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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Transportation Research Group

Doctor of Engineering

HUMAN FACTORS IN THE DESIGN OF TRAFFIC MANAGEMENT SYSTEMS

by Joshua Price

This research seeks to investigate how application of Human Factors techniques could
be used to improve performance resulting from the use of technical traffic management
and SCOOT validation systems. The systems used in both domains have historically
been developed without consideration given to the social factors important to their

use, designs instead being based solely on technical constraints.

In the first stages of the project traffic management is investigated through
conduction of a literature review covering the objectives, functions and constraints
acting upon Traffic Management Centres (TMCs) in road, rail, maritime and air
domains. Congestion management is then considered in urban road TMCs through
application of the Event Analysis of Systematic Teamwork (EAST) method based on
observational data collected from four TMCs, Bristol, Cardiff, Dorset and Nottingham,
in which the tasks, social agents, information and relationships between these
elements are considered. The EAST method is then expanded to enable investigation

into TMCs’ resilience, providing further knowledge about the domain.

The later stages of the project are concerned with SCOOT validation, the process by
which adaptively controlled traffic lights using SCOOT are set up to reflect real traffic
conditions. The domain, using the current PC SCOOT Urban Traffic Control system, is
assessed through Cognitive Work Analysis (CWA) with the findings used to propose
areas suitable for development. One of these areas, STOC validation, is then developed
further by applying Ecological Interface Design to develop an alternative display
addressing limitations with PC SCOOT’s display. This concept display is then evaluated
through two empirical experiments examining performance compared to traditional
displays and investigating the role of experience within the domain. Finally, by using
insights obtained into the STOC validation process an automated STOC selection
algorithm is developed which has the potential to redefine how STOC validation is

conducted.
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1.1  Background

Road transport is fundamental to our economy and our society, enabling economic
growth and job creation (Commission of the European Communities [CEC], 2011a),
however as our population is projected to increase (Office for National Statistics, 2011)
so the demand for transport will also rise (Department for Transport, 2012b) and is
likely to exceed existing infrastructure’s capacity. This is likely to result in increased
congestion (Everall, 1972) and is forecast to cost the UK economy £22 billion by 2025
(Eddington, 2006) in addition to having negative impacts on meeting road safety and
environmental impact goals (e.g. CEC, 2006; CEC, 2011a), making it a significant
national issue. There are limited options for physically expanding the capacity of our
road infrastructure because of land use, environmental and political concerns (Baskar,
Schutter, Hellendoorn, & Papp, 2011); therefore it will be necessary to improve the
utilisation of our existing road networks (CEC, 2006) through technological means to

address the challenges posed.

As a market leader in traffic solutions, Siemens provide a number of products intended
to improve the management of road traffic, however these have typically been
designed from a technological standpoint with little consideration given to social
factors. The road domain is a complex socio-technical system (Walker, Stanton, Salmon,
& Jenkins, 2008) therefore human performance and usage of these products must also
be considered. To address this gap Siemens sponsored this Engineering Doctorate to
investigate how the Human Factors discipline could be applied to elicit performance
benefits for their products, supplying an additional competitive advantage. Specifically
Siemens wished for two of their key challenges to be addressed, firstly top-down
assessment of traffic management with a view to gaining insights for use in their
COMET traffic management system, and secondly a bottom-up investigation and design

of interfaces for use in SCOOT validation.

In the initial stages of the project the first of these challenges was addressed by
focusing on the technical traffic management systems used within Traffic Management
Centres (TMCs). TMCs are employed within many urban traffic networks as well as
inter-urban routes and are concerned with planning, monitoring and control, or

influencing, traffic (Transport Research Knowledge Centre, 2009) in order to increase
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road safety and capacity (Visser & Klijnhout, 1998), whilst simultaneously reducing
delays, congestion and emissions (Cloke & Layfield, 1996; Desai, Loke, Desai, & Singh,
2011), as well as dealing with incidents (Bertini, Monsere, & Yin, 2005). In effecta TMC
acts as a central hub to collect information from a wide array of sources and then
manages traffic through physical manipulation of infrastructure, by directly assisting
vehicles and disseminating information (Murray & Liu, 1997; Nowakowski, Green, &

Kojima, 1999), with a wide range of technical systems utilised to achieve these actions.

TMCs have been the subject of many Human Factors studies (Nowakowski et al., 1999),
including investigations into their physical structure (Beers & Folds, 1996; Kelly, 1995),
educational requirements of operators (Mitta, Folds, Fain, & Beers, 1997) and use of
automated assistance systems (Coon & Folds, 1996; Folds & Fain, 1997; Stocks, Folds,
& Gerth, 1996). Unfortunately many of these studies are historical and do not reflect
the technologies or practices utilised by modern TMCs, there is therefore an
opportunity to improve understanding of how modern TMCs manage traffic and to
consider how technology is used in pursuit of TMCs’ goals. This knowledge can then be
utilised to improve these technologies to better support operators and hence improve

performance.

The second half of the project was concerned with the second of Siemens’ key
challenges and focuses on developing the technical systems used to set up adaptively
controlled traffic lights which use Split Cycle Offset Optimisation Technique (SCOOT;
Hunt, Robertson, Bretherton, & Winton, 1981). SCOOT is used to optimise traffic signals
in order to maximise capacity and minimise delays by adjusting light timings using
real-time data from detectors and a traffic model. In order to operate effectively, it is
important that SCOOT'’s traffic model accurately reflects on-street conditions; hence a
SCOOT system must be validated (Siemens, 2011). Validation is conducted using an
Urban Traffic Control (UTC) system called PC SCOOT (Siemens, 2013), which although
functional has not evolved to take advantage of advances in display equipment or
considered human performance in its design. The area is significantly under
researched and there is an opportunity to apply Human Factors techniques in order to
better understand the domain and to use these findings in conjunction with
contemporary interface design techniques to improve PC SCOOT as a product, elicit

performance benefits for validators and hence the traffic network as a whole.
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1.2  Aims and Objectives

The aim of this research is to investigate how application of Human Factors techniques
can be applied to improve performance resulting from the interaction with technical
traffic management systems. Two specific areas are considered, TMCs and SCOOT

validation.
Three objectives concern the macro analysis of TMCs:

1. Define and understand the objectives, functions and constraints of traffic
management in major transport domains.

2. Define and evaluate the processes, tools and connections utilised by road TMC
operators to manage traffic.

3. Investigate system resilience within TMCs through application of Event

Analysis of Systematic Teamwork.
Four objectives concern the micro analysis of SCOOT validation:

1. Define and understand SCOOT validation using PC SCOOT to identify limitations
and opportunities for improvement.

2. Develop alternative displays to address the limitations identified for (1)
through application of Human Factors interface design techniques.

3. Evaluate the performance of the displays developed for (2).

4. Investigate the potential to employ automation to address the limitations

identified for (1).

1.3 Outline of the Thesis

The thesis is organised in ten chapters, starting with the introduction (chapter 1) which
describes the background to the work and outlines the main research objectives, and
ending with the conclusion (chapter 10) which summarises the thesis’ findings,
considers the contribution to knowledge made and identifies opportunities for further

research. The intermediary chapters are introduced in the following subsections.

1.3.1 Chapter 2: A Comparison of Land, Sea and Air Traffic Management

Traffic management is used within all main transport domains, road, rail, maritime and
air to improve safety and efficiency whilst reducing negative environmental impacts.

Chapter 2 consists of a literature review used to identify objectives, constraints and
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system functions occurring within the four key traffic management domains. While
comparative studies have been conducted there remains a gap in the knowledge
regarding the similarities and differences between all four domains. The purpose of
this review is threefold. Firstly to improve understanding of road traffic management
within the context of the wider transportation system. Secondly to identify those issues
affecting road traffic management that are suitable for further investigation. Thirdly to
provide the theoretical basis on which more detailed analyses can be conducted in

chapters 3 and 4.

1.3.2 Chapter 3: Using EAST to Investigate Congestion Management in Urban

Traffic Management Centres

Based on the analysis in chapter 2 congestion management within urban TMCs was
selected as a priority for further investigation. This chapter applies the Event Analysis
of Systematic Teamwork (EAST) method to the domain with an aim of better
understanding how TMCs deal with congestion in practice. EAST was selected because
of its ability to comprehensively model cognitively distributed domains such as a TMC,
in which a wide range of technical and social agents must collaborate to achieve
objectives. Observations are carried out at four medium sized urban TMCs, Bristol,
Cardiff, Dorset and Nottingham, with the data used to directly produce EAST’s primary,
task, social and information, and combined networks. In addition to EAST’s application
within a novel domain, a method by which social networks are produced by weighting
communications links based on qualitative data is employed to account for the links
which are difficult to measure empirically. Data analysis is conducted both qualitatively
and quantitatively using Social Network Analysis (SNA) metrics, with consideration
given to how congestion scenarios are managed, who is involved and what information

is required.

1.3.3 Chapter 4: Using EAST to Investigate Urban Traffic Management

Centre’s Operational Resilience

Resilience engineering is concerned with designing systems such that they can survive
both expected and unexpected disruptions to their operation. Most methods to assess
resilience are qualitative, with quantitative assessment relatively undeveloped. In this
chapter a method to investigate a system’s operational resilience by quantifying the

effects of failure is developed. EAST is used to model a system based on graphical
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network diagrams with system properties described using SNA metrics. The networks
produced for the TMCs in chapter 3 are used to empirically investigate resilience
within urban TMCs. Failure modes are applied to the fully functioning networks with

resulting changes to metrics providing a quantitative indication of resilience.

1.3.4 Chapter 5: Using CWA to Investigate SCOOT Validation using PC SCOOT

As previously stated the thesis objectives were changed on completion of chapter 4 to
reflect Siemens’ business needs, resulting in a change of focus onto SCOOT validation.
Siemens are a leading provider of SCOOT adaptive traffic control systems worldwide
and as such have significant interest in ensuring their PC SCOOT UTC product retains
competitive advantage. To assess validation a full five phase Cognitive Work Analysis
(CWA) is utilised, with each phase’s representations informed based on data collected
from experienced SCOOT validators, providing a comprehensive assessment of the
domain’s constraints. Ultimately the chapter’s aim is to identify potential weaknesses
with PC SCOOT and propose areas for development through application of Human

Factors methods.

1.3.5 Chapter 6: Using CWA to Design an Ecological STOC Validation Tool

Based on discussions with Siemens regarding the proposed SCOOT validation
developments outlined in chapter 5 it was decided to investigate SaTuration
OCcupancy (STOC) validation in more detail, because it is a crucial SCOOT parameter
and is perceived to be relatively difficult using the traditional Link VALidation (LVAL)
display in PC SCOOT. This chapter is concerned with a more detailed analysis of STOC
validation using CWA, with the findings used to inform the development of an
alternative ecological interface using Ecological Interface Design (EID). CWA is
intimately linked to EID however full analyses are rarely used to inform designs, Work
Domain and Worker Competencies Analyses receiving most attention. Although
consistent with EID’s original description all five CWA phases have been argued to have
a role in the design process and are therefore presented. Each phase’s contribution to
the ecological design process is examined and a concept ecological display for STOC

validation produced.
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1.3.6 Chapter 7: Evaluation of an Ecological STOC Validation Tool

In order to empirically evaluate the concept ecological display developed in chapter 6
an experiment is conducted to compare this display against two traditional interfaces
employed within PC SCOOT with the role of experience on performance also
considered. Experimental displays are produced in Microsoft Excel with a number of
links modelled using traffic detector data from Reading. The experiment is completed
by three participant groups, twelve expert validators, twelve novices age and gender
matched to the expert group and a further thirty unmatched novices. Both objective
and subjective performance measures are considered including accuracy, time spent
validating, perceived workload and perceived usability, with the findings used to

provide a recommendation regarding further development of the ecological display.

1.3.7 Chapter 8: Further Evaluation of an Ecological STOC Validation Tool

A follow-up experiment to chapter 7 is conducted to compare a developed ecological
STOC validation display against the traditional LVAL interface. Several limitations with
the first experiment are addressed, specifically real observed clear times are obtained
from Bristol TMC and the ecological display is significantly developed from the Excel
based prototype used previously. The experiment follows a similar experimental
procedure and considers comparable performance measures to those obtained in
chapter 7. The findings are used to further consider the potential benefits of employing

ecological design techniques in STOC validation.

1.3.8 Chapter 9: Development and Evaluation of an Algorithm to
Automatically Select STOC Values

Automation of STOC selection could assist validators and potentially enable multiple
links to be validated simultaneously; offering significant time savings compared to both
the traditional LVAL and proposed ecological displays. To this end an automated STOC
selection algorithm is developed based on the ecological STOC validation task process
identified in chapter 6, in which the objective is to minimise the error between
modelled and observed clear times. Empirical evaluation of the algorithm’s
effectiveness in terms of accuracy is then conducted against human validators using
the data obtained in chapter 8. The results are used to inform the recommendation as
to whether automated STOC validation is possible, provides any benefit and is worth

further development.
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Contribution to Knowledge

The work presented in this thesis contributes to the understanding of traffic

management and SCOOT validation domains with benefits for academics, practitioners

and Siemens in particular. The key contributions for each domain are listed below:

1.4.1

1.4.2

Traffic Management

The literature review will consider objectives, functions and domain constraints
of traffic management in key transport domains providing a useful reference
tool for future studies.

Assessment of congestion management in urban TMCs will contribute to the
understanding of how road traffic is managed in practice and provide insight
into how TMCs’ technical systems are used by operators.

The EAST method will be applied to quantitatively and qualitatively assess
socio-technical systems’ resilience, providing a methodological basis for future

studies.

SCOOT Validation

A CWA analysis will provide a comprehensive assessment of SCOOT validation,
aiding understanding of the validation process and use of current validation
tools by validators, as well as being a useful reference for future developments.
Development of an ecological STOC validation tool will highlight the role of each
CWA phase on design, a useful practical case study for those wishing to employ
the design philosophy in new domains, as well as to Siemens should they wish
to apply the approach in other areas.

Empirical testing of STOC validation display will provide useful insights into the
relative performance of ecological and traditional displays, adding to the EID
literature and providing Siemens with specific design recommendations to
implement in their future products.

Development of an automated STOC validation algorithm will offer a new

approach to validation, which could provide significant time savings.
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Chapter 2: Comparison of Land, Sea and Air Traffic

Management

2.1 Introduction

Transport is fundamental to our economy and our society, enabling economic growth
and job creation (Commission of the European Communities [CEC], 2011a), however
as our population is projected to increase (Office for National Statistics, 2011)
transport demand is likely to exceed existing infrastructure’s capacity. There are
limited options for physical expansion (Baskar et al., 2011); therefore it will be
necessary to improve utilisation of existing networks to alleviate the threat of
increased congestion (CEC, 2006). In addition, policy goals regarding transport safety
(CEC, 2009; CEC, 2011b; Office of Rail Regulation [ORR], 2008; United Nations Regional
Commission, 2010) and environmental impact (CEC, 2011a) can only be met by

considering the entire transport network.

Traffic management is a key part of this wider view within all main transport domains,
road, rail, maritime and air. Traffic management is the planning, monitoring and
control, or influencing, of traffic within a transport network (Transport Research
Knowledge Centre [TRKC], 2009), with the aims of increasing safety and capacity
(Visser & Klijnhout, 1998), whilst simultaneously reducing delays (Sud et al., 2009),
congestion (Desai et al,, 2011) and emissions (Cloke & Layfield, 1996), as well as
dealing with incidents (Bertini et al., 2005).

Several studies have considered the Traffic Management Centre (TMC) functions and
domain constraints from subsets of these domains comparatively (Curchod & Genéte,
2002; Murray & Liu, 1997), however there remains a gap in the knowledge regarding
the similarities and differences between all four domains. This chapter aims to address
this gap by comparing road, rail, maritime and air TMCs, examining their objectives
and operational functions as well as the constraints imposed by the domain’s
characteristics. This will enable road traffic management to be better understood
within the context of the wider transportation system as well as providing the

theoretical basis on which further analyses can be conducted in chapters 3 and 4.
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2.2 Domain Overviews

2.2.1 Road

Road traffic management facilitates the safe movement of goods and people, with
minimal delay, throughout the roadway system (Folds et al,, 1993). Used primarily in
urban and inter-urban road networks (TRKC, 2009), TMCs aim to maximise road
capacity, minimise the impact of incidents, manage demand, assist emergency services
and encourage public confidence in the TMC (Folds et al, 1993). Real-time and
predicted traffic conditions are used to influence management decisions (Nowakowski
et al,, 1999), which are implemented using Advanced Traffic Management Systems
(ATMSs) and Advanced Traveller Information Systems (ATISs) (Chorus, Molin, & Van
Wee, 2006; Technical Committee 16 Network Operations, 2006).

2.2.2 Rail

Rail traffic management aims to ensure train safety and maximise network efficiency.
Conflict detection and resolution is a key activity, trains are monitored individually and
the network is managed to prevent potential conflicts (Stanton & Baber, 2008). There
are three layers of operation, safety, control and traffic management (Davey, 2012).
The safety layer concerns the protection of trains, including signalling, control of
infrastructure and Automatic Train Protection (ATP) systems. The control layer
involves direct train control by a TMC. The traffic management layer concerns indirect

train control through timetabling and routing, as well as overall network management.

2.2.3 Maritime

Maritime TMCs are called Vessel Traffic Services (VTSs) and aim to foresee the safe and
efficient flow of maritime traffic and to protect the environment (Devoe, Abernathy,
Royal, Kearns, & Rudlich, 1979). VTSs are used where traffic volumes are high or there
is a significant degree of risk to vessels, such as around ports and in shipping channels
(International Maritime Organization [IMO], 2012). There are three areas of operation;
Information Service (INS), broadcasting general information, Navigational Assistance
Service (NAS), aiding vessel’s navigational decision-making and Traffic Organisation
Service (TOS), managing traffic by advising, instructing, or directing vessels (VTS
Committee, 2008). Vessels are monitored individually, with management centring on

conflict detection and resolution (Van Dam, Mulder, & Van Paassen, 2006).

10
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2.24 Air

Air Traffic Control (ATC), is tasked with ensuring the safe and efficient flow of aircraft
from origin to destination (Wickens, Mavor, & McGee, 1997). ATC manages individual
aircraft, routing traffic as efficiently as possible whilst ensuring sufficient separation
between aircraft in controlled airspace. There are three key areas of ATC; airport
control, covering taxiways and runways, approach control, responsible for aircraft on
approach to airports, and en-route control, managing aircraft travelling between

airports (Civil Aviation Authority Safety Regulation Group [CAASRG], 2012b).

2.3  System Objectives

System objectives dictate TMCs’ reasons for existence; these are similar for all forms
of traffic management, all TMCs aiming to increase network efficiency and safety, and

reduce environmental impact.

2.3.1 Efficiency

TMCs aim to minimise congestion by optimising traffic flow. This is important
economically being forecast to cost the UK £22bn by 2025 (Eddington, 2006).
Congestion occurs when demand for the transport network is greater than the
infrastructure’s capacity (Everall, 1972), either because demand increases or capacity is
reduced, for example due to bad weather. To improve travel times and reduce delays TMCs
must therefore manage demand and mitigate the effects of reduced capacity (Bertini et al.,
2005; Desai et al., 2011; Sud et al., 2009; Visser & Klijnhout, 1998), for example by
diverting traffic away from problem areas. A further benefit of an efficient transport network
is the potential reduction in fuel costs that could be achieved.

2.3.2 Environmental

TMCs aim to improve the network’s environmental impact, in particular reducing
emissions and noise pollution, through encouraging environmentally friendly
behaviour (Cloke & Layfield, 1996). In addition damaging traffic conditions such as
congestion can be minimised, reducing transport emissions (Barth & Boriboonsomsin,
2008). In the maritime domain VTSs are involved in protecting the physical
environment, ensuring vessel movements do not cause unintentional damage (Van

Dam et al, 2006). Historically environmental objectives have been somewhat
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secondary to the objectives of efficiency and safety, however recent policy goals such a
60% reduction in transport emissions by 2050 (CEC, 2011a) reflect the ever increasing

consideration given to these objectives.

2.3.3 Safety

Safety is crucial to protect life and inspire public confidence in transport networks.
Safety objectives are primarily met proactively, TMCs aiming to reduce the occurrence
of incidents (Bertini et al, 2005), by monitoring the network and intervening if
necessary. The ability to manage specific vehicles independently within rail, maritime
and air domains puts the emphasis on conflict detection and collision avoidance
(CAASRG, 2012b; Davey, 2012; Van Dam et al., 2006). The road domain lacks this level
of control, traffic typically being treated as a flow (Curchod & Genéte, 2002), although
individual vehicles can be identified using technologies such as Automatic Number
Plate Recognition (ANPR) cameras. Management activities therefore focus on the
broad dissemination of information to traffic, aiming to encourage desired behaviours

(Murray & Liu, 1997).

Reactive management is also important, aiming to minimise incidents’ impact once
they occur (Bertini et al, 2005), this is particularly prevalent in road traffic
management, incidents occurring frequently (World Health Organisation, 2013). TMCs
take action to minimise resulting congestion and to maximise the safety of those
involved, for example by closing lanes on managed motorways (Simpson & Kamnitzer,
2010). In addition, information regarding the incident can be communicated directly
to emergency services as well as to other traffic, in order to improve their decision-

making (Nowakowski et al., 1999).

2.4 Domain Characteristics

The characteristics of traffic management domains impose constraints upon TMCs'
functions. Curchod and Genéte (2002) compared constraints in road and air domains
with respect to rail, investigating TMCs’ geographical field and management scope, the
behaviour of network traffic and the physical capabilities of vehicles within the
network. Using this as a basis domains have been compared based on a typical TMC'’s
scope, the capabilities of vehicles and behaviour of traffic. In addition the physical
management capabilities of TMCs as well as political constraints have been considered.

A concise comparison is provided in Table 2-1.
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241 Scope

The scope of traffic management is the area of operation for a typical TMC within the
domain; this entails not only the physical area under the control of a TMC but also the
physical extent of management activities. Similarly to Curchod and Genéte (2002) the

areas of operation have been categorised as local, regional, national and international.

Road and maritime TMCs operate within local and regional areas. Road TMCs primarily
manage urban or inter-urban networks (TRKC, 2009), including localised activities
such as junction management. VTSs manage specific ports, straits, and other high risk
areas (VTS Committee, 2008). Although traffic in both domains may travel nationally
or internationally, much of the domain is unmanaged, with legal rules, such as the
Highway Code, enforced but no explicit traffic management, limiting the potential for

national or international management activities.

Rail traffic is managed throughout its journey; necessitating international and national
management in addition to local and regional. Historically international management
has been limited due to incompatibilities between countries rail infrastructure,
however international cooperation with projects such as Eurotunnel (Anguera, 2006)
and OPTIRAILS (Curchod & Genéte, 2002) has increased the prevalence of

international management.

Air traffic management also involves local (airport control), regional (approach and en-
route control), national and international (en-route control) management (CAASRG,
2012b). TMCs may be dedicated to particular areas of operation, for example airport
control towers manage at a local and regional level, dealing with aircraft at,
approaching to or departing from airports. En-route TMCs operate at regional, national
and international levels. As with rail, international management and coordination is
becoming increasingly important with initiatives such as the Single European Sky (CEC,

2012) and Open Skies agreements (Chang, Williams, & Hsu, 2009).

Interactions between TMCs within a domain are an important consideration,
communication enabling useful information to be shared and wider transport
strategies to be implemented. This is particularly important when specific vehicles
must be managed across the jurisdictions of multiple TMCs. Therefore although a TMC
may be focused on local or regional management, this does not imply that it operates

in isolation from the rest of the domain.
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2.4.2 Vehicle Capabilities

Vehicle capabilities are defined by the physical realities of the transport mode,
additionally within most domains traffic can be segmented by purpose and specific
abilities, meaning traffic cannot all necessarily be managed in the same way. To
maximise the TMC'’s effectiveness the context to which the management activity is

applied must be considered.

The transport mode constrains the network’s possible degrees of freedom (DoF) and
therefore how traffic can be directed. Curchod and Genéte (2002) stated that rail traffic
has one DoF, being confined to tracks and routes directly controlled by TMCs. Road
traffic has two DoF, vehicles are free to move within the two dimensional plane of the
network. Air traffic has three DoF, the management domain being three dimensional
with aircraft able to move vertically and horizontally. Intuitively the maritime domain

has two DoF similarly to the road domain.

The training level and motivations of vehicle operators are highly varied within
transport domains. The exception is rail which has very stringent training
requirements governed by legislation (ORR, 2010) and where all drivers are employed
in a professional capacity, management activities can therefore be consistent

irrespective of the specific train being managed.

The road domain contains the widest range of traffic segments including motor-
vehicles, cyclists and pedestrians (DfT, 2011). Management is focused on motor-
vehicles however other segments can impact managed traffic, by being involved in
incidents for example. Consideration can also be given to the level of driver training,
traffic including basic license holders (Driver Vehicle Licensing Agency, 2012),
potentially with limited experience, as well as advanced, emergency service and
professional drivers, all of whom have more extensive training and experience
(Association of Chief Police Officers, 2009; DfT, 2012a; Stanton, Walker, Young, Kazi, &
Salmon, 2007). Furthermore, the context of a driver’s journey can influence their
abilities, for example regular commuters become practiced at a particular route while
other groups may be unfamiliar with the area, necessitating a range of management

approaches (Dudek et al., 1978).

Traffic in the maritime domain ranges from cruise ships and bulk carriers, operated by
professionals, to small recreational vessels, sailed by members of the public, potentially

with no formal training (Maritime and Coastguard Agency, 2012). Similarly to the road
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domain management is focused on specific traffic segments (large vessels), however

other segments must still be considered due to safety implications.

Traffic segments in the air domain include professional civilian and military aircraft as
well as recreational traffic piloted by Private Pilot’s Licence (PPL) holders. There are
rigorous training requirements for all pilots (CAASRG, 2012a), although PPLs are
significantly simpler to obtain than professional licences. In addition two sets of flight
rules are observed, Visual Flight Rules (VFR) and Instrument Flight Rules (IFR)
(CAASRG, 2012b) which define how aircraft are flown. Airspace categories (CAA, 2012),
are used to control the different traffic segments, ensuring they do not interfere with
one another. These categories also define the extent of management services provided

to aircraft.

2.4.3 Traffic Behaviour

Traffic behaviour characteristics are defined by how the domain’s traffic operates as a
whole. This incorporates its predictability, where the responsibility for routing choices
lies and how traffic is treated for monitoring purposes. Traffic behaviour dictates how
much a TMC knows about the traffic it is managing and therefore how it can interact

with traffic.

Rail and air traffic is relatively predictable; vehicles can be monitored individually,
operate to planned timetables and have predetermined routes, both of which are
known to TMCs and can be adapted by them (Curchod & Genéte, 2002), this enables
TMCs to manage individual vehicles. Road traffic is entirely different; routes are known
only to the driver, making it highly unpredictable (Murray & Liu, 1997), in addition the
volume of road traffic necessitates treatment as a flow (Curchod & Genéte, 2002),
meaning more general management activities are used, TMCs having limited control
over individual vehicles (Nowakowski et al., 1999). Maritime traffic falls in between,
all vessels can be monitored individually and their movements can be predicated fairly
accurately (Van Dam et al., 2006; VTS Committee, 2008). Routing decisions are the
responsibility of a ship’s captain and are therefore not necessarily known to the VTS,
however certain traffic, such as ferries, operate to fixed routes and timetables.
Additionally, most areas controlled by VTSs have high traffic volumes and employ
defined shipping lanes, to reduce the likelihood of collisions, which must be observed;
these limit vessels possible route choices. The result of this is that similarly to rail and

air domains, VTSs are able to manage vessels on an individual basis.
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244 Traffic Management Capabilities

Traffic management capabilities are the methods available for TMCs to intervene
within the network and manage traffic. These interventions are varied and often
specific to each domain, however their impacts on the network can be described as
physical manipulation, direct assistance and information dissemination, or a
combination. Physical manipulation involves physically altering variable
infrastructure within the network. Direct assistance refers to interacting with an
individual vehicle. Information dissemination describes the provision of general
information to all relevant vehicles within the network. All three capabilities are
available within road and rail domains, physical manipulation is not however available
in maritime or air domains because traffic is under local control and variable
infrastructure is limited or non-existent. The importance of these constraints is that
they define how the TMC is able to interact with traffic, directly influencing the physical

management functions available.

2.4.5 Political

Within the UK all transport domains are the responsibility of the Department for
Transport, with each domain also having specific governing authorities and legislation
regulating them. These political characteristics constrain how TMCs are able to interact

with traffic and can also affect the priorities given to each traffic management objective.

Regulation within the road domain is overseen by executive organisations including
the Driver Vehicle Licencing Authority (DVLA), Driving Standards Agency (DSA) and
Highways Agency as well as local authorities and the police. These enforce required
standards for driving and infrastructure, potentially requiring coordination with TMCs.
Many TMCs are operated on behalf of their local authority, however motorway and
major trunk road TMCs are the responsibility of national executive organisations such
as the Highways Agency and Transport Scotland (Highways Agency, 2012), providing

these stakeholders with a significant degree of control over TMC’s operation.

For the rail domain the Office of Rail Regulation (ORR) is the UK’s regulatory authority,
with the Railway Safety and Standards Board (RSSB) responsible for developing
national safety policies (Dennis, 2004). TMC’s functions are directly influenced by
these organisations, having to meet prescribed standards, for example signalling

procedures that ensure train safety.
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The maritime domain is regulated through international organisations such as the
United Nations and International Maritime Organisation as well as countries
governments (Knapp & Franses, 2010). One of the most widely known treaties is the
International Convention for Safety Of Life At Sea (SOLAS) (IMO, 1974), which specifies
where VTSs should be provided and how vessels must be operated, thus how they can

be directed.

The air domain is heavily regulated nationally and internationally through
organisations such as the Civil Aviation Authority (CAA) and the UN’s International
Civil Aviation Organisation (ICAO). Regulations specify the procedures that ATC and
aircraft must follow, such as communication standards, as well as required
performance levels, for example ensuring minimum aircraft separation distances are
maintained. This influences most ATC functions, defining exactly how they must be

implemented to ensure homogeneity throughout the domain.
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Table 2-1: Comparison of road, rail, maritime and air domain characteristics for TMCs

Road Rail Maritime Air
Local, Local,
Scope Area of Local, Regional, Local, Regional,
P operation Regional National, Regional National,
International International
Physical 2 DoF 1 DoF 2 DoF 3 DoF
Vehicle Capabilities ~ constraints
Traffic types  Very Diverse Uniform Diverse Diverse
Predictability Random Discrete Variable Discrete
Route choice
Traffic Behaviour known to No Yes Possibly Yes
TMC?
Treatment Flow Individual Individual Individual
Ph.y szcal. Yes Yes No No
manipulation
yres Direct
TM Capabilities ; Yes Yes Yes Yes
assistance
I.n / ormatzqn Yes Yes Yes Yes
dissemination
Highways
Regulatory Agency,
. . ORR, IMO, CAA
Political authority DVLA, RSSB UN ICAO
examples DSA,
Police

2.5 System Functions

System functions are the activities undertaken within TMCs in pursuit of their
objectives. The traffic management process is comparable across domains; this is
evident in how TMC functions can be grouped despite the individual differences caused
by domain characteristics. All TMCs monitor their network to establish real-time
conditions and predict future changes. This information is the basis for management
decisions which are then implemented to affect traffic. Feedback enables the success
of decisions to be measured and guides future actions. In addition all TMCs have
supporting functions enabling them to operate, for example business functions such as

human resources.

TMC functions within all domains have been the subject of many studies enabling a
comparison to be produced, useful studies include, for road (Folds et al., 1993; Kelly &
Folds, 1998; Mitta, Kelly, & Folds, 1996; Nowakowski et al., 1999; Technical Committee
16 Network Operations, 2006; TRKC, 2009), rail (Curchod & Genéte, 2002; Davey,
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2012), maritime (Devoe etal., 1979; IMO, 2012; TRKC, 2009; Van Dam et al., 2006; VTS
Committee, 2008) and air (CAASRG, 2012b; Hopkin, 1989, 1995; Wickens et al., 1997).

2.5.1 Monitoring

Monitored information relates to the infrastructure, traffic conditions, environmental
conditions, geographical information and event information. Examples for each

domain are provided in Table 2-2.

Infrastructure

All domains have static infrastructure, including links, such as roads and railway tracks,
and destinations, for example stations, ports and airports. Road and rail domains also
have dynamic infrastructure which can be manipulated, for example Variable Message
Signs (VMSs), points and signals. TMCs must know what infrastructure is within their

jurisdiction, as well as the status of variable infrastructure.

Traffic Conditions

Both real-time and predicted traffic conditions are used to guide management
decisions. Real-time monitoring methods are dependent on the characteristics of the
domain traffic such as its behaviour, while predictions can be based on real-time

conditions, historical trends and physical network constraints.

Road traffic flows are defined by their location, direction, speed and occupancy levels
(Nowakowski et al., 1999). Assessment is carried out using technologies such as
induction loops, ANPR cameras and Close Circuit TeleVision (CCTV; Cooper, 2004;
Kelly, 1999).

Rail traffic is monitored on an individual basis, establishing position, speed and
direction using track circuits, transponders, CCTV and planned schedules (Davey,

2012).

Maritime traffic includes anchored and shipping vessels, is treated individually and
monitored using technologies such as radar, transponders (Automatic Identification
Systems (AIS)) and VHF reports (Van Dam et al., 2006). In addition to position, speed
and direction, it is necessary to know a vessel’s physical properties such as size and

maximum speed, to plan movements.
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Air traffic includes all aircraft at airports, on approach and en-route. Similarly to the
maritime domain radar and transponders are used to identify aircraft’s location,
altitude, speed and direction (CAASRG, 2012b), visual monitoring is also used at
airports. Future ATC systems are expected to rely more on vehicle-centric technologies
such as Automatic Dependent Surveillance (ADS) (Prinzo, 2004), which enable aircraft
to broadcast information to ATC and other aircraft, this has significant benefits in
uncontrolled airspace and is vital for free flight (Grundmann, 1996), where many

routing decisions are devolved to the aircraft.

Environmental Conditions

Environmental conditions have a significant impact on vehicle and transport network
performance (House of Commons Transport Committee, 2011; Strong, Ye, & Shi, 2010).
Real-time information is gathered from sensors and confirmed visually. Sensor
information can influence operators decision-making and be used by automated
systems (Kelly & Folds, 1998), for example automatically displaying warning messages
on VMSs. Weather predictions are used for planning within all domains, but are
particularly important for maritime and air domains, each requiring specialised

forecasts to operate effectively (Corbet, 1992; Evans, Weber, & Moser, 2006).

Geography

Each domain occupies and interacts with the geographic environment, which can be
shown using maps. Road and rail domains can be considered two dimensional, height
variations not being considered for traffic management. Maritime and air domains are
three dimensional, the topography of the environment being crucial for the safety of

ships and aircraft.
Events

Events are planned activities that will impact the network, as opposed to unplanned
incidents (Highways Agency, 2009), meaning they can be managed proactively. Events
can originate directly from the TMC, for example planned maintenance to TMC systems,
or from third parties, such as statutory undertakers. TMCs must coordinate with

relevant third parties when required information cannot be gained by the TMC directly.

Table 2-2 shows that within all domains, TMC operators are responsible for
monitoring a wide range of information, with varying relevance and importance to the

traffic state. Operators must amalgamate these information sources to depict the
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current traffic state and predict future changes. Enabling operators to do this

effectively is a significant Human Factors issue; the design of monitoring functions

must show operators what is important and why, without overloading them with

information.

Table 2-2: Examples of monitored information for traffic management domains

Road Rail Maritime Air
Roads, Track, Bridges, AAH;EO(:E:‘
Static Junctions, Stations, Canals, . P
. . infrastructure
Signs Signs Ports
- gates etc.
Infrastructure
Electrical Electrical
infrastructure infrastructure
Dynamic (VMS, traffic (Signals etc.), Events Events
lights etc.), Points,
Events Events
ANPR,
Induction loops, Lo
Visual, :11:;::11; C;;iiuel;z’ Radar, Radar,
. CCTV, P ’ AIS, Direction ADS,
Real-time . CCTV, . .
Radio reports / finding, VHF (Radio),
TMC Planned VHF (Radio) Visual
Traffic Floati ’ hicl schedule
Conditions oating vehicle
data
Flow Future vehicle Future vehicle Future vehicle
. . position, position, position,
Predictions predrlrfct)lé)er;z and Conflict Conflict Conflict
detection detection detection
. Sensors, Sensors, Sensors, Sensors,
Real-time Visual Visual Visual Visual
Environmental isua isua isua isua
Conditions _ General General Maritime Aviation
Predictions
meteorology meteorology meteorology =~ meteorology
Geography Man.ag ement 2D 2D 3D 3D
environment
Within TMC Rlanned P?lanned P?lanned Elanned
maintenance maintenance maintenance  maintenance
Events Other TMCs, Other TMCs, Other TMCs,  Other TMCs,
Third parties Statutory Statutory Shipping CAA,
undertakers undertakers companies Military
2.5.2 Decision-making

Effective decision-making is fundamentally important for the safe and efficient running

of all complex socio-technical systems (Jenkins, Stanton, Salmon, Walker, & Rafferty,

2010), such as traffic management. Decisions are based on monitored information, and

are predominantly made by operators; however technical systems may assist, for
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example automated VMS messages (Kelly & Folds, 1998). Decisions relate to deciding

whether action is required, and what form any action should take.

A useful decision-making model is to assume a normal standard of performance and
categorise any deviation as an error, prompting a particular corrective sequence of
actions (Rasmussen, Pejtersen, & Goodstein, 1994). Although this is idealised, dynamic
and uncertain environments, such as those found in traffic management, make it
difficult to define the actions that will return normal performance (Jenkins, Salmon,
Stanton, Walker, & Rafferty, 2011), it does show how the need for action can be

identified.

TMCs are effectively in either a normal or exceptional state. In the normal state
network performance is above an acceptable tolerance, any reduction, or potential
reduction, below this tolerance causes an exceptional state, implying management
decisions are required. The normal state may be theoretical, never being achieved if
traffic requires constant management, as is the case in rail and air domains; however
the exceptional state must still be defined. Human Factors must be considered to
ensure that monitoring information supports operator’s natural decision-making

abilities, allowing them to accurately decide whether or not action is required.

The most appropriate response is dictated by the reasons for entering an exceptional
state. Reasons can be characterised by scope, the extent of the network being affected,
severity, the impact on the affected area, and type, whether it is planned (event) or
unplanned (incident). A severe but localised incident will logically require different
actions to pre-emptive management of commonly occurring congestion. System design
must enable operators to define these characteristics for any context using monitoring
information, and then enable potential actions to be judged for their effectiveness
before implementation, for example comparing the impact of two diversion routes and

choosing the least disruptive.

2.5.3 Interventions

Potential interventions vary between domains and can be specific to each TMC based
on local technological constraints (Nowakowski et al., 1999). Within the air domain
interventions are also dependent on the category of airspace being managed (CAA,
2012). Intervention’s impacts can be described as physical manipulation of

infrastructure, provision of direct assistance and information dissemination; examples
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for each domain are provided in Table 2-3. An important consideration is that an
intervention’s impact cannot necessarily be described by a single category, for example
within railway signalling, the act of changing the signal is physical manipulation but

the message provides direct assistance by interacting with a specific train.

Physical manipulation involves changing a variable component of the network under
direct TMC control in order to affect traffic; this is possible in road and rail domains.
Methods used by road TMCs include ramp metering and signal timing adjustment
(Nowakowski et al.,, 1999). Physical manipulation is crucial within the rail domain,
TMCs being responsible for train routing including adjusting point settings, signalling
and in some cases directly operating trains (Davey, 2012). Within maritime and air
domains traffic is under local control and variable infrastructure is limited or non-

existent, therefore interventions cannot be classified as physical manipulation.

Direct assistance relates to interactions with individual vehicles not physically under
the TMC'’s control. Information provided can be either advisory, to aid decision- making,
or mandatory, to instruct when necessary. The volume of traffic being managed in the
road domain generally makes direct assistance unfeasible, however TMCs can assist
indirectly by interacting with Road Traffic Officers and emergency services
(Nowakowski et al., 1999). In rail, signals provide mandatory instructions to trains
(Davey, 2012), additionally TMCs can alter planned routes and timetables in response
to network conditions. Advisory information can also be provided, for example
providing environmental condition warnings. Both ATC and VTSs provide advisory and
mandatory information such as routing advice and weather reports, either at the
request of the pilot/captain or at the discretion of the TMC (CAASRG, 2012b; VTS
Committee, 2008). VTS assistance is largely advisory, in contrast to ATC which is

predominately mandatory.

Information dissemination refers to the provision of information to all relevant traffic,
this can also be advisory or mandatory, and occurs within all domains. Information can
be disseminated using variable infrastructure such as VMSs or directly to vehicles, for
example through radio messages. Weather warnings, traffic reports and rule changes,
such as speed limit adjustments, are common types of information disseminated to
traffic. Wider dissemination is also possible, informing users not currently using the
transport network, for example through the internet (Brown, 1997). Information
dissemination is particularly important within the road domain due to limited options

for direct traffic control, road TMC success has been linked to their ability to influence
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drivers’ decisions through the dissemination of timely, accurate and complete

information (Murray & Liu, 1997).

As shown in Table 2-3 there are many potential interventions within all domains for
managing a situation. Furthermore, multiple interventions may need to be considered
simultaneously, or as alternatives, to solve complex problems. The Human Factors
difficulty is ensuring system design links the possible impacts of potential
interventions with the operator’s requirements for decision-making information. Done
effectively this would enable operators to compare intervention options against the
demands of the current context, allowing them to intervene as effectively as possible.

Table 2-3: Examples of potential TMC interventions

Road Rail Maritime Air
Variable lane
control, Points
Infrastructure Ramp metering, . . None None
. : Signalling
Signal phasing
Physical adjustment,
Manipulation
Vehicle None ATO, None None
ATP
Emergency Slgnalllr.lg, Traffﬁc. Directing
Mandatory services, Timetabling, Organisation aircraft
Direct RTO Route setting Service
Assistance . Navigati l
- mergency Specific av1gat10na Specific
Assistive services, .. Assistance ..
advisories . advisories
RTO Service
Variable speed
Via limits, VMSs, Platform None None
Infrastructure  Other signage information
(car parks etc.)
Disseminate
Information . . General
To Vehicles Radio reports, General Information advisories,
TMC advisories Service Weather
reports
Wider Radio, Radio, Radio, Radio,
Distribution Internet, Internet Internet Internet
2.5.4 Feedback

Traffic management systems can be described by the control loop concept, with a
desired goal, a means of implementation to achieve the goal and feedback to establish
whether the goal has been achieved (Norman, 1990). Feedback enables system
performance to be monitored and actions to be adapted if necessary. To do this

effectively Norman (1990) stated that feedback must be relevant, unobtrusive and
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accurate, particularly when operators have a significant monitoring role, such as within

traffic management.

Feedback regarding the transport network can alert operators to potential problems
as well as providing a measure of intervention’s impact. There is crossover between
monitoring and feedback functions, for example traffic flow rates monitor traffic
conditions at a point-in-time, but can also be used to show changes in response to an

intervention, providing feedback regarding the intervention’s success.

Dedicated feedback functions provide specific assistance, for example problems caused
by vehicle’s actions or planned routes can be identified by conflict detection systems in
rail, maritime and air domains (Davey, 2012; Hopkin, 1989; Van Dam et al., 2006) and
incident detection systems in the road domain (Williams & Guin, 2007). Feedback is
also provided regarding TMC’s internal systems, providing confidence that they are
working correctly. This is important for ensuring decisions are based on accurate

information and are implemented effectively.

2.6 Conclusions

TMCs are used to improve transport efficiency and safety, and reduce the
environmental impact of road, rail, maritime and air transport networks. While there
are similarities in purpose between these domains the environment imposes specific
constraints upon TMCs’ operation and directly influences interactions with traffic. That
said the traffic management process itself was found to be relatively similar across
domains, all TMCs monitoring real-time and predicted network conditions, deciding
how to manage traffic and intervening within the network when necessary. Functions
arising from this process are also directly comparable between domains; all TMCs
incorporate monitoring, decision-making, intervention, feedback and support
functions. The specific implementation of these functions is however affected by
domains’ individual characteristics, in particular monitoring and intervention

functions, both being dependent on vehicles’ capabilities and traffics’ behaviour.

Finally considering the key challenges specifically affecting road traffic management
gives rise to two unique issues suitable for further investigation. Firstly, how to
accurately monitor the road network for problems, given the volume and distributed
nature of traffic being managed, and provide this information to operators. Secondly,

how to intervene effectively when problems do occur, in particular how to facilitate use
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of indirect methods to influence traffic, such as information dissemination, given that
road TMCs have relatively little physical control over the network. To understand these

issues further observational studies will be conducted in urban road TMCs in chapter

3.
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Chapter 3: Congestion Management in Urban Traffic

Management Centres

3.1 Introduction

Congestion occurs when the demand for transport infrastructure exceeds its capacity
(Everall, 1972) and is forecast to cost the UK economy £22 billion by 2025 (Eddington,
2006), making it a significant national issue. With demand for road transport predicted
to increase at least 34% by 2035 (Department for Transport, 2012b) and with limited
options for physical expansion (Baskar et al, 2011), maximising the utilisation of
existing networks will be critical for their future effectiveness (CEC, 2006). Capacity
reducing events can also have a detrimental effect on performance, road traffic
incidents alone having been estimated to account for 50% of delays on US highways
(Bertini et al., 2005) and with road traffic deaths predicted to become the fifth leading
cause of death by 2030 (currently eighth) (World Health Organisation, 2013) the

problem could increase.

Traffic management is part of the solution, which through planning, monitoring, and
control or influencing of traffic (Transport Research Knowledge Centre, 2009) aims to
maximise road capacity, minimise incident’s impact, manage demand and assist
emergency services, facilitating the movement of trafficc with minimal delay,
throughout the road network (Folds et al.,, 1993) and implemented through Traffic
Management Centres (TMCs). TMCs manage many urban traffic networks as well as
inter-urban routes, acting as a central hub to collect information from a wide array of
sources and then managing traffic through physical manipulation of infrastructure, by
directly assisting vehicles and disseminating information (see Murray & Liu, 1997;

Nowakowski et al., 1999 ).

TMCs are complex socio-technical systems (Walker et al, 2008) and a form of
command and control (Walker et al., 2010), having a common goal with interacting
sub-goals, requiring communication and coordination between multiple agents and
utilising complex technology. The domain can also be considered from a distributed
cognition perspective (e.g. Hutchins, 1995) involving multiple operators, teams and
technical artefacts, cognition within the system transcends the boundaries between

individual agents (Hutchins, 1995).
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Effectively modelling the traffic management domain, indeed any cognitively
distributed system, is difficult (Stanton, 2014), individual Human Factors methods
being unable to adequately describe their complexity (Stanton, Salmon, Walker, Baber,
& Jenkins, 2005). Nevertheless, gaining a better understanding of the traffic
management process is vital in order to enable the technical systems used within TMCs

to be evaluated and improved.

Distributed cognition has been studied within several types of control centre, including
Air Traffic Control (ATC; Inoue et al,, 2012; Walker et al., 2010), emergency services
(Houghton etal., 2006), energy distribution (Salmon et al., 2008), railways (Farrington-
Darby, Wilson, Norris, & Clarke, 2006; Walker et al., 2006) and submarines (Stanton,
2014). A comprehensive analysis framework that has been used is Event Analysis of
Systematic Teamwork (EAST; Stanton, Baber, & Harris, 2008). EAST is a systems
ergonomics method which considers complex socio-technical systems holistically
without favouring either subsystem and enables both quantitative and qualitative
analysis based on graphical network diagrams (Stanton, 2014), which themselves have
been shown to have advantages over traditional ethnographical approaches (Walker
et al,, 2010). Temporal aspects of the network can also be modelled effectively (see
Griffin, Young, & Stanton, 2010). EAST does not provide direct recommendations but
the analyses can be used to identify areas limiting performance or where
improvements could be made (Stanton, 2014). This chapter will apply EAST at a macro
level to congestion management within urban road TMCs, with an aim that the analysis
will go on to inform evaluation of the technical systems used within TMCs and any

subsequent redesigns.

3.2 Methodology

EAST was originally a multi-method approach (see Walker et al., 2006) incorporating
a number of established ergonomics methods, including Hierarchical Task Analysis
(HTA; Annet, 2005), Critical Decision Method (Klein & Armstrong, 2005) and
Coordination Demand Analysis (CDA; Burke, 2005), outputs can also be based directly

upon observational data (Stanton, 2014), this version is used here.

Systems are considered in terms of the tasks undertaken, social agents involved and
information used, each element being depicted graphically through the creation of
three primary networks, together providing a detailed view of the system’s complexity

(Griffin et al., 2010). These primary networks are described below;

28



Chapter 3: Congestion Management in Urban Traffic Management Centres

e Task Networks describe the relationships between tasks and their sequences
and interdependences.

e Social Networks analyse the organisation of the system (i.e. communication
structure) and the communications which take place between agents.

e Information Networks show the information used and communicated by agents

during a task.

This graphical approach enables networks to be assessed qualitatively (e.g. Leavitt,
1951), through visual assessment, and also quantitatively, by calculating Social
Network Analysis (SNA; Driskell & Mullen, 2005) metrics (Stanton, 2014; Stanton et al.,
2008). Although quantitative analysis has predominately been used solely within social
networks (e.g. Houghton et al., 2006) Stanton (2014) showed that the calculation of
SNA metrics for all three primary networks could be beneficial. SNA enables each
network to be analysed as a whole as well as investigation into individual node’s
behaviour and interactions. A description of each metric used is provided in the
sections below. A test statistic of a metric’s mean plus one standard deviation can then

be used to identify significant nodes within each network (Houghton et al., 2006).

A further benefit of the graphical depictions of task, social and information networks is
that they can be combined, enabling the interactions between networks to be depicted
and providing greater insight into the system’s workings. This network of networks
approach is fundamental to EAST (Stanton, 2014) and enables distributed cognition to

be visualised. Figure 3-1 shows the interactions between primary networks.

3.2.1 Global Metrics

e Density is the number of links divided by the number of potential links
evaluating the degree to which information is distributed across the network.

e (ohesion considers only reciprocal links; quantifying a network’s linearity.

e Diameter is the distance between each side of the network, comparing it to the
maximum possible diameter (n-1, where n is the number of nodes) shows the

level of interaction between nodes.

3.2.2 Individual Metrics

e Emission and Reception are the number of links from and to a node.

e Eccentricity is the number of links from a node to the other side of the network.
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Sociometric Status relates a nodes emission and reception to the total number
of nodes in the network as a measure of its individual importance.

PageRank (see Page, Brin, Motwani, & Winograd, 1998) is a more sophisticated
importance measure, a node’s value is dictated by the importance of connected
nodes and the weighting of links.

Centrality defines a node’s influence within the network; there are various
methods of calculation including Bavelas-Leavitt (B-L) and Eigenvector (EV).
The allocation of decision rights throughout the network can be quantified by
dividing the number of nodes exceeding the mean centrality by the network size.
Farness is the sum of the shortest distances between the node and all others.
Closeness shows how fast information can be spread from a node around the
network; it is the inverse of farness.

Betweeness describes a node’s power as an intermediary by quantifying how

often it appears between any two others.

Task
Network
Distribution of Distribution of
information between tasks among
tasks Distribution and network agents

communication of information
between network agents and
among tasks

Information Social

< >

Distribution and
communication of information
between network agents

Network Network

Figure 3-1: EAST's network of networks approach (adapted from Stanton (2014))
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3.3 Data Collection and Analysis

Four TMCs were studied, Bristol, Cardiff, Dorset and Nottingham. All are managed by
local authorities, Bristol, Cardiff and Nottingham at city level with Dorset at county
level. Bristol and Nottingham TMCs are of similar size, responsible for the urbanised
areas of each city, 40 and 30 square miles respectively. Although Cardiff is a similar
sized city to Bristol and Nottingham its TMC is significantly larger, owing to the
amalgamation of police CCTV and public space monitoring control centres into a single
location as well as a need to manage Cardiff’s tunnel twenty four hours a day. Dorset’s
TMC is responsible for the entire county though management is predominantly focused
around the towns of Christchurch, Dorchester and Weymouth, with some key trunk

routes are also managed, the TMC itself is significantly smaller than the others. The

photographs in Figure 3-2 show views of each TMC.

Figure 3-2: Bristol, Cardiff (BBC News, 2010), Dorset and Nottingham (Nottingham
City Council, 2013) TMCs (clockwise from top left)

TMC operations were observed over a working day at each TMC, with informal
interviews conducted with the operators on duty when their workloads allowed.
Operators came from a range of backgrounds and had varying experience levels;
although typically greater than five years some were new to the profession. Several
congestion scenarios were observed, including unexpectedly high traffic demand and
vehicle breakdowns, which required management. These provided an opportunity to
supplement observations with in-depth technical critiques and insights from the

Subject Matter Experts (SMEs).
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EAST was conducted as described by Stanton (2014) with task, social and information
network diagrams produced from the observational data. Social Network Analysis
(SNA) metrics were then calculated for individual nodes and entire networks using
AGNA (version 2.1.1) and Gephi (version 0.8.2 beta). Combined (task and social,
information and social, information and integrated) networks were then produced and
analysed qualitatively. The findings from each EAST phase are presented in the

following sections.

3.4 Task Network Analysis

The task network is shown in Figure 3-3 and is applicable to all TMCs. The network can
be described as circular, the system assumed to be in a state of normal performance
until a problem is identified, causing an exceptional state and triggering the
management process. This process is conducted through seven linear phases
comprising: monitoring, contextualisation, prioritisation, personnel allocation,

strategy development and selection, strategy implementation, and feedback.

Firstly the network is monitored using a range of sources, including CCTV, Urban
Traffic Management and Control (UTMC) systems (e.g. vehicle counts, incident
detection), digital communications (e.g. email, Twitter), internal communications (i.e.
discussion between TMC personnel) and analogue communications (e.g. reports by
phone). Monitoring is a constant task with CCTV described as particularly important,

being accurate, up-to-date and reliable.

Once identified, the scenario’s context is established. General details such as time,
location and the overall status of the network are noted and the problem site and
surrounding area are investigated further to try and understand the cause and
implications to traffic. This enables the extent, severity, complexity and probable time
requirement of the scenario to be judged, allowing prioritisation of management

activities.

Personnel must then be allocated to the scenario; this is achieved by considering its
requirements (e.g. number of personnel required, useful specialist knowledge) against
the skills and experience of, and demand for, available personnel. Large or complex
scenarios may require coordination between multiple personnel; conversely if a single

operator is available this phase is trivial.
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Management strategies are then developed, following a linear process and based on
information from the contextualisation and prioritisation phases. Available options are
considered (e.g. availability of on-site resources and their capabilities) against the
scenario’s management requirements and used to develop potential strategies. A
cost/benefit analysis enables comparison and selection of the perceived best solution.
Implementation can incorporate physical manipulation (e.g. signal timing adjustment),
direct assistance (e.g. on-site personnel moving a broken down vehicle) and
information dissemination (e.g. Variable Message Sign (VMS) messages, Twitter
updates). Doing nothing may also be strategically valid, if, for example, the situation is

likely to resolve itself quickly or no other options are available.

Finally, feedback is provided by monitoring functions, enabling impacts to be observed.
It can then be decided whether normal performance has resumed, if not strategy

development, selection and implementation are repeated until the scenario is resolved.

