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Cochlear implant (CI) users regularly perform as well as normal-hearing (NH) listeners 

in quiet conditions. However, CI users have reduced speech perception in noise. CI 

users suffer more in terms of speech intelligibility than NH listeners in the same noisy 

environment. Speech coding strategies with noise reduction algorithms for CI devices 

play an important role, allowing CI users to benefit more from their implants. This 

thesis investigates a wavelet packet-based speech coding strategy with envelope-based 

noise reduction algorithms to enhance speech intelligibility in noisy conditions. 

The advantages of wavelet packet transforms (WPTs), in terms of time-frequency 

analysis, the sparseness property, and low computational complexity, might make WPT 

appropriate for speech coding and denoising in CI devices. In cases with an optimal set 

of parameters for a wavelet packet-based speech coding strategy, the 23- and 64-band 

WPTs with sym8 and frame length of 8 ms were found to be more suitable than other 

combinations for this strategy. These parameters can optimise speech intelligibility to 

benefit CI users. However, both the standard ACE strategy and the wavelet packet-

based strategy provided almost the same results in either quiet or noisy conditions. 

Cases using envelope-based denoising techniques in a wavelet packet-based 

strategy, namely time-adaptive wavelet thresholding (TAWT) and time-frequency 

spectral subtraction (TFSS) were developed and evaluated by objective and subjective 

intelligibility measures and compared to ideal binary masking (IdBM) as a baseline for 

denoising performance. IdBM can restore intelligibility to nearly the same level as NH 

listeners in all noisy conditions. Both TAWT and TFSS showed slight intelligibility 

improvements in some noisy conditions. This may result from noise estimation in 

denoising techniques. Noise level may be under- or overestimated, and this results in 

distortion in enhanced speech and difficult in speech discrimination. 

Both objective and subjective intelligibility measures can predict the trend of the 

performance of different denoising techniques for CI users. However, NH listeners can 

achieve better intelligibility at higher SNR levels without noise reduction, since they are 

less sensitive to noise but more sensitive to speech distortion when compared to CI 

listeners. Therefore, denoising techniques may work well for CI users in further 

investigations. 
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  Chapter 1 Introduction 

1  

Chapter 1:  Introduction 

 

1.1 Contribution to knowledge 

Most cochlear implant (CI) users perform well in quiet listening conditions, and many 

can achieve more than 80% speech recognition scores. However, speech recognition 

scores are significantly degraded in noisy listening conditions. Enhancing speech 

intelligibility for CI users in noise is a major goal for improving CI systems. The speech 

coding strategies in cochlear devices play an extremely important role and can influence 

the overall performance of the CI device in order to greatly benefit CI users’ 

communicative potential (Loizou, 1998). 

Generally, the greater the level of background noise, the lower the capability in 

terms of speech intelligiblity. Since the speech signal contains highly redundant 

information, if some parts of speech signal are masked by noise in a moderately noisy 

environments, other parts of speech may still contain useful information, and speech 

intelligiblity will be sufficiently maintained for normal-hearing (NH) listeners 

(Kokkinakis et al., 2012). However, speech intelligiblity is poor in noise for CI users, at 

least, because of the limited number of electrodes, the spectral mismatch from the 

frequency-to-electrode allocation, and the interaction between electrodes (Stickney et 

al., 2004). There is poorer performance with nonstationary noise (e.g. babble noise) than 

stationary noise (e.g. speech-shaped noise) for both NH listeners and CI users (Qin and 

Oxenham, 2003; Stickney et al., 2004). 

 Some noise reduction algorithms have been proposed for CI users, for both multi-

microphone noise reduction (Vanhoesel and Clark, 1995; Wouters and Vanden Berghe, 

2001; Spriet et al., 2007) and single-microphone noise reduction. Algorithms for multi-

microphone noise reduction include adaptive beamforming algorithms (Vanhoesel and 

Clark, 1995; Wouters and Vanden Berghe, 2001; Spriet et al., 2007) and two-

microphone spectral subtraction (Kallel et al., 2012). However, multi-microphone noise 

reduction is undesirable, cosmetically unappealing, and computationally complex. 

Single-microphone noise reduction algorithms can be divided into those using a 

pre-processing approach and those adopting an envelope-based approach. Pre-
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processing approaches include spectral subtraction (Yang and Fu, 2005; Verschuur et 

al., 2006) and the subspace method (Loizou et al., 2005), and can bring benefits for 

stationary noise, but these are not guaranteed for nonstationary noises. The envelope-

based approach can enhance in noisy speech by using envelope-weighting or envelope-

selection in each channel. However, some techniques involve more complicated 

procedures (Li, 2008), and others require prior knowledge of the clean speech and noise 

information before both are mixed (Hu and Loizou, 2008). They are not suitable for 

real-time implementations in real-world situations. 

The past decades have seen the rapid development of wavelet analysis in many 

applications (Peng and Chu, 2004; Mallat, 2009). The wavelet transform of most real-

world signals tends to be dominated by a few large coefficients (Donoho and Johnstone, 

1994), which constitutes the so-called sparseness property. This sparsity of wavelet 

representation is essential to the performance of noise reduction and data compression. 

In addition, wavelet transforms have proven to be successful for the detection and 

estimation of signals. 

Wavelet thresholding is a powerful method for noise reduction. The concept of this 

method is based on thresholding the wavelet coefficients towards zero. Since noise is 

spread out over all the wavelet coefficients, the sparse representation allows the 

replacement of noisy coefficients by zero. Wavelet thresholding has been widely 

applied in the area of speech enhancement, including classical wavelet thresholding 

(Pinter, 1996; Chen and Wang, 2004), modified wavelet thresholding (Sheikhzadeh, 

2001; Ghanbari and Karami-Mollaei, 2006) and combined with other noise reduction 

algorithms (Hu and Loizou, 2004; Shao and Chang, 2007). 

The sparseness property of wavelet transform can reduce the unnecessary 

information in speech signals to improve in the efficiency of speech coding strategies 

without impacting the speech intelligibility and quality. This may be particularly 

attractive for CI system due to the limitations of frequency resolution (the number of 

electrodes) and temporal resolution (stimulation rate). 

A few studies have introduced CI speech coding strategies based on wavelet 

packets (Behrenbruch and Lithgow, 1998; Nogueira et al., 2006; Gopalakrishna et al., 

2010b). Wavelet packets can be easily adapted to approximate the critical bands of the 

human auditory system in CI design. The wavelet packet-based speech coding strategy 
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has been successfully produced for real-time implementations. In addition, this strategy 

yields lower spectral leakage, higher stimulation rate, lower computational complexity 

(Gopalakrishna et al., 2010b), and better speech intelligibility performance than the 

ACE strategy for CI users (Nogueira et al., 2006). However, there is still considerable 

work to be done in the investigation of the utility of wavelet packets for enhancing 

intelligibility for CI users in noisy listening conditions. 

The research question for this work is to determine whether a new speech coding 

strategy developed by using wavelet packets with noise reduction algorithms, can 

enhance speech intelligibility for CI users in noisy environments. The main goal of the 

proposed work is to attempt find the optimal parameters for a wavelet packet-based 

speech coding strategy, and to evaluate the noise reduction algorithms (i.e. time-

frequency spectral subtraction (TFSS) and time-adaptive wavelet thresholding (TAWT)) 

in the wavelet packet-based speech coding strategy in terms of different types of noise 

(i.e. speech-shaped noise and babble noise) and different signal-to-noise ratio (SNR) 

levels (i.e. 0, 5 and 10 dB). 

 

1.2 Cochlear implants 

A cochlear implant (CI) is an electronic prosthesis device. It is implanted into the inner 

ear in order to transmit electrical stimuli to the auditory nerve, restoring partial hearing 

for individuals with severe and profound hearing losses. CIs are introduced in 1984. 

Currently, CIs have successfully restored hearing in more than 324,200 hearing-

impaired people world-wide (NIDCD, 2014). Using the latest CI, the majority of CI 

users can score above 80% correct on high context sentences, even without visual cues 

(Wilson and Dorman, 2008b). Some CI users can communicate without any signing or 

lip-reading, and some can communicate over the telephone (Loizou, 1998). 

Recently, various signal-processing techniques for CI processors have been 

developed to mimic the function of a healthy cochlea. An understanding of the auditory 

system and speech perception is essential for speech coding design in CI systems. 

Comprehensive reviews and accounts of the history of speech-processing strategies for 

CI systems can be found in a variety of literature (Loizou, 1998; Loizou, 1999; Zeng, 
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2004; Loizou, 2006; Fan-Gang et al., 2008; Wilson and Dorman, 2008b; Wilson and 

Dorman, 2008a). 

 

1.2.1 The components of cochlear implants 

The main components in all modern cochlear implant systems are illustrated in Figure 

1.1 (Fan-Gang et al., 2008). They consist of an ear hook and a microphone (1) to pick 

up sounds, a battery case and a behind-the-ear external processor (2) to transform the 

sound into a set of electrical stimuli for the implanted electrode, a radio frequency (RF) 

transmitter (3) which encodes the set of electrical stimuli into a RF signal and sends it to 

the antenna inside a headpiece, the internal receiver (4) placed under the skin behind the 

ear which receives and decodes a RF signal, the stimulator (5) containing an active 

electronic circuit which converts the signal into electrical currents, sending them along a 

cable (6) to the electrode array (7). The electrode array stimulates neurons of the 

auditory nerve (8) connected to the central nervous system, where the electrical 

impulses are interpreted as sound. 

 

 

Figure 1.1 Cochlear implant systems (Fan-Gang et al., 2008). 
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1.2.2 The cochlear function 

The auditory system consists of the outer, middle and inner ear. The outer ear consists 

of the pinna, which captures sound energy and conducts it directly to the ear drum. The 

middle ear transforms the sound waves into mechanical vibrations and transmits these 

vibrations to the fluids of the cochlea in the inner ear. The cochlea converts the 

mechanical signal into neural activity. The neural activity is transmitted to the central 

auditory system through the auditory nerve of the inner ear, and is translated into the 

perception of sound. 

The hair cells of normal-hearing (NH) persons are activated according to the 

displacement of the basal membrane (BM). The bending of the hair cells releases an 

electrochemical substance to directly stimulate the neurons of the auditory nerve in the 

inner ear. These neurons communicate with the central nervous system and transmit 

information about speech signals to the brain. Hearing loss results from the destruction 

of the hair cells in the cochlea, as well as from age-related degeneration. 

The hair cells of hearing-impaired (HI) persons may be damaged by certain 

diseases (e.g. Meniere’s disease or meningitis), drug treatments, congenital disorders, 

and other causes (Loizou, 1998). The largely or completely damaged hair cells lead to a 

hearing impairment. The greater the number of hair cells that are damaged, the more the 

person’s hearing is impaired. These damaged hair cells define where these neurons 

cannot transmit auditory information from the BM to the central nervous system. 

The concept of a cochlear prosthesis is to bypass the damaged hair cells by 

stimulating the remaining neurons directly with electrical pulses. The electrical 

stimulation is directly transmitted through electrodes. The electrode is inserted and 

placed into the scala tympani (ST) close to the base of the cochlea. Different positions 

for an electrode array can stimulate different subpopulations of neurons. The neurons at 

different positions along the length of the cochlea respond to different frequencies of 

sound. Stimulating an electrode array at the base of the cochlea is consistent with high-

frequency sound information, while stimulating an electrode array at the apex of the 

cochlea represents low-frequency information. When neurons are stimulated, they fire 

and propagate electrical or neural impulses to the central nervous system. 
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1.2.3 Speech perception 

When a speech sound enters the human ear as a composite waveform, people can 

perceive and understand the context of speech. Speech perception is considered to be 

formed from the basic units of speech or language (i.e. phonemes), the smallest unit of 

sound that is used to form meaningful distinctions between utterances. A combination 

of phonemes is called a syllable. Words are formed from a combination of syllables. 

Therefore, if phonemes are changed, the meanings of words are also changed. Speech 

sounds in the English language (Loizou, 2007) are generally classified into two broad 

types: vowels and consonants. Vowels are also called monophthongs (single voiced 

sounds), and a related class of sounds is the diphthong (two voiced sound). Consonants 

can be divided into six classes: semivowels, whispers, nasals, stops, fricatives and 

affricates. 

Each class of English language sound has unique characteristics, with acoustic 

cues that can be easily discriminated from other classes. Acoustic cues are essential in 

accurate phoneme identification (Loizou, 2007). Any acoustic cues that are masked by 

noise can affect specific phoneme identification, which is reflected in speech 

intelligibility. Generally, vowels often have low frequencies and relatively high energy. 

Many consonants have higher frequencies and less energy than vowels and diphthongs 

(French and Steinberg, 1947). Therefore, the low-energy consonants (e.g. stop) are 

masked by various noises more easily than the high-energy vowels and semivowels 

(Chen and Loizou, 2010). 

Although NH listeners can recognise speech even with high SNR levels, speech 

recognition among HI listeners and CI users is much more susceptible to noise (Fu et 

al., 1998). NH listeners can benefit from the use of redundant information in speech, 

whereas CI users have perceptual difficulties because of the limitations of frequency 

resolution, temporal resolution and the amplitude of speech signals which can be 

transmitted by CI devices (Fu et al., 1998; van Schijndel et al., 2001; Kokkinakis et al., 

2012). 

Most CI users require much higher SNR than NH listeners, approximately 10–25 

dB, to achieve a similar level of speech intelligibility performance in noise (Qazi et al., 

2012). In one study, CI users’ SNR levels varied between 10 and 15 dB for stationary 

noises and were equal to 25 dB for nonstationary noise (Kokkinakis et al., 2012). In 
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other words, speech perception performance in nonstationary noise (i.e. babble noise) is 

poorer than in stationary noise (i.e speech-shaped noise) for both NH listeners and CI 

users (Qin and Oxenham, 2003; Stickney et al., 2004). 

Speech sounds contain a wide range of frequencies. The spectrum of a speech 

signal consists of the fundamental frequency (F0), defined as the lowest frequency of a 

periodic signal. The F0 is perceived by the human ear as pitch. The F0 is the first 

harmonic, and the other harmonics occur at integer multiples of the F0. The frequency 

range of F0 is approximately 60150 Hz for males and 200400 Hz for females and 

children (Loizou, 2007). The peaks of the spectral envelope in a speech signal are 

referred to as formants. The formants can be represented from the spectral envelope and 

not from the magnitude spectrum. On the other hand, the harmonics can be represented 

from the magnitude spectrum and not from the spectral envelope. Therefore, the 

formant frequencies may or may not coincide with one of the harmonics (Loizou, 2007). 

The formants provide speech information (Shannon et al., 1995). The first three 

formants (i.e. F1, F2, and F3), in the frequency range of 0.1 to 4 kHz, contain sufficient 

information for speech perception (Loizou, 1998). Additionally, information around F1 

and F2 is sufficient for the most vowel identification (McDermott, 1998). The formant 

frequencies were utilised for the first design of CI processors, and they proved their 

utility in increasing the average scores in speech perception tests. 

Several studies investigated the effect of frequency resolution in CI simulation on 

speech perception with NH listeners. Speech perception in quiet conditions with greater 

than 90% correct for sentences could be achieved using four bands in a frequency range 

between 0 and 4 kHz (Shannon et al., 1995). However, speech perception in noise 

requires a greater number of frequency bands than in quiet (approximately six to eight 

bands) in order to discriminate the difference between speech and noise (Dorman et al., 

1998). The performance with processed speech with twenty-four bands in a frequency 

range of 0 to 6 kHz was considerably poorer than for unprocessed speech (or natural 

speech) in both stationary and nonstationary noises (Qin and Oxenham, 2003). 

Unprocessed speech in a frequency range between 0 and 10 kHz maintained high levels 

of speech perception (approximately 80 % correct), whereas processed speech with four 

bands was close to the floor effect at 0 dB SNR (Stickney et al., 2004). Fu and Shannon 

(1998) found that speech perception by some Nucleus CI users with four bands in a 
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frequency range of 0 to 6 kHz was similar to that for NH listeners with the same 

processing strategy in quiet and noise conditions. 

Some studies explored the effect of temporal resolution (or stimulation rate) on 

speech perception. Temporal resolution is associated with electrical pulses transmitted 

to each electrode. A high stimulation rate can better represent the temporal envelope of 

speech signals, and it can reasonably expect to provide high speech perception. 

However, the consistent advantages of higher stimulation rates from several studies 

have not been established yet (Loizou, 2006), and it is still unknown how to identify the 

optimal stimulation rate for CI individuals. Some studies (Loizou et al., 2000) found 

higher rates (e.g. 2100 pulses per second (pps)) in Med-El devices provided more 

benefits to speech perception than lower rates (< 800 pps). In contrast, other studies 

(Cochlear, 2007) found no significant effects of higher rates on speech perception. Low 

to moderate rates (e.g. 900 and 1200 pps) provided better speech perception than the 

higher rates (e.g. 1800, 2400 and 3500 pps). This is most likely to be because of 

differences in speech coding strategies, speech materials, specific parameters of 

electrodes, and neuron survival. 

NH individuals naturally raise their voices in noisy environments, which 

effectively increase the SNR. A study by Firszt et al. (2004) found that the sentence 

recognition performance at 60 and 50 dB SPL showed a difference of approximately 

15% correct for seventy-eight CI users with different CI devices. The performance at 60 

dB SPL in quiet and in noise showed a difference of approximately 30% correct. The 

performance was poorer in noise (e.g. 60 dB SPL and 8 dB SNR) when compared with 

listening at a softer conversation level (e.g. 50 dB SPL) in quiet conditions. 

 

1.3 Speech coding strategies for cochlear implants 

Speech coding strategies have been used to describe techniques that process speech 

sounds in CI systems. The speech coding strategy is the brain of the CI system (Zeng, 

2004). It plays a very important role and affects the overall performance of cochlear 

devices to benefit CI users in terms of more effective communication (Loizou, 1998). 
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Figure 1.2 Classification of speech coding strategies for multichannel implants. Adapted 

from Fan-Gang et al. (2008). 

 

Speech coding strategies have been developed over the past two decades. The 

strategies decompose speech sounds into multiple frequency channels to mimic the 

healthy cochlea (Loizou, 1999). The perceptually important information contained in 

speech sound needs to be preserved to facilitate hearing ability and to improve speech 

intelligibility. This important information is transmitted to the brain by electrical 

stimulation relating to the amplitudes and frequencies of speech signals. The amplitude 

of the stimulus current controls the loudness of speech sounds. The different pitches 

relate to the positions in the cochlea that are being stimulated. Low pitch is perceived 

when electrodes near the apical part of the cochlea are stimulated, while high pitch is 

perceived when electrodes near the basal part are stimulated (Loizou, 1998). 

There are currently three major manufacturers for CI devices approved by the 

Food and Drug Administration in the United States: the Nucleus device (Cochlear 

Corporation, Australia), the Clarion device (Advanced Bionic Corporation, USA), and 

the Med-El device (Med-El Corporation, Austria). The CI manufacturers offer several 

speech coding strategies to CI users. All speech coding strategies for multichannel 
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implants (Figure 1.2) can be classified into two main categories: waveform and feature-

extraction strategies (Loizou, 1998; Fan-Gang et al., 2008). The waveform strategy 

represents waveforms of each frequency band (Loizou, 1999), while the feature-

extraction strategy (Loizou, 1998; Fan-Gang et al., 2008) represents the dominant 

features of speech signals in each frequency band. 

 

1.3.1 Waveform strategy 

An example of a waveform strategy is the compressed-analogue (CA) approach 

(Loizou, 1999), which was an early strategy for CIs. The concept of the CA approach is 

that the speech signal is first compressed using an automatic gain control (AGC), and 

then it is filtered into four frequency bands with centre frequencies at 0.5, 1, 2, and 3.4 

kHz. The filtered waveforms are amplified using adjustable gain controls, and then they 

are delivered directly to four electrodes. The CA doesn’t extract any features of speech 

signals in each frequency band, but it delivers the full waveform to different electrodes. 

A disadvantage of the CA approach is the interaction between channels due to 

simultaneous stimulation, which may lead to distortion of the speech spectrum and 

degradation of speech intelligibility. 

 

1.3.2 Feature-extraction strategy 

The feature-extraction strategy used in modern CI devices can be separated into coarse 

features and fine features. Fan-Gang et al. (2008) state that for the general model the 

slowly varying envelope contributes to speech intelligibility, while the rapidly varying 

fine structure contributes to mainly auditory object formation. Nevertheless, the 

majority of current CI devices use coarse features and discard fine structures. 

1.3.2.1 Coarse features 

Spectral-envelope information is used for the early speech coding strategies (e.g., 

F0/F2, F0/F1/F2 and multi-peaks (MPEAK)). They are designed by using formant 

information to convey some information about the speech signals to the electrodes. 

However, this strategy has some disadvantages (McDermott, 1998); for instance, the 
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problems of estimation formant frequencies can be challenging, especially in noisy 

environments, there may be a loss of temporal resolution for the rapidly varying spectral 

features (e.g. low stimulation rate used), and there can be inappropriate processing of  

speech-like sounds. 

In the early 1990s temporal-envelope information (Fan-Gang et al., 2008) was 

developed for speech coding strategies such as the continuous interleaved sampling 

(CIS), the spectral peak (SPEAK), and the advanced combinational encoder (ACE) 

strategies. The temporal-envelope information could provide better performance for 

speech intelligibility than the spectral-envelope information (Loizou, 1999; Fan-Gang et 

al., 2008). Although the temporal-envelope information uses implicit identification of 

speech features, the selection of frequency bands with the largest amplitudes usually 

represents the first three formants (McDermott, 1998). 
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Figure 1.3 Block diagram of the CIS strategy. Adapted from Loizou (2006). 

 

The Nucleus device as shown in Figure 1.2 supports the CIS, SPEAK, and ACE 

strategies. The CIS strategy as shown in Figure 1.3 (Loizou, 1999; Fan-Gang et al., 

2008) is based on a fixed-channel strategy, and is implemented by all major 

manufacturers. The speech signal is pre-emphasised and then divided into a number of 

frequency bands. The envelopes of the outputs in each frequency band are extracted by 

rectification and lowpass filters. The extracted envelopes are compressed using a 

nonlinear map (e.g. a logarithmic map) to fit within the electrical dynamic range. 

Finally, the compressed amplitudes are used to modulate the stimulating pulse and 

transmitted to the implanted electrodes. The CIS strategy can reduce channel 
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interactions by stimulating channels asynchronously. In other words, only one electrode 

is stimulated at a time. 

The SPEAK and ACE strategies are similar to the CIS strategy, but both are based 

on an n-of-m strategy. The n-of-m strategy was first introduced by Wilson and 

colleagues in 1988 (Fan-Gang et al., 2008). This strategy selects n envelope channels 

with the largest amplitudes from m channels (related to electrodes) for stimulation in 

each cycle (where n<m). Generally, the number of channels m represents the spectral 

resolution, whereas the channel stimulation rate represents the temporal resolution 

(Nogueira et al., 2005). The difference between the SPEAK and ACE strategies is the 

channel stimulation rate. The ACE strategy’s stimulation rate is generally higher than 

SPEAK’s to preserve more temporal details. The SPEAK strategy’s channel stimulation 

rate is fixed at 250 pps, while the ACE strategy’s channel stimulation rates vary 

between 250 and 2400 pps (Loizou, 2006). 

The basic idea of the n-of-m strategy is to increase the temporal resolution, and to 

reduce the redundant information. The dominant channels can be updated more 

frequently by removing the less significant channels. This concentrates on the most 

important information conveyed to the auditory system (Nogueira et al., 2005; Buechner 

et al., 2009) and may reduce the overall SNR level (Wilson and Dorman, 2008b). This 

would also presumably reduce channel interaction further while still allowing for high 

resolution. Furthermore, the power consumption for CI stimulation can be decreased 

and this may lead to an increased battery life for the CI devices (Hu and Loizou, 2008). 

The ACE and SPEAK strategies have demonstrated either a significant improvement in 

speech recognition (Dorman et al., 2002; Skinner et al., 2002; Buechner et al., 2009), or 

at least they have been the CI users’ preference over conventional CIS strategies (Kiefer 

et al., 2001; Skinner et al., 2002). 

The ACE strategy is considered to be the default strategy for the Nucleus-24 

processor (Cochlear, 2002) and is used by approximately 60% of CI users worldwide 

(Qazi et al., 2012). The overall CI stimulation rate is usually limited to 14,400 pps. The 

clinical channel stimulation rates range from 900 to 2,400 pps, and the number of 

channels varies between 8 and 12 (Hu and Loizou, 2008; Gopalakrishna et al., 2010b; 

Kokkinakis et al., 2011). The CI stimulation rate depends on the number of selected 

channels and the channel stimulation rate (i.e. CI stimulation rate ≥ the number of 
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selected channels  the channel stimulation rate). The fewer channels selected, the 

higher the maxima channel stimulation rate and vice versa. For example, no more than 8 

maxima channels can be selected for a channel stimulation rate of 1,800 pps. 

1.3.2.2 Fine features 

Recently the development of CI systems has focused on fine structure processing, which 

is classified into spectral and temporal fine structures. The spectral fine structure needs 

to use more independent electrodes. It is difficult to increase the number of electrodes, 

and thus several techniques have been investigated to increase the number of functional 

channels by using virtual channels. The strategy of virtual channels was introduced by 

Wilson et al. in 1992 (Loizou, 2006; Wilson and Dorman, 2008b). 

The principle of virtual channels is that the current of adjacent electrodes resulting 

in an electric field can produce the number of discriminable sites, approximately 2 to 9 

sites between two adjacent electrodes depending on the channel separation. The 

difference between discriminable sites can be generated by using different ratios of the 

currents between two adjacent electrodes (e.g. 75/25, 50/50, and 25/75). The number of 

channels of information is increased by these intermediate sites beyond the number of 

physical electrodes. Some evidence (de Melo et al., 2012) has shown that speech 

perception performance for CI users can be improved in noisy environments with the 

use of the virtual channels. 

Representation of temporal fine structure (Fan-Gang et al., 2008) is proposed in 

many ways for new strategies, such as increasing the electric stimulation carrier rate, 

extracting frequency modulation from the temporal fine structure to frequency modulate 

the carrier rate, and using multiple carriers for fine frequency structure. However, these 

strategies have been not demonstrated to provide benefits to CI users (Fan-Gang et al., 

2008; Moon and Hong, 2014). Representation of temporal fine structure using new 

strategies may improve CI hearing in the future. 

 

1.4 Noise reduction in cochlear implants 

In quiet environments, most CI users can achieve high performance with speech 

recognition regardless of CI devices they use, because almost all CI devices perform 
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well in quiet listening conditions (Kokkinakis et al., 2012). Their speech recognition 

performance has improved steadily in quiet environments over a number of years (Fan-

Gang et al., 2008). However, in noisy environments, many CI users complain of severe 

degradation in speech understanding. Recently CI research effort has increasingly 

focused on state-of-the art noise reduction strategies to achieve higher speech 

intelligibility in noisy environments. 

Terms such as noise reduction, noise suppression, and speech enhancement have 

been used to describe methods that improve speech intelligibility and speech quality in 

noisy environments (Kokkinakis et al., 2012). Noise reduction algorithms were 

originally developed for NH listeners over many decades. Most of them are based on a 

single microphone and can be classified into four main categories (Loizou, 2007), 

namely spectral subtraction, Wiener filtering, statistical-model based methods, and 

subspace algorithms. 

Spectral subtraction relates to the subtraction of noise spectrum estimates from the 

noisy speech spectrum. Wiener filtering works by providing a linear estimate of the 

clean speech spectrum, and is optimal in the mean-square sense. In addition, it can be 

performed in both the time and frequency domains, and it can be implemented either 

iteratively or non-iteratively. Statistical-model-based algorithms use an estimator in 

various statistical models and optimization criteria. Finally, subspace algorithms are 

based on the linear algebra theory that noisy speech can be decomposed into vector 

subspaces comprising a clean signal and a noise signal. 

The development of noise reduction algorithms has made little progress in 

improving speech intelligibility, but much progress in improving speech quality in noisy 

environments (Loizou and Gibak, 2011). The comparative speech intelligibility of some 

algorithms encompassing the four categories of single-microphone noise reduction 

algorithms were investigated for NH listeners (Hu and Loizou, 2007; Li et al., 2011). 

Almost all noise reduction algorithms yielded little benefit or did not improve speech 

intelligibility in American English (Hu and Loizou, 2007) or other languages (i.e. 

Chinese and Japanese) (Li et al., 2011). Wiener filtering produced a significant 

improvement in speech intelligibility when compared with others, but in only car and 

white noise conditions (Hu and Loizou, 2007; Li et al., 2011). 
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However, some single-microphone noise reduction algorithms are successful in 

improving speech intelligibility for CI users. Most noise reduction algorithms deal with 

situations at 0 to 15 dB SNR level, which CI users can benefit (Fu et al., 1998). Many 

noise reduction methods for CI processors are based on a single microphone signal, 

while others exploit more than one microphone signal. Some good reviews of the 

literature can be found in Loizou (2006), Li (2009), and Kokkinakis et al. (2012). 

 

1.4.1 Multi-microphone noise reduction strategies 

Most of the multi-microphone noise reduction strategies are based on adaptive 

beamforming (ABF) algorithms and are implemented as pre-processing algorithms for 

CI processors. The ABF refers to signal processing that uses the spatial differences 

between at least two microphones to adaptively attenuate or preserve signals from 

particular directions (Vanhoesel and Clark, 1995). 

Experimental results for an ABF algorithm with two microphones, one behind 

each ear, with four Nucleus CI users (Vanhoesel and Clark, 1995) indicated that there 

was a large improvement in speech intelligibility in conditions where reverberation is 

moderate but only one source is predominantly interfering with speech. An ABF with a 

two-microphone array in a single behind-the-ear hearing aid (Wouters and Vanden 

Berghe, 2001) provided significant improvements in word recognition in both speech-

weighted noise and babble noise, corresponding to an average SNR improvement of 

approximately 10 dB among this group of four CI users. 

The performance of the two-microphone adaptive beamformer BEAM (Spriet et 

al., 2007) with five Nucleus CI users was evaluated at different SNR levels and with 

two types of noise, speech-weighted noise and babble noise. This approach yielded an 

average SNR improvement of 516 dB for sentence recognition. The nonlinear spectral 

subtraction proposed by Kallel et al. (2012) and the multi-band spectral subtraction 

proposed by Kamath and Loizou (2002) were implemented as a pre-processing 

algorithm for CI processors (Kallel et al., 2012). Both algorithms were evaluated by 

three bilateral CI users and fifty NH listeners at different SNR levels of babble noise. 

These approaches provided an average improvement in the percentage correct word 

scores of 49% for bilateral CI users and 713 % for NH listeners. 
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Although such algorithms for multi-microphone noise reduction can bring benefits 

in speech intelligibility, these benefits are limited to situations where the speech and 

noise signals are spatially separated and may degrade in reverberant environments 

(Wouters and Vanden Berghe, 2001). Implants with two or more microphones are 

ergonomically difficult, and CI users may not like to wear headphones or a neck loop 

(Loizou, 2006). Most CI users would find this a cosmetically unappealing prosthesis. In 

addition, they are computationally complex, and it is difficult to optimise the particular 

algorithms to individual CI users (Li, 2009). Single-microphone noise reduction 

strategies, which can work under nondirectional conditions, are therefore more user-

friendly and desirable. 

