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ROUTING PRODUCTS OR PEOPLE: SINGLE AND MULTIOBJECTIVE
CONSTRAINED SHORTEST PATH AND RELATED PROBLEMS
by Yi Qu

The aim of this thesis is to define, model and solve three research questions at the tactical
and operational levels of decision making, the former arising in the context of intermodal
service network design and the latter two in passenger transportation, by using integer
programming, dynamic programming and heuristics. The first research question concerns
intermodal freight transportation, which is concerned with the shipment of commodities
from their origin to destination using combinations of transport modes. Traditional
logistics models have concentrated on minimising transportation costs by appropriately
determining the service network and the transportation routing. The first chapter considers
an intermodal transportation problem with a detailed consideration of greenhouse gas
emissions and intermodal transfers. Two mathematical models, one time-invariant and
the other time-dependent, are described for the problem, which are both in the form of a
non-linear integer programming formulation, but which are linearised. A hypothetical
but realistic case study of the UK forms the test instances for our investigation, where
uni-modal with multimodal transportation options are compared using a range of fixed
costs. The second and third research questions concern the multiobjective shortest path
problem (MSPP) and the constrained multiobjective shortest path problem (CMSPP),
extensions of the classical shortest path problem, with a wide range of practical applications
particularly in passenger transportation. The second and third research questions are
studied in two different chapters. The first of these presents several labelling algorithms
for the MSPP and the CMSPP. Extensive testing is performed on different types of
networks, including randomly generated and grid networks. The results show that label
correcting algorithms are more efficient than label setting algorithms for solving both
the MSPP and the CMSPP. The second of these two chapters proposes two fast local
search algorithms for the MSPP. Four performance indicators are used to evaluate the
local search solutions. Computational results demonstrate that local search algorithms
are faster than all heuristic methods for the MSPP presented in literature, and able to

produce reasonably good-quality solutions.
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Chapter 1

Introduction



2 Introduction

1.1 Background

The transportation industry is changing dramatically due to technological advances
and the constant need to find an integrated and more efficient transportation
system for increasing volumes of freight and passengers across the globe, the volume
of which has grown rapidly in the last four decades. In 1971, domestic freight
and passenger transport totalled just 134 billion tonne-kilometres and 418 billion
passenger-kilometres, while by 2010 it had expanded to more than 222 billion
tonne-kilometres and 771 billion passenger-kilometres, respectively (Department
for Transport, 2014). Intermodal transportation is concerned with the shipment of
goods and people using combinations of transport modes, particularly over longer
distances and across international borders, which has played a significant role in
the transportation industry.

An intermodal freight transportation includes ocean and coastal routes, inland
waterways, railways, roads, and airways. In relation to the carriage of goods,
intermodal transportation is the shipment of commodities from one point to another
using combinations of at least two different transportation modes (e.g., truck to
train to barge to ocean-going vessel) (Bektag and Crainic, 2007). Commodities must
be loaded, unloaded and transferred at an intermodal terminal. An illustration of

an intermodal freight transportation chain is shown in Figure 1.1.

Receiver

Fig. 1.1 An illustration of an intermodal freight transportation chain

In Figure 1.1, containers leave the supplier’s facilities by truck to a port, from
which they are reloaded onto a ship to be transported to another port. Containers
arriving into the latter port are then transferred onto a train, and sent to another
loading platform from which goods are carried by truck to their final destinations.

The load of freight must be overseen by a manager from its origin to its destination.



1.1 Background

Intermodal passenger transportation, on the other hand, involves using two or
more transport modes for passengers on a journey. Its systems often involve rapid
transit modes, including rail, bus, taxi, ferry, air, bicycle and even walking. In this
setting, each passenger is an independent decision-maker. A real-life illustration

of an intermodal passenger transportation network in Southampton is shown in

Figure 1.2.
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Fig. 1.2 An illustration of an intermodal passenger transportation network

In Figure 1.2, a passenger travels from Southampton airport (shown by the blue
dot) to the seaport (indicated by the purple dot). The passenger could travel by
taxi, which is faster but more expensive, or use other public transport, such as the
train service from Southampton airport to Southampton central railway station,
from which they will have alternative modes to go to the seaport. The passenger
either selects a bus service, which costs a small amount of money and takes a few

minutes, or walks to the seaport, which costs nothing but takes longer.



4 Introduction

Increasing freight and passenger transportation brings with it concerns about air
quality and climate change. Freight and passenger transportation is largely driven
by fossil fuel combustion, mostly diesel fuel, resulting in emissions of greenhouse
gases (GHG), such as carbon dioxide (COs;), nitrogen oxide (NOx), sulphur oxide
(SOx), particulate matters and air toxics. GHG emissions are not only harmful to
the health of humans, but also have harmful impacts on the environment. Examples
of the latter include increased drought, heavier downpours and flooding, a rise in
sea levels and harm to water resources, agriculture, wildlife and ecosystems. Global
emissions of CO, as the primary GHG increased by 3% in 2011, reaching an all-time
high of 34 billion tonnes in 2011 (Oliver et al., 2012). The proportion of total
GHG emissions in the UK attributable to transport has increased from 18% in
1990 to 26% in 2012. In 2012, 21% of UK domestic GHG emissions were from
transport at 118 MtCOqe. Transport contributes 26% of the total GHG emissions
when both domestic and international emissions are included (Department for
Transport, 2014). An efficient, safe, flexible and environmentally friendly way of

operating transportation networks is of vital importance.

Following the categorisation of Crainic and Laporte (1997), decision makers, in
designing and operating a transportation network, are faced with planning problems
associated with three different time spans. This includes those at the strategic,
tactical and operational level of planning. Long-term, strategic planning involves
the highest level of management. Decisions at this planning level affect the design of
the physical infrastructure network. Strategic planning, therefore, usually requires
large capital investments over a long period of time, e.g., between one and five years.
Tactical planning helps to improve the performance of the whole transportation
system by ensuring an efficient allocation of existing resources over the medium-term,
such as six months to a year. Finally, short-term operational planning is performed
by local management. At this level, day-to-day decisions are made in a highly
dynamic environment where the time factor plays an important role. A detailed
literature review of the three planning levels in freight and passenger transportation

will be presented in Chapter 2.

The service network design problem is a key tactical problem in intermodal
transportation. Service network design decisions generally relate to the routes on
which services will run, the types and capacity of the services offered, as well as the
frequency of the schedule of each route (Crainic, 2000). The performance of the
service network design is evaluated by the trade-offs between total operating costs
and service quality. In solving freight transportation network design problems, a

great amount of effort has been dedicated to the variant of the problem where there
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are no limitations on the transportation capacity. Furthermore, traditional service
network design models have concentrated on minimising operational costs alone.
There is an increasing need for new planning models to capture environmental
measures, and in particular greenhouse emissions.

Operational decisions relate to the specific processes that take place at a local
level of an organisation, including the scheduling of services, vehicle distribution,
routing and repositioning. As one of the most important problems, finding the
shortest path between the origin and the destination is broadly used in many
areas, such as urban traffic planning, routing of telecommunications messages, robot
navigation and texture mapping. In relation to path planning in transportation,
a typical problem is often better represented by considering multiple, as opposed
to single, objectives, using indicators such as time, distance, or greenhouse gas
emissions, which must also be taken into account simultaneously. The multiobjective
shortest path problem (MSPP) is a multiobjective combinational optimisation
problem (Ehrgott and Gandibleux, 2000), which consists of finding all efficient
solutions in a given network that minimise all criteria under consideration. The
MSPP, and in particular the bi-objective shortest path problem, has been widely
studied previously. However, there is limited work on this class of problems with
three or more objectives. To the best of our knowledge, the multiobjective shortest
path problem, either with single or multiple resource constraints (CMSPP), has not

yet been studied.

1.2 Aims and Objectives

The aim of this thesis is to define, model and solve three research questions under
two main and interdependent research topics at the tactical and operational levels
of decision making. The former arises in the context of intermodal service network
design and the latter in passenger transportation. The problem will be addressed by
using integer programming, dynamic programming and heuristic algorithms. This

will be achieved through the following three objectives:

1. First, we will propose new models for the tactical service network design
problem using wider objectives that account for greenhouse gas emissions.
A formulation will be described, which, to the best of our knowledge, is
the first to explicitly include both intermodal transfer costs and greenhouse
gas emissions in the objective. Furthermore, a time-space network design

model will be presented better to capture the time-related aspects of network
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design problems for multimodal multicommodity freight transportation. The
formulation will be used to solve realistic case studies to derive insights on
the trade-offs between various measures of performance, including costs and

emissions.

2. For the operational level design problem, we will study the multiobjective
shortest path problems with or without constraints, and describe labelling
algorithms for the MSPP with three or more objectives. We will also perform
a computational comparison of two label setting algorithms and one label

correcting algorithm for the MSPP.

3. In many applications, fast algorithms are required for the MSPP. There is little
work in the literature on solving the MSPP using heuristics. Furthermore, the
existing literature does not report any computational comparisons between
exact and heuristic algorithms for the MSPP with three or more objectives.
To fill this gap, we will propose local search algorithms to solve the MSPP and
present computational results, including computational comparisons between

local search algorithms and the labelling algorithms developed in Objective 2.

1.3 Organisation of the Thesis

The rest of the thesis is organised as follows. Chapter 2 reviews various problems
and issues in a transportation system according to the three levels of planning, i.e.,
strategic, tactical and operational. Chapter 3, entitled "Multimode Multicommodity
Intermodal Service Network Design" presents time-invariant and time-dependent
service network design formulations and the associated computational results. Chap-
ter 4, entitled "Labelling Algorithms for Multiobjective Shortest Path Problems",
describes a number of labelling algorithms for the MSPP, and the CMSPP, some
of which are new. Chapter 4 also presents computational results carried out on
randomly generated and grid network instances. Chapter 5, entitled "Local Search
for Multiobjective Shortest Path Problems', introduces two local search algorithms
for the MSPP and presents comparisons between the local search and exact algo-
rithms. Finally, conclusions will be offered in Chapter 6, including limitations of
the study, and suggestions for future research. Since the thesis follows a three-paper
approach, an overview of the three research papers and the corresponding chapters
are described in Table 1.1.
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Table 1.1 Overview of Chapters 3, 4 and 5

Chapter 3 Chapter 4 Chapter 5
Level of decision making | Operational | Operational | Operational
Tactical
Number of objectives 1 and 2 > 2 > 2
Type of objectives Environmental Any Any
Solution algorithm Exact Exact Heuristic
Problem type Freight Passenger Passenger
Number of commodities Multiple Single Single

1.4 Research Outputs

This thesis has resulted in the following outputs:

1. Research papers

e Qu, Y., Bektag, T., and Bennell, J. (2014). Sustainability SI: Multimode
multicommodity network design model for intermodal freight transporta-
tion with transfer and emission costs. Networks and Spatial Economics.

(in press).
2. Conference and workshop presentations

e Qu, Y., Bektas, T., and Bennell, J. 2012. Green service network design
for intermodal freight transportation. September, 2012. OR54 Annual
Conference, Edinburgh, UK.

e« Qu, Y., Bektag, T., and Bennell, J. 2013. Minimizing greenhouse gas
emissions in intermodal freight transportation through mathematical
modelling. July, 2013. 26th European Conference on Operational Re-
search, Rome, Italy.

e Qu, Y., Bektag, T., and Bennell, J. 2013. Green time-space service
network design for intermodal freight transportation. September, 2013.
10th International Workshop on Cutting, Packing and Related Topics,
Lake Constance, Germany.

e Qu, Y., Bektag, T., and Bennell, J. 2014. A computational study of
labelling algorithms for multiobjective shortest path problems with or
without resource constraints. September, 2014. OR56 Annual Conference,
Surrey, UK.
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2.1 Introduction

Transportation systems are complex structures that involve substantial human
and material resources and which consequently display intricate relationships and
trade-offs between the various decision and management policies that affect their
respective components. The existing literature on transportation systems has
previously thoroughly documented many of the issues arising.

One of the most relevant studies in this field is that of Crainic and Laporte
(1997), which uses a convenient and effective research framework that classifies
general transportation planning problems into three levels according to the planning
horizon, namely strategic, tactical and operational levels. This chapter will present
an overview of the studies in relation to the three levels of planning, relevant to
the aim and objectives of this dissertation. In particular, Sections 2.2, 2.3 and
2.4 will discuss the concepts and models within strategic, tactical, and operational
level problems, respectively. Section 2.5 will then identify some of the gaps and

limitations of existing studies, which the present study will aim to fill.

2.2 Strategic Level Problems

Strategic (long-term) planning is policy driven and involves the highest level of
management. Examples of strategic level decisions include those related to the
planning of infrastructure, workforce, equipment and facility location. A number of
models of strategic planning are discussed in Crainic and Laporte (1997), including
location models, network design models and regional multimodal planning models.
Other types of problems at strategic level identified in Macharis and Bontekoning
(2004) include cooperation between drayage companies, determination of truck and
chassis fleet size, and terminal design. The following section will mainly focus on
the location problems and network design problems. The relevant literature will be

discussed in the following sections.

2.2.1 Location Problems

Location problems involve the sitting of one or several facilities, usually on a set of
potential nodes of a given network, in order to facilitate the movement of goods or
the provision of services along the network (Drezner and Hamacher, 2002). Location
models are often categorised into three types, as follows (Crainic and Laporte,
1997):
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1. Covering models: This problem is either to find the locations of the minimum
number of facilities to cover the demands of a given set of customers, or to

find a set of nodes that maximise the total demand that is covered.

2. Centre models: This problem is to find the locations of p facilities on a graph,

which minimise the maximal distance between a node and a facility.

3. Median models: This problem is to find the locations of p facilities on a graph,
which minimise the sum of distances between the nodes and their nearest

located facility.

Klose and Drexl (2005) presented a detailed review on location problems that
covers the broader literature and several formulations. They classified location
problems in a different way to Crainic and Laporte (1997), and reviewed continuous
location models, network location models and mixed-integer programming models,
summarising a variety of applications of location models.

For the most recent and comprehensive review on location problems, readers
are referred to Laporte et al. (2015), which provides an exhaustive coverage of
concepts and location models, detailing how the location models are applied to
solve real-world problems, as well as giving an extended overview on the interaction
between location and other related problems.

Hub location problems are extensions of classical facility locations problems,
which have applications in both transportation and telecommunication systems.
Hubs provide connections between many origins and destinations and serve as
switching, sorting, and consolidation points for flows of freight and passengers in
a hub-and-spoke type transportation network. In other words, hubs are used to
increase the number of transportation links between the origin and destination
nodes (Farahani et al., 2013). For instance, without a hub node, a fully connected
network with n nodes has n(n — 1) origin-destination links. However, if a hub node
is selected to connect all other nodes (also known as spokes) with each other, only
2(n—1) connections or links are needed to serve all origin-destination pairs. Readers
are referred to Campbell et al. (2005a), Campbell et al. (2005b) and Hekmatfar and
Farahani (2009) for surveys on the problem. Alumur and Kara (2008) presented a
review on different types of such problems, including the p-hub median problem, the
hub location problem with fixed costs, the p-hub centre problem, and hub covering
problems. Alumur and Kara (2008)’s review covers the hub location literature
until 2007, which is continued by Farahani et al. (2013) who provide a more recent
coverage and classify papers in terms of models, solutions, performance measures

and applications.
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2.2.2 Network Design Problems

Network design problems are at the strategic level of decision making and are
concerned with the configuration of the infrastructure network, including improving
existing infrastructure, or establishing new roads, railways, sea links and freight
terminals. They also consider the type, number and way in which equipment is used,
and the type and capacity of load unit storage facilities, along with the operations

carried out at the hubs.

Network design problems are generalisations of location formulations. They are
defined on a network, which contains nodes and links, in which the directed and
the undirected links are represented by arcs and edges, respectively. In the network
design problem, some or all of the links between nodes of the network have to be
established at a fixed "design" cost such that demands between a set of node pairs

can be transported on the network.

Bruynooghe (1972) first considered adding new links or selecting existing links
for improvement in the transport network with given demand from each origin to
each destination, which resulted in the discrete network design problem (DNDP).
Lower bounds were computed by relaxing integrability requirements and by un-
derestimating the objective function with a continuous function. However, no

computational results are reported.

A framework proposed by Balakrishnan et al. (1989) presented a family of
dual-ascent algorithms for large-scale uncapacitated network design problems. In
Balakrishnan’s model, a network G = (N, A) is constructed with the assumption
that each commodity has a single origin and a single destination. The dual-ascent
algorithms were applied to the network design problems on instances ranging in
size from 20 nodes, 80 arcs and 380 commodities to 45 nodes, 500 arcs and 1980
commodities. Computational results showed that almost all cases were solved
to near-optimality. The gap between their dual-based upper and lower bounds,

expressed as a percentage of the lower bound, was less than 4%.

Holmberg and Yuan (2000) considered a fixed charge network design model for
capacitated multicommodity network flow problems, which set limitations on the
amount of flow that can pass on each arc. A mathematical formulation is presented
as follows:

minimisez Z ijxfj—l— Z fiiij (2.1)

keK (i,7)€EA (i,5)€A
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subject to
r, 1 =o(k)
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': 7:7 1 A ‘: "7: A
e s 0, otherwise,
> aly Swgyy, V(@ j) €A (2.3)
keK
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iy €{0,1}, V(i,j) € A, (2.6)
In this model,
li; = min(rg, ugy), (2.7)

where k denotes each commodity in a large set of commodities, K. For each k,
ri is the required amount of flow of commodity k to be sent from the point of its

origin o(k) to its destination d(k). u;; is the maximum capacity for each arc (4, j).

The model shown by (2.1) — (2.7) is in the form of a linear cost, capacitated,
multicommodity network design formulation. The objective function (2.1) represents
the total cost of the network, including the fixed costs of the selected links and
the variable costs of flows. A bundle of flow constraint is shown by (2.2), used
to meet the origin-destination demands. Constraint (2.3) models the arc capacity
constraints. In particular, the constraints indicate that, for each commodity, the
total flow on arc (7, ) must not exceed its capacity w;;. If the arc (¢, j) is not chosen
in the network (i.e. y;; = 0), then the flow on arc (7, ) is 0. This particular feature
differentiates this model from that of the uncapacitated network design models. The
linking constraints (2.4) are disaggregations of the capacity constraint (2.3), which

is redundant, but is used to provide better bounds in the context of relaxations.

For further details about various models and algorithms for network design
problems, readers are referred to Steenbrink (1974), Magnanti and Wong (1984),
Yang and Bell (1998) and Gao et al. (2005).
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2.3 Tactical Level Problems

According to Crainic and Laporte (1997), service network design is a key tactical
problem in freight transportation. Service network design formulations are generally
used to determine the routes on which service will be offered as well as the frequency
of the schedule of each specific route, while satisfying the capacity requirements,
customer satisfaction and minimising the total operating costs (Crainic, 2000). For
a comprehensive review of service network design problems, we refer readers to

Crainic (2000), and Crainic and Kim (2007).

Over the last 20 years, research on intermodal freight and passenger trans-
portation service network design has steadily grown. Problems in intermodal
transportation are more complex due to the inclusion of different transport modes,
multiple decision makers and types of load units. An overview on intermodal trans-
portation is provided in Bektag and Crainic (2007),Crainic and Kim (2007), and
SteadieSeifi et al. (2014). A variety of mathematical solutions, operational research
models and methods, have been applied to generate and evaluate the transportation
network. Macharis and Bontekoning (2004) and Janic and Bontekoning (2002)
present the opportunities for operational research in the intermodal transportation
research application field. They defined various operational research problems of the
network operator, the terminal operator, the drayage operator and the intermodal
operator, and reviewed the associated mathematical models that were used in
this field up until 2002. A general description of current issues and challenges
related to large-scale implementation of intermodal transportation systems in the
United States and Europe is presented by Zografos and Regan (2004). One common
expanding area is the consideration of wider objectives and issues in intermodal

transportation, especially related to GHG emissions.

One of the earlier studies in this context is by Winebrake et al. (2008b), who
present a geospatial intermodal freight transport model to help analyse the cost,
time-of-delivery, energy, and environmental impacts of intermodal freight transport.
Three case studies are also applied to exercise the model. However, they use a single
criterion objective function (such as minimising cost, or time, or COs). Winebrake

et al. (2008b) also only considered a single origin-destination commodity.

Bauer et al. (2009) were one of the first to explicitly consider GHG emissions
as a primary objective and proposed a linear cost, multicommodity, capacitated
network design formulation to minimise the amount of GHG emissions of intermodal

transportation activities. They applied this model to a real-life rail freight service
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network design problem and presented the trade-offs between conflicting objectives
of minimising time-related and environmental costs.

One other often ignored aspect when modelling intermodal transportation
problems is terminal operations. Whilst research exists on intermodal terminals,
e.g., location and assignment (Vidovié et al., 2011) and optimal pricing and space
allocation (Holguin-Veras and Jara-Dirz, 2006), a detailed consideration of terminals
within the context of the service network design needs more attention. As pointed out
by Bektag and Crainic (2007), terminals are ‘perhaps the most critical components
of the entire intermodal transportation chain’, and ‘the efficiency of the latter
highly depends on the speed and reliability of the operations performed in the
former’. It is therefore important to capture terminal operations in a modelling
framework. However, it is difficult to explicitly model the speed and reliability of
terminal operations at a tactical level, as these measures require a treatment at an

operational level.

2.4 Operational Level Problems

Operational (short-term) planning is performed by local management at a high
level of detail and flexibility on planning activities. The vehicle routing problem
(VRP) is one of the most studied among the operational level problems. The VRP
aims at servicing a number of customers using fleet vehicles. Several variations of
the VRP exist, such as the VRP with pickup and delivery (VRPPD), the VRP
with time windows (VRPTW), the capacitated VRP with or without time windows
(CVRP or CVRPTW), the VRP with multiple trips (VRPMT). For a thorough
review on the models and algorithms proposed for the VRP, readers are referred to
Cordeau et al. (2002), Laporte (2007), Cordeau et al. (2007) and Toth and Vigo
(2014). Other main operational decisions include fleet management, which has been
developed for optimising and simulating the operation of transport fleets in order
to serve the customers’ demands with the objective of cost efficiency (Bielli et al.,
2011; Crainic and Laporte, 1998; Dejax and Crainic, 1987), and crew scheduling,
which is used to assign crews to vehicles and convoys (Azadeh et al., 2013; Crainic
and Laporte, 1997; Crainic and Roy, 1992).