As an example during observation at Bristol excessive congestion was noticed on CCTV.
An investigation using CCTV, UTMC systems and online sources identified the problem
as inefficient traffic light phasing. There were few other time priorities acting upon the
operator, so the issue was dealt with immediately by altering the light's phasing

(physical manipulation). The situation was then monitored until the issue was resolved.
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Figure 3-3: Task network for congestion management
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Table 3-1: Analysis of task network
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Normal Performance| 5 2 10 2.19 1.7 16.1 5.4 6.5 154 0
Monitor UTMC Systems | 2 7 9 2.81 2.8 19.4 7.2 7.6 132 76
Monitor Internal | -, 9 281 28 194 72 76 132 76
Communications
Monitor CCTV | 2 7 9 281 28 194 72 76 132 76 Eq
. e —
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Communications g
- =
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Identify Problem | -, = ¢ 8 5 64 188 10 83 121 347
Occurrence
Identify Location | 1 16 094 23 16.5 32 36 274 50
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Monitor Internal | -, =, 9 281 28 194 72 76 132 76
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Monitor CCTV* | 2 7 9 2.81 2.8 19.4 7.2 7.6 132 76 é
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Test Statistic| 5.0 4.8 15.5 2.76 5.1 18.6 6.0 7.0 268 323

7 5 10 3.75 6.4 18.1 10 7.4 135 130

The task network is uniform and directed (non-symmetric) with 33 nodes and 86 links.
The network’s diameter is 16 corresponding to moderate interaction. The network’s
density is 0.08, meaning there is low distribution of information throughout the
network, while cohesion is 0.02 indicating a relatively low amount of feedback
throughout the task process. The network is deep and essentially linear with each
phase completed in order, even though tasks within most phases can be undertaken

concurrently, there are therefore strict dependencies within the network.

Individual metrics are presented in Table 3-1 and indicate the importance of the output
tasks from each phase, all typically having high importance (sociometric status and
PageRank) and betweeness values. Monitoring task’s importance (including as
feedback) is evident with all of these tasks having high sociometric status, centrality
and closeness. Tasks within the strategy development and selection phase all have high
betweeness, owing to this phase’s central position within the task process, as well as

relatively high PageRank values.

Fourteen tasks have B-L centrality scores higher than the mean value (16.7)
representing moderate allocation of decision rights throughout the task process. This,
combined with low information distribution and moderate interaction, is consistent
with a hybrid hierarchical (chain) and star network archetype (see Leavitt, 1951;
Stanton, Walker, & Sorensen, 2012).
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Social Network Analysis

Social agents can be grouped by geographical location and are described below.

Traffic Management Centre

TMC Operators are responsible for managing traffic and the system’s SMEs;
typically two operators are present however this can vary.

Bus Lane Enforcement Personnel identify and prosecute vehicles illegally using
or obstructing public transport infrastructure using CCTV.

Parking Enforcement / Bollard Control Personnel monitor CCTV for illegal
parking and direct parking enforcement personnel, responsible for controlling
security bollards around the city centre.

Public Space Monitoring Personnel monitor CCTV for antisocial behaviour,
assisting police.

Police CCTV Personnel monitor CCTV for crime, assisting police operations.
Third Party Representatives act as a liaison between the TMC and a third party,
e.g. public transport providers.

SCOOT Engineers are responsible for maintaining and upgrading the adaptively
controlled traffic light systems using SCOOT.

CCTV Application controls the TMC’s CCTV cameras.

UTMC Applications are software used to manage the network, e.g. COMET
(Siemens Traffic Solutions, 2009), Argonaut (Cloud Amber, 2012).

Road Network

Traffic Monitoring Equipment, for example CCTV cameras and induction loops.
Traffic Management Equipment, for example traffic lights and VMSs.

On-site Monitoring Personnel, for example parking enforcement personnel.
On-site Management Personnel, for example traffic management contractors.
Vehicular, Public Transport, Emergency Services, Cyclists and Pedestrians are the

categories of traffic using (or potentially using) the road network.

External

Public Space Monitoring and Emergency Services Control Centres monitor public
areas for criminal activity and manage emergency service operations

respectively.
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e Additional Information Providers provide extra information to aid decisions
such as weather reports (e.g. the Met Office) or wider traffic conditions (e.g. the
Highways Agency)

e Radio Stations distribute information to traffic and other agents.

e Traffic Data Distribution incorporates the dissemination of information to
traffic and third parties directly by the TMC and through intermediaries.

e Other Transport Control Centres includes other road TMCs as well as public

transport control centres (e.g. Bus, Tram)

There is a temporal dimension to the task process, with significant social differences
between phases. Three social networks were therefore constructed for each TMC, the
first covering ‘information phases’ (monitoring, contextualisation, prioritisation and
feedback), the second modelling personnel allocation, the third describing ‘strategy

phases’ (strategy development, selection and implementation).

Construction of each Social Network Diagram (SND) utilised an association matrix to
quantify the importance of links between agents through weighting. Within most
previous application of EAST weights have been based upon empirical measurement
of the number of communication transactions that occur (e.g. Houghton et al., 2006;
Stanton, 2014), however within traffic management many communications occur
outside of the TMC making them difficult to measure and the volume of
communications may not reflect importance, for example if the communication is
irrelevant to the scenario being managed. To resolve this issue links have been
constructed using a qualitative method utilised within social sciences in which links
are weighted based on their frequency of use and relevance (see Bevelas, 1948; Leavitt,
H.J., 1951). Each link is assigned a score of 1-3 for how frequently it occurs (1 = low
frequency, 2 = moderate frequency, 3 = high frequency) and its relevance (1 = low
relevance, 2 = moderate relevance, 3 = high relevance) based on discussion with SMEs.
The relative importance of a link can then be calculated by multiplying frequency by
relevance, giving a score between 1 and 9. To aid clarity links have been colour coded
according to importance, green for high importance (7-9), yellow for moderate

importance (4-6) and red for low importance (1-3).
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3.5.1 Monitoring, Contextualisation, Prioritisation and Feedback

Within these phases the flow of information is generally from the road network and
external environment into the TMC where it is used within operator’s decision-making.
This can be seen in all association matrixes (Table 3-2 to Table 3-5) with 53%, 65%,
41% and 47% of links received within the TMC in Bristol, Cardiff, Dorset and

Nottingham respectively.

Overall the TMC’s information gathering networks are relatively similar, with all
employing comparable sources to build a picture of what is happening, this is reflected
within both individual and global metrics. The main differences observed are in the
physical structures of the control rooms themselves. While all have human operators
and several technical systems are used to support them, most employ a variety of other
personnel who perform additional functions, for example CCTV monitoring and traffic
enforcement. These personnel provide additional links to the environment and the
informal communications between them and operators are invaluable for enabling as

much of the network as possible.

Each social network is weighted (non-uniform), directed (non-symmetric) and has a
diameter of 5, suggesting a moderate amount of interaction compared to the maximum
possible diameters. The network densities of 0.234 (Bristol), 0.262 (Cardiff) and 0.225
(Dorset and Nottingham) corresponds to moderate-low information distribution in
each location. Two thirds of the communications are reciprocal as shown by the
cohesion values of 0.153 (Bristol), 0.177 (Cardiff), 0.137 (Dorset) and 0.14
(Nottingham), many of the links representing a dialogue between operators and

another agent, whether face-to-face, via phone, internet or machine interface.

Qualitatively the networks resemble a star archetype (see Leavitt, 1951) with TMC
operators central, being the ultimate recipients of information. Quantitative metrics
(Table 3-4) support this, TMC operators having the highest sociometric status and EV
centrality as well as high betweeness. This contrasts with other control room domains
where technical agents have been the most central (e.g. Houghton et al,, 2006; Walker
et al,, 2010), possibly because humans provide the necessary degree of adaptability
required to deal with frequently unpredictable scenarios. In each case approximately
half of the nodes exceed the mean exceed the mean B-L centrality values (9.54 (Bristol),
10.86 (Cardiff), 8.47 (Dorset) and 8.99 (Nottingham)) corresponding to moderate

allocation of decision rights. This along with the observed values of information
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distribution and interaction are consistent with a star network type (see Stanton et al.,

2012).

Star networks have been shown to be effective for problem-solving tasks (Leavitt, 1951)
and would therefore seem appropriate for the task of identifying network problems
and establishing their context, presumably having evolved over many generations of
traffic management. A potential issue however is that any reduction in the central

agent’s performance is likely to significantly impact the entire system.

A surprising finding from the individual metrics is that while traffic provides the
purpose for the TMC all types having fairly high farness with low scores for other
metrics. This is because communications with the TMC are indirect, putting them on
the system’s periphery. External agents have high centrality but low importance,
having extensive connections but low relevance due to their generalised focus,
therefore this information is predominantly supplemental to local sources such as
CCTV and dedicated equipment which typically have higher importance, centrality and

betweeness metrics.
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Table 3-2: Association Matrix for information phases at Bristol

Frequency / Relevance (Importance)

1D Agent | 1 [ 2 ]3] a]5s ] 6] 7] 8] 910 11]12]13]14[15]16]17] 18] 19] 20]

1 TMC Operator 1 2é3 Z(g %4)2 %? %? ?({)3 %
2 TMC Operator 2 %2]3 %‘{2 24]2 %;} 343 ?6/]3 g
3 Bus Lane Enforcement Personnel %‘/ﬂz %‘/ﬂz %
4 Third Party Representative %4)2 %4)2 %é)z g
5 UTMC Applications ?4]3 ?4]3 ?Eé)s ?6/]2 E
6 CCTV Application 3(’4)3 3(’4)3 3/3 ! E
7 Traffic Monitoring Equipment %;5 %;g

8 Traffic Management Equipment ?({)2

9 On-site Monitoring Personnel 2é3 2é3

10 On-site Management Personnel §
11 Vehicular Traffic %
12 Cyclists ;3
13 Pedestrians

14 Public Transport 2(‘/5 ?é)z

15 Emergency Services

16 Traffic Data Distribution

17 Other Control Centres =
18 Additional Information Providers E,,
19 Radio Stations 2
20 Public Space Moni.toring + Emergency

Services Control Centres

‘ Traffic Management Centre ’

Road Network

1

External
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Figure 3-4: Social Network Diagram for information phases at Bristol
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Table 3-3: Association Matrix for information phases at Cardiff

Frequency / Relevance (Importance)

‘ Traffic Management Centre

Road Network

D Agent | 1 2 ]13] 45 6 | 7 | 8] 9 J10]11] 1213 [14]15] 16 [17] 18] 19 [20] 21 [ 22 |

1 TMC Operator 1 (Traffic) 2(‘/5 2(‘/5 2[[/; 2(‘/5 2((/3 ?Eg ‘

2 TMC Operator 2 (Tunnel) J f:':
3 Parking Enforcement / Bollard Ctrl. - §
4 Public Space Monitoring Personnel J g
5 Police CCTV Personnel . ‘ %D
6 SCOOT Engineer §
7 UTMC Applications E
8 CCTV Application

9 Traffic Monitoring Equipment

10 Traffic Management Equipment

11 On-site Monitoring Personnel

12 On-site Management Personnel é
13 Vehicular Traffic E
14 Cyclists E
15 Pedestrians %)3 Z(éf

16 Public Transport %)3 2[5) Z[ﬁ ?Eg

17 Emergency Services ?Eé)3 Z(g

18 Traffic Data Distribution 2/2 | 2/2 ]
19 Other Control Centres =
20 Additional Information Providers E
21 Radio Stations 2
22 Emergency Services Control Centres

1

External
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Figure 3-5: Social Network Diagram for information phases at Cardiff
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Table 3-4: Association Matrix for information phases at Dorset

Frequency / Relevance (Importance)

Traffic Management

Centre

Road Network

ID Agent 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
2/3 2/3 2/3
1 TMC Operator 1 (6) 6) 6) E
2/3 2/3 2/3 | o 2 o
2 TMC Operator 2 ) ©) ) £ g £
3 UTMC Applications 3/3 | 3/2 £ g 3
pPp 9) (6) = é (&)
4 CCTV Application %)3 !
] o ) 3/3 | 3/3
5 Traffic Monitoring Equipment ) )
6 Traffic Management Equipment ?6/]2
7 On-site Monitoring Personnel 2é3 Zé3
<
Bt
8 On-site Management Personnel ::I E
9 Vehicular Traffic é
=
10 Cyclists E
11 Pedestrians
12 Public Transport
13 Emergency Services
) o 3/2 | 3/2
14 Traffic Data Distribution (6) 6)
2/3 | 2/3
15 Other Control Centres (6) (6) TE
16 Additional Information Providers 3('é]2 3('4]2 5
-
. . 3/2 | 3/2 e
17 Radio Stations (6) (6)
18 Public Space Monitoring + Emergency || 2/3 | 2/3
Services Control Centres || (6) | (6)
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Figure 3-6: Social Network Diagram for information phases at Dorset
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Table 3-5: Association Matrix for information phases at Nottingham

Frequency / Relevance (Importance)

Traffic Management Centre ‘

Road Network

ID Agent 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19
2/3 3/3 | 3/3 2/3 2/3 2/3 | o
1 TMC Operator 1 6 @ | © (6) (6) (6) é
2/3 3/3 | 3/3 2/3 2/3 2/3
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R 3/3 3/3 3/3 )
5 CCTV Application (é) (é) é - =
. S . 3/3 3/3
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14 Emergency Services 3('5' 2(5'
15 Traffic Data Distribution Z(ﬁ Z[g
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Chapter 3: Congestion Management in Urban Traffic Management Centres

Table 3-6: Comparison of social network metrics for information phases

Emission Reception Eccentricity Sociometric Status PageRank (x102)

T E © 4|8 E © 4B E © 4|3 E B 4| 8 E D 4
TMC Operator 1 (Traffict) | 47 43 45 47 57 62 63 54 3 3 3 3 547 500 635 561 | 99 127 114 105
TMC Operator 2 (Tunnel*) | 47 46 45 47 57 65 63 54 3 3 547 529 635 561 | 99 13.0 114 10.5

Bus Lane Enforcement | 12 N/A  N/A 7 18 N/A N/A 13 4 N/A N/A 4 1.58 N/A N/A 111 | 35 N/A N/A 3.0
Parking Enforcement / Bollard Control Personnel N/A 22 N/A N/A|N/A 26 N/A N/A| N/A 4 N/A  N/A| NJA 229 N/A N/A | N/A 56 N/A N/A
Public Space Monitoring Personnel N/A- 18 N/A N/A|N/A 22 N/A N/A | N/A 3 N/A N/A | NJA 190 N/A N/A | NJA 51 N/A N/A
Police CCTV Personnel | NJ/A 21 N/A N/A|N/A 25 N/A N/A | N/A 3 N/A N/A| NJA 219 N/A N/A | N/A 54 N/A N/A
Third Party Representative | 17 N/A N/A N/A | 23 N/A N/A N/A 3 N/A° N/A N/A | 211 N/A N/A N/A| 44 N/A N/A N/A
SCOOT Engineer N/A 22 N/A N/A|N/A 26 N/A N/A| N/A 4 N/A N/A| NJA 229 N/A N/A | N/A 63 N/A N/A

UTMC Applications 33 31 33 33 33 31 33 33 4 4 4 4 347 295 388 3.67 | 6.2 9.7 6.6 6.5

CCTV Application | 35 40 30 33 35 40 30 33 3 4 3 4 368 381 353 367 | 61 113 55 6.1
Traffic Monitoring Equipment | 18 18 18 18 63 63 63 63 4 5 4 4 426 386 476 450|107 75 114 113
Traffic Management Equipment 6 6 6 6 6 6 6 6 5 5 5 5 0.63 057 071 0.67 | 1.7 2.3 1.8 1.8
On-site Monitoring Personnel 12 15 12 12 42 33 42 42 4 4 4 4 284 229 318 3.00 | 7.3 2.8 7.8 7.7
On-site Management Personnel 6 9 6 6 6 3 6 6 4 4 4 4 063 057 0.71 0.67 | 1.6 1.3 1.8 1.7
Vehicular Traffic | 21 24 21 21 0 3 0 0 4 3 3 4 1.11 129 124 117 | 39 1.4 4.1 4.1

Cyclists | 19 19 19 19 0 0 0 0 4 3 3 4 1.00 090 112 1.06 | 3.6 0.7 3.8 3.8

Pedestrians | 19 19 19 19 0 0 0 0 4 3 3 4 1.00 090 112 1.06 | 3.6 0.7 3.8 3.8

Public Transport 25 25 25 25 6 6 6 6 4 3 3 4 1.63 148 182 1.72 | 45 1.7 4.8 4.8

Emergency Services | 18 21 18 18 3 6 3 3 4 4 4 4 111 129 124 117 | 35 1.9 3.7 3.6

Traffic Data Distribution | 16 16 20 16 16 16 16 16 3 3 3 3 1.68 152 212 178 | 52 2.0 6.1 5.5

Other Transport Control Centres 20 14 20 20 23 17 23 23 3 3 3 3 226 148 253 239 | 43 29 4.5 4.5
Additional Information Providers | 18 18 14 14 2 2 2 2 3 3 3 3 1.05 095 094 089 | 39 0.9 3.3 3.5
Radio Stations 9 13 13 7 8 8 8 8 3 3 3 3 089 1.00 124 083 | 34 1.1 4.2 3.3

Emergency Services Control Centres | 14 16 20 14 14 16 20 20 3 3 3 3 147 152 235 189 | 29 3.7 4.0 4.0
Test Statistic | 32 32 32 32 41 42 44 41 4 5 4 4 370 341 433 387 | 7.6 8.5 8.6 8.1

*Cardiff Only
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Centrality (B-L) Centrality (EV x10) Closeness (x103) Farness Betweeness
s & 8 4| 8 E B 4| 8 E B ¢ | 8 & e v | 8 E e %
TMC Operator 1 (Traffict) | 13.2 145 114 124 | 10 9.8 100 10 4.0 3.2 43 4.2 25 31 23 24 58 46 46 54
TMC Operator 2 (Tunnel*) 132 152 114 124 | 10 100 100 10 4.0 34 43 4.2 25 29 23 24 58 86 46 54
Bus Lane Enforcement | 95 N/A  N/A 88 63 N/A N/A 57 28 N/A N/A 29 36 N/A N/A 35 1 N/A  N/A 1
Parking Enforcement / Bollard Control Personnel N/A 124 N/A N/A|NA 79 N/A N/A|NA 28 N/A NA|NA 36 N/A N/A|N/A 35 N/A N/A
Public Space Monitoring Personnel N/A 122 N/A N/A | N/A 82 N/A N/A|N/A 29 N/A N/A|N/A 35 N/A  N/A | N/A 4 N/A  N/A
Police CCTV Personnel | N/JA 125 N/A N/A | NJ/A 85 N/A N/A|N/A 29 N/A N/A|N/A 34 N/A N/A|NA 21 N/A N/A
Third Party Representative | 105 N/A N/A N/A | 72 N/A N/A N/A| 32 N/A N/A N/A| 31 N/A N/A N/A 4 N/A N/A N/A
SCOOT Engineer | N/A 122 N/A N/A | N/A 81 N/A N/A|N/A 28 N/A N/A|N/A 36 N/A N/A|N/A 9 N/A N/A
UTMC Applications 9.7 109 838 9.3 3.2 4.4 3.9 3.6 2.9 2.4 3.2 3.0 35 41 31 33 39 46 35 37
CCTV Application | 10.7 117 91 100 | 5.6 7.7 4.7 5.2 33 2.7 3.6 3.4 33 37 28 29 20 18 12 16
Traffic Monitoring Equipment 8.7 9.4 7.8 8.3 3.3 2.3 4.6 4.0 2.4 2.0 2.7 2.6 41 51 37 39 16 14 16 16
Traffic Management Equipment 6.6 7.4 6.0 6.3 0.5 0.6 0.6 0.5 2.0 1.7 2.3 2.1 50 59 44 47 0 0 0 0
On-site Monitoring Personnel 93 102 84 8.9 4.8 1.7 6.3 5.6 2.6 2.3 2.9 2.7 39 43 35 37 7 11 6 7
On-site Management Personnel 8.2 8.9 7.3 7.8 2.7 1.1 3.1 2.9 2.6 2.3 2.9 2.7 39 43 35 37 0 0 0 0
Vehicular Traffic | N/A 102 N/A  N/A | 33 1.4 4.5 39 2.9 2.7 3.3 31 34 37 30 32 0 16 0 0
Cyclists N/A N/A N/A N/A | 33 0 4.5 3.9 2.9 2.4 3.3 31 34 41 30 32 0 0 0 0
Pedestrians | N/A N/A N/A  N/A | 33 0 4.5 39 2.9 2.4 3.3 31 34 41 30 32 0 0 0 0
Public Transport 8.0 8.5 7.3 7.6 3.2 0.5 4.4 3.8 31 2.4 3.7 33 32 41 27 30 2 2 2 2
Emergency Services 7.5 9.2 6.9 7.2 1.8 2.0 2.6 2.3 2.6 2.4 31 2.9 38 42 32 35 1 3 1 1
Traffic Data Distribution | 10-0 104 9.3 9.6 8.1 1.6 100 9.1 3.6 2.8 4.2 3.8 28 36 24 26 50 41 46 48
Other Transport Control Centres 10.7 112 94 100 | 7.1 3.3 7.4 6.8 3.4 2.7 3.8 3.6 29 37 26 28 38 33 31 33
Additional Information Providers | /-7 8.6 6.9 7.3 6.5 0.3 5.7 6.1 3.2 2.9 3.4 3.3 31 34 29 30 1 2 0 1
Radio Stations | 80 9.8 7.2 7.6 7.9 0.5 7.8 7.8 3.2 2.9 3.4 3.3 31 34 29 30 13 18 6 9
Emergency Services Control Centres 10.7 117 98 103 | 4.8 5.7 5.8 5.4 3.4 2.9 4.0 3.7 29 35 25 27 42 28 38 41
Test Statistic | 11.4 129 101 108 | 7.8 7.5 82 751 | 34 3.0 4.0 3.7 39 45 35 38 39 41 35 37

Joshua Price

*Cardiff Only
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3.5.2 Personnel Allocation

This phase is conducted by operators talking to each other and is therefore trivial from
a social network perspective. Communications are highly relevant but only moderately
frequent, potentially not occurring at all. This network’s simplicity does not warrant

the SND, association matrix or metrics to be shown.

3.5.3 Strategy Development, Selection and Implementation

Within these phases decisions made within the TMC are transferred back to the road
network and external environment. This can be seen in all association matrixes
(Table 3-7 to Table 3-10) with 72% of links received in these locations at Bristol, Dorset
and Nottingham and 59% at Cardiff.

Greater similarity was observed between the TMCs for strategy phases than for
information phases. The reduced number of TMC agents involved in strategies meant
that local differences were not as prevalent in the TMCs’ social structures, Cardiff
having the only significant differences owing to it having police, public space
monitoring and parking enforcement personnel within the TMC and thus increasing its

capability to physically intervene with the road environment.

All social networks are weighted (non-uniform), directed (non-symmetric) and have
diameters of 5 (moderate interaction). The network densities are 0.2 (Bristol), 0.212
(Cardiff), 0.248 (Dorset) and 0.205 (Nottingham) corresponding to moderate-low
information distribution. Approximately 70% of communications are reciprocal as
shown by cohesion values of 0.142 (Bristol), 0.16 (Cardiff), 0.176 (Dorset) and 0.123
(Nottingham), as with the information phases most communications represent a

dialogue between agents.

From the individual metrics (Table 3-7) it can be seen that approximately half of the
agents exceed the mean B-L centrality values (8.8 for Bristol, Dorset and Nottingham,
10.3 for Cardiff) corresponding to moderate allocation of decision rights.
Quantitatively these networks appear to be best described as star archetypes, however
qualitatively chain network structures (see Leavitt, 1951) can be observed, decisions
emanating from TMC operators and being implemented through intermediary agents
to affect traffic. This suggests that a hybrid star-chain network is a more accurate

description. Circular feedback loops can also be observed, notably between
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management and monitoring equipment, which facilitated by UTMC applications,
enables the creation of complex strategies able to adapt to traffic conditions without

further intervention by operators.

The highest importance, centrality and betweeness metrics occur within intermediary
agents, such as monitoring and management equipment, UTMC applications and traffic
data distribution, and TMC operators, who occupy a critical position as strategy
developers. Unexpectedly, on-site management personnel are the most central agents
because of their links to traffic, management personnel having reciprocal links while
other intermediary’s links are one-way. The relative infrequent use of this agent at
Bristol is reflected in the differences between sociometric status and PageRank metrics

for each TMC.

Traffic agents have a moderate reception degree, indicative that they are strategies end
users; however all other metric scores are low as found within information phases.
While not significant, the capability to use emergency services within strategies raises

their importance, centrality and betweeness above other traffic types.

Information dissemination, both directly and through third parties, is a key tool for
traffic management (Murray & Liu, 1997). Traffic data distribution, which facilitates
information dissemination, has high EV centrality, closeness, betweeness and
moderate sociometric status, arising from its connectivity to other third parties, traffic
and the TMC. All other external agents have low metric scores, presumably because
their distance from the TMC’s area of control reduces the relevance of any
communications, which are aimed at wider audiences. This does not however mean
information dissemination is not useful, as it enables TMCs to interact with a far greater

range of people than would otherwise be possible.
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Table 3-7: Association Matrix for strategy phases at Bristol

Frequency / Relevance (Importance)

8

9

10 | 11 | 12

13

Traffic Management Centre

Road Network

ID Agent
1 TMC Operator 1
2 TMC Operator 2
3 Bus Lane Enforcement Personnel
4 Third Party Representatives
5 UTMC Applications
6 CCTV Application
7 Traffic Monitoring Equipment
8 Traffic Management Equipment
9 On-site Monitoring Personnel
10 On-site Management Personnel
11 Vehicular Traffic
12 Cyclists
13 Pedestrians
14 Public Transport
15 Emergency Services
16 Traffic Data Distribution
17 Other Transport Control Centres
18 Additional Information Providers
19 Radio Stations
20 Public Space Moni.toring + Emergency
Services Control Centres

External

‘ Traffic Management Centre

Road Network

External ‘
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Table 3-8: Association Matrix for strategy phases at Cardiff

Frequency / Relevance (Importance)

ID Agent 1 2 3 4 5 6 7 8 9 10 | 11 12 13 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
2/3 2/3 3/3 3/3 2/3
1 TMC Operator 1 (Traffic) é é (é) (é) (é)
2/3 2/3 3/3 | 3/3 2/3 o
2 TMC Operator 2 (Tunnel) (6) (6) ) 9) (6) E
3 Parking Enforcement / Bollard Ctrl. 2é3 2/3 S
=
=
4 Public Space Monitoring Personnel g
[¥]
5 Police CCTV Personnel 5;19
<
. =
SCOOT Engineer 5
6 £
[
7 UTMC Applications &=
8 CCTV Application
9 Traffic Monitoring Equipment
10 Traffic Management Equipment
11 On-site Monitoring Personnel
12 On-site Management Personnel ‘é
Vehicular Traffic é
13 4
14 Cyclists E
=4
15 Pedestrians
16 Public Transport
) 2/2 | 2/2 i
17 Emergency Services (4) (4) 4)
i o 2/3 | 2/3 2/2 | 272 | 272 2/2 | 2/2
18 Traffic Data Distribution 6 6 (4) (4) @ | @
Other Control Centres —_
19 s
20 Additional Information Providers Z(g Z(g 4) g
) ) 2/2 | 2/2 | 2/2 2]
21 Radio Stations (4) (4) 4)
22 Emergency Services Control Centres

| Traffic Management Centre

Road Network

External

|
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Table 3-9: Association Matrix for strategy phases at Dorset

Frequency / Relevance (Importance)

Centre

ID Agent 6 7 8 9 10 | 11 | 12 | 13 14 | 15 | 16 | 17 | 18
2/3
1 TMC Operator 1 (é) =
2/3 g
2 TMC Operator 2 [é) é § f-..’
UTMC Aoblicati 33 g5
3 pplications 9 e
©) g
4 CCTV Application
5 Traffic Monitoring Equipment
6 Traffic Management Equipment 343 343 343 343 343
7 On-site Monitoring Personnel
<
8 On-site Management Personnel g
) } 3/3 2/2 3
9 Vehicular Traffic ) (4) 5
Cyclists 3/3 2/2 g
10 Y (9 ) &
11 Pedestrians %;g 2(‘/3
12 Public Transport %? Z(g
) 3/3 2/2 | 2/2 | 272 | 272 -
13 Emergency Services ) (4) 4) 4) 4)
14 Traffic Data Distribution 2é3 Zé3 %‘{]2 2(4)2 2[‘/5
15 Other Transport Control Centres “ -
B
N ) ) 2/2 | 272 | 272 g
16 Additional Information Providers @) 4) (4) ‘:_3
. ) 2/2 | 2/2 | 2/2 i)
17 Radio Stations 4) (4) 4)
18 Public Space Monitoring + Emergency
Services Control Centres
Traffic Management Road Network External
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Table 3-10: Association Matrix for strategy phases at Nottingham

Frequency / Relevance (Importance)

ID Agent 8 9 10 | 11 | 12 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20
2/3 2/3
1 TMC Operator 1 (6) 6) *é
TMC Operator 2 2/3 2/3 §
2 (6) @ o
ot
Bus Lane Enforcement Personnel § =
3 s 2
= O
4 UTMC Applications %
L
5 CCTV Application &=
6 Traffic Monitoring Equipment
7 Traffic Management Equipment
On-site Monitoring Personnel
8 =<
9 On-site Management Personnel §
)
10 Vehicular Traffic =
=]
11 Cyclists ’;g
12 Pedestrians
13 Public Transport
14 Emergency Services
15 Traffic Data Distribution
Other Transport Control Centres
16 =
=
Additional Information Providers g
17 ‘:{'
18 Radio Stations =
Public Space Monitoring + Emergency
19 .
Services Control Centres

‘ Traffic Management Centre

Road Network

External ‘
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Table 3-11: Comparison of TMC's social network metrics for strategy phases

Emission Reception Eccentricity Sociometric Status PageRank (x102)

T £ 8 4|8 &£ %8 s | 8 & B 4|38 E B 4| 8 & 2 4

TMC Operator 1 (Traffic*) 39 51 33 42 39 51 33 42 2 2 2 2 411 486 388 467 | 73 117 6.7 7.3

TMC Operator 2 (Tunnel*) 39 51 33 42 39 51 33 42 2 2 2 2 411 486 388 467 | 73 117 6.7 7.3
Parking Enforcement / Bollard Control Personnel N/A° 18 N/A N/A|N/A 18 N/A N/A|NA 3 NA N/A|NA 171 N/A N/A|N/A 44 N/A N/A
Police CCTV Personnel | NJ/A~ 6 N/A N/A | N/JA 12 N/A N/A|NA 3 N/A N/A|N/A 08 N/A N/A|N/A 27 N/A N/A
SCOOT Engineer N/A° 12 N/A N/A|N/A 12 N/A N/A|NA 3 N/A N/A|NA 114 N/A N/A|N/A 34 N/A N/A

UTMC Applications 36 39 30 36 36 39 30 36 3 3 3 3 379 371 353 4.00| 63 103 5.6 5.9

CCTV Application 27 33 21 27 27 33 21 27 3 3 3 3 2.84 314 247 3.00| 50 105 4.3 4.7

Traffic Monitoring Equipment 18 18 18 18 63 63 63 63 4 4 4 4 426 386 476 4.50 | 105 11.6 109 98
Traffic Management Equipment 54 54 54 54 9 9 9 9 4 4 4 4 332 3.00 371 350 | 9.0 2.8 9.3 8.5
On-site Management Personnel 21 24 21 42 21 24 21 42 3 3 3 3 221 229 247 467 | 41 4.7 4.3 6.9
Vehicular Traffic | 16 16 16 19 28 28 28 31 4 4 4 4 232 210 259 278 | 6.6 3.0 6.8 6.6

Cyclists 16 16 16 19 28 28 28 31 4 4 4 4 232 210 259 278 | 6.6 3.0 6.8 6.6

Pedestrians | 16 16 16 19 28 28 28 31 4 4 4 4 232 210 259 278 | 6.6 3.0 6.8 6.6

Public Transport 19 19 19 22 19 19 19 22 4 4 4 4 2.00 1.81 224 244 | 51 2.8 5.3 5.2

Emergency Services 31 34 31 34 31 31 31 34 4 4 4 4 326 310 365 378 | 7.0 4.5 7.2 7.0

Traffic Data Distribution | 3¢ 36 36 36 12 12 12 12 3 3 3 3 253 229 282 267 | 68 31 7.1 6.4

Other Transport Control Centres 9 9 9 9 13 13 13 13 3 3 3 3 116 1.05 129 122 | 29 2.6 3.1 2.8
Additional Information Providers | 12 12 12 12 4 4 4 4 5 5 5 5 084 0.76 094 089 | 33 1.0 3.4 3.2
Radio Stations | 12 12 12 12 4 4 4 4 5 5 5 5 084 076 094 0.89 | 33 1.0 3.4 3.2

Emergency Services Control Centres 9 12 9 9 9 9 9 9 3 3 3 3 095 1.00 1.06 1.00 | 2.3 2.3 2.4 2.2
Test Statistic | 37 40 34 40 40 40 40 43 5 5 5 5 370 361 381 430 | 81 8.8 8.1 8.0

*Cardiff Only
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Centrality (B-L) Centrality (EV x10) Closeness (x103) Farness Betweeness

s & 2 4 | 8 E 2 4 | 8 E % s | 8 E B 4| 8 E B %
17 =] 4] b= 17 =] 4 b= 7] =] 4 b= 7] =] 4] B 7] =] 4 b=
- L] =) - L] =) - Bt =) - Bt 1=} — St 1<)
= = o = = = o = = ] =3 z = =] <3 = = =] <] >
3] o a 3] o a 3] ] a /M ] a =] < a

28 25 25 39 66 39 39

TMC Operator 1 (Traffic) | 110 138 110 110 | 69 100 69 69 | 40 36 40 40 | 25
TMC Operator 2 (Tunnel) | 110 138 110 110 | 69 100 69 69 | 40 36 40 40 | 25 28 25 25 | 39 66 39 39

Parking Enforcement / Bollard Control Personnel | N/A 108 N/A N/A | N/A 59 N/A N/A|N/A 27 N/A N/A|[N/A 37 N/A N/A|N/A 2 N/A N/A
Police CCTV Personnel | N/A 98 N/A N/A | N/A 50 N/A N/A|N/A 22 N/A N/A|N/A 45 N/A N/A|N/A 2 N/A N/A
SCOOT Engineer | N/A 95 N/A N/A [ N/A 54 N/A N/A|N/A 24 N/A N/A|N/A 41 N/A N/A|[N/A 1 N/A N/A

UTMC Applications | 96 114 96 96 | 48 55 48 48 | 33 29 33 33|30 35 30 30 |31 39 31 31
CCTVApplication | 83 104 83 83 | 36 63 36 36|27 24 27 27|37 41 3 3 |5 11 5 5
Traffic Monitoring Equipment | 84 98 84 84 | 83 53 83 83 |23 20 23 23|43 50 43 43 | 23 26 23 23

Traffic Management Equipment | 74 87 74 74 | 77 10 77 77 |31 26 31 31|32 39 32 32|10 11 10 10

On-site Management Personnel | 106 125 106 106 [ 92 77 92 92 | 36 30 36 36 | 28 33 28 28 | 48 68 48 48
Vehicular Traffic | 88 100 88 88 | 9 32 90 9 |28 23 28 28|36 43 36 36 | 10 12 10 10
Cydists | 88 100 88 88 | 9 32 90 9 |28 23 28 28|36 43 36 36 | 10 12 10 10
Pedestrians | 88 100 88 88 | 9 32 90 9 |28 23 28 28 | 36 43 36 36 | 10 12 10 10
Public Transport | 87 99 87 87 | 64 32 64 64 | 29 24 29 29 |34 41 34 349 9 9 9
Emergency Services | 99 111 99 99 | 10 47 100 10 | 32 27 32 32|31 37 31 31 |22 30 22 22
Traffic Data Distribution | 87 103 87 87 | 92 34 92 92 | 40 32 40 40 | 25 31 25 25 | 36 44 36 36

Other Transport Control Centres | 81 97 81 81 | 48 46 48 48 | 29 24 29 29 | 35 41 35 35
Additional Information Providers | 59 69 59 59 | 58 06 58 58 | 23 19 23 23 | 44 54 44 44

5

0

Radio Stations | 59 69 59 59 | 58 06 58 58 |23 19 23 23 | 44 54 44 44 | 0
4

B> O o O

Emergency Services Control Centres | 9 107 90 9 |39 43 39 39 |31 27 31 31|32 37 32 32

Test Statistic | 10.2 121 102 102 | 9.1 7.3 9.1 9.1 36 31 36 3.6 40 47 40 40 33 45 33 33

Joshua Price

*Cardiff Only
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3.6 Information Network Analysis

The information network (Figure 3-12) contains 57 nodes and 67 connections (note
that the ‘exceptional’ node has been duplicated to disentangle links). Key concepts

were identified as those having at least four connections and are described below.

e Strategy is the course of action taken to manage the scenario.

e (ause is the reason for entering the exceptional state.

e Infrastructure details the physical network components and their capabilities.

e Management Options are the potential methods available to deal with
scenarios.

e Exceptional is the information relating to the event causing exceptional
performance.

e Location is where traffic and infrastructure is within the domain.

e Traffic considers the properties of road users, such as speed and route.

e Personnel is information relating to TMC operators, including availability and
time demands.

e Network Conditions detail how the network is operating.

o Affected Traffic is the subset of traffic directly or indirectly involved with the
scenario.

e Traffic Type includes vehicular, cyclists, pedestrians, public transport and

emergency services.
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Table 3-12: Analysis of information network

" —
E £ 3 ; 2
2 2 E é E E a
s § 8 2 £ & & 3§ , ¢
2 & © E & T T § § ¢
2 9 ) 2 o = = b = 2
Information Network Node g g S 3 & S S S 5 g
=7 = » A ) ) o 2¥ /m
Traffic Type| 8 8 5 286 587 321 28 5.7 176 635
Vehicular Traffic| 1 1 6 036 089 245 0.7 43 231 0
Pedestrians | 1 1 6 036 089 245 0.7 43 231 0
Cyclists| 1 1 6 036 089 245 0.7 43 231 0
Public Transport| 1 1 6 036 0.89 245 07 43 231 0
Emergency Services | 1 1 6 0.36 0.89 245 07 43 231 0
Traffic| 5 5 4 1.79 327 349 27 6.1 162 354
Route | 2 2 5 0.71 138 272 1.0 438 208 9
Volume | 2 2 5 0.71 138 272 1.0 438 208 9
Demand | 3 3 5 1.07 197 306 16 54 185 77
Speed| 1 1 5 0.36 0.82 261 06 4.6 217 0
Location| 7 7 3 2.5 427 442 64 78 128 974
Network Conditions | 7 7 4 2.5 4.43 395 53 70 143 660
Normal | 1 1 5 036 080 286 11 5.1 198 0
Exceptional | 15 15 4 5.36 10.8 483 10 85 117 1957
External Factors| 3 3 5 1.07 2.41 29.1 1.3 5.2 194 218
Wider Traffic Conditions | 1 1 6 0.36 0.95 22.7 03 4.0 249 0
Environmental Conditions | 1 1 6 0.36 0.95 227 03 4.0 249 0
Capacity | 2 2 5 0.71 138 311 1.7 55 182 44
Infrastructure | 5 5 4 1.79 3.43 349 25 6.2 162 497
Physical | 1 1 5 0.36 0.85 261 06 4.6 217 0
Variable | 2 2 5 0.71 1.68 263 06 4.6 215 110
Traffic Priority | 1 1 6 036 089 245 0.7 43 231 0
Affected Traffic| 5 5 4 1.79 3.1 398 51 7.0 142 582
Consequences | 2 2 5 0.71 1.33 31.2 22 55 181 24
Connections | 2 2 4 0.71 1.31 325 24 57 174 0
Site Type| 3 3 4 1.07 237 316 16 56 179 218
Link| 1 1 5 0.36 093 242 04 43 234 0
Junction| 1 1 5 0.36 093 242 04 43 234 0
Cause| 4 4 5 1.43 329 341 26 6.0 166 324
Incident| 1 1 6 036 096 256 06 45 221 0
Demand Congestion| 1 1 6 036 096 256 06 45 221 0
Event| 1 1 6 036 096 256 06 45 221 0
Other Problems | 2 2 5 0.71 149 333 24 59 170 53
Time of Occurrence | 3 3 5 1.07 2.48 33.7 24 6.0 168 218
Peak| 1 1 6 036 096 254 05 45 223 0
Off-Peak | 1 1 6 036 096 254 05 45 223 0
Severity | 1 1 5 036 084 329 21 58 172 0
Probable Timescale | 1 1 5 036 084 329 21 58 172 0
Extent| 1 1 5 036 084 329 21 58 172 0
Complexity | 1 1 5 036 084 329 21 58 172 0
Test Statistic| 48 4.8 59 175 347 349 34 6.2 232 469
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Priority 036 084 329 5.8 172 0
Scope 036 084 329 5.8 172 0
Personnel 1.07 226 337 6.0 168 163
Availability 036 090 254 45 223 0

071 153 256
1.79 371 311
036 089 239
036 089 239
036 089 239
036 098 209
214 344 372
036 085 273
071 148 275
0.71 148 275
036 084 329
Probability of Success 036 084 273

Test Statistic| 4.8 4.8 5.9 1.75 3.47 349

221 2
55 182 369
4.2 237 0
4.2 237 0
4.2 237 0
3.7 270 0
6.6 152 620
4.8 207
48 206
48 206
5.8 172
48 207

6.2 232 469

Time Demands
Management Options
Legal Regulations
Available On-site Personnel
Relevant Third Parties
Capabilities

Strategy

Previous Strategies
Traffic Behaviour
Likely Impacts

Time to Implement

R P NN PP OR P R R UN R W R IEmission
R R NN R OVR R R R UOON R WR = Reception
Ut vt Ul Gl 0 o o it oy o 1yl an|Eccentricity

o O © © ©

WIN N P P O WO O O O R Rk ODNDNDDN .

2 P oo Qo RBNBR 1 » i |Centrality (EVx10)
N
(6a}

The information network is uniform and non-directed (symmetric), hence the cohesion
metric is not presented. The network has a diameter of 6 and a density of 0.04
corresponding to low interaction and distribution of information respectively.
Assessing the individual metrics (Table 3-12) shows that twenty five agents exceed the
mean B-L centrality value (29.4) representing moderate allocation of decision rights.

Similarly to all other networks these quantitative measures suggest a star archetype.

Consideration of several additional metrics provides further insights. Firstly, the
network’s average clustering coefficient of 0.14 represents a high level of clustering
when compared to the value for a random graph of similar size (0.061). Secondly, the
average path length is 3.52 which is shorter than the random graph’s (4.1) and
significantly shorter than the maximum possible diameter of 56. Finally, the
distribution of B-L centrality (Figure 3-13) can approximately be modelled by a power
law. Networks with these three characteristics are known as ‘small world’ networks
and have been shown to have advantages in a wide range of settings (Stanton et al,,

2012; Watts & Strogatz, 1998).
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Individually the key concepts have the highest metric scores with ‘exceptional’ being
most central and having the highest sociometric status, PageRank, closeness and

betweeness. This is not surprising given the task being investigated.
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Figure 3-13: Information network nodes B-L centrality rank ordered

3.7 Combined Networks

3.7.1 Task and Social Network

TMC operators are involved in all tasks and are the sole social agents in the
prioritisation, personnel allocation and strategy development and selection phases, as
shown in Figure 3-14. All decision-making tasks, such as judging the problem’s context
and deciding whether it has been resolved, are the responsibility of TMC operators,
reinforcing their central position within the system as indicated within the social

network analysis.

Monitoring, contextualisation, prioritisation and feedback phases involve the TMC
interacting with the road network and external environment; they therefore involve a
wide range of social agents. It can be seen that these interactions occur at the beginning
and end of the task process, information being gathered from a wide range of agents,
decisions made internally by operators based on this information, and then
implemented, affecting other agents and hence the road network and external

environment.

While decision-making was predominantly observed to be a manual process in the

TMCs visited, most made use of some automated strategies. These are implemented
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automatically by UTMC systems to deal with certain scenarios, e.g. sporting events.
Therefore UTMC systems can conduct some of the tasks identified as solely conducted
by operators, though they are limited in their application and manual decision-making

isrequired for the majority of scenarios as well as to adapt pre-set strategies as needed.

3.7.2 Information and Social Network

Similarly to the task network, TMC operators are concerned with virtually all
information within the system (Figure 3-15). The only exception is traffic’s route,
which is known only to the traffic itself, making it inherently unpredictable (Murray &
Liu, 1997). Furthermore, 26 of 55 nodes are known only to TMC operators, including
half of the key concepts, strategy, management options, exceptional, personnel and
network conditions. This represents the private information known only within the
TMC and is in many cases created by the operators. In contrast the other 29 nodes and
half of the key concepts, cause, infrastructure, location, traffic, affected traffic and
traffic type, can be known to many agents. This information is public and is obtained

by the TMC through interactions with other agents in the system.

There can of course be multiple operators, therefore no information is necessarily
owned by a single agent, one characteristic of distributed cognition (Stanton, 2014).
This means that effective interaction between agents is imperative for the system’s
performance; in particular the transmission of information to operators given their

central role within the task process.

3.7.3 Information and Task Network

Figure 3-16 shows how information nodes appear to be clustered into task groups with
a significant degree of overlap between phases. This is most evident in the ‘exceptional’
node which occurs within all phases, representing known information regarding the
scenario which is expanded and clarified as each task phase is completed. It can also be
seen that the contextualisation phase considers all of the information nodes used
within the monitoring phase. During monitoring information relating to the entire
network is obtained, during contextualisation this is constrained to the specific
scenario and hence is required to be more detailed. As might be expected from
‘information phases’ a wide range of information nodes are utilised, 29 and 35 for

monitoring and contextualisation respectively.
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The prioritisation and personnel allocation phases are the most focused in terms of
information, each employing only 6 nodes. In both cases the ‘exceptional’ node
provides a link to the other phases, specialist information utilised within each phase
furthering the overall understanding of the scenario’s management requirements and

enabling the physical outputs of each phase.

Once the scenario’s management requirements are known possible actions are
considered against the potential consequences to form a strategy. This requires
information relating to the capabilities of network agents and the likely response of
traffic. Once a strategy has been implemented its impacts, compared to predicted
consequences, are monitored through the feedback phase. This utilises similar
information to monitoring though of course only that which is relevant to the scenario

is considered.

3.74 Integrated Network

Figure 3-17 shows how the distribution of social agents amongst information nodes is
dependent on the task phase in which that information is used. All phases are
conducted by TMC operators though as discussed in section 3.7.2 no single agent owns
all of the information within the system making interactions between agents a core

property within TMCs.

The purpose of the monitoring phase is to enable operators to identify the occurrence
of problems within the network and hence the commencement of a scenario.
Information relating to both fixed (e.g. layout, traffic rules) and variable (e.g. traffic)
components of the network is transferred to the operators from a variety of other
agents providing them with a model of the network’s state. As discussed in section 3.5
information provided by agents varies in frequency and relevance and hence
importance. A further distinction can be drawn between agents who discriminate in
terms of the information provided (e.g. monitoring personnel telephoning the TMC
regarding a specific scenario) and those which are indiscriminate (e.g. viewing random
CCTV pictures). A key challenge for TMCs given the quantity of available information

and its varying quality is how to identify genuine scenarios accurately and consistently.

The detailed information obtained during the contextualisation phase is provided
through the same social interactions as during monitoring. Similarly to the previous

phase information is transferred to operators who are solely responsible for the
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phase’s output. This dependence on operators was shown in the task and social
network (Figure 3-14) and can further be seen here, in particular in the prioritisation
and personnel allocation phases for which information used is almost exclusively the

property of the operators.

During strategy phases viable strategies are formulated, predominately using
operator’s specific knowledge of the scenario and the network though consultation
with other agents may be required, and the perceived best solution selected.
Implementation is achieved through interactions between operators and the relevant

social agents required for the strategy.

The final task phase, feedback, is undertaken similarly to the monitoring phase,
interactions between operators and other social agents providing information relating
to the road network, however because the objectives and predicted outcomes are
known, only information relating to the scenario is considered. This enables the

strategy’s impacts and success to be judged and adjustments to be made if necessary.
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3.8 Conclusions

This analysis applied EAST to congestion management within road TMCs. Techniques
developed through previous work within the area (e.g. Houghton et al., 2006; Stanton,
2014; Stanton et al., 2008; Walker et al.,, 2010) have been applied to this domain,
predominantly as described by Stanton (2014) though some adaption was required
due to the domain’s characteristics. The three primary networks (task, social and
information) were produced directly from observational data and assessed both
qualitatively and quantitatively, while combined networks (task and social,
information and social, information and task, and integrated) were assessed
qualitatively. SNDs were created using association matrixes as in previous work
however weightings were based on qualitative assessment of communication link’s
frequency of use and relevance to the task. This enabled more complete social network

analysis, accounting for the nature of the communications occurring within the domain.

The congestion management task process was found to be circular, comprising of seven
linear phases, monitoring, contextualisation, prioritisation, personnel allocation,
strategy development and selection, strategy implementation, and feedback. There
were found to be strict dependencies within the network, each phase having a single
output task however the overall network type was found to be a hybrid hierarchical

(chain) star archetype, most phases consisting of a number of concurrent tasks.

All social networks were found to be star archetypes with the strategy phases’ network
exhibiting some hierarchical properties. TMC operators are of course critical and this
was represented in high individual metric scores, however surprisingly traffic agents
were consistently low scoring, appearing on the periphery of the system despite being
the reason for its existence. The social networks show how TMCs must manage
interactions with a wide range of internal and external social agents in order to achieve

their goals.

The information network exhibits ‘small world’ properties, in particular a high level of
clustering. The combined networks showed how this clustering is based around task
phases and how this influenced the distribution of social agents amongst information
nodes. It was found that most social interactions occurred at the beginning and end of
the task process, information being gathered from a wide range of agents, decisions

made internally by operators based on that information, and then implemented,
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affecting other agents and hence the road network and external environment. Overall
performance is therefore reliant on operator’s individual performance and the support

provided by TMC systems to facilitate interactions between operators and other agents.

While the EAST analysis conducted in this chapter was able to comprehensively assess
congestion management within the TMCs visited a question remains as to the
transferability of these findings to the wider traffic management domain. Although the
four TMCs used in this study represent a reasonable cross-section of urban traffic
management in the UK, no very large TMCs, inter-urban control centres or TMCs from
other territories were considered. Therefore a significant portion of road traffic
management was not accounted for which could be considered in future work to better
define those characteristics which are common to all TMCs and those which represent

idiosyncrasies of the centres visited.

Further consideration should also be given to the practical applications which could
arise from an EAST analysis. This chapter has demonstrated how operational systems
can be modelled and insights regarding their structure elicited through the analysis,
however the real purpose of such an analysis has to be to generate meaningful design
recommendations. To achieve this it would firstly be necessary to quantify
performance utilising a specific system configuration. It would then be possible to
compare relative performance in other configurations. These alternative
configurations could be other examples of a system within the domain, such as the
different TMCs visited for this study, or hypothetical configurations. The graphical
representations used in EAST are suitable for modelling a theoretically unlimited
number of structural configurations so provided a realistic prediction of performance
for each configuration can be identified then it would be possible to make
recommendations as to which configurations could provide performance

improvements.

Finally it is important to consider that the networks produced represent an idealised
version of the domain. In reality problems affecting TMCs’ operations will occur and
hence there is a need to better understand both the impacts and coping mechanisms
employed to preserve performance. To this end chapter 4 will conduct further analysis

of the domain by using the EAST networks to assess the domains’ resilience.
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Chapter 4: Investigating Urban Traffic Management
Centres’ Operational Resilience Using

Event Analysis of Systematic Teamwork

4.1 Introduction

A resilient system is intrinsically able to sustain its required operations during both
expected and unexpected disruptive conditions (Hollnagel, Paries, Woods, & Wreathall,
2011). Resilience can be considered at all system levels, from specific operational
processes and social dynamics, to the organisational factors which support operations,
as well as the wider industrial context. Truly resilient systems being able to survive
disruptions at all levels by absorbing impacts and adapting or adjusting themselves as

needed (McDonald, 2006).

Systems lacking in resilience are unable to respond to the changing demands presented
by unexpected situations (Hale & Heijer, 2006) resulting in failures. Paradoxically,
accidents resulting from a system’s lack of resilience often provide the best insights
into their behaviour under disruption, as well as providing the impetus to conduct
resilience investigations (Cook & Woods, 2006; Woods, Johannesen, Cook, & Sarter,
1994). Indeed a critical component for achieving high resilience is seen to be
continuous learning from events, near-misses and accidents (Weick, Sutcliffe, &

Obstfeld, 1999).

The paradox is that gaining the required insights to improve the system first requires
an accident to have occurred, which in domains required to be ultra-safe would be
unacceptable and lead to the need to radically change the system (Amalberti, 2006).
Furthermore, data used in this type of analysis is always out-of-date and does not
provide a measure of the system’s current performance (Wreathall, 2006). Given that
a key purpose of resilience engineering is to enable systems to anticipate and manage
risks before they threaten operations (McDonald, 2006), there is a need to assess the
resilient qualities of a system before an accident or disaster occurs (Hale, Guldenmund,

& Goossens, 2006; Wreathall, 2006).

Resilience is not a static system property but an emergent consequence of its design,

thus it is only possible to measure the potential for resilience through continuous
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monitoring of performance (Hollnagel & Woods, 2006). A key requirement for
resilience is that systems must be able to anticipate future developments, threats and
opportunities (Hollnagel & Fujita, 2013). Tools used within resilience engineering
must therefore be able to accurately assess the performance of existing and potential

future system configurations against possible disruptive conditions.

A number of methods have been used to examine resilience with most being qualitative
in nature, for example the Critical Decision Method (CDM; Klein & Armstrong, 2005;
Mendonca, 2008) the ARAMIS risk assessment method (Hale et al., 2006; Hale et al,,
2005), the Functional Resonance Analysis Method (FRAM; Hollnagel, 2004, 2012) and
Systems-Theoretic Accident Modelling and Processes (STAMP; Leveson, 2004; Leveson
etal, 2006). In each case the goal is to understand how systems function under failure,
in contrast to traditional methods such as the use of domino (Heinrich, 1931) or Swiss
cheese models (Reason, 1990) which search for causation, and use the knowledge
gained to design systems better able to cope with the variability experienced during

failures (Rodrigues de Carvalho, 2011).

Quantitative assessment on the other hand is relatively undeveloped, and
understandably so given the complexities involved in pinpointing exactly what gives a
system resilient characteristics (Mendonca, 2008). Despite the challenges, giving
resilience a quantitative basis would have significant benefits, allowing judgement of
existing system’s sufficiency and hence guiding future improvements as well as
enabling comparison between different systems or potential development options

(Pasman, Knegtering, & Rogers, 2013) .

Of the quantitative studies that have been conducted, Shirali, Mohammadfam, and
Ebrahimipour (2013) applied Principle Component Analysis (PCA; Jolliffe, 1986) to a
questionnaire designed to test for six indicators of resilience: top management
commitment, just culture, learning culture, awareness and opacity, preparedness and
flexibility (see Wreathall, 2006). The PCA approach determined how well the system

was perceived to perform against these criteria and identified where it was weak.

Baber, Stanton, Atkinson, McMaster, and Houghton (2013) used a different approach.
Social Network Analysis (SNA) and agent-based modelling were used to investigate a
search and rescue operation. Failure modes affecting particular nodes were applied to
each network configuration, with an impression of resilience being observed through

the changes in SNA metrics (see Driskell & Mullen, 2005). This has the advantage of
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basing the analysis on the system’s physical structure, which may be beneficial at an
operational level by reducing subjectivity, but may not be able to model the less

tangible organisational and industrial context levels of resilience.

In this chapter we consider how use of SNA metrics can be used to take the
quantification of a system’s resilience further, to assess not only social resilience but
the resilience of an entire system using Event Analysis of Systematic Team-work (EAST;
Stanton et al., 2008). The method is illustrated through application to road congestion
management using the EAST networks developed for four Traffic Management Centres

(TMCs) in chapter 3, enabling the process to be explored in more detail.