 

1.4.2 Single-microphone noise reduction strategies 

Single-microphone noise reduction strategies used in the latest CI processors (i.e. 

temporal-envelope information) can be divided into two main categories (Loizou, 2006; 

Kokkinakis et al., 2012). The first of these is the pre-processing noise reduction 

strategy, where the noisy speech is processed with a speech enhancement algorithm and 

then the enhanced speech is fed into the CI speech coding strategies. This approach is 

similar to the speech enhancement that is used in most modern communication devices 

(e.g. mobile phones). Another category is envelope-based noise reduction strategies. 

This approach is combined to form one part of the speech coding strategy to attenuate 

directly on noisy envelopes. 

1.4.2.1 Pre-processing noise reduction strategies 

A few single-microphone noise reduction algorithms have been proposed as a pre-

processing approach for CI processors. Yang and Fu (2005) evaluated the spectral 

subtraction algorithms proposed by Marzinzik and Kollmeier (2002) with seven CI 

users wearing different CI devices. The results showed an average improvement in 

sentence recognition scores of 21% at various SNR levels (i.e. 0, 3, 6, and 9 dB) of 

speech-shaped noise, and this did not vary significantly with SNR levels. The 

performance of the nonlinear spectral subtraction proposed by Lockwood and Boudy 

(1992) was used in a study by Verschuur et al. (2006). Results indicated that there were 
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large improvements in sentence recognition scores of 5−10% at different SNR levels 

(i.e. 5 and 10 dB) of speech-shaped noise in a group of seventeen Nucleus CI users. 

The study by Loizou et al. (2005) demonstrated that the subspace algorithm 

proposed by Hu and Loizou (2002) provided significant benefits to fourteen Clarion CI 

users in sentence recognition scores, with an average improvement of 44%, in 

conditions of 5 dB SNR speech-shaped noise. However, it is unclear whether such 

intelligibility benefits would be preserved if these algorithms were evaluated in 

nonstationary noise environments (e.g. babble noise). 

The pre-processing approach has a few main disadvantages (Kokkinakis et al., 

2012). First, speech enhancement algorithms can be implemented as pre-processing 

algorithms in several ways. They require the speech signal in the time domain to be 

transformed into any domain to reduce the noise, and then be reconstructed into the 

enhanced speech in time domain before transmitting them to the CI processor. Some 

algorithms have shown improvements in speech perception, but they are highly 

computationally complex (e.g. using the subspace algorithm). Therefore, they may be 

suitable for implementation on computers but not on wearable CI processors (Dawson et 

al., 2011). Second, speech enhancement algorithms sometimes provide unwanted 

distortion, which degrades speech perception. Third, there is no simple approach to 

optimise the operation of algorithms to individual CI users. 

1.4.2.2 Envelope-based noise reduction strategies 

The simple way to overcome the drawbacks of the pre-processing strategy is to directly 

apply attenuation to the envelopes after the step of envelope detection in speech coding 

strategies, as in Figure 1.3. Envelope-based noise reduction algorithms were integrated 

into the stage of the speech coding strategies as envelope-weighting or envelope-

selection (Kokkinakis et al., 2012). 

1.4.2.2.1 Envelope-weighting 

A number of algorithms were proposed for envelope-weighting to attenuate noisy 

envelopes according to the estimated SNR in each channel. A sigmoidal-shaped gain 

function (Hu et al., 2007) was introduced as a simple algorithm to perform a weighting 

(values in the range of 0 to 1) in noisy envelopes of each channel. The envelope 

amplitudes in channels with high SNR levels were multiplied by a weight close to one, 
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whereas the envelope amplitudes in channels with low SNR levels were multiplied by a 

weight close to zero. This approach fits into the general category algorithms of noise 

reduction that enhance speech by spectral modification (e.g. spectral subtraction and 

Wiener filtering). Results showed large improvements in sentence recognition of 

10−25% at different SNR levels (i.e. 5 and 10 dB) of babble noise in a group of five 

Clarion CI users, compared to the improvement of 7% for pre-processing algorithms 

reported in Yang and Fu (2005). 

Principal components analysis (PCA) and independent component analysis (ICA) 

with soft thresholding (Li, 2008) can be used to reduce noise and signal redundancy. 

This approach significantly improved word recognition for ten Nucleus CI users at 

different SNR levels (i.e. 5, 10, and 15 dB) of babble noise and modulated noise. In 

Dawson et al. (2011)’s study, two gain functions were proposed and tested with thirteen 

Nucleus CI users. The first gain function used a combination of a posteriori SNR 

estimate (Mcaulay and Malpass, 1980) and a sigmoidal-shaped gain function (Hu et al., 

2007). The second gain function used a combination of a priori SNR estimate (Mcaulay 

and Malpass, 1980) and a modified Wiener gain function (Loizou, 2007). This approach 

provided the greatest improvement in sentence recognition for speech-weighted noise; 

1.77 dB for the first gain function and 2.14 dB for the second gain function. A sparse 

non-negative matrix factorisation (Hu et al., 2013) with five NH listeners provided an 

improvement sentence recognition in terms of speech intelligibility and speech quality 

at 0 and 5 dB, but not at 10 dB in babble noise. 

1.4.2.2.2 Envelope-selection 

A few techniques were introduced as criteria for envelope-selection in each channel to 

transmit useful information to electrodes. In the n-of-m strategy such as the ACE or 

SPEAK strategy, the channel-selection criterion with the largest amplitudes works well 

in quiet conditions, but it can be problematic in noisy conditions when the noise may 

completely dominate the speech. 

Another channel-selection criterion was based on a psychoacoustic model 

(Nogueira et al., 2005), which was adopted in audio compression standards (MP3). This 

method was referred to as the psychoacoustic advanced combination encoder (PACE) 

strategy. The idea of this method was that amplitudes falling below a masking threshold 

would not be audible and so could be discarded. The PACE strategy was evaluated and 
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compared to the ACE strategy in sentence recognition in speech-shaped noise at 15 dB 

SNR in eight Nucleus CI users. This provided an average improvement over the ACE 

strategy of 17% for 4-of-20 channels, but no significant difference for 8-of-20 channels. 

The SNR channel-selection criterion (Hu and Loizou, 2008) was proposed under 

the assumption that the true SNR values in each channel are known a priori. The idea of 

this criterion was that each channel was selected only when its SNR was more than or 

equal to 0 dB (speech-dominated channels), whereas each channel was discarded when 

its SNR was less than 0 dB (noise-dominated channels). Results revealed that this 

strategy could restore speech intelligibility to the level obtained in quiet conditions for 

six Clarion CI users. Sentence recognition was not dependent on different types of noise 

(babble noise and speech-shaped noise) and different SNR levels (0‒10 dB). 

The SNR channel-selection criterion can be also considered as envelope-weighting 

and can be implemented simply by multiplying the noisy envelopes with a binary gain 

function. The speech-dominated channels were assigned to a value of 1 and the noise-

dominated channels were assigned to a value of 0. However, it cannot be implemented 

in real-world applications because of the fact that the SNR needs to be estimated from 

the noisy envelopes. 

Overall, the ideal algorithms for noise reduction should be easy to implement and 

integrate into commercially available CI devices. The integration of envelope-based 

noise reduction algorithms into speech coding strategies has some advantages (Hu et al., 

2007), including the lack of algorithmic delay related to the pre-processing approach, 

the low computational complexity and the ease of integration into existing speech 

coding strategies. 

 

1.5 Performance evaluation 

Most of the speech enhancement algorithms are usually evaluated in terms of speech 

intelligibility and speech quality. Speech intelligibility is related to the number of words 

that are identified correctly by the listeners, while speech quality is related to how 

natural speech sounds and the individual preferences of listeners (Ephraim and Cohen, 

2004; Loizou, 2007; Li et al., 2011). In fact, improving speech intelligibility does not 
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correlate with enhancing speech quality (Ephraim and Cohen, 2004). Some cases of 

enhancing speech quality may lead to a decrease in intelligibility. This is due to the 

distortion of enhanced speech resulting from excessive noise reduction. In CI research, 

speech intelligibility is the most important criterion and is considered for evaluating 

performance improvements in CI processors. 

Speech intelligibility measures used to assess the CI processors can be classified 

into subjective and objective intelligibility measures. The subjective intelligibility 

measures are regularly quantified in terms of the percentage of words that listeners can 

correctly identify. The percentage is often measured by using fixed SNR levels. There 

are two subjective tests. The first test uses speech stimuli transmitted directly to CI 

users. The second test uses vocoder simulation to simulate the speech processing of a CI 

processor, which is referred to as vocoded speech. The vocoded speech is then 

presented to NH listeners. 

The listening test with CI users has numerous factors influencing CI processor 

performance. Two types of factors, namely CI user-related factors (e.g. duration of 

deafness, duration of CI use, age at implantation, electrode placement and insertion 

depth) and CI processor-related factors (e.g. number of channels, the stimulation rate 

and frequency-to-electrode allocation), may affect the speech perception of CI users. It 

is difficult to interpret the impact of each factor on speech intelligibility because of 

interaction between these factors (Fu et al., 1998; Loizou, 1998; Chen and Loizou, 

2011). 

Vocoder simulation with NH listeners has been widely used to evaluate the effects 

of different factors on speech intelligibility, avoid the confounding factors specified by 

individual CI users, and manipulate interesting parameters relating to the CI design. The 

vocoder simulations are not expected to predict the absolute levels of performance of 

individual CI users, but rather they can indicate trends of performance observed in CI 

users when a specific parameter of the speech coding strategy or a property of the 

acoustic signal is varied (Chen and Loizou, 2011). 

Although, subjective listening tests are very important and necessary for the 

evaluation of intelligibility measures, these measures are very expensive and time 

consuming. In addition, this measure cannot be used for tuning parameters during the 

development of some stages of new algorithms (e.g. noise reduction algorithms and 
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speech coding strategies) or the comparison of different CI processors. Therefore, the 

objective intelligibility measures play an important role. They allow repeatable 

assessment at different stages of the algorithm development process as well as 

performance comparison among algorithms. These also help to provide guidance on 

how to improve the speech intelligibility of algorithms involved in the implementation 

of CI systems, and how to develop new algorithms involved in the implementation of CI 

systems in the proper direction. 

Finally, for the objective intelligibility measures to be valid, they need to correlate 

well with subjective intelligibility measures. Some good literature reviews relating to 

objective intelligibility measures can be found in Rhebergen and Versfeld (2005), 

Jianfen et al. (2009), Christiansen et al. (2010), Ma and Loizou (2011) and Taal et al. 

(2011). The literature reviews of some of these objective intelligibility measures are 

briefly described in the next section. 

 

1.5.1 Objective intelligibility measures 

The prediction of speech intelligibility was first introduced by French and Steinberg 

(1947) who proposed the concept of the articulation index (AI). The AI was further 

developed to produce a new measure called the speech intelligibility index (SII) (ANSI, 

1997). The SII was corrected in terms of hearing sensitivity loss and speech level as 

well as the upward and downward spread of masking (Christiansen et al., 2010). The SII 

is calculated from the SNR between the long-term speech spectrum and the long-term 

noise spectrum in each frequency band. Then, the auditory threshold is adjusted and the 

weighted SNR is summed across frequencies to produce the SII value. The SII value is a 

number between zero and unity. An SII of zero implies that no speech information is 

available and an SII of unity implies that all speech information is available to the 

listener. However, the SII works well for stationary noise, but not for nonstationary 

noise due to its calculation based on the long-term spectra of the speech and noise 

signals. 

Another well-known intelligibility measure was the speech transmission index 

(STI) (Steeneken and Houtgast, 1980). The STI was first introduced to evaluate the 

quality of speech-transmission channels. However, the STI measure was also able to 
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successfully predict the intelligibility of reverberation, room acoustics, and additive 

noise (Steeneken and Houtgast, 1982; Houtgast and Steeneken, 1985). The method of 

STI calculation is similar to the SII method, which is based on the SNR in each 

frequency band. However, the SNR in each frequency band is related to the modulation 

depth and forms a weighted sum across frequencies to give the STI value. The STI 

value represents intelligibility between zero and unity. The meaning of the STI value is 

the same as the SII value. 

Several attempts have been made to further develop the measures to predict speech 

intelligibility in various noisy environments and with different distortions produced by 

signal processing systems (e.g. hearing prostheses and noise-suppressed algorithms). 

Most intelligibility measures were based on the STI or the AI. The AI-based measures 

use the spectral-envelope information and include a short-term AI-based measure (AI-

ST) (Jianfen et al., 2009), the coherence-based speech intelligibility index (CSII) (Kates 

and Arehart, 2005), the three-level CSII measures (CSIIhigh, CSIImid, and CSIIlow) (Kates 

and Arehart, 2005), and the I3 (Kates and Arehart, 2005). The STI-based measures use 

the temporal-envelope information and include the normalised covariance metric 

(NCM) (Goldsworthy and Greenberg, 2004; Jianfen et al., 2009; Chen, 2011). 

The AI-ST is computed using short-term (30 msec) segments. In addition, the 

difference between the AI-ST and the SII is that the AI-ST does not use the auditory 

threshold and it does not account for the upward spread of masking. It was found to 

predict the speech intelligibility modestly in nonstationary noise (Jianfen et al., 2009). 

The CSII and I3 were introduced to predict intelligibility in additive noise, peak-

clipping, and centre-clipping distortion in hearing aids (Kates and Arehart, 2005). 

Unlike the SNR computed for the SII, the SNR of the CSII and I3 are computed from 

clean speech and distorted (or processed) speech. The NCM differs from the STI with 

respect to the change in modulation depth. The STI uses the modulation transfer 

function (MTF), whereas the NCM uses the covariance between the clean speech and 

the processed speech (Jianfen et al., 2009). The NCM was found to yield high 

correlation for nonvocoded speech with noise-suppressed algorithms (Jianfen et al., 

2009) and  vocoded speech (Chen and Loizou, 2011). 

Jianfen et al. (2009) evaluated the performance of the NCM with noise-suppressed 

speech (nonvocoded speech). The noise-suppressed speech was processed by some 
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algorithms encompassing the four categories of single-microphone noise reduction 

algorithms, similar to the study by Hu and Loizou (2007). The correlation of the NCM 

with intelligibility scores obtained by forty NH listeners was found to be quite high 

(r=0.89). Chen and Loizou (2011) studied the utility of the NCM for vocoded speech 

with and without noise reduction. The two noise reduction algorithms used as a pre-

processing approach were the Wiener filtering proposed by Scalart and Vieira (1996) 

and the minimum mean-square error log-spectral amplitude (MMSE LSA) algorithm 

proposed by Ephraim and Malah (1985). Results indicated that the NCM can be used 

for processed speech and performed the best when compared with others. In addition, 

the NCM performed very well for vocoded speech degraded by room reverberation 

(Santos et al., 2012). 

The perceptual evaluation of speech quality (PESQ) measure (ITU-T, 2000) is an 

existing objective measure, originally designed to evaluate speech quality. The PESQ 

was also used to predict the intelligibility of vocoded speech, performing well and 

producing high correlations with subjective listening tests in stationary and 

nonstationary noise (Chen and Loizou, 2010). However, the PESQ uses the vocoded 

speech as its input for predicting, rather than the temporal-envelope information, 

whereas the NCM calculation uses the temporal-envelope information with 20 channels, 

which is more similar to the CI processing strategy. 

In vocoder simulation, the vocoded speech can be degraded by many levels of 

speech coding strategies (e.g. additive noise, reverberation, filtering and clipping), 

single-microphone noise reduction algorithms (Loizou, 2007), speech separation 

techniques like ideal time frequency segregation (ITFS), and so on. It is unclear whether 

conventional measures as previously described would be good for predicting their 

intelligibility. These conventional measures may be less suitable for techniques where 

noisy speech is processed by different types of time frequency-weightings (e.g. single-

microphone noise reduction algorithms) (Taal et al., 2011). Hence, a speech 

intelligibility index should be able to predict the intelligibility of the vocoded speech 

reliably (Chen and Loizou, 2011; Taal et al., 2011). 

The short-time objective intelligibility (STOI) measure (Taal et al., 2011) was 

proposed as a function of a time frequency-dependent intermediate measure. The STOI 

is similar to the NCM in that both measures are based on a correlation coefficient 



Chapter 1 Introduction 

 24 

between the temporal envelope of the clean and degraded speech in each frequency 

band. Unlike the NCM, however, which defines a correlation coefficient for the entire 

signal at once, the STOI determines a correlation coefficient for the short-time 

segments. Both represent intelligibility between zero and unity. 

The STOI provided better performance compared to the reference objective 

measures. Five reference objective measures were the Dau Auditory model (DAU), a 

coherence-based speech intelligibility index (CSII), frequency-weighted segmental SNR 

(fwsSNR), a normalised subband envelope correlation (NSEC), and NCM. Only NCM 

showed a similar performance in the single-microphone noise reduction listening test 

(i.e. a minimum mean square error-short time spectral amplitude (MMSE-STSA) 

(Ephraim and Malah, 1984) and an improved version of MMSE-STSA (Erkelens et al., 

2007)). In addition, the STOI was used to predict speech intelligibility of a noise 

reduction algorithm (i.e. the sparse coding shrinkage) (Sang, 2012). The obtained results 

from NH listeners were consistent with the trend of prediction of the STOI. 

Therefore the NCM and STOI are chosen as preliminary measures, to guide the 

development of noise reduction algorithms in the wavelet packet-based speech coding 

strategy. The general principle of objective intelligibility measures for CI processors 

(Chen and Loizou, 2011) is shown in Figure 1.4. Objective measures calculate the 

relationship between vocoded clean speech and vocoded noisy speech (or vocoded 

noisy speech with noise reduction). 
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Figure 1.4 Computation of objective intelligibility measures of vocoded speech. 

Adapted from Chen and Loizou (2011). 
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1.5.1.1 The normalised covariance metric (NCM) 

The NCM (Jianfen et al., 2009; Chen, 2011) is derived from the speech transmission 

index (STI) (Steeneken and Houtgast, 1980). The NCM uses the covariance of the 

envelope between the vocoded clean and vocoded noisy speech (with/without noise 

reduction). The NCM is calculated as follows. The vocoded signals are first 

decomposed into 20 bands across the signal bandwidth (125–8000 Hz in this study) 

using Butterworth filters. The envelope of each frequency band is computed using the 

Hilbert transform. The SNR is computed with a normalised correlation coefficient of 

envelopes between the vocoded clean and vocoded noisy speech (with/without noise 

reduction) in each frequency band. The values are limited to the range of [-15, 15] dB 

and mapped in the range of [0, 1]. These values are averaged across all frequency bands 

to produce the NCM value. More detailed information for how to compute the NCM is 

given in Appendix B.1. 

1.5.1.2 The short-time objective intelligibility measure (STOI) 

The STOI (Taal et al., 2011) is based on a correlation coefficient between the temporal 

envelopes of vocoded clean and vocoded noisy speech in the short-time region. First, 

the vocoded clean and vocoded noisy speech (with or without noise reduction) are 

processed in each frame with a length of 25.6 ms performed by Hann-windows with a 

50% overlap. Next, the windowed signals are decomposed into 15 one-third octave 

bands. Then, the short-time temporal envelopes of the clean and noisy speech are 

normalised to compensate for global level differences and clipped to make sure that the 

sensitivity of the model is close to one time frequency-unit. Next, the short-time 

temporal envelopes of both are compared by means of a correlation coefficient. The 

short-time intermediate intelligibility measure across frequency bands is averaged to a 

rating value. More details for computing STOI are explained in Appendix B.2. 

 

1.6 Conclusion 

Enhancing speech intelligibility in noisy speech has been attempted over the last 

decade, but little progress has been made in designing algorithms due to their drawbacks 

and limitations as described above. The development of effective algorithms (i.e. speech 
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coding strategies and noise reduction algorithms) with low complexity is considered to 

be the main drawback. The objective of this study is to investigate whether a wavelet 

packet-based speech coding strategy with envelope-based noise reduction algorithms 

can improve speech intelligibility in noisy speech for CI users. The intelligibility 

performance of these algorithms is evaluated using objective measures and subjective 

tests with NH listeners for different noise types and SNR levels. 

 

1.7 Outline of Thesis 

With the motivation of improving speech intelligibility in noisy speech for CI 

processors, wavelet analysis is exploited to develop a novel speech coding strategy. The 

design, analysis, and evaluation of the speech coding strategy are discussed and 

organised as follows: 

Chapter 2 gives a comprehensive review of wavelet analysis. Discrete wavelet 

transforms (DWTs) are described in terms of filter banks. DWTs can be classified into 

real-valued and complex wavelets. The real-value wavelets including standard DWT, 

stationary wavelet transform (SWT) and wavelet packet transform (WPT), are explained 

in terms of their structure of decomposition and reconstruction. The benefits of wavelets 

and their applications are given. 

Chapter 3 gives some details associated with CI design, such as the concept of the 

basilar membrane model and auditory filter banks. These lead to the design of the 

structure of a Bark scale wavelet packet used in the speech coding strategy. This 

strategy is compared to the structure of a standard ACE strategy. 

Chapter 4 presents the principle of noise reduction techniques (i.e. analysis, 

suppression and synthesis). The noise reduction algorithms, namely time-frequency 

spectral subtraction (TFSS) and time-adaptive wavelet thresholding (TAWT), are 

described and compared to ideal binary masking (IdBM) as a baseline for denoising 

performance. These algorithms are integrated into the speech coding strategy as an 

envelope-based noise reduction strategy to directly attenuate the envelope of noisy 

speech. An evaluation with objective intelligibility measures (i.e. the normalised 
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covariance metric (NCM) and short-time objective intelligibility (STOI)) is used to 

predict the trend of performance, before a listening test with normal-hearing listeners. 

Chapter 5 presents the study with normal-hearing listeners, to show the 

contribution of improving speech intelligibility in noise reduction algorithms in a 

wavelet packet-based speech coding strategy. The performance evaluation with NH 

listeners can be divided into two parts: the effects of parametric variation in wavelet 

packet filter banks on speech intelligibility (i.e. filter spacing, types of mother wavelet 

and frame lengths) to find the optimal parameters and the comparison of noise reduction 

algorithms in cases of different types of noise and different SNR levels. The sentence 

scores obtained from normal-hearing listeners and the predicted values of NCM and 

STOI are assessed for validity. 

In Chapter 6, a general discussion is presented of the limitations of wavelet 

packets, the objective intelligibility measures, vocoder simulation, and performance 

evaluation for developing speech coding strategies with noise reduction algorithms. 

Finally, some limitations of this study are discussed, and directions for future research 

are given. 

Chapter 7 presents the conclusion and contributions of the research. 
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Chapter 2:  Wavelet Analysis 

 

2.1 Introduction 

Transformations are useful tools to enable the exploration of signal characteristics. In 

the analysis stage, a signal is transformed into another domain by techniques such as 

discrete Fourier transform (DFT), discrete cosine transform (DCT), wavelet transform 

(WT), and so on. The oldest and best-known method is the Fourier transform (FT) that 

transforms any signal from the time domain to the frequency domain. However, the FT 

is not always the best tool to analyse real signals. It is not appropriate for analysing 

nonstationary signals and it is not able to reveal inherent information in nonstationary 

signals (Peng and Chu, 2004). 

This problem has been partly resolved by using the short-time Fourier transform 

(STFT) based on time-frequency analysis. For many years the STFT has been the most 

popular method for analysing nonstationary signals like speech. However, the 

shortcoming of STFT is that it uses the same window for analysing the different 

frequency bands, which provides constant resolution at all frequencies. This property 

does not reflect the structure of speech. Wavelets are characterized by having a time 

resolution which increases with high frequency. Consequently, wavelets provide a 

natural candidate with which to compute features for speech processing in a CI system. 

This chapter gives a brief overview of wavelet evolution, the main wavelet theory 

and its application to speech processing. The FT and the STFT are explained and 

compared in order to better understand the basic concept of wavelet analysis. Important 

concepts related to wavelet analysis, including dilation, translation, multiresolution 

analysis and filter banks, are considered. 
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2.2 Fourier transform (FT) 

The FT is a well-known mathematical tool and a helpful method of representing signals 

from the time domain to the frequency domain. The FT of any signal x(t) is given by 

2( ) ( ) j ft

FTX f x t e dt





            (2.1) 

The FT contains basis functions that are sinusoidal waves. A signal is decomposed into 

sine waves of different frequencies. The FT has a good ability to extract information 

efficiently. However, the limitation of FT is that it cannot offer both time and frequency 

localisation of a signal at the same time; it only provides easily accessible information 

about the global frequency content. This is not a serious shortcoming for stationary 

signals that do not change over time. However, it does hinder its direct application for 

nonstationary signals that change over time, such as speech signals. 

The short-time Fourier transform (STFT) was introduced to overcome this 

problem by using a fixed-length window w(t) shifted to be centred at time . This 

window is translated along the time axis, analysing the frequency content of the signal 

in the windowed time interval. Mathematically the STFT can be defined as: 

2( , ) ( ) ( ) j ft

STFTX f x t w t e dt 





      (2.2) 

Even though the STFT has demonstrated utility in numerous applications, it has 

disadvantages. Due to its use of a single window length for analysing the whole signal, 

the time-frequency resolution of signal analysis is the same at all locations in a time-

frequency plane. The accuracy of the information obtained from the STFT is limited by 

the size and shape of the window. Many naturally-occurring signals contain long-lasting 

frequency components, but high frequency components may require shorter time 

windows. The STFT offers fixed time and frequency resolution so is not well suited to 

analysis of such signals. 

Figure 2.1 shows the time-frequency plane of the STFT with Heisenberg boxes. 

Heisenberg’s uncertainty principle suggests that in modelling a signal one cannot be 

arbitrarily precise in both time and frequency simultaneously. This principle states that 

the product of time resolution t  and frequency resolution f  is constant. That means 

that the boxes in the time-frequency plane have the same area. The STFT uses a fixed 
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window length, and thus t  and f  are constant all the whole plane. Figure 2.1 (a) 

illustrates that a longer window provides better frequency resolution but poorer time 

resolution. Figure 2.1 (b) shows that a shorter window provides better time resolution 

but poorer frequency resolution. It is impossible to obtain good time resolution and 

good frequency resolution using STFT. The WT gives a better trade-off between time 

and frequency resolutions than the fixed window length used in the STFT. The details 

of WT are described in next section. 
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    (a) STFT with longer window   (b) STFT with shorter window 

 

Figure 2.1 The time-frequency plane of STFT. 

Adapted from Vetterli and Herley (1992). 

 

2.3 Wavelet transform (WT) 

2.3.1 Wavelets 

A wavelet is a waveform with a set oscillatory structure that is nonzero for a limited 

duration, with additional mathematical properties (Fugal, 2009; Mallat, 2009). Within 

the constraints of the required mathematical properties, wavelets have different shapes 

and sizes. The difference between sinusoidal waves and wavelets is shown in Figure 

2.2. 

A wavelet transform (WT) is performed using a wavelet basis function. A signal 

is decomposed by using translated and dilated versions of the wavelet basis function to 

produce a correlation of signals and localise energy concentration in the time-frequency 
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domain. This function is informally called a “mother wavelet”, which can be thought of 

as a bandpass filter (Vetterli and Herley, 1992). The mother wavelet can be specified by 

a set of numbers referred to as the coefficients of the wavelet filter. There are many 

different types of mother wavelets such as the Mexican hat wavelet, Daubechies, Symlet 

and Coiflet. 

The mother wavelets can be selected according to the characteristics of signals 

and the requirement of each application (Fugal, 2009). For example, the Mexican hat 

wavelet is employed in vision analysis, because its characteristics are similar to the 

computation performed by the retina. The Morlet wavelet is used in atmospheric indices 

(e.g. cyclical change in air pressure and in storm tracks). The Haar wavelet is well 

suited to edge detection. The Daubechies and Symlet wavelet is often used in speech 

and image processing. 

 

    

 

(a) Sinusoidal function   (b) Wavelet function 

Figure 2.2 Characteristics of sinusoidal and wavelet functions. 

 

Wavelet theory was introduced in 1984 by Morlet, who formalised the continuous 

wavelet transform (CWT) (Peng and Chu, 2004). In the next year Mayer constructed 

orthonormal wavelets with very good time and frequency localisation properties. Mayer 

and Mallat developed the concept of multiresolution analysis (MRA) which is useful for 

constructing other orthonormal wavelets and for computing the wavelet decomposition 

of signals from their finest approximation resolution using a recursive filtering 

algorithm. In 1988 Daubechies constructed a set of orthonormal wavelet basis functions 

with compact support that have become the foundation of many wavelet applications. 

Wavelet development from continuous to discrete signal analysis, developed by 

Daubechies and Mallat, is widely accepted and credited. 
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WTs are broadly classified into continuous wavelet transforms (CWTs) and 

discrete wavelet transforms (DWTs). DWTs, as shown in Figure 2.3, can be classified 

into two main types: real-valued DWTs and complex-valued DWTs. The real-valued 

DWTs use real-valued filter coefficients and give real-valued wavelet coefficients. In 

contrast, the complex-valued DWTs also use real-valued filter coefficients but give 

complex-valued wavelet coefficients. The class of real-valued DWTs can be divided 

into three basic forms: the standard DWT, stationary wavelet transforms (SWTs), and 

wavelet packet transforms (WPTs). The CWTs can be divided into two classes: dual-

tree DWT-based CWTs and projection-based CWTs. 

 

Discrete Wavelet Transform 

(DWT)

Real-valued Wavelets Complex-valued Wavelets

Standard Discrete 

Wavelet Transform 

(DWT)

Stationary Wavelet 

Transform (SWT)

Wavelet Packet 

Transform (WPT)

Projection based 

Complex WT

Kingsbury’s dual-tree 

complex wavelet 

transform

Dual-Tree DWT 

based Complex WT

Selesnick’s dual-tree 

complex wavelet 
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Figure 2.3 The classification of discrete wavelet transforms. 

 

2.3.2 Continuous wavelet transforms (CWTs) 

Let , ( )a b t  be a wavelet basis function (Daubechies, 1992), which is generated in dilated 

and translated versions: 

,

1
( )a b

t b
t

aa
 

 
  

 
         (2.3) 

where the real numbers ( 0)a a   and b denote the dilation and the translation 

respectively. The factor 1/ a  is introduced to guarantee energy preservation. The 

CWT of any signal x(t) is defined as: 
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1
( , ) ( )

t b
C a b x t dt

aa






 
  

 
     (2.4) 

where C(a,b) are known as the wavelet coefficients. 

The wavelet function , ( )a b t  is stretched and contracted by changing the dilation 

parameter a, which covers different frequency ranges. With larger a the wavelet 

function becomes stretched and corresponds to low frequency components. The wavelet 

function with smaller a becomes contracted and represents high frequency components. 

Variation in the dilation parameter a also changes the window length. The wavelet is 

shifted over the signal by changing the translation parameter b. 

WT provides a flexible time-frequency window. The frequency resolution of the 

WT is good at low frequencies while the time resolution becomes good at high 

frequencies. This approach is reasonable in practical applications when a signal has low 

frequency components of long duration and high frequency components of short 

duration. Figure 2.4 presents the time-frequency resolution of WT with Heisenberg 

boxes. It is clear that WT uses longer time windows at lower frequencies and shorter 

time windows at higher frequencies. 
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Figure 2.4 Time-frequency plane of WT. Adapted from Vetterli and Herley (1992). 

