ae(jωt−γx) +Be(jωt+γx), (A.1)

where γ is complex propagation coefficient of a progressive wave system

given by γ = α+ jβ where α is the attenuation factor, β is the acoustic

wavenumber and j =
√
−1 [19]. The angular frequency is ω = 2πf and
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c is the speed of sound in free-air, f is the frequency parameter and x

represents the distance from the source along the axis of the pipe. The

parameters A and B are the complex amplitudes of the incident and

reflected waves respectively and t is time. The relationship between the

pressure p and the particle velocity u is given by the Euler equation.

The linear form of the Euler equation is stated in Eq. (A.2). Assuming

that fluid quantities consist of a steady component (ambient) denoted by

subscript (0) and a small unsteady component denoted by superscript (′),

therefore total pressure is p = p0 + p′ and total density is ρ = ρ0 + ρ′,

where p′ � p0 and ρ′ � ρ0, the linearized Euler equation is given by the

following equation [25]:

ρ
∂u

∂t
= −∇p, (A.2)

where ∇ = ∂
∂x î+ ∂

∂y ĵ + ∂
∂z k̂ in the three dimensional cartesian coordi-

nates, and

î =


1

0

0

 , ĵ =


0

1

0

 , k̂ =


0

0

1


are the unit vectors codirectional with the x, y and z axes respectively. ρ

is the total density of the air medium. For sound of single frequency ω,

Eq. (A.2) can be solved to give the particle velocity u(x, ω) with respect

to the pressure p(x, ω)

jωρu(x, ω) = −∇p(x, ω) (A.3)

where p(x, ω) and u(x, ω) now refer to the complex amplitudes of the

pressure and particle velocity respectively. Now substituting for p from

p(x, ω) = Ae−γx +Beγx, from Eq. (A.1) into Eq. (A.3) gives the velocity

u(x, ω) to be

u(x, ω) =
−jγ
ωρ

(
Ae−γx −Beγx

)
. (A.4)

The characteristic impedance is Z = p/u. Using Eq. (A.1) and Eq. (A.4)

it can be written as

Z(x, ω) =
jωρ

γ

(
Ae−γx +Beγx

Ae−γx −Beγx
)
. (A.5)

Evaluating Z(x, ω) at the back of the driver, inside the TLL where x = 0

gives the radiation impedance at the back of the driver Z(x, ω) |x=0= Zab
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to be

Zab =
jωρ

γ

(
A+B

A−B

)
. (A.6)

Now let r = B/A where r is the complex reflection coefficient at the back

of the driver. Substituting this into Eq. (A.6) gives

Zab =
jωρ

γ

(
1 + r

1− r

)
. (A.7)

By rearranging Eq. (A.7) the reflection coefficient r can be found to be

r =
(γ/jωρ)Zab − 1

(γ/jωρ)Zab + 1
. (A.8)

In a lossless medium, γ = jk, where and k = ω/c, Eq. (A.8) evaluates to

[19]:

r =
(Zab/ρc)− 1

(Zab/ρc) + 1
. (A.9)

A.1.1 Applying Boundary Conditions

Applying the boundary condition of continuity of particle velocity at

x = 0, the velocity at the back of the driver becomes u(x, ω) |x=0= ud.

Substituting this into Eq. (A.4) gives

ud =
−jγ
ωρ

(A−B) . (A.10)

Calculating the complex amplitude B of the reflected wave with respect

to A the complex amplitude of the incident wave gives

B = A−
(
jωρ

γ

)
ud. (A.11)

At x = Lx, where Lx is the length of the TLL waveguide, the radiation

impedance at the open end of the duct is Zal = p(l)/u(l). At the open

end of the TLL duct a pressure-release boundary condition has been

assumed, therefore Zal = 0. This condition is assumed since a duct with

a small opening experiences a sudden expansion in the cross sectional

area, therefore the pressure at the open end of the duct tends to zero and

hence:

p(x, ω) |x=Lx= pl = Ae−γLx +BeγLx = 0 (A.12)
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and therefore,

B = −Ae−2γLx . (A.13)

Equating Eq. (A.11) and Eq. (A.13) results in

A =
jωρ

γ

(
ud

1 + e−2γLx

)
. (A.14)

Eq. (A.14) can be rearranged to give the velocity at the driver-end

u(x, ω) |x=0= ud to be

ud =
−jγ
ωρ

(
1 + e−2γLx

)
A. (A.15)

A.1.2 Pressure and Velocity Along the Length of TLL

Substituting for B from Eq. (A.13) into Eq. (A.1) gives

p(x, ω) = A
(
e−γx − eγ(x−2Lx)

)
. (A.16)

Now substituting for A from Eq. (A.14) in Eq. (A.16) gives the equation

for pressure inside the TLL waveguide

p(x, ω) =
jωρ

γ

(
e−γx − eγ(x−2Lx)

1 + e−2γLx

)
ud. (A.17)

To find the equation for the particle velocity inside the TLL cabinet,

substituting for B from Eq. (A.13) into Eq. (A.4) gives

u(x, ω) =
−jγ
ωρ

(
e−γx + eγ(x−2Lx)

)
A. (A.18)

Now substituting for A from Eq. (A.14) in Eq. (A.18) gives the equation

for the particle velocity inside the TLL duct

u(x, ω) =

(
e−γx + eγ(x−2Lx)

1 + e−2γLx

)
ud. (A.19)

Using Eq. (A.19) the velocity at the open end of the TLL duct become

u(x, ω) |x=Lx= ul. Therefore ul can be found to be

ul =

(
2e−γLx

1 + e−2γLx

)
ud. (A.20)
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The driver volume-velocity is qd = udSd where ud is the driver velocity

and Sd is the surface area of the driver diaphragm. The volume-velocity

at the open end of the TLL is ql = ulS where ul is the velocity at the

open end of the waveguide and S is the cross sectional area of the open

end of the duct. The total volume-velocity q of the TLL can be found to

be

q = udSd − ulS. (A.21)

The total velocity of the TLL is ut = ud − ul. Therefore the total velocity

normalized with respect to the driver velocity is

ut
ud

= 1− ul
ud
. (A.22)

Therefore the ratio of the total velocity ut to the velocity at the back of

the driver ud becomes

ut
ud

= 1− 2e−γLx

1 + e−2γLx
. (A.23)

In a lossless medium equation (A.23) becomes:

ut
ud

=
cos (kLx)− 1

cos (kLx)
. (A.24)
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Appendix B

Measurement Results

B.1 Real and Imaginary parts of Impedance-

Tube Results

Figure B.1 show the real parts of impedance results of porous and fibrous

samples respectively.
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Figure B.1: Real parts of impedance results. (a) Porous samples
RX30/080, RX33/160, RX33/190, RX39/200, RX41/150, RG50-
/100, RG50/135 and RG50/230 and (b) fibrous samples cotton felt
- F1B, needled felt - F1O, polyester wrap - S6B and polyester wrap -

S6C.
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Figure B.2 show the imaginary parts of impedance results of porous and

fibrous samples respectively.
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Figure B.2: Imaginary parts of impedance results. (a) Porous
samples RX30/080, RX33/160, RX33/190, RX39/200, RX41/150,
RG50/100, RG50/135 and RG50/230 and (b) fibrous samples cotton
felt - F1B, needled felt - F1O, polyester wrap - S6B and polyester wrap

- S6C.
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Appendix B. DC-Flow Results

B.2 DC-Flow Results

The data presented here are the results of flow-resistivity measurements

performed by centre of acoustic-liner technology of Alenia Aermacchi on

a range of fibrous and porous materials.

Table B.1 shows the flow-resistivity values measured using DC-flow test

for the samples RX30/080, RX33/160, RX33/190 and RX39/200 re-

spectively.

Figure B.3 shows the flow-resistivity values measured using DC-flow test

for the samples RX30/080, RX33/160, RX33/190 and RX39/200 re-

spectively.

Table B.2 shows the flow-resistivity values measured using DC-flow test

for the samples RX41/150, RG50/100, RG50/135 and RG50/230 respec-

tively.

Figure B.4 shows the flow-resistivity values measured using DC-flow test

for the samples RX41/150, RG50/100, RG50/135 and RG50/230 respec-

tively.

Table B.3 shows the flow-resistivity values measured using DC-flow test

for the samples cotton felt - F1B, needled felt - F1O, polyester wrap - S6B

and polyester wrap - S6C respectively.