4.2 Methodology

4.2.1 Event Analysis of Systematic Teamwork

EAST is a systems ergonomics method which considers complex socio-technical
systems holistically without favouring either subsystem and enables both quantitative
and qualitative analysis based on graphical network diagrams (Stanton, 2014), which
themselves have been shown to have advantages over traditional ethnographical
approaches (Walker et al., 2010). Temporal aspects of a system can also be modelled
effectively (see Griffin et al,, 2010). As a method of resilience engineering, EAST can be
used to assess the weaknesses and potential points of failure in socio-technical systems

(Stanton, 2014).

EAST was originally a multi-method approach (Walker et al., 2006) incorporating a
number of established ergonomics methods, including Hierarchical Task Analysis
(Annet, 2005), CDM and Coordination Demand Analysis (Burke, 2005), however
Stanton (2014) showed that the method’s outputs can also be produced directly from

observational data.

Systems are considered in terms of the tasks undertaken, social agents involved and
information used, each element being depicted graphically through the creation of
three primary networks, together providing a detailed view of the system’s complexity

(Griffin et al., 2010). These primary networks are described below.

e Task Networks describe the relationships between tasks and their sequences

and interdependences.
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e Social Networks analyse the organisation of the system and the communications

which take place between agents.

e Information Networks show the information used and communicated by agents.

This graphical approach enables networks to be assessed qualitatively (e.g. Leavitt,
1951), through visual assessment, and also quantitatively, by calculating SNA metrics
(Stanton, 2014; Stanton et al., 2008). Although quantitative analysis has predominately
been used to analyse social networks (e.g. Houghton et al.,, 2006), metrics can be
applied to all three primary networks (Stanton, 2014). There are a wide range of
metrics that can be calculated for any network, these can be categorised as global,
applying to the entire network, and individual, applying to specific network nodes.
Metrics taken in isolation describe specific system parameters; however it is also
possible to describe its properties by considering the interactions between metrics.
These can be depicted graphically using the NATO SAS-050 Approach Space (NATO,
2006), with multiple conditions plotted within a single space to produce what is known

as a phase space (Stanton et al., 2012) as shown in Figure 4-1.
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Figure 4-1: A system’s phase space showing multiple conditions

4.2.2 NATO SAS-050 Approach Space

The Approach Space enables system structures to be investigated by plotting three
critical system properties in a three dimensional space. These are the allocation of
decision rights, patterns of interaction and distribution of information. It was shown

by Stanton et al. (2012) that each property can be mapped based on SNA metrics as

described below.
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Allocation of Decision Rights specifies how decision-making is distributed within the
network, ranging between 0 (unitary) and 1 (fully distributed). Calculation is based on
the proportion of nodes exceeding the mean centrality value (nexceed) compared to the
centrality network size (ncentrality), the number of nodes for which centrality can be
calculated (see Equation 4-1). Several methods exist for calculating centrality, the most

common being Bevealas-Leavitt (B-L) centrality (Bevelas, 1948; Leavitt, 1951).

exceed

Equation 4-1: Allocation of Decision Rights (x) = =

Ncentrality

Patterns of Interaction refers to the network’s structure and ranges between ~0 (peer-
to-peer) and 1 (hierarchical). It is calculated based on a network’s diameter, the
geodesic distance between each side of the network (d), relative to the maximum

possible diameter for the number of nodes (n) (see Equation 4-2).

Equation 4-2: Patterns of Interaction (y) = %

Distribution of Information is equal to the network’s density and ranges between 0 (no
connections) and 1 (all-connected network). Density is calculated as the number of
links (1) divided by the number of potential links within the system, which is

proportional to the number of nodes (n) in the network (see Equation 4-3).

21
nx(n—1)

Equation 4-3: Distribution of Information (z) =

Applying these quantitative measures to the approach space enables system’s
properties to be accurately plotted, allowing comparisons between different network
configurations to be conducted. This is a powerful tool because comparisons can be
made between different systems within the same domain, different systems in multiple

domains or different configurations of the same system.

4.2.3 Measuring Resilience

To investigate a system’s resilience its performance must first be considered in
different scenarios. If it is assumed that a fully functioning system performs as well as
it can then introducing failures should cause an impact to be reflected within the
system properties which can be measured using the approach space. These failures can

include tasks not being performed, communications links being removed or
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information not being acquired which can be modelled by systematically removing
nodes or links from the fully functioning task, social or information networks as needed
(see Baber et al,, 2013; Ip & Wang, 2011) . The required network metrics can then be
recalculated and used to plot the failure mode’s position within the phase space. A
measure of the impact upon the system is gained by considering the relative distance
between the failure mode’s location and that of the fully functioning system (Drr) and
of one suffering catastrophic failure (i.e. one plotted at the phase space’s origin) (Dcat),

which can both be calculated using simple trigonometry (see Equations 4-4 and 4-5).

Equation 4-4: Dgp = /8x% + 8y? + 622

Equation 4-5: D¢gr = /X2 + y2 + 22

Where x, y and z are the failure mode’s allocation of decision rights, pattern of

interaction and distribution of information respectively and Ox, 0y and 0z are the

changes in properties from the fully functioning system’s.

Changes to system properties are likely to be greater in more severe failure modes
because the networks become more disturbed from their fully functional state, making
Drr increase and Dcat decrease. Considering the proportion of Drr to the total path
distance (Drr + Dcat) provides an indication of the impact on system performance, with
small Drr’s corresponding to smaller impacts, while large Drr's produce a greater
impact. Hence the system’s performance under failure relative to its fully functioning

state can be calculated using Equation 4-6.

Equation 4-6: Performance =1 — (_D D+Fg )
FFTUCat

EAST is a network of network’s approach with the graphical task, social and
information networks able to be combined, enabling multiple aspects of the system to
be visualised concurrently (see Figure 4-2). Failure modes developed for a specific
primary network can thus be applied to the other two. Task, social and information
performance can therefore be mapped to a single three dimensional axis (Figure 4-3)
with a failure mode’s impact on total system performance then calculated by
interrogating the distance between the fully functioning network (located at 1,1,1) and

catastrophic failure (located at the origin), in which social agents are not
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communicated with, required information is not obtained and tasks cannot be

completed as a result of the failure mode.

Finally, the resilience of the system is defined as its ability to resist disruption caused
by failure modes. Using the method described it is possible to consider not only which
scenarios are likely to be most disruptive to the system’s operation, and in what respect,
but to also consider how these risks might be alleviated. This can be achieved by
modelling alternative network configurations, real or theoretical, and identifying

whether this change provides increased resilience to failure.

Task
Network
Distribution of Distribution of
information between tasks among
tasks Distribution and network agents

communication of information
between network agents and
among tasks

Information
< >

Network

Distribution and
communication of information
between network agents

Figure 4-2: Interactions between EAST's primary networks (adapted from

(Stanton, 2014))
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Figure 4-3: Three dimensional visualisation of task, social and information

performance
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4.3 Resilience of Congestion Management in TMCs

To further investigate congestion management with urban TMCs the above method
was applied to the EAST networks developed in chapter 3. The purpose was to increase
understanding of how different TMCs cope with failures. To constrain the analysis it
was decided to examine only the monitoring processes undertaken. These are critical

for identifying scenarios which could cause congestion, enabling them to be managed.

4.3.1 Data Collection and Analysis

Four TMCs were investigated, Bristol, Cardiff, Dorset and Nottingham. All are managed
by local authorities, Bristol, Cardiff and Nottingham at a city level with Dorset at county
level. Bristol and Nottingham TMCs are of similar size, responsible for the urbanised
areas of each city, 40 and 30 square miles respectively. Although Cardiff is a similar
sized city its TMC is significantly larger, owing to the amalgamation of police CCTV and
public space monitoring control centres into a single location as well as a need to
manage the Queen’s Gate tunnel twenty four hours a day. Dorset’s TMC is responsible
for the entire county though management is predominantly focused around the towns
of Christchurch, Dorchester and Weymouth; some key trunk routes are also managed.

The photographs in Figure 4-4 show views of each TMC.

Figure 4-4: Bristol, Cardiff (BBC News, 2010), Dorset and Nottingham
(Nottingham City Council, 2013) TMCs (clockwise from top left)
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TMC operations were observed over a working day at each TMC, with informal
interviews conducted with the operators on duty when their workloads allowed.
Operators came from a range of backgrounds and had varying experience levels;
although typically greater than five years some were new to the profession. Several
congestion scenarios were observed, including unexpectedly high traffic demand and
vehicle breakdowns, which required management. These provided an opportunity to
supplement observations with in-depth technical critiques and insights from the
Subject Matter Experts (SMEs). Primary EAST networks were produced directly from
observational data with SNA metrics calculated using AGNA (version 2.1.1). Combined
task and social, and information and social networks were then constructed through
interrogation of the primary networks. Microsoft Excel (2010) and SPSS (version 19)

were used to conduct the data analysis.

4.3.2 Task Network

The purpose of monitoring is to identify whether a relevant scenario has occurred
within the road network, causing the system to change from a state of normal
performance to one requiring management. Operators are tasked with using a range of
sources to gain information including CCTV, Urban Traffic Management and Control
(UTMC) systems (e.g. vehicle counts, incident detection), digital communications (e.g.
email, Twitter), internal communications (i.e. discussion between TMC personnel) and
analogue communications (e.g. reports by phone). Monitoring is a constant task
potentially involving any of these sources. The task process is shown in Figure 4-5, can
be described as a hybrid circle-Y archetype and was found to be identical between

TMCs.

Monitor Digital
Comms

Monitor Monitor UTMC
Internal Comms Systems

Monitoring

Figure 4-5: Monitoring task network
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4.3.3 Social Networks

Social networks are unique to each TMC, however the agents involved are relatively similar,
these agents can be grouped by geographical location and are described in Table 4-1.

Table 4-1: Social agent descriptions

Location Agent TMC Description

Responsible for managing traffic
and the domain’s SMEs; typically

TMC Operators All two operators are present although
this can vary
Identify and prosecute vehicles
Bus Lane : . : . .
Bristol illegally using or obstructing public
Enforcement . . .
Nottingham transport infrastructure using
Personnel
CCTV
Parking Monitor CCTV for illegal parking

and direct parking enforcement
Cardiff personnel, also responsible for
controlling security bollards

Enforcement /
Bollard Control

Personnel around the city centre
Pubh.c Space : Monitor CCTV for antisocial
Monitoring Cardiff . L .
behaviour, assisting the police
TMC Personnel
Police CCTV : Monitor CCTV for crime, assisting
Cardiff . .
Personnel police operations
Third Party . Acts as a liaison between the TMC
y Bristol and a third party, e.g. public
Representative .
transport providers
Responsible for maintaining and
SCOOT Engineer Cardiff = upgrading adaptive traffic light
systems controlled by SCOOT
Software used to control traffic
monitoring and management
UTMC Application All equipment, e.g. COMET (Siemens
Traffic Solutions, 2009), Argonaut
(Cloud Amber, 2012)
CCTV Application All Controls the TMC’s CCTV cameras
Traffic Monitoring All E.g. CCTV cameras and induction
Equipment loops
Road Traffic E.g. traffic lights and Variable
Network Management All .
. Message Signs (VMSs)
Equipment
On-site Monitoring All E.g. parking enforcement personnel

Personnel
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Location Agent TMC Description
On-site .
Management All E.g. traffic management
contractors
Personnel
Road Vehicular, Public
Network Transport, The categories of traffic using (or
Emergency All potentially using) the road
Services, Cyclists network
and Pedestrians
Public Space
Monitoring and Monitor public areas for criminal
Emergency All activity and manage emergency
Services Control service operations respectively
Centres
Provide extra information to aid
Additional decisions such as weather reports
Information All (e.g. the Met Office) or wider traffic
Providers conditions (e.g. the Highways
External Agency)
Radio Stations All Distribute information to traffic
and other agents
Incorporates the dissemination of
Traffic Data All information to traffic and third
Distribution parties directly by the TMC and
through intermediaries e.g. INRIX
Other Transport Includes other road TMCs as well

All as public transport control centres

Control Centres (e.g. Bus, Tram)

As discussed in chapter 3 each SND was constructed using qualitative data obtained
from operators with weights assigned based on their perception of frequency of use
and relevance to the domain. It should be noted that two-way links indicate
communication can occur between both agents while one-way links indicate that it is
impossible for one agent to communicate back to another, for example a traffic sensor

detects vehicles but cannot communicate this information back to them directly.

It can be seen that the social network’s for each TMC (Figure 4-6 to Figure 4-9) are
relatively similar. Within the TMC there are usually two operators as well as a variety
of additional personnel who perform other functions. Here are the greatest differences
in social structure, Dorset being a small TMC has no additional personnel constraining
activities to those conducted by operators, in contrast Cardiff, the largest TMC,
conducts a range of other activities such as public space monitoring and parking

enforcement, each of which requires specialist personnel who interact with operators.
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Each TMC also employs a variety of technical UTMC and CCTV systems to connect the

operators to the on-street equipment.

Outside of the TMC agents can be within the managed road network (e.g. the traffic, on-
street personnel) or external (e.g. radio stations, other control centres), this shows how
operators must interact with a very diverse range of sources. The network structures
are broadly similar across TMCs, some such as Cardiff having greater capability to
contact traffic directly due to the tunnel’s infrastructure (emergency phones), however
all other differences result from the preferences of individual staff, for example some
make greater use of additional information providers (e.g. Google traffic reports,

TomTom data) than others.
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Figure 4-7: Cardiff Social Network Diagram
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4.3.4 Information Network

A wide range of information is used throughout monitoring, with the information

network (Figure 4-10) identical between TMCs. The key concepts are described below.

o Affected Traffic is the subset of traffic directly or indirectly involved with the
scenario.

e (ause is the reason for the scenario.

e Exceptional is the information relating to the exceptional performance state
caused by the scenario.

e Infrastructure details the physical network components and their capabilities.

e Location is where traffic and infrastructure is within the domain.

e Network Conditions detail how the network is operating.

e Traffic considers the properties of road users, such as speed and route.

e Traffic Type includes vehicular, cyclists, pedestrians, public transport and
emergency services.

o Traffic Priority considers the relative importance of each type of traffic.

Variable

Time of ‘

Exceptional

Location

Traffic Priority

Affected Traffic Traffic Type

Occurance

Network

s Consequences
Conditions q

Wider Traffic External Environmental Demand Speed

Conditions Factors Conditions

Figure 4-10: Monitoring information network
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4.3.5 Combined Networks

Combined networks were produced by shading primary networks according to the
social agents involved. For simplicity comparable agents were grouped together as

detailed in Table 4-2.

Table 4-2: Social agent grouping

Group Agents Shade
TMC Operators TMC Operators

Bus Lane Enforcement
Public Space Monitoring
Police CCTV Monitoring
Third Party Representative
UTMC Application =~ UTMC Application

CCTV Application ~ CCTV Application

Other TMC Personnel

Monitoring Equipment

On-site Equipment Management Equipment

Monitoring Personnel

On-site Personnel
Management Personnel

Vehicular
Traffic Cyclists
Pedestrians

Radio Stations
Traffic Data Distribution
Additional Information Providers

Third Parties Public Space Monitoring Control Centre
Police Control Centre
Other Transport Control Centres
Task and Social Network

The task and social network (Figure 4-11) shows which social actors are involved
within each task. As may be expected each monitoring task involves a range of agents.
Operators are of course involved in every task, although each could also potentially be
undertaken by other personnel. Monitoring UTMC and CCTV systems involves their
controlling applications as well as the physical equipment on the road, while online and
additional communications can be initiated by on-site personnel, third parties, other

control centres or the traffic itself (usually through social media e.g. Twitter).
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Figure 4-11: Monitoring task and social network

Information and Social Network

From the information and social network (Figure 4-12) it can be seen that the majority
of information within the road network is distributed widely amongst social agents.
There is also some private information known only to the TMC operators related to
their specialised knowledge about the road network and the traffic management

process.

xl

Figure 4-12: Monitoring information and social network
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4.3.6 Failure Modes

Failure modes could be developed from any of the three primary networks, either
tasks are not conducted, communications between agents are not performed or are
impossible, or required information is not obtained. To constrain the analysis for this
study only social failure modes linked to physical occurrences within the domain
were considered. Each failure mode was identified through interrogation of the SNDs

and hence was not attributed to any real scenario but rather what could occur.

Single Node Failures

Ten agents were identified which could fail individually, although not all apply to every

TMC, these are presented in Table 4-3.

Table 4-3: Single node failure modes

Failure Mode Affected TMCs Code

Lone Operator All NS1

No Bus Lane / Parking Enforcement Bristol, NS2
Personnel Nottingham

No Third Party Representative Bristol NS3

No Public Space Monitoring Personnel Cardiff NS4

No Police CCTV Personnel Cardiff NS5

No SCOOT Operator Cardiff NS6

UTMC System Failure All NS7

CCTV System Failure All NS8

No On-site Monitoring Personnel All NS9

No On-site Management Personnel All NS10

Compound Node Failures

Compound failures, affecting at least two social agents, were also considered; these are
presented in Table 4-4.

Table 4-4: Compound node failure modes

Failure Mode Affected Nodes Affected TMCs Code

TMC Operators (one at Cardiff)
Out of Hours Additional TMC Personnel Al NM1
Bus lane / parking enforcement,
. public space monitoring and police

TNIV([) CASSJELOHHI?; CCTV personnel Bristol, Cardiff NM?2
Third party representative
SCOOT engineer
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Failure Mode Affected Nodes Affected TMCs Code
Technical UTMC applications
Systems CCTV application All NM3
Failure

No On-site  On-site monitoring personnel

Personnel  On-site management personnel All NM4

Bus lane / parking enforcement,
No Additional public space monitoring and police

TMC Personnel CCTV personnel Bristol, Cardiff,

and Technical Third party representative : NM5
Systems SCOOT engineer Nottingham
Failure UTMC applications
CCTV application
Bus lane / parking enforcement,
public space monitoring and police
No Additional CCTV personnel . :
TMC or On-site Third party representative Bﬁitt(zilhci;illff’ NM6
Personnel  SCOOT engineer &
On-site monitoring personnel
On-site management personnel
Technical UTMC applications
Systems CCTV application
Failure and No On-site monitoring personnel All NM7
On-site On-site management personnel
Personnel
Bus lane / parking enforcement,
No Additional public space monitoring and police
.. CCTV personnel
TMC or On-site : .
Third party representative . .
Personnel and . Bristol, Cardiff,
. SCOOT engineer : NM8
Technical o Nottingham
UTMC applications
Systems o
: CCTV application
Failure

On-site monitoring personnel
On-site management personnel

Communication Type Failures

A number of communication types are used within TMCs, these are as described in
Table 4-5, and were applied to each TMC’s SND to produce a Communications Usage
Diagram (CUD; Watts & Monk, 1998), an example from Bristol is presented in
Figure 4-13.
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Table 4-5: Communication types

Communication Type

Description

Data Link

Physical links between on-street equipment and the TMC
e.g. fibre optic cables

Face-to-Face

Verbal communications between TMC personnel

Machine Interface

Interface between operators and technical systems

Online Communications

Connects TMC personnel to external agents e.g. email,
twitter

Physical Interaction

One agent physically impacts upon another within the
road network e.g. on-site management personnel and
traffic

Used to communicate between some TMC personnel and

Radio / Wireless on-site personnel e.g. police CCTV personnel and
emergency services on the street (Cardiff only)
Provides verbal communications between the TMC and
Telephone

external agents

Visual Message

Transfers information from one agent to another within
the road network e.g. VMS message to traffic

Not every communication type is capable of failure (e.g. face-to-face), additionally

compound failures involving multiple communication types can occur. Potential

failure modes are presented in Table 4-6.

Table 4-6: Communication type failure modes

Failure Level Failure Mode Affected TMC Code
Data Link (DL) All LS1
Online Communications (O) All LS2
Single Radio Communications (R) Cardiff LS3
Telephone Communications All LS4
(T)
DL+0 All LD1
DL+R Cardiff LD2
DL +T All LD3
Double ]
O+R Cardiff LD4
O+T All LD5
R+T Cardiff LD6
DL+0+R Cardiff LT1
. DL+0+T All LT2
Triple
DL+R+T Cardiff LT3
O+R+T Cardiff LT4
Quadruple DL+0O+R+T Cardiff LQ
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4.3.7 Results
Node Failures

The effects of node failure modes on system performance were first considered by
failure level and between TMCs (Figure 4-14). Considering the average performance

for each failure level shows that as may be expected compound failures (x = 85.36%, &
= 0.062) reduce performance more than single failure modes (x = 94.40%, o = 0.025).

The performance reductions observed were confirmed significant relative to the fully
functioning network using a Mann-Whitney test (n > 20) for both single (z =-3.189,
p < 0.01) and compound failures (z = -3.185, p < 0.01) as well as between single and
compound failure levels (z = -5.458, p < 0.01). Differences between TMCs were not

statistically significant.
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Figure 4-14: Node failure system performance by TMC and failure level

Performance was also considered by failure mode (Figure 4-15) with Figure 4-16
showing how performance reductions are attributed to task, social and information
performance. With the exception of technical failures (UTMC and CCTV systems) which
impact both social and task networks, TMCs’ performance was relatively unchanged
due to the loss of any single agent. It could be expected that losing an operator would
have the greatest impact on system performance however the redundancy provided
through multiple operators ensures that TMCs continue to function effectively in this
failure mode, with the probability of both operators failing being sufficiently low to be

acceptable.
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[t can be seen that the greatest performance reduction occurs within the out of hours
failure mode. For Bristol, Dorset and Nottingham this entails the loss of all operators
as well as other TMC personnel resulting in disruption to all components of system
performance. Cardiff's structure means that it is constantly manned, hence while
performance is reduced out of normal working hours due to the loss of additional
personnel, all key functions are maintained by the lone operator on duty. Of course the
occurrence of this failure mode is controlled such that it occurs during the night when
traffic demand is low and the probability of scenarios occurring is reduced, hence the
performance reduction is unlikely to have any significant impact on the road network.
Interestingly, even when the TMCs are not in use the system does not fail completely;
showing how TMCs represent only a small aspect of the entire road system with
interactions between and within the road network and external environment being an

important component of the domain’s functionality.
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Figure 4-15: Node failure system performance by failure mode
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Figure 4-16: Node failure performance reduction composition

Communication Type Failures

The effects of communication type failure modes on system performance were also
considered by failure level and between TMCs (Figure 4-17). By considering the
average performance for each failure level it can be seen that as the number of failures

increases, performance decreases, single failures (x = 92.24%, ¢ = 0.061) having the
least impact, quadruple failures having the greatest (x = 45.26%, g =N/A),
while double (x = 86.60%, o = 0.048) and triple (x = 65.83%, ¢ = 0.212) failures fall in

between. The performance reductions were confirmed significant relative to the fully
functioning network using a Mann-Whitney test (n < 20) for single (U =0, p < 0.01),
double (U=0,p <0.01) and triple (U =0, p <0.01) as well as between single and double
(U =31, p <0.01), single and triple (U = 2, p < 0.01) and double and triple (U = 15, p <
0.01) failure levels. Statistics could not be calculated for the quadruple failure level
because it only has one data point, however the performance observed was lower than
the triple failure level as expected. Similarly to node failures differences between TMCs

were not statistically significant.
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Figure 4-17: Communication type failure system performance by TMC and failure

level

Performance was also considered by failure mode (Figure 4-18) with Figure 4-19
showing how performance reductions are attributed to task, social and information
performance while Table 4-7 details these impacts for each failure mode in the three
dimensional phase space detailed in section 4.2.3. Unlike node failures, the majority of
failure modes have both social and task impacts, although with the exception of data
link failures the task network is unaffected by single level failures. Information impacts
were only observed in compound failure modes, the range of communication types and

prevalence of links employing several types restricting these impacts.

Data link failure has the greatest impact for single failures, these communications are
critical for connecting the TMC to the specialist on-street equipment, and hence their
failure means operators must rely on other potentially less reliable sources. Compound
failures create greater impacts on system performance, with failures of all
communication types, predictably, having the greatest impact. This entails the loss of
data link, online and telephone communications at Bristol, Dorset and Nottingham,
with the addition of radio communications at Cardiff. The addition of this
communication type reducing the impact of the most disruptive failure modes found

within the other TMCs, for example online and telephone communications failure.
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One potential issue is the relationship between online and telephone communications,
it can be seen that combined failure produces a far greater impact than either failing
individually, affecting all elements of the system. While the probability of multiple
failures is far less than any individual failure, if the sub-systems are linked, as could
occur in this case, failure becomes much more likely. This risk is however easily averted
by physically separating the sub-systems or providing backups, for example mobile

phones, which would be unaffected by a landline failure.
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Figure 4-18: Communication type failure system performance by failure mode
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Figure 4-19: Communication type failure performance reduction composition
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Table 4-7: 3D representations of failures’ task, social and information impacts

Bristol Cardiff

Social Performance
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Dorset Nottingham
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4.4 Discussion

Practical application of resilience engineering requires systematic methods to assess
resilience and guide system design to ensure resilient qualities. This is challenging
given the emergent nature of resilience and the need to assess the effects of unexpected
conditions (Hollnagel et al,, 2011) . A range of qualitative methods have been utilised
(e.g. ARAMIS, FRAM and STAMP) which provide insights into system behaviour under
failure, however quantitative assessment has been limited despite the potential
benefits, in particular the ability to compare system configurations and planned

developments (Mendonca, 2008; Pasman et al.,, 2013) .

EAST provides a comprehensive model from which to conduct quantitative analysis
using SNA metrics at an operational level. With networks based on the physical
structure of the system, failure modes can be derived independently from observed

events, going some way to addressing the paradox that accidents often provide the
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greatest insights into resilience (Cook & Woods, 2006; Woods et al., 1994). By
observing failure mode’s impacts the consequences for system operation can be
anticipated, enabling remedial measures to be taken before operations are threatened.
This is a key purpose of resilience engineering (McDonald, 2006), and critically enables
measures to be based not on the probability of occurrence, but on the probability of

survival, a consideration often overlooked in system design (Hollnagel & Fujita, 2013).

A consequence of resilience being an emergent phenomenon is that it is only possible
to measure the potential for resilience, through performance monitoring, and not
resilience itself (Hollnagel & Woods, 2006). The analysis conducted within TMCs
examined system performance under each failure mode relative to the fully functioning

condition, but to what extent can traffic management be considered resilient?

The fundamental requirement for resilience is that the system must be able to sustain
its operations through both expected and unexpected conditions, by responding to the
changing demands presented (Hale & Heijer, 2006; Hollnagel et al., 2011). For a TMC’s
monitoring processes to be successful operators must be able to make a decision
regarding the occurrence of a scenario. The analysis has shown that it is relatively
difficult to disrupt the task process, with most failure modes having limited or no
impact on the task network. The reason for this is that information is distributed
throughout the domain with a range of sources available to access it, hence even when
failure affects a particular source others can be used by operators to maintain their
situational awareness. This is an example of the system’s flexibility, a characteristic

thought to contribute towards resilience (Woods, 2006).

Resilient systems must also be able to absorb the impacts of failure (McDonald, 2006),
with the degree of disruption able to be absorbed without a fundamental performance
breakdown referred to as the system’s buffering capacity (Woods, 2006). The amount
of disruption which can be considered acceptable is of course subjective, however the
analysis does provide an indication of which failure modes are likely to have the
greatest impact on the system’s operation. The lowest performance level was
calculated as the out of hours node failure which is controlled and therefore not of
concern. Even within this scenario the system does not fail completely, traffic
management being a cognitively distributed domain which may provide it with
resilient qualities (Weick & Sutcliffe, 2001). The next most disruptive conditions
required relatively unlikely compound failures, with single failures having a limited

impact on overall performance. Hypothetically the loss of an operator would be the

106



Chapter 4: Investigating Urban TMC’s Operational Resilience Using EAST

most disruptive single failure; however this threat is alleviated through provision of
redundancy in the form of multiple operators. The loss of technical systems would also
be disruptive however the prevalence of other monitoring options would prevent

catastrophic failure.

It is worth noting that the method assumes that if a task can be completed even under
failure then task performance is equivalent to the fully functioning state, although
impacts will be reflected within social and information networks this still represents a
simplification because the task is likely to be more difficult even if it is possible.
Therefore it may be that while the system appears theoretically resilient to a particular
failure mode the reality may be different, to address this discrepancy further
investigations into the validity of resilience predictions produced by the method are

required.

4.5 Conclusions

Quantitative analysis within resilience engineering is relatively undeveloped but
potentially powerful, enabling systematic assessment and comparison of existing
system’s strengths and weaknesses, as well as guiding the development of future
systems. In this chapter it has been demonstrated how EAST can be used to model a
system and develop failure modes independently from any event that may or may not
have occurred in reality. Applying SNA metrics to the networks enabled quantification,
describing system properties and revealing the impacts of failure on the system, which

provided an indication of operational resilience.

Road TMCs were found to have resilient qualities, most failure modes having a
relatively small impact on system performance, with the greatest impacts requiring
complex and unlikely compound failures. This resilience can be attributed to a flexible
task process, wide information distribution, an abundance of information sources and

redundancy of critical agents.

Similarly to chapter 3 it is important to remember that the TMCs visited do not
represent a complete cross-section of road traffic management, not incorporating very
large TMCs, inter-urban control centres of TMCs from other territories. Therefore
further investigations are required to identify how transferable these findings are to
the wider traffic management domain and what represents idiosyncrasies of the TMCs

visited. Furthermore this analysis was limited to the impacts of social (e.g. physical)
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failures and therefore represents assessment of only one aspect of resilience. Further
insights could be gained by deriving failure modes from the task and information
networks and through consideration of potential failure responses, this being a critical
component of resilience engineering (Hollnagel & Fujita, 2013), in order to obtain a

fuller picture of the system’s resilience.

While useful insights have been produced there are several questions to be addressed
before EAST can be considered a useful tool in resilience engineering. Firstly, how can
the validity of the predictions be evaluated empirically? The method relies on
production of possible failure modes and modelling their impacts on the domain,
therefore consideration must be given to how these theoretical impacts compare to
real failures. Secondly, can the insights provided be used to influence system design?
The work presented served to model the traffic management domain and thus infer its
resilient qualities, however to be useful the method must go beyond this theoretical
evaluation to produce useable design guidance. This could be achieved by
demonstrating that a system is less resilient as compared to its contemporaries or a
theoretical alternative. Thirdly, can it be empirically validated that application of
design guidance resulting from the method elicits improved resilience? This last
question is perhaps the most important because resilience engineering can only be

considered to be effective if real improvements can be demonstrated.
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Chapter 5: Assessment of SCOOT Validation with PC
SCOOT using Cognitive Work Analysis

51 Introduction

A key component of many urban road networks is the use of Split Cycle Offset
Optimisation Technique (SCOOT; Hunt et al., 1981) to optimise traffic signals in order
to maximise capacity and minimise delays. SCOOT considers a road network as
connected nodes (junctions or pelican crossings) and links (roads) within a region,
adjusting the amount of green for each link (Split), time allowed for all of a node’s links
(Cycle time) and the time between adjacent nodes (Offset) using real-time data from
detectors and a traffic model (see Siemens, 2011). A graphical depiction of SCOOTs
traffic model is shown in Figure 5-1 (Siemens, 2015). In simple terms the roads leading
to a junction controlled by SCOOT are monitored by traffic detectors upstream from
the junction which provides a real-time flow profile of the traffic approaching the
junction. The traffic model’s purpose is then to predict what happens to the traffic
between the detector and leaving the junction. To do this it assumes each vehicle
travels through the junction at cruising speed, potentially joins the back of a queue if
the light is red which then discharges at a constant rate known as the ‘saturation flow

rate’ once the light turns green.
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Figure 5-1: Graphical representation of SCOOT's traffic model (Siemens, 2015)
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For SCOOT to operate effectively it is important that its traffic model accurately reflects
on-street conditions. To achieve this SCOOT systems must be validated, giving
consideration to the performance of the region as a whole, specific nodes, their
component links and individual detectors. This process is conducted by human
validators who are required to check each of the parameters used by SCOOT against

values empirically measured on street to ensure the model is accurate.

Validation is facilitated through Siemens’ Urban Traffic Control (UTC) system called PC
SCOOT, which uses a predominantly text based interface to present each SCOOT
parameter and enables validators to make changes as necessary. Siemens believe that
PC SCOOT’s current interface may inhibit performance because of its historical
limitations which could be addressed using contemporary interface design techniques.
To address these concerns this chapter is concerned with analysing the validation
process with an aim of guiding the future development of PC SCOOT (Siemens, 2013).

To constrain the analysis it was necessary to consider validation only up to node level.

Analysis of complex socio-technical systems (Walker et al., 2010) is a key concern of
the ergonomics discipline with studies previously being undertaken within all
transport domains including aviation (de Carvalho, Gomes, Huber, & Vidal, 2009;
Harris & Stanton, 2010), road and rail (Stanton et al., 2013; Stanton & Salmon, 2011).
For this domain Cognitive Work Analysis (CWA; Rasmussen, 1986) was chosen as the
analysis method having been developed specifically to analyse complex socio-technical

systems.

CWA enables the constraints acting upon a domain as well as the work’s key features
to be identified (Stanton & Bessell, 2014). Utilising a semi-structured framework
guides consideration of the various constraint levels and how they affect work within
the system. This addresses the challenges presented within complex socio-technical
systems such as the interrelations between social and technical subsystems,
interactions between potentially numerous system components and that these
systems often operate within dynamic, ambiguous and often safety-critical domains

(Jenkins, Stanton, Walker, & Salmon, 2009; Rasmussen, 1986; Vicente, 1999).

CWA consists of five phases, each focussing on a particular set of constraints and thus
presenting a different perspective on the system, Figure 5-2 illustrates these phases
including an indication of the type of constraint being analysed and the forms of

representation provided. A key benefit of CWA is its flexibility and the range of domains
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to which it has been applied (Durugbo, 2012), however relatively few have utilised all
five phases, those which have conducted a full analysis include simulated air traffic
control (Kilgore, St-Cyr, & Jamieson, 2009), communications planning within military
aviation (Mcllroy & Stanton, 2011) and submarine operations (Stanton & Bessell,

2014).

It is worth reiterating that this point in the thesis marks the change in focus onto the
second of Siemens key business challenges as illustrated in chapter 1. This change is
also the justification for changing the method used. While EAST is suited to modelling
the cognitive distributed traffic management domain, the challenge with SCOOT
validation is to go beyond the existing system and ultimately produce tangible
alternative designs. While EAST could have been used for this part of the project, CWA's
formative nature and intimate link to the Ecological Interface Design (EID) technique
make it more suitable for this stage of the project and the desired outcomes. This
chapter therefore presents a comprehensive assessment of SCOOT validation which
will be used to identify the key activities undertaken and inform selection of those
areas which could be better supported by technical systems through more detailed

analysis and design in chapter 6.
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Figure 5-2: The five phases of CWA adapted from Vicente (1999)
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5.2 Data Collection

The SCOOT validation process was introduced through meetings with five Subject
Matter Experts (SMEs), experienced Siemens SCOOT validators, who described their
experiences of the validation process. Additionally a technical demonstration of PC
SCOOT was given. The CWA outputs were produced following the procedures
described by Jenkins et al. (2009) and used in Jenkins, Stanton, Salmon, Walker, and
Young (2008), with the aid of the Human Factors Integration Defence Technology
Centre’s (HFI-DTCs) CWA software tool (Jenkins et al., 2007). Each output was refined,
amended and validated through subsequent meetings with SMEs. Analysis of each

phase is presented over the following five sections.

5.3 Work Domain Analysis

Work Domain Analysis (WDA) is the first phase of CWA and is used to describe the
system in terms of the environment in which it operates, identifying the fundamental
constraints which shape the system’s activities (Mcllroy & Stanton, 2011). An AH
(Figure 5-7) is used to describe the system at a number of levels, from its functional
purpose at the top to physical objects on the bottom. Relationships between levels are
specified using means-ends links (Burns & Hajdukiewicz, 2004) in what is known as
the why-what-how triad, with connected nodes above a particular element describing
why it exists and the nodes below how it is achieved, for example the object-related
process ‘depict site layout’ is required to assess the site and is achieved using a node

site plan.

5.3.1 Functional Purpose and Values and Priority Measures

The functional purpose of SCOOT validation is to enable SCOOT to optimise traffic flow.
The values and priority measures specify how this objective can be achieved.
Specifically by ensuring unbiased validation, correct detector set-up and accuracy of
the SCOOT model compared to street conditions, including the parameters on which

the model is based.

5.3.2 Purpose-related Functions

The central layer, purpose-related functions, are the general system functions which

link the purpose-independent processes of the physical objects and the object-
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independent functions used to measure system performance (Stanton & Bessell, 2014).
Functions are grouped according to the corresponding values and priority measures
and also appear to be focused at a specific level of the SCOOT hierarchy. At node level,
assessment and preparation of the site is used to prevent bias while staging validation
provides accuracy of the SCOOT model. SaTuration OCcupancy (STOC) validation
provides model accuracy at link level with measurement of the SCOOT parameters
JourNeY Time (JNYT), Queue Clear Maximum Queue (QCMQ), Start LAG (SLAG), End
LAG (ELAG) and the initial STOC estimates relating to assumption accuracy. Finally at
detector level verification of association and validation of accuracy ensures correct

detector setup.

5.3.3 Object-related Processes

This layer captures the affordances of the physical objects in the system, which are
independent of the overall system goals (Stanton & Bessell, 2014), for example a node
site plan affords the depiction of the site layout and definition of equipment locations.
The full list comprises, from left to right, ‘ensure stage demand’, ‘isolate node’, ‘clear
node settings’, ‘context within region’, ‘depict site layout’, ‘define equipment location’,
‘detect vehicle presence’, ‘indicate sensitivity’, ‘output detector readings’, ‘control and
reply bits’, ‘saturation level’, ‘congestion level’, ‘link red/green state’, ‘model queue’,
‘model queue clear time’, ‘STOC estimate’, ‘input parameters’, ‘define association’,
‘stage plan’, ‘traffic demand’, ‘assist parameter calculation’, ‘visual traffic detection’,

‘time traffic’, ‘vehicle storage’ and ‘direct traffic’.

5.34 Physical Objects

The system’s physical objects are listed in the lowest level of the AH and consist of,
from left to right...

DEMand All (DEMA) command: forces all stages to run

(X)SCOOT command: removes or reinstates a node from/to SCOOT control.

Other SCOOT commands (see Siemens, 2011): can alter how SCOOT manages a node

and must not bias validation.
Region diagram: specifies how nodes are connected within a SCOOT region.

Node site plan: specifies the site layout and location of equipment.
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Detector: any equipment used to detect vehicle presence; common types include

induction loops, radar and Bluetooth sensors.

Detector card: interfaces between detectors and node controllers, dictates detector
sensitivity and provides visual confirmation of detection.
DIsplay Plan Monitor (DIPM): PC SCOOT screen used to display node’s control and reply

bits, plan information and used to validate staging (Figure 5-3).
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18:LCL 27: 19: 00 c 12

Figure 5-3: DIPM screen

MONTItor (MONI) display: PC SCOOT screen which displays node’s control and reply bits,
used to validate staging (Figure 5-4).
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Figure 5-4: MONI screen

Node Fine Tuning Display (NFTD): PC SCOOT screen which displays information for all

links in a node, used to validate at node level (Figure 5-5).
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Figure 5-5: NFTD screen
Link VALidation (LVAL) display: PC SCOOT screen used to input parameters and provide
the model output (Figure 5-6).
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N
N

11:46:31 004 008 004 0o 010
11:46:51 004 006
11:48:11 004 006
11:49:31 004 006

Figure 5-6: LVAL screen
TR2500: form which details traffic phase and stage operation, specifying factors
including minimum green and intergreen timings, and phase maximums, extensions

and delays.

SCOOT database: defines how the SCOOT system is set up including details about the
region, node and link, staging and detector information. It is critical that information

within the SCOOT database accurately reflects the on-street configuration.
Vehicles: provide demand for links, SCOOT aims to optimise their travel.
Stationary: used to note down and calculate parameters.

CCTV: can be used to validate a node when it is not desirable to conduct on-site

validation.

Observer: monitors traffic and clear times

Stopwatch: used to time traffic for the calculation of SCOOT parameters.
Lanes: store and direct traffic.

Traffic lights: control traffic flow.

Stop line: controls traffic and is the end cue for most parameter timings.
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5.4  Control Task Analysis

Control Task Analysis (ConTA) is the second phase of CWA and is used to identify
constraints associated with the recurring situations which can be encountered
(Stanton & Bessell, 2014). A Contextual Activity Template (CAT; Figure 5-8) is used to
represent the system in terms of work situations and functions. Situations can be
distinguished temporally, through recurring schedules, or spatially, through differing
locations. The CAT shows where functions can potentially be carried out, marked by
the dotted circles, and where they are typically conducted, marked by circles and

whiskers.

There are three temporal situations occurring within SCOOT validation, preparation,
data collection and validation. Each can be subdivided spatially by considering

activities which are undertaken from the office and on-site.

Functions were identified from the AH’s purpose-related function level. Preparation
functions consist of assessing the site to plan its validation and preparing it for
validation by isolating the node, ensuring stage demand and clearing any disruptive
settings. Each can be conducted in both spatial situations however, as most validation
occurs in the field, site preparation is usually carried out on-site. Data collection
includes the measurement of all SCOOT parameters and the initial STOC estimate, these
activities are typically undertaken on-site, owing to the need for good situational
awareness of the area, however may be office based when remotely validating via CCTV.
Validation functions include verifying detector association and validating detector
accuracy, STOC and staging, all of which can be conducted in either spatial condition,
however where possible validators are encouraged to verify detector association and
validate detector accuracy and staging from the office in order to minimise time
exposed on-site, conversely the situational awareness required for STOC validation

means it is recommended that this takes place on-site.
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Figure 5-8: Contextual Activity Template

54.1 Decision-making Analysis

Decision ladders (DLs; Rasmussen, 1974; Vicente, 1999) provide further insights
within ConTA by considering activity in decision-making terms (Mcllroy & Stanton,
2011). Ladders are formed of two types of node, rectangular boxes represent
information-processing activities and circles represent the resulting states-of-
knowledge. The left side consists of observation and information gathering activities
used to identify the system state, while the right side represents the planning and
execution of tasks and procedures in order to achieve a target state. Linking each half
are activities concerned with option selection in order to meet a desired goal (Stanton

& Bessell, 2014).
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The ladder considers levels of expertise and novelty of decision processes, with novice
users expected to follow the ladder linearly, while experts use short-cuts to connect
each half. Rule-based short-cuts can be shown in the centre of the ladder, where
information observation and diagnosis of the system state can immediately signal a
procedure to execute (Mcllroy & Stanton, 2011). The top of the ladder represents
effortful Knowledge-Based Behaviour (KBB), where goal evaluation is required to
determine the executable procedure (Stanton & Bessell, 2014). Short-cuts consist of
‘shunts’ where an information processing activity is connected to a state of knowledge
(rectangle to circle) and ‘leaps’ connecting two states of knowledge (circle to circle)

without requiring further information processing (Jenkins et al., 2009).

A DL for SCOOT validation was produced through discussion with SMEs where
validation scenarios they had encountered where described; these were developed
into a prototypical DL for the activity (Figure 5-9) which shows how multiple factors

influence the decisions required to determine whether validation has been completed.

The overall goal of SCOOT validation is to manipulate the SCOOT model so that local
traffic objectives are achieved. Two constraints act upon this goal, to either match the
SCOOT model accurately to street conditions allowing it to optimise traffic flow, or to
adapt the model to account for other factors, for example to bias towards particular

links. These constraints are in conflict and hence there are two goal choices.

The alert to commence validation may be directly received from a client via the
validator or notification through PC SCOOT that a node is un-validated and therefore
not performing optimally under SCOOT. When validation is undertaken a range of
information is gathered including what stage plan is, or should be, in operation, how
the detectors are, or should be, associated and what their outputs are, how traffic is
actually behaving, measurement or estimation of the model parameters and
information regarding local traffic objectives. This is used by the validator to judge
whether the node is performing correctly, considering whether its staging and
detectors (including association) are correct, whether local traffic objectives have been

met and the validity of the data used by the model.

When validation is incomplete, the node not meeting its objectives, several options are
available, making adjustments to the SCOOT database, on-street equipment,

assumption parameters (JNYT, QCMQ, SLAG, ELAG) or STOC (see section 5.5.3). The
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right-hand side of the ladder is then concerned with deciding which of these options

should be undertaken and how to implement them.

Several expert leaps were identified by SMEs, firstly diagnosis of certain system states
or observation of particular conditions will trigger an immediate procedure or task
process by experts, for example if the model’s queue doesn’t clear within a green
inaccurately then STOC has been set too low and must be reset higher before further
validation can take place. In less clear cut cases knowledge-based diagnosis of the
problem may be required but once a target state has been decided upon experts will
leap to the required procedure. In all cases validation is an iterative process, having to
be repeated until the validator decides that the settings are optimum for the local traffic
objective, judgement of this is critical within the validation process, the criteria for

when a node has been effectively validated being a cause for debate.

The DL can be further assessed to establish how its elements (information, system
states, tasks etc.) relate to one another, these relationships can provide an
understanding of what contributes to each element and can be considered for both legs
of the DL (Jenkins, Stanton, Salmon, & Walker, 2011). A relationship only means that
an element ‘could’ influence another but not that it ‘does’, this is useful because it
provides an insight into how information is required to determine system states and
inform option selection, and how goals lead to target states and their associated tasks

(Stanton & Bessell, 2014).

Considering the information and system state elements of the left leg (Table 5-1) shows
how states require differing amounts of information, for example to determine correct
staging requires knowledge of the planned and implemented staging, while diagnosing
whether objectives have been met requires some or all of: the planned and
implemented staging, detector readings, assumption parameters and knowledge of

local objectives.

In addition mapping system states and options shows how there is a split between
states with a single option and more complex states with multiple variables, for
example if the detector is deemed to be inaccurate the only option is to adjust the on-
street equipment, while when the data is deemed to be invalid a decision must be made
as to whether equipment, assumption parameters or the estimated STOC must be

adjusted or some combination of these.
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Analysis of the right leg (Table 5-2) shows that the chosen goal has a limited impact on
the target state, with only adjusting equipment settings being unsuitable for adapting
the SCOOT model to account for other factors. Tasks are highly proceduralised, each
being attributed to a single target state, for example when adjusting assumption
parameters it is possible to change JNYT, QCMQ, SLAG or ELAG, however this will not

aid in achieving any other target state.

Evaluate
performance

< —

Predict
consequences

Diagnose state \ Definition of task \\

Observe information .
and data, scanning {— — \ Planning of
> \ procedure

for cues N N

Activation Execute

Figure 5-9: Decision Ladder
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Table 5-1: Left leg of decision ladder linking system states to options and information
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Tasks

Target States

Should SCOOT database settings be adjusted?
Should on-street equipment settings be adjusted?

Should assumption parameters be adjusted?

Should STOC be adjusted?
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Table 5-2: Right leg of decision ladder, linking target states to chosen goal and tasks
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5.5  Strategies Analysis

Strategies Analysis (StrA) is CWA'’s third phase and identifies how the system activities
identified in ConTA are conducted (Mcllroy & Stanton, 2011). StrA is used to describe
all of the possible ways to complete an activity, recognising that there are often
multiple ways to achieve an objective with choices being variable both between and
within agents (Stanton & Bessell, 2014), depending on context. Alternative strategies
can be effectively presented using flow diagrams (Ahlstrom, 2005) to show the
potential action sequences linking a start and end state. Strategy flowcharts have been

developed for each of the functions identified within the ConTA’s CAT.

5.5.1 Site Assessment

Before validation commences the site must be assessed, the strategy to achieve this is
shown in Figure 5-10. Consideration is given to the site’s layout particularly where to
park and conduct observations while remaining safe and not biasing the validation
process. The site’s context within the region is also considered in order to establish the

factors which may affect validation and to plan the overall process.

5 5 . Identify
Unassessed Considerfsite o ldentllfy —) observation > A d
layout parking location

Consider Consider
connected ¥ connecting
nodes links

Figure 5-10: Site assessment strategy

5.5.2 Site Preparation

To prevent bias each validation site must be prepared, the strategy to achieve this is
shown in Figure 5-11. Node’s settings can be accessed through PC SCOOT. Before
validation all stages must be called, the node must be isolated from SCOOT and any
other settings should be set to default, each of which is achieved individually and hence

potentially inefficiently, with the appropriate PC SCOOT commands.

Access PC Display node WErirlyy Ensure stage
»
Unprepared SCOOT > settings »| demand dep. =¥ Input DEMA | demand \\Prepared

stages

Identify
whether node =¥ Input XSCOOT | Isolate node —
isolated

Set default Update node
settings settings

Figure 5-11: Site preparation strategy
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5.5.3 Parameter Measurement

The SCOOT model is based on several parameters (see Siemens, 2011) each being

measured as follows.

JourNeY Time (JNYT): Time for a free-flowing vehicle in the centre of a platoon to travel
from the detector to the stop line. This determines when the model believes a vehicle

arrives at the stop line.

Queue Clear Maximum Queue (QCMQ): Time for a full queue to clear, determining how
quickly a queue can be cleared. This can be measured for short links however longer
links must be estimated based on the time for a known number of vehicles to clear
using equation 5-1, where L is the link’s length (m), Q is the queue clear time for a
known number of vehicles (x). For very long links where a full queue cannot discharge
fully this may produce an overestimate which must be multiplied by equation 5-2,
where “cycle time” is the node’s largest likely cycle time and “green time” is the
corresponding average green time given to the link, to get a fair value.

Equation 5-1: QCMQ = =2

6x

cycle time
cycle time+green time

Equation 5-2:

Start LAG (SLAG): Time from a SCOOT stage starting (usually indicated by the previous
phase losing right of way) to vehicles crossing the stop line and accounting for
intergreen time and area start lag, acts as a timer for calculating when a queue will

begin to discharge.

End LAG (ELAG): Time from a SCOOT stage ending to traffic ceasing to cross stop-line
and accounting for area end lag, acts as a timer for calculating when traffic ceases to

discharge.

Measurement of each parameter follows the strategy illustrated in Figure 5-12 both
when conducted on-site and via CCTV. In each case the start and end cue for
measurement is identified and the appropriate timing is conducted, the validator must
then judge whether the measurement is valid (e.g. if a car stalled it is not representative)
and average as many valid results as necessary to gain a fair representation of the
parameter. LVAL in validation mode (1 in Figure 5-12) is then used to input each
parameter (2 in Figure 5-12) and automatically updates the SCOOT model accordingly.

The most complex task is identifying start cues for the measurement of SLAG and ELAG
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because of their variability and the impact caused by phase delays, with the required
diagnosis information not readily available within the system.

> ) Identify start/ Measure ) - ) Average
Gnmeasured end cue > parameter Judge validity results

v

| Update SCOOT Input
model < parameters (€1 Access LVAL

X LVAL N01211T

7
3
iilasist o4 o0s 04 oos  oto v
itiasist ood  oos N
114811 004 006 N
11:49:31 004 006 N

Figure 5-12: Parameter measurement strategy

5.5.4 STOC Estimation

STOC is simply a link’s discharge rate measured in link profile units (see Siemens, 2011)
per second (Ipu/sec), hence as STOC increases so does the number of vehicles

discharged. Before validation can commence an initial STOC value must be estimated

by the validator and input into the system, the strategy to achieve this is shown in

Figure 5-13. The estimation is usually based on the number of lanes a link has, the

validator will then adjust this value based on the site’s context, accounting for whether

there is a positive or negative gradient, the local environment (e.g. schools, crossings)

and local traffic behaviours (e.g. are lanes used equally). LVAL in validation mode (1 in

Figure 5-13) is then used to input the desired STOC value (2 in Figure 5-13), which then

automatically updates the SCOOT model.

Lopsides Consider Consider local Cepsidenjocal
Un-estimated number of P> —> —» traffic

gradient environment .
lanes behaviour

Input
Estimated S e ' €— estimated €— Access LVAL <« Estimate STOC
model STOC

Qclr s 1
11:44:11 004 006 010 012 008 v
11:45:31 004 008 004 006 010 v
11:46:51 004 006 N
11:48:11 004 006 N
11:49:31 004 006 N

Figure 5-13: STOC estimation strategy
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5.5.5 Staging Validation

Staging validation is carried out to ensure that the implemented stages match those
planned and hence the junction operates as designed, the strategies to achieve this are
shown in Figure 5-14. The validator must first identify the designed stage plan from
the SCOOT database or TR2500 form, either by cross checking the control and reply
bits with phase movements, or through a stage diagram. There are then three potential
strategies for stage validation. Firstly, the traffic signals can be observed and compared
to the plan. Secondly, the NFTD screen can be used to display when each link is green
(1 in Figure 5-14) and compared to the plan, this is useful when it is not possible or
easy to observe all traffic signals. Thirdly, the control and reply bits in operation can be
displayed on either DIPM (2 and 3 in Figure 5-14) or MONI (4 and 5 in Figure 5-14)

and compared to the plan.