 

2.3.3 Discrete wavelet transforms (DWTs) 

The CWT is infinitely redundant due to the continuous values of dilation a and 

translation b. The CWT of these parameters also means the transforms are not suitable 
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for implementation in digital form. The transformation can be discretised by selecting a 

suitable set values of a and b at which to evaluate the CWT. The general sampling 

strategy adopted is defined by 0

ja a  and 0 0

jb ka b  where 0 1a   and 0 0b   are fixed, 

and ,j k  (Daubechies, 1992). The different values of j correspond to the different 

widths of the wavelets. A discrete set of wavelet basis functions is generated, so that 

Equation (2.3) becomes: 

/2

, 0 0 0( ) ( )j j

j k t a a t kb         (2.5) 

It can be shown that for critical sampling 0 2a   and 0 1b  , so that 2 , 2j ja b k   to 

produce the minimal basis. In order to preserve all information about the decomposed 

function, the sampling cannot be coarser than this critical sampling. 

The dilation a=2j is by a power of 2, sometimes called dyadic. Thus the dyadic 

parameter of the wavelet basis function is given as: 

/2

, ( ) 2 (2 )j j

j k t t k          (2.6) 

This is actually an octave band filter and it can be interpreted as a form of constant-Q 

filtering, where Q represents the quality factor of the filter and is defined as the centre 

frequency cf  divided by its bandwidth. 

2.3.3.1 Implementation of DWT 

The implementation of DWT can be viewed as either multiresolution analysis or a filter 

bank as follows. 

2.3.3.1.1 Multiresolution analysis 

The wavelets can be constructed from the concept of multiresolution analysis (MRA) 

which was introduced by Mallat and Meyer (Daubechies, 1992; Vetterli and Herley, 

1992; Meyer, 1993; Mallat, 2009). A multiresolution approximation is a sequence of 

closed subspaces ,jV j  of 
2 ( )L  having the following properties, which form a 

hierarchy: 
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           2 1 0 1 2V V V V V      

1j jV V        (2.7) 

This is a causality property that verifies that a signal approximation at a given resolution 

contains all the necessary information to compute a signal approximation at coarser 

resolutions. 

The nested spaces have an intersection  0j jV   which implies that the details 

of a signal approximation will be lost when the resolution reduces to 0. A union 

2( )j jV L   that is dense in 
2 ( )L  imposes that the signal approximation converges 

to the original signal. The hierarchy (2.7) is constructed such that V-spaces are self-

similar: 

1(2 ) ( )j jf t V f t V         (2.8) 

That means the dilation in space jV  by 2 enlarges the details by 2 (Vetterli and Herley, 

1992). This guarantees that it determines an approximation at a coarser resolution. 

There exists a scaling function ( )t  that derives an approximation in space jV  of 

signals in space 1jV  . The set of functions 
/2

, ( ) 2 (2 )j j

j k t t k    is an orthonormal 

basis for the space jV . In particular, if 1( )t V   and 0(2 )t V  , since 1 0V V  the 

scaling function ( )t  can be represented as: 

( ) 2 ( ) (2 )
k

t h k t k 




       (2.9) 

The wavelet function ( )t  is an orthonormal basis of the different space jW . Let jW  be 

the orthogonal complement of jV  in 1jV  : 

1j j jV V W         (2.10) 

1jV   is equivalent to jV  plus some added detail according to jW . In other words, a space 

1jV   of a multiresolution approximation is decomposed into a coarser approximation 
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space jV  plus a detail space jW . For j J , the iteration of Equation (2.10) can be 

written as: 

3 3 2 1j j j j j jV V W W W W             

1

0

J j

j J J k
k

V V W
 




        (2.11) 

Since the wavelet function 1 0( )t W V   , the wavelet function ( )t  can be 

generated from the scaling function ( )t . This is introduced as: 

( ) 2 ( ) (2 )
k

t g k t k 




       (2.12) 

The ( )h k  and ( )g k  are associated with coefficients of the lowpass filter (scaling filter) 

and the highpass filter (wavelet filter), respectively. The DWT is derived from the 

concept of MRA based on Equations (2.9) and (2.12). Hence any signal x(t) can be 

represented in terms of wavelet and scaling functions as: 

1

0 0, ,

0

( ) ( ) ( ) ( ) ( )
J

k j j k

k k j

x t c k t d k t 
  

  

      (2.13) 

with the approximation coefficients ( )jc k  and the detail coefficients ( )jd k  at level  

0,1,2,..., 1j J  , and where J is the number of levels. 

The pair of filters of wavelet decomposition, ( )h k  and ( )g k  are related to each 

other and are known as a quadrature mirror filter (QMF) pair with 

( ) ( 1) ( 1)kg k h L k     , ( ) 2h k   and ( ) 0g k  , where N  is the number of filter 

coefficients. The pair of filters for the perfect reconstruction, ( )h k  and ( )g k  are related 

to the filters of wavelet decomposition by ( ) ( 1)g k g L k    and ( ) ( 1)h k h L k    

(Appendix C). There exists a trade-off between the filter length L and computation time. 

Higher filter lengths are smoother and are better able to distinguish between the 

different frequencies, but they require more computation time. 
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2.3.3.1.2 Filter bank 

The DWT of any signal in 
2 ( )L  can be implemented by two-channel filter banks 

which are filtering signals with a lowpass filter ( )h k  and a highpass filter ( )g k  (Mallat, 

2009). The filtered signals are downsampled by 2 to provide approximation coefficients 

( )jc k  and detail coefficients ( )jd k  for the lowpass and highpass filters respectively. At 

the next level j, the approximation coefficients are decomposed. Such a wavelet 

decomposition is a recursive algorithm and provides successively coarser resolution 

coefficients given as: 

1( ) ( 2 ) ( )j j

n

c k h n k c n






      (2.14) 

1( ) ( 2 ) ( )j j

n

d k g n k c n






      (2.15) 

Wavelet reconstruction processes by upsampling and filtering. The reconstructed signal 

is the sum of the approximation coefficients and the detail coefficients at a coarser 

resolution. This is given as: 

1 1( ) ( 2 ) ( ) ( 2 ) ( )j j j

n n

c k g k n c n h k n d n
 

 

 

       (2.16) 

The decomposition and reconstruction of DWT can be considered as a tree-

structured filter bank, as shown in Figure 2.5 and Figure 2.6, when  0( ) ,c k k  

denotes the input signal of wavelet decomposition and the output signal of the wavelet 

reconstruction. The symbols 2 and 2 in circles indicate the operation of 

downsampling by 2 and upsampling by 2, respectively. Downsampling (or decimation) 

by 2 means discarding all the odd or even samples of wavelet coefficients, whereas 

upsampling by 2 means adding zeros between the samples of wavelet coefficients. 

The difference in implementation between CWT and DWT are that CWT employs 

all possible integer factors of dilation and translation (e.g. 2, 3, 4, and 5), while the 

dilation of DWT uses powers of 2. Another difference is that CWT uses only one 

wavelet filter while DWT uses four filters for decomposition and reconstruction. 
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Figure 2.5 DWT for the first level (J=1) decomposition (a) and reconstruction (b). 
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Figure 2.6 DWT for three-level (J=3) decomposition (a) and reconstruction (b). 

 

2.3.3.2 Limitation of discrete wavelet transform 

This DWT can be referred to as a standard DWT. The standard DWT suffers from some 

fundamental problems (Kingsbury, 2001; Selesnick et al., 2005) specifically: shift 

variance, and oscillation. Shift variance is the property whereby a small shift in a signal 

can lead to relatively large unpredictable changes of wavelet coefficients around a 

singularity, which is a large wavelet coefficient (Selesnick et al., 2005) and provides the 

most information about the signal (Peng and Chu, 2004). It can result in significant 

variation in the energy distribution between wavelet coefficients at different scales 

(Kingsbury, 2001). Generally, singularity extraction with standard DWT-based 
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processing yields large wavelet coefficients. However, wavelet functions are bandpass 

filters, and these wavelet coefficients may oscillate around singularities which are 

overlapped to provide small or zero wavelet coefficients (Selesnick et al., 2005). 

 

2.4 Extension of discrete wavelet transforms 

The standard DWT may not be good enough for some applications. The standard DWT 

can be extended to the stationary wavelet transform (SWT) and the wavelet packet 

transform (WPT) by changing some of procedures associated with decomposition and 

reconstruction in the standard DWT. 

 

2.4.1 Stationary wavelet transforms (SWTs) 

The SWT is sometimes referred to as the undecimated DWT (UDWT), redundant DWT 

(RDWT), or shift-invariant DWT (SIDWT) along with other terms. The SWT can be 

implemented by removing the up/downsampling operation in the standard DWT and 

inserting zeros between filter coefficients in the pair of filters. An example of the 

decomposition and reconstruction of SWT is shown in Figure 2.7. The frequency 

allocation for SWT is the same as that for DWT. The approximation coefficients ( )jc k  

and the detail coefficients ( )jd k  have the same size as the input signal 0 ( )c k  at level

0,1,2,..., 1j J  . Hence SWT has redundancy, but not to the same degree as CWT. 
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Figure 2.7 SWT for three-level (J=3) decomposition (a) and reconstruction (b). 

 

2.4.2 Wavelet packet transforms (WPTs) 

In 1992, Coifman, Meyer and Wickerhauser (1992) introduced the WPT, which is a 

further generalisation of the standard DWT. The WPT decomposes a signal into 

approximation coefficients and detail coefficients and then decomposes recursively on 

both to give a binary tree structure. Therefore the WPT provides a much richer 

frequency subband of possibilities in signal analysis, which cannot be obtained by using 

standard DWT or SWT. 

The filter bank algorithm of WPT decomposition (Mallat, 2009) can be 

represented by: 

1,2 ,( ) ( 2 ) ( )j n j n

p

w k g p k w p






      (2.17) 

1,2 1 ,( ) ( 2 ) ( )j n j n

p

w k h p k w p


 



      (2.18) 

Each internal node ,j nw  in the binary tree is decomposed into child nodes 1,2j nw   and 

1,2 1j nw   . The WPT reconstruction can be expressed as: 



Chapter 2 Wavelet analysis 

 42 

, 1,2 1,2 1( ) ( 2 ) ( ) ( 2 ) ( )j n j n j n

p p

w k g k p w p h k p w p
 

  

 

      (2.19) 

where , ( )j nw k  are wavelet coefficients which are defined by the 
thk  index of the 

thn  

subband (node) at level j in the structure of the binary tree. Hereafter, , ( )j nw k  is used as 

the sequence of all wavelet coefficients (i.e. approximation coefficients ( )jc k  and detail 

coefficients ( )jd k ), which are derived by the standard DWT at level j; k is the 

coefficient index. 

2.4.2.1 The tree-structured filter bank of WPT 

The decomposition structure of WPT can be either a full binary tree (Figure 2.8) or an 

admissible tree (Figure 2.9). A full binary tree decomposes any signal into 2j nodes. An 

admissible tree (Mallat, 2009) is a binary tree where any node has either zero or two 

child nodes. In other words, an admissible tree has independence to stop or continue the 

decomposition at any node. 
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Figure 2.8 WPT with a full binary tree for two-level (J=2) 

decomposition (a) and reconstruction (b). 
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Figure 2.9 Example of WPT with an admissible tree 

for three-level (J=3) decomposition. 

 

2.4.2.2 Frequency ordering 

Let E  be sets of terminal nodes ( , )j n  and  ( , ) : 0 ,0 2 jE j n j J n     of a 

wavelet decomposition tree (Cohen, 2001). A terminal node ( , )j n  is associated with a 

subband whose bandwidth and centre frequency are given by: 

, 2 / 2j

j n sf f         (2.20) 

1

( , ) ( ) 0.5 2 / 2j

c j n sf GC n f        (2.21) 

where 1GC  is the inverse Grey code permutation of n, and sf  is the sampling rate of 

the signal. The lower and upper frequency of each subband is [ , 1] 2 / 2j

sn n f   . 

 

2.5 Complex wavelet transforms 

Complex wavelet transforms (CWTs) were introduced to overcome some of the 

limitations of the real-valued standard DWT. CWTs can be widely divided into two 

classes: dual-tree DWT-based CWT and projection-based CWT. 

The well-known form of CWT is dual-tree DWT-based CWT, otherwise known 

as Kingsbury’s dual-tree CWT (Kingsbury, 2001) and Selesnick’s dual-tree CWT 
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(Selesnick et al., 2005). Dual-tree CWT employs two real-valued standard DWTs, 

where the first and second standard DWTs are the real and imaginary parts of the 

wavelet coefficients. The two real-valued standard DWTs use two different sets of 

filters. Both parts are operated in parallel to decompose and reconstruct the signal. The 

implementation of dual-tree CWT is illustrated in Figure 2.10. Projection-based CWT 

was introduced by Fernandes et al. (2003). This transform represents the conversion of a 

real signal to a complex form, followed by a DWT of the complex mapping. 

The CWT provides advantages of reduced shift variance and improved 

directionality in two and higher dimensions. This has been most frequently applied in 

image processing and is suitable for several applications such as classification, feature 

extraction, motion estimation, coding, and watermarking. Further details of CWT and 

its applications are given in Kingsbury (2001), Fernandes et al. (2003) and Selesnick et 

al. (2005). 
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Figure 2.10 The decomposition of the dual-tree CWT. 

 

2.6 Wavelets and their applications 

In the late 1980s, WT has been successfully utilised and applied to various research 

fields. Their applications cover research areas as diverse as acoustics, speech and audio 

processing, image processing, telecommunications, medicine and biology, physics and 

seismology. The application of wavelets can be found in a vast amount of available 
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literature (Kingsbury, 2001; Peng and Chu, 2004; Selesnick et al., 2005; Fugal, 2009; 

Mallat, 2009). All wavelet-based applications may be grouped into a few main types 

associated with the wavelet’s properties (Peng and Chu, 2004), namely time-frequency 

analysis, feature extraction, singularity detection, signal denoising, and data 

compression. Brief descriptions of some specific applications, including time-frequency 

analysis, signal denoising and data compression, are given here. 

 

2.6.1 Time-frequency analysis 

Time-frequency signal analysis is a powerful tool for the analysis and processing of 

nonstationary signals. Signals are characterised in a time-frequency plane and 

potentially reveal a picture of the signal’s components in the temporal localisation. The 

WT has good utility in terms of time-frequency analysis as explained in Section 2.3. 

The WT yields high frequency resolution and low time resolution at low frequency. In 

contrast, it yields low frequency resolution and high time resolution at high frequency. 

Such time-frequency analysis using WT provides excellent time-frequency localised 

features of information simultaneously (Selesnick et al., 2005). 

Several researchers have employed WT for analysing speech signals. Kadambe 

and Boudreauxbartels (1992) proposed a pitch detector based on the standard DWT 

which was suitable for both low-pitched and high-pitched speakers and was robust to 

noise. Tan et al. (1994) found that the SWT can locate the spectral changes of the 

speech signal accurately. This can be easily identified the speech into voice, plosives, 

fricative and silence. Voice activity detection (VAD), which is based on DWT 

(Stegmann and Schroder, 1997) and WPT (Chen et al., 2007), utilised the flexibility of 

WT in terms of time-frequency resolution to compute robust parameters for VAD 

decisions in noisy environments. 

2.6.2 Signal denoising and data compression 

The wavelet basis function has a property of compact support that provides good energy 

concentration information. Therefore, a singularity of the signal is large wavelet 

coefficients while others have small wavelet coefficients. This reflects the ability for 

separation between useful signal and noise. Many real-world signals are represented in 



Chapter 2 Wavelet analysis 

 46 

wavelet domain by a few large coefficients which are the key to sparsity (Donoho and 

Johnstone, 1994; Selesnick et al., 2005). The sparsity of wavelet coefficients allows 

near-optimal signal processing based on simple thresholding i.e. keeping the large 

wavelet coefficients and killing the small ones without significant errors in representing 

the characteristics of the signal (Selesnick et al., 2005). This is key for signal denoising 

and data compression. 

The wavelet-based denoising approach was successfully developed by Donoho and 

Johnstone (1994). This method is simply performed in three steps, which are: signal 

decomposition, modification of wavelet coefficients with wavelet thresholding, and 

signal reconstruction. The wavelet coefficients can be denoised by setting all wavelet 

coefficients below a threshold value to zero. This can nearly optimally reduce noise 

while preserving the important information of the original signal. This approach has 

been developed and modified into several versions in the past few decades to develop 

techniques appropriate to different applications. 

Wavelet thresholding has been widely applied in the area of speech enhancement. 

A variety of methods have been considered, including classical wavelet thresholding 

(i.e. soft thresholding and hard thresholding) (Pinter, 1996; Bahoura and Rouat, 2001; 

Chang, 2002; Chen and Wang, 2004; Bahoura and Rouat, 2006), modified hard 

thresholding based on standard DWT (Sheikhzadeh, 2001), and WPT (Ghanbari and 

Karami-Mollaei, 2006). Moreover, wavelet shrinkage has been effectively combined 

with other algorithms for speech enhancement to increase noise reduction performance 

in noisy speech, such as spectral subtraction (Shao and Chang, 2007) and multitaper 

spectra estimation (Hu and Loizou, 2004). 

Various techniques of enhancing speech have been developed in the wavelet 

domain such as Wiener filtering (Cohen, 2001), blind adaptive filter (Veselinovic and 

Graupe, 2003), minimum mean square error-short time spectral amplitude (MMSE-

STSA) (Tasmaz and Ercelebi, 2008), Kalman filtering (Shao and Chang, 2006), hidden 

Markov models (HMMs) (Shao and Chang, 2011) and blind source separation (Ashino 

et al., 2010; Litvin and Cohen, 2011). 

Data compression becomes an economic factor for either storage or transmission 

of data. The idea of data compression is to use fewer bits to represent the same 

information at some given representation (lossless compression), or to use fewer bits to 
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represent the given data approximately (lossy compression). Actually, the principles of 

data compression are similar to signal denoising. The small wavelet coefficients can be 

set to zero. The greater the number of zeros, the lower the number of bits in the 

encoding stage of data compression. Wavelet-based data compression can often obtain a 

high compression ratio and maintain the singularities of signals in areas such as audio 

compression (Sinha and Tewfik, 1993; Srinivasan and Jamieson, 1998; Reyes et al., 

2003) and speech compression (Agbinya, 1996; Carnero and Drygajlo, 1999) 

 

2.7 Discussion and conclusion 

Wavelet analysis has established a remarkable reputation as a powerful tool for signal 

analysis, signal denoising and data compression. The strength of WT compared to FT is 

in time-frequency analysis and compact support. In time-frequency analysis, the dilation 

and translation of WT can lead to signal analysis with variable length windows for 

analysing different frequency components. This allows practical and efficient 

representation for many types of signals (e.g. nonstationary signals), but it may not be 

suitable for FT. The compact support of wavelets influences the sparsity of wavelet 

coefficients, which is useful and important for the performance of signal denoising and 

data compression. 

WT can be classified into continuous wavelet transforms (CWTs) and discrete 

wavelet transforms (DWTs). DWTs can be divided into real-valued DWTs and 

complex-valued DWTs. Real-valued DWTs are more appropriate for real-time 

applications than CWTs and complex-valued DWTs due to their lower redundancy. The 

class of real-valued DWTs can be divided into three general forms: standard DWT, 

stationary wavelet transform (SWT), and wavelet packet transform (WPT).  

The filtering process for standard DWT is a recursive process with decomposing 

only on low frequency components and downsampling by 2. The filtering process of 

SWT is similar to standard DWT but the downsampling step is removed. The filtering 

process of WPT is similar to standard DWT, but WPT is iterated on both the low and 

high frequency components of the signal. The different filtering process of real-valued 

DWTs results in a difference in computational complexity. The computational 

complexities of standard DWT, SWT, and WPT are ( )O n , 2( )O n  and 
2( log )O n n  
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operations, respectively (Shukla, 2003; Mallat, 2009), where n is the length of data 

samples and O is a symbol used in complexity theory. Both SWT and WPT are 

generally higher redundancy and computational complexity than standard DWT. 

WPT and FFT have the same computational complexity, which requires 

2( log )O n n  operations. However, their computational complexities may different 

depending on computational algorithms and implementations (Mallat, 2009). The 

computational complexity of WPT relates to the length of filter coefficients, the 

decomposition levels, and the decomposition structures (i.e. a full binary tree and an 

admissible tree). These can result in less computational cost than FFT and bandpass 

filters (BPFs) (i.e. finite impulse response (FIR) filters and infinite impulse response 

(IIR) filters ) in the same application (e.g. CI applications) (Gopalakrishna et al., 

2010b). 

The WPT decomposes recursively on both low (approximation coefficients) and 

high (detail coefficients) frequency components of the signal, but not for the standard 

DWT or others. Consequently, the WPT offers more frequency bands for signal analysis 

than the other DWTs. The WPT provides flexibility in selecting the number of 

frequency bands, and setting centre frequencies and bandwidths. Therefore, the WPT is 

more suitable for CI processors than other DWTs. In addition, WPT has more benefit 

than BPFs and FFT; these are summarised in Table 2.1. A comprehensive overview is 

provided in the next chapter (Section 3.4). 
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Table 2.1 Comparison of advantages and disadvantages among different filter banks in 

CI applications. 

Criteria 
Filter banks 

BPFs FFT WPT 

Signal analysis Time domain Frequency domain 
Time-frequency 

domain 

Temporal and spectral 

resolution 

Good temporal 

resolution, but poor 

frequency resolution 

Poor temporal 

resolution, but good 

frequency resolution 

Good temporal 

resolution, and good 

frequency resolution 

Configuration design 

of filter banks 
Difficult Simple Simple  

Computational 

complexity 
High Medium Low 

Loss of temporal 

information 
High High Low 

Loss of spectral 

information 
Low High Low 
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Chapter 3:  Wavelet packet-based speech coding 

strategy for cochlear implants 

 

3.1 Introduction 

In recent decades, developments in bio-signal processing have led to a trend of 

mimicking real bio-systems. The human auditory system has remarkable capabilities to 

detect, separate, and recognise speech, music and other environmental sounds (Yang et 

al., 1992). The functional principle of human auditory perception is incorporated in the 

design and implementation of human-machine communication systems, especially 

hearing prosthesis for analysis, synthesis, and transmission. The adoption of such 

auditory processing techniques has usually led to substantial improvements in the 

performance of these systems (Yang et al., 1992). 

Many applications mimicking human auditory models can be applied to speech 

analysis, speech synthesis, speech coding, speech recognition, speech enhancement, 

room acoustics, and algorithms for the objective evaluation of speech intelligibility and 

quality. In hearing prosthesis, wavelet transforms (WTs) have been considered for 

employment in prosthesis devices as a compensation algorithm for hearing-impaired 

people, including multiband dynamic range compression (Drake et al., 1993), nonlinear 

automatic gain control in hearing aids (Li et al., 2000), noise reduction in hearing aids 

(Li et al., 2001) and speech processing in cochlear implants (Yao and Zhang, 2002; 

Gopalakrishna et al., 2010b). 

Ideally, a cochlear implant (CI) would be able to imitate and replace the auditory 

functions of the inner ear (Zeng, 2004). An understanding of cochlear function will 

provide insights into many aspects of the auditory processing of speech signals. This 

understanding will motivate the development of novel approaches for speech processing 

in the auditory system in order to improve the performance of CIs. The main purpose of 

this chapter is to describe the important points and some details related to the design of 

CIs based on wavelet packet transform (WPT). Some criteria associated with CI design 

are considered, including filter banks, frequency scales, the structures of wavelet 

decomposition trees, and types of mother wavelet. 
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3.2 Basilar membrane model 

Pioneering research by Georg von Békésy in the 1950s (Loizou, 1998) showed that the 

35-mm basilar membrane (BM) running along the cochlea in the inner ear is responsible 

for separating received frequencies into different spatial locations along its length. A 

sinusoidal stimulation takes the pattern of a traveling wave that propagates from base to 

apex along the BM. The amplitude of the wave reaches a maximum at a particular 

position before slowing down and decaying rapidly. Consequently, different positions 

on the BM correspond to specific frequencies according to their maximum amplitudes 

(Figure 3.1). With the largest amplitude of displacement, high frequencies are 

characterised at the base while low frequencies are at the apex. A frequency that gives a 

maximum response at particular position on the BM is known the characteristic 

frequency (CF) for that position. 

 

 

Figure 3.1 Diagram of the basilar membrane showing the base and the apex. 

The positions of maximum displacement in response to sinusoids of different 

frequencies (in Hz) are indicated (Loizou, 1998). 

 

When complex natural sounds are decomposed into different frequency 

components, they produce maximum displacement at different positions along the BM. 

These positions on the BM can be modelled as a filter bank of a large number of 

overlapping bandpass filters, commonly approximately 10,000 filters. Each bandpass 

filter with its bandwidth has a certain centre frequency according to the characteristic 
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frequency. These filters are known as the auditory filter, and their bandwidth is called 

the critical bandwidth (CB). The critical bandwidth theory claims that the same 

bandwidth plays an important role in terms of harmonic discrimination, masking effects, 

and other psychoacoustic phenomena (e.g. perception of loudness, pitch, and timbre) 

(Harma et al., 2000; Chen and Wang, 2004). 

The critical bandwidth and the shapes of auditory filters on the whole range of 

audible frequencies have been directly measured in experiments using many different 

methods. Experimental measures have included the absolute threshold of complex 

sounds, the masking of a band of noise by two tones, sensitivity to phase differences, 

and loudness. Most of the methods for estimating the auditory filter shape are based on 

assumptions about the power spectrum model of masking, such as psychophysical 

tuning curves, the rippled-noise method and the notched-noise method (Moore, 2008). 

Further details of measurements are given in Glasberg and Moore (1990) and Moore 

(2008). 

In auditory processing, it has been found that the performance of WT filters is 

equivalent to the performance of auditory filters by analysing properties of the BM 

model (Yang et al., 1992; Yao and Zhang, 2002). The BM is sensitive to higher 

frequencies at the base (analysing short transients with lower frequency resolution), and 

it is sensitive to low frequencies at the apex (analysing long transients with higher 

frequency resolution). Hence a WT decomposition with similar characteristics to those 

of cochlear filters may be effective for speech and auditory processing. 

 

3.3 Auditory filter banks 

Auditory filter banks are bandpass filters designed to mimic the frequency resolution of 

human auditory perception (Smith and Abel, 1999). An ideal bandpass filter is used to 

separate signals by accepting signals within a desired frequency band, and to provide 

potentially useful spectral transforms of speech signals. The auditory filter can be 

considered as a weighting function, which is used in the spectrum of acoustic signals to 

determine the effective magnitude of the output of the filter (Glasberg and Moore, 

1990). The output of the filter bank of analysis signals affects the information 

transmitted to the auditory nerves in the brain. The critical bandwidth of the auditory 
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filter is an important thing, and it can be determined by a wide variety of models based 

on experimental techniques. 

 

3.3.1 Cochlear mapping 

The relation between centre frequency and position on the BM has been modelled by 

Greenwood (1990), resulting in the cochlear frequency-position function. This function 

closely agrees with Békésy’s cochlear coordinates. Greenwood’s function is given by: 

0.06165.4(10 1)x

cf        (3.1) 

and the first derivative of Equation (3.1) is:  

165.4
22.9

165.4

c cdf f

dx


       (3.2) 

where x  is the location on the cochlea (in millimetres), 
cf  is the centre frequency (in 

Hertz) corresponding to that location and /df dx  is the bandwidth related to a 1-mm 

range on the cochlea (Harma et al., 2000). 

  

3.3.2 Auditory frequency scales 

In physics, frequency is normally expressed in units of Hertz (Hz). In speech and 

hearing research, various frequency scales have been proposed in other units. The 

frequency scales and their critical bandwidths are usually based on a model of auditory 

filters, and they may be derived in many different ways (Harma et al., 2000), such as 

frequency-position maps of the cochlea, critical-band measures, or pitch scaling 

experiments. The frequency scales can be in the form of linear or nonlinear scales such 

as one-third octave, Bark, ERB, Mel and so on. Even though  all the scales differ 

somewhat in terms of their numerical values (Zwicker and Terhardt, 1980), most of the 

frequency scales tend to be linear functions of frequency in the low-frequency region 

(0−1 kHz), and logarithmic functions in the mid- (1−5 kHz) and high-(5−8 kHz) 

frequency regions (Miller, 1989). 



 Chapter 3 Wavelet packet-based speech coding strategy for cochlear implants 

55  

 

 

Figure 3.2 Comparison of different frequency scales. 

 

3.3.2.1 Comparison of different frequency scales 

One-third octave filter banks are usually used in the audio industry as a convenient 

idealisation of auditory filters. The Bark scale is derived from measurements of the 

characteristic frequencies of the human auditory system (Zwicker and Terhardt, 1980). 

It is an approximate linear scale for frequencies below 500 Hz and an approximate 

logarithmic scale for higher frequencies. The Mel (melody) scale has been employed 

based on a subjective measure of pitch magnitude. The Mel scale is parallel to the Bark 

scale, with a Bark unit corresponding to 100 Mels. A newer frequency scale is the ERB 

(equivalent rectangular bandwidth) scale (Glasberg and Moore, 1990) which is found by 

using the notched-noise method. The ERB scale is conceptually similar to the Bark 

scale. 

The different frequency scales, including ERB, Bark, and one-third octave, may be 

compared. The critical bandwidths may be plotted on a log-log scale as in Figure 3.2 

(Harma et al., 2000). The ERB is very close to the bandwidth of Greenwood’s function. 

The critical bandwidths of ERB are narrower than those of the Bark scales, especially at 

frequencies below 500 Hz. For frequencies below 500 Hz, the ERB scale is neither 

linear, like the Bark scale, nor logarithmic, but something in between (Hermes and 
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Vangestel, 1991). The critical bandwidths of the Bark scale are wider at low and high 

frequencies, but the correspondence is excellent at the central range of hearing from 700 

Hz to 4 kHz (Harma et al., 2000). 

3.3.2.2 Frequency-to-place map on electrode array 

The electrode array directly interfaces between the electrical output of the speech 

processor and the auditory neural tissue. The amount of signal energy in each frequency 

band of speech coding strategy should be directed to the correct position in the 

electrically stimulated cochlea to achieve a high level of speech recognition 

(Stakhovskaya et al., 2007). The use of filter banks requires the specification of the 

critical bandwidth in each frequency band that relates to a particular electrode. There are 

two important limitations for specified critical bandwidths (Fourakis et al., 2004). 

The first is that electrode insertion cannot be accurately aligned with the tonotopic 

organisation of the cochlea, which is that the apical part of the cochlea encodes low 

frequencies, while the basal part encodes high frequencies. This is because of the 

individual insertion depth of the electrode array and the total length of the electrode 

array, which are dependent on the type of implant (Baumann and Nobbe, 2006; Fan-

Gang et al., 2008). Moreover, each manufacturer uses a different electrode array in 

terms of both the number of electrodes and the electrode spacing (Fan-Gang et al., 

2008) (Appendix D.1). Consequently, the intended pitches for perception differ from 

those that are actually perceived. The speech signal is therefore less intelligible. In 

addition, the speech sounds unnatural and “high-pitched” or “Donald Duck-like” 

(Loizou, 1998). The assigned centre frequencies of electrodes should correspond as 

closely as possible to the positionally determined frequencies along the cochlea. 