An important operational level problem is the shortest path problem(SPP). In
the remainder of this section, we focus on the multiobjective SPP(MSPP) as it is
relevant to passenger transportation and the research of this thesis. Sections 2.4.1
and 2.4.2 present a review of the literature on the solution methods proposed for

two main problems studied in Chapter 4, in particular the unconstrained MSPP
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and the constrained MSPP (CMSPP), respectively. We also briefly review some

extensions of this problem in Section 2.4.3.

2.4.1 The Unconstrained MSPP

The single-objective shortest path problem is one of the most widely studied network
optimisation problems (Dantzig, 1966; Dijkstra, 1959; Floyd, 1962; Ford, 1956). For
a thorough review, readers are referred to Cherkassky et al. (1996) and Zhan and
Noon (1998). However, it is widely recognised that many network optimisation
problems cannot be described by only one single-objective function (Current and
Marsh, 1993). The MSPP is widely used in many applications, such as robot path
planning (Fujimura, 1996), route planning (Climaco et al., 2003; Machuca et al.,
2012), computer networks (Kerbache and Smith, 2000), and satellite scheduling
(Gabrel and Vanderpooten, 2002). In this section, we will present both exact and
heuristic algorithms for the unconstrained MSPP.

According to Climaco and Pascoal (2012), three main categories of exact algo-
rithms exist for solving the MSPP, namely a posteriori aggregation of preferences
methods, interactive methods and a priori aggregation of preferences methods.

A posteriori aggregation of preferences methods generate all Pareto-optimal
solutions, while other methods do not. We consider three classes of this group of
methods, in particular those based on (i) labelling, (ii) ranking, and (iii) two phases.

Labelling algorithms include label setting and label correcting methods. The
former class is characterised by setting one of the labels of a node as permanent
at each iteration of the algorithm, whereas the latter class considers all labels as
temporary until the algorithm terminates. Hansen (1980) generalised Dijkstra’s
algorithm and was one of the first to propose a label setting method for the
bi-objective SPP (BSPP). His paper described 10 different BSPP as well as their
solution procedures. Martins (1984) presented a generalisation of Hansen’s algorithm
for the MSPP, where a lexicographically smallest temporary label is chosen at each
iteration. Tung and Chew (1992) also described a label setting algorithm for
the MSPP where a different ordering method is used for selecting the label at
each iteration. Machuca et al. (2012) presented a computational comparison of
three label setting algorithms that accept heuristic information, namely NAMOA*
(Mandow and Pérez, 2008), MOA* (Stewart and White, III, 1991) and Tung &
Chew’s algorithm (Tung and Chew, 1992), for the BSPP. Results show that the
NAMOA* is the most effective among these three algorithms regarding the space

and time requirements. Two labelling algorithms for the MSPP were presented
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in Paixao and Santos (2013). Their computational results showed that the label
correcting technique is faster to obtain the efficient set. A first-in first-out principle
was used in a label correcting method to select nodes for solving the BSPP in
Brumbaugh-Smith and Shier (1989). Skriver and Andersen (2000) presented two
improvements to the Brumbraugh-Smith and Shier’s algorithm. Raith and Ehrgott
(2009) presented a comprehensive computational comparison of solution strategies
for the BSPP, including a standard label correcting and label setting method, a
ranking method using a near shortest path approach, and a two-phase method,
investigating different approaches to solving problems arising in phases 1 and 2.
Grid networks, random networks and road networks were used to compare different
strategies for solving the BSPP. They concluded that label correcting and label
setting outperformed other methods for most of the instances they considered, and
the two phase method was competitive with other approaches for the BSPP. They
also claimed that label correcting is faster than label setting for the BSPP. Other
labelling methods for the multiobjective shortest path problem can be found in
Sastry et al. (2005) and Guerriero and Musmanno (2001).

Ranking methods, like those proposed in Climaco and Martins (1982) and
Azevedo and Martins (1991), use a k-shortest path routine to solve the MSPP.
Starting with the objective value of a Pareto-optimal solution, other paths are
obtained in order of increasing value of this objective until the k-best solution is
obtained. For the MSPP, the process continues until all Pareto-optimal solutions

have been found. Computational results for the BSPP are presented.

In a two phase method, the whole procedure of solving the MSPP is divided
into two phases. It was first introduced by Ulungu and Teghem (1995) for solving
bi-objective combinatiorial optimisation problems, and later in Przybylski et al.
(2010) for solving multiobjective integer programmes with more than two objectives.
In phase 1, extreme supported efficient solutions are found. In phase 2, information
from supported non-dominated points generated in Phase 1 is used to determine
a search area in objective space that is guaranteed to contain all non-supported
non-dominated points (Przybylski et al., 2010). For example, in the bi-objective
combinatiorial optimisation problems, the search area consists of triangles defined
by two consecutive supported efficient solutions. Mote et al. (1991) found the
efficient supported paths by relaxing the integrality conditions and solving a simple
bi-objective network problem in phase 1, and used a label correcting algorithm to
find the nonsupported paths in phase 2. Raith and Ehrgott (2009), tested different

implementation strategies for each phase, including label correcting dichotomic, label
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setting dichotomic and network simplex parametric for phase 1, and bi-objective
label correcting, bi-objective label setting and a ranking method for phase 2.

Algorithms for solving the MSPP exist, which do not necessarily generate the
complete efficient set. Interactive methods are one such category, where the search
for approximate set is performed by considering a limited portion of the efficient
set that is defined on the basis of a decision maker’s preferences (Current et al.,
1990; Granat and Guerriero, 2003). Interested readers on this topic are referred to
Coutinho-Rodrigues and Climaco (1999) and Murthy and Olson (1994).

Solution methods which use a utility function to define preferences among
objectives were presented in Loui (1983), Carraway et al. (1990) and Modesti and
Sciomachen (1998). In particular, weighting methods were used to transform the
MSPP to a single-objective optimisation problem. However, they determined the
minimal complete set of Pareto-optimal solutions, and therefore did not find all of
those solutions.

In the last decade, considerable effort has also been put into heuristics to solve
the MSPP, primarily based on genetic algorithms and ant colony optimisation,
although they do not guarantee the optimality of the solutions found. Pangilinan
and Janssens (2007) presented a genetic algorithm for the MSPP. Computational
experiments were conducted on a set of 270 instances with three objectives and up
to 200 nodes and 7960 arcs. Although the approximate set of solutions exhibited
good diversity on two of the objectives, the solutions could not be fully evaluated
because the efficient set was unavailable. They also compared their algorithms
with the results in Gandibleux et al. (2006), which showed that their algorithm
was slower than the labelling algorithm presented in Martins (1984). Lin and Gen
(2007) proposed a genetic algorithm to solve the BSPP, which used a priority-based
encoding to represent a path in the network. They compared their algorithm
against the strength of a Pareto evolutionary algorithm (Zitzler and Thiele, 1999),
a non-dominated sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) and
a random-weight Genetic Algorithm (Ishibuchi and Murata, 1998). The authors
evaluated their solutions with respect to three measures of performance, including
the number of obtained solutions, the proportion of efficient solutions and the average
distance of the resulting approximate set from the Pareto front. Computational
results on a set of instances with up to 500 nodes and 4978 arcs showed that their
algorithm outperformed the others. Ghoseiri and Nadjari (2010) presented an
ant colony optimisation algorithm to solve the BSPP and compared it to a label
correcting algorithm, although the authors did not cite a reference for the latter.

Computational results on randomly generated instances with up to 4000 nodes and
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61783 arcs showed that their algorithm produces good quality solutions and runs
faster than the label correcting algorithm. For all tested instances, the time saved
using their algorithm is between 61.34% and 94.71%. Héackel et al. (2008) presented
an ant colony optimisation algorithm for the MSPP, which was then improved by
Bezerra et al. (2011) and Bezerra et al. (2013). However, the latter two did not
compare their solutions with efficient solutions obtained by exact methods. They
tested two types of instances, namely full networks with up to 200 nodes and 39800
arcs and grid networks with up to 1225 nodes and 4760 arcs. Their run-time for
the instance with 200 nodes, 100% density and three objectives is 40 seconds, and
the run-time for grid network instances is up to 100 seconds. When comparing
with NSGA-II (Deb et al., 2002), their algorithm generated better approximations
for all instances. When compared with the algorithm of Héckel et al. (2008), their
algorithms performed better on the grid instances, while there was no dominance

for the full network instances.

2.4.2 Constrainted Shortest Path Problem

In general, the constrained shortest path problem (CSPP) consists of finding the
shortest path from a source node to a target node under constraints on the paths
in the network (Handler and Zang, 1980; Santos et al., 2007). For example, one or
more path-weight side constraints are added (Carlyle et al., 2008); Or the path may
be constrained to prohibit the use of specific nodes (Villeneuve and Desaulniers,
2005), to include a specific number of nodes (Deo and Pang, 1984), or to include
a given set of nodes such as pick-up node and delivery node as in the case of
Desaulniers et al. (2002). Various algorithms have been developed for solving the
CSPP. A k-shortest path algorithm and a Lagrangian relaxation algorithm were
described in Handler and Zang (1980). A label setting algorithm for the CSPP was
presented in Dumitrescu and Boland (2003). An exact algorithm was presented in
Santos et al. (2007), which utilised a k-shortest path algorithm by defining a more
efficient search direction, where the total traveling cost is minimised subject to an
additional time constraint. The computational results showed that this algorithm
can solve very large-scale problem instances, up to 40,000 nodes and 800,000 arcs,
optimally and performs better than algorithms that are based on k-shortest paths
and Lagrangian relaxation. However, they did not compare their algorithm with
other exact algorithms, such as label setting and label correcting algorithms. Carlyle
et al. (2008) described a Lagrangian relaxation algorithm which was tested on both

single-constrained and multi-constrained networks. Royset et al. (2009) presented
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an "LRE" algorithm, which combines Lagrangian relaxation with an enumeration of
near-shortest paths, to solve a constrained shortest path problem for routing various
types of military aircraft. A thorough classification and generic formulations for
the shortest path problem with resource constraints and the most commonly used

solution methods are presented in Irnich and Desaulniers (2005).

2.4.3 Bottleneck and Non-additive Objectives

Let us now briefly review two other types of the MSPP, which received considerable
attention in the literature, namely the MSPP with bottleneck objectives and the
more general MSPP with non-additive costs in the objectives. A bottleneck objective
is a minmax or a maxmin type. Gandibleux et al. (2006) generalised the algorithm
described in Martins (1984) to the case when one of the objectives is a bottleneck.
Their algorithms were tested on randomly generated networks with different sizes
and densities. Computational results showed that their algorithms were not sensitive
to the value ranges, and the number of efficient paths grew, not exponentially, with
the density and network size. A tri-criterion shortest path problem with at least two
bottleneck objectives was studied in de Lima Pinto et al. (2009) and de Lima Pinto
and Pascoal (2010), where subgraphs were generated by restricting the set of arcs
according to the bottleneck values, and the minimal complete set was generated by
computing the Pareto-optimal solution in each subgraph, or the maximal complete
set was generated by computing all Pareto-optimal solutions in the subgraphs. The
latter paper enhances the method presented in the former by taking into account
the objective values of the determined shortest paths to reduce the number of
considered subgraphs, and thus reduce the number of solved shortest path problems.
A label setting algorithm for the multiobjective shortest path problem with any
number of sum and bottleneck objectives was proposed in Iori et al. (2010). Their
results showed that the aggregate ordering algorithm performs consistently better
than lexicographic ordering. They also confirmed that there is no clear dominance
between the performances of the label setting and the label correcting algorithms
for this particular problem.

The MSPP with non-additive cost is another special case of the MSPP, see
Carraway et al. (1990) and Tsaggouris and Zaroliagis (2004). In Reinhardt and
Pisinger (2011), weight functions were considered for the MSPP with a number
of non-additive criteria to transform the multiple criteria into a single function,
which was then solved by dynamic programming. Results on real-life MSPP

with non-additive criteria were also reported. An algorithm for the BSPP with
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one non-additive cost was proposed in Chen and Nie (2013), which was based
on approximating the non-additive function with a piecewise linear function and

solving each segment sequentially.

2.5 Research Gaps

In this chapter, an overview will be offered on various problems and issues relevant
to three levels of transportation planning, namely strategic, tactical and operational,
followed by a literature review and methodological developments. Even though
the existing literature has presented realistic models and powerful algorithms for
many problems of freight and passenger transportation planning, a number of issues
have not yet been explored, hindering the formation of more integrated and more
efficient transportation systems. Our review has identified three important factors
or algorithms that need to be considered related to freight and passenger intermodal
transportation planning problems, which are explained in the rest of this section.

First, most models and algorithms have focused on the traditional economic
aspects of intermodal freight transportation. Modelling sustainability and giving
consideration to environmental impacts is needed in the light of the growing concerns
about the externalities of transport. However, quantifying environmental impacts is
a major challenge. The trend toward a more integrated and efficient transportation
system with environmental concern is likely to remain.

Second, the MSPP, and in particular the BSPP, is not new to the operations
research community. However, limited work exists on unconstrained MSPP with
three or more objectives. Furthermore, and to the best of our knowledge, the
CMSPP, either with single or multiple resource constraints, has not yet been
studied.

Third, exact algorithms, such as labelling, ranking and two-phase, are guaranteed
to find the complete set of Pareto-optimal solutions, but may take an exponential
number of iterations. In practice, they are typically applicable to small instances
only, due to long running times caused by their high complexity. There has been a
need for fast and efficient heuristics and metaheuristics for the MSPP over the last
ten years. There is very limited existing work presenting heuristics for solving the
BSPP and MSPP. Genetic algorithms and ant colony optimisation based algorithms
were presented for the MSPP, however, (1) their computational time in solving both
the BSPP and MSPP is slow as indicated in Section 2.4.1; and (2) no literature exists
evaluating the heuristic solutions compared with solutions using exact methods for

the MSPP with three and more objectives. Consequently, more research is needed in
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developing heuristics and metaheuristics for the MSPP, along with an experimental

study comparing exact methods and heuristics.



Chapter 3

Multimode Multicommodity
Intermodal Service Network

Design
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3.1 Introduction

Intermodal transportation concerns the movements of freight or passengers from one
point to another using at least two different transport modes. Traditional logistics
models have concentrated on minimising operational transportation cost. However,
the consideration of the wider objectives and issues, especially related to GHG
emissions, leads to new models and technologies. In this chapter, a time-invariant
and a time-dependent intermodal transportation model are described that include
consideration of GHG emissions, in which CO, emissions are explicitly modelled.
In our models, the objective is to minimise the total costs in an intermodal system,
including the capital cost, operational cost, intermodal transfer cost, the GHG
emission cost and the inventory cost, such that a number of commodities are shipped
from their origins to their destinations. The inventory cost is only included in
the time-dependent model. The decisions to be made comprise: (i) the selection
of routes and transport modes and (ii) the flow distribution through the selected
route and mode. The resulting green service network design models are non-linear
mixed integer programs. A linearisation is proposed to transform each model into
an integer linear programming formulation, which is then solved by off-the-shelf

optimisation software.

The rest of the chapter is organised as follows: The subsequent section discusses
a way of estimating emissions and presents a non-linear service network design
model with intermodal transfer cost, which is then linearised. Section 3.3 describes
a time-space service network design model, which is an extension of the model
developed in Section 3.2. In Section 3.4, a hypothetical case study from the UK is
provided and results of computational experiments and analyses for both models is
indicated. In Section 3.5, a bi-criteria analysis for the multimode multicommodity

network design problem is presented. The chapter concludes in Section 3.6.

3.2 Time-invariant Design

Time-invariant service network design targets tactical issues, including which type
of service and transport mode to offer; which traffic routes to operate; and which
commodity, and appropriate amount, should be shipped. The time-invariant service
network design model is suitable for situations where the actual timing of the demand
is unknown or there are high frequency services at each intermodal terminal, or

when the timing of the demand is not considered. It is assumed that the designs
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obtained through a time-invariant model will remain static for the duration of the

planning horizon for which the problem is solved.

3.2.1 Estimating Emissions

There are several approaches for estimating the GHG emissions including an energy-
based approach and an activity-based approach. For our modelling approach which
is at a more tactical level of planning, we have opted to use an activity-based
function by McKinnon and Piecyk (2010) to estimate COs emissions in intermodal
transportation. This approach is also commonly used: e.g., Treitl et al. (2012) use it
to estimate the total transport emissions in a petrochemical distribution network in
Europe, and Park et al. (2012) use it to calculate CO5 emissions in a road network
for trucks and railway in intermodal freight transportation in Korea.

According to McKinnon and Piecyk (2010), the total cost of COy emissions of a
vehicle carrying a load of [ (in tonnes) over a distance of d (in km) is calculated by
Equation (3.1) below,

[ xdxe, (3.1)

where e is the average CO, emission factor (g/tonne-km). To convert CO5 emissions
into monetary units, we adopt the figures provided by the World Bank (The World
Bank, 2012); specifically, we use $100 per ton (=£71.60 per tonne).

The rationale for adopting this CO5 emissions function is in its ease of use. First,
it has the advantage of including variables to measure the total freight weight as
well as the corresponding distance transported, while avoiding the elements that
are hard to measure or calculate, such as the type of fuels or energy sources and
the vehicles. Second, it is applicable to different transportation modes; for a given
mode of transportation, the total CO, emissions are dependent on the shipping

distance and the weight of the commodities.

3.2.2 Problem Description

The problem considered in this chapter is to designate the selection and scheduling
of services by assigning a number of vehicles to links, then ship commodities from
their origins to their destinations by respecting constraints on the link capacities,
flows and requirements for demands. The number of vehicles is defined with respect

to the unit carrying capacity regardless of the specific type of truck, train or ship.
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The overall objective is to minimise the total cost, including variable, fixed, emission

and transfer costs.

The problem is defined on a directed network. Our model assumes that each
commodity has a single origin and a single destination. The model permits multiple
commodities that might represent distinct physical goods, or the same physical
goods but with different origins and destinations. The traffic which flows between
the nodes can be expressed in terms of an origin-destination flow matrix. Each
vehicle of a given mode has a unit load capacity. The reason for considering
weight as opposed to volume is the type of emission function (3.1) used, which
is a function of load and transportation modes. However, the model proposed in
this section can also be applied when volume is considered as a measure of load.
The total transportation cost results from a vehicle moving over a link, including
variable and fixed costs. The variable cost per weight unit of commodities is the
transportation cost, which covers the carrier’s fuel costs, crew costs, overhead costs
and administration costs. It is assumed that variable cost is constant over time and
that it depends on the link and transport mode. The fixed cost per vehicle consists
primarily of handling costs of commodities incurred for moving those commodities
on and off the vehicles at the nodes. We assume that each vehicle of the same mode

of transport incurs the same fixed cost.

Intermodal transfer cost arises from transferring freight from one transportation
mode to another in an intermodal yard (e.g., port and rail yard). In our model, it is
assumed that transfer cost does not depend on the combinations of nodes involved
in the transfer. While this might be seen as a strong assumption, there are two
reasons for doing so. First, the literature on intermodal transportation modelling
states that the internal handling costs only depend on the load, e.g., Janic (2007)
and Winebrake et al. (2008b) The only case that different combinations of modes
for a transfer result in different values is external costs (of emissions) although
they do not vary significantly (Winebrake et al., 2008b). The second reason is that
an explicit consideration of a combination of modes in a transfer will require a
different model, possibly with more variables, to represent the possible combinations.
However, the number of such combinations might be large. For example, in instance
with |M| = 4, there are six possible combinations, whereas if the number of modes
increases to 10, there could be up to 45 different combinations. The weight of
transferred commodities at a node, which it not the commodities’ origins or their
destinations, equals the total weight of commodities, which are transported to this
node, minus the total weight of commodities, which are transported out of the

same node. The intermodal transfer cost at a node equals the absolute value of
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the transferred commodities” weight times the unit transfer cost. For each of the
commodities, there is no transfer cost incurred at its origin and destination. Given
the figures obtained from the literature, and to simplify the representation, the
unit handling cost at terminals is assumed to be fixed. An alternative model which
distinguishes between transfer costs would be worth exploring in future research.
We present three examples in Figures 3.1-3.3 showing how transfer occurs at
an intermodal node. In Figure 3.1, 20 units of a commodity are transported by
truck at first. When they reach an intermodal node, the transportation mode is
changed to ship, so one transfer occurs. In Figure 3.2, 50 units of the commodity
are transported to the intermodal node by truck and they are split into two parts,
20 units are transported by ship and 30 units by rail. Two transfers take place. In
Figure 3.3, the commodity is brought into the terminal by ship and truck. One
transfer occurs at the node. The transportation mode for the 20 units is then

changed to truck.

20 20 - — Truck

Fig. 3.1 A single transfer from one mode to another

— Truck

20 Ship

@ Rail

30

50

Fig. 3.2 Two transfers from one mode to two others
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20

— Truck

Ship

30

Fig. 3.3 A single transfer from two modes to one

3.2.3 Mathematical Modelling

To formulate the green service network design problem described in the previous

section, the notation is defined as shown in Table 3.1.

Using the notation in Table 3.1, a mathematical model for the problem can be

written as follows:

Minimise > > Y iz U (3.2)

keK (i,j)eAmeM

+ > > (3.3)

(ig)eAmeEM

—i—Z Z Z dgpmxfjm (3.4)

keK (i,5)eAmeM

+- wzz S ajkj > ka — A (3.5)

1€EN keK meM j€N+ jEN7
subject to
o> = Y A=t VieNVkek (3.6)
jEN; meM jEN; meM

> alft <ufyy V(i) € AVmeM (3.7)
keK
" >0 V(i,j) € AVke K,Yme M (3.8)

yre{0,1,2..}  V(i,j)€A, VmeM. (3.9)
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In this model,

rk i = o(k)
bi=q —rk i=d(k) (3.10)

)

0, otherwise,

and

Bk — { rk. i =o(k) or i = d(k) (3.11)

‘ 0, otherwise.

The model (3.2)—(3.11) presented above is a non-linear, multicommodity mul-
timodal service network design formulation. The objective function measures the
total transportation costs. Components (3.2)—(3.5) are variable cost, fixed cost, the

emission cost and the intermodal transfer cost, respectively.