Figure B.5 shows the flow-resistivity values measured using DC-flow test

for the samples cotton felt - F1B, needled felt F1O, polyester wrap - S6B

and polyester wrap - S6C respectively.
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Area 1 Area 2 Average

Flow- Light Blue Light Blue Light Blue
Speeds RX30/080 RX30/080 RX30/080
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 67900 67700 67800

0.40 84100 83400 83700

0.60 102900 101000 101900

1.05 148000 144700 146300

1.50 195100 191200 193100

2.00 179200 179900 179500

3.00 117400 118800 118100

Flow- Green Green Green

Speeds RX33/160 RX33/160 RX33/160
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 40500 40100 40300

0.40 47200 46600 46900

0.60 55500 54500 55000

1.05 75000 73800 74400

1.50 96600 94600 95600

2.00 121800 119200 120500

3.00 119300 119100 119200

Flow- Aqua Aqua Aqua

Speeds RX33/190 RX33/190 RX33/190
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 67000 62600 64800

0.40 79600 73500 76500

0.60 93600 86100 89800

1.05 128300 116400 122300

1.50 164300 148900 156600

2.00 176800 176500 176600

3.00 119400 117300 118300

Flow- Sky Blue Sky Blue Sky Blue

Speeds RX39/200 RX39/200 RX39/200
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 45100 45000 45000

0.40 53200 52700 52900

0.60 62500 60900 61700

1.05 83600 80800 82200

1.50 106000 102000 104000

2.00 132900 126700 129800

3.00 118500 118900 118700

Table B.1: Flow-resistivity values of samples RX30/080, RX33/160,
RX33/190 and RX39/200 respectively for a range of flow speed.
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Figure B.3: Flow-resistivity values of RX30/080, RX33/160, RX33-
/190, RX39/200 respectively.
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Area 1 Area 2 Average

Flow- Grey Grey Grey
Speeds RX41/150 RX41/150 RX41/150
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 49500 49200 49300

0.40 57900 57400 57600

0.60 67200 66400 66800

1.05 89100 88900 89000

1.50 113100 112900 113000

2.00 140800 140800 140800

3.00 119100 118800 118900

Flow- Gold Gold Gold

Speeds RG50/100 RG50/100 RG50/100
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 35300 35200 35200

0.40 42700 42000 42300

0.60 51100 49800 50400

1.05 70900 68400 69600

1.50 92200 89100 90600

2.00 117800 113200 115500

3.00 119600 119100 119300

Flow- Pink Pink Pink

Speeds RG50/135 RG50/135 RG50/135
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 43700 44800 44200

0.40 51800 53000 52400

0.60 61100 62200 61600

1.05 83300 84600 83900

1.50 107600 108900 108200

2.00 135600 137100 136300

3.00 118800 119100 118900

Flow- White White White

Speeds RG50/230 RG50/230 RG50/230
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 50900 49200 50000

0.40 65100 61800 63400

0.60 81000 76300 78600

1.05 119700 111400 115500

1.50 159500 147900 153700

2.00 176800 176900 176800

3.00 117300 118900 118100

Table B.2: Flow-resistivity values of samples RX41/150, RG50/100,
RG50/135 and RG50/230 respectively for a range of flow speed.
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Figure B.4: Flow-resistivity values of RX41/150, RG50/100, RG50-
/135, RG50/230 respectively.
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Area 1 Area 2 Average

Flow- Cotton Felt Cotton Felt Cotton Felt
Speeds F1B F1B F1B
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 166600 169800 168200

0.40 180600 185100 182800

0.60 195500 199100 197300

1.05 229100 235700 232400

1.50 237000 237500 237200

2.00 176400 176600 176500

3.00 119300 118900 119100

Flow- Needled Felt Needled Felt Needled Felt

Speeds F1O F1O F1O
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 495100 446100 470600

0.40 523500 482100 502800

0.60 549500 509800 529600

1.05 345600 342900 344200

1.50 240000 238700 239300

2.00 177600 175900 176700

3.00 119700 119400 119500

Flow- Polyester Wrap Polyester Wrap Polyester Wrap

Speeds S6B S6B S6B
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 11100 11300 11200

0.40 12300 12600 12400

0.60 13600 13700 13600

1.05 16000 16200 16100

1.50 18300 18500 18400

2.00 20600 20800 20700

3.00 25000 25100 25000

Flow- Polyester Wrap Polyester Wrap Polyester Wrap

Speeds S6C S6C S6C
[m s−1] [Pa s m−2] [Pa s m−2] [Pa s m−2]

0.20 6200 6100 6100

0.40 7100 6900 7000

0.60 7800 7600 7700

1.05 9300 9100 9200

1.50 10700 10600 10600

2.00 12100 11900 12000

3.00 14800 14700 14700

Table B.3: Flow-resistivity values of samples Cotton Felt - F1B, Ne-
edled Felt - F1O, Polyester Wrap - S6B and Polyester Wrap - S6C

respectively for a range of flow speed.
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Figure B.5: Flow-resistivity values of cotton felt - F1B, needled felt
- F1O, polyester wrap - S6B and polyester wrap - S6C respectively.
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B.3 Numerical Models

B.3.1 Numerical Prediction L-shaped Duct

Figures B.6 and B.7 show the acoustic pressure variation along the length

of a L-shaped duct, with non-uniform excitation, lined with a bulk-

reacting sound absorbing liner sample RG50/135.

(a) (b)

(c) (d)

Figure B.6: Acoustic pressure variation along the length of a
L-shaped duct, with non-uniform excitation, and acoustically treated
with sample RG50/135 (pink foam). (a) 200 Hz, (b) 210 Hz, (c) 220 Hz

and (d) 230 Hz.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.7: Acoustic pressure variation along the length of a
L-shaped duct, with non-uniform excitation, treated with sample
RG50/135. (a) 240 Hz, (b) 250 Hz, (c) 260 Hz, (d) 270 Hz, (e) 280 Hz,

(f) 290 Hz, (g) 300 Hz and (h) 1000 Hz.
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B.3.2 Numerical Models U-shaped Duct

Figures B.8 to B.9 show the acoustic pressure variation along the length

of a U-shaped duct, with non-uniform excitation, lined with a bulk-

reacting sound absorbing liner sample RG50/135, for the frequency range

of 20 to 1000 Hz.

B.3.3 Numerical Models U-shaped Duct Isosurface

Figure ?? shows the isosurface variation of acoustic pressure along the

length of the U-shaped duct, with non-uniform excitation, lined with a

bulk-reacting sound absorbing liner sample RG50/135, for the selected

frequencies within the range 120 to 310 Hz.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.8: Acoustic pressure variation along the length of a
U-shaped duct, treated with sample RG50/135, with non-uniform ex-
citation. (a) 20 Hz, (b) 80 Hz, (c) 100 Hz, (d) 160 Hz, (e) 180 Hz,

(f) 200 Hz, (g) 280 Hz and (h) 330 Hz.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.9: Acoustic pressure variation along the length of a
U-shaped duct, treated with sample RG50/135, with non-uniform ex-
citation. (a) 400 Hz, (b) 450 Hz, (c) 570 Hz, (d) 640 Hz, (e) 740 Hz,

(f) 800 Hz, (g) 900 Hz and (h) 1000 Hz.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.10: Isosurface acoustic pressure variation along the length
of a U-shaped duct, treated with sample RG50/135, with non-uniform
excitation. (a) 120 Hz, (b) 140 Hz, (c) 180 Hz, (d) 200 Hz, (e) 210 Hz,

(f) 240 Hz, (g) 270 Hz and (h) 310 Hz.
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B.4 Experimental Evaluation of Ducts

B.4.1 Straight-Duct Pressure Variation Results

Figures B.11 to B.12 illustrate the results of in-situ pressure measure-

ments along the length of the straight duct treated with sampleRG50/135,

at the specified frequencies using the Microflown PU-Match sensor.

Figure B.11: Pressure variation along the length of a straight duct
treated with sample RG50/135 for a frequency range of 40 to 250 Hz.
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Figure B.12: Pressure variation along the length of a straight duct
treated with sample RG50/135 for a frequency range of 350 to 1000

Hz.
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B.4.2 Detailed Experimental Results Using Microflown

USP-Regular 3D Sensor

Detailed experimental results using a Microflown USP-regular sensor are

described here. Figure B.13 shows the schematic of a U-shaped duct.

The selected area in Fig. B.13 where the bend in the U-shaped duct is

located, has been measured with high resolution and displayed in the

following figures for the frequency range of 40 to 1000 Hz.