The second limitation is that there is currently no provision for the programming 

audiologist to specify the frequency ranges of critical bandwidth values to electrodes 

when creating speech processor programmes (referred to as MAPs) for individual CI 

users. The critical bandwidth for the Nucleus processor is commonly specified through 

frequency tables (Cochlear, 2002) as part of the programming software for the creation 

of MAPs for individual CI users. The existing frequency tables do offer some flexibility 

in the number of filters (8 to 22) and the electrodes that can be allocated to different 

frequency ranges of the incoming speech signals. 
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The first limitation is of great importance. Many researchers have studied the 

pattern of electrical stimulation delivered to CI electrodes in relation to the depth and 

angle of electrode insertion, but this issue is beyond the scope of this thesis. The latter 

limitation is considered in simulating speech processing in CIs. Although Greenwood’s 

function has been used to estimate the centre frequency of an electrode array (Baumann 

and Nobbe, 2006; Stakhovskaya et al., 2007), none of the frequency-to-electrode 

allocations are actually matched to the Greenwood function. 

There are possible limitations of the application of the Greenwood function to CIs 

(Stakhovskaya et al., 2007). The first limitation is that the Greenwood function may 

provide accurate estimates of the frequency-to-electrode allocations only if the position 

of spike initiations in the electrical excitation of the spiral ganglion cell is close to the 

organ of Corti. Another important limitation is that accurate estimates of the position of 

the electrodes in the cochlea require knowledge of the total length of the organ of Corti, 

which cannot be determined in most temporal bone and imaging studies. Frequency 

estimation using the average length of the organ of Corti may be inaccurate due to 

substantial individual variability. Therefore, most commonly the speech frequency 

range is divided up between the available electrodes, regardless of the depth of 

insertion. 

Different manufacturers have different approaches to frequency-to-electrode 

allocation. Some speech coding strategies use a logarithmic scale, while other CI 

processors use both linear and logarithmic scales (Loizou, 2006). The existing filter 

bandwidths of the Nucleus processor, as specified by the manufacturers, do not 

explicitly define a certain filter bank approach (Nogueira et al., 2005). The filter 

bandwidths are linearly spaced below 1 kHz, and logarithmically spaced above 1 kHz. 

The recommended frequency tables for the Nucleus processor (Cochlear, 2002), 

especially 128-point FFT, are almost the same as the Bark scale (Nogueira et al., 2006) 

as shown in Figure 3.4 (a). 

 

3.4 Wavelet packet filter banks 

All CI speech coding strategies are based on a filter bank approach, which is the first 

stage of speech processing. They use a filter bank which decomposes the speech signals 
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into multiple frequency channels to determine the characteristics of auditory filters and 

provide spectral and temporal information. There are different implementations of filter 

banks, including finite impulse response (FIR) filters, infinite impulse response (IIR) 

filters (Buechner et al., 2009), short-time Fourier transform (STFT) (Cochlear, 2002), 

and wavelet transforms (WT). 

The use of bandpass filters (BPFs), namely FIR and IIR filters, is based on signal 

analysis in the time domain. BPFs provide good temporal resolution, but limited 

frequency resolution by the number of channels (Gopalakrishna et al., 2010b). In 

addition, their filter configurations make it difficult to design critical bands (Nie et al., 

1998). Although BPFs provide good temporal resolution, the temporal information is 

limited by lowpass filters at the envelope detection stage. In CI processors with noise 

reduction, the noise is usually mixed with the speech signal across the entire frequency 

band. This may be difficult to achieve by means of BPF techniques (Yao and Zhang, 

2002). In contrast, the signal in the time domain is transformed into other domains (e.g. 

STFT and WT), and transformed signals can be easily discriminated between speech 

and noise signals. This is more useful for denoising techniques. 

The use of STFT is based on signal analysis in the frequency domain. STFT 

provides good frequency resolution, but limited temporal resolution by the update frame 

rate (Gopalakrishna et al., 2010b). Therefore, very high stimulation rates can be 

obtained by increasing the overlap between analysed frames, and this may not 

necessarily provide new information. In other words, there is a lack of temporal 

information improvement with high stimulation rates (Loizou, 2006). Moreover, the 

temporal resolution of filter banks implemented by the speech processor and the 

temporal resolution determined by its stimulation rates may be misaligned (Nogueira et 

al., 2006). These result in limitations in speech perception. Nevertheless, STFT is more 

efficient in terms of speed than BPFs. 

The use of WT is based on signal analysis in the time-frequency domain. The WT 

approach is introduced to address the limitation of STFT implementation in terms of 

temporal resolution (Nogueira et al., 2006; Gopalakrishna et al., 2010b). The temporal 

resolution should sufficiently represent the temporal features of speech information, and 

higher temporal resolution can lead to better speech perception (Buechner et al., 2009). 

Time-frequency analysis of WT is similar to human auditory perception (Yao and 
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Zhang, 2002; Derbel et al., 2008) and can be adapted to the time-frequency features of 

CI systems (Nogueira et al., 2006). 

In principle, the overall CI stimulation rate (e.g. the n-of-m strategy) is 

constrained by the channel stimulation rate (temporal resolution) and the number of 

selected channels. In order to design an optimum configuration for the CI stimulation 

rate, the balance between temporal and frequency resolution may be alleviated by using 

wavelet-based strategies (Yao and Zhang, 2002). 

The implementation of a wavelet-based speech coding strategy proposed by 

Gopalakrishna et al. (2010b) provides a lower amount of spectral leakage, allows for 

high stimulation rates and achieves lower computational complexity compared to other 

commonly used strategies in CIs. The spectral leakage is a good measure to indicate 

how much the energy of one frequency band is leaked into adjacent frequency bands. 

Hence, the lower spectral leakage leads to better performance of CI processors in terms 

of good frequency specificity and less distortion of information. Gopalakrishna et al. 

(2010b) have shown that the WPT-based strategy yielded lower spectral leakage than 

that obtained with a STFT-based strategy, but it was almost the same as the BPF-based 

strategy. 

High stimulation rates can provide better fine temporal representation of speech 

information than low stimulation rates. This strategy can provide a high stimulation rate, 

which is equal to the sampling rate of the input signal. This can lead to better speech 

recognition performance, especially in some CI devices with sufficiently wide electrode 

spacings (Loizou, 2006). Due to the increased channel interaction concomitant with a 

high stimulation rate, wider electrode spacings provide smaller amounts of channel 

interaction at the same high stimulation rate. Therefore, most of the benefits of high 

stimulation rates were reported by Med-El CI users (the widest electrode spacing) but 

not with Nucleus CI users (the smallest electrode spacing). 

Gopalakrishna et al. (2010b) have shown that the WT approach has lower 

computational complexity than BPF and STFT implementations. Different structures of 

WPT have different computational complexity. WPT with an admissible tree has lower 

computational complexity than WPT with a full binary tree. This is because WPT with 

an admissible tree can be designed directly for electrodes. The low computational 

complexity can reduce memory requirements, save in execution time and minimize the 
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power requirement. This offers important advantages of minimised device requirements, 

real-time implementation and prolonged battery life for CI processors. 

Overall, the WT offers some important advantages over both BPFs and STFT, 

such as a simple design in terms of filter configuration, good spectral and temporal 

resolution, low computational cost, and appropriate properties for speech coding and 

denoising as discussed in Chapter 2. 

The evolution of wavelet-based strategies for CI system has been developed over 

the last fifteen years. These can be classified into two groups: continuous wavelet 

transforms (CWTs) (Yao and Zhang, 2002; Cheikhrouhou et al., 2004; Guan et al., 

2005; Derbel et al., 2008) and discrete wavelet transforms (DWTs) (Nie et al., 1998; 

Nogueira et al., 2006; Paglialonga et al., 2006; Paglialonga et al., 2008; Gopalakrishna 

et al., 2010b). 

A commonly-used mother wavelet in CWTs is the complex Morlet wavelet, 

because it is easy to select centre frequencies and the bandwidth such that they match 

the Bark scale or ERB scale (Cheikhrouhou et al., 2004; Derbel et al., 2008). The bionic 

wavelet transform (BWT) is derived from the Morlet wavelet and has also been used to 

develop adaptive wavelet strategies (Yao and Zhang, 2002; Derbel et al., 2008). There 

is a difference between the CWT and the BWT. The window size of the CWT varies 

with the analysing frequency, but all windows at a certain scale along the time-axis are 

fixed. The window size of the BWT can be adjusted in the same scale. The BWT 

achieves a better trade-off between time and frequency resolution and preserves more of 

the energy of the signal than the CWT (Yao and Zhang, 2002). However, the CWT and 

BWT both produce redundancies and have a high computational cost. 

DWTs are implemented in a filter bank decomposition approach. The standard 

DWT-based speech coding strategies (Nie et al., 1998) provide a fast and efficient 

algorithm. Their results are consistent with IIR bandpass filters in terms of the 

characteristics of the waveforms in each band. Their speech recognition performance is 

also similar to that of the ACE and CIS strategies (Paglialonga et al., 2006; Paglialonga 

et al., 2008). However, the filtering process of the standard DWT is iterated only on low 

frequency components. This provides a limited number of channels and limited 

frequency ranges in each channel, making them inappropriate to apply to CI devices. 
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A further generalisation of the standard DWT is the wavelet packet transforms 

(WPTs). The filtering process of the WPT is iterated in both the low and high frequency 

components. The filter banks of the WPT can be varied over the frequency ranges and 

the decomposition structure can be simply adjusted for the approximation of critical 

bands. An appropriate structure of WPT can closely mimic the critical band according 

to a perceptual auditory model. 

Many WPT structures are designed based on the Bark scale, the Mel scale and the 

ERB scale. A commonly-used frequency scale for the critical band is the Bark scale, 

which has been widely used by speech researchers. Bark scale wavelet packets are used 

in many applications such as wavelet packet-based CIs (Nogueira et al., 2006; 

Gopalakrishna et al., 2010b), speech enhancement (Carnero and Drygajlo, 1999; Cohen, 

2001; Chen and Wang, 2004; Shao and Chang, 2007), source separation (Litvin and 

Cohen, 2011), and speech compression (Carnero and Drygajlo, 1999). 

A small body of research has studied CI speech coding strategies based on wavelet 

packet filter banks (Behrenbruch and Lithgow, 1998; Nogueira et al., 2006; 

Gopalakrishna et al., 2010b). Recently, wavelet packet-based strategies have been 

successfully produced for real-time implementations (Gopalakrishna et al., 2010b). 

Moreover, it provides better speech recognition performance than a commercial ACE 

strategy for CI users at 15 dB SNR (Nogueira et al., 2006). Wavelet packet-based 

strategies are expected to be used in future generations of CIs (Gopalakrishna et al., 

2010b). 

Designing wavelet packet filter banks relates to the selection of the perceptual 

auditory model, the structure of wavelet packet-decomposition trees and mother 

wavelets. Further details are given in the next section. 

 

3.4.1 The Bark frequency scale 

The concept of the Bark frequency scale assumes that the width of critical bands of 

human hearing is one Bark. That means that the distance of the bandwidth from the 

lower band edge to the upper band edge is 1 Bark. The representation of energy over the 

Bark scale closely corresponds to the obtained information processing in the ear. 
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Theoretically, the Bark scale ranges from 1 to 24 Barks; the bandwidth of Bark scales is 

only defined up to 15.5 kHz for the highest sampling rate at 31 kHz. The frequency 

range of human auditory processing ranges from 20 to 20000 Hz and covers a total of 

25 Barks (Carnero and Drygajlo, 1999; Smith and Abel, 1999). 

The relation of frequency and critical band rate z can be approximately expressed 

by: 

1 4 1 4 2( ) 13tan (7.6 10 ) 3.5tan (1.33 10 ) [Bark]z f f f        (3.3) 

The critical bandwidth (CB) can be found by: 

6 2 0.69( ) 25 75(1 1.4 10 ) [Hz]CB f f      (3.4) 

where f is the frequency in Hertz (Hz). In the CI system, the underlying sampling rate 

is selected to be 16 kHz which produces a bandwidth of 8 kHz. The WPT decomposes 

the frequency range [0 8] kHz into 22 subbands as listed in Table 3.1. 

 

3.4.2 Structure of Bark scale wavelet packet 

Two different structures of wavelet packet-decomposition tree are shown in Figure 3.3 

(Gopalakrishna et al., 2010b); these will be used in the experiment. Structures with both 

an admissible tree (Figure 3.3 (a)) and a full binary tree (Figure 3.3 (b)) are generated 

from a six-level decomposition of the WPT. A given node connects the left and right 

branches to its child nodes. The left and right branches denote lowpass and highpass 

filter, respectively. Therefore, the left and right child nodes also correspond to a lower 

and a higher frequency component, respectively. Consequently, the frequency order of 

each node changes its position in the wavelet packet tree as shown in Figure 3.3. The 

frequency ordering is explained in Section 2.4.2.2. 

The 23-band WPT is designed to directly approximate the critical bands of the 

human auditory system using the 22 channels available to the Nucleus-24 processor. 

The 23 subbands are selected from the entire set of wavelet packet bands. Consequently 

the lowest frequency band, shown as a white node in Figure 3.3 (a), is not used, because 
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this frequency band plays no significant role in speech perception (Nogueira et al., 

2006). 

The six-level decomposition of WPT with a full binary tree consists of 64 nodes 

(
62 64 ). The 64-band WPT with a frequency spacing of 125 Hz is grouped together 

to obtain 22 channels with different frequency bands. The 64-band WPT is treated like 

the 64 FFT bins by the Nucleus-24 processor. The filter spacing of the 64-band WPT is 

allocated by using a linear spacing in the low frequencies (≤1 kHz) and logarithmic 

spacing thereafter (>1 kHz) (Cochlear, 2002). Therefore, the bandwidth ( f ) and centre 

frequencies (
cf ) of the 23-band and 64-band WPT for 22 channels at a 16 kHz 

sampling rate are slightly different, as shown in Table 3.1 (Cochlear, 2002; Shao and 

Chang, 2007; Gopalakrishna et al., 2010b) where lf  and uf  are the lower and upper 

frequencies, respectively. Figure 3.4 compares the difference between centre frequency 

and bandwidth of wavelet packet tree and those of Bark scales. 
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(a) 23-band WPT 

 

 Freq. Order (BL)    1       2       4        3       8       7        5        6      16      15      13     14       9      10      12     11      32     31    29      30      25     26      28      27     17     18      20     19      24      23     21     22

 Freq. Order (BH)   64    63     61     62      57     58     60       59     49       50      52     51     56      55      53     54      33     34    36      35      40     39      37      38     48     47      45     46      41      42    44      43   

 (LOW→HIGH)

Branch Low (BL) Branch High (BH)

 

(b)  64-band WPT 

Figure 3.3 Two structures of wavelet packet-decomposition tree. 
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(a) 128-point FFT 

 

 (b) 23-band WPT 

 

 (c) 64-band WPT 

Figure 3.4 Comparison of WPT and 128-point FFT with Bark scale:  

centre frequencies (left) and bandwidths (right). 
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Table 3.1 Frequency band and centre frequency in each channel at 16 kHz sampling rate  

Electrode 

channel 

number 

Bark Scale 128-point FFT 

[ ]l uf f  
cf  f  [ ]l uf f  

cf  f  

22 0-100 50 100 188-313 250.0 125 

21 100-200 150 100 313-438 375.0 125 

20 200-300 250 100 438-563 500.0 125 

19 300-400 350 100 563-688 625.0 125 

18 400-510 450 110 688-813 750.0 125 

17 510-630 570 120 813-938 875.0 125 

16 630-770 700 140 938-1063 1000.0 125 

15 770-920 840 150 1063-1188 1125.0 125 

14 920-1080 1000 160 1188-1313 1250.0 125 

13 1080-1270 1170 190 1313-1563 1437.5 250 

12 1270-1480 1370 210 1563-1813 1687.5 250 

11 1480-1720 1600 240 1813-2063 1937.5 250 

10 1720-2000 1850 280 2063-2313 2187.5 250 

9 2000-2320 2150 320 2313-2688 2500.0 375 

8 2320-2700 2500 380 2688-3063 2875.0 375 

7 2700-3150 2900 450 3063-3563 3312.5 500 

6 3150-3700 3400 550 3563-4063 3812.5 500 

5 3700-4400 4000 700 4063-4688 4375.0 625 

4 4400-5300 4800 900 4688-5313 5000.0 625 

3 5300-6400 5800 1100 5313-6063 5687.5 750 

2 6400-7700 7000 1300 6063-6938 6500.0 875 

1 7700-9500 8500 1800 6938-7938 7437.5 1000 

 

Electrode 
channel 

number 

23-band WPT 64-band WPT 

[ ]l uf f  
cf  f  [ ]l uf f  

cf  f  

22 125-250 187.5 125 125-250 187.5 125 

21 250-375 312.5 125 250-375 312.5. 125 

20 375-500 437.5 125 375-500 437.5 125 

19 500-625 562.5 125 500-625 562.5 125 

18 625-750 687.5 125 625-750 687.5 125 

17 750-875 812.5 125 750-875 812.5 125 

16 875-1000 937.5 125 875-1000 937.5 125 

15 1000-1125 1062.5 125 1000-1125 1062.5 125 

14 1125-1250 1187.5 125 1125-1250 1187.5 125 

13 1250-1500 1375.0 250 1250-1500 1375.0 250 

12 1500-1750 1625.0 250 1500-1750 1625.0 250 

11 1750-2000 1875.0 250 1750-2000 1875.0 250 

10 2000-2250 2125.0 250 2000-2250 2125.0 250 

9 2250-2500 2375.0 250 2250-2625 2437.5 375 

8 2500-3000 2750.0 500 2625-3000 2812.5 375 

7 3000-3500 3250.0 500 3000-3500 3250.0 500 

6 3500-4000 3750.0 500 3500-4000 3750.0 500 

5 4000-4500 4250.0 500 4000-4625 4312.5 625 

4 4500-5000 4750.0 500 4625-5250 4937.5 625 

3 5000-6000 5500.0 1000 5250-6000 5625.0 750 

2 6000-7000 6500.0 1000 6000-7000 6500.0 1000 

1 7000-8000 7500.0 1000 7000-8000 7500.0 1000 
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3.4.3 Mother wavelet 

The selection of mother wavelets or wavelet filters is essential for CI processors. Some 

of the most well-known mother wavelets are Haar, Daubechies, Coiflets, Symlets, 

Meyer and Biorthogonal wavelets (Appendix C). The different mother wavelets are 

used in the CI processor based on wavelet packet filter banks such as Haar (Nogueira et 

al., 2006), Daubechies (Nogueira et al., 2006; Gopalakrishna et al., 2010b), Symlets 

(Gopalakrishna et al., 2010b), and mixed mother wavelets (Daubechies and Symlets) 

(Nogueira et al., 2006). 

The complicated computations and the aliasing of the speech coding strategy also 

depend directly on the filter length of the mother wavelet. The longer the filter length, 

the more complex the computation and the longer the processing time (Nogueira et al., 

2006; Gopalakrishna et al., 2010b). The Haar wavelet is the simplest method of 

implementation, but it may be limited in terms of filter lengths. This leads to a worse 

frequency resolution and aliasing in each level of wavelet decomposition (Nogueira et 

al., 2006). Daubechies and Symlets with various filter lengths have similar results 

(Gopalakrishna et al., 2010b). However, the most reasonable strategy for selecting 

optimal mother wavelets may be chosen by a comparison of the analysis results among 

these mother wavelets (Sang et al., 2009). For this thesis, a Symlet with order 8 (filter 

length of 16) yielded the best information envelope and electrodogram compared to 

other wavelet filters. 

 

3.5 Speech coding strategy 

The stages of wavelet packet-based speech coding strategies are similar to those in the 

ACE strategy. The ACE strategy is a FFT-based speech coding strategy and an n-of-m 

channel selection strategy (Nogueira et al., 2005; Loizou, 2006). A signal is 

decomposed into m channels and only the n most important channels are selected. A set 

of processing parameter values used by an individual CI user are collected by MAP 

(Fourakis et al., 2004), such as the centre frequencies of the channels and corresponding 

bandwidths, the number of channels selected, the channel stimulation rate, the implant 

stimulation rate, the current threshold level, and the current comfort level (Appendix 
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D.2). The details of ACE and wavelet packet-based speech coding strategies are as 

follows. 

 

3.5.1 Advanced Combination Encoder (ACE) strategy 

The analysis stages of the ACE strategy in a Nucleus-24 processor are as follows. The 

speech signal is captured by a microphone at a sampling rate of 16 kHz, and it is first 

pre-emphasised by a filter that amplifies high-frequency components in particular. The 

emphasised signal is windowed using a hanning window (8 ms, N=128 samples). The 

overlapping window adapts to the channel stimulation rate – for example, a 75% 

overlap for a channel stimulation rate of 500 pps, and a 90% overlap for a channel 

stimulation rate of 1200 pps. After that, the FFT is used to decompose the windowed 

signal into frequency bands. The 128-point FFT provides 128 spectral coefficients (128 

bins). Due to the symmetry property of FFT, the first 64 bins are used and the second 64 

bins are discarded without loss of information. 

The 64 FFT bins with linear spacing are rearranged to mimic the critical bands of 

the auditory system by summing the powers of adjacent bins to provide 22 channels 

with different frequency ranges. The frequency range in each channel is based on a 

critical band, and is defined by the frequency table of the Cochlear Corporation 

(Cochlear, 2002). The apical one-third of the channels are allocated with a linear 

spacing to frequencies up to 1 kHz, and the basal two-thirds of the channels are 

allocated with logarithm spacing to frequencies above 1 kHz. 

The power of the envelope in each channel is calculated as a weighted sum of the 

FFT bin powers. The envelope channels with the largest amplitude are selected for 

stimulation. In clinical practice, 8 to 12 maximum envelopes (Hu and Loizou, 2008; 

Gopalakrishna et al., 2010b) are selected and compressed to fit with the individual CI 

user’s dynamic range between threshold and comfortable loudness levels. Finally, the 

compressed amplitudes are used to modulate the stimulating pulse which is delivered to 

the implanted electrode. In each frame of the speech signals, n electrodes are stimulated 

sequentially and one cycle of stimulation is completed (Nogueira et al., 2005). The 

number of pulses/second (pps) thus determines the rate of stimulation on a single 
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channel, also known as the channel stimulation rate. Further details of the ACE strategy 

are provided in Appendix D.3. 

 

3.5.2 Wavelet packet-based speech coding strategy 

In CI processors, the stages of a wavelet packet-based speech coding strategy are similar 

to those of the ACE strategy. A block diagram of the analysis stage in a CI processor is 

shown in Figure 3.5 (a). The speech signal is recorded by a microphone at a 16 kHz 

sampling rate and is initially pre-emphasised by a first-order Butterworth filter that 

amplifies high-frequency components between approximately 1.5 kHz and 5 kHz. The 

pre-emphasis signal provides the frequency response associated with the HS8 

microphones in Nucleus processors. 

After pre-emphasis the signal is processed frame by frame using a sliding window 

of 128 samples (8 ms) with an overlap of 75% and a channel stimulation rate of 500 

pps. The window overlapping technique is the same as in ACE. It is adapted to the 

channel stimulation rates in the CI user’s MAP. The higher the channel stimulation rate, 

the greater the overlapping of windows and the temporal information. The signal in each 

frame is then decomposed into different frequency bands using the WPT. The spectral 

coefficients of the WPT in each band differ from those of FFT in the ACE strategy in 

each band. WPT consists of a number of wavelet coefficients, whereas FFT contains 

only spectral coefficients. The number of wavelet coefficients in each band depends on 

the decomposition levels. 

The power in each band is computed using the average sum-square of the wavelet 

coefficients. In the 64-band WPT, the 64 frequency bands are computed by summing 

the power of consecutive frequency bands with frequency ranges used in the Nucleus-24 

processor to generate 22 channels (Cochlear, 2002). The power per band is weighted 

following the ACE strategy. The envelopes are smoothed with a low-pass filter. The 12 

maximum envelopes (12-of-22 channels) are selected and compressed to fit within the 

electrical dynamic ranges defined by the CI user’s threshold and comfort levels. Finally, 

the compressed amplitudes are used to modulate the stimulating pulses and sent to the 

implanted electrodes. 
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In a vocoder simulation or CI hearing simulation (Figure 3.5 (b)), acoustic models 

can be thought of as producing vocoded signals. Vocoded signals are used to test NH 

listeners. The noise-band vocoder is most commonly used, and provides the most 

natural sound. The 12 maximum envelopes (12-of-22 channels) are selected and then 

used to modulate white noise, which is filtered by the bandpass filter in the same 

channel as the WPT. A vocoded speech signal is synthesised by summing the modulated 

signals of each channel. 
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(a) Analysis stages in the speech coding strategy. 
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 (b) Vocoder simulation. 

Figure 3.5 Wavelet packet-based speech coding strategies. Adapted from 

(Gopalakrishna et al., 2010a) and Mourad Ghrissi (2012). 
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3.6 Conclusion 

WPT has some advantages for CI processors. The filter banks of WPT provide 

flexibility in specified frequency ranges. The decomposition structure can be simply 

adjusted in relation to auditory-inspired frequency components to match a perceptual 

auditory scale such as the Bark scale. The property of PWT has a trade-off between time 

and frequency representation which produces a good match of signals and localises 

energy concentration with few large coefficients. In addition, WPT is more efficient in 

terms of speed than bandpass filters and STFT. Such advantages can lead to appropriate 

designs and the effective development of speech coding strategies in CI system. 
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Chapter 4:  Noise reduction in wavelet packet-based 

speech coding strategy 

 

4.1 Introduction 

Since humans live in a natural environment where noise is everywhere and unavoidable, 

ambient noise is generally merged into speech signals. This background noise causes a 

speech degradation, which can lead to overall unintelligibility and decreases the 

performance of speech coding, speech recognition and communication applications 

considerably (Chen et al., 2006). Therefore, techniques for efficient noise reduction in 

realistic listening environment are required, especially for hearing impaired (HI) 

listeners. 

The speech-reception threshold (SRT) for sentences (50% correct) in noisy 

environments can be explained with signal-to-noise ratio model (Festen, 1987; Festen 

and Plomp, 1990). The SRT of NH listeners is reached approximately -5 dB SNR. The 

SRT of HI listeners is reached approximately up to 10 dB SNR, which depends on 

hearing loss (Festen, 1987). Noise reduction algorithms would be beneficial to HI 

listeners at higher SNR levels. Some noise reduction algorithms may work well for HI 

listener, but not work for NH listeners. Generally, HI listeners require perfectly noise 

reduction algorithms to match their individual hearing capabilities, increase their 

comfort level when listening, and improve their speech intelligibility (Ephraim and 

Cohen, 2004). 

Noise reduction in speech processing is a complicated problem for a number of 

reasons (Chen et al., 2006). First, the nature and complex characteristics of speech and 

noise signals vary over time and may change from one application to another. It is very 

difficult and complicated to develop an adaptable algorithm that will work in different 

environments. Another reason is that the purpose of noise reduction depends on the 

specific context and application. Some applications need to increase intelligibility and 

quality or improve overall speech perception, while others aim to improve the accuracy 

of automatic speech recognition systems or simply to decrease the listener’s fatigue. It is 

not easy to satisfy all purposes at the same time. 
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Generally, there are three stages in noise reduction techniques for speech 

processing (Loizou et al., 2007); these are analysis, suppression and synthesis (Figure 

4.1). The analysis stage is when the speech signal is transformed into another domain. 

This relies on the capability of discriminating between speech and noise. The larger the 

difference between speech and noise signals, the more reduction there may be in the 

noise signals. The suppression stage is the main stage of most algorithms. The 

transformed signal is modified or weighted by multiplying with a gain function 

(suppression function) to control noise reduction across a wide range of SNR levels. 

Finally, at the synthesis stage the modified signal is transformed back to the time 

domain. 
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Figure 4.1 Three main stages in noise reduction techniques. 

 

The parameters of optimal gain functions involve noise estimation. This noise 

estimation should continuously adapt to access information for noise spectrums in 

different noisy environments (Martin, 2001; Loizou et al., 2007). Where there is no 

prior information about noise sources, adaptive techniques using the statistical 

properties of speech and noise are usually used to accurately track noise. The noise level 

should not be under- or overestimated. An accurate noise estimate can effectively 

denoise and highly enhance speech. In contrast, overestimated noise may lead to the 

removal of speech information, further distortions in enhanced speech and reductions in 

speech intelligibility. Meanwhile underestimated noise may lead to greater amounts of 

residual noise. Therefore, the optimal gain function should be a trade-off between the 

amount of noise reduction, speech distortion, and the level of residual noise (Virag, 

1999). 
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When the Bark scale wavelet packets, which reflect the human auditory system, 

are combined with an appropriate gain function, this may lead to the improvement of 

speech intelligibility and quality (Cohen, 2001; Chen and Wang, 2004). Two noise 

reduction algorithms, namely time-frequency spectral subtraction (TFSS) and time-

adaptive wavelet thresholding (TAWT), are applied in wavelet packet-based speech 

coding strategies. Both algorithms are compared with ideal binary masking (IdBM) as a 

baseline for denoising performance. 

The IdBM is used for noise reduction where information about clean speech and 

noise is known. The TFSS and TAWT algorithms are applied in this study since both 

have some main advantages. These approaches are simple in their implementation, 

which only requires an estimation of the noise spectrum. They offer high flexibility in 

the variation of parameters to compromise between noise reduction and speech 

distortion. Additionally, they do not require the explicit voice activity detection (VAD). 

For these reasons, both are suitable for the real-time implementation of CI systems in 

diverse environments. 

This chapter is organised as follows. The concept of combined noise reduction and 

speech coding in a wavelet packet-based speech coding strategy is presented. The noise 

reduction algorithms selected for use in this study are presented next. The section on 

performance measurements presents various measures - both visual inspection (e.g. 

waveform and electrodogram) and objective speech intelligibility measures- that are 

used for evaluating the algorithms before they are tested with NH listeners. A summary 

is given in the last section. 

 

4.2 Combined noise reduction and speech coding strategy 

The speech coding strategies in CI processors are almost the same as noise reduction 

algorithms, in which the tasks is to decompose the signal into uncorrelated components 

and then process these components separately. Thus, both algorithms can be combined 

into one system, using a common processing structure to decrease the computational 

load and the complexity of the system. 
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This concept has been widely applied in data compression (Sinha and Tewfik, 

1993; Srinivasan and Jamieson, 1998; Carnero and Drygajlo, 1999) and some noise 

reduction algorithms in CIs (Hu et al., 2007; Hu and Loizou, 2008; Li, 2008; 

Kokkinakis et al., 2011; Hu et al., 2013). To reduce the effect of noisy backgrounds, 

noise reduction algorithms are integrated into wavelet packet-based speech coding 

strategies to reduce noise directly in noisy envelopes (Figure 4.2). 
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Figure 4.2  Block diagram of vocoder simulation for noise reduction in a wavelet 

packet-based speech coding strategy. 