) 4

ety Display green
Un-validated planned stage Access NFTD pli ngs
plan
\ 4
Observe traffic | Compare to L .
—> = > plan > Judge validity {Vahdated)

A

Access DIPM/
MONI

Display control

> and reply bits

X DIPM j01211 =18 X Mont 01211

Plan Monitor J01211 (N01211)  STGEORG/SOUTHAM Th 27-Mar-14] X01210 [192.168.1.9] STGEORG/SOUTHAM
currer table 02 Title:- D502 = Monday -Friday Timetable 11:86: 36 1 012:

~~~~~~~

Curren n e
cvios c 1, (N, B 92 2

- New Pian B

Timetable| Monitor |Fault Messages
01:080 10:LCL 19:080 28:LCL[12:00 33
[0z:LcL 11:LcL 20:LoL 29:Lct|12:30 33
03:080 12:LCL 21:LCL 30:120(14:00 33
04:LCL 13:LCL 22:LCL 31:LCL[16:00 33
05:LCL 14:LCL 23:LCL 32:LCL[16:30 30
06:LCL 16:LCL 24:LCL 33:104[16:45 30
07:LCL 16:080 25:100 34:LCL[18:00 30
08:LCL 17:LCL 26:110 35:LCL[19:00 XSCO
09:LCL 18:LCL 27:LCL 36:090/19:00 33

Figure 5-14: Staging validation strategies
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5.5.6 Detector Association Verification

Detector association verification is conducted to check that links are monitored by the
correct detector; the strategy for achieving this is illustrated in Figure 5-15. First the
desired detector must be physically located on-site and its intended association must
be identified from the SCOOT database. The detection output is then monitored using
LMON and compared to the expected traffic flow based on observation. LMON provides
a binary output (1 in Figure 5-15) of when the detector is active. If detection matches
the observed flow the detector is likely correctly associated. A potential issue is when

traffic flow is similar across multiple detectors, leading to potential errors.
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A
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Figure 5-15: Detector association strategy

5.5.7 Vehicle Detection Validation

Detectors must be validated to ensure that detection is accurate; the strategies to
achieve this are shown in Figure 5-16. In all cases the detector’s sensitivity settings
must be checked in the controller cabinet, ensuring detection is phased out after the
appropriate amount of time. There are then three options for completing validation.
Firstly, LMON can be used to display a binary output (1 in Figure 5-16) of when the
detector is active in ¥4 second pulses, similarly to association verification this output is
compared to observed traffic flow however in this case the degree of detection per
vehicle must be considered, typically 34 second representing a single car. Secondly,
LMON also outputs M14 messages (2 in Figure 5-16) every four seconds which specify
queue length in lIpu. This value must be converted by the validator into vehicles and
compared with the observed queue. Thirdly, NFTD can be used to display queue,
saturation and congestion levels for each link in a node (3 in Figure 5-16), these figures

can be compared by the validator to the observed conditions. Congestion is calculated

128



Chapter 5: Assessment of SCOOT Validation with PC SCOOT Using CWA

based on the proportion of time a detector is activated in relation to the cycle time,
saturation is the ration of demand to the discharge rate (STOC) for the duration of
effective green time (Siemens, 2011). Multiple strategies may be employed when one

is not sufficient to validate accuracy.

TV |

comaa
T 0000

Convert Ipu to
vehicles

v

Access Display .
Un-validated Check (Eie.'@ctor > detector detection P Comparelitiy — Judge accuracy —¥p Validated
sensitivity observed
output (LMON) output

A

Display M14 >

A 4

Access
detector
output (NFTD)

Display link
data

A 4

I (ER=027|

Figure 5-16: Vehicle detection validation strategies

5.5.8 STOC Validation

The STOC validation process is illustrated in Figure 5-17. This function makes
extensive use of LVAL in validation mode (1 in Figure 5-17), validators must first
measure queue length and clear time for a number of cycles inputting these parameters
into LVAL (2 in Figure 5-17). LVAL also displays the modelled queue length and clear
time based on the assumption parameters (3 in Figure 5-17) as well as a graphical
depiction of the queue length (4 in Figure 5-17) The validator must then judge whether
the iteration was valid (5 in Figure 5-17) and whether STOC has converged to the
correct amount by comparing the modelled and observed data, if not STOC is adjusted
based on the validator’s intuition or by using an automated estimate produced by PC
SCOOT (6 in Figure 5-17) utilising equation 5-3, through LVAL (7 in Figure 5-17) and

the model is updated for the next iteration.

sum of valid street queue clear times

Equation 5-3: New STOC = * 0ld STOC

sum of valid model queue clear times
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Figure 5-17: STOC validation strategy

5.6 Social Organisation and Cooperation Analysis

CWA'’s fourth phase Social Organisation and Cooperation Analysis (SOCA) investigates
the cooperation between actors within a system, addressing the constraints imposed
by organisational structures or specific actor roles and definitions (Mcllroy & Stanton,
2011). SOCA can be used to determine how the social and technical elements of a socio-
technical system can work together to enhance performance and supports the
development of flexible systems with dynamic function allocation, whereby the

situation dictates agents’ roles (Stanton & Bessell, 2014).

SOCA is achieved by colour coding the previous phase’s outputs according to potential
agent roles. Two agents are utilised within SCOOT validation the human validator and
the technical system PC SCOOT. Colour-coding (Table 5-3) has been applied to the CAT
and DL from ConTA and each strategy flow chart from StrA to show how these agents

are utilised.
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Table 5-3: Colour coding for the key roles analysed in SOCA

Validator
PC SCOOT

5.6.1 Contextual Activity Template

From Figure 5-18 it can be seen that the majority of functions involve both the validator
and PC SCOOT regardless of the situation, with the exception of site assessment which
can only be carried out by the validator. On-site access to PC SCOOT through a remote

terminal is clearly highly beneficial throughout the validation process.

5.6.2 Decision Ladder

The DL can also be used in SOCA with the information processing activities (boxes) and
the resultant states of knowledge (circles) being colour coded by social agent
(Figure 5-19). It is clear that the majority of decision-making within SCOOT validation
is performed by the validator, in particular the high level activities such as goal

evaluation, system state diagnosis and target state definition.

Use of PCSCOOT is predominantly focused on the ladder’s left leg, able to provide much
of the information required to validate as well as potentially acting as the alert to begin
validation based on information in the SCOOT database. PC SCOOT’s congestion
supervisor tool has a limited capacity to diagnose node’s performance and suggest
potential problems including with assumption parameters or STOC values. In addition
PC SCOOT is capable of estimating how STOC should be adjusted, this represents the
only use of PC SCOOT on the ladder’s right leg. The reason for this is that the majority
of task options can be highly site specific, for which the intelligence of the current

system is not sufficient to replace the human validator.
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Figure 5-18: SOCA-CAT
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N
Expert
Leap < _

\
Expert Leap
\

Figure 5-19: SOCA-DL

5.6.3 Strategy Flowcharts

Finally by considering the flowcharts produced in StrA it is possible to identify how

agents are utilised in each function strategy.

5.6.3.1 Site Assessment

Site assessment (Figure 5-20) is exclusively conducted by the validator, technical

systems not being intelligent enough to perform this function.

Unassessed Assessed

Figure 5-20: Site assessment SOCA strategy
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5.6.3.2  Site Preparation

The site preparation process (Figure 5-21) utilises PC SCOOT to provide required
information and implement changes to the node. Decision’s regarding how settings

must be adjusted to prevent bias remain the validator’s concern.

Display node - Ensure stage
Unprepared S >» demand Prepared
“ ol
Update node
settings

Figure 5-21: Site preparation SOCA strategy

5.6.3.3 Parameter Measurement

Figure 5-22 shows how parameter measurement is performed almost exclusively by
the validator. PC SCOOT provides a mechanism to input the measured parameters into
the system through the LVAL screen and hence update the SCOOT model, accurate

measurement is entirely dependent on the skill and training of the validator.

Unmeasured

Measured |«

Figure 5-22: Parameter measurement SOCA strategy

Update SCOOT
model

5.6.3.4 STOC Estimation

Figure 5-23 shows how consideration of the factors impacting STOC is carried out by
the validator, who either estimates STOC directly or makes use of PC SCOOT’s wizard,
which can be useful for novices. Once estimated STOC is input similarly to the other

validation parameters through LVAL and PC SCOOT updates the model accordingly.
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Un-estimated

Estimated Update SCOOT
model

Figure 5-23: STOC estimate SOCA strategy

5.6.3.5  Staging Validation

In the current system the required plan information is held outside of the technical
system leading to potential inefficiencies. PC SCOOT is involved in two of the three
strategies for validating staging (Figure 5-24), with the NFTD screen displaying which
links are green, while the DIPM and MONI screens display the control and reply bits in
operation, in both cases the comparison with the plan is conducted by the validator
who ultimately judges whether the observed staging matches the plan. Similarly to

other functions PC SCOOT is used simply to provide information to the validator.

Validated

Un-validated

Display green
links

Display control |
and reply bits

Figure 5-24: Staging validation SOCA strategies

5.6.3.6 Detector Association Verification

For verifying detector association (Figure 5-25) PC SCOOT displays the detector’s
outputs through the LMON screen, the validator is responsible for identifying the
correct set-up and judging whether this has been achieved through comparison of

detection and expected traffic conditions.

Unverified

Display
detection
output

Verified

Figure 5-25: Detector association verification SOCA strategy
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5.6.3.7 Vehicle Detection Validation

Similarly to association verification, for vehicle detection validation PC SCOOT is used
to display the detector’s output (Figure 5-26), whether through the LMON or NFTD
screens. The task of comparing detection with the observed traffic, including any
necessary conversions (Ipu to vehicles) is then carried out by the validator who judges

the detector’s accuracy accordingly.

Display M14
Display
Un-validated detection Validated
output
Display link |
queue data

Figure 5-26: Vehicle detection validation SOCA strategies

5.6.3.8 STOC Validation

For STOC validation PC SCOOT performs three functions (Figure 5-27). Firstly, it
displays the model queue and clear time output through LVAL. Secondly, it can provide
an estimate for what STOC should be, based on equation 5-3, if the validator decides
not to estimate directly. PC SCOOT is also able to calculate multiple queue clear times
based on a range of STOC values to assist the operator. Thirdly, LVAL is used to update
the SCOOT model whenever the STOC value is changed. All other tasks are performed
by the validator.

ouput
Update SCOOT STOC
model ate

Validated

Figure 5-27: STOC validation SOCA strategy

5.7 Worker Competencies Analysis

Worker Competencies Analysis (WCA) is the final CWA phase and addresses the
constraints of agent skill within different functions, investigating the behaviour

required by both humans and automation through application of Rasmussen’s (1985)
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Skills, Rules and Knowledge (SRK) Taxonomy (Stanton & Bessell, 2014). WCA was
originally based on the information processing steps taken from the DL, however
several recent examples (Mcllroy & Stanton, 2011; Stanton & Bessell, 2014) instead

base the analysis on the CAT in order to be consistent with CWA'’s functional outputs.

The SRK framework describes three levels of cognition, described most recently within
the context of CWA by Stanton and Bessell (2014), Skill-Based Behaviour (SBB)
consists of automated actions in response to environmental cues and events, and
requires little or no conscious effort, this behaviour is acquired through practice and is
usually found within experts. Rule-Based Behaviour (RBB) utilises stored rules and
procedures acquired through experience or learned from other agents which guide
behaviour but require cognitive processing. Knowledge-Based Behaviour (KBB) is
used when advanced reasoning is required, commonly during novel and unanticipated
events, it is characterised as slow and effortful, requiring conscious attention to the

system'’s governing principles.

The WCA analysis is presented as a SRK inventory (Table 5-4) showing the SBB, RBB
and KBB which applies to each function. The inventory can be formed through
interrogation of WDA’s AH and hence requirements can be determined even with no
existing interface. To maximise performance it is important that each of these
behaviours is supported for each function (Kilgore & St-Cyr, 2006), ensuring that both
novice and expert behaviour is accommodated (Rasmussen, 1983). The inventory can
also inform function allocation, through description of the required behaviours for

each function with suitability for automated or human allocation identified.

SBB in all functions is centred around the validator performing the function intuitively
based on their knowledge and experience of the domain, for example an initial estimate
for each parameter is made based on assessment of local conditions and then adjusted,
rather than individually measured. RBB is accommodated extensively within PC SCOOT,
the proceduralised nature of the domain enabling relatively simple logic rules to be
developed for each function. KBB is focused on understanding how each model factor

can impact on the traffic and vice versa.

PC SCOOT’s screens are relatively rigid; having been developed around the domain’s
proceduralised tasks. While these interfaces may support RBB well there is a lack of
support for both KBB and SBB, which could impede performance especially in more

complex scenarios. Development of PC SCOOT should ensure all three behaviours are
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supported across all functions to improve validator’s performance at varied skill and
experience levels. This could be achieved through application of EID (Burns &
Hajdukiewicz, 2004; Vicente & Rasmussen, 1992) for each function. EID having been
shown to provide performance improvements in other domains (e.g. Lau, Jamieson,

Skraaning, & Burns, 2008; Lau, Veland, et al., 2008).
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Table 5-4: SRK inventory for SCOOT validation

Function

Skill-Based Behaviour

Rule-Based Behaviour

Knowledge-Based Behaviour

Assess site

Ensure validation is undertaken at
the correct time(s) of day, minimises
disruption/bias and is undertaken
safely

[F traffic levels vary over the day
THEN identify when validation must
take place

[F validation is undertaken on-site
THEN ensure personnel are safe and
do not bias traffic

Understand the need for and how to
achieve unbiased and accurate
validation as well as the potential
dangers of on-site validation and how
to manage them

Prepare site

Ensure the node being validated is
removed from SCOOT control,
demand is provided for all stages and
settings for the node and any
connections do not bias the process.

IF the node is under SCOOT control
THEN place it under local control

IF any links are demand dependent
THEN ensure demand

[F any node settings could introduce
bias THEN set to default

[F node is within a region THEN
ensure other node/link’s settings do
not bias validation

Understand the factors which may
cause validation to be biased and how
to correct for them

Measure JNYT

Intuitively estimate JNYT based on
road geometry, local environment
and traffic behaviour

[F the platoon is free-flowing THEN
time a central vehicle between the
detector and stop-line

[F the result is not representative
THEN discard

Understand that JNYT is used to
determine vehicle arrival at the stop-
line by the SCOOT model, the factors
which may influence vehicle’s
behaviour and change’s impacts on

REPEAT UNTIL sufficient valid results the SCOOT model

have been obtained, covering a range
of vehicle types and take the mean as
JNYT
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Function Skill-Based Behaviour Rule-Based Behaviour Knowledge-Based Behaviour
Measure QCMQ Intuitively estimate QCMQ based on  IF link is short THEN time from when Understand that QCMQ is used to
road geometry, local environment light turns green until vehicle calculate how quickly a queue will
and traffic behaviour stopped on the detector crosses the  clear by the SCOOT model, the factors
stop-line which may influence vehicle’s
IF link is long THEN use equation 1 to behaviour and change’s impacts on
calculate QCMQ the SCOOT model
IF link is too long for a full queue to
discharge in a single green THEN
multiply the calculated QCMQ by
equation 2
IF results are not representative
THEN discard
REPEAT UNTIL sufficient valid results
have been obtained, and take the
mean as QCMQ
Measure SLAG  Intuitively estimate SLAG based on IF the relevant SCOOT stage has Understand what causes the

road geometry, local environment
and traffic behaviour

commenced THEN time until the first
vehicle crosses the stop-line and
subtract the default SCOOT
intergreen (5s) and area start lag
(~2s)

IF results are not representative
THEN discard

REPEAT UNTIL sufficient valid results
have been obtained, and take the
mean as SLAG

commencement of a SCOOT stage
and that SLAG is used as a timer for
calculating when the queue will begin
to discharge once a SCOOT stage
starts, the factors which may
influence vehicles and the impacts of
changes on the SCOOT model
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Function Skill-Based Behaviour Rule-Based Behaviour Knowledge-Based Behaviour
Measure ELAG  Intuitively estimate ELAG based on  IF the relevant SCOOT stage has Understand what causes a SCOOT
road geometry, local environment terminated THEN time until vehicles stage’s termination and that ELAG is
and traffic behaviour cease to cross the stop-line and used as a timer for calculating when
subtract area end lag (~3s) traffic ceases to discharge after a
IF results are not representative SCOOT stage finishes, the factors
THEN discard which may influence vehicles and the
REPEAT UNTIL sufficient valid results impacts of changes on the SCOOT
have been obtained, and take the model
mean as ELAG
Estimate STOC Intuitively estimate STOC based on IF the link has multiple lanes STOC Understand that STOC is a link’s

road geometry, local environment
and traffic behaviour

will be higher

IF the link has a positive /negative
gradient STOC is likely to be
lower/higher

IF traffic does not use lanes optimally
STOC may be reduced

discharge rate (lpu/s) and how it can
be affected by road geometry, the
local environment and traffic
behaviour

Validate staging

Check node’s staging arrangement
and that links are green at the correct
times

IF the control/reply bits match the
plan AND the SCOOT database is
correct AND links are green when
expected THEN staging has been
implemented correctly

Understand staging’s importance and
how to test for correct
implementation
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Skill-Based behaviour

Rule-Based Behaviour

Knowledge-Based Behaviour

Verify detector
association

Identify how a detector should be
associated and verify by comparing
observed traffic flow with the
detector’s output

IF the detection output matches the
observed traffic flow THEN detector
is likely correctly associated

IF detection output does not match
observed traffic flow THEN detector
is likely incorrectly associated

Understand the importance of correct

association, how to identify planned
association and how detector outputs
can be used to test association

Validate vehicle

Check detector’s sensitivity and

IF the detection output matches

Understand the importance of

detection validate detector’s accuracy by observed traffic flow THEN detector accurate detection, how to use the
comparing its output to observed is likely to be accurate detector output to test accuracy and
traffic flow how to check detector sensitivity
Validate STOC  Quickly converge to the correct STOC IF the model queue does not clear Understand that STOC is a link’s

value based on a few readings

within a green inaccurately THEN set
a high STOC to reset and start again
IF the link is green THEN identify the
queue length and time until the last
delayed vehicle crosses the stop line
IF results are not representative
THEN discard

REPEAT UNTIL sufficient valid results

have been obtained

IF the model queue and queue clear
times are lower/higher than that
observed THEN reduce/increase the
STOC estimate and recalculate UNTIL
the model matches observed then
STOC has converged correctly

discharge rate (lpu/s), is used to
determine how quickly vehicles
discharge when the link is green and
the impacts of STOC being too
high/low

Joshua Price
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5.8 Conclusions

This chapter has applied an entire CWA to the SCOOT validation process. Each phase
has provided insights into how the process operates and several development areas

for the existing technical system, PC SCOOT, can be identified.

An AH was constructed in the WDA phase to identify the functions required in SCOOT
validation, how they are achieved and why they exist. The AH showed how each
function is conducted to achieve a specific value and priority measure, either
preventing bias, correct detector setup or accuracy of the assumption parameters or
SCOOT model, and so the system can be described as proceduralised. In addition
functions are focussed at a particular system level, node, link or detector as illustrated
in Table 5-5, it is suggested that they are grouped accordingly in any future
developments of PC SCOOT.

Table 5-5: SCOOT validation functions by value and priority measure and system level

Value and Priority Measure
Accuracy of | Accuracy of
Prevent bias Correct detector assumption SCOOT
setup
parameters model
Node Assess SI_te N/A N/A Vahd_ate
— Prepare site staging
)
» . Measure Validate
)
'; Link N/A N/A parameters STOC
% Verify detector
> association
| Detector N/A Validate detector N/A N/A
accuracy

ConTA considered the impacts of temporal and spatial recurring scenarios through
production of a CAT. It was established that all validation functions can be carried out
either on-site or from the office when extensive CCTV coverage is available; however it
is recommended that parameter measurement and STOC estimation and validation
functions are conducted on-site owing to the need for sufficient situational awareness

potentially not provided remotely.

The DL provided further insights into the decision-making process. The ladder’s left leg
highlighted how system states differed in complexity both in terms of the information
required to diagnose them and the options available to manage them. Considering the

right leg, two potential goals were identified, to match the SCOOT model to on-street
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conditions or to adjust it to account for other local factors (e.g. political directives). Goal
selection has a limited impact on the possible tasks however task processes are highly
proceduralised being linked to a specific target state. Several expert leaps were
identified linking a system state or target state to a task or procedure, explaining how
experienced validators will intuitively know the correct strategy to employ once the

system or target state is identified.

Strategies analysis was conducted for each of the functions identified within the CAT.
The majority of these were found to be inflexible, having set procedures. Staging and
detector accuracy validation on the other hand each have multiple strategies mostly
linked to the particular PC SCOOT screen used by the validator. The rigidity of the task
processes arise from the way SCOOT operates and hence it is unlikely that they can be
changed, future improvements are therefore likely to arise from enabling validators to

do the existing tasks more effectively.

SOCA was applied by colour-coding the other phases’ outputs by social agent, the
validator or PC SCOOT. From the CAT almost all functions involve both agents; in
particular this shows the importance of having on-site access to PC SCOOT through a
remote terminal. Considering the DL, all high-level decision-making is conducted by
the validator with PC SCOOT activities being focused on the left leg, specifically in
providing the information required to diagnose system states, it also has limited
capacity to help estimate STOC, the only right leg activity owing to a lack of intelligence.
Finally, the strategies analysis reinforces the prevalence of activities conducted by the
validator and that PC SCOOT is used to provide information for most functions and
undertake technical processes such as updating the SCOOT model. Given that it is
unlikely PC SCOOT’s intelligence can be radically increased at least in the short-term,
development should focus on enabling validators to make decisions and complete

functions more accurately and efficiently.

An SRK inventory for WCA identified the SBB, RBB and KBB required for each function,
it was found that the existing technical system is based around procedural RBB with
limited support for SBB or KBB. It is argued that improving support for these

behaviours would lead to performance improvements.

The following areas were identified throughout the analysis as development

opportunities.
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1. Site preparation — improve the efficiency of setting up a node correctly for
validation, ensure all commands acting upon a node can be identified and
adjusted easily.

2. Parameter measurement - in addition to direct parameter input, aid validator’s
understanding of how each parameter should be calculated, in particular
start/end cues and the potential for automated assistance.

3. Ecological interface development - redesign staging validation, detector
association verification, detector accuracy validation and STOC validation
interfaces to support all behaviours as identified in the SRK inventory through

EID.

Through consultation with Siemens it was decided that the third of these options
represented the greatest potential benefit. By considering each function’s importance,
relative difficulty and level of support provided by PC SCOOT it was decided that STOC
Validation represented the best candidate for further development; hence this function

is the subject of further analysis, design and evaluation in chapters 6 through 8.
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Chapter 6: Using Cognitive Work Analysis to Design
an Ecological STOC Validation Tool

6.1 Introduction

Ecological Interface Design (EID; Rasmussen & Vicente, 1989; Vicente & Rasmussen,
1992) represents an important Human Factors design technique which could be
applied to address some of the issues identified with traditional SCOOT validation
displays, with extensively documented impacts achieved through its application
(Vicente, 2002) including within aviation (e.g. Ellerbroek, Brantegem, van Paassen, &
Mulder, 2013), medicine (e.g. Effken, 2006) and power generation (e.g. Lau & Jamieson,

2006; Lau, Jamieson, et al., 2008) domains to name a few.

The premise of EID is a theoretical framework for designing interfaces which support
rapid detection and interpretation of information in complex systems (Burns &
Hajdukiewicz, 2004) by accounting for the domain’s fundamental constraints and
specific agent behaviours. In particular all three levels of cognitive control identified
by the Skills, Rules and Knowledge (SRK) taxonomy (Rasmussen, 1983; Vicente, 2002)
should be supported through application of the principles described by Vicente and
Rasmussen (1992), encouraging use of the most appropriate level to improve
consistency, reliability and predictability (Vicente & Rasmussen, 1992) and supporting

users’ skill acquisition (Rasmussen & Vicente, 1989).

1. Skill-Based Behaviour (SBB) - automatic actions supported through direct
action on the interface while displaying information consistently with the part-
whole structure of movements.

2. Rule-Based Behaviour (RBB) - associating perceived cues with stored rules
requiring consistent one-to-one mapping between constraints and interface
cues.

3. Knowledge-Based Behaviour (KBB) - analytical problem solving supported by

providing an externalised mental model of the domain.

Central to the EID process is use of Cognitive Work Analysis (CWA; Jenkins et al., 2009;
Rasmussen et al., 1994; Vicente, 1999) to formatively assess domains from multiple
perspectives and levels of detail. While completion of all CWA phases is not always

justified (Stanton et al., 2013) representations from each phase can inform EID, most
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attention being given to Work Domain Analysis (WDA) and Worker Competencies
Analysis (WCA), in particular construction of an Abstraction Hierarchy (AH;
Rasmussen, 1985) and application of the SRK taxonomy (Rasmussen, 1983). Although
consistent with EID’s original description it has been argued that Control Task (ConTA),
Strategies (StrA) and Social Organisation and Cooperation (SOCA) Analyses can also
contribute (e.g. Sanderson, Anderson, & Watson, 2000), however very few studies have

utilised a complete CWA in an EID context (see Mcllroy & Stanton, 2015).

While road transport is represented within the EID literature (e.g. Hilliard & Jamieson,
2007; Lee, Nam, & Myung, 2008; Mendoza, Angelelli, & Lindgren, 2011; Seppelt et al,,
2005) most of these studies have focussed on in-vehicle driver assistance systems
rather than the macro systems associated with traffic management. In this chapter EID
is applied to SCOOT validation with particular focus given to how each CWA phase

contributes to the EID process.

6.1.1 SCOOT Validation

Traffic signals are an integral part of any road environment providing control over
vehicles in order to meet demands imposed by road users and governments, such as
maximising capacity and safety while minimising delays (Folds et al., 1993). Signals’
timings can be predetermined based on observed traffic flows (e.g. TRANSYT;
Robertson, 1969) however in many urban networks adaptive control systems such as
Split Cycle Offset Optimisation Technique (SCOOT; Hunt et al, 1981) are used to
increase efficiency with improvements in excess of ten percent reported over
traditional fixed-time plans (e.g. Jhaveri, Perrin, & Martin, 2003; Nottingham Traffic
Control Centre, 1997). Light controlled junctions and pelican crossings controlled by
SCOOT are known as nodes, with the interconnecting roads termed links. Real-time
traffic data from detectors and a traffic model are used to adjust the length of green for
a specific link (split), time allowed for all of a node’s links to complete a green period

(cycle time) and the offset time between adjacent nodes (see Hunt et al., 1981).

To be effective the model must accurately reflect on-street conditions and so its
parameters must be validated which is both time consuming and reliant on validators'
experience and domain knowledge (Siemens, 2011). This is problematic given the
limited number of qualified validators in contrast to the amount of SCOOT systems in
operation worldwide and the difficulty of training novices to use the historically

developed textual interface of the current validation tool within Siemens’ PC SCOOT
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Urban Traffic Control (UTC) system (Siemens, 2013). Itis proposed that development
of an alternative ecological interface could overcome this difficulty and potentially lead

to performance improvements.

Time constraints meant that only a single SCOOT validation parameter could be
developed. Reiterating from chapter 5, SaTuration OCcupancy (STOC) validation was
chosen because it is critical to SCOOT’s effectiveness and it is perceived to be relatively
difficult to do with PC SCOOT providing limited support. This chapter is concerned
firstly with assessing STOC validation using PC SCOOT with these findings used to
inform the development of an alternative ecological interface, evaluation of this

interface will then be conducted in chapters 7 and 8.

6.2 Data Collection

Descriptions of the STOC validation process were obtained from individual interviews
with five Subject Matter Experts (SMEs), SCOOT validators with experience ranging
from five to thirty years, and a technical demonstration of the Link VALidation (LVAL)
tool used to validate STOC was provided. The CWA outputs were produced following
the procedures described by Jenkins et al. (2009) and used in Jenkins et al. (2008),
with the aid of the Human Factors Integration Defence Technology Centre’s (HFI-DTCs)
CWA software tool (Jenkins et al., 2007) and Microsoft Visio. Each output was refined,

amended and verified during subsequent meetings with the SMEs.

6.3 Work Domain Analysis

WDA describes the system in terms of the environment in which it operates by
identifying the fundamental constraints which shape activities (Mcllroy & Stanton,
2011). An Abstraction Hierarchy (AH; Rasmussen, 1985) describes the system at
multiple levels (see Naikar, Hopcroft, & Moylan, 2005; Reising, 2000) from its
functional purpose at the top to physical objects on the bottom. The relationships
between levels are specified using means-ends links in what is known as the why-what-
how triad, with connections above a particular node describing why it exists and those

below how it is achieved (Burns & Hajdukiewicz, 2004).

For EID the AH serves to identify information requirements, with nodes showing what
needs to be displayed while means-ends links guide organisation such that the

connections between physical components are reflected. These principles serve to
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provide an externalised domain model which supports knowledge-based reasoning
(Vicente, 1996). Within the AH for STOC validation (Figure 6-1) the purposes, values,
functions and processes directly related to the validation tool have been colour-coded
dark grey while those of associated technical subsystems are coded light grey, non-

technical subsystems are white.

6.3.1 Functional Purpose, Values and Priority Measures and Purpose-

related Functions

The functional purpose, or reason for the system’s existence, is to ensure a link’s STOC
value is accurate. Values and priority measures define the criteria against which
achievement of the functional purpose can be measured, in this case by accurately
measuring street conditions, identifying model outputs and minimising its error. The
central purpose-related functions specify how these measures are achieved. The
parameters queue length and queue clear time are measured from observed conditions
and also estimated and output by the model, adjustments are made by altering the

STOC value used.

6.3.2 Object-related Processes and Physical Objects

The AH’s lowest level depicts the system’s technical and natural physical objects, with
their affordances, or capabilities, captured in the object-related processes layer (Naikar
et al.,, 2005). Objects include vehicles, infrastructure to control and observe traffic and
a stopwatch to measure the street queue clear time. Technical objects include the
traffic model used to calculate the model parameters, detectors and traffic controllers

which provide information to the model as well as the validation tool itself.

6.3.3 Validation Tool Functions

The means-end relationships between object-related processes, physical objects and
purpose-related functions are shown for the validation tool and other technical
subsystems in Table 6-1. It can be seen that the detector, traffic controller and traffic
model subsystems are concerned solely with the calculation of model outputs while
the validation tool is utilised in all five purpose-related functions. The primary

functions of the validation tool are as follows.

1. Input measured parameter - street clear time is measured by validators and

recorded using the tool.
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2. Input STOC value - to enable model queue clear times to be calculated.

3. Output modelled parameters — model queue length and clear time are output

having been calculated by the traffic model using inputs from the detector,

traffic controller and STOC value.

4. Provide clear time comparison - to facilitate STOC value adjustment, if the

modelled clear time is consistently faster than observed STOC must be reduced

and vice versa.

5. Enable data validity assessment - to ensure the model provides sensible outputs

the source data must be valid, specifically the queue must be long enough to

produce a meaningful clear time and it must have been detected accurately.

Table 6-1: AH means-ends analysis
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Figure 6-1: Abstraction Hierarchy
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6.4 Temporal and Spatial Constraints

A system’s temporal and spatial constraints are considered using a Contextual Activity
Template (Naikar, Moylan, & Pearce, 2006) as part of CWA’s ConTA phase, by
identifying where and when the functions identified in WDA could be (dashed box), or
typically are (circles and whiskers) performed. By colour-coding the CAT according to
which agent, human or technical, conducts each task the constraints imposed by
organisational structure and agent role are revealed (Mcllroy & Stanton, 2011; Naikar,
2011; Vicente, 1999), this is conducted in the SOCA phase as shown in Figure 6-2. Use
of a CAT output in the EID literature has been limited (Mcllroy & Stanton, 2015)
although they have been used to inform other design techniques (e.g. Stanton & Mcllroy,
2012). It has been argued that task analysis provides a basis for prioritising, clustering,
filtering or sequencing how an interface presents information (Jamieson, Reising, &
Hajdukiewicz, 2001) as well as revealing further domain constraints (Seppelt et al,,

2005).

Temporally, functions can be divided into those concerned with data collection,
calculation of model parameters and projection of the node’s likely performance. Three
agents can be considered, the human validator, traffic model (with its associated
technical subsystems e.g. the detector) and the validation tool, corresponding colour-
codes are shown in Table 6-2. Two function groups concern validators and hence are
a priority for design, data collection through measurement and input of the required
parameters, and projection through consideration of the outputs to judge data validity
and adjust STOC based on clear time comparison. The traffic model also collects
information relating to the traffic queue independently of the validator and processes
this information to output the model queue and clear time via the validation tool in a

form which enables comparison.

Spatially STOC validation takes place predominantly on the roadside at the link being
validated; any validation tool must therefore be portable and able to interact with on-
street equipment, interface design should also reflect available input/output
equipment (e.g. direct interaction through a touch screen could be more appropriate
than requiring use of a mouse). Where comprehensive CCTV coverage is available it is
possible to validate from an office environment (typically a traffic control room),

although this does not otherwise impact either the functions undertaken or agentroles.
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Table 6-2: SOCA agent colour codes

Colour Agent
Validator
Traffic Model

Validation Tool

Data Collection
(Road)

Data Collection
(Office)

Functions

Calculation
(Office)

Calculation

(Road) Projection (Office)

Projection (Road)

Light Status

Queue Detection

Measure Street
Clear Time

Input Street
Queue Clear Time

Input Initial STOC
Value

Calculate Model
Queue

Output Model
Queue

Calculate Model
Queue Clear Time

Output Model
Clear Time

Judge Data
Validity

Compare Clear
Times

Adjust STOC
Value

Figure 6-2: SOCA - Contextual Activity Template
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6.5 Decision-making Constraints

Decision-ladders (DLs; Rasmussen, 1974) are a further output of ConTA and consider
system activity in decision-making terms (Mcllroy & Stanton, 2011), similarly to the
CAT they can be colour-coded by social agent through SOCA. The purpose within EID
is to identify how an interface should provide decision support to users through the
task process (Effken, 2006). A DL was produced for STOC validation (Figure 6-3) and
colour-coded similarly to the CAT in the previous section (see Table 6-2); however the
traffic model has been excluded because all interactions with the validator are via the

validation tool.

A DL is formed of two types of node, rectangular boxes represent information-
processing activities and circles represent the resulting states-of-knowledge. The left
side consists of observation and information gathering activities used to identify the
system state, while the right side represents the planning and execution of tasks and
procedures in order to achieve a target state, linking each half are activities concerned
with option selection in order to meet a desired goal (Elix & Naikar, 2008; Rasmussen,

1974; Rasmussen et al., 1994; Vicente, 1999)

The ladder considers levels of expertise and novelty of decision processes, with novice
users expected to follow the ladder linearly while experts use short-cuts to connect
each half. Rule-based short-cuts can be shown in the centre of the ladder where
information observation and diagnosis of the system state can immediately signal a
procedure to execute (Mcllroy & Stanton, 2011; Rasmussen, 1974). The top of the
ladder represents effortful KBB, where goal evaluation is required to determine the
executable procedure (Rasmussen, 1974; Stanton & Bessell, 2014). Short-cuts consist
of ‘shunts’ where an information processing activity is connected to a state of
knowledge (rectangle to circle) and ‘leaps’ connecting two states of knowledge (circle
to circle) without requiring further information processing (Jenkins et al., 2009;

Rasmussen, 1974; Vicente, 1999).

STOC validation’s goal is to ensure that the traffic model consistently matches observed
conditions, with the options concerning this how to adjust the STOC value in respect to
whether the modelled queue’s clear time must be increased or decreased. The range of
information required to validate is apparent on the left leg of Figure 6-3, including
knowledge of how traffic behaves in reality, gathered by the validator, and the model

outputs communicated by the validation tool. Higher level decision-making concerning
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judgement of data validity, model convergence and STOC adjustment are undertaken
entirely by the validator when using LVAL. On the right leg of Figure 6-3 the validation
tool can provide suggestions on the degree to which STOC could be adjusted, however

the decision is ultimately made by the validator who implements any changes.

Several expert leaps were identified in Figure 6-3, firstly diagnosis of the system state
(i.e. to what degree the valid model matches observed conditions) can cause experts to
immediately recognise the required course of action to rectify discrepancies, with
potentially no conscious consideration given to the specific degree to which STOC must
be adjusted. More complicated scenarios may require deliberation of whether an
adjustment should be made (e.g. if the cycle’s validity is in question) however the task
of deciding how to adjust STOC is automatic. Additionally an expert shunt from
observing information to a procedure is possible, for example if the validator
recognises thata cycle is not valid (e.g. insufficient queue size) triggering the procedure

to continue validation at the current STOC value.

The DL can provide further insight into how the validation tool’s functions are used by
considering which elements (information, system states, tasks etc.) relate to each
function; these relationships are shown in Table 6-3. The functions input street clear
time and output model queue length / clear time are concerned only with the transfer
of quantitative information between the validator and model and hence do not involve
decision-making per se. Although input of the STOC value is functionally as simple, how
the value is determined is more complicated. The initial value is based on validator’s
intrinsic knowledge of probable STOC values accounting for the link’s physical
properties (e.g. number of lanes, gradient) and how the traffic is perceived to behave
on the link (e.g. are all lanes used equally), while subsequent changes are in effect the

outcome of the validation process.

The most complex functions are enabling data validity judgement and clear time
comparison, both being required to diagnose the system state and define the target
state. In the first case validators must identify whether sufficient traffic was present to
validate accurately (based on experience) and whether the model is accurate (by
comparing street and model queues), resulting in a decision to use the cycle’s data for
validation or collect more. In the second case comparison of model and street clear
times determines whether STOC requires adjustment higher or lower and by how
much. The relative complexity of these tasks suggests that it is in these areas where the

interface most needs to support validators.
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6.6 System Requirements

To achieve the key EID tenet that the three levels of cognitive control, SBB, RBB and
KBB should be supported and use of the most appropriate level encouraged
(Rasmussen, 1983; Vicente, 2002) the method must account for how these behaviours
are exhibited within the domain. This is achieved through the final CWA phase WCA
which addresses the constraints of agent skill within each function, investigating the
behaviour required by either humans or automation through application of
Rasmussen'’s (1983) Skills, Rules and Knowledge (SRK) Taxonomy (Stanton & Bessell,
2014). WCA was originally based on the information processing steps taken from the
DL, however several recent examples (e.g. Mcllroy & Stanton, 2011; Stanton & Bessell,
2014) instead base the analysis on the CAT in order to be consistent with CWA’s

functional outputs.

As previously discussed the SRK framework describes three levels of cognition, SBB
consists of automated actions in response to environmental cues and events requiring
little or no conscious effort, this behaviour is acquired through practice and is often
demonstrated by experts. RBB utilises stored rules and procedures acquired through
experience or learned from others which guide behaviour but requires cognitive
processing. KBB is used to enable advanced reasoning, primarily during novel and
unanticipated events, it is characterised as slow and effortful, requiring conscious

attention to the domain’s governing principles.

The WCA analysis is presented as a SRK inventory showing the SBB, RBB and KBB
which applies to each function. To maximise performance it is important that each of
these behaviours is supported (Kilgore & St-Cyr, 2006) ensuring that both novice and
expert behaviour is accommodated (Rasmussen, 1983). In the original description of
EID while an AH is used to identify what content is required within an interface, the

SRK taxonomy informs how it is presented (Mcllroy & Stanton, 2015).

The SRK inventory presented in Table 6-4 has been limited to the most complex
validation functions, clear time comparison and data validity judgement. Both
functions, and the validation process as a whole, are highly proceduralised, hence there
are clearly defined rules concerning how to adjust the STOC value and identify invalid
data based on the information provided. SBB is characterised through immediate
recognition of data validity based on observed conditions and a reasonably accurate

STOC estimate which is then refined over a short series of cycles. KBB is concerned
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with understanding the mechanics of how the traffic model works and the potential

consequences of validation decisions (e.g. using an incorrect STOC value or basing

validation on invalid data).
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Figure 6-3: SOCA - Decision Ladder
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Table 6-4: SRK Inventory

Validation Tool Function

Skill-based behaviour

Rule-based behaviour

Knowledge-based behaviour

Compare Clear Times

Select a reasonably accurate initial
STOC value and converge to the
correct value within a few cycles

IF the model queue and queue clear
times are lower/higher than that
observed THEN reduce/increase the
STOC estimate and recalculate UNTIL
the model consistently matches that
observed

Understand that STOC is a link’s
discharge rate (Ipu/s), is used to
determine how quickly vehicles
discharge when the link is green and
the impacts of STOC being too high
(real queue not identified) or low
(phantom queue modelled) resulting
in inefficient traffic light timings

Judge Data Validity

Quickly identify whether a cycle’s
data is valid from the observed traffic
conditions and consistency of model
outputs

IF the link is green THEN identify the
queue length and time until the last
delayed vehicle crosses the stop line
IF traffic levels are insufficient OR
results are not representative THEN
discard cycle

IF the model queue length doesn’t
correlate to observed THEN
investigate detector equipment
problems

Understand what constitutes invalid
data and how its use in validation
could result in an inaccurate STOC
value and the impacts this could
cause on traffic light timings

160



6.7  Analysis of LVAL

To understand how the existing tool is used within the domain a strategies analysis has
been undertaken. This is conducted in CWA's third phase, StrA, and identifies how the
previously identified system activities are conducted (Mcllroy & Stanton, 2011). Flow
diagrams (Ahlstrom, 2005) showing potential action sequences are used to describe all
of the possible ways to complete an activity, recognising that there are often multiple

ways to achieve an objective (Stanton & Bessell, 2014).

Use of StrA within EID has been limited in the past, most applications serving only to
describe the process rather than utilise formal outputs (Mcllroy & Stanton, 2015). It
has been argued that this phase can be used to specify the interface’s structure by
considering the types of information representation required to support a strategy
(Drivalou, 2005) and to identify gaps in system functionality (Seppelt et al., 2005). By
modelling the validation process using the existing tool, and colour-coding each task
by the social agent responsible (see Table 6-2), the mechanisms by which LVAL
achieves its goal and the resulting constraints imposed upon the domain can be
identified. It is then possible to consider how well the current interface supports the

required activities as identified within WCA and how it could be improved.

The validation process is detailed in Figure 6-4 with the corresponding components of
LVAL'’s interface shown in Figure 6-5. To commence validation the validator accesses
LVAL for the relevant link (from a PC or remote terminal at the roadside) and inputs a
value for STOC by typing it in (1, in Figure 6-5) Over a cycle they observe the queue
length (in number of vehicles) which builds while the light is red and measure the
queue clear time (in seconds) using a stopwatch, both values are then input into the
tool, again by typing (2, in Figure 6-5). Simultaneously the traffic model derives the
arrival profile of cars from the traffic detector (usually an induction loop) and
discharge rate as specified by the STOC value, using this information to calculate the
queue length (in link profile units (Ipu; see Siemens, 2011) or converted into vehicles)
and clear time (in seconds), these values are output by LVAL (3 and 4, in Figure 6-5)

once the cycle is complete.

To judge data validity the validator considers the queue size during the cycle and
whether the model queue size matches (5 and 6, in Figure 6-5) by comparing values. If
the data is invalid the record is marked as such (7, in Figure 6-5) and the process is
repeated for the next cycle until valid data is obtained. Consideration is then given to

how well the model and street queue clear times match (8 and 9, in Figure 6-5) by
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comparing the values. If the model is deemed to accurately model the street conditions,
by providing accurate clear times over a number of cycles, then validation is complete.
If the model does not match then the validator is required to update their estimate of
the STOC value, potentially using LVAL’s STOC estimation feature (10, in Figure 6-5),
and repeat the process with a new STOC value until the model converges. Cycle times
can be up to four minutes (Siemens, 2011) hence validation can be a time consuming

process.

STOC

e (10)
Invali
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Derive arrival Calculate model

Display model

profile/ | queuelength / 3 o (3¢.4)
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Figure 6-4: LVAL SOCA-Strategy Analysis
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Figure 6-5: Validation functions using LVAL
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6.7.1 Interface Support

LVAL provides validators with all of the information required to validate (e.g.
model/street queue length and clear time) as identified in preceding sections and
presents it textually due to historical technical constraints during its development.
While sufficient to enable validation it appears to rely considerably upon validator’s
tacit knowledge of the validation process and mechanics of the SCOOT system as a
whole and hence performance is likely to be dependent on the validator’s skill and

experience.

Both key functions are concerned with the comparison of a modelled and observed
value, although it is simple to see whether they match the presentation method is
disconnected from the domain’s mechanics and governing rules, hence it is assumed
that the validator will be able to diagnose the cause of any discrepancy and take
appropriate action. Only limited support is provided in the form of a STOC estimation
tool. This calculates a new STOC value based on valid observed and modelled clear
times at the current value. In principle, the estimate should produce an improved
matching and at the least indicates in which direction STOC needs to be adjusted,
however several cycles of data at a single STOC value are required to produce a
reasonable estimate, the validity of which must still be consciously considered by the

validator.

6.8 Design of an Ecological Interface

The validation tool’s role is to provide the outputs from the traffic model, enabling
comparison with reality such that data validity and model accuracy can be assessed.
Although functional, the existing LVAL interface fails to provide the behavioural
support advocated by the EID approach (Burns & Hajdukiewicz, 2004; Vicente, 2002;

Vicente & Rasmussen, 1992), which is achieved through adherence to the following:

1. SBB - enable direct action on a display to support interaction via time-space
signals and structure information isomorphic to the part-whole structure of
movements.

2. RBB - provide consistent one-to-one mapping between work domain
constraints and the cues or signs provided by the interface.

3. KBB - represent the domain in the form of an abstraction hierarchy to serve as

an externalised mental model.
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A graphical display that makes constraints and affordances explicit is required to
provide these levels of support, externalising the relationship between the chosen
STOC value, the model queue clear time and observed clear time. Through
interrogation of the AH it can be seen that the model parameters are calculated based
on the traffic count from a detector, traffic light status from a traffic controller and the
assumed discharge rate from the inputted STOC value. The modelled queue is simply
the quantity of vehicles remaining after those assumed to have discharged while the
light is green has been subtracted from those known to have arrived at the link. The
model queue clear time is then the point in the cycle at which the queue size reaches
zero. The detector output (in Ipu) and discharge rate (in lpu/s) are in comparable units,
hence each parameter can be plotted on a graph of traffic vs time, with the model clear
time read from the x axis’ adjacent to the parameter’s intercept and then compared to

the observed value.

This representation provides the detailed information required to understand the
domain, in particular how changes to the STOC value are reflected within the traffic
model. More comprehensive assessment of data validity is also provided by outputting
the arrival profile in near-real time enabling its comparison with observed conditions
for the entire cycle rather than final queue lengths alone. In effect the mechanics of the
domain are displayed within the interface enabling it to serve as an externalised mental

model in support of KBB.

To support RBB all of the domain’s constraints must be represented within the
interface, in addition to the parameters already discussed a comparison between the
model and street clear times must be provided, this being critical to the rules governing
STOC adjustment. By inputting the street clear time the difference in values can be
plotted, highlighting whether the model is discharging traffic too quickly or slowly at

the current STOC value.

Support for SBB can be provided by enabling direct adjustment of the STOC value
within a cycle, the resulting changes to the traffic model then shown within the
interface. This significantly alters the task process because by eliminating the
constraint of only being able to model a single STOC value per cycle it is possible to find
the most accurate value regardless of what is initially chosen. The best STOC value for
the link then becomes whichever value minimises the model’s error across as many

cycles as is deemed necessary by the validator. To detail this alternative task process
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an additional strategies analysis is presented in Figure 6-6 with the corresponding

components of the proposed interface shown in Figure 6-7.

Insufficient Cycl

Unvalidated A *Accuratc Validated

Derive arrival
profile

Figure 6-6: Ecological tool SOCA Strategy Analysis

On commencement of validation the interface would display the arrival profile of
vehicles from the detector (1, in Figure 6-7) including the state of the traffic lights in
near real-time, this output would be used by the validator to judge the cycle’s validity
through comparison with the observed conditions. After the cycle is complete the
street clear time is input into the tool and marked on the graph’s x axis’ (2, in Figure 6-7)
by typing in the value or dragging the slider. If the cycle is deemed invalid it must be
discarded and further data must be collected otherwise a STOC value is input (3, in
Figure 6-7) by typing or dragging the slider, plotting the discharge rate on the graph,
with the resulting model queue clear time displayed on the graph’s axes (4, in
Figure 6-7). If the model does not match, STOC is adjusted by dragging the discharge
rate line as required (5, in Figure 6-7) resulting in a theoretically correct STOC value
for that cycle (6, in Figure 6-7). The validator must then decide if the value is
appropriate for the link, which requires the model to reasonably match observed
values over several cycles. As further cycles of data are obtained model comparisons
are displayed together (7, in Figure 6-7) with the STOC value persisting across cycles
