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1. Introduction

The relationship between stock market volatility and the business cycle is the focal point of
several studies in the extant literature while it is also an issue of vital importance for policy
and investment decision makers (e.g., Fama, 1990; Schwert, 1989, 1990a, 1990b; Corradi et
al., 2013; Chauvet et al., 2014). At the business cycle frequency, most related empirical work
has focused on whether stock market volatility which exhibits a different behaviour over
expansion and recession periods, can be predicted by various macroeconomic variables (see
Schwert, 1989; Hamilton and Lin, 1996). Recent work also establishes a strong link between
stock market volatility and macroeconomic fundamentals (see, Engle and Rangel, 2008;
Engle et al., 2008; Diebold and Yilmaz, 2010; and Corradi et al., 2013). Nevertheless, this is
still a topic which remains largely unstudied since the literature generally places more weight
on measuring, modelling and forecasting volatility rather than exploring the links with its
underlying determinants (Diebold and Yilmaz, 2010). On the other hand, there are even fewer
studies that consider the opposite direction and employ stock market volatility to predict real
economic activity (e.g., Andreou et al., 2000; Fornari and Mele, 2013). However,
understanding the dynamics and behaviour of stock market volatility and examining its
potential spillover effects on real economic activity and vice versa is a matter of utmost
significance for two reasons. First, it can help market participants to improve their investment
decisions and second, it can have important implications for the effectiveness of various
economic policies.

In this context, some important empirical questions arise: Is there a causal relationship
between stock market volatility and real economic activity which runs in either direction
within an international setting? Furthermore, is the nature of this relationship linear as most
studies assume or are there nonlinearities that need to be taken into consideration? Finally,

are there any links between these variables across countries? This paper aims to provide



empirical evidence on these unexplored avenues of research and contributes to the literature
in the following ways.

First, we empirically investigate the causal relationship between stock market
volatility and the business cycle (represented by the industrial production growth rate) within
an international setting using both linear and nonlinear bivariate tests. Specifically, we
employ monthly data from four major economies, namely Canada, Japan, the UK and the US,
which span the 1990:01-2011:12 period. The vast majority of studies employ linear Granger
causality tests (Granger, 1969) when assessing the relationship between various
macroeconomic variables despite the fact that there is clear evidence which points out to the
existence of nonlinearities (e.g., Keynes, 1936; Shiller, 1993, 2005; Hiemstra and Jones,
1994; Shin et al., 2013; Choudhry et al., 2014). To our knowledge, no other study has applied
nonlinear bivariate tests to assess the relationship between stock market volatility and the
business cycle. Hence, our paper aims to fill this gap in the literature and to provide some
fresh evidence.

Second, we extend previous empirical findings by exploring the impact of the recent
financial crisis on the relationship between stock market volatility and the business cycle.
This is an important aspect of the study which also serves as a robustness check during a
period of heightened volatility. There is indeed evidence which suggests that stock market
volatility is higher during recessions than during expansions, exhibiting a pronounced
business cycle behaviour (see e.g., Officer, 1973; Schwert, 1989; Hamilton and Lin, 1996;
Brandt and Kang, 2004; Mele, 2007). Hence, it is of particular interest to consider the impact
of the recent financial crisis in our tests.

Third, we conduct a multivariate analysis in order to explore possible spillover effects
within a cross-country framework. In this case, the stock market volatility and the business

cycle of the US are incorporated into our model to assess the impact on the business cycle



and the stock market volatility of the remaining three countries.”In addition to the linear
multivariate causality tests, we adopt a recent test for nonlinear multivariate causality
proposed by Bai et al. (2010). To our knowledge, this is the first study that follows a
multivariate (both linear and nonlinear) approach in this context. As in the bivariate case, we
also investigate the role of the financial crisis in our multivariate analysis.

Our main findings can be summarised as follows. Initially, we find significant
bidirectional linear causality between the business cycle and stock market volatility in
Canada and in the UK in the pre-crisis period. Interestingly, this result is unaffected or
strengthened (depending on the direction) when we include the recent financial crisis in our
sample. Moreover, the impact of the crisis is more pronounced in the causal relationship
which runs from the business cycle to stock market volatility in Japan and in the US. Finally,
both in the pre-crisis period and in the full sample period, stock market volatility significantly
causes the business cycle in the US but not in Japan. When we assess causality by adopting a
nonlinear framework, strong evidence supporting the existence of significant feedback (i.e
causality) is found in most cases. However, depending on the direction or the country, there
are cases where the crisis either reveals nonlinearities or indicates the absence of nonlinear
effects compared to the pre-crisis period.

Turning to our linear multivariate results, we find that the US indeed plays an
important role as suggested by the existence of bidirectional causality between the US stock
market volatility and business cycle and the corresponding variables of the remaining three
countries. The results are in general robust to the inclusion of the crisis and in some cases the
identified cross-country causal relationships become more significant. On the other hand,
nonlinear multivariate tests show much stronger causality results for Canada and Japan when
the crisis period is included. Especially in the case of Canada the impact of the crisis is more

evident as we find significant causality results in both directions for all considered variables

2 The findings of Cheung et al. (2009) indicate a contagion effect and a stronger interrelationship between the
US and other markets such as the UK and Japan during the recent financial crisis.
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(i.e. there are nonlinear spillover effects between Canada and the US during the crisis). For
Japan, we also identify a significant influence of the US variables as well as a significant
effect of the crisis. This is an interesting finding given that the causality results between the
Japanese stock market volatility and business cycle are much weaker in a bivariate setting.
Regarding the UK, our multivariate tests indicate stronger nonlinear causality during the pre-
crisis period. Nevertheless, the UK business cycle is significantly influenced by the US
variables also during the crisis.

Finally, we employ both linear and nonlinear forecasting regressions and show that
stock market volatility is an important short-term predictor of future economic activity (i.e.
industrial production growth rate) within each country. Additionally, we find that the stock
market volatility and the economic activity of the US are both significant predictors of the

economic activity of the remaining countries suggesting a strong degree of market integration.

Overall, the results in this paper indicate the need for policy makers to take into
consideration both cross-country spillover effects and nonlinearities when assessing the
economic outlook of a specific country. This is particularly important in volatile periods of
the stock market such as the recent financial crisis covered in our sample.

The remainder of the paper is organised as follows. Section 2 describes the data and
provides some preliminary analysis. Section 3 presents the methodological approach and

Section 4 discusses the empirical findings. Finally, Section 5 concludes.

2. Data description

We employ monthly data from four major economies, namely Canada, Japan, the UK and the
US. Our dataset is derived from the Thomson Financial DataStream and covers the period
between 1990:01 and 2011:12. The respective stock market indexes chosen to represent each

country are the TSX composite index (Canada), the Nikkei 225 (Japan), the FTSE-All Share



(UK) and the S&P 500 (US). The continuously compounded monthly stock returns are

computed as follows:

_m| i
Rt—ln(Pt_lj (1)

where P, and P,; denote the stock index prices at time ¢ and #-1 respectively. For all
countries, the total industrial production growth rate (i.e. log-changes of the total industrial
production index) represents the business cycle and is obtained at a monthly frequency
(seasonally adjusted). Figure 1 shows the total industrial production index growth rate with

respect to Canada, Japan, the US and the UK.
[Insert Figure 1 around here]

As it can be clearly observed, there is a pronounced decrease in the industrial production
growth rate of all countries during the period of the recent financial crisis (shaded area) while
it slowly bounces back during 2009 and onwards. This decrease in the growth rate of
economic activity is much more evident in Japan where we observe an all time low around
2009 and 2011. These findings are consistent with recent evidence suggesting that the crisis
has led to an important decline in the industrial production worldwide. For instance, Bartram
and Bodnar (2009) mention that from a market capitalization of $51 trillion in world equity
markets as of October 2007, share prices started to fall in early 2008 and this ultimately led to
a massive decline in almost all indices by 30-40% between September 2008 and October
2008.? Therefore, it is important to investigate the impact of the financial crisis in our study
and provide some new evidence. We shall return to this in the results section where we

discuss in detail the effect of the crisis in the context of causality.