Figure B.13: Schematic model of a U-shaped duct. The selected
area has been measured in detail for the frequency range 40−1000 Hz.
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B.4.3 U-Duct Pressure Results

Figures B.14 to B.15 illustrate pressure measurements of a U-shaped duct

with the hard-walled case at a height position 0.25 m at the specified

frequencies.
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Figure B.14: Pressure variation for the U-shaped duct, hard-walled
case for a frequency range 40 to 260 Hz.
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Figure B.15: Pressure variation for the U-shaped duct, hard-walled
case for a frequency range 300 to 1000 Hz.
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B.4.4 U-Duct Active Intensity Results

Figure B.16 shows the in-situ measurements of the active-intensity inside

the U-shaped duct, measured using the Microflown USP-regular probe

for the frequencies of 145, 385 and 850 Hz [88].
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Figure B.16: Active-intensity variation inside the U-shaped duct,
measured using the USP-regular probe. (a) 145 Hz, (b) 385 Hz

and (c) 850 Hz.
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The active-intensity variation around the bend region inside the U-shaped

TLL duct can be seen in Fig. B.16 at three different frequencies. Compar-

ing the results in Fig. B.16 (a) with the selected area in Fig. 4.20, it can

be seen that there is a region of high-active-intensity at 145 Hz around

and at the tip of the separating panel in the U-shaped duct. It can also

be seen that there are two regions of low-active-intensity encapsulating

the high-active-intensity region around the separating panel of the duct,

with the lowest intensity concentration at the two corners of the bend

area. It should also be noted that the arrows in Fig. B.16 show the direc-

tion that the active-intensity is tending towards. In Fig. B.16 (b) as the

frequency progresses to 385 Hz, the high-intensity region located around

and at the tip of the separating panel in Fig. B.16 (a) is now transformed

to the low-active-intensity at the tip of the separating panel and creates

a distinct region of high-intensity as well, which is concentrated on the

top-right corner of the waveguide bend. In Fig. B.16 (c) as the frequency

increases even further to 850 Hz, the low-intensity region at the tip of the

separating panel in Fig. B.16 (b) has moved to the bottom-right corner of

the U-shaped duct creating two regions of high and low active-intensities.

It is worth mentioning that the active-intensity is an equivalent term for

acoustic intensity, interpreted as a time-average quantity. The term is

mainly applied to single-frequency sound fields, where it is useful to con-

trast active and reactive-intensity components. It should be noted that

if the acoustic pressure and particle velocity in a single-frequency 3D

sound-field are represented by [19]

p = Re[p̃(x)ejωt],

u = Re[ũ(x)ejωt],
(B.1)

where p̃ and ũ are the complex pressure and velocity amplitudes at vector

position x respectively, then the active-intensity vector, IA, is [19]

IA =
1

2
Re[p̃ ∗ ũ], (B.2)

where ∗ is the complex conjugate. An equivalent expression based on the

rms pressure, prms, and the phase gradient, ∇ϕ, is [19]

IA = −p
2
rms

ωρ
∇ϕ, (B.3)
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where ϕ is the arg p̃, and where ρ is the fluid density. It should also

be noted that these relations apply to lossless fluids with no mean flow

[19]. Figures B.17 and B.18 illustrate active intensity measurements of

the U-shaped duct for the hard-walled case at a height position 0.25 m

at the specified frequencies.
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Figure B.17: Active intensity measurements for the U-shaped duct,
hard-walled case for frequency range 40 to 260 Hz.
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Figure B.18: Active intensity measurements for the U-shaped duct,
hard-walled case for frequency range 300 to 1000 Hz.

184



Appendix B. TLL Evaluations - U-shaped Duct

B.4.5 U-Duct Reactive Intensity Results

Figure B.19 shows the in-situ measurements of the reactive-intensity in-

side the U-shaped duct, measured using the Microflown USP-regular

probe for the frequencies of 130, 210 and 580 Hz [88].
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Figure B.19: Reactive-intensity variation inside the U-shaped duct
measured using the USP-regular probe. (a) 130 Hz, (b) 210 Hz

and (c) 580 Hz.
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The reactive-intensity around the bend region inside the U-shaped TLL

duct can be observed in Fig. B.19 at three different frequencies. Compar-

ing the results in Fig. B.19 (a) with the selected area in Fig. 4.20, it can

be seen that there is a region of high-reactive-intensity at 130 Hz around

and at the tip of the separating panel in the U-shaped duct. It can

also be seen that there is a region of low-reactive-intensity encapsulating

the high-intensity region, with the lowest intensity concentration at the

bottom-right corner of the bend area. In Fig. B.19 (b) as the frequency

progresses to 210 Hz, the high-reactive-intensity region located around

the separating panel in Fig. B.19 (a) has advanced, covering almost the

entire bending region of the U-shaped duct. It can further be noticed that

there is sharp and narrow region of low-reactive-intensity in front of the

separating panel in the U-shaped duct, separating the two high-reactive-

intensity regions. As in the previous case the arrows in Fig. B.19 show the

direction that the reactive-intensity is tending towards. In Fig. B.19 (c)

as the frequency increases even further to 580 Hz, the high-intensity re-

gion is concentrated on the top-right corner and a low-intensity region

is developed at the bottom-right corner of the U-shaped duct as well.

It is worth mentioning that the reactive-intensity is a measure of the

oscillatory instantaneous acoustic intensity associated with particle ve-

locity components in quadrature with the acoustic pressure. The term

is generally restricted to harmonic sound-fields, where it contrasted with

active-intensity. For a single-frequency sound-field whose acoustic pres-

sure and particle velocity position x are represented by Eq. B.1, the

reactive-intensity vector, JR, at point x may be written in terms of the

complex numbers, p̃, and ũ, as

JR = −1

2
Im[p̃ ∗ ũ], (B.4)

or the mean square pressure, p2rms, and its gradient, as

JR = − 1

2ωρ
∇(prms)

2. (B.5)

Here ω is the angular-frequency, and ρ is the density.
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Figures B.20 and B.21 illustrate the reactive intensity measurements of a

U-shaped duct for the hard-walled case at 0.25 m height position at the

specified frequencies.
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Figure B.20: Reactive intensity measurements for the U-shaped
duct, hard-walled case for frequency range of 40 to 260 Hz.
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Figure B.21: Reactive intensity measurements for the U-shaped
duct, hard-walled case for frequency range of 300 to 1000 Hz.
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B.4.6 U-Duct Global Intensity Results

Figure B.22 shows the in-situ measurements of the global-intensity inside

the U-shaped duct measured using the USP-regular sensor for frequencies

of 175, 225 and 545 Hz [88].
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Figure B.22: Global-intensity variation inside the U-shaped duct
measured using the USP-regular probe. (a) 175 Hz, (b) 225 Hz

and (c) 545 Hz.
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The global-intensity variation around the bend region inside the U-shaped

TLL duct can be seen in Fig. B.22 at three different frequencies. Compar-

ing the results in Fig. B.22 (a) with the selected area in Fig. 4.20 it can

be seen that there is a region of high-global-intensity at 175 Hz around

the separating panel in the U-shaped duct. It can also be seen that there

are two regions of low-global-intensity on the top and bottom sides of the

U-shaped duct, with the lowest intensity concentration at the top-right

corner of the bending region. In Fig. B.22 (b) as the frequency progresses

to 225 Hz, the high intensity region located around the separating panel

in Fig. B.22 (a) has been moved to the top-half of the U-shaped duct

creating two distinct regions of high and low global-intensity on the bend

area of the duct with the lowest concentration of the global-intensity be-

ing located at the bottom-right side of the U-shaped duct. As in the

previous case, the arrows in Fig. B.22 show the direction that the global-

intensity is tending towards. In Fig. B.22 (c) as the frequency increases

even further to 545 Hz, the high and low intensity regions in Fig. B.22 (b)

is further concentrated on the top and bottom corners of the duct creating

two distinct regions of high and low global-intensity.
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Figures B.23 and B.24 illustrate the global intensity measurements of a

U-shaped duct for the hard-walled case at 0.25 m height position at the

specified frequencies.
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Figure B.23: Global intensity measurements for the U-shaped duct,
hard-wall case for frequency range 40 to 260 Hz.
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Figure B.24: Global intensity measurements for the U-shaped duct,
hard-wall case for frequency range 300 to 1000 Hz.
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Appendix C

Comparison and Estimation

C.1 Comparison of DC-Flow and Impedance-

Tube Data

C.1.1 Estimating Magnitude of Reflection Coefficient and

Absorption Coefficient of Fibrous Samples Using

the Delany and Bazley Method

Figure C.1 shows the comparison of magnitude of reflection coefficients of

a range of fibrous materials measured using DC-flow tests with impedance-

tube measurements [54].
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Figure C.1: Comparison between the magnitude of reflection coeffi-
cient of fibrous materials. Impedance-tube measurements (solid line)
and DC-flow measurements (dot dashed line). Compared samples cot-
ton felt - F1B, needled felt - F1O, polyester wrap - S6B and polyester

wrap - S6C.
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Figure C.2 shows the comparison of magnitude of reflection coefficients of

range of fibrous materials measured using DC-flow tests with impedance-

tube measurements. Impedance-tube measurements correspond to the

solid lines and DC-flow measurements correspond to the dot dashed lines

in the presented figure. Compared samples are as follows: (a) needled felt

- F1O, (b) cotton felt - F1B, (c) polyester wrap - S6B and (d) polyester

wrap - S6C [54].
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Figure C.2: Comparison of magnitude of reflection coefficient of fi-
brous materials. Impedance-tube measurements (solid line) and DC-
flow measurements (dot dashed line). (a) needled felt - F1O, (b) cotton

felt - F1B, (c) polyester wrap - S6B and (d) polyester wrap - S6C.