A bundle of flow conservation constraints is shown by Equation (3.6), which
also expresses the demand requirements. In this case, each commodity has only
one origin and one destination. The constraint set (3.7) introduces the capacity
constraints. The constraint set (3.8) guarantees that the total flow on arc (i, 7)
using mode m € M must not exceed the product of the capacity of each vehicle
and the number of vehicles used by mode m € M. If the arc (7, j) is not chosen in
the shipping network or the mode m € M is not used on arc (i, j), the flow on arc
(i,7) has to be 0 (i.e., y7 = 0). Constraint sets (3.8) and (3.9) are to make sure
the decision variables a:f;m, for the flow of each commodity k£ € K and y;; for the
number of vehicles using mode m € M on each link, are non-negative and integer,

respectively.

The model is an extension of the well-known capacitated multicommodity
network design problem (Crainic, 2000), which is challenging to solve. The non-
linear nature of the model due to the objective function makes it even more difficult.
It is beyond the scope of this chapter to present a bespoke optimisation algorithm
for this model. However, we will make use of standard linearisation methods in the

literature to convert it into a linear model. This is shown in the next section.

The second part of the objective function shown by component (3.5) is non-linear,
due to the absolute value used to model transfers. To linearise, a variable z5™ is
used and defined for each i € N, k € K and m € M. More specifically, 2F™ shows
the transferred amount of commodity & € K by mode m € M at node i € N if

there is a transfer at this node.

Proposition
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The component ‘ZjeNf xf]m — Z]E]V mkm for Vi € N,Vk € K,Ym € M can be

linearised using the following constraints:

fojm—Zka<zkaz€NVk€KVm€M (3.12)
JENT JEN
Mooaht— N Al <2 Vie NVk € K,Ym e M, (3.13)
JEN jENT
where z ‘deN+ xk ZJeN fffzm
Proof
First, notice that Zjejw ka — ZJGN xf{” = —(ZjeN xflm — ZJ€N+ :Cf’]m)
Namely, if ZjGN; ka — deN_ m >0, then ZJGN— akm — Zj€N+ ka <0. If
ZJEN; xfjm — ZjeN* m <0, then Z]eN xfz — Z]eNJr x m > 0.

Now let us consider two cases. If ZjeN_+ xfj — ZJEN* km > 0, then constraint
J
(3.12) and the minimising objective function (3.2)—(3.5) Wlll guarantee that zF™
ZjeNf xfjm — ZjeNj— :cfzm In the other case where Z]EN; xf]m - Z]@N ka < 0,
then constraint (3.13) along with the minimising objective function (3. 2) (3 5) will

km __ km km
guarantee z;™ = ZjeN; 5 Z]€N+ z;"
With the new variable zf™, the formulation can be rewritten as:

Minimise » > > iz Zm (3.14)

keK (i,j)EAmeM

+ > > (3.15)

(i.j)eA meM

—l—z Z Z dszmxm (3.16)

keK (i,j)eAmeM

+= wzz ST oo (3.17)

€N ke K meM

subject to (3.6)—(3.9), (3.12) and (3.13).

The resulting model is now a linear mixed integer program, which can be
solved using available optimisation software. In Section 3.4, we present results of
computational experiments using this linearised formulation in a case example on
data collected from the UK.
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3.3 Time-dependent Design

Time-dependent service network design, also called service network design with
schedule, is where the time dimension is explicitly taken into consideration and
concerns the scheduling of services, including decisions such as when services of
different transport modes depart and arrive from origins and reach their destinations,
respectively; and how long the commodities are held at intermodal terminals as well
as those that are considered by the time-invariant model. To address the schedule

of the services, a time-space network will be constructed in the following section.

3.3.1 Problem Description

The model is defined over a given planning horizon, typically one day or one week
long, and divided into time periods 7T’; these might be half an hour, one or several
hours, or even days. The time-space network consists of copies of nodes representing
intermodal terminals and arcs representing connections between these nodes, and
is derived from the network G = (N, A) defined in Section 3.2.2. The network is
defined by a directed graph G = (N ,fl), where N = U,cgN; is the node set and
N; = {i1, s, ..., i7} represent copies of a super-node N; for each time period. Each
super-node N; corresponds to a node in the original node set N. The set A is the
union of all time-indexed arc sets. Arcs between different time representations of
the same physical node represent the holding of flow or vehicles, which is expressed
as A,. Arcs in the time-space network between different physical nodes represent
movements of vehicles and flow, which is the set A,,. The unit inventory cost at an
intermodal terminal for commodities is represented as q.

An illustrative example for the time-space network is shown in Figure 3.4 for
T=6. In this figure, the solid lines represent moving services. Black and grey arcs
represent services by truck and rail, respectively. In this representation, there is
one service from node 1 to node 3 by truck and one service from node 3 to node
2 by rail. The dotted arcs indicate holding services, which may take place at the
same in which commodities are waiting to be shipped.

There are M transportation modes and K commodities in the intermodal system.
Each commodity has its origin and destination, and specific departure and arrival
time within the planning horizon. Figure 3.5 is an example of how commodities are
transported in the time-space network.

In Figure 3.5, commodity k& departs from node 1 at ¢t = 2 and at first is shipped
to node 3 by truck. At ¢t = 3, commodity k arrives at node 3, where it is held for 1
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=1 =2 =3 t=4 =5 t=6

N,
—p Services by truck
Nz Services by rail
““““ 2> Holding services
N

N
—— Secrvices by truck
Nz Services by rail
““““ » Holding services
N

Fig. 3.5 An example of the feasible time-space service plan

time period and then shipped by rail. Commodity k arrives at its destination, node
2, at the due time ¢t = 6.

The variable cost per unit weight for a commodity includes the carrier’s fuel,
crew, overhead and administration costs. It is assumed that variable transportation
cost is constant over time and only depends on the link. The fixed cost primarily
consists of operators’ wages and the handling cost incurred for moving commodities
on and off the vehicles. It is assumed that each vehicle of the same mode of transport

incurs the same fixed cost. Intermodal transfer cost arises from transferring freight
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from one transportation mode to another in an intermodal terminal (e.g., port and
rail yard). The emissions cost is the cost of the GHG emissions per tonne-km. The
inventory cost is that for holding commodities at a node of the network, which is a

function of the amount of the commodities and the length of time.

3.3.2 Mathematical Modelling

This section presents a mathematical model to design an intermodal freight trans-
portation system with transfer and emission costs, over a time-space network. This
model is based on the multimode multicommodity service network design problem
presented in Section 3.2. In this model, the problem is to select: (i) the selection
of routes, transport time and transport modes and (ii) the flow distribution of the
routes and different modes. The objective is to minimise the total cost, which
includes those relevant to variable, fixed, GHG emissions, transfer and inventory

costs.

The model uses the same parameters and variables as shown in Section 3.2.3.
However, time does not need to be explicitly included in this model given that it is
implicitly embedded in the time-space graph construction. A mathematical model

for the problem can be written as follows:

Minimise > > Y raf” (3.18)

k€K (i,j)€ Ay meM

+ XX (3.19)

(i,7)€Am mEM

+> 3 > dpmal” (3.20)

keK (i,j)€Am meM

3D WO MELERT (321)

ic N k€K meM

DD (3.22)

k€K (i,j)€Aw mEM

subject to

SN akm o S N akm=bt VieNVhke K (3.23)

ieNT meM ie N~ meM
]GNj jENj
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Sooabm— N gk <o vie NoVEk € K, Vm e M, (3.24)
JENT JENT
ZSL’ Zka<zkm Vie N,Vk e K,Ym € M, (3.25)
jEN; jeN
> ka <wuijyiy, V(i,j) € Ap,Ym € M (3.26)
kK
Z¥m > 0,Y(i,j) € A, Vk € K,Ym e M (3.27)
€ {0,1,2..}, Y(i,5) € Ap,¥Ym € M. (3.28)

In this model,

rk i =o(k)
b= =%, i =d(k) (3.29)
0, otherwise,

and

Bk rk. i =o(k) or i = d(k) (3.30)

1
0, otherwise.

The model (3.18)—(3.30) presented above is a linear, multimode multicommodity
time-space network design formulation. The objective function measures the total
transportation cost. Components (3.18)—(3.22) capture the variable costs, fixed
costs, GHG emission cost, intermodal transfer cost and inventory cost, respectively.
A bundle of flow conservation constraints is shown by Equation (3.23), which also
expresses the demand requirements. In this case, each commodity has its own origin
and destination, representing the departure and due times, respectively. Constraint
sets (3.24) and (3.25) are the linearised constraints of our model. Details about the
linearisation can be found in Section 3.2.3. The constraint set (3.26) introduces the
capacity restrictions, which indicate that the total flow on arc (7, j) using mode
m € M must not exceed the product of the capacity of each vehicle and the number
of vehicles using mode m € M. If the arc (4, 7) is not chosen in the shipping network
or the mode m € M is not used on arc (i,j) (i.e., y;j = 0), the flow on arc (7, j)
has to be 0. Constraint sets (3.27) and (3.28) model the situation that the decision

variables xfjm are non-negative and y;7 are integers.
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3.4 Computational Experiments

3.4.1 Description of the Case Study
Time-invariant Case Study

To demonstrate the application and guide the further development of our intermodal
model, this section presents a hypothetical but realistic UK intermodal transporta-
tion case example. The network consists of 11 nodes, of which nine are important
ports in the UK, namely Edinburgh, Newcastle, Liverpool, Milford Haven, Bristol,
Felixstowe, London, Folkestone and Southampton. Two of the nodes are important
inland cities, Birmingham and Manchester. A geographical representation of the
nodes is shown in Figure 3.6. There are three transportation modes assumed to
be running in the network: truck, rail and ship. For Birmingham and Manchester,
only rail and truck are available, while for the other nodes all the transportation
modes are available. The service network design case example therefore comprises
292 possible directed arcs between 11 nodes. The actual route distance will be
considered as opposed to the straight-line distance to make the computational
results more realistic. For road and rail journeys, the distance is provided by Travel
Footprint Limited (travelfootprint.org); road distance comes from Google Maps and
will apply to all road vehicles while for rail, the distance is calculated according to
main rail line distances using the most common rail interchanges, see Lane (2006).
For sea journeys, distances between pairs of ports are provided by sea-distance.com.
There are 30 different commodities to be transported in the network. We randomly
generate the origin, destination and demand requirements for each commodity,
which is shown in Table 3.2. The data for capacity, variable cost, transfer cost and
CO4 emissions factor of each mode is taken from the literature (see Department
for Transport (2005), Andersson et al. (2011), Faulkner (2004), Winebrake et al.
(2008a) and McKinnon and Piecyk (2010)) and is summarised in Table 3.3. As can
be seen from this table, the capacities, variable cost and emissions tend to vary
from one mode to another, although the transfer cost is in this instance the same
across all modes (Winebrake et al., 2008b). As for the unit cost of emissions, we
use the aforementioned value of £71.60 per tonne (The World Bank, 2012).

Since there are three modes used in our case example, there are three correspond-
ing fixed costs. Estimates of fixed cost in the literature vary significantly. Therefore,
we decide to look at a range of scenarios and investigate how these scenarios influ-

ence the solutions. Fixed cost is one possible means by which government policy
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Fig. 3.6 11 UK cities and ports in the network
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Table 3.2 Origins, destinations and demands for 30 commodities

Instance Origin node Destination node Required demand (tonne)

1 5 3 212

2 11 9 1182

3 2 11 794

4 5 4 128

5 2 9 182

6 4 6 99

7 7 3 150

8 7 1 343

9 4 9 168

10 3 8 567

11 9 10 960

12 1 3 240

13 2 4 790

14 6 7 83

15 6 8 570

16 6 10 150

17 4 2 1220

18 10 8 110

19 8 6 350

20 9 6 410

21 3 2 300

22 5 2 130

23 11 6 225

24 5 7 850

25 6 7 500

26 2 1 275

27 8 4 150

28 10 11 800

29 5 3 175

30 10 9 87

Table 3.3 Parameters used in the case study
Transportation Capacity =~ Variable cost Transfer cost COq

mode (tonne) (&£ per ton-mile) (&£ per tonne) (g/tonne-km)
Truck 29 0.036 1.391 62
Rail 397 0.0425 1.391 22

Ship 2970 0.025 1.391 16
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can influence the service network design. We denote fixed cost by f;, f. and f, for

truck, rail and ship. The relationships between them can be written as:

fr = afy, (3.31)

fs =BT, (3.32)

where o and [ are positive integers.

To see the impact of fixed cost at the design of a service network and send the
correct economic signals, a number of scenarios are tested by changing the values of
«, f and f; in our case example. When the value of f; is fixed, the value of o and 3
are combinations of 1, 3 and 5. So, for each f;, there are nine different combinations.
It is assumed the fixed costs for truck are £50, £100 and £150, respectively. The
number of instances and corresponding fixed costs given different f, and f, are

shown in Table 3.4. In total, there are 27 combinations.

Table 3.4 Fixed costs(£) for instances with different o and

fr=50 | fir=100 | f, =150
o L S | B L s | e | S
50 | 50 | 100 | 100 | 150 | 150
50 | 150 | 100 | 300 | 150 | 450
50 | 250 | 100 | 500 | 150 | 750
150 | 50 | 300 | 100 | 450 | 150
150 | 150 | 300 | 300 | 450 | 450
150 | 250 | 300 | 500 | 450 | 750
250 | 50 | 500 | 100 | 750 | 150
250 | 150 | 500 | 300 | 750 | 450
250 | 250 | 500 | 500 | 750 | 750

Instance
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Time-dependent Case Study

The multi-mode, multicommodity time-space network design for intermodal freight
transportation in this work is an extension of the model developed in Section 3.3.2.
To analyse the application and guide the further development of the time-space
model, the same case study is used as described in Section 3.4.1, where the network
consists of 11 nodes, shown in Figure 3.6. The time-space model is defined over a
14-hour planning horizon, which is divided into 14 periods. The reason for setting
the planning horizon to 14 hours is that all commodities can be shipped from their

origin to destination within this period. If the planning horizon is shorter, it is
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possible that no feasible solutions are found. The resulting time-space network

representation for the 11 nodes is shown in Figure 3.7.

Time 1 2 3
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E |
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=
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=
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[y
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[y
.

Node1l(Edinburgny O O O O O O O O O O O O O O
Node2Meweasttey O O O O O O O O O O O O O O
Node 3 (Liverpool) ONONONONONONONONOGHONONONONE
Node4 Manchestery O O O O O O O O O O O O © O
Node5(MilfordHaven) O O O O O O O O O O O O O O
Node 6 (Bristol) OO00O00000O00O00O0O0O0O0
Node7®irmingham) O O O O O O O O O O O O O O
NodesFelisstowey O O O O O O O O O O O O O O
Node 9 (London) O ONCHCHNONCNCHONCNONONONONE)
Node10 (Folkeston) O O O O O O O O O O O O O O
Node11 (Southampton) O O O O O O O O O O O O O O

Fig. 3.7 11 nodes in the time-space network in the UK case study

Due to a lack of data on ships, we assume that there are two transportation
modes running in a network in Figure 3.7, namely truck and rail. We only consider
two transportation modes in building this example, but the model is generally
enough to incorporate other modes of transportation if the relevant data is available.
For all nodes, both modes are available. All distance data is the same as described
for the time-invariant model. Additionally, the average speeds used for truck and rail
are those suggested by the Department for Transport (2012) and Forkenbrock (2001),
which are 54 mph and 45 mph, respectively. The average traveling times between
any two nodes by truck and rail are shown in Tables 3.5 and 3.6, respectively. This
is the discretisation of the time line, and it is assumed that the discretisation is

fine enough to accommodate the minimum and maximum travel times between any
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Table 3.5 The travel times (in hours) between any two super-nodes by truck
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Table 3.6 The travel times (in hours) between any two super-nodes by rail

Node| 1 2 3 4 5 6 7 8 9 10 11
1 0O 3 5 6 10 9 7 9 9 11 10
2 3 043 9 75 6 6 8 8
3 5 4 01 5 4 2 6 5 6 5
4 6 3 1 0 5 4 2 5 4 6 5
5 109 55 0 3 5 8 6 8 5
6 9 74 4 3 0 2 5 3 4 2
7 7T 5 2 2 5 20 4 3 4 3
8 9 6 6 5 8 5 4 0 2 3 4
9 9 6 54 6 3 3 2 0 2 2
10 |11 8 6 6 8 4 4 3 2 0 3
11 |10 8 5 5 5 2 3 4 2 3 0

pairs of nodes. This idea has also been used in Andersen et al. (2009) and Bauer
et al. (2009).

It is assumed that there are hourly services by truck between every pair of
super-nodes. As for the rail service data, we use those found in Network Rail (2007).
In total, there are 1979 available arcs, including moving arcs and holding arcs. In
the resulting network, a small part of which is given in Figure 3.8, shown with two
super-nodes and a 5-hour time period. According to this network, it takes three
hours by truck to travel from Newcastle to Liverpool, while it is four hours by rail.
Since the truck services are hourly, there are two available arcs from node 2 to node
3, which are from time ¢ = 1 to ¢ = 4 and from ¢t = 2 to t = 5. Only one rail service

is available from node 2 to node 3, and similarly from node 3 to node 2. The dotted
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arcs represent the idle waiting of commodities at the node, from which these arcs

originate.

t=1 t=2 =3 t=4 t=5

Node 2 (Newcastle)

— Services by truck

Services by rail

> Holding services

Node 3 (Liverpool)

Fig. 3.8 A part of the time-space network in the case study

The data used for transport capacity, unit variable cost, unit transfer cost
and COy emissions for each mode, and which were provided in Table 3.3, are
from Department for Transport (2005), Andersson et al. (2011), Faulkner (2004),
Winebrake et al. (2008a) and McKinnon and Piecyk (2010). As for the fixed costs,
it is assumed that they are £50 and £100 for truck and rail, respectively. As for
the unit inventory cost, we use £0.107 per tonne per hour (Choong et al., 2002).
We randomly generate five sets of data. In each computational experiment, there
are 30 commodities with different origins, destinations, departure times and due

times, which are shown in detail in Tables B.1-B.5 in Appendix B.

3.4.2 Results and Analysis for the Time-invariant Design

Based on the data set introduced in Section 3.4.1, the computational testing for
our model is performed using CPLEX Interactive Optimizer 12.4.0.0 on a Lenovo
ThinkPad T410 laptop computer with Intel Core i5 CPU and 4G RAM. In each
instance, the resulting integer linear programming formulation has 8760 continuous
and 292 integers. The computational time required to solve the integer model to

optimality is 1.89 seconds for each instance.
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The Effect of Emission and Transfer Costs

In this section, the results of nine experiments are provided when f;=450 to show
the effect of incorporating transfer and emission costs into the model. For this
purpose, the model is first solved without the emission cost Equation (3.16) and
transfer cost Equation (3.17), and this is denoted by F. The total cost generated by
F is the total operational transportation cost, including variable and fixed costs.
Using the solutions obtained, we calculate the resulting emission cost G and transfer
cost T, as a consequence of solving F. We then solve the model with objective
Equation (3.16) denoted by F(G), with objective Equation (3.17) denoted by F(T)
and with both, denoted by F(G+T). Finally, the percentage savings obtained by
F(G), F(T) and F(G+T) over the solutions provided by F+G, F+T and F+G+T
are calculated, respectively. The results of these experiments are represented in

Tables 3.7-3.9, along with the averages calculated across the nine instances.

Table 3.7 Computational results of models with and without emission cost

F+G F(G) Savings

Operational FEmission Operational Emission Emission  Total
Instance  cost (£) cost (£) cost (£) cost (£) cost (%) cost (%)

1 77849 6545 78458 2015 23.38 1.09
2 78949 6545 79558 4991 23.74 1.11
3 79949 6545 80558 4991 23.74 1.09
4 80098 6518 81053 5148 21.02 0.48
) 81235 6744 82190 5158 23.52 0.72
6 82235 6845 83190 5168 24.50 0.81
7 82020 7167 82581 6016 16.06 0.66
8 83134 7076 83696 6016 14.98 0.55
9 84134 7076 84696 6016 14.98 0.55
Average 81067 6785 81776 5391 20.66 0.78

As shown in Table 3.7, F generated at least £6545 in emission costs in each
instance. Considering GHG emissions as a part of the objective function, the
emission cost decreases significantly, with an average saving of 20.66%. The total
cost saved using our model is between 0.48% and 1.11%, which is around £4300—
£8000.

It can be seen in Table 3.8 that F generates around #3400 in transfer costs in
each instance. In stark contrast, F(T) yields an average saving of 51.97%. The

significance of the results shown in both tables is that solutions of a similar cost to
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F+G and F+4T can be obtained with our models, but those are with significantly

fewer emission and transfer costs.

Table 3.8 Computational results of models with and without transfer cost

F+T F(T) Savings
Operational Transfer Operational Transfer Transfer — Total
Instance  cost (£)  cost (£)  cost (£)  cost (£) cost (%) cost (%)

1 77849 3392 78266 2708 20.17 0.33
2 78949 3396 79466 2498 26.44 0.46
3 79949 3392 81516 1308 61.44 0.62
4 80098 3263 81316 1774 45.63 0.33
) 81235 3431 82755 1315 61.67 0.70
6 82235 3264 83655 1315 59.71 0.62
7 82020 3278 83478 1315 29.88 0.59
8 83134 3435 84415 1315 61.72 0.97
9 84134 3452 85315 1315 20.17 0.33
Average 81067 3367 82242 1651 51.97 0.64

Table 3.9 shows the comparison of results between F+G+T and F(G+T). In this
case, emission cost in F(G+T) is reduced by between 6.93% and 11.59% compared
to that generated by F. Similarly, intermodal transfer cost is also reduced by up to
54.11%. The average savings in the total cost obtained by using F(G+T) is 0.72%.
However, it is worth noting that these solutions again exhibit an average saving of

9.98% on emission cost and 24.75% on transfer cost.