3 During that period, Lehman Brothers filed for bankruptcy while AIG was bailed out from the US government.
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Moreover, in all markets under consideration the stock market volatility is estimated
by means of the univariate GARCH(1,1) model. Figure 2 depicts the estimated stock market
volatilities during the total period of our sample. In line with previous studies which suggest
that stock market volatility is higher during recessions than during expansions (e.g., Schwert,
1989; Hamilton and Lin, 1996; Brandt and Kang, 2004; Schwert, 2011), we observe a sharp
increase in volatility during the recent financial crisis (shaded area) in all markets under

consideration.

[Insert Figure 2 around here]

Finally, unreported results based on the augmented Dickey and Fuller (1979) and the
Kwiatkowski et al. (1992) (KPSS) unit root tests show that the first differenced series, which

we employ to test for linear and nonlinear causality, are stationary. *

* The preliminary results including the GARCH diagnostics and the unit root tests are available upon request.
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3. Methodology

3.1. Bivariate and multivariate linear causality

In order to examine the linear relationship between stock market volatility and the business
cycle indicator (i.e. the industrial production growth rate) within each market, we consider
the widely accepted vector autoregression (VAR) specification and the corresponding
Granger causality test (Granger, 1969). This approach enables us to assess whether there is a
causal relationship between the variables in terms of time precedence. For instance, if
variable x, Granger causes variable y;, lags of x, can explain the current values of y;. The

specification of the applied bivariate VAR model can be expressed as follows:

X =P +Zaixz—i +Zﬁiyt—i T &y (2)
P P

Vi =0, +Zyixt—i +z5iym' + &, (3)

i=1 i=1

where, in our case, x; is the stock market volatility (SV) in first differences, y; is the log-
difference of industrial production (our business cycle indicator, BC), n is the optimal lag
length based on the well known information criteria such as the Akaike information criterion
(AIC), and ¢}, and &, are the residuals. Moreover, ¢, and ¢, are constants while the estimated
coefficients a;, f;, y; and 0;, i=1,...,n, represent the linear relationship between variables x, and
.. To test for Granger causality, we are interested in the null hypothesis that the variable y,
does not Granger cause x; which is rejected if the coefficients f; are jointly significantly
different from zero. If y, Granger causes x; the past values of y, provide additional
information on x,. Similarly, the null hypothesis that x; does not Granger cause y; is rejected if
the estimated coefficients y; are jointly significantly different from zero. Finally, bidirectional

causality exists if causality runs in both directions.



In this paper, we also examine linear causality in a multivariate setting with the aim to
explore possible spillover effects among countries in either direction. Within this framework,
we choose the US as the reference country since it represents the largest economy and it is
probably the most influential both in economic and political terms. In particular, with respect
to country i (i.e. Canada, Japan or UK), we augment equations (2) and (3) with the stock
market volatility and the business cycle of the US (SVys and BCys, respectively) and vice
versa.

In the next sections we present the nonlinear approach adopted in our study and

describe the relevant tests employed.

3.2. Bivariate nonlinear causality

Campbell et al. (1997, p.467) state that ‘the strategic interactions among market participants,
the process by which information is incorporated into security prices, and the dynamics of
economy wide fluctuations are inherently nonlinear’. Additionally, as mentioned earlier,
there is clear evidence indicating the existence of nonlinear features in various
macroeconomic variables and relationships (see, Keynes, 1936; Kahneman and Tversky,
1979; Hsieh, 1991; Shiller, 1993, Barnett et al., 1997; Shiller, 2005). Nonlinear causality was
highlighted in the finance literature by Hiemstra and Jones (1994) and subsequent research
papers have provided further evidence in a nonlinear setting with respect to various financial
variables (e.g., Silvapulle and Choi, 1999; Chen and Wuh-Lin, 2004; Diks and Panchenko,
2006; Bekiros and Diks, 2008a, 2008b; Shin et al., 2013; and Bekiros, 2014). Specifically,
there are various factors such as transaction costs or information frictions which could give
rise to nonlinearities and lead to non-convergence towards the long-run equilibrium. For
example, Anderson (1997) argues that transaction costs are often ignored in studies of asset

markets although in practice they could be substantial and prevent the adjustment of



disequilibrium errors.” Anderson (1997) further shows that estimated models which consider
these nonlinearities outperform their linear counterparts. Other sources that may be
responsible for nonlinearities include ‘diversity in agents’ beliefs’ (Brock and LeBaron,
1996), ‘heterogeneity in investors’ objectives arising from varying investment horizons and
risk profiles’ (Peters, 1994), and ‘herd behaviour’ (Lux, 1995). Given the above, it is clear
that the need for nonlinear and asymmetric adjustments is imperative. Hence, in this study we

also explore causality under a nonlinear framework.

Baek and Brock (1992) first developed a general non-parametric test for nonlinear
Granger causality which was later modified by Hiemstra and Jones (1994).° To explore
nonlinear causality between stock market volatility and industrial production within each
country, we employ the Hiemstra and Jones (1994) test statistic. A description of the related

methodological approach follows.

3.2.1. Hiemstra and Jones (1994) test statistic

First, consider two strictly stationary and weakly dependent time series {X,} and {Y}, 1 =

1,2,....Denote the m-length lead vector of X; by X;" and the Lx-length and Ly-length lag

vectors of X; and Y,, respectively, by X and Y" ,- That is,

> The theoretical evidence of nonlinear price adjustment with transaction costs can be traced back to Dumas
(1992) who examined the dynamic process of the real exchange rate in spatially separated markets under
proportional transactions costs. Also, Mishkin (1995) stresses the importance of transaction costs when
analysing financial markets.

® Hiemstra and Jones (1994) test the relationship between stock returns and trading volume and their findings
reveal significant bidirectional causality.
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X" =X, X, o X, ) m=120 1=1,2, .,

FERIE

XtL—xLx = (X, o X s X))
Lx=12,...,t=Lx+1,Lx+2,...,
},tfiy = (K—Ly’Yt—LyH’""Yt—l)’ 4)

Ly=12,.,t=Ly+1,Ly+2,..,

As stated in Hiemstra and Jones (1994), given values of m, Lx and Ly >1and fore>0, Y does

not strictly Granger cause X if:

Pr(|ay —x7|<el| X X <e 04, -1, <e)
= Pr(|x; x| <el|xf, - x5 <e) (5)

In equation (5), Pr(-) denotes probability and ||| denotes the maximum norm. The left hand

side of equation (5) is the conditional probability that the distance between two arbitrary m-

length lead vectors of {X,} is less than e, given that the distance between the corresponding

Lx-length lag vectors of {X,}and Ly-length lag vectors of {¥;} is also less than e. The right

hand side of equation (5) is the conditional probability that any two arbitrary m-length lead
vectors of {X t} are within a distance e of each other, given that their corresponding Lx-length
lag vectors are also within a distance e of each other. For all markets in our paper, X; is the
stock market volatility and Y; is the business cycle represented by the industrial production
growth rate. Therefore, if equation (5) is true, this implies that the business cycle does not

Granger cause stock market volatility in nonlinear terms.