Figure C.3 shows the comparison of absorption coefficients of a range of

fibrous materials measured using the DC-flow test with impedance-tube

measurements. Impedance-tube measurements correspond to the solid

lines and DC-flow measurements correspond to the dot dashed lines in

the presented figure. Compared samples are as follows: (a) cotton felt -

F1B, b) needled felt - F1O, (c) polyester wrap - S6B and (d) polyester

wrap - S6C [54].

It can be observed that the measured impedance-tube data are following

the same trend and varying by a small amount. However the comparison
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Figure C.3: Comparison between absorption coefficient of fibrous
materials. Impedance tube measurements (solid line) and DC-flow
measurements (dot dashed line). Compared samples cotton felt - F1B,

needled felt - F1O, polyester wrap - S6B and polyester wrap - S6C.

between the impedance-tube data and DC-flow measurements are not

always very good. The comparison between the measured results for the

cotton felt and needled felt are showing very good agreement whereas

the comparison for both polyester-wrap samples (S6B and S6C) are not

in great agreement.
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C.1.2 Estimating Absorption Coefficient and Magnitude

of Reflection Coefficient of Porous Samples Using

the Wu Qunli Method

Figure C.4 shows the comparison of absorption coefficients of a range of

porous materials measured using the DC-flow test with impedance-tube

measurements [27].
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Figure C.4: Comparison between absorption coefficient of porous
samples. Impedance-tube measurements (solid line) and DC-flow mea-
surements (dot dashed line). (a) RX30/080, RX33/160, RX33/190,
RX39/200, and (b) RX41/150, RG50/100, RG50/135, RG50/230.

Figure C.5 shows the comparison of magnitude of reflection coefficients

of a range of porous materials measured using the DC-flow test with

impedance-tube measurements [27].
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Figure C.5: Comparison between magnitude of reflection coefficient
of porous materials. Impedance-tube measurements (solid line) and
DC-flow measurements (dot dashed line). (a) RX30/080, RX33/160,
RX33/190, RX39/200, and (b) RX41/150, RG50/100, RG50/135,

RG50/230.
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Figure C.6 shows the comparison between magnitude of reflection coef-

ficients of fibrous samples measured using the impedance tube with DC-

flow measurements. Compared samples are as follows: (a) RX30/080,

(b) RX33/160, (c) RX33/190, (d) RX39/200, (e) RX41/150, (f) RG-

50/100, (g) RG50/135 and (h) RG50/230 [27].
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Figure C.6: Comparison of magnitude of reflection coefficient of
a range of porous materials. Impedance-tube measurements (solid
line) and DC-flow measurements (dot dashed line). (a) RX30-
/080, (b) RX33/160, (c) RX33/190, (d) RX39/200, (e) RX41/150,

(f) RG50/100, (g) RG50/135 and (h) RG50/230.
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C.2 Numerical Models

C.2.1 Comparison of Mashing Size and Techniques

Figure C.7 shows the comparison between three meshing sizes of external

and internal elements of straight ducts using the free-tetrahedral method

(a to f) and the swept-and-mapped method of meshing (g and h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure C.7: Comparison of different size free-tetrahedral node
meshed element (a to f) with swept-and-mapped node meshed method
(g and h). (a, c, e and g) show external mesh size (left-side figures).

(b, d f and h) show internal mesh size (right-side figures).
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C.3 Estimation of Absorption Coefficients Us-

ing Flow-Resistivity Data

C.3.1 Improving Flow-Resistivity Value

Figure C.8 shows the comparison between the absorption coefficient and

magnitude of reflection coefficient for a sample of porous plastic open-

cell foam RX33/160 with its improved version, where the flow-resistivity

value has been calibrated. The impedance-tube measurement has been

compared with measured flow-resistivity value in conjunction with the

empirical absorption coefficients and magnitude of refection coefficient

from Wu Qunli.
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Figure C.8: Comparison of α and |r| for a sample RX33/160 with
its improved version, where the flow-resistivity value has been cali-
brated. The impedance-tube measurement has been compared with
measured flow-resistivity value in conjunction with the empirical ab-
sorption coefficients and magnitude of refection coefficient from Wu
Qunli. (a) Measured comparison of α, (b) comparison of α for im-
proved σ, (c) measured comparison of |r| and (d) comparison of |r| for
improved σ. Impedance-tube results (solid line) and empirical results

(dot dashed line)
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The flow-resistivity values were measured using the Aermacchi DC-flow

test rig. These values were then compared with the impedance-tube

measurements conducted in the ISVR which shows some discrepancy be-

tween the two measurements. Therefore the attempt was made to correct

the flow-resistivity values by calibrating the flow-resistivity values based

on the impedance-tube measurements. Figure C.9 shows the compari-

son between the in-situ measurement and the numerical prediction with

the improved flow-resistivity value and pistonic excitation for straight-

duct treated duct for sample of porous plastic open-cell foam RX33/160

(green foam).
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Figure C.9: Comparison of direct measurement and numerical pre-
diction of sound pressure along the straight duct with improved σ value
treated with sample RX33/160 for frequencies 63, 125, 250, 500 and
1000 Hz. COMSOL results (solid lines) and measurement results (dot

dashed lines).

As can be seen in Fig. C.9, the improvement of flow-resistivity value in

the numerical model with respect to impedance-tube measurement does

not improve the overall prediction and the lack of accuracy in the mid

and high frequency at 500 and 1000 Hz still can be observed. Other than

that the measurement and prediction has close similarity as explained for

Fig. 4.17. The effect of pressure-release boundary at the open end of the

duct can be observed for the frequencies of 500 and 1000 Hz which is due

to the sudden expansion in the acoustic boundary at the open end of the

waveguide. The direct measurements for the frequencies of 63, 125 and

250 Hz exhibit close similarity in their trend with the numerical predic-

tion, with the comparison of 250 Hz being almost the same apart from

the prediction at the opening-end of the duct, which was due to choosing

the pressure-release boundary condition for the opening-end of the duct,
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to keep the numerical models as robust as possible. The measurements at

500 and 1000 Hz show far less similarity in their comparison of magnitude

of the sound pressure with the predicted values.

C.3.2 Improving Excitation Source in Numerical Predic-

tion

Figure C.10 illustrates the comparison between the results of the numer-

ical prediction for the straight duct with non-uniform excitation, loaded

with a sample of porous sound absorbing liner RX33/160 (green foam)

with the direct measurements on the corresponding treated duct.
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Figure C.10: Comparison of in-situ measurement results of sound
pressure along the straight duct, non-uniform excitation treated with
sample RX33/160 (green foam) for the frequencies 63, 125, 250, 500
and 1000 Hz. COMSOL results (solid lines) and measurement results

(dot dashed lines).

The assumption has been made that the loudspeaker driver motion at

low-frequency can be modelled as a uniform pistonic movement. There-

fore, a pistonic excitation is considered as the excitation source for the

driver of the TLL. The advanced numerical model, however, should con-

sider a lumped parameter model of the driver as an excitation source

in the numerical model to accurately predict the frequency dependent

behaviour of the driver at the frequency range of interest. Using the

mathematical model developed in Chapter 2 Section 2.4.3, a special case

of non-uniform excitation source such as a rolling piston has been chosen

to excite a large number of modes in the numerical model, as described

in Eq. (2.18) and shown in Fig. 2.13, where the square cross-sectional
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area of transmission-line duct has been divided into two isosceles trian-

gles separated by the diagonal line of the cross-section. One triangle is

pulsating inwards and outwards and another one has been clamped into

the duct-body to be fixed.

As can be seen in Fig. C.10, the improvement of excitation source in the

numerical model does not improve the overall prediction and the lack

of accuracy in the mid and high frequencies at 500 and 1000 Hz still

can be observed. Other than that the measurements and predictions

have close similarity as explained for Fig. 4.17. The effect of a pressure-

release boundary at the open end of the duct can be observed for the

frequencies of 500 and 1000 Hz which is due to the sudden expansion in

the acoustic boundary at the open end of the waveguide. At frequencies

of 63, 125 and 250 Hz the direct measurements exhibit close similarity

in their trend with the numerical prediction, with the comparison of

250 Hz being almost the same apart from the prediction at the opening-

end of the duct, which was due to choosing the pressure-release boundary

condition for the opening-end of the duct, to keep the numerical models

as robust as possible. The measurements at 500 and 1000 Hz show far

less similarity in their comparison of magnitude of the sound pressure

with the predicted values.
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Manuals and Data-Sheets

The data-sheets and manuals of the Microflown Pressure/Velocity PU-

Match probe as shown in Fig. 4.11, and the Microflown signal conditioner

MFSC-2 are given in Appendix D Section D.1.1, D.1.2, D.1.3 and D.1.4.