 

4.3 Noise reduction algorithms 

4.3.1 Wavelet packet energy 

Assume that noisy speech ( )y n  is composed of clean speech ( )x n  and the additive 

noise ( )d n . Then: 

( ) ( ) ( )y n x n d n        (4.1) 

Taking the WPT of both sides gives: 

, , ,( ) ( ) ( )j n j n j nY k X k D k       (4.2) 
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where , ( )j nY k , , ( )j nX k  and , ( )j nD k  are wavelet coefficients of the thn  subband (node) 

at level j  for noisy speech, clean speech and  noise, respectively. k  is the coefficient 

index in each subband.  

The noisy signal is divided into frames of length M =128 samples with 96 

overlapping samples (75%). Each frame is calculated using WPT. The number of 

wavelet coefficients in each subband depending on the decomposition level j, is

128 / 2 j

jK  . In a single frame, the energy of each subband can be calculated using the 

average sum-square of the wavelet coefficients, thus: 

2

,

1
( , ) ( )Y j n

kj

E i n Y k
K

        (4.3) 

where ( , )YE i n  is the energy of the thi  frame  and the thn  subband, , ( )j nY k  is the wavelet 

coefficient of the noisy signal in the thn  subband and level j , and k  is the coefficient 

index ( 0,2, , 1jk K  ). The energy of the clean speech and the noise signal can be 

computed as noisy speech in the wavelet domain. 

In the 23-band WPT, the energy of the first subband is discarded to provide 22 

channels because it plays no role in speech perception. In the 64-band WPT, it is 

computed by summing the energy of consecutive subbands with frequency ranges, as in 

Table 3.1, to generate 22 channels. Then, the envelope amplitudes in each channel are 

smoothed using a lowpass filter as shown in Figure 4.2. This stage provides the time-

frequency (T-F) envelope amplitude matrix, which represents the number of frames and 

channels. From Equation (4.2), the T-F envelope amplitude matrix at the thi  frame and 

thn  channel (subband) can be defined as: 

( , ) ( , ) ( , )Y i n X i n D i n       (4.4) 

where ( , )Y i n , ( , )X i n  and ( , )D i n  are the T-F envelope amplitudes matrix for the noisy 

speech, clean speech and noise, respectively and 0,1,2, , 1n N   channels ( 22N  ). 

The noise reduction algorithms are processed in the T-F envelope amplitude matrix. The 

differences and similarities between noise reduction techniques will be described and 

discussed in the next sections. 
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4.3.2 Ideal binary mask (IdBM) 

Channel selection using the maximum amplitude criterion can become problematic for 

noisy environments (Dorman et al., 1997; Hu and Loizou, 2008; Kokkinakis et al., 

2011). When noise dominates, the channels selected can be noise, because those 

channels have the maximum amplitudes. The ideal binary mask (IdBM) is employed to 

compensate for this shortcoming. In fact, the IdBM has been introduced as a goal of  

computational auditory scene analysis (CASA), which attempts to computationally 

extract sound mixtures into individual streams corresponding to different sound sources 

(Wang, 2005). The IdBM is applied to the criterion for selecting envelope channels, 

which is based on the true signal-to-noise ratio (SNR) to improve speech intelligibility 

in noisy environments (Hu and Loizou, 2008; Kokkinakis et al., 2011). 

The IdBM is defined as a binary T-F mask, which is equivalent to a binary gain 

function. This approach is called ideal because its construction requires prior knowledge 

of the clean speech and noise information before both are mixed. The binary gain 

function takes the value of 1 when the SNR in the corresponding T-F envelope 

amplitude matrix exceeds a threshold value, and the value of 0 otherwise (Wang, 2005; 

Hu and Loizou, 2008). The T-F envelope matrix of enhanced speech is obtained as 

follows: 

ˆ ( , ) ( , ) ( , )X i n IdBM i n Y i n       (4.5) 

1 , ( , ) 0
( , )

0 , ( , ) 0

SNR i n
IdBM i n

SNR i n


 



    (4.6) 

2 2

10( , ) 10log ( ( , ) / ( , ))SNR i n X i n D i n    (4.7) 

where ˆ ( , )X i n , ( , )Y i n , ( , )X i n  and ( , )D i n  are the T-F envelope matrices at the 
thi  

frame and 
thn  channel for the enhanced speech, noisy speech, clean speech and noise 

signal, respectively. 

The threshold of SNR was 0 dB for this study. The threshold value of 0 dB has 

been found to work well and produce optimality in studies employing the IdBM (Wang, 

2005). This threshold was reasonable because the purpose of IdBM-based channel 

selection was to retain the speech-dominated channels and to remove the noise-
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dominated channels (Hu and Loizou, 2008), as shown in Figure 4.3. The speech-

dominated channels (i.e. 0SNR  ) contain important information about clean speech, 

whereas the noise-dominated channels (i.e. 0SNR  ) contain little information about 

clean speech because speech signals are severely masked by noise and the speech 

components of the mixture are almost inaudible. 

The number of channels selected corresponding to SNR can vary from 0 (i.e. no 

channels are selected) to 22 (i.e. all channels are selected). For noise-dominated 

channels as shown in Figure 4.3 (a), the IdBM will not select any channels, while the n-

of-m strategy will select 12 channels with the largest amplitudes. For speech-dominated 

channels as shown in Figure 4.3 (b), the IdBM will select all channels while the n-of-m 

strategy will only select the 12 channels with the largest amplitudes. This can be a 

disadvantage of the IdBM strategy when the speech-dominated channels number more 

than 12. This is unnecessary for speech intelligibility (Dorman et al., 2002), especially 

in quiet or high SNR conditions. In this study, a combination of IdBM-based channel 

selection and the n-of-m strategy are used, as shown in Figure 4.3. 

From Equation (4.5), the T-F envelope amplitudes of noisy speech with 0SNR   

dB are retained while the envelope amplitudes with 0SNR   dB are removed to reduce 

noise in the CI processors. Figure 4.4 illustrates the noise reduction with IdBM. The 

clean speech is shown in Figure 4.4 (a). The babble noise at 5 dB SNR and the noisy 

speech is shown in Figure 4.4 (b) and (c), respectively. The IdBM is shown in Figure 

4.4 (d). The result of IdBM provides enhanced speech, which is shown in Figure 4.4 (e). 

The enhanced speech is much closer to the clean speech. Informal listening to the 

enhanced speech results in clear intelligibility, like the clean speech. 
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(a) 

 

(b) 

Figure 4.3 Example illustrating the channel selection in a frame using the n-of-m 

strategy, IdBM, and a combination of IdBM and the n-of-m strategy. The first panel 

shows the amplitudes of the clean speech and noise signal. The second panel shows the 

amplitudes of the noisy speech. The bottom three panels show the amplitudes selected 

by the n-of-m strategy, IdBM, and the combination of IdBM and the n-of-m strategy, 

respectively. (a) The noise dominates the clean speech. (b) The clean speech dominates 

the noise. 
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(a) 

 

     (b)       (c) 

 

     (d)        (e) 

Figure 4.4 Example illustrating the concept of IdBM for the BKB sentence “The clown 

had a funny face”. (a) Clean speech. (b) Babble noise at 5 dB SNR. (c) Noisy speech. 

(d) The IdBM, where white pixels indicate 1 and black pixels 0. (e) Enhanced speech 

using IdBM. 
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4.3.3 Time-frequency spectral subtraction (TFSS) 

The spectral subtraction proposed by Boll (1979) is one of the earliest and most well-

known techniques for speech enhancement. This technique is based on a simple 

implementation where enhanced speech is obtained by subtracting the noise estimation 

from the noisy speech. Numerous studies have proposed different implementations and 

configurations of spectral subtraction to find the optimized spectral subtraction for their 

applications. The objective here is to apply time-frequency spectral subtraction (TFSS) 

in wavelet packet-based speech coding strategies. 

4.3.3.1 Power spectral subtraction and error analysis 

From Equation (4.4), the estimated power spectrum of the enhanced speech in the 

wavelet domain using power spectral subtraction (Berouti et al., 1979; Virag, 1999) can 

be expressed as follows: 

 2 2 2ˆ ˆ( , ) max ( , ) ( , ),0X i n Y i n D i n      (4.8) 

where 
2ˆ ( , )X i n  and 

2ˆ ( , )D i n  represent the estimated power spectrum of the enhanced 

speech and noise, respectively. 2( , )Y i n  is the power spectrum of the noisy speech. The 

max( )  operator is used to guarantee that 
2ˆ ( , )X i n  always has a positive value. 

Generally, the noise level 2( , )D i n  is unknown, but it can be estimated from 

nonspeech frames. The estimated power spectrum of the enhanced speech 
2ˆ ( , )X i n  may 

be negative values as a result of spectral subtraction because the noise estimation 

2ˆ ( , )D i n  may be inaccurate due to the random variation of the noise spectrum. These 

negative values are set to zero. This process produces tones at random times and 

frequencies which result in an artefact called musical noise (Berouti et al., 1979). 

Musical noise can be reduced by improving the estimation of noise. Several 

techniques have been proposed to reduce this effect: magnitude averaging (Boll, 1979), 

over-subtracting the estimation of the noise spectrum and spectral-flooring the 

estimation of the negative values (Berouti et al., 1979), a minimum mean-square error 

(MMSE) estimation of short-time spectral amplitude (Ephraim and Malah, 1984), an 

adaptation of subtraction parameters related to the masking properties of human 
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perception (Virag, 1999), and the estimation of cross terms associated with the phase 

differences between the noisy/clean speech and noise (Lu and Loizou, 2008). 

The power spectral subtraction in Equation (4.8) can be written in terms of the 

gain function ( , )G i n  as: 

2 2 2ˆ ( , ) ( , ) ( , )X i n G i n Y i n       (4.9) 

2

2

ˆ ˆ( , ) ( , ) 1
( , ) 1 1

( , ) ( , ) ( , )

X i n D i n
G i n

Y i n Y i n i n
        (4.10) 

where ( , )G i n  always takes positive values in the range of 0 ( , ) 1G i n  , and   is a 

posteriori SNR (
2 2ˆ( , ) ( , ) ( , )i n Y i n D i n ). The gain function ( , )G i n  is used to modify 

the amplitude of the noisy speech between the speech and noise regions. Regions 

containing only speech signals are unmodified (i.e. ( , ) 1G i n  ), whereas regions 

containing only noise are removed (i.e. ( , ) 0G i n  ). Regions containing both speech 

signals and noise are modified to reduce the noise according to the posteriori SNR  . 

Substituting (4.4) into (4.8), the power spectral subtraction can be rewritten as: 

2 2 2 2ˆ ˆ( , ) ( , ) ( , ) ( , ) 2Re( ( , ) *( , ))X i n X i n D i n D i n X i n D i n       

2 2 2ˆ ˆ( , ) ( , ) ( , ) 2Re( ( , ) *( , ))X i n Y i n D i n X i n D i n       (4.11) 

The power spectrum estimate of the enhanced speech 
2ˆ ( , )X i n  includes error terms of 

noise variation (i.e. 
2 2ˆ( , ) ( , )D i n D i n ) and cross terms of clean speech and noise (i.e. 

2Re( ( , ) ( , ))X i n D i n ) (Shao and Chang, 2007). The cross terms are commonly set to 

zero because the clean speech and noise are assumed to be uncorrelated. This 

assumption leads to an inaccurate subtraction rule (Lu and Loizou, 2008). Some 

researchers have attempted to assess the effect of neglecting the cross term (Evans et al., 

2006) and compensate for the cross term in spectral subtraction (Lu and Loizou, 2008). 

4.3.3.2 Cross term to perceptual time-frequency spectral subtraction 

The cross term estimate proposed by Lu and Loizou (2008) is applied in this study. This 

cross term can be represented by a geometric perspective on spectral subtraction, which 
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provides the difference between the phases of noisy/clean speech and noise. The gain 

function can be created using the relationship between the difference of phases and 

trigonometric principles (Appendix E.1). This gain function, dependent on the 

estimation of priori SNR ̂  and posteriori SNR ̂  parameters, can be expressed as 

follows: 

 
2 2ˆ ˆˆ ˆ( 1 ) ( 1 )ˆ ˆ, 1 1

ˆˆ4 4
G

   
 

 

      
     

   
  (4.12) 

The parameters ̂  and ̂  in the gain function  ˆ ˆ,G    are estimated according to: 

 ˆ ˆ ˆ( , ) ( 1, ) (1 ) min ( , ),20Ii n i n i n            (4.13) 

 
2

ˆ ˆ ˆ( , ) ( 1, ) (1 ) ( , ) 1Ii n i n i n              (4.14) 

2

2

ˆ ( , )ˆ ( , )
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I

X i n
i n

D i n
  and 
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2

( , )
ˆ ( , )

ˆ ( , )
I

Y i n
i n

D i n
     (4.15) 

where the subscript I  indicates the instantaneous values.   and   are weighting 

factors, which were set to 0.60   and 0.98  . Both factors control the trade-off 

between the noise reduction and the speech distortion. Both values were selected based 

on informal listening tests and predicting the objective speech intelligibility (i.e. NCM 

and STOI) between the vocoded clean speech and the vocoded noisy speech with TFSS. 

The min( )  operator was used to give a maximum of 13 dB (
1010log (20) ) and to 

avoid over-attenuation of the signals (Lu and Loizou, 2008). 

This gain function is employed in the time-frequency spectral subtraction (TFSS) 

according to the following steps. Initially, an estimate of the noise power spectrum 

2ˆ ( , )D i n  is averaged from the first five frames. Then 
2ˆ ( , )D i n  is updated by a noise 

estimation algorithm (Martin, 2001), which is obtained by the minimum tracking 

method, since the power spectrum of the noisy speech regularly decays to the noise 

power level. This method tracks minimum values of a smoothed power spectrum for the 

noisy speech and multiplies by a constant to compensate for the bias noise estimate. 

This method has been found to work well for nonstationary environments. 
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Finally, the T-F envelope amplitude matrix of the enhanced speech is computed by 

a multiplication of the gain function  ˆ ˆ,G    with the T-F envelope amplitude matrix 

of the noisy envelopes: 

 ˆˆ ˆ( , ) , ( , )X i n G Y i n       (4.16) 

The posteriori SNR ˆ( , )i n  in Equation (4.13) is weighted to reduce rapid 

fluctuations and also to limit the over-suppression of the signal for large values of

ˆ( , )i n . The weighting factor   of ˆ( , )i n  can improve the estimate of the enhanced 

speech. The priori SNR ˆ( , )i n  in Equation (4.14) is weighted to control the average of 

spectral information positioned on past and present frames. This is similar to the 

decision-directed approach (Ephraim and Malah, 1984), which updates amplitude 

estimates using information from the past frames. 

This gain function has two main advantages (Lu and Loizou, 2008). First, it is not 

derived using any statistical model about the statistical distributions of the speech and 

noise (e.g. Gaussian, Gamma, Laplacian or Raleigh distributions). In addition, the best 

statistical model is currently undetermined (Ephraim and Cohen, 2004). Second, the 

estimation of the parameters ̂  and ̂  are instantaneous values, which are updated 

directly from estimates of the instantaneous noise as in Equation (4.15). This doesn’t 

only use one average of noise estimate from the initial noise segment of the signal, as in 

Ephraim and Malah (1984). As a result, this gain function provides a more accurate 

estimate of enhanced speech and is well appropriate for real-time implementations in 

noisy environments. 

 

4.3.4 Time-adaptive wavelet thresholding (TAWT) 

4.3.4.1 Conventional wavelet thresholding 

Donoho and Johnstone (1994) have proposed wavelet thresholding for noise reduction. 

This algorithm consists of three steps: forward wavelet transform of the noisy signals, 

thresholding the wavelet coefficients and inverse wavelet transform. Wavelet 

thresholding utilises statistical differences between the wavelet coefficients of speech 
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and noise signals. Nonsignificant coefficients have small absolute values, they are 

probably noise and they should be removed or attenuated. Significant coefficients have 

large absolute values, they are important components of signals and they should be 

retained. Therefore, the wavelet coefficients below a selected threshold are treated as 

nonsignificant information and set to zero, whereas the significant ones are kept. 

The soft-thresholding gain function (Donoho and Johnstone, 1994; Donoho, 1995) 

was introduced in Equation (4.17) and its characteristic of signals is shown in Figure 

4.5. The soft thresholding gain function 
ST  sets the absolute values of wavelet 

coefficients below the selected threshold   to zero. The absolute values of wavelet 

coefficients above the selected threshold   are replaced by shrinking the wavelet 

coefficients of the noisy speech ( , )Y i n  with the selected threshold  . 

ˆ ( , ) ( , ) sgn( ( , ))max(| ( , ) | ,0)SX i n T Y Y i n Y i n       (4.17) 
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Figure 4.5 The soft-thresholding gain function. 

 

However, applying a selected threshold   to all wavelet coefficients can lead to 

over-thresholding of speech regions. This not only reduces additional noise but also 

removes some speech components such as unvoiced sounds. In order to solve the 

problem of the limit of a selected threshold in conventional wavelet thresholding, an 

adaptive threshold (Bahoura and Rouat, 2001; Chen and Wang, 2004) without any prior 
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knowledge of the noise level is applied in this study. The obtained results give better 

performance than those using an MMSE gain function (Ephraim and Malah, 1984). 

4.3.4.2 Time-adaptive wavelet thresholding 

The time-adaptive wavelet thresholding (TAWT) algorithm (Chen and Wang, 2004) is 

different from conventional wavelet thresholding (Donoho and Johnstone, 1994). This 

technique is based on the Teager energy operator (TEO) and the adaptation of the 

wavelet threshold. 

The TEO was modelled by Teager (Teager and Teager, 1990) and was further 

investigated by Kaiser (Kaiser, 1993). The TEO is a simple nonlinear function and a 

very local property of the signal, dependent on the three adjacent samples of the signal 

with indexes 1i  , i , and 1i  . It is used to enhance the discriminability of speech and 

noise (Bahoura and Rouat, 2001; Chen and Wang, 2004). The TEO is a powerful tool 

that has been used in many speech applications (Bahoura and Rouat, 2001; Chen and 

Wang, 2004; Bahoura and Rouat, 2006; Dimitriadis et al., 2011). 

The TAWT algorithm is computed in the following steps. The TEO coefficients 

( , )T i n  can be calculated from samples of three adjacent amplitude envelopes as: 

2( , ) ( , ) ( 1, ) ( 1, )T i n Y i n Y i n Y i n       (4.18) 

where ( , )Y i n  is the T-F envelope amplitude matrix of the noisy speech at the 
thi  frame 

and the 
thn  channel. The temporal masking ( , )M i n  is constructed by smoothing the 

TEO coefficients, defined by: 

( , ) ( , ) ( , )M i n T i n h i n      (4.19) 

where * denotes the convolution operation and ( , )h i n  is the lowpass filter. 

The adaptive threshold values ( , )i n  are constructed from the temporal masking

( , )M i n . If ( , )M i n  below the variance of ( , )M i n  is set to zero, otherwise temporal 

masking ( , )M i n  is normalised as follows: 
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( , )
, ( , ) var( ( , ))

( , ) max( ( , ))

0 ,

M i n
M i n M i n

M i n M i n

otherwise

 
    




  (4.20) 

The parameter of ( , )M i n  is close to 1 for speech regions and close to 0 for noise 

regions. Therefore the adaptive threshold values ( , )i n  can be expressed as: 

( , ) (1 ( , ))ni n M i n        (4.21) 

22log( log ( ))n n N N    and  / 0.6745n nMAD   (4.22) 

where 
n  represents the channel-dependent threshold values (Bahoura and Rouat, 

2001), N  is the total frames, 
n  is the noise variances with the median of the absolute 

deviation (
nMAD ) of all the wavelet coefficients ( , )Y i n  at the 

thn  channel, and 0.6745 

is a normalisation factor, which is approximated from fine-scale wavelet coefficients 

(Donoho, 1995). The enhanced speech ˆ ( , )X i n  is modified by the soft thresholding 

gain function as: 

ˆ ( , ) sgn( ( , ))max( ( , ) ( , ) ,0)X i n Y i n Y i n i n     (4.23) 

 

4.4 Objective speech intelligibility 

In the previous chapter, a frame length of 128 samples (the default in the ACE strategy) 

and a sym8 (Symlet with order 8) were chosen for the wavelet packet-based speech 

coding strategy. The sym8 yielded good results based upon the information envelope 

and electrodogram when compared to other wavelet filters. For noise reduction 

techniques, various algorithmic parameters were chosen for the TFSS, but not for the 

TAWT. Suitable parameters   and   for the TFSS were chosen based on informal 

listening tests and the average values of predictions from the normalised covariance 

metric (NCM) and short-time objective intelligibility (STOI) in all conditions. 

Vocoded speech, with and without noise reduction algorithms in situations of 

different of noise types and SNR levels, were evaluated using the NCM and STOI to 
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predict the direction of performance, before a listening test with NH listeners. Both the 

NCM and STOI were computed using vocoded clean speech (as a reference speech) and 

vocoded noisy speech with and without noise reduction algorithms. 

The NCM and STOI values for each condition were obtained from the average of 

336 Bamford-Kawal-Bench (BKB) sentences (details are provided in Section 5.2.1.1) 

per condition. In the conditions of different noise types, the sentences were corrupted by 

two types of noise, i.e. babble and speech-shaped noise at 5 dB SNR. There were a total 

of 16 conditions (4 algorithms  2 noise  2 wavelet packet structures). In conditions 

with different SNR levels, the sentences were corrupted by babble noise at 0, 5 and 10 

dB SNR. There were a total of 18 conditions (3 algorithms  3 SNR levels  2 wavelet 

packet structures). 

Figure 4.6 shows the comparative results of the NCM (left) and STOI (right) for 

processing with and without noise reduction algorithms, in terms of different noise 

types (Figure 4.6 (a)) at 5 dB SNR and different SNR levels (Figure 4.6 (b)) in babble 

noise. The results of the NCM and STOI have the same trend of performance in almost 

all conditions except at 0 dB SNR. The STOI provides considerably higher values of 

speech intelligibility than the NCM in all conditions. 

A one-way analysis of variance (ANOVA) revealed a statistical significant (F [15, 

31] =532.78, p<0.0005) in different noise types (Figure 4.6 (a)) and a statistical 

significant (F [17, 35] =77.44, p<0.0005) in different SNR levels (Figure 4.6 (b)) for 

processing on the intelligibility measures examined. Post-hoc tests (Bonferroni) were 

used to assess differences between values of the intelligibility measures obtained in the 

different conditions. 

As can be seen from Figure 4.6 (a), the IdBM provided significantly better 

performance than others. The TAWT yielded significantly better performance than the 

TFSS in both noises at 5 dB SNR. In Figure 4.6 (b), the TAWT and TFSS provided 

significantly better performance than vocoded noisy speech at 0 and 5 dB SNR, but not 

at 10 dB SNR for babble noise. Both the TAWT and TFSS showed no significant 

difference in almost all SNR levels. The TAWT provided only significantly better 

performance than TFSS for the STOI at 0 and 5 dB SNR. 
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(a) 

     

(b) 

Figure 4.6 The comparison of performance between noise reduction algorithms (i.e. 

TFSS and TAWT) in terms of intelligibility measures (i.e. NCM and STOI). Each 

column denotes intelligibility measures in NCM and STOI. The rows represent different 

noise types (a) and different SNR levels (b). The error bars indicate ± 1 standard error. 
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4.5 Discussion 

4.5.1 Differences between noise reduction algorithms 

The noise reduction algorithms applied in the wavelet packet-based speech coding 

strategy (i.e. TFSS and TAWT) have been discussed and compared to IdBM. All the 

algorithms are relatively simple in their implementation, do not require the explicit 

voice activity detection, and have low computing complexity. This makes them more 

suitable for real-time implementation in CI systems. 

In noise estimation, all algorithms are simply implemented by gain functions in 

noisy envelopes in each channel. These algorithms employ different techniques in their 

gain functions. The IdBM requires prior knowledge of speech and noise information in 

the present frame to find the exact priori SNR of the signal. The TFSS requires the 

noise estimation algorithm proposed by Martin (2001) and information from previous 

and present frames to estimate the priori SNR and the posteriori SNR of the gain 

function. This approach needs to adjust some parameters (e.g. weighting factors) to get 

the optimal performance for different types of noise and different SNR levels. 

The TAWT uses the TEO to construct temporal masking in each channel. This 

temporal masking is applied to estimate adaptive threshold values for the soft-

thresholding gain function. The TAWT does not require both an explicit estimation of 

noise level or any knowledge of the priori SNR and the posteriori SNR, using only a 

noise variance in each channel. In addition, the TAWT can reduce the data redundancy 

by setting the envelope amplitudes below the threshold   to zero. 

The algorithms may provide more error estimation for nonstationary noise or 

lower SNR levels than stationary noise or higher SNR levels. The algorithms may work 

better for speech-shaped noise than for babble noise. This is because the characteristics 

of babble noise vary rapidly. Then the noisy envelopes may be weighted by the gain 

function with inaccurate noise estimation, which leads to decreased intelligibility of 

performance (Fu and Nogaki, 2005). The noise reduction algorithms should be further 

developed for nonstationary noise. Figure 4.6 (a) shows that the TFSS and TAWT in 

speech-shaped noise give a slightly higher performance than those in babble noise when 

predicting performance with both NCM and STOI. 
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At lower SNR levels, speech signals are heavily masked by noise and noisy 

envelopes are multiplied by a weight close to zero. Little speech information in each 

channel is probably not intelligible and distracting information to CI users (Hu et al., 

2007). In contrast, at sufficiently high SNR levels, noisy envelopes are multiplied by a 

weight close to one. CI users can understand most of the important information and 

ignore the noise. Figure 4.6 (b) shows that TFSS and TAWT at higher SNR levels (e.g. 

10 dB SNR) are slightly better or almost the same as noisy speech. This is because 

noisy speech with and without noise reduction may allow discrimination between 

speech and noise, with the capabilities of the human auditory system (Verschuur et al., 

2006). 

Ideally, the noise reduction algorithms in CI systems should be able to 

automatically detect noise environment changes and select optimized parameters for the 

noise reduction algorithms. Currently, there are no noise estimation techniques that can 

track noise spectra accurately. However, Hu et al. (2007) suggested that noise 

estimation does not have to be very accurate to obtain an exact weight for multiplying to 

the noisy envelopes. It is enough if the noise estimation performs sufficiently well to 

discriminate high from low SNR envelopes. 

A few studies in CI noise reduction suggested that in practice, noise reduction for 

CI users should provide more aggressive gain functions and show significant 

intelligibility performance improvement (Hu et al., 2007; Dawson et al., 2011). In 

contrast, noise reduction for NH listeners is designed to be less aggressive in 

maintaining listening quality. This is because of the perceptible difference between NH 

listeners and CI users. 

In noise reduction strategies for CIs, rather than TFSS as the envelope-based 

strategy, various techniques for spectral subtraction are applied as pre-processing 

strategies and they are able to improve intelligibility performance for CI users (Yang 

and Fu, 2005; Verschuur et al., 2006). Some studies reported that algorithms of spectral 

subtraction carry low computational complexity (Verschuur et al., 2006). However, 

none of the spectral subtraction algorithms are applied as envelope-based strategies, 

which are expected to provide the same performance improvement as pre-processing 

strategies but require a lower computational load. Figure 4.6 indicates that the trend of 
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TFSS as the envelope-based strategy may improve performance for CI users both in 

different noise types and at different SNR levels. 

Other techniques based on envelope-weighting with a gain function include 

sigmoidal-shaped gain function (Hu et al., 2007), PCA/ICA with soft thresholding (Li, 

2008), sigmoidal-shaped gain function with a posteriori SNR estimate (Dawson et al., 

2011), modified Wiener gain function (Dawson et al., 2011), and sparse non-negative 

factorisation (Hu et al., 2013). These algorithms are reported to be able to improve 

intelligibility performance for NH listeners and CI users. 

Interestingly, TAWT is similar to PCA/ICA based on soft thresholding, which is a 

stage in envelope-based algorithms. For TAWT, the stage of soft thresholding is applied 

directly in the wavelet domain with sparseness properties, while the soft thresholding of 

PCA/ICA is applied in the ICA domain. Therefore, TAWT requires lower 

computational complexity than PCA/ICA. Furthermore, Figure 4.6 shows that TAWT 

trends to improve intelligibility for CI users. 

 

4.5.2 Validity of objective intelligibility measures 

The NCM and STOI are used to pre-evaluate the intelligibility performance of noise 

reduction algorithms. Both NCM and STOI were found that they work well with NH 

listeners for non-vocoded noisy speech with noise reduction algorithms (Jianfen et al., 

2009; Sang, 2012). The NCM was confirmed to be good measure with NH listeners for 

vocoded noisy speech without noise reduction algorithms (Chen and Loizou, 2011). 

When TAWT and TFSS were evaluated by using NCM and STOI, TAWT had 

better trend for intelligibility performance than TFSS both in different noise types and at 

different SNR levels. The trend of intelligibility performance of the obtained results was 

expected to be consistent with previous research, which examined CI systems with 

similar noise reduction methods evaluated by NH listeners and CI users. Nevertheless, 

the use of various objective measures might increase reliability for predicting the 

performance of noise reduction algorithms. 

Finally, subjective intelligibility measures with listening tests are required to 

obtain reliability of intelligibility performance. Noise reduction algorithms were 
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assessed by subjective intelligibility measures with NH listeners in Chapter 5 and were 

compared with objective intelligibility measures to justify the correlation and reliability 

of objective intelligibility measures. 

 

4.6 Conclusions 

Noise reduction techniques based on wavelet packet transform, namely TAWT and 

TFSS, were implemented in the wavelet packet-based speech coding strategy. All the 

noise reduction techniques removed noise and retained important speech information. 

They were expected to benefit CI users in terms of speech intelligibility. 

Vocoded noisy speech with and without noise reduction techniques were pre-

evaluated by objective intelligibility measures including NCM and STOI. The 

comparative results indicated that IdBM might bring more benefit while the TAWT and 

TFSS might bring either less benefit or no benefit in terms of speech intelligibility. The 

TAWT provides the better trend of intelligibility performance than the TFSS. 

Although the IdBM provides the best possible performance, it is impossible for 

application in the real world because its approach uses an ideal method in which 

information about speech and noise are known and noise estimation is accurate. The 

TFSS needs to adjust some parameters for the best performance in each condition. 

Consequently, the TAWT is the more suitable and realistic method for noise reduction 

than the TFSS in the real-world situation. 
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Chapter 5:  Evaluation of wavelet packet-based 

strategies for normal-hearing listeners 

 

5.1 Introduction 

CI manufacturers provide several speech coding strategies in their CI systems (Loizou, 

2006) – for instance, the Cochlear Corporation supports the ACE and CIS strategies in 

their Nucleus device (Cochlear, 2002). CI users benefit from increasing the number of 

speech coding strategies, as at least one of them might be more useful than the others. 

This also allows a large number of parameters to be configured in CI processors and the 

complexity of selecting the optimal subset of parameters associated with each strategy. 

The parameters of CI processors specified in a CI user’s MAP (Appendix D.2) 

can be varied to optimise speech recognition performance for individual CI users, such 

as channel stimulation rate, filter spacing and the number of channels selected (Dorman 

et al., 1997; Loizou et al., 2000; Fourakis et al., 2007; Kasturi and Loizou, 2007). It is 

an important issue to identify the optimal subset of parameters for fitting CI users. The 

optimal subset of parameters is a good starting point and saves time in selecting 

parameters during the fitting of new CI users (Loizou et al., 2000). 