To implement a test based on equation (5), Hiemstra and Jones (1994) express the

conditional probabilities in terms of the corresponding ratios of joint probabilities:
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Cl(m+ Lx,Ly,e) C3(m+ Lx,e)

(6)
C2(Lx,Ly,e) C4(Lx,e)

where C1, C2, C3, C4 are the joint probabilities.7 For given values of m, Lx, and Ly >1and

e>0 under the assumption that {X,} and {Y,} are strictly stationary and weakly dependent,

if {¥,} does not strictly Granger cause {X,} then,

[Cl(m+Lx,Ly,e,n) _C3(m+Lx,e,n)

N(0,6°(m, Lx, Ly,
C2(Lx,Ly,e,n) C4(Lx,e.n) ]—> (0,6 (m, Lx, Ly,e)) (7

The appendix of Hiemstra and Jones (1994) provides further details regarding the definition
and the estimator of the variance o (m, Lx, Ly, ).

Next, we turn to the approach we follow to examine causality within a nonlinear

multivariate framework.

3.3. Multivariate nonlinear causality

In a recent study, Bai et al. (2010) extend the nonlinear causality test of Hiemstra and Jones
(1994) and propose a nonlinear test in a multivariate setting. Hence, to complement the
results of multivariate linear causality, we adopt the test developed by Bai et al. (2010) which
will allow us to to capture potential nonlinearities between stock market volatility and the
business cycle across countries. To our knowledge, no other study has examined possible
spillover effects between stock market volatility and the business cycle following a nonlinear
multivariate approach. Similar to the linear multivariate tests, the US is chosen as the
reference country. Hence, the corresponding relationships linking stock market volatility and
the business cycle within each country i (SV; and BC;, respectively) are extended with the

stock market volatility and the business cycle of the US (SVys and BCys, respectively).

" For more details on these joint probabilities and on their corresponding correlation-integral estimators, see
Hiemstra and Jones (1994).
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In more detail, to test for nonlinear Granger causality between two variables, one has
to apply a nonlinear causality test to the obtained stationary residual series from the linear
equations (2) and (3), {£,} and {&,}. As stated in Bai et al. (2010), the same applies if we
want to test for nonlinear causality between two vectors of time series (i.e. in a multivariate
setting). The difference is that one has to estimate a VAR model of n equations and obtain the
corresponding residuals. Subsequently, a nonlinear Granger causality test needs to be applied
to the residual series instead of the original time series. For simplicity, let the corresponding

residuals of two vectors of variables under examination to be defined as X, =(X,,,...,X, )’
and Y, =(Y,,...Y, )" . The m, -length lead vector and the L -length lag vector of

X

it?

i=L..,n, as well as the m, -length lead vector and the L, -length lag vector of

Y.

it

i =1,...,n,, can be defined, respectively, as:

lext, E(Xi X 9X[,t+mx.71)’ mx,- :1,2_._, t=1,2,..., and

X =X Xy s X )y Ly =12, =L +1 L +2,..,

Y=Y s Y s My =120, £=1,2,.., and (8)
L, _ _

Y =, Yy oY) Ly =02 b= L+ 1L 42,

Now we denote M =(m_,..m_),L =(L,,...L ), m =max(m_,..,m_), and
E 1 n 1 Xy 1 )

I, =max(L,,....L, ). ML ,m, and [, canbe defined in the same way.

Similar to the bivariate case, Bai et al. (2010) show that the test statistic for nonlinear

Granger causality is of the following form under the null hypothesis no Granger causality:

\/;{CI(MX +Lx,Ly,e,n) ~ C3(M, +Lx,e,n)

N(0,6°(M , Lx, Ly,
C2(Lx,Ly,e,n) C4(Lx,e,n) j—> (0,0°(M,,Lx,Ly,e))

)
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where C1, C2, C3, C4 are joint probabilities.8

In the next section, we turn to the discussion of our empirical results.

4. Empirical results

4.1. Bivariate linear causality results

Table 1 shows the results of the bivariate linear causality (described in Section 3.1) between
the business cycle and the stock market volatility for all markets under consideration. Panel I
presents the results with respect to the pre-crisis period (1990:01 to 2007:06), while Panel 11
presents the corresponding results for the full sample period (i.e. 1990:01-2011:12). The
results in Panel II enable us to assess the impact of the crisis which is a period of heightened

volatility and serves as a useful robustness check.

[Insert Table 1 around here]

Panel I suggests that there is a significant causal relationship which runs from the business
cycle to stock market volatility in Canada and in the UK at the 5% and 10% conventional
levels, respectively. However, no such relationship is detected in the case of the US and
Japan. Similar findings for Canada are reported in Biswanger (2001). Moreover, our results
for Japan are in line with Ahn and Lee (2006) who find no significant relationship, and
Binswanger (2001) who indicates that the relationship between Japanese stock returns and
real economic activity has broken down since 1980s. On the other hand, we find that stock
market volatility significantly causes the business cycle in the US (at the 1% level), in
Canada (at the 5% level) and in the UK (at the 10% level). Our findings regarding
bidirectional linear causality in the UK are slightly stronger than the ones in Errunza and

Hogan (1998) and Morelli (2002) who report no causality between stock market volatility

¥ For more details on the corresponding correlation-integral estimators for the joint probabilities in equation (9),
see Bai et al. (2010). For a full proof and the details on the consistent estimator of the variance of the test
statistic, see also Bai et al. (2010).
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and macroeconomic factors for the UK. Finally, there are several studies which report similar
findings for the US using different data periods and empirical settings (Schwert, 1989; Lee,
1992; Campbell et al., 2001; Ahn and Lee, 2006; Bloom et al., 2009; Rahman, 2009; Fornari

and Mele, 2013).

Turning to the results in Panel II, we observe that there is a significant impact of the
crisis on the dynamics between stock market volatility and the business cycle. Overall, we
find stronger causal relationships in either direction when the crisis is included in our sample.
Specifically, we now find significant unidirectional causality which runs from the business
cycle to stock market volatility in the US and in Japan at the 5% and 10% levels of
significance, respectively. In the case of the UK, the significance of this relationship

strengthens from 10% to 1% while in Canada it remains unaltered (at the 5% level).

Our results for the US conform to the arguments presented in a few previous studies.
For instance, Bernanke’s (1983) study of Great depression reports that the financial crisis
causes financial losses that intensify recession in the economy. Schwert (1990a) finds that the
stock market is very sensitive to the financial crisis and stock market volatility rises during
this period. Finally, Campbell et al. (2001) find that stock market volatility significantly

increases during economic downturns and leads recession.