The calibration report of the PU-match used in the measurements has

also been supplied by Microflown Technologies and is been reprinted in

Appendix D Section D.1.5.

Next, the data-sheets and manuals of the Microflown Ultimate Sound

Probe USP-Regular as shown in Fig. ??, and the Microflown signal con-

ditioner MFSC-4 are given in Appendix D Section D.2.1, D.2.2, D.2.3

and D.2.4.1.

1Materials presented here are courtesy of Microflown Technologies.
http : //www.microflown.com

205



Appendix D. Manuals and Data-Sheets

D.1 PU-Match Sensor

D.1.1 Microflown PU-Match Data-Sheet

2

Datasheet

icroflown Technologies
Charting sound fields V1.0 2009-10

The one dimensional PU match probe 
consists of a Microflown acoustical 
particle velocity sensor and a miniature 
sound pressure transducer (Knowles FG 
series) placed without packaging. 
Making it the worlds smallest available 
intesity probe. 

The PU match probe can be used for a 
variety of purposes, such as in broad 
banded sound intensity measurements.
Due to its very small size the probe 
makes its possible to measure with 
extreme high spatial resolution wich 
never could be met before. 

Typical applications

ü Array applications

ü Particle velocity measurements

ü Sound intensity measurments

ü Impedance measurements

Specification - PU match

Sensor configuration:
- 1x Microflown Titan sensor element
- 1x miniature pressure microphone

Physical characteristics:
Diameter : 3,5mm
Length : 45mm
Weight : 5g

Electrical properties:
Powering : power is supplied by the MFSC-2, 

  2channel signal conditioner. The 
  input is provided by the USB to 
  7pins lemo cable

Environment
Max. temperature: 60 Degrees Celcius

Acoustical properties microphone element

Acoustical properties Microflown element

Frequency range : 20Hz - 20kHz
Upper sound level : 110dB 
Polar pattern : omnidirectional
Directivity : omnidirectional

Frequency range : 0.1Hz - 20kHz ± 1dB
Upper sound level : 135dB
Polar pattern : figure of eight
Directivity : directive

PU match

2Materials presented here are courtesy of Microflown Technologies.
http : //www.microflown.com
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Datasheet - PU match Page 2 icroflownTechnologies

Model sound pressure microphone

The sensitivity of the pressure microphone ( independent of high/low gain or 
corrected/uncorrectede mode):

The phase of the pressure microphone ( independent of high/low gain or 
corrected/uncorrectede mode):

S p @1kHz= 55,0    [mV/Pa]

fc1p= [Hz]

fc2p= [Hz]

fc3p= [Hz]

C1p= [Hz]

C2p= [Hz]

C3p= [Hz]

Phase cornerfrequencies

30

15

10000

Parameters pressure equations

Sensititivity:

Sensitivity cornerfrequencies

30

 15

10000
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Model Microflown sensor

The sensitivity in uncorrected mode:

The phase in uncorrected mode:

The sensitivity in corrected mode:

The phase in corrected mode:

Su @250Hz=          25 [mV/Pa*]         

Su @250Hz=          10 ]         [V/(m/s)

Su @250Hz=         0,25       [mV/Pa*]

Su @250Hz=         0,1       [V/(m/s)]

fc1u= [Hz]

fc2u= [Hz]

fc3u= [Hz]

fc4u= [Hz]

C1u= [Hz]

C2u= [Hz]

C3u= [Hz]

C4u [Hz]

20000

77

10000

77

Phase cornerfrequencies

180

700

Parameters velocity equations

Sensititivity in high gain:

Sensititivity in low gain:

Sensitivity cornerfrequencies

150

600

Microflown Technologies, PO Box 2205, 6802 CE Arnhem, The Netherlands
W: www.microflown.com E: info@microflown.com T: +31 088 0010800 F: +31 088 0010810
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D.1.2 Microflown PU-Match Manual

3

Manual

icroflown Technologies
Charting sound fields

PU match

V1.0 2009-09

The one dimensional PU match probe 
consists of a Microflown acoustical 
particle velocity sensor and a miniature 
sound pressure transducer (Knowles FG 
series) placed without packaging. 
Making it the worlds smallest available 
intesity probe. 

The PU match probe can be used for a 
variety of purposes, such as in broad 
banded sound intensity measurements.
Due to its very small size the probe 
makes its possible to measure with 
extreme high spatial resolution wich 
never could be met before. 

Introduction

Microflown sensor
Microphones convert acoustic sound 
waves into an electrical signal when a 
diaphragm vibrates in response to 
fluctuating air pressure. The Microflown 
does not measure fluctuating air 
pressure. Instead, it measures the 
velocity of air across two tiny, resistive 
strips of platinum that are heated to 
200°C . In fluid dynamics, the motion of 
gas or liquid is called a flow, hence the 
name Microflown, which is 
sensitive to the movement 
of air rather than 
fluctuating pressure. 
In acoustics this 
movement of air 
is called particle 
velocity. When
air flows across

the strips, the first wire cools down a 
little and due to heat transfer the air 
picks up some heat. Hence, the second 
wire is cooled down with the heated air 
and cools down less than the first wire. A 
temperature difference occurs in the 
wires, which alters their electrical 
resistance. This generates a voltage 
difference that is proportional to the 
Particle velocity and the effect is 
directional: when the direction of the 
airflow reverses, the temperature
difference will reverse too. In the case of 
a sound wave, the airflow across the 
strips alternates according to the 
waveform and this results in a 
corresponding alternating voltage. 
Particle velocity has become a 
measurable quantity in the world of 
sound and vibration!

 A bridge type microflown, one 
 platinum wire is 400 times thinner 
 than a human hair.

3Materials presented here are courtesy of Microflown Technologies.
http : //www.microflown.com
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Manual - PU match Page 2 icroflownTechnologies

Particle velocity is 
an vector and so is 
directional. This 
directivity effect 
m a k e s  t h e  
m i c r o f l o w n  
extremly suitable 
to measure in real 
o p e r a t i n g  
situations with background noise and 
reflections. An omni pattern picks up 
sound equally from all directions. 
Particle Velocity has a directional, figure 
of eight, response. 

Directivity
If you measure with a standard 
microphone you will not only measure 
the source but also all the background 
noises and reflections. The microflown 
does only measure the source and not 
the background noises and reflections. 
This is because of the difference in polar 
response of sound pressure and particle 
velocity. The two quantities in
acoustic, sound pressure and particle 
velocity, have both a different kind of 
polar response. If you look at sound 
pressure, it has an omnidirectional 
reponse. Sound, and also vibrations, are 
only measured from one side. 

Figure of eight response of 
the Microflown

List of equipment

The Microflown PU match comes with:

ü1x PU match in protective box
ü1x MFSC-2 ( 2 channel signal 

conditioner )
ü1x Power supply
ü1x cable
ü1x Protective case
 
 

How to connect the PU match

The power supply can be 
connected with the signal 
conditioner using the Power 
Input 18VDC connection on 
the backside of the signal 
conditioner. See right sided 
picture. 

At the frontside of the signal 
conditioner there is 7 pins 
female lemo connector called 
Probe input. See right sided 
picture. The with the probe 
integrated lemo cable   
c o n n e c t s  t h e  s i g n a l  
conditioner with the probe.
 

More info on the MFSC-2, 2 channel 
signal conditioner, can be found in 
the datasheet and manual of the 
MFSC-2
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How to read the calibration report

The natural response of the Microflown 
is not flat, and thus needs to be 
calibrated. The goal of calibration is to 
find out how much the voltage output is 
when a certain acoustic signal is applied 
to a Microflown or microphone. In other 
words: it has to be determined what the 
amplitude response, or the frequency 
dependent sensitivity is. In case of a 
Microflown this means how many volts 
output per meter per second particle 
velocity input and in case of a 
microphone it means how many volts 
output per Pascal input.

To calibrate a PU probe, white 
Gaussian noise from a point source is 
radiated and measured at a known 
distance. Also, for a point source at any 
location on the axis in front of this 
source the ratio of pressure to velocity is 
known. It is via this property that both 
sensors are calibrated, referenced to a 
k n o w n  ( c a l i b r a t e d )  G . R . A . S  
microphone.