(8, in Figure 6-7), which may be adjusted as necessary throughout the process to
minimise the model’s error (9 and 10, in Figure 6-7), the effects on model clear times
of changing the STOC value are immediately reflected within the interface for all cycles
of data. Once a STOC value is identified which is perceived to minimise the error over

sufficient cycles validation is complete.
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Figure 6-7: Ecological tool functions
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Chapter 6: Using CWA to Design an Ecological STOC Validation Tool

Table 6-5: Design process summary
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Representation lfl:/: :\e Purpose EID Use Interface Outcome
Identify fundamental constraints by Identify what functions are Five primary validation tool
describing the system in terms of ~ performed, why they are required functions were identified and
its environment, accounting for and how they are achieved examined

. purpose, values, functions, Nodes inform information Input measured parameter
Abstraction . .
Hierarchy WDA processes, physical components requlrements_ _ _ Input STOC value

and the links between elements Means-ends links inform interface  Output modelled parameters
organisation Provide clear time comparison
Enables development of an Enable data validity assessment
externalised mental model

Consider temporal and spatial Identify where activities take place Validation tool required to operate

constraints on functionality and the and the effects of situational roadside and from an office

resulting impacts on agent’s role context on how functions are environment

Contextual ConTA and undertaken and interface Two functional groups concern
Activity organisation validators
SOCA . : . .
Template Temporally grouping functions Data collection and input

informs interface organisation Projection of node performance
Identify functional requirements
for specific agents

Consider what decisions must be Identify the decisional constraints Identified priorities for design

made, by who and with what for each system function Support appropriate adjustment of

ConTA and information to achieve system goals Identify how decision support can STOC values based on differences

Decision Ladder soca S well as the impacts of experience be provided for users of varying between observed and modelled

on the decision-making process degrees of experience queue clear times

Support judgement of cycle data
validity
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Representation CWA Purpose EID Use Interface Outcome

Phase
Consider how agent skill is Identify the skill, rule and Described the behaviours utilised
represented within the domain and knowledge based behaviour in the most complex validation tool
Skills, Rules and impacts how functions are associated with each function functions
Knowledge WCA undertaken Informs how to present Clear time comparison
Inventory information to support each Data validity assessment
behaviour type Informed design of the ecological
concept
Consider how system activities are Detail how existing interfaces are =~ Weaknesses with current LVAL
or potentially could be conducted  used to achieve system goals interface identified in conjunction
Strategy StrA and Identify gaps in functionality with the SRK inventory
Flowcharts SOCA Model changes to the task process Proposed EID interface developed
using potential alternative using all outputs and modelled to
interfaces show changes
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Chapter 6: Using CWA to Design an Ecological SCOOT Validation Tool

Table 6-6: LVAL and Ecological display behavioural support

LVAL Ecological

Direct manipulation of STOC
No specific interface support, value with real-time update of

. skilled behaviour entirely model error for all observed
Skill-based . . Vo . .
behaviour reliant on validators’ tacit cycl.es, enabhng immediate

knowledge testing of multiple STOC values
improving efficiency and
accuracy (3,5,8,9 in Figure 6-7)
Model clear time displayed
next to user input observed Model error represented
clear time with model error graphically as compared to
Rule-based required to be calculated observed clear times and
behaviour manually, a STOC estimate linked graphically to the STOC
based on previous cycles’ data value being used (4,6,7,10 in
is also provided (8,9,10 in Figure 6-7)
Figure 6-5)
Modelled queue time for a
single input STOC value Domain externalised through
provided with validators graphical representation of
Knowledge-based expected to understand how traffic light status, arrival
behaviour this value is calculated and to  profile, observed clear time
identify the error compared to and model error (1-5 in
the observed clear time Figure 6-7)

manually (8,9 in Figure 6-5)

6.9 Conclusions

CWA is intimately linked to EID however designs are rarely informed by full analyses,
work domain and worker competencies analyses receiving most attention. While
consistent with EID’s original description all five CWA phases have been argued to have

arole in the design process.

Table 6-5 details the representations produced, their role within CWA and EID as well
as the resulting outcomes and influences on the final interface’s design while Table 6-6
details how each cognitive behaviour is accounted for within both LVAL and Ecological
displays. Primary interface functions were identified through interrogation of the
WDA'’s AH, while spatial, temporal and decisional constraints for each system agent
were considered using ConTA and SOCA. WCA described the modes of cognitive control

exhibited by validators for the most complex functions of comparing clear times and
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judging data validity. Finally StrA was used to model the task process using the current

tool and give consideration to the support provided.

The existing interface was found to rely on validator’s tacit knowledge regarding the
task process and domain mechanics; hence a concept ecological interface was
proposed which utilised graphical depiction of the source data and domain constraints
as well as enabled direct manipulation of the STOC value consistent with the principles
of EID. To evaluate the impacts of this ecological display its performance will be
empirically tested against the traditional displays used for STOC validation in chapters

7 and 8.
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Chapter 7: Evaluation of an Ecological Interface for STOC Validation

Chapter 7: Evaluation of an Ecological Interface for

STOC Validation

7.1 Introduction

SaTuration OCcupancy (STOC) validation is crucial for setting up adaptively controlled
traffic light networks which use Split Cycle Offset Optimisation Technique (SCOOT;
Hunt et al, 1981) in order to ensure that the controlling traffic model accurately
reflects on-street conditions. The STOC parameter models the discharge rate of
vehicles when the light is green thus enabling calculation of the time required for a
queue to dissipate. Validation is conducted using an Urban Traffic Control system
called PC SCOOT (Siemens, 2011, 2013), which in chapter 6 was shown to be both time
consuming to use and reliant on validator’s experience and tacit domain knowledge,
which is problematic given the limited number of qualified validators in contrast to the
amount of SCOOT systems worldwide and the difficulty in training novices to use its
historically constrained textual interface. To overcome these difficulties Ecological
Interface Design (EID; Rasmussen & Vicente, 1989; Vicente & Rasmussen, 1992) was
used to develop an alternative display in chapter 6 but before implementation its

performance must be evaluated against the existing displays.

EID is a theoretical framework for designing interfaces which support rapid detection
and interpretation of information in complex systems (Burns & Hajdukiewicz, 2004)
by accounting for the domain’s fundamental constraints and specific agent behaviours.
The design process is facilitated through application of Cognitive Work Analysis (CWA;
Jenkins et al., 2009; Rasmussen et al., 1994; Vicente, 1999), in particular construction
of an Abstraction Hierarchy (AH; Rasmussen, 1985) to formatively identify a domain’s
functional constraints and application of the Skills, Rules and Knowledge (SRK)
taxonomy (Rasmussen, 1983; Vicente, 2002) to assess the levels of cognitive control
exhibited during each function. Inputs from CWA'’s central phases Control Task,
Strategies and Social Organisation and Cooperation Analyses can also be used to inform
designs (e.g. Sanderson et al., 2000), however relatively few EID applications have used

or required all phases to be completed (Mcllroy & Stanton, 2015; Stanton et al., 2013).

An interface designed using EID aims to support users regardless of the level of

cognitive control being utilised, recognising that all behaviours can occur during
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operation, and is achieved through application of the principles described by Vicente
and Rasmussen (1992).

1. Skill-Based Behaviour (SBB) - automatic actions supported through direct
action on the interface while displaying information consistently with the part-
whole structure of movements.

2. Rule-Based Behaviour (RBB) - associating perceived cues with stored rules
requiring consistent one-to-one mapping between constraints and interface
cues.

3. Knowledge-Based Behaviour (KBB) - analytical problem solving supported by

providing an externalised mental model of the domain.

While traditional design techniques (e.g. mimic-based displays) and others such as
User-Centred Design (UCD; e.g. Greenbaum & Kyng, 1991; Schuler & Namioka, 1993)
can be effective when designing for anticipated or regularly occurring events,
unanticipated scenarios are both potentially more damaging and by their nature
difficult to design for (Perrow, 1984; Reason, 1990; Vicente & Rasmussen, 1992). EID
aims to overcome this by enabling users to utilise a system’s governing principles to
solve problems analytically using KBB. In addition use of the lowest possible level of
cognitive control is encouraged in order to improve consistency, reliability and
predictability (Vicente & Rasmussen, 1992) and users’ skill acquisition is supported

(Rasmussen & Vicente, 1989).

Ecological interfaces have been applied and tested within many domains (Mcllroy &
Stanton, 2015; Vicente, 2002) including aerospace (e.g. Ellerbroek et al., 2013; Van
Dam, Steens, Mulder, & Van Paasen, 2008), medicine (e.g. Effken, 2006), power
generation (e.g. Burns et al., 2008; Hsieh, Chiu, & Hwang, 2014; Lau, Veland, et al,,
2008), process control (e.g. Jamieson, 2007; Reising & Sanderson, 2004) and road
transport (e.g. Lee, Hoffman, Stoner, Seppelt, & Brown, 2006; Seppelt & Lee, 2007).
With the direct impacts on task performance as well as situational awareness (SA),

workload and usability having been considered compared with traditional displays.

Tangible direct performance benefits have been exhibited in virtually all applications
but are of course domain specific. Although other studies have been conducted within
road transport these have focused on in-vehicle driver assistance systems (e.g. Lee et
al., 2006; Seppelt & Lee, 2007) which is markedly different from STOC validation with
non-transferable performance metrics. In terms of measuring performance the

greatest similarities are with applications in the power generation and process control
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domains, in which the time taken to respond to scenarios as well as accuracy of
responses are considered. In both cases improvements have been elicited by ecological
displays when compared to traditional interfaces (e.g. Hsieh et al., 2014; Jamieson,

2002, 2007; Torenvliet, Jamieson, & Vicente, 2000).

A key aim of EID is to provide better support for dealing with unanticipated events
which can be so damaging to a system’s operation. To this end participants’ SA (Endsley,
1995) has been shown to be improved, particularly during unforeseen scenarios (e.g.
Burns et al., 2008; Ellerbroek et al., 2013; Hsieh et al., 2014; Van Dam et al., 2008), with
tasks normally requiring projection transformed to simpler tasks of perception and
observation (Ellerbroek et al., 2013). It should be noted that displays developed using
EID must provide similarly comprehensive support for anticipated events in order to
be effective and this may be less effective than some traditional designs (Burns et al.,

2008).

There is conflicting evidence regarding ecological interfaces’ effect on users’ workload,
the general consensus is that type of display has no bearing, determining factors being
the volume and complexity of tasks (Lau, Jamieson, et al., 2008; Wickens & Hollands,
2000) and indeed several studies found no significant differences in workload between
ecological and traditional displays (e.g. Effken, 2006; Garabet & Burns, 2004; Hsieh et
al.,, 2014) however both workload increases (Lee et al,, 2006) and decreases (Lau,

Jamieson, et al., 2008) have also been reported.

Display usability has been considered in the aeronautical and medicine domains (see
Effken, 2006; Ellerbroek et al., 2013) with ecological interfaces rated as superior by
participants in both cases. Although these results are subjective it is encouraging that
potential users of ecological displays appear to see the benefits of their use in addition
to the multitude of objective benefits found, given that user acceptance of a new

interface is likely to be a significant barrier to its implementation.

7.2 STOC Validation Interfaces

Three separate interfaces are of interest for this study, PC SCOOT’s Link VALidation
(LVAL) tool and expanded Multiple Concurrent Models (MCM) are currently used by
validators while the ecological interface is a concept design and utilises a slightly
different task process as detailed in Figure 7-1 and Figure 7-3. These show the activities

which are undertaken by system agents via colour-coding as detailed in Table 7-1.
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Table 7-1: SOCA agent colour codes

Colour Agent
Validator
Traffic Model
Validation Tool

7.2.1 Link Validation Tool

Figure 7-1 details the validation process using LVAL with corresponding interface
components shown in Figure 7-2. On commencing validation a STOC value for the link
is input by the validator by typing it in (1, in Figure 7-2). Over a cycle they observe the
queue length (in number of vehicles) which builds while the light is red and measure
the queue clear time (in seconds) using a stopwatch, both values are then input into
the tool, again by typing (2, in Figure 7-2). Simultaneously the traffic model derives the
arrival profile of cars from the traffic detector (usually an induction loop) and
discharge rate as specified by the STOC value, using this information to calculate the
queue length (in Link Profile Units (LPU; see Siemens, 2011) or converted into vehicles)
and clear time (in seconds), these values are output by LVAL (3 and 4, in Figure 7-2)

once the cycle is complete.

To judge data validity the validator considers the queue size during the cycle and
whether the model queue size matches (5 and 6, in Figure 7-2) by comparing values. If
the data is invalid the record is marked as such (7, in Figure 7-2) and the process is
repeated for the next cycle until valid data is obtained. Consideration is then given to
how well the model and street queue clear times match (8 and 9, in Figure 7-2) by
comparing the values. If the model is deemed to have converged to accurately model
the street conditions, by providing accurate clear times over a number of cycles, then
validation is complete. If the model does not match then the validator is required to
update their estimate of the STOC value, potentially using LVAL’s STOC estimation
feature (10, in Figure 7-2), and repeat the process with a new STOC value until the

model converges.

STOC
e (10)

Unvalidated

Derive arrival Calculate model

Display model

profile/ 9| queue length / -3 outputs (3&4)

discharge rate clear time

Figure 7-1: Traditional display validation task process
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Figure 7-2: Validation functions using LVAL

7.2.2 Multiple Concurrent Models

Multiple Concurrent Models (MCM) is an expanded version of LVAL which effectively
runs several versions of the traffic model such that queue clear times are computed
and output for STOC values +/- 3 from what has been input by the validator. This
should theoretically enable validators to identify an acceptable value quicker because
additional traffic cycles are not required to identify consequences of small changes to
the link’s STOC value. Graphically the only difference from LVAL is that seven model

clear times are displayed rather than one.
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7.2.3 Ecological Tool

Figure 7-3 details the validation process using the ecological tool with corresponding
interface components shown in Figure 7-4. On commencement of validation the
interface would display the arrival profile of vehicles from the detector (1, in Figure 7-4)
including the state of the traffic lights in near real-time, this output would be used by
the validator to judge the cycle’s validity through comparison with the observed
conditions. After the cycle is complete the street clear time is input into the tool and
marked on the graph’s ‘x axis’ (2, in Figure 7-4) by typing in the value or dragging the
slider. If the cycle is deemed invalid it must be discarded and further data must be
collected otherwise a STOC value is input (3, in Figure 7-4) by typing or dragging the
slider, plotting the discharge rate on the graph, with the resulting model queue clear

time displayed on the graph’s axes (4, in Figure 7-4).

If the model does not match, STOC is adjusted by dragging the discharge rate line as
required (5, in Figure 7-4) resulting in a theoretically correct STOC value for that cycle
(6, in Figure 7-4). The validator must then decide if the value is appropriate for the link,
which requires the model to reasonably match observed values over several cycles. As
further cycles of data are obtained model comparisons are displayed together (7, in
Figure 7-4) with the STOC value persisting across cycles (8, in Figure 7-4), which may
be adjusted as necessary throughout the process to minimise the model’s error (9 and
10, in Figure 7-4), the effects on model clear times of changing the STOC value are
immediately reflected within the interface for all cycles of data. Once a STOC value is
identified which is perceived to minimise the error over sufficient cycles validation is

complete.

Insufficient Cycl

Unvalidated A Validated

a o :;\g;i;l Display model
e outputs (4,6,7)

jueu
clear

Figure 7-3: Ecological tool validation task process
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Figure 7-4: Ecological tool functions

7.3  Methodology

7.3.1 Participants
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Participants were divided into three groups. Experts comprised of twelve experienced

validators, ten male with a mean age of 45.1 years (0 = 11.9) and experience ranging
from 3 to 30 years (/¢ = 13.5, 0 = 10.9). Novices were divided into a group of twelve
age and gender matched to the expert group as closely as possible (ten male, [iage =
45.6, 0age = 13.6), and an unmatched group of thirty (thirteen male) with a mean age of

34.4 (0 = 13.2), all having no experience of SCOOT validation.

7.3.2 Equipment

The experiment was undertaken on a laptop with a 15” display. Versions of each
interface were produced in Microsoft Excel (version 2010, see Figure 7-5) with the
validation processes as described in section 7.2; a line graph with adjustable STOC and
street clear time parameters was used to replicate the ecological display. All displays
were checked with an experienced SCOOT validator prior to commencing the
experiment to ensure fitness for purpose. Navigation and interaction was carried out

via keyboard and mouse.

7.3.3 Experimental Design

The experiment was designed as a between- and within-subjects repeated-measures
where the factors display and experience were varied. The within-subjects factor
display was divided into two existing displays (LVAL, MCM) and the proposed
ecological display, all depicted in Figure 7-5. The between-subjects factor experience
was divided into participants with validation experience (experts) and without
(novices) who were subdivided into those age and gender matched to the expert group

with the remaining placed in an unmatched group, this resulted in 9 conditions (3x3).

Dependent measures for this experiment consisted of both objective and subjective
measures. Performance was measured in terms of the final validation error, mean cycle
validation error, mean time spent per cycle and number of cycles used, validation error
was categorised as the deviation from the expert’s median STOC value for each link.
System use was measured in terms of the number of STOC adjustments made
(ecological only), mean error from estimated STOC value (LVAL and MCM only) and
the mean STOC adjustment. Workload was measured using the NASA-TLX assessment
of overall workload with subscales for mental demand, physical demand, temporal

demand, performance, effort and frustration. System usability was measured using the
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SUS questionnaire with participants stating whether they “strongly agreed”, “agreed”,
“neither agreed nor disagreed”, “disagreed” or “strongly disagreed” with each

statement shown in Table 7-2.

This experiment investigates the following hypotheses with each formulated based on

theory and prior empirical studies of ecological interface’s performance.

1. H1: Expert’s tacit domain knowledge and experience using LVAL and MCM will
enable faster and more accurate STOC identification over novices when using
traditional displays, i.e. expert’s training and experience will provide an
advantage.

2. H2: Novice's performance will be closer to experts when using the ecological
interface, owing to its novelty for all participants and the perceived high
learning curve of the traditional displays (Siemens, 2011). Ecological interfaces
are not intended to be used by untrained operators (Vicente, 1999) hence
experts are still expected to perform best.

3. H3:STOC identification will be faster using the ecological display, the ecological
task process not being limited to trailing a single STOC value per cycle and
evidence from other applications showing that reduced response times can be
elicited by ecological interfaces (e.g. Hsieh et al., 2014; Jamieson, 2002, 2007;
Torenvliet et al., 2000).

4. H4: Participant’s workload will be unaffected by the display used, precedence
for this having been shown in a number of studies (e.g. Effken, 2006; Garabet &
Burns, 2004; Hsieh et al., 2014).

5. Hb5: Subjective usability for the ecological display will be higher than LVAL or
MCM, there are only a few examples of usability testing within the context of
EID however the results have indicated preferences for ecological interfaces

(Effken, 2006; Ellerbroek et al., 2013) over traditional designs.

7.3.4 Procedure

Subjects were briefed on the purpose of the experiment and were allocated to a group.
Conditions were undertaken in a predetermined counterbalanced order to account for
learning effects. Each condition commenced with a practice session to familiarise the
subject with the validation task using the interface. Subjects were required to
manipulate the STOC value such that the model provided accurate queue clear times in

relation to observed values, it was explained that there was no correct answer and to
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cease validation once they were satisfied with a particular value. Three real links were
then validated using the interface, the order of which was counterbalanced using a

Latin Square.

Model inputs for each link included traffic arrival profiles obtained from nine links in
Reading using PC SCOOT’s M14 messages (see Siemens, 2011) and street queue clear
times which were determined to be the model’s queue clear time at the real STOC value

with a normally distributed (/¢=0, 0=1) error applied, accounting for variability in

clear time measurement. Thirty valid cycles (where a queue formed and was

discharged within a green period) of data were acquired for each link.

After completing each condition a NASA-TLX assessment (Hart & Staveland, 1988) and
System Usability Scale (SUS; Brooke, 1996) questionnaire were completed. The
process was repeated until all three conditions were completed; typically taking
between 30mins and 1lhr. Ethical approval was obtained from the University of
Southampton’s ethics committee prior to commencement of data collection (ethics

number 11917).

7.3.5 Data Analysis

All data analysis will be conducted using SPSS (version 19) with significance set at 5%.
Each dependent measures’ normality will be assessed using a Shapiro-Wilk test. Where
normality can be assumed parametric tests will be used; ANalysis Of Variance (ANOVA)
for repeated-measures data and either independent or paired samples T-Tests to
compare between-subjects effects as appropriate. Conversely where normality cannot
be assumed non-parametric tests will be used; Friedman tests for repeated-measures
data comparing within-subjects effects and either Wilcoxon-Mann Whitney or
Wilcoxon Signed Ranks tests to compare between-subjects effects. Should the
normality assumption vary within a dependent measure parametric tests will be used
due to both ANOVA and T-Tests’ reasonable robustness to the normality assumption
(Kirk, 1995). Categorical data collected by the SUS will be evaluated using a Chi-Square
test. Effect sizes for all measures excluding categorical data will be evaluated using

Cohen’s d (Cohen, 1988).
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Figure 7-5: Experimental displays
Table 7-2: SUS questions
No. Question
1  Ithink that I would like to use this system frequently
2 Ifound the system unnecessarily complex
3 Ithought the system was easy to use
4 Ithink that I would need the support of a technical person in order to be
able to use this system
5 Ifound the various functions in this system were well integrated
6 Ithought there was too much inconsistency in this system

7  Twould imagine that most people would learn to use this system very
quickly

8 Ifound the system very cumbersome to use

9 Ifelt very confident using the system

10 Ineeded to learn a lot of things before I could get going with this system
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7.4  Results and Discussion
Shapiro-Wilk tests on each dependent measure revealed mixed normality assumptions

(Table 7-3), therefore a variety of parametric and non-parametric tests were utilised

for data analysis as specified in section 7.2.5.

Table 7-3: Shapiro-Wilk normality test p values for performance, system use,

workload and system usability measures

Group
Expert Matched Novice Novice
Factor Measure |LVAL MCM Eco |LVAL MCM Eco |[LVAL MCM Eco
Final
validation |.008 .005 .001|.000 .212 .002|.000 .000 .000
error
Mean cycle
validation |.707 .002 .108|.621 .891 .464|.011 .004 .018
Performance error
Mean time
spentper |.044 .043 .045|.000 .001 .044|.000 .331 .001
cycle
Cycles | 365 074 716 648 .403 .108|.002 .000 .000
required
Total
ecological
adjustments N/A N/A 318| N/A N/A 963 | N/A N/A .003
per cycle
SyStem use Estimated
STOC errar | 036 081 N/A| 117 .032 N/A|.002 .019 N/A
Mean STOC | o2 053 167 .069 .001 .210|.001 .003 .023
adjustment
Overall | 197 116 020|498 972 .198| 572 367 .063
Workload
Mental | 053 355 435|235 193 561|.042 244 .011
Demand
Physical | 31 007 .004|.001 .028 .005|.000 .000 .000
Workload Demand
Temporal | o, cc3 515,003 .020 .005|.002 .007 .002
Demand
Performance| .157 .029 .070|.094 .231 .053|.134 .058 .009
Effort |.008 .540 .456|.586 .137 .182|.052 527 .026
Frustration |.001 .003 .032|.011 .107 .056|.140 .164 .000
System System | o4 934 110|.043 158 .062| 358 877 457
usability usability
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7.4.1 Experience Effects on Traditional Display Performance

H1 stated that higher performance would be elicited by experts, in terms of speed and
accuracy of validation, over novice groups when using LVAL and MCM owing to their
experience using these systems. No effect on final accuracy was observed with all
participant groups identifying identical median STOC values for each link (Table 7-4)
and with no significant differences for validation error (see Table 7-5, for the summary
of performance measures, and Figure 7-6); however experts recorded lower mean
cycle validation errors suggesting that at any point they were likely to be closer to the
“correct” STOC value than novices (Figure 7-7). Experience did affect the speed with
which validation was completed, experts requiring fewer cycles than novice groups to
identify STOC (Figure 7-8) with both traditional displays, although the difference was
only significant compared to the unmatched group. The actual time spent validating
per cycle did not differ significantly between groups for either LVAL or MCM although
experts were slightly faster (Figure 7-9).

System use measures (Table 7-6) reveal that experts made smaller incremental
adjustments to STOC cycle to cycle while novice groups made larger changes. It seems
that by following a systematic procedure and avoiding drastic changes, experts were
less likely to oscillate either side of an accurate STOC value, a behaviour observed in
both novice groups resulting in wasted cycles. This appears to be a rule obtained by
experts through experience and potentially used to invoke RBB (Rasmussen, 1983) to

obtain a tangible benefit over those lacking this domain knowledge.

EID aims to support users’ acquisition of the necessary skills to utilise lower levels of
cognitive control (Rasmussen & Vicente, 1989) however support within the traditional
displays is limited to a simple STOC estimation tool. There is no evidence that this tool
provides any significant benefit with experts and novices using the tool similarly
despite performance variations, suggesting that following the estimated value will not
emulate expert performance. It is also interesting to note that the inclusion of extra
information in the MCM condition did not affect how either experts or matched novices
reacted to the estimated value or provide any significant benefits raising questions as

to its effectiveness.
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7.4.2 Experience Effects on Ecological Display Performance

Similarly to both traditional displays all participant groups were able to correctly
identify each link’s STOC value with no significant difference in terms of the final
validation error (Table 7-4, Table 7-5 and Figure 7-6). Novices’ cycle validation error
(Figure 7-7) was however similar to experts’, as was speed of validation both in terms
of cycles used (Figure 7-8) and time spent per cycle (Figure 7-9). It was expected that
the ecological display would normalise the performance variation between experts and
novices (HZ2) although some variation was still expected, ecological displays not being
intended or able to overcome the need for training (Vicente, 1999). In this case
however the ecological display enabled novices to achieve a comparable level of
performance to experts, eliminating all significant points of difference found when
using the traditional displays, although it is worth noting that experts still achieved the

lowest cycle validation error and required the fewest cycles.

In terms of system use (Table 7-6) experts made significantly fewer adjustments to
STOC throughout each link’s validation than novices, suggesting less reliance on the
display; however adjustments made cycle to cycle were similar for all participants. The
reason for this is that by enabling direct manipulation of the STOC parameter and
showing changes’ impacts in real-time users only have to select their perceived best
option rather than predicting what the outcomes will be. Synergies can be seen here
with studies investigating ecological displays’ effects on users’ SA, which have shown
that tasks normally requiring projection can be transformed into simpler tasks of
perception and observation (e.g. Ellerbroek et al., 2013). As a result performance

appears to be more consistent regardless of experience.

7.4.3 Display Effects on Validation Speed

Validation speed can be considered in terms of the time spent using the interface and
the number of cycles required to validate a link, with the ecological display predicted
to be the fastest to use based on prior empirical evaluations of response times and

removal of the single STOC value per cycle constraint (H3).

With regards to the first measure of validation speed all participant groups were shown
to spend longer using the ecological display compared to both traditional displays
(Table 7-5 and Figure 7-9), for example experts spent a mean of 26 seconds to adjust

STOC using the ecological display compared to means of 10 and 13 seconds using LVAL
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and MCM respectively. While response times have typically be shown to be reduced by
ecological displays (e.g. Hsieh et al., 2014; Jamieson, 2002, 2007; Torenvliet et al., 2000)
there is also evidence to suggest that the amount of information presented within an
ecological display increases its complexity potentially hindering performance (Lee et
al., 2006). The ecological display through graphical representation of the source data
and the need to physically act upon the display is more complex than the traditional
displays’ textual representation with the resulting impact on performance being that

the ecological display takes longer to use.

In contrast the second measure of validation speed, the number of cycles used, was
found to be significantly reduced using the ecological display compared to both
traditional displays (Figure 7-8) for all participant groups, particularly in comparison
to LVAL. The reason for this is that by enabling participants to find the most accurate
STOC value for each cycle through direct manipulation each cycle can be used
effectively, whereas if an inaccurate STOC value is chosen using either traditional

display further cycles are required to correct the error.

The results regarding H3 are therefore contradictory; however it is important to
consider that total validation time is predominantly dependent on the number of cycles
used rather than the time spent using the interface within a single cycle. This is because
a cycle typically lasts between two and four minutes (Siemens, 2011); therefore so long
as an increase in time spent using the display does not cause validators to miss the
subsequent traffic cycle then the reduction in cycles used will translate to an overall
reduction in response time for the task. Given that the ecological display requires on
average only a few more seconds to use than either traditional display an overall
improvement in response time for the task is elicited by the ecological display,

consistent with prevailing findings in the literature and in support of H3.

It is encouraging that performance benefits were elicited by the ecological display for
all participant groups, even when experts could have been restricted by limited
training. Although ecological interfaces do not negate the need for training (Vicente,
1999) it does suggest that the training provided is robust to changes in information
presentation but could be better supported with an ecological display echoing

Jamieson’s (2007) findings in the process control domain.
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Table 7-4: Median validated link STOC values by group

Link
Group | A B C D E F G H 1
Experts| 7 12 18 7 14 11 9 10 14
l\lfliffl}g:g 7 12 18 7 14 11 9 10 14
Novices| 7 12 18 7 14 11 9 10 14

Table 7-5: Means (standard deviations between parentheses) for performance

measures
Group Significance
Matched Novice Within- Between-
Expert (EX) (MN) Novice (N) subjects subjects
— - 23] o — = el - = 3] 3
= =5 |2 £ G122 = 3 2 3 £ 3
S S8 gl & g5 € g8 3 9| g 3§69
a = 2] a = = a = 23] = 2 ‘g = 2 ‘g
- - - - - - - - - > bh — > a'o —
Measure | ™ N ) < i v ~ ) <) 2 2 g = 2 &
Final 039 025 022 | 058 028 028|038 049 o022 | %05 0.05
validation | 73y (05) (0.59) | (132) (078) (0.61) | (1.74) (1.23) (0.54) | (EX/ ~ N/A N/AY .y ey N/AN/A
error MN/N)
<0.005 13 0.27
Mean cycle (EX) 23 029 o
lidation | 138 16 038 | 206 222 050 | 201 220 057 | <0.005 46 0.34 L/M) > 14, 0.8
va (113) (1.28) (049) | (139) (213) (059) | (158) (154) (0.78) | (MN) 56 024 o ® 28 0.14
error <0.0005 79 0.17]|
(\) 89 0.20
<005 43 021
cvel (EX/ <0.05
ycles| 9.7 8.3 56 | 105 102 69 | 132 120 7.8 MN) 46, 0.21 (W/M) > 17, 0.17
required | (58) (64) (32) | (52) (49) (34) | (78) (64 (65) | o005 7% O13|gQs(p 28 017
. 89 0.12]
(N)
12, 0.22
M ] 13, 0.97
ean time
spent per 10 13 26 15 19 24 11 14 21 <0('g)?;)5 ig’ g'gg >0.05 N/A N/A
(4) 6 @19 | @13y @1y @5 | @ (6) 9 © o | (L/M/E)
cycle (sec) MN/N) 56, 0.13
79, 0.26
89 0.21
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measures
Group Significance
Matched Novice Between-
Expert (EX) (MN) Novice (N) Within-subjects subjects
- = 25} — = 23] o — j<2] Q Q
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< o (=] < o =] < (@] (=] [}] = v ()] - v
> ] > ] > Q = < - = S o
= = 23] = = 23] = = 23] = 2, S = 2 B
- - - - - - - - - > bb — > bb —
Measure - N ) <+ 1) v} ~ 3 ) = = & -
Total
ECOIOgical 23.7 30.5 41.8 0.05 36, 0.11
. . . <0. 3 .
~ STOC| N/A N/A (qggy| N/A N/A - Goi | N/A N/A - (o0 | N/AL N/A N/A | e 590 07
adjustments
per link
LVAL oy
(EX/ >0.05
. 1.75 1.86 1.81 1.85 1.45 2.20
Estimated 112) a0 VA a3 @en VA | (a9 e VA 1\31\(1))5 78 0.09 (LéM/ N/A N/A
STOC error <0. )
(N)
>((1?:'>(<); <0054, 024
Mean STOC| 1.05 118 059 | 208 264 063 | 248 1.82 0.84 MN) 79, 011 | (L/M) .0 o5y
adjustment | (1.21) (1.11) (0.71) | (248) (4.86) (0.85)|(2.84) (1.51) (1.1) 89 012 | >0.05 e
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Figure 7-6: Mean final validation error for each group subdivided by display
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Figure 7-9: Mean time spent per cycle for each group subdivided by display

7.4.4 Effects on Workload

The display used was not predicted to directly affect workload (H4) and experts’
responses to the NASA-TLX questionnaire (see Table 7-7) support this with no
significant effect caused by the display on either overall workload (Figure 7-10) or any
subscale, however reductions were elicited by both novice groups when using the
ecological display, in particular a reduction in mental demand, effort and frustration as
well as an increase in perceived performance resulting in significantly lower overall

workload compared to the traditional displays.

Although most previous studies have shown that use of an ecological interface should
not affect workload (e.g. Effken, 2006; Garabet & Burns, 2004; Hsieh et al., 2014) where
the volume or complexity of tasks conducted is not comparable variations may occur
(Lau, Jamieson, et al., 2008; Wickens & Hollands, 2000). From the validation task
process diagrams (Figure 7-1 and Figure 7-3) it can be seen that the key difference
between the traditional and ecological displays is that direct manipulation of the STOC
value effectively creates a real-time feedback loop through which the impacts of any
changes on the traffic model are provided. Using traditional displays users must predict

these impacts based on their domain knowledge. The workload results could indicate
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that novices find this projection process cognitively demanding, with limited
experience or knowledge to draw on. Conversely experts have no difficulty, potentially
utilising less demanding Rule- or Skill-Based Behaviour (Rasmussen, 1983) to make
decisions. Crucially experts did not appear to be impeded by the change in information
presentation which adds to the evidence concluding that techniques such as EID don’t

result in higher workload (e.g. Garabet & Burns, 2004; Lau, Jamieson, et al., 2008).

7.4.5 Effects on Perceived System Usability

There is some evidence suggesting that ecological interfaces are perceived to be more
usable than traditional designs ((H5); e.g. Eftken, 2006; Ellerbroek et al., 2013), in this
case the SUS responses (Table 7-8) show that there is a difference of opinion between
experts and novices. Novices rated the ecological display as significantly more usable
than either LVAL or MCM (Figure 7-11), being more likely to want to use the ecological
system, find it easy to use, be well integrated and feel confident using it, while being
less likely to find it unnecessarily complex, inconsistent or cumbersome to use. Experts

on the other hand reported no significant differences between any of the displays.

Bangor, Kortum, and Miller (2008) in their evaluation of the SUS scale state that while
acceptable scores will vary between domains a value of at least seventy is desired. All
three participant groups rated the traditional displays below the acceptable level
which could indicate a serious usability failure with the textual interfaces, MCM being
of particular concern by consistently being rated the least usable display. Only the
ecological display elicited a “passable” score however this was not unanimous, experts
rating its usability significantly lower than novices but comparable to the traditional
displays. These results resemble those observed for workload, the ecological display
not appearing to be any less usable than traditional displays but the discrepancy

between experts and novices being a cause for concern.

Potentially the cause could be the relative level of training, experts being skewed
towards the traditional displays while novices were comparable between all interfaces.
If this is the case then the perceived benefits shown by novices could translate to
experts provided they are given the training necessary to use the ecological display
(see Vicente, 1999). Similarly training appears to overcome the traditional displays’
initial perceived difficulty, however given the objective performance improvements

previously discussed adoption of an ecological display would still be recommended.
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7.4.6 Limitations

Several experimental limitations should be considered. Firstly the validation process
was simplified compared to reality by providing participants with street clear times
designed to lead to a particular STOC value. This was necessary to standardise the
experimental procedure and keep the time demands on participants manageable. As a
consequence experts’ performance could be underestimated in comparison to novices,
for example the number of cycles required could be inflated due to the forcing of an
initial random guess instead of a reasonable initial estimate based on the road layout.
Secondly each display was to some extent limited by Microsoft Excel’s constraints;
most significantly it was not possible to implement true direct manipulation in the time
frame of the experiment. It is encouraging that significant performance improvements
were elicited by the ecological display however future work should address these

limitations to test translation to the real-world.

Table 7-7: Means (standard deviations between parentheses) for workload measures

Group Significance
Matched Within- Between-
Expert (EX) Novice (MN) Novice (N) subjects subjects
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Group Significance
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Figure 7-10: Overall workload calculated using TLX subscale responses for each

group subdivided by display
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Table 7-8: Mean (standard deviations between parenthesis) system usability and

responses to SUS questions (Strongly Agree/Agree/Neither Agree or

Disagree/Disagree/Strongly Disagree)

Group Significance
Matched Novice Between-
Expert (EX) (MN) Novice (N) Within-subjects subjects
s 2 gl|2 & gl|8 2 g o 8 » 8
- = = | = = = |2 = = v = @ o = &
S 2 g8/ ¢ £/ 2 g2 & g|z2 & g
= R Mo e e - = > o £ | > o &
Measure - 3\ o < n =] ©~ (o] [=)) =" 7} v (=9 7] 5}
0.05
>(EX/ g 0.08 | >005
System | 688 625 665 | 592 515 774 | 612 535 778 | GRS T NAM) o oo
usability | (171) (183) (197)| 210) (36) (173) | (1.0 (190 (37)| goons g9 g | <005 :
(N) (E)
>0.05
Question |0/2/3 0/2/4 1/1/4|4/1/4 4/2/2 0/2/5|3/9/1 3/11) L1/6| (EX/ g >0.05
1 J6/1 /5L 472 | /3/0 jaj0 a1 | 17770 s/ejo [12/| MWD o gg N/A (LM N/AN/A
<0, )
(N)
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(N)
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3 J6/4 [6/1 a3 | /5L 30 7375 | 1773 e TN NN gg N/A (Lél)v[/ N/A N/A
(N)
Question | 4/5/3 3/6/2 4/6/1|4/4/3 3/5/0 7/3/1|4/11/ 5/10/ 13/8/ >g£5 NA N/A >L0'13[5 N/A N/A
4 /0/0 /10 J1/0 | /ijo  /4/0 /10 |e/8/1 6/7/2 7/1/1 1\/1(1\1/1{1) /A N/ (é)/ /A N/
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(N)
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/ 3 | MN/N) E)
>0.05
Question | 0/7/4 0/4/6 1/7/2|3/6/1 4/2/2 6/5/1|3/16) 57779 ‘017 | (EX/ 5y >0.05
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Question |0/1/2 0/1/4 0/0/3|1/2/4 272/4 oy3)2 | YL o3, O/V/A| (EX/ g >0.05
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Figure 7-11: System usability (%) calculated using SUS responses for each group
subdivided by display

7.5 Conclusions

An experiment was conducted to compare a concept ecological display against two
traditional interfaces used to validate STOC values for SCOOT controlled traffic lights
and to consider the role of experience on performance. The validation task was
completed accurately by both experts and novices using all three displays however the
ecological interface provided a number of performance benefits. Difficulties
experienced by novices using traditional interfaces were overcome, with performance
normalised in the ecological condition. Validation was also faster using the ecological
interface with significant reductions in the number of cycles required elicited by all
groups. Subjective assessments of workload and usability showed that the ecological
design had a positive impact on novices but did not affect experts, suggesting that the
traditional displays are initially hard to use but this can be overcome with training.
Overall the experimental results support the continued development of an ecological
interface for this domain; however further investigation is required to address several
experimental limitations occurring within this study and confirm performance

improvements, this is conducted in chapter 8.
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Chapter 8: Further Evaluation of an Ecological

Interface for STOC Validation

8.1 Introduction

An ecological SaTuration OCcupacy (STOC) tool could potentially overcome the
limitations with the current Link VALidation (LVAL) tool used within PC SCOOT (see
Siemens, 2013), which is perceived to be time consuming to use and with performance
highly reliant on validators having extensive tacit knowledge regarding the domain.
The experiment conducted in chapter 7 largely confirmed these concerns and
demonstrated that validation using a concept ecological display (designed based on the
principles of Ecological Interface Design (EID) in chapter 6) was not only comparably
accurate to LVAL, but required fewer cycles to effectively validate, was less demanding
of novice validators and improved their performance such that it was normalised with
experts. Although these findings are compelling the experiment suffered from a
number of limitations which must be addressed through further empirical testing
before meaningful recommendations regarding STOC validation interface design can

be provided.

The first concern is that the experimental validation process was simplified by
providing participants with observed clear times designed to lead to a particular STOC
value rather than recording real times from the link in question. This was necessary to
standardise the experiment’s procedure while meeting experimental deadlines. As a
consequence performance may not be reflective of what could be expected in the real-
world, in particular experts’ performance may have been underestimated in
comparison to novices because they were not able to begin with a reasonable estimate
based on the road layout. To address this in chapter 8 source data will be acquired by

measuring real observed clear times in order to make the experiment more realistic.

The second major concern related to the experimental ecological display which was
constructed in Microsoft Excel and suffered from several limiting constraints. Firstly, it
was not possible to implement true direct manipulation, STOC values were instead
adjusted by clicking ‘increase’ and ‘decrease’ buttons (1 in Figure 8-1). Secondly,
modelled clear times were shown as the ‘x axis’ intercept of a queue length line,

comparison to observed clear times hence had to be calculated by participants
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manually (2 in Figure 8-1). Thirdly, STOC values selected for previous cycles were
simply recorded as the value selected, participants had to decide on the best STOC for
the link by comparing these static values (3 in Figure 8-1) instead of being able to
compare the impacts of changing STOC values on all completed cycles. To address this
limitation a more advanced, and truly ecological concept display will be developed

which can be tested empirically against the traditional display.

tycle | 4 | measured ciear Time | 30 | street clear Time | 25 | Cycle STOC | 2| average sTOC g
Tyole | 5100

MNext Cycle IncreasesTOC DecreasesTOC 3 7
Q‘ H B

m L)/N 1. 3
. 2 2.
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135 7 911131517193212325272931333537394143454749 51535657 59616365
Time (s}

Ipu

Figure 8-1: Chapter 7’s ecological experimental limitations

8.2  Ecological STOC validation display development

The ecological validation process is detailed in Figure 8-2 with corresponding interface
components for the developed ecological display, as compared to the concept designs

produced in chapter 6, shown in Figure 8-3.

On commencement of validation an arrival profile from the link’s induction loop
detector is displayed in real time on a graph detailing the current state of the traffic
lights in near real-time (1, in Figure 8-3). After the cycle is complete the observed clear
time is input into the tool by dragging the slider along the graph’s ‘x axis’ or by typing
the value in (2, in Figure 8-3). STOC values are similarly input by dragging the slider
along the graph’s perimeter, plotting the modelled discharge rate (3, in Figure 8-3)
with the resulting difference between modelled and observed clear times displayed

below the graph (4, in Figure 8-3).
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Further STOC adjustments can be made by dragging the slider to a new location (5, in
Figure 8-3) with an aim of minimising the error between modelled and observed clear
times to identify a theoretically correct STOC value for the current cycle (6, in
Figure 8-3). As further cycles of data are obtained model comparisons are displayed
together (7, in Figure 8-3) with the STOC value used persisting across cycles (8, in
Figure 8-3), which may be adjusted as necessary throughout validation to minimise the
model’s average error (9 and 10, in Figure 8-3), the effects on model clear times of
changing the STOC value are immediately reflected within the interface for all cycles of
data. Once a STOC value is identified which is perceived to minimise the error over

sufficient cycles validation is complete.

ient Cycl

Inaccurate

Unvalidated A -Accurate Validated

outputs (1)

I I Display model h

Display model
outputs (4,6,7)

Figure 8-2: Ecological tool validation task process
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Figure 8-3: Ecological display development

8.3 Methodology

8.3.1 Participants

Participants were divided into three groups. Experts comprised of six experienced

validators, four male with a mean age of 44.0 years (0 = 12.3) and experience ranging
from 6 to 30 years (/¢ = 15.0, 0 = 10.5). Novices were divided into a group of six age
and gender matched to the expert group as closely as possible (four male, jlage = 44.5,
Oage = 12.1), and an unmatched group of thirty (sixteen male) with a mean age of 35.6

(0 =12.9), all having no experience of SCOOT validation.

8.3.2 Equipment

The experiment was undertaken on a laptop with a 15” display. The LVAL interface was

produced in Microsoft Excel (version 2010, see Figure 8-4), and is comparable to the
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condition in chapter 7. A stand-alone application was produced for the ecological
display using the Microsoft .Net Framework. All displays were checked with an
experienced SCOOT validator prior to commencing the experiment to ensure fitness

for purpose. Navigation and interaction was carried out via keyboard and mouse.

LVAL
Practice
Next STOC| 15
Max Queue| Model Street Est.
Cycle |STOC . L Next Cycle
Length | Clear Time | Clear Time | STOC|
9 15 116 9
8 15 158 18 18 15
7 16 200 16 19 14
6 16 79 6 6 15
5 16 180 13 14 14.7
4 16 31 3 3 16
3 12 118 12 10 16
2 12 120 12 10 16
1 12 129 17 12 17
Ecological
g
il L
|
L~ .
Observed Cisar Tme bt
Gied
ez l
e I

Figure 8-4: Experimental displays

8.3.3 Experimental Design

The experiment was designed as a between- and within-subjects repeated-measures
where the factors display and experience were varied. The within-subjects display
factor was divided into the existing LVAL display and the proposed ecological display.
The between-subjects factor experience was divided into participants with validation
experience (experts) and without (novices) who were subdivided into those age and
gender matched to the expert group with the remaining placed in an unmatched group,

this resulted in six conditions (2x3).

Dependent measures for this experiment consisted of both objective and subjective
measures. Performance was measured in terms of the final validation error, mean cycle
validation error, mean time spent per cycle and number of cycles used, validation error
was categorised as the absolute deviation from the expert’s median STOC value for

each link. System use was measured in terms of the number of STOC adjustments made
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(ecological condition only), mean error from estimated STOC value (LVAL condition
only) and the mean STOC adjustment cycle to cycle. Workload was measured using the
NASA-TLX assessment of overall workload with subscales for mental demand, physical
demand, temporal demand, performance, effort and frustration. System usability was
measured using the SUS questionnaire with participants stating whether they “strongly
agreed”, “agreed”, “neither agreed nor disagreed”, “disagreed” or “strongly disagreed”

with each statement shown in Table 8-1.

This experiment investigates the following hypotheses with each formulated based on

the results from the first empirical study in chapter 7.

1. HI: Accuracy will be comparable regardless of experience but the ecological
condition will elicit a reduction in the number of cycles required for all
participants.

2. H2: Expert and novice performance will be normalised in the ecological
condition and more variable when using LVAL.

3. H3: The ecological condition will take longer to use but this increase will not
cause an increase in the number of cycles required to validate.

4. H4: Expert workload will be unaffected by display consistent with previous
studies (e.g. Effken, 2006; Garabet & Burns, 2004; Hsieh et al.,, 2014), however
novice workload will be reduced in the ecological condition.

5. H5: Novices will find the ecological condition more usable consistent with
previous studies (e.g. Efftken, 2006; Ellerbroek et al., 2013) however experts will

be unaffected.

8.3.4 Procedure

Subjects were briefed on the purpose of the experiment and were allocated to a group.
Conditions were undertaken in a predetermined counterbalanced order to account for
learning effects. Each condition commenced with a practice session to familiarise the
subject with the validation task using the display. Subjects were required to manipulate
the STOC value such that the model provided accurate queue clear times in relation to
observed values, it was explained that there was no correct answer and to cease
validation once they were satisfied with a particular value. Three real links were then
validated using the display, the order of which was counterbalanced using a Latin

Square.
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Source data for each link included traffic arrival profiles obtained from six links in
Bristol (see Figure 8-5) using PC SCOOT’s M14 messages (see Siemens, 2011) and
observed clear times measured directly by monitoring the recorded link using Bristol
Traffic Management Centre’s CCTV system (see Figure 8-6 and Table 8-2). Twenty-five
valid cycles (where a queue formed and was discharged in less than the Queue Clear

Maximum Queue (QCMQ; Siemens, 2011) time) were obtained for each link.

After completing each condition a NASA-TLX assessment (Hart & Staveland, 1988) and
System Usability Scale (SUS; Brooke, 1996) questionnaire were completed. The
process was repeated for the second condition and typically took between 30mins and
1hr. Ethical approval was obtained from the University of Southampton’s ethics

committee prior to commencement of data collection (ethics number 14367).

8.3.5 Data Analysis

All data analysis will be conducted using SPSS (version 22) with significance set at 5%.
Each dependent measures’ normality will be assessed using a Shapiro-Wilk test. Where
normality can be assumed either independent or paired samples T-Tests will be used
to compare within- and between-subjects effects as appropriate. Conversely where
normality cannot be assumed either Wilcoxon-Mann Whitney or Wilcoxon Signed
Ranks tests will be used to compare both within- and between-subjects effects. Should
the normality assumption vary within a dependent measure parametric tests will be
used due to T-Tests’ reasonable robustness to the normality assumption (Kirk, 1995).
Categorical data collected by the SUS will be evaluated using a Chi-Square test. Effect
sizes for all measures excluding categorical data will be evaluated using Cohen'’s d
(Cohen, 1988).

Table 8-1: SUS questions

No. Question
1 [ think that I would like to use this system frequently
2 [ found the system unnecessarily complex
3 [ thought the system was easy to use
4 [ think that I would need the support of a technical person in order to be able to use this

system

I found the various functions in this system were well integrated

[ thought there was too much inconsistency in this system

[ would imagine that most people would learn to use this system very quickly

[ found the system very cumbersome to use

© 0 N O v

[ felt very confident using the system

10 Ineeded tolearn alot of things before I could get going with this system
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Figure 8-6: Link CCTV feeds
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Table 8-2: Observed clear time (seconds) for all links

Link

Cycle | A B C D E F
1 34 18 10 11 18 4
2 15 21 31 12 20 25
3 18 9 12 5 18 22
4 20 24 20 14 27 14
5 24 33 33 8 19 20
6 13 14 34 12 8 9
7 14 20 26 8 8 25
8 10 7 23 6 10 12
9 24 27 18 6 20 9
10 17 20 30 11 8 12
11 16 15 31 7 11 7
12 24 17 27 6 12 19
13 29 21 21 9 13 22
14 32 23 8 4 17
15 23 25 12 20 18
16 20 18 22 11 22 18
17 7 8 34 9 12 7
18 22 18 45 10 25
19 13 20 19 6 12 23
20 23 14 47 10 13 36
21 31 15 34 7 6 13
22 16 14 13 11 11 7
23 9 30 36 14 17 21
24 18 21 37 12 27 14
25 8 20 35 17 10 16

8.4 Results and Discussion

Shapiro-Wilk tests on each dependent measure revealed mixed normality assumptions
(Table 8-3), therefore a variety of parametric and non-parametric tests were utilised

for data analysis as specified in section 8.2.5
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Table 8-3: Shapiro-Wilk normality test p values for performance, system use,

workload and system usability measures

Group
Expert Matched Novice Novice
Factor Measure LVAL Eco LVAL Eco | LVAL Eco

Final
validation| .623 124 931 .396 .749 212
error

Mean cycle
validation| .425 498 319 119 | 679  .208

Performance error

Mean time

.643 .668 .007 954 | 129 .004
spent per cycle

Cycles| 579 329 | 041  .092| 693 120
required

Eco. STOC
Adjustments| N/A 067 | N/A 905 | N/A 875

Eco. Observed
Clear Time| N/A .010 N/A .523 N/A .036
System use Adjustments