Designing the wavelet packet-based speech coding strategy with noise reduction 

algorithms, the parametric variation of the wavelet packet filter bank and the noise 

reduction algorithms may affect speech recognition performance. The parametric 

variation of the wavelet packet filter bank includes the wavelet packet structures, the 

types of mother wavelet and the frame lengths. These parameters were quite difficult to 

evaluate using objective intelligibility measures because their objective intelligibility 

values are almost the same. Thus the listening test is more suitable for evaluating these 

parameters. The parametric variation of noise reduction algorithms was evaluated using 

the objective intelligibility measures to guide the adjustment of parameters to improve 

speech intelligibility before the listening test with NH listeners. 

In this chapter, the evaluation of the wavelet packet-based speech coding 

strategies for NH listeners can be divided into two parts: the effects of parametric 
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variation in wavelet packet filter banks on speech intelligibility (i.e. filter spacing, type 

of mother wavelet and frame lengths) and the comparison of noise reduction algorithms 

(i.e. TFSS and TAWT). The first part aims to further explore the optimal parameters of 

wavelet packet filter banks that may affect speech recognition in both quiet and noisy 

conditions. The second part aims to investigate and compare vocoded noisy speech, 

with and without noise reduction algorithms for different noise types and SNR levels. 

 

5.2 Effect of wavelet packet filter banks on speech intelligibility 

Three speech processing parameters were examined to study the effect of parametric 

variation of wavelet packet filter banks on speech intelligibility. Experiment 1 examined 

the effect of filter spacing. The filter spacing design relates to the wavelet packet filter 

banks and the number of channels allocated in the formant regions. The wavelet packet-

based strategy was also compared to the commercial ACE strategy. Experiment 2 

examined the effect of a perceptually optimised wavelet. This mother wavelet was 

based on an auditory model (Karmakar et al., 2011) and was compared to Symlet, which 

was applied in CI processors (Nogueira et al., 2006; Gopalakrishna et al., 2010b). 

Experiment 3 examined the effect of frame lengths. Different frame lengths may 

provide different speech recognition performance. 

 

5.2.1 Experiment 1: Effect of filter spacing 

An important stage in all CI processors is the decomposition of speech signals into 

frequency bands. Therefore, the signal bandwidth and filter spacing need to be 

considered to find the optimal frequency-to-electrode allocation (Kasturi and Loizou, 

2007). 

The signal bandwidth is constrained by the Nyquist theorem to provide half of the 

sampling frequency. A sampling frequency of 16 kHz is commonly used in the CI 

processor, and the bandwidth is between 0 Hz and 8 kHz. Bandwidths ranging from 6.7 

to 9.9 kHz have no significant effects on consonant and vowel recognition (Loizou et 

al., 2000). A bandwidth of 4 kHz is very important for understanding speech (Loizou, 



Chapter 5 Evaluation of wavelet packet-based strategies for normal-hearing listeners 

99  

1998). This bandwidth contains the first three formants denoted as F1 (0.3−1 kHz), F2 

(1−3 kHz) and F3 (>3 kHz) (Hillenbrand et al., 1995; Loizou, 2006), which are the 

frequency bands for most vowels. However, a small bandwidth (i.e. 0−4 kHz) may 

result in consonant confusions (e.g. f/s, p/t and t/k), especially a female speakers. A 

wide bandwidth (i.e. 0−8 kHz) can reduce the consonant confusion (Loizou, 1998; 

Loizou et al., 2000). 

The filter spacing in each channel of CI processors requires specific frequency 

ranges. The optimal spacing of frequency bands to the number of electrodes (12−22) is 

becoming more important to find the best mapping of frequency-to-electrode allocation, 

and it might also have an important effect on perception outcomes for CI users. Filter 

banks with narrow frequency spacing provide considerable flexibility for setting centre 

frequencies and bandwidth in each channel of CI processors. Consequently, more 

channels can be easily allocated in the low-frequency region (Kasturi and Loizou, 2007; 

Mourad Ghrissi, 2012). The channel density in the low-frequency region plays a critical 

role in speech recognition (Fourakis et al., 2004; Loizou, 2006; Fourakis et al., 2007) 

and melody recognition (Kasturi and Loizou, 2007). 

There are many ways of allocating the filter spacing in signal bandwidth such as 

logarithmic, Mel and Bark scales. These frequency scales relate to the assignment of the 

number of channels in the formant regions, which may influence intelligibility, at least 

on vowel recognition tasks (Loizou, 2006). A study (Loizou, 2006) found that Clarion 

CI users obtained a significant benefit in vowel recognition using the Bark scale over 

Mel and logarithmic scales, because the Bark scale had the highest number of channels 

in the F1/F2 region. A similar outcome was reported in Fourakis et al. (2004) and 

Fourakis et al. (2007), which indicate that there was performance improvement with the 

assignment of more channels to the F1/F2 regions for Nucleus CI users. In addition, 

Kasturi and Loizou (2007) found that a small difference in the number of channels in 

the low-frequency region produced a difference of 34 percentage points in melody 

recognition for NH listeners and Clarion CI users. 

The aim of this experiment was to determine whether the number of channels of 

different wavelet packet filter banks based on Bark scale could affect to speech 

recognition. 
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5.2.1.1 Method 

A. Subjects 

Nine NH listeners participated in this experiment. All subjects were native speakers of 

British English (6 males, 3 females, from 18 to 34 years of age) and all had normal 

hearing thresholds (< 20 dB HL). They were staff and students at the University of 

Southampton and were paid for their participation. Testing was approved by the 

University of Southampton Experimentation Safety and Ethics Committee. 

B. Stimuli 

The BKB (Bamford-Kowal-Bench) sentences (Bench et al., 1979) were used. They are 

composed of 21 lists with each list consisting of 16 sentences (21 lists  16 sentences = 

336 sentences) and 50 key words (3−4 words per sentence). The sentences are 

composed of no more than seven syllables and their vocabulary reflects the natural 

language usage of younger and more hearing-impaired children. All the BKB sentences 

were recorded by a male speaker of standard British English at a 22 kHz sampling rate. 

They were resampled to 16 kHz for the experiment to simulate the speech processing in 

a CI system. 

All sentences were separately processed offline using ACE and wavelet packet-

based strategies. They were corrupted by babble and speech-shaped noises at 5 dB SNR. 

A level of 5 dB SNR is encountered in many everyday environments (e.g. class rooms, 

and work environments) (Wilson and Dorman, 2008a). There were a total of 15 

conditions (5 filter banks  3 noises), as listed in Table 5.1. 

 

Table 5.1 All conditions in this study. 

Filter banks Quiet 
 Noise level at 5 dB SNR 

Babble noise Speech-shaped noise 

128-point FFT C1 C6 C11 

  23-band WPT C2 C7 C12 

  32-band WPT C3 C8 C13 

  64-band WPT C4 C9 C14 

128-band WPT C5 C10 C15 
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For the ACE strategy, the 128-point FFT with a frequency spacing of 125 Hz 

defaulted in the Nucleus device was used to compare with the wavelet packet-based 

strategy. For the wavelet packet-based strategy, four wavelet filter banks with sym8, 

including 23-, 32-, 64- and 128-band WPT, were implemented. The 23-band WPT was 

generated from a six-level decomposition. The 32-, 64- and 128-band WPT were 

generated from five-, six- and seven-level decompositions, and their frequency spacing 

was 250, 125 and 62.5 Hz, respectively. For all wavelet filter banks except 23-band 

WPT, the frequency bands were calculated by summing the power of adjacent 

frequency bands to generate 22 channels. 

The filter spacing of the ACE and wavelet packet-based strategy was allocated 

using the Bark scale (as in Sections 3.3 and 3.4). The frequency bands and centre 

frequencies of the wavelet packet filter banks were specified as in Table 3.1 (Section 

3.4) for the 23- and 64-band WPT and as in Table 5.2 for the 32- and 128-band WPT. 

Figure 5.1 shows the centre frequencies of all filter banks. It can be seen that the centre 

frequency of the 32-band WPT has a different frequency map to the 23-, 64- and 128-

band WPTs. This is because the 32-band WPT has the widest frequency spacing (i.e. 

250 Hz), so it is difficult to allocate frequency ranges close to the Bark scale or to form 

the signals sent to electrodes. The number of channels in each formant region for 

different filter banks is shown in Table 5.3. 

 

 

Figure 5.1 Centre frequencies of WPT and FFT filter banks. Comparison between 23-

band WPT and 128-point FFT (left) and comparison among WPT filter banks (right) 
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Table 5.2 Frequency band and centre frequency in each channel of 32- and 128-band 

WPT at 16 kHz sampling rate. 

Electrode 

channel 

number 

32-band WPT 128-band WPT 

[ ]l uf f  
cf  f  [ ]l uf f  

cf  f  

22 250-500 375 250 187.5-250.0 218.75 62.5 

21 500-750 625 250 250.0-312.5 281.25 62.5 

20 750-1000 875 250 312.5-375.0 343.75 62.5 

19 1000-1250 1125 250 375.0-437.5 406.25 62.5 

18 1250-1500 1375 250 437.5-562.5 500.00 125.0 

17 1500-1750 1625 250 562.5-687.5 625.00 125.0 

16 1750-2000 1875 250 687.5-812.5 750.00 125.0 

15 2000-2250 2125 250 812.5- 937.5 875.00 125.0 

14 2250-2500 2375 250 937.5-1062.5 1000.00 125.0 

13 2500-2750 2625 250 1062.5-1250.0 1156.25 187.5 

12 2750-3000 2875 250 1250.0-1437.5 1343.75 187.5 

11 3000-3250 3125 250 1437.5-1687.5 1562.50 250.0 

10 3250-3500 3375 250 1687.5-2000.0 1843.75 312.5 

9 3500-3750 3625 250 2000.0-2375.0 2187.50 375.0 

8 3750-4000 3875 250 2375.0-2812.5 2593.75 437.5 

7 4000-4500 4250 500 2812.5-3312.5 3062.50 500.0 

6 4500-5000 4750 500 3312.5-3937.5 3625.00 625.0 

5 5000-5500 5250 500 3937.5-4625.0 4281.25 687.5 

4 5500-6000 5750 500 4625.0-5375.0 5000.00 750.0 

3 6000-6500 6250 500 5375.0-6187.5 5781.25 812.5 

2 6500-7250 6875 750 6187.5-7062.5 6625.00 875.0 

1 7250-8000 7625 750 7062.5-8000.0 7531.25 937.5 

 

 

Table 5.3 The number of channels in the F1/F2 region of all filter banks. 

Formant 

region 

Frequency 

range 

Filter banks 

128-point 

FFT 

23-band 

WPT 

32-band 

WPT 

64-band 

WPT 

128-band 

WPT 

F1 0.3-1 kHz 6 7 3 7 8 

F2   1-3 kHz 9 8 8 8 7 

others   3-8 kHz 7 7 11 7 7 

 

C. Procedure 

The experiment was carried out in a sound-treated room. The subjects were asked to 

sign a consent form. Before the actual testing, a pure tone audiogram test was carried 

out to confirm that the subjects had normal hearing thresholds (≤ 20 dB HL, between 

250 and 8000 Hz). The speech stimuli were presented using a Dell Latitude E4300 
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laptop, routed through a Creek Audio OBH-21SE headphone amplifier and presented 

unilaterally through a Sennheiser HDA280 circumaural headphone. Levels of speech 

stimuli in all experiments were presented at a comfortable conversional level (65 dB 

(A)). 

Subjects were fully tested in a total of 15 conditions over two sessions on separate 

days, lasting approximately 1.25 hours each. They used their preferred ear (left or right) 

that was most comfortable for them to listen to the vocoded speech for the entire test. 

They were asked to write down the sentences that they heard. In the training session, 

they were asked to listen to one sentence list in both quiet and noisy conditions in a 

five-minute test in order to familiarise themselves with the vocoded speech and the 

testing procedures. This sentence list was not included in the actual testing. 

In the testing session, two lists of BKB sentences (32 sentences) per condition 

were used to provide 100 keywords (100 percent). The sentences were scored in terms 

of the percentage of correct key words per condition, expressed as “percent correct.” No 

list was repeated across the conditions in each session. The order of conditions and the 

list-to-condition mapping in each session was randomised across subjects. Subjects 

were given a five-minute break every 30 minutes during the test, or whenever they 

needed to take a rest. 

D. Statistical analysis 

The obtained scores were analysed using SPSS software version 21. A Shapiro-Wilk 

test (sample size < 50) was used to test the normality of the data distribution. For data 

with normal distribution (p>0.05), an analysis of variance (ANOVA) with repeated 

measure was used to investigate the difference between mean scores with different 

factors. Post-hoc tests (Bonferroni) were used to indicate differences between mean 

scores in the individual pair relationships in various conditions. 

For data with non-normal distribution (p<0.05), a nonparametric Friedman’s 

ANOVA was used to investigate the difference between mean scores with various 

factors. Post-hoc tests (Wilcoxon) were used to assess differences between mean scores 

in the individual pair relationships in various conditions. 
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5.2.1.2 Results 

The boxplot and the mean percent correct scores for various filter banks in quiet and 

noisy conditions are shown in Figure 5.2. A Shapiro-Wilk test indicated that all the 

quiet conditions were not normally distributed, while all the noisy conditions were 

normally distributed. 

In quiet conditions, a nonparametric Friedman’s ANOVA with repeated measures 

showed a significant main effect of the filter banks (2 [4, 9] =18.667, p=0.001). Post-

hoc tests revealed a significant main effect of individual pairs of filter banks. The 

sentence score of the 32-band WPT was significantly lower than the others. 

In noisy conditions, a two-way ANOVA with repeated measures showed a 

significant main effect of the filter banks (F [4, 32] = 82.509, p=0.001), a significant 

main effect of noise type (F [1, 8] = 25.004, p=0.001), and a nonsignificant interaction 

between filter banks and noise type (F [4, 32] = 2.316, p=0.079). These results indicated 

that speech intelligibility depends on the different filter banks and different noise type. 

 

    

Figure 5.2  Boxplot and mean percentage correct scores for various filter banks in quiet 

and noisy conditions. The error bars indicate ± 1 standard error of the mean. 

 

Post-hoc tests showed that the 32-band WPT produced significantly worse scores 

compared to the other filter banks. The 128-band WPT showed significantly lower 

performance when compared with the 128-point FFT and the 23-band WPT. The 
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performance of all filter banks in speech-shaped noise was significantly higher than the 

performance in babble noise (Figure 5.2). It can be seen that the 128-point FFT tended 

to slightly higher performance than the 23-, 64- and 128-band WPT. However, there 

was no statistically significant difference between the 128-point FFT, the 23- and 64-

band WPT in noisy conditions. 

 

5.2.1.3 Discussion 

A. Relationship between frequency spacing of filter banks and the number of 

channels 

The frequency spacing of different filter banks relates to the assignment of the number 

of channels in the formant regions. The narrower frequency spacing (e.g. 62.5 Hz of the 

128-band WPT) is more flexible in terms of allocating the number of channels and in 

any frequency scale than the wider frequency spacing (e.g. 250 Hz of the 32-band 

WPT). It can be seen that the channel allocation of 32-band WPT in the F1/F2 region 

has fewer channels than the others as shown in Table 5.3. 

The narrow frequency spacing of filter banks has some advantages for CI design. 

The narrow frequency spacing can be used to increase the available set of frequency 

tables in CI processors. This is useful for the clinician who will have suitable options for 

the frequency-to-electrode allocation for individual CI users, instead of the fixed tables 

for frequency allocation provided by manufacturers (Fourakis et al., 2007). In addition, 

the narrowest frequency spacing, 62.5 Hz in this study, may be sufficient for changes in 

pitch perception, especially for speech signals where the average pitch is close to 125 

Hz (Mourad Ghrissi, 2012). The pitch also gives information about sentence prosody 

(e.g. statements and questions). It is also useful for tonal languages (e.g. Chinese and 

Thai), where pitch can be used to express semantic and grammatical cues (Mourad 

Ghrissi, 2012). 

B. Relationship between different filter banks and speech intelligibility 

Speech recognition performance was improved with the assignment of the more 

channels to the F1/F2 region. There was no significant difference on speech recognition 

performance for filter banks of 128-point FFT, 23- and 64-band WPT in both quiet and 
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noisy conditions, because their filter banks were based on Bark scale and the number of 

channels in the F1/F2 regions were the same (i.e. 15 channels). The 32-band WPT 

provided the lowest performance in both quiet and noisy conditions. This may result 

from the channel allocation of the 32-band WPT (i.e. 11 channels) in the F1/F2 region, 

which was less than the other filter banks (i.e. 15 channels). 

The 128-band WPT provided significantly lower performance than the 128-point 

FFT and the 23-band WPT in noisy conditions, although it has 15 channels in the F1/F2 

regions. This may result from the summing of the power of adjacent bands in all filter 

banks except the 23-band WPT to generate 22 channels. The 22 channels of the 128-

band WPT were generated from 128 bands, whereas those of the 128-point FFT and 64-

band WPT were computed from 64 bins/bands. Consequently, the 128-band WPT may 

provide higher noise power and lower performance than the others. 

The obtained results were consistent with other studies in (Skinner et al., 1995; 

Skinner et al., 1997; Fourakis et al., 2004; Fourakis et al., 2007). Fourakis et al. (2007) 

suggested that a better performance may be achieved using a strategy whereby at least 

seven to eight channels are allocated below 1 kHz, with the majority of remaining 

channels allocated between 1−3 kHz, and the region above 3 kHz allocated only a few 

channels. In addition, the flexibility of such frequency band assignment should be 

adjusted in clinical practice to find the optimal frequency-to-electrode mapping in 

particular CI users. 

5.2.1.4 Conclusion 

Different frequency spacings of the wavelet packet filter were associated with filter 

spacing (i.e. Bark scale) and the number of channels allocated in the F1/F2 region. The 

128-point FFT and WPT filter banks (e.g. 23-, 64- and 128-band WPT) were based on 

Bark scale and the number of channels allocated in the F1/F2 regions of these filter 

bank was equal. Such assignment can provide the same speech recognition 

performance, except for 128-band WPT in noisy conditions. Generally speaking, the 

number of channels allocated in the F1/F2 region plays a critical role in speech 

recognition and depends on the filter spacing. The more channels are allocated in the 

F1/F2 region, the better the speech information that is perceived (McDermott, 1998; 

Mckay and Henshall, 2002; Fourakis et al., 2007). 
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5.2.2 Experiment 2: Effect of perceptually optimised wavelet 

The choice of reasonable mother wavelet for the wavelet packet-based speech coding 

strategy is an important issue (Nogueira et al., 2006; Karmakar et al., 2011). Several 

mother wavelets are provided in the wavelet toolbox of MATLAB, such as Daubechies, 

Symlet, and Coiflet wavelets (Appendix C). The mother wavelets of Daubechies and 

Symlets are widely applied in wavelet packet-based speech coding strategies (Nogueira 

et al., 2006; Gopalakrishna et al., 2010b). In this thesis, Symlet with order 8 (sym8) is 

implemented in all experiments. 

Some mother wavelets have been designed based on the perceptual frequency 

scale and the temporal resolution of the auditory system – for instance, the bionic 

wavelet transform (BWT) was derived from the Morlet mother wavelet, and it has been 

used as one of the continuous wavelet transforms (CWTs). However, these methods do 

not provide the requisite structure for wavelet packet filter banks (Karmakar et al., 

2011). 

 

        

(a) 

 

      

(b) 

Figure 5.3 Coefficients of wavelet filters (left) and wavelet functions (right) 

for the sym8 with filter length of L=16 (a) the perceptually optimized  

wavelet (pow) with filter length of L=8 (b). 



Chapter 5 Evaluation of wavelet packet-based strategies for normal-hearing listeners 

 108 

Karmakar et al. (2011) introduced the perceptually optimised wavelet (pow), 

which was optimally designed based on the Bark scale and the temporal resolution of 

the auditory system. The advantage of the pow wavelet is clearly visible in terms of the 

reduction in energy error in each channel in comparison with Daubechies, Symlet, and 

Coiflet wavelets at the same filter length. Figure 5.3 demonstrates the coefficient of 

wavelet filter and wavelet function for the sym8 with filter length of L=16 and the pow 

wavelet with filter length L=8. 

The pow wavelet may lead to an increase in the speech recognition performance 

of wavelet packet-based CI processors. Therefore, this experiment investigates the 

hypothesis that the pow wavelet will improve speech intelligibility in quiet and noisy 

conditions. 

 

5.2.2.1 Method 

A. Subjects 

Eight NH listeners participated in this experiment. All subjects were native speakers of 

British English (3 males, 5 females, from 18 to 34 years of age) and had normal hearing 

thresholds (< 20 dB HL). They were staff and students at the University of Southampton 

and were paid for their participation. 

 B. Stimuli 

All sentences were separately processed offline using wavelet packet-based strategy in 

quiet and two different noisy conditions, at 5 dB SNR in babble and speech-shaped 

noises. The wavelet filter banks of 23- and 64-band WPT were used in this study as a 

result of the findings of Experiment 1. The mother wavelets of Symlet with order 8 

(sym8) and pow were examined and compared. There was a total of 12 conditions (2 

wavelet packet structures  2 mother wavelets  3 noises), as listed in Table 5.4. 

C. Procedure 

The procedures were the same as in Experiment 1 (Section 5.2.1). Subjects were fully 

tested in a total of 12 conditions for two sessions on separate days, lasting 

approximately one hour each. 
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D. Statistical analysis 

The analysis was the same as in Experiment 1 (Section 5.2.1). 

 

Table 5.4 All conditions in this study 

Wavelet packet structures 

(mother wavelet) 
Quiet 

Noise level  at 5 dB SNR 

Babble noise Speech-shaped noise 

  23-band WPT (sym8) C1 C5 C9 

  23-band WPT (pow) C2 C6 C10 

  64-band WPT (sym8) C3 C7 C11 

  64-band WPT (pow) C4 C8 C12 

 

 

5.2.2.2 Results 

A Shapiro-Wilk test indicated that the data under all the quiet conditions were not 

normally distributed, while the data in all noisy conditions were normally distributed.  

Figure 5.4 presents the boxplot and the mean percentage correct scores of both mother 

wavelets in quiet and noisy conditions. The boxplot in Figure 5.4 shows that the results 

contained a few outlying data points because some subjects performed poorly and 

produced low overall scores in the quiet condition. 

In the quiet condition, a nonparametric Friedman’s ANOVA with repeated 

measures indicated a nonsignificant main effect of different mother wavelets (2 

[3,8]=6.945, p=0.074). In noisy conditions at 5 dB SNR, a three-way ANOVA with 

repeated measures revealed a significant main effect of the different mother wavelets (F 

[1,7]=15.935, p=0.005), a nonsignificant main effect of wavelet packet structure (F 

[1,7] =0.711, p=0.427) and a nonsignificant main effect of noise type (F [1,7]=2.325, 

p=0.171). There was a significant interaction between mother wavelets and wavelet 

packet structures (F [1,7]=13.334, p=0.008). However, there was no significant 

interaction between wavelet packet structures and noises (F [1, 7] =0.098, p=0.763), 

between mother wavelets and noise type (F [1,7]=0.140, p=0.720), and between 

wavelet packet structures, mother wavelets and noise (F [1,7]=2.169, p=0.184). 

Post-hoc tests indicated that speech intelligibility depends on the different mother 

wavelets and the optimal mother wavelets associated with wavelet packet structures. 

The pow wavelet yielded significantly lower speech intelligibility than the sym8 
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wavelet in almost all noisy conditions. For the 64-band WPT, the pow wavelet produced 

significantly lower performance than the sym8 in both babble and speech-shaped noise. 

However, the 23-band WPT with the pow wavelet provided better performance than the 

sym8 wavelet in speech-shaped noise. The pow and sym8 wavelets for the 23-band 

WPT had more similar mean scores than for the 64-band WPT. 

 

     

Figure 5.4 Boxplot and mean percentage correct scores for different mother wavelets in 

quiet and noisy conditions. The error bars indicate ± 1 standard error of the mean. 

 

5.2.2.3 Discussion 

The pow wavelet was worse with more frequency bands, especially the 64-band WPT. 

This is because the pow wavelet was derived from the structure of 21-band WPT and 

the temporal resolution of the human auditory system. Therefore, the pow may be more 

appropriate for the structure of 21-band WPT, but not for the structures of 23-or 64-

band WPT due to the different structures of wavelet packets.  

However, the structures of the 21- and 23- band WPT are very similar because 

both are constructed directly based on the Bark scale with different frequency ranges in 

each channel. In contrast, the structure of the 64-band WPT is originally constructed 

with equal frequency ranges for all 64 subbands and is not based on the Bark scale. 

Therefore, it is possible that the pow wavelet yielded better performance for the 23-band 

WPT than for the 64-band WPT.  



Chapter 5 Evaluation of wavelet packet-based strategies for normal-hearing listeners 

111  

5.2.2.4 Conclusion 

The pow wavelet does not bring benefit in intelligibility performance in both quiet and 

noisy conditions. The properties of the pow wavelet and wavelet packet structures in CI 

processors might be more suitable for CI listeners than for NH listeners. In a further 

design for wavelet packet-based speech processors, the optimal mother wavelet should 

be derived from their wavelet packet structures (e.g. 23- and 64-band WPT) and the 

human auditory system to more closely match the behaviour of signals in healthy 

cochlea. Finally, the optimal mother wavelet can reasonably be selected by comparing 

the obtained results of these mother wavelets (Sang et al., 2009). 

 

5.2.3 Experiment 3: Effect of frame length 

Frame length is defined as the length of time (or the number of samples). Human speech 

is mixed between voiced and unvoiced sound. The duration of voiced sound is around 

40−150 msec whereas unvoiced sound is around 10−50 msec (Shao and Chang, 2007). 

Therefore, the speech signal is a highly nonstationary signal and its power spectrum 

changes over time in a duration of above 250 msec. In speech processing the speech 

signal is segmented into a sufficiently short duration, and then its spectral characteristics 

are fairly stationary (Loizou, 2007). 

Various frame lengths are used in the wavelet packet-based applications of CI 

processors and speech enhancement. Different frame lengths are used in wavelet packet-

based CI processors such as 4 msec (Nogueira et al., 2006) and 16 msec (Gopalakrishna 

et al., 2010b). Frame lengths implemented in wavelet packet-based speech enhancement 

include 4 msec (Carnero and Drygajlo, 1999; Shao and Chang, 2007), 8 msec (Shao and 

Chang, 2011) and 32 msec (Cohen, 2001). 

For the above reasons, the frame length is one of the important parameters for 

wavelet packet filter banks that may affect speech recognition performance in the 

wavelet packet-based speech coding strategies. This experiment aims to investigate 

whether the different frame lengths would affect speech recognition. The selection 

criteria from previous research on speech processing based on wavelet packets are 

considered, such as 4, 8, 16 and 32 msec. 
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5.2.3.1 Method 

A. Subjects 

Seven NH listeners participated in this experiment. All subjects were native speakers of 

British English (4 males, 3 females, from 18 to 34 years of age) and had normal hearing 

thresholds (< 20 dB HL). They were staff and students at the University of Southampton 

and were paid for their participation. 

B. Stimuli 

All sentences were separately processed offline using wavelet packet-based strategies 

under quiet and noisy conditions at 5 dB SNR in babble noise. The 23- and 64-band 

WPT with sym8 were used with frame lengths of 4, 8, 16, 32 and 64 msec (64, 128, 

256, 512 and 1024 samples/frame). There were a total of 20 conditions (2 wavelet 

packet structures  5 frame lengths  2 noises), as listed in Table 5.4. 

C. Procedures 

The procedures were the same as in Experiment 1 (Section 5.2.1). Subjects were fully 

tested in a total of 20 conditions over two sessions on separate days, lasting 

approximately 1.5 hours each. 

D. Statistical analysis 

The analysis was the same as in Experiment 1 (Section 5.2.1). 

 

Table 5.5 All conditions in this study 

Wavelet packet structure 

 (frame length) 
Quiet 

 Babble noise  

at 5 dB SNR 

23-band WPT (4   msec) C1 C11 

23-band WPT (8   msec) C2 C12 

23-band WPT (16 msec) C3 C13 

23-band WPT (32 msec) C4 C14 

23-band WPT (64 msec) C5 C15 

64-band WPT (4   msec) C6 C16 

64-band WPT (8   msec) C7 C17 

64-band WPT (16 msec) C8 C18 

64-band WPT (32 msec) C9 C19 

64-band WPT (64 msec) C10 C20 
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5.2.3.2 Results 

A Shapiro-Wilk test indicated that the data in all the quiet conditions were not normally 

distributed, whereas the data from all the noisy conditions were normally distributed. 

Figure 5.5 presents the mean percentage correct scores for the different frame lengths in 

quiet and noisy conditions. 

In quiet conditions, a nonparametric Friedman’s ANOVA with repeated measures 

indicated a nonsignificant main effect of the different frame lengths (2 [9, 7] = 10.364, 

p=0.322). In babble noise at 5 dB SNR, a two-way ANOVA with repeated measures 

revealed a nonsignificant main effect of wavelet packet structures (F [1, 6] = 0.038, 

p=0.851), a significant main effect of the various frame lengths (F [4, 24] = 11.299, 

p<0.0005), and a significant interaction between wavelet packet structures and frame 

lengths (F [4, 24] = 3.508, p=0.022). 

Post-hoc tests indicated that the frame lengths of 8 and 16 msec have significantly 

higher speech-intelligibility performance than the others. The 64-band WPT with a 

frame length of 8 msec provided significantly better performance than the 64-band WPT 

with a frame length of 4 msec. 

 

 

Figure 5.5 Boxplot and mean percent correct scores for the different frame lengths in 

quiet and noisy conditions. The error bars indicate ± 1 standard error of the mean. 
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5.2.3.3 Discussion and conclusion 

The different frame lengths affected the performance of speech intelligibility in noisy 

conditions, but not in quiet conditions. The longer the frame length, the higher the 

computational complexity. A frame length of 8 msec has lower computational 

complexity than a frame length of 16 msec for the same speech intelligibility in both 

quiet and noisy conditions. 

In addition, the different frame length might have an effect on speech analysis. 

The frame length of 8 msec may be sufficient to analyse information in the speech 

signal, particularly unvoiced sound (the majority of consonants). This might be useful 

for CI users in discrimination between voiced and unvoiced sound. Therefore, the frame 

length of 8 msec is more suitable than the others in wavelet packet-based speech coding 

strategies in terms of computational cost and speech analysis (Shao and Chang, 2007). 

 

5.3 Noise reduction algorithms in the wavelet packet-based speech 

coding strategy 

Noise reduction algorithms including time-frequency spectral subtraction (TFSS) and 

time-adaptive wavelet thresholding (TAWT) for the wavelet packet-based speech 

coding strategy are investigated in terms of different noise types and SNR levels, as in 

Experiment 1 and 2 respectively. The experiments were designed to determine whether 

noise reduction algorithms can improve speech recognition performance for different 

noise types and SNR levels. 