The results of the calibration 
measurements are used to fit a 
mathematical model over. This model 
describes the response of the sensors as 
a function of frequency. A model makes 
it also easier to implement it and apply it 
as a software correction.

In the calibration report all 
relevant calibrated quantities can be 
found. For pressure as well as for 
velocity it's sensitivity and phase 
(relative to the reference microphone) 
are shown. Since the signal conditioner 
has a corrected and uncorrected mode, 
these quantities are plotted twice.

Last graphs in the calibration 
report is the phase response between 
pressure and velocity. This phase is 
necessary when one needs to determine 
from which half of the figure of eight 
sound approaches the PU-probe. Again, 
for both corrected and uncorrected 
mode the graphs are shown.

Below each graph is the mathematical 
model stated together with it's 
coefficients which approximates the 
shown behavior. To apply this model, 
divide the measurement's results 
(transformed to frequency domain) by 
this curve to obtain a calibrated 
response (also in frequency domain):
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Microflown Technologies, PO Box 2205, 6802 CE Arnhem, The Netherlands
W: www.microflown.com E: info@microflown.com T: +31 088 0010800 F: +31 088 0010810
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D.1.3 Microflown MFSC-2 Data-Sheet

4

Datasheet

icroflown Technologies
Charting sound fields V1.0 2009-03

The MFSC-2 is a 2 channel signal 
conditioner and has three main 
functions, powering, pre-amplification 
and the option to correct the amplitude 
and phase of the signals electronically. 
There are two BNC outputs on the signal 
conditioner, one for sound pressure (P) 
and one for particle velocity (U). This 
makes the output compatible for most 
standard data acquisitions systems. if 
there is no calibration correction 
possible in the used software, an 
correction option can be used on the 
signal conditioner. The correction can be 
switched on to measure in a calibrated 
mode using a hardware correction. 

Typical applications

ü Comes with all types of Scanning probes

ü Comes wiht all types of PU probes

ü In situ impedance setup

ü Sound intensity system

Specification - MFSC-2

Input:
Connector: 7 pins lemo connector
Maximum input voltage:

- Pressure (P) High/Low gain : 100mV
- Velocity (U) High gain : 9mV
- Velocity (U) Low gain : 900mV

Output:
Connector : regular BNC
Impedance: 56
Maximum output voltage:

- Pressure (P): 300mV
- Velocity (U) : 900mV

?

Power:
Input voltage: 15-18V
Consumption (PU probe connected):

- max : 1W (56.7mA at 18V) 
- idle : 0.8W (44mA at 18V) 

Fuse: 250mA

Dimensions:
Height: 110mm
Width : 30mm
Depth : 160mm

Weight: 437g

MFSC-2 2 channel signal conditioner

Microflown Technologies, PO Box 2205, 6802 CE Arnhem, The Netherlands
W: www.microflown.com E: info@microflown.com T: +31 088 0010800 F: +31 088 0010810

4Materials presented here are courtesy of Microflown Technologies.
http : //www.microflown.com
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D.1.4 Microflown MFSC-2 Manual

5

Manual

icroflown Technologies
Charting sound fields

MFSC-2 2 channel signal conditioner

V1.0 2009-03

The MFSC-2 is a 2 channel signal 
conditioner and has three main 
functions, powering, pre-amplification 
and the option to correct the amplitude 
and phase of the signals electronically. 
There are two BNC outputs on the signal 
conditioner, one for sound pressure (P) 
and one for particle velocity (U). This 
makes the output compatible for most 
standard data acquisitions systems. If 
there is no calibration correction 
possible in the used software, an 
correction option can be used on the 
signal conditioner. The correction can be 
switched on to measure in a calibrated 
mode using a hardware correction. The 
MFSC-2 is designed as signal conditioner 
for all type of Scanning propes ( 0, 45 & 
90 degrees ) and all type of PU probes ( 
Regular, Mini & Match ). This type of 
signal conditioner is standard included 
in a kit with one of these type of probes.

1: BNC output sound pressure (P)
2: BNC output particle velocity (U)
3: LED indication if the signal 

conditioner is in high or low gain
4: LED indication if the corection mode 

is on or off
5: 7 pins lemo connector that is 

connected with the probe
6: Power switch
7: Gain switch
8: Correction switch
9: Power input

1
2

3 4

5

6

7

8
9

5Materials presented here are courtesy of Microflown Technologies.
http : //www.microflown.com
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There are two BNC 
outputs on the 
frontsdide of the 
signal conditioner, 
one  fo r  sound 
pressure (P) and 
one for particle 
velocity (U). This 
makes the output 
compatible for most standard data 
acquisitions systems. Left, next to the 
BNC output conectors there is an 
indication LED. When the LED is green 
the output channel works correct, when 
the LED is red than this indicates a 
possible overload. If the signal 
conditioner is in high gain mode and the 
LED is red than it overload can ( mostly ) 
be solved by putting the signal 
conditioner in low gain.

BNC ouput

At the front cover of 
t h e  s i g n a l  
conditioner there is 
an 7 pins lemo 
connec tor.  Th i s  
conector connects 
the probe with the 
signal conditioner  using a lemo cable. 
The lemo cable is used as data cable as it 
gives power input from the signal 
conditioner to the probe and the probe 
signals are read in by the signal 
conditioner.

Probe input

The lowest switch 
on the backside of 
t h e  s i g n a l  
conditioner is the 
Correction switch. 
The response of the 
microflown is not 
flat. Preferable is to 
the correction for 
this in the software. 
I f  there is  no 
c a l i b r a t i o n  
correction possible 
in the used software, the correction 
option can be used on the signal 
conditioner. When the corrected mode is 
on the signal conditioner will equalize 
the microflown signal to give it a flat 
amplitude and phase response. When 
the correction is done in the software the 
correction mode should be switched off. 
At the front side of the signal conditioner 
there is an LED wich also indicates if the 
signal conditioner is corrected or 
uncorrected mode.

Correction switch

The middle of the 
three swithes on the 
back of the signal 
conditioner is the 
Gain switch. The 
high gain setting is 
u s e d  f o r  l o w  
Microflown signals. 
The low gain setting 
is used for high 
Microflown signals. 
Usually the high 
gain setting is used.
The high gain mode increases the 
sensitivity of the Microflown with approx 
40 dB. The Gain switch is only for the 
particle velocity ( U ) channel, switching 
does not influence the sound pressure 
channel. At the front side of the signal 
conditioner there is an LED wich also 
indicates if the signal conditioner is high 
or low gain mode.

Gain switch

Manual - MFSC-2 Page 2 icroflownTechnologies
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Microflown Technologies, PO Box 2205, 6802 CE Arnhem, The Netherlands
W: www.microflown.com E: info@microflown.com T: +31 088 0010800 F: +31 088 0010810
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D.1.5 Microflown PU-Match Calibration Report

PTDEMO01

Signal conditioner

Precalibration test

Calibrated with B&K Type 4190 microphone & B&K Type 2669 preamplifier

PU probe match

SC-600007

Calibration Report

Microflown kit:

PT-600007

Audio test

Checks performed:

Charting sound fields

icroflown Technologies

:

Precalibration test

Signal conditioner adjusted

Calibration Date

Calibrator
E.E.R. Jansen

Supervisor

Microflown Technologies
PO Box 2205

6802 CE, Arnhem
The Netherlands

T: +31 880 010 800
F: +31 880 010 810

E: info@microflown.com

Full calibration

Final check 

R.C. Platenkamp

20-7-2011

Microflown Technologies, PO Box 2250, 6802 CE Arnhem, The Netherlands

W: www.microflown.com E: info@microflown.com T: +31 880 010 850 F: +31 880 010 810

Mechanical check
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The high/low gain and equaliser switches only affect the particle velocity output of the signal 
conditioner. The pressure output of the signal conditioner is unaffected!

When the signal conditioner switch is in lower position the low gain option is selected. Then 
particle velocity output of the signal conditioner (in Volts) is the same as the output of the 
Microflown (in Volts).

What does high and low gain mean?

When the signal conditioner switch is in upper position the high gain option is selected. The 
particle velocity output of the signal conditioner is then amplified with 42 dB.

Microflown Technologies

Additional information

What does the equaliser option mean?

The equaliser option equalises the amplitude and phase response of the particle velocity signal.
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Uncorrected response

The left figure shows the amplitude response in uncorrected and corrected mode, the right 
figure shows the phase response.