Estimated
SToC | 372 N/A| 492 N/A| 808 N/A
MeanSTOC| — »5e 19| 257 413 | 402 717
adjustment
Overall| = ;o0 g5y 131 191 | 244 417
Workload | ’ ’ ’ ’ '
Mental| = 50;  gg5 | 134 875 | 083 266
Demand
ghysmg 234  230| .078 389 | .110 .000
Workload eman
Temporal| = g5 315 | 002  415| 817 212
Demand

Performance| .320 417 .596 .039 673 415
Effort| .800 .781 .256 737 .158 331
Frustration| .058 674 .614 .010 | .353 117

System System

usability usability 324 307 .356 107 .074 460

8.4.1 Experience Effects on LVAL Display Performance

Minor differences were found when comparing novice groups’ median validated STOC
values to experts (Table 8-4) however each of these discrepancies was within one STOC
value which based on discussions with Siemens’ validators is an acceptable tolerance
for link validation. No significant between-subjects effects were found for any
performance measure suggesting that LVAL performance is not reliant on experience
(see Table 8-5 for performance measure summary, Figure 8-7 and Figure 8-8) at least

in controlled experimental conditions in support of H1. Novices were able to validate
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effectively using LVAL however while they did require more cycles than experts this
increase was not as pronounced as previously observed. Overall novice performance
using LVAL was found to be far more normalised with experts than the results from
chapter 7, however they were more variable particularly in terms of final validation
error and number of cycles used. This suggests that while novices are capable of using
the LVAL display they are less predictable and therefore not as reliable as experts, this

is in support of HZ.

System use measures (Table 8-6) reveal that experts tended to make smaller
incremental adjustments to STOC cycle to cycle. It was suggested that this may
represent a rule-based behaviour (Rasmussen, 1983) employed to prevent wasteful
oscillation either side of a correct STOC value, although limited benefit was obtained in
this experiment, potentially due to the nature of the specific links validated, this
strategy did not impede performance and should generally speaking lead to benefits. It
was also found that the LVAL Estimate tool was typically ignored by both expert and
novice groups, presumably because participants believed their own judgement
regarding STOC adjustments to be superior. This lack of trust effectively negates any

potential benefit provided by the tool and correlates with chapter 7’s findings.

8.4.2 Experience Effects on Ecological Display Performance

Similarly to LVAL all participant groups were able to correctly identify link’s STOC
values with no significant between-subjects effects for any performance measure
(Table 8-4, Table 8-5 and Figure 8-7 to Figure 8-10). As observed in the LVAL condition
experience did not appear to impact performance with all participants being able to
effectively use the display (in support of H1). This finding is particular encouraging
because it suggests that all validators are able to achieve comparable performance to
LVAL despite the limited training provided in the display’s use. The ecological display
also elicited a substantial reduction in novices’ variability (in support of HZ) and hence
they could be perceived to be more reliable, giving the ecological display an important
advantage over LVAL, although it should be reiterated that use of the ecological

interface does not negate the need for effective training (Vicente, 1999).

System use measures (Table 8-6) did not reveal any significant between-subjects
differences suggesting that experts and novice groups tended to use the ecological

display similarly; this was a slight difference to that observed in chapter 7 where
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experts tended to make fewer adjustments to STOC, but could be due to differences

both in the display and source data used.

8.4.3 Display Effects on Validation Speed

The number of cycles used to validate a link is the primary measure of validation speed,
with time spent using the display also considered. The ecological display elicited a
significant reduction in the number of cycles used to validate by all participant groups
(Table 8-5 and Figure 8-9). Reductions were in the order of 50% over the LVAL
condition which represents a significant potential time saving given cycles typically
last between two and four minutes (Siemens, 2011). This reduction is approximately
comparable to that observed in chapter 7 and lends support both to HI and the
evidence suggesting response times can be improved when using ecological displays

(e.g. Hsieh et al.,, 2014; Jamieson, 2002, 2007; Torenvliet et al., 2000).

This benefit was however obtained at the cost of participants spending significantly
longer using the ecological display compared to LVAL within a cycle (Table 8-5 and
Figure 8-10). As discussed in chapter 7 this increase is only relevant if it causes a
subsequent traffic cycle to be missed which would not be the case given the magnitude
of the increase (approximately twenty seconds on average). This confirms H3 and
correlates with the findings in chapter 7 where it was found that adjusting STOC values
graphically is more time consuming than simply comparing the textual clear times

provided by LVAL.

Ultimately this trade-off is inconsequential with the potential reduction in cycles
required to validate elicited by the ecological display important for several reasons.
Firstly, validation typically occurs in close proximity to a road and therefore validators
are exposed to the potential risks of this working environment, by reducing the amount
of time validators are exposed to these risks an important safety benefit can be
achieved (see Department for Transport, 2013; Knight & Emmerson, 2008). Secondly,
SCOOT validation is very time consuming typically accounting for approximately 30%
of the time spent commissioning a SCOOT system (Siemens, 2011), and hence a
significant portion of the implementation cost, by reducing the time required to
validate links the SCOOT system as a whole should be validated more efficiently, which
could result in cost savings being achieved, although further real-world investigation

would be required to confirm this benefit.
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Table 8-4: Median validated link STOC values by group

Link
Group A B C D E F
Experts 7 18 9 22 13 9
1\132:223 6 19 9 21 13 9
Novices 7 19 9 22 13 9

Table 8-5: Means (standard deviations between parentheses) for performance

measures
Group Significance
Matched Between-
Expert (EX) Novice (MN) Novice (N) Within-subjects subjects
~ ~
= =
= =) = Yy >
-’ ’u? - ’u? -’ ’E w N 7 N
2 T2 $lz §$|: £33/ ¢ £¢
> E = E > E % a B9 % a B
- = i > @ & > o &
Measure - 3\ o < n O =" 7] ) =" %) )
Final validation| 0.45 0.49 0.40 060 | 064 046 ?%)((’; N/A NJA >0.05 /A NJA
error| (061) (0.51) | (045) (067) | (069) (051) |\t (L/E)
>0.05
Meancycle| .. 004 | 116 o086 | 118 o790 | EY/ 0.05
validation| 137 (0'g2) | (0.89) (052) | (0.76) (0.44) ) 56 017} p N/A N/A
error <0.005
(N)
1172 606 | 972 539 | 1354 640 <((}J3>2)5 120400 005
Cyclesrequired | ¢33y (135) | (499) (158) | (5.76) (271) | <0.005 ” 0331 gy N/A N/A
(MN/ N) 0.33
Mean time | | 35 9 30 10 31 | <0005 122300
>
EX/MN 34 277| -2 N/A N/A
betweencycles| ) @ | @ @ | @ @©® |® wr NAN
(sec) /N) 56 1.98
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Table 8-6: Means (standard deviations between parentheses) for system use

measures
Group Significance
Matched Within- Between-
Expert (EX) Novice (MN) Novice (N) subjects subjects
- ~ - g g
=) — =) — = P (] (]
"’ m L= 22 A 2% 7] N 12 N
- o ] (= ] ja’) E - E —
< o < o < o 2 8 2 g s 2
- O - Qo - Q -~ 2 9 =] aQ o
- = ] = - 25} g 2 g o S
Measure - oo o3 § | B9 & @ 9| =& @ 9
Mean
Ecological OCT 1.84 2.05 3.10 >0.05
N/A N/A N/A N/A  N/A N/A N/A N/A
adjustments| "/ 073) | VA sey | VA a9 | NA L NANAT g WA N
per cycle
Mean
Ecological 10.37 10.72 10.08 0.05
. . . >U.
- STOC| N/A (7.13) N/A (5.08) N/A (5.75) N/A  N/A N/A ® N/A N/A
adjustments
per cycle
LVAL 2.42 1.66 1.68 0.05
. . . . >U.
Estimated (1.40) N/A (115) N/A (1.06) N/A | N/A N/A N/A W N/A N/A
STOC error
>0.05 <0.05
Mean STOC| 042  1.05 0.86 0.82 090 072 | (EX/ (L)
adjustment | (039) (1.37) | (0.86)  (0.69) | (0.70) (0.62) | MN/ N/ACNAL s 15 OL
N) (E)

208



Chapter 8: Further Evaluation of an Ecological Interface for STOC Validation

1.0

Final Validation Error

&2

Display

W LvaL
O Ecological

Expert

T
Matched Novice

Group

Novice

Figure 8-7: Final validation error for each group subdivided by display

1.0

Mean Cycle Validation Error

22

Display

vl
O Ecological

Figure 8-8: Mean cycle validation error for each group subdivided by display

Expert

T
Matched Novice

Group

T
Howvice

209



Joshua Price

43 Display
25 o
35 Wl Lvar
O Ecological
207
=
@
7]
=
n
g
5.‘ 15
k-]
68
(] gsu
2 B4
5 107
=
g
E é
e
.

T T
Expert Matched Novice Movice

Group

Figure 8-9: Mean number of cycles used to validate each link for each group

subdivided by display
Display
0 W Lvas
O Ecological
12
o

E 40
=
=]
1
T
2 O
o
E, 307 10
4] o
[
o
=
[
& 20
z
= 13
= o
;
E 10 .

o

T T T
Expert Matched Novice Hovice
Group

Figure 8-10: Mean time spent per cycle for each group subdivided by display

210



Chapter 8: Further Evaluation of an Ecological Interface for STOC Validation

8.4.4 Effects on Workload

Responses to the NASA-TLX questionnaire (Table 8-7 and Figure 8-11) reveal no
significant within-subjects effects observed for the expert group in terms of each
subscale and overall workload, hence they did not report the ecological display to be
significantly harder to use than LVAL despite only having limited exposure with it.
Significant within-subjects effects were reported in the novice groups, where the
ecological display was found to elicit reductions in overall workload and most
component subscales, particularly mental demand and perceived performance, effort
and frustration. This evidence is directly in support of H4 and correlates with the

findings from chapter 7.

Previous studies have suggested that changing displays should not impact workload if
the tasks performed are comparable (e.g. Effken, 2006; Garabet & Burns, 2004; Hsieh
et al., 2014), however if the volume or complexity of tasks is altered variations may
occur (e.g. Lau, Jamieson, et al,, 2008; Wickens & Hollands, 2000). This could suggest
that the task process used by the ecological display is consistent with experts’ mental
model using LVAL, hence workload was not affected by the change of display.
Conversely novices have to develop this model when using LVAL representing an
increase in complexity thereby increasing workload and enabling the ecological

display to provide a benefit by enabling access to this expert behaviour.

In addition several significant between-subjects effects were observed. In relation to
LVAL novices found the display more frustrating to use and perceived their
performance to be worse than experts despite being comparatively accurate. This is
interesting because it suggests that LVAL'’s feedback is difficult to interpret without
experience. It may be that the feedback provided by LVAL is inappropriate (Norman,
1990) for the validation task and instead of aiding inexperienced validators it instead

represents a major barrier to the display’s accessibility.

In the ecological condition experts reported significantly higher mental and temporal
demand as well as frustration than novices; bringing these values in line with those
they reported using LVAL, but as discussed not significantly exceeding them. This
experiment therefore provides further evidence that use of an ecological display does
not increase workload (Garabet & Burns, 2004; Lau, Jamieson, et al., 2008). Given the

findings for novice groups it is possible that were experts to have a comparable degree
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of experience using the ecological display workload reductions could be elicited,

however further investigations would be required to confirm this.

Table 8-7: Means (standard deviations between parentheses) for workload measures

Group Significance
Matched Within- Between-
Expert (EX) Novice (MN) Novice (N) subjects subjects
~ ~
= =
= = = Y Y
S @ | g% g - e S
- \ [ | N Y — o = try o = _
< o < =) < =) = © - = 8 o
> ﬁ > é 3 é - = O = o O
: : . NI
Measure i 3\ o™ <* n =] (=% 7} 5} =" 7] 5}
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(EX)
Overall 308 354 36.9 17.9 37.7 245 <0.05 34 0.05| >0.05 N/A  NJA
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<0.005
(\)
>0.05
(EX) >0.05
430 483 | 530 242 | 510 330 | <005 34 010| (L)
Mental demand | 17%g) (137 | 207) (107) | 212) (186)| (MN) 56 os9 | <0.05 2% 076
<0.005 (E)
(\)
Physical 233 217 | 150 125 | 138 137 >((})3>(<)/5 NA N/A | 709 N nya
demand (194) (18.1) | (5.5) (76) | (11.8) (12.7) MN/N) (L/E)
>((})3)(()/5 >0.05
Temporal 40.8 35.8 25.8 13.3 28.2 18.5 MN) 56 036 (L) 24 063
demand (1L1) (159 | (20.1)  (61) | (152) (118) | _oo« ' <005 26 047
\ E
(N) (E)
>0.05 <0.005
200 292 | 392 292 | 498 303 |(EX/MN) L)
Performance | o5y (227) | (186) (240) | 194) (163) | <0.0005 ¢ 022|005 15 110
(\) (E)
>0.05
(EX)
400 383 | 533 183 | 443 308 | <0.05 >0.05
Effort (164) (232) | 2L (93) | (187 (187) | ny 00 080 gy NA NA
<0.005
(N)
175 392 | 350 100 | 392 205 (E>X(>l(\)/15N) 00s > 076
Frustration | 107 227) | 243) (78) | 237 (189) | <0005 0% | (g 24 057
o) 26 036
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Figure 8-11: Overall workload calculated using TLX subscale responses for each

group subdivided by display

8.4.5 Effects on Perceived System Usability

Responses to the SUS questionnaire (Table 8-8 and Figure 8-12) reveal significant
within-subjects effects were only obtained for the novice group. Although experts on
average reported the ecological display to be less usable than the LVAL display this was
not significant, with novice groups conversely reporting the opposite. This is directly
in support of H5 and the findings in chapter 7. Novices were more likely to want to use
the ecological system, find it easy to use, be well integrated and feel confident using it,
while being less likely to find it unnecessarily complex, inconsistent or cumbersome to

use.

These findings are consistent with evidence from other studies which have
demonstrated that ecological displays are perceived to be more usable than traditional
designs (e.g. Effken, 2006; Ellerbroek et al., 2013), however between-subjects effects

reveal significant differences between expert and novice groups in respect to this.

Experts found LVAL to be significantly more usable than novices which was
unsurprising given that they had considerably more experience using the display.

Conversely novice groups found the ecological display significantly more usable than
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experts. Novice’s had comparable degrees of experience with both displays; it is
therefore important to establish if these benefits are limited to novices or whether they
can be elicited whenever experience is comparable across displays. As was the case in
chapter 7 and has been noted in other studies (e.g. Ellerbroek et al, 2013; Lau,
Jamieson, et al.,, 2008) it is rarely possible to provide sufficient training in a concept
system to fairly compare it to a traditional system, which is a significant limitation
given that ecological displays are not intended to eliminate the need for this training
(Vicente, 1999). If sufficient training could be provided then it is possible that the
benefit observed by novices could also transfer to experts, however further

investigations would be required to confirm this.
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Table 8-8: Mean (standard deviations between parenthesis) system usability and
responses to SUS questions (Strongly Agree/Agree/Neither Agree or
Disagree/Disagree/Strongly Disagree)

Group Significance
Matched Between-
Expert (EX) Novice (MN) Novice (N) Within-subjects subjects
~ ~_ ~ S =
o] — el — - — 5} 5}
Sz B | T o8 | T @6 £ N £ 2
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(N)
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>0.05
. 1/3/1/ 1/2/2/|2/1/2/ 3/3/0/|3/8/10 12/12/ | (EX/MN) >0.05
Question 6 1/0 0/1 1/0 0/0 /6/3 4/2/0 | <0.05 56 N/A (L/E) N/A N/A
(N)
>0.05 >0.05
) 0/0/2/ 1/1/1/|0/1/1/ 0/0/0/ | 1/4/7/ 0/0/2/ | (EX/MN) (L)
Question 7 3/1 2/1 3/1 3/3 9/9 8/20 | <0.05 56 N/A | 005 26 N/A
N) (E)
>0.05 24
) 1/4/1/ 0/1/4/|1/1/1/ 3/3/0/ | 4/10/3 13/12/ | (EX/MN) <0.05
Question 8| /6" 07| 300 oj0 | j11/2 230 | <005 °¢  NA L g ég N/A
N)
>0.05 <0.05
) 0/0/0/ 0/0/3/|1/1/4/ 0/0/2/|1/11/1 0/2/8/ | (EX/MN) L
Question9| 5" 3507 | oj0  1/3 | 0j6j2  12/8 | <005 NA | Sp0s 15 N/A
(N) (E)
>0.05 <0.05
Question |2/3/0/ 2/1/2/|3/1/1/ 2/2/1/ | 4/11/9 10/16/ | (EX/MN) (L)
10 10 1/0 | o/ 1/0 | /60  4/0/0 | <005 20 NA| 005 3> NA
(N) (E)

215



Joshua Price

Display

W Lvar
0 Ecological

1007

20 i
&0
59
770
o
407 &9
o]

System Usability (%)

207

T T T
Expert Matched Hoviee Novice

Group
Figure 8-12: System usability (%) calculated using SUS responses for each group
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8.5 Conclusions

A follow-up experiment to chapter 7 was conducted to compare a developed ecological
STOC validation display against the traditional LVAL interface. Several limitations with
the first experiment were addressed, specifically real observed clear times were
utilised and the ecological display was significantly developed from the Excel based
prototype used previously. The results confirmed many of the findings from chapter 7
with validation being effectively conducted by both experts and novices in both
conditions but the ecological display eliciting a number of performance benefits over
LVAL. Reliability, workload and usability were improved for novice validators, while
experts were not adversely impacted by the change of display and retained comparable
accuracy as when using LVAL. Perhaps most significantly the ecological display
substantially reduced the number of cycles required to validate, with the benefits
associated with the resulting time savings warranting further consideration be given
to developing a fully functioning ecological validation display. A limiting factor for the
time savings able to be obtained by the ecological display is that it is currently only
feasible to validate a single link at a time; chapter 9 will therefore investigate the
potential to automate parts of the STOC validation process which could enable multiple

links to be validated simultaneously and hence offer even greater savings.
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Chapter 9: Development and Evaluation of an

Automated STOC Selection Algorithm

9.1 Introduction

In the final stages of the project Siemens expressed an interest in exploring the
potential to automate the STOC validation process investigated in chapters 6, 7 and 8.
By standardising the process it may be possible to gain advantages over human
validators in terms of consistency and efficiency, in particular reducing demands on

validators and enabling them to focus on more complex tasks.

The work conducted in chapters 7 and 8 showed that an ecological display was able to
overcome the key issues with LVAL, specifically that validation performance was highly
reliant on validators’ tacit knowledge, was time consuming and could result in variable
accuracy, particularly for novice users. The key benefit elicited was a significant
reduction in the number of cycles required to validate and hence a beneficial time
saving for the validation process as a whole. While these advantages are significant

automating STOC validation could provide further advantages in two key areas.

Firstly, automation would entirely negate the need for tacit knowledge within the task.
Provided that the automation can be shown to be comparably accurate to manual
validation when using the same number of cycles, then the complexity of the task for
validators would be significantly reduced, enabling them to focus their time and effort

on other areas of the validation process.

Secondly, a key constraint on validation speed is the need to validate links one at a time.
The task processes shown in Figure 9-1 (adapted from the strategies analyses in
chapters 5 and 6) show that both LVAL and ecological displays require clear time data
to be gathered and analysed, resulting in a STOC value being chosen for the current
cycle with performance then evaluated over subsequent cycles. Validating multiple
links would require these decision selection and action implementation tasks (see
Parasuraman, Sheridan, & Wickens, 2000) to be completed before the next link
becomes active which is typically unfeasible. A way to overcome this limitation would
be to automate some of the analysis and decision-making tasks, enabling validators to
focus on measuring queue clear times and then evaluating the node’s performance.

Ultimately it should be possible to collect all of the required data for an entire junction,
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with the algorithm then identifying the best STOC values for each link simultaneously

and hence provide a significant time saving.

Arguably correct application of automation is its greatest challenge (Parasuraman,
1997); well-designed automation should work alongside human operators to provide
assistance where performance could be improved. The issue then becomes how to
balance tasks and feedback, such that performance is maximised and the automation
trusted (Lee & Moray, 1992). Automation typically copes well with routine, predictable
tasks but often lacks the intelligence to deal with abnormal circumstances (Norman,
1990) as has been considered in a variety of transport domains such driving assistance
tools (e.g. Stanton, Young, & Walker, 2007; Walker, Stanton, & Young, 2001) and
autopilot design (e.g. Harris, 2004; van Marwijk, Borst, Mulder, & van Paasen, 2011).

The STOC validation tasks most suitable for automation are highlighted grey in
Figure 9-1, specifically modelled and observed clear times must be compared leading
to an updated STOC estimate. It is likely that these tasks can be effectively automated
because they are both routine, being identical link to link, and predictable, utilising
fixed rules to evaluate performance. This chapter is therefore concerned with
developing an algorithm to perform these tasks and then empirically evaluating
performance compared to manual validation using LVAL, ecological display and LVAL'’s
existing STOC estimation algorithm. In this way it is intended to establish firstly
whether automation can be sufficiently accurate to replicate human validators’
performance, and secondly to identify the extent of any benefits and limitations of this

approach compared to traditional validation.

9.2 STOC Selection Assistance

9.2.1 Model Error Minimisation

Model Error Minimisation (MEM) is a concept algorithm for selecting a STOC value
derived from the ecological STOC validation process shown in Figure 9-1. The premise
is that the most accurate STOC value for a link minimises the error between modelled
and observed clear times provided that these are valid (i.e. are representative of local
traffic conditions and were not impacted by any abnormal events such as a vehicle
stalling). By manipulating the STOC value used and measuring the resulting impact on
modelled clear times relative to observed values over a number of cycles the most

accurate STOC value can be derived. In this way all decision selection tasks are
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conducted by the algorithm leaving validators to input observed clear times and

evaluate the output STOC value (Figure 9-1), providing them with ultimate control over

validation. The variables required to calculate STOC based on MEM are shown in

Table 9-1 while Table 9-2 details the algorithm itself.
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Figure 9-1: LVAL, Ecological, MEM and LVAL Estimate STOC validation processes by

agent and task stage with automatable tasks highlighted grey
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Table 9-1: Variables used for Model Error Minimisation

Variable Description
n Cycle number
Ocieny  Observed Clear Time (measured by validator) for cycle n
S Current STOC value
Quknis)y Back of Queue (Ipu) for cycle n at STOC S
M i¢(nsy Modelled Clear Time for cycle n at STOC S
Ems)  Error between observed and modelled clear times for
cycle n using STOC S
Sm) Cycle’s best STOC value(?)
Emy Smallest error for cycle n
Smax Maximum permitted STOC value
LSm)  Sumof each cycle’s best STOC values
Swy Link’s best STOC value(®)

(1) Back of Queue is the total queue length in lpu at the point when the queue has

discharged (e.g. varies based on STOC value used)

(2) Taken to be the lowest STOC value which minimises the total error between

Observed and Modelled Clear Times

(3) Taken to be the mean of each cycle’s best STOC value rounded to the nearest

whole STOC value
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Table 9-2: Model Error Minimisation algorithm for each cycle

Variable Function Comment
Ocitn) = Input by validator Validator inputs Observed Clear Time for
cycle n
S = 1 Initial STOC equals 1
1. Mayns) = Qpbk(n:s) Calculates Model Clear Time for cycle n at
S STOCS
2. Ens) = |0c1tny — Meirnsy| | Calculates absolute error between cycle
n’s Observed Clear Time and Model Clear
Time at STOC S
Sty = S Initial best STOC value for cycle n equals S
Em = Em.s) Initial smallest error for cycle n equals
error produced when STOC equals S
3. IFS < S,,ax THEN... |Checks STOC S is less than maximum
allowed STOC
S = S+1 Increases STOC by 1
DO 1. AND 2. Repeats calculation of Model Clear Time
and Model Error at new STOC S
ELSE...
Go To 4. Skips calculation of best STOC and
smallest error for cycle n once maximum
STOC is exceeded
END IF
IF E 3.y < E 5y THEN... | Checks whether Model Error for cycle n at
STOC S is less than cycle n’s previous
smallest error
Sty = S Cycle n’s best STOC equals STOC S
Emy = Em.s) Cycle n’s smallest error equals the error
produced at STOC S
Go To 3. Begins loop to test next STOC
ELSE...
Go To 3. Begins loop to test next STOC
END IF
4 2Smy = 28wy + Sm) Calculates sum of all cycle’s best STOC

So =

ZS(n)
n
Next Cycle (n)

values
Calculates mean best STOC value for link /

Starts next cycle
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9.2.2 LVAL Estimate

LVAL can provide validators with an estimated STOC value. The LVAL Estimate
algorithm identifies the ratio between modelled and observed clear times at the
current STOC value and suggests a new STOC by multiplying the current STOC by this
ratio. As more cycles of data at a single STOC value are acquired the estimate should
become more accurate at the cost of time spent collecting the required data. Similarly
to the MEM task process all decision selection tasks are conducted by the algorithm
leaving validators to input the observed clear time and evaluate the output STOC
(Figure 9-1). The variables required to calculate the LVAL Estimate are shown in

Table 9-3 while Table 9-4 details the algorithm itself.

Table 9-3: Variables used to calculate LVAL Estimate

Variable Description Initial Value
n Cycle number 1
c Cycle count 1
b'¢ Cycles required to update LVAL STOC Estimate 1to5
Smy  Cycle’s current STOC value \I,r;ﬁggzi
Ocit(ny  Observed Clear Time (measured by validator) for cycle n N/A
20y:  Sum of Observed Clear Times at current STOC value N/A
Qukns)y Back of Queue (Ipu) for cycle n at STOCS (M N/A
Mci¢n:sy Modelled Clear Time for cycle n at STOC s N/A
XM, Sum of Modelled Clear Times at current STOC value N/A
Sm+1)  Nextcycle’s recommended STOC value N/A

(1) Back of Queue is the total queue length in Ipu at the point when the queue has discharged
(based on a specific STOC value)

Table 9-4: LVAL estimate algorithm for each cycle

Cycle Count
Variable 1 1<c<x X
20 = Oclt(n) X0 + Oclt(n) X0 + Oclt(n)
Iy _ | Qokeus) Qok(n:s) Qok(n:s)
itns) = | —o — - —
e Sn S(n) S(n)
XMy = Mclt(n) EMy + Mclt(n) EMy + Mclt(n)
S =] S S Semy * 2Mar
(n+1) @) ) (n) 0.
c= c+1 c+1 1

Next Cycle (n)
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9.3 Methodology

9.3.1 Participants

Thirty (sixteen male) novices with a mean age of 35.6 (0 = 12.9), all having no

experience of SCOOT validation. Data was initially collected as part of the experiment
in chapter 8 and was then reanalysed, hence data collection was covered under chapter

8’s ethical approval (ethics number 14367).

9.3.2 Equipment

The experiment was undertaken on a laptop with a 15” display. As specified in chapter
8 the interfaces used by participants were produced in Microsoft Excel (version 2010;
LVAL) and using the Microsoft .Net Framework (Ecological; see Figure 8-4) with
navigation and interaction carried out via keyboard and mouse. Implementation of the
automated algorithms was conducted through the production of Excel macros using

the .Net Framework.

9.3.3 Experimental Design

The experiment utilised a within-subjects repeated measures design where the factors
display (2) and assistance (7) were varied resulting in fourteen conditions (2x7). The
display factor consists of the existing LVAL and concept Ecological display developed
over the proceeding four chapters (shown in Figure 9-2). The assistance factor was
divided into seven conditions. Firstly no assistance, in which participants were
required to validate links’ STOC values manually with the assigned display. Secondly
STOC values for each cycle were calculated using MEM, with participants assumed to
have used the same number of cycles to validate each link as in the no assistance
condition with the relevant display. Lastly LVAL Estimation was used similarly to
calculate STOC values for each cycle, however because estimated STOC values are
dependent on the starting STOC value each cycle’s STOC was considered to be the mean

from all possible starting STOCs (one to thirty).

Two dependent measures were considered for this experiment, final error, and average
error. Final error was taken to be the mean absolute difference between ultimate STOC
value and expert validated value (identified in chapter 8, see Table 9-5) for the links
validated in each display condition. Average error was similarly calculated but accounts

for the mean error across each cycle used, hence describing accuracy over the
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validation process. The results are detailed in Table 9-7 with graphical depictions of

final and average error shown in Figure 9-3 and Figure 9-4 respectively.

This experiment investigates the following hypotheses with each formulated based on
the assumption that accuracy will be comparable across all conditions and the findings

from chapters 7 and 8.

1. H1: MEM'’s accuracy will be comparable to novice’s using either display
2. H2: MEM'’s accuracy will be comparable to LVAL Estimate’s
3. H3: MEM and LVAL Estimate accuracy will be comparable with either display

9.3.4 Procedure

The experimental procedure for participants using either LVAL or Ecological displays
is discussed in chapter 8 with the STOC values produced and number of cycles used for
each link recorded for this experiment. STOC values for the automated conditions were
then calculated by applying the relevant algorithms to replace each participant
generated STOC value with automatically generated values which can then be

compared.

9.3.5 Data Analysis

All data analysis will be conducted using SPSS (version 22) with significance set at 5%.
Each dependent measures’ normality will be assessed using a Shapiro-Wilk test. Where
normality can be assumed an ANOVA test will be used for repeated-measures data
comparing within-subjects effects and Wilcoxon-Signed Ranks tests for pairwise
comparisons. Conversely where normality cannot be assumed a Friedman test will be
used for repeated-measures data comparing within-subjects effects and Wilcoxon-
Signed Ranks tests for pairwise comparisons. Effect sizes for all measures will be

evaluated using Cohen’s d (Cohen, 1988)

Table 9-5: Median expert validated link STOC values

Link
A B C D E F

7 18 9 22 13 9
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Figure 9-2: STOC validation displays

9.4 Results

Shapiro-Wilk tests on each dependent measure (Table 9-6) rejected the normality
assumption, hence non-parametric tests were used as discussed in section 9.2.

Table 9-6: Shapiro-Wilk normality test p values for automated performance measures

Assistance LVAL Ecological

None (Novice) .000 .002

B MEM .008 .001
£ LVALEstimate(1) .000  .000
§° LVAL Estimate (2)  .000 .001
§ LVAL Estimate (3)  .004 .003
< LVAL Estimate (4)  .001 .002
LVAL Estimate (5) .003 .001

None (Novice) .000 .000

. MEM .000 .000
g LVAL Estimate (1) .000 .000
; LVAL Estimate (2)  .000 .000
E LVAL Estimate (3)  .000 .000

LVAL Estimate (4) .000 .000
LVAL Estimate (5) .000 .000
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Table 9-7: Means (standard deviations between parentheses) for automated

performance measures

Assistance Display Final Error Average Error
1. LVAL (L) 0.56 (0.77) 1.18 (0.76)
None
2. Eco (E) 0.50 (0.66) 0.81 (0.43)
3. LVAL (L) 0.53 (0.50) 0.83 (0.46)
MEM
4. Eco (E) 0.84 (0.36) 1.10 (0.59)
5. LVAL (L) 1.88 (2.19) 2.66 (1.22)
LVAL Estimate (1
stimate (1) (E) 3.09 (3.48) 3.13 (1.66)

%]

= 7. LVAL (L) 1.01 (1.36) 1.85 (1.06)

S LVAL Estimate (2)

2 8. Eco (E) 1.39 (1.63) 2.69 (1.53)

a . 9. LVAL (L) 1.06 (1.15) 2.36 (1.40)
LVAL Estimate (3) 10. Eco (E) 1.26 (1.23) 3.01 (1.67)
VAL E A 11.LVAL (L) 0.84 (0.78) 2.68 (1.68)

timat
stimate (4) - Lo (E) 2.24 (2.27) 3.69 (2.09)
A : 13.LVAL (L) 1.13 (1.54) 2.65 (1.75)
LVAL Estimat
stimate (5) ) 2.58 (2.51) 4.01(2.28)
P value <0.05 <0.005
S]g pairs LVAL Eco LVAL Eco
(Cohen’sd) 15(030) 2:6(0.60) 1-5(0.35)  2-6(0.89)
3-5(0.43) 2-8(0.24) 1-7(0.16)  2-8(0.74)
3-9(0.19) 2-10(0.21) 1-9(0.28) 2-10 (0.85)
5-7 (0.07) 2-12(0.45) 1-11(0.35) 2-12(1.05)
5-9 (0.07) 2-14(0.52) 1-13(0.34) 2-14(1.13)
None/MEM/ 5-11(0.09) 4-6 (0.72) 3-5(0.70)  4-6 (0.60)

80 VAL Est (1-5) 5-13 (0.06) 4-12(0.56) 3-7(0.39) 4-8(0.47)

« ' 4-14 (0.66) 3-9(0.57) 4-10 (0.56)

8 6-8 (0.09) 3-11(0.67) 4-12(0.74)

o 6-10 (0.10) 3-13(0.66) 4-14 (0.82)

2 8-12 (0.10) 5-7(0.12)  6-8(0.05)

7 8-14 (0.13) 5-9(0.05) 8-12(0.12)

£ 7-11(0.14) 8-14 (0.16)

= 7-13 (0.14) 10-12 (0.07)

'§ 10-14 (0.11)

P value <0.05 <0.005
Sig. pairs 3-4(0.11) 1-2 (0.09)
5-6 (0.10) 3-4(0.11)
LVAL/Eco 11-12 (0.31) 5-6 (0.07)
13-14 (0.17) 7-8 (0.14)
9-10 (0.09)
11-12 (0.11)
13-14 (0.14)
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Figure 9-3: Final error for each display subdivided by assistance condition
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9.4.1 MEM vs Novice Performance (LVAL)

H1 stated that accuracy would be comparable between MEM and novices and this was
confirmed to be the case when using LVAL. In this condition validation required a mean
of 13.5 cycles with final errors found to be similar (0.53 and 0.56 STOCs respectively).
These error values correspond to a typical final STOC value within a tolerance of one
STOC of the expert validated value which according to Siemens’ experts would be

acceptable at link validation level.

Interestingly MEM’s average error was lower than the novice group’s (0.83 vs 1.18)
which although not found to be significant does suggest that the MEM algorithm was
able to converge to an accurate STOC value slightly quicker than the novice group using

LVAL.

9.4.2 MEM vs Novice Performance (Ecological)

Novices using the ecological display required on average fewer cycles than when using
LVAL (6.4 vs 13.5). In this condition MEM was found to have a higher final error than
novices (0.84 vs 0.50) however this increase was not significant, similarly average
error was slightly higher (1.10 vs 0.81) suggesting novices using the ecological display
were slightly more accurate and converged quicker to an accurate STOC value than
MEM. Despite having fewer cycles to calculate STOC, MEM’s outputs did remain within
the acceptable tolerance of one from the expert validated value retaining comparable

performance to novices in support of H1.

9.4.3 MEM vs LVAL Estimate Performance

MEM was found to be significantly more accurate in terms of both final and average
error compared to each LVAL estimate in both LVAL (final error of 0.53 vs
1.88/1.01/1.06/0.84/1.13; average error of 0.83 vs 2.66/1.85/2.36/2.68/2.65) and
Ecological conditions (final error of 0.84 vs 3.09/1.39/1.26/2.24/2.58; average error
of 1.10 vs 3.13/2.69/3.01/2.09/4.01). Typically LVAL Estimates based on one data
cycle were found to be least accurate while two to three data cycles gave the most
accurate results, however even the best LVAL Estimates performed worse than MEM
in both display conditions, it is therefore reasonable to reject HZ, MEM appearing to

provide a benefit over LVAL Estimates.
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9.4.4 LVAL vs Ecological Performance

The key performance findings from chapter 8’s experiment were that the ecological
display did not impact novice’s final accuracy compared to LVAL but reduced average

cycle error (0.81 vs 1.18) and required fewer cycles (6.4 vs 13.5) to validate each link.

In the MEM condition this reduction in cycles caused an increase in both final (0.84 vs
0.53) and average error (1.10 vs 0.83), however this is unlikely to have an impact on
real validation performance as STOC values were still returned within the tolerance of
one STOC from the expert validated value. This suggests that the MEM algorithm is

robust even when a limited number of valid cycles are available, supporting H3.

LVAL estimates were similarly found to be less accurate in the ecological display
condition for both final and average error. With the exception of estimates based on a
single cycle of data STOC values returned by LVAL estimates were within one STOC of
the expert validated value in the LVAL condition; however this error increased to an
unacceptable maximum of three STOCs from the expert value in the ecological
condition. This suggests that, unlike MEM, LVAL estimates cannot be deemed robust

when a small number of valid cycles are available; hence H3 is only supported for MEM.

9.5 Discussion and Conclusions

STOC validation is a critical stage of SCOOT validation (Hunt et al., 1981; Siemens,
2011) but places significant time and tacit knowledge demands on validators when
using PC SCOOT. These demands can be overcome through use of an ecological display
however a limiting constraint on nodes’ validation speed is that component links must

be validated one by one.

Multiple link validation would require the task processes associated with analysing
clear times and STOC selection to be automated, enabling validators to focus on
measuring observed clear times for each component link and then evaluating the
node’s performance once sufficient data has been obtained. Although these tasks are
both routine and predictable and hence are good candidates for automation (Norman,
1990) any automated system is only likely to be accepted if validators trust the system
to work effectively and provide some benefit over manual operation (Lee & Moray,
1992). Specifically, the produced STOC values should be comparably accurate to a
human validators based on the data available while reducing the demands placed upon

them.
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This experiment only considered performance in terms of validation accuracy and in
this respect the MEM algorithm performed well. When compared to novices using
LVAL not only was final accuracy almost identical but a lower average cycle error
indicated that the algorithm was likely to be more accurate than novices should fewer
cycles have been used. Furthermore, performance was robust when based on fewer
cycles and compared to novices using the ecological display. Despite having
significantly less source data final validation accuracy was within the acceptable
tolerance of one STOC from the expert validated value, although the algorithm

converged to an accurate value slower than human validators.

Acceptable performance using the LVAL Estimate algorithm required firstly that
estimated STOC values be based on multiple cycles’ clear time data, and secondly that
there are a sufficiently large number of cycles to complete validation. If these
conditions were not met unacceptably large errors were frequently produced,
particularly when validation was based on a relatively small number of cycles as
occurred in the ecological condition. This lack of robustness severely limits LVAL
Estimate’s potential given that both humans and MEM could perform better using

fewer cycles.

A key feature of both automated systems described in this chapter is that humans
remain a key part of the validation process. This ensures that validators are not
completely removed from the control loop (Norman, 1990) and relegated to a
supervisory monitoring role, from which humans typically perform poorly (Mumaw,
Roth, Vicente, & Burns, 2000), heeding the general consensus that automation

performs best assisting rather than replacing humans (Norman, 1990).

While it has been shown that automated algorithms can perform satisfactorily
compared to human validators, consideration should be given to how such systems
could be implemented. Both algorithms as presented within the experiment can be
considered ‘Hard’ automation systems (Young, Stanton, & Harris, 2007), having
ultimate authority over humans (i.e. STOC values are generated solely by the
automation and validators cannot override these values). This is a marked departure
from the ‘Soft’ approach currently employed by the LVAL Estimate tool as implemented
within PC SCOOT, whereby STOC values are suggested by the algorithm but selected by

the validator.
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Both approaches are valid, however while it would be possible to implement the MEM
algorithm as a ‘Soft’ tool this would require validators to perform decision-making
actions after measuring queue clear times and would likely prevent multiple link
validation. On the other hand ‘Hard’ systems are typically highly context sensitive with
pre-programmed responses potentially being sub-optimum. While the proceduralised
nature of the automated tasks largely negates this issue, care must still be taken to
ensure that the source data used is valid given that the algorithm cannot currently

distinguish a cycle’s validity for itself.

The final issue to consider with implementing an automated validation system is how
validators would evaluate the STOC values produced. The key concern is that by
automating STOC selection the algorithm has the potential to disconnect node
performance, link’s STOC values and the conditions observed. To overcome this
consideration must be given to what feedback is required by validators and the most
appropriate way to display this feedback to ensure the system is both trusted and

accepted.

By considering Sheridan and Verplank’s (1978) automation taxonomy (Table 9-8) it
can be seen that MEM could be implemented at a number of levels. The lowest
appropriate level would be that a STOC value is simply suggested and validators
approve it (level four) however this could impede the ability to validate multiple links.
At higher levels (levels five to eight) the automation would be capable of choosing a
STOC value and provide validators with varying options to either veto the decision or
see the relevant feedback. The highest levels of automation (nine and ten) require a
significantly higher degree of automated intelligence and could result in validators
being removed from the control loop (see Norman, 1990) amplifying the issues

previously discussed regarding automation and hence are not recommended.

Identifying the most appropriate level to implement MEM as well as the precise nature
of the feedback required to evaluate node performance was beyond the scope of this
investigation, however this in conjunction with further testing in real world validation

scenarios provides a significant opportunity for further work.
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Table 9-8: Sheridan and Verplank's automation taxonomy

Level

Description

Uy

O© 0O N O U1 B~ W N

—_
(e}

Manual Control, computer offers no assistance, human responsible for
all decisions and actions

Computer offers a complete set of decision/action alternatives
Computer offers a few decision/action alternatives

Computer offers one decision/action alternative

Computer executes actions with human approval

Computer executes actions if not vetoed by human within time limit
Computer executes actions and informs human

Computer executes action and informs human if asked

Computer executes action and informs human only if it decides to
Fully Automated, computer acts autonomously, ignoring human

In conclusion, automation of STOC selection could assist validators and potentially
enable multiple links to be validated simultaneously, offering significant time savings
compared to the current LVAL display. To this end an automated STOC selection
algorithm has been developed and tested against human validators, with performance
found to be comparable. While this chapter has demonstrated the technical feasibility
of such an automated system further investigation is required to examine performance

in real validation scenarios as well as to give consideration to how it should be

implemented.
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Chapter 10: Conclusions and Further Work

10.1 Introduction

The aim of this research was to investigate how application of Human Factors methods
could be used to improve performance resulting from the use of technical traffic
management and SCOOT validation systems. The main findings in relation to the
objectives set out in chapter 1 are described below, with the novel contributions made

then discussed. Finally, areas for future work are presented.

10.2 Summary of Findings

The projects’ objectives as set out in chapter 1 were as follows;
Three objectives concerned the macro analysis of TMCs:

1. Define and understand the objectives, functions and constraints of traffic
management in major transport domains.

2. Define and evaluate the processes, tools and connections utilised by road TMC
operators to manage traffic.

3. Investigate system resilience within TMCs through application of Event

Analysis of Systematic Teamwork.
Four objectives concerned the micro analysis of SCOOT validation:

1. Define and understand SCOOT validation using PC SCOOT to identify limitations
and opportunities for improvement.

2. Develop alternative displays to address the limitations identified for (1)
through application of Human Factors interface design techniques.

3. Evaluate the performance of the displays developed for (2).

4. Investigate the potential to employ automation to address the limitations

identified for (1).

10.2.1 Traffic Management

The first objective was to define and understand the purposes, functions and
constraints of traffic management in major transport domains, which was addressed

in chapter 2. A review of the literature revealed that all Traffic Management Centres
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(TMCs) are concerned with improving the efficiency and safety of their respective
transport network while reducing its negative environmental impacts. While there are
similarities in purpose between all four domains the environment imposes specific
constraints upon TMCs’ operation and directly influences interactions with traffic. That
said, the traffic management process itself was found to be relatively similar across
domains, all TMCs monitored traffic in real-time and predicted network conditions,
decided how to manage traffic and intervened within the network when necessary.
Functions arising from this process are also directly comparable between domains; all
TMCs incorporate monitoring, decision-making, intervention, feedback and support
functions. The specific implementation of these functions is however affected by
domains’ individual characteristics, in particular monitoring and intervention

functions, both being dependent on vehicles’ capabilities and traffics’ behaviour.

The second objective was to evaluate the processes, tools and connections utilised by
road TMC operators to manage traffic, and was addressed in chapters 3 and 4. This was
achieved through application of the Event Analysis of Systematic Teamwork (EAST)
method in which the domain was explored through construction of a number of
graphical networks based on observational data obtained from four urban TMCs,
Bristol, Cardiff, Dorset and Nottingham. The congestion management task process was
found to be circular with seven distinct phases, monitoring the network for problems,
contextualising the scenario, prioritising the scenario, allocating personnel to deal with
the scenario, developing strategies to address the scenario and selecting the perceived
best option, implementing the strategy, and monitoring the network for feedback
regarding the strategies effectiveness. The social networks for each TMC were broadly
similar with operators central and required to interact with a wide range of internal
and external agents to achieve their goals. Surprisingly, traffic agents were found to be
on the periphery of the domain despite being the reason for its existence. This is
reflective of the relative lack of control TMCs retain over traffic and the passive nature
of many monitoring channels. The information network defined the range of
information which is required to manage a scenario. The combined networks showed
how information requirements are clustered around task phases and how this
influenced the distribution of social agents amongst information nodes. It was found
that most social interactions occurred at the beginning and end of the task process,
information being gathered from a wide range of agents, decisions made internally by
operators based on that information, and then implemented, affecting other agents and

hence the road network and external environment. Overall performance is therefore
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reliant on operators’ individual performance and the support provided by TMC

systems to facilitate interactions between operators and other agents.

To address the third objective chapter 4 extended the EAST work conducted in chapter
3 by considering how the EAST networks could be used to investigate the domain’s
resilience both qualitatively and quantitatively. Quantitative analysis within resilience
engineering is relatively undeveloped but potentially powerful, enabling systematic
assessment and comparison of existing system'’s strengths and weaknesses, as well as
guiding the development of future systems. Failure modes were developed
independently of real events by considering which social agents or communications
links could fail with the EAST networks then adjusted accordingly, enabling the method
to be applied proactively. A quantitative assessment of resilience was then produced
by considering how the domain’s Social Network Analysis (SNA) metrics changed as a
result of failure modes, identifying which combinations of failures were likely to be
most disruptive to the system’s operation. Road TMCs were found to have resilient
qualities, most failure modes having a relatively small impact on expected system
performance, with the greatest impacts requiring complex and unlikely compound
failures. This resilience can be attributed to a flexible task process, wide information

distribution, an abundance of information sources and redundancy of critical agents.

10.2.2 SCOOT Validation

Following adjustment of the project focus, from macro analysis of TMCs to micro
analysis of the systems used to validate SCOOT, objective three was to define and
understand SCOOT validation using PC SCOOT to identify limitations and opportunities
for improvement, and was addressed in chapter 5. A complete five phase Cognitive
Work Analysis (CWA) was applied to comprehensively assess the domain, each phase
providing insights into the validation process and a number of areas suitable for
development were proposed. In Work Domain Analysis (WDA) an Abstraction
Hierarchy (AH) was used to identify the validation functions which were found to be
highly proceduralised each focusing on specific values, either preventing bias, correct
detector setup, accuracy of assumption parameters or accuracy of the SCOOT model.
Through Control Task Analysis (ConTA) validation was shown to be conducted either
on-site or from an office when extensive CCTV coverage is available; however
parameter measurement, SaTuration OCcupancy (STOC) estimation and validation

functions (e.g. detector accuracy, staging and STOC) are recommended to be done on-
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site owing to the need for sufficient situational awareness which is difficult to achieve
remotely. Decision-making was also considered with two system goals identified, to
match the SCOOT model to on-street conditions or to adjust it to account for other local
factors (e.g. political directives). System states were shown to differ in complexity in
terms of the information required to diagnose them but the task processes utilised to
address system states were found to be highly proceduralised. Expert behaviour was
considered with several expert leaps identified within the Decision Ladder linking a
system state or target state to a task or procedure, explaining how experienced
validators intuitively know the correct strategy to employ once the system or target
state is identified. The proceduralised nature of functions was further examined
through Strategies Analysis (StrA) in which the majority of functions were found to
have set procedures when using PC SCOOT, although the strategies for certain
functions (e.g. staging and detector accuracy validation) varied depending on the
specific PC SCOOT display used. It was demonstrated that this rigidity arose from the
way SCOOT operates and hence cannot be adapted; however improvements could be
elicited by enabling validators to do the existing tasks more effectively. Social
Organisation and Cooperation Analysis (SOCA) considered how validators and PC
SCOOT interact in pursuit of validation goals, with validators being responsible for
most high-level decision-making while PC SCOOT acts to provide information and
implement changes. Given that it is unlikely PC SCOOT’s intelligence can be radically
increased at least in the short-term it was suggested that developments should focus
on enabling validators to make decisions and complete functions more accurately and
efficiently. Finally, a Skills, Rules and Knowledge (SRK) inventory for Worker
Competencies Analysis (WCA) identified the Skill-, Rule- and Knowledge-Based
Behaviours (SBB/RBB/KBB) observed for each function, it was found that the existing
technical system is based around procedural RBB with limited support for SBB or KBB
with an argument made to better support all three behaviours in order to elicit
performance improvements. Ultimately three key areas were identified for further
development, to improve the efficiency of preparing a site to be validated, redesign
displays concerned with parameter measurement, and to apply Ecological Interface
Design (EID) to validation displays in order to better support all behaviours as

identified in the SRK inventory.

The fourth objective was to develop an alternative display through application of
Human Factors interface design techniques, and was addressed in chapter 6. Based on

the recommendations in chapter 5 and consultation with Siemens it was decided to
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investigate STOC validation in more detail and apply EID to produce an alternative
display addressing the limitations identified with the PC SCOOT’s Link VALidation
(LVAL) display. A second complete CWA was used to evaluate the STOC validation
process, consider the support provided by LVAL and the representations from each
phase influenced the development of an alternative ecological design. Primary
interface functions were identified through interrogation of the WDA’s AH, while
spatial, temporal and decisional constraints for each validation agent were considered
using ConTA and SOCA. WCA described the modes of cognitive control exhibited by
validators for the most complex functions of comparing clear times and judging data
validity. Finally StrA was used to model the task process using LVAL and give
consideration to the support provided. LVAL was found to rely on validator’s tacit
knowledge regarding the task process and domain mechanics; hence a concept
ecological interface was proposed which utilised graphical depiction of the source data
and domain constraints as well as enabled direct manipulation of the STOC value

consistent with the principles of EID.

The fifth objective was to evaluate the performance of the proposed ecological display,
and was addressed in chapters 7 and 8 through two empirical experiments. The first
experiment compared validation performance using the concept ecological display
against two of PC SCOOT’s interfaces and considered the role of experience on
performance. The experimental interfaces were created using Microsoft Excel with
traffic data obtained from Reading and clear times adjusted to lead to particular STOC
values. Subjects consisted of three participant groups, twelve experienced validators,
twelve novices age and gender matched to the expert group, and an unmatched group
of thirty novices. The validation task was completed accurately by both experts and
novices using all three displays however the ecological interface provided a number of
performance benefits. Difficulties experienced by novices using traditional interfaces
were overcome, enabling them to access less demanding rule- and skill-based
behaviours which resulted in performance being normalised in the ecological
condition between participant groups. Validation was also faster using the ecological
interface with significant reductions in the number of cycles required elicited by all
groups. Subjective assessments of workload and usability showed that the ecological
design had a positive impact on novices but did not affect experts, suggesting that the

traditional displays are initially hard to use but this can be overcome with training.

The second experiment followed a similar procedure to the first and was intended to

address several limitations with the first experiment, specifically real observed clear
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times were obtained from Bristol and the ecological display was significantly
developed from the Excel based prototype used in the first experiment. The results
confirmed many of the findings with validation being effectively conducted by both
experts and novices in both conditions but the ecological display eliciting a number of
performance benefits over LVAL. Reliability, workload and usability were improved for
novice validators, while experts were not adversely impacted by the change of display
and retained comparable accuracy as when using LVAL. Most significantly, the
ecological display substantially reduced the number of cycles required to validate, with
the potential time savings due to this alone warranting further consideration be given

to developing a fully functioning ecological validation display.

The sixth objective was to investigate the potential to employ automation within
SCOOT validation, based on discussions with Siemens and the work conducted in
chapters 6 to 8 it was decided to investigate whether STOC selection could be
automated. In addition to providing general assistance to validators it was suggested
that by automating some of the decision-making tasks validators would be able to focus
on gathering the required data and hence could validate multiple links simultaneously
which would provide significant time savings. Consideration was given to the
validation task processes associated with STOC validation using both LVAL and
ecological displays with an automated STOC selection algorithm developed based on
the principle of minimising the error between modelled and observed clear times
(Model Error Minimisation (MEM)). The algorithm was then tested against novices’
performance in chapter 8 using both LVAL and the ecological display. Performance was
considered in terms of validation accuracy and in this respect the MEM algorithm
performed well. When compared to novices using LVAL not only was final accuracy
almost identical but a lower average cycle error indicated that the algorithm was likely
to be more accurate than novices should fewer cycles have been used. Furthermore,
