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WAVELET FILTER BANKS FOR COCHLEAR IMPLANTS

Siriporn Dachasilaruk

Cochlear implant (CI) users regularly perform as well as normal-hearing (NH) listeners
in quiet conditions. However, Cl users have reduced speech perception in noise. ClI
users suffer more in terms of speech intelligibility than NH listeners in the same noisy
environment. Speech coding strategies with noise reduction algorithms for CI devices
play an important role, allowing CI users to benefit more from their implants. This
thesis investigates a wavelet packet-based speech coding strategy with envelope-based
noise reduction algorithms to enhance speech intelligibility in noisy conditions.

The advantages of wavelet packet transforms (WPTSs), in terms of time-frequency
analysis, the sparseness property, and low computational complexity, might make WPT
appropriate for speech coding and denoising in CI devices. In cases with an optimal set
of parameters for a wavelet packet-based speech coding strategy, the 23- and 64-band
WPTSs with sym8 and frame length of 8 ms were found to be more suitable than other
combinations for this strategy. These parameters can optimise speech intelligibility to
benefit CI users. However, both the standard ACE strategy and the wavelet packet-
based strategy provided almost the same results in either quiet or noisy conditions.

Cases using envelope-based denoising techniques in a wavelet packet-based
strategy, namely time-adaptive wavelet thresholding (TAWT) and time-frequency
spectral subtraction (TFSS) were developed and evaluated by objective and subjective
intelligibility measures and compared to ideal binary masking (IdBM) as a baseline for
denoising performance. IdBM can restore intelligibility to nearly the same level as NH
listeners in all noisy conditions. Both TAWT and TFSS showed slight intelligibility
improvements in some noisy conditions. This may result from noise estimation in
denoising techniques. Noise level may be under- or overestimated, and this results in
distortion in enhanced speech and difficult in speech discrimination.

Both objective and subjective intelligibility measures can predict the trend of the
performance of different denoising techniques for CI users. However, NH listeners can
achieve better intelligibility at higher SNR levels without noise reduction, since they are
less sensitive to noise but more sensitive to speech distortion when compared to Cl
listeners. Therefore, denoising techniques may work well for CI users in further
investigations.
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Chapter 1 Introduction

Chapter 1:  Introduction

1.1 Contribution to knowledge

Most cochlear implant (ClI) users perform well in quiet listening conditions, and many
can achieve more than 80% speech recognition scores. However, speech recognition
scores are significantly degraded in noisy listening conditions. Enhancing speech
intelligibility for CI users in noise is a major goal for improving ClI systems. The speech
coding strategies in cochlear devices play an extremely important role and can influence
the overall performance of the CI device in order to greatly benefit Cl users’

communicative potential (Loizou, 1998).

Generally, the greater the level of background noise, the lower the capability in
terms of speech intelligiblity. Since the speech signal contains highly redundant
information, if some parts of speech signal are masked by noise in a moderately noisy
environments, other parts of speech may still contain useful information, and speech
intelligiblity will be sufficiently maintained for normal-hearing (NH) listeners
(Kokkinakis et al., 2012). However, speech intelligiblity is poor in noise for CI users, at
least, because of the limited number of electrodes, the spectral mismatch from the
frequency-to-electrode allocation, and the interaction between electrodes (Stickney et
al., 2004). There is poorer performance with nonstationary noise (e.g. babble noise) than
stationary noise (e.g. speech-shaped noise) for both NH listeners and ClI users (Qin and
Oxenham, 2003; Stickney et al., 2004).

Some noise reduction algorithms have been proposed for ClI users, for both multi-
microphone noise reduction (Vanhoesel and Clark, 1995; Wouters and Vanden Berghe,
2001; Spriet et al., 2007) and single-microphone noise reduction. Algorithms for multi-
microphone noise reduction include adaptive beamforming algorithms (Vanhoesel and
Clark, 1995; Wouters and Vanden Berghe, 2001; Spriet et al., 2007) and two-
microphone spectral subtraction (Kallel et al., 2012). However, multi-microphone noise

reduction is undesirable, cosmetically unappealing, and computationally complex.

Single-microphone noise reduction algorithms can be divided into those using a

pre-processing approach and those adopting an envelope-based approach. Pre-
1



Chapter 1 Introduction

processing approaches include spectral subtraction (Yang and Fu, 2005; Verschuur et
al., 2006) and the subspace method (Loizou et al., 2005), and can bring benefits for
stationary noise, but these are not guaranteed for nonstationary noises. The envelope-
based approach can enhance in noisy speech by using envelope-weighting or envelope-
selection in each channel. However, some techniques involve more complicated
procedures (Li, 2008), and others require prior knowledge of the clean speech and noise
information before both are mixed (Hu and Loizou, 2008). They are not suitable for

real-time implementations in real-world situations.

The past decades have seen the rapid development of wavelet analysis in many
applications (Peng and Chu, 2004; Mallat, 2009). The wavelet transform of most real-
world signals tends to be dominated by a few large coefficients (Donoho and Johnstone,
1994), which constitutes the so-called sparseness property. This sparsity of wavelet
representation is essential to the performance of noise reduction and data compression.
In addition, wavelet transforms have proven to be successful for the detection and

estimation of signals.

Wavelet thresholding is a powerful method for noise reduction. The concept of this
method is based on thresholding the wavelet coefficients towards zero. Since noise is
spread out over all the wavelet coefficients, the sparse representation allows the
replacement of noisy coefficients by zero. Wavelet thresholding has been widely
applied in the area of speech enhancement, including classical wavelet thresholding
(Pinter, 1996; Chen and Wang, 2004), modified wavelet thresholding (Sheikhzadeh,
2001; Ghanbari and Karami-Mollaei, 2006) and combined with other noise reduction
algorithms (Hu and Loizou, 2004; Shao and Chang, 2007).

The sparseness property of wavelet transform can reduce the unnecessary
information in speech signals to improve in the efficiency of speech coding strategies
without impacting the speech intelligibility and quality. This may be particularly
attractive for CI system due to the limitations of frequency resolution (the number of

electrodes) and temporal resolution (stimulation rate).

A few studies have introduced CI speech coding strategies based on wavelet
packets (Behrenbruch and Lithgow, 1998; Nogueira et al., 2006; Gopalakrishna et al.,
2010b). Wavelet packets can be easily adapted to approximate the critical bands of the

human auditory system in CI design. The wavelet packet-based speech coding strategy
2



Chapter 1 Introduction

has been successfully produced for real-time implementations. In addition, this strategy
yields lower spectral leakage, higher stimulation rate, lower computational complexity
(Gopalakrishna et al., 2010b), and better speech intelligibility performance than the
ACE strategy for CI users (Nogueira et al., 2006). However, there is still considerable
work to be done in the investigation of the utility of wavelet packets for enhancing

intelligibility for CI users in noisy listening conditions.

The research question for this work is to determine whether a new speech coding
strategy developed by using wavelet packets with noise reduction algorithms, can
enhance speech intelligibility for CI users in noisy environments. The main goal of the
proposed work is to attempt find the optimal parameters for a wavelet packet-based
speech coding strategy, and to evaluate the noise reduction algorithms (i.e. time-
frequency spectral subtraction (TFSS) and time-adaptive wavelet thresholding (TAWT))
in the wavelet packet-based speech coding strategy in terms of different types of noise
(i.e. speech-shaped noise and babble noise) and different signal-to-noise ratio (SNR)
levels (i.e. 0, 5 and 10 dB).

1.2 Cochlear implants

A cochlear implant (CI) is an electronic prosthesis device. It is implanted into the inner
ear in order to transmit electrical stimuli to the auditory nerve, restoring partial hearing
for individuals with severe and profound hearing losses. Cls are introduced in 1984.
Currently, Cls have successfully restored hearing in more than 324,200 hearing-
impaired people world-wide (NIDCD, 2014). Using the latest CI, the majority of CI
users can score above 80% correct on high context sentences, even without visual cues
(Wilson and Dorman, 2008b). Some CI users can communicate without any signing or

lip-reading, and some can communicate over the telephone (Loizou, 1998).

Recently, various signal-processing techniques for CI processors have been
developed to mimic the function of a healthy cochlea. An understanding of the auditory
system and speech perception is essential for speech coding design in CI systems.
Comprehensive reviews and accounts of the history of speech-processing strategies for
Cl systems can be found in a variety of literature (Loizou, 1998; Loizou, 1999; Zeng,
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2004; Loizou, 2006; Fan-Gang et al., 2008; Wilson and Dorman, 2008b; Wilson and
Dorman, 2008a).

1.2.1 The components of cochlear implants

The main components in all modern cochlear implant systems are illustrated in Figure
1.1 (Fan-Gang et al., 2008). They consist of an ear hook and a microphone (1) to pick
up sounds, a battery case and a behind-the-ear external processor (2) to transform the
sound into a set of electrical stimuli for the implanted electrode, a radio frequency (RF)
transmitter (3) which encodes the set of electrical stimuli into a RF signal and sends it to
the antenna inside a headpiece, the internal receiver (4) placed under the skin behind the
ear which receives and decodes a RF signal, the stimulator (5) containing an active
electronic circuit which converts the signal into electrical currents, sending them along a
cable (6) to the electrode array (7). The electrode array stimulates neurons of the
auditory nerve (8) connected to the central nervous system, where the electrical

impulses are interpreted as sound.

Figure 1.1 Cochlear implant systems (Fan-Gang et al., 2008).
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1.2.2 The cochlear function

The auditory system consists of the outer, middle and inner ear. The outer ear consists
of the pinna, which captures sound energy and conducts it directly to the ear drum. The
middle ear transforms the sound waves into mechanical vibrations and transmits these
vibrations to the fluids of the cochlea in the inner ear. The cochlea converts the
mechanical signal into neural activity. The neural activity is transmitted to the central
auditory system through the auditory nerve of the inner ear, and is translated into the

perception of sound.

The hair cells of normal-hearing (NH) persons are activated according to the
displacement of the basal membrane (BM). The bending of the hair cells releases an
electrochemical substance to directly stimulate the neurons of the auditory nerve in the
inner ear. These neurons communicate with the central nervous system and transmit
information about speech signals to the brain. Hearing loss results from the destruction

of the hair cells in the cochlea, as well as from age-related degeneration.

The hair cells of hearing-impaired (HI) persons may be damaged by certain
diseases (e.g. Meniere’s disease or meningitis), drug treatments, congenital disorders,
and other causes (Loizou, 1998). The largely or completely damaged hair cells lead to a
hearing impairment. The greater the number of hair cells that are damaged, the more the
person’s hearing is impaired. These damaged hair cells define where these neurons

cannot transmit auditory information from the BM to the central nervous system.

The concept of a cochlear prosthesis is to bypass the damaged hair cells by
stimulating the remaining neurons directly with electrical pulses. The electrical
stimulation is directly transmitted through electrodes. The electrode is inserted and
placed into the scala tympani (ST) close to the base of the cochlea. Different positions
for an electrode array can stimulate different subpopulations of neurons. The neurons at
different positions along the length of the cochlea respond to different frequencies of
sound. Stimulating an electrode array at the base of the cochlea is consistent with high-
frequency sound information, while stimulating an electrode array at the apex of the
cochlea represents low-frequency information. When neurons are stimulated, they fire

and propagate electrical or neural impulses to the central nervous system.
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1.2.3 Speech perception

When a speech sound enters the human ear as a composite waveform, people can
perceive and understand the context of speech. Speech perception is considered to be
formed from the basic units of speech or language (i.e. phonemes), the smallest unit of
sound that is used to form meaningful distinctions between utterances. A combination
of phonemes is called a syllable. Words are formed from a combination of syllables.
Therefore, if phonemes are changed, the meanings of words are also changed. Speech
sounds in the English language (Loizou, 2007) are generally classified into two broad
types: vowels and consonants. VVowels are also called monophthongs (single voiced
sounds), and a related class of sounds is the diphthong (two voiced sound). Consonants
can be divided into six classes: semivowels, whispers, nasals, stops, fricatives and

affricates.

Each class of English language sound has unique characteristics, with acoustic
cues that can be easily discriminated from other classes. Acoustic cues are essential in
accurate phoneme identification (Loizou, 2007). Any acoustic cues that are masked by
noise can affect specific phoneme identification, which is reflected in speech
intelligibility. Generally, vowels often have low frequencies and relatively high energy.
Many consonants have higher frequencies and less energy than vowels and diphthongs
(French and Steinberg, 1947). Therefore, the low-energy consonants (e.g. stop) are
masked by various noises more easily than the high-energy vowels and semivowels
(Chen and Loizou, 2010).

Although NH listeners can recognise speech even with high SNR levels, speech
recognition among HI listeners and CI users is much more susceptible to noise (Fu et
al., 1998). NH listeners can benefit from the use of redundant information in speech,
whereas Cl users have perceptual difficulties because of the limitations of frequency
resolution, temporal resolution and the amplitude of speech signals which can be
transmitted by CI devices (Fu et al., 1998; van Schijndel et al., 2001; Kokkinakis et al.,
2012).

Most CI users require much higher SNR than NH listeners, approximately 10-25
dB, to achieve a similar level of speech intelligibility performance in noise (Qazi et al.,
2012). In one study, CI users’ SNR levels varied between 10 and 15 dB for stationary

noises and were equal to 25 dB for nonstationary noise (Kokkinakis et al., 2012). In
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other words, speech perception performance in nonstationary noise (i.e. babble noise) is
poorer than in stationary noise (i.e speech-shaped noise) for both NH listeners and CI
users (Qin and Oxenham, 2003; Stickney et al., 2004).

Speech sounds contain a wide range of frequencies. The spectrum of a speech
signal consists of the fundamental frequency (F0), defined as the lowest frequency of a
periodic signal. The FO is perceived by the human ear as pitch. The FO is the first
harmonic, and the other harmonics occur at integer multiples of the FO. The frequency
range of FO is approximately 60—-150 Hz for males and 200400 Hz for females and
children (Loizou, 2007). The peaks of the spectral envelope in a speech signal are
referred to as formants. The formants can be represented from the spectral envelope and
not from the magnitude spectrum. On the other hand, the harmonics can be represented
from the magnitude spectrum and not from the spectral envelope. Therefore, the
formant frequencies may or may not coincide with one of the harmonics (Loizou, 2007).

The formants provide speech information (Shannon et al., 1995). The first three
formants (i.e. F1, F2, and F3), in the frequency range of 0.1 to 4 kHz, contain sufficient
information for speech perception (Loizou, 1998). Additionally, information around F1
and F2 is sufficient for the most vowel identification (McDermott, 1998). The formant
frequencies were utilised for the first design of CI processors, and they proved their

utility in increasing the average scores in speech perception tests.

Several studies investigated the effect of frequency resolution in CI simulation on
speech perception with NH listeners. Speech perception in quiet conditions with greater
than 90% correct for sentences could be achieved using four bands in a frequency range
between 0 and 4 kHz (Shannon et al., 1995). However, speech perception in noise
requires a greater number of frequency bands than in quiet (approximately six to eight
bands) in order to discriminate the difference between speech and noise (Dorman et al.,
1998). The performance with processed speech with twenty-four bands in a frequency
range of 0 to 6 kHz was considerably poorer than for unprocessed speech (or natural
speech) in both stationary and nonstationary noises (Qin and Oxenham, 2003).
Unprocessed speech in a frequency range between 0 and 10 kHz maintained high levels
of speech perception (approximately 80 % correct), whereas processed speech with four
bands was close to the floor effect at 0 dB SNR (Stickney et al., 2004). Fu and Shannon
(1998) found that speech perception by some Nucleus CI users with four bands in a

7
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frequency range of 0 to 6 kHz was similar to that for NH listeners with the same
processing strategy in quiet and noise conditions.

Some studies explored the effect of temporal resolution (or stimulation rate) on
speech perception. Temporal resolution is associated with electrical pulses transmitted
to each electrode. A high stimulation rate can better represent the temporal envelope of
speech signals, and it can reasonably expect to provide high speech perception.
However, the consistent advantages of higher stimulation rates from several studies
have not been established yet (Loizou, 2006), and it is still unknown how to identify the
optimal stimulation rate for CI individuals. Some studies (Loizou et al., 2000) found
higher rates (e.g. 2100 pulses per second (pps)) in Med-El devices provided more
benefits to speech perception than lower rates (< 800 pps). In contrast, other studies
(Cochlear, 2007) found no significant effects of higher rates on speech perception. Low
to moderate rates (e.g. 900 and 1200 pps) provided better speech perception than the
higher rates (e.g. 1800, 2400 and 3500 pps). This is most likely to be because of
differences in speech coding strategies, speech materials, specific parameters of

electrodes, and neuron survival.

NH individuals naturally raise their voices in noisy environments, which
effectively increase the SNR. A study by Firszt et al. (2004) found that the sentence
recognition performance at 60 and 50 dB SPL showed a difference of approximately
15% correct for seventy-eight Cl users with different Cl devices. The performance at 60
dB SPL in quiet and in noise showed a difference of approximately 30% correct. The
performance was poorer in noise (e.g. 60 dB SPL and 8 dB SNR) when compared with

listening at a softer conversation level (e.g. 50 dB SPL) in quiet conditions.

1.3  Speech coding strategies for cochlear implants

Speech coding strategies have been used to describe techniques that process speech
sounds in CI systems. The speech coding strategy is the brain of the CI system (Zeng,
2004). It plays a very important role and affects the overall performance of cochlear

devices to benefit Cl users in terms of more effective communication (Loizou, 1998).
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Figure 1.2 Classification of speech coding strategies for multichannel implants. Adapted
from Fan-Gang et al. (2008).

Speech coding strategies have been developed over the past two decades. The
strategies decompose speech sounds into multiple frequency channels to mimic the
healthy cochlea (Loizou, 1999). The perceptually important information contained in
speech sound needs to be preserved to facilitate hearing ability and to improve speech
intelligibility. This important information is transmitted to the brain by electrical
stimulation relating to the amplitudes and frequencies of speech signals. The amplitude
of the stimulus current controls the loudness of speech sounds. The different pitches
relate to the positions in the cochlea that are being stimulated. Low pitch is perceived
when electrodes near the apical part of the cochlea are stimulated, while high pitch is

perceived when electrodes near the basal part are stimulated (Loizou, 1998).

There are currently three major manufacturers for CI devices approved by the
Food and Drug Administration in the United States: the Nucleus device (Cochlear
Corporation, Australia), the Clarion device (Advanced Bionic Corporation, USA), and
the Med-EI device (Med-El Corporation, Austria). The CI manufacturers offer several

speech coding strategies to CI users. All speech coding strategies for multichannel
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implants (Figure 1.2) can be classified into two main categories: waveform and feature-
extraction strategies (Loizou, 1998; Fan-Gang et al., 2008). The waveform strategy
represents waveforms of each frequency band (Loizou, 1999), while the feature-
extraction strategy (Loizou, 1998; Fan-Gang et al., 2008) represents the dominant

features of speech signals in each frequency band.

131 Waveform strategy

An example of a waveform strategy is the compressed-analogue (CA) approach
(Loizou, 1999), which was an early strategy for Cls. The concept of the CA approach is
that the speech signal is first compressed using an automatic gain control (AGC), and
then it is filtered into four frequency bands with centre frequencies at 0.5, 1, 2, and 3.4
kHz. The filtered waveforms are amplified using adjustable gain controls, and then they
are delivered directly to four electrodes. The CA doesn’t extract any features of speech
signals in each frequency band, but it delivers the full waveform to different electrodes.
A disadvantage of the CA approach is the interaction between channels due to
simultaneous stimulation, which may lead to distortion of the speech spectrum and
degradation of speech intelligibility.

13.2 Feature-extraction strategy

The feature-extraction strategy used in modern CI devices can be separated into coarse
features and fine features. Fan-Gang et al. (2008) state that for the general model the
slowly varying envelope contributes to speech intelligibility, while the rapidly varying
fine structure contributes to mainly auditory object formation. Nevertheless, the

majority of current CI devices use coarse features and discard fine structures.
1321 Coarse features

Spectral-envelope information is used for the early speech coding strategies (e.g.,
FO/F2, FO/F1/F2 and multi-peaks (MPEAK)). They are designed by using formant
information to convey some information about the speech signals to the electrodes.
However, this strategy has some disadvantages (McDermott, 1998); for instance, the

10



Chapter 1 Introduction

problems of estimation formant frequencies can be challenging, especially in noisy
environments, there may be a loss of temporal resolution for the rapidly varying spectral
features (e.g. low stimulation rate used), and there can be inappropriate processing of

speech-like sounds.

In the early 1990s temporal-envelope information (Fan-Gang et al., 2008) was
developed for speech coding strategies such as the continuous interleaved sampling
(CIS), the spectral peak (SPEAK), and the advanced combinational encoder (ACE)
strategies. The temporal-envelope information could provide better performance for
speech intelligibility than the spectral-envelope information (Loizou, 1999; Fan-Gang et
al., 2008). Although the temporal-envelope information uses implicit identification of
speech features, the selection of frequency bands with the largest amplitudes usually
represents the first three formants (McDermott, 1998).

Envelope Detection Compression Pulse Modulation
—P Bandpalssfilter e < Rectifier P Lowpass filter —» Nonlinear map —b@—}
-
. Bandpe;ssfilter = Rectifier P Lowpass filter —P» Nonlinear map —b@—}
E I, . . -

Bandpass filter
m

= Rectifier P Lowpass filter P Nonlinear map —b@—b

J_|f

Figure 1.3 Block diagram of the CIS strategy. Adapted from Loizou (2006).

The Nucleus device as shown in Figure 1.2 supports the CIS, SPEAK, and ACE
strategies. The CIS strategy as shown in Figure 1.3 (Loizou, 1999; Fan-Gang et al.,
2008) is based on a fixed-channel strategy, and is implemented by all major
manufacturers. The speech signal is pre-emphasised and then divided into a number of
frequency bands. The envelopes of the outputs in each frequency band are extracted by
rectification and lowpass filters. The extracted envelopes are compressed using a
nonlinear map (e.g. a logarithmic map) to fit within the electrical dynamic range.
Finally, the compressed amplitudes are used to modulate the stimulating pulse and

transmitted to the implanted electrodes. The CIS strategy can reduce channel
11
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interactions by stimulating channels asynchronously. In other words, only one electrode

is stimulated at a time.

The SPEAK and ACE strategies are similar to the CIS strategy, but both are based
on an n-of-m strategy. The n-of-m strategy was first introduced by Wilson and
colleagues in 1988 (Fan-Gang et al., 2008). This strategy selects n envelope channels
with the largest amplitudes from m channels (related to electrodes) for stimulation in
each cycle (where n<m). Generally, the number of channels m represents the spectral
resolution, whereas the channel stimulation rate represents the temporal resolution
(Nogueira et al., 2005). The difference between the SPEAK and ACE strategies is the
channel stimulation rate. The ACE strategy’s stimulation rate is generally higher than
SPEAK’s to preserve more temporal details. The SPEAK strategy’s channel stimulation
rate is fixed at 250 pps, while the ACE strategy’s channel stimulation rates vary
between 250 and 2400 pps (Loizou, 2006).

The basic idea of the n-of-m strategy is to increase the temporal resolution, and to
reduce the redundant information. The dominant channels can be updated more
frequently by removing the less significant channels. This concentrates on the most
important information conveyed to the auditory system (Nogueira et al., 2005; Buechner
et al., 2009) and may reduce the overall SNR level (Wilson and Dorman, 2008b). This
would also presumably reduce channel interaction further while still allowing for high
resolution. Furthermore, the power consumption for Cl stimulation can be decreased
and this may lead to an increased battery life for the ClI devices (Hu and Loizou, 2008).
The ACE and SPEAK strategies have demonstrated either a significant improvement in
speech recognition (Dorman et al., 2002; Skinner et al., 2002; Buechner et al., 2009), or
at least they have been the CI users’ preference over conventional CIS strategies (Kiefer
et al., 2001; Skinner et al., 2002).

The ACE strategy is considered to be the default strategy for the Nucleus-24
processor (Cochlear, 2002) and is used by approximately 60% of CI users worldwide
(Qazi et al., 2012). The overall ClI stimulation rate is usually limited to 14,400 pps. The
clinical channel stimulation rates range from 900 to 2,400 pps, and the number of
channels varies between 8 and 12 (Hu and Loizou, 2008; Gopalakrishna et al., 2010b;
Kokkinakis et al., 2011). The CI stimulation rate depends on the number of selected

channels and the channel stimulation rate (i.e. CI stimulation rate > the number of
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selected channels x the channel stimulation rate). The fewer channels selected, the
higher the maxima channel stimulation rate and vice versa. For example, no more than 8

maxima channels can be selected for a channel stimulation rate of 1,800 pps.
1.3.2.2 Fine features

Recently the development of CI systems has focused on fine structure processing, which
is classified into spectral and temporal fine structures. The spectral fine structure needs
to use more independent electrodes. It is difficult to increase the number of electrodes,
and thus several techniques have been investigated to increase the number of functional
channels by using virtual channels. The strategy of virtual channels was introduced by
Wilson et al. in 1992 (Loizou, 2006; Wilson and Dorman, 2008b).

The principle of virtual channels is that the current of adjacent electrodes resulting
in an electric field can produce the number of discriminable sites, approximately 2 to 9
sites between two adjacent electrodes depending on the channel separation. The
difference between discriminable sites can be generated by using different ratios of the
currents between two adjacent electrodes (e.g. 75/25, 50/50, and 25/75). The number of
channels of information is increased by these intermediate sites beyond the number of
physical electrodes. Some evidence (de Melo et al., 2012) has shown that speech
perception performance for CI users can be improved in noisy environments with the

use of the virtual channels.

Representation of temporal fine structure (Fan-Gang et al., 2008) is proposed in
many ways for new strategies, such as increasing the electric stimulation carrier rate,
extracting frequency modulation from the temporal fine structure to frequency modulate
the carrier rate, and using multiple carriers for fine frequency structure. However, these
strategies have been not demonstrated to provide benefits to Cl users (Fan-Gang et al.,
2008; Moon and Hong, 2014). Representation of temporal fine structure using new

strategies may improve CI hearing in the future.

1.4 Noise reduction in cochlear implants

In quiet environments, most Cl users can achieve high performance with speech

recognition regardless of CI devices they use, because almost all CI devices perform
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well in quiet listening conditions (Kokkinakis et al., 2012). Their speech recognition
performance has improved steadily in quiet environments over a number of years (Fan-
Gang et al., 2008). However, in noisy environments, many CI users complain of severe
degradation in speech understanding. Recently CI research effort has increasingly
focused on state-of-the art noise reduction strategies to achieve higher speech

intelligibility in noisy environments.

Terms such as noise reduction, noise suppression, and speech enhancement have
been used to describe methods that improve speech intelligibility and speech quality in
noisy environments (Kokkinakis et al., 2012). Noise reduction algorithms were
originally developed for NH listeners over many decades. Most of them are based on a
single microphone and can be classified into four main categories (Loizou, 2007),
namely spectral subtraction, Wiener filtering, statistical-model based methods, and

subspace algorithms.

Spectral subtraction relates to the subtraction of noise spectrum estimates from the
noisy speech spectrum. Wiener filtering works by providing a linear estimate of the
clean speech spectrum, and is optimal in the mean-square sense. In addition, it can be
performed in both the time and frequency domains, and it can be implemented either
iteratively or non-iteratively. Statistical-model-based algorithms use an estimator in
various statistical models and optimization criteria. Finally, subspace algorithms are
based on the linear algebra theory that noisy speech can be decomposed into vector
subspaces comprising a clean signal and a noise signal.

The development of noise reduction algorithms has made little progress in
improving speech intelligibility, but much progress in improving speech quality in noisy
environments (Loizou and Gibak, 2011). The comparative speech intelligibility of some
algorithms encompassing the four categories of single-microphone noise reduction
algorithms were investigated for NH listeners (Hu and Loizou, 2007; Li et al., 2011).
Almost all noise reduction algorithms yielded little benefit or did not improve speech
intelligibility in American English (Hu and Loizou, 2007) or other languages (i.e.
Chinese and Japanese) (Li et al.,, 2011). Wiener filtering produced a significant
improvement in speech intelligibility when compared with others, but in only car and
white noise conditions (Hu and Loizou, 2007; Li et al., 2011).
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However, some single-microphone noise reduction algorithms are successful in
improving speech intelligibility for CI users. Most noise reduction algorithms deal with
situations at 0 to 15 dB SNR level, which CI users can benefit (Fu et al., 1998). Many
noise reduction methods for CI processors are based on a single microphone signal,
while others exploit more than one microphone signal. Some good reviews of the
literature can be found in Loizou (2006), Li (2009), and Kokkinakis et al. (2012).

1.4.1 Multi-microphone noise reduction strategies

Most of the multi-microphone noise reduction strategies are based on adaptive
beamforming (ABF) algorithms and are implemented as pre-processing algorithms for
ClI processors. The ABF refers to signal processing that uses the spatial differences
between at least two microphones to adaptively attenuate or preserve signals from
particular directions (Vanhoesel and Clark, 1995).

Experimental results for an ABF algorithm with two microphones, one behind
each ear, with four Nucleus CI users (Vanhoesel and Clark, 1995) indicated that there
was a large improvement in speech intelligibility in conditions where reverberation is
moderate but only one source is predominantly interfering with speech. An ABF with a
two-microphone array in a single behind-the-ear hearing aid (Wouters and Vanden
Berghe, 2001) provided significant improvements in word recognition in both speech-
weighted noise and babble noise, corresponding to an average SNR improvement of

approximately 10 dB among this group of four CI users.

The performance of the two-microphone adaptive beamformer BEAM (Spriet et
al., 2007) with five Nucleus CI users was evaluated at different SNR levels and with
two types of noise, speech-weighted noise and babble noise. This approach yielded an
average SNR improvement of 5-16 dB for sentence recognition. The nonlinear spectral
subtraction proposed by Kallel et al. (2012) and the multi-band spectral subtraction
proposed by Kamath and Loizou (2002) were implemented as a pre-processing
algorithm for CI processors (Kallel et al., 2012). Both algorithms were evaluated by
three bilateral CI users and fifty NH listeners at different SNR levels of babble noise.
These approaches provided an average improvement in the percentage correct word

scores of 4-9% for bilateral Cl users and 7—13 % for NH listeners.
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Although such algorithms for multi-microphone noise reduction can bring benefits
in speech intelligibility, these benefits are limited to situations where the speech and
noise signals are spatially separated and may degrade in reverberant environments
(Wouters and Vanden Berghe, 2001). Implants with two or more microphones are
ergonomically difficult, and CI users may not like to wear headphones or a neck loop
(Loizou, 2006). Most CI users would find this a cosmetically unappealing prosthesis. In
addition, they are computationally complex, and it is difficult to optimise the particular
algorithms to individual CI users (Li, 2009). Single-microphone noise reduction
strategies, which can work under nondirectional conditions, are therefore more user-

friendly and desirable.

1.4.2 Single-microphone noise reduction strategies

Single-microphone noise reduction strategies used in the latest Cl processors (i.e.
temporal-envelope information) can be divided into two main categories (Loizou, 2006;
Kokkinakis et al., 2012). The first of these is the pre-processing noise reduction
strategy, where the noisy speech is processed with a speech enhancement algorithm and
then the enhanced speech is fed into the CI speech coding strategies. This approach is
similar to the speech enhancement that is used in most modern communication devices
(e.g. mobile phones). Another category is envelope-based noise reduction strategies.
This approach is combined to form one part of the speech coding strategy to attenuate

directly on noisy envelopes.
1421 Pre-processing noise reduction strategies

A few single-microphone noise reduction algorithms have been proposed as a pre-
processing approach for CI processors. Yang and Fu (2005) evaluated the spectral
subtraction algorithms proposed by Marzinzik and Kollmeier (2002) with seven CI
users wearing different Cl devices. The results showed an average improvement in
sentence recognition scores of 21% at various SNR levels (i.e. 0, 3, 6, and 9 dB) of
speech-shaped noise, and this did not vary significantly with SNR levels. The
performance of the nonlinear spectral subtraction proposed by Lockwood and Boudy

(1992) was used in a study by Verschuur et al. (2006). Results indicated that there were
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large improvements in sentence recognition scores of 5—10% at different SNR levels
(i.e. 5 and 10 dB) of speech-shaped noise in a group of seventeen Nucleus CI users.

The study by Loizou et al. (2005) demonstrated that the subspace algorithm
proposed by Hu and Loizou (2002) provided significant benefits to fourteen Clarion CI
users in sentence recognition scores, with an average improvement of 44%, in
conditions of 5 dB SNR speech-shaped noise. However, it is unclear whether such
intelligibility benefits would be preserved if these algorithms were evaluated in

nonstationary noise environments (e.g. babble noise).

The pre-processing approach has a few main disadvantages (Kokkinakis et al.,
2012). First, speech enhancement algorithms can be implemented as pre-processing
algorithms in several ways. They require the speech signal in the time domain to be
transformed into any domain to reduce the noise, and then be reconstructed into the
enhanced speech in time domain before transmitting them to the CI processor. Some
algorithms have shown improvements in speech perception, but they are highly
computationally complex (e.g. using the subspace algorithm). Therefore, they may be
suitable for implementation on computers but not on wearable CI processors (Dawson et
al., 2011). Second, speech enhancement algorithms sometimes provide unwanted
distortion, which degrades speech perception. Third, there is no simple approach to

optimise the operation of algorithms to individual CI users.
1.4.2.2 Envelope-based noise reduction strategies

The simple way to overcome the drawbacks of the pre-processing strategy is to directly
apply attenuation to the envelopes after the step of envelope detection in speech coding
strategies, as in Figure 1.3. Envelope-based noise reduction algorithms were integrated
into the stage of the speech coding strategies as envelope-weighting or envelope-
selection (Kokkinakis et al., 2012).