Microflown Technologies, PO Box 2250, 6802 CE Arnhem, The Netherlands

W: www.microflown.com E: info@microflown.com T: +31 880 010 850 F: +31 880 010 810

Typical selfnoise boundries of the pressure and the particle velocity sensor:

Selfnoise

If you have any questions email: platenkamp@microflown.com

This probe is calibrated with MetalMesh. This means that the hardware correction is optimized 
for the probe using a metal mesh.
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Kit : PTDEMO01

S p @1kHz= 65,3 [mV/Pa]

fc1p= [Hz]

fc2p= [Hz]

fc3p= [Hz]

C1p= [Hz]

C2p= [Hz]

C3p= [Hz]

27

8229

21826

24

Phase cornerfrequencies

22

Sensitivity cornerfrequencies

Parameters pressure equations

20 July 2011PT-600007

Model sound pressure microphone

Sensititivity:

The sensitivity of the pressure sensor (independent of 
high/low gain or corrected/ uncorrected mode):

30

The phase of the pressure sensor (independent of high/low 
gain or corrected/uncorrected mode):

Microflown Technologies

Microphone model

Microflown Technologies, PO Box 2250, 6802 CE Arnhem, The Netherlands

W: www.microflown.com E: info@microflown.com T: +31 880 010 850 F: +31 880 010 810
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Kit : PTDEMO01

Su @250Hz= 156,73 [mV/Pa*]

Su @250Hz= 64,51 [V/(m/s)]

Su @250Hz= 1,2450 [mV/Pa*]

Su @250Hz= 0,5124 [V/(m/s)]

fc1u= [Hz]

fc2u= [Hz]

fc3u= [Hz]

Particle velocity sensitivity in corrected mode:

Model velocity sensor

Sensititivity in high gain:

Microflown Technologies

59

Particle velocity phase in corrected mode: 9219

PT-600007 20 July 2011

731

Sensititivity in low gain:

Sensitivity cornerfrequencies

Particle velocity sensitivity in uncorrected mode: 

Particle velocity phase in uncorrected mode: 

Parameters velocity equations

(add 180 degrees to have positive intensity in the direction of the marker)

fc3u= [Hz]

fc4u= [Hz]

C1u= [Hz]

C2u= [Hz]

C3u= [Hz]

C4u [Hz]

Particle velocity phase in corrected mode:

11

9219

60

61416

60

Phase cornerfrequencies

648

Microflown Technologies, PO Box 2250, 6802 CE Arnhem, The Netherlands

W: www.microflown.com E: info@microflown.com T: +31 880 010 850 F: +31 880 010 810

-135

-90

-45

0

45

90

135

180

1

10

100

1000

10 100 1000 10000 100000

P
ha

se
 [d

eg
]

S
en

si
tiv

ity
 [m

V
/P

a*
]

Frequency [Hz]

Particle velocity model

Sensitivity corrected mode 
[mV/Pa*]

Sensitivity uncorrected mode 
[mV/Pa*]

Phase uncorrected mode [deg]

Phase corrected mode [deg]

219



Appendix D. Manuals and Data-Sheets

Kit : PTDEMO01

C1p= [Hz]

C2p= [Hz]

C3p= [Hz]

C1u= [Hz]

Microflown Technologies

11

Pu phase in corrected mode (independent of high/low gain):

Pu phase in uncorrected mode (independent of high/low gain): 

21826

Parameters pu phase equations

PT-600007

Model velocity sensor

Pressure cornerfrequencies

Velocity cornerfrequencies

22

24

20 July 2011

C2u= [Hz]

C3u= [Hz]

C4u [Hz]

Microflown Technologies, PO Box 2250, 6802 CE Arnhem, The Netherlands

W: www.microflown.com E: info@microflown.com T: +31 880 010 850 F: +31 880 010 810

60

648

61416
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D.2 USP-Regular Sensor

D.2.1 Microflown USP-Regular Data-Sheet

6

Datasheet

icroflown Technologies
Charting sound fields V1.0 2009-10

Typical applications

ü 

ü Far field sound source localization

ü Passive radar

ü Sniper detection

Sound intensity measurments

Specification - USP regular

Sensor configuration:
- 3x Microflown Titan sensor element
- 1x miniature pressure microphone

Physical characteristics:
Diameter : ½ inch / 12,7mm
Length : 130mm
Weight : 45g

Electrical properties:
Powering : power is supplied by the MFSC-4, 

  4channel signal conditioner. The 
  input is provided by 7pins lemo 
  cable

Environment
Max. temperature: 60 Degrees Celcius

Acoustical properties microphone element

Acoustical properties Microflown element

Frequency range : 20Hz - 20kHz
Upper sound level : 110dB 
Polar pattern : omnidirectional
Directivity : omnidirectional

Frequency range : 0.1Hz - 20kHz ± 1dB
Upper sound level : 135dB
Polar pattern : figure of eight
Directivity : directive

USP regular
The three dimensional USP regular 
probe consists of a three orthogonally 
placed Microflown acoustical particle 
velocity sensors and a miniature sound 
pressure transducer (Knowles FG 
series).

The USP regular probe is mainly used as 
an AVS ( Acoustic Vector Sensor ). 
Acoustic vector sensors have come to 
play an increasingly significant role in 
this technology with application focus on 
border control, harbor protection, 
gunshot localization, and situation 
awareness.

6Materials presented here are courtesy of Microflown Technologies.
http : //www.microflown.com
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Datasheet - USP regular Page 2 icroflownTechnologies

Model sound pressure microphone

The sensitivity of the pressure microphone ( independent of high/low gain or 
corrected/uncorrectede mode):

The phase of the pressure microphone ( independent of high/low gain or 
corrected/uncorrectede mode):

S p @1kHz= 55,0    [mV/Pa]

fc1p= [Hz]

fc2p= [Hz]

fc3p= [Hz]

C1p= [Hz]

C2p= [Hz]

C3p= [Hz]

Phase cornerfrequencies

30

15

10000

Parameters pressure equations

Sensititivity:

Sensitivity cornerfrequencies

30

 15

10000
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Microflown Technologies, PO Box 2205, 6802 CE Arnhem, The Netherlands
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Model Microflown sensor

The sensitivity in uncorrected mode:

The phase in uncorrected mode:

The sensitivity in corrected mode:

The phase in corrected mode:

Su @250Hz=          25 [mV/Pa*]         

Su @250Hz=          10 ]         [V/(m/s)

Su @250Hz=         0,25       [mV/Pa*]

Su @250Hz=         0,1       [V/(m/s)]

fc1u= [Hz]

fc2u= [Hz]

fc3u= [Hz]

fc4u= [Hz]

C1u= [Hz]

C2u= [Hz]

C3u= [Hz]

C4u [Hz]

20000

77

10000

77

Phase cornerfrequencies

180

700

Parameters velocity equations

Sensititivity in high gain:

Sensititivity in low gain:

Sensitivity cornerfrequencies

150

600
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D.2.2 Microflown USP-Regular Manual

7

Manual

icroflown Technologies
Charting sound fields

USP regular

V1.0 2009-03

The three dimensional USP regular 
probe consists of a three orthogonally 
placed Microflown acoustical particle 
velocity sensors and a miniature sound 
pressure transducer (Knowles FG 
series).

The USP regular probe is mainly used as 
an AVS ( Acoustic Vector Sensor ). 
Acoustic vector sensors have come to 
play an increasingly significant role in 
this technology with application focus on 
border control, harbor protection, 
gunshot localization, and situation 
awareness.

Introduction

Microflown sensor
Microphones convert acoustic sound 
waves into an electrical signal when a 
diaphragm vibrates in response to 
fluctuating air pressure. The Microflown 
does not measure fluctuating air 
pressure. Instead, it measures the 
velocity of air across two tiny, resistive 
strips of platinum that are heated to 
200°C . In fluid dynamics, the motion of 
gas or liquid is called a flow, hence the 
name Microflown, which is 
sensitive to the movement 
of air rather than 
fluctuating pressure. 
In acoustics this 
movement of air 
is called particle 
velocity. When
air flows across

the strips, the first wire cools down a 
little and due to heat transfer the air 
picks up some heat. Hence, the second 
wire is cooled down with the heated air 
and cools down less than the first wire. A 
temperature difference occurs in the 
wires, which alters their electrical 
resistance. This generates a voltage 
difference that is proportional to the 
Particle velocity and the effect is 
directional: when the direction of the 
airflow reverses, the temperature
difference will reverse too. In the case of 
a sound wave, the airflow across the 
strips alternates according to the 
waveform and this results in a 
corresponding alternating voltage. 
Particle velocity has become a 
measurable quantity in the world of 
sound and vibration!

 A bridge type microflown, one 
 platinum wire is 400 times thinner 
 than a human hair.

7Materials presented here are courtesy of Microflown Technologies.
http : //www.microflown.com
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Manual - USP regular Page 2 icroflownTechnologies

Particle velocity is 
an vector and so is 
directional. This 
directivity effect 
m a k e s  t h e  
m i c r o f l o w n  
extremly suitable 
to measure in real 
o p e r a t i n g  
situations with background noise and 
reflections. An omni pattern picks up 
sound equally from all directions. 
Particle Velocity has a directional, figure 
of eight, response. 