Intermodal vs. Unimodal Transportation

In this set of experiments, we seek to compare unimodal with intermodal trans-
portation. Since Birmingham and Manchester are inland, transportation by ship is
not available for these nodes. As a result, truck-only and rail-only models are tested
for uni-modal transportation. Scenarios are examined for unimodal and intermodal
transportation models with f,=f,.=f,=£50, fi=f,=f,=£100 and f,=f,=f,=4£150,
to remove the effects of different fixed costs when comparing the results. Computa-
tional results are summarised in Table 3.10. The third column displays the total
cost for shipping commodities. The fourth, fifth, sixth and seventh columns display
the variable, fixed, emission and intermodal transfer costs, respectively.

When the fixed cost is £50, the total costs for truck-only, rail-only and intermodal
transportation are £112513, £98778 and £87253. Intermodal transportation is
22.4% and 11.7% less costly than truck-only and rail-only transportation. When
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Table 3.10 Comparison of the results of uni-modal and intermodal transportation

Modal Total | Variable | Fixed | Emission | Transfer
type cost(£) | cost(£) | cost(£) | cost(£) | cost(£)
Truck only | 112513 | 75730 | 21550 15233 0
fi=fr=fs=£50 | Railonly | 98778 | 91326 2100 5352 0
Intermodal | 87253 75327 3200 5920 2806
Truck only | 134019 | 75775 43000 15244 0
fi=f=fs=%£100 | Rail only | 100878 | 91326 4200 5352 0
Intermodal | 89465 77705 3900 5020 2840
Truck only | 155519 | 75775 64500 15244 0
fi=f,=f,=£150 | Rail only | 102978 | 91326 | 6300 5352 0
Intermodal | 91415 77705 5850 5020 2840

the fixed cost increases to £100 and £150, the total savings that intermodal
transportation affords is up to 41.2%.

The variable cost of the three truck-only scenarios changes from £75730 to
£75775, which is a 0.06% increase. For rail-only scenarios, the variable cost stays the
same. Unlike uni-modal results, the variable cost of intermodal scenarios changes
from £75327 to £77705, which is 3.1% increase when the fixed cost increases from
£50 to £100. A larger range of change indicates that when the fixed cost is less
than £100, it has a greater effect on the variable cost in intermodal transportation
than that in uni-modal transportation. When the fixed cost increases from £100 to
£150, the variable cost of uni-modal and intermodal models does not change. It is
possible that variable cost increases as the fixed cost increases, and it will not be
affected by the value of the fixed cost when it reaches £77705.

Since the emission factor of truck transportation is the highest, followed by that
of ship and of rail, the emission cost for truck-only transportation is nearly three
times as costly as that of rail-only and intermodal transportation. It is noticeable
that there is only a slight change in the emission cost in truck-only transportation by
adjusting the fixed cost, while for rail-only transportation, the emission cost stays
the same. In intermodal transportation, the emission cost decreases from £5920 to
£5020, a 15.2% decrease. When the fixed cost keeps increasing, the emission cost
does not change. A reduction in the emission cost can be obtained by adjusting the
fixed cost when the fixed cost is less than £100.

The transfer cost only occurs in intermodal transportation. It is the smallest
part of the total cost. When the fixed cost increases from £50 to £150, the transfer
cost increases slightly from £2806 to £2840. More details on this are provided in

the next section where intermodal transportation results are discussed.
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In summary, even if a transfer cost is incurred in intermodal transportation,
the total cost can be reduced by 11.3%-41.2% by using intermodal, as opposed to
uni-modal, transportation. By adjusting the fixed cost, the variable and emission
costs can be reduced in intermodal transportation, while they rarely change in
uni-modal transportation. These results would seem to indicate that intermodal

transportation is more flexible than uni-modal transportation.

Intermodal Transportation Results

The results presented in Figures 3.9-3.11 show the total cost, including the variable,
fixed, emission and intermodal transfer costs, for 9 intermodal instances when
fi=4£50, £100 and £150, respectively. From these figures, it is significant that the
variable cost, which is around £75000, takes up the largest proportion of the total
cost and it does not change greatly across the 27 instances. The intermodal transfer
cost takes up the least proportion. For each f;, the total fixed cost increases when
fr or fs increases. Hence, the total cost also increases. More details about the total
cost and its components are presented in Table 3.11, which shows costs that are

normalised to 1 against base case scenarios of f;=f.=f, for all 27 instances.

120000

100000

20000 +~ . Transfer cost
. Emissions cost

60000 1 B Fixed cost
. Variable cost

40000 1

20000

0

Fig. 3.9 Computational results for nine intermodal instances when f;=50
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Fig. 3.10 Computational results for nine intermodal instances when f;=100
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Fig. 3.11 Computational results for nine intermodal instances when f;=150
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Table 3.11 Normalised costs for intermodal instances

fi fr fs | Total | Variable | Fixed | Emission | Transfer
cost cost cost cost cost
£50 | 1.000 1.000 1.000 1.000 1.000
£50 | £150 | 1.011 1.004 1.281 0.997 0.925
£250 | 1.021 1.004 1.563 0.997 0.925
£50 | 1.028 0.996 1.844 1.025 0.965
£50 | £150 | £150 | 1.041 1.001 2.125 1.026 0.890
£250 | 1.041 1.001 2.438 1.026 0.534
£50 | 1.054 0.990 2.609 1.070 0.965
£250 | £150 | 1.067 0.993 2.891 1.070 0.965
£250 | 1.078 0.993 3.203 1.070 0.965
£100 | 1.000 1.000 1.000 1.000 1.000
£100 | £300 | 1.021 1.000 1.487 0.996 1.000
£500 | 1.039 1.023 1.744 1.003 0.559
£100 | 1.062 0.995 2.399 1.044 1.129
£100 | £300 | £300 | 1.084 0.997 2.846 1.042 1.129
£500 | 1.106 1.013 3.128 1.057 0.963
£100 | 1.115 0.987 3.795 1.103 0.982
£500 | £300 | 1.138 0.988 4.282 1.101 0.982
£500 | 1.160 1.005 4.564 1.116 0.816
£150 | 1.000 1.000 1.000 1.000 1.000
£150 | £450 | 1.030 1.009 1.436 0.998 0.840
£750 | 1.050 1.042 1.385 1.017 0.649
£150 | 1.089 0.997 2.333 1.042 1.129
£150 | £450 | £450 | 1.122 0.997 2.846 1.042 1.129
£750 | 1.149 1.016 3.103 1.042 0.963
£150 | 1.171 0.997 3.615 1.042 1.129
£750 | £450 | 1.204 0.997 4.128 1.042 1.129
£750 | 1.231 1.015 4.385 1.057 0.969

Table 3.11 shows that when f;=4#50, the total cost of the nine instances is
normalised to a range of 1.000-1.078. For each f;, the total fixed cost increases
when f, or f, is rising. It is interesting that the variable cost stays almost the
same when the fixed cost changes. The difference is between 0.1% and 2.3%. In
most of the instances, the emission cost slightly increases when f, or f, rises. The
emission cost increases up to 11.6%. We have mentioned in Section 3.2.1 that
the emission cost is measured by the product of distance, the amount of load and
emission factors. We also know that the emission factor of truck transportation is
the highest, followed by that of ship and of rail. Therefore, when f, or f, increases,

total truck tonne-miles increase, which results in the total emission cost increasing.
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Since transportation by rail and ship have lower emission factors than that by truck,
reducing f,. and fs helps to reduce emission costs in intermodal transportation.
Moreover, the transfer cost does not change significantly. From Table 3.10, we
already know that the transfer cost is around £2800 when f,=f.=f,. Except for
two instances out of the 27, the change of the transfer cost is between 18.4% and
3.1%, which suggests that intermodal transfer is a very important component in
an intermodal transportation chain. Consolidation of loads or incentivising certain
low emission forms of transportation can be efficiently achieved in intermodal

transportation.

Given that there is a fixed cost associated with the use of each vehicle, it is
desirable to use the available capacity as much as possible. In other words, it is
not very efficient to run empty vehicles or vehicles carrying limited amounts of
goods, which will also lead to congestion in available transportation infrastructures.
Tables 3.12-3.14 list the total tonnage shipped and the capacity utilisation of three
transport modes when f;=450, £100 and £150 with the commodities shown in
Table 3.2. From Instances #1 to #9 in each table, it is noticeable that more trucks
are used and greater total tonnage of commodities are transported by truck when
fr or fs increases. Except for six instances in total, in which no trucks are used for
shipping, the capacity utilisation of truck transportation stays above 91%. In eight
out of these 22 instances, the capacity utilisation reaches 100% in truck employment.
By adjusting f;, we could avoid the situation in which there are no trucks used in
the transportation network and at the same time, get a relatively high capacity
utilisation. In rail transportation, when f, increases, both total tonnage and the
total number of vehicles decreases, while the capacity utilisation increases. One
reason for this might be that it is more cost effective to travel further in order to
use fewer vehicles when f, is high. When f, is low, the employment of more vehicles
on direct routes could be more attractive. The capacity utilisation of rail across the
27 instances is greater than 77% for each. In 17 out of the 27 instances, it is greater
than 84%. When f; increases, the total tonnage transported by rail increases. By
changing f; or f,., we might roughly control the total tonnage of transportation by
rail. Since ships have large capacities, the average capacity utilisation of ships is
much less than that of truck and rail, with values around 20%. In addition, due to
their large capacities, the number of ships used and total tonnage of commodities
conveyed by sea do not change as much as those of transportation by truck and rail.

As part of the computational experiments, we have conducted further tests where
the variable cost and the capacity of rail are changed and demands are increased.

In the case that the variable cost and the capacity of rail are changed to £0.017
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Table 3.13 Comparison of the capacity utilisation for three modes when f;=4100

7 Truck 7 Rail 7 Ship
Total  Total Capacity Total  Total Capacity Total  Total Capacity
Instance | No. tonnage utilisation(%) | No. tonnage utilisation(%) | No. tonnage utilisation(%)
1 0 0 N/A 29 9035 78.48 10 6257 21.07
2 0 0 N/A 31 9748 79.21 9 5544 20.74
3 0 0 N/A 33 10095 77.06 7 4463 21.47
4 6 174 100.00 25 8613 86.78 11 6939 21.24
5 6 174 100.00 25 8613 86.78 10 6766 22.78
6 7 186 91.63 25 8589 86.54 8 6647 27.98
7 17 476 96.55 24 8141 85.44 11 6641 20.33
8 17 476 96.55 24 8141 85.44 10 6468 21.78
9 18 488 93.49 24 8117 85.19 8 6349 26.72

Multimode Multicommodity Intermodal Service Network Design
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per ton-mile and 3360 tonnes (Forkenbrock, 2001), the results with the intermodal
model suggest a uni-modal transportation plan with rail being the only mode of
transport used, with ship being used very rarely. The capacity utilisation of rail
transportation is 18% to 32%. In the event that demands are increased 10-fold, the
results do not significantly change, although the capacity utilisation of rail and ship
conveyance increases. Rail transportation has a much higher capacity utilisation
of more than 96%, with shipping being more used with a capacity utilisation of

between 76% and 88%. Computational results for this case can be found in Tables
A.1-A.3 in Appendix A.

3.4.3 Results and Analysis for the Time-dependent Design

Based on the data set introduced in Section 3.4.1, the computational testing for the
time-dependent model is performed using CPLEX Interactive Optimizer 12.5.0.0 on
a Lenovo ThinkPad T410 laptop computer with Intel Core i5 CPU and 4G RAM.

Testing CPLEX Solution Quality

The resulting time-space network using the MIP formulation from Section 3.4.1 is
tested with CPLEX 12.5 using the five instances described in Appendix B. Although
the instances are of moderate size, CPLEX had difficulties in solving the formulation
to provable optimality within two hours for these test sets. To test the effect of the
solution time on the resulting optimality gap, we set an absolute tolerance on the
gap between the best integer objective and the objective of the best node remaining.
When this difference falls below the value of parametre, the MIP optimisation is
stopped. Different tolerance limits on the gaps and report the required solution
times in Table 3.15 for each instance. The results indicate that when gap tolerance
is set equal to 0.7%, CPLEX requires an average solution time of 0.41 seconds.
When the tolerance is decreased to 0.5%, all of the instances can also be solved
within one second. The minimum gap CPLEX is able to obtain is 0.2% with an
average solution time of 489.10 seconds. Since all five instances can be solved to
0.2% optimality within two hours, we use the same tolerance for the remaining set

of experiments but allow CPLEX a time limit of 1800 seconds.

Comparisons between the MMND and the MMTND

In the multimode multicommodity network design model (MMND) presented in

Section 3.2, the time dimension is not considered. In other words, no departure
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Table 3.15 Solution times (in seconds) with different gaps

Instance Instance Instance Instance Instance

Gap (%) #1 #2 #3 #4 #5 Average
0.1 1431 N/A  N/A  N/A  N/A  N/A
0.2 15.38 937.26 26.6 1450.54 15.74 489.10
0.3 2.61 15.18 3.11 25.83 5.63 10.47
0.4 0.76 2.68 0.75 2.26 0.69 1.43
0.5 0.81 0.94 0.86 0.76 0.72 0.82
0.6 0.41 0.44 0.83 0.83 0.39 0.58
0.7 0.41 0.45 0.41 0.40 0.40 0.41

times and due times are taken into account. It is then interesting to investigate
whether or not the total cost and the solutions change when shipping the same set
of commodities in the time-space network model (MMTND) and in the MMND.
The results provided by the MMND and the MMTND are compared, which are
shown in Table 3.16. In particular, the table reports the percentage change in
a number of indicators, including the total cost, operational cost, emission cost,
number of vehicles (truck and rail), and capacity utilisation (%) in the solutions of
the MMTND over the solutions provided by the MMND. The results are shown for
five instances, where the last column shows the average. The detailed results can
be found in Table C.1 in Appendix C.

Table 3.16 Comparison between the MMND and the MMTND results (%)

Instance Instance Instance Instance Instance

#1 #2 #3 #4 #5 Average

Total cost 4.67 8.45 7.49 12.83 10.01 8.69
Operational cost 4.33 5.84 7.72 11.61 8.69 7.64
Emission cost 8.78 46.41 4.34 30.91 26.28 23.34

No. of vehicles
(truck)
No. of vehicles
(rail)

50.00 384.44 19.05 334.29 165.38 190.63

-28.13 -40.00 -12.96 -34.62 -42.22 -31.59

Capacity
utilisation (truck)
Capacity
utilisation (rail)

-0.36 0.11 0.59 -1.16 -0.73 -0.31

-6.55 -5.41 -4.11 2.01 -8.15 -4.44

Table 3.16 shows that all costs increase in the MMTND. In particular, the total
cost of the MMTND increases by 8.69% on average in comparison with the MMND,

while the average increase in the emission cost is 23.34%. From a company’s point
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of view, if they want to consider the cost of time in the network system, the relative
change rate of the total cost would be an indicator. It is also interesting to note
that the emission cost of the MMTND increases significantly in relation to that
of the MMND. One possible reason for this is that a greater number of trucks are
used when considering the requirements of departure and due time for commodities.
In Instance #2, the total number of trucks in the MMTND increases by up to
384.44%. For all five instances, the average increase due to the use of the MMTND
is 190.63%, which leads to a higher emission cost. The capacity utilisation of trucks
in the MMND and the MMTND does not differ greatly, while rail transportation
decreases by 4.44% in the MMTND.

Results of Instances with 10 and 30 Commodities

To see whether our model performs well with a smaller number of commodities,
the five instances will be tested by reducing the number of commodities to be
transported to 10, which are the first 10 from each instance listed in Tables B.1—-
B.5. We will then compare the results with those of 30 commodities and report a

summary of the results in Table 3.17.

Table 3.17 indicates that the capacity utilisation of vehicles in models with 10
and 30 commodities does not differ significantly. With 10 commodities, the capacity
utilisation of truck transportation is around 98%, while for rail it is between 74.55%
and 86.15%, indicating that better capacity utilisation is obtained when conveying
goods by truck. For 10 commodities, there are no transfers in four out of the five
instances, 30 commodities, there are transfers in three out of the five instances. It
can be concluded that our model performs well with shipping up to 30 commodities

with different origins and destinations.

Lower Bound for Capacity Utilisation

From Table 3.16 presented above, we see that the overall capacity utilisation for
truck and rail modes of transport stays above 97% and 73%, respectively. In
practice, and in order to increase the capacity utilisation of each vehicle, one may
want to impose lower bounds on the amount of commodities carried on each vehicle,
or, alternatively, set a minimum capacity utilisation for each vehicle used. This

section investigates the effects of such lower bounds on the resulting solutions.
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3.4 Computational Experiments
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The condition of a minimum capacity utilisation for a transport mode m € M
on an arc (i,j) € A, can be expressed as follows,

k
2keK Tij"

1> g, ¥(i,) € Ap,¥m € M, (3.33)

m
Yij

where ¢ is the lower bound of capacity utilisation.

The computational results are compared with different lower bounds of capacity
utilisation. Tables 3.18-3.20 show the results obtained on three instances using g =
0, 50% and 70%, respectively.

Table 3.18 Computational result of Instance #1 with different lower bounds of
capacity utilisation

g=0  ¢=50% ¢g=70%
Total cost (£) 195292 195377 195437
Operational cost (£) 182311 182173 181578
Emission cost (£) 12981 13204 13859

No. of vehicles (truck) 66 73 94

No. of vehicles (rail) 54 51 46
Capacity utilisation (truck) (%) | 96.87  96.50  96.37
Capacity utilisation (rail) (%) | 75.71  81.41  86.43

Table 3.19 Computational result of Instance #2 with different lower bounds of
capacity utilisation

g=0  g=50% g¢g=70%
Total cost (£) 160037 160429 160784
Operational cost (£) 145478 146167 145835
Emission cost (£) 14559 14262 14949
No. of vehicles (truck) 180 172 189
No. of vehicles (rail) 32 35 31
Capacity utilisation (truck) (%) | 98.47  98.44  98.21
Capacity utilisation (rail) (%) | 76.96  77.34  84.24

Tables 3.18-3.20 provide the relative change of the total cost, the emission cost,
the operational cost, the number of vehicles and the average capacity utilisation
when the lower bound of the capacity utilisation for each vehicle is increased. When
the value of ¢ is increased from 0% to 70%, the change in the total cost rises
to £1800, representing a 1.16% increase. The average capacity utilisation of rail
continues to increase in all three instances as ¢ is increased from 0% to 70%, while

the average capacity utilisation of trucks decreases slightly. The results indicate
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Table 3.20 Computational result of Instance #3 with different lower bounds of
capacity utilisation

g=0  ¢=50% ¢g=70%
Total cost (£) 157582 158104 159403
Operational cost (£) 146359 145712 146891
Emission cost (£) 11223 12392 12512

No. of vehicles (truck) 94 124 133

No. of vehicles (rail) 41 38 38
Capacity utilisation (truck) (%) | 98.39  97.08  97.15
Capacity utilisation (rail) (%) | 72.35  77.04  82.29

that imposing an additional constraint on minimum capacity utilisation will cost
the operators by about 1.16% more compared with the case in which there are no

such constraints.

3.5 Bi-criteria Analysis

The multimode multicommodity network design problem in this chapter has so far
been treated as a single-objective optimisation problem. This was made possible
by aggregating the two objective functions; one relevant to operational activities,
and the other to emissions. In this section, we show how the model can be used to
produce non-dominated solutions with regard to the two objectives. This analysis is
particularly relevant if costs are not a prevailing factor, or are not readily available,
as might be the case for emission costs.

In order to find the trade-offs between minimising the total transportation
cost and the amount of CO4y emissions in the multicommodity multimodal service
network design problem, we use the notation shown in Table 3.1 and define the two

objective functions below:

(OBJ1) (z,y,2) = >, >, > iz fjm (3.34)
keK (i,j5)eAmeM
LD IRD O (3.35)
(ij)eAmEM
+ wz S 2 (3.36)
i€EN ke K meM
(OBJ2) =3 > > dipral. (3.37)

keK (z j)EA meM
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In the above, fi(z,y, z) measures the total transportation cost, including the vari-
able, fixed and transfer costs, which are detailed in Section 3.2.2. Conversely, fy(x)
measures the total CO, emissions for all activities. The bi-objective optimisation

problem is formulated as:

Minimise  f(z,9,2) = (fi(2,9, 2), fo() (3.38)
x € X, (3.39)
y ey, (3.40)
zeZ, (3.41)

where X, Y and Z define the feasible regions for variables x, y and z, respectively.

Definition 1 (Pareto-optimality). A point x is said to be a Pareto-optimal
or an efficient solution for the MSPP and the CMSPP, if and only if there does not
exist any ' € X such that fi(z') < fi(z) for all i € {1,2, ..., k} where at least one
inequality is strict.

Definition 2 (Efficient set). The Pareto-optimal or efficient set £ = {z €
X : x is efficient }.

Definition 3 (Pareto front). The Pareto front F = {f(x):x is Pareto-
optimal}.

The Efficient set (€) is defined on the solution space, and the Pareto front (F)
is defined on the objective space. In multiobjective optimisation, an efficient, or
a Pareto-optimal, solution is one in which no objective can be improved without
worsening at least one other objective (Coello et al., 2007). Decision-makers
usually select a particular Pareto-optimal solution based on their preferences on
the objectives (Ghoseiri et al., 2004).