1.4.22.1  Envelope-weighting

A number of algorithms were proposed for envelope-weighting to attenuate noisy
envelopes according to the estimated SNR in each channel. A sigmoidal-shaped gain
function (Hu et al., 2007) was introduced as a simple algorithm to perform a weighting
(values in the range of 0 to 1) in noisy envelopes of each channel. The envelope

amplitudes in channels with high SNR levels were multiplied by a weight close to one,
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whereas the envelope amplitudes in channels with low SNR levels were multiplied by a
weight close to zero. This approach fits into the general category algorithms of noise
reduction that enhance speech by spectral modification (e.g. spectral subtraction and
Wiener filtering). Results showed large improvements in sentence recognition of
10—-25% at different SNR levels (i.e. 5 and 10 dB) of babble noise in a group of five
Clarion CI users, compared to the improvement of 7% for pre-processing algorithms
reported in Yang and Fu (2005).

Principal components analysis (PCA) and independent component analysis (ICA)
with soft thresholding (Li, 2008) can be used to reduce noise and signal redundancy.
This approach significantly improved word recognition for ten Nucleus Cl users at
different SNR levels (i.e. 5, 10, and 15 dB) of babble noise and modulated noise. In
Dawson et al. (2011)’s study, two gain functions were proposed and tested with thirteen
Nucleus CI users. The first gain function used a combination of a posteriori SNR
estimate (Mcaulay and Malpass, 1980) and a sigmoidal-shaped gain function (Hu et al.,
2007). The second gain function used a combination of a priori SNR estimate (Mcaulay
and Malpass, 1980) and a modified Wiener gain function (Loizou, 2007). This approach
provided the greatest improvement in sentence recognition for speech-weighted noise;
1.77 dB for the first gain function and 2.14 dB for the second gain function. A sparse
non-negative matrix factorisation (Hu et al., 2013) with five NH listeners provided an
improvement sentence recognition in terms of speech intelligibility and speech quality
at 0 and 5 dB, but not at 10 dB in babble noise.

1.4.2.2.2  Envelope-selection

A few techniques were introduced as criteria for envelope-selection in each channel to
transmit useful information to electrodes. In the n-of-m strategy such as the ACE or
SPEAK strategy, the channel-selection criterion with the largest amplitudes works well
in quiet conditions, but it can be problematic in noisy conditions when the noise may

completely dominate the speech.

Another channel-selection criterion was based on a psychoacoustic model
(Nogueira et al., 2005), which was adopted in audio compression standards (MP3). This
method was referred to as the psychoacoustic advanced combination encoder (PACE)
strategy. The idea of this method was that amplitudes falling below a masking threshold

would not be audible and so could be discarded. The PACE strategy was evaluated and
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compared to the ACE strategy in sentence recognition in speech-shaped noise at 15 dB
SNR in eight Nucleus CI users. This provided an average improvement over the ACE

strategy of 17% for 4-0f-20 channels, but no significant difference for 8-of-20 channels.

The SNR channel-selection criterion (Hu and Loizou, 2008) was proposed under
the assumption that the true SNR values in each channel are known a priori. The idea of
this criterion was that each channel was selected only when its SNR was more than or
equal to 0 dB (speech-dominated channels), whereas each channel was discarded when
its SNR was less than 0 dB (noise-dominated channels). Results revealed that this
strategy could restore speech intelligibility to the level obtained in quiet conditions for
six Clarion CI users. Sentence recognition was not dependent on different types of noise
(babble noise and speech-shaped noise) and different SNR levels (0-10 dB).

The SNR channel-selection criterion can be also considered as envelope-weighting
and can be implemented simply by multiplying the noisy envelopes with a binary gain
function. The speech-dominated channels were assigned to a value of 1 and the noise-
dominated channels were assigned to a value of 0. However, it cannot be implemented
in real-world applications because of the fact that the SNR needs to be estimated from

the noisy envelopes.

Overall, the ideal algorithms for noise reduction should be easy to implement and
integrate into commercially available CI devices. The integration of envelope-based
noise reduction algorithms into speech coding strategies has some advantages (Hu et al.,
2007), including the lack of algorithmic delay related to the pre-processing approach,
the low computational complexity and the ease of integration into existing speech

coding strategies.

1.5 Performance evaluation

Most of the speech enhancement algorithms are usually evaluated in terms of speech
intelligibility and speech quality. Speech intelligibility is related to the number of words
that are identified correctly by the listeners, while speech quality is related to how
natural speech sounds and the individual preferences of listeners (Ephraim and Cohen,

2004; Loizou, 2007; Li et al., 2011). In fact, improving speech intelligibility does not
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correlate with enhancing speech quality (Ephraim and Cohen, 2004). Some cases of
enhancing speech quality may lead to a decrease in intelligibility. This is due to the
distortion of enhanced speech resulting from excessive noise reduction. In CI research,
speech intelligibility is the most important criterion and is considered for evaluating

performance improvements in CI processors.

Speech intelligibility measures used to assess the CI processors can be classified
into subjective and objective intelligibility measures. The subjective intelligibility
measures are regularly quantified in terms of the percentage of words that listeners can
correctly identify. The percentage is often measured by using fixed SNR levels. There
are two subjective tests. The first test uses speech stimuli transmitted directly to CI
users. The second test uses vocoder simulation to simulate the speech processing of a Cl
processor, which is referred to as vocoded speech. The vocoded speech is then

presented to NH listeners.

The listening test with CI users has numerous factors influencing CI processor
performance. Two types of factors, namely CIl user-related factors (e.g. duration of
deafness, duration of CI use, age at implantation, electrode placement and insertion
depth) and CI processor-related factors (e.g. number of channels, the stimulation rate
and frequency-to-electrode allocation), may affect the speech perception of CI users. It
is difficult to interpret the impact of each factor on speech intelligibility because of
interaction between these factors (Fu et al., 1998; Loizou, 1998; Chen and Loizou,
2011).

Vocoder simulation with NH listeners has been widely used to evaluate the effects
of different factors on speech intelligibility, avoid the confounding factors specified by
individual CI users, and manipulate interesting parameters relating to the CI design. The
vocoder simulations are not expected to predict the absolute levels of performance of
individual CI users, but rather they can indicate trends of performance observed in ClI
users when a specific parameter of the speech coding strategy or a property of the

acoustic signal is varied (Chen and Loizou, 2011).

Although, subjective listening tests are very important and necessary for the
evaluation of intelligibility measures, these measures are very expensive and time
consuming. In addition, this measure cannot be used for tuning parameters during the

development of some stages of new algorithms (e.g. noise reduction algorithms and
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speech coding strategies) or the comparison of different CI processors. Therefore, the
objective intelligibility measures play an important role. They allow repeatable
assessment at different stages of the algorithm development process as well as
performance comparison among algorithms. These also help to provide guidance on
how to improve the speech intelligibility of algorithms involved in the implementation
of CI systems, and how to develop new algorithms involved in the implementation of ClI

systems in the proper direction.

Finally, for the objective intelligibility measures to be valid, they need to correlate
well with subjective intelligibility measures. Some good literature reviews relating to
objective intelligibility measures can be found in Rhebergen and Versfeld (2005),
Jianfen et al. (2009), Christiansen et al. (2010), Ma and Loizou (2011) and Taal et al.
(2011). The literature reviews of some of these objective intelligibility measures are

briefly described in the next section.

151 Objective intelligibility measures

The prediction of speech intelligibility was first introduced by French and Steinberg
(1947) who proposed the concept of the articulation index (Al). The Al was further
developed to produce a new measure called the speech intelligibility index (SI1I) (ANSI,
1997). The SII was corrected in terms of hearing sensitivity loss and speech level as
well as the upward and downward spread of masking (Christiansen et al., 2010). The Sl
is calculated from the SNR between the long-term speech spectrum and the long-term
noise spectrum in each frequency band. Then, the auditory threshold is adjusted and the
weighted SNR is summed across frequencies to produce the SlI value. The Sll value is a
number between zero and unity. An SlI of zero implies that no speech information is
available and an SlII of unity implies that all speech information is available to the
listener. However, the SII works well for stationary noise, but not for nonstationary
noise due to its calculation based on the long-term spectra of the speech and noise

signals.

Another well-known intelligibility measure was the speech transmission index
(STI) (Steeneken and Houtgast, 1980). The STI was first introduced to evaluate the
quality of speech-transmission channels. However, the STI measure was also able to
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successfully predict the intelligibility of reverberation, room acoustics, and additive
noise (Steeneken and Houtgast, 1982; Houtgast and Steeneken, 1985). The method of
STI calculation is similar to the SII method, which is based on the SNR in each
frequency band. However, the SNR in each frequency band is related to the modulation
depth and forms a weighted sum across frequencies to give the STI value. The STI
value represents intelligibility between zero and unity. The meaning of the STI value is

the same as the Sl value.

Several attempts have been made to further develop the measures to predict speech
intelligibility in various noisy environments and with different distortions produced by
signal processing systems (e.g. hearing prostheses and noise-suppressed algorithms).
Most intelligibility measures were based on the STI or the Al. The Al-based measures
use the spectral-envelope information and include a short-term Al-based measure (Al-
ST) (Jianfen et al., 2009), the coherence-based speech intelligibility index (CSII) (Kates
and Arehart, 2005), the three-level CSII measures (CSllhigh, CSlImid, and CSlliow) (Kates
and Arehart, 2005), and the I3 (Kates and Arehart, 2005). The STI-based measures use
the temporal-envelope information and include the normalised covariance metric
(NCM) (Goldsworthy and Greenberg, 2004; Jianfen et al., 2009; Chen, 2011).

The AI-ST is computed using short-term (30 msec) segments. In addition, the
difference between the AI-ST and the SlI is that the AI-ST does not use the auditory
threshold and it does not account for the upward spread of masking. It was found to
predict the speech intelligibility modestly in nonstationary noise (Jianfen et al., 2009).
The CSII and 13 were introduced to predict intelligibility in additive noise, peak-
clipping, and centre-clipping distortion in hearing aids (Kates and Arehart, 2005).
Unlike the SNR computed for the SlI, the SNR of the CSII and 13 are computed from
clean speech and distorted (or processed) speech. The NCM differs from the STI with
respect to the change in modulation depth. The STI uses the modulation transfer
function (MTF), whereas the NCM uses the covariance between the clean speech and
the processed speech (Jianfen et al., 2009). The NCM was found to yield high
correlation for nonvocoded speech with noise-suppressed algorithms (Jianfen et al.,
2009) and vocoded speech (Chen and Loizou, 2011).

Jianfen et al. (2009) evaluated the performance of the NCM with noise-suppressed

speech (nonvocoded speech). The noise-suppressed speech was processed by some
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algorithms encompassing the four categories of single-microphone noise reduction
algorithms, similar to the study by Hu and Loizou (2007). The correlation of the NCM
with intelligibility scores obtained by forty NH listeners was found to be quite high
(r=0.89). Chen and Loizou (2011) studied the utility of the NCM for vocoded speech
with and without noise reduction. The two noise reduction algorithms used as a pre-
processing approach were the Wiener filtering proposed by Scalart and Vieira (1996)
and the minimum mean-square error log-spectral amplitude (MMSE LSA) algorithm
proposed by Ephraim and Malah (1985). Results indicated that the NCM can be used
for processed speech and performed the best when compared with others. In addition,
the NCM performed very well for vocoded speech degraded by room reverberation
(Santos et al., 2012).

The perceptual evaluation of speech quality (PESQ) measure (ITU-T, 2000) is an
existing objective measure, originally designed to evaluate speech quality. The PESQ
was also used to predict the intelligibility of vocoded speech, performing well and
producing high correlations with subjective listening tests in stationary and
nonstationary noise (Chen and Loizou, 2010). However, the PESQ uses the vocoded
speech as its input for predicting, rather than the temporal-envelope information,
whereas the NCM calculation uses the temporal-envelope information with 20 channels,

which is more similar to the CI processing strategy.

In vocoder simulation, the vocoded speech can be degraded by many levels of
speech coding strategies (e.g. additive noise, reverberation, filtering and clipping),
single-microphone noise reduction algorithms (Loizou, 2007), speech separation
techniques like ideal time frequency segregation (ITFS), and so on. It is unclear whether
conventional measures as previously described would be good for predicting their
intelligibility. These conventional measures may be less suitable for techniques where
noisy speech is processed by different types of time frequency-weightings (e.g. single-
microphone noise reduction algorithms) (Taal et al., 2011). Hence, a speech
intelligibility index should be able to predict the intelligibility of the vocoded speech
reliably (Chen and Loizou, 2011; Taal et al., 2011).

The short-time objective intelligibility (STOI) measure (Taal et al., 2011) was
proposed as a function of a time frequency-dependent intermediate measure. The STOI

is similar to the NCM in that both measures are based on a correlation coefficient
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between the temporal envelope of the clean and degraded speech in each frequency
band. Unlike the NCM, however, which defines a correlation coefficient for the entire
signal at once, the STOI determines a correlation coefficient for the short-time

segments. Both represent intelligibility between zero and unity.

The STOI provided better performance compared to the reference objective
measures. Five reference objective measures were the Dau Auditory model (DAU), a
coherence-based speech intelligibility index (CSII), frequency-weighted segmental SNR
(fwsSNR), a normalised subband envelope correlation (NSEC), and NCM. Only NCM
showed a similar performance in the single-microphone noise reduction listening test
(i.e. @ minimum mean square error-short time spectral amplitude (MMSE-STSA)
(Ephraim and Malah, 1984) and an improved version of MMSE-STSA (Erkelens et al.,
2007)). In addition, the STOI was used to predict speech intelligibility of a noise
reduction algorithm (i.e. the sparse coding shrinkage) (Sang, 2012). The obtained results

from NH listeners were consistent with the trend of prediction of the STOI.

Therefore the NCM and STOI are chosen as preliminary measures, to guide the
development of noise reduction algorithms in the wavelet packet-based speech coding
strategy. The general principle of objective intelligibility measures for Cl processors
(Chen and Loizou, 2011) is shown in Figure 1.4. Objective measures calculate the
relationship between vocoded clean speech and vocoded noisy speech (or vocoded

noisy speech with noise reduction).

Vocoded
clean speech

Clean speech Vocoder
P —p .

signal simulation

NCM,
Compute p STOI
measures etc.
Noisy/Processed Vocoder
Y >

speech signal simulation Vocoded

noisy speech

Figure 1.4 Computation of objective intelligibility measures of vocoded speech.
Adapted from Chen and Loizou (2011).

24



Chapter 1 Introduction
1511 The normalised covariance metric (NCM)

The NCM (Jianfen et al., 2009; Chen, 2011) is derived from the speech transmission
index (STI) (Steeneken and Houtgast, 1980). The NCM uses the covariance of the
envelope between the vocoded clean and vocoded noisy speech (with/without noise
reduction). The NCM is calculated as follows. The vocoded signals are first
decomposed into 20 bands across the signal bandwidth (125-8000 Hz in this study)
using Butterworth filters. The envelope of each frequency band is computed using the
Hilbert transform. The SNR is computed with a normalised correlation coefficient of
envelopes between the vocoded clean and vocoded noisy speech (with/without noise
reduction) in each frequency band. The values are limited to the range of [-15, 15] dB
and mapped in the range of [0, 1]. These values are averaged across all frequency bands
to produce the NCM value. More detailed information for how to compute the NCM is

given in Appendix B.1.
1512 The short-time objective intelligibility measure (STOI)

The STOI (Taal et al., 2011) is based on a correlation coefficient between the temporal
envelopes of vocoded clean and vocoded noisy speech in the short-time region. First,
the vocoded clean and vocoded noisy speech (with or without noise reduction) are
processed in each frame with a length of 25.6 ms performed by Hann-windows with a
50% overlap. Next, the windowed signals are decomposed into 15 one-third octave
bands. Then, the short-time temporal envelopes of the clean and noisy speech are
normalised to compensate for global level differences and clipped to make sure that the
sensitivity of the model is close to one time frequency-unit. Next, the short-time
temporal envelopes of both are compared by means of a correlation coefficient. The
short-time intermediate intelligibility measure across frequency bands is averaged to a

rating value. More details for computing STOI are explained in Appendix B.2.

1.6 Conclusion

Enhancing speech intelligibility in noisy speech has been attempted over the last
decade, but little progress has been made in designing algorithms due to their drawbacks

and limitations as described above. The development of effective algorithms (i.e. speech
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coding strategies and noise reduction algorithms) with low complexity is considered to
be the main drawback. The objective of this study is to investigate whether a wavelet
packet-based speech coding strategy with envelope-based noise reduction algorithms
can improve speech intelligibility in noisy speech for CI users. The intelligibility
performance of these algorithms is evaluated using objective measures and subjective
tests with NH listeners for different noise types and SNR levels.

1.7 Outline of Thesis

With the motivation of improving speech intelligibility in noisy speech for CI
processors, wavelet analysis is exploited to develop a novel speech coding strategy. The
design, analysis, and evaluation of the speech coding strategy are discussed and

organised as follows:

Chapter 2 gives a comprehensive review of wavelet analysis. Discrete wavelet
transforms (DWTs) are described in terms of filter banks. DWTSs can be classified into
real-valued and complex wavelets. The real-value wavelets including standard DWT,
stationary wavelet transform (SWT) and wavelet packet transform (WPT), are explained
in terms of their structure of decomposition and reconstruction. The benefits of wavelets

and their applications are given.

Chapter 3 gives some details associated with CI design, such as the concept of the
basilar membrane model and auditory filter banks. These lead to the design of the
structure of a Bark scale wavelet packet used in the speech coding strategy. This
strategy is compared to the structure of a standard ACE strategy.

Chapter 4 presents the principle of noise reduction techniques (i.e. analysis,
suppression and synthesis). The noise reduction algorithms, namely time-frequency
spectral subtraction (TFSS) and time-adaptive wavelet thresholding (TAWT), are
described and compared to ideal binary masking (IdBM) as a baseline for denoising
performance. These algorithms are integrated into the speech coding strategy as an
envelope-based noise reduction strategy to directly attenuate the envelope of noisy

speech. An evaluation with objective intelligibility measures (i.e. the normalised
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covariance metric (NCM) and short-time objective intelligibility (STOI)) is used to
predict the trend of performance, before a listening test with normal-hearing listeners.

Chapter 5 presents the study with normal-hearing listeners, to show the
contribution of improving speech intelligibility in noise reduction algorithms in a
wavelet packet-based speech coding strategy. The performance evaluation with NH
listeners can be divided into two parts: the effects of parametric variation in wavelet
packet filter banks on speech intelligibility (i.e. filter spacing, types of mother wavelet
and frame lengths) to find the optimal parameters and the comparison of noise reduction
algorithms in cases of different types of noise and different SNR levels. The sentence
scores obtained from normal-hearing listeners and the predicted values of NCM and
STOI are assessed for validity.

In Chapter 6, a general discussion is presented of the limitations of wavelet
packets, the objective intelligibility measures, vocoder simulation, and performance
evaluation for developing speech coding strategies with noise reduction algorithms.
Finally, some limitations of this study are discussed, and directions for future research

are given.

Chapter 7 presents the conclusion and contributions of the research.
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Chapter 2.  Wavelet Analysis

2.1 Introduction

Transformations are useful tools to enable the exploration of signal characteristics. In
the analysis stage, a signal is transformed into another domain by techniques such as
discrete Fourier transform (DFT), discrete cosine transform (DCT), wavelet transform
(WT), and so on. The oldest and best-known method is the Fourier transform (FT) that
transforms any signal from the time domain to the frequency domain. However, the FT
is not always the best tool to analyse real signals. It is not appropriate for analysing
nonstationary signals and it is not able to reveal inherent information in nonstationary
signals (Peng and Chu, 2004).

This problem has been partly resolved by using the short-time Fourier transform
(STFT) based on time-frequency analysis. For many years the STFT has been the most
popular method for analysing nonstationary signals like speech. However, the
shortcoming of STFT is that it uses the same window for analysing the different
frequency bands, which provides constant resolution at all frequencies. This property
does not reflect the structure of speech. Wavelets are characterized by having a time
resolution which increases with high frequency. Consequently, wavelets provide a
natural candidate with which to compute features for speech processing in a Cl system.

This chapter gives a brief overview of wavelet evolution, the main wavelet theory
and its application to speech processing. The FT and the STFT are explained and
compared in order to better understand the basic concept of wavelet analysis. Important
concepts related to wavelet analysis, including dilation, translation, multiresolution

analysis and filter banks, are considered.
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2.2 Fourier transform (FT)

The FT is a well-known mathematical tool and a helpful method of representing signals

from the time domain to the frequency domain. The FT of any signal x(t) is given by
Xer () =] x()e *"dt (2.1)

The FT contains basis functions that are sinusoidal waves. A signal is decomposed into
sine waves of different frequencies. The FT has a good ability to extract information
efficiently. However, the limitation of FT is that it cannot offer both time and frequency
localisation of a signal at the same time; it only provides easily accessible information
about the global frequency content. This is not a serious shortcoming for stationary
signals that do not change over time. However, it does hinder its direct application for

nonstationary signals that change over time, such as speech signals.

The short-time Fourier transform (STFT) was introduced to overcome this
problem by using a fixed-length window w(t) shifted to be centred at time z This
window is translated along the time axis, analysing the frequency content of the signal

in the windowed time interval. Mathematically the STFT can be defined as:
Xgrer (7, F) = jw X(t)w(t —7)e 12" dt (2.2)

Even though the STFT has demonstrated utility in numerous applications, it has
disadvantages. Due to its use of a single window length for analysing the whole signal,
the time-frequency resolution of signal analysis is the same at all locations in a time-
frequency plane. The accuracy of the information obtained from the STFT is limited by
the size and shape of the window. Many naturally-occurring signals contain long-lasting
frequency components, but high frequency components may require shorter time
windows. The STFT offers fixed time and frequency resolution so is not well suited to

analysis of such signals.

Figure 2.1 shows the time-frequency plane of the STFT with Heisenberg boxes.
Heisenberg’s uncertainty principle suggests that in modelling a signal one cannot be
arbitrarily precise in both time and frequency simultaneously. This principle states that

the product of time resolution At and frequency resolution Af is constant. That means

that the boxes in the time-frequency plane have the same area. The STFT uses a fixed
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window length, and thus At and Af are constant all the whole plane. Figure 2.1 (a)
illustrates that a longer window provides better frequency resolution but poorer time
resolution. Figure 2.1 (b) shows that a shorter window provides better time resolution
but poorer frequency resolution. It is impossible to obtain good time resolution and
good frequency resolution using STFT. The WT gives a better trade-off between time
and frequency resolutions than the fixed window length used in the STFT. The details

of WT are described in next section.

A A
>
2 g
) 8
g g
= i3
Af Af
Time At g Time At g
(a) STFT with longer window (b) STFT with shorter window

Figure 2.1 The time-frequency plane of STFT.
Adapted from Vetterli and Herley (1992).

2.3  Wavelet transform (WT)

23.1 Wavelets

A wavelet is a waveform with a set oscillatory structure that is nonzero for a limited
duration, with additional mathematical properties (Fugal, 2009; Mallat, 2009). Within
the constraints of the required mathematical properties, wavelets have different shapes
and sizes. The difference between sinusoidal waves and wavelets is shown in Figure

2.2.

A wavelet transform (WT) is performed using a wavelet basis function. A signal
is decomposed by using translated and dilated versions of the wavelet basis function to

produce a correlation of signals and localise energy concentration in the time-frequency
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domain. This function is informally called a “mother wavelet”, which can be thought of
as a bandpass filter (\Vetterli and Herley, 1992). The mother wavelet can be specified by
a set of numbers referred to as the coefficients of the wavelet filter. There are many
different types of mother wavelets such as the Mexican hat wavelet, Daubechies, Symlet
and Coiflet.

The mother wavelets can be selected according to the characteristics of signals
and the requirement of each application (Fugal, 2009). For example, the Mexican hat
wavelet is employed in vision analysis, because its characteristics are similar to the
computation performed by the retina. The Morlet wavelet is used in atmospheric indices
(e.g. cyclical change in air pressure and in storm tracks). The Haar wavelet is well
suited to edge detection. The Daubechies and Symlet wavelet is often used in speech

and image processing.

(a) Sinusoidal function (b) Wavelet function

Figure 2.2 Characteristics of sinusoidal and wavelet functions.

Wavelet theory was introduced in 1984 by Morlet, who formalised the continuous
wavelet transform (CWT) (Peng and Chu, 2004). In the next year Mayer constructed
orthonormal wavelets with very good time and frequency localisation properties. Mayer
and Mallat developed the concept of multiresolution analysis (MRA) which is useful for
constructing other orthonormal wavelets and for computing the wavelet decomposition
of signals from their finest approximation resolution using a recursive filtering
algorithm. In 1988 Daubechies constructed a set of orthonormal wavelet basis functions
with compact support that have become the foundation of many wavelet applications.
Wavelet development from continuous to discrete signal analysis, developed by
Daubechies and Mallat, is widely accepted and credited.
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WTs are broadly classified into continuous wavelet transforms (CWTs) and
discrete wavelet transforms (DWTSs). DWTs, as shown in Figure 2.3, can be classified
into two main types: real-valued DWTs and complex-valued DWTs. The real-valued
DWTs use real-valued filter coefficients and give real-valued wavelet coefficients. In
contrast, the complex-valued DWTs also use real-valued filter coefficients but give
complex-valued wavelet coefficients. The class of real-valued DWTs can be divided
into three basic forms: the standard DWT, stationary wavelet transforms (SWTSs), and

wavelet packet transforms (WPTs). The CWTs can be divided into two classes: dual-

tree DWT-based CWTs and projection-based CWTSs.

Discrete Wavelet Transform
(DWT)
I

v v

| Real-valued Wavelets | | Complex-valued Wavelets |
I I

v

v

v

Standard Discrete
Wavelet Transform
(DWT)

Stationary Wavelet
Transform (SWT)

Wavelet Packet
Transform (WPT)

Dual-Tree DWT
based Complex WT

Kingsbury’s dual-tree

Selesnick’s dual-tree

v

Projection based
Complex WT

complex wavelet
transform

complex wavelet
transform

Figure 2.3 The classification of discrete wavelet transforms.

2.3.2 Continuous wavelet transforms (CWTSs)

Let w,,(t) be a wavelet basis function (Daubechies, 1992), which is generated in dilated

and translated versions:

t—b

Vab (t)= % V/(Tj

where the real numbers a(a>0) and b denote the dilation and the translation

(2.3)

respectively. The factor 1/+/a is introduced to guarantee energy preservation. The

CWT of any signal x(t) is defined as:
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cab)=—[" x(t)y/(ﬂj dt (2.4)
Ja - a
where C(a,b) are known as the wavelet coefficients.

The wavelet function v, (t) is stretched and contracted by changing the dilation

parameter a, which covers different frequency ranges. With larger a the wavelet
function becomes stretched and corresponds to low frequency components. The wavelet
function with smaller a becomes contracted and represents high frequency components.
Variation in the dilation parameter a also changes the window length. The wavelet is

shifted over the signal by changing the translation parameter b.

WT provides a flexible time-frequency window. The frequency resolution of the
WT is good at low frequencies while the time resolution becomes good at high
frequencies. This approach is reasonable in practical applications when a signal has low
frequency components of long duration and high frequency components of short
duration. Figure 2.4 presents the time-frequency resolution of WT with Heisenberg
boxes. It is clear that WT uses longer time windows at lower frequencies and shorter

time windows at higher frequencies.

Frequency

Af AL

v

Time

Figure 2.4 Time-frequency plane of WT. Adapted from Vetterli and Herley (1992).

2.3.3 Discrete wavelet transforms (DWTS)

The CWT is infinitely redundant due to the continuous values of dilation a and

translation b. The CWT of these parameters also means the transforms are not suitable
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for implementation in digital form. The transformation can be discretised by selecting a
suitable set values of a and b at which to evaluate the CWT. The general sampling
strategy adopted is defined by a=a/] and b=kalb, where a, >1 and b, >0 are fixed,

and j,k €”Z (Daubechies, 1992). The different values of j correspond to the different

widths of the wavelets. A discrete set of wavelet basis functions is generated, so that

Equation (2.3) becomes:
V(D) =8 " w8 t-Kby) (2.5)

It can be shown that for critical sampling & =2 and b, =1, so that a=2",b=k2’ to

produce the minimal basis. In order to preserve all information about the decomposed

function, the sampling cannot be coarser than this critical sampling.

The dilation a=2! is by a power of 2, sometimes called dyadic. Thus the dyadic

parameter of the wavelet basis function is given as:

‘//j,k(t)zz_jlzl//(z_jt_k) (2.6)

This is actually an octave band filter and it can be interpreted as a form of constant-Q

filtering, where Q represents the quality factor of the filter and is defined as the centre

frequency f, divided by its bandwidth.

2.3.3.1 Implementation of DWT

The implementation of DWT can be viewed as either multiresolution analysis or a filter

bank as follows.
2.3.3.1.1  Multiresolution analysis

The wavelets can be constructed from the concept of multiresolution analysis (MRA)
which was introduced by Mallat and Meyer (Daubechies, 1992; Vetterli and Herley,
1992; Meyer, 1993; Mallat, 2009). A multiresolution approximation is a sequence of

closed subspaces V,, jeZ of L?(R) having the following properties, which form a

hierarchy:
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~V,cV,cV,cV, VvV,
V,cV,, (2.7)

This is a causality property that verifies that a signal approximation at a given resolution
contains all the necessary information to compute a signal approximation at coarser

resolutions.

The nested spaces have an intersection NV, :{0} which implies that the details

of a signal approximation will be lost when the resolution reduces to 0. A union
2 - - 2 - - - -
w,;V,; =L°(R) that is dense in L°(R) imposes that the signal approximation converges

to the original signal. The hierarchy (2.7) is constructed such that V-spaces are self-

similar:

f(2)eV, o fH)eV,, 2.8)

That means the dilation in space V; by 2 enlarges the details by 2 (Vetterli and Herley,

1992). This guarantees that it determines an approximation at a coarser resolution.

There exists a scaling function ¢(t) that derives an approximation in space V; of
signals in space V, . The set of functions ¢, (t)=2""?¢(2"'t—k)is an orthonormal

basis for the space V;. In particular, if #(t)eV, and ¢(2t)€V,, since V, <V, the

scaling function g(t) can be represented as:
0 =2 > h(k)g(2t k) (2.9)

The wavelet function w(t) is an orthonormal basis of the different space W, . Let W, be

the orthogonal complement of V; in V,
V,, =V, W, (2.10)

V, , isequivalent to V; plus some added detail according to W, . In other words, a space

V,, of a multiresolution approximation is decomposed into a coarser approximation
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space V; plus a detail space W;. For j<J, the iteration of Equation (2.10) can be

written as:

V,=..V,  OW,  ®W, , OW,  &W

I-j1

V=V, @ @W,, (2.11)
k=0

Since the wavelet function w(t)eW, cV,, the wavelet function y(t) can be

generated from the scaling function ¢(t). This is introduced as:
w(®) =2 g(k)p(2t—k) (2.12)
k=—o0

The h(k) and g(k) are associated with coefficients of the lowpass filter (scaling filter)

and the highpass filter (wavelet filter), respectively. The DWT is derived from the
concept of MRA based on Equations (2.9) and (2.12). Hence any signal x(t) can be

represented in terms of wavelet and scaling functions as:

o0

S S, Ky, 0 (2.13)

k=—o0 j=0

X)) = > co(K)dh () +

with the approximation coefficients ¢;(k) and the detail coefficients d, (k) at level

1=0,12,...,J -1, and where J is the number of levels.

The pair of filters of wavelet decomposition, h(k) and g(k) are related to each

other and are known as a quadrature mirror filter (QMF) pair with
g(k) =+(-D)*h(L-k-1), Th(k)=+2 and Zg(k)=0, where N is the number of filter
coefficients. The pair of filters for the perfect reconstruction, h(k) and §(k) are related
to the filters of wavelet decomposition by §(k)=g(L—k-1) and h(k)=h(L—k-1)
(Appendix C). There exists a trade-off between the filter length L and computation time.

Higher filter lengths are smoother and are better able to distinguish between the

different frequencies, but they require more computation time.
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2.3.3.1.2 Filter bank

The DWT of any signal in L*(R) can be implemented by two-channel filter banks
which are filtering signals with a lowpass filter h(k) and a highpass filter g(k) (Mallat,
2009). The filtered signals are downsampled by 2 to provide approximation coefficients
¢; (k) and detail coefficients d; (k) for the lowpass and highpass filters respectively. At
the next level j, the approximation coefficients are decomposed. Such a wavelet

decomposition is a recursive algorithm and provides successively coarser resolution

coefficients given as:

¢,2(K)= > h(n—2K)c, (n) (2.14)
d,..() = Y g(n—2k)c, (n) (2.15)

Wavelet reconstruction processes by upsampling and filtering. The reconstructed signal
is the sum of the approximation coefficients and the detail coefficients at a coarser

resolution. This is given as:

c;(k) = i g(k—2n)c;,,(n)+ Zw: h(k—2n)d,,(n) (2.16)

n=—0

The decomposition and reconstruction of DWT can be considered as a tree-

structured filter bank, as shown in Figure 2.5 and Figure 2.6, when {Co(k)},kEZ

denotes the input signal of wavelet decomposition and the output signal of the wavelet
reconstruction. The symbols 12 and T2 in circles indicate the operation of
downsampling by 2 and upsampling by 2, respectively. Downsampling (or decimation)
by 2 means discarding all the odd or even samples of wavelet coefficients, whereas
upsampling by 2 means adding zeros between the samples of wavelet coefficients.