Regarding unidirectional causality from stock market volatility to the business cycle,
the results in Panel II suggest that the inclusion of the financial crisis leads to stronger
relationships in the case of Canada (from 5% to 1%) and in the UK (from 10% to 5%).
Moreover, as in the pre-crisis period, stock market volatility significantly causes the business
cycle in the US at the 1% level while no significant evidence is found with respect to Japan.
Our results in the UK market indicate that in recent years the relationship between stock

market volatility and the business cycle might have become somewhat stonger. For example,
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earlier studies such as Errunza and Hogan (1998) and Morelli (2002) find no significant
causal relationship between macroeconomic factors such as industrial production, money
supply or inflation and stock market volatility in the UK context. Additionally, our findings
are in line to Binswanger (2001) who finds a significant feedback (i.e causality) between
stock market volatility and the business cycle in Canada. On the other hand, the absence of a
significant relationship in Japan in nearly all sample periods we consider is consistent with
the previous literature (see, Ahn and Lee, 2006; and Binswagner, 2001). One possible
explanation for this could be that unlike the economies of the other countries we consider, the
Japanese economy has experienced more periods of recession which were also longer in
duration compared to the expansionary phases. This can be clearly seen in Figure 1.
Additionally, the Japanese results may indicate the failure of linear tests to capture the
relationship between stock market volatility and the business cycle. Therefore, as stressed

earlier, we also adopt a nonlinear approach in this paper to further examine the issue.

4.2. Bivariate nonlinear causality results

This section extends the previous findings and discusses the results under a nonlinear
causality framework based on the Hiemstra and Jones (1994) test statistic which was
discussed in Section 3.2. Panel I of Table 2 tabulates the results with respect to the pre-crisis
period (i.e. 1990:01-2007:06). On the other hand, Panel II of Table 2 shows the results for the

full sample which includes the recent financial crisis and serves as a robustness check.

[Insert Table 2 around here]

During the pre-crisis period, the computed Hiemstra and Jones (1994) test statistics suggest
that there is a significant nonlinear causal relationship which runs from stock market

volatility to the business cycle in all countries under consideration. Evidence of causality
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from the business cycle to stock market volatility is found only in the UK and hence, this is

the only case where we identify bidirectional nonlinear causality.

When we include the financial crisis in the sample (Table 2, Panel II), we still find
evidence of causality from stock market volatility to the business cycle in the cases of Canada
and the UK. However no such evidence is found in Japan and the US suggesting that the
crisis led to the disappearance of nonlinear effects in these countries. On the other hand, the
computed Hiemstra and Jones (1994) statistics indicate that the impact of the crisis under a
nonlinear framework is more evident in the causal relationship which runs from the business
cycle to stock market volatility. As mentioned earlier, such significant relationship during the
pre-crisis period is detected only in the case of the UK. However, the inclusion of the crisis
leads to stronger results and additionally reveals significant nonlinear effects in Canada and
in Japan. Hence, during the crisis period both the UK and Canada show bidirectional
nonlinear causality. Finally, no evidence of nonlinear causality is found with respect to the

US in this case.

4.3. Multivariate causality results

In this section, we discuss the results of both linear and nonlinear multivariate causality
explained, respectively, in Sections 3.1 and 3.3. As stressed earlier, most studies focus on
bivariate causality and, to our knowledge, no other evidence exists regarding stock market
volatility and the business cycle in either a linear or a nonlinear multivariate setting across
countries. In order to explore the issue in our study, the bivariate models of causality for
Canada, Japan and the UK are extended by including the stock market volatility and the
business cycle of the US. The reason why we choose the US is because it is the largest
economy among the rest of the developed countries, the one with great political influence and
also the epicentre of the recent global financial crisis. Hence, our goal is to investigate and

identify possible spillover effects among the US and the remaining countries in our sample.
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Similar to our bivariate analysis, we also explore the effect of the crisis as a robustness check

in the multivariate approach.

4.3.1. Multivariate linear causality results

This section presents the results of our multivariate analysis within a linear setting (see
Section 3.1) and aims to identify possible spillover effects between stock market volatility
and the business cycle across countries. As in the bivariate tests, our multivariate analysis is
also carried out based on two sample lengths; The first one spans the pre-crisis period
(1990:01 to 2007:06) and the second includes the financial crisis period and explores its
impact (i.e. 1990:01 to 2011:12). The results for these periods are tabulated in Tables 3 and 4,

respectively.

[Insert Tables 3 and 4 around here]

As it can be observed in Table 3, there is a significant feedback from the US stock market
volatility (SVys) and business cycle (BCys) to the Canadian stock market volatility (SVcan)
at the 5% significance level. The same result holds in the direction from Canada to the US
and hence, the corresponding Canadian variables (i.e. SVcan and BCcan) are significant
predictors of the US stock market volatility. On the other hand, the US business cycle is
significantly causing the Canadian business cycle at the 1% level but the US stock market
volatility is not significant in this case. Finally, both SVcan and BCcan are significantly
causing the US business cycle (at the 5% and 1% significance levels, respectively). Moreover,
a mutual interdependence among all considered variables is also revealed within a cross-
country framework between the US and Japan (at varying significance levels between 1%
and 10%). This is a very interesting finding given that earlier we reported weak evidence of
causality between the Japanese stock market volatility and business cycle in a bivariate

setting. However, these variables are found to be strongly influenced and bear influence on
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the corresponding US variables under a multivariate testing framework suggesting significant
spillover effects between the two countries. This could be explained by the integration
between the equity markets of the US and Japan (for evidence of integration, see Hamao et al.,

1990; Koutmos and Booth, 1995).

A similar picture arises when we consider the interaction between the UK and the US
markets. Specifically, we can observe significant causal relationships and bidirectional
spillover effects across these two countries. Therefore, our results suggest that within a
multivariate setting the stock market volatility and the business cycle of the US are important
explanatory variables which cause the stock market volatility and the business cycle of the
UK (and vice versa). These results are broadly consistent with Kanas and Ioannidis (2010)
who find that US stock returns together with UK stock returns significantly cause the output
growth rate of the UK. Consequently, they state that the US stock returns contain important

information which is reflected on the relationship between the UK variables.

The tabulated results in Table 4 suggest that there are still significant spillover effects
when we extend our sample to include the recent financial crisis. More specifically, the
influence of the US stock market volatility and business cycle on the Canadian stock market
volatility remains robust and significant at the 5% level. On the other hand, in contrast to the
pre-crisis period the stock market volatility of the US is now significantly causing the
Canadian business cycle while the US business cycle remains significant at the 1% level in
this case. These findings reveal a somewhat stronger overall influence of the US on Canada
during a period of higher than usual volatility. Moreover, regarding potential spillover effects
from Canada to the US, we generally observe similar results to the pre-crisis period. In
particular, with the exception of the Canadian business cycle which is no longer found to
significantly cause the US stock market volatility, the Canadian variables possess significant

explanatory power for the corresponding US variables.
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With respect to the interaction between Japan and the US, the results show a stronger
influence of the US on the Japanese business cycle but not on the the Japanese stock market
volatility. Interestingly, we identify a significant feedback from the Japanese stock market
volatility and business cycle to the US stock market volatility. In addition, the Japanese
business cycle causes the US one but the Japanese stock market volatility is insignificant in
this context. These relatively weaker results of multivariate causality among Japan and the
US during the crisis may indicate that a nonlinear testing framework is required to better

capture potential spillover effects. This is further investigated in the next section.

Finally, Table 4 reveals that the evidence of causality and spillover effects across the
UK and the US remains significant when we add the crisis to the sample. This finding
suggests that these two economies are strongly associated both during periods with normal
levels of stock market volatility as well as during periods with heightened volatility such as

the recent financial crisis.