performance was robust when based on fewer cycles and compared to novices using
the ecological display. Despite having significantly less source data final validation
accuracy was within an acceptable tolerance (one STOC from the expert validated
value) although the algorithm converged to an accurate value slower than human
validators. While the technical feasibility of automated STOC validation was
demonstrated, further investigations are required to consider the accuracy in real
validation scenarios and the most effective implementation method of such a system

before it could be commercialised.
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10.3 Novel Contributions of the Work

The novel contributions of the work are summarised as follows.

10.3.1 Traffic Management

Definition and improved understanding of traffic management’s objectives, functions and

constraints in all major transport domains

The objectives, functions and constraints of traffic management in road, rail, maritime
and air domains were identified and compared by conducting a literature review.
Objectives were found to be comparable, all traffic management aiming to improve
safety and efficiency whilst reducing environmental impact of their respective
transport network. Similarly, functions were found to be largely comparable, all TMCs
monitoring real-time and predicted network conditions, deciding how to manage
traffic and intervening within the network when necessary. The specific
implementation of each of these functions was found to be dependent on each domain’s
individual characteristics. In particular governing how traffic can be monitored and
interacted with. While comparative studies have previously been conducted, this work
represents a useful extension by considering the similarities and differences between

all four major transport domains.
Assessment of congestion management in urban TMCs

In order to better understand how urban TMCs manage congestion in practice the road
traffic management domain was modelled using EAST. Four different TMCs were
visited (Bristol, Cardiff, Dorset and Nottingham) with a number of congestion scenarios
observed and this observational data used to inform construction of primary task,
social and information networks as well as combined networks. The task process and
information requirements were found to be comparable between TMCs but each
centre’s capabilities were influenced by their social construction. It was found that
successful management of scenarios relies on operators’ ability to interact with a wide
range of technical and social agents to gather information regarding the road network,
and once management decisions have been made having the ability to influence traffic
effectively again by utilising a range of intermediary agents including a number of
technical systems. The work provides a useful insight into how congestion is managed

in practice and highlights some of the challenges faced to design effective TMC systems,
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for example the distributed nature of information within the domain and the

disconnect between TMC and traffic being managed.
Application of the EAST method to quantitatively and qualitatively assess resilience

Quantitative analysis within resilience engineering is relatively undeveloped but
potentially powerful, enabling systematic assessment and comparison of existing
systems’ strengths and weaknesses, as well as guiding the development of future
systems. EAST enables comprehensive assessment of domains in terms of the tasks
undertaken, agents, communications links and information utilised, and the
interactions between these elements. The method was extended to consider the
impacts of failure within the system with these findings used as an indicator of
operational resilience. Failure modes were able to be developed independently from
any event that may or may not have occurred in reality, enabling the method to be
applied proactively. The graphical nature of EAST enabled both qualitative and,
through the calculation of SNA metrics, quantitative assessment of the domain
addressing the need for quantitative methods within resilience engineering. In
addition to these methodological developments the work added to the insights
provided in chapter 3, demonstrating that a flexible task process, wide information
distribution, an abundance of information sources and redundancy of critical agents

provided a degree of resilience within a TMC.

10.3.2 SCOOT Validation

Assessment of SCOOT validation using PC SCOOT

Siemens are a leading provider of SCOOT systems worldwide however while their PC
SCOOT UTC product is functional for the purposes of SCOOT validation system it has
not evolved to take advantage of advances in display equipment or considered human
performance in its design. To provide better understanding of the validation domain,
and particularly how PC SCOOT is utilised for validation, a full five phase CWA was
applied to comprehensively assess the domain, with representations produced based
on data collected from experienced SCOOT validators. Key validation functions were
mapped and the tasks’ highly proceduralised nature was revealed. PC SCOOT was
shown to provide limited support to validators, relying extensively on validators’ tacit
knowledge of task processes and domain mechanics. In addition to providing detailed

knowledge about SCOOT validation several key areas in which PC SCOOT could be

240



Chapter 10: Conclusions and Further Work

developed were identified with the insights provided by this assessment being useful

for their future implementation.

Development of an ecological STOC validation tool with consideration of each CWA

representation’s design role

An alternative STOC validation display was produced through application of EID in
order to address the limitations identified with PC SCOOT’s LVAL display. The
opportunity to utilise all five CWA phases was utilised to produce the ecological display
with the contributions of each phase discussed in detail as a useful practical case study
for practitioners wishing to use the technique. WDA’s AH was used to define the
primary interface functions, validation agents’ spatial, temporal and decisional
constraints were identified through ConTA and SOCA while WCA described the modes
of cognitive control exhibited within the most complex functions. StrA was used to
consider how LVAL was used to conduct validation with the findings from all phases
then used to infer potential weaknesses with LVAL and inform application of the
fundamental EID design principles to produce the concept ecological STOC validation

display.
Evaluation of STOC validation performance using ecological and traditional displays

To test the concept ecological STOC validation display two empirical experiments were
conducted to investigate performance compared to traditional displays used by PC
SCOOT and to evaluate the role of experience on performance with each display. The
first experiment utilised a basic ecological condition and was constrained by a number
of experimental limitations which were largely accounted for in the second experiment,
for example by using a more developed ecological display. Both objective and
subjective performance measures were considered including accuracy, time spent
validating, perceived workload and perceived usability. The experiments showed that
use of an ecological display could elicit performance benefits over traditional displays,
most notably a reduction in the number of cycles required to validate. This work
represents a novel contribution to the EID literature through application in a new
domain. Many of the findings correlated with those obtained in more established
domains, for example a reduction in response time observed using ecological displays.
The work also improves understanding of STOC validation, for example by showing

that while novices are accurate using LVAL, use of the ecological display can overcome
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difficulties experienced using the traditional display and enables them to emulate

experts in terms of overall performance.
Development and evaluation of an automated STOC validation algorithm

Although time savings for STOC validation were shown to be elicited through use of an
ecological display a key constraint on obtaining further savings is the need to validate
links one at a time. Overcoming this limitation requires automation of some of the
analysis and decision-making tasks enabling validators to focus on measuring queue
clear times and then evaluating performance. Through interrogation of the ecological
STOC validation strategy an automated algorithm to select STOC values was developed
based on the principles of minimising the error between modelled and observed clear
times. Empirical evaluation of this algorithm demonstrated not only the technical
feasibility of the algorithm but showed that accuracy was comparable to that observed
in human validators and significantly better than the existing STOC estimation
algorithm present in PC SCOOT. This development is likely to be of significant value to
Siemens, offering a completely new approach to STOC validation which could for the
first time enable multiple links to be validated simultaneously, providing significant
time savings, as well as acting as a potential stop gap measure to implementation of a

complete ecological display.

10.4 Limitations and Areas for Further Work

The research has fulfilled the objectives set out in chapter 1, however further research
is required to address additional questions raised by the work and to investigate new

opportunities which could not be conducted within the thesis.

10.4.1 Application of EAST to additional TMCs and utilisation to influence

design

The EAST analysis presented in chapter 3 provided a comprehensive assessment of
congestion management in urban TMCs. While this work provides a useful insight into
how congestion is managed in practice and highlights some of the challenges faced to
design effective TMC systems there are several limitations and potential opportunities
to address. Firstly, while the TMCs modelled represent a reasonable cross section of
urban traffic management in the UK, no very large TMCs, inter-urban control centres

or TMCs from other territories were considered. Therefore a significant portion of road
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traffic management was not accounted for which could be considered in future work
to better define those characteristics which are common to all TMCs and those which
represent idiosyncrasies of the centres visited. Secondly, no attempt to quantify TMC’s
respective performance was made; this would be required before reasonable
recommendations regarding TMCs structure could be made. Thirdly, while some of the
challenges facing designers of TMCs’ technical systems were identified additional work
is required to consider how these insights can be reflected within system design to

improve performance.

10.4.2 Further development of EAST as a tool to investigate resilience

Quantitative analysis of resilience is relatively undeveloped however chapter 4
demonstrated how EAST could be utilised to investigate operational resilience by
modelling a domain and applying failure modes. While the method produced useful
insights into the domain there are several questions to be addressed before it can be
considered a useful tool in resilience engineering. Firstly, how can the validity of the
predictions be evaluated empirically? The method relies on production of possible
failure modes and modelling their impacts on the domain, therefore consideration
must be given to how these theoretical impacts compare to real failures. Secondly, can
the insights provided be used to influence system design? The work presented served
to model the traffic management domain and thus infer its resilient qualities, however
to be useful the method must go beyond this theoretical evaluation to produce useable
design guidance. This could be achieved by demonstrating that a system is less resilient
as compared to its contemporaries or a theoretical alternative. Thirdly, can it be
empirically validated that application of design guidance resulting from the method
elicits improved resilience? This last question is perhaps the most important because
resilience engineering can only be considered to be effective if real improvements can

be demonstrated.

10.4.3 Development and field testing of an ecological STOC validation display

The experiments presented in chapters 7 and 8 provide compelling evidence
demonstrating the effectiveness of the developed ecological display compared to PC
SCOOT’s LVAL display and justifying its continued development. Of course, the
experimental process used in both experiments cannot entirely replicate real

validation conditions and so further testing is required to address this limitation. To
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conduct field tests the interface must be developed from the prototype design
produced in this research to a fully functioning prototype with the ability to interact
with SCOOT’s on-street hardware. This would enable field trials to be conducted and a
more ecologically valid comparison to LVAL to be obtained; in particular it would
overcome the need to have predetermined source data enabling performance to be
examined with the ‘messy’ data reflective of the real world. It is only through this type

of evaluation that the ecological benefits proposed through this work can be confirmed.

10.4.4 Application of EID to additional SCOOT validation functions

As demonstrated in chapter 5 SCOOT validation consists of a number of distinct
functions each conducted using one or more PC SCOOT displays. These key functions
include measuring the required parameters, verification of detector association and
validation of detector accuracy, staging and STOC. Time constraints on the project
meant that it was only possible to develop one of these functions, STOC validation,
however many of the issues identified with PC SCOOT’s LVAL display are applicable to
each of these functions. While the performance improvements provided through
application of EID to STOC validation are compelling, validation functions cannot be
considered in isolation, therefore the full benefit of the approach is only likely to be
realised if applied to the entire validation domain. This will require significant further
investigation representing a complete overhaul of validation, however it is hoped that
the work presented in this thesis provides a useful case study through which the

necessary developments can be made.

10.4.5 Development and further testing of the MEM STOC selection algorithm

Development of the MEM algorithm is at a very early stage and while results from the
experiment conducted in chapter 9 are encouraging, extensive further testing is
required before it could be implemented commercially. The algorithm’s accuracy must
first be confirmed by comparing its performance to real validation scenarios, this
would be relatively easy, requiring only that the necessary detector outputs and clear
times are recorded in the field with the resulting outputs from the algorithm and
validators then compared. Secondly, as discussed in chapter 9 the algorithm could be
implemented in several different ways representing various levels of automation. It is
not known what level would be most effective or appropriate, therefore further

investigations are required to evaluate performance using all potential levels of the
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algorithm and to establish the social acceptance of each method of implementation.
Thirdly, while it was suggested that the algorithm could enable multiple links to be
validated simultaneously this has not been demonstrated empirically, therefore
further testing is required to identify whether this is both technically possible and

sufficiently accurate to provide a benefit over manual validation.

10.5 Concluding Remarks

The aim of this project has been to investigate how application of Human Factors
techniques can be used to improve performance resulting from the use of technical
traffic management systems at macro (whole systems) and micro (individual person-
technology systems) levels. To achieve this the domains of traffic management and
SCOOT validation were comprehensively assessed through literature reviews, EAST
and CWA in order to improve the knowledge of how these domains work in practice,
to identify limitations with the technical systems used within each domain and to
develop solutions to these limitations. Development of the STOC validation function
was the focus of these solutions with EID applied to develop an alternative display
which was then evaluated against traditional displays. Finally, by using insights
obtained into the STOC validation process an automated STOC selection algorithm was
developed which has the potential to redefine how validation is conducted. In this way
a wide range of learning outcomes have been produced which will be of use for
researchers wishing to conduct further work within the domain as well as for the

project sponsor Siemens who will also benefit from the physical outputs produced.
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Appendix A: NASA Task Load Index Questionnaire

Plame Task [Date

Mental Demand How mentally demanding was the task?

Very Lo ‘ery High

Physical Demand How physically demanding was the task?

Very Low Very High

Temporal Demand How hurried or rushed was the pace of the task?

Very Low ery High

Parformance How successful were you in accomplishing what
you were asked to do?

Parfact Failure

Effort How hard didl youw have towork to accomplish
your kevel of perfformance?

Viery Low Very High

Frustration How insecure, discowraged, irmtated, stressed
and annoyed wereyou?

Viery Low Wery High
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Appendix B: System Usability Scale Questionnaire

1) [Ithink that I would like to use this system frequently

Strongly Agree
Strongly Disagree 1 2 5
2) I found the system unnecessarily complex
Strongly Agree
Strongly Disagree 1 2 5
3) Ithought the system was easy to use
Strongly Agree
Strongly Disagree 1 2 5

4) Ithink that I would need the support of a technical p

erson to be able to use this system

Strongly Agree
Strongly Disagree 1 2 5
5) Ifound the various functions in this system were well integrated
Strongly Agree
Strongly Disagree 1 2 5
6) Ithought there was too much inconsistency in this system
Strongly Agree
Strongly Disagree 1 2 5

7) Iwould imagine that most people would learn to use

this system very quickly

Strongly Agree
Strongly Disagree 1 2 5
8) Ifound the system very cumbersome to use
Strongly Agree
Strongly Disagree 1 2 5
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9) Ifeltvery confident using the system

Strongly Agree
Strongly Disagree 1 2 3 4 5
10) I needed to learn a lot of things before I could get going with this system
Strongly Agree
Strongly Disagree 1 2 3 4 5
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Appendix C: Demographic Data for Chapter 7

Group Participant Gender Age, Years Experience, Years

1 M 61 30
2 M 57 30
3 M 32 5
4 M 50 20
5 M 40 17
Expert 6 M 31 3
7 M 54 28
8 F 34 6
9 M 37 4
10 M 58 8
11 M 56 5
12 F 31 6
Total 541 162
Mean 45.08 13.50
SD 11.94 10.86
1 M 63 N/A
2 M 53 N/A
3 M 56 N/A
4 M 55 N/A
5 M 32 N/A
Matched 6 M 33 N/A
Novice 7 M 42 N/A
8 M 60 N/A
9 F 34 N/A
10 M 61 N/A
11 M 29 N/A
12 F 29 N/A
Total 541 N/A
Mean 45.60 N/A
SD 13.62 N/A
1 F 60 N/A
2 F 31 N/A
3 M 47 N/A
_ 4 F 20 N/A
Novice 5 P 56 N/A
6 F 23 N/A
7 F 37 N/A
8 M 19 N/A
9 F 25 N/A
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Group Participant Gender Age,Years Experience, Years
10 F 53 N/A
11 F 42 N/A
12 F 44 N/A
13 F 20 N/A
14 F 54 N/A
15 M 54 N/A
16 M 27 N/A
17 F 23 N/A
18 F 27 N/A
19 F 46 N/A

Novice 20 M 24 N/A
21 M 50 N/A
22 M 18 N/A
23 M 20 N/A
24 M 24 N/A
25 M 40 N/A
26 M 33 N/A
27 F 36 N/A
28 M 27 N/A
29 F 22 N/A
30 M 26 N/A

Total 1028 N/A
Mean 34.27 N/A
SD 13.21 N/A




Appendices
Appendix D: Participant Information Sheet for

Chapter 7

Study Title: Empirical assessment of an ecological tool for STOC validation
Researcher: Joshua Price Ethics number: 11917

Please read this information carefully before deciding to take part in this research. If you are

happy to participate you will be asked to sign a consent form.

What is the research about?
This is a doctorate research project in collaboration between the University of Southampton and

Siemens.

Many traffic light systems utilise a technique called SCOOT (Split Cycle Offset Optimisation Technique)
to adjust timings based on real-time traffic data from road sensors and a model of traffic behaviour. To
ensure accuracy the model must be tailored to local conditions at each SCOOT site (node). A key
parameter is STOC (the discharge rate of traffic over a stop line) which is validated by comparing real
traffic flows to the model's output using a computerised tool called LVAL which provides model

outputs and assists the calculation of the correct STOC value.

LVAL's interface is constrained by historical technical limitations. This study aims to investigate
whether an ecologically designed graphical interface could provide performance improvements over
the exisiting system, in terms of the speed validation can be completed and accuracy, in both
experienced and novice populations. To acomplish this an MS Excel based STOC validation simulator

has been developed to test three validation interfaces in a controlled environment.

Why have I been chosen?
You have been approached because you are either 1) an experienced SCOOT engineer or 2) are a

novice at SCOOT validation.

What will happen to me if I take part?
Basic personal details will be taken (age, gender and validation experience). You will then undertake a
brief training period to familiarise yourself with the validation process using the simulator. Once you
are comfortable using the simulator you will be required to validate 9 separate nodes, 3 for each
validation interface. The interfaces are as follows...
1) LVAL - a tabular interface which provides the model clear time, a mechanism to input the
observed clear time and an estimate of the correct STOC value.
2) MCM - similar to LVAL but provides additional feedback through clear times for multiple STOC
values.
3) Ecological - a graphical interface enabling clear times from limitless STOC values to be

compared to the observed clear time
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After completing each interface you will be asked to complete a subjective workload assessment and
usability questionnaire. Each condition should take no more than 15 minutes. Once all three interfaces

have been completed the experiment is complete, this should take no longer than 1hr.

Are there any benefits in my taking part?

Your participation will hopefully aid in the development of better systems for use in SCOOT validation.

Are there any risks involved?

Typical office working environment risks only.

Will my participation be confidential?
The research will comply with the Data Protection Act. All data collected will only be used for this

study, will be coded to ensure participant anonymity and kept on a password protected computer.

What happens if I change my mind?

You may withdraw from the study at any time without your legal rights being affected.

What happens if something goes wrong?
If you have any cause of concern or complaint with this research you can contact the research

governance manager (rgoinfo@soton.ac.uk, 02380 595058)

Where can I get more information?

Researcher: Joshua Price - | NS
supervisor: Neville Stanton - [N
siemens contact: Ian Snell - |
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Appendix E: Consent Form for Chapter 7

Study title: Empirical assessment of an ecological tool for STOC validation
Researcher name: Joshua Price

Ethics reference: 11917

Please initial the box(es) if you agree with the statement(s):

[ have read and understood the information sheet (v1.0) and have had the

opportunity to ask questions about the study.

[ agree to take part in this research project and agree for my data to be

used for the purpose of this study

[ understand my participation is voluntary and I may withdraw at any

time without my legal rights being affected

[ am happy to be contacted regarding follow up studies arising from this

research.

Data Protection

Appendices

I understand that information collected about me during my participation in this study will be stored on a

password protected computer and that this information will only be used for the purpose of this study. All

files containing any personal data will be made anonymous.

Name of participant (Print NAME).......ccceverirrr e v e e e

Signature of participant..........cocoeoeeieririei s
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Appendix F: Shapiro-Wilk Test Statistics for
Assessing Dependent Measure’s

Normality (Chapter 7)

F.1 Performance

F.1.1 Final Validation Error

Tests of Normality

Kaolmagaraw-Smirnov® Shapiro-Wilk
Statistic af Sia. Statistic df Sig
ExpLVAL .287 12 007 792 12 008
MatLVAL 351 12 000 641 12 000
NovLVAL 409 12 000 453 12 .000
ExpMCM 281 12 o010 776 12 005
MatMC M 328 12 001 724 12 .001
NovMCM 320 12 001 646 12 000
ExpEco 273 12 014 714 12 .001
MatEco 276 12 012 72 12 002
NovEco 352 12 000 T2 12 .002

a. Lillisfors Significance Corraction

F.1.2 Mean Cycle Validation Error

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig Statistic dr Sig.
ExpLVAL 152 2 2000 955 2 707
MatLvAL 113 2 2007 949 2 621
NovLVAL 158 12 2007 899 2 154
EXpMCN 238 12 059 739 2 002
Watich 265 12 020 889 2 115
NovMCH 264 12 020 866 12 058
ExpEco 237 12 062 887 12 108
MatEca 137 12 2007 937 12 464
NovEco 156 12 200 .890 12 116

* This is a lower bound of the true significance.
a. Lillifors Significance Correction

F.1.3 Mean Time Spent Per Cycle

Tests of Normality

KD\mDQﬂ\ﬂV—SmH'I’VDV‘ Shapiro-Wilk
Statistic dr Sig. Stafistic df Sig
ExpLVAL 227 12 087 857 12 044
MatL VAL 354 12 000 553 12 .000
NovLYAL 240 12 055 782 12 006
ExpMCM 84 12 200 356 12 043
MatMCh 244 12 048 773 12 005
NevhCH AT3 12 200 919 12 275
EXpEco 22 12 084 857 12 045
MatEco 211 12 146 856 12 044
NovECo 177 12 200" 908 12 203

* This is a lower bound ofthe true significance
a. Lilligfors Significance Correction

F.1.4 Cycles Required

Tests of Normality
Kolmogorov-Smimoy?® Shapiro-Wilk
Stafistic df Sig Statistic o Sig

ExpLVAL 157 12 200 827 12 352
MatLVAL 140 12 200" 951 12 648
HovL VAL 251 12 035 886 12 104
ExpMCM 243 12 049 874 12 074
Matmch 213 12 139 926 12 343
HovMCh 262 12 023 760 12 003
ExpEco 153 12 200 955 12 716
MatEco 205 12 177 887 12 108
MovEco 312 12 002 730 12 .002

* This is a lower bound ofthe true significance
a. Lilligfors Significance Corraction
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F.2 System Use

F.2.1 Total Ecological STOC Adjustments Per Cycle

Tests of Normality

Kolmogorov-Smirmoyv? Shapiro-Wilk
Statistic df Sig Statistic df Sig
ExpEco 182 12 2007 824 12 318
MatEco 113 12 200" 976 12 963
NovEco 219 12 116 851 12 038

*.This is a lower bound of the true significance

a. Lilliefors Significance Correction

F.2.2 LVAL Estimated STOC Error

Tests of Normality

Kolmogorov-Smimov? Shapiro-Wilk
Statistic df Sig Statistic df Sig
ExpLVAL 1683 12 L2007 849 12 036
MatLVAL 178 12 200" 830 12 M7
NovLVAL 193 12 2007 g14 12 239
ExpMCM 233 12 o072 877 12 081
MatCMm 210 12 149 845 12 032
NovMCM 145 12 200" 930 12 378

* This is a lower bound ofthe frue significance
a. Lilliefors Significance Correction

F.2.3 Mean STOC Adjustment

Tests of Normality

Kolmogorov-Smirmnoyv? Shapiro-wilk
Statistic dar Sig Statistic df Sig
ExpLVAL 229 12 081 787 12 007
MatLvAL 228 12 084 872 12 069
NovLVAL 180 12 200" 873 12 ar
ExpMCM 214 12 136 BE3 12 053
MatMCwM 276 12 012 680 12 o
NovMCM 195 12 200" 904 12 177
ExpEco 158 12 200" a02 12 167
MatEco 175 12 200 a10 12 210
MNovEco 171 12 200 914 12 237

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction

F.3 Workload

F.3.1 Overall Workload

Tests of Normality
Kolmogorov-Smimov® Shapiro-Wilk
Statistic dr Sig. Statistic of Sig.
ExpLVAL 211 12 146 907 12 197
Matl VAL 190 12 L2007 940 12 498
MNovLVAL 202 12 191 898 12 148
ExpMCM 193 12 L2007 889 12 18
MatCMm 114 12 200" 978 12 972
NovMCM 186 12 2007 899 12 154
ExpEco 277 12 012 829 12 020
MatEco 186 12 2007 907 12 198
NovEco 173 12 200" 884 12 100

* This is a lower bound ofthe frue significance

a. Lilliefors Significance Correction

F.3.2 Mental Demand

Tests of Normality
Kolmogorow-Smirmov® Shapiro-Wilk
Slatistic df Sig. Statistic dr Sig.
ExpLvAL 244 12 047 833 12 023
Matl VAL 91 12 200" 913 12 235
NovLVAL 204 12 181 895 12 138
ExpMCM A78 12 200" 928 12 355
MatMCh 192 12 200 807 12 193
MovMCM 186 12 200 926 12 340
ExpEco 152 12 200 935 12 435
MatEco 183 12 200 945 12 561
MNovEco 206 12 171 a04 12 181

* This is a lowsr bound of the true significance.

a. Lilliefors Significance Correction
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F.3.3 Physical Demand

Tests of Normality

Statistic ar Sig Statisiic ar Sig
EXpLVAL E 12 002 702 12 001
MalLVAL 3n 12 000 721 001
NOVLVAL 209 1 157 &71 067
ExpMCH 242 1 051 791 1 007
Matcu 22 1 094 841 02!
NoVvMGM 253 2 033 833 02
ExpEco 263 12 02 764 12 004
MatEco 312 12 002 79 1 005
NovEco 184 12 200" 898 12 148

*.This is a lower bound of the true significance.

a. Lilliefors Significance Correction

F.3.4

Temporal Demand

Tests of Normality
Kolmogorov-Smimov® Shapiro-Wilk
Shatistic i 510 Statlsic i R

ExpLVAL 210 12 150 47 12 502
Mall VAL 333 12 001 757 1 003
NovLVAL 315 2 002 724 12 001
ExpMCM 116 12 200" 944 1 553
MallCh 231 12 076 828 1 020
NovkCh 252 12 034 774 1 005
ExpEco 175 12 200" 810 12 212
MatEco 2 12 081 772 12 005
NovEco 185 12 200" 912 12 22

* This is a lower bound of the true significance

a. Lilliefors Significance Comection

F.3.5 Perceived Performance

Tests of Normality
Kalmagoraw-Smirov® Shapiro-Wilk
Stafistic df Sig Stalistic of Sig
ExpLVAL 219 12 118 200 12 87
MatLVAL 164 12 200° 832 12 094
NovLVAL 173 12 2 914 12 243
ExphiCH 218 12 119 a1 12 02
uatmen 221 12 089 913 12 ™
HoUMCM 150 12 200" 892 12 a2
ExpEco 219 12 17 872 12 070
WatEco 255 12 030 863 12 053
NovEco 158 12 200" 927 12 346

*.This is a lower bound ofthe true significance.

a. Lilliefors Significance Correction

F.3.6

Perceived Effort

Tests of Normality
Kolmaogorov-Smirnov® Shapiro-wilk
Statistic o Sig. Statistic af Sig

ExpLVAL 253 12 033 795 o8
MatLvAL 146 200° 948 586
NovLVAL 216 128 842 023
ExpMCM 182 12 200" 943 540
e 185 12 200° 895 137
NovMCh 242 12 051 901 163
ExpEco 147 12 200" 937 456
WatEeo 214 12 134 905 182
NovEco 22 12 085 373 070

*. This is a lower hound of the true significance.
a. Lilligfors Significance Correction

F.3.7 Perceived Frustration

Tests of Normality
Kolmogerov-Smirnov® Shapiro-Wilk

Statistic df Sig. Statistic df Sig,
ExpLVAL 324 12 001 m 12 001
Matl VAL 22 088 805 1 011
MovLVAL 238 12 058 880 1 088
ExpMCM 307 12 003 755 1 003
MatMcm 175 12 2007 887 1 107
NovMCM 173 12 2007 a1 1 514
ExpEco 320 12 001 846 12 032
MatEco A76 12 200" 865 12 056
MovEco 257 12 027 778 12 005
* Thisis alower bound of the true significance.
a. Lilliefors Significance Correction

.
F.4 Usability
Tests of Normality
Kalmogorov-Smimay® Shapiro-Wilk

Statistic df Sig. Statistic df Sig.
ExpLVAL 162 12 200 837 464
Matl VAL 230 080 856 043
NavLVAL 112 2 200" 876 8963
ExpMCM b 12 147 913 234
MatMCM 180 12 200" 800 158
NovMCh 126 12 200" 451 B46
ExpEco 27 12 015 868 110
MatEco 189 12 200" 868 062
NovEco 156 12 200" 968 892

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction
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Appendix G: Test Statistics for Performance

Measures (Chapter 7)

G.1 Final Validation Error
G.1.1 Within-Subjects

Expert

Friedman Test

Ranks

Wean Rank
LVAL 2.21
MCM 1.96
Ecological 1.83

Test Statistics™

N 12
Chi-Square 1.556
df 2
Asymp. Sig 459

a. Friedman Test

Matched Novice

Friedman Test

Ranks

Mean Rank
LvAL 2.08
MCM 1.96
Ecological 1.96

Test Statistics™

N 12
Chi-Square 162
dr
Asymp. Sig 922

a. Friedman Test

Novice

Friedman Test

Ranks

Mean Rank
LVAL 1.86
MCwM 222
Ecological 183

Test Statistics™

N 30
Chi-Square 3158
df 2
Asymp. Sia 206

a. Friedman Test
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G.1.2 Between-Subjects (Paired)

LVAL

Ranks
Sum of
N Mean Rank Ranks
Matched - Expert  Negative Ranks 4 425 17.00
Positive Ranks b 560 26.00
Ties £
Total 12
a. Matched < Expert
b. Matched > Expert
©. Matched = Expert
Test Statistics™
Watched -
Expent
z -660°
Asymp. Sig. (2-tailed) 509
a. Wilcoxon Signed Ranks Test
b. Based on negative ranks
MCM
Ranks
Sum of
N Mean Rank Ranks
WMatched - Expert  Negative Ranks 5 4.20 21.00
Positive Ranks 4k 6.00 24.00
Ties 3®
Total 12
a. Matched < Expent
b. Matched > Expert
c. Matched = Expert
Test Statistics™
Watchzd -
Expert
z -180°
Asymp. Sig. (2-tailed) 857
a. Wilcoxon Signed Ranks Test
b. Based on negative ranks
Ecological
Ranks
Sum of
N Mean Rank Ranks
Matched - Expert  Negative Ranks 4 4.00 16.00
Positive Ranks 48 5.00 2000
Ties 4
Total 12
a. Matched < Expert
b. Matched > Expert
& Matched = Expert
Test Statistics®
Watched -
Expert
z -289"
Asymp. Sig_(2-tailsd) 773

a. Wilcoxon Signed Ranks Test
b.Based on negative ranks,

G.1.3 Between-Subjects (Independent)

Expert - Novice (LVAL)

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 2363 283.50
2 30 20.65 618.50
Total 42
Test Stati:
Response
Mann-Whitney U 154.500
Wilcaxon W 619.500
z -T83
Asymp. Sig. (2-tailed) 433
g(;;;swg [2*(1-tailed 483"

a. Grouping Variahle: Condition
b. Not corrected for ties
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Matched Novice — Novice (LVAL)

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 24.08 289.00
2 30 2047 614.00
Total 42
Test Statistics®
Rasponse
Mann-Whitney U 140.000
Wilcoxon W 614.000
z -946
Asymp. Sig. (2-tailed) 344
Exact Sig. [2*(1-tailed b
Sig))] 40m

a. Grouping Variable: Condition

b Not comrected for ties,

Expert - Novice (MCM)

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 18.54 22250
2 30 2268 680.50
Total 42
Test Statistics™
Response
Mann-Whitney Ul 144 500
Wilcoxon W 222500
4 -1.042
Asymp. Sig. (2-tailed) 297
ST;;](S\Q [2*(1-tailed 280

a. Grouping Variable: Condition
b. Mot corrected for ties.

Matched Novice - Novice (MCM)

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 18.38 22050
2 30 2275 682.50
Total 42
Test Statistics™
Response
Mann-Whitney U 142,500
Wilcoxon W 220,500
z -1.103
Asymp. Sig. (2-tailec) 270
Exact Sig. [2+(1-tailed b
sig)l o

a. Grouping Variable: Condition
b. Not corectad for tiss

Expert — Novice (Ecological)

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 22.00 264.00
2 30 21.30 635.00
Total 42
Test Statistics™
Response
Mann-Whitney U 174.000
Wilcoxon W 635.000
r4 -187
Asymp. Sig. (2-tailed) 852
S:;a;](swg [2*(1-tailed g0

a. Grouping Yariable: Condition
b. Not correctad for ties.
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Matched Novice — Novice (Ecological)

Ranks
Sum of
Caondition N Mean Rank Ranks
Response 1 12 2275 273.00
2 30 21.00 630.00
Total 42
Test Statistics™
Response
Mann-Whitney U 165.000
Wilcoxan W 630.000
z -467
Asymp. Sig. (2-tailsd) 641
Exact Sig. [2*(1-tailed b
sig)l 690

a. Grouping Variable: Condition
b. Not corractad for tis

G.2 Mean Cycle Validation Error
G.2.1 Within-Subjects

Expert

ANOVA
Valug
Sum of
Squares df Wean Square F Sig.
Between Groups 10143 2 5071 8.978 001
Within Groups 18.641 33 565
Tatal 28.784 35

Post Hoc Tests

Multiple Comparisons

DependentVariable: Value

Banferroni
95% Confidence Interval
Difference (-
() Condtion  {J) Condtion J) Std. Error Sig, Lower Bound | Upper Bound
1 2 -21833 30684 1.000 -80922 5556
3 100083 30684 008 2268 1.7747
2 1 21833 30684 1.000 -.5556 9922
3 121017 30684 001 4453 1.9931
3 1 -1.00083 30684 oos -1.7747 -2268
2 2121017 30684 001 -1.9931 - 4453
*. The mean difference is significant atthe 0.05 level.
Matched Novice
ANOVA
Walue
Surm af
Squares df Mean Square F Sig
Between Groups 21671 2 10.785 8782 001
Within Groups 40.528 33 1.22
Total 62.098 35

Post Hoc Tests

Multiple Comparisons

DependentVariable: Value

Bonferroni
~Mean 95% Confidence Intzrval
Difference (-
() Condtion  (J) Condtion J) Std. Error Sig. Lower Bound | Upper Bound
1 2 -15917 45242 1.000 -1.3003 9818
3 1 65667 45242 005 4156 26078
2 1 15917 45242 1.000 -.9819 1.3003
3 171583 45242 002 5747 2.8568
3 1 -1 55667 45242 005 -2.6978 - 4156
2 -1 71683 45242 002 -2.8569 -5747

* The mean difference is significant at the 0.05 level
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ANOVA
Value
Sum of
Squares df Mean Square Sig.
Between Groups 47.596 2 23798 26.248 000
Within Groups 78880 87 907
Total 126,476 89

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Valug

Bonferroni
_ Mean 95% Confidence Interval
Difference (-
() Condtion  (J) Candtion J) Std. Error Sig Lower Bound | Upper Bound
1 2 -148033 24585 1.000 -7905 4098
3 143867 24585 000 8385 2.0388
2 1 19033 24585 1.000 -4098 7905
3 162900 24585 000 1.0288 2.2292
3 1 143867 24585 ooo -2.0388 -.8385
2 -1 62900 24585 000 -2.2292 -1.0288

* The mean difference is significant at the 0.0 level

G.2.2

LVAL

Between-Subjects (Paired)

Paired Samples Statistics

Std. Error
Mean Std. Deviation Mean
Pair1  Expert 13817 12 79774 2302
Matched 20575 12 98134 2832
Paired Samples Correlations
™ [ Conelation | _sig
|[Pair 1 Expert & Maiched | 12 | 542 | 069 |
Paired Samples Test

Paired Differances

95% Confidence Interval of the
J— ifference
Mean Std. Deviation Mean Lower ‘ Upper 1 df Sig. (2-tailed)
Pair1  Expert- Matched - 67583 B6627 25007 -1.22624 ‘ -12543 -2.703 11 021
MCM
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 1.6000 12 098916 28555
Matched 2.2167 12 1.60562 .46350
Paired Samples Correlations
[ [N [Corelafion | Sio.|
| Pair1 Expert & Matched | 12 | 126 | 696 |
Paired Samples Test
Paired Differences
95% Confidence Intsrval of the
Std. Error Difference
Mean | Std Deviation Mean Cower [ Upper t df Sig. (2-tailad)
Pair1  Expen- Matched - 1667 177648 51283 -1.74539 ‘ 51206 -1.202 11 254
Ecological
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 3e0e 12 28257 08157
Matched 5008 12 37855 10928
Paired Samples Correlations
N | Correlation | Sig. |
[Pairt Expart& Matchad | 12 025 | a3 |
Paired Samples Test
Paired Differences
95% Confidence Interval o the
Std. Error ifference
Mean | Std Deviation Mean Lower [ Upper t af Sig. (2-tailzd)
Pair1  Expert- Matched -.12000 46669 13472 - 41652 | 17652 - 891 11 382
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G

2.3 Between-Subjects (Independent)

Expert - Novice (LVAL)

Group Statistics
Std. Error
Condition N Mzan | Std. Deviation Mean
Response 1 12 1.3817 79774 23029
2 30 20093 1.14080 20830

Independent Samples Test

Levene's Test for Equalty of
Variances ttest for Equality of Means
95% Confidence Interval of the
Wean Std. Error Differance
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Equal variances
Response - Baualva 1.796 188 | 1737 40 090 - 62767 36127 -1.35782 10248
Enqual variances not P, ., o . . 5
assumed -2.021 28999 053 - 62767 31062 -1.26275 00742

Matched Novice — Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean | Std Deviation Wean
Response 1 12 20575 98134 28329
2 30 2.0083 1.14080 20830

Independent Samples Test

Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Wean Std. Error Differance
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Egqualvariances . .

assumed 267 608 128 40 889 04817 37549 -71073 80707

Equal variances not . .

assumed 137 23504 892 04817 35163 - 67836 77470

Expert - Novice (MCM)

Group Statistics
Std. Eror
Caondition N Mean Std. Deviation Mean
Respaonse 1 12 1.6000 98916 28555
2 30 21997 1.00196 19936

Independent Samples Test

Levene's Test for Equality of
Variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances

Fosumed 667 48 | 1648 0 107 -58967 36366 -1.33465 13531

Equal variances not P N o N
assumed -1.722 22326 099 -58067 34826 -1.32129 12186

Matched Novice - Novice (MCM)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Respanse 1 12 22167 1.60562 46350
2 30 21897 1.09196 19936

Independent Samples Test

Levane's Testfor Equality of
Variances ttest for Equality of Means
85% Confidence Interval of the
Wean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N N o
assumed 4893 033 040 40 969 01700 42845 -B4892 88202

Equal variances not Y . .

assumed 034 15249 974 01700 50456 -1.05692 1.00082
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Expert — Novice (Ecological)

Group Statistics

Std. Error

Condition N Mean Std. Deviation Mean
Response 1 12 3808 28257 08157

2 30 5707 47536 08679

Independent Samples Test
Levene's Testfor Equality of
ariances test for Equality of Means
95% Confidence Interval of the
Mzan Std. Error ifference
F Sig t df Sig. (2-tailed) Difference Difference Lower Uppar

Response  Equalvariances N N N . o .

assumed 5215 028 -1.289 40 205 -18983 14722 -.48738 10772

Equal variances not N N

assumad -1.594 33.646 120 -18983 1910 -43188 05231

Matched Novice — Novice (Ecological)

Group Statistics
Std. Error
Gondition N Mean | Std. Deviation Mean
Response 1 12 5008 37855 10928
2 30 5707 47536 08678
Independent Samples Test
Levene's Testfor Equality of
Variances ttestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difsrance
F Sig 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N
assumed 1.185 281 -454 40 653 - 06983 15308 -38104 24138
Equal variances not . . .
assumed -500 25417 621 - 06983 13955 -.35700 21733

G.3 Mean Time Spent Per Cycle

G.3.1

Expert

Friedman Test

Ranks

Mean Rank

LWAL
MCM
Ecological

117
183
300

Test Stati

istics®

N
Chi-Square
df
Asymp. Sig.

20667

000

a. Friedman Test

Within-Subjects

Test Statistics®

MCM - LVAL

Ecological -
LVAL

Ecological -
MCH

z
Asymp. Sig

-2.488°
(2-tailed) 013

-3.081"
002

-3.081"
002

a. Wilcoxon

signed Ranks Test

b. Based on negative ranks

Matched Novice

Friedman Test
Ranks
Mean Rank
LVAL 1.29
MCM 1.83
Ecological 288
Test Statistics®

N 2
Chi-Square 16.578
df 2
Asymp. Sig. 000

a.Friedman Test
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Test Statistics™

Ecological - Ecological -
MCM - LVAL LVAL MCH
z -1.786" -2.041° -2.398°
Asymp. Sig. (2-tailed) 074 003 016

a.Wilcoxon Signad Ranks Test
b. Basad on negative ranks

Novice

Friedman Test

Ranks

WEan Rank
LVAL 1.28
MCW 1.78
Ecological 2.93

Test Statistics™

N 30
Chi-Square 43311
df 2
Asymp. Sig .000

a.Friedman Test

Test Statistics®

Ecological - Ecological -
MCH - LVAL LVAL MM
z -2.371" -4.789" -4.479"
Asymp. Sig. (2-tailed) 018 000 000

a. Wilcoxon Signad Ranks Test
b. Based on nagative ranks.

G.3.2 Between-Subjects (Paired)

LVAL

Ranks
Sum of
N Mean Rank Ranks
Matched - Expert  Negative Ranks 22 375 7.50
Positive Ranks 10° 7.05 70.50
Ties o0°
Total 12
a. Matched < Expert
b. Matched > Expert
¢. Matched = Expert
Test Statistics®
Matched -
Expert
z -2.485°
Asymp. Sig. (2-tailed) 013
a.Wilcoxon Signed Ranks Test
b. Based on NEgative ranks.
MCM
Ranks
Sum of
N Mean Rank Ranks
Matched - Expert  Megative Ranks 22 5.00 10.00
Positive Ranks [ 563 45.00
Ties 2°
Total 12

a. Matched < Expert
b. Matched = Expert
©. Matched = Expert

Test Statistics®
Matched -
Expert
z -1.788°
Asymp. Sig. (2-tailed) 074

a. Wilcoxon Signed Ranks Test
h. Based on negative ranks.
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Ecological

Ranks
Sum af
N Mean Rank Ranks
Matched - Expert  Negative Ranks g* 1350 108.00
Positive Ranks 21" 15.57 327.00
Ties 1%
Total 30
a. Matched < Expert
b. Matchad > Expert
¢. Malched = Expert
Test Statistics™
Matched -
Expert
z -2371°
Asymp. Sig. (2-tailed) 018
a. Wilcoxon Signed Ranks Test

b. Based on negative rank:

G.3.3

s

Between - Independent

Expert - Novice (LVAL)

a. Grouping Variable: Condition

b Not corrected for ties.

Matched Novice — Novice (LVAL)

Ranks
Sum of
Caondition N Mean Rank Ranks
Respaonse 1 12 2150 258.00
2 30 21.50 645.00
Total 42
Test Stati
Response
Mann-Whitney U 180.000
Wilcoxon W 645.000
z 000
Asymp. Sig. (2-tailed) 1.000
Exact Sig. [2*(1-tailed b
sig)] 1.000°

a. Grouping Variable: Condition

b Not corrected for ties.

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 2442 203.00
2 30 2033 610.00
Total 42
Test Stati
RESponse
Mann-Whitney U 145.000
Wileoxon W 610.000
z -.980
Asymp. Sig. (2-tailed) 327
Exact Sig. [2*(1-tailed 3420
SiaJ]

Expert - Novice (MCM)

a. Grouping Variable: Condition

b Not corrected for ties.

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 1975 237.00
2 30 222 666.00
Total 42
Test Stati
RESponse
Mann-Whitney U 159.000
Wileoxon W 237.000
z -588
Asymp. Sig. (2-tailed) 557
Exact Sig. [2*(1-tailed b
Sig)] 573
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Matched Novice - Novice (MCM)

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 26.29 316.50
2 30 19.58 587.50
Total 42
Test Statistics™
Response
Mann-Whitney U 122500
Wilcoxon W 587.500
z -1.606
Asymp. Sig. (2-tailed) RL:E]
:!gag]l Sig. [2*(1-tailed 110"

a. Grouping Variable: Condition

b. Not corrected for ties.

Expert — Novice (Ecological)

Ranks
Sum of
Gondition N MEan Rank Ranks
Response 1 12 25138 30450
2 30 1995 598.50
Total 42
Test Statistics™
Response
Mann-Whitney U 133.500
Wilcoxon W 598.500
z -1.298
Asymp. Sig. (2-tailed) RET)
Exact Sig. [2*(1-tailed N
Sig)] 198

a. Grouping Variable: Condition

b. Mot corrected for ties.

Matched Novice — Novice (Ecological)

Ranks
Sum of
Condition N Wean Rank Ranks
Response 1 12 21.96 263.50
2 30 21.32 639.50
Total 42
Test Statistics™
Response
Mann-Whitney U 174.500
Wilcoxon W 638.500
z -153
Asymp. Sig. (2-tailed) 878
g;::;lswu. [2*(1-tailed s80b

a. Grouping Variable: Condition

b Not corrected for ties,

G.4 Cycles Required
G4.1 Within-Subjects

Expert

ANOVA
Value
Sum of
Squares o Wean Square F Sig
Betwsen Groups 105.640 2 52.820 3374 046
Within Groups §16.567 23 15653
Total 622197 35

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Value

Bonfermoni
tizan 95% Confidence Interval
Difference (-
() Condtion _(J) Condtion J) sto.Emor | sig. | LowerBound | Upper Bound
1 2 147333 | 161520 | 1.000 ~2.6005 5.5472
3 413917 | 161520 045 0653 82130
2 1 147333 | 161520 | 1.000 55472 2.6005
3 268583 | 1.61520 32 -1.4080 6.7397
3 T 413017 | 161520 045 -8.2130 -0853
2 -2.66583 | 161520 325 -6.7397 1.4080

* The mean difference is significant at the 0.05 level.
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Matched Novice

ANOVA
Valug
sum of
Sguares df Mean Square F Sig.
Between Groups 871563 2 48576 33717 046
Within Groups 474725 33 14.386
Total 571.877 35

Post Hoc Tests

Wultiple Comparisons
Dependent Variable: Value

Bonferroni
lean 5% Confidence Interval
Difference (-
() Gonettion ) Condtion g Stdl. Error Sig. Lower Bound | Upper Bound
1 2 33250 | 154842 | 1.000 35729 42379
3 383017 | 154842 75 -2663 75448
2 1 -.33250 1.54842 1.000 -4.2379 35729
3 330667 154842 12 -.5988 7.2121
3 1 -3.63917 154842 075 -7.5446 2663
2 -3.30667 1.54842 12 72121 5988
Novice
ANOVA
Valug
Sum of
Squares dr Mean Square F Sig
Betusen Groups 183683 2 241841 7837 001
WIthin Groups 2755471 o7 31,669
Total 3238.854 89

Post Hoc Tests

Muttiple Comparisons
Dependent Variable: Value

Bonferani
95% Confidence Intsrval
Difference (-
() Condtion () Candtion J) Std.Error | Sig. | LowerBound | UpperBound
1 2 117667 | 1.45301 1.000 -2.3704 47237
3 530933 | 1.45301 001 18623 8.9464
2 1 117667 | 1.45301 1.000 47237 23704
3 422267 | 1.45301 014 6756 7.7897
3 1 -5.39933 | 145301 001 -8.9464 -1.8523
2 422267 | 1.45301 014 -7.7697 -.6766

* The mean difference is significant atthe 0.05 level

G.4.2 Between-Subjects (Paired)

LVAL

Paired Samples Statistics
St Enror
Mean N Std. Deviation Mean
Pairl  Expert 3722 2 421745 121747
Watched | 10.5000 12 418148 1.20709
Paired Samples Correlations
| | N ‘ Correlation ‘ Sig |
[Pair1_ Expert&Matched | 12 | 160 | 619 |

Paired Samples Test

Paired Diferences
5% Confidence Interval of the
std. Eror Diffarance
Mean | Std. Deviation Mean Cower | Upper t daf | sig. (2-tailed)
Pair1__ Expert_Malched | - 77750 6.39695 1.84664 484193 | 3.29693 -421 11 662
MCM
Paired Samples Statistics
St Error
Mean [ Std. Deviation Mean
Pair1 Expert 82492 12 478438 1.38113
watched | 10.1675 12 426725 1.23185
Paired Samples Correlations
[ [ n [ Comelaton T Sig. ]
|Pair1 EmenaMatched | 12 | 067 | 836 |

Paired Samples Test

Paired Differences

95% Confidence Interval of the
St Ermor Difference
Mean | Std. Deviation WMean Lower [ Upper 1 df Sig. (2-tailed)
Pair | Expert- Matched [ -1.91833 6.62086 191128 612503 | 228836 | -1.004 11 337
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Ecological

Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 55833 12 250650 72356
Matched 68608 12 273176 78858
Paired Samples Correlations
| | N | Correlation | Sig. |
[ [Pair1 Expert& Matched | 12 | 003 | s3]
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean | Std. Deviation Mean Lower [ Upeer 1 af Sig. (2-tailed)
Pair1  Expert- Matched | -1.27750 371242 1.07168 -3.63626 | 1.08126 -1.192 11 258

G.4.3

Between-Subjects (Independent)

Expert - Novice (LVAL)

Std. Error
Condition N Wean Std. Deviation Mean
Response 1 12 9722 421745 1.21747
2 30 | 131583 6.45234 1.17803

Independent Samples Test

Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances RS ~
assumed 1.056 310 -1.718 40 093 -3.47683 2.02289 -7.66525 61158
Equal variances not JRp—. S o
assumed -2.052 30,949 049 -3.47683 1.68411 -6.93222 -02145
Group Statistics
Std. Error
Condition ] Mean Std. Deviation Mean
Response 1 12 | 10,5000 418149 1.20708
2 30 1315893 £.45234 1.17803
Independent Samples Test
Levene's Test for Equality of
variances +test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Diffarance
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances . . . N .
assumed 1.307 244 -1.336 40 189 -2.69933 2.02050 -6.78291 1.38424
Equal variances not . . .
assumed -1.600 31197 120 -2.69933 1.68666 -6.13842 73875
Group Statistics
Std. Error
Condition M Mean | Std Daviation Maan
Response 1 12 8.2492 478438 1.38113
2 30 12.022 4.83766 88323

Independent Samples Test

Levene's Test for Equality of
Variances ttestfor Equality of Means
95% Confidence Interval of the
Mzan Std. Error Diffsrance
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances o .
assumed Ms 736 -2.201 40 027 -3.77350 164739 -7.10300 -.44400
Equal variances not s | o .
assumed -2.302 20534 032 -3.77350 1.63940 -7.18753 -.35047

272




Matched Novice - Novice (MCM)

Group Statistics

Std. Error
Condition N Mean | Std. Deviation Wean
Response 1 12 | 101675 426725 1.23185
2 30 12.022 483766 88323
Independent Samples Test
Levene's Test for Equality of
Variances test for Equality of Means
95% Canfidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N
assumed 000 987 -1.159 40 253 -1.85517 1.60116 -5.09123 1.38090
Equal variances not 91, a9 5 2
assumed -1.224 228919 233 -1.85517 1.51577 -4.89138 1.28105

Expert - Novice (Ecological)

Group Statistics

Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 12 55833 250650 72356
2 30 7.8000 547451 99950
Independent Samples Test
Levene's Test for Equality of
variances test for Equality of Means
§5% Confidence Interval of the
Mean Std. Enror Difference
F Sig t df Sig. (2-ailed) Difference Difference Cower Upper
Response  Equalvariances — - .
assumad 3.008 091 -1.340 40 188 -2.21667 1.65425 -5.56004 1.12670
Equal variances not - PR, . .
assumed -1.796 3007 080 -2.21667 1.23392 -4.71236 27902

Matched Novice - Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 6.8608 273176 78859
2 30 7.8000 547451 99950
Independent Samples Test
Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances —
assumed 1.755 193 - 564 40 576 -93917 166566 -4.30558 242725
Equalvariances not N
assumed -738 37.763 465 -83917 127314 -3.51703 1.63870
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Appendix H: Test Statistics for System Use Measures
(Chapter 7)
H.1 Total Ecological STOC Adjustments Per Cycle

H.1.1 Between-Subjects (Paired)

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 236658 12 12.05888 348110
Matched | 30.5000 12 1263024 3.64604
Paired Samples Correlations
I [ W [ Corelaton | _sig
| Pairi_ Expert & Matched | 12 | 83e | 001 |
Paired Samples Test

Paired Differences

5% Confidence Interval of the
Std. Error Difference
Mean | Std. Deviation Wean Cowsr | Upper t df Sig. (2-tailed)
Pair 1 Expert- Matched | -6.83417 7.02365 202755 120678 | 237155 | o337 11 006

H.1.2 Between-Subjects (Independent)

Expert - Novice

Group Statistics

Std. Error

Condition N Mean Std. Deviation Mean
Response 1 12 236658 12.05889 3.48110
2 30 [ 417587 23.28373 4.25101

Independent Samples Test

Levene's Testfor Equality of
Variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference

F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N — -
assumed 3.149 il -2.545 40 015 -18.08983 710780 -32.45523 -3.72444
Equal variances not s N ~ s N
assumed -3.202 37.032 002 -18.08983 540446 -29.22235 -6.95732

Matched Novice - Novice

Group Statistics
Std. Error
Condition N Mean | Std Deviation Mean
Response 1 12 305000 1263024 3.64604
2 30 41.7557 2328373 4.25101

Independent Samples Test

Levene's Test for Equality of
Variances t1estfor Equality of Means
95% Confidence Interval of the
Mean std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N N - -

Aesumed 2,861 oge | 1577 40 a2 -11.25567 7.13956 -25,68526 347393

Equal variances not 5 " . N . .

assumed 2010 | 36.000 052 -11.25567 5.60042 2261384 10250
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H.2 Estimated STOC Error

H.2.1 Within-Subjects

Expert

Paired Samples Statistics

Std. Error

Mean N Std. Deviation Mean
Pair1  LVAL 1.7508 12 89507 25838
MCM 1.8625 12 1.10000 31754

Paired Samples Correlations

N[ Comsiaton | S|
[[PairtLvaL s mcu | 12 | 544 | 067 |
Paired Samples Test
Faired Diffarences
95% Confidence Interval of the
Std. Error Difference
Mean | Std. Deviation Mean Cowsr [ Upper t af | sig. (Hailed)
Pair1_ LVAL-NCM | -11167 95902 27973 -72735 | 50402 -399 11 647
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Fairl VAL | 18117 12 1.03007 29736
ucu | 18483 12 1.42006 41020
Paired Samples Correlations
| | N ‘Cnnelahnn ‘ Sig. I
[Pairt vaLamCw_ | 12 | 563 | 057 |

Paired Samples Test

Paired Differences

5% Confidence Interval of the
Std. Error Difference
Mean | Std. Deviation Mean Cowsr | Upper t df Sig. (24ailed)
Pairi _ LVAL-MCM | -03667 1.19674 34547 -79704 | 72371 -106 11 a7
Novice
Paired Samples Statistics
Std_ Error
Nean N Std. Deviation Mean
Pair1 LVAL 1.4523 30 94442 17243
wew | 21977 30 1.26856 23526
Paired Samples Correlations
[ [ [ Comelation [ sio. |
[PairtvaCgncm | 30| 202 | 283 |

Paired Samples Test

Paired Differences

95% Confidence Interval ofthe
Std. Error Difference
Mean | Std. Deviation Mean Lowsr | Upper 1 df Sig. (2-tailed)
Palr1  LVAL-MCM | -74533 1.43513 26202 128122 | 20845 | -2.845 29 008

H.2.2 Between-Subjects (Paired)

LVAL

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 1.7608 12 BS507 25839
Matched 1.8117 12 1.03007 28736
Paired Samples Correlations
™ [ Conelaton | _sig
[[Pairt Expert & Matched | 12 | 660 | 019 |

Paired Samples Test

Paired Differznces

95% Confidence Interval of the
Std. Error Difference
Wean | Std. Deviation Wean Cower | Upper t df Sig. (2-tailed)
Pair1  Expert-Matched | - 06083 50304 23182 57106 | 44940 -.262 11 798
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MCM

Paired Samples Statistics

Std. Error
Nean N Std. Deviation Nean
Pair1  Expert 1.8625 12 1.10000 31754
Matched | 1.8483 12 1.42096 .41020
Paired Samples Correlations
N Comslton | s |
| Pairi_ Expert & Matched | 12 | 254 | 435 |

Paired Samples Test

Paired Differences

95% Confidence Interval of the
Std. Error Difference
Mean | Std. Deviation WMean Cower | Upper t df Sig. (2-tailed)
Pair1  Expert-Matched | 01417 1.56006 45035 -87705 | 1.00538 031 11 475

H.2.3 Between-Subjects (Independent)

Expert - Novice (LVAL)

Group Statistics

Std. Errar
Gondition N Mean | Std. Deviation Mean
Response 1 12 1.7508 89507 25839
2 30 1.4523 94442 17243
Independent Samples Test
Levene's Test for Equality of
variances +testfor Equality of Means
95% Confidence Interval of the
WMzan std. Eror Difference
F Sig. t dr Sig. (2-tailed) Difference Difference Lower Upper
Response ss:jlﬂ:’syam% 016 899 a3g 40 354 20850 31803 - 38427 94127
Equal variances not N N N N
assumed 961 21371 347 20850 31063 34682 94382

Matched Novice — Novice (LVAL)

Group Statistics
St Error
Condition N Mean Std. Deviation Mean
Respaonse 1 12 18117 1.03007 29736
2 30 1.4523 94442 17243

Independent Samples Test

Levene's Test for Equality of
Variances t-test for Equality of Means
95% Confidence Interval of the
Wean Std. Error Differance

F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N -
assumed 01 407 1.086 40 284 35933 33088 - 30941 1.02807
Equalvariances not N
assumed 1.045 | 18833 309 35933 34373 - 36054 1.07920

Expert - Novice (MCM)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 12 1.8625 1.10000 31754
2 30 21977 1.28856 23526

Independent Samples Test

Levene's Test for Equality of
Variances test for Equality of Means
95% Confidence Interval of the
lean Std. Error Difference

F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances . . N
assumed a1 510 -792 40 433 -.33517 42339 -1.10088 52055

Equalvariances nat . o

assumed - 848 23683 406 -33617 39520 -1.15138 48106
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Matched Novice - Novice (MCM)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 1.8483 1.42086 41020
2 30 21877 1.28856 23526

Independent Samples Test

Levena's Test for Equality of

Variances ttestfor Equality of Means
95% Confidence Interval of the
Mzan Std. Error Diffsrance
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N N
assumed 000 1.000 -7 40 445 -.34033 45301 -1.28491 56624

Equal variances not . " "

2ssumed 739 | 18661 469 -34933 47287 -1.34026 4162

H.3 Mean STOC adjustment

H.3.1

Expert

Within-Subjects

ANOVA
valug
Sum of
Squares df Mean Square F Sig.
Between Groups 2361 2 1.180 1.648 208
Within Groups 23.632 33 T16
Total 25893 35

Post Hoc Tests

Wultiple Comparisons

DependentVariable: Value
Bonferrani
_ Mean 95% Confidence Interval
Difference (-
() Condtion () Conetion 9 Sid. Emor | Sig Lowar Bound | Upper Bound
1 2 -.13083 34548 1.000 -1.0022 7405
3 46583 34548 560 - 4085 1.3372
2 1 13083 34548 1.000 - 7405 1.0022
3 59667 34548 281 -2747 1.4680
3 1 -.46583 34548 560 -1.3372 4055
2 - 53667 34548 281 -1.4680 2747
Matched Novice
ANOVA
Walue
Sum af
Squares df Mean Square F Sig.
Between Groups 25,951 2 12,976 2782 a7é
Within Groups 163.927 33 4664
Total 179.878 35

Post Hoc Tests

Dependent Variable: Value

Multiple Comparisons

Bonferroni
95% Confidence Interval
Difference (-
() Condtion  {J) Condtion J) Std. Error Sig. Lower Bound | Upper Bound
1 2 -56167 88171 1.000 -2.7855 1.6622
3 145333 88171 326 -.7705 36772
2 1 56167 BB1T1 1.000 -1.6622 27855
3 2.01500 88171 087 -.2088 4.2388
3 1 -1.45333 BB1T1 326 -3.6772 7705
2 -2.01500 88171 087 -4.2389 .2089
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Novice

ANOVA
Value
Sum of
Squares df Mean Square F Sig.
Between Groups 41.049 2 20525 10.681 000
Within Groups 167.025 a7 1.920
Total 208.075 89

Post Hoc Tests

Multiple Comparisons

DependentVariable: Value

Banferroni
uean 55% Confidence Interval
Difference (-
() Condtion  {J) Condtion J) Std. Error Sig. Lower Bound | Upper Bound
1 2 66533 35776 199 -.2080 1.5387
3 164433 35776 000 7710 25177
2 1 -66533 35776 199 -1.5387 .2080
3 a7a00” 35776 023 1057 1.8523
3 1 154433 35776 000 -2.5177 -7710
2 - a7900" 35776 023 -1.8523 - 1057

* The mean difference is significant at the 0.05 level

H.3.2 Between-Subjects (Paired)

LVAL

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Wean
Pair1  Expert 1.0533 12 97359 28105
natched |  2.0800 12 1.46387 42258
Paired Samples Correlations
N ‘ Correlation ‘ Sig |
| Pair1_ Expert & Matched | 12 | 173 | 5w |

Paired Samples Test

Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Stdl. Deviation Mean Lower [ Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | -1.02667 1.61167 46525 -2.05067 ‘ -.00266 -2.207 il 050
MCM
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 1.1842 12 96662 27904
Matched 26417 12 3.39316 97952
Paired Samples Correlations
N | Correlation | Sig.
[ Pair 1 Expert& matched | 12 | 217 | a8a |
Paired Samples Test

Paired Differences

95% Confidence Interval of the
Std. Exror Difference
Mean Std. Deviation Mean Lower | Upper t df Sig. (2-tailed)
Pair1  Expert- Matched ] -1.45750 372421 1.07509 -3.82375 | 80875 -1.356 11 202
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 5875 12 51680 14883
Matched 6267 12 58041 16755
Paired Samples Correlations
| | N ‘ Correlation ‘ Sig
| Pairt_ Exper & Matched | 12 | 403 | 94 |
Paired Samples Test

Paired Differences

95% Confidence Intarval of the
Std. Error Difference
Mezan | Std Deviation Mean Tower Upper t of Sig. (2-tailad)