The difference in implementation between CWT and DWT are that CWT employs
all possible integer factors of dilation and translation (e.g. 2, 3, 4, and 5), while the
dilation of DWT uses powers of 2. Another difference is that CWT uses only one

wavelet filter while DWT uses four filters for decomposition and reconstruction.
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(@) (b)
Figure 2.5 DWT for the first level (J=1) decomposition (a) and reconstruction (b).

(b)

Figure 2.6 DWT for three-level (J=3) decomposition (a) and reconstruction (b).

2.3.3.2 Limitation of discrete wavelet transform

This DWT can be referred to as a standard DWT. The standard DWT suffers from some
fundamental problems (Kingsbury, 2001; Selesnick et al., 2005) specifically: shift
variance, and oscillation. Shift variance is the property whereby a small shift in a signal
can lead to relatively large unpredictable changes of wavelet coefficients around a
singularity, which is a large wavelet coefficient (Selesnick et al., 2005) and provides the
most information about the signal (Peng and Chu, 2004). It can result in significant
variation in the energy distribution between wavelet coefficients at different scales

(Kingsbury, 2001). Generally, singularity extraction with standard DWT-based
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processing yields large wavelet coefficients. However, wavelet functions are bandpass
filters, and these wavelet coefficients may oscillate around singularities which are

overlapped to provide small or zero wavelet coefficients (Selesnick et al., 2005).

2.4 Extension of discrete wavelet transforms

The standard DWT may not be good enough for some applications. The standard DWT
can be extended to the stationary wavelet transform (SWT) and the wavelet packet
transform (WPT) by changing some of procedures associated with decomposition and

reconstruction in the standard DWT.

24.1 Stationary wavelet transforms (SWTys)

The SWT is sometimes referred to as the undecimated DWT (UDWT), redundant DWT
(RDWT), or shift-invariant DWT (SIDWT) along with other terms. The SWT can be
implemented by removing the up/downsampling operation in the standard DWT and
inserting zeros between filter coefficients in the pair of filters. An example of the

decomposition and reconstruction of SWT is shown in Figure 2.7. The frequency

allocation for SWT is the same as that for DWT. The approximation coefficients c; (k)

and the detail coefficients d;(k) have the same size as the input signal C,(k) at level

]=0,12,...,d =1. Hence SWT has redundancy, but not to the same degree as CWT.
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(b)
Figure 2.7 SWT for three-level (J=3) decomposition (a) and reconstruction (b).

2.4.2 Wavelet packet transforms (WPTSs)

In 1992, Coifman, Meyer and Wickerhauser (1992) introduced the WPT, which is a
further generalisation of the standard DWT. The WPT decomposes a signal into
approximation coefficients and detail coefficients and then decomposes recursively on
both to give a binary tree structure. Therefore the WPT provides a much richer
frequency subband of possibilities in signal analysis, which cannot be obtained by using
standard DWT or SWT.

The filter bank algorithm of WPT decomposition (Mallat, 2009) can be

represented by:

W, ()= > g(p—2K)w, ,(p) (2.17)
W, ma(K)= 3 h(p—2K)W, ,(p) (2.18)

p=—0

Each internal node W; , in the binary tree is decomposed into child nodes w,,;,, and

w The WPT reconstruction can be expressed as:

j+l,2n+l "
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W ()= S GKk-2pW, o0 (P)+ S Ak —2P)W, i pma(p)  (2:19)

p=—c0 p=—n

where w; (k) are wavelet coefficients which are defined by the k™ index of the n"
subband (node) at level j in the structure of the binary tree. Hereafter, w; (k) is used as
the sequence of all wavelet coefficients (i.e. approximation coefficients c; (k) and detail

coefficients dj(k)), which are derived by the standard DWT at level j; k is the

coefficient index.
2421 The tree-structured filter bank of WPT

The decomposition structure of WPT can be either a full binary tree (Figure 2.8) or an
admissible tree (Figure 2.9). A full binary tree decomposes any signal into 2/ nodes. An
admissible tree (Mallat, 2009) is a binary tree where any node has either zero or two
child nodes. In other words, an admissible tree has independence to stop or continue the

decomposition at any node.

HLLC)
&)

(a) (b)

Figure 2.8 WPT with a full binary tree for two-level (J=2)

decomposition (a) and reconstruction (b).
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Figure 2.9 Example of WPT with an admissible tree

for three-level (J=3) decomposition.

2.4.2.2 Frequency ordering

Let E be sets of terminal nodes (j,n) andEC{(j,n)IOZj<J,0£n<2j}of a

wavelet decomposition tree (Cohen, 2001). A terminal node (j,n) is associated with a

subband whose bandwidth and centre frequency are given by:

A =201 12 (2.20)
fim=GC () +05]2"- f,/2 (2.21)

where GC™ is the inverse Grey code permutation of n, and f, is the sampling rate of

the signal. The lower and upper frequency of each subband is [n,n+1]x2’- f /2.

2.5  Complex wavelet transforms

Complex wavelet transforms (CWTs) were introduced to overcome some of the
limitations of the real-valued standard DWT. CWTs can be widely divided into two

classes: dual-tree DWT-based CWT and projection-based CWT.

The well-known form of CWT is dual-tree DWT-based CWT, otherwise known

as Kingsbury’s dual-tree CWT (Kingsbury, 2001) and Selesnick’s dual-tree CWT
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(Selesnick et al., 2005). Dual-tree CWT employs two real-valued standard DWTS,

where the first and second standard DWTs are the real and imaginary parts of the
wavelet coefficients. The two real-valued standard DWTs use two different sets of
filters. Both parts are operated in parallel to decompose and reconstruct the signal. The

implementation of dual-tree CWT is illustrated in Figure 2.10. Projection-based CWT

was introduced by Fernandes et al. (2003). This transform represents the conversion of a

real signal to a complex form, followed by a DWT of the complex mapping.

The CWT provides advantages of reduced shift variance and improved

directionality in two and higher dimensions. This has been most frequently applied in
image processing and is suitable for several applications such as classification, feature

extraction, motion estimation, coding, and watermarking. Further details of CWT and

its applications are given in Kingsbury (2001), Fernandes et al. (2003) and Selesnick et
al. (2005).

Real Tree

Imaginary Tree

Figure 2.10 The decomposition of the dual-tree CWT.

2.6  Wavelets and their applications

In the late 1980s, WT has been successfully utilised and applied to various research
fields. Their applications cover research areas as diverse as acoustics, speech and audio
processing, image processing, telecommunications, medicine and biology, physics and

seismology. The application of wavelets can be found in a vast amount of available
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literature (Kingsbury, 2001; Peng and Chu, 2004; Selesnick et al., 2005; Fugal, 2009;
Mallat, 2009). All wavelet-based applications may be grouped into a few main types
associated with the wavelet’s properties (Peng and Chu, 2004), namely time-frequency
analysis, feature extraction, singularity detection, signal denoising, and data
compression. Brief descriptions of some specific applications, including time-frequency
analysis, signal denoising and data compression, are given here.

2.6.1 Time-frequency analysis

Time-frequency signal analysis is a powerful tool for the analysis and processing of
nonstationary signals. Signals are characterised in a time-frequency plane and
potentially reveal a picture of the signal’s components in the temporal localisation. The
WT has good utility in terms of time-frequency analysis as explained in Section 2.3.
The WT yields high frequency resolution and low time resolution at low frequency. In
contrast, it yields low frequency resolution and high time resolution at high frequency.
Such time-frequency analysis using WT provides excellent time-frequency localised

features of information simultaneously (Selesnick et al., 2005).

Several researchers have employed WT for analysing speech signals. Kadambe
and Boudreauxbartels (1992) proposed a pitch detector based on the standard DWT
which was suitable for both low-pitched and high-pitched speakers and was robust to
noise. Tan et al. (1994) found that the SWT can locate the spectral changes of the
speech signal accurately. This can be easily identified the speech into voice, plosives,
fricative and silence. Voice activity detection (VAD), which is based on DWT
(Stegmann and Schroder, 1997) and WPT (Chen et al., 2007), utilised the flexibility of
WT in terms of time-frequency resolution to compute robust parameters for VAD

decisions in noisy environments.

2.6.2 Signal denoising and data compression

The wavelet basis function has a property of compact support that provides good energy
concentration information. Therefore, a singularity of the signal is large wavelet
coefficients while others have small wavelet coefficients. This reflects the ability for

separation between useful signal and noise. Many real-world signals are represented in
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wavelet domain by a few large coefficients which are the key to sparsity (Donoho and
Johnstone, 1994; Selesnick et al., 2005). The sparsity of wavelet coefficients allows
near-optimal signal processing based on simple thresholding i.e. keeping the large
wavelet coefficients and killing the small ones without significant errors in representing
the characteristics of the signal (Selesnick et al., 2005). This is key for signal denoising

and data compression.

The wavelet-based denoising approach was successfully developed by Donoho and
Johnstone (1994). This method is simply performed in three steps, which are: signal
decomposition, modification of wavelet coefficients with wavelet thresholding, and
signal reconstruction. The wavelet coefficients can be denoised by setting all wavelet
coefficients below a threshold value to zero. This can nearly optimally reduce noise
while preserving the important information of the original signal. This approach has
been developed and modified into several versions in the past few decades to develop

techniques appropriate to different applications.

Wavelet thresholding has been widely applied in the area of speech enhancement.
A variety of methods have been considered, including classical wavelet thresholding
(i.e. soft thresholding and hard thresholding) (Pinter, 1996; Bahoura and Rouat, 2001;
Chang, 2002; Chen and Wang, 2004; Bahoura and Rouat, 2006), modified hard
thresholding based on standard DWT (Sheikhzadeh, 2001), and WPT (Ghanbari and
Karami-Mollaei, 2006). Moreover, wavelet shrinkage has been effectively combined
with other algorithms for speech enhancement to increase noise reduction performance
in noisy speech, such as spectral subtraction (Shao and Chang, 2007) and multitaper

spectra estimation (Hu and Loizou, 2004).

Various techniques of enhancing speech have been developed in the wavelet
domain such as Wiener filtering (Cohen, 2001), blind adaptive filter (Veselinovic and
Graupe, 2003), minimum mean square error-short time spectral amplitude (MMSE-
STSA) (Tasmaz and Ercelebi, 2008), Kalman filtering (Shao and Chang, 2006), hidden
Markov models (HMMs) (Shao and Chang, 2011) and blind source separation (Ashino
et al., 2010; Litvin and Cohen, 2011).

Data compression becomes an economic factor for either storage or transmission
of data. The idea of data compression is to use fewer bits to represent the same

information at some given representation (lossless compression), or to use fewer bits to
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represent the given data approximately (lossy compression). Actually, the principles of
data compression are similar to signal denoising. The small wavelet coefficients can be
set to zero. The greater the number of zeros, the lower the number of bits in the
encoding stage of data compression. Wavelet-based data compression can often obtain a
high compression ratio and maintain the singularities of signals in areas such as audio
compression (Sinha and Tewfik, 1993; Srinivasan and Jamieson, 1998; Reyes et al.,

2003) and speech compression (Agbinya, 1996; Carnero and Drygajlo, 1999)

2.7 Discussion and conclusion

Wavelet analysis has established a remarkable reputation as a powerful tool for signal
analysis, signal denoising and data compression. The strength of WT compared to FT is
in time-frequency analysis and compact support. In time-frequency analysis, the dilation
and translation of WT can lead to signal analysis with variable length windows for
analysing different frequency components. This allows practical and efficient
representation for many types of signals (e.g. nonstationary signals), but it may not be
suitable for FT. The compact support of wavelets influences the sparsity of wavelet
coefficients, which is useful and important for the performance of signal denoising and

data compression.

WT can be classified into continuous wavelet transforms (CWTs) and discrete
wavelet transforms (DWTs). DWTs can be divided into real-valued DWTs and
complex-valued DWTs. Real-valued DWTs are more appropriate for real-time
applications than CWTs and complex-valued DWTSs due to their lower redundancy. The
class of real-valued DWTs can be divided into three general forms: standard DWT,

stationary wavelet transform (SWT), and wavelet packet transform (WPT).

The filtering process for standard DWT is a recursive process with decomposing
only on low frequency components and downsampling by 2. The filtering process of
SWT is similar to standard DWT but the downsampling step is removed. The filtering
process of WPT is similar to standard DWT, but WPT is iterated on both the low and
high frequency components of the signal. The different filtering process of real-valued
DWTs results in a difference in computational complexity. The computational

complexities of standard DWT, SWT, and WPT are O(n), O(n?) and O(nlog ,n)
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operations, respectively (Shukla, 2003; Mallat, 2009), where n is the length of data
samples and O is a symbol used in complexity theory. Both SWT and WPT are

generally higher redundancy and computational complexity than standard DWT.

WPT and FFT have the same computational complexity, which requires

O(nlog ,n) operations. However, their computational complexities may different

depending on computational algorithms and implementations (Mallat, 2009). The
computational complexity of WPT relates to the length of filter coefficients, the
decomposition levels, and the decomposition structures (i.e. a full binary tree and an
admissible tree). These can result in less computational cost than FFT and bandpass
filters (BPFs) (i.e. finite impulse response (FIR) filters and infinite impulse response
(IIR) filters ) in the same application (e.g. Cl applications) (Gopalakrishna et al.,
2010b).

The WPT decomposes recursively on both low (approximation coefficients) and
high (detail coefficients) frequency components of the signal, but not for the standard
DWT or others. Consequently, the WPT offers more frequency bands for signal analysis
than the other DWTs. The WPT provides flexibility in selecting the number of
frequency bands, and setting centre frequencies and bandwidths. Therefore, the WPT is
more suitable for CI processors than other DWTs. In addition, WPT has more benefit
than BPFs and FFT; these are summarised in Table 2.1. A comprehensive overview is
provided in the next chapter (Section 3.4).
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Table 2.1 Comparison of advantages and disadvantages among different filter banks in

Cl applications.

_ Filter banks
Criteria
BPFs FFT WPT
Signal analysis Time domain Frequency domain Tlm((ej-freq_uency
omain

Temporal and spectral
resolution

Good temporal
resolution, but poor
frequency resolution

Poor temporal
resolution, but good
frequency resolution

Good temporal
resolution, and good
frequency resolution

Configuration design

of filter banks Difficult Simple Simple
Computational High Medium Low
complexity

!‘OSS of t_emporal High High Low
information

_Loss of s_pectral Low High Low
information
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Chapter 3:  Wavelet packet-based speech coding

strategy for cochlear implants

3.1 Introduction

In recent decades, developments in bio-signal processing have led to a trend of
mimicking real bio-systems. The human auditory system has remarkable capabilities to
detect, separate, and recognise speech, music and other environmental sounds (Yang et
al., 1992). The functional principle of human auditory perception is incorporated in the
design and implementation of human-machine communication systems, especially
hearing prosthesis for analysis, synthesis, and transmission. The adoption of such
auditory processing techniques has usually led to substantial improvements in the

performance of these systems (Yang et al., 1992).

Many applications mimicking human auditory models can be applied to speech
analysis, speech synthesis, speech coding, speech recognition, speech enhancement,
room acoustics, and algorithms for the objective evaluation of speech intelligibility and
quality. In hearing prosthesis, wavelet transforms (WTs) have been considered for
employment in prosthesis devices as a compensation algorithm for hearing-impaired
people, including multiband dynamic range compression (Drake et al., 1993), nonlinear
automatic gain control in hearing aids (Li et al., 2000), noise reduction in hearing aids
(Li et al., 2001) and speech processing in cochlear implants (Yao and Zhang, 2002;
Gopalakrishna et al., 2010b).

Ideally, a cochlear implant (C1) would be able to imitate and replace the auditory
functions of the inner ear (Zeng, 2004). An understanding of cochlear function will
provide insights into many aspects of the auditory processing of speech signals. This
understanding will motivate the development of novel approaches for speech processing
in the auditory system in order to improve the performance of Cls. The main purpose of
this chapter is to describe the important points and some details related to the design of
Cls based on wavelet packet transform (WPT). Some criteria associated with CI design
are considered, including filter banks, frequency scales, the structures of wavelet

decomposition trees, and types of mother wavelet.
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3.2 Basilar membrane model

Pioneering research by Georg von Békésy in the 1950s (Loizou, 1998) showed that the

35-mm basilar membrane (BM) running along the cochlea in the inner ear is responsible
for separating received frequencies into different spatial locations along its length. A
sinusoidal stimulation takes the pattern of a traveling wave that propagates from base to
apex along the BM. The amplitude of the wave reaches a maximum at a particular
position before slowing down and decaying rapidly. Consequently, different positions
on the BM correspond to specific frequencies according to their maximum amplitudes
(Figure 3.1). With the largest amplitude of displacement, high frequencies are
characterised at the base while low frequencies are at the apex. A frequency that gives a
maximum response at particular position on the BM is known the characteristic

frequency (CF) for that position.

e883 9927 5100

Figure 3.1 Diagram of the basilar membrane showing the base and the apex.
The positions of maximum displacement in response to sinusoids of different
frequencies (in Hz) are indicated (Loizou, 1998).

When complex natural sounds are decomposed into different frequency
components, they produce maximum displacement at different positions along the BM.
These positions on the BM can be modelled as a filter bank of a large number of
overlapping bandpass filters, commonly approximately 10,000 filters. Each bandpass

filter with its bandwidth has a certain centre frequency according to the characteristic
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frequency. These filters are known as the auditory filter, and their bandwidth is called
the critical bandwidth (CB). The critical bandwidth theory claims that the same
bandwidth plays an important role in terms of harmonic discrimination, masking effects,
and other psychoacoustic phenomena (e.g. perception of loudness, pitch, and timbre)
(Harma et al., 2000; Chen and Wang, 2004).

The critical bandwidth and the shapes of auditory filters on the whole range of
audible frequencies have been directly measured in experiments using many different
methods. Experimental measures have included the absolute threshold of complex
sounds, the masking of a band of noise by two tones, sensitivity to phase differences,
and loudness. Most of the methods for estimating the auditory filter shape are based on
assumptions about the power spectrum model of masking, such as psychophysical
tuning curves, the rippled-noise method and the notched-noise method (Moore, 2008).
Further details of measurements are given in Glasberg and Moore (1990) and Moore
(2008).

In auditory processing, it has been found that the performance of WT filters is
equivalent to the performance of auditory filters by analysing properties of the BM
model (Yang et al., 1992; Yao and Zhang, 2002). The BM is sensitive to higher
frequencies at the base (analysing short transients with lower frequency resolution), and
it is sensitive to low frequencies at the apex (analysing long transients with higher
frequency resolution). Hence a WT decomposition with similar characteristics to those
of cochlear filters may be effective for speech and auditory processing.

3.3  Auditory filter banks

Auditory filter banks are bandpass filters designed to mimic the frequency resolution of
human auditory perception (Smith and Abel, 1999). An ideal bandpass filter is used to
separate signals by accepting signals within a desired frequency band, and to provide
potentially useful spectral transforms of speech signals. The auditory filter can be
considered as a weighting function, which is used in the spectrum of acoustic signals to
determine the effective magnitude of the output of the filter (Glasberg and Moore,
1990). The output of the filter bank of analysis signals affects the information

transmitted to the auditory nerves in the brain. The critical bandwidth of the auditory
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filter is an important thing, and it can be determined by a wide variety of models based

on experimental techniques.

3.3.1 Cochlear mapping

The relation between centre frequency and position on the BM has been modelled by
Greenwood (1990), resulting in the cochlear frequency-position function. This function

closely agrees with Békésy’s cochlear coordinates. Greenwood’s function is given by:

f =165.4(10°% ~1) (3.1)

and the first derivative of Equation (3.1) is:

df, _ 5, g, fo+165.4

C

: 3.2
dx 165.4 (32

where X is the location on the cochlea (in millimetres), f_ is the centre frequency (in
Hertz) corresponding to that location and df /dx is the bandwidth related to a 1-mm

range on the cochlea (Harma et al., 2000).

3.3.2 Auditory frequency scales

In physics, frequency is normally expressed in units of Hertz (Hz). In speech and
hearing research, various frequency scales have been proposed in other units. The
frequency scales and their critical bandwidths are usually based on a model of auditory
filters, and they may be derived in many different ways (Harma et al., 2000), such as
frequency-position maps of the cochlea, critical-band measures, or pitch scaling
experiments. The frequency scales can be in the form of linear or nonlinear scales such
as one-third octave, Bark, ERB, Mel and so on. Even though all the scales differ
somewhat in terms of their numerical values (Zwicker and Terhardt, 1980), most of the
frequency scales tend to be linear functions of frequency in the low-frequency region
(0-1 kHz), and logarithmic functions in the mid- (1-5 kHz) and high-(5-8 kHz)
frequency regions (Miller, 1989).
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Figure 3.2 Comparison of different frequency scales.

3321 Comparison of different frequency scales

One-third octave filter banks are usually used in the audio industry as a convenient
idealisation of auditory filters. The Bark scale is derived from measurements of the
characteristic frequencies of the human auditory system (Zwicker and Terhardt, 1980).
It is an approximate linear scale for frequencies below 500 Hz and an approximate
logarithmic scale for higher frequencies. The Mel (melody) scale has been employed
based on a subjective measure of pitch magnitude. The Mel scale is parallel to the Bark
scale, with a Bark unit corresponding to 100 Mels. A newer frequency scale is the ERB
(equivalent rectangular bandwidth) scale (Glasberg and Moore, 1990) which is found by
using the notched-noise method. The ERB scale is conceptually similar to the Bark

scale.

The different frequency scales, including ERB, Bark, and one-third octave, may be
compared. The critical bandwidths may be plotted on a log-log scale as in Figure 3.2
(Harma et al., 2000). The ERB is very close to the bandwidth of Greenwood’s function.
The critical bandwidths of ERB are narrower than those of the Bark scales, especially at
frequencies below 500 Hz. For frequencies below 500 Hz, the ERB scale is neither
linear, like the Bark scale, nor logarithmic, but something in between (Hermes and
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Vangestel, 1991). The critical bandwidths of the Bark scale are wider at low and high
frequencies, but the correspondence is excellent at the central range of hearing from 700
Hz to 4 kHz (Harma et al., 2000).

3.3.2.2 Frequency-to-place map on electrode array

The electrode array directly interfaces between the electrical output of the speech
processor and the auditory neural tissue. The amount of signal energy in each frequency
band of speech coding strategy should be directed to the correct position in the
electrically stimulated cochlea to achieve a high level of speech recognition
(Stakhovskaya et al., 2007). The use of filter banks requires the specification of the
critical bandwidth in each frequency band that relates to a particular electrode. There are

two important limitations for specified critical bandwidths (Fourakis et al., 2004).

The first is that electrode insertion cannot be accurately aligned with the tonotopic
organisation of the cochlea, which is that the apical part of the cochlea encodes low
frequencies, while the basal part encodes high frequencies. This is because of the
individual insertion depth of the electrode array and the total length of the electrode
array, which are dependent on the type of implant (Baumann and Nobbe, 2006; Fan-
Gang et al., 2008). Moreover, each manufacturer uses a different electrode array in
terms of both the number of electrodes and the electrode spacing (Fan-Gang et al.,
2008) (Appendix D.1). Consequently, the intended pitches for perception differ from
those that are actually perceived. The speech signal is therefore less intelligible. In
addition, the speech sounds unnatural and ‘high-pitched” or “Donald Duck-like”
(Loizou, 1998). The assigned centre frequencies of electrodes should correspond as

closely as possible to the positionally determined frequencies along the cochlea.

The second limitation is that there is currently no provision for the programming
audiologist to specify the frequency ranges of critical bandwidth values to electrodes
when creating speech processor programmes (referred to as MAPSs) for individual ClI
users. The critical bandwidth for the Nucleus processor is commonly specified through
frequency tables (Cochlear, 2002) as part of the programming software for the creation
of MAPs for individual CI users. The existing frequency tables do offer some flexibility
in the number of filters (8 to 22) and the electrodes that can be allocated to different

frequency ranges of the incoming speech signals.
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The first limitation is of great importance. Many researchers have studied the
pattern of electrical stimulation delivered to CI electrodes in relation to the depth and
angle of electrode insertion, but this issue is beyond the scope of this thesis. The latter
limitation is considered in simulating speech processing in Cls. Although Greenwood’s
function has been used to estimate the centre frequency of an electrode array (Baumann
and Nobbe, 2006; Stakhovskaya et al., 2007), none of the frequency-to-electrode

allocations are actually matched to the Greenwood function.

There are possible limitations of the application of the Greenwood function to Cls
(Stakhovskaya et al., 2007). The first limitation is that the Greenwood function may
provide accurate estimates of the frequency-to-electrode allocations only if the position
of spike initiations in the electrical excitation of the spiral ganglion cell is close to the
organ of Corti. Another important limitation is that accurate estimates of the position of
the electrodes in the cochlea require knowledge of the total length of the organ of Corti,
which cannot be determined in most temporal bone and imaging studies. Frequency
estimation using the average length of the organ of Corti may be inaccurate due to
substantial individual variability. Therefore, most commonly the speech frequency
range is divided up between the available electrodes, regardless of the depth of

insertion.

Different manufacturers have different approaches to frequency-to-electrode
allocation. Some speech coding strategies use a logarithmic scale, while other CI
processors use both linear and logarithmic scales (Loizou, 2006). The existing filter
bandwidths of the Nucleus processor, as specified by the manufacturers, do not
explicitly define a certain filter bank approach (Nogueira et al., 2005). The filter
bandwidths are linearly spaced below 1 kHz, and logarithmically spaced above 1 kHz.
The recommended frequency tables for the Nucleus processor (Cochlear, 2002),
especially 128-point FFT, are almost the same as the Bark scale (Nogueira et al., 2006)

as shown in Figure 3.4 (a).

3.4  Wavelet packet filter banks

All ClI speech coding strategies are based on a filter bank approach, which is the first

stage of speech processing. They use a filter bank which decomposes the speech signals
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into multiple frequency channels to determine the characteristics of auditory filters and
provide spectral and temporal information. There are different implementations of filter
banks, including finite impulse response (FIR) filters, infinite impulse response (IIR)
filters (Buechner et al., 2009), short-time Fourier transform (STFT) (Cochlear, 2002),
and wavelet transforms (WT).

The use of bandpass filters (BPFs), namely FIR and IIR filters, is based on signal
analysis in the time domain. BPFs provide good temporal resolution, but limited
frequency resolution by the number of channels (Gopalakrishna et al., 2010b). In
addition, their filter configurations make it difficult to design critical bands (Nie et al.,
1998). Although BPFs provide good temporal resolution, the temporal information is
limited by lowpass filters at the envelope detection stage. In Cl processors with noise
reduction, the noise is usually mixed with the speech signal across the entire frequency
band. This may be difficult to achieve by means of BPF techniques (Yao and Zhang,
2002). In contrast, the signal in the time domain is transformed into other domains (e.g.
STFT and WT), and transformed signals can be easily discriminated between speech
and noise signals. This is more useful for denoising techniques.

The use of STFT is based on signal analysis in the frequency domain. STFT
provides good frequency resolution, but limited temporal resolution by the update frame
rate (Gopalakrishna et al., 2010b). Therefore, very high stimulation rates can be
obtained by increasing the overlap between analysed frames, and this may not
necessarily provide new information. In other words, there is a lack of temporal
information improvement with high stimulation rates (Loizou, 2006). Moreover, the
temporal resolution of filter banks implemented by the speech processor and the
temporal resolution determined by its stimulation rates may be misaligned (Nogueira et
al., 2006). These result in limitations in speech perception. Nevertheless, STFT is more

efficient in terms of speed than BPFs.

The use of WT is based on signal analysis in the time-frequency domain. The WT
approach is introduced to address the limitation of STFT implementation in terms of
temporal resolution (Nogueira et al., 2006; Gopalakrishna et al., 2010b). The temporal
resolution should sufficiently represent the temporal features of speech information, and
higher temporal resolution can lead to better speech perception (Buechner et al., 2009).

Time-frequency analysis of WT is similar to human auditory perception (Yao and
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Zhang, 2002; Derbel et al., 2008) and can be adapted to the time-frequency features of
Cl systems (Nogueira et al., 2006).

In principle, the overall Cl stimulation rate (e.g. the n-of-m strategy) is
constrained by the channel stimulation rate (temporal resolution) and the number of
selected channels. In order to design an optimum configuration for the CI stimulation
rate, the balance between temporal and frequency resolution may be alleviated by using
wavelet-based strategies (Yao and Zhang, 2002).

The implementation of a wavelet-based speech coding strategy proposed by
Gopalakrishna et al. (2010b) provides a lower amount of spectral leakage, allows for
high stimulation rates and achieves lower computational complexity compared to other
commonly used strategies in Cls. The spectral leakage is a good measure to indicate
how much the energy of one frequency band is leaked into adjacent frequency bands.
Hence, the lower spectral leakage leads to better performance of CI processors in terms
of good frequency specificity and less distortion of information. Gopalakrishna et al.
(2010b) have shown that the WPT-based strategy yielded lower spectral leakage than
that obtained with a STFT-based strategy, but it was almost the same as the BPF-based
strategy.

High stimulation rates can provide better fine temporal representation of speech
information than low stimulation rates. This strategy can provide a high stimulation rate,
which is equal to the sampling rate of the input signal. This can lead to better speech
recognition performance, especially in some CI devices with sufficiently wide electrode
spacings (Loizou, 2006). Due to the increased channel interaction concomitant with a
high stimulation rate, wider electrode spacings provide smaller amounts of channel
interaction at the same high stimulation rate. Therefore, most of the benefits of high
stimulation rates were reported by Med-El CI users (the widest electrode spacing) but

not with Nucleus CI users (the smallest electrode spacing).

Gopalakrishna et al. (2010b) have shown that the WT approach has lower
computational complexity than BPF and STFT implementations. Different structures of
WPT have different computational complexity. WPT with an admissible tree has lower
computational complexity than WPT with a full binary tree. This is because WPT with
an admissible tree can be designed directly for electrodes. The low computational

complexity can reduce memory requirements, save in execution time and minimize the
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power requirement. This offers important advantages of minimised device requirements,

real-time implementation and prolonged battery life for CI processors.

Overall, the WT offers some important advantages over both BPFs and STFT,
such as a simple design in terms of filter configuration, good spectral and temporal
resolution, low computational cost, and appropriate properties for speech coding and

denoising as discussed in Chapter 2.

The evolution of wavelet-based strategies for Cl system has been developed over
the last fifteen years. These can be classified into two groups: continuous wavelet
transforms (CWTSs) (Yao and Zhang, 2002; Cheikhrouhou et al., 2004; Guan et al.,
2005; Derbel et al., 2008) and discrete wavelet transforms (DWTs) (Nie et al., 1998;
Nogueira et al., 2006; Paglialonga et al., 2006; Paglialonga et al., 2008; Gopalakrishna
et al., 2010b).

A commonly-used mother wavelet in CWTs is the complex Morlet wavelet,
because it is easy to select centre frequencies and the bandwidth such that they match
the Bark scale or ERB scale (Cheikhrouhou et al., 2004; Derbel et al., 2008). The bionic
wavelet transform (BWT) is derived from the Morlet wavelet and has also been used to
develop adaptive wavelet strategies (Yao and Zhang, 2002; Derbel et al., 2008). There
is a difference between the CWT and the BWT. The window size of the CWT varies
with the analysing frequency, but all windows at a certain scale along the time-axis are
fixed. The window size of the BWT can be adjusted in the same scale. The BWT
achieves a better trade-off between time and frequency resolution and preserves more of
the energy of the signal than the CWT (Yao and Zhang, 2002). However, the CWT and

BWT both produce redundancies and have a high computational cost.

DWTs are implemented in a filter bank decomposition approach. The standard
DWT-based speech coding strategies (Nie et al., 1998) provide a fast and efficient
algorithm. Their results are consistent with IIR bandpass filters in terms of the
characteristics of the waveforms in each band. Their speech recognition performance is
also similar to that of the ACE and CIS strategies (Paglialonga et al., 2006; Paglialonga
et al., 2008). However, the filtering process of the standard DWT is iterated only on low
frequency components. This provides a limited number of channels and limited

frequency ranges in each channel, making them inappropriate to apply to Cl devices.

60



Chapter 3 Wavelet packet-based speech coding strategy for cochlear implants

A further generalisation of the standard DWT is the wavelet packet transforms
(WPTSs). The filtering process of the WPT is iterated in both the low and high frequency
components. The filter banks of the WPT can be varied over the frequency ranges and
the decomposition structure can be simply adjusted for the approximation of critical
bands. An appropriate structure of WPT can closely mimic the critical band according
to a perceptual auditory model.

Many WPT structures are designed based on the Bark scale, the Mel scale and the
ERB scale. A commonly-used frequency scale for the critical band is the Bark scale,
which has been widely used by speech researchers. Bark scale wavelet packets are used
in many applications such as wavelet packet-based Cls (Nogueira et al., 2006;
Gopalakrishna et al., 2010b), speech enhancement (Carnero and Drygajlo, 1999; Cohen,
2001; Chen and Wang, 2004; Shao and Chang, 2007), source separation (Litvin and
Cohen, 2011), and speech compression (Carnero and Drygajlo, 1999).

A small body of research has studied CI speech coding strategies based on wavelet
packet filter banks (Behrenbruch and Lithgow, 1998; Nogueira et al., 2006;
Gopalakrishna et al., 2010b). Recently, wavelet packet-based strategies have been
successfully produced for real-time implementations (Gopalakrishna et al., 2010b).
Moreover, it provides better speech recognition performance than a commercial ACE
strategy for CI users at 15 dB SNR (Nogueira et al., 2006). Wavelet packet-based
strategies are expected to be used in future generations of Cls (Gopalakrishna et al.,
2010b).