According to Hwang and Masud (1979), the methods for solving the multiob-
jective problems can be classified into four categories depending on the role of the
decision maker (DM). No preference methods are methods where the DM is not
needed. A priori methods are methods where the DM articulates their preference
before optimisation. A criticism of a priori methods is that it is very difficult for
the DM to have prior knowledge of the efficient set and to be able to decide their
preferences. Interactive methods allow the DM to guide the search by alternating
optimisation and preference articulation iteratively. The drawback to the interactive
methods is that the DM never-sees the whole efficient set or an approximation of
it. A posteriori methods aim to generate a representative set of Pareto-optimal
solutions and the DM chooses the best among them. Hence, we will focus on

the a posteriori methods. The e-constraint method is a widely used posteriori
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Table 3.21 Value of € in the e-constraint method

Iteration No.  Value of €

I fi
2 JERES
3 f3+2¢
g—1 fs4(q —2)s
q fz(ff)

method. In it one of the objectives is optimised, subject to the other objective being
converted into a constraint by imposing appropriate upper bounds on its value.
The e-constraint method can be implemented as follows (Mavrotas, 2009). We first

solve the following single-objective optimisation problem:

Minimise — fo(x) (3.42)
subject to  x € 5. (3.43)

Let the optimal solution to Equations (3.42)—(3.43) be denoted by z3. The
minimised amount of COy emissions is then fixed as fo(x3) = €. Following this step,

we solve following single-objective optimisation model:

Minimise — fi(z,y, 2) (3.44)
subject to fa(z) <€, (3.45)
r € X, (3.46)
yey, (3.47)
z € Z, ( )

Let (x7,y7, z7) denote the optimal solution to Equations (3.44)—(3.48). Further-
more, let ¢ be the number of Pareto-optimal solutions that a decision-maker wishes

to produce. Then, the value of € is to be increased by ¢ at every iteration where:
s = (fa(a]) — fo(23)) /(g — 1) (3.49)

The method iterates by increasing the value of € in this way (see Table 3.21),
where each iteration generates another solution. By repeatedly relaxing the upper
bound on fs, and resolving f; each time, the objectives of solutions can be obtained

to construct the image of the Pareto front.
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A numerical example will now be presented to illustrate the application of the
e-constraint method on the multimode multicommodity network design problem.
The method is implemented in C and each sub-problem is solved to optimality by
ILOG CPLEX Interactive Optimizer 12.4. Therefore, the solutions generated are
efficient. The instances are based on the data presented in Section 3.4.1 with the
fixed-cost scenario where f;=4£50, f,=4150 and f,=4250.

Assuming ¢=45, the step-size is calculated as ¢=0.7 tonne. The resulting Pareto

front is shown in Figure 3.12.
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Fig. 3.12 The Pareto front of the the bi-criteria model

To select the most preferred solution from this set of solutions, we have also
implemented a normalised distance method, for which the two objectives are

normalised as follows:

r fl(ff,y,Z) —fl(m’{,yik,zi‘)
= 0,1 3.50
f1<x7y7z> f1<£§,y§,zék) - fl(xiy’lkazik) © [ , ]7 ( )

z o falw) = fo(x3)
F2®) = ) falay)

where f; and f, are the normalised value of OBJ1 and OBJ2, respectively. Because

€ [0,1], (3.51)

this is a minimization problem, the ideal point is the minimum point (0,0), as
shown in Figure 3.13, the solution that is closest can be considered as the most

preferred solution.
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Fig. 3.13 The normalised Pareto front of the bi-criteria model

As can be seen in Figure 3.13, the normalised vectors of the solution that yields
the minimum distance from the ideal point is f;=0.31 and f,=0.43. Mapping this on
the original functions, the values of the corresponding vectors are OBJ1=4.85869.20
and OBJ2=83.1 tonnes.

3.6 Conclusions

In this chapter, two models are proposed for building service network design models
to minimise the total cost in intermodal transportation by taking the GHG emission
cost and the intermodal transfer cost into account, which are more realistic than than
current models. The method is based on McKinnon and Piecyk (2010)’s work that
enables us to transfer the GHG emission to the same unit as the transportation cost.
The total cost includes the internal cost, including operational cost and fixed cost,
and external cost, including GHG emission cost, transfer cost and inventory cost.
The transfer cost is in a non-linear expression, which is then linearised. Using these
models, multi-commodities with different origins and destinations are transported
in the intermodal systems in a cost-efficient and emission-efficient way. Using the
time-dependent model, commodities can be shipped at promised departure date

and arrive at the due date. Computational testing is presented for both models. All
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computational testing is performed using C# for data processing and CPLEX for
the optimisation. The realistic case studies have suggested that the proposed models
provide cost-efficient and emission-efficient ways for transporting commodities.

One important detail to remember is that the adjusted fixed cost is used for the
purpose of sending the correct economic signals. We believe that it provides an
opportunity for considerable cost reduction while adjusting fixed costs. By changing
the value of the fixed costs of the three modes of transport, the trade-offs between
emissions and transfer costs can be analysed.

The contributions of this chapter against existing knowledge can be summarised
as follows:

o We extend the existing service network design models with the inclusion of a
GHG emission and intermodal transfer cost, the latter needing a linearisation.
A time-invariant and a time-dependent model are described which, to the
best of our knowledge, are the first to explicitly include a GHG emission and
intermodal transfer cost in their objectives, resulting in a new formulation for

green intermodal transportation.

o We also describe a bi-objective optimisation formulation for the same problem
as an alternative way to account for GHG emissions in intermodal trans-
portation. We not only extend the existing service network design models
to the single objective formulation, but have also shown how it is possible
to formulate the problem as a bi-objective optimisation one, which forms a

different way considering GHG emissions in intermodal transportation.

o We describe a case study building on secondary data collected from the
UK using which the two models are tested. The data includes distances
using different transportation modes, unit variable costs, unit transfer costs,
capacities of different vehicles, unit emission costs, unit inventory costs and
schedules of trucks and rail between each pair of nodes. Our data is available
for use by other researchers to test different methodologies and models for

intermodal transportation.



Chapter 4
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4.1 Introduction

In the multiobjective shortest path problem (MSPP), multiple objectives are present
which need to be optimised simultaneously. For example, in network optimisation
problems, it is increasingly necessary to take several objectives such as travel cost,
travel time, distance, greenhouse gas emissions (GHG) and transfer times into
account. If there is no conflict between the objectives, then a solution can be found
where every objective attains its optimum. In real world applications, the objectives
are at least partly conflicting or are measured in different units (Miettinen, 1999).
It is therefore not possible to find a solution that would be optimal for all the
objectives at the same time. In this case, the aim is to find efficient solutions, also
known as Pareto-optimal solutions, which are defined in Section 3.5. The MSPP
is known to be an NP-hard problem (Garey, 1979). It is known that there are a
set of problem instances for which the number of Pareto-optimal solutions increase
exponentially with the size of the problem, which implies that the computational

effort also increases exponentially (Garey, 1979).

The MSPP with additional restrictions, namely the constrained multiobjective
shortest path problem (CMSPP), also belongs to the class of NP hard problems.
The application of constraints to the MSPP frequently arises in practice. For
example, a passenger who wishes to travel from one location to another and wishes
to minimise financial cost, carbon footprint and make few transfers and yet also
needs to arrive at the destination within a limited time is faced with the CMSPP.
A review of the existing literature on the MSPP and the CMSPP is presented in
Section 2.4.

The MSPP, and in particular the bi-objective SPP, with or without constraints,
have been previously studied and largely solved using labelling algorithms. Very
limited work exists on the unconstrained MSPP with three or more objectives
(Ehrgott and Gandibleux, 2002). Furthermore, to the best of our knowledge, the
CMSPP, either with single or multiple resource constraints, has not yet been studied.
This chapter aims to fill this gap by presenting a computational study of a number
of algorithms to solve such problems, all based on labelling, given their popularity

and success in solving the bi-objective SPP.

The rest of the chapter is structured as follows. The next section describes the
MSPP and the CMSPP in more formal terms. Sections 4.2 and 4.3 present labelling
algorithms for the MSPP and the CMSPP, respectively. Computational results are

presented in Section 4.4. Conclusions are given in Section 4.5.
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4.1.1 Problem Description

A formal description of the CMSPP is presented as follows: The CMSPP is defined

on a directed network G(N, A), where N is the set of nodes and A is the set of

arcs (i,7) joining nodes i € N, j € N, i # j. A source node s and a target node

t are identified. A path p, is a sequence of nodes and arcs from s to t. We use

the set K = {1,2,...,k} to denote the index set of the objective functions. For

k = 1, we have the classical case of single objective shortest path problem. A cost
12 k

vector ci; = (c;;, Cjj, -, Cj) 18 associated with each arc (4, j) € A. In a road network,
12 3 A

for example, the cost vector c;; = (cj;, ¢, ¢jj, ¢;;) could represent time (k = 1),
distance (k = 2), cost (k = 3) and greenhouse gas emissions (k = 4) for traversing
arc (i,7). The objectives of a path p;; is c(pi;) = (c*(pi;), ¢ (pij), -, ¥ (pij)). The
set M = {1,2,...,m} represents the index set of the constraints. For each arc
(i,7) € A, ufj represents the amount of resource h € M consumed, the total of
which is constrained by an upper bound U". For example, U" might represent
the maximum allowable travel budget for a passenger. The CMSPP is to find the

shortest paths from the single-origin s to the single-destination t.

The CMSPP can be formulated as a network flow problem as follows:

Minimise z= ( > czljxij,..., > ijxzj) (4.1)

(i,j)eA (i.4)€A
subject to

1 if 1=s
S oa— S ap=20  if itst (4.2)

(i,5)€A (4,1)eA -1 if i=t
Z UZZE” S Uh, he M (43)

(i,5)€A

z;; € {0,1},for all (4,5) € A, (4.4)

where z;; is a binary variable which equals 1 if arc (7, j) is used in a shortest path
from s to ¢, and 0 otherwise. Constraints (4.2) ensure a balance of flow at each node
and constraints (4.3) model the resource restrictions. If M = (), or, alternatively if
U" = oo for all h € M, then the formulation becomes that of the MSPP.
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4.1.2 Dominance

Let us now briefly describe the concept of dominance in minimisation problems,
which will be used in the algorithms described later in the chapter. If X =
{z1,...;zx} and Y = {uy, ..., yx } are two objective vectors, then X is said to dominate
Y if and only if z; < g; holds for all [ € {1,..., k} and a strict inequality holds for at
least one [ € {1,...,k}. The solution is efficient if its objectives are not dominated
by that of any other feasible solutions. A path py in G from the source node s € N
to the target node t € N\ {s} is a sequence (s, 1), (i1, 92), ..., (i, t) of arcs in A. For
example, suppose five paths from the the source node s to the target node ¢ exist,
as shown in Figure 4.1, namely, s-1-t, s-2-t, s-2-3-t, s-3-t and s-3-2-t, with cost
vectors (7,5,16), (7,8,5), (10,17,9), (4,16,8) and (7,9,12). The cost vector (7,9,12) of
path s-3-2-t is dominated by the cost vector (7,8,5) of path s-2-t under the first two
criteria. The cost vector (10,17,9) of path s-2-3-¢ is dominated by two cost vectors,
(7,8,5) of path s-2-t and (4,16,8) of path s-3-f, under the three criteria. However,
none of the cost vectors (7,5,16), (7,8,5), and (4,16,8) are dominated by another.

Fig. 4.1 An MSPP example with three minimising objectives

More formally, a path p from node s to node ¢ dominates another path gy if
the objectives c(pst) = > (i j)ep., Cij and c(qs) are such that A (ps)< (qst) holds
for all [ € {1,...,k} and at least one [ makes the inequality strict. Therefore, for
the MSPP, we are looking for a set of efficient paths. Similarly, the CMSPP is
concerned with finding a set of efficient paths which additionally satisfy constraints
(4.3).

4.2 Labelling Algorithms for the MSPP

As in the classical Dijkstra algorithm, labelling algorithms extend paths from the

source node to the rest of the network by labelling the nodes. In this section, we



4.2 Labelling Algorithms for the MSPP 69

present three labelling algorithms for the MSPP. Two are label setting, one of which
is the one described in Martins (1984) and the other is new. The last is a label
correcting algorithm which extends the one described in Brumbaugh-Smith and

Shier (1989).

4.2.1 Label Setting MSPP Algorithms
Martins’ Algorithm

The algorithm described in Martins (1984), which are denoted here by ULS (uncon-
strained label setting), is a label selection method, in which all labels are treated
separately. Let ¢ € N be some node of G(N, A). The rth label associated with node
i is represented as " (i)=[(c}(ps; ), (Psi)s -y F(Psi)), (3,7")],, where j € N\ {i} and
" indicates some label of node j, for which ¢,(ps;) = ¢ (psj) + ¢ji. L(i) is the list of
I"(i) at a particular node ¢ € N. Each time a label of node j is generated, it is put
into a temporary set L(j). Labels in L(j) are then checked and those representing
a dominated path from s to j are deleted. All labels are put in the temporary set
L, where L = U;en L(7). Of these labels, the lexicographically smallest label is
found and removed from L. From this lexicographically smallest label of some node
i € N, a temporary label is assigned to every node j € N \ {i} such that (i,7) € A.
The lexicographically smallest ordering method guarantees that this selected label
belongs to non-dominated paths. We present the steps of this procedure in more
detail in Algorithm 1.

The Aggregate Algorithm

The aggregate algorithm (ULS™) is obtained by replacing the lexicographic ordering
of the labels in ULS with an aggregate ordering. This idea is inspired by lori et al.
(2010). Using the same notation as in Section 4.2.1, we attach additional aggregate
information c¢*1(p,;) to each label I (i)=[(c(psi), (psi), ---, < (psi)), (3,7)]r, where
(4,i) € A and **1(p,;) are defined by the sum of the objective function coefficients
for path pg, namely ck+1(psi) = c'(ps;) + A(psi) + ... + ck (psi). At each iteration,
we select a label from the temporary set for which ¢**!(p;) is the minimum. As
the arc costs are non-negative, this selected label will belong to a non-dominated
path and will never be dominated by another temporary label (Iori et al., 2010).
A full description of the aggregate algorithm is not needed as it follows the same
steps as in Algorithm 1, and only differs with respect to selecting the label with the

kJrl(

smallest value of ¢"*!(py;) from the set L.
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Algorithm 1 ULS
1.2

1: procedure ULS (network (N, A), cost vector ¢ = (c!,c?, ..., "), the source
node s)

2. Imitialisation: L(s)={][(0,0,...,0),(—,—)]1}, L(i) =0, for all i € N\ {s},
L:{[(O, 07 ) 0)7 <_7 _)]1}

3: while L # () do

4: remove the lexicographically smallest label from L, let this be the r'th
label associated with node j

5: for all i € N such that (j,7) € A do

6: CT(psi) = G (psj) + ¢ji and let [(Cl (psi)’ 62(psi)7 R Ck(psi))v (]7 T/)]T be
a new temporary label of node %

7: if any label in L(i) represents a dominated path from s to i then

8: remove the labels that represent dominated paths

9: end if

10: end for

11: end while

12: end procedure
13: Output: a set of efficient paths from the node s to the node ¢

4.2.2 Label Correcting MSPP Algorithm

Approaches to unconstrained label correcting algorithms (ULC) employ either label-
selection or node-selection. We opt for node-selection policy here, also used by
Skriver and Andersen (2000) and Raith and Ehrgott (2009). Node-selection means
that a node is selected in any iteration of the algorithm and all labels of this node
are extended along all outgoing arcs. A bi-objective label correcting algorithm is
described in Brumbaugh-Smith and Shier (1989) where the First-in First-out (FIFO)
principle is used to select nodes. We generalise this approach to solve the MSPP
with any number of objectives, which is explained below and shown in Algorithm 2

in greater detail.

Let the rth label associated with node + € N be represented as
g"(1)=[(c"(psi), (Psi)s -y F(psi))]r- L is the list of nodes with modified labels that
have not yet been reconsidered, treated in FIFO order. L(7) is the list of I"(i) at a
particular node i. Each time a node i in £ is selected, all labels in the set L(i) are
extended along all outgoing arcs (7, 7). The dominated labels in the set L(j) are
then eliminated for all j € N \ {¢}. Whenever the set L(j) changes, we add node j
to L if it is not already there. The algorithm terminates when the set £ is empty.



4.3 Labelling Algorithms for the CMSPP 71

Algorithm 2 ULC
1.2

1: procedure ULC (network (N, A), cost vector ¢ = (c!,c?, ..., c¥), the source
node s)

2: Initialisation: L(s) = {[(0,0,...,0)]1}, L(i) =0,i € N\ {s}, L = {s}

3: while £ # () do

4: remove the first node 7 from £

5: for all j € N, such that (i,j) € A do

6: e (psj) = ¢ (psi) + cij and let [(c*(ps;), P (Dsj); s ¢ (Ds;))] be a new
label of node j

7: if any label in L(j) represents a dominated path from s to j then

8: remove the labels that represent dominated paths

9: if L(j) has changed and j ¢ £ then

10: L—LUj

11: end if

12: end if

13: end for

14: end while
15: end procedure
16: Output: a set of efficient paths from the node s to the node ¢

4.3 Labelling Algorithms for the CMSPP

In this section, two labelling algorithms are presented for the CMSPP, where both
use feasibility and dominance checks within the algorithms. An illustrative example
is provided for such a situation using the instance in Figure 4.1, to which one
constraint is added. Subsequently, each arc is associated a vector {(c}j, 5 C), u}]}
indicating the objective function coefficients and the resource consumption. It is
assumed that the limit on the resource usage is 10. The resulting CMSPP instance
is shown in Figure 4.2.

In this example, there are two paths from the source node s to node 2 with the
following cost and constraint vectors: [(6,6,4), 7] of path s-2 and [(6,7, 11), 2] of path
s-3-2. Feasibility checking is done first. Since the limitation on the resource usage is
10, we keep both vectors. If we check the dominance of the cost vectors only, (6,7, 11)
is dominated by (6,6,4). The vector [(7,8,5), 12] corresponding to path s-2-t will
therefore be eliminated when applying feasibility checking because 12 is greater than
the resource usage 10. As a result, the vector [(8,9,12), 7] corresponding to path
s-3-2-t, which happens to be an efficient solution for this instance, is eliminated

during the dominance checking. Applying dominance checking to the cost vectors
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Fig. 4.2 A CMSPP example with three objectives and one constraint

implies that the remaining set of efficient solutions will be incomplete. This example
shows that dominance checking should be performed on both cost and constraint
vectors. For example, the vectors [(6,6,4),7] and [(6,7,11),2] corresponding to
paths s-2 and s-3-2, respectively, are not dominated by one other. The resulting
efficient solutions from the source node s to the target node ¢ are [(7,5,16), 4] for
path s-1-t, [(8,9,12), 7] for path s-3-2-t and [(4, 16, 8), 6] for path s-3-¢.

The next section will present two types of algorithms for the CMSPP, namely

label setting and label correcting.

4.3.1 Label Setting CMSPP Algorithms

In this section, we introduce a label setting CMSPP algorithm which is based
on the aggregate algorithm, shown in Algorithm 3. The reason for selecting the
aggregate algorithm as the basis, as opposed to the Martins’ algorithm, is that
the former computationally outperforms the latter. This will be shown in Section
4.4.1. The same notation is used as in Sections 4.1.1 and 4.2.1, namely the rth
label associated with node i is represented as I"(i)=[(c!(psi), 2 (Dsi); - F(Psi)),
(u (psi), W2 (psi), - u™ (psi)) (G, )], where j € N\ {i} and r’ indicates some label
of node j, for which ¢, (psi) = ¢v(psj) + ¢ji, Ur(Psi) = wp(ps;) + wji. L(i) is the
list of I"(7) at a particular node i, L = U;en L(7). This algorithm first checks the
constraint vectors when each temporary label is set, which rules out “expensive
"paths by considering the present set of labels, which is followed by dominance
checking. The output is a set of efficient paths from the source node s to the target

node t, derived from the set of paths that satisfy the resource constraints.
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Algorithm 3 CLS

1:

10:
11:
12:
13:
14:
15:
16:
17:

procedure CLS (network (N, A), cost vector ¢ = (ct,c?,...,c"), constraint
vector u = (u',u?, ...,u™), upper bound for constraints U = (U, U?,...,.U™),
the source node s)

Initialisation: L(s) = {[(0,0,...,0),(0,0,...,0), (=, =)}, L) = 0, i €
N\{S}v L= {[(0707 70) (0 0,. 0) (_7 _>]1}

while L # () do

remove the label with smallest value of ¢**1(p,;) from L, let it be the
rth label associated with node @

for all j € N, such that (,j) €
c(psj) = cr(psi) + cij, u(psj) = (psz) + ui; and let

[(c"(pss), (Dsg), -, (D)), (W (Psj) P (Psj) - ™ (psj)), (3, 7)1 De a new tem-
porary label of node j

if 3h € {1,2,...,m}, u"(ps;) > U" then
remove [” (§)
if any label in L(j) represents a dominated path from s to j then
remove the labels that represent dominated paths
end if
end if
end for
end while
end procedure
Output: a set of efficient paths from the node s to the node ¢
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4.3.2 Label Correcting CMSPP Algorithms

The label correcting algorithm for the CMSPP described here extends the one for
the MSPP. Using the notation defined earlier, the rth label associated with node
i is represented as ¢"(1)=[(c'(psi), (Dsi); -, F(Dsi)), (W (Psi ) W (Psi )y o U™ (Dsi))] -
L(7) is the list of ["(i) at a particular node i; £ = {s}, and L is the list of nodes
with modified labels that have not yet been reconsidered, treated in FIFO order.
Algorithm 4 checks the feasibility when each label is generated, and then tests the
dominance of the labels in L(i). The procedure yields all efficient paths from the

source node s to the target node .

Algorithm 4 CLC

1: procedure CLC (cost vector ¢ = (c',c? ...,c"), constraint vector u =
(u',u?,...,u™), upper bound for constraints U = (U, U?,...,U™), the source
node s)

2. Imitialisation: L(s) = {[(0,0,...,0),(0,0,...,0):}, L(#) = 0, i € N\
{s}.L={s}

3: while £ # () do

4: remove the first node ¢ from £

5: for all j € N, such that (i,7) € A do

6: Ccr(Dsj) = ¢r(psi) + cij, u(ppsj) = Ur(Psi) + ui; and let

7 [(M(psj), P (Dsj)y - F(Dss)s (W (psj)s uP(Psj)s -y u™ (Dsj)) ] be a new label of
node j

8: if 3h € {1,2,...,m}, u"(ps;) > U" then

9: remove [” (§)

10: if any label in L(j) represents a dominated path from s to j then

11: remove the labels that represent dominated paths

12: if L(j) has changed and j ¢ £ then

13: L—LUj

14: end if

15: end if

16: end if

17: end for

18: end while

19: end procedure
20: Output: a set of efficient paths from node s to node ¢
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4.4 Computational Results

In this section, the computational results are indicated using the five algorithms
described for the MSPP and the CMSPP. The algorithms are coded using C++ and
compiled using the optimisation option -O3. All numerical tests are performed on
the Iridis 4 computer cluster with dual 2.6 GHz Intel Sandybridge processors and
64 GB of memory (http://cmg.soton.ac.uk/iridis). The computational results are
carried out on the basis of a different number of criteria k. In the computational
experiments, we assume the source node s is node 1 and the target node ¢ is node

|N|. All algorithms are tested on two classes of networks, namely random and grid.