4.3.2. Multivariate nonlinear causality results

This section further explores Granger causality within a cross-country framework by
adopting a nonlinear approach based on the recently developed test by Bai et al. (2010) which
was described in Section 3.3. In particular, we extend the nonlinear bivariate tests within each
country (Canada, Japan or the UK) by including the stock market volatility and the business
cycle of the US. Therefore, we are interested in potential spillover effects and test for joint
causality in a nonlinear setting which might better capture the relationship among the
considered variables. The results are tabulated in Table 5. Panel I is related to the pre-crisis
period while panel II shows the corresponding results for the full sample and allows us to

assess the impact of the crisis.

[Insert Table 5 around here]
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Starting from the pre-crisis period, the computed statistics in Panel I of Table 5
suggest that the Canadian stock market volatility is jointly caused by the Canadian and US
business cycle and the US stock market volatility at the 5% conventional level. However, no
evidence of causality is found in any other case between these two countries. Interestingly,
when we look at the relationship between the Japanese and the US variables, the only
evidence of nonlinear multivariate causality indicates that the Japanese business cycle and
stock market volatility and the US stock market volatility jointly cause the US business cycle
at the 5% significance level. This identified nonlinear association affecting the US economic
activity suggests that any strategy or policy related to the US economy should take into
consideration the impact of Japanese real economic activity and stock market volatility
among the key determinant variables. Finally, a much stronger link is revealed between the
UK and the US. Specifically, both the UK business cycle and stock market volatility are
influenced by the corresponding US variables. On the other hand, the US stock market
volatility is also caused by the UK variables while no evidence of joint nonlinear causality is

found when the US business cycle is the dependent variable.

Turning to Panel II of Table 5 which shows the full sample period results, we observe
a much stronger nonlinear interdependence among the Canadian and the US variables
compared to the pre-crisis period. Therefore, the crisis has led to a higher degree of
association between these two economies. Also, this finding may be an indication that a
nonlinear framework can better capture cross-country spillover effects in some cases. The
impact of the financial crisis is also evident when we examine multivariate nonlinear
causality between Japan and the US. In contrast to the pre-crisis period, we now find
significant spillover effects from the US variables to the Japanese ones at the 1% level. The
stock market volatility of the US is also significantly influenced by the Japanese business

cycle and stock market volatility (along with the US business cycle). However, we no longer
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find evidence of significant feedback from Japan to the US business cycle in this case.
Finally, the stock market volatility and the business cycle of the US (jointly with the UK
stock market volatility) cause the UK business cycle at the 5% significance level. This result
implies a strong influence of the US on the UK economic outlook which is nonlinear in
nature. Nevertheless, this is the only significant relationship we identify during the crisis
between the UK and the US suggesting less nonlinear spillover effects overall between the

two countries in this period.

4.4. Robustness checks and further empirical evidence
4.4.1. Macroeconomic volatility and stock market volatility

To delve deeper into the relationship between stock market volatility and economic activity,
we additionally explored the links between stock market volatility and macroeconomic
volatility (i.e. the volatility of the industrial production growth rate).” Overall, our results are
qualitatively similar to the ones presented in our previous main analysis. For example, we
find a strong bidirectional relationship between stock market volatility and macroeconomic
volatility in the UK in all periods. Moreover, some evidence of causality is found in Canada
and in the US while the weakest evidence is observed in Japan, a finding which is consistent
with our previous results. In some cases, the recent financial crisis is found to have some
impact and to strengthen some relationships (e.g., in Canada and the US). Regarding the
multivariate case, we identify that the US plays a significant role is this context and this is
particularly evident in the case of Canada. Finally, no significant evidence is found in a
nonlinear setting suggesting that the linear model specification is adequately capturing the

relationship between stock market volatility and the volatility of economic activity.

? These results are not presented here to save space but they are available upon request from the authors.
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4.4.2. Linear and nonlinear forecasting regressions

This section provides additional empirical evidence and explores the relative role of stock
market volatility as a short-term predictor of real economic activity in all markets under
consideration.'® Therefore, it complements the results of Granger causality and serves as a
useful robustness check. To this end, we initially focus on the following forecasting

regression:

)4
Yivn =a+ﬂxz+7,Zt+Zpiyt—i+gt+h (10)
i=0

where y;+, denotes the change in economic activity (i.e. the industrial production growth rate),

Vien = %ln (h}h >0 is the forecast horizon, x, is the stock market volatility (SV) in
+

t

first differences, Z; is a vector of other financial indicators that may contain useful
information about future economic activity such as the term spread or the real Treasury yield,
and ¢, , is the error term. Given that one of our objectives is to investigate the role of the US
on the economic activity of the other markets, Z; also incorporates the stock market volatility
and economic activity of the US when equation (10) is estimated with respect to Canada,
Japan and the UK. The null hypothesis of no predictability, in terms of stock market volatility,
is that 8 equals zero in equation (10), while the alternative hypothesis of predictability
predicates that § = 0. To assess the robustness of the results, this forecasting exercise is first
performed when the information content of the relevant financial indicators is absent (i.e.

Z,=) and then when it is included via Z, The corresponding results when /=1 are

presented in Table 6.

[Insert Table 6 around here]

' We are thankful to an anonymous referee for making this suggestion.
"' Table 6 includes the short-term (i.e. 3-month) real Treasury yield in Z. However, our results remain
unaffected if we use the long-term (i.e. 10-year) Treasury yield or the term spread instead.
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We observe that stock market volatility is a significant short-term predictor of the economic
activity in all countries under consideration. When we include Z, into the model to account for
additional financial indicators, this result remains unaffected establishing the important role
of stock market volatility on predicting future economic activity. Furthermore, our findings
based on this model specification reveal that the stock market volatility and economic activity
of the US are also significant short-term predictors of the economic activity of the remaining

markets.'?

Given the strong evidence of nonlinear features documented in the previous sections,
we extend the forecasting approach presented above and offer evidence based on a nonlinear
forecasting model which allows us to further explore the relationship between economic
activity and stock market volatility. Within this context, we adopt the class of smooth-
transition threshold (STR) models (see, inter alia, Chan and Tong, 1986; Terédsvirta and
Anderson, 1992; Granger and Terésvirta, 1993; Terdsvirta, 1994; McMillan, 2003). In
contrast to simple threshold models which impose an abrupt change in parameter values, STR
models allow for the transition between different regime states to be smooth. The threshold

model can be expressed as follows:

)4 p
Vo =0+ BX, +V'Z,+ ) piyi; "'((Po + O, + 0y 7, + Z@yt,}F Viea) €

i=0 i=0
(11)

where all variables are defined as in equation (10) while F(y,_,) is the transition function

and y, , is the transition variable. Following the literature, the first form of transition

12 We have also obtained results for longer horizons A=2,3,6. Overall, we find that stock market volatility is a
significant predictor of economic activity in Canada and in the US across all horizons and in the UK when 4=2,3,
while weak evidence is found in Japan. When Z, is incorporated in the model, our results reveal that the stock
market volatility and the economic activity of the US are both significant predictors of the economic activity of
the remaining countries when A=2,3. Overall, our findings suggest a strong degree of market integration and
highlight the importance of the US regarding the economic activity of the considered countries.
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function we consider is the logistic function which is shown in equation (12) (see also, Chang
and Tong, 1986; Terdsvirta and Anderson, 1992; Terésvirta, 1994; McMillan, 2003). In this

case, the full model is referred to as a logistic STR (LSTR) model.