Designing wavelet packet filter banks relates to the selection of the perceptual
auditory model, the structure of wavelet packet-decomposition trees and mother

wavelets. Further details are given in the next section.

34.1 The Bark frequency scale

The concept of the Bark frequency scale assumes that the width of critical bands of
human hearing is one Bark. That means that the distance of the bandwidth from the
lower band edge to the upper band edge is 1 Bark. The representation of energy over the

Bark scale closely corresponds to the obtained information processing in the ear.
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Theoretically, the Bark scale ranges from 1 to 24 Barks; the bandwidth of Bark scales is
only defined up to 15.5 kHz for the highest sampling rate at 31 kHz. The frequency
range of human auditory processing ranges from 20 to 20000 Hz and covers a total of
25 Barks (Carnero and Drygajlo, 1999; Smith and Abel, 1999).

The relation of frequency and critical band rate z can be approximately expressed

by:
z(f)=13tan*(7.6x10™* f)+3.5tan"(1.33x10* f)*  [Bark] (3.3)
The critical bandwidth (CB) can be found by:
CB(f)=25+75(1+1.4x10°f*)*®  [Hz] (3.4)

where f is the frequency in Hertz (Hz). In the CI system, the underlying sampling rate

is selected to be 16 kHz which produces a bandwidth of 8 kHz. The WPT decomposes
the frequency range [0 8] kHz into 22 subbands as listed in Table 3.1.

3.4.2 Structure of Bark scale wavelet packet

Two different structures of wavelet packet-decomposition tree are shown in Figure 3.3
(Gopalakrishna et al., 2010b); these will be used in the experiment. Structures with both
an admissible tree (Figure 3.3 (a)) and a full binary tree (Figure 3.3 (b)) are generated
from a six-level decomposition of the WPT. A given node connects the left and right
branches to its child nodes. The left and right branches denote lowpass and highpass
filter, respectively. Therefore, the left and right child nodes also correspond to a lower
and a higher frequency component, respectively. Consequently, the frequency order of
each node changes its position in the wavelet packet tree as shown in Figure 3.3. The

frequency ordering is explained in Section 2.4.2.2.

The 23-band WPT is designed to directly approximate the critical bands of the
human auditory system using the 22 channels available to the Nucleus-24 processor.
The 23 subbands are selected from the entire set of wavelet packet bands. Consequently
the lowest frequency band, shown as a white node in Figure 3.3 (a), is not used, because
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this frequency band plays no significant role in speech perception (Nogueira et al.,
2006).

The six-level decomposition of WPT with a full binary tree consists of 64 nodes

(2° =64). The 64-band WPT with a frequency spacing of 125 Hz is grouped together
to obtain 22 channels with different frequency bands. The 64-band WPT is treated like
the 64 FFT bins by the Nucleus-24 processor. The filter spacing of the 64-band WPT is
allocated by using a linear spacing in the low frequencies (<1 kHz) and logarithmic

spacing thereafter (>1 kHz) (Cochlear, 2002). Therefore, the bandwidth (Af ) and centre
frequencies ( f,) of the 23-band and 64-band WPT for 22 channels at a 16 kHz
sampling rate are slightly different, as shown in Table 3.1 (Cochlear, 2002; Shao and
Chang, 2007; Gopalakrishna et al., 2010b) where f, and f, are the lower and upper

frequencies, respectively. Figure 3.4 compares the difference between centre frequency

and bandwidth of wavelet packet tree and those of Bark scales.
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Figure 3.3 Two structures of wavelet packet-decomposition tree.
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Figure 3.4 Comparison of WPT and 128-point FFT with Bark scale:
centre frequencies (left) and bandwidths (right).
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Table 3.1 Frequency band and centre frequency in each channel at 16 kHz sampling rate

Electrode Bark Scale 128-point FFT
U R A A R Af
22 0-100 50 100 188-313 250.0 125
21 100-200 150 100 313-438 375.0 125
20 200-300 250 100 438-563 500.0 125
19 300-400 350 100 563-688 625.0 125
18 400-510 450 110 688-813 750.0 125
17 510-630 570 120 813-938 875.0 125
16 630-770 700 140 938-1063 1000.0 125
15 770-920 840 150 1063-1188 1125.0 125
14 920-1080 1000 160 1188-1313 1250.0 125
13 1080-1270 1170 190 1313-1563 14375 250
12 1270-1480 1370 210 1563-1813 1687.5 250
11 1480-1720 1600 240 1813-2063 1937.5 250
10 1720-2000 1850 280 2063-2313 2187.5 250
9 2000-2320 2150 320 2313-2688 2500.0 375
8 2320-2700 2500 380 2688-3063 2875.0 375
7 2700-3150 2900 450 3063-3563 33125 500
6 3150-3700 3400 550 3563-4063 3812.5 500
5 3700-4400 4000 700 4063-4688 4375.0 625
4 4400-5300 4800 900 4688-5313 5000.0 625
3 5300-6400 5800 1100 5313-6063 5687.5 750
2 6400-7700 7000 1300 6063-6938 6500.0 875
1 7700-9500 8500 1800 6938-7938 74375 1000
Electrode 23-band WPT 64-band WPT
St S S O R A S B I AR f, Af
22 125-250 187.5 125 125-250 187.5 125
21 250-375 3125 125 250-375 3125. 125
20 375-500 4375 125 375-500 437.5 125
19 500-625 562.5 125 500-625 562.5 125
18 625-750 687.5 125 625-750 687.5 125
17 750-875 812.5 125 750-875 8125 125
16 875-1000 937.5 125 875-1000 937.5 125
15 1000-1125 1062.5 125 1000-1125 1062.5 125
14 1125-1250 1187.5 125 1125-1250 1187.5 125
13 1250-1500 1375.0 250 1250-1500 1375.0 250
12 1500-1750 1625.0 250 1500-1750 1625.0 250
11 1750-2000 1875.0 250 1750-2000 1875.0 250
10 2000-2250 2125.0 250 2000-2250 2125.0 250
9 2250-2500 2375.0 250 2250-2625 2437.5 375
8 2500-3000 2750.0 500 2625-3000 2812.5 375
7 3000-3500 3250.0 500 3000-3500 3250.0 500
6 3500-4000 3750.0 500 3500-4000 3750.0 500
5 4000-4500 4250.0 500 4000-4625 43125 625
4 4500-5000 4750.0 500 4625-5250 4937.5 625
3 5000-6000 5500.0 1000 5250-6000 5625.0 750
2 6000-7000 6500.0 1000 6000-7000 6500.0 1000
1 7000-8000 7500.0 1000 7000-8000 7500.0 1000
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3.4.3 Mother wavelet

The selection of mother wavelets or wavelet filters is essential for CI processors. Some
of the most well-known mother wavelets are Haar, Daubechies, Coiflets, Symlets,
Meyer and Biorthogonal wavelets (Appendix C). The different mother wavelets are
used in the CI processor based on wavelet packet filter banks such as Haar (Nogueira et
al., 2006), Daubechies (Nogueira et al., 2006; Gopalakrishna et al., 2010b), Symlets
(Gopalakrishna et al., 2010b), and mixed mother wavelets (Daubechies and Symlets)
(Nogueira et al., 2006).

The complicated computations and the aliasing of the speech coding strategy also
depend directly on the filter length of the mother wavelet. The longer the filter length,
the more complex the computation and the longer the processing time (Nogueira et al.,
2006; Gopalakrishna et al., 2010b). The Haar wavelet is the simplest method of
implementation, but it may be limited in terms of filter lengths. This leads to a worse
frequency resolution and aliasing in each level of wavelet decomposition (Nogueira et
al., 2006). Daubechies and Symlets with various filter lengths have similar results
(Gopalakrishna et al., 2010b). However, the most reasonable strategy for selecting
optimal mother wavelets may be chosen by a comparison of the analysis results among
these mother wavelets (Sang et al., 2009). For this thesis, a Symlet with order 8 (filter
length of 16) yielded the best information envelope and electrodogram compared to

other wavelet filters.

3.5  Speech coding strategy

The stages of wavelet packet-based speech coding strategies are similar to those in the
ACE strategy. The ACE strategy is a FFT-based speech coding strategy and an n-of-m
channel selection strategy (Nogueira et al., 2005; Loizou, 2006). A signal is
decomposed into m channels and only the n most important channels are selected. A set
of processing parameter values used by an individual CI user are collected by MAP
(Fourakis et al., 2004), such as the centre frequencies of the channels and corresponding
bandwidths, the number of channels selected, the channel stimulation rate, the implant
stimulation rate, the current threshold level, and the current comfort level (Appendix
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D.2). The details of ACE and wavelet packet-based speech coding strategies are as
follows.

3.5.1 Advanced Combination Encoder (ACE) strategy

The analysis stages of the ACE strategy in a Nucleus-24 processor are as follows. The
speech signal is captured by a microphone at a sampling rate of 16 kHz, and it is first
pre-emphasised by a filter that amplifies high-frequency components in particular. The
emphasised signal is windowed using a hanning window (8 ms, N=128 samples). The
overlapping window adapts to the channel stimulation rate — for example, a 75%
overlap for a channel stimulation rate of 500 pps, and a 90% overlap for a channel
stimulation rate of 1200 pps. After that, the FFT is used to decompose the windowed
signal into frequency bands. The 128-point FFT provides 128 spectral coefficients (128
bins). Due to the symmetry property of FFT, the first 64 bins are used and the second 64

bins are discarded without loss of information.

The 64 FFT bins with linear spacing are rearranged to mimic the critical bands of
the auditory system by summing the powers of adjacent bins to provide 22 channels
with different frequency ranges. The frequency range in each channel is based on a
critical band, and is defined by the frequency table of the Cochlear Corporation
(Cochlear, 2002). The apical one-third of the channels are allocated with a linear
spacing to frequencies up to 1 kHz, and the basal two-thirds of the channels are
allocated with logarithm spacing to frequencies above 1 kHz.

The power of the envelope in each channel is calculated as a weighted sum of the
FFT bin powers. The envelope channels with the largest amplitude are selected for
stimulation. In clinical practice, 8 to 12 maximum envelopes (Hu and Loizou, 2008;
Gopalakrishna et al., 2010b) are selected and compressed to fit with the individual CI
user’s dynamic range between threshold and comfortable loudness levels. Finally, the
compressed amplitudes are used to modulate the stimulating pulse which is delivered to
the implanted electrode. In each frame of the speech signals, n electrodes are stimulated
sequentially and one cycle of stimulation is completed (Nogueira et al., 2005). The

number of pulses/second (pps) thus determines the rate of stimulation on a single
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channel, also known as the channel stimulation rate. Further details of the ACE strategy
are provided in Appendix D.3.

3.5.2 Wavelet packet-based speech coding strategy

In CI processors, the stages of a wavelet packet-based speech coding strategy are similar
to those of the ACE strategy. A block diagram of the analysis stage in a Cl processor is
shown in Figure 3.5 (a). The speech signal is recorded by a microphone at a 16 kHz
sampling rate and is initially pre-emphasised by a first-order Butterworth filter that
amplifies high-frequency components between approximately 1.5 kHz and 5 kHz. The
pre-emphasis signal provides the frequency response associated with the HS8

microphones in Nucleus processors.

After pre-emphasis the signal is processed frame by frame using a sliding window
of 128 samples (8 ms) with an overlap of 75% and a channel stimulation rate of 500
pps. The window overlapping technique is the same as in ACE. It is adapted to the
channel stimulation rates in the CI user’s MAP. The higher the channel stimulation rate,
the greater the overlapping of windows and the temporal information. The signal in each
frame is then decomposed into different frequency bands using the WPT. The spectral
coefficients of the WPT in each band differ from those of FFT in the ACE strategy in
each band. WPT consists of a number of wavelet coefficients, whereas FFT contains
only spectral coefficients. The number of wavelet coefficients in each band depends on

the decomposition levels.

The power in each band is computed using the average sum-square of the wavelet
coefficients. In the 64-band WPT, the 64 frequency bands are computed by summing
the power of consecutive frequency bands with frequency ranges used in the Nucleus-24
processor to generate 22 channels (Cochlear, 2002). The power per band is weighted
following the ACE strategy. The envelopes are smoothed with a low-pass filter. The 12
maximum envelopes (12-0f-22 channels) are selected and compressed to fit within the
electrical dynamic ranges defined by the Cl user’s threshold and comfort levels. Finally,
the compressed amplitudes are used to modulate the stimulating pulses and sent to the

implanted electrodes.
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In a vocoder simulation or CI hearing simulation (Figure 3.5 (b)), acoustic models
can be thought of as producing vocoded signals. Vocoded signals are used to test NH
listeners. The noise-band vocoder is most commonly used, and provides the most
natural sound. The 12 maximum envelopes (12-of-22 channels) are selected and then
used to modulate white noise, which is filtered by the bandpass filter in the same
channel as the WPT. A vocoded speech signal is synthesised by summing the modulated

signals of each channel.
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(a) Analysis stages in the speech coding strategy.
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(b) Vocoder simulation.

Figure 3.5 Wavelet packet-based speech coding strategies. Adapted from
(Gopalakrishna et al., 2010a) and Mourad Ghrissi (2012).
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3.6 Conclusion

WPT has some advantages for CI processors. The filter banks of WPT provide
flexibility in specified frequency ranges. The decomposition structure can be simply
adjusted in relation to auditory-inspired frequency components to match a perceptual
auditory scale such as the Bark scale. The property of PWT has a trade-off between time
and frequency representation which produces a good match of signals and localises
energy concentration with few large coefficients. In addition, WPT is more efficient in
terms of speed than bandpass filters and STFT. Such advantages can lead to appropriate

designs and the effective development of speech coding strategies in Cl system.
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Chapter 4.  Noise reduction in wavelet packet-based

speech coding strategy

4.1 Introduction

Since humans live in a natural environment where noise is everywhere and unavoidable,
ambient noise is generally merged into speech signals. This background noise causes a
speech degradation, which can lead to overall unintelligibility and decreases the
performance of speech coding, speech recognition and communication applications
considerably (Chen et al., 2006). Therefore, techniques for efficient noise reduction in
realistic listening environment are required, especially for hearing impaired (HI)

listeners.

The speech-reception threshold (SRT) for sentences (50% correct) in noisy
environments can be explained with signal-to-noise ratio model (Festen, 1987; Festen
and Plomp, 1990). The SRT of NH listeners is reached approximately -5 dB SNR. The
SRT of HI listeners is reached approximately up to 10 dB SNR, which depends on
hearing loss (Festen, 1987). Noise reduction algorithms would be beneficial to HI
listeners at higher SNR levels. Some noise reduction algorithms may work well for HI
listener, but not work for NH listeners. Generally, HI listeners require perfectly noise
reduction algorithms to match their individual hearing capabilities, increase their
comfort level when listening, and improve their speech intelligibility (Ephraim and
Cohen, 2004).

Noise reduction in speech processing is a complicated problem for a number of
reasons (Chen et al., 2006). First, the nature and complex characteristics of speech and
noise signals vary over time and may change from one application to another. It is very
difficult and complicated to develop an adaptable algorithm that will work in different
environments. Another reason is that the purpose of noise reduction depends on the
specific context and application. Some applications need to increase intelligibility and
quality or improve overall speech perception, while others aim to improve the accuracy
of automatic speech recognition systems or simply to decrease the listener’s fatigue. It is

not easy to satisfy all purposes at the same time.
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Generally, there are three stages in noise reduction techniques for speech
processing (Loizou et al., 2007); these are analysis, suppression and synthesis (Figure
4.1). The analysis stage is when the speech signal is transformed into another domain.
This relies on the capability of discriminating between speech and noise. The larger the
difference between speech and noise signals, the more reduction there may be in the
noise signals. The suppression stage is the main stage of most algorithms. The
transformed signal is modified or weighted by multiplying with a gain function
(suppression function) to control noise reduction across a wide range of SNR levels.

Finally, at the synthesis stage the modified signal is transformed back to the time

domain.
Analysis Suppression Synthesis
. Inverse
Noisy Transformation ) . . o . Enhanced
Speech —p (WT, FFT) Gain Function Tr(a:lr\lls_lfo::n;a_gl)on —» Speech

Noise Estimation

Figure 4.1 Three main stages in noise reduction techniques.

The parameters of optimal gain functions involve noise estimation. This noise
estimation should continuously adapt to access information for noise spectrums in
different noisy environments (Martin, 2001; Loizou et al., 2007). Where there is no
prior information about noise sources, adaptive techniques using the statistical
properties of speech and noise are usually used to accurately track noise. The noise level
should not be under- or overestimated. An accurate noise estimate can effectively
denoise and highly enhance speech. In contrast, overestimated noise may lead to the
removal of speech information, further distortions in enhanced speech and reductions in
speech intelligibility. Meanwhile underestimated noise may lead to greater amounts of
residual noise. Therefore, the optimal gain function should be a trade-off between the
amount of noise reduction, speech distortion, and the level of residual noise (Virag,
1999).
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When the Bark scale wavelet packets, which reflect the human auditory system,
are combined with an appropriate gain function, this may lead to the improvement of
speech intelligibility and quality (Cohen, 2001; Chen and Wang, 2004). Two noise
reduction algorithms, namely time-frequency spectral subtraction (TFSS) and time-
adaptive wavelet thresholding (TAWT), are applied in wavelet packet-based speech
coding strategies. Both algorithms are compared with ideal binary masking (IdBM) as a

baseline for denoising performance.

The 1dBM is used for noise reduction where information about clean speech and
noise is known. The TFSS and TAWT algorithms are applied in this study since both
have some main advantages. These approaches are simple in their implementation,
which only requires an estimation of the noise spectrum. They offer high flexibility in
the variation of parameters to compromise between noise reduction and speech
distortion. Additionally, they do not require the explicit voice activity detection (VAD).
For these reasons, both are suitable for the real-time implementation of CI systems in

diverse environments.

This chapter is organised as follows. The concept of combined noise reduction and
speech coding in a wavelet packet-based speech coding strategy is presented. The noise
reduction algorithms selected for use in this study are presented next. The section on
performance measurements presents various measures - both visual inspection (e.g.
waveform and electrodogram) and objective speech intelligibility measures- that are
used for evaluating the algorithms before they are tested with NH listeners. A summary

is given in the last section.

4.2  Combined noise reduction and speech coding strategy

The speech coding strategies in Cl processors are almost the same as noise reduction
algorithms, in which the tasks is to decompose the signal into uncorrelated components
and then process these components separately. Thus, both algorithms can be combined
into one system, using a common processing structure to decrease the computational

load and the complexity of the system.
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This concept has been widely applied in data compression (Sinha and Tewfik,
1993; Srinivasan and Jamieson, 1998; Carnero and Drygajlo, 1999) and some noise
reduction algorithms in Cls (Hu et al., 2007; Hu and Loizou, 2008; Li, 2008;
Kokkinakis et al., 2011; Hu et al., 2013). To reduce the effect of noisy backgrounds,
noise reduction algorithms are integrated into wavelet packet-based speech coding
strategies to reduce noise directly in noisy envelopes (Figure 4.2).

Envelope Detection n-of-m map

Average sum-

| square of wavelet |- Lof‘i'lvt’;?ss L [y N
coefficients-Ch 1 A
Bandpass Filters (BPF) Average sum- Selectn Y
R el R e s syl
coefficients-Ch 2 Noise Envelope A A
Speech Pre- L - from
signal P Emphasis [P Frame ¥ WPT : : reduction n
Channels
in a Frame
Average sum- Lowbass
L square of wavelet fillzr o o »
coefficients-Ch m
BPF- | BPF- BPF-
Ch1 Ch2 || Chm

Carrier

Figure 4.2 Block diagram of vocoder simulation for noise reduction in a wavelet

packet-based speech coding strategy.

4.3 Noise reduction algorithms

4.3.1 Wavelet packet energy

Assume that noisy speech y(n) is composed of clean speech x(n) and the additive

noise d(n). Then:
y(n) =x(n)+d(n) (4.1)
Taking the WPT of both sides gives:

Y. (k)=X,,(k)+D;,(k) (4.2)
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where Y, (k), X, (k) and D, (k) are wavelet coefficients of the n" subband (node)

at level j for noisy speech, clean speech and noise, respectively. k is the coefficient

index in each subband.

The noisy signal is divided into frames of length M =128 samples with 96
overlapping samples (75%). Each frame is calculated using WPT. The number of

wavelet coefficients in each subband depending on the decomposition level j, is

K; =128/ 2'. In a single frame, the energy of each subband can be calculated using the
average sum-square of the wavelet coefficients, thus:

E, (i,n) =%Z|\/J.,n(k)|2 (4.3)

J

where E, (i,n) is the energy of the i"" frame and the n" subband, Y, (k) is the wavelet
coefficient of the noisy signal in the n™ subband and level j, and k is the coefficient
index (k=0,2,...,K; —1). The energy of the clean speech and the noise signal can be

computed as noisy speech in the wavelet domain.

In the 23-band WPT, the energy of the first subband is discarded to provide 22
channels because it plays no role in speech perception. In the 64-band WPT, it is
computed by summing the energy of consecutive subbands with frequency ranges, as in
Table 3.1, to generate 22 channels. Then, the envelope amplitudes in each channel are
smoothed using a lowpass filter as shown in Figure 4.2. This stage provides the time-
frequency (T-F) envelope amplitude matrix, which represents the number of frames and
channels. From Equation (4.2), the T-F envelope amplitude matrix at the i" frame and

n" channel (subband) can be defined as:
Y (i,n) = X (i,n) + D(i,n) (4.4)

where Y (i,n), X(i,n) and D(i,n) are the T-F envelope amplitudes matrix for the noisy
speech, clean speech and noise, respectively and n=0,1,2,...,N —1 channels (N =22).

The noise reduction algorithms are processed in the T-F envelope amplitude matrix. The
differences and similarities between noise reduction techniques will be described and

discussed in the next sections.
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4.3.2 Ideal binary mask (1dBM)

Channel selection using the maximum amplitude criterion can become problematic for
noisy environments (Dorman et al., 1997; Hu and Loizou, 2008; Kokkinakis et al.,
2011). When noise dominates, the channels selected can be noise, because those
channels have the maximum amplitudes. The ideal binary mask (IdBM) is employed to
compensate for this shortcoming. In fact, the IdBM has been introduced as a goal of
computational auditory scene analysis (CASA), which attempts to computationally
extract sound mixtures into individual streams corresponding to different sound sources
(Wang, 2005). The 1dBM is applied to the criterion for selecting envelope channels,
which is based on the true signal-to-noise ratio (SNR) to improve speech intelligibility
in noisy environments (Hu and Loizou, 2008; Kokkinakis et al., 2011).

The 1dBM is defined as a binary T-F mask, which is equivalent to a binary gain
function. This approach is called ideal because its construction requires prior knowledge
of the clean speech and noise information before both are mixed. The binary gain
function takes the value of 1 when the SNR in the corresponding T-F envelope
amplitude matrix exceeds a threshold value, and the value of 0 otherwise (Wang, 2005;
Hu and Loizou, 2008). The T-F envelope matrix of enhanced speech is obtained as

follows:
X (i,n) = 1dBM (i,n)-Y (i, n) (4.5)
. 1 ,SNR(i,n)>0
1dBM ("n):{o ,SNR(i,n) <0 (4.6)
SNR(i,n) =10log,, (X 2(i,n) / D(i,n)) 4.7)

where X (i,n), Y(i,n), X(i,n) and D(i,n) are the T-F envelope matrices at the i"

frame and n™ channel for the enhanced speech, noisy speech, clean speech and noise

signal, respectively.

The threshold of SNR was 0 dB for this study. The threshold value of 0 dB has
been found to work well and produce optimality in studies employing the 1dBM (Wang,
2005). This threshold was reasonable because the purpose of IdBM-based channel

selection was to retain the speech-dominated channels and to remove the noise-
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dominated channels (Hu and Loizou, 2008), as shown in Figure 4.3. The speech-
dominated channels (i.e. SNR>0) contain important information about clean speech,
whereas the noise-dominated channels (i.e. SNR <0Q) contain little information about
clean speech because speech signals are severely masked by noise and the speech

components of the mixture are almost inaudible.

The number of channels selected corresponding to SNR can vary from 0 (i.e. no
channels are selected) to 22 (i.e. all channels are selected). For noise-dominated
channels as shown in Figure 4.3 (a), the IdBM will not select any channels, while the n-
of-m strategy will select 12 channels with the largest amplitudes. For speech-dominated
channels as shown in Figure 4.3 (b), the IdBM will select all channels while the n-of-m
strategy will only select the 12 channels with the largest amplitudes. This can be a
disadvantage of the IdBM strategy when the speech-dominated channels number more
than 12. This is unnecessary for speech intelligibility (Dorman et al., 2002), especially
in quiet or high SNR conditions. In this study, a combination of IdBM-based channel

selection and the n-of-m strategy are used, as shown in Figure 4.3.

From Equation (4.5), the T-F envelope amplitudes of noisy speech with SNR >0
dB are retained while the envelope amplitudes with SNR <0 dB are removed to reduce
noise in the CI processors. Figure 4.4 illustrates the noise reduction with IdBM. The
clean speech is shown in Figure 4.4 (a). The babble noise at 5 dB SNR and the noisy
speech is shown in Figure 4.4 (b) and (c), respectively. The IdBM is shown in Figure
4.4 (d). The result of IdBM provides enhanced speech, which is shown in Figure 4.4 (e).
The enhanced speech is much closer to the clean speech. Informal listening to the

enhanced speech results in clear intelligibility, like the clean speech.
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Figure 4.3 Example illustrating the channel selection in a frame using the n-of-m

strategy, IdBM, and a combination of IdBM and the n-of-m strategy. The first panel

shows the amplitudes of the clean speech and noise signal. The second panel shows the

amplitudes of the noisy speech. The bottom three panels show the amplitudes selected

by the n-of-m strategy, IdBM, and the combination of IdBM and the n-of-m strategy,

respectively. (a) The noise dominates the clean speech. (b) The clean speech dominates

the noise.
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Figure 4.4 Example illustrating the concept of IdBM for the BKB sentence “The clown
had a funny face”. (a) Clean speech. (b) Babble noise at 5 dB SNR. (c) Noisy speech.
(d) The 1dBM, where white pixels indicate 1 and black pixels 0. (e) Enhanced speech
using IdBM.
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4.3.3 Time-frequency spectral subtraction (TFSS)

The spectral subtraction proposed by Boll (1979) is one of the earliest and most well-
known techniques for speech enhancement. This technique is based on a simple
implementation where enhanced speech is obtained by subtracting the noise estimation
from the noisy speech. Numerous studies have proposed different implementations and
configurations of spectral subtraction to find the optimized spectral subtraction for their
applications. The objective here is to apply time-frequency spectral subtraction (TFSS)

in wavelet packet-based speech coding strategies.
43.3.1 Power spectral subtraction and error analysis

From Equation (4.4), the estimated power spectrum of the enhanced speech in the
wavelet domain using power spectral subtraction (Berouti et al., 1979; Virag, 1999) can

be expressed as follows:
X2(i,n) = max(Y?(i,n) - B*(i,n),0) (4.8)

where X?2(i,n) and D?(i,n) represent the estimated power spectrum of the enhanced

speech and noise, respectively. Y?(i,n) is the power spectrum of the noisy speech. The

max(-) operator is used to guarantee that X2(i,n) always has a positive value.

Generally, the noise level D?(i,n) is unknown, but it can be estimated from

nonspeech frames. The estimated power spectrum of the enhanced speech X 2(i,n) may

be negative values as a result of spectral subtraction because the noise estimation

Iﬁz(i,n) may be inaccurate due to the random variation of the noise spectrum. These

negative values are set to zero. This process produces tones at random times and

frequencies which result in an artefact called musical noise (Berouti et al., 1979).

Musical noise can be reduced by improving the estimation of noise. Several
techniques have been proposed to reduce this effect: magnitude averaging (Boll, 1979),
over-subtracting the estimation of the noise spectrum and spectral-flooring the
estimation of the negative values (Berouti et al., 1979), a minimum mean-square error
(MMSE) estimation of short-time spectral amplitude (Ephraim and Malah, 1984), an
adaptation of subtraction parameters related to the masking properties of human
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perception (Virag, 1999), and the estimation of cross terms associated with the phase

differences between the noisy/clean speech and noise (Lu and Loizou, 2008).

The power spectral subtraction in Equation (4.8) can be written in terms of the

gain function G(i,n) as:

X2(i,n)=G2(i,n)-Y2(i,n) (4.9)

G(i,n):)z(_i'n): /1— [322(_i'”) - f1— 1 (4.10)
Y (i,n) Y<(i,n) y(i,n)

where G(i,n) always takes positive values in the range of 0<G(i,n)<1, and y is a

posteriori SNR ((i,n) 2Y2(i,n)/D?(i,n) ). The gain function G(i,n) is used to modify
the amplitude of the noisy speech between the speech and noise regions. Regions

containing only speech signals are unmodified (i.e. G(i,n)=1), whereas regions
containing only noise are removed (i.e. G(i,n)=0). Regions containing both speech

signals and noise are modified to reduce the noise according to the posteriori SNR 7.

Substituting (4.4) into (4.8), the power spectral subtraction can be rewritten as:
X2(i,n) = X2(i,n)+ D%(i,n) — D2(i,n) + 2Re(X (i,n)D*(i,n))
X2(i,n) =Y2(i,n)— D(i,n) + 2Re(X (i,n)D*(i,n)) (4.11)

The power spectrum estimate of the enhanced speech X 2(i,n) includes error terms of

noise variation (i.e. D?(i,n)—D?(i,n)) and cross terms of clean speech and noise (i.e.
2Re(X (i,n)D"(i,n))) (Shao and Chang, 2007). The cross terms are commonly set to

zero because the clean speech and noise are assumed to be uncorrelated. This
assumption leads to an inaccurate subtraction rule (Lu and Loizou, 2008). Some
researchers have attempted to assess the effect of neglecting the cross term (Evans et al.,

2006) and compensate for the cross term in spectral subtraction (Lu and Loizou, 2008).
4.3.3.2 Cross term to perceptual time-frequency spectral subtraction

The cross term estimate proposed by Lu and Loizou (2008) is applied in this study. This

cross term can be represented by a geometric perspective on spectral subtraction, which
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provides the difference between the phases of noisy/clean speech and noise. The gain
function can be created using the relationship between the difference of phases and

trigonometric principles (Appendix E.1). This gain function, dependent on the

estimation of priori SNR § and posteriori SNR y parameters, can be expressed as

2o G+ /[, _(-1-&)
G((S,;/)— \/(1 5 J / [1 v ] (4.12)

The parameters § and 7 in the gain function G(f,;?) are estimated according to:

follows:

7(@i,n)=p-7@(i-1n)+@- B)-min(7,(i,n),20) (4.13)

Em=a-& (i-1n)+(1-a)(J7G.n) —1)2 (4.14)
A X (i,n)  Y2(i,n)

£ (in)2 5 (i.n) and 7,(i,n) = 5 (in) (4.15)

where the subscript | indicates the instantaneous values. £ and « are weighting
factors, which were set to £ =0.60 and o =0.98. Both factors control the trade-off
between the noise reduction and the speech distortion. Both values were selected based
on informal listening tests and predicting the objective speech intelligibility (i.e. NCM
and STOI) between the vocoded clean speech and the vocoded noisy speech with TFSS.

The min(}) operator was used to give a maximum of 13 dB (=10log,,(20)) and to

avoid over-attenuation of the signals (Lu and Loizou, 2008).

This gain function is employed in the time-frequency spectral subtraction (TFSS)

according to the following steps. Initially, an estimate of the noise power spectrum

D?(i,n) is averaged from the first five frames. Then D?(i,n) is updated by a noise
estimation algorithm (Martin, 2001), which is obtained by the minimum tracking
method, since the power spectrum of the noisy speech regularly decays to the noise
power level. This method tracks minimum values of a smoothed power spectrum for the
noisy speech and multiplies by a constant to compensate for the bias noise estimate.

This method has been found to work well for nonstationary environments.
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Finally, the T-F envelope amplitude matrix of the enhanced speech is computed by
a multiplication of the gain function G(f,y?) with the T-F envelope amplitude matrix

of the noisy envelopes:
X(i,m=G(&7)Y(n) (4.16)

The posteriori SNR 7(i,n) in Equation (4.13) is weighted to reduce rapid
fluctuations and also to limit the over-suppression of the signal for large values of

y(i,n) . The weighting factor B of 7(i,n) can improve the estimate of the enhanced

speech. The priori SNR &(i,n) in Equation (4.14) is weighted to control the average of

spectral information positioned on past and present frames. This is similar to the
decision-directed approach (Ephraim and Malah, 1984), which updates amplitude

estimates using information from the past frames.

This gain function has two main advantages (Lu and Loizou, 2008). First, it is not
derived using any statistical model about the statistical distributions of the speech and
noise (e.g. Gaussian, Gamma, Laplacian or Raleigh distributions). In addition, the best

statistical model is currently undetermined (Ephraim and Cohen, 2004). Second, the

estimation of the parameters «f and y are instantaneous values, which are updated
directly from estimates of the instantaneous noise as in Equation (4.15). This doesn’t
only use one average of noise estimate from the initial noise segment of the signal, as in
Ephraim and Malah (1984). As a result, this gain function provides a more accurate
estimate of enhanced speech and is well appropriate for real-time implementations in

noisy environments.