Random and grid networks are both well recognised and have been used exten-
sively by researchers to test algorithms for the bi-objective SPP (Mote et al., 1991;
Raith and Ehrgott, 2009) and for the MSPP (Guerriero and Musmanno, 2001).
Let |A| = @ and |N| = n. The percentage density d of the network G(N, A) is
defined as 100a/(n(n — 1)). A graph is said to be a full network with 100% density
if Vi,j € N,i# j, 3(i,7) € A. Random networks can have different densities. For
all random instances, values of the cost vector have been drawn from a uniform
distribution in the range [1,100], although the effect of changing this interval will
be tested in Section 4.4.1. In grid networks, each node in the network is connected
with two, three or four neighbours along one or more dimensions, and connections
are between adjacent nodes. All bi-objective shortest path grid network instances
used here are those generated in Raith and Ehrgott (2009). In these instances, the

costs are randomly chosen from a uniform distribution in the range [1, 10].

The remainder of this section first presents the results for the MSPP, then
for the CMSPP. Although several works already exist in the literature presenting
the results for the former (see, for example, Paixao and Santos (2013); Raith and
Ehrgott (2009); Skriver (2000)), we still include the MSPP here as it is a special
case of the CMSPP and therefore used to show consistency of results across the

two main problems.

4.4.1 Computational Results for the MSPP

In this section, the results are presented for randomly generated and grid net-
work instances. The effect of changing the objective function coefficients on the

performance of the algorithms is also tested.
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Random Network Instances with Two Objectives

We first conduct the experiments with two objective functions to allow the results to
be put in context with respect to the existing results reported in the literature. The
comparisons are performed on a total of 30 randomly generated instances with n €
{100,200} and d € {5%, 10%, 20%, 50%, 100%}. A comparison of computational
times of Martins’ algorithm (ULS), the aggregate algorithm (ULS™) and the label
correcting algorithm (ULC) is shown in Table 4.1. Each row is an average of three
instances for a particular configuration (n,d) of the parameters. The average total

numbers of Pareto-optimal solutions are also reported under the column entitled

L(#Aﬂ‘

Table 4.1 Average solution times (in seconds) on randomly generated MSPP instances
with two objectives

n | d(%) | ULS | ULS* | ULC | #A
5! <0.2 <0.2 | <0.2 3
10 <0.2 <0.2 | <0.2 | 10
100 | 20 <0.2 <0.2 | <0.2 8
50 0.34 <0.2 | <0.2 5
100 | 11.71 3.90 1.90 8
5 0.34 <0.2 | <0.2 5
10 2.30 <0.2 | <0.2 | 10
200 | 20 10.32 1.86 0.57 | 13
50 14.25 6.70 1.95 | 14
100 | 813.44 | 325.71 | 71.32 | 15

As Table 4.1 shows, all instances with 100 nodes and less than 20% density
networks are solved in less than 0.2 seconds. Instances with 100 nodes and full
networks can be solved within 11.71 seconds using Martins’ algorithm, followed
by 3.90 seconds using the aggregate algorithm and 1.90 seconds using the label
correcting algorithm. Using the label correcting algorithm, all instances with 200
nodes and less than 50% density networks can be solved in less than two seconds.
For the instance with 200 nodes and a full network, the run-time is 71.32 seconds
using the label correcting algorithm, which is only 8.77% of the time required by
Martins’ algorithm.

Climaco and Martins (1982) presented a path/tree handling procedure for the
bi-objective shortest path problem and reported their computational performance,
shown in Table 4.2. Skriver and Andersen (2000) presented two label correcting

algorithms (Skriverl and Skriver2), which are improvements of the Brumbaugh-
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Smith and Shier (1989)’s algorithm (Brum). Computational results, which are

reported in Table 4.3, are tested using a randomly generated network.

Table 4.2 A part of the bi-objective results reported in Climaco and Martins (1982)

n | d(%) | Run-time (in seconds) | #A
4.81 10.888 4
4.71 10.630 4
4.82 18.280 4

100 | 5.10 139.084 6
5.19 12.088 4
5.24 22.036 6
5.18 38.568 7
5.11 22.958 4
5.13 2.432 1
5.04 6.402 2

200 | 5.07 45.636 5
4.82 13.412 4
5.30 10.924 3
5.09 53.450 7

Table 4.3 A part of the average solution times (in seconds) reported in Skriver and

Andersen (2000)

n | d(%) | Brum | Skriverl | Skriver2
100 | 2-4 | 2.52 7.33 1.84
100 | 11 | 1259 | N/R” 11.05
200 | 2-4 | 1827 | 57.86 13.59
200 | 2 9.01 | N/R’ 4.12
200 | 3 | 1834 | N/R’ 12.16
200 | 11 | 79.55 | N/R” 73.50

*N/R: Not reported.

In Table 4.2, the instances with 100 nodes and up to 5.25% density are solved
between 10.630 and 139.084 seconds, while we report less than 0.2 seconds run-time.

The instances with 200 nodes and around 5% density are solved between 2.432

and 45.636 seconds, while we report 0.34 seconds taken by Martins’” algorithm and

less than 0.2 seconds by the aggregate and label correcting algorithms. In Table

4.3, reported run-times range between 1.84 and 79.5 seconds, while we report less

than 0.2 seconds run-time for instances with the same number of nodes and even

greater density. Although the data we use is not exactly the same as the one in the

literature, we select the reported results using randomly generated instances with
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the same number of nodes and density. The results show that our run-times for the

shortest path problem with two objectives are very competitive.

Random Network Instances with Three and More Objectives

A comparison of computational times of Martins’ algorithm (ULS), the aggregate
algorithm (ULS™)and the label correcting algorithm (ULC) is shown in Table 4.4.
The comparisons are performed on a total of 90 instances with k € {2,3,4,5},
n € {100,200} and d € {5%,10%,20%, 50%, 100%}. Each row is an average of
three instances for a particular configuration (n,d, k) of the parameters.

Table 4.4 Average solution times (in seconds) on randomly generated MSPP instances

with three and more objectives

n | d%) |k ULS ULS™ ULC
3 0.54 <0.2 <0.2
10 | 4 2.18 0.62 <0.2
5 4.21 1.28 <0.2
3 4.13 1.03 0.23
20 | 4 21.97 6.63 1.61
100 5 71.70 15.63 3.36
3 3.88 1.57 0.66
50 | 4 28.26 10.73 4.58
5 97.41 44.00 15.27
3| 476.45 141.20 45.44
100 | 4 | 4444.05 1989.78 825.96
5 | >2 hours | >2 hours | 3314.77
3 6.02 0.85 <0.2
5 4 10.45 2.99 <0.2
5 69.29 10.72 0.73
3 61.59 5.63 0.77
10 [ 4] 289.56 33.46 4.36
5| 1780.81 249.21 13.34
3| 654.50 56.88 8.92
200 | 20 | 4| 2481.39 733.78 119.60
5 | >2 hours | 2513.50 498.25
3| 544.75 88.91 20.68
50 | 4| 2302.36 1110.59 234.10
5 | >2 hours | 3420.02 1091.54
3 | >2 hours | 3711.21 1701.47
100 | 4 | >2 hours | >2 hours | >2 hours
5 | >2 hours | >2 hours | >2 hours
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For all instances with n = 100, d = 5% and k = 2, 3,4, 5, the solution times are
less than 0.2 seconds. The results would seem to show that the average solution time
grows exponentially with the density, network size and the number of objectives.
For example, when n = 100, d = 100%, the average solution time for ULC for
an instance with three objectives is 45.44 seconds, whereas for instances with
four and five objectives the average solution times increase to 825.96 and 3314.77
seconds, respectively. When n = 200, d = 100%, k = 4 or 5, the MSPP cannot
be solved within a time limit of two hours by any of the three algorithms. The
results suggest that the label correcting algorithm consistently outperforms the
other two in terms of the solution time, followed by the aggregate algorithm and
then Martins’ algorithm. For example, when n = 200, d = 5%, k = 5, the label
correcting algorithm requires 0.73 seconds to solve the instance, which is 1.05%
and 6.81% of the time required by Martins’ algorithm and the aggregate algorithm,
respectively. The aggregate algorithm and label correcting algorithm are able to
solve instances with 200 nodes, 50% density and five objectives for which Martins’
algorithm fails. The label correcting algorithm has further solved instances with 100
nodes, 100% density and five objectives where the others could not. The general
conclusion from the results presented in Table 4.4 is that the larger the size of
the network, the better the reduction in computational times the label correcting

algorithm yields.

Grid Network Instances

To test the algorithms on grid networks, the 33 instances, which are generated and
solved in Raith and Ehrgott (2009) using a near shortest path algorithm, are used.
For these instances, Raith and Ehrgott (2009) report the run-time and number
of efficient solutions, where the run-time is only a part of the total solution time
representing the generation of all efficient paths’ labels together with the actual
paths. The same number of solutions is obtained as reported in Raith and Ehrgott
(2009). In our experiments, we only report instances that can be solved within two
hours, for which the corresponding run-times are all less than 0.2 seconds. The
results are reported in Table 4.5. In the table, the first column shows the instance
name, and the second shows the size defined by the height h and width w of the
grid. Columns titled n and a show the number of nodes and arcs in the instance,
respectively. The next two columns show the individual run-times for each instance,
solved once by ULS* and once by ULC. Column #U shows the cardinality of the
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set of efficient paths, and finally the last column shows the total number of efficient

paths including equivalent paths.

Table 4.5 Computational results including the solution times (in seconds) on grid

MSPP instances

h x w n a ULS™ ULC #U | #A
run-time | run-time

GO1 | 30 x40 | 1202 | 4720 18.04 12.26 37 | 40
GO2 | 20 x 80 | 1602 | 6240 | 1024.54 783.38 80 | 90
GO4 | 90 x 50 | 4502 | 17900 | 1208.89 | 1140.84 | 46 | 75
G12 | 50 x 50 | 10002 | 39600 | 216.46 190.48 52 56
G15 | 2450 x 2 | 4902 | 19596 0.25 <0.2 6 7
G16 | 1225 x4 | 4902 | 19592 0.45 0.29 6 6
G17 | 612 x 8 | 4898 | 19586 2.14 1.39 10 10
G18 | 288 x 17 | 4898 | 19550 18.74 15.03 15 16
G19 | 196 x 25 | 4902 | 19550 74.37 62.68 18 18
G20 | 140 x 35 | 4902 | 19530 | 294.30 238.48 32 36
G21 | 111 x 44 | 4886 | 19448 | 717.80 598.77 54 | 61
G22 | 92 x 53 | 4878 | 19398 | 1240.45 | 1237.97 | 53 | 62
G23 | 79 x 62 | 4900 | 19468 | 4893.86 | 4826.45 | 77 | 91

As can be seen from Table 4.5, label correcting algorithm appears to perform
better than the aggregate label setting algorithm for grid networks. However, the
difference in the solution times is not as much as is seen for random networks, which
can be up to 85%. For grid networks, the most significant difference in run-time
appears in Instance G02, for which ULC requires 33.54% less time than ULS™. In

another instance, namely G22, the difference is negligible.

Effect of Changing Objective Function Coefficients

To test the effects of the objective function coefficients on the solution time, the
random network instances is tested with coefficient ranges [1,100], [1,1000] and
[1,10000]. In the light of the results presented in Table 4.4, we only compare the
aggregate algorithm with the label correcting algorithm, as Martins’ algorithm is
dominated with respect to computational times. The results are presented in Table
4.6. Each row is an average of three instances for each particular configuration of
the parameters.

The results in Table 4.6 show that the label correcting algorithm still performs
better than the label setting algorithm for the instances tested. For smaller and

sparser networks, the solution time only slightly increases when the range of the
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Table 4.6 Average solution times (in seconds) with different coefficient ranges on
randomly generated instances with £ =3

(n, d) ULS™ ULC
’ [1,100] [ [1,1000] | [1,10000] | [T, 100] | [1,1000] | [1,10000]

(100,5) <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
(100,10) <0.2 <0.2 0.25 <0.2 <0.2 <0.2
(100,20) 1.03 1.30 1.93 0.23 0.52 0.52
(100,50) 1.57 11.61 31.70 0.66 8.29 8.46
(100,100) | 141.20 147.46 377.99 45.44 64.09 203.12
(200,5) 0.85 0.87 1.79 <0.2 <0.2 <0.2
(200,10) 5.63 6.51 13.33 0.77 1.94 1.99
(200,20) 56.88 90.66 164.63 8.92 18.83 19.59
(200,50) 88.91 941.45 1666.54 20.68 472.07 554.43
(200,100) | 3711.21 | 5291.66 | 6200.55 | 1701.47 | 3726.95 | 3742.04

objective function coefficients increases from [1, 100] to [1, 1000], or from [1, 1000] to
[1,10000]. For networks with 100 and 200 nodes, and with more than 50% density,
the change is more significant. For example, when (n,d) = (200, 50), the instance
using the range [1, 10000] requires an average of 1666.54 seconds by ULS™, while
the range [1, 100] takes 88.91 seconds, which is nearly a 19-fold increase. Similarly,
for the same parameter configuration, the range [1, 10000] takes more than 23 times

longer than when the coefficients are drawn from the range [1, 100] by ULC.

4.4.2 Computational Results for the CMSPP
Random Network Results

In this section, the computational results are reported which were obtained with
Algorithms 3 and 4. The computational results are carried out on random networks
with different numbers of objectives and with m constraints, with the vector U =
(U, U?,...,U™) representing the upper bounds of the constraints. The comparisons
are performed on a total of 90 instances with k& € {2,3,4}, n € {50, 100,200} and
d € {5%,10%, 20%, 50%, 100%}. Each row is an average of three instances for each
particular configuration of the parameters.

It is assumed that both the arc vector cost and the arc vector constraint are
drawn from a uniform distribution in the range [0, 100]. A comparison of solution
times of CLS and CLC with a single constraint and U = 200 is shown in Table 4.7
and Figures 4.3-4.7.
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Table 4.7 Average solution times (in seconds) for the CMSPP with m =1

n | d(%) |k CLS CLC
2 <0.2 <0.2
5) 3 <0.2 <0.2
4 <0.2 <0.2
2 <0.2 <0.2
10 3 0.22 <0.2
4 0.39 <0.2
2 <0.2 0.20
100 20 3 2.95 0.82
4 7.37 2.57
2 1.38 0.72
50 3 8.81 5.30
4 35.03 17.54
2 109.22 55.82
100 | 3 | 1355.22 724.79
4| 4131.98 1181.25
2 0.302 <0.2
5 3 0.86 <0.2
4 2.73 0.28
2 2.87 0.51
10 3 16.07 2.72
4 68.11 9.67
2 47.97 10.32
200 20 3| 412.72 73.21
4 | 1475.52 272.74
2 96.62 31.10
50 3| 838.69 220.60
4 | 2540.51 863.70
2 | 2956.97 2082.07
100 | 3 | >2 hours | >2 hours
4 | >2 hours | >2 hours
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Our experiments show that the label correcting algorithm is clearly better for
the CMSPP than the label setting algorithm. The savings solution time by using
the former is around 50% when n = 100. When n = 200 and d < 100%, the
label correcting algorithm appears to perform much better than the label setting
algorithm. The savings percentage of the solution time is between 66% and 89.74%.
The greater the number of the objectives, the more difficult the problem becomes.
When n = 100 and d = 5 and 10%, most of the instances can be solved within 0.2
seconds. When n = 200, d = 100% and k = 3 or 4, however, none of the instances
can be solved within a time limit of two hours.

To test the effects of the increase in the number of constraints, the following
parameter settings are used. Both the arc costs and constraint coefficients are
chosen from a uniform distribution in the range of [0,100]. The upper bounds are
set as u! = u? = u® = 200, while the comparisons are performed on 90 instances
with n € {100,200}, d € {5%, 10%, 20%, 50%, 100%} and m € {1, 2, 3}.

Table 4.8 and Figures 4.8-4.12 show the comparison in the solution times
required by CLS and CLC for when the number of constraints ranges from 1 to
3 and for when k = 2. Each result shown is an average of three instances for a
particular configuration of the parameters.
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Fig. 4.8 Comparison of solution times for instances with £k = 2 and m = 1 tested
using CLS and CLC
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Table 4.8 Average solution times (in seconds) for the CMSPP with k = 2

n | d(%) | m CLS CLC
1 <0.2 <0.2
5 2 <0.2 <0.2
3 <0.2 <0.2
1 <0.2 <0.2
10 2 <0.2 <0.2
3 <0.2 <0.2
1 0.71 0.20
100 | 20 2 1.70 0.46
3 2.24 0.65
1 1.38 0.72
50 2 10.46 4.41
3 24.13 11.31
1 109.22 55.82
100 | 2 | 1020.37 475.29
3| 2777.99 1332.18
1 <0.2 <0.2
5 2 0.26 <0.2
3 0.302 <0.2
1 2.87 0.51
10 2 7.67 1.36
3 8.48 1.45
1 47.97 10.32
200 | 20 2 252.83 39.49
3 435.93 71.56
1 96.62 31.10
50 2 624.90 203.49
3 | 2052.19 519.63
1 | 2956.97 2082.07
100 | 2 | >2 hours | >2 hours
3 | >2 hours | >2 hours
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Fig. 4.9 Comparison of solution times for instances with £ = 2 and m = 2 tested
using CLS and CLC
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Fig. 4.10 Comparison of solution times for instances with k = 2 and m = 3 tested
using CLS and CLC
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Fig. 4.11 Average solution times for instances with k& = 2 tested using CLS
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Fig. 4.12 Average solution times for instances with k = 2 tested using CLC

Figures 4.8-4.10 suggest that CLC generally performs better than CLS for
the CMSPP. For instances with n = 100 and d = 5,10 and 20%, there are no
significant benefits to using different labelling algorithms as the solution times are
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negligible. Only for larger and denser networks does CLC show any advantages.
Figures 4.11 and 4.12 show that the number of constraints significantly affects the
solution times for networks with more than a 50% density. The higher the number
of constraints, the slower the solutions are obtained. The likely reason for this
behaviour is that more constraints will increase the number of objectives when
using CMSPP algorithms, which leads to a slower process for finding the efficient

solutions.

Correlated Networks

Let us now consider the case where the constraint vector is correlated to the objective
vector. This case might arise in practice, for example, when a passenger would
like to travel with a minimised cost and number of transfers, but has a travel
time constraint. The travel time in this case depends on both the travel cost and
the number of transfers. To further investigate the effect of correlations between
constraint and objective vectors, we generate random network instances with two
objectives, cl-lj and c?j,
the following expression:

and one constraint u;;. The constraint vector is obtained by
u; = acy; + (1 — a)c), (4.5)

where 0 < a < 1. The computational results for six such networks are shown in

Table 4.9 for five different values of «.

Table 4.9 Average solution times (in seconds) for the CMSPP with two objectives
and one correlated constraint solved by CLC

n | d(%) | no correlation | « =0.1 | a=03|a=05|a=07|a=0.9
100 | 50 0.72 <0.2 <0.2 <0.2 <0.2 <0.2
100 | 100 55.82 1.98 2.03 2.03 1.98 1.91
200 | 10 0.51 <0.2 <0.2 <0.2 <0.2 <0.2
200 | 20 10.32 0.62 0.65 0.66 0.64 0.61
200 | 50 31.10 2.32 2.33 2.35 2.32 2.30
200 | 100 2082.07 D7.26 63.99 63.18 59.90 52.33

From Table 4.9, it can be observed that all instances using a correlated constraint
vector require much less solution time than an uncorrelated one. The reasoning is
that there are fewer non-dominated labels generated during the process depending
on this correlation, which results in less computational time. For instances with 200

nodes and 100% density, the solution time without correlation is 2082.07 seconds,
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while all correlated instances use only about 2.5% of the solution time. Instances
with a values of 0.1 and 0.9 are the most efficient, while instances with « values of

0.3 and 0.5 require slightly more computational time than other instances.

CMSPP Instances from the Literature

To the best of our knowledge, there are only two published papers on the con-
strained shortest path problem with a single objective, described in detail by Zhang
et al. (2013), who use a heuristic algorithm to solve them. The first instance is a
transportation network with 20 nodes and 28 edges, and the second is an instance of
the delay-constrained least-cost problem with 33 nodes and with 113 edges. Using
our algorithms, we optimally solved both instances within 0.2 seconds to confirm
that the heuristic solutions reported in Zhang et al. (2013) are indeed optimal. In
the case of the latter, the objective of the efficient solution we found is 21.804 units,
which is in contrast to the value 21.8135 reported in Zhang et al. (2013).

4.5 Conclusions

Multiobjective shortest path problems are computationally harder than single
objective ones. Labelling algorithms are considered the most efficient exact methods
for the MSPP. In this chapter, five labelling algorithms are described for solving
the MSPP and the CMSPP to find all optimal paths from a source node to a
target node in a graph. All five algorithms generate the complete efficient set.
An aggregate label setting algorithm is introduced for the MSPP, which is a new
algorithm inspired by Iori et al. (2010), and compares with Martins’ algorithm and
the label correcting algorithm. Martins’ algorithm and the aggregate algorithm
are both label setting algorithms. They differ in the label selecting mechanism.
Martins’ algorithm selects the lexicographically label, while the aggregate algorithm
selects the label with smallest aggregate of objectives. Since there are few works
in the literature reporting the computational results of labelling algorithms with
three and more objectives, these three algorithms are compared using instances
with different numbers of objectives, which range from two to five. A computational
study is provided on different labelling algorithms for the MSPP and CMSPP.

An aggregate label setting algorithm and a label correcting algorithm are intro-
duced for the CMSPP. Both are based on algorithms for the MSPP. Computational
results show that label correcting algorithms consistently perform better than label
setting algorithms for both the MSPP and the CMSPP. This phenomenon has
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already been observed for the MSPP and we have presented here, for what we believe
to be the first time, that a similar behaviour is observed for the more generalised
CMSPP problem. The results appear to show that solution times depend on the
size and density of the network, the number of objectives and the objective function
coefficients. For the CMSPP, the solution times also depend on the number of
constraints, the upper bounds and objective vectors. Using the algorithms, we were
able to optimally solve two test instances for the CMSPP from the literature, which
were previously only solved using heuristics.