F(yig) = (+exp(=A(y,_g =), A>0 (12)

where d is the delay parameter, A is the smoothing parameter, and c is the transition

parameter. This function is monotonically increasing in y, 4. Note that when 4 — +o, F(y,_;)

becomes a Heaviside function: F(y,_;,)=0 when y,_, <c and F(y,_,)=1 when y,_, >c.

However, monotonic transition might not always be successful in empirical
applications. Therefore, the second form of transition function we consider is the exponential
function with the relevant model in this case being referred to as an exponential STR (ESTR)

model (see, Terdsvirta and Anderson, 1992; Terdsvirta, 1994; McMillan, 2003):

F(y_g)=1-exp(=A(y_4 —¢)*), A>0 (13)

In this case, the transition function is symmetric around ¢. The ESTR model implies that
contraction and expansion have similar dynamic structures while the dynamics of the middle
ground differ (Terdsvirta and Anderson, 1992). As there might be some issues in the STR
models related to the estimation of the smoothing parameter 4 which can be problematic, we
follow the literature and scale A by the standard deviation of the transition variable in the
LSTR model and by the variance of the transition variable in the ESTR model (see,
Terdsvirta and Anderson, 1992; Terésvirta, 1994). Hence, we have the following versions of

transition functions, respectively:

F(yrg) = (1 +exp(-A(y,g =) () ' 2 >0 (14)

F(y_g)=1=-exp(~A(y,_g =)’ 1 6*(¥,_4)), A >0 (15)
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The results of the LSTR and the ESTR models are presented in Table 7.

[Insert Table 7 around here]

Looking at the LSTR model results, we find that the estimated transition parameter ¢, which
marks the half-way point between the two regimes, is significantly different from zero in
Canada and in Japan (with the respective estimates being 0.17 and -0.09). Regarding the UK
and the US, no such significance is found indicating that the lower and the upper regime in
these markets represent, respectively, the two cases where the industrial production grows at
a negative or a positive rate. Moreover, we observe that in all markets the lagged parameters
of interest in the lower regime appear significant and their sign remains the same as in the
linear case. In more detail, the estimated betas are negative and significant (at 1% and 5%
levels, depending on the case) suggesting that high volatility predicts a lower industrial
production growth rate in the following month. Additionally, the estimated y,'s show that the
lagged stock market volatility of the US is a significant short-term predictor of the industrial
production growth rate in Canada and Japan (at the 5% level) while the estimated y,'s suggest
that the lagged industrial production growth rate of the US is significant in all cases. Based
on the estimated ¢, in the upper regime significance is found only in Canada revealing the
importance of stock market volatility as an explanatory variable of industrial production
growth rate in both regimes. Finally, the estimated parameter 4 indicates that the fastest speed

of transition occurs in Canada, Japan and the US while the slowest occurs in the UK.

Turning to the estimated ESTR models, we observe a similar picture which
establishes the importance of stock market volatility as a short-term predictor of future
industrial production growth rate in a nonlinear context and corroborates the previously
reported results under the linear scenario. Additionally, it also stresses the importance of the
US stock market volatility and the US industrial production growth rate on the economic

activity of other countries.
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5. Conclusion

This paper empirically investigates the relationship between stock market volatility and the
business cycle (represented by the industrial production growth rate) within an international
setting which involves four major economies, namely the US, Canada, Japan and the UK.
Our data set is at a monthly frequency and covers the period from 1990:01 to 2011:12.
Although there is an abundance of evidence regarding the linkage between stock market
volatility and the business cycle, there are still some important avenues of research which
have not been explored. With respect to those, we contribute to the literature in the following
ways.

First, we examine the dynamics between stock market volatility and the business
cycle by employing both linear and nonlinear causality tests. The vast majority of previous
studies focuses on the linear representation despite existing evidence which supports the
nonlinear nature of various macroeconomic variables and of the relationship between them
(e.g., Keynes,1936; Hiemstra and Jones, 1994; Shiller, 1993, 2005; Diks and Panchenko,
2006; Shin et al., 2013). Second, we provide fresh evidence given that our sample includes
the recent global financial crisis. In that respect, our data set is particularly advantageous as it
allows us to assess the impact of the crisis which can be seen as a useful robustness check in
a period of heightened volatility. Third, to our knowledge, this is the first study that conducts
a multivariate analysis (both linear and nonlinear) in this context and assesses possible
spillover effects under a cross-country framework. In particular, we extend the bivariate
causality models and include the stock market volatility and the business cycle of the US to
determine the impact on the corresponding variables of the remaining three countries. As in
the bivariate case, the effect of the recent financial crisis is also considered in our multivariate
analysis.

Our tests within a linear bivariate setting offer strong evidence of bidirectional

causality between stock market volatility and the business cycle in all countries. The results
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are robust to the inclusion of the recent financial crisis and there are cases where the
identified causal relationships strengthen during this period. Adopting a nonlinear framework
also reveals a significant feedback (i.e. causality) in most cases suggesting that nonlinear
features are present and important in capturing the dynamics between the considered
variables. On the other hand, depending on the direction or country, there are instances where
the crisis has led to the absence of nonlinear effects.

When we extend the bivariate analysis and adopt a linear multivariate framework, we
identify significant spillover effects between the US stock market volatility and business
cycle and the corresponding variables of the remaining three countries. These results are
overall consistent throughout the financial crisis and some relationships are more pronounced
during that period. In the case of Japan, this is a very interesting finding given that the
bivariate tests showed somewhat weaker causality within this country. Moreover, when we
explore multivariate causality within a nonlinear setting by employing a recently developed
test by Bai et al. (2010), our results reveal the existence of significant nonlinear spillover
effects across countries. This is more evident in the interaction between the UK and the US.
However, the inclusion of the crisis leads to stronger nonlinear spillover effects among the
US and Canada or Japan. This finding suggests that both a nonlinear approach and a cross-
country framework may be able to capture the dynamics of the considered relationships to a
greater extent during periods of heightened volatility.

Finally, we present evidence based on both linear and nonlinear forecasting
regressions and show that the stock market volatility is a significant short-term predictor of
future economic activity within each country. Additionally, we find that the stock market
volatility and the economic activity of the US are also significant predictors of the economic
activity of Canada, Japan and the UK indicating a strong degree of market integration.

Overall, the findings in this paper suggest that policies associated with a country's

economic activity should take into consideration both the nonlinear features of the
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relationship between stock market volatility and the business cycle as well as potential
spillover effects from other countries. This is particularly important in periods of heightened

stock market volatility such as the recent global financial crisis.
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TABLES

Table 1. Bivariate linear causality between stock market volatility and the business cycle

Panel I: Pre-crisis period (1990:01 to 2007:06)

Business cycle — Stock market volatility Stock market volatility — Business cycle
Country Canada Japan UK UsS Canada Japan UK UsS
I];aC%SSMV 11-8 6-11 11-7 12-4 4-9 6-2 9-8 12-1
F-Stat 2.060"  0.900 1.820° 0.539 2.000™ 1.340 1.930° 13.960""
Adj. R? 0.163 0.070 0.186 0.047 0.063 0.174 0.159 0.124
SSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RSS 0.001 0.000 0.000 0.001 0.014 0.028 0.011 0.005
RESET 1.130 1.200 1.440 3.395 3.650 1.700 2.040 0.320
White 197.000 182.170 193.350 187.910 120.580 56.350 173.180 98.920
LB 2.942 12.840 5.738 0.936 8.897 14.623 1.729 2.910
JB 2.950 10.750 1.922 2.787 2.006 3.121 5.518 2.504