4.3.4 Time-adaptive wavelet thresholding (TAWT)
4.3.4.1 Conventional wavelet thresholding

Donoho and Johnstone (1994) have proposed wavelet thresholding for noise reduction.
This algorithm consists of three steps: forward wavelet transform of the noisy signals,
thresholding the wavelet coefficients and inverse wavelet transform. Wavelet

thresholding utilises statistical differences between the wavelet coefficients of speech
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and noise signals. Nonsignificant coefficients have small absolute values, they are
probably noise and they should be removed or attenuated. Significant coefficients have
large absolute values, they are important components of signals and they should be
retained. Therefore, the wavelet coefficients below a selected threshold are treated as

nonsignificant information and set to zero, whereas the significant ones are kept.

The soft-thresholding gain function (Donoho and Johnstone, 1994; Donoho, 1995)
was introduced in Equation (4.17) and its characteristic of signals is shown in Figure
4.5. The soft thresholding gain function T, sets the absolute values of wavelet
coefficients below the selected threshold A to zero. The absolute values of wavelet
coefficients above the selected threshold A are replaced by shrinking the wavelet

coefficients of the noisy speech Y (i,n) with the selected threshold A .

X (i,n) =T, (Y, A) =sgn(Y (i,n)) max(] Y (i,n) | -2, 0) (4.17)

10

T T
"""""" Original signal
8 Soft thresholded sig

Figure 4.5 The soft-thresholding gain function.

However, applying a selected threshold A to all wavelet coefficients can lead to
over-thresholding of speech regions. This not only reduces additional noise but also
removes some speech components such as unvoiced sounds. In order to solve the
problem of the limit of a selected threshold in conventional wavelet thresholding, an

adaptive threshold (Bahoura and Rouat, 2001; Chen and Wang, 2004) without any prior
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knowledge of the noise level is applied in this study. The obtained results give better
performance than those using an MMSE gain function (Ephraim and Malah, 1984).

4.3.4.2 Time-adaptive wavelet thresholding

The time-adaptive wavelet thresholding (TAWT) algorithm (Chen and Wang, 2004) is
different from conventional wavelet thresholding (Donoho and Johnstone, 1994). This
technique is based on the Teager energy operator (TEO) and the adaptation of the

wavelet threshold.

The TEO was modelled by Teager (Teager and Teager, 1990) and was further
investigated by Kaiser (Kaiser, 1993). The TEO is a simple nonlinear function and a
very local property of the signal, dependent on the three adjacent samples of the signal
with indexes i—1, I, and i+1. It is used to enhance the discriminability of speech and
noise (Bahoura and Rouat, 2001; Chen and Wang, 2004). The TEO is a powerful tool
that has been used in many speech applications (Bahoura and Rouat, 2001; Chen and
Wang, 2004; Bahoura and Rouat, 2006; Dimitriadis et al., 2011).

The TAWT algorithm is computed in the following steps. The TEO coefficients

T(i,n) can be calculated from samples of three adjacent amplitude envelopes as:
T(@,n)=Y2(@i,n)=Y (@i +1Ln)Y(i—1n) (4.18)

where Y (i,n) is the T-F envelope amplitude matrix of the noisy speech at the i" frame

and the n" channel. The temporal masking M i,n) is constructed by smoothing the

TEO coefficients, defined by:
M (i,n) =T (i,n) *h(i,n) (4.19)
where * denotes the convolution operation and h(i,n) is the lowpass filter.

The adaptive threshold values A(i,n) are constructed from the temporal masking
M (i,n). If M(i,n) below the variance of M(i,n) is set to zero, otherwise temporal

masking M (i, n) is normalised as follows:

87



Chapter 4 Noise reduction in wavelet packet-based speech coding strategy

M (i,n)
M'(i,n) =<| max(M (i,n))
0 , otherwise

] M (i,n) > var(M (i, n)) (4.20)

The parameter of M’(i,n) is close to 1 for speech regions and close to 0 for noise

regions. Therefore the adaptive threshold values A(i,n) can be expressed as:

Ai,n) = A, (L— M (i, n)) (4.21)

Ay =0,4/2109(N10g,(N)) and o, =MAD,/0.6745  (4.22)

where 2, represents the channel-dependent threshold values (Bahoura and Rouat,

2001), N is the total frames, o, is the noise variances with the median of the absolute

deviation (MAD,) of all the wavelet coefficients Y (i,n) at the n" channel, and 0.6745
is a normalisation factor, which is approximated from fine-scale wavelet coefficients

(Donoho, 1995). The enhanced speech X (i,n) is modified by the soft thresholding

gain function as:

X (i,n) =sgn(Y (i,n)) max(|Y(i, n) — A(i, n)| ,0) (4.23)

4.4  Objective speech intelligibility

In the previous chapter, a frame length of 128 samples (the default in the ACE strategy)
and a sym8 (Symlet with order 8) were chosen for the wavelet packet-based speech
coding strategy. The sym8 yielded good results based upon the information envelope
and electrodogram when compared to other wavelet filters. For noise reduction
techniques, various algorithmic parameters were chosen for the TFSS, but not for the

TAWT. Suitable parameters £ and « for the TFSS were chosen based on informal

listening tests and the average values of predictions from the normalised covariance

metric (NCM) and short-time objective intelligibility (STOI) in all conditions.

Vocoded speech, with and without noise reduction algorithms in situations of
different of noise types and SNR levels, were evaluated using the NCM and STOI to
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predict the direction of performance, before a listening test with NH listeners. Both the
NCM and STOI were computed using vocoded clean speech (as a reference speech) and

vocoded noisy speech with and without noise reduction algorithms.

The NCM and STOI values for each condition were obtained from the average of
336 Bamford-Kawal-Bench (BKB) sentences (details are provided in Section 5.2.1.1)
per condition. In the conditions of different noise types, the sentences were corrupted by
two types of noise, i.e. babble and speech-shaped noise at 5 dB SNR. There were a total
of 16 conditions (4 algorithms x 2 noise x 2 wavelet packet structures). In conditions
with different SNR levels, the sentences were corrupted by babble noise at 0, 5 and 10
dB SNR. There were a total of 18 conditions (3 algorithms x 3 SNR levels x 2 wavelet

packet structures).

Figure 4.6 shows the comparative results of the NCM (left) and STOI (right) for
processing with and without noise reduction algorithms, in terms of different noise
types (Figure 4.6 (a)) at 5 dB SNR and different SNR levels (Figure 4.6 (b)) in babble
noise. The results of the NCM and STOI have the same trend of performance in almost
all conditions except at 0 dB SNR. The STOI provides considerably higher values of
speech intelligibility than the NCM in all conditions.

A one-way analysis of variance (ANOVA) revealed a statistical significant (F [15,
31] =532.78, p<0.0005) in different noise types (Figure 4.6 (a)) and a statistical
significant (F [17, 35] =77.44, p<0.0005) in different SNR levels (Figure 4.6 (b)) for
processing on the intelligibility measures examined. Post-hoc tests (Bonferroni) were
used to assess differences between values of the intelligibility measures obtained in the

different conditions.

As can be seen from Figure 4.6 (a), the IdBM provided significantly better
performance than others. The TAWT vyielded significantly better performance than the
TFSS in both noises at 5 dB SNR. In Figure 4.6 (b), the TAWT and TFSS provided
significantly better performance than vocoded noisy speech at 0 and 5 dB SNR, but not
at 10 dB SNR for babble noise. Both the TAWT and TFSS showed no significant
difference in almost all SNR levels. The TAWT provided only significantly better
performance than TFSS for the STOI at 0 and 5 dB SNR.
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Figure 4.6 The comparison of performance between noise reduction algorithms (i.e.
TFSS and TAWT) in terms of intelligibility measures (i.e. NCM and STOI). Each
column denotes intelligibility measures in NCM and STOI. The rows represent different

noise types (a) and different SNR levels (b). The error bars indicate + 1 standard error.
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4.5 Discussion

45.1 Differences between noise reduction algorithms

The noise reduction algorithms applied in the wavelet packet-based speech coding
strategy (i.e. TFSS and TAWT) have been discussed and compared to IdBM. All the
algorithms are relatively simple in their implementation, do not require the explicit
voice activity detection, and have low computing complexity. This makes them more

suitable for real-time implementation in CI systems.

In noise estimation, all algorithms are simply implemented by gain functions in
noisy envelopes in each channel. These algorithms employ different techniques in their
gain functions. The IdBM requires prior knowledge of speech and noise information in
the present frame to find the exact priori SNR of the signal. The TFSS requires the
noise estimation algorithm proposed by Martin (2001) and information from previous
and present frames to estimate the priori SNR and the posteriori SNR of the gain
function. This approach needs to adjust some parameters (e.g. weighting factors) to get
the optimal performance for different types of noise and different SNR levels.

The TAWT uses the TEO to construct temporal masking in each channel. This
temporal masking is applied to estimate adaptive threshold values for the soft-
thresholding gain function. The TAWT does not require both an explicit estimation of
noise level or any knowledge of the priori SNR and the posteriori SNR, using only a
noise variance in each channel. In addition, the TAWT can reduce the data redundancy

by setting the envelope amplitudes below the threshold A to zero.

The algorithms may provide more error estimation for nonstationary noise or
lower SNR levels than stationary noise or higher SNR levels. The algorithms may work
better for speech-shaped noise than for babble noise. This is because the characteristics
of babble noise vary rapidly. Then the noisy envelopes may be weighted by the gain
function with inaccurate noise estimation, which leads to decreased intelligibility of
performance (Fu and Nogaki, 2005). The noise reduction algorithms should be further
developed for nonstationary noise. Figure 4.6 (a) shows that the TFSS and TAWT in
speech-shaped noise give a slightly higher performance than those in babble noise when

predicting performance with both NCM and STOI.
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At lower SNR levels, speech signals are heavily masked by noise and noisy
envelopes are multiplied by a weight close to zero. Little speech information in each
channel is probably not intelligible and distracting information to CI users (Hu et al.,
2007). In contrast, at sufficiently high SNR levels, noisy envelopes are multiplied by a
weight close to one. Cl users can understand most of the important information and
ignore the noise. Figure 4.6 (b) shows that TFSS and TAWT at higher SNR levels (e.g.
10 dB SNR) are slightly better or almost the same as noisy speech. This is because
noisy speech with and without noise reduction may allow discrimination between
speech and noise, with the capabilities of the human auditory system (Verschuur et al.,
2006).

Ideally, the noise reduction algorithms in CI systems should be able to
automatically detect noise environment changes and select optimized parameters for the
noise reduction algorithms. Currently, there are no noise estimation techniques that can
track noise spectra accurately. However, Hu et al. (2007) suggested that noise
estimation does not have to be very accurate to obtain an exact weight for multiplying to
the noisy envelopes. It is enough if the noise estimation performs sufficiently well to

discriminate high from low SNR envelopes.

A few studies in CI noise reduction suggested that in practice, noise reduction for
Cl users should provide more aggressive gain functions and show significant
intelligibility performance improvement (Hu et al., 2007; Dawson et al., 2011). In
contrast, noise reduction for NH listeners is designed to be less aggressive in
maintaining listening quality. This is because of the perceptible difference between NH

listeners and CI users.

In noise reduction strategies for Cls, rather than TFSS as the envelope-based
strategy, various techniques for spectral subtraction are applied as pre-processing
strategies and they are able to improve intelligibility performance for CI users (Yang
and Fu, 2005; Verschuur et al., 2006). Some studies reported that algorithms of spectral
subtraction carry low computational complexity (Verschuur et al., 2006). However,
none of the spectral subtraction algorithms are applied as envelope-based strategies,
which are expected to provide the same performance improvement as pre-processing

strategies but require a lower computational load. Figure 4.6 indicates that the trend of
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TFSS as the envelope-based strategy may improve performance for ClI users both in
different noise types and at different SNR levels.

Other techniques based on envelope-weighting with a gain function include
sigmoidal-shaped gain function (Hu et al., 2007), PCA/ICA with soft thresholding (Li,
2008), sigmoidal-shaped gain function with a posteriori SNR estimate (Dawson et al.,
2011), modified Wiener gain function (Dawson et al., 2011), and sparse non-negative
factorisation (Hu et al., 2013). These algorithms are reported to be able to improve

intelligibility performance for NH listeners and CI users.

Interestingly, TAWT is similar to PCA/ICA based on soft thresholding, which is a
stage in envelope-based algorithms. For TAWT, the stage of soft thresholding is applied
directly in the wavelet domain with sparseness properties, while the soft thresholding of
PCA/ICA is applied in the ICA domain. Therefore, TAWT requires lower
computational complexity than PCA/ICA. Furthermore, Figure 4.6 shows that TAWT

trends to improve intelligibility for CI users.

4.5.2 Validity of objective intelligibility measures

The NCM and STOI are used to pre-evaluate the intelligibility performance of noise
reduction algorithms. Both NCM and STOI were found that they work well with NH
listeners for non-vocoded noisy speech with noise reduction algorithms (Jianfen et al.,
2009; Sang, 2012). The NCM was confirmed to be good measure with NH listeners for

vocoded noisy speech without noise reduction algorithms (Chen and Loizou, 2011).

When TAWT and TFSS were evaluated by using NCM and STOI, TAWT had
better trend for intelligibility performance than TFSS both in different noise types and at
different SNR levels. The trend of intelligibility performance of the obtained results was
expected to be consistent with previous research, which examined CI systems with
similar noise reduction methods evaluated by NH listeners and CI users. Nevertheless,
the use of various objective measures might increase reliability for predicting the

performance of noise reduction algorithms.

Finally, subjective intelligibility measures with listening tests are required to
obtain reliability of intelligibility performance. Noise reduction algorithms were
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assessed by subjective intelligibility measures with NH listeners in Chapter 5 and were
compared with objective intelligibility measures to justify the correlation and reliability

of objective intelligibility measures.

4.6 Conclusions

Noise reduction techniques based on wavelet packet transform, namely TAWT and
TFSS, were implemented in the wavelet packet-based speech coding strategy. All the
noise reduction techniques removed noise and retained important speech information.

They were expected to benefit Cl users in terms of speech intelligibility.

Vocoded noisy speech with and without noise reduction techniques were pre-
evaluated by objective intelligibility measures including NCM and STOI. The
comparative results indicated that IdBM might bring more benefit while the TAWT and
TFSS might bring either less benefit or no benefit in terms of speech intelligibility. The
TAWT provides the better trend of intelligibility performance than the TFSS.

Although the 1dBM provides the best possible performance, it is impossible for
application in the real world because its approach uses an ideal method in which
information about speech and noise are known and noise estimation is accurate. The
TFSS needs to adjust some parameters for the best performance in each condition.
Consequently, the TAWT is the more suitable and realistic method for noise reduction

than the TFSS in the real-world situation.
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Chapter 5.  Evaluation of wavelet packet-based

strategies for normal-hearing listeners

5.1 Introduction

CI manufacturers provide several speech coding strategies in their Cl systems (Loizou,
2006) — for instance, the Cochlear Corporation supports the ACE and CIS strategies in
their Nucleus device (Cochlear, 2002). CI users benefit from increasing the number of
speech coding strategies, as at least one of them might be more useful than the others.
This also allows a large number of parameters to be configured in CI processors and the

complexity of selecting the optimal subset of parameters associated with each strategy.

The parameters of CI processors specified in a CI user’s MAP (Appendix D.2)
can be varied to optimise speech recognition performance for individual CI users, such
as channel stimulation rate, filter spacing and the number of channels selected (Dorman
et al., 1997; Loizou et al., 2000; Fourakis et al., 2007; Kasturi and Loizou, 2007). It is
an important issue to identify the optimal subset of parameters for fitting CI users. The
optimal subset of parameters is a good starting point and saves time in selecting

parameters during the fitting of new CI users (Loizou et al., 2000).

Designing the wavelet packet-based speech coding strategy with noise reduction
algorithms, the parametric variation of the wavelet packet filter bank and the noise
reduction algorithms may affect speech recognition performance. The parametric
variation of the wavelet packet filter bank includes the wavelet packet structures, the
types of mother wavelet and the frame lengths. These parameters were quite difficult to
evaluate using objective intelligibility measures because their objective intelligibility
values are almost the same. Thus the listening test is more suitable for evaluating these
parameters. The parametric variation of noise reduction algorithms was evaluated using
the objective intelligibility measures to guide the adjustment of parameters to improve

speech intelligibility before the listening test with NH listeners.

In this chapter, the evaluation of the wavelet packet-based speech coding
strategies for NH listeners can be divided into two parts: the effects of parametric
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variation in wavelet packet filter banks on speech intelligibility (i.e. filter spacing, type
of mother wavelet and frame lengths) and the comparison of noise reduction algorithms
(i.e. TFSS and TAWT). The first part aims to further explore the optimal parameters of
wavelet packet filter banks that may affect speech recognition in both quiet and noisy
conditions. The second part aims to investigate and compare vocoded noisy speech,
with and without noise reduction algorithms for different noise types and SNR levels.

5.2 Effect of wavelet packet filter banks on speech intelligibility

Three speech processing parameters were examined to study the effect of parametric
variation of wavelet packet filter banks on speech intelligibility. Experiment 1 examined
the effect of filter spacing. The filter spacing design relates to the wavelet packet filter
banks and the number of channels allocated in the formant regions. The wavelet packet-
based strategy was also compared to the commercial ACE strategy. Experiment 2
examined the effect of a perceptually optimised wavelet. This mother wavelet was
based on an auditory model (Karmakar et al., 2011) and was compared to Symlet, which
was applied in CI processors (Nogueira et al., 2006; Gopalakrishna et al., 2010b).
Experiment 3 examined the effect of frame lengths. Different frame lengths may

provide different speech recognition performance.

521 Experiment 1:  Effect of filter spacing

An important stage in all CI processors is the decomposition of speech signals into
frequency bands. Therefore, the signal bandwidth and filter spacing need to be
considered to find the optimal frequency-to-electrode allocation (Kasturi and Loizou,
2007).

The signal bandwidth is constrained by the Nyquist theorem to provide half of the
sampling frequency. A sampling frequency of 16 kHz is commonly used in the CI
processor, and the bandwidth is between 0 Hz and 8 kHz. Bandwidths ranging from 6.7
to 9.9 kHz have no significant effects on consonant and vowel recognition (Loizou et

al., 2000). A bandwidth of 4 kHz is very important for understanding speech (Loizou,
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1998). This bandwidth contains the first three formants denoted as F1 (0.3—1 kHz), F2
(1-3 kHz) and F3 (>3 kHz) (Hillenbrand et al., 1995; Loizou, 2006), which are the
frequency bands for most vowels. However, a small bandwidth (i.e. 0—4 kHz) may
result in consonant confusions (e.g. f/s, p/t and t/k), especially a female speakers. A
wide bandwidth (i.e. 0—8 kHz) can reduce the consonant confusion (Loizou, 1998;
Loizou et al., 2000).

The filter spacing in each channel of CI processors requires specific frequency
ranges. The optimal spacing of frequency bands to the number of electrodes (12—-22) is
becoming more important to find the best mapping of frequency-to-electrode allocation,
and it might also have an important effect on perception outcomes for CI users. Filter
banks with narrow frequency spacing provide considerable flexibility for setting centre
frequencies and bandwidth in each channel of Cl processors. Consequently, more
channels can be easily allocated in the low-frequency region (Kasturi and Loizou, 2007,
Mourad Ghrissi, 2012). The channel density in the low-frequency region plays a critical
role in speech recognition (Fourakis et al., 2004; Loizou, 2006; Fourakis et al., 2007)
and melody recognition (Kasturi and Loizou, 2007).

There are many ways of allocating the filter spacing in signal bandwidth such as
logarithmic, Mel and Bark scales. These frequency scales relate to the assignment of the
number of channels in the formant regions, which may influence intelligibility, at least
on vowel recognition tasks (Loizou, 2006). A study (Loizou, 2006) found that Clarion
CI users obtained a significant benefit in vowel recognition using the Bark scale over
Mel and logarithmic scales, because the Bark scale had the highest number of channels
in the F1/F2 region. A similar outcome was reported in Fourakis et al. (2004) and
Fourakis et al. (2007), which indicate that there was performance improvement with the
assignment of more channels to the F1/F2 regions for Nucleus CI users. In addition,
Kasturi and Loizou (2007) found that a small difference in the number of channels in
the low-frequency region produced a difference of 34 percentage points in melody

recognition for NH listeners and Clarion ClI users.

The aim of this experiment was to determine whether the number of channels of
different wavelet packet filter banks based on Bark scale could affect to speech

recognition.
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52.1.1 Method
A. Subjects

Nine NH listeners participated in this experiment. All subjects were native speakers of
British English (6 males, 3 females, from 18 to 34 years of age) and all had normal
hearing thresholds (< 20 dB HL). They were staff and students at the University of
Southampton and were paid for their participation. Testing was approved by the

University of Southampton Experimentation Safety and Ethics Committee.
B. Stimuli

The BKB (Bamford-Kowal-Bench) sentences (Bench et al., 1979) were used. They are
composed of 21 lists with each list consisting of 16 sentences (21 lists x 16 sentences =
336 sentences) and 50 key words (3—4 words per sentence). The sentences are
composed of no more than seven syllables and their vocabulary reflects the natural
language usage of younger and more hearing-impaired children. All the BKB sentences
were recorded by a male speaker of standard British English at a 22 kHz sampling rate.
They were resampled to 16 kHz for the experiment to simulate the speech processing in

a Cl system.

All sentences were separately processed offline using ACE and wavelet packet-
based strategies. They were corrupted by babble and speech-shaped noises at 5 dB SNR.
A level of 5 dB SNR is encountered in many everyday environments (e.g. class rooms,
and work environments) (Wilson and Dorman, 2008a). There were a total of 15

conditions (5 filter banks x 3 noises), as listed in Table 5.1.

Table 5.1 All conditions in this study.

. . Noise level at 5 dB SNR
Filter banks Quiet Babble noise Speech-shaped noise
128-point FFT C1l C6 Cl1
23-band WPT C2 C7 C12
32-band WPT C3 C8 C13
64-band WPT C4 C9 Cl4
128-band WPT C5 C10 C15
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For the ACE strategy, the 128-point FFT with a frequency spacing of 125 Hz
defaulted in the Nucleus device was used to compare with the wavelet packet-based
strategy. For the wavelet packet-based strategy, four wavelet filter banks with sym8,
including 23-, 32-, 64- and 128-band WPT, were implemented. The 23-band WPT was
generated from a six-level decomposition. The 32-, 64- and 128-band WPT were
generated from five-, six- and seven-level decompositions, and their frequency spacing
was 250, 125 and 62.5 Hz, respectively. For all wavelet filter banks except 23-band
WPT, the frequency bands were calculated by summing the power of adjacent

frequency bands to generate 22 channels.

The filter spacing of the ACE and wavelet packet-based strategy was allocated
using the Bark scale (as in Sections 3.3 and 3.4). The frequency bands and centre
frequencies of the wavelet packet filter banks were specified as in Table 3.1 (Section
3.4) for the 23- and 64-band WPT and as in Table 5.2 for the 32- and 128-band WPT.
Figure 5.1 shows the centre frequencies of all filter banks. It can be seen that the centre
frequency of the 32-band WPT has a different frequency map to the 23-, 64- and 128-
band WPTs. This is because the 32-band WPT has the widest frequency spacing (i.e.
250 Hz), so it is difficult to allocate frequency ranges close to the Bark scale or to form
the signals sent to electrodes. The number of channels in each formant region for

different filter banks is shown in Table 5.3.
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Figure 5.1 Centre frequencies of WPT and FFT filter banks. Comparison between 23-
band WPT and 128-point FFT (left) and comparison among WPT filter banks (right)
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Table 5.2 Frequency band and centre frequency in each channel of 32- and 128-band
WPT at 16 kHz sampling rate.

Electrode 32-band WPT 128-band WPT
e | [f ] f_ Af [f, f,] f Af
22 250-500 375 250 187.5-250.0 218.75 62.5
21 500-750 625 250 250.0-312.5 281.25 62.5
20 750-1000 875 250 312.5-375.0 343.75 62.5
19 1000-1250 1125 250 375.0-437.5 406.25 62.5
18 1250-1500 1375 250 437.5-562.5 500.00 125.0
17 1500-1750 1625 250 562.5-687.5 625.00 125.0
16 1750-2000 1875 250 687.5-812.5 750.00 125.0
15 2000-2250 2125 250 812.5-937.5 875.00 125.0
14 2250-2500 2375 250 937.5-1062.5 1000.00 125.0
13 2500-2750 2625 250 1062.5-1250.0 1156.25 187.5
12 2750-3000 2875 250 1250.0-1437.5 1343.75 187.5
11 3000-3250 3125 250 1437.5-1687.5 1562.50 250.0
10 3250-3500 3375 250 1687.5-2000.0 1843.75 3125
9 3500-3750 3625 250 2000.0-2375.0 2187.50 375.0
8 3750-4000 3875 250 2375.0-2812.5 2593.75 4375
7 4000-4500 4250 500 2812.5-3312.5 3062.50 500.0
6 4500-5000 4750 500 3312.5-3937.5 3625.00 625.0
5 5000-5500 5250 500 3937.5-4625.0 4281.25 687.5
4 5500-6000 5750 500 4625.0-5375.0 5000.00 750.0
3 6000-6500 6250 500 5375.0-6187.5 5781.25 8125
2 6500-7250 6875 750 6187.5-7062.5 6625.00 875.0
1 7250-8000 7625 750 7062.5-8000.0 7531.25 9375

Table 5.3 The number of channels in the F1/F2 region of all filter banks.

Formant | Frequency i Filter banks
region range 128-point | 23-band | 32-band | 64-band | 128-band
FFT WPT WPT WPT WPT
F1 0.3-1 kHz 6 7 3 - g
F2 1-3 kHz 9 8 3 8 -
others 3-8 kHz 7 7 11 7 7

C. Procedure

The experiment was carried out in a sound-treated room. The subjects were asked to
sign a consent form. Before the actual testing, a pure tone audiogram test was carried
out to confirm that the subjects had normal hearing thresholds (< 20 dB HL, between
250 and 8000 Hz). The speech stimuli were presented using a Dell Latitude E4300
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laptop, routed through a Creek Audio OBH-21SE headphone amplifier and presented
unilaterally through a Sennheiser HDA280 circumaural headphone. Levels of speech

stimuli in all experiments were presented at a comfortable conversional level (65 dB

(A).

Subjects were fully tested in a total of 15 conditions over two sessions on separate
days, lasting approximately 1.25 hours each. They used their preferred ear (left or right)
that was most comfortable for them to listen to the vocoded speech for the entire test.
They were asked to write down the sentences that they heard. In the training session,
they were asked to listen to one sentence list in both quiet and noisy conditions in a
five-minute test in order to familiarise themselves with the vocoded speech and the
testing procedures. This sentence list was not included in the actual testing.

In the testing session, two lists of BKB sentences (32 sentences) per condition
were used to provide 100 keywords (100 percent). The sentences were scored in terms
of the percentage of correct key words per condition, expressed as “percent correct.” NO
list was repeated across the conditions in each session. The order of conditions and the
list-to-condition mapping in each session was randomised across subjects. Subjects
were given a five-minute break every 30 minutes during the test, or whenever they

needed to take a rest.
D. Statistical analysis

The obtained scores were analysed using SPSS software version 21. A Shapiro-Wilk
test (sample size < 50) was used to test the normality of the data distribution. For data
with normal distribution (p>0.05), an analysis of variance (ANOVA) with repeated
measure was used to investigate the difference between mean scores with different
factors. Post-hoc tests (Bonferroni) were used to indicate differences between mean

scores in the individual pair relationships in various conditions.

For data with non-normal distribution (p<0.05), a nonparametric Friedman’s
ANOVA was used to investigate the difference between mean scores with various
factors. Post-hoc tests (Wilcoxon) were used to assess differences between mean scores

in the individual pair relationships in various conditions.
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5.21.2 Results

The boxplot and the mean percent correct scores for various filter banks in quiet and
noisy conditions are shown in Figure 5.2. A Shapiro-Wilk test indicated that all the
quiet conditions were not normally distributed, while all the noisy conditions were
normally distributed.

In quiet conditions, a nonparametric Friedman’s ANOVA with repeated measures
showed a significant main effect of the filter banks (2 [4, 9] =18.667, p=0.001). Post-
hoc tests revealed a significant main effect of individual pairs of filter banks. The

sentence score of the 32-band WPT was significantly lower than the others.

In noisy conditions, a two-way ANOVA with repeated measures showed a
significant main effect of the filter banks (F [4, 32] = 82.509, p=0.001), a significant
main effect of noise type (F [1, 8] = 25.004, p=0.001), and a nonsignificant interaction
between filter banks and noise type (F [4, 32] = 2.316, p=0.079). These results indicated
that speech intelligibility depends on the different filter banks and different noise type.
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Figure 5.2 Boxplot and mean percentage correct scores for various filter banks in quiet

and noisy conditions. The error bars indicate = 1 standard error of the mean.

Post-hoc tests showed that the 32-band WPT produced significantly worse scores
compared to the other filter banks. The 128-band WPT showed significantly lower
performance when compared with the 128-point FFT and the 23-band WPT. The
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performance of all filter banks in speech-shaped noise was significantly higher than the
performance in babble noise (Figure 5.2). It can be seen that the 128-point FFT tended
to slightly higher performance than the 23-, 64- and 128-band WPT. However, there
was no statistically significant difference between the 128-point FFT, the 23- and 64-
band WPT in noisy conditions.

5.2.1.3 Discussion

A. Relationship between frequency spacing of filter banks and the number of

channels

The frequency spacing of different filter banks relates to the assignment of the number
of channels in the formant regions. The narrower frequency spacing (e.g. 62.5 Hz of the
128-band WPT) is more flexible in terms of allocating the number of channels and in
any frequency scale than the wider frequency spacing (e.g. 250 Hz of the 32-band
WPT). It can be seen that the channel allocation of 32-band WPT in the F1/F2 region
has fewer channels than the others as shown in Table 5.3.

The narrow frequency spacing of filter banks has some advantages for CI design.
The narrow frequency spacing can be used to increase the available set of frequency
tables in ClI processors. This is useful for the clinician who will have suitable options for
the frequency-to-electrode allocation for individual CI users, instead of the fixed tables
for frequency allocation provided by manufacturers (Fourakis et al., 2007). In addition,
the narrowest frequency spacing, 62.5 Hz in this study, may be sufficient for changes in
pitch perception, especially for speech signals where the average pitch is close to 125
Hz (Mourad Ghrissi, 2012). The pitch also gives information about sentence prosody
(e.g. statements and questions). It is also useful for tonal languages (e.g. Chinese and
Thai), where pitch can be used to express semantic and grammatical cues (Mourad
Ghrissi, 2012).

B. Relationship between different filter banks and speech intelligibility

Speech recognition performance was improved with the assignment of the more
channels to the F1/F2 region. There was no significant difference on speech recognition
performance for filter banks of 128-point FFT, 23- and 64-band WPT in both quiet and
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noisy conditions, because their filter banks were based on Bark scale and the number of
channels in the F1/F2 regions were the same (i.e. 15 channels). The 32-band WPT
provided the lowest performance in both quiet and noisy conditions. This may result
from the channel allocation of the 32-band WPT (i.e. 11 channels) in the F1/F2 region,
which was less than the other filter banks (i.e. 15 channels).

The 128-band WPT provided significantly lower performance than the 128-point
FFT and the 23-band WPT in noisy conditions, although it has 15 channels in the F1/F2
regions. This may result from the summing of the power of adjacent bands in all filter
banks except the 23-band WPT to generate 22 channels. The 22 channels of the 128-
band WPT were generated from 128 bands, whereas those of the 128-point FFT and 64-
band WPT were computed from 64 bins/bands. Consequently, the 128-band WPT may

provide higher noise power and lower performance than the others.

The obtained results were consistent with other studies in (Skinner et al., 1995;
Skinner et al., 1997; Fourakis et al., 2004; Fourakis et al., 2007). Fourakis et al. (2007)
suggested that a better performance may be achieved using a strategy whereby at least
seven to eight channels are allocated below 1 kHz, with the majority of remaining
channels allocated between 1-3 kHz, and the region above 3 kHz allocated only a few
channels. In addition, the flexibility of such frequency band assignment should be
adjusted in clinical practice to find the optimal frequency-to-electrode mapping in

particular CI users.
521.4 Conclusion

Different frequency spacings of the wavelet packet filter were associated with filter
spacing (i.e. Bark scale) and the number of channels allocated in the F1/F2 region. The
128-point FFT and WPT filter banks (e.g. 23-, 64- and 128-band WPT) were based on
Bark scale and the number of channels allocated in the F1/F2 regions of these filter
bank was equal. Such assignment can provide the same speech recognition
performance, except for 128-band WPT in noisy conditions. Generally speaking, the
number of channels allocated in the F1/F2 region plays a critical role in speech
recognition and depends on the filter spacing. The more channels are allocated in the
F1/F2 region, the better the speech information that is perceived (McDermott, 1998;
Mckay and Henshall, 2002; Fourakis et al., 2007).
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522 Experiment 2:  Effect of perceptually optimised wavelet

The choice of reasonable mother wavelet for the wavelet packet-based speech coding
strategy is an important issue (Nogueira et al., 2006; Karmakar et al., 2011). Several
mother wavelets are provided in the wavelet toolbox of MATLAB, such as Daubechies,
Symlet, and Coiflet wavelets (Appendix C). The mother wavelets of Daubechies and
Symlets are widely applied in wavelet packet-based speech coding strategies (Nogueira
et al., 2006; Gopalakrishna et al., 2010b). In this thesis, Symlet with order 8 (sym8) is

implemented in all experiments.