 

5.3.1 Experiment 1: Comparison of noise reduction algorithms with 

different noise types 

5.3.1.1 Method 

A. Subjects 

Ten NH listeners participated in this experiment. All subjects were native speakers of 

British English (6 males, 4 females, from 18 to 22 years of age) and had normal hearing 
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thresholds (< 20 dB HL). They were staff and students at the University of Southampton 

and were paid for their participation. 

B. Stimuli 

All sentences were processed separately offline using a wavelet packet-based strategy 

with and without noise reduction algorithms under quiet and two different noisy 

conditions: 5 dB SNR in babble and speech-shaped noises. The noise reduction 

algorithms including IdBM, TFSS and TAWT are provided in Section 4.3. There were a 

total of 18 conditions (2 Quiet + (4 algorithms  2 noise types  2 wavelet packet 

structures)). 

C. Procedures 

The procedures were the same as in Experiment 1 (Section 5.2.1). Subjects were fully 

tested over two sessions on separate days, lasting approximately 1.5 hours each. After 

the subjects were completely finished in each condition, they filled in the post-test 

questionnaire (Appendix F.1) to record information in terms of speech intelligibility. 

D. Statistical analysis 

The analysis was the same as in Experiment 1 (Section 5.2.1). The data from the post-

test questionnaire were analysed using median values for each question. 

5.3.1.2 Results  

A Shapiro-Wilk test indicated that the data in all conditions were normally distributed. 

Figure 5.6 presents a boxplot and mean percentage correct scores for different 

algorithms of noise reduction in all conditions. 

A three-way ANOVA with repeated measures was conducted with three main 

factors: algorithms, noise type, and wavelet packet structures. This revealed a 

significant main effect of algorithms (F [3, 27] =94.509, p<0.0005), a significant main 

effect of noise type (F [1, 9] =9.723, p=0.012) and a nonsignificant main effect of 

wavelet structures (F [1, 9] =0.228, p=0.644). There was a significant interaction 

between algorithms and noise type (F [3, 27] =7.119, p=0.001). However, there was a 

nonsignificant interaction between algorithms and wavelet packet structures (F [3, 27] 

=0.751, p=0.531), a nonsignificant interaction between noise type and wavelet packet 
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structures (F [1, 9] =0.572, p=0.469), and a nonsignificant interaction between 

algorithms, noise types, and wavelet packet structures (F [3, 27] =0.928, p=0.416). 

Post-hoc tests were used to assess individual pair relationships between 

algorithms and noise type. The IdBM provided significantly higher scores than the 

TAWT and TFSS in both babble and speech-shaped noise. The TAWT provided 

significantly lower scores than the TFSS and the vocoded noisy speech corrupted by 

speech-shaped noise. 

The post-test questionnaires were recorded by all subjects after listening to the 

vocoded speech in each condition (Appendix F.2). All subjects reported that the overall 

impression of sound quality for the quiet condition and IdBM was good, while the noisy 

conditions and noise reduction by TAWT and TFSS were reported to be poor. The 

listening efforts for the quiet condition and IdBM were negligible while the listening 

efforts for the noisy conditions and noise reduction by TAWT and TFSS were moderate 

in order to understand the key words and messages. 

 

  

Figure 5.6 Boxplot and mean percentage correct scores for noise reduction algorithms 

 in 5dB SNR babble noise and speech-shaped noise. 

The error bars indicate ± 1 standard error. 

 

The subjects felt that when listening over long periods of time, it was moderately 

easy to listen in quiet conditions and IdBM whereas it was difficult to listen in noisy 

conditions and with noise reduction by TAWT and TFSS. The articulation of the 
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vocoded clean speech and IdBM was clearly distinguishable. The articulation of TFSS 

was fairly clear, whereas the articulation of the vocoded noisy speech and TAWT was 

not very clear. Generally speaking, the articulation of TFSS was more distinguishable 

than that of TAWT. 

5.3.1.3 Discussion and conclusion 

A. Relationship between noise reduction algorithms and different noise types 

Noise reduction algorithms including TFSS and TAWT were investigated and compared 

with IdBM in different noise types. The IdBM can restore speech intelligibility to the 

same level in as the quiet conditions. This study is consistent with those reported in 

IdBM studies of CI users by Hu and Loizou (2008) and Kokkinakis et al. (2011). The 

TFSS and TAWT do not significantly improve speech intelligibility when compared to 

vocoded noisy speech in both babble and speech-shaped noise at 5 dB SNR. Both 

TAWT and TFSS in babble noise provided similar scores to those in speech-shaped 

noise. 

The IdBM is the noise reduction algorithm assuming the priori SNR is known. 

Whereas TFSS and TAWT do not assume prior knowledge of speech and noise 

information, they require the estimation of noise levels. Noise estimation in both TFSS 

and TAWT may be under- or overestimated and this results in distortion in the enhanced 

speech. The distortion of the enhanced speech may be more than the noise reduction, 

and may affect the speech intelligibility performance because speech discrimination 

becomes more difficult. 

Figure 5.7 shows waveforms of vocoded clean speech and vocoded noisy speech 

with/without noise reduction algorithms for the BKB sentence “The clown had a funny 

face” processed by a wavelet packet-based speech coding strategy with 5 dB SNR 

babble noise. Figure 5.8 shows electric stimulation patterns (electrodograms), derived 

using the 12-of-22 strategy of the BKB sentence “The clown had a funny face”. For all 

the electrodograms, the y-axis represents the electrode position corresponding to a 

specific frequency band and the x-axis represents time progression. 
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Figure 5.7 Waveforms of the BKB sentence “The clown had a funny face” for noise 

reduction algorithms. (Top to bottom) Plots showing vocoded clean speech, vocoded 

noisy speech at 5 dB SNR babble noise, vocoded noisy speech with the combination of 

IdBM and the n-of-m strategy, vocoded noisy speech with time-frequency spectral 

subtraction (TFSS) and vocoded noisy speech with time-adaptive wavelet thresholding 

(TAWT). 
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(a) 

  

   (b)        (c) 

   

(d)         (e) 

Figure 5.8 Electrodograms of the BKB sentence “The clown had a funny face” for noise 

reduction algorithms. (a) Clean speech. (b) Noisy speech with babble noise at 5 dB 

SNR. (c) Combination of IdBM and n-of-m strategy. (d) Time-frequency spectral 

subtraction (TFSS). (d) Time-adaptive wavelet thresholding (TAWT). 
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This figure shows the electrodogram of the vocoded clean speech and the vocoded 

noisy speech with and without noise reduction algorithms at 5 dB SNR babble noise. It 

can be seen that IdBM can preserve the important characteristics of vocoded clean 

speech, whereas TAWT and TFSS remove noise and some details of the vocoded clean 

speech in both waveforms and electrodograms. This may decrease speech intelligibility 

in CI systems. 

B. Intelligibility judgements of noise reduction algorithms 

The sentence scores were consistent with the post-test questionnaire results in cases of 

overall impression of sound quality, listening efforts for understanding messages, ease 

of listening for long period of time, and distinguishable articulation. The subjects 

reported that the vocoded clean speech and the IdBM were the same in all cases and the 

vocoded noisy speech with and without noise reduction by the TAWT and TFSS were 

the same results in almost all cases, except for distinguishable articulation. The TFSS 

gives more distinguishable articulation than TAWT. 

C. Validity of objective intelligibility measures 

Pearson correlation was performed to justify the correlation between objective and 

subjective intelligibility. Figure 5.9 shows the scatter plots of the NH listeners’ mean 

scores against the predicted values of the NCM and STOI for different noise types. It 

can be seen that the NCM and STOI produced high correlations at r = 0.81 and r = 0.88 

respectively. This high correlation indicates good validity. Therefore, the NCM and 

STOI can be pre-evaluated to predict the trend of intelligibility performance for NH 

listeners. 
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Figure 5.9 Scatter plots of mean scores obtained for sentence processed by noise 

reduction algorithms with different noise types against  

the predicted values of NCM and STOI. 

 

5.3.2 Experiment 2: Comparison of noise reduction algorithms with 

different SNR levels 

5.3.2.1 Method 

A. Subjects 

Fourteen NH listeners participated in this experiment. All subjects were native speakers 

of British English (8 males, 6 females, from 18 to 24 years of age) and had normal 

hearing thresholds (< 20 dB HL). They were staff and students at the University of 

Southampton and were paid for their participation. 

B. Stimuli 

All sentences were processed separately offline using a wavelet packet-based strategy 

with sym8 under quiet and noisy conditions. They were corrupted by babble noise at 0, 

5 and 10 dB SNR, which are SNR levels where CI users can benefit (Fu et al., 1998). 

The noisy sentences were also processed using two algorithms for noise reduction (i.e. 

TFSS and TAWT). There were a total of 18 conditions (3 algorithms  3 SNR levels  2 

wavelet packet structures). 
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C. Procedures  

The procedures were the same as in Experiment 1 (Section 5.2.1). Subjects were tested 

over two sessions on separate days, lasting approximately 1.5 hours each. After the 

subjects were completely finished in each condition, they filled in the post-test 

questionnaire (Appendix F.1) to record information in terms of speech intelligibility. 

D. Statistical analysis 

The analysis was the same as in Experiment 1 (Section 5.2.1). The data from the post-

test questionnaire were analysed using median values for in each question. 

 

5.3.2.2 Results 

A Shapiro-Wilk test indicated that the data in all conditions were normally distributed. 

Figure 5.10 shows a boxplot and mean percentage correct scores for the two algorithms 

of noise reduction in noisy conditions. 

A three-way ANOVA with repeated measures was conducted with three main 

factors: algorithms, SNR levels, and wavelet packet structures. The results revealed a 

nonsignificant main effect of algorithms (F [2, 26] =1.391, p=0.267), a significant main 

effect of SNR levels (F [2, 26] =77.338, p<0.0005) and a significant main effect of 

wavelet packet structures (F [1, 13] =8.604, p=0.012). There was a significant 

interaction between algorithms and SNR levels (F [4, 52] =5.158, p<0.0005). However, 

there was a nonsignificant interaction between algorithms and wavelet packet structures 

(F [2, 26] =0.709, p=0.501), a nonsignificant interaction between SNR levels and 

wavelet packet structures (F [2, 26] =0.550, p=0.583), and a nonsignificant interaction 

between algorithms, SNR levels, and wavelet packet structures (F [4, 52] =0.172, 

p=0.952). 

Post-hoc tests were used to consider the pair relationships among SNR levels, 

wavelet packet structures and between algorithms and SNR levels. The mean scores 

depended on the SNR levels. The higher SNR levels provided higher scores and vice 

versa. The 64-band WPT yielded slightly higher scores than the 23-band WPT in almost 

all conditions. The TFSS and TAWT provided significantly higher scores at 0 dB SNR 
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and significantly lower scores at 10 dB SNR when compared to the vocoded noisy 

speech at those SNR levels. 

The post-test questionnaire results (Appendix F.3) revealed that the overall 

impressions of sound quality for the vocoded noisy speech at 0, 5 and 10 dB SNR were 

bad, poor and fair respectively. The overall impression of sound quality for TFSS and 

TAWT at all SNR levels was poor, except for TFSS at 5 dB SNR, when it was fair. The 

subjects required moderate listening effort to understand the messages, and they felt that 

it was difficult to listen for long periods of time for almost all conditions. The 

articulation of TFSS and TAWT at 0 dB SNR was not very clear, but it was clearer than 

for the vocoded noisy speech. The articulation of the vocoded noisy speech with and 

without noise reduction at 5 and 10 dB SNR was fairly clear. 

 

      

Figure 5.10 Boxplot and mean percentage correct scores for noise reduction algorithms 

at 0, 5, 10 dB SNR babble noise. The error bars indicate ± 1 standard error. 

 

5.3.2.3 Discussion and conclusion 

A. Relationship between noise reduction algorithms and different SNR levels 

Noise reduction algorithms including TFSS and TAWT were investigated when speech 

is corrupted by babble noise at different SNR levels (i.e. 0, 5 and 10 dB SNR). Both 

TFSS and TAWT provided a significant improvement at 0 dB SNR, no significant 
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improvements at 5 dB SNR and significantly worse in speech intelligibility at 10 dB 

SNR when compared to vocoded noisy speech.  

Theoretically, vocoded noisy speech with noise reduction algorithms should 

provide higher scores than vocoded noisy speech without noise reduction algorithms at 

high SNR levels. However, Figure 5.10 showed the TFSS and TAWT were significantly 

worse in performance at 10 dB SNR for babble noise. It seems possible that these 

results are due to noise estimation and difference between NH and HI listeners. It may 

be related to overestimated noise that distorts the enhanced speech. NH listeners are 

more sensitive to speech distortion and less sensitive to noise when compared to HI 

listeners (van Schijndel et al., 2001). NH listeners can reach ceiling performance at 

higher SNR levels without noise reduction algorithms  (Sang, 2012). 

In addition, the parameters of noise estimation in noise reduction algorithms, 

especially the TFSS. These parameters were selected based on predicting objective 

speech intelligibility for all SNR levels. The parameters should be adjusted to achieve 

the best results in each SNR level. Other factors related to noise estimation (e.g. noise 

types, choice of the local thresholds and speech materials) may also influence speech 

intelligibility. Moreover, the gain function should be more analysed on F1/F2 formant 

regions, which are important regions for speech intelligibility (Loizou and Gibak, 2011). 

If noise estimation is accurate, it leads to good performance in noise reduction 

algorithms and provides significant improvements in speech intelligibility like IdBM. 

Although, noise estimation has never been able to accurately track the spectrum of 

nonstationary noise in practice (Loizou and Gibak, 2011), computing noise estimation 

without prior knowledge of speech and noise information remains a major challenge to 

potentially increase speech intelligibility in noisy environments (Kokkinakis et al., 

2011). 

B. Comparison between TFSS and TAWT 

Both TFSS and TAWT are adaptive filters that can be applied to the real-world 

situation. However, weighting factors (i.e.   and  ) for the TFSS were selected in the 

experiment (Section 4.3.3.2). These factors can be adjusted to optimise performance for 

each noise type and SNR level, which is a limitation of the TFSS. The trend of TAWT 

yielded higher scores than TFSS at 0 dB SNR where it is difficult. The TAWT does not 
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need to adjust any parameters. Therefore, the TAWT is more attractive and suitable than 

the TFSS in real practice. 

C. Validity of objective intelligibility measures 

Pearson correlation was performed to justify the correlation between objective and 

subjective intelligibility. Figure 5.11 shows the scatter plots of the NH listeners’ mean 

scores against the predicted values of NCM and STOI for different SNR levels in babble 

noise. It can be seen that the NCM and STOI produced high correlations at r = 0.88 and 

r = 0.91, respectively. The predicted values of the NCM and STOI were validated to 

predict the vocoded noisy speech with and without noise reduction algorithms for NH 

listeners. The NCM and STOI were grouped clearly by SNR levels. Higher values of the 

NCM and STOI are expected for vocoded noisy speech with and without noise 

reduction algorithms at higher SNR levels. 

 

 

 
 

Figure 5.11  Scatter plots of mean scores obtained for sentence processed by noise 

reduction with different SNR levels against the predicted values of NCM and STOI. 

 

5.4 General conclusions 

The present study was designed to evaluate the effects of parametric variation of 

wavelet packet filter bank and noise reduction algorithms, on speech intelligibility for 

wavelet packet-based CI processors in both quiet and noisy conditions, using NH 

listeners. The data collected from all experiments can be concluded as follows: 
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5.4.1 Effect of parametric variation of wavelet packet filter bank 

1. There was no statistically significant difference in speech recognition performance 

between 23- and 64- band WPT and 128-point FFT (a commercial Nucleus device) in 

both quiet and noisy conditions (i.e. babble noise and speech-shaped noise at 5 dB 

SNR). This was because these structures were designed based on the Bark scale and 

their numbers of channels allocated in the F1/F2 region were the same (i.e. 15 

channels). The 23-band WPT can be designed directly for electrodes whereas the others 

need to aggregate subbands to form the signals sent to electrodes. However, the 64- or 

128-band WPT might be more flexible for designing frequency-to-electrode allocations 

than the 23-band WPT. 

In addition, a study of Nogueira et al. (2006) reported that 21-band WPT gave 

better speech recognition performance than the 128-point FFT when tested with CI 

users using a 15 dB SNR. The results indicated that a wavelet packet filter bank can be 

an alternative to the existing speech coding strategy that is used in commercial implants. 

2. There was a nonsignificant effect of different mother wavelets (i.e. a perceptually 

optimised wavelet (pow) and a Symlet with order 8 (sym8)) in quiet conditions but there 

was a significant effect of different mother wavelets in noisy conditions. The 

performance of the sym8 was higher than that of the pow in almost all noisy conditions. 

This might be because the design method of the pow wavelet optimally exploits the 

structure of the 21-band WPT, but not the structure of the 23- or 64-band WPTs. 

Therefore, the pow wavelet worse than the other structures of wavelet packet filter 

bank. 

3. There was a nonsignificant effect of different frame lengths in quiet conditions but 

there was a significant effect of different frame lengths in noisy conditions. The frame 

lengths of 8 and 16 msec have significantly higher performance than the others. 

However, the frame length of 8 msec was more appropriate for this speech processor in 

terms of computational cost and speech analysis. 

4. In quiet conditions, it is difficult to assess the three parameters of wavelet packet 

filter banks to speech recognition performance due to a ceiling effect (i.e. mean scores ≥ 

90%), except the filter bank of 32-band WPT. This does not determine the performance 

level of different parameters. 
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5. In all experiments examining the parametric variation of wavelet pack filter 

banks, the wavelet packet structure of 23- and 64-band WPT, the Sym8 mother wavelet 

and a frame length of 8 msec were found to be more suitable that other combinations for 

this wavelet packet-based CI processor. This optimal set of parameters may optimise 

speech intelligibility to benefit CI users. In addition, the optimal set of parameters will 

be useful for future work which may include the development of noise reduction 

techniques or other tasks designed to achieve additional enhancement in speech 

intelligibility or CI systems. 

 

5.4.2 Effect of noise reduction algorithms 

1. The IdBM as a baseline on denoising performance for NH listeners had the 

highest speech recognition performance and approached the speech recognition 

performance of vocoded clean speech (i.e. scores ≥ 90%) in both babble noise and 

speech-shaped noise at 5 dB SNR. 

2. The TFSS and TAWT for NH listeners yielded little benefit in speech 

intelligibility. The TFSS and TAWT did not show significant improvements in speech 

intelligibility for different noise types (i.e. babble noise and speech-shaped noise) at 5 

dB SNR. Both TFSS and TAWT showed a significant improvement at 0 dB SNR, were 

not significant difference at 5 dB SNR and were significantly worse in speech 

intelligibility at 10 dB SNR, when compared to vocoded noisy speech in babble noise. 

3. The correlation between mean scores of NH listeners and the predicted values of 

NCM and STOI was strong. The NCM and STOI were found that they can pre-evaluate 

to predict the trend and pattern of the speech recognition performance in wavelet 

packet-based speech coding strategies with noise reduction algorithms for NH listeners. 
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Chapter 6:  General discussion 

 

This chapter provides a general discussion of the factors and limitations that influence 

the speech recognition performance of noise reduction algorithms in wavelet packet-

based speech coding strategies. This discussion reports the limitations of WPT for CI 

processors, objective intelligibility measures, vocoder simulation, and performance 

evaluation. The limitations of this study are discussed. Finally, some suggestions for 

future work are given. 

 

6.1 Limitations of WPT 

The advantages of WPT are described in Chapters 2 and 3; however, the use of WPT 

has some limitations that lead to some undesired effects in the development of noise 

reduction algorithms in wavelet packet-based CI processors. 

6.1.1 Problems with WPT 

The main problem of WPT is shift variance due to the downsampling operation at each 

level of decomposition. When a signal is downsampled by 2, the output is only one 

sample which is selected between two consecutive samples of the signal. A sample is 

removed, which may contain important information about the speech signal. The 

downsampling operation results in a shift in time of signals, which produces the 

differences in the energy distribution of wavelet coefficients. The speech signal may be 

distorted due to the loss of information, which reduces the speech intelligibility and the 

perceptual quality of speech signals in both CI processors and noise reduction 

algorithms. 

There is no evidence of this impact on CI design but this problem is referred to in 

some studies in the area of speech enhancement (Tasmaz and Ercelebi, 2008; Litvin and 

Cohen, 2011). Other WPTs are proposed to overcome the problem of shift variance, 

such as the dual-tree complex wavelet packet (Bayram and Selesnick, 2008) and the 

analytic wavelet packet (Weickert et al., 2009). These WPTs may potentially increase 
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performance significantly over that of conventional WPTs for CI design and noise 

reduction algorithms. 

6.1.2 Wavelet packet-based speech coding strategies 

Based on the results from Experiment 1 (Section 5.2.1) in terms of filter spacing, the 23- 

and 64-band WPT provided slightly worse performance, but this was not statistically 

significant when compared to 128-point FFT in noisy conditions. This may produce an 

energy error in the noise and speech signal in each channel due to the shift variance of 

WPT (Weickert et al., 2009).  

The system complexity can be reduced by processing perceptual wavelet 

subbands like the 23-band WPT. However, the 64-band WPT has higher frequency 

resolution than the 23-band WPT and this is more beneficial for noise reduction 

algorithms before it generates 64 bands into 22 bands (Cohen, 2001). In addition, the 

signal processing stages of CI design based on wavelet packets (e.g. pre-emphasis and 

envelope detection) are important issues that may affect outcome. 

 

6.2 Limitations of objective intelligibility measures 

Based on Experiment 1 and 2 (Section 5.3), the scores from NCM and STOI were 

highly correlated with mean scores obtained from NH listeners. Therefore, both NCM 

and STOI can be used to predict the trend of intelligibility performance for noise 

reduction in wavelet packet-based speech coding strategy. The present study is 

consistent with the outcome reported in Sang (2012) for the NCM and STOI in both NH 

and HI listeners, and in Jianfen et al. (2009) for the NCM in NH listeners. 

However, these measures may reliably predict the intelligibility performance, in 

particular NH listeners, but may not predict or reflect to the recognition performance for 

CI users. The objective intelligibility measures should include important information of 

individual CI users such as threshold levels and comfort levels (i.e. dynamic range 

compression) and the number of active electrodes. The use of information contained in 

the electrodogram may be sufficient to predict CI user’s intelligibility performance. 
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These allow a great benefit for developing better noise reduction algorithms that 

require adjustments of the number of parameters and the selection of a noise-reduction 

algorithm to provide the best performance for a particular CI user. 

 

6.3 Limitations of vocoder simulation 

Vocoder simulation with NH listeners may be used to predict the trend and pattern of 

performance for CI users, but actual testing with CI users may reveal the effect of noise 

reduction algorithms in wavelet packet-based speech coding strategies. CI designs need 

to take account of the limitations of vocoder simulation, such as differences in vocoder 

simulation and processing in a CI device, differences between acoustic and electric 

hearing and the effects of noise reduction algorithms for NH listeners and CI users. 

These are critical to the reliability of comparative studies. 

6.3.1 Differences between vocoder simulation and processing of a CI device 

The vocoder simulation is processed in a similar manner to the signal processing of a CI 

device. However, some stages of CI devices may not be included in vocoder simulation, 

such as pre-emphasis and dynamic range compression (Nogueira et al., 2005). These 

may provide different characteristic of signals and different performance between 

vocoder simulation and processing of CI devices in both quiet and noisy conditions. 

Several studies in vocoder simulation either include (Li, 2009; Chen and Loizou, 

2010) or exclude (Mourad Ghrissi, 2012) the stage of pre-emphasis. The pre-emphasis 

in the vocoder simulation is used to amplify the high-frequency components of speech 

perception, and it also amplifies noise in noisy speech. Recognition performance may 

decrease when compared to vocoder simulation without pre-emphasis in noisy 

conditions. 

The dynamic range compression aims to optimally map acoustic amplitudes in 

speech sounds to electrical amplitudes that reach the audible threshold (T-level) and 

most comfortable loudness level (C-level). T and C levels are important parameters that 

would be measured and adjusted for optimal amplitude mapping depending on 

individual CI users (Zeng, 2004; Loizou, 2006). A few studies in the shape of the 
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logarithmic mapping function had only a minor effect on consonant and vowel 

recognition performance in quiet conditions. However, it may be that they provided 

different performance in a similar study in noisy conditions (Loizou et al., 2000). 

Another study indicated that increasing input to the dynamic range improved sentence 

recognition performance in both quiet and noisy conditions (Spahr et al., 2007). 

6.3.2 Differences between acoustic hearing and electric hearing 

The acoustic hearing of NH listeners and the electric hearing of CI users can be difficult 

issues when comparing stimuli presented to both groups. The vocoded speech perceived 

by NH listeners was processed not only by vocoder simulation but also by the external, 

middle and inner ear, while the vocoded speech perceived by CI users was processed 

only by CI devices. NH listeners can listen with a healthy auditory system throughout 

the cochlea, while CI users may have residual auditory nerves throughout the cochlea 

which are stimulated by the electrode arrays (Zeng, 2004). 

The frequency mapping of each electrode relating to the actual position of 

stimulation in the cochlea may significantly improve CI performance (Stakhovskaya et 

al., 2007). Channel interactions between the electrodes occur as the current from one 

electrode spreads to adjacent regions covered by other electrodes in the cochlea. This 

may distort speech information and degrade speech intelligibility. Channel interaction 

depends on many factors such as electrode spacing and channel stimulation rate. A 

wider spacing between electrodes produces a smaller amount of channel interaction and 

more benefit with a high stimulation rate (Loizou, 2006). 

6.3.3 Differences of noise reduction algorithms for NH listeners and CI users  

The main concept of noise reduction algorithms is to compromise between noise 

reduction, speech distortion and the level of residual noise (Virag, 1999). However, NH 

listeners are less sensitive to noise, but more sensitive to speech distortion when 

compared to HI listeners (van Schijndel et al., 2001). Another study suggested that HI 

listeners can bear higher levels of distortion than NH listeners. As the result, noise 

reduction algorithms with more aggressive gain functions (Hu et al., 2007; Qazi et al., 

2012) should be used for CI users to reduce more amount of noise, while noise 
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reduction with less more aggressive gain functions should be used for NH listeners to 

preserve the listening quality (Gustafsson et al., 1998). 

This reason is consistent with some studies indicating that almost all algorithms 

for single-microphone noise reduction algorithms provide little benefit or do not 

improve speech intelligibility for NH listeners in American English (Hu and Loizou, 

2007; Li et al., 2011) and other languages (i.e. Chinese and Japanese) (Li et al., 2011). 

This is due to distortion of enhanced speech resulting from inaccurate noise estimation 

or excessive noise reduction. 

In contrast, some single-microphone noise reduction algorithms have been 

developed for NH listeners; they show speech intelligibility improvements for CI users. 

These are algorithms such as spectral subtraction (Yang and Fu, 2005; Verschuur et al., 

2006; Kallel et al., 2012), statistical-model based methods (Hu et al., 2007; Li, 2008; 

Dawson et al., 2011) and subspace algorithms (Loizou et al., 2005). Additionally, 

another study of single-microphone noise reduction algorithms for HA users included 

sparse coding shrinkage (Sang, 2012). 

General speaking, CI users preferred the more aggressive gain function rather than 

the less aggressive gain function for noise reduction in their devices. This resulted from 

impaired auditory factors such as reduced frequency selectivity and reduced temporal 

resolution. This can lead to significant recognition performance improvement. 

 

6.4 Limitations of performance evaluation 

The methodology of performance evaluation for speech intelligibility reflects the 

reliability and accuracy of outcomes. An appropriate evaluation can examine the effect 

of interesting parameters to achieve CI development. In contrast, an inappropriate 

evaluation can result in a misleading interpretation and problems with CI development. 

Some factors should be considered when interpreting the obtained results, such as 

speech materials, noise types, SNR levels and variability of subjects. 
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6.4.1 Choice of speech materials 

Speech perception abilities of subjects can be typically evaluated using vowels, 

consonants, words or sentences (Loizou, 1998). Studies have produced overall scores 

with different results depending on whether they were looking at consonant, vowel, 

word or sentence recognition. The consonants, vowels and words are useful in terms of 

the distinguishable errors of subjects while the sentence recognition is more suitable to 

representation in real-life communication (Loizou, 2007). 

In sentence recognition, subjects need time to distinguish between noise and 

speech, which is especially unclear at the start of sentences. They were able to use 

knowledge (e.g. context, grammar and semantics) to identify the correct sentences when 

they only heard one or two keywords from those sentences (Loizou, 1998; Loizou, 

2007). As a result, subjects tend to achieve higher recognition scores in sentence tests 

than in other tests in noisy conditions. 

Different speakers for the same materials may also influence the comparability of 

results, in terms of gender, nationality, age and a single- or multiple-speaker setup. 

Moreover, speaking style and rate may also have an impact on performance. 

Additionally, the number of items in a list of speech materials should provide flexibility 

to cover an experimental design in all interesting conditions. Having sufficient items 

avoids repetition in the speech materials. 

In the current study examining noise reduction in wavelet packet-based speech 

coding, consonants, vowels, and words might have been more useful to reveal the 

capability of wavelet packet-based speech coding and noise reduction techniques than 

the sentences. 

6.4.2 Choice of noise types and SNR levels 

The results obtained from some studies indicated that the overall performance from 

vocoded speech and NH listeners in noisy conditions was close to that of vocoded 

speech in quiet conditions, due to a ceiling effect. On the other hand, vocoded speech 

and CI users in noisy conditions at lower SNR levels were closer to floor effects. The 

ceiling and floor effects make it difficult to interpret the effect of interesting parameters. 
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These may result from the inappropriateness of either noise type or from the SNR 

levels. 

Different noise types influence speech intelligibility. Different noise types in the 

same speech materials also give an impact on different intelligibility performance. 

Numerous noise types in the real world (e.g. babble noise, speech-shaped noise and 

reverberation noise) are implemented to create degrading speech cues. Babble noise 

depending on the number of talkers in the mixture is more realistic for CI users in 

everyday situations and is widely used in studies of speech perception in noise 

(Simpson and Cooke, 2005; Verschuur, 2007). 

SNRs of 0, 5 and 10 dB are levels where CI users can benefit (Fu et al., 1998) and 

a SNR of 5 dB is normally encountered in everyday situations (Wilson and Dorman, 

2008a). Most CI users require approximately 10 to 25 dB higher SNR than NH listeners 

to achieve similar speech recognition performance (Qazi et al., 2012). In some studies, 

NH listeners reached ceiling effects with SNR levels such as 10 dB SNR, while CI users 

reached a mean score of 75% with the same SNR (Zeng, 2004). The use of a lower SNR 

in some tests for NH listeners may be required to determine actually the performance 

improvement. The interpretation of obtained results should be cautious due to 

differences between testing NH listeners and CI users. 

6.4.3 Variability of subjects 

All subjects require more effort and concentration to understand vocoded speech in 

noisy conditions than in quiet conditions. It is well known that CI users perform worse 

than NH listeners in the same noisy conditions. This results from the elevated threshold, 

loudness recruitment, and poor temporal and frequency resolution. The lack of 

motivation, attention, confidence and language skill may also have contributed to the 

lower speech recognition performance. 