Panel II: Full sample period (1990:01 to 2011:12)

Business cycle — Stock market volatility Stock market volatility — Business cycle
Country Canada Japan UK US Canada Japan UK US
II;an-SSV 10-10 7-11 11-10 7-12 9-9 3-9 5-9 11-11
F-Stat 21907 1.690" 2.7107" 2.060™ 312077 1.390 2.080™ 2.800""
Adj. R 0.110 0.131 0.131 0.331 0.171 0.035 0.050 0.249
SSE 0.000 0.000 0.000 0.000 0.008 0.005 0.010 0.003
RSS 0.001 0.000 0.000 0.000 0.018 0.107 0.020 0.008
RESET 1.781 5.983 1.790 87.084 1.039 5.390 2.060 3.930
White 245900  208.200 251.300 235.500 210.500 188.100 135.700 260.970
LB 2.500 8.060 5.460 6.220 2.350 9.120 12.560 0.767
B 2.580 14.400 1.710 5.880 3.370 5.850 2.520 9.240

This table presents the results of the bivariate linear causality tests, described in Section 3.1, between stock
market volatility and the business cycle (represented by the industrial production growth rate) for all countries
under consideration. Panel I shows the results with respect to the pre-crisis period while Panel II shows the
results with respect to the full sample period and assesses the impact of the recent financial crisis. Asterisks ***,
** and * denote significance at the 1%, 5% and 10% conventional levels respectively. BC: business cycle
represented by the industrial production growth rate; SV: stock market volatility; SSE: Standard error of
estimate squared; RSS: Residual sum of squares; Reset: Ramsey’s Specification Test; White: White’s
Heteroskedasticity Test; LB: Ljung-Box (1978) test for autocorrelation including up to 12 lags; JB: Jarque-Bera

normality of residuals test.
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Table 2. Bivariate nonlinear causality tests between stock market volatility and the business cycle

Panel I: Pre-crisis period (1990:01 to 2007:06)
Stock market volatility — Business cycle Business cycle — Stock market volatility

Country HJ Test-Stat HJ Test-Stat
Canada 1.798** -1.124
Japan 1.591%* 1.128
UK -1.332% -1.361%*
US S2.117%* -0.719

Panel II: Full sample period (1990:01 to 2011:12)

Stock market volatility — Business cycle Business cycle — Stock market volatility
Country HJ Test-Stat HJ Test-Stat
Canada 1.801%* -2.011%*
Japan 1.023 2.594%**
UK -1.568%* 1.429%
US 0.046 0.588

This table presents the results of the Hiemstra and Jones (1994) test statistic (HJ) described in Section 3.2 which
tests for nonlinear causality between stock market volatility and the business cycle (represented by the industrial
production growth rate), for all countries under consideration. Panel I shows the results during the pre-crisis
period while Panel II shows the corresponding results for the full sample and assesses the impact of the recent
financial crisis. Asterisks *** ** and * denote significant nonlinear causality at the 1%, 5% and 10% levels,
respectively.
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Table 3. Multivariate linear causality between stock market volatility and the business cycle: pre-crisis

period (1990:01 to 2007:06)

Country

Canada

us

Dependent variable

Stock market volatility

Stock market volatility

lndependent variables BCCAN SVUS BCUS BCUS SVCAN BCCAN
Lags 5 2 4 1 11 2
F-Stat 225" 3.44™ 2517 3.93" 2.87" 3.46"

Dependent variable

Business cycle

Business cycle

Independent variables SVean SVus BCys SVus SVean BCcan
Lags 9 5 1 5 7 3
F-Stat 2377 0.96 1130 3.95™ 3.207 430"
Country Japan [N}

Dependent variable

Stock market volatility

Stock market volatility

Independent variables BCp SVus BCys BCus SV BCp
Lags 2 1 6 6 3 2
F-Stat 3.02" 0.27 2817 234" 450" 237"

Dependent variable

Business cycle

Business cycle

Independent variables SVp SVus BCys SVus SV BCjp
Lags 9 10 5 3 11 1
F-Stat 230" 4.76™" 1.99" 3.817 2.01 11.01°
Country UK US

Dependent variable

Stock market volatility

Stock market volatility

Independent variables BCux SVus BCygs BCys SVuk BCuk
Lags 5 11 6 6 3 4
F-Stat 227" 245" 2.08° 2.64" 727" 3277

Dependent variable

Business cycle

Business cycle

lndependent variables SVUK SVUS BCUS SVUS SVUK BCUK
Lags 7 10 3 9 1 4
F-Stat 2.03" 1.99" 5.75™" 1.99" 3.74™ 423™

This table presents the results of multivariate linear causality (described in Section 3.1) between the stock market
volatility and the business cycle (represented by the industrial production growth rate) of each country
considered in our sample and the corresponding variables of the US during the pre-crisis period (i.e. 1990:01 to
2007:06). Asterisks *** ** and * denote significance at the 1%, 5% and 10% levels, respectively.
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Table 4. Multivariate linear causality between stock market volatility and the business cycle: full sample

period (1990:01 to 2011:12)

Country

Canada

us

Dependent variable
Independent variables
Lags
F-Stat

Dependent variable

Stock market volatility

BCCAN SVUS BCUS
5 2 4
225" 3.43" 2.51™

Business cycle

Stock market volatility

BCUS s\/CAN BCCAN
1 11 2
3.93" 1.88™ 1.73

Business cycle

Independent variables SVean SVuys BCys SVus SVcean BCean
Lags 12 1 4 1 11 2
F-Stat 1.67" 2.90™" 3.50"" 3.95"" 3.39"™" 6.40""
Country Japan Us

Dependent variable
Independent variables
Lags
F-Stat

Dependent variable

Stock market volatility

BCjp SVus BCys
6 3 1
1.95" 0.89 0.06

Business cycle

Stock market volatility

BCUS SVJP BCJP
6 1 2
2.29™ 6.10™" 244"

Business cycle

Independent Variables SVJP SVUS BCUS SVUS SVJP BCJP
Lags 1 10 3 4 1 6
F-Stat 4.06" 4417 3.24™ 3.23" 1.75 2.06
Country UK [N}

Dependent variable
Independent variables
Lags
F-Stat
Dependent variable
Independent variables
Lags

F-Stat

Stock market volatility

5 3 6
227" 5.29™" 233"

Business cycle

SVUK SVUS BCUS
4 9 3
249" 2.75" 6.89""

Stock market volatility

BCusg SVuk BCyx
6 3 4
2.64™ 7277 327"

Business cycle

SVuys SVuk BCuk
9 1 4
1.90° 3.74" 423

This table presents the results of linear multivariate causality (described in Section 3.1) between the stock
market volatility and the business cycle (represented by the industrial production growth rate) of each country
considered in our sample and the corresponding variables of the US during the full sample which includes the
recent financial crisis (i.e. 1990:01 to 2011:12). Asterisks ***, ** and * denote significance at the 1%, 5% and

10% levels, respectively.
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Table 5. Multivariate nonlinear causality between stock market volatility and the business cycle

Panel I: Pre-crisis period (1990:01 to 2007:06)