Some mother wavelets have been designed based on the perceptual frequency
scale and the temporal resolution of the auditory system — for instance, the bionic
wavelet transform (BWT) was derived from the Morlet mother wavelet, and it has been
used as one of the continuous wavelet transforms (CWTs). However, these methods do
not provide the requisite structure for wavelet packet filter banks (Karmakar et al.,
2011).

(b)

Figure 5.3 Coefficients of wavelet filters (left) and wavelet functions (right)
for the sym8 with filter length of L=16 (a) the perceptually optimized
wavelet (pow) with filter length of L=8 (b).
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Karmakar et al. (2011) introduced the perceptually optimised wavelet (pow),
which was optimally designed based on the Bark scale and the temporal resolution of
the auditory system. The advantage of the pow wavelet is clearly visible in terms of the
reduction in energy error in each channel in comparison with Daubechies, Symlet, and
Coiflet wavelets at the same filter length. Figure 5.3 demonstrates the coefficient of
wavelet filter and wavelet function for the sym8 with filter length of L=16 and the pow

wavelet with filter length L=8.

The pow wavelet may lead to an increase in the speech recognition performance
of wavelet packet-based CI processors. Therefore, this experiment investigates the
hypothesis that the pow wavelet will improve speech intelligibility in quiet and noisy

conditions.

5221 Method
A. Subjects

Eight NH listeners participated in this experiment. All subjects were native speakers of
British English (3 males, 5 females, from 18 to 34 years of age) and had normal hearing
thresholds (< 20 dB HL). They were staff and students at the University of Southampton

and were paid for their participation.
B. Stimuli

All sentences were separately processed offline using wavelet packet-based strategy in
quiet and two different noisy conditions, at 5 dB SNR in babble and speech-shaped
noises. The wavelet filter banks of 23- and 64-band WPT were used in this study as a
result of the findings of Experiment 1. The mother wavelets of Symlet with order 8
(sym8) and pow were examined and compared. There was a total of 12 conditions (2

wavelet packet structures x 2 mother wavelets x 3 noises), as listed in Table 5.4.
C. Procedure

The procedures were the same as in Experiment 1 (Section 5.2.1). Subjects were fully
tested in a total of 12 conditions for two sessions on separate days, lasting

approximately one hour each.
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D. Statistical analysis

The analysis was the same as in Experiment 1 (Section 5.2.1).

Table 5.4  All conditions in this study

Wavelet packet structures Quiet Noise level at5 dB SNR

(mother wavelet) Babble noise Speech-shaped noise
23-band WPT (sym8) Cl C5 C9
23-band WPT (pow) C2 C6 C10
64-band WPT (sym8) C3 c7 C11
64-band WPT (pow) C4 C8 C12

5.2.2.2 Results

A Shapiro-Wilk test indicated that the data under all the quiet conditions were not
normally distributed, while the data in all noisy conditions were normally distributed.
Figure 5.4 presents the boxplot and the mean percentage correct scores of both mother
wavelets in quiet and noisy conditions. The boxplot in Figure 5.4 shows that the results
contained a few outlying data points because some subjects performed poorly and

produced low overall scores in the quiet condition.

In the quiet condition, a nonparametric Friedman’s ANOVA with repeated
measures indicated a nonsignificant main effect of different mother wavelets (y?
[3,8]=6.945, p=0.074). In noisy conditions at 5 dB SNR, a three-way ANOVA with
repeated measures revealed a significant main effect of the different mother wavelets (F
[1,7]=15.935, p=0.005), a nonsignificant main effect of wavelet packet structure (F
[1,7] =0.711, p=0.427) and a nonsignificant main effect of noise type (F [1,7]=2.325,
p=0.171). There was a significant interaction between mother wavelets and wavelet
packet structures (F [1,7]=13.334, p=0.008). However, there was no significant
interaction between wavelet packet structures and noises (F [1, 7] =0.098, p=0.763),
between mother wavelets and noise type (F [1,7]=0.140, p=0.720), and between
wavelet packet structures, mother wavelets and noise (F [1,7]=2.169, p=0.184).

Post-hoc tests indicated that speech intelligibility depends on the different mother
wavelets and the optimal mother wavelets associated with wavelet packet structures.

The pow wavelet yielded significantly lower speech intelligibility than the sym8
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wavelet in almost all noisy conditions. For the 64-band WPT, the pow wavelet produced
significantly lower performance than the sym8 in both babble and speech-shaped noise.
However, the 23-band WPT with the pow wavelet provided better performance than the
sym8 wavelet in speech-shaped noise. The pow and sym8 wavelets for the 23-band

WPT had more similar mean scores than for the 64-band WPT.

3-band WPFT (sym8)
(paw)
4-band VWPT (sym8)
4-band WPT (pow)

02

1807 E 1007 M 23-band WPT
o T H s
2 Hs

I 1S

40

Percent Carrect (%)
(=]
Percent Correct (%)

407

[J23-band WPT {sym8)
207 W 23-band WPT (pow) 20
E64-band WPT (sym#&)
W c4-band WPT (paw)

T T T
Quiet Babble noise Speech-shaped 0 Quiet Babble noise  Speech-shaped
noise noise

Figure 5.4 Boxplot and mean percentage correct scores for different mother wavelets in
quiet and noisy conditions. The error bars indicate £ 1 standard error of the mean.

5.2.2.3 Discussion

The pow wavelet was worse with more frequency bands, especially the 64-band WPT.
This is because the pow wavelet was derived from the structure of 21-band WPT and
the temporal resolution of the human auditory system. Therefore, the pow may be more
appropriate for the structure of 21-band WPT, but not for the structures of 23-or 64-
band WPT due to the different structures of wavelet packets.

However, the structures of the 21- and 23- band WPT are very similar because
both are constructed directly based on the Bark scale with different frequency ranges in
each channel. In contrast, the structure of the 64-band WPT is originally constructed
with equal frequency ranges for all 64 subbands and is not based on the Bark scale.
Therefore, it is possible that the pow wavelet yielded better performance for the 23-band

WPT than for the 64-band WPT.
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5224 Conclusion

The pow wavelet does not bring benefit in intelligibility performance in both quiet and
noisy conditions. The properties of the pow wavelet and wavelet packet structures in ClI
processors might be more suitable for CI listeners than for NH listeners. In a further
design for wavelet packet-based speech processors, the optimal mother wavelet should
be derived from their wavelet packet structures (e.g. 23- and 64-band WPT) and the
human auditory system to more closely match the behaviour of signals in healthy
cochlea. Finally, the optimal mother wavelet can reasonably be selected by comparing

the obtained results of these mother wavelets (Sang et al., 2009).

5.2.3 Experiment 3:  Effect of frame length

Frame length is defined as the length of time (or the number of samples). Human speech
is mixed between voiced and unvoiced sound. The duration of voiced sound is around
40—150 msec whereas unvoiced sound is around 10-50 msec (Shao and Chang, 2007).
Therefore, the speech signal is a highly nonstationary signal and its power spectrum
changes over time in a duration of above 250 msec. In speech processing the speech
signal is segmented into a sufficiently short duration, and then its spectral characteristics

are fairly stationary (Loizou, 2007).

Various frame lengths are used in the wavelet packet-based applications of ClI
processors and speech enhancement. Different frame lengths are used in wavelet packet-
based CI processors such as 4 msec (Nogueira et al., 2006) and 16 msec (Gopalakrishna
et al., 2010b). Frame lengths implemented in wavelet packet-based speech enhancement
include 4 msec (Carnero and Drygajlo, 1999; Shao and Chang, 2007), 8 msec (Shao and
Chang, 2011) and 32 msec (Cohen, 2001).

For the above reasons, the frame length is one of the important parameters for
wavelet packet filter banks that may affect speech recognition performance in the
wavelet packet-based speech coding strategies. This experiment aims to investigate
whether the different frame lengths would affect speech recognition. The selection
criteria from previous research on speech processing based on wavelet packets are

considered, such as 4, 8, 16 and 32 msec.
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523.1 Method
A. Subjects

Seven NH listeners participated in this experiment. All subjects were native speakers of
British English (4 males, 3 females, from 18 to 34 years of age) and had normal hearing
thresholds (< 20 dB HL). They were staff and students at the University of Southampton

and were paid for their participation.
B. Stimuli

All sentences were separately processed offline using wavelet packet-based strategies
under quiet and noisy conditions at 5 dB SNR in babble noise. The 23- and 64-band
WPT with sym8 were used with frame lengths of 4, 8, 16, 32 and 64 msec (64, 128,
256, 512 and 1024 samples/frame). There were a total of 20 conditions (2 wavelet

packet structures x 5 frame lengths x 2 noises), as listed in Table 5.4.
C. Procedures

The procedures were the same as in Experiment 1 (Section 5.2.1). Subjects were fully
tested in a total of 20 conditions over two sessions on separate days, lasting
approximately 1.5 hours each.

D. Statistical analysis

The analysis was the same as in Experiment 1 (Section 5.2.1).

Table 5.5 All conditions in this study

Wavelet packet structure Quiet Babble noise

(frame length) at 5 dB SNR
23-band WPT (4 msec) Cl Cl1
23-band WPT (8 msec) C2 C12
23-band WPT (16 msec) C3 C13
23-band WPT (32 msec) C4 Cl4
23-band WPT (64 msec) C5 C15
64-band WPT (4 msec) C6 C16
64-band WPT (8 msec) Cc7 C17
64-band WPT (16 msec) C8 C18
64-band WPT (32 msec) C9 C19
64-band WPT (64 msec) C10 C20
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5.2.3.2 Results

A Shapiro-Wilk test indicated that the data in all the quiet conditions were not normally
distributed, whereas the data from all the noisy conditions were normally distributed.

Figure 5.5 presents the mean percentage correct scores for the different frame lengths in
quiet and noisy conditions.

In quiet conditions, a nonparametric Friedman’s ANOVA with repeated measures
indicated a nonsignificant main effect of the different frame lengths (2 [9, 7] = 10.364,
p=0.322). In babble noise at 5 dB SNR, a two-way ANOVA with repeated measures
revealed a nonsignificant main effect of wavelet packet structures (F [1, 6] = 0.038,
p=0.851), a significant main effect of the various frame lengths (F [4, 24] = 11.299,
p<0.0005), and a significant interaction between wavelet packet structures and frame
lengths (F [4, 24] = 3.508, p=0.022).

Post-hoc tests indicated that the frame lengths of 8 and 16 msec have significantly
higher speech-intelligibility performance than the others. The 64-band WPT with a

frame length of 8 msec provided significantly better performance than the 64-band WPT
with a frame length of 4 msec.
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Figure 5.5 Boxplot and mean percent correct scores for the different frame lengths in

quiet and noisy conditions. The error bars indicate + 1 standard error of the mean.
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5233 Discussion and conclusion

The different frame lengths affected the performance of speech intelligibility in noisy
conditions, but not in quiet conditions. The longer the frame length, the higher the
computational complexity. A frame length of 8 msec has lower computational
complexity than a frame length of 16 msec for the same speech intelligibility in both

quiet and noisy conditions.

In addition, the different frame length might have an effect on speech analysis.
The frame length of 8 msec may be sufficient to analyse information in the speech
signal, particularly unvoiced sound (the majority of consonants). This might be useful
for Cl users in discrimination between voiced and unvoiced sound. Therefore, the frame
length of 8 msec is more suitable than the others in wavelet packet-based speech coding

strategies in terms of computational cost and speech analysis (Shao and Chang, 2007).

5.3 Noise reduction algorithms in the wavelet packet-based speech

coding strategy

Noise reduction algorithms including time-frequency spectral subtraction (TFSS) and
time-adaptive wavelet thresholding (TAWT) for the wavelet packet-based speech
coding strategy are investigated in terms of different noise types and SNR levels, as in
Experiment 1 and 2 respectively. The experiments were designed to determine whether
noise reduction algorithms can improve speech recognition performance for different

noise types and SNR levels.

53.1 Experiment 1:  Comparison of noise reduction algorithms with

different noise types
53.1.1 Method
A. Subjects

Ten NH listeners participated in this experiment. All subjects were native speakers of

British English (6 males, 4 females, from 18 to 22 years of age) and had normal hearing
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thresholds (< 20 dB HL). They were staff and students at the University of Southampton
and were paid for their participation.

B. Stimuli

All sentences were processed separately offline using a wavelet packet-based strategy
with and without noise reduction algorithms under quiet and two different noisy
conditions: 5 dB SNR in babble and speech-shaped noises. The noise reduction
algorithms including 1dBM, TFSS and TAWT are provided in Section 4.3. There were a
total of 18 conditions (2 Quiet + (4 algorithms x 2 noise types x 2 wavelet packet

structures)).
C. Procedures

The procedures were the same as in Experiment 1 (Section 5.2.1). Subjects were fully
tested over two sessions on separate days, lasting approximately 1.5 hours each. After
the subjects were completely finished in each condition, they filled in the post-test

questionnaire (Appendix F.1) to record information in terms of speech intelligibility.

D. Statistical analysis

The analysis was the same as in Experiment 1 (Section 5.2.1). The data from the post-

test questionnaire were analysed using median values for each question.
5.3.1.2 Results

A Shapiro-Wilk test indicated that the data in all conditions were normally distributed.
Figure 5.6 presents a boxplot and mean percentage correct scores for different

algorithms of noise reduction in all conditions.

A three-way ANOVA with repeated measures was conducted with three main
factors: algorithms, noise type, and wavelet packet structures. This revealed a
significant main effect of algorithms (F [3, 27] =94.509, p<0.0005), a significant main
effect of noise type (F [1, 9] =9.723, p=0.012) and a nonsignificant main effect of
wavelet structures (F [1, 9] =0.228, p=0.644). There was a significant interaction
between algorithms and noise type (F [3, 27] =7.119, p=0.001). However, there was a
nonsignificant interaction between algorithms and wavelet packet structures (F [3, 27]

=0.751, p=0.531), a nonsignificant interaction between noise type and wavelet packet
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structures (F [1, 9] =0.572, p=0.469), and a nonsignificant interaction between
algorithms, noise types, and wavelet packet structures (F [3, 27] =0.928, p=0.416).

Post-hoc tests were used to assess individual pair relationships between
algorithms and noise type. The IdBM provided significantly higher scores than the
TAWT and TFSS in both babble and speech-shaped noise. The TAWT provided
significantly lower scores than the TFSS and the vocoded noisy speech corrupted by
speech-shaped noise.

The post-test questionnaires were recorded by all subjects after listening to the
vocoded speech in each condition (Appendix F.2). All subjects reported that the overall
impression of sound quality for the quiet condition and IdBM was good, while the noisy
conditions and noise reduction by TAWT and TFSS were reported to be poor. The
listening efforts for the quiet condition and 1dBM were negligible while the listening
efforts for the noisy conditions and noise reduction by TAWT and TFSS were moderate

in order to understand the key words and messages.
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Figure 5.6 Boxplot and mean percentage correct scores for noise reduction algorithms
in 5dB SNR babble noise and speech-shaped noise.
The error bars indicate £ 1 standard error.

The subjects felt that when listening over long periods of time, it was moderately
easy to listen in quiet conditions and IdBM whereas it was difficult to listen in noisy

conditions and with noise reduction by TAWT and TFSS. The articulation of the
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vocoded clean speech and IdBM was clearly distinguishable. The articulation of TFSS
was fairly clear, whereas the articulation of the vocoded noisy speech and TAWT was
not very clear. Generally speaking, the articulation of TFSS was more distinguishable
than that of TAWT.

5.3.1.3 Discussion and conclusion

A. Relationship between noise reduction algorithms and different noise types

Noise reduction algorithms including TFSS and TAWT were investigated and compared
with 1dBM in different noise types. The 1dBM can restore speech intelligibility to the
same level in as the quiet conditions. This study is consistent with those reported in
IdBM studies of CI users by Hu and Loizou (2008) and Kokkinakis et al. (2011). The
TFSS and TAWT do not significantly improve speech intelligibility when compared to
vocoded noisy speech in both babble and speech-shaped noise at 5 dB SNR. Both
TAWT and TFSS in babble noise provided similar scores to those in speech-shaped

noise.

The IdBM is the noise reduction algorithm assuming the priori SNR is known.
Whereas TFSS and TAWT do not assume prior knowledge of speech and noise
information, they require the estimation of noise levels. Noise estimation in both TFSS
and TAWT may be under- or overestimated and this results in distortion in the enhanced
speech. The distortion of the enhanced speech may be more than the noise reduction,
and may affect the speech intelligibility performance because speech discrimination

becomes more difficult.

Figure 5.7 shows waveforms of vocoded clean speech and vocoded noisy speech
with/without noise reduction algorithms for the BKB sentence “The clown had a funny
face” processed by a wavelet packet-based speech coding strategy with 5 dB SNR
babble noise. Figure 5.8 shows electric stimulation patterns (electrodograms), derived
using the 12-of-22 strategy of the BKB sentence “The clown had a funny face”. For all
the electrodograms, the y-axis represents the electrode position corresponding to a

specific frequency band and the x-axis represents time progression.
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Amplitude

Figure 5.7 Waveforms of the BKB sentence “The clown had a funny face” for noise
reduction algorithms. (Top to bottom) Plots showing vocoded clean speech, vocoded
noisy speech at 5 dB SNR babble noise, vocoded noisy speech with the combination of
IdBM and the n-of-m strategy, vocoded noisy speech with time-frequency spectral
subtraction (TFSS) and vocoded noisy speech with time-adaptive wavelet thresholding

(TAWT).
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Figure 5.8 Electrodograms of the BKB sentence “The clown had a funny face” for noise
reduction algorithms. (a) Clean speech. (b) Noisy speech with babble noise at 5 dB
SNR. (¢) Combination of IdBM and n-of-m strategy. (d) Time-frequency spectral
subtraction (TFSS). (d) Time-adaptive wavelet thresholding (TAWT).
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This figure shows the electrodogram of the vocoded clean speech and the vocoded
noisy speech with and without noise reduction algorithms at 5 dB SNR babble noise. It
can be seen that IdBM can preserve the important characteristics of vocoded clean
speech, whereas TAWT and TFSS remove noise and some details of the vocoded clean
speech in both waveforms and electrodograms. This may decrease speech intelligibility
in CI systems.

B. Intelligibility judgements of noise reduction algorithms

The sentence scores were consistent with the post-test questionnaire results in cases of
overall impression of sound quality, listening efforts for understanding messages, ease
of listening for long period of time, and distinguishable articulation. The subjects
reported that the vocoded clean speech and the IdBM were the same in all cases and the
vocoded noisy speech with and without noise reduction by the TAWT and TFSS were
the same results in almost all cases, except for distinguishable articulation. The TFSS

gives more distinguishable articulation than TAWT.

C. Validity of objective intelligibility measures

Pearson correlation was performed to justify the correlation between objective and
subjective intelligibility. Figure 5.9 shows the scatter plots of the NH listeners’ mean
scores against the predicted values of the NCM and STOI for different noise types. It
can be seen that the NCM and STOI produced high correlations at r = 0.81 and r = 0.88
respectively. This high correlation indicates good validity. Therefore, the NCM and
STOI can be pre-evaluated to predict the trend of intelligibility performance for NH

listeners.
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Figure 5.9 Scatter plots of mean scores obtained for sentence processed by noise
reduction algorithms with different noise types against
the predicted values of NCM and STOI.

532 Experiment 2:  Comparison of noise reduction algorithms with
different SNR levels

5321 Method
A. Subjects

Fourteen NH listeners participated in this experiment. All subjects were native speakers
of British English (8 males, 6 females, from 18 to 24 years of age) and had normal
hearing thresholds (< 20 dB HL). They were staff and students at the University of
Southampton and were paid for their participation.

B. Stimuli

All sentences were processed separately offline using a wavelet packet-based strategy
with sym8 under quiet and noisy conditions. They were corrupted by babble noise at 0,
5 and 10 dB SNR, which are SNR levels where CI users can benefit (Fu et al., 1998).
The noisy sentences were also processed using two algorithms for noise reduction (i.e.
TFSS and TAWT). There were a total of 18 conditions (3 algorithms x 3 SNR levels x 2

wavelet packet structures).
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C. Procedures

The procedures were the same as in Experiment 1 (Section 5.2.1). Subjects were tested
over two sessions on separate days, lasting approximately 1.5 hours each. After the
subjects were completely finished in each condition, they filled in the post-test

questionnaire (Appendix F.1) to record information in terms of speech intelligibility.
D. Statistical analysis

The analysis was the same as in Experiment 1 (Section 5.2.1). The data from the post-

test questionnaire were analysed using median values for in each gquestion.

5.3.2.2 Results

A Shapiro-Wilk test indicated that the data in all conditions were normally distributed.
Figure 5.10 shows a boxplot and mean percentage correct scores for the two algorithms

of noise reduction in noisy conditions.

A three-way ANOVA with repeated measures was conducted with three main
factors: algorithms, SNR levels, and wavelet packet structures. The results revealed a
nonsignificant main effect of algorithms (F [2, 26] =1.391, p=0.267), a significant main
effect of SNR levels (F [2, 26] =77.338, p<0.0005) and a significant main effect of
wavelet packet structures (F [1, 13] =8.604, p=0.012). There was a significant
interaction between algorithms and SNR levels (F [4, 52] =5.158, p<0.0005). However,
there was a nonsignificant interaction between algorithms and wavelet packet structures
(F [2, 26] =0.709, p=0.501), a nonsignificant interaction between SNR levels and
wavelet packet structures (F [2, 26] =0.550, p=0.583), and a nonsignificant interaction
between algorithms, SNR levels, and wavelet packet structures (F [4, 52] =0.172,
p=0.952).

Post-hoc tests were used to consider the pair relationships among SNR levels,
wavelet packet structures and between algorithms and SNR levels. The mean scores
depended on the SNR levels. The higher SNR levels provided higher scores and vice
versa. The 64-band WPT yielded slightly higher scores than the 23-band WPT in almost
all conditions. The TFSS and TAWT provided significantly higher scores at 0 dB SNR

122



Chapter 5 Evaluation of wavelet packet-based strategies for normal-hearing listeners

and significantly lower scores at 10 dB SNR when compared to the vocoded noisy
speech at those SNR levels.

The post-test questionnaire results (Appendix F.3) revealed that the overall
impressions of sound quality for the vocoded noisy speech at 0, 5 and 10 dB SNR were
bad, poor and fair respectively. The overall impression of sound quality for TFSS and
TAWT at all SNR levels was poor, except for TFSS at 5 dB SNR, when it was fair. The
subjects required moderate listening effort to understand the messages, and they felt that
it was difficult to listen for long periods of time for almost all conditions. The
articulation of TFSS and TAWT at 0 dB SNR was not very clear, but it was clearer than
for the vocoded noisy speech. The articulation of the vocoded noisy speech with and
without noise reduction at 5 and 10 dB SNR was fairly clear.

[J Vocoded noisy speech [J “ocoded noisy speech
100 M Time-adaptive wavelet threshalding 30 W Time-adaptive wavelet thresholding
E Time-frequency spectral subtraction I Time-frequency spectral subtraction
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Figure 5.10 Boxplot and mean percentage correct scores for noise reduction algorithms
at 0, 5, 10 dB SNR babble noise. The error bars indicate + 1 standard error.

5.3.2.3 Discussion and conclusion

A. Relationship between noise reduction algorithms and different SNR levels

Noise reduction algorithms including TFSS and TAWT were investigated when speech
is corrupted by babble noise at different SNR levels (i.e. 0, 5 and 10 dB SNR). Both
TFSS and TAWT provided a significant improvement at 0 dB SNR, no significant
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improvements at 5 dB SNR and significantly worse in speech intelligibility at 10 dB
SNR when compared to vocoded noisy speech.

Theoretically, vocoded noisy speech with noise reduction algorithms should
provide higher scores than vocoded noisy speech without noise reduction algorithms at
high SNR levels. However, Figure 5.10 showed the TFSS and TAWT were significantly
worse in performance at 10 dB SNR for babble noise. It seems possible that these
results are due to noise estimation and difference between NH and HI listeners. It may
be related to overestimated noise that distorts the enhanced speech. NH listeners are
more sensitive to speech distortion and less sensitive to noise when compared to HI
listeners (van Schijndel et al., 2001). NH listeners can reach ceiling performance at

higher SNR levels without noise reduction algorithms (Sang, 2012).

In addition, the parameters of noise estimation in noise reduction algorithms,
especially the TFSS. These parameters were selected based on predicting objective
speech intelligibility for all SNR levels. The parameters should be adjusted to achieve
the best results in each SNR level. Other factors related to noise estimation (e.g. noise
types, choice of the local thresholds and speech materials) may also influence speech
intelligibility. Moreover, the gain function should be more analysed on F1/F2 formant

regions, which are important regions for speech intelligibility (Loizou and Gibak, 2011).

If noise estimation is accurate, it leads to good performance in noise reduction
algorithms and provides significant improvements in speech intelligibility like IdBM.
Although, noise estimation has never been able to accurately track the spectrum of
nonstationary noise in practice (Loizou and Gibak, 2011), computing noise estimation
without prior knowledge of speech and noise information remains a major challenge to
potentially increase speech intelligibility in noisy environments (Kokkinakis et al.,
2011).

B. Comparison between TFSS and TAWT
Both TFSS and TAWT are adaptive filters that can be applied to the real-world
situation. However, weighting factors (i.e. g and « ) for the TFSS were selected in the

experiment (Section 4.3.3.2). These factors can be adjusted to optimise performance for
each noise type and SNR level, which is a limitation of the TFSS. The trend of TAWT
yielded higher scores than TFSS at 0 dB SNR where it is difficult. The TAWT does not
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need to adjust any parameters. Therefore, the TAWT is more attractive and suitable than
the TFSS in real practice.

C. Validity of objective intelligibility measures

Pearson correlation was performed to justify the correlation between objective and
subjective intelligibility. Figure 5.11 shows the scatter plots of the NH listeners’ mean
scores against the predicted values of NCM and STOI for different SNR levels in babble
noise. It can be seen that the NCM and STOI produced high correlations at r = 0.88 and
r = 0.91, respectively. The predicted values of the NCM and STOI were validated to
predict the vocoded noisy speech with and without noise reduction algorithms for NH
listeners. The NCM and STOI were grouped clearly by SNR levels. Higher values of the
NCM and STOI are expected for vocoded noisy speech with and without noise

reduction algorithms at higher SNR levels.
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Figure 5.11 Scatter plots of mean scores obtained for sentence processed by noise

reduction with different SNR levels against the predicted values of NCM and STOI.

5.4 General conclusions

The present study was designed to evaluate the effects of parametric variation of
wavelet packet filter bank and noise reduction algorithms, on speech intelligibility for
wavelet packet-based Cl processors in both quiet and noisy conditions, using NH
listeners. The data collected from all experiments can be concluded as follows:
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541 Effect of parametric variation of wavelet packet filter bank

1. There was no statistically significant difference in speech recognition performance
between 23- and 64- band WPT and 128-point FFT (a commercial Nucleus device) in
both quiet and noisy conditions (i.e. babble noise and speech-shaped noise at 5 dB
SNR). This was because these structures were designed based on the Bark scale and
their numbers of channels allocated in the F1/F2 region were the same (i.e. 15
channels). The 23-band WPT can be designed directly for electrodes whereas the others
need to aggregate subbands to form the signals sent to electrodes. However, the 64- or
128-band WPT might be more flexible for designing frequency-to-electrode allocations
than the 23-band WPT.

In addition, a study of Nogueira et al. (2006) reported that 21-band WPT gave
better speech recognition performance than the 128-point FFT when tested with CI
users using a 15 dB SNR. The results indicated that a wavelet packet filter bank can be

an alternative to the existing speech coding strategy that is used in commercial implants.

2. There was a nonsignificant effect of different mother wavelets (i.e. a perceptually
optimised wavelet (pow) and a Symlet with order 8 (sym8)) in quiet conditions but there
was a significant effect of different mother wavelets in noisy conditions. The
performance of the sym8 was higher than that of the pow in almost all noisy conditions.
This might be because the design method of the pow wavelet optimally exploits the
structure of the 21-band WPT, but not the structure of the 23- or 64-band WPTSs.
Therefore, the pow wavelet worse than the other structures of wavelet packet filter
bank.

3. There was a nonsignificant effect of different frame lengths in quiet conditions but
there was a significant effect of different frame lengths in noisy conditions. The frame
lengths of 8 and 16 msec have significantly higher performance than the others.
However, the frame length of 8 msec was more appropriate for this speech processor in

terms of computational cost and speech analysis.

4.  In quiet conditions, it is difficult to assess the three parameters of wavelet packet
filter banks to speech recognition performance due to a ceiling effect (i.e. mean scores >
90%), except the filter bank of 32-band WPT. This does not determine the performance

level of different parameters.
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5. In all experiments examining the parametric variation of wavelet pack filter
banks, the wavelet packet structure of 23- and 64-band WPT, the Sym8 mother wavelet
and a frame length of 8 msec were found to be more suitable that other combinations for
this wavelet packet-based CI processor. This optimal set of parameters may optimise
speech intelligibility to benefit CI users. In addition, the optimal set of parameters will
be useful for future work which may include the development of noise reduction
techniques or other tasks designed to achieve additional enhancement in speech

intelligibility or CI systems.

5.4.2 Effect of noise reduction algorithms

1. The IdBM as a baseline on denoising performance for NH listeners had the
highest speech recognition performance and approached the speech recognition
performance of vocoded clean speech (i.e. scores > 90%) in both babble noise and

speech-shaped noise at 5 dB SNR.

2. The TFSS and TAWT for NH listeners yielded little benefit in speech
intelligibility. The TFSS and TAWT did not show significant improvements in speech
intelligibility for different noise types (i.e. babble noise and speech-shaped noise) at 5
dB SNR. Both TFSS and TAWT showed a significant improvement at 0 dB SNR, were
not significant difference at 5 dB SNR and were significantly worse in speech

intelligibility at 10 dB SNR, when compared to vocoded noisy speech in babble noise.

3. The correlation between mean scores of NH listeners and the predicted values of
NCM and STOI was strong. The NCM and STOI were found that they can pre-evaluate
to predict the trend and pattern of the speech recognition performance in wavelet
packet-based speech coding strategies with noise reduction algorithms for NH listeners.
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Chapter 6:  General discussion

This chapter provides a general discussion of the factors and limitations that influence
the speech recognition performance of noise reduction algorithms in wavelet packet-
based speech coding strategies. This discussion reports the limitations of WPT for ClI
processors, objective intelligibility measures, vocoder simulation, and performance
evaluation. The limitations of this study are discussed. Finally, some suggestions for

future work are given.

6.1 Limitations of WPT

The advantages of WPT are described in Chapters 2 and 3; however, the use of WPT
has some limitations that lead to some undesired effects in the development of noise

reduction algorithms in wavelet packet-based CI processors.

6.1.1 Problems with WPT

The main problem of WPT is shift variance due to the downsampling operation at each
level of decomposition. When a signal is downsampled by 2, the output is only one
sample which is selected between two consecutive samples of the signal. A sample is
removed, which may contain important information about the speech signal. The
downsampling operation results in a shift in time of signals, which produces the
differences in the energy distribution of wavelet coefficients. The speech signal may be
distorted due to the loss of information, which reduces the speech intelligibility and the
perceptual quality of speech signals in both CI processors and noise reduction

algorithms.

There is no evidence of this impact on CI design but this problem is referred to in
some studies in the area of speech enhancement (Tasmaz and Ercelebi, 2008; Litvin and
Cohen, 2011). Other WPTs are proposed to overcome the problem of shift variance,
such as the dual-tree complex wavelet packet (Bayram and Selesnick, 2008) and the

analytic wavelet packet (Weickert et al., 2009). These WPTs may potentially increase
129



Chapter 6 General discussion

performance significantly over that of conventional WPTs for CI design and noise

reduction algorithms.

6.1.2 Wavelet packet-based speech coding strategies

Based on the results from Experiment 1 (Section 5.2.1) in terms of filter spacing, the 23-
and 64-band WPT provided slightly worse performance, but this was not statistically
significant when compared to 128-point FFT in noisy conditions. This may produce an
energy error in the noise and speech signal in each channel due to the shift variance of
WPT (Weickert et al., 2009).

The system complexity can be reduced by processing perceptual wavelet
subbands like the 23-band WPT. However, the 64-band WPT has higher frequency
resolution than the 23-band WPT and this is more beneficial for noise reduction
algorithms before it generates 64 bands into 22 bands (Cohen, 2001). In addition, the
signal processing stages of CI design based on wavelet packets (e.g. pre-emphasis and

envelope detection) are important issues that may affect outcome.

6.2 Limitations of objective intelligibility measures

Based on Experiment 1 and 2 (Section 5.3), the scores from NCM and STOI were
highly correlated with mean scores obtained from NH listeners. Therefore, both NCM
and STOI can be used to predict the trend of intelligibility performance for noise
reduction in wavelet packet-based speech coding strategy. The present study is
consistent with the outcome reported in Sang (2012) for the NCM and STOI in both NH
and HI listeners, and in Jianfen et al. (2009) for the NCM in NH listeners.

However, these measures may reliably predict the intelligibility performance, in
particular NH listeners, but may not predict or reflect to the recognition performance for
Cl users. The objective intelligibility measures should include important information of
individual CI users such as threshold levels and comfort levels (i.e. dynamic range
compression) and the number of active electrodes. The use of information contained in

the electrodogram may be sufficient to predict CI user’s intelligibility performance.
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These allow a great benefit for developing better noise reduction algorithms that
require adjustments of the number of parameters and the selection of a noise-reduction

algorithm to provide the best performance for a particular CI user.