We are also the first to test instances with positive correlations between constraint
and objective vectors for the CMSPP. In the labelling algorithm, the more objectives
which conflict, the more labels are generated. Correlated vectors are the reason
for fewer conflicted objectives, which leads to fewer non-dominated labels being
generated. Computational results show that all positively correlated instances take
only up to 2.5% of the run-time compared with non-correlated instances.

The contributions of this chapter can be summarised as follows:

1. We first extend and enhance existing labelling algorithms for the MSPP to

deal with cases with any number of objectives.

2. We describe, for what we believe to be the first time in the literature, labelling

algorithms for the CMSPP with any number of objectives and constraints.

3. We present computational experiments to compare and evaluate labelling

algorithms for this class of problems.



Chapter 5

Local Search for Multiobjective
Shortest Path Problems
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5.1 Introduction

The multiobjective shortest path problem (MSPP) is an extension of the classical
shortest path problem which has a wide range of practical applications such as
traffic routing, telecommunications and resource allocation. A variety of algorithms
and methods such as dynamic programming, labelling algorithms, ranking methods,
utility function methods and interactive methods have been implemented and inves-
tigated for the MSPP. However, solving the MSPP to optimality poses challenges in
terms of the computational power and time required as was demonstrated through
the computational experiments presented in Chapter 4. Heuristic methods can be
used to speed up the process of finding approximate Pareto-optimal solutions. A
brief overview on the MSPP using heuristic algorithms was presented in Chapter 2.

Table 5.1 presents a tabulated summary of the existing heuristic algorithms for
the MSPP. Our review identified two heuristics for the bi-objective SPP, namely
genetic and ant colony algorithms, proposed by Lin and Gen (2007) and Ghoseiri and
Nadjari (2010). Both papers provided the computational results tested on randomly
generated instances. Ghoseiri and Nadjari (2010) reported the computational run-
time of their heuristic, which is between 5.29% and 61.34% of the label correcting
algorithm run-time. As for the MSPP, ant colony and genetic algorithms have been
proposed by Héckel et al. (2008). All proposed algorithms were tested on instances
with three objectives. The reported run-time is slower than the labelling algorithm
in Pangilinan and Janssens (2007), which is 40 seconds for random networks and
100 seconds for grid networks in Bezerra et al. (2011) and Bezerra et al. (2013),
respectively.

This chapter proposes two simple local search methods for the MSPP, in order
that the total run-time to find the approximate Pareto-optimal set can be reduced
considerably. The chapter also presents computational experiments to test the
efficiency and the effectiveness of the local search algorithms, by comparing with
the efficient set obtained by labelling algorithms. The purpose of developing local
search algorithms for the MSPP is twofold:

Firstly, many heuristics are problem-specific, so that a method which works for
one problem cannot be used to solve a different one (Reeves, 1993). To the best of
our knowledge, using local search methods for the MSPP is a non-trivial task, and
our aim is to fill this gap.

Secondly, genetic and ant colony optimisation algorithms described earlier in
the literature for the MSPP are slow, as indicated above, and there is a need for

heuristics that run fast, particularly for use in practical situations such as SAT-NAV
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and mobile phone applications. The local search algorithms described here are fit
for such a purpose as they are first in the literature.

This chapter is organised as follows: Section 5.2 presents a brief overview of
local search algorithms and then describes the algorithms developed for the MSPP;
Section 5.3 presents the experimental results and comparisons with the labelling

algorithm described in Chapter 4; and Section 5.4 presents the conclusions.

5.2 Local Search Methods

Local search methods are applied to a wide range of optimisation problems, due to
the fact that they are generally able to produce good quality solutions within very
short computation times. Local search consists of moving from a feasible solution
to an optimisation problem and on to another in its neighbourhood according to
some well-defined rules (Pirlot, 1996), and proceeding iteratively in such a fashion
until a termination criterion is met. One such rule is that two feasible solutions are
neighbours if they differ exactly on one variable. A given neighbour can be obtained
by performing an elementary move on a feasible solution. A common criterion for
selecting a neighbour solution is to pick up the best in the neighbourhood with
respect to the objective of the optimisation problem being solved. We now present
two moves used in the MSPP local search methods, and illustrate how they can be

applied in our algorithms in Section 5.2.1.

5.2.1 Two Neighbourhood Moves for the MSPP

The following definition will be used in defining both moves. A path p?, in G from
source node s € N to target node t € N \ {s} is defined as p?, = (s, i1, 19, ..., i, t)
with cost vector ¢(p?) = (c*(p%), (%), ..., F(p%)), where iy, iy, ...,5 € N\ {sUt}
and (s,11), (i1,%2), ..., (i,t) € A. Figure 5.1a shows such a path.

Node replacement This operator repeatedly replaces i,, in the initial path p?,,
where m € {1,2,...,1}, by another node i, not in path p% such that from the
path p% = (8,41,%2, -y b1, bms bmi1s -, i1, L), @ new path is obtained, i.e., p7, =
(8,781,082, -ovy b1 Gy i1y oy 41, t), Where (ip_1,4,) € A and (i, 4me1) € A. The
move is illustrated in Figure 5.1b. If ¢(p?,) is not dominated by c(p,), then we keep
the new path p7,. If it is, then we select another i;, not in p?, and replace it with
im. We then check the dominance. For the first new path generated, we check the
dominance with the p%. In order to save computational time, for other new paths

we only check the dominance with respect to the previous new path, not p?,, and
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delete the dominated path. The operator iterates « times for all m € {1,2,...,1}.
The dominance of all undeleted paths is checked at the end of the algorithms.

Node insertion This operator randomly inserts another node i,, which is not
included in pY, between two adjacent nodes i,, and 4,1, where m,m + 1 €
{1,2,...,1}, such that from the initial path p%, = (s, 1, %2, -, tm—1, bms Tt 1s -5 15 1),
a new path pl, = (8,491,%2, .., iy, Gry b1, .-, 4, t) 1S Obtained, where (i,,_1,1,) € A
and (i, im11) € A. The move is illustrated in Figure 5.1c. If ¢(p%,) is not dominated
by ¢(p?), then we keep this path. If it is, then we select another i, not in pY and
insert it between i, and 4,,,;. We then check the dominance with the p?,. This

step is repeated until a new path is generated.

5.2.2 Local Search Algorithms for the MSPP

This section presents an algorithmic description of the two local search algorithms
we propose for the MSPP. The procedure initialises by applying Dijkstra’s algorithm
(Dijkstra, 1959) |K| times, one for each objective K = {1,2,...,k}. As a result, we
obtain k initial solutions, whose corresponding paths are denoted as pl,, p%, ..., p¥,.
In this step, we choose Dijkstra’s algorithm, as opposed to generating arbitrary
solutions, as we guarantee the optimality of the solutions on which the improvement
operators would be applied in later steps. Furthermore, we generate k initial
solutions instead of one solution so that the solution space is better represented
with respect to all k£ objectives. We now present two variations of the local search

procedure, shown in Algorithms 5 and 6, respectively.
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Algorithm 5 MSPP local search algorithm

1: procedure MSPP LOCAL SEARCH ALGORITHM (network (NN, A), cost vector

c=(ct, % ..., "), the source node s)

2: initialisation: generate k initial solutions using Dijkstra’s algorithm for

each objective 1,2, ..., k, denoted the initial solution set as P;

3: for w=1to x do

4: apply the node replacement operator for each solution in P,, to obtain
the solution set S

5: if any solution in S* represents a dominated path from s to ¢ then

6: remove the solutions that represent the dominated paths

7 end if

8: selection: randomly select § solutions in S* as the initial solutions in
Qu+l

9: end for

10: Let SZUwE{LgW,X}Sw

11: if any solution in S represents a dominated path from s to ¢t then
12: remove the solutions which represent the dominated path
13: end if

14: end procedure Output: an approximate set of the efficient paths from the

source node s to the target node ¢
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Algorithm 6 MSPP local search algorithm*

1: procedure MSPP LOCAL SEARCH ALGORITHM* (network (NN, A), cost vector

c=(ct, % ..., c"), the source node s)

2: initialisation: generate k initial solutions using Dijkstra’s algorithm for

each objective 1,2, ..., k, denote the initial solution set as P;

@

for w=1to x do

>

apply the node replacement operator for all solutions in P, to obtain
the solution set S
5: if the node replacement operator iterates on the same node for J times

and the new paths are all dominated then

6: apply the insertion operator

7 end if

8: if any solution in S* represents a dominated path from s to t then

9: remove the solutions which represent the dominated paths

10: end if

11: selection: randomly select 3 solutions in S as the initial solutions in
Qutl

12: end for

13: Let S:UwE{LQ X}Sw

.....

14: if any solution in S represents a dominated path from s to ¢t then
15: remove the solutions which represent the dominated paths
16: end if

17: end procedure Output: an approximate set of the efficient paths from the

source node s to the target node ¢

In Algorithm 5, a node replacement operator is used to replace all nodes except
for the source and target nodes in the initial set of paths, and consequently obtain
the solution set S'. We then randomly select 8 new initial solutions from S* and
apply the node replacement operator to all solutions therein to obtain S?. This
step is repeated y times. In Algorithm 6, in addition to the node replacement
operator, we use an node insertion operator for exploring different neighbourhoods.
The output of these two algorithms is an approximate set of the efficient paths from

the source node s to the target node t¢.
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5.3 Computational Results

In this section, the results of computational experiments conducted to test the
efficiency and the effectiveness of the local search algorithms are presented, the
solutions of which are compared to the efficient set obtained by the label correct-
ing algorithm presented in Chapter 4. The label correcting algorithm yields the
complete Pareto-optimal set of solutions whereas local search algorithms generate
an approximate set. We perform the comparisons through four different solution
quality indicators which are presented in Section 5.3.1. The fine-tuning of the local
search parameters is presented in Section 5.3.2. In Section 5.3.3, we analyse the
local search results and compare them with the label correcting solutions.

The computational experiments are tested on two types of networks, namely
randomly generated and grid networks. The algorithms are coded using C++ and
compiled using the optimisation option -O3. All numerical tests are performed
on the Iridis 4 computer cluster with dual 2.6 GHz Intel Sandybridge processors
and 64 GB of memory (http://cmg.soton.ac.uk/iridis). All randomly generated
instances used here are the same as those generated in Chapter 4. For randomly
generated instances, the computational results are carried out on the basis of a
different number of criteria k& and with 50% and 100% density, which are more
difficult to solve by the exact algorithm and enable direct comparisons with exact
algorithms to be made. Table 5.2 shows specifications of the randomly generated
instances. Grid network instances are those with two objectives and described in
Raith and Ehrgott (2009), the specifications of which were presented in Table 4.5
in Chapter 4.

5.3.1 Solution Quality Indicators

A quantitative comparison of the performance of different heuristic algorithms in
multiobjective optimisation is less straightforward than single objective optimisation.
Finding the right measures for evaluating the quality of the heuristic solutions is as
important as the algorithms themselves. In single-objective optimisation problems,
the quality of the solutions can be defined by the objective function itself: the
smaller (or larger) the objective value, the better the solution. However, the output
of multiobjective optimisation is a set of solutions. Zitzler et al. (2000, 2003) defined
a number of measures to evaluate the solution quality assessment in multiobjective
optimisation. Some of these are easy to apply in bi-objective optimisation. Since

we have three and more objectives in our problems, the following measures of
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Table 5.2 Specifications of randomly generated instances

Instance n  d(%) k number of
efficient solutions
1 100 50 3 35
2 100 50 4 101
3 100 50 5 86
4 100 100 3 48
5 100 100 4 226
6 100 100 5 241
7 200 50 3 58
8 200 50 4 56
9 200 50 5 401
10 200 100 3 70
11 200 100 4 240
12 200 100 5 508

performance have been used: (1) the number of solutions obtained; (2) the ratio
of the number of efficient solutions found by local search algorithms to the total
number of efficient solutions found by exact algorithms; (3) the average distance
between an approximate set and the efficient set found by exact methods; and (4)

the e-indicator method.

Let S be the approximate set that is generated by the local search algorithms
and S* be the efficient set generated by the labelling algorithm. We now define
four approaches to evaluate the closeness and representativeness of S from S*. The
first three approaches are used by Lin and Gen (2007), and the fourth, namely the
average distance method, is used by Ghoseiri and Nadjari (2010) to evaluate the
quality of their heuristic solutions for the MSPP.

Number |S| of solutions obtained: This measures the number of solutions in the

approximate set S obtained by local search algorithms.

Ratio R(S) of the number of efficient solutions found by local search to the total
number of efficient solutions found by labelling algorithms: Here, one evaluates each
approximate set on the basis of the number of efficient solutions found. The greater
the value of R(S) is, the better the heuristic solution set is. The R(S) measure can
be written as follows:

SnS*
i) = P

x 100%. (5.1)
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Average distance D(S): This measures the average distance between the objec-

tives of each point in S* to those of its closest point in S as follows:

1

D(S) = o 3 min{|lb—allsa € S}, (52)
5% pez-
where ||-|| is Euclidean distance metric. The smaller the value of D(S), the better

the approximate set is.

e-indicator I.: This is the minimum factor for which we need to multiply the
objectives of all the elements of a reference set S* in order to have all the objectives
of its elements dominated or equal to the objectives of the elements in S (Lizarraga
et al., 2008). Smaller values of I.(S,S*) mean that the set S is more similar to
the reference set S*. The smaller the value of I, the better the approximate set
is. If § =5nN5* then I. = 1.00. The e-indicator I, for two objective vectors
a=(a',a? ...,a") € S and b = (b',b%,...,b) € S* can be calculated as follows:

i

a *
€ap = MAX 7 Yae S;be S (5.3)
€ = I;lelgl €ap VbEST (5.4)
I.(S,5") = max e (5.5)
or equivalently .
€q,p = MAxX min max iy (5.6)

beS* acS 1<i<k bt

5.3.2 Fine-tuning of the Parameters

Four parameters, namely «, 3, x and § are used in Algorithms 5 and 6. This section
describes how the parameters were fine-tuned. For this purpose, several possible
combinations of the parameters were tested, which were then evaluated on the basis
of their performance using the four indicators mentioned in Section 5.3.1. The
procedure stops when no improvements are observed. To fine-tune the algorithms
in a reasonable amount of computational time, we use the same combination of
parameters for the randomly generated instances with same number of nodes and
density. For example, the best combination of parameters selected for Instance #3
shown in Table 5.2 has also been used for Instances #1 and #2. The fine-tuning
has been performed using Instances #3, #6, #9 and #12, where the results are
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reported in Tables 5.3-5.6. In the tables, each row presents average results over five

runs.

Table 5.3 Fine-tuning of results for Instance #3 using Algorithm 5

Do 6 x |5 RS D) L
a |40 50 30 42 48.84 43.12  1.00
b |40 50 40 49 56.98 37.50 1.00
c |50 40 40 o4 74.42 21.35 [1.00
d |50 50 40 66 76.74 20.79  1.00
e |50 50 50 68 79.07 18.40  1.00
f 160 50 50 64 74.42 20.42  1.00
g |50 60 50 51 99.30 35.73  11.00
h |50 50 60 52 60.47 34.73  1.00

Table 5.4 Fine-tuning of results for Instance #6 using Algorithm 5

Dja g x |5 RSk DES) L

a |40 80 50 130 29.88 68.00 1.96
b |50 70 50 130 30.71 62.59 1.96
c |50 80 40 119 32.78 65.24 1.96
d |50 80 50 129 33.20 62.59 1.96
e |50 80 60 125 32.37 65.83 1.96
£ 150 90 50 126 31.54 64.01 1.96
g | 50 100 50 130 31.95 62.59 1.96
h |60 80 50 114 31.95 65.21 1.96

As can be seen in Table 5.3, the qualities of solutions are getting better when «,
f and y increase. The best performance is found when (a, 5, x)=(50,50,50), which
is selected as the combination of parameters to use for Instance #3. As for Table
5.4, the value of I. turns out to be the same for all tests. Furthermore, there is not
one particular combination which yields the best performance. Tests b, d and g
have the three best values. In this case, we assume R(S) is more important than
|S| and select the combination (50,80,50) of parameters. Using the same procedure,
(80,60,40) is selected for Instance #9 and (100,100,40) is selected for Instance #12
as shown in Tables 5.5 and 5.6, respectively.

Using the best combination of parameters found in Algorithm 5, we ran Algorithm
6 using different values of . Tables 5.7-5.10 report the fine-tuning with Instances
#3, #6, #9 and #12, respectively.

As shown in Table 5.7, the value of I, is 1.00 for all values of §, which indicates

that all heuristic solutions obtained are optimal. Three other indicators indicate
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Table 5.5 Fine-tuning of results for Instance #9 using Algorithm 5

S

a 5 x5 RS D) 1
60 50 40 332 64.59 20.63 2.45
80 50 20 335 68.58 19.09 2.74
80 50 30 332 67.33 20.06 2.45
80 50 40 337 71.32 18.08 2.45
80 60 40 333 71.82 17.91 245
90 60 40 335 69.83 18.63 2.45
80 70 40 331 69.08 18.57 2.45
80 60 50 349 69.58 19.01 2.45

00RO A0 T

Table 5.6 Fine-tuning of results for Instance #12 using Algorithm 5

D] o 6 x |5 RS)®) D) L
a | 80 100 40 386 41.73 39.18  1.95
b | 8 100 50 397 42.91 38.11 1.88
c | 80 100 30 389 41.93 39.10 '1.88
d | 80 120 40 395 42.91 38.42 1.88
e | 100 100 40 404 44.69 35.54 1.88
f [ 130 100 40 395 42.72 38.68 1.88
g | 100 120 40 393 42.32 38.87 1.88
h | 100 100 50 394 42.72 38.72 1.88

Table 5.7 Fine-tuning of results for Instance #3 using Algorithm 6

D] o |S| R©S)%) D) L
a | 20 60 63.95 30.51 1.00
b | 40 63 73.26 23.06 1.00
¢ |70 67 7791 2060 | 1.00
d |8 67 77.91 2131 [1.00
e | 100 65 75.58 19.33 ' 1.00
f | 130 68 79.07 18.40 1.00
g | 140 67 77.91 18.75 1.00
h | 150 67 77.91 19.52 1.00
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Table 5.8 Fine-tuning of results for Instance #6 using Algorithm 6

D] 5 S| RS% DGO L
a 30 130 33.20 80.00 1.96
b | 40 130 33.20 80.00 1.96
c 50 130 33.20 80.0 1.96
d | 60 130 33.20 80.0 1.96
e 70 130 33.20 80.0 1.96
f 80 130 33.20 80.00 1.96
g | 90 130 33.20 80.00 1.96
h | 100 130 33.20 88.00 1.96

Table 5.9 Fine-tuning of results for Instance #9 using Algorithm 6

D] & [ RS)%) DES) L
a 70 333 60.60 22.70 12.45
b | 80 351 61.85 20.69  3.67
c 90 364 62.34 21.17 2.74
d | 100 353 62.34 21.77 12.45
e | 110 345 64.09 2098 2.45
f | 120 327 66.83 20.44  2.45
g | 130 389 62.59 20.95 3.67
h | 140 366 61.60 21.75  2.85

Table 5.10 Fine-tuning of results for Instance #12 using Algorithm 6

D] & S| RO)%) D) L
a | 40 374  38.78 4059 |1.88
b | 60 381 40.94 39.49 1.88
C 80 387 42.13 39.02 1.88
d | 100 392 42.52 38.82 1.88
e | 110 395 42 .91 38.08 1.88
f | 120 390 42.32 38.87 1.88
g | 130 391 42.32 38.87 1.88
h | 140 392 42.32 38.87 1.88
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better performance when the value of § is increased. In this case, test f yields the
best performance. When we continue to increase the value of §, the performance
deteriorates. For this instance, the value 130 is detected. In Table 5.8, the four
indicators yield the same results for all tests. Since the greater the parameter is, and
the slower the algorithm becomes, we select the smallest value 30. Following the
same procedure, =120 and 110 are selected for Instances #9 and #12, respectively.
A summary of the best combinations of parameters for different instance sizes in
a randomly generated network is shown in Table 5.11, which is used in the next

section.

Table 5.11 Parameters used for randomly generated networks in Algorithms 5 and 6

n d%) o B x 9
100 50 50 50 50 130
100 100 50 80 50 30
200 50 80 60 40 120
200 100 100 100 40 110

As for fine-tuning «, §, x and ¢ for grid network instances, we set («, 3,
x)=(30,30,30) in the first run of Algorithm 5. When values of «, § and x are
increased, the performance measures of the instances confirm that there are no
significant differences between the solution sets. We take Instance GO1 as an
example. Table 5.12 shows the values of indicators for Instance G0O1 using different
combinations of o, § and y. Table 5.13 shows the procedure of fine-tuning ¢ for GO1.
For other grid network instances, the same values of indicators are obtained while
the values of the parameters are increased incrementally. Comparing fine-tuning of
results in Tables 5.12 and 5.13, the performance of Algorithm 6 is similar to that
of Algorithm 5. This results in the fact that the local search algorithms are not
sensitive to the parameters for the grid network instances. Thus «, 3, x and § are

respectively set equal to 30, 30, 30 and 30, and will be used in Section 5.3.3.

5.3.3 Solution Performance Analysis

In this section, the results of how the local search algorithms run on two types of
instances are reported and analysed, namely randomly generated and grid network
instances. Table 5.14 summarises the performance measures of Algorithms 5 and
6 for the 12 randomly generated instances introduced in Table 5.2, as well as
the run-time (in seconds) by the label correcting (LC) and the two local search

algorithms. The LC algorithm is run on the same computer as the local search
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Table 5.12 Fine-tuning of results for Instance GO1 using Algorithm 5

ID| a B x [5] RS)(W) D©S) L
a | 30 30 30 46 5.41 33.80 1.28
b | 40 30 30 46 5.41 33.80 1.28
c | 30 40 30 46 5.41 33.80 1.28
d | 30 30 40 46 5.41 33.80 1.28
e | 40 40 40 46 5.41 33.80 1.28
£ | 50 50 50 46 5.41 33.80 1.28
g | 80 8 80 46 5.41 33.80  1.28
h | 100 100 100 46 5.41 33.80 1.28

Table 5.13 Fine-tuning of results for Instance G01 using Algorithm 6

D[ o S| R©S)(%) D©B) L
a 30 46 5.41 33.80 1.28
b 40 146 5.41 33.80 1.28
c 50 46 5.41 33.80 1.28
d | 60 46 5.41 33.80 1.28
e 70 146 5.41 33.80 1.28
f 80 46 5.41 33.80 1.28
g | 90 46 5.41 33.80 1.28
h | 100 46 5.41 33.80 1.28




108 Local Search for Multiobjective Shortest Path Problems

algorithms. Values are averaged over the five runs for each column, in all reported
results hereafter.