In most studies, the outcomes of NH listeners can be used to predict the trend and 

pattern of CI performance. However, there are other discrepancies between testing NH 

listeners and CI users which may affect overall performance level, such as experience 

with vocoded speech, learning effects and the age of subjects. 
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NH listeners usually have no experience with vocoded speech, while CI users 

have had a period of acclimatisation to vocoded speech and their implant devices over at 

least one year. However, NH listeners without experience in vocoded speech can 

achieve higher speech recognition than CI users with prolonged experience (Fu et al., 

1998). Some studies indicated that NH listeners take a longer time for training to 

familiarity with vocoded speech in both quiet and noisy conditions, which may increase 

speech recognition performance (Dorman et al., 1997). The age difference for NH 

listeners suggests that older subjects (average age of 70) required more stimulation 

channels than the younger individuals (average age of 22), i.e. approximately 9 and 6 

channels respectively (Sheldon et al., 2008). 

 

6.5 Limitations of this study 

6.5.1 Speech materials 

Designing listening tests with interesting parameters (e.g. noise types, SNR levels and 

noise reduction algorithms) in each experiment was limited by the number of BKB 

sentences lists. A total of 21 BKB sentence lists can only be employed to 10 conditions 

per session (2 lists per condition). Each experiment has to be done by undertaking 

listening tests in at least two sessions on separate days. That means that all or some 

sentence lists may be repeated in different sessions. Some subjects may recognise key 

words in sentences from the first session. This influences sentence recognition scores. 

Different speech materials may be used to investigate the differences in obtained results 

in future research looking at the wavelet packet-based speech coding strategy with noise 

reduction algorithms. 

6.5.2 Learning effect 

The variation and difference of speech recognition scores may be dependent on 

individual subjects. The subjects have unique factors in listening tests such as 

motivation, attention, confidence and ability. Though the order of conditions and the 

list-to-condition mapping were randomised, some subjects reported that the former 

conditions were more difficult for the listening test than the latter conditions. If the 
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subjects have more training, they have a chance to become more familiar with vocoded 

speech with and without noise reduction algorithms. This may result in higher speech 

recognition scores. 

The learning effect can be mitigated by randomisation of the experiment, in which 

the order of conditions and the list-to-condition mapping could be randomised both for 

individual subjects and between -subjects, to prevent the repeated use of a sentence list 

and to continuously vary the sentence lists being evaluated. A Latin square 

randomisation might be used to assign the order of vocoded speech for subjects. 

6.5.3 Comparison of previous study 

In the previous study, the wavelet packet-based speech coding strategy with different 

mother wavelets was investigated and compared to a commercial ACE strategy at 15 dB 

SNR in terms of speech intelligibility for CI users (Nogueira et al., 2006). Another 

study (Gopalakrishna et al., 2010b) explored wavelet packet-based real-time CI 

processors in terms of computational complexity, spectral leakage, fixed-point accuracy 

and tracking temporal envelope features. However, none of the wavelet packet-based CI 

processors with noise reduction algorithms were investigated and tested with subjects 

who were both NH listeners and CI users. 

It is very difficult to compare between this study and other studies (Nogueira et 

al., 2006; Gopalakrishna et al., 2010b) due to different parameters in terms of different 

noise types, SNR levels, speech materials, speech coding strategies, number of channels 

and evaluation of subjects. In addition, the wavelet packet-based speech coding strategy 

with noise reduction algorithms was developed in limited time and several parameters 

could be further explored and studied before it is compared to other strategies used in 

commercial CIs such as the ACE strategy. 

6.5.4 Comparison between NH listeners and CI users 

A problem in comparing vocoder simulations to CI speech recognition is the earlier 

mentioned fact that CI users vary greatly in speech recognition performance due to 

numerous factors. Listening tests using vocoded speech involve presenting parameter 

setting to NH listeners. Current vocoder simulation in studies using NH listeners does 

not necessarily provide conclusions about the absolute performance level of CI users. 
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These studies can only be used as useful information about tendencies in speech 

recognition for CI users (Chen and Loizou, 2011). Further studies of wavelet packet-

based strategies with noise reduction may benefit CI users, as suggested in Section 

6.3.3. 

6.5.5 Statistical analysis 

Although the number of NH listeners participating in this study is normal and satisfies 

good academic practice, but the study is underpowered. A larger sample size would 

provide better statistical power to indicate clearer comparisons and allow an 

examination of either the effect of parametric variation in wavelet packet filter banks, or 

the relationship between vocoded speech with and without noise reduction algorithms. 

 

6.6 Conclusion 

There are several limitations of the development of noise reduction by a wavelet packet-

based strategy, as mentioned earlier. The limitations might confound the obtained 

results in terms of intelligibility performance. All of them are important issues for CI 

noise-reduction studies. However, the most important limitations of this study are the 

issues of WPT, vocoder simulation, and performance evaluation. 

Since the problem of WPT is shift variance due to the downsampling stage of 

decomposition, this problem may reduce the performance of speech coding and 

denoising in CI processors. Some applications based on WPT (e.g. sound source 

separation) have reported that this problem can reduce the utility of audio signal 

processing (Litvin and Cohen, 2011). However, none of the WPT-based CI processors 

have shown whether this problem affects intelligibility performance. Some researchers 

have proposed different methods to address shift variance, which leads to the generation 

of new WPTs. Other WPTs, namely the dual-tree complex wavelet packet (Bayram and 

Selesnick, 2008) and the analytic wavelet packet (Weickert et al., 2009), may mitigate 

CI noise-reduction approaches. 

The limitations of vocoder simulation include differences in vocoder simulation 

and processing in a CI device, differences between acoustic and electric hearing, and the 
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effects of noise reduction algorithms for NH listeners and CI users. These differences 

may affect the reliability of CI noise-reduction studies. Almost all CI noise-reduction 

algorithms are evaluated by CI users, who provide more reliable and informative results 

than NH listeners. The procedure of the listening test used in previous studies allows for 

all materials to be presented directly to the CI users via either the auxiliary input jack of 

their CI processors (Loizou et al., 2005; Hu et al., 2007; Li, 2008) or loudspeakers 

(Yang and Fu, 2005; Verschuur et al., 2006; Dawson et al., 2011). It is not known 

whether or not any differences in listening tests provide the same benefits to 

intelligibility performance. 

In terms of performance evaluation, the sentence test may be more appropriate for 

real-life communication, but this test may not reveal informative results for the effect of 

CI noise reduction. The sets of vowels, consonants or words may be more suitable for 

analysing spectral and temporal information to evaluate the subject’s perception ability 

(Yao and Zhang, 2002). Another evaluation (i.e. speech reception threshold (SRT)) may 

reveal the capability of the subject’s perception in diverse environments better than 

fixed SNR. A little bit of SNR levels might provide very different way of intelligibility 

performance. In addition, SRT can avoid the problem of ceiling/floor effects, which 

actually helps in the study of understanding speech. 

These limitations involve either CI-processor related factors or CI-user related 

factors, both of which are important to CI noise-reduction studies. They require very 

expensive and time-consuming measures to evaluate the effect of parametric variations 

on intelligibility performance. However, this problem can be mitigated with objective 

intelligibility measures. Objective measures can be used for tuning parameters during 

the development of wavelet packet-based speech coding and denoising to choose the 

right set of parameters for CI noise-reduction approaches and to predict the trend of 

intelligibility performance for CI users. 
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6.7 Future research 

6.7.1 Optimal wavelet functions and wavelet structures 

Research in modern wavelets aims to create a set of wavelet function and transform that 

provide efficient signal analysis, detection, estimation and denoising in numerous 

applications. There are many choices of wavelet function and transform that can be 

selected for application in speech and auditory processing. The potentialities and 

benefits of wavelets are unlimited for development in this research area − for instance, 

finding an optimal wavelet function, an adaptive optimal wavelet decomposition tree or 

making a new set of wavelet functions for CI systems. 

6.7.2 Noise reduction algorithms 

The noise reduction problem remains a challenge. If it is possible, the techniques of 

noise estimation can improve SNR estimation as the IdBM techniques. This may lead to 

further improvement in speech intelligibility. Statistical model-based noise reduction, 

such as Bayesian approaches, can be applied to noise reduction algorithms (e.g. spectral 

subtraction and wavelet shrinkage). The combination between noise reduction and 

entropy analysis may increase the benefit of speech enhancement and speech 

perception. Further comparison of multiple microphones or binaural processing-based 

noise reduction algorithms should be carried out to find the benefit in terms of speech 

intelligibility. 

6.7.3 Objective speech intelligibility measures 

Most of the modern objective intelligibility measures are used for predicting the trend of 

recognition performance in NH listeners rather than CI users due to lack of useful 

information of individual CI users. The electrodogram as a representation of CI output 

may provide important information directly to predict the outcome of speech 

intelligibility for particular CI users. In addition, objective intelligibility measures 

should predict performance of speech perception from only noisy speech without the 

clean speech because the clean speech is often not available in real-world applications. 
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Chapter 7:  Conclusions 

 

This thesis focuses on single-microphone noise reduction strategies for wavelet packet-

based CI processors to improve speech intelligibility in noisy conditions. The research 

contribution can be divided into two parts: the wavelet packet-based CI processor, and 

noise reduction algorithms. The wavelet packet-based speech coding strategy was 

developed. The effect of parametric variation of wavelet packet filter bank on speech 

intelligibility by NH listeners was evaluated to find optimal parameters in terms of filter 

spacing, optimal wavelet function and frame lengths. 

Noise reduction algorithms (i.e. IdBM, TFSS and TAWT) were integrated within 

wavelet packet-based speech coding strategies and applied directly in time-frequency 

envelope amplitude. Objective speech intelligibility measures (i.e. NCM and STOI) 

were employed to predict the trend of speech intelligibility for noise reduction 

algorithms in all noisy conditions before they were evaluated by NH listeners under 

different noise types and SNR levels. This research contributes the following 

conclusions: 

1. The wavelet packet-based CI processor can provide an alternative to existing CI 

systems (e.g. the ACE strategy). 

2. Three parameters (i.e. filter spacing, optimal wavelet function and frame length) 

of the wavelet packet filter bank have influences on speech intelligibility, 

especially in noisy conditions. 

3. The IdBM is an ideal method of noise reduction and its intelligibility 

performance is nearly 100% or similar to vocoded clean speech. The TFSS and 

TAWT have produced little benefit in terms of speech intelligibility for NH 

listeners. The TFSS requires tuning in some parameters to get the best 

performance in each noisy condition, but not the TAWT. 

4. The NCM and STOI can be used for predicting the trend of intelligibility 

performance for noise reduction algorithms in the wavelet packet-based CI 

processor for NH listeners, but may not reflect the reliability of recognition 

performance among CI users due to the lack of impaired auditory necessary 

information of individual CI users. 
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In the present study, we believe that the approach of applying wavelet analysis 

and wavelet shrinkage (e.g. TAWT) is an outstanding candidate for the next generation 

of modern prosthesis devices such as CI processors. 
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Appendix A:  Publication 
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Appendix B: Objective speech intelligibility 

B.1 The normalised covariance metric (NCM) 

The NCM (Jianfen et al., 2009; Chen, 2011) is calculated as follows (Figure B.1). The 

stimuli are first decomposed into N bands across the signal bandwidth (125-8000 Hz in 

this study) using Butterworth filters. The envelope of each band is computed using the 

Hilbert transform and then down-sampled to 2fcut Hz, thereby limiting the envelope 

modulation rate to fcut Hz (200 Hz in this study). 

 

 

Figure B.1 Computation of NCM measure (Chen, 2011) 

 

 Let )(txi  and )(tyi  be the down-sampled envelope of the clean and noisy 

speech signals in the ith bands, respectively. The normalised covariance in the ith bands 

is computed as: 
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where i  and iv  are the mean value of )(txi  and )(tyi , respectively. A value of ir  

close to 0 indicates that the clean and noisy speech is uncorrelated, while the value of ir  

close to 1 indicates that the clean and noisy speech is related. The signal-to-noise ratio 

(SNR) in each band is defined as: 
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and subsequently limited to the SNR dynamic range of [-15, 15] dB (as done in the 

computation of SII measure (ANSI, 1997)  ). The transmission index (TI) in each band 
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is computed by linearly mapping the SNR values between 0 and 1 using the following 

equation: 

 

30

15
 i

i

SNR
TI       (B.3) 

Finally, the transmission indices are averaged across all frequency bands to 

produce the NCM index: 
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where the weights iw  are often called the band-importance functions in the computation 

of the speech intelligibility index (SII) measure. There are several methods for selecting 

this weight, but the most common weights  are the ANSI articulation index (AI) weights 

as shown in Table 1 (ANSI, 1997). The NCM measure is always limited to the range of 

[0, 1]. 

 

Table B.1 The ANSI AI weights used in the implementation of the NCM (Chen, 2011)  

Band Centre frequency (Hz) Weight 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

  151.3  

  208.8  

  276.7  

  356.9  

  451.7  

  563.7  

  696.0  

  852.4  

1037.2  

1255.5  

1513.5  

1818.4  

2178.6  

2604.2  

3107.2  

3701.5  

4403.7  

5233.5  

6214.0  

7372.5 

      0.0835 

      0.0990 

      0.0913 

      0.0708 

      0.0600 

      0.0493 

      0.0440 

      0.0441 

      0.0490 

      0.0486 

      0.0493 

      0.0496 

      0.0548 

      0.0548 

      0.0488 

      0.0366 

      0.0380 

      0.0320 

      0.0246 

      0.0208 
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B.2 The short-time objective intelligibility measure (STOI) 

The STOI (Taal et al., 2011) is a time-frequency intermediate intelligibility measure 

(Figure B.2) based on a correlation coefficient between the temporal envelopes of the 

clean and degraded speech in the short-time region. First, the clean and degraded speech 

are processed in each frame with a length of 25.6 msec, performed by a Hann-window 

with 50% overlap. Next, the windowed signals are decomposed into DFT-based one-

third octave bands. These bands are performed by grouping DFT-bins into 15 one-third 

octave bands with the lowest and highest frequency band at 150 Hz and 4.3 kHz, 

respectively. 

 

 

Figure B.2 The computation of the STOI measure (Taal et al., 2011)  

 

Let ),(ˆ mkx  denote the kth DFT-bin of the mth frame of the clean speech. The norm 

of the jth one-third octave band, referred to as a TF-unit, is then defined as: 
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where k1 and k2 denote the one-third octave band edge, which are rounded to the nearest 

DFT-bin. The T-Frepresentation of the degraded speech is obtained similarly, and is 

denoted by Yj(m). Let mj ,x  denote the short-time temporal envelope of the clean 

speech: 

 Tjjjmj mXNmXNmX )(),...,2(),1(. x   (B.6) 
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where N = 30 which equals an analysis length of 384 msec.  Similarly, mj ,y  denotes the 

short-time temporal envelope of the degraded speech, which is normalised and clipped 

before comparison. 

The rationale behind the normalization procedure is to compensate for global level 

differences which should not have a strong effect on speech intelligibility. The clipping 

procedure makes sure that the sensitivity of the model towards one TF-unit which is 

severely degraded is upper bounded. Let )(nx denote the nth element of x , where 

{1,..., }n N  and   represent the l2 norm. Let mj ,y  denote the normalised and clipped 

version of y . Then: 
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where 15  dB refers to the lower signal-to-distortion (SDR) model. SDR is given 

by: 
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The intermediate intelligibility measure is defined as the sample correlation 

coefficient mjd ,  between the two vectors, where )(  refers to the sample average of 

the corresponding vector. Finally, the average of the intermediate intelligibility measure 

overall bands and frames is computed 
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where M  represents the total number of frames and J the number of one-third octave band.  
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Appendix C:   Mother wavelets 

MATLAB Wavelet Toolbox provides a number of mother wavelets with order N for 

WPT, including Haar (harr), Daubechies (dbN), Symlets (symN), Coiflet (coifN), 

biorthogonal (biorN), reverse biorthogonal (rbioN) and discrete Meyer (dmey). The 

filter length L of mother wavelets is 2N, except for Coiflet which is 6N. The wavelet 

functions and the coefficients of wavelet filters for db3, coif2 and sym8 are illustrated in 

Figure C.1 and C.2, respectively. The example of filter coefficients for decomposition 

and reconstruction are shown in Table C.1. 

 

 

(a) db3 

 

(b) coif2 

 

(c) sym8 

Figure C.1 Example of the scaling functions ( )t  (left) and  

wavelet functions ( )t  (right) with order N. 
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(a) db3 

   

(b) coif2 

 

(c) sym8 

Figure C.2 Example of coefficients of lowpass filters (left) and highpass filter (right) 

 

Table C.1 Filter coefficients for decomposition and reconstruction 

dB3 Decomposition Reconstruction 

n 
Lowpass filter 

 ( )h n  

Highpass filter 

( )g n  

Lowpass filter 

( )h n  

Highpass filter 

( )g n  

0 0.0352 -0.3327 0.3327 0.0352 

1 -0.0854 0.8069 0.8069 0.0854 

2 -0.1350 -0.4599 0.4599 -0.1350 

3 0.4599 -0.1350 -0.1350 -0.4599 

4 0.8069 0.0854 -0.0854 0.8069 

5 0.3327 0.0352 0.0352 -0.3327 
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Table C.1 (Continued) Filter coefficients for decomposition and reconstruction 

Coif2 Decomposition Reconstruction 

n 
Lowpass filter 

 ( )h n  

Highpass filter 

( )g n  

Lowpass filter 

( )h n  

Highpass filter 

( )g n  

0 -0.0007 -0.0164 0.0164 -0.0007 

1 -0.0018 -0.0415 -0.0415 0.0018 

2 0.0056 0.0674 -0.0674 0.0056 

3 0.0237 0.3861 0.3861 -0.0237 

4 -0.0594 -0.8127 0.8127 -0.0594 

5 -0.0765 0.4170 0.4170 0.0765 

6 0.4170 0.0765 -0.0765 0.4170 

7 0.8127 -0.0594 -0.0594 -0.8127 

8 0.3861 -0.0237 0.0237 0.3861 

9 -0.0674 0.0056 0.0056 0.0674 

10 -0.0415 0.0018 -0.0018 -0.0415 

11 0.0164 -0.0007 -0.0007 -0.0164 

 

Sym8 Decomposition Reconstruction 

n 
Lowpass filter 

( )h n  

Highpass filter 

( )g n  

Lowpass filter 

( )h n  

Highpass filter 

( )g n  

0 -0.0034 -0.0019 0.0019 -0.0034 

1 -0.0005 -0.0003 -0.0003 0.0005 

2 0.0317 0.0150 -0.0150 0.0317 

3 0.0076 0.0038 0.0038 -0.0076 

4 -0.1433 -0.0491 0.0491 -0.1433 

5 -0.0613 -0.0272 -0.0272 0.0613 

6 0.4814 0.0519 -0.0519 0.4814 

7 0.7772 0.3644 0.3644 -0.7772 

8 0.3644 -0.7772 0.7772 0.3644 

9 -0.0519 0.4814 0.4814 0.0519 

10 -0.0272 0.0613 -0.0613 -0.0272 

11 0.0491 -0.1433 -0.1433 -0.0491 

12 0.0038 -0.0076 0.0076 0.0038 

13 -0.0150 0.0317 0.0317 0.0150 

14 -0.0003 0.0005 -0.0005 -0.0003 

15 0.0019 -0.0034 -0.0034 -0.0019 
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Appendix D:  Speech processors 

D.1 Design parameters for cochlear implant devices 

Table D.1 shows the detail specific parameters for currently available clinical cochlear 

implant devices from the three major manufacturers  (Fan-Gang et al., 2008). 

 

Table D.1 Parameters for cochlear implant devices from the three major manufactures. 
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D.2 Example of speech processor programs (MAP) 
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D.3 ACE Strategy 
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Figure D.1 Block diagram of ACE strategy 

 

The ACE strategy is used in the Nucleus-24 processor made by the Cochlear 

Corporation, and a basic block diagram (Cochlear, 2002; Nogueira et al., 2005) is 

shown in Figure D.1. The speech signal at 16 kHz sampling rate is processed in each 

frame (8 ms and L=128 samples) and then performed by hanning window with overlap 

depending on the parameters of the channel stimulation rate in CI user’s MAP. The 

windowed signal is transformed by FFT. The windowed function used is: 
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The 128-point FFT provides 128 spectral coefficients or 128 bins. Due to the 

symmetry properties of FFT, the first 64 bins are then used and the second 64 bins are 

discarded without loss of information. The 64 FFT bins with linear spacing are 

rearranged to mimic the critical band of the auditory system by summing the powers of 

adjacent bins to provide m channels (typically 20 or 22) with different frequency ranges. 

The frequency range in each channel is defined by the frequency table of Cochlear 

Corporation. Generally, the apical one-third of the channels are allocated with linear 

spacing to frequencies up to 1 kHz, while the basal two-thirds of the channels are 

allocated with logarithm spacing to frequencies above 1 kHz.  The real part of the thj  

FFT bin is denoted by )( jx  and the imaginary part by )( jy . The power of the bin is: 

2/,...,1,0),()()( 222 Ljjyjxjr    (D.2) 

The power of the envelope of channel z  is calculated as a weighted sum of the 

FFT bin powers. Where ( )zg j  are set to the gain zg  for a specific number of bins and 

otherwise zeros, the envelope of channel z is: 
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The envelope channels )( iza  with the largest amplitude are selected for 

stimulation. The mapping block is done by using the loudness growth function (LGF), 

which is a logarithmically-shaped function that maps the acoustic envelope amplitude 

)( iza  to an electrical magnitude 

log(1 ( ( ) ) / ( ))
, ( ) ,

log(1 )

( ) 0, ( ) ,

1, ( ) ,

i
i

i i

i

a z s m s
s a z m

p z a z s
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


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
 
 



  (D.5) 

( )i il T C T p         (D.6) 

The magnitude )( izp  is a fraction in the range 0 to 1 that represents the proportion 

of the output range (from the threshold T to the comfort level C). An input at the base-

level s is mapped to an output at threshold level, and no output is produced for an input 

of lower amplitude. The parameter m is the input level at which the output saturates; 

inputs at this level or above result in stimuli at comfort level. If there are less than N 

envelopes above base level, they are mapped to the threshold level. The parameter   

controls the steepness of the LGF. Finally, the channels iz  are stimulated sequentially 

with a stimulation order from high to low frequencies (base-to-apex) with levels. 
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Appendix E: 

E.1 A geometric approach to power spectral subtraction 

Let )()()( ndnxny   be the noisy speech ( )y n  consisting of the clean speech )(nx

and noise )(nd . Taking the short-time Fourier transform (STFT) of both sides gives: 

( ) ( ) ( )Y X D          (E.1) 

Equation (E.1) is multiplied by its conjugate ( )Y  . This can be written as follows: 

2 2 2
( ) ( ) ( ) 2 ( ) ( ) cos( )X DY X D X D            (E.2) 

Equation (E.1) can be rewritten in polar form by its magnitude and phase as: 

Y X Dj j j

Y X Da e a e a e         (E.3) 

where  , ,Y X Da a a  are the magnitude spectrums and  , ,Y X D    are the phases of the 

noisy speech, clean speech, and noise spectrum, respectively. 

The noisy speech ( )Y   in Equation (E.1) can be represented geometrically in the 

complex plane as the sum of the clean speech ( )X   and noise ( )D   as in Figure E.1 

(a). The cross term in Equation (E.2) conducts to the error of the noise estimate. If the 

phase difference between clean speech and noise ( )X D   is 90, then

2 2 2
( ) ( ) ( )Y X D    . This cross term can lead to an underestimation (i.e. 

( ) 90X D   ) and overestimation (i.e. ( ) 90X D   ) of noise in the power spectral 

subtraction. 

The gain function G  of the spectral subtraction can be generated from the triangle 

(Figure E.1 (b)) using the Sine Rule with AB BC . The gain function G  can be given 

by:  

sin( ) sin( )Y D Y X D XAB a a           (E.4)  

)1()1( 2222

XDXYDY caca       (E.5)  
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          (E.6) 

where cos( )YD Y Dc    and cos( )XD X Dc   . Since no methods accurately 

determine these phases (i.e. 
YDc  and 

XDc ), the explicit relationship between the phases 

can be represented using the trigonometric principle. Equation (E.2) can be rewritten in 

terms of the magnitude spectrums  , ,Y X Da a a as: 

2 2 2 2 cos( )Y X D X D X Da a a a a          (E.7) 

The cosine rule for the triangle as in Figure E.1 (b) gives the following relationships as: 

2 2 2 2 cos( )X Y D Y D Y Da a a a a          (E.8) 

Dividing both sides of Equation (E.7) and (E.8) by 2

Da  and using the definitions of 

2 2

X Da a  and 
2 2

Y Da a , then YDc  and XDc  can then be given by: 

2 2 2 1

2 2

Y D X
XD

X D

a a a
c

a a

 



   
      (E.9) 
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a a a
c
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 



   
            (E.10) 

Then the gain function as in Equation (E.6) can be rewritten as: 

2 2 2

2

1 ( 1 ) ( 1 )
1 1

4 41

YD

XD

c
G

c

   

 

       
      

    
  (E.11) 
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(a)       (b) 

Figure E.1 The geometric viewpoint of spectral subtraction in the complex plane. (a) 

represents noisy speech ( )Y   as the sum of clean speech ( )X   and noise ( )D  . (b) 

represents the triangle of the geometric relationship between the phases of noisy/clean 

speech and noise. Adapted from Lu and Loizou (2008). 
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Appendix F: 

 

F.1 Post-test questionnaire 

 Adapted from Dehaish et al. (2008) 

QUESTIONS 
CONDITIONS 

C1 C2 C3 … Cn 

1. Articulation: Were the sounds distinguishable? 

(1)  Yes, very clear  

(2)  Yes, clear enough 

(3)  Fairly clear 

(4)  No, not very clear 

              (5)  No, not at all  

     

2. Listening effort: How would you describe the effort you 

were required to make in order to understand the message? 

(1) Complete relaxation possible; no effort  

required 

(2) Attention necessary; no appreciable  

effort required  

(3)   Moderate effort required 

(4)   Considerable effort required 

(5)   No meaning understood with any  

       feasible effort  

     

3. Ease of listening: Would it be easy to listen to this voice for 

long periods of time? 

(1)  Very easy       

(2)  Easy      

(3)  Neutral          

(4)  Difficult     

(5)  Very difficult 

     

4. Overall impression: How do you rate the quality of the 

sound you just heard?  

(1)  Excellent      

(2)  Good      

(3)  Fair       

(4)  Poor              

(5)  Bad 
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F.2 The post-test questionnaire results 

Table F.2 The post-test questionnaire results for noise reduction in wavelet packet-

based speech coding strategy with different noise types. 

Lists Detail 
Q1 - Articulation  Q2 - Listening effort 

[1] [2] [3] [4] [5]   [1] [2] [3] [4] [5]   

C1 23-WPT 
Quiet 

       

C2 64-WPT      

C3 23-WPT 
BB 

   

C4 64-WPT   

C5 23-WPT 
SS 

  

C6 64-WPT   

C7 23-WPT 
BB-IdBM 

     

C8 64-WPT     

C9 23-WPT 
BB-TAWT 

  

C10 64-WPT   

C11 23-WPT 
BB-TFSS 

   

C12 64-WPT    

C13 23-WPT 
SS-IdBM 

   

C14 64-WPT  


 

C15 23-WPT 
SS-TAWT 

   

C16 64-WPT   

C17 23-WPT 
SS-TFSS 

   

C18 64-WPT   

 

Note: the abbreviations used in table are as follows: C-condition, Q-Question, BB-

Babble noise, SS-Speech-shaped noise, IdBM-Ideal binary masking, TAWT-Time-

adaptive wavelet thresholding and TFSS-Time-frequency spectral subtraction.  
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Table F.2 (Continued) The post-test questionnaire results for noise reduction in 

wavelet packet-based speech coding strategy with different noise types. 

Lists Detail 
Q3 - Ease of listening Q4 - Overall impression 

[1] [2] [3] [4] [5]   [1] [2] [3] [4] [5]   

C1 23-WPT 
Quiet 

       

C2 64-WPT        

C3 23-WPT 
BB 

    

C4 64-WPT      

C5 23-WPT 
SS 

      

C6 64-WPT        

C7 23-WPT 
BB-IdBM 

       

C8 64-WPT        

C9 23-WPT 
BB-TAWT 




   

C10 64-WPT     

C11 23-WPT 
BB-TFSS 

    

C12 64-WPT     

C13 23-WPT 
SS-IdBM 

       

C14 64-WPT       

C15 23-WPT 
SS-TAWT 

    

C16 64-WPT      

C17 23-WPT 
SS-TFSS 

    

C18 64-WPT      

 

Note: the abbreviations used in table are as follows: C-condition, Q-Question, BB-

Babble noise, SS-Speech-shaped noise, IdBM-Ideal binary masking, TAWT-Time-

adaptive wavelet thresholding and TFSS-Time-frequency spectral subtraction.  
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F.3 The post-test questionnaire results 

 

Table F.3 The post-test questionnaire results for noise reduction in wavelet packet-

based CI processors with different SNR levels. 

Lists Detail 
Q1 - Articulation  Q2 - Listening effort 

[1] [2] [3] [4] [5]   [1] [2] [3] [4] [5]   

C1 23-WPT 
0-BB 

 





C2 64-WPT   

C3 23-WPT 
5-BB 

 


C4 64-WPT  

C5 23-WPT 
10-BB 

 

C6 64-WPT  

C7 23-WPT 
0-TAWT 

   

C8 64-WPT  

C9 23-WPT 
0- TFSS 

 

C10 64-WPT  

C11 23-WPT 
5-TAWT 

  

C12 64-WPT   

C13 23-WPT 
5-TFSS 

 

C14 64-WPT   

C15 23-WPT 
10-TAWT 

  

C16 64-WPT   

C17 23-WPT 
10-TFSS 

  

C18 64-WPT  

 

Note: the abbreviations used in table are as follows: C-condition, Q-Question, the 

different SNR levels (i.e. 0, 5 and 10 dB), BB-Babble noise, SS-Speech-shaped noise, 

TAWT-Time-adaptive wavelet thresholding and TFSS-Time-frequency spectral 

subtraction.  
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Table F.3 (Continued) The post-test questionnaire results for noise reduction in 

wavelet packet-based CI processors with different SNR levels. 

Lists Detail 
Q3 - Ease of listening Q4 - Overall impression 

[1] [2] [3] [4] [5]   [1] [2] [3] [4] [5]   

C1 23-WPT 
0-BB 

    

C2 64-WPT     

C3 23-WPT 
5-BB 

    

C4 64-WPT 


    

C5 23-WPT 
10-BB 

    

C6 64-WPT 


   

C7 23-WPT 
0-TAWT 

     

C8 64-WPT  


  

C9 23-WPT 
0- TFSS 

     

C10 64-WPT     

C11 23-WPT 
5-TAWT 

    

C12 64-WPT     

C13 23-WPT 
5-TFSS 

 


  

C14 64-WPT     

C15 23-WPT 
10-TAWT 

    

C16 64-WPT 


   

C17 23-WPT 
10-TFSS 

    

C18 64-WPT     

 

Note: the abbreviations used in table are as follows: C-condition, Q-Question, the 

different SNR levels (i.e. 0, 5 and 10 dB), BB-Babble noise, SS-Speech-shaped noise, 

TAWT-Time-adaptive wavelet thresholding and TFSS-Time-frequency spectral 

subtraction.  
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