6.3 Limitations of vocoder simulation

Vocoder simulation with NH listeners may be used to predict the trend and pattern of
performance for CI users, but actual testing with Cl users may reveal the effect of noise
reduction algorithms in wavelet packet-based speech coding strategies. CI designs need
to take account of the limitations of vocoder simulation, such as differences in vocoder
simulation and processing in a Cl device, differences between acoustic and electric
hearing and the effects of noise reduction algorithms for NH listeners and CI users.

These are critical to the reliability of comparative studies.

6.3.1 Differences between vocoder simulation and processing of a Cl device

The vocoder simulation is processed in a similar manner to the signal processing of a Cl
device. However, some stages of Cl devices may not be included in vocoder simulation,
such as pre-emphasis and dynamic range compression (Nogueira et al., 2005). These
may provide different characteristic of signals and different performance between

vocoder simulation and processing of CI devices in both quiet and noisy conditions.

Several studies in vocoder simulation either include (Li, 2009; Chen and Loizou,
2010) or exclude (Mourad Ghrissi, 2012) the stage of pre-emphasis. The pre-emphasis
in the vocoder simulation is used to amplify the high-frequency components of speech
perception, and it also amplifies noise in noisy speech. Recognition performance may
decrease when compared to vocoder simulation without pre-emphasis in noisy

conditions.

The dynamic range compression aims to optimally map acoustic amplitudes in
speech sounds to electrical amplitudes that reach the audible threshold (T-level) and
most comfortable loudness level (C-level). T and C levels are important parameters that
would be measured and adjusted for optimal amplitude mapping depending on
individual CI users (Zeng, 2004; Loizou, 2006). A few studies in the shape of the
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logarithmic mapping function had only a minor effect on consonant and vowel
recognition performance in quiet conditions. However, it may be that they provided
different performance in a similar study in noisy conditions (Loizou et al., 2000).
Another study indicated that increasing input to the dynamic range improved sentence

recognition performance in both quiet and noisy conditions (Spahr et al., 2007).

6.3.2 Differences between acoustic hearing and electric hearing

The acoustic hearing of NH listeners and the electric hearing of CI users can be difficult
issues when comparing stimuli presented to both groups. The vocoded speech perceived
by NH listeners was processed not only by vocoder simulation but also by the external,
middle and inner ear, while the vocoded speech perceived by CI users was processed
only by CI devices. NH listeners can listen with a healthy auditory system throughout
the cochlea, while Cl users may have residual auditory nerves throughout the cochlea

which are stimulated by the electrode arrays (Zeng, 2004).

The frequency mapping of each electrode relating to the actual position of
stimulation in the cochlea may significantly improve CI performance (Stakhovskaya et
al., 2007). Channel interactions between the electrodes occur as the current from one
electrode spreads to adjacent regions covered by other electrodes in the cochlea. This
may distort speech information and degrade speech intelligibility. Channel interaction
depends on many factors such as electrode spacing and channel stimulation rate. A
wider spacing between electrodes produces a smaller amount of channel interaction and

more benefit with a high stimulation rate (Loizou, 2006).

6.3.3 Differences of noise reduction algorithms for NH listeners and CI users

The main concept of noise reduction algorithms is to compromise between noise
reduction, speech distortion and the level of residual noise (Virag, 1999). However, NH
listeners are less sensitive to noise, but more sensitive to speech distortion when
compared to HI listeners (van Schijndel et al., 2001). Another study suggested that HI
listeners can bear higher levels of distortion than NH listeners. As the result, noise
reduction algorithms with more aggressive gain functions (Hu et al., 2007; Qazi et al.,

2012) should be used for CI users to reduce more amount of noise, while noise
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reduction with less more aggressive gain functions should be used for NH listeners to
preserve the listening quality (Gustafsson et al., 1998).

This reason is consistent with some studies indicating that almost all algorithms
for single-microphone noise reduction algorithms provide little benefit or do not
improve speech intelligibility for NH listeners in American English (Hu and Loizou,
2007; Li et al., 2011) and other languages (i.e. Chinese and Japanese) (Li et al., 2011).
This is due to distortion of enhanced speech resulting from inaccurate noise estimation

or excessive noise reduction.

In contrast, some single-microphone noise reduction algorithms have been
developed for NH listeners; they show speech intelligibility improvements for CI users.
These are algorithms such as spectral subtraction (Yang and Fu, 2005; Verschuur et al.,
2006; Kallel et al., 2012), statistical-model based methods (Hu et al., 2007; Li, 2008;
Dawson et al., 2011) and subspace algorithms (Loizou et al., 2005). Additionally,
another study of single-microphone noise reduction algorithms for HA users included

sparse coding shrinkage (Sang, 2012).

General speaking, Cl users preferred the more aggressive gain function rather than
the less aggressive gain function for noise reduction in their devices. This resulted from
impaired auditory factors such as reduced frequency selectivity and reduced temporal

resolution. This can lead to significant recognition performance improvement.

6.4 Limitations of performance evaluation

The methodology of performance evaluation for speech intelligibility reflects the
reliability and accuracy of outcomes. An appropriate evaluation can examine the effect
of interesting parameters to achieve Cl development. In contrast, an inappropriate
evaluation can result in a misleading interpretation and problems with CI development.
Some factors should be considered when interpreting the obtained results, such as

speech materials, noise types, SNR levels and variability of subjects.
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6.4.1 Choice of speech materials

Speech perception abilities of subjects can be typically evaluated using vowels,
consonants, words or sentences (Loizou, 1998). Studies have produced overall scores
with different results depending on whether they were looking at consonant, vowel,
word or sentence recognition. The consonants, vowels and words are useful in terms of
the distinguishable errors of subjects while the sentence recognition is more suitable to

representation in real-life communication (Loizou, 2007).

In sentence recognition, subjects need time to distinguish between noise and
speech, which is especially unclear at the start of sentences. They were able to use
knowledge (e.g. context, grammar and semantics) to identify the correct sentences when
they only heard one or two keywords from those sentences (Loizou, 1998; Loizou,
2007). As a result, subjects tend to achieve higher recognition scores in sentence tests

than in other tests in noisy conditions.

Different speakers for the same materials may also influence the comparability of
results, in terms of gender, nationality, age and a single- or multiple-speaker setup.
Moreover, speaking style and rate may also have an impact on performance.
Additionally, the number of items in a list of speech materials should provide flexibility
to cover an experimental design in all interesting conditions. Having sufficient items

avoids repetition in the speech materials.

In the current study examining noise reduction in wavelet packet-based speech
coding, consonants, vowels, and words might have been more useful to reveal the
capability of wavelet packet-based speech coding and noise reduction techniques than

the sentences.

6.4.2 Choice of noise types and SNR levels

The results obtained from some studies indicated that the overall performance from
vocoded speech and NH listeners in noisy conditions was close to that of vocoded
speech in quiet conditions, due to a ceiling effect. On the other hand, vocoded speech
and CI users in noisy conditions at lower SNR levels were closer to floor effects. The
ceiling and floor effects make it difficult to interpret the effect of interesting parameters.
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These may result from the inappropriateness of either noise type or from the SNR

levels.

Different noise types influence speech intelligibility. Different noise types in the
same speech materials also give an impact on different intelligibility performance.
Numerous noise types in the real world (e.g. babble noise, speech-shaped noise and
reverberation noise) are implemented to create degrading speech cues. Babble noise
depending on the number of talkers in the mixture is more realistic for CI users in
everyday situations and is widely used in studies of speech perception in noise
(Simpson and Cooke, 2005; Verschuur, 2007).

SNRs of 0, 5 and 10 dB are levels where CI users can benefit (Fu et al., 1998) and
a SNR of 5 dB is normally encountered in everyday situations (Wilson and Dorman,
2008a). Most ClI users require approximately 10 to 25 dB higher SNR than NH listeners
to achieve similar speech recognition performance (Qazi et al., 2012). In some studies,
NH listeners reached ceiling effects with SNR levels such as 10 dB SNR, while CI users
reached a mean score of 75% with the same SNR (Zeng, 2004). The use of a lower SNR
in some tests for NH listeners may be required to determine actually the performance
improvement. The interpretation of obtained results should be cautious due to

differences between testing NH listeners and CI users.

6.4.3 Variability of subjects

All subjects require more effort and concentration to understand vocoded speech in
noisy conditions than in quiet conditions. It is well known that Cl users perform worse
than NH listeners in the same noisy conditions. This results from the elevated threshold,
loudness recruitment, and poor temporal and frequency resolution. The lack of
motivation, attention, confidence and language skill may also have contributed to the

lower speech recognition performance.

In most studies, the outcomes of NH listeners can be used to predict the trend and
pattern of Cl performance. However, there are other discrepancies between testing NH
listeners and CI users which may affect overall performance level, such as experience

with vocoded speech, learning effects and the age of subjects.
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NH listeners usually have no experience with vocoded speech, while CI users
have had a period of acclimatisation to vocoded speech and their implant devices over at
least one year. However, NH listeners without experience in vocoded speech can
achieve higher speech recognition than CI users with prolonged experience (Fu et al.,
1998). Some studies indicated that NH listeners take a longer time for training to
familiarity with vocoded speech in both quiet and noisy conditions, which may increase
speech recognition performance (Dorman et al., 1997). The age difference for NH
listeners suggests that older subjects (average age of 70) required more stimulation
channels than the younger individuals (average age of 22), i.e. approximately 9 and 6
channels respectively (Sheldon et al., 2008).

6.5 Limitations of this study

6.5.1 Speech materials

Designing listening tests with interesting parameters (e.g. noise types, SNR levels and
noise reduction algorithms) in each experiment was limited by the number of BKB
sentences lists. A total of 21 BKB sentence lists can only be employed to 10 conditions
per session (2 lists per condition). Each experiment has to be done by undertaking
listening tests in at least two sessions on separate days. That means that all or some
sentence lists may be repeated in different sessions. Some subjects may recognise key
words in sentences from the first session. This influences sentence recognition scores.
Different speech materials may be used to investigate the differences in obtained results
in future research looking at the wavelet packet-based speech coding strategy with noise

reduction algorithms.

6.5.2 Learning effect

The variation and difference of speech recognition scores may be dependent on
individual subjects. The subjects have unique factors in listening tests such as
motivation, attention, confidence and ability. Though the order of conditions and the
list-to-condition mapping were randomised, some subjects reported that the former
conditions were more difficult for the listening test than the latter conditions. If the
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subjects have more training, they have a chance to become more familiar with vocoded
speech with and without noise reduction algorithms. This may result in higher speech

recognition scores.

The learning effect can be mitigated by randomisation of the experiment, in which
the order of conditions and the list-to-condition mapping could be randomised both for
individual subjects and between -subjects, to prevent the repeated use of a sentence list
and to continuously vary the sentence lists being evaluated. A Latin square

randomisation might be used to assign the order of vocoded speech for subjects.

6.5.3 Comparison of previous study

In the previous study, the wavelet packet-based speech coding strategy with different
mother wavelets was investigated and compared to a commercial ACE strategy at 15 dB
SNR in terms of speech intelligibility for Cl users (Nogueira et al., 2006). Another
study (Gopalakrishna et al., 2010b) explored wavelet packet-based real-time CI
processors in terms of computational complexity, spectral leakage, fixed-point accuracy
and tracking temporal envelope features. However, none of the wavelet packet-based CI
processors with noise reduction algorithms were investigated and tested with subjects
who were both NH listeners and ClI users.

It is very difficult to compare between this study and other studies (Nogueira et
al., 2006; Gopalakrishna et al., 2010b) due to different parameters in terms of different
noise types, SNR levels, speech materials, speech coding strategies, number of channels
and evaluation of subjects. In addition, the wavelet packet-based speech coding strategy
with noise reduction algorithms was developed in limited time and several parameters
could be further explored and studied before it is compared to other strategies used in

commercial Cls such as the ACE strategy.

6.5.4 Comparison between NH listeners and CI users

A problem in comparing vocoder simulations to CI speech recognition is the earlier
mentioned fact that CI users vary greatly in speech recognition performance due to
numerous factors. Listening tests using vocoded speech involve presenting parameter
setting to NH listeners. Current vocoder simulation in studies using NH listeners does

not necessarily provide conclusions about the absolute performance level of CI users.
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These studies can only be used as useful information about tendencies in speech
recognition for Cl users (Chen and Loizou, 2011). Further studies of wavelet packet-
based strategies with noise reduction may benefit CI users, as suggested in Section
6.3.3.

6.5.5 Statistical analysis

Although the number of NH listeners participating in this study is normal and satisfies
good academic practice, but the study is underpowered. A larger sample size would
provide better statistical power to indicate clearer comparisons and allow an
examination of either the effect of parametric variation in wavelet packet filter banks, or

the relationship between vocoded speech with and without noise reduction algorithms.

6.6 Conclusion

There are several limitations of the development of noise reduction by a wavelet packet-
based strategy, as mentioned earlier. The limitations might confound the obtained
results in terms of intelligibility performance. All of them are important issues for ClI
noise-reduction studies. However, the most important limitations of this study are the

issues of WPT, vocoder simulation, and performance evaluation.

Since the problem of WPT is shift variance due to the downsampling stage of
decomposition, this problem may reduce the performance of speech coding and
denoising in CI processors. Some applications based on WPT (e.g. sound source
separation) have reported that this problem can reduce the utility of audio signal
processing (Litvin and Cohen, 2011). However, none of the WPT-based CI processors
have shown whether this problem affects intelligibility performance. Some researchers
have proposed different methods to address shift variance, which leads to the generation
of new WPTSs. Other WPTSs, namely the dual-tree complex wavelet packet (Bayram and
Selesnick, 2008) and the analytic wavelet packet (Weickert et al., 2009), may mitigate

CI noise-reduction approaches.

The limitations of vocoder simulation include differences in vocoder simulation

and processing in a Cl device, differences between acoustic and electric hearing, and the
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effects of noise reduction algorithms for NH listeners and CI users. These differences
may affect the reliability of CI noise-reduction studies. Almost all CI noise-reduction
algorithms are evaluated by CI users, who provide more reliable and informative results
than NH listeners. The procedure of the listening test used in previous studies allows for
all materials to be presented directly to the CI users via either the auxiliary input jack of
their CI processors (Loizou et al., 2005; Hu et al., 2007; Li, 2008) or loudspeakers
(Yang and Fu, 2005; Verschuur et al., 2006; Dawson et al., 2011). It is not known
whether or not any differences in listening tests provide the same benefits to

intelligibility performance.

In terms of performance evaluation, the sentence test may be more appropriate for
real-life communication, but this test may not reveal informative results for the effect of
ClI noise reduction. The sets of vowels, consonants or words may be more suitable for
analysing spectral and temporal information to evaluate the subject’s perception ability
(Yao and Zhang, 2002). Another evaluation (i.e. speech reception threshold (SRT)) may
reveal the capability of the subject’s perception in diverse environments better than
fixed SNR. A little bit of SNR levels might provide very different way of intelligibility
performance. In addition, SRT can avoid the problem of ceiling/floor effects, which

actually helps in the study of understanding speech.

These limitations involve either Cl-processor related factors or Cl-user related
factors, both of which are important to CI noise-reduction studies. They require very
expensive and time-consuming measures to evaluate the effect of parametric variations
on intelligibility performance. However, this problem can be mitigated with objective
intelligibility measures. Objective measures can be used for tuning parameters during
the development of wavelet packet-based speech coding and denoising to choose the
right set of parameters for CI noise-reduction approaches and to predict the trend of

intelligibility performance for CI users.
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6.7 Future research

6.7.1 Optimal wavelet functions and wavelet structures

Research in modern wavelets aims to create a set of wavelet function and transform that
provide efficient signal analysis, detection, estimation and denoising in numerous
applications. There are many choices of wavelet function and transform that can be
selected for application in speech and auditory processing. The potentialities and
benefits of wavelets are unlimited for development in this research arca — for instance,
finding an optimal wavelet function, an adaptive optimal wavelet decomposition tree or

making a new set of wavelet functions for CI systems.

6.7.2 Noise reduction algorithms

The noise reduction problem remains a challenge. If it is possible, the techniques of
noise estimation can improve SNR estimation as the IdBM techniques. This may lead to
further improvement in speech intelligibility. Statistical model-based noise reduction,
such as Bayesian approaches, can be applied to noise reduction algorithms (e.g. spectral
subtraction and wavelet shrinkage). The combination between noise reduction and
entropy analysis may increase the benefit of speech enhancement and speech
perception. Further comparison of multiple microphones or binaural processing-based
noise reduction algorithms should be carried out to find the benefit in terms of speech

intelligibility.

6.7.3 Objective speech intelligibility measures

Most of the modern objective intelligibility measures are used for predicting the trend of
recognition performance in NH listeners rather than CI users due to lack of useful
information of individual CI users. The electrodogram as a representation of Cl output
may provide important information directly to predict the outcome of speech
intelligibility for particular CI users. In addition, objective intelligibility measures
should predict performance of speech perception from only noisy speech without the

clean speech because the clean speech is often not available in real-world applications.
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Chapter 7 Conclusions

Chapter 7:  Conclusions

This thesis focuses on single-microphone noise reduction strategies for wavelet packet-
based CI processors to improve speech intelligibility in noisy conditions. The research
contribution can be divided into two parts: the wavelet packet-based CI processor, and
noise reduction algorithms. The wavelet packet-based speech coding strategy was
developed. The effect of parametric variation of wavelet packet filter bank on speech
intelligibility by NH listeners was evaluated to find optimal parameters in terms of filter

spacing, optimal wavelet function and frame lengths.

Noise reduction algorithms (i.e. IdBM, TFSS and TAWT) were integrated within
wavelet packet-based speech coding strategies and applied directly in time-frequency
envelope amplitude. Objective speech intelligibility measures (i.e. NCM and STOI)
were employed to predict the trend of speech intelligibility for noise reduction
algorithms in all noisy conditions before they were evaluated by NH listeners under
different noise types and SNR levels. This research contributes the following

conclusions:

1.  The wavelet packet-based CI processor can provide an alternative to existing ClI
systems (e.g. the ACE strategy).

2. Three parameters (i.e. filter spacing, optimal wavelet function and frame length)
of the wavelet packet filter bank have influences on speech intelligibility,
especially in noisy conditions.

3. The IdBM is an ideal method of noise reduction and its intelligibility
performance is nearly 100% or similar to vocoded clean speech. The TFSS and
TAWT have produced little benefit in terms of speech intelligibility for NH
listeners. The TFSS requires tuning in some parameters to get the best
performance in each noisy condition, but not the TAWT.

4.  The NCM and STOI can be used for predicting the trend of intelligibility
performance for noise reduction algorithms in the wavelet packet-based CI
processor for NH listeners, but may not reflect the reliability of recognition
performance among CI users due to the lack of impaired auditory necessary

information of individual CI users.
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Chapter 7 Conclusions

In the present study, we believe that the approach of applying wavelet analysis
and wavelet shrinkage (e.g. TAWT) is an outstanding candidate for the next generation

of modern prosthesis devices such as CI processors.
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.-Ib":mc.—'l'h purpose of this study was to investizate speech
"furmredmnnalgunﬂlnswhchwm
integrated into perceptual wavelet packet-based speech coding
strafegy in cochlear implants (CIs). The alzorithms of noise
reduction including time-adaptive wavelet thresholding (TAWT)
and time-frequency spectral subtraction (TESS) were selected for
this study duoe fo smple and smitable for real-time
implementation. The experiments were compared without and
with moise reduction alzorithms for fourteen mormal-hearing
(NH) lListeners. The speech sentences were corrupfed by babble
noise in different signal-to-noise ratio (SNE) levels (0, 5 and 10
dE). The experimental results showed that the vocoded moisy
with TAWT and TFS5 provided higher intelligibility at 0
and 5 dB SNE but slighily lower infellimbility at 10 dB SNE
when compared to voosded noisy speech. CT listener: may benefit
more than NH lsteners in forther siody.

Eqywords- Cochlear fmplans; waveler packer; speciral
subraction; waveler thresholding; speech tntelfigibiliny

L INTRODUCTION

A cochlear implant (CT) is an electronic prosthesis device
mplanted imto the mmer ear to restore parial hearing for
profoundly heanng impaired persons by ransmumng electric
stimulation to suditory nerve. CIs are therefore desigmed to
mimic the finction of & nomnsl cochlea. Speech coding
sirategy is an important pant to improve the performance of
cochlear devices [1] for effective commmmicstion Speech
coding smategies with temporal-envelope information have
been developed that prowide 2 higher lewel of speech-
imrelligibility than that of spectral-envelope information [2].
There are many speech coding strategies based on temporal
emvelopes, such s Contnuous Interleaved Samphng (CIS),
Speciral Peak (SPEAK) and Advanced Combination Encoder
(ACE).

The majority of CT users can achieve high performsnce
speech imelligibility regardless of speech coding swategies
thery use, becanse almost all speech coding swategies perform
well in quiet environments [3]. However, mamy CI users
complain of severe degradation in speech understanding in
noisy emvironments. Fecently CI research effort has
mcreasingly focused on state-of-the art moise meducton
smategies to achieve higher speech intelligibility in moisy
enviromments. Several noise reduction soamegies have been

078-1-4799-5838-214/531.00 (@ 2014 [EEE
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proposed that use two or more microphones, or else & single
microphone.

Multi-microphone noise reduction sirategies kan bring
benefits to CT users. However, implants with two or more
microphones are erponomically difficult, and CT users may not
like to wesar headphones or & neck loop. Most CT users would
find thiz a cosmetically unappesling prosthesis. Single-
microphone noise reduction strategies are therefore more
considerate and desirable. These strategies can be divided into
twio main categories [3]. The first of these 15 the preprocessing
approach, where a noisy speech is processed with a noise
reduction algorithm and then the enhanced speech is fed into
the CT speech coding srategies. Another category is the noise
reduction algorithm’s integration info the CI speech coding
sirategies. This spproach is combined to form one part of the
speech processors to attemmate directly on noisy envelopes.

The integration of noise reducton algorithms into speech
coding soateges has some adventages. This category of
algorittm has a small latency ceused by preprocessing
techniques, low computational complexity and easy to
intepration into exsung CT speech coding smategies. A
mumber of noise reduction slgorithms to be infegrated info
speech coding soategies have been proposed. such as a
sigmoidal-shaped fimction [4], a ponciple components
analysis (PCA) and independent component anslysis (ICA)
[5], stadsticel-model based slponthmes based on noise
ectimation [§] end a sparse non-negative matrix factorisaton
[T

The wavelet packet ransform (WPT) 15 a popular method
for dividing the signal info sudifory inspired frequency
components to match a percepmal suditory scale such as the
Bark scale The percepfual wavelet packet-based speech
coding  swategy  vields lower specmal leakage,  berer
performance in terms of providing good frequency specificity
[E], and better speech mfellizibility performance than short-
time Fourter fransform (STFL)-based speech coding smategies
for CT nsers [9]. Therefore, this paper presents noise reducton
in percepmal wavelet packet-based speech coding smategies.
The paper 15 orgenized info 5 sections. Secnoon IT descnibes the
T speech coding swategies based on percepmal WPT. Section
IO presents the principle of noise reductoons mchding tme-
adaptive wavelet thresholding (TAWT) [10] and time-



frequency spectral subtaction (IFSS) [11]. Section IV
describes the procedures of performance evaliation in terms
of speach intellisthility. The experimental results are given in
section V. Finally, the conclusion and discussion are provided
im section VL

O  WAVELET PACKET-BASED SPEECH CODING STRATEGY

The =tages of a wavelet packer-based speech coding
srategy are similar to that of the ACE smategy, which uses an
m-of-m  chanmel selecron strategy [12] The sigmal is
decomposed into m chammels and only the »n channels with
highest enerzy are selected for stmmlzdon Two different
souctures of WET [8] are showm in Fiz. 1 thet is used in this
paper. Both are genersted from a six level decomposition of
wavelet packet. The 23-band WPT is designed to directy
spproximate the critical bands of the hwmen suditory system
uzing the 22 chammels available to the Mucleus-24 device.
Consequently, the lowest frequency band showm as 2 white
subband n Fig 1(3) is not used, becense this frequency band
plays no significant rele m speech perception. The 64-band
TWPT is weated as the 64 FFT bins according to the Mucleus-
24 device. The cheammels are grouped together to obtain 22
chennels with different frequency ranges [12].

[

Pk Bkl Uk

Btk 1 3 4
LRSS

() £4band WET

Figam 1. Structhmes of WET

The block disgram of the wavelet packet-based speech
coding smategy and noise reduction for CT simulation is shown
in Fig 2. The speech signal is recorded by a microphone at 16
kHz sampling rate end is first pre-engphasized by a filter that
smplifies  high-frequency components. The signal  is
processed, after pre-emphasis, frame-by-frame by using a
shiding window of 128 samples (8 ms) with an overlap of
T5%. The overlapping of window is the same 25 in ACE and it
15 adapted to the channe] stomulation rates in the
processor program which is called the MAP. The higher the
cherme]l stmmlstion rates, the more the overlapping of
window. The MAP contmins a set of pammeters that is

Appendices

different for individual CI users such as the channel
stimmlanion rate, threshold and comfort levels.

The zignal m each frame is then decomposed using the
WPT into different frequency subbands. The power in each
bend is computed by using the averspe sum-square of the
wavelet coefficients a5 details in sectmon IIL In the &64-band
WPT smategy, the &4 fequency bands sre conputed by
summing up power of comsecutive frequency-bands with
frequency ranges wsed m the Muclens device to generate 22
channels. The power per band is weighted following as the
ACE strategy. The envelopes are smaoothed with a low-pass
filter. A mewmmum of 12 envelopes (12-0f-22 chanmel) is
selacted and nsed to modulate white noise, which is filtered bry
the bandpass filter as the same chamnels of WPT. A vocoded
speech sigmal is synthesized by sunming the modulated
signals of each chemmel.

M MOKE REDUCTION ALGORTTHMS BASFD 0N ENVELOPE
GAIN FLURCTION
Azmnme that noisy speech Wm) 15 composed of clean
speech x(n) and the additive noise d(n). Then:

y(m) = x(n) +d(n) (1)
Taking the WPT of both sides gives:
F.(k)=X, (k)+ D, (k) 2)

where T .(k), X (k) and D, (E) are wavelet coefficients of the
n" subband at level j for moisy speech, clean speech and
noise, respectively. kis the coefficient indax in each subband.

Each frame is calculzted using WPT. The mumber of
wavelet coefficients in each subband depending on the
decomposition level j, 15 E=1282. In a single frame, the
energy of each subband can be caloulsted using the sverage
sum-square of the wavelet coefficients, thus:

Ed

3

E, (i,n) =KL2|}; (k)
Pk

Thisz stage provides the time-frequency (T-F) envelope
amplimde mamix which represants the mumber of frames and
channels. From (2), the T-F emvelope amplinede mamix ar the
i" frame and »* channel (subband) can be defined as:

Y(i,m) = X(i,m)+ D(i m )

where F{in), Xin) and INin) are the T-F enwvelope
anmlimdes matix for the noisy speech, clean speech and
noise, respectively and p=0,1.2 . N-1 channels (W=22). MNoize
reduction alzorithms are processed in the T-F enwvelope
amplimde mamix a3 in Fig. 2. The T-F emelope amplimde
matrix 15 modified by mmltiplying with a gain function (1e.
TAWT and TF5S) to conmrol noise reduction across & wide
range of SHE. levels.
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A Time-adaptive wavelst thresholding

The tme-zdspuve wawvelet thresholding (TAWT)
slgomthm  [10] is different from conventionsl wavelet
thresholding [13]. Thiz techmique is based on the Teager
energy operator (TED) and the adaptadion of the wawvelet
threshold.

The TEC was modelled by Teager and was further
mvestizated by Kaizer [14]. The TEQ is a simple nonlnear
function and a very locel property of the signal, dependent on
the three adjacent samples of the siznal with indexes -1, 1,
and §+1 . The TAWT algorithm is conputed in the following
steps. The TEQ coefficients T'(j,n) can be calculated from
samples of three adjacent amplimde envelopes a3

TEM) =T*({En)-F({i+Lm)¥(i-1n) (5)
where F(i,n) 15 the T-F emvelope amplitude mamix of the
noisy speech at the ;% frame and the p® channel The
temporal masking Af (i, n) is constructed by smoothing the
TED coefficients, defined by
M{in)=T(i.n)+h{in) (&)
where * denotes the convolution operstion and h(i, n) is the
lowpass filter. The adaptive threshold wvalues (i n) are
constructed from the termporel masking M (i, n) . If M (i, n)
below the veriance of A (i,m) is set to zero, otherwise
temporal masking Af (i, n) is nommalised as follows:

M(i,n) . _
M'(in)= -m] M (1, m) = var(M (f.n}) o
0 . otherwise

The parameter of Af (i, n} is close to 1 for speech regions
and close to 0 for noise regions. Therefore the adaptive
threshold values A (i, n) canbe expressed as:

Afn) = 4,0 -M"(i.n)) (8)
i, =0, /Thoz(¥ log, (7)) &nd o, = MAD, /06745 (5)

where A represents the chanmel-dependent thresheld values,
N is the total frames, g, is the poise varances with the
medizn of the absohite devianon (MAD ) of all the wavelet
coefficients F(f,m) at the »* channel snd 0.6745 ic a
nommalisatdon factor, which is WUP:I.I:IHEEEI from fine-scale
wavelet coefficients. The enhanced speech X(j,n) is modified
by the soft thresholding pain function &5

X0 = snF(i My mas((F (7. - AEm|0) (10D

B Tme-frequency spectral subtraction

The spectwal submaction is wellknown techniques for
speech enhancement. This technique is based on a simple
implementation where enhanced speech 15 obtained by
subtracting the noise estimation from the poisy speech The
spectral subdraction proposed by [11] is applied in this stedy.
The gein fimction of this approach can be created using the
relationship  between the difference of phases and
migonomeiic principles as detail m [11]. The gain fimction
dependent on the esomation nf_pﬁnrf&Nersnﬂpmwrfari
SHE ¥ parsmeters, can be expressed as follows:
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The parsmeters £ and § in the gain function G(£,7) are
estimated according to:

Fli, )= F-FE L)+ (- F)-min( 5 (i,m),20) (12

dim=a-&i-Ln)+0-a) (JFEm-1) (13
L X X (im ¥ {rﬂ:l

and = 14

& imy 2 Fan ARE Fon )

where the subscript [ indicates the instantanecus values. g
and ¢¢ are weighting factors, which were zet to 8 = 0.60
and g = (.08 . Both factors control the tade-off between the
noise reduction and the speech distortion.

This gein function i= enploved in the ome-frequency
spectal submaction (TF35) a-:cordmgmth&fo]lmg steps.
Inifially, &n estimate of the noise power spectum ol (i.m) is
sveraged from the first five frames Then sz{in) 15 updated
by a noise estmation algorithm [15], which is obtained by the
nunirmm fracking method, since the power spectnim of the

noisy speech regularly decays to the noise power level This
method racks minimum values of & smogthed power spectmum
for the nedsy speech amd pmltiplies by 2 constamt to
compensate for the bias poise estimare. This method has been
found to work well for nonstationsry envirormments.

Finally, the T-F envelope amplinide mamix of the
enhanced speech 15 computed by a mulnplicetion of the zan
finction G (£, ) with the T-F envelope anplitmde matrix of
the noisy envelopes:

X6.m)=6(L.7) Fi,n) s

The posteriori SHNE. ¥#(i,n) m (12) is weighted to reduce
rapid fluchiations and also to linut the over-suppression of the
signal for large values of §(i,n). The weighting factor @ of
F(i,n) can improve the estimate of the ephanced speach The
priert SHE. .f{i', n) in(13) is weighted to conmol the averagze of
speciral information positioned on past and present fames.

IV. EVALITATION OF SPEECH INTELLIGIBILITY

The performance evelustions reported in this paper are
conducted in a speech imtelligibility experiment using MH

Appendices

listeners providing subjectve information To evaluate the
perfommence  of selected alzorithms we conducted a
psychophysical experiment using a speech perception
peradigm with the BEB (Bamford-Fowal-Bench) sentences
test [16].

A, Subjeciz

Fourteen WH listeners participated in this experiment. AL
subjects were native speskers of British Englizsh (8 males, 6
females, from 13 1o 24 years of age) end had normal hearing
threshaolds (= 20 dB HL). They were staff and students at the
University of Sowthsppton and were paid for their
peTticipation.

B Speech stimuli

The BEE test consists of 21 lists with each list consisting
of 16 senfences (21 lists = 16 sentences = 336 sentences) and
50 key words (3—3 words per sentence). The senfences are
composed of no more than seven syllables and their
vocabulary reflects the namoal lansuage usage of younger and
more impaired children. All the BEER sentences were recorded
by & male speaker of standard British English at a 22 KHz
sampling rate. They were resampled to 16 kHz for the

experiment to simmlate the speech processing in g CT system.

All zentences were processed separately offline using a
wavelet packet-based strategy with SyméE in nolsy conditions.
They were commupted by babble noise at 0, 5 and 10 4B ZME.,
which are SME. levels where CT users can benefit. The noisy
sentences were also processed using two algorithmes for noise
reduction (ie. TAWT and TF35). There were a total of 18
conditions (3 algorithms = 3 SME lewvels = 2 wavelet packet
stucmres).