Country Dependent variable  Independent variables Test statistic
SVean BCcan» SVus, BCus 1.4297
BCcan SVeans SVus, BCus 0.553
Canada gy, o SVeans BCeans BCus 1.044
BCuys SVeans BCeans SVus 0.638
SV BCjp, SVus, BCys 0.230
BCyp SVip, SVus, BCus 0.426
Japan SVus SVyp, BCyp, BCys 0.247
BCus SVyp, BCyp, SVus 2.132"
SVuk BCux, SVus, BCus 1.469"
BCux SVuk» SVus, BCus 1.514"
UK SVus SVuk, BCux, BCus 2.380"
BCuys SVuk. BCuk, SVus 0.773

Panel II: Full sample period (1990:01 to 2011:12)

Country Dependent variable Independent variables Test statistic
SVean BCcan» SVus, BCus 21937
BCcan SVean, SVus, BCus 1.698"
Canada SVus SVean, BCean, BCus 1.818™
BCys SVeans BCeans SVus 1.368°
SVip BCyp, SVys, BCus 23107
BCp SVip, SVys, BCus 2767
Japan SVus SVip, BCyp, BCys 2.967"
BCuys SVip, BCyp, SVis 1.287
SVuk BCux.SVus, BCus 0.262
BCux SVuk, SVus, BCus 2.172"
UK SVus SVuk, BCuk, BCus 0.137
BCys SVuk, BCuk, SVus 0.638

This table presents the results of multivariate nonlinear causality based on the Bai et al. (2010)
test (see Section 3.2) between stock market volatility and the business cycle (represented by the
industrial production growth rate) within a cross-country framework. Panel I presents the
results during the pre-crisis period while Panel II is related to the full sample which includes
the recent financial crisis. BC; and SV, denote, respectively, the business cycle and stock
market volatility of country i, where i can be Canada, Japan, UK or the US. Asterisks ***, " and
" denote significant joint causality at the 1%, 5% and 10% conventional levels respectively.
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Table 6. Linear forecasting regressions

Z=0 7,+0

Country SV, Adj. R? SV, RTY, SVuss BCus, Adj. R?

Canada -1.1157 0.159 -0.095"" 0.044™"  -1.740"  0.4207 0.256
(3.12) (3.39) (3.73) (2.24) (3.02)

Japan -3.1407 0.037 -1.950™ 0.014  -7.9207"  1.075" 0.165
(2.10) (2.14) (0.90) (5.00) (3.58)

UK -0.480" 0.041 -0.380" -0.003 -0.059 0543 0.102
(2.37) (2.31) (0.47) (0.08) (5.14)

US 21577 0.360 2.159" 0.023 0.362
(5.06) (5.06) (0.56)

This table presents the results from the linear forecasting regressions described in Section 4.4.2 (equation
(10)) during the full sample period (i.e. 1990:01-2011:12) and when the forecast horizon is 1. For each
country, the dependent variable is the change in its economic activity (i.e. the log-change in the total
industrial production index, which is our business cycle indicator, BC). The main predictive variable is the
(first differenced) volatility of the corresponding country (SV,) and Z,is a vector of other financial indicators
that may contain useful information about economic activity such as the short-term real Treasury yield
(RTY,), the (first differenced) volatility of the US (SVys,) and the change in economic activity of the US
(BCus,). For each regression, the estimated coefficients are given in the first row while the corresponding ¢-
statistics are reported in parentheses below. Asterisks *** and ** denote significance at the 1%, and 5%
levels, respectively.
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Table 7. Nonlinear forecasting regressions: STR models

Canada Japan UK UsS
Parameters
LSTR  ESTR  LSTR ESTR LSTR ESTR LSTR ESTR
a 0.001" 14.180™" -0.394"  1.343"  8.623" -0.030° -0.058"" 1340
B -0.020™" <0360 -0.032""  -0.099"  -0210" -0.150"  -0.002""  -0.090""

Psvsy — -0.0307 02507 -0.003"  -0.007"  -0.010  -0.030 - -

Yascusy  0.00170.090""  0.0017  0.0037  0.004"  0.090" - -

V3 RTYY 0.016  -9.200 -0.055 -0.236 0.410 0.330 20427  -0.230
%o 0.0005  -0.080 0.0004  0.104 0.860 0.030 0.100”"  -1.340
» 2.572"  -14.180  0.583 0.230" -0.210 0.150 0.003 0.100

Pasvusy  -0.031 9210 -0.091 0.004 -0.090  -0.002 - -

Pspewsy  -0.018 0250 0.003 0.0011 -0.110  -0.012 - -

PaRTYY 0.020  -0.360 0.048 -0.007 0.940  -0.330 0.754 0.230
2 5340 53607 04507  1.130" 6.550 23.010 52307 11307
¢ 0.170"  0.960°  -0.093" 0.387 -0.650 0.001 -0.008 0.380

Adj.R 0.130 0.130 0.060 0.050 0.033 0.049 0.049 0.059

This table presents the results of the smooth-transition threshold (STR) models which were described in
Section 4.4.2. LSTR refers to the case where the transition function is the logistic function while ESTR
employs an exponential function instead. Results are reported for all markets under consideration during the

full sample period (i.e. 1990:01-2011:12). Asterisks ***, ** and * denote significance at the 1%, 5% and 10%
levels, respectively.

39



FIGURES
Figure 1 Industrial production growth rate

This figure depicts the industrial production growth rate (in log terms) for all countries considered in our study
covering the period between 1990:01 and 2011:12 (see Section 2.1 for further details).

Canada
0.10

0.05

-0.00 TS RN A,\A_!.th‘u\m L, J\Mn W pde 4 RSN
. v'.,‘,\ﬁ,.r\lv LA T ¥ w W\'Urw W\‘. Vli”l”l" iy

-0.05
-0.10 4
-0.15

-0.20 | T | T | T | T | T | T | T | T | T | T
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Japan

0.10
0.05
-0.00
-0.05
-0.10

-0.15

-0.20 | T | T | T | T | T | T | T | T | T | T
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

UK
0.10

0.05 +

-0.00 u Hmm‘u.w"l A bbb ern g bk JI\ . N NPT VOO W

) '\""\J T R v|||"fv~v AN "\f*u i MALTA I Wﬁvf‘\”ll AR
-0.05 +
-0.10

-0.15 4

-0.20 1~ [ T T 1 T T " T T T T T T T
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Us

0.10
0.05

-0.00 i WA, o it h o fitpeie n'lb\, o A b apduna b o P M [l by b
. LT T T a T L Y 1 L T

-0.05
-0.10 4
-0.15

'0.20 | T | T | T | T | T | T | T | T | T | T
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

40



Figure 2 Stock market volatility

This figure depicts the stock market volatility for all countries considered in our study covering the period
between 1990:01 and 2011:12 (see Section 2.2 for further details).

Canada
0.030

0.025 —

0.020 —

0010 —

oem MMJ\J

0.000

v T T T T - v T T T T T T T T T T T - T
1990 1993 1996 1999 2002 2005 2008 2011

Japan

w]

030

025 —

020 —

015

o o o o

o

005 —

0.000 T T T T T T T T
1990 1993 1998 1999 2002 2005 2008 2011

UK

0.030

0.025 —

0.020 —

0.015 —

0.010 —

0.005 —

0.000

T T T g T T T T T T T T T T T T T
1990 1993 1996 1999 2002 2005 2008 2011

us
0.030

0.025 —

0.020 —

(@]
o
o
=}

T T T T T T T T T T T T T T
1996 1999 2002 2005 2008 2011

-
©
©
=]y
-
©
o]
w

41