Directivity
If you measure with a standard 
microphone you will not only measure 
the source but also all the background 
noises and reflections. The microflown 
does only measure the source and not 
the background noises and reflections. 
This is because of the difference in polar 
response of sound pressure and particle 
velocity. The two quantities in
acoustic, sound pressure and particle 
velocity, have both a different kind of 
polar response. If you look at sound 
pressure, it has an omnidirectional 
reponse. Sound, and also vibrations, are 
only measured from one side. 

Figure of eight response of 
the Microflown

List of equipment

The Microflown USP regular comes 
with:

ü1x USP regular in protective box
ü1x MFSC-4 ( 4 channel signal 

conditioner )
ü1x LEMO cable with 7pins male 

connector on both ends
ü1x Power supply
ü1x Protective case
 
 

How to connect the USP regular

The power supply can be 
connected with the signal 
conditioner using the Power 
Input 18VDC connection on 
the backside of the signal 
conditioner. See right sided 
picture. 

At the frontside of the signal 
conditioner there is 7 pins 
female lemo connector called 
Probe input. See right sided 
picture. The connector can be 
found on the downside of the 
probe. The 7 pins male lemo 
cable connects the signal 
conditioner with the probe.
 
More info on the MFSC-4, 4 channel 
signal conditioner, can be found in 
the datasheet and manual of the 
MFSC-4
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How to read the calibration report

The natural response of the Microflown 
is not flat, and thus needs to be 
calibrated. The goal of calibration is to 
find out how much the voltage output is 
when a certain acoustic signal is applied 
to a Microflown or microphone. In other 
words: it has to be determined what the 
amplitude response, or the frequency 
dependent sensitivity is. In case of a 
Microflown this means how many volts 
output per meter per second particle 
velocity input and in case of a 
microphone it means how many volts 
output per Pascal input.

To calibrate a PU probe, white 
Gaussian noise from a point source is 
radiated and measured at a known 
distance. Also, for a point source at any 
location on the axis in front of this 
source the ratio of pressure to velocity is 
known. It is via this property that both 
sensors are calibrated, referenced to a 
k n o w n  ( c a l i b r a t e d )  G . R . A . S  
microphone.

The results of the calibration 
measurements are used to fit a 
mathematical model over. This model 
describes the response of the sensors as 
a function of frequency. A model makes 
it also easier to implement it and apply it 
as a software correction.

In the calibration report all 
relevant calibrated quantities can be 
found. For pressure as well as for 
velocity it's sensitivity and phase 
(relative to the reference microphone)

 are shown. Since the signal conditioner 
has a corrected and uncorrected mode, 
these quantities are plotted twice.

Last graphs in the calibration 
report is the phase response between 
pressure and velocity. This phase is 
necessary when one needs to determine 
from which half of the figure of eight 
sound approaches the PU-probe. Again, 
for both corrected and uncorrected 
mode the graphs are shown.

Below each graph is the mathematical 
model stated together with it's 
coefficients which approximates the 
shown behavior. To apply this model, 
divide the measurement's results 
(transformed to frequency domain) by 
this curve to obtain a calibrated 
response (also in frequency domain):
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Example of the frequency dependent sensitivity of the 
particle velocity sensor, measured in uncorrected mode.
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D.2.3 Microflown MFSC-4 Data-Sheet

8

Datasheet

icroflown Technologies
Charting sound fields V1.0 2009-03

The MFSC-4 is a 4 channel signal 
conditioner and has three main 
functions, powering, pre-amplification 
and the option to correct the amplitude 
and phase of the signals electronically. 
There are four BNC outputs on the signal 
conditioner, one for sound pressure (P) 
and three for particle velocity (U). This 
makes the output compatible for most 
standard data acquisitions systems. if 
there is no calibration correction 
possible in the used software, an 
correction option can be used on the 
signal conditioner. The correction can be 
switched on to measure in a calibrated 
mode using a hardware correction. 

Typical applications

ü Comes with all types of USP probes

Specification - MFSC-4

Input:
Connector: 7 pins lemo connector
Maximum input voltage:

- Pressure (P) High/Low gain : 100mV
- Velocity (U) High gain : 9mV
- Velocity (U) Low gain : 900mV

Output:
Connector : regular BNC
Impedance: 56
Maximum output voltage:

- Pressure (P): 300mV
- Velocity (U) : 900mV

?

Power:
Input voltage: 15-18V
Consumption (PU probe connected):

- max : 1W (56.7mA at 18V) 
- idle : 0.8W (44mA at 18V) 

Fuse: 250mA

Dimensions:
Height: 110mm
Width : 30mm
Depth : 160mm

Weight: 437g

MFSC-4 4 channel signal conditioner

Microflown Technologies, PO Box 2205, 6802 CE Arnhem, The Netherlands
W: www.microflown.com E: info@microflown.com T: +31 088 0010800 F: +31 088 0010810

8Materials presented here are courtesy of Microflown Technologies.
http : //www.microflown.com
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D.2.4 Microflown MFSC-4 Manual

9

Manual

icroflown Technologies
Charting sound fields

MFSC-4 4 channel signal conditioner

V1.0 2009-03

The MFSC-4 is a 4 channel signal 
conditioner and has three main 
functions, powering, pre-amplification 
and the option to correct the amplitude 
and phase of the signals electronically. 
There are four BNC outputs on the signal 
conditioner, one for sound pressure (P) 
and three for particle velocity (U). This 
makes the output compatible for most 
standard data acquisitions systems. If 
there is no calibration correction 
possible in the used software, an 
correction option can be used on the 
signal conditioner. The correction can be 
switched on to measure in a calibrated 
mode using a hardware correction. The 
MFSC-4 is designed as signal conditioner 
for all type of USP probes ( Regular, Mini 
& Match ). This type of signal conditioner 
is standard included in a kit with one of 
these type of probes.

1 : BNC output sound pressure (P)
2 : BNC output particle velocity (U)

X = Blue
3 : BNC output particle velocity (U)

Y = Red
4 : BNC output particle velocity (U)

Z = Green
5 : LED indication if the signal 

conditioner is in high or low gain
6 : LED indication if the corection 

mode is on or off
7 : 7 pins lemo connector that is 

connected with the probe
8 : Power switch
9 : Gain switch
10: Correction switch
11: Power input

1
2

5 6
7

3
4

8

9

10
11

9Materials presented here are courtesy of Microflown Technologies.
http : //www.microflown.com
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There are four BNC 
outputs on the 
frontsdide of the 
signal conditioner, 
one  fo r  sound 
pressure (P) and 
three for particle 
velocity (U). This 
makes the output 
compatible for most standard data 
acquisitions systems. Left, next to the 
BNC output conectors there is an 
indication LED. When the LED is green 
the output channel works correct, when 
the LED is red than this indicates a 
possible overload. If the signal 
conditioner is in high gain mode and the 
LED is red than it overload can ( mostly ) 
be solved by putting the signal 
conditioner in low gain.

BNC ouput

At the front cover of 
t h e  s i g n a l  
conditioner there is 
an 7 pins lemo 
connec tor.  Th i s  
conector connects 
the probe with the 
signal conditioner  using a lemo cable. 
The lemo cable is used as data cable as it 
gives power input from the signal 
conditioner to the probe and the probe 
signals are read in by the signal 
conditioner.

Probe input

The lowest switch 
on the backside of 
t h e  s i g n a l  
conditioner is the 
Correction switch. 
The response of the 
microflown is not 
flat. Preferable is to 
the correction for 
this in the software. 
I f  there is  no 
c a l i b r a t i o n  
correction possible 
in the used software, the correction 
option can be used on the signal 
conditioner. When the corrected mode is 
on the signal conditioner will equalize 
the microflown signal to give it a flat 
amplitude and phase response. When 
the correction is done in the software the 
correction mode should be switched off. 
At the front side of the signal conditioner 
there is an LED wich also indicates if the 
signal conditioner is corrected or 
uncorrected mode.

Correction switch

The middle of the 
three swithes on the 
back of the signal 
conditioner is the 
Gain switch. The 
high gain setting is 
u s e d  f o r  l o w  
Microflown signals. 
The low gain setting 
is used for high 
Microflown signals. 
Usually the high 
gain setting is used.
The high gain mode increases the 
sensitivity of the Microflown with approx 
40 dB. The Gain switch is only for the 
particle velocity ( U ) channel, switching 
does not influence the sound pressure 
channel. At the front side of the signal 
conditioner there is an LED wich also 
indicates if the signal conditioner is high 
or low gain mode.

Gain switch

Manual - MFSC-2 Page 2 icroflownTechnologies
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