C. Procedure

The experiment was carmied out in 2 sound-reated room. 4
pure tone smdiogram test was camied out to confirm that the
subjects had normal hearing thresholds (= 20 dB HL., between
250 and B000 I-Iz}.l'hespeechsumhwmpremdusmga
Dwell Latmde E4300 laprop, rowted dwough 2 Creek Andio
OBH-215E headphone soplifier and presented umilaterally
throngh 2 Sennheizer HDAED ciroumaural headphone. Levels
of speech stomli in all experiments were presented at a
comfortable conversional level (65 dB (A))

Subjects were fully tested n a total of 18 condifions over
Wi sessions on separate days, lasting approximeately 1.5 hours
each They used their prefemred ear (left or right) that was most
comfortalle for them to listen to the vocoded speech for the
enfire test They were asked to wiite down the sentences that
they heard. In the maining sezsion, they were gsked to listen to
one senfence list in both quiet and noisy conditions in 8 5
muimte test in order to famdliarise themselves with the vocoded
speech and the testing procedures. This sentence list was not
included in the achual testing.

In the festing session, two lists of BEB sentences (32
senfences) per condition were used to provide one hundred
keywords (100 percent). The sentences wers scored in tenms
of the percentage of comrect key words per condition,
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expressed as “percent correct.” Mo list was repeated across the
conditions in each session. The order of condiions and the
list-to-condition mapping in each session was randomised
arross subjects. Subjects were given 3 S-mmunute break every
30 nunutes during the test, or whenever they needed to take 2
Test.

V. EXNPERIMENWTAL RESULTS

Fig. 3 shows electmic stimmlation patterns (elecoodograms),
derived using the 12-0f-22 strategy of the BEB sentence “The
clown had a firegy face”. For all the electrodograms, the y-axs
represents the elecmode posiion comespondmg to & specific
frequency band snd the x-axis represemts tine progression.
Thus figure shows the elecrodogram of the clean speech and
the noisy speech with/without noise reduction alzorithms at 5
dB SME. babble noise. It can be seen thar TAWT and TFSS
remove noise and some details of the vocoded clean speech
This may affect to improve speech intellizibility.

Fig. 4 shows: mean percentage comrect scores for the two
algonithme of poise reduction in noisy condiions. A three-way
analysis of vanance (AMOWVA) with repested measures was
conducted with three main factors: algonthms, SNE levels,
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Figur 3.  Electroda,

and wavelet packet stuchares. The results revealed a
nonsignificant main effect of alponthms (F [2, 26] =1.381,
p=0.267T), a significant main effect of SME. levels (F [2, 24]
=77.338, p=0.0005) and a significant main effect of wavelet
packet smucmares (F [1, 13] =5.604, p=0.012). There was a
significant inferaction berwesn algond:ms. and SHE. levels (F
[4 52] =3.158, p<0.0005). However, there was a
nonsignificant interaction between algorithms snd wavelet
pecket structres (F [2, 26] =0.709, p=0.501), a nonsignificant
interzction berween SME. levels and wavelet packet stucmres
(F [2, 26] =0.550, p=0.5E3), and a ponsignificant intersction
between alzonithme SHE levels, and wavelet packet stuciures
(F [4,52]=0.172, p=0.052).

Post-hoc tests (Bonferront) were used to consider the peir
relationships among SME. levels, wavelet packet stuctures and
between algomithms and SME. levels. The mesn scores
depended on the SNE. levels. The higher SHE. levels provided
higher scores amd vice wersa. The &4-band WPT wielded
slightly higher scores than the 23-band WPT in almost all
conditions. The TAWT and TF55 prowvided significandy
higher scores at 0 dB SME. and lower scores at 10 dB SHE

when compared to the vocoded noisy speech at those SHE
levels.

i .

-
1 -
i |
g iima 1 ——
1 (1] i | i -
W vl
EE T~ MR EITEEIETL] Lll.l- il B
? 5 w =il i (ERUNICI TN IR !
I — i1 -
£ M e L
= {7 — 11 s. *-__uilﬂltlm n
1 . —
H —_—

S
7. iy i ———— | il
17 - e oy —
s

) . S I I T o W ———— |
a— i —

2 e | ] s e 1 o o —
LI ——.u-—--pu -“-il—-h.ll_

0 M M0 S W0 WN 130 MW 180 1B

Tivtni i)

Elactrada

QIRD

|:I\I eli] 1EI|:1:I 1B

granys of the BEB sentence “The cfowr had a fismy face™ for noise ndoction. algorithees. (Laft top paned) Clean speech. (Fight fop pansl)
Time-frequency spectral subtaction.

Noisy speach with babble noise at 5 48 SWE. (Ladt bottom panel) Tims-adsptive warvelet thresholding . (Fight botiom panel)

242

152



=] d rais sk
g WT il il o WS M
W T b ey sl wbiecing

A

Fedient Coamesct (%]

ENR Lesls [HE)

Figare 4. Mean parcentage comect soares far tawo nodse reducton 2lgorthms
at 0, 3, 10 dB SME. tabble noiss. The aror bars indicate = | standard error

VI COMCLUSION AND DISCUSSION

Moise reduction alponthmes mchiding TAWT and TFSS
were imestigated when speech is cormupted by babble noise at
0, 5 and 10 dB SHF. Both TAWT and TFSS showed a
significant mprovement gt 0 dB SME., ne sigmificant
mprovements at 5 dB SMNE. and significantly worse in speech
imtelli gibility at 10 4B SME. when compared to vocoded noisy
speech.

This may result from noise estimstion in noise reduction
algomthms. Moise estimation in both TAWT and TFSS may be
under- or overestimared and this results in distortion in the
enhanced speech. The distortion of the enhanced speech may
be more than the noise reduction The distortion of the
enhanced speech may affect the speech intelligibilicy
performance becsuse speech discriminstion becomes more
difficult If techniques of noise reduction can improve
estimation of noize levels, this may lead to improve speech
mieligtbility.

In addition, MH listeners are more sensitive to speech
distortion end less sensitive to noise when compared to
hesring-impaired (HI) Lsteners [17] MH listeners can reach
better intellizibility performance at higher SHE. levels withouwt
noize reduction algorithms (ie. 10 dB SME). Therefore, noise
reduction elgonthms may work well for CT users, bur not work
for WH listeners at higher SHE. levels.

ACFMOWLEDGMENT

The sathors would like to thank all participants for theor
valuable time to doing this research.

153

Appendices

PEFERENCES

[1] P. C. Loizow, "Meipecking the human car” JEEE Simal Processing
Magazme, vol 15, pp. 100-130, 1998,

] ZFm—Gmg.S.Iﬂm:hnr‘ii. Ha.msm,S}ﬁmndF

"Cochloar implantz- Thn mhﬁdm and evabafion” [EEE
Beviews in Blomedical Engireering, pp. [13-142, 2008

| I'L}.nkhnahs.ﬂ Am..'l’Hu.md.DR.Fmdhnd. "Single and
Mngh Sumyﬁpumﬂnd:huhlphm.
Ampli wol. Iﬁ,pl;' 102-116, um 2012,
[ YEPL I.n:lmN.]'..l..a.ndEEa.."h.n:.. 'T.Tmufa. dgmoddal-shaped
fmcton for nofse attemuation in lamts." Jowmal af dae
Avoustion! Soctery of Amertoa, vol I"“'-I po. F11Z5-FI134, Oct 2007,

[5] . Li, “Speech percepton i 2 sparse doomim,” PhD Thesis, Instituse of
Sound and Vibmation Fesearch, University of Southammpeon, 2008

5] P“’]:IamSI‘vimFmdﬂ.ﬂ_HI"ba:h 'Clmlc.l]ni]natlm
of signalo-poizo ratic-based moise mducton in Mac cochlsar
implart rocipéents,” Ear Hear, val 32, pp. 382-300, 2011,

[71 H M Ho N. Mohemmadibe, J. Taghia, A Leijon, M E. Lutman, and 5.
Y. Wang, "Sparsity Lowal in a Non-Nogative Matrix Factorization Based
Speech Smategy in Cochlear " WD Proceedings of the Jody
Ewropean Signal Processing Conference (ELSIPOQY, pp. 2432-2436,
2002,

[] V. Gopalkmzhes N, Esbtarmraz and P. O Lodzou, "A Recusive
Wervelat-Based Stategy for FealTime Cochlesr Implant Speech
Processing on PDA Flatforms," [EEE Tramsacoms om Blomeaical
Ergineering, vol. 57, pp. 2053-2063, 2010

[¥] W. Nomwira, A Giess. B. Edler. and A Buchner, "Wavalet
Shterbamk for speech processing staegies M cochlesr inplanes,” JEEE
Mrermadonal Conference on Acowsic, Speech, and Signal Processing,
2008,

[10] 5 H Chen and J. F. Wang, "Speach schamcomant using parcapeaal
wavalet packet deconpesition and teager energy opsmater.” Jowrral af
FISI Sigral Processing Sysrems jor Sipnal fmage and  Pides
Tectmology, vol. 34, pp. 125-138, 2004,

[11] ¥. Luand P. C. Lolzou, "A geomstric appreach to spectmal subtmction,”
Speech Communionnon, val. 50, pp. 453466, Tun 2008.

[11].'1.E:E md. CIE DEP  Gimteges, Sofwam  Requiremants

Cochlear Corporation, Lane Cove, New South Walse,
Australia, 2002.

13] D L. Domoho and T M. Johnstone, “Tdeal Spatial -Uapu'hmh“nwhr

= Shrinksge ™ Fiometrikr, vol. B1, ]:p.-1]'5—4?§§

[14] T Eaiser "Some usefill properties of Teager's soergy operators,”
MCASSP-23 1908 JEFE Iernnional Comference on Acowsncs, Speech,
and Signal Processing ¢(Car Mo WACHI2524), pp. 148-1352, 1993,
[17] E. Mortin, "Moise powss dm.-:mmwbumdmuphml
and minirmem stadistics,” [EEE Trmsasrons o Speech and
Audie Provessing, wol. %, pp. 34512, 2001.
[16] I. Banch, A Eowal and J. Bamford, "The BEE (Banford-Fowal-
santencs ez for children " Brrnsk Jowrmal af
Audiology, val. 13, pp. 108-12, 1579-Aug 1579,

[17] ¥. H vn Schindel T Houtgast amd J. M. Festan, “Effects of

hearing-frpaied
St r.g.l"r.h:' Acousscal Sociery af Amertea, vol. 110, pp. 328-342, I'u.l
2001

43






Appendices
Appendix B: Objective speech intelligibility
B.1  The normalised covariance metric (NCM)

The NCM (Jianfen et al., 2009; Chen, 2011) is calculated as follows (Figure B.1). The
stimuli are first decomposed into N bands across the signal bandwidth (125-8000 Hz in
this study) using Butterworth filters. The envelope of each band is computed using the
Hilbert transform and then down-sampled to 2f.: Hz, thereby limiting the envelope
modulation rate to feut Hz (200 Hz in this study).

W,
2 Band 1 \ x() NCM, ) 4
E‘a’:rscyfg‘rj;oc h ; Hilbert idNR, and
=== P 21t
Decompose transform to "y, (i 222 Compute
. ; get envelope, ; : ; NCM
Clisaisgsei N ; and limit ; i ; :
waveform bands modulation xn(0) NCM, measure
T SNR, and
---» ratetofoHz J--- Mal:,’p?:g
_/ Band N\ w0

Figure B.1 Computation of NCM measure (Chen, 2011)

Let X (t) and Y,(t) be the down-sampled envelope of the clean and noisy

speech signals in the i bands, respectively. The normalised covariance in the i" bands

is computed as:
r= 2 (6O Ny, ) -v,)
| \/Zt (Xi () - 4 )2 \/Zt (Yi -V )2

(B.1)

where g, and V; are the mean value of X;(t) andy;(t), respectively. A value of T,

close to O indicates that the clean and noisy speech is uncorrelated, while the value of T;

close to 1 indicates that the clean and noisy speech is related. The signal-to-noise ratio
(SNR) in each band is defined as:

2

SNRizlologl{lri 2] (B.2)

and subsequently limited to the SNR dynamic range of [-15, 15] dB (as done in the

computation of SII measure (ANSI, 1997) ). The transmission index (TI) in each band
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is computed by linearly mapping the SNR values between 0 and 1 using the following

equation:

11 _ SNR, +15

i 30 (B.3)

Finally, the transmission indices are averaged across all frequency bands to
produce the NCM index:

—Z”TN" W (B.4)

W
i=1 !

NCM =

where the weights W; are often called the band-importance functions in the computation

of the speech intelligibility index (SII) measure. There are several methods for selecting
this weight, but the most common weights are the ANSI articulation index (Al) weights
as shown in Table 1 (ANSI, 1997). The NCM measure is always limited to the range of
[0, 1].

Table B.1 The ANSI Al weights used in the implementation of the NCM (Chen, 2011)

Band Centre frequency (Hz) Weight
1 151.3 0.0835
2 208.8 0.0990
3 276.7 0.0913
4 356.9 0.0708
5 451.7 0.0600
6 563.7 0.0493
7 696.0 0.0440
8 852.4 0.0441
9 1037.2 0.0490
10 1255.5 0.0486
11 1513.5 0.0493
12 1818.4 0.0496
13 2178.6 0.0548
14 2604.2 0.0548
15 3107.2 0.0488
16 3701.5 0.0366
17 4403.7 0.0380
18 5233.5 0.0320
19 6214.0 0.0246
20 7372.5 0.0208
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B.2  The short-time objective intelligibility measure (STOI)

The STOI (Taal et al., 2011) is a time-frequency intermediate intelligibility measure
(Figure B.2) based on a correlation coefficient between the temporal envelopes of the
clean and degraded speech in the short-time region. First, the clean and degraded speech
are processed in each frame with a length of 25.6 msec, performed by a Hann-window
with 50% overlap. Next, the windowed signals are decomposed into DFT-based one-
third octave bands. These bands are performed by grouping DFT-bins into 15 one-third
octave bands with the lowest and highest frequency band at 150 Hz and 4.3 kHz,

respectively.

x (Clean speech) J X; (m)

DFT-pased
-— P 1/2 oclave band
decompaosition

» (Degraded speech)

Short-time J.m
segmentation l

N =30 Coeflicient

) Lim |
Correlation > — Zd
JM

dam

- h 4 v
) 3,{.!” ) Y Jom
Short-time o | Normalization +

segmentation d clipping

DFT-based
1/3 octave band
decompaosition

—m B=-15

Figure B.2 The computation of the STOI measure (Taal et al., 2011)

Let %(k,m) denote the k™" DFT-bin of the m" frame of the clean speech. The norm
of the j™ one-third octave band, referred to as a TF-unit, is then defined as:

ko ()1

X, (m) = %(k,m)|” (B.5)

(
k=k; (J)

where ki and k> denote the one-third octave band edge, which are rounded to the nearest

DFT-bin. The T-Frepresentation of the degraded speech is obtained similarly, and is

denoted by Yj(m). Let X, denote the short-time temporal envelope of the clean

speech:

X, =[X, (M=N+1),X,(m=N+2),.. X, (m] (B.6)
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where N = 30 which equals an analysis length of 384 msec. Similarly, Y ; ., denotes the

short-time temporal envelope of the degraded speech, which is normalised and clipped

before comparison.

The rationale behind the normalization procedure is to compensate for global level
differences which should not have a strong effect on speech intelligibility. The clipping
procedure makes sure that the sensitivity of the model towards one TF-unit which is

severely degraded is upper bounded. Let x(n)denote the nth element of x, where
nefl...N} and ||| represent the I, norm. Let ¥ ; . denote the normalised and clipped

version of Y. Then:

¥

¥ il

Yim(n) = min( y],m(n),(1+10ﬁlzo)x,,m(n)J (B.7)

where B =-15 dB refers to the lower signal-to-distortion (SDR) model. SDR is given
by:

SDR =10lo Xjn (1) > f (B.8)
0l g ) XL ) ) |

The intermediate intelligibility measure is defined as the sample correlation

coefficient d;  between the two vectors, where s, refers to the sample average of

the corresponding vector. Finally, the average of the intermediate intelligibility measure

overall bands and frames is computed

(Xj,m - :uxj‘m )T (yj,m _/uijm)

djm = (B.9)
ij'm My Hyj,m ~Hy,,
d= ﬁ%dj,m (B.10)

where M represents the total number of frames and J the number of one-third octave band.

158



Appendices

159






Appendices

Appendix C: Mother wavelets

MATLAB Wavelet Toolbox provides a number of mother wavelets with order N for
WPT, including Haar (harr), Daubechies (dbN), Symlets (symN), Coiflet (coifN),
biorthogonal (biorN), reverse biorthogonal (rbioN) and discrete Meyer (dmey). The
filter length L of mother wavelets is 2N, except for Coiflet which is 6N. The wavelet
functions and the coefficients of wavelet filters for db3, coif2 and sym8 are illustrated in
Figure C.1 and C.2, respectively. The example of filter coefficients for decomposition

and reconstruction are shown in Table C.1.

[40] 40

2 T T T T

ok
Al

2 L 2

0 1 2 3 4 5 0 1 2 3 4 5

(a) db3
(20} v (1)

2 2

1r b 1

0 A 0
-1 1

2 -2

0 2 4 6 8 10 12 0 2 4 6 8 10 12

(b) coif2
(A0} [40)

2 2

1r 1 1

0 "vﬁ/\/k\—/v“ 0

1k 1

2 2

0 5 10 15 0 5 10 15
(c) sym8

Figure C.1 Example of the scaling functions ¢(t) (left) and

wavelet functions y (t) (right) with order N.
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1 1
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Figure C.2 Example of coefficients of lowpass filters (left) and highpass filter (right)

Table C.1 Filter coefficients for decomposition and reconstruction

dB3 Decomposition Reconstruction
Lowpass filter Highpass filter Loweass filter Highpass filter
" h(n) g(n) h(n) g(n)
0 0.0352 -0.3327 0.3327 0.0352
1 -0.0854 0.8069 0.8069 0.0854
2 -0.1350 -0.4599 0.4599 -0.1350
3 0.4599 -0.1350 -0.1350 -0.4599
4 0.8069 0.0854 -0.0854 0.8069
5 0.3327 0.0352 0.0352 -0.3327
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Table C.1 (Continued) Filter coefficients for decomposition and reconstruction

Coif2 Decomposition Reconstruction
Lowpass filter Highpass filter LOWEaSS filter Highpass filter

" h(n) g(n) h(n) g(n)

0 -0.0007 -0.0164 0.0164 -0.0007
1 -0.0018 -0.0415 -0.0415 0.0018

2 0.0056 0.0674 -0.0674 0.0056

3 0.0237 0.3861 0.3861 -0.0237
4 -0.0594 -0.8127 0.8127 -0.0594
5 -0.0765 0.4170 0.4170 0.0765

6 0.4170 0.0765 -0.0765 0.4170

7 0.8127 -0.0594 -0.0594 -0.8127
8 0.3861 -0.0237 0.0237 0.3861

9 -0.0674 0.0056 0.0056 0.0674

10 -0.0415 0.0018 -0.0018 -0.0415
11 0.0164 -0.0007 -0.0007 -0.0164

Sym8 Decomposition Reconstruction
Lowpass filter Highpass filter LoprJass filter Highpass filter

" h(n) g(n) h(n) g(n)

0 -0.0034 -0.0019 0.0019 -0.0034
1 -0.0005 -0.0003 -0.0003 0.0005
2 0.0317 0.0150 -0.0150 0.0317
3 0.0076 0.0038 0.0038 -0.0076
4 -0.1433 -0.0491 0.0491 -0.1433
5 -0.0613 -0.0272 -0.0272 0.0613
6 0.4814 0.0519 -0.0519 0.4814
7 0.7772 0.3644 0.3644 -0.7772
8 0.3644 -0.7772 0.7772 0.3644
9 -0.0519 0.4814 0.4814 0.0519
10 -0.0272 0.0613 -0.0613 -0.0272
11 0.0491 -0.1433 -0.1433 -0.0491
12 0.0038 -0.0076 0.0076 0.0038
13 -0.0150 0.0317 0.0317 0.0150
14 -0.0003 0.0005 -0.0005 -0.0003
15 0.0019 -0.0034 -0.0034 -0.0019
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Appendix D: Speech processors

D.1  Design parameters for cochlear implant devices

Appendices

Table D.1 shows the detail specific parameters for currently available clinical cochlear

implant devices from the three major manufacturers (Fan-Gang et al., 2008).

Table D.1 Parameters for cochlear implant devices from the three major manufactures.

Current electrode arrays

Experimental electrode arrays

Parameters Advanced Advanced Cochlear Med-EI Med-El | Cochlear Cochlear Med-El
Bionics Bionics Contour Combi 40+ FlexSoft | Hybrid Hybrid-L FlexEAS
HiFocus 1) Helix Advance
Active Length | 17mm 13.25mm 15.5mm 26.4mm 26 4mm | 6mm 15mm 20.9mm
Total Length 20mm 20mm 25mm 31.5mm 3L.5mm | omm/l0mm l6mm 25mm
Carrier Silicon rubber Silicon Silicon rubber Silicon rubber Silicon rubber
Material (LSR-70) rubber (LSR-40) (LSR 30) (LSR-40)
(LSR-30)
Carrier 0.8-0.4mm 1.16- 0.8-0.5mm 0.8x0.78mm 0.35x0.25 0.8x0.78mm
Diameter 0.66mm at base mm at tip at base
(base 1o tip) 1.2-0.7mm 0.58x0.48mm 0.58x0.35mm
at apex at apex
Number of 16 16 22 12 pairs 7 basal 6 22 7 basal pairs +
Electrodes pairs + 5 5 apical singles
apical
singles
Spacing I.1mm 0.85mm 0.75mm 2. 4mm 2.4mm (.75mm 0.75mm 1.9mm
Shape Straight Pre-curved Pre-curved Straight Straight Straight Straight Straight
Stylet No Yes Yes No No No No No

165



Appendices

D.2
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D.3  ACE Strategy

x(n) r(j) a(z) Select n a(z) I
Speech Envelope - . Frame
. FFT > > Maximum Mapping
Signal Detector . sequence
amplitude

Figure D.1 Block diagram of ACE strategy

The ACE strategy is used in the Nucleus-24 processor made by the Cochlear
Corporation, and a basic block diagram (Cochlear, 2002; Nogueira et al., 2005) is
shown in Figure D.1. The speech signal at 16 kHz sampling rate is processed in each
frame (8 ms and L=128 samples) and then performed by hanning window with overlap
depending on the parameters of the channel stimulation rate in CI user’s MAP. The
windowed signal is transformed by FFT. The windowed function used is:

w(j) :0.5[1.0—cos[2—:jn, j=012,..,L-1 (D.1)

The 128-point FFT provides 128 spectral coefficients or 128 bins. Due to the
symmetry properties of FFT, the first 64 bins are then used and the second 64 bins are
discarded without loss of information. The 64 FFT bins with linear spacing are
rearranged to mimic the critical band of the auditory system by summing the powers of
adjacent bins to provide m channels (typically 20 or 22) with different frequency ranges.
The frequency range in each channel is defined by the frequency table of Cochlear
Corporation. Generally, the apical one-third of the channels are allocated with linear
spacing to frequencies up to 1 kHz, while the basal two-thirds of the channels are

allocated with logarithm spacing to frequencies above 1 kHz. The real part of the j"

FFT bin is denoted by x(j) and the imaginary part by y(j). The power of the bin is:

r2()=x*()+y*(j), j=0L..L/2 (D.2)

The power of the envelope of channel z is calculated as a weighted sum of the

FFT bin powers. Where g,(j) are set to the gain g, for a specific number of bins and

otherwise zeros, the envelope of channel z is:
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a(2)=1/292(j)r2(1), z=1...M (D.4)

The envelope channels a(z;) with the largest amplitude are selected for

stimulation. The mapping block is done by using the loudness growth function (LGF),
which is a logarithmically-shaped function that maps the acoustic envelope amplitude

a(z;) to an electrical magnitude

log(1+ p(a(z;) —s)/(m—s)) s<a(z)<m
log(1+ p) ' T
p(z;) = 0, a(z)<s, (D.5)
1, a(z,)=m,
L =T+(C-T)p, (D.6)

The magnitude p(z;) is a fraction in the range O to 1 that represents the proportion

of the output range (from the threshold T to the comfort level C). An input at the base-
level s is mapped to an output at threshold level, and no output is produced for an input
of lower amplitude. The parameter m is the input level at which the output saturates;
inputs at this level or above result in stimuli at comfort level. If there are less than N

envelopes above base level, they are mapped to the threshold level. The parameter p

controls the steepness of the LGF. Finally, the channels Z; are stimulated sequentially

with a stimulation order from high to low frequencies (base-to-apex) with levels.
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Appendix E:

E.1 A geometric approach to power spectral subtraction

Let y(n) = x(n) +d(n) be the noisy speech y(n) consisting of the clean speech x(n)

and noise d (n) . Taking the short-time Fourier transform (STFT) of both sides gives:
Y (o) = X () + D(w) (E.1)
Equation (E.1) is multiplied by its conjugate Y (w) . This can be written as follows:
Y (@) =[X (@) +|D(@) +2|X (@) |D(w) cos(6y ~6;) (E.2)
Equation (E.1) can be rewritten in polar form by its magnitude and phase as:

ae'% =a el +a e (E.3)

where {ayaax ,aD} are the magnitude spectrums and {eyyex "90} are the phases of the

noisy speech, clean speech, and noise spectrum, respectively.

The noisy speech Y (w) in Equation (E.1) can be represented geometrically in the
complex plane as the sum of the clean speech X (w) and noise D(w) as in Figure E.1

(@). The cross term in Equation (E.2) conducts to the error of the noise estimate. If the

phase difference between clean speech and noise (0, —6,) is 90, then

2 2 2
‘Y(a))‘ =‘X(a))‘ +‘D(a))‘ . This cross term can lead to an underestimation (i.e.

(6, —65) <90) and overestimation (i.e. (6, —6,)>90) of noise in the power spectral

subtraction.

The gain function G of the spectral subtraction can be generated from the triangle

(Figure E.1 (b)) using the Sine Rule with @LE The gain function G can be given
by:

AB =a, sin(d, —6,) =a, sin(d, —6,) (E.4)
ay (1-¢fp) = ay (1-Cjp) (E5)

171



Appendices

QD

G- _ [1=Co (E.6)
ay 1-Cyo

where ¢, =cos(@, —6,) and c,, =cos(d, —6,). Since no methods accurately
determine these phases (i.e. ¢, and c,g ), the explicit relationship between the phases

can be represented using the trigonometric principle. Equation (E.2) can be rewritten in

terms of the magnitude spectrums {ayaax ) aD} as:
al =a’ +a +2a,a, cos(d, —b,) (E.7)
The cosine rule for the triangle as in Figure E.1 (b) gives the following relationships as:
a; =a’ +al —2a,a, cos(d, —6,) (E.8)
Dividing both sides of Equation (E.7) and (E.8) by a2 and using the definitions of

£2a%/al and y=a2/al, then c,, and c,, can then be given by:

a -ay-ay y-1-¢
Cyp = = E.9
o= m 2gF (E9)

_atap-ay  y+l-¢
2a,a, 2y

Co (E.10)

Then the gain function as in Equation (E.6) can be rewritten as:

. Jl_cY _ J@M] /[1(”5)} (E.11)
1-¢%, 4y 48
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Im 4 Y (@)

(@) (b)
Figure E.1 The geometric viewpoint of spectral subtraction in the complex plane. (a)

represents noisy speech Y (w) as the sum of clean speech X (@) and noise D(w). (b)

represents the triangle of the geometric relationship between the phases of noisy/clean

speech and noise. Adapted from Lu and Loizou (2008).
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Appendix F:

F.1  Post-test questionnaire

Adapted from Dehaish et al. (2008)

QUESTIONS CONDITIONS

C1 C2 C3 Cn

1. Articulation: Were the sounds distinguishable?
(1) Yes, very clear
(2) Yes, clear enough
(3) Fairly clear
(4) No, not very clear
(5) No, not at all

2. Listening effort: How would you describe the effort you
were required to make in order to understand the message?
(1) Complete relaxation possible; no effort
required
(2) Attention necessary; no appreciable
effort required
(3) Moderate effort required
(4) Considerable effort required
(5) No meaning understood with any

feasible effort

3. Ease of listening: Would it be easy to listen to this voice for
long periods of time?
(1) Very easy
(2) Easy
(3) Neutral
(4) Difficult
(5) Very difficult

4. Overall impression: How do you rate the quality of the
sound you just heard?
(1) Excellent
(2) Good
(3) Fair
(4) Poor
(5) Bad
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F.2  The post-test questionnaire results

Table F.2 The post-test questionnaire results for noise reduction in wavelet packet-

based speech coding strategy with different noise types.

. . 1 - Articulation 2 - Listening effort
Lists Detail Q Q g
[11 | 21 | [31 | [4] | [5] (11 | 21 | [31 | [4] | [5]
c1 23-WPT ° °
Quiet
c2 64-WPT ° °
c3 23-WPT ° °
BB
ca 64-WPT ° °
c5 23-WPT ° °
ss
C6 64-WPT ° °
c7 23-WPT ° °
BB-IdBM
cs 64-WPT ° °
C9 23-WPT ° °
BB-TAWT
c10 64-WPT ° °
ci1 23-WPT ° °
BB-TFSS
c12 64-WPT ° °
c13 23-WPT ° °
SS-1dBM
cl4 64-WPT ° °
c15 23-WPT ° °
SS-TAWT
C16 64-WPT ° °
c17 23-WPT ° °
SS-TFSS
c1s 64-WPT ° °

Note: the abbreviations used in table are as follows: C-condition, Q-Question, BB-
Babble noise, SS-Speech-shaped noise, IdBM-Ideal binary masking, TAWT-Time-

adaptive wavelet thresholding and TFSS-Time-frequency spectral subtraction.
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Table F.2 (Continued) The post-test questionnaire results for noise reduction in
wavelet packet-based speech coding strategy with different noise types.

, . 3 - Ease of listenin 4 - Overall impression
Lists Detail Q g Q P
(1| 2 [ 381 | [4 | [8] (11 | [21 | [31 | [41 | [8]
c1 23-WPT ° °
Quiet
c2 64-WPT ° °
C3 23-WPT [ ®
BB
C4 64-WPT [ ] ®
C5 23-WPT [ ] [ ]
Ss
C6 64-WPT [ [ ]
Cc7 23-WPT [ ] [ ]
BB-1dBM
Cc8 64-WPT o [ ]
c9 23-WPT ° °
BB-TAWT
C10 64-WPT [ [ ]
Cl1 23-WPT [ [ ]
BB-TFSS
C12 64-WPT [ ] [ ]
c13 23-WPT ° °
SS-1dBM
Cl4 64-WPT [ ] [ ]
C15 23-WPT ° [ ]
SS-TAWT
Cl6 64-WPT [ ] [ ]
C17 23-WPT [ [ ]
SS-TFSS
C18 64-WPT [ [ ]

Note: the abbreviations used in table are as follows: C-condition, Q-Question, BB-
Babble noise, SS-Speech-shaped noise, IdBM-Ideal binary masking, TAWT-Time-
adaptive wavelet thresholding and TFSS-Time-frequency spectral subtraction.
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F.3  The post-test questionnaire results

Table F.3 The post-test questionnaire results for noise reduction in wavelet packet-

based CI processors with different SNR levels.

. . 1 - Articulation 2 - Listening effort
Lists Detail Q Q 9
[11 | 21 | [31 | [4] | [5] (11 | 21 | [31 | [4] | [5]
c1 23-WPT ° °
0-BB
c2 64-WPT ° °
c3 23-WPT ° °
5-BB
ca 64-WPT ° °
c5 23-WPT ° °
10-BB
c6 64-WPT ° °
c7 23-WPT ° °
0-TAWT
cs 64-WPT ° °
c9 23-WPT ° °
0- TFSS
C10 64-WPT ° °
cl1 23-WPT ° °
5-TAWT
c12 64-WPT ° °
c13 23-WPT ° °
5-TFSS
c14 64-WPT ° °
ci5 23-WPT ° °
10-TAWT
C16 64-WPT ° °
c17 23-WPT ° °
10-TFSS
c18 64-WPT ° °

Note: the abbreviations used in table are as follows: C-condition, Q-Question, the
different SNR levels (i.e. 0, 5 and 10 dB), BB-Babble noise, SS-Speech-shaped noise,
TAWT-Time-adaptive wavelet thresholding and TFSS-Time-frequency spectral

subtraction.
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Table F.3 (Continued) The post-test questionnaire results for noise reduction in

wavelet packet-based CI processors with different SNR levels.

. . 3 - Ease of listenin 4 - Overall impression
Lists Detail Q g Q P
(1 | 2 [ 381 | [4 | [8] (21 | [21 | [31 | [41 | [8]
C1l 23-WPT [ ®
0-BB
Cc2 64-WPT [ ®
C3 23-WPT [ [ ]
5-BB
C4 64-WPT [ [ ]
C5 23-WPT [ [ ]
10-BB
C6 64-WPT [ [ ]
Cc7 23-WPT [ ] [ ]
0-TAWT
Cc8 64-WPT o [ ]
C9 23-WPT [ [ ]
0- TFSS
C10 64-WPT [ [ ]
Cl1 23-WPT [ [ ]
5-TAWT
C12 64-WPT [ [ ]
c13 23-WPT ° °
5-TFSS
Cl4 64-WPT ° [ ]
C15 23-WPT ° [ ]
10-TAWT
Cl6 64-WPT [ ] [ ]
C17 23-WPT [ [ ]
10-TFSS
C18 64-WPT [ ] [ ]

Note: the abbreviations used in table are as follows: C-condition, Q-Question, the
different SNR levels (i.e. 0, 5 and 10 dB), BB-Babble noise, SS-Speech-shaped noise,
TAWT-Time-adaptive wavelet thresholding and TFSS-Time-frequency spectral

subtraction.
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