It is worth noting that for all instances, local search algorithms are much faster
than LC. The run-times for all tested instances are less than seven seconds by the
use of either algorithm. For Instance #11, it takes more than two hours to solve
the MSPP using LC, while it takes less than two seconds using the local search
algorithms. Instance #11 also yields more than 50% efficient solutions. There is not
a significant difference between Algorithms 5 and 6 in relation to |S|. The greatest
difference in |S] is six for Instance #9. As for the indicator R(.S), more than 50%
efficient solutions were identified in six instances out of 12, in which three instances
are with 100 nodes and 50% density. Instance #3 has the highest R(S), which is
79.07%, identified by both Algorithms 5 and 6. The lowest R(S) is obtained by
Instance #6 using both Algorithms 5 and 6. However, this also guarantees one
third of the efficient solutions. The higher the R(.S) is, the smaller the D(S) and
1. are. The performance appears to show that local search algorithms are highly

effective in obtaining a good approximate set.
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Table 5.15 Summary of results on grid network instances

Instance | h X w n a S| R(S)(%) D(S) I. run-time | LC run-time
(in seconds) | (in seconds)
GO01 30 x40 1202 4720 46 5.41 33.80 1.28 0.23 12.26
G02 20 x 80 1602 6240 57 6.67 4776 1.22 0.53 783.38
G04 90 x 50 4502 17900 26 8.70 25.75 1.27 0.87 1140.84
G12 50 x 50 10002 39600 58 7.69 43.72 1.29 1.61 190.48
G15 2450 x 2 4902 19596 2 33.33 8.06 3.14 <0.2 <0.2
G16 1225 x4 4902 19592 4 33.33 7.52  2.00 <0.2 0.29
G17 612 x 8 4898 19586 10 20.00 12,75 1.59 <0.2 1.39
G18 288 x 17 4898 19550 6 13.33 15.17 1.48 0.25 15.03
G19 196 x 25 4902 19550 8 11.11 25.14 1.39 0.26 62.68
G20 140 x 35 4902 19530 33 12.50 41.39 1.45 0.54 238.48
G21 111 x 44 4886 19448 54 3.70 28.38 1.21 1.71 098.77
G22 92 x 53 4878 19398 64 9.43 25.81 1.19 2.23 1237.97
G23 79 x 62 4900 19468 62 5.19 45.24  1.26 2.26 4826.45
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Table 5.15 shows the performance measures of local search solutions for grid
network instances. Regarding time requirements, all instances can be solved within
three seconds. Nine out of 12 instances can be solved in less than one second.
The LC algorithm is grossly outperformed by the local search algorithms with
time savings up to 95.32%. In relation to the indicator R(S), G15 and G16 have
the highest value of 33.33%, which is even less than the smallest value of random
instances in Table 5.14. The worst case is G21, which reported the smallest R(S)
of 3.70%. This means that local search performs better in finding efficient solutions
for randomly generated instances than for grid network instances. As for the other
indicators, all are similar in value scale with randomly generated instances, which
are in acceptable scales.

Figures 5.2-5.5 illustrate the approximate Pareto front constructed by local
search algorithms compared with the Pareto front generated by the label correcting,
respectively, for four grid network instances, namely G01, G16, G17 and G21. As
can be seen, all four approximate Pareto front using local search methods are
located near the Pareto front generated by the labelling algorithm. Some duplicate
solutions can also be observed. For G21, although a small proportion of |S*| is
obtained, the relatively small values of D(S) and I, indicate that the local search

algorithms are capable of finding a good approximate Pareto-optimal set.
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Fig. 5.2 The approximate Pareto front generated by the local search algorithm for
Instance GO1
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Fig. 5.3 The approximate Pareto front generated by the local search algorithm for

Instance G16
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Fig. 5.4 The approximate Pareto front generated by the local search algorithm for

Instance G17
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Fig. 5.5 The approximate Pareto front generated by the local search algorithm for
Instance G21

5.4 Conclusions

In this chapter, two local search algorithms are proposed for the MSPP. They enable
the MSPP to be solved much faster than when using labelling algorithms. We
developed two moves for the MSPP, namely node replacement and node insertion
which operate between two nodes in a route. Since the MSPP is known to be a data
sensitive problem, each algorithm uses different moves or combinations of moves
and is tested on data of different types of networks.

The contributions of this chapter against existing knowledge can be summarised

as follows:

o We present two local search algorithms for the MSPP, for what we believe to
be the first time in the literature, such that they will run fast. Two different
types of neighbourhoods are used in the algorithms. Four parameters are used,
the values of which are set through a fine-tuning process. The nature of the
local search, though, is also such that it can be embedded in a metaheuristic

algorithm for this type of problem.

e The contribution of this work is not limited to new solution algorithms for

the MSPP. In the existing literature, one of the key aspects that has not yet
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been fully evaluated is the run-time and performance evaluation of heuristics
for the MSPP as compared with the Pareto-optimal solutions obtained by
exact methods. One main contribution of this chapter is that we describe and
use four solution quality indicators as well as the run-time to evaluate the

effectiveness of the local search algorithms.

We provide computational experiments on randomly generated and grid
network instances. Regarding the time requirements, the computational run-
time does not increase exponentially as the size of network or the number of
objectives is increased. Contrary to other heuristics found in the literature
for the MSPP, our algorithms are capable of finding good-quality solutions

and are also able to detect efficient solutions within short time scales.

Another main contribution is that we provide a computational study of
local search algorithms using different operators. Instances with different
types of network are used to test the performance of different algorithms. A
node insertion operator was used to help avoid local optima when finding
the approximate set. Computational results show that algorithms using the
node replacement and node insertion operators perform better on randomly
generated instances. These two algorithms are not dominated by each other
according to the four indicators and the run-time. Therefore, we can conclude
that the node replacement operator performs well in avoiding local optima for
randomly generated data. This effect can also be explained by the procedure
of the node replacement operator; each time we remove a node, the operator
chooses the replacement node from the whole range of networks as opposed
to a local area network. An additional interesting phenomenon was observed:
Algorithms using the node replacement operator do not perform well in the
grid network instances. This can be explained by the grid characterisation of
data; in grid networks, there is at most one replacement node, and the search

procedure is therefore limited.



Chapter 6

Conclusions
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6.1 Overview

In this thesis, we studied three research questions under two main and interde-
pendent research topics. The first research topic concerns the service network
design models for multicommodity multimode freight transportation, where for
multiple commodities and a given set of demands, the model determines the routes,
transport modes, and the flow distribution. The first research question related to
modelling and solving the intermodal service network design problem, studied in
Chapter 3. The second research topic is multiobjective shortest path problems,
either without or with constraints (MSPP and CMSPP, respectively). The second
and third research questions considered designing and testing exact and heuristic
algorithms for the MSPP and the CMSPP, studied in Chapters 4 and 5. The next
section highlights the important findings and specific contributions of the thesis.
Limitations of presented techniques and methodologies are given in Section 6.3,

followed by recommendations of areas for future research in Section 6.4.

6.2 Summary of the Main Contributions

To address the first research question, the thesis described time-invariant and
time-dependent service network design models for intermodal freight transportation,
where internal and external costs, including those of greenhouse gas (GHG) emissions,
intermodal transfers, and inventories, where the later was captured in the time-
dependent model, were minimised. Chapter 3 provided two ways to consider GHG
emissions in intermodal freight transportation. One is to convert the GHG emissions
to GHG cost, and incorporate it into the objective function. The other method is to
design a bi-objective model, which enables the representation of competition between
players. Additionally, the model we presented was, to the best of our knowledge,
the first to explicitly include intermodal transfer cost in the objective in modelling
a green intermodal transportation system. A hypothetical but realistic case study
of the UK including 11 locations was presented for our investigation. Prior to this
study, a comprehensive case study of green service network design models using
both time-invariant and time-dependent data generated from the UK transportation
network does not seem to have been conducted. Our data is available for use by
other researchers to compare different methodologies to improve the design of green
intermodal services. Another main finding of Chapter 3 on a realistic case study
is that the total cost can be greatly reduced, between 11.3% and 41.2%, by using

intermodal transportation as opposed to uni-modal transportation. Furthermore,
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in intermodal transportation, the GHG cost can be reduced by 6.94%-11.59% by
designing models that explicitly account for emissions and transfer costs as opposed

to models without these two costs.

To address the second research question, Chapter 4 first presented computational
testing for the MSPP on different types of networks using a variety of labelling
algorithms, including Martins’ algorithm, the aggregate label setting algorithm, and
label correcting algorithm. Even though these algorithms are not new methods for
solving the MSPP, one contribution of this thesis is to report the computational
comparison using these methods, for the first time, on the MSPP with three and
more objectives. The computational results indicated that label correcting performs
better than other labelling algorithms, followed by aggregate label setting algorithms
and Martins’ algorithm. In addition, Chapter 4 proposed two labelling algorithms,
for what we believe to be the first time in the literature for the CMSPP, with any
number of objectives and constraints. Computational experiments showed that
label correcting algorithms consistently perform better than label setting algorithms.
The computational run-time increased exponentially as the size of network or the
number of objectives was increased, paralleling the results of the MSPP. Another
important finding was that the solution times are largely reduced if the constraints

and the objective vectors are correlated.

The fifth chapter of the thesis addressed the third research question and described
heuristics for the MSPP. To overcome the run-time limitations of the existing
heuristics for the MSPP in literature, namely genetic and ant-colony algorithms,
we proposed two local search algorithms for the MSPP. Two operators, based on
replacement and insertion, were developed for use within the local search algorithms.
The node replacement operator was used in the first algorithm, while both operators
were used in the second. Computational results showed that local search algorithms
greatly outperformed the label correcting algorithm by yielding run-time savings
of up to 2136%, and are faster than all previously described heuristic methods
for the MSPP presented in the literature. The run-time is calculated using the
instances that can be solved within two hours using label correcting algorithms.
For the instances which solved more than two hours, the run-time savings will be
even greater. It is well known that heuristics give no guarantee of the optimality of
any solutions found. Therefore, one of the most obvious questions for any heuristic
is how well it will perform. Chapter 5 is believed to be the first time in the
literature that four performance indicators, along with the run-time, to evaluate the
local search algorithms for the MSPP, have been presented. Results showed that

between 33.20% and 79.07% efficient solutions were found when testing on randomly
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generated network instances, while testing on grid network instances, between 3.70%
and 33.33% efficient solutions were found using local search algorithms. There was
no dominance of other indicators between the two algorithms. This effect showed
that local search algorithms are able to produce good quality solutions on both
randomly generated and grid networks, but more efficient solutions were obtained

by the random instances.

6.3 Limitations of the Research

It is acknowledged that there are some limitations of the research, which are detailed

below:

1. Two external costs, namely those of GHG emissions and transfers, were
considered in modelling the intermodal network design problem. However, there
are other types of costs that would arise, such as those related to congestion and
delay. The cost due to road and rail congestion might cause an increase in the total
cost. Interested readers are referred to De Camargo et al. (2009) and Elhedhli and
Hu (2005), who describe ways in which costs of the congestion in hub-and-spoke
network design problems can be included in the objective function. This research
has offered, as a starting point, mathematical models solved by mixed integer
programming in which mainly GHG emissions are considered, but the modelling
framework described here can also take congestion into account, although new and

efficient solution methods might be needed for the resulting models.

2. It is well known that heuristics should be evaluated not only in general,
but on instances with particular characteristics. Even though we presented more
comprehensive computational results than other existing work in the literature to
evaluate the performance of local search algorithms, we did not perform tests on
‘any particular instance’, such as a real network. However, it is very difficult to
obtain all efficient solutions of a real network due to the fact that real networks are
large, which is very difficult to solve. To our knowledge, none of the algorithms,
both exact algorithms and heuristics in the literature, have tested the real data for
the MSPP with three and more objectives.

3. All models and algorithms studied in this thesis assumed deterministic and
static data in the underlying problems. When data exhibits stochasticity, as might
be the case in travel times or demands, the remaining problems will be significantly

more difficult to solve and will require new approaches.



6.4 Future Research Directions 119

6.4 Future Research Directions

In this section, we present an outlook into relevant future research:

e In order to design more realistic models, one may consider modelling and
solving green service network design problems with congestion cost. This can also
be applied to intermodal passenger transportation considering possible traffic delays
on road and rail, as well as at intermodal yards.

e The question of whether other operators or heuristics can be devised to solve the
MSPP more efficiently is still open. Even though genetic algorithms and ant colony
algorithms were presented in the literature to solve the MSPP, and we presented local
search algorithms for this class of problems, more work is needed in this area. Ehrgott
and Gandibleux (2000, 2002, 2008) provide a framework of heuristics, metaheuristics
and the combined approaches for multiobjective combinatorial optimization, which
is a good starting point.

e Heuristic algorithms are also needed for the CMSPP, on which we are not
aware of any existing work. The local search algorithms for the MSPP described in
this thesis are able to obtain good quality solutions, and would be a starting point
in designing heuristics for the CMSPP.






Appendix A

Computational Results with

Demands Increased 10-fold

Tables A.1-A.3 list the capacity utilisation for three transport modes when f;=4.50,
£100 and £150 with 10-fold of commodities in Table 3.2.



Table A.1 Comparison of capacity utilisation for three modes when f; = £50 and demand is increased 10-fold

Computational Results with Demands Increased 10-fold

Truck Rail Ship

No. of Total Capacity No. of Total Capacity No. of Total Capacity

vehicles tonnage utilisation(%) vehicles tonnage utilisation(%) vehicles tonnage utilisation(%)
1 241 6970 99.73 207 79080 96.23 27 64370 80.27
2 245 7105 100.00 210 80624 96.71 25 62629 84.35
3 245 7105 100.00 211 80624 96.25 25 62614 84.33
4 289 8365 99.81 199 77805 98.48 28 63427 76.27
5 290 8380 99.64 200 77775 97.95 27 63355 79.01
6 292 8437 99.63 199 77718 98.37 27 63298 78.94
7 428 12370 99.66 188 73697 98.74 28 63120 75.90
8 430 12428 99.66 188 73630 98.65 27 63064 78.64
9 430 12443 99.78 188 73634 98.66 27 63092 78.68
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Table A.3 Comparison of capacity utilisation for three modes when f;=4150 and demand is increased 10-fold

Computational Results with Demands Increased 10-fold

Truck Rail Ship

No. of Total Capacity No. of Total Capacity No. of Total Capacity

vehicles tonnage utilisation(%) vehicles tonnage utilisation(%) vehicles tonnage utilisation(%)
1 0 0 N/A 225 86050 96.33 28 65670 78.97
2 0 0 N/A 229 87638 96.40 24 63042 88.44
3 0 0 N/A 229 87638 96.40 24 63042 88.44
4 5 134 92.41 220 86028 98.50 29 65865 76.47
5 12 337 96.84 219 85738 98.61 27 65324 81.46
6 ) 134 92.41 220 86028 98.50 26 64530 83.57
7 15 424 97.47 217 85325 99.04 29 66285 76.96
8 16 453 97.63 217 85294 99.01 27 65919 82.20
9 16 453 97.63 217 85294 99.01 26 65125 84.34
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Appendix B

Five Instances Used for the
Time-Dependent Case Study in
Chapter 3

Tables B.1-B.5 list the five sets of commodities, which are part of the data in the
case study in Chapter 3. Each instance includes 30 commodities. The columns
show its origin, departure time, destination, due time and the required amount,

respectively.
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Table B.1 Commodities for Instance #1
No. Origin Destination Departure time Due time Required demand (tonne)
1 1 8 1 13 938
2 3 10 2 12 575
3 5 4 1 13 931
4 10 11 2 14 917
5 9 6 1 12 533
6 10 1 1 14 796
7 5 9 1 13 918
8 4 10 2 12 438
9 3 10 2 14 373
10 5! 1 1 14 967
11 9 2 2 13 235
12 9 11 2 14 705
13 11 10 1 13 744
14 3 11 1 12 962
15 11 5) 1 14 895
16 11 5) 1 14 370
17 10 5 2 14 218
18 11 7 1 12 554
19 11 3 1 13 119
20 2 6 1 13 426
21 9 7 1 13 972
22 2 8 1 12 894
23 1 8 2 14 298
24 3 6 2 14 990
25 5 2 2 13 283
26 8 5 1 13 718
27 11 1 1 14 711
28 11 2 1 12 848
29 1 6 2 14 530
30 8 4 2 12 560
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Table B.2 Commodities for Instance #2

No. Origin Destination Departure time Due time Required demand (tonne)
1 2 11 1 14 143
2 1 4 1 14 308
3 11 1 2 13 764
4 2 9 2 13 612
5 2 3 2 13 170
6 11 7 1 12 726
7 3 7 2 14 334
8 4 6 1 12 648
9 2 8 1 13 428

10 7 2 1 12 832
11 4 9 2 13 221
12 1 9 1 13 190
13 8 5 2 13 108
14 6 4 2 12 840
15 11 2 2 14 802
16 7 6 2 13 469
17 11 4 1 13 463
18 10 7 2 13 600
19 4 2 2 13 162
20 8 6 2 13 281
21 5 8 1 14 231
22 8 11 1 14 560
23 11 6 2 14 728
24 2 7 2 14 735
25 4 3 1 13 488
26 8 6 1 13 402
27 9 1 2 12 265
28 1 7 1 12 245
29 8 10 1 14 323
30 10 1 1 13 505
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Table B.3 Commodities for Instance #3
No. Origin Destination Departure time Due time Required demand (tonne)
1 6 3 1 14 272
2 2 1 2 13 756
3 8 2 1 14 884
4 8 2 1 14 965
5) 7 4 2 14 352
6 10 2 2 14 838
7 9 11 2 14 562
8 6 8 2 12 239
9 10 7 1 13 750
10 3 10 2 13 973
11 11 5 1 14 751
12 5 11 2 12 399
13 3 2 1 13 450
14 11 4 1 13 893
15 11 10 1 13 369
16 4 9 2 14 299
17 11 7 1 12 698
18 5 7 1 14 921
19 5 9 1 12 648
20 8 3 1 12 431
21 8 7 2 12 715
22 2 8 2 13 445
23 9 7 1 12 836
24 9 3 2 14 870
25 17 5 6 14 378
26 11 9 1 14 263
27 7 1 1 14 445
28 3 8 2 13 560
29 10 11 1 12 956
30 3 2 1 13 166
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Table B.4 Commodities for Instance #4

No. Origin Destination Departure time Due time Required demand (tonne)
1 9 11 2 13 170
2 3 11 2 13 939
3 3 9 1 14 319
4 5 4 1 13 548
5 5 11 2 12 600
6 10 11 2 12 150
7 2 8 1 14 362
8 6 3 2 14 338
9 11 10 1 13 964

10 4 7 1 13 578
11 1 8 2 14 932
12 4 11 2 14 456
13 10 1 2 14 237
14 9 5 2 13 538
15 11 4 1 14 290
16 11 10 2 13 389
17 4 8 2 12 338
18 2 4 2 14 213
19 6 8 1 13 334
20 5 1 2 14 151
21 11 4 1 14 779
22 19 9 8 14 688
23 1 7 1 14 983
24 6 1 2 13 249
25 7 1 1 12 126
26 4 2 2 13 617
27 7 9 1 12 474
28 4 7 2 13 708
29 11 9 2 12 774
30 2 1 1 13 214




130 Five Instances Used for the Time-Dependent Case Study in Chapter 3
Table B.5 Commodities for Instance #5
No. Origin Destination Departure time Due time Required demand (tonne)
1 9 6 1 14 223
2 7 2 1 13 231
3 9 6 1 14 694
4 2 9 2 13 989
) 1 9 1 13 428
6 10 8 2 12 858
7 10 1 2 14 100
8 11 3 1 13 255
9 1 6 2 12 289
10 10 1 1 12 373
11 3 7 1 14 193
12 11 5 1 13 849
13 11 7 2 14 108
14 11 1 1 14 537
15 11 9 1 13 182
16 5} 9 2 12 418
17 5 2 1 13 316
18 11 9 1 13 801
19 7 3 2 14 245
20 1 3 2 13 137
21 11 8 1 13 741
22 8 5 1 12 191
23 7 10 1 12 995
24 4 1 2 13 232
25 9 11 1 12 523
26 8 7 1 12 585
27 1 6 2 14 143
28 5 11 2 14 200
29 11 4 1 13 634
30 5 3 2 13 615
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Table C.1 Computational comparisons between the MMND and the MMTND

Instance #1

Instance #2

Instance #3

Instance #4

Instance #5

MMND MMTND

MMND MMTND

MMND MMTND

MMND MMTND

MMND MMTND

Total cost(4£) 253023 264836 | 145308 157587 | 179355 192785 | 137757 155426 | 136081 = 149696
Fixed cost(£) 13100 14450 6750 13600 9600 9700 6950 11000 8400 12950
Variable cost(4£) 220490 228966 129216 130090 157489 170287 122114 133045 117524 123839
Emission cost(£) 19433 21139 9341 13676 12266 12798 8693 11380 10157 12826
Transfer cost(£) 0 281 0 221 0 0 0 0 0 81
Total tonnage 3817 5705 1288 6247 2380 2850 1006 4318 2233 5883
(truck)
Total tonnage 21886 14700 14740 8366 18254 15236 15710 10479 14693 7797
(rail)
No. of vehicles 134 201 45 218 84 100 35 152 78 207
(truck)
No. of vehicles 64 46 45 27 54 47 52 34 45 26
(rail)
Capacity 98.22 97.87 98.70 98.81 97.70 98.28 99.11 97.96 98.72 98.00
utilisation (truck)(%)
Capacity 86.14 80.50 82.51 78.05 85.15 81.65 76.10 77.63 82.24 75.54

utilisation (rail)(%)
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