Pair1  Expert- Matched -.03917 60131 17358 -.42122 ‘ 34289 -226 11 826
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H.3.3

Between-Subjects (Independent)

Expert - Novice (LVAL)

Group Statistics

Std. Error

Condition N Mean | Std. Deviation Mean
Response 1 12 1.0633 97359 28108

2 30 2.4807 2.08303 38031

Independent Samples Test
Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvaniances . N B ~ N B .

assumed 5224 028 -2.264 40 029 -1.42733 63041 -2.70144 -158322

Equal variances not N . N

assumed -3.018 38.809 .004 -1.42733 47289 -2.38399 -47068

Matched Novice — Novice (LVAL)

Group Statistics
Std. Error
Caondition N Mean Std. Deviation Mean
Response 1 12 | 20800 48387 42258
2 30 | 24807 208303 38031
Independent Samples Test
Tevene's Testfor Equanty of
Variances ttestfor Equality of Means
5% Confidencs Interval of e
Mean Std. Eror Difference
F Sig, t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Sduaarances 2130 152 | -s07 a0 547 - 40087 56012 1.73482 93348
Sauavanances not 705 | 2sess 487 - 40067 56852 -1.56368 76233
Expert - Novice (MCM)
Group Statistics
Std. Error
Condition | N Wean | Std Deviation Wi=an
Response 1 2| 11842 96662 27904
2 30 | 18153 20338 18137

Independent Samples Test

Levene's Testfor Equality of
Variances t-test for Equality of Means
95% Confidence Intzrval of the
Mean Std. Error Difference
F sia t df Sig. (2-tailed) Differance Differance Cower Upper

Responss  Edual vartances 194 662 | -1.874 10 068 -63117 33681 -1.31188 04856

Equal variances not o . . - o

assumed -1.897 20.846 o072 - 63117 33280 -1.32367 06124

Group Statistics
Std. Error

Condition N Mean | Std Deviation Mean
Response 1 12 26417 339316 97952

2 30 1.8153 99338 18137

Independent Samples Test
Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equal variances . . . . o

assumed 8610 006 1.228 40 227 82633 67295 -53375 218641

Equal variances not " . . .

assumed B30 11.762 423 82633 99617 -1.34502 3.00168
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Expert — Novice (Ecological)

Group Statistics

Std. Eror

Caondition N Mean Std. Deviation Mean
Respaonse 1 12 SB7S 51540 148093

2 30 8363 65855 12023

Independent Samples Test
Levene's Test for Equality of
Variances ttestfor Equality of Means
95% Confidence Interval of the
Mzan Std. Error Diffsrance
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances e B N o .

assumed 2352 133 -1.170 40 249 -.24883 21265 - 67862 18086

Equalvariances not N . . . "

assumed -1.300 25.848 205 -.24883 19140 -.64238 14472

Matched Novice - Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 12 B267 58041 16755
2 30 8363 65655 12023
Independent Samples Test
Levene's Testfor Equality of
ces t-test for Equality of Means
95% Confidence Intarval of the
Wean Std. Error Difference
F Sig t af Sig. (2-tailed) Differznce Differznce Lower Upper
Response  Equalvariances N N N N -
assumed 786 .381 -.962 40 342 -.20867 21793 -.65011 23078
Equal variances not . . . . .
assumed -1.017 22,939 320 -.20867 20623 -63634 21701
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Appendix I:

1.1

1.1.1

Expert

Overall Workload

Within-Subjects

ANOVA
Value
Sum of
Squares df Mzan Sguare F Sig
Between Groups 87.389 2 43.604 209 812
Within Groups 6887.583 33 208.715
Total 6974.972 35

Post Hoc Tests

Dependent Variahle: Valug
Bonferroni

Multiple Comparisons

Mean 95% Gonfidence Interval
Difference {I-
() Condtion  (J) Condtion J Std. Error Sig. Lower Bound | Upper Bound
1 2 -2.75000 589785 1.000 -17.6259 121259
3 -3.66667 5.89795 1.000 -18.5425 11.2092
2 1 275000 589785 1.000 -12.1259 17.6259
3 - 91667 5.89795 1.000 -15.7925 13.9592
3 1 366667 589785 1.000 -11.2082 185425
2 91667 5.89795 1.000 -13.9592 15.7925
Matched Novice
ANOVA
Value
Sum of
Squares df Mean Square F sig.
Between Groups 1194.056 2 597.028 2.845 072
Within Groups 6924250 33 209.826
Total 8118.306 35

Post Hoc Tests

Dependent Variahle: Valug
Bonferroni

Multiple Comparisons

Mean 95% Gonfidence Interval
Difference (-
() Condtion  (J) Condtion J Std. Error Sig Lower Bound | Upper Bound
1 2 -6.33333 591362 B76 -21.2488 B5821
3 7.75000 5.91362 597 -7.1654 22,6654
2 1 633333 591362 B76 -8.5821 21.2488
3 14.08333 5.91362 069 -8321 28.0988
3 1 -7.75000 591362 597 -22 6654 71654
2 -14.08333 5.91362 069 -28.9988 8321
Novice
ANOVA
Walue
Sum of
Squares df Mean Square F Sig
Between Groups 5040467 2 2520233 14587 o0og
Within Groups 15031133 B7 172772
Total 20071.600 89

Post Hoc Tests

DependentVariable: Valug
Bonferroni

Multiple Comparisons

Mean 95% Confidence Interval
Difference (-
() Condtion  (J) Condtion J Std. Error Sig Lower Bound | Upper Bound
1 2 -5.83333 339383 268 -14.1182 24515
3 1213333 3.30383 002 3.8485 20.4182
2 1 583333 339383 268 -2.4515 141182
3 1796667 3.39383 000 9.6818 26.2515
3 1 1213333 339383 002 -20.4182 -3.8485
2 -17.96667" 3.39383 000 -26.2515 -0.6818

* The mean differance is significant atthe 0.05 level
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1.1.2

LVAL

Between-Subjects (Paired)

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 263333 12 13.17252 380258
Matched 32.8333 12 16.50253 476387
Paired Samples Correlations
N [ Corelaton |_sig__|
| Fairt_ Expert& Matched | 12 | 535 073 |
Paired Samples Test
Paired Differences
85% Confidence Interval of the
Std. Error Difference
Mean | Std. Deviation Wean Lower [ Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | -7.50000 14.60697 421667 -16.78083 ‘ 1.78083 -1.779 1 103
MCM
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 28.0833 12 15.05420 434577
Matched 351667 2 1441485 416121
Paired Samples Correlations
[ [ ™ [ Conelation | _sig
[Pair1_ Expert & Matched | 12 | 614 | 034 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
st Ermor Difference
Mean Std. Deviation Mean Lower ‘ Upper 1 df Sig. (2-tailed)
Pair1  Expert- Matched | -11.08333 12.95768 374056 -19.31625 ‘ -2.85042 -2.963 11 013
Ecological
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mzan
Pair1  Expert 29.0000 12 15.03330 433974
Matched 260833 12 1222113 3.52794
Paired Samples Correlations
[ [ N [ Correlaion [ Sig._ |
[Pair1 Expertamatched | 12| 133 | 681 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower ‘ Upper t df Sig. (2-tailed)
Pair1  Expert- Matched 3.81667 18.07287 521718 -7.66629 ‘ 1539862 751 " 469

1.1.3

Between-Subjects (Independent)

Expert - Novice (LVAL)

Group Statistics
Std. Error
Condition M Mean | Std Daviation Maan
Response 1 12 | 253333 1317252 3.80258
2 30 36.1667 1388049 266248

Independent Samples Test

Levene's Test for Equality of
Variances ttestfor Equality of Means
95% Confidence Interval of the
Mzan Std. Error Diffsrance
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances o o o e
assumed 063 803 -2.304 40 026 -10.83333 470087 -20.33434 -1.33232
Equal variances not . . . . . -
assumed -2.365 2143 027 -10.83333 457982 -20.34436 -1.32231
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Matched Novice — Novice (LVAL)

Group Statistics

Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 | 32.8333 16.50253 476387
2 30 361667 13.98049 2.55248

Independent Samples Test

Levene's Test for Equality of
‘ariances t-test for Equality of Means
95% Confidence Intarval of the
Mean Std. Error Differance

F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N N - -
assumed 1.582 216 - 663 40 511 -333333 5.02688 -13.48304 6.82637

Equal variances not

assumed -617 17.670 545 -333333 5.40458 -14.70317 8.03651

Expert - Novice (MCM)

Group Statistics
Std. Error
Condition N Mean | Std Deviation Mean
Response 1 12 | 28.0833 15.05420 4.34577
2 30 42.0000 1343182 2.45230

Independent Samples Test

Levene's Test for Equality of
Variances test for Equality of Means
895% Confidence Interval of the
Mzan Std. Error Diftersnce
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances I N .
assumed 056 815 -2.0832 40 006 -13.91667 474668 -2351007 -4.32326

Equal variances not B N .
assumed -2.789 18413 012 -13.91667 498594 -24.38333 -3.45000

Matched Novice - Novice (MCM)

Group Statistics
Std. Error

Condition N Mean Std. Deviation Mean
Response 1 12 39.1667 1441485 416121

2 30 42.0000 1343182 2.45230

Independent Samples Test
Levene's Testfor Equality of
Variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances R N .

assumed 080 778 - 605 40 549 -2.83333 468258 -12.287T17 6.63051

Equal variances not B o .

assumed - 587 19.094 564 -2.83333 4.83006 -12.93939 7.27273

Expert — Novice (Ecological)

Group Statistics

Std. Error
Condition N Mean Std. Deviation Mean
Respaonse 1 12 25.0000 156.03330 433074
2 30 [ 24.0333 11.93512 217905

Independent Samples Test

Levene's Testfor Equality of
‘ariances testfor Equality of Means
95% Confidence Interval of the
Mean Std. Enror Difference
F Sig 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances N N N

assumed 616 437 113 40 265 496667 438312 -3.81216 1384549

Equal variances not o . arn o

assumed 1.023 16.840 321 496667 485609 -5.28621 1621954
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Matched Novice — Novice (Ecological)

Group Statistics
Std. Eror
Condition N Mean Std. Deviation Mean
Response 1 12 250833 1222113 352794
2 30 | 24.0333 11.83512 2175905
Independent Samples Test

Levene's Testfor Equality of

iances test for Equality of Means
95% Confidence Interval of the
Vean Std. Error Difference
F Sig t df Sig. (2-tailed) |  Difference Difference Lower Upper
Response  Equalvariances N N . o yann .
assumed 072 790 256 40 799 1.05000 410372 -7.24392 9.34392
Equal variances not o o o
assumed 253 | 19.896 803 1.05000 414663 -7.60264 9.70264
.2 Mental Demand
1.2.1 Within-Subjects
ANOVA
Valug
Sum of
Squares df Wean Square F Sig.
Between Groups 176.389 2 88.194 198 81
Within Groups 14662500 33 444318
Total 14838.880 35
Post Hoc Tests
Multiple Comparisons
Dependent Variable: Value
Banferroni
Mean 95% Confidence Interval
Difference (-
() Condtion  (J) Condtion J) Std. Error Sig. Lower Bound | Upper Bound
1 2 -2.50000 8.60541 1.000 -24.2047 19.2047
3 -5.41667 | 8.60541 1.000 -271213 16.2880
2 1 2.50000 8.60541 1.000 -19.2047 24.2047
3 -2.01667 | 8.60541 1.000 -24.6213 18.7880
3 1 5.41667 8.60541 1.000 -16.2880 271213
2 201667 | 8.60541 1.000 -18.7880 24.6213
ANOVA
valug
Sum of
Squares df Mean Square F Sig.
Batwesn Groups 3654167 2 1827.083 3145 056
Within Groups 19170.833 a3 580.934
Total 22825.000 5

Post Hoc Tests

Multiple Comparisens

DependentVariable: Value

Bonferroni
Mean 95% Confidence Interval
Difference (-
() Condtion  (J) Condtion J Std. Error Sig. Lower Bound | Upper Bound
1 2 1416667 | 9.83984 478 -38.9848 10.6616
3 10.41667 | 9.83964 892 14,4015 35.2348
2 1 14.16667 | 0.83984 478 10,6515 38.0848
3 24.56333 | 9.83084 053 -2348 49.4015
3 1 1041667 | 9.83884 802 -36.2348 14.4015
2 -24.58333 | 0.83984 053 -49.4015 2348
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ANOVA
Value
Sum of
Squares df Mean Square F Sig
Between Groups 11623889 2 5811944 12227 000
Within Groups 41354187 87 475335
Total 52978.056 89

Post Hoc Tests

Dependent Variable: Valug

Multiple Comparisons

Bonfermoni
Wean 95% Confidence Interval
Difference (-
() Condtion () Condtion J) Std. Error S Lower Bound | Upper Bound
1 2 -13.50000 5.62930 056 -27.2420 2420
3 1433333 562930 038 5914 28.0753
2 1 13.50000 5.62930 056 -.2420 27.2420
3 2783333 562930 000 14.0814 41,6763
3 1 -14.33333 5.62930 038 -28.0753 -5014
2 2783333 562930 000 -41.5753 -14.0014

* The mean difference is significant atthe 0.05 level

1.2.2

LVAL

Between-Subjects (Paired)

Paired Samples Statistics

St Error
Mean N Std. Deviation Mean
Pair1  Expert 326167 12 18.12380 562067
Matched | 395833 12 20.26822 8.44801
Paired Samples Correlations
W] Conelaton | _sig
|[Pair 1 Expert& Matched | 12 046 | 886 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower | Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | -6.66667 35.69653 10.30470 -29.34716 | 16.01383 -647 11 531
MCM
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 354167 12 2260916 6.52670
Matched | 53.7500 12 22.67608 6.54602
Paired Samples Correlations
I [ ™ [Conelaion | _sig
| Pairt__ Expert& Matched | 12 | 436 | 457 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
St Error Difference
Mean Sid. Deviation Mean Lower [ Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | -18.33333 24.05801 6.94495 -33.61906 | -3.04760 -2.640 11 .023
Ecological
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pairl  Expert | 383333 12 21.35558 6.16482
Matched 28.1667 12 109.28652 566754
Paired Samples Correlations
| | N |an5|atmn ‘ Sig |
[Fairi__Expert& Matched | 12 | 40 [ 265 |
Paired Samples Test
Paired Differences
95% Confidence Intzrval of the
Std. Error Difference
Mean Std. Deviation Mean Lower \ Upper t df Sig. (2-tailed)
Pair1  Expen- Matched 916667 2324116 670914 -5.60006 ‘ 2393340 1.366 11 199
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1.2.3

Between-Subjects (Independent)

Expert - Novice (LVAL)

Group Statistics
Std. Error

Condition N Mean | Std. Deviation Mean
Response 1 12 | 32,9187 1912380 5.52057

2 30 44.0000 2346678 4.28443

Independent Samples Test
Levene's Testfor Equality of
Variances t-est for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
Sig 1 df Sig. (2-tailed) Difference Difference Lower Uppar

Response  Equalvariances . . o .

assumed 1.670 204 -1.451 40 154 -11.08333 7.63627 -26.51682 435015

Equal variances not oy o . .

assumed -1.586 24825 125 -11.08333 6.98806 -25.48065 331388

Matched Novice — Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 395833 2926822 844501
2 30 44.0000 23 46678 4.28443
Independent Samples Test
Levane's Testfor Equality of
Variances ttest for Equality of Means
895% Confidence Interval of the
Mzan Std. Error Diftersnce
Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N
assumed 1.037 5 -513 40 811 -4 41867 860537 -21.80998 1287664
Equal variances not N N
assumed -.466 16.959 647 -4.41667 9.47323 -24.40710 1557377
Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 12 354167 2260916 6.52670
2 30 57.5000 20.37366 371971
Independent Samples Test
Levene's Testfor Equality of
ariances t-test for Equality of Means
95% Confidence Intarval of the
Std. Error erence
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response . Baua varances 088 770 | 307 10 004 -22.08333 77702 -36.58862 -7.57804
Equal variances not . . -
assumed -2.940 18.563 003 -22.08333 756122 -37.83174 -6.33443
Group Statistics
St Error
Condition N Mean Std. Deviation Mean
Response 1 12 53.7600 22 67608 6.54602
2 30 [ 57.5000 20.37366 371871
Independent Samples Test
Levene's Test for Equality of
Variances ttestfor Equality of Means
95% Confidence Interval of the
Mean std. Error Difference
Sig t af Sig. (2-tailed) Difference Difference Lower Upper
Equal
Response  Eaualvoriances 668 e | 522 4 505 -3.75000 748379 | -18.26897 1076897
Equal variances not - . o 5 o
assumed -.498 18518 624 -3.75000 752805 -19.53628 12.03628
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Expert — Novice (Ecological)

Group Statistics

Std. Error
Condition N Mean Std. Deviation Wean
Response 1 12 383333 21.35558 616482
2 30 29 6667 2145287 381676

Independent Samples Test

Levene's Test for Equality of
Variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Uppar
Response  Equal variances N o o

assumed 043 837 1.184 40 243 B.6666T 7.31845 -6.12447 2345781

Equal variances not . . - R
assumed 1.187 20411 249 B.BBEET 7.30384 -6.54922 2388255

Matched Novice - Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Respaonse 1 12 291667 19.28652 556754
2 30 29 6667 2145297 3.91676

Independent Samples Test

Levene's Testfor Equality of
Variances ttest for Equality of Means
95% Confidence Intarval ofthe
Mean Std. Error Differance
F Sig 1 df Sig. (2-tailed) Differance Difference Lower Upper
Response  Equalvariances N oy

assumed 128 722 -070 40 G944 -.50000 713175 -14.91380 13.91380

Equalvariances not ey o o

assumed -073 22.493 942 -.50000 6.80724 -14.50044 13.58044

I.3 Physical Demand
1.3.1 Within-Subjects

Expert

Friedman Test

Ranks
Mean Rank
LVAL 1.92
MCM 208
Ecological 2.00

Test Statistics™

N 12
Chi-Square 333
df 2
Asymp. Sig 46

a. Friedman Test

Matched Novice

Friedman Test

Ranks

Mean Rank
LVAL 1.83
MCM 1.96
Ecological 22

Test Statistics®

N 2
Chi-Square 2333
df 2
Asymp. Sig. 311

a Friedman Test
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Novice

Friedman Test

Ranks
Mean Rank
LVAL 217
MCM 1.82
Ecological 202

Test Statistics™

™ 30
chi-Square 3.895
df 2
Asymp. Sig 143

a. Friedman Test

I.3.2 Between - Paired

LVAL

Ranks
Sum of
N Mean Rank Ranks
Matched - Expert  Megative Ranks 47 450 18.00
Positive Ranks 3 333 1000
Ties 5°
Total 12
a. Matched < Expert
h. Matched = Expert
©. Matched = Expert
Test Statistics®
Matched -
Expert
z - B7a0
Asymp. Sig. (2-tailed) 487
a. Wilcoxon Signed Ranks Test
b. Based on positive ranks.
MCM
Ranks
Sum of
N Mean Rank Ranks
Matched - Expert  Megative Ranks 5 6.40 32.00
Positive Ranks 4 325 13.00
Ties 3®
Total 12
a. Matched < Expert
b. Matched > Expert
¢. Matched = Expert
Test Statistics™
Watched -
Expert
z EEETE
Asymp. Sig. (2-1ailed) 258
a. Wilcoxon Signed Ranks Test
b. Based on positive ranks.
Ecological
Ranks
Sum of
N Mean Rank Ranks
Matched - Expert  Megative Ranks 52 610 3050
Positive Ranks 4t 363 1450
Ties 3°
Total 12

a. Matched < Expert
b. Matched > Expert
¢. Matched = Expert

Test Statistics®

Matched -

Expert
z -.53°
Asymp. Sig. (2-tailed) 341

a.Wilcoxon Signed Ranks Test
b. Based on positive ranks
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1.3.3

Between - Independent

Expert - Novice (LVAL)

a. Grouping Variable: Condition

b. Mot corrected for ties.

Matched Novice - Novice (LVAL)

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 20.04 24050
2 30 22.08 662.50
Tatal 42
Test Statistics™
Response
Mann-Whitney LI 162.500
Wilcoxon W 240500
z -511
Asymp. Sig. (2-tailed) 609
Exact Sig. [2*(1-tailed b
sig)l 631

a. Grouping Variable: Condition

b. Mot corrected for ties.

Ranks
Sum of
Condition ] Mean Rank Ranks
Response 1 12 17.96 21550
2 30 2292 687.50
Total 42
Test Statistics™
Response
Mann-Whitney U 137.500
Wilcoxon W 215500
z -1.243
Asymp. Sig. (2-tailed) 214
gr;;}tswg [2*(1-tailed 2400

Expert - Novice (MCM)

a. Grouping Variable: Condition

b. Mot corrected for ties.

Matched Novice - Novice (MCM)

Ranks
Sum of
Condition N Mean Rank Ranks
Response 1 12 2379 28550
2 30 2058 617.50
Total 42
Test Statistics™
Response
Mann-Whitney Lt 152,500
Wilcoxon W 617.500
r4 - 809
Asymp. Sig. (2-tailed) e
Exact Sig. [2*(1-tailed b
Sig)] 449

a. Grouping Yariable: Condition

h. Mat corrected for ties.

Ranks
Sum af
Condition N Mean Rank Ranks
Response 1 12 221 266.50
2 30 21.22 636.50
Total 42
Test Statistics®
Response
Mann-Whitney U 171.500
Wilcoxon W 636.500
z -.251
Asymp. Sig. (2-tailed) 802
?Ba;]xswg [2*(1-tailed a1sb
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Expert - Novice (Ecological)

Ranks
Sum of
Gondition N Wean Rank Ranks
Response 1 12 2213 265.50
2 30 2125 637.50
Total 42
Test Statistics™
Response
Mann-Whitney U 172,500
Wileoxon W 637.500
z -.218
Asymp. Sig. (2-tailed) A28
éf;gswu. [2*(1-tailed a7

a. Grouping Variable: Condition
b Mot corrected for ties.

Matched Novice - Novice (Ecological)

Ranks
Surm of
Condition N Mean Rank Ranks
Response 1 12 2042 245.00
2 30 21.93 658.00
Total 42
Test Statistics™
Response
Mann-Whitney U 167.000
Wilcoxon W 245.000
r4 -377
Asymp. Sig. (2-tailed) 706
Exact Sig. [2*(1-tailed b
sig)] 731

a. Grouping Variable: Condition
b. Not corrected for ties

.4 Temporal Demand

1.4.1 Within-Subjects

Expert

ANOVA
Value
Sum of
Squares df Mean Square Sia.
Between Groups 18.056 2 9.028 030 971
Within Groups 9872.917 33 302.210
Total 9990.972 35
Post Hoc Tests
Multiple Comparisons
Dependent Variable: Value
Banferrani
lean 5% Confidence Intenval
Difference (-

() Concition (J) Condtion J) Std. Error Sig. Lower Bound | Upper Bound
1 2 -1.66667 | 7.08706 1.000 -19.5670 16.2336

3 - 41667 | 7.09706 1.000 -18.3170 17.4836
2 1 166667 | 7.09706 1.000 -16.2336 19.5670

3 1.25000 | 7.09706 1.000 -16.6503 191503
3 1 41667 | 7.08706 1.000 -17.4836 18.3170

2 -1.25000 | 7.09706 1.000 -19.1503 16.6503
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Matched Novice

ANOVA
Value
Sum of
Squares df Mean Square F Sig.
Between Groups 18.056 2 9.028 017 883
Within Groups 17122917 33 518.876
Total 17140872 35

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Valug

Bonferroni
Mean 95% Gonfidence Interval
Difference (-
() Condtion  (J) Condtion J) Std. Error Sig Lower Bound | Upper Bound
1 2 1 66667 §5.20943 1.000 -21.7885 251218
3 1.25000 9.20943 1.000 -22.2051 24.7051
2 1 -1.66667 §.29943 1.000 -261218 21.7885
3 - 41667 9.20943 1.000 -23.8718 23.0385
3 1 -1.25000 §.29943 1.000 -24 7051 222081
2 41667 9.20943 1.000 -23.0385 23.8718
Novice
ANOVA
Value
Sum of
Squares df Mean Square F sig
Between Groups 2361.667 2 1180833 3758 027
Within Groups 27338333 87 314234
Total 29700.000 89

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Valug

Bonferroni
_Mean 95% Confidence Interval
Difference (-
{) Condtion () Condtion & Std. Error S Lower Bound | Upper Bound
1 2 -1.83333 4.57700 1.000 -13.0065 9.3398
3 4983333 457700 103 -1.3398 21.0065
2 1 1.83333 4.57700 1.000 -0.3398 13.0065
3 1166667 457700 038 4935 228398
3 1 -9.83333 4.57700 103 -21.0065 1.3398
2 -11.66667 457700 038 -22.8398 -.4935

* The mean difference is significant at the 0.05 level

1.4.2 Between-Subjects (Paired)

LVAL

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pair1 Expert 28.3333 12 1656027 4.78054
Matched 25.0000 12 2354879 6.79795
Paired Samples Correlations
[ [ W [Corelation [ Sio.|
[[Pairt Exert&Matched | 12 | 676 | 016 |

Paired Samples Test

Paired Diffzrences

95% Confidence Interval of the
J— Difference
Wean Stel. Deviation Wean Lower [ Upper t dr
Pair1  Exper - Matched 333333 17.36419 501261 -7.69835 ‘ 14.36601 665
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MCM

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 30.0000 12 19.18806 553012
Matched 233333 12 20.48651 5.91385
Paired Samples Correlations
N ‘ Correlation ‘ Sig |
| Pair1_ Expert & Matched | 12 | 480 | 114 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Differance
Mean | Std. Deviation Mean Lower [ Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | 6.66667 20.26342 5.84854 -6.20808 ‘ 1954143 1.140 il 279
Ecological
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expen 28.7500 12 16.25437 46922
Matched | 23.7500 12 24.13268 696651
Paired Samples Correlations
[ [N [ Correlafion T Sia. ]
[Pair 1 Experta Matched | 12 | 077 | 813 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower \ Upper t df Sig. (2-tailed)
Pair1  Exper- Matched 5.00000 28.04218 5.09508 -12.81715 ‘ 2281715 618 11 549

1.4.3

Between-Subjects (Independent)

Expert - Novice (LVAL)

Group Statistics

Std. Error

Condition N Mean | Std. Dewiation Mean
Response 1 12 28.3333 16.56027 478054
2 30 | 27.6667 18.51064 3.37956

Independent Samples Test

Levene's Test for Equality of
Variances t-test for Equality of Means
95% Confidence Intarval of the
Std. Error erence
F Sig t df Sig. (2tailed) Difference Difference Lower Upper

Response  Equal variances -

assumed 2210 145 108 40 914 BEBBET 614659 -11.75605 13.08939

Equal variances not - .

assume 114 22,601 910 66667 585448 -11 45610 12.78943

Group Statistics
Std. Errar

Condition N Mean | Std Deviation Mean
Response 1 12 | 25.0000 23.54879 6.79795

2 30 27 6667 1851064 3.37956

Independent Samples Test
Levene's Test for Equalily of
Variances ttestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Diffarance
F Sig t dr Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances R R .

assumed 054 818 -.380 40 699 -2.66667 6.83812 -16.48805 1116672

Equal variances not . .

assumed -351 16.722 730 -2 66667 7.59168 -18.70403 13.37068
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Expert - Novice (MCM)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Respaonse 1 12 30.0000 1918806 553912
2 30 [ 29.5000 21.34891 3.80776
Independent Samples Test
Levene's Testfor Equality of
Variances ttest for Equality of Means
95% Confidence Interval ofthe
Mean std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
E |
Response  Eaualviances 398 532 070 40 44 50000 700673 | 1384302 1484302
Equalvariances not = N N N
assumed 074 22,498 942 50000 6.77306 -13.52845 14.52845

Matched Novice - Novice (MCM)

Group Statistics
Std. Error
Condition N Mean | Std Deviation Mean
Response 1 12 | 233333 20.48651 5.81395
2 30 29.5000 21.34891 3.859776

Independent Samples Test

Levene's Testfor Equality of
Variances t-testfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F sig 1 df Sig. (2-tailed) Differance Differance Lower Upper
Equal variances
Response  Eovalv 277 601 -855 I 398 -6.16667 72123 2074314 5.40980
Equal variances not P, - 5 .
assumed -871 21.120 394 -6.16667 7.08288 -20.89122 B.65788
Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 28.7500 16.25437 46922
2 30 17.8333 12.01173 2.19303
Independent Samples Test
Levene's Testfor Equality of
Variances Hest for Equality of Means
95% Confidence Interval ofthe
Mean std. Error Difference
F sig t af Sig. (2-tailad) Differance Differance Lower Upper
Response  Equal variances . . N N N
assumed 2742 106 2401 40 021 1091667 4.54757 1.72568 2010765
Equal variances not o o o o
assumed 2108 16.040 051 10.91667 517942 -.06098 21.89432

Matched Novice - Novice (Ecological)

Group Statistics

Std. Errar
Condition N Mean Std. Deviation Mean
Response 1 12 | 23.7500 2413268 6.96651
2 30 17.8333 12.01173 2.18303

Independent Samples Test

Levene's Test for Equalily of
Variances +testfor Equality of Means
95% Confidence Interval of the
Wean Std. Error Difference
F Sig 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N "
assumed 9.344 004 1.065 40 293 5.91667 555778 -5.31599 1714932
Equal variances not N N . B
assumed 810 13239 432 5091667 7.30353 -8.83277 21 66610
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.6 Perceived Performance

I.5.1 Within-Subjects

Expert

ANOVA
Value
Sum of
Squares df Mean Square F Sig
Between Groups 5556 2 2778 014 986
Within Groups 6700.000 33 203.030
Total 6705 556 35

Post Hoc Tests

Muttiple Comparisons
Dependent Variable: Valug

Bonferroni
Mean 95% Confidence Interval
Difference (-
() Condtion  (J) Condtion J) Std. Error sia. Lower Bound | Upper Bound
1 2 00000 581708 1.000 -14 6719 146719
3 -.83333 5.81708 1.000 -15.5052 13.8386
2 1 00000 581708 1.000 -14 6719 146719
3 -.83333 5.81708 1.000 -15.5052 13.8386
3 1 83333 581708 1.000 -13 8386 165052
2 83333 5.81708 1.000 -13.8386 15,5052

Matched Novice

ANOVA
Value
Sum of
Squares df Mean Square F Sig.
Between Groups 1672222 2 836111 1.847 174
Within Groups 14935417 33 452.588
Total 16607 639 35

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Valug

Bonfermoni
Man 95% Confidence Interval
Difference (-
(1) Condtion (J) Condtion J) Std. Error Sig Lower Bound | Upper Bound
1 2 -7.50000 B68513 1.000 -2 4057 14,4057
3 9.16667 8.68513 897 -12.7391 31.0724
2 1 7.60000 B68513 1.000 -14 4057 29.4057
3 16.66667 8.68513 191 -5.2391 38.5724
3 1 -9.16667 B68513 BAT -31.0724 12.7391
2 -16.66667 8.68513 191 -38.5724 5.2391
Novice
ANOVA
Valug
Sum of
Squares df Wean Square F Sig.
Between Groups 6323889 2 3161944 8964 000
Within Groups 30688333 a7 352738
Total 37012.222 89

Post Hoc Tests

Multiple Comparisons

DependentVariable: Value

Bonferroni
~ Mean 95% Confidence Interval
Difference (-
{) Condtion _ (J) Contion Jj Std. Error sig Lower Bound | Upper Bound
1 2 -2.33333 4840933 1.000 -141713 95046
3 1650000 484933 003 46621 28.3379
2 1 233333 484033 1.000 -9.5046 141713
3 1683333 484933 001 6.9854 306713
3 1 -16.50000" 4840933 003 -28.3379 -4.6621
2 -18.83333 484833 001 -30.6713 -6.9954

* The mean diffierence is significant atthe 0.05 level
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1.5.2

LVAL

Paired Samples Statistics
Std. Error
Wean N Std. Deviation Wean
Pair1  Expert 258333 12 1276240 3684109
Matched 437500 12 2066432 597105
Paired Samples Correlations
[ [N [ Coelaion [ Sig.__|
[[Pairt Expert & Matchad | 12 | 194 | 546 |

Paired Samples Test

Between-Subjects (Paired)

Paired Differences
95% Confidence Intzrval of the
Std. Error Difference
Mzan Stal. Deviation Mean Cower [ Upper t of Sig. (2-tailad)
Pair1  Expert-Matched | -17.91667 26.32475 759530 -34 64261 ‘ -1.19072 -2.358 11 038
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pairt  Expert 258333 12 16.89988 487858
Matched 51.2500 12 21.54541 6.21862
Paired Samples Correlations
[ | [ Conelaion T~Sia.
[[Pair1 Expert& Matched | 12 | 255 | 418 |
Paired Samples Test
Paired Differences
95% Confidence Interval ofthe
Std. Error Difference
Mean Std. Deviation Wean Lawer | Upper t df Sig. (2-tailed)
Pair1  Expent- Matched | -25.41667 23.68912 £.83846 -40.45801 | -10.36532 -3717 11 003
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 26 6667 12 12.67304 3.65838
Matched | 345833 12 21.58054 6.22077
Paired Samples Correlations
N [ Conelaton |_sig
| Pair1 Expert & Matched | 12 | 72 | 594 |
Paired Samples Test
Paired Differznces
95% Confidence Interval of the
Stel. Error Difference
Mean Std. Deviation Mean Lower | Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | -7.91667 26.83776 7.74739 -24.96856 | 9.13523 -1.022 11 329

1.5.3

Expert - Novice (LVAL)

Group Statistics

Between-Subjects (Independent)

St Eror
Condition N Mean Std. Deviation Mean
Response 1 12 258333 1276240 368418
2 30 | 47.1667 20.58135 375762
Independent Samples Test
Levene's Testfor Equality of
Variances ttestfor Equality of Means
95% Confidence Intzrval of the
Mean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances - N N N
assumed 4.780 035 -3328 40 002 -21.33333 6.40738 -34.28313 -8.38354
Equal variances not o - . o o
assumed -4.054 32464 000 -21.33333 526241 -32.04651 -10.62016

Appendices

297



Joshua Price

Matched Novice — Novice (LVAL)

Group Statistics
Std. Error
Condition N Mzan | Std. Deviation Wean
Response 1 12 437500 2068432 587105
2 30 47 1667 20.58135 3.75762

Independent Samples Test

Levene's Testfor Equality of
Variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F sig. t of Sig. (2-tailad) Differance Differance Lower Upper
Response  Equalvariances
assumed 011 919 -.485 40 630 -3.41667 7.03956 -17.64414 10.81081
Equal variances not . . P
assumed -484 20234 633 -3.41667 7.05501 -18.12225 11.28882
Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 | 268333 16.86988 487858
2 30 | 49.5000 109.79855 3.61470

Independent Samples Test

Levene's Testfor Equality of

Variances +testfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Differance
F Sig t df Sig. (2-tailed) Differance Difference Lower Upper
Response  Equalvariances B " "

assumed .358 553 -3.638 40 0ot -23.66667 6.50526 -36.81429 -10.51905
Equal variances not N N N .
esumed -3.898 | 23685 001 -23.66667 607179 -36.20704 1142629

Matched Novice - Novice (MCM)

Group Statistics
Std. Error
Condition N Mean | Std Deviation Mean
Response 1 12 51.2500 21.54541 6.21862
2 30 | 49.5000 19.70855 3.61470

Independent Samples Test

Levene's Testfor Equality of

nces test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Differance Differance Lower Upper
Response  Equalvariances . N s
Fesumed 058 808 252 40 802 1.75000 6.93170 -12.25048 1575048
Equal variances not . " "
assumed 243 | 18338869 810 1.75000 719373 -13.31372 16.81372

Expert — Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 26 6667 1267304 3.65838
2 30 | 306667 15.57702 2.84396

Independent Samples Test

Levene's Test for Equality of

Variances test for Equality of Weans
95% Confidznce Interval of the
Mean Std. Error Difference

F sia t of Sig. (2-tailed) Differance Differance Lower Upper

Response  Equalvariances N -
assumed 446 508 -789 40 435 -4.00000 5.06719 -14.24117 6.24117

Equal variances not N

assumed -.B63 24,867 396 -4.00000 463378 -13.54604 5.54604
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Matched Novice — Novice (Ecological)

Group Statistics

Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 345833 21.58054 6.22977
2 30 | 30.6667 15.57702 2.84396

Independent Samples Test

Levene's Testfor Equality of

Variances test for Equality of Means
95% Canfidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances - " -
assumed 1979 167 658 40 3.91667 5.95529 -B.11942 15.95275
Equal variances not . N . o
assumed A72 15.802 3.91667 6.84822 -10.61568 18.44002

1.6

1.6.1

Expert

Perceived

Effort

Within-Subjects

ANOVA
Valug
Sum of
Squares df Mean Square F Sig.
Between Groups 466.667 2 233333 1.054 360
Within Groups 7308.333 3 221.465
Total 7775.000 35

Post Hoc Tests

Dependent Variahle: Value
Bonfarroni

Multiple Comparisons

Mean 95% Confidence Interval
Difference (-
() Condtion  (J) Condtion J] Std. Error Sig. Lower Bound | Upper Bound
1 2 -6.66667 | 6.07542 841 -21.8002 8.6568
3 -8.33333 | 807542 538 -23.6568 5.9902
2 1 6.60667 | 6.07542 841 -8.6568 21.9802
3 -1.66867 | B.07542 1.000 -16.9902 136560
3 1 833333 | 6.07542 538 -6.9902 236568
2 1.60667 | 6.07542 1.000 -13.6568 16.9902
Matched Novice
ANOVA
Value
Sum of
Squares df Mean Square F Sig
Between Groups 4968.056 2 2484.028 4.652 017
Within Groups 17620.833 33 533,965
Total 22588.889 35

Post Hoc Tests

DependentVariable: Value
Bonferroni

Wultiple Comparisons

Mean 95% Confidence Interval
Difference (-
() Condtion  (J) Condtion J) Std. Error Sig. Lower Bound | Upper Bound
1 2 -13.33333 9.43367 501 -37.1271 10.4604
3 1641667 943367 335 -8.3771 39.2104
2 1 13.33333 9.43367 501 -10.4604 374271
3 28 75000" 943367 014 4.9563 525437
3 1 -15.41667 9.43367 335 -39.2104 837711
2 -28.75000" 943367 014 -52.5437 -4.9563

* The mean difference is significant at the 0.05 level
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ANOVA
Value
Sum of
Squares df Mean Square F Sig.
Between Groups 8211.667 2 4105.833 8.537 000
Within Groups 41840833 87 480929
Total 50052.500 89

Post Hoc Tests

Multiple Comparisons

DependentVariable: Value

Bonferroni
Wean 95% Confidence Intarval
Difference (-
) Condtion () Condtion 5 Std. Error | Sig Lower Bound | Uppar Bound
1 2 -13.16667 566233 067 -26.9893 6559
3 1016667 566233 228 -3.6569 239883
2 1 13.16667 566233 067 -6559 26,9893
3 2333333 566233 000 9.5107 37.1559
3 1 -10.16667 566233 228 -23.9803 36559
2 2333333 566233 000 -37.1559 -9.5107

* The mean difference is significant atthe 0.05 level

1.6.2 Between-Subjects (Paired)

LVAL

Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert | 258333 12 13.28590 383531
Matched 41.2500 12 26.55398 7.66547
Paired Samples Correlations
| | N ‘ Correlation | Sig. |
[Pair 1 Expert& Matched | 12 | 538 | o7t |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower [ Upper 1 df Sig. (2-tailed)
Pair1  Expert- Matched | -15.41667 22.40722 6.46841 -29.65353 ‘ -1.17880 -2.383 1 036
MCM
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 32,5000 12 1453835 4.19686
Matched 54 5833 12 2435144 7.02965
Paired Samples Correlations
| | N |Cm|a|a(mn | Sig.
[Fair1__Expert& Matched | 12 | 530 | o7 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower | Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | -22.08333 20.72091 598161 -35.24877 | -8.91790 -3692 11 004
Ecological
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Wean
Fair1  Expert 34,1667 2 16.62874 480031
Matched 258333 2 17.42951 503147
Paired Samples Correlations
[ W [ Correlaion TSig
[Pairt _ Expert & Matched | 12 277 [ 383 |

Paired Samples Test

Paired Differences

95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower | Upper t df Sig. (2-tailed)
Pair1  Expert- Matched 833333 2048651 581395 -4.68317 | 21.34084 1.409 11 186
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1.6.3 Between-Subjects (Independent)

Expert - Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 12 | 25.8333 13.28590 3.83531
2 30 428333 23.44044 4.27962

Independent Samples Test

Levene's Testfor Equality of
Variances t-test for Equality of Means
95% Confidence Intzrval ofthe
Mean Std. Error Difference
F Sig 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N N o .
assumed 9812 003 -2.354 40 024 -17.00000 7.22065 -31.58348 -2.40651
Equal variances not o N -
assumed -2.958 34015 006 -17.00000 574671 -28.66747 -5.33253

Matched Novice — Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 41.2500 26.55398 766547
2 30 428333 2344044 4.27862

Independent Samples Test

Levene's Test for Equality of
Variances t-test for Equality of Means
95% Confidence Intzrval ofthe
Mean Std. Error Difference

F Sig t af Sig. (2-tailed) Difference Difference Lower Upper

Response  Equal variances N . N
assumed 023 880 -190 40 850 -1.58333 8.31246 -18.38345 1521678

Equal variances not o o N .

assumed -180 18.263 859 -1.68333 87781 -20.00944 16.84278

Expert - Novice (MCM)

Group Statistics
Std. Error
Condition M Mean | Std Deviation Maan
Response 1 12 | 32,5000 1453835 419686
2 30 56.0000 20.94327 3.82370

Independent Samples Test

Levene's Tesi for Equalily of
Variances ttest for Equality of Means
85% Confidence Interval of the
Wean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances . x
assumed 1.888 177 -3548 40 001 -23.50000 6.62429 -36.88818 -1011181
Equalvariances not . o o
assumed -4138 29.207 000 -23.50000 5677563 -35.10827 -11.89173

Matched Novice - Novice (MCM)

Group Statistics

Std. Error

Condition N Mean Std. Deviation Mean
Response 1 12 54 6833 2435144 7.02965
2 30 | 56.0000 20.94327 3.82370

Independent Samples Test

Levene's Testfor Equality of
Variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Differance

F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equal variances N N
assumed 978 329 -189 40 851 -1 41667 749167 -16.55790 13.72457

Equal variances not - N

assumed -A77 17.878 861 -1 41867 8.0022! -18.23706 1540373

301



Joshua Price

Expert - Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 12 | 341867 16.62874 4.80031
2 30 326667 2132398 3.89321
Independent Samples Test
Levene's Testfor Equality of
Variances ttest for Equality of Means
95% Confidence Intarval ofthe
Mean Std. Error Differance
F Sig 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N N
assumed 1.776 190 218 40 829 1.50000 6.87987 -12.40474 15.40474
Equalvariances not . o o . .
assumed 243 25.069 810 1.60000 6.18062 -11.20518 14.20618

Matched Novice — Novice (Ecological)

Group Statistics

Std. Erfor
Condition N Mean Sid. Deviation Mean
Response 1 12 258333 17.42951 5.03147
2 30 32 6667 21.32389 3.89321
Independent Samples Test
Levene's Test for Equality of
Variances t-testfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difsrance
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances N
assumed 778 383 -984 40 3 -6.83333 6.94317 -20.86601 7.15934
Equal variances not N . . . .
assumed -1.074 24.750 293 -6.83333 6.36182 -19.94246 6.27580

1.7

1.7.1

Expert

Within-Subjects

Perceived Frustration

ANOVA
Walue
Surm af
Squares df Mean Square F Sig.
Between Groups 162.600 2 81.250 144 B6T
Within Groups 18662 500 33 565.530
Total 18825000 35
Post Hoc Tests
Muttiple Comparisons
Dependent Variable: Valug
Bonferroni
Mean 95% Confidence Interval
Difference (-

() Condtion  (J) Condtion Std. Error sig. Lower Bound | Upper Bound
1 2 -3.75000 9.70850 1.000 -28.2369 20.7368

3 -5.00000 9.70850 1.000 -29.4869 19.4868
2 1 3.75000 9.70850 1.000 -20.7369 282368

3 -1.25000 9.70850 1.000 -25.7369 23.2368
3 1 5.00000 9.70850 1.000 -16.4869 20.4868

2 1.25000 9.70850 1.000 -23.2369 25.7368
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Matched Novice

ANOVA
Valug
Sum of
Squares df Mean Square F Sig.
Between Groups 1493.056 2 746.528 1.076 353
Within Groups 22805833 33 693813
Total 24388 BRY 35
Post Hoc Tests
Multiple Comparisons
Dapendant Variable: Valug
Bonferroni
WMzan 95% Confidence Interval
Difference (-
(1) Condtion  (J) Condtion J) Std. Error Sig. Lower Bound | Upper Bound
1 2 -2.08333 | 10.75340 1.000 -29.2057 25.0390
3 12.50000 | 10.75340 760 -14.622 39.622
2 1 208333 | 10.75340 1.000 -25.0390 29.2057
3 14.58333 | 10.75340 553 -12.5390 41.7057
3 1 -12.50000 | 10.75340 760 -39.622 14622
2 -14.58333 | 10.75340 553 -41.7057 12,5390
ANOVA
Value
Sum of
Squares df Wzan Square F Sig
Between Groups 11633.889 2 5816.944 12,500 000
Within Groups 40195.000 87 462.011
Total 51828.889 89

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Valug
Bonferrani
Mean 95% Confidence Interval
Difference (I
() Condtion  (J) Condtion J Std. Error Sig Lower Bound | Upper Bound
1 2 -5.83333 554984 888 -18.3813 77147
3 20.66667 5.54984 001 71187 34.2147
2 1 583333 554984 888 -7.7147 163813
3 26.50000° 5.54984 .000 12,9520 40.0480
3 1 2066667 554984 001 -34.2147 -71187
2 -26.500007 5.54984 .000 -40.0480 -12.9520

* The mean differance is significant atthe 0.05 level

1.7.2

LVAL

Between-Subjects (Paired)

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 245833 12 2359208 6.81071
Matched | 37.8167 2 3078210 8.88603
Paired Samples Correlations
N [ Corelaton | _sig
[Pair1 Expert& Matched | 12 | 565 | 056 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower [ Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | -13,33333 26.14065 7.54615 -29.94231 ‘ 3.27564 -1.767 il 105
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MCM

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 283333 12 23.38738 6.75136
Matched 40.0000 12 28.52431 8.23426
Paired Samples Correlations
| N ‘ Correlation ‘ Sig |
| Pair1_ Expert & Matched | 12 | 300 | 344 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower [ Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | -11.66667 30.99365 8.94709 -31.35909 ‘ 8.02576 -1.304 1 219
Paired Samples Statistics
St Error
Mean N Std. Deviation Mean
Pair1  Expert 295833 12 2435144 7.02865
Matched | 254167 12 17.89505 516612
Paired Samples Correlations
[ [ W [ Corelation | Si.
[ Pair1 Expert&Matched | 12 | 088 | 785 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean | Std Daviation Wean Cower [ Upper df Sig. (2-tailed)
Pair1  Expert- Matched 4 16667 3146667 9 08365 -15.82630 ‘ 2415864 459 11 655
1.7.3 Between-Subjects (Independent)
Group Statistics
Std. Errar
Gondition N Mean | Std. Deviation Mean
Response 1 12 245833 23.59208 6.81071
2 30 [ 41.8333 2313690 4.22420
Independent Samples Test
Levene's Testfor Equality of
Variances t-testfor Equality of Means
95% Confidence Interval of the
Mean std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N "
assumed 340 563 -2171 40 036 -17.25000 7.94590 -33.30926 -1.18074
Equal variances not e N N
assumed -2.152 10.970 044 -17.25000 8.01434 -33.96923 -53077
Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 12 37.9167 30.78210 8.88603
2 30 41.8333 2313690 4.22420
Independent Samples Test
Levene's Test for Equality of
Variances t+est for Equality of Means
95% Confidence Inerval of the
Mean Std. Error Difference
F sig t af Sig. (2-tailed) Differance Difference Laower Upper
Response  Equalvariances _
assumed 4.680 037 -450 40 655 -3.91667 8.69937 -21.49874 13.66541
Equal variances not o o
assumed -.398 16.218 696 -3.91667 9.83897 -2475147 16.91814
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Expert - Novice (MCM)

Group Statistics

Std. Errar
Gondition N Mean | Std. Deviation Mean
Response 1 12 283333 2338738 6.75136
2 30 [ 47.6667 23.84336 4.35318

Independent Samples Test

Levene's Test for Equality of

Variances t+estfor Equality of Means
95% Confidence Interval of the
Mean Std. Error fference
F Sig. 1 df Sig. (2-tailed) Difference Difference Lower Upper
Respense  Equal varlances 550 45 | -2386 I 022 1933333 810153 -3570713 -2.95054
sumed

Equal variances not o . . N D ean

esumed 2407 | 20601 026 -18.33333 803312 -36.06431 261236

Matched Novice - Novice (MCM)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 12 | 40.0000 2852431 823426
2 30 | 47.6667 23.84336 435318

Independent Samples Test

Levene's Testfor Equality of

Variances t-test for Equality of Means
95% Confidence Intarval of the
Mean std. Error Difference
F Sig t df Sig. (2-tailed) Difference Differance Lower Upper

Response  Equalvariances N N - -

sesumed 1.214 277 -.890 40 ELL -7.66667 8.61338 -25.07495 974162

Equal variances not N - - N

assumed -823 | 17.490 A7 -7.66667 9.31414 -27.27595 11.94261

Group Statistics
Std. Error

Condition N Mean | Std. Deviation Mean
Response 1 12 | 20.5833 2435144 7.02965

2 30 211667 16.79819 3.06710

Independent Samples Test

Levene's Test for Equalily of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvanances _ N N e N
assumed 2955 093 1.285 40 206 841667 6.54948 -4.82032 21.65366
Equal variances not N . e
assumed 1.007 15,375 289 841667 7.66962 -7.89606 24.72940

Matched Novice - Novice (Ecological)

Group Statistics

Std. Error
Condition N Mean Std. Deviation Mean
Respanse 1 12 254167 17.89585 516612
2 30 | 21.1867 16.79919 3.06710
Independent Samples Test

Levene's Test for Equality of

ariances test for Equality of Means
95% Canfidence Interval of the
Std. Error ifference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N
assumed 346 559 727 40 471 4.25000 5.84343 -7.56001 16.06001
Equal variances not N N
assumed 707 19.216 488 4.25000 6.00798 -B.31531 16.81531
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Appendix J:

J.1

J.1.1

Expert

Measures (Chapter 7)

Overall System Usability

Within-Subjects

ANOVA
Value
Sum of
Squares df Mean Square F Sia.
Betwzen Groups 239.931 2 118.965 355 704
Within Groups 11149.479 33 337.863
Total 11389.410 35
Post Hoc Tests
Multiple Comparisons
Dependent Variable: Value
Bonferroni
D\ﬁmge?'v:e ¢ 95% Confidence Interval
) Condtion () Condtion J) Std. Emor | Sig Lower Bound | Upper Bound
1 2 6.25000 7.50403 1.000 -12.6768 251768
3 229167 750403 1.000 -16.6351 21.2184
2 1 -6.25000 7.50403 1.000 -25.1768 12,6768
3 -3.05833 750403 1.000 -22 8851 14.9684
3 1 -2.29167 7.50403 1.000 -21.2184 16.6351
2 395833 750403 1.000 -14.9684 22.8851
ANOVA
Valug
Sum of
Squares df Mean Square F Sig.
Between Groups 4148264 2 2074132 4792 018
Within Groups 14282813 33 432813
Total 18431076 35
Post Hoc Tests
Multiple Comparisons
Dependent Variabla: Valug
Bonfermoni
D‘ﬁg‘iﬂg o 95% Confidence Interval
() Condtion () Condtion J) Std. Error Sig LowerBound | Upper Bound
1 2 7.70833 8.49326 1.000 -13.7135 281301
3 -17 91667 849326 12, -38.3385 3.5051
2 1 -7.70833 8.49326 1.000 -29.1301 137135
3 -25 62600 849326 015 -47.0468 -4.2032
3 1 17.91667 8.49326 A2 -3.5051 39.3385
2 26 62500 849326 015 4.2032 47.0468
* The mean difference is significant at the 0.05 level.
ANOVA
Value
Sum of
Siuares df Waan Square F sig
Between Groups 9286.667 2 4643.333 16.522 000
Within Groups 24450833 87 281.044
Total 33737.500 89
Post Hoc Tests
Muttiple Comparisons
Dependent Variable: Valug
Bonferroni
Din‘glae‘:rée ¢ 95% Confidence Interval
() Condtion _(J) Contion Jj Std. Error Sig LowerBound | Upper Bound
1 2 7.66667 432854 240 -2.9000 18.2333
3 -16.66667 432854 001 -27.2333 -6.1000
2 1 -7.66667 432854 240 -18.2333 2.8000
3 2433333 432854 000 -34.5000 -13.7667
3 1 16.66667 432854 .00t 61000 27.2333
2 2433333 432854 000 13.7667 34.9000

* The mean difference is significant at the 0.05 level
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J.1.2 Between-Subjects (Paired)

LVAL

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 68.7600 12 17.0727 492847
Watched | 59.1667 12 21.03388 6.07196
Paired Samples Correlations
[ | [ Conelation | _sig
[Pair1_ Expert a Maiched | 12| 011 | 973 |

Paired Samples Test

Paired Differences
95% Confidence Interval of the
St Error Difference
Mean Std. Deviation Mean Lower [ Upper 1 df Sig. (2-tailed)
Pair1  Expert- Matched 958333 27.23703 786265 -7.72225 ‘ 26.88892 1219 11 248
MCM
Paired Samples Stati:
Std. Error
Wean N Std. Deviation Wean
Pair1  Expert 625000 12 1827815 527645
Matched | 51.4583 12 23.60803 6.81505
Paired Samples Correlations
[ [ N [ Canrelafion T Sig.|
| [Pair1_ Expert & Matched | 12| 129 | 689 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
St Error Differenca
Mean Std. Deviation Mean Lower | Upper t df Sig. (2-tailed)
Pair1  Expert- Matched | 11.04167 31.66682 914145 -0.07853 | 3116187 1.208 11 .252
Ecological
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  Expert 66.4583 2 19.69824 5.68639
Matched 77.0833 2 17.28218 4.08804
Paired Samples Correlations
[ | [ Conelafion T Sio.
[ Pair 1 Expert& matched | 12 | 026 | 935 |
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Eror Difference
Mean Std. Deviation Wean Lower [ Upper t of Sig. (2-tailed)
Pair1  Expert- Matched | -10.62500 2654535 766316 -07 48149 ‘ 6.24148 -1.387 " 193
J.1.3 Between-Subjects (Independent)
Expert - Novice (LVAL)
Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Respaonse 1 12 68.7500 17.07271 492847
2 30 611667 17.07908 3.11820
Independent Samples Test
Levene's Testfor Equality of
Variances ttestfor Equality of Means
95% Confidence Intarval of the
Mean Std. Error Difference
F Sig 1 df Sig. (2-tailed) Differance Differance Lower Upper
Response  Edualvariances 021 886 | 1.300 I 201 758333 583302 -4.20564 1937231
ES:SIL::QEHCES not 1.300 20333 208 7.68333 5.83206 -4.56036 19.73603
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Matched Novice — Novice (LVAL)

Group Statistics

5, Eror
Condion | N Mean | std. Deviation Msan
Responss 1 T2 | 50,1667 2108388 507196
2 30 | 61.1867 17.07900 311820
Independent Samples Test
Tovens's Testlor Equaliy of
Variances Hestfor Equality of Means
5% Confidence Intsval of ha
Mean std. Error Difference
F Sig 1 df Sig. (2tailled) |  Difference Difference Tower Upper
E I
Response  Eane vananees 550 w83 | -3 0 750 -2.00000 523434 1460007 10.60007
Equal varianess not N N s N
e 203 | 17115 ma -2.00000 582582 -16.30383 1230383
Group Statistics
Std. Error
Condiion | N Mean | std Deviation Mean
Response 1 T2 | 525000 18.07815 527645
2 30 | 535000 19.08822 347735
Independent Samples Test
Tevens's Testlor Equaliy of
ariances tHest for Equality of Means
5% Confidence nterval of e
Maan Std. Error
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
E I
Response  Eaus vanances 002 60 | 1308 0 170 500000 543445 -4.00450 2200450
Equal variances nat Ll N .
assumed 1.424 21.119 169 9.00000 631925 -4.13708 2213708
Group Statistics
T Enor
Gondition N Mean | Std. Deviation Mean
Response 1 12 51.4583 23.60803 6.81505
2 30 | 535000 1904622 347735
Independent Samples Test
Tevene's Test for Equallty of
Variances st for Equality of Means
95% Confidence Interval of the
Mean Std. Error ifference
F sig t d | sig (-tallsd) | Diflerence Differancs: Tower Upper
Response  Equalvariances N N N e A
assumed 2015 163 -.263 40 i -2.04167 6.96883 -16.12620 12.04287
Equal variancss not N R
e -287 | 17.038 793 204187 7.85004 1818119 1400785
Group Statistics
Std. Error
Condion | N Mean | Std. Deviation Mean
Responss 1 T2 | 66.4553 15.60824 568030
2 30 | 778333 13.73802 250784
Independent Samples Test
Levene's Testfor Equality of
Variancss Htest for Equality of Means
5% Confidsncs Insval ofthe
Mean Std. Error Difference
F sig t o | sig (alleq) | DiMference Diferzncs Tower pper
Response E::jx:'d'am“ 597 328 | -2134 40 038 -11.37500 532992 2214717 -60283
Equal variances not N .
e 1830 | 15473 087 | -11.37500 21485 2458644 183644

Matched Novice — Novice (Ecological)

Group Statistics

Std. Error
Congliion N Mean | Std. Deviation Vean
Response 1 12 | 77.0833 1728219 498994
2 0 | 77.0333 1373602 250784

Independent Samples Test

Lavene's Testfor Equality of

Variances ttest for Equality of Means
5% Conndence Itz val of the
Wean Std. Error Difference
F Sig t df | Sig. (-ailed) | Difference Diffzrence ower Upper
Response  Equal variances N " "
esumed 2777 103 -148 40 863 ~75000 505386 1096423 9.46423
Equal varianees not N
esume 134 | 16853 895 ~75000 550380 -12.53860 11.03860
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J.2  SUS Question 1 Responses
J.2.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Condition  Ecological 1 1 4 4 2 12
LVAL 0 2 3 6 1 2
MCM 0 2 4 5 1 12
Total 1 5 1 15 4 36
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 3.4827 8 901
Likelihood Ratio 3696 8 883
N of Valid Cases 36
a.12 cells (80.0%) have expected count less than 5. The
minimum expected countis .33,
Matched Novice
Condition * Response Crosstabulation
Caount
Response
1 2 3 4 5 Total
Candition  Ecological 0 2 5 4 1 12
LVAL 4 1 4 3 0 12
MCM 4 2 2 4 0 12
Total ] 5 11 11 1 36
Chi-Square Tests
Asymp. 8ig
Value df (2-sided)
Pearson Chi-Square 7.8557 8 448
Likelihood Ratio 10683 8 220
M ofvalid Cases 36
a. 15 cells (100.0%) have expected count less than 5. The
minimum expected count is .33
Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Ecological 1 1 [ 12 10 30
LVAL 3 g & o o 18
mcm 3 " 8 8 0 30
Total 7 2 20 20 10 78
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square | 36.945° ] 000
Likelihood Ratio 47.347 8 000
N of Valid Cases 78

a. 8 cells (60.0%) have expected count less than 5. The
minimum expected countis 1.62.

J.2.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 § Total
Gondiion  Expert 0 2 3 6 1 12
Matched 4 1 4 3 0 12
Total 4 3 7 9 1 24
Chi-Square Tests
Asymp. 519
Value df (2-sided)
Pearson Chi-Square 6.4767 4 166
Likelihood Ratio 8.434 4 077
N of Valid Cases 24

a.10 cells (100.0%) have expected count less than 5 The
minimum expected count is 50
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Expert — Novice

Condition * Response Crosstahulation

Count
Response
1 2 3 4 Total
Condition  Expert 0 2 3 & 1 2
Novice 3 a 11 7 [ 30
Total 3 11 14 13 1 42
Chi-Square Tests
Asymp. Sig
Value dr (2-sided)
Pearson Chi-Square 6.6017 4 159
Likelihood Ratio 7.331 4 19
N of Valid Cases 42
a. 7 cells (70.0%) have expected count less than & The
minimum expected countis .29,
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 Total
Condition  Matched 4 1 4 3 12
Novice 3 8 " 30
Total 7 10 15 10 42
Chi-Square Tests
Asymp. Sig.
Valug df (2-sided)
Pearson Chi-Square 45277 3 210
Likelihood Ratio 4578 3 205
M of Valid Cases 42

a. 4 cells (50.0%) have expacted count 12ss than 5. The

minimum expected countis 2,00,

J.2.3

Between-Subjects (MCM)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Caondition  Expert 0 2 4 5 1 2
Watched 4 2 2 4 0 2
Total 4 4 & £l 1 2
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square £.778° 4 218
Likelihood Ratio 7722 4 102
N ofvalid Casas 24
a. 10 cells (100.0%) have expected count less than 5. The
minimum expected count is .50,
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 Total
Condition  Expert 0 2 4 5 1 2
Novice 3 1 8 8 0 30
Total 3 13 12 13 1 42
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 55647 4 234
Likelihood Ratio 6.493 4 65
N ofValid Cases 42

a. 7 cells (70.0%) have expected count less than 5 The

minimum expectad ¢

ountis .29
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Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Matched 4 2 2 4 12
Naovice 3 " 8 8 30
Total 7 13 10 12 42
Chi-Square Tests
Asymp. Sig
Walug df 2-sided)
Pearson Chi-Square 44017 3 221
Likelihood Ratio 4.247 3 236
N of Valid Cases 42

a. 4 cells (50.0%) have expected count less than 5. The
minimum expectad countis 2.00.

].2.4 Between-Subjects (Ecological)

Expert - Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Condition  Expert 1 1 4 4 2 12
Matched 0 2 5 4 1 12
Total 1 3 9 8 3 24
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 17787 4 777
Likelihood Ratio 2177 4 703
N of Valid Cases 24
a.10 cells (100.0%) have expected countless than 5. The
minimum expected countis .50,
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Expert 1 1 4 4 2 2
Navice 1 1 [ 12 10 30
Total 2 2 10 1 12 42
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 2.473° 4 649
Likelihood Ratio 2441 4 655
N of Valid Cases 42
a.7 cells (70.0%) have expectzd count less than 5. The
minimum expected countis 57.
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 H Total
Condition  Matched 0 2 5 4 1 12
Novice 1 1 6 12 10 30
Total 1 3 11 16 11 42
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 62157 4 184
Likelihood Ratio 6.581 4 160
N of Valid Cases 42

a.7 cells (70.0%) have expected count less than 5. The
minimum expected countis .29
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J.3  SUS Question 2 Responses
J.3.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Condition  Ecological 0 B 1 2 1 12
LVAL 3 6 3 o 0 12
MCM 0 7 2 3 o 2
Total 3 21 [ 5 1 36
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square | 12.086% 8 147
Likelihood Ratio 14.378 8 a72
N of Valid Cases 36
a.12 cells (80.0%) have expected count less than 5. The
minimum expected countis 33
Matched Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Candition  Ecolagical 5 6 0 1 0 2
LvAL 1 7 3 0 1 2
MCM 0 7 1 3 1 2
Total & 20 4 4 2 36
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square | 16.100% [ 057
Likelihood Ratio 168.081 a 021
N ofvalid Cases 36
a. 12 cells (80.0%) have expected count less than 3. The
minimum expected count is .67
Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Ecological k] 16 4 1 o 30
LVAL 3 17 1 0 0 2
MCM 3 7 9 9 2 30
Total 15 40 14 10 2 81
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square | 32.482* g 000
Likelihood Ratio 34.809 8 000
N ofValid Cases a1

.8 cells (53.3%) have expected count less than 5. The
minimum expected count s .52

].3.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 H Total
Condition  Expert 3 B 3 0 12
Watched 1 7 3 1 12
Total 4 13 ] 1 24
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 20777 3 86T
Likelihood Ratio 2510 3 474
N of Valid Cases 24

a. 6 cells (75.0%) have expected count less than 5. The
minimum expected countis .50,
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Expert - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Candition  Expert 3 6 3 0 12
Movice 3 17 5 5 30
Total 6 2 8 5 42
Chi-Square Tests
Asymp. Sia.
Value dr (2-sided)
Pearson Chi-Square 37327 3 292
Likelihood Ratio 4.950 3 176
N ofValid Cases 42

a 5 cells (62.5%) have expected count less than 5 The
minimum expectad countis 1.43

Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Matched 1 7 3 0 1 12
Movice 3 17 5 5 0 30
Total 4 24 8 5 1 42
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 48427 4 304
Likelihood Ratio 6196 4 185
N of Valid Cases 42

a. 7 cells (70.0%) have expected count less than & The
minimum expected countis .29,

]J.3.3 Between-Subjects (MCM)

Expert - Matched Novice

Condition * Respense Crosstabulation

Count
Response
2 3 4 H Total
Caondition  Expert 7 2 3 0 12
Matched 7 1 3 1 12
Total 14 3 B 1 24
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 1.333% 3 T
Likelihood Ratio 1726 3 631
N ofValid Cases 24
a. 6 cells (75.0%) have expected count less than 5. The
minimum expected count is .50.
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Expert o 7 2 3 0 2
Novice 3 7 8 8 2 30
Total 3 14 11 12 2 42
Chi-Square Tests
Asymp. Sig.
Valug df (2-sided)
Pearson Chi-Square 5.807° 4 214
Likelihood Ratio 6919 4 140
N of Valid Cases 42

a. 7 cells (70.0%) have expected count less than 5. The
minimum expected countis 57
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Matched Novice - Novice

Condition * Response Crosstahulation

Count
Response
1 2 3 4 5 Total
Condition  Matched 0 7 1 3 1 12
Movice 3 7 El 9 2 30
Total 3 14 10 12 3 42
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 6.1487 4 188
Likelihood Ratio 7.030 4 134
N of Valid Cases 42

a. 7 cells (70.0%) have expected count less than 5 The
minimum expected countis .86.

].3.4 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Expert 0 8 1 2 1 2
Matched 5 [ o 1 o 2
Total 5 14 1 3 1 2
ChiSquare Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 7.619° 4 A07
Likelihood Ratio 10331 4 035
N of Valid Cases 24
a. 8 cells (30.0%) have expected count less than 5. The
minimum expected count is .50
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Expert o 8 1 2 1 2
Novice a 16 4 1 [ 30
Total E] 2 5 3 1 42
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 8.6807 4 070
Likelihood Ratio 10.879 4 028
N of Valid Cases 42
a. 7 cells (70.0%) have expected count less than 5. The
minimum expected count is .29,
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 Total
Caondition  Matched ] 6 o 1 12
Movice El 16 4 1 30
Total 14 22 4 2 42
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 2418% 3 490
Likelihood Ratio 3.451 3 327
N ofValid Cases 42

a. 5 cells (62.5%) have expected count less than 5. The
minimum expected count is
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J.4 SUS Question 3 Responses
J.4.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Count
Response
2 3 4 5 Total
Condition  Ecological 3 2 4 3 2
LVAL o 2 & 4 2
MCM 1 4 6 1 2
Total 4 8 16 8 36
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 6.750% 3 345
Likelihood Ratio 7747 6 257
N ofvalid Cases 36
a. 9 cells (75.0%) have expected countless than 5. The
minimum expected count is 1.33
Matched Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Ecological o 1 3 3 5 2
LvAL 0 2 4 5 1 2
MCW 1 4 4 3 0 2
Tatal 1 7 11 11 6 36
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square | 11.909% 8 155
Likelihood Ratio 12.856 8 A7
N ofvalid Cases 36
a.15 cells (100.0%) have expected count less than 5. The
minimum expected count is .33
Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Ecological 0 0 4 11 15 30
LVAL 1 5 4 17 3 30
MCcM 1 9 7 El 4 30
Total 2 14 15 37 22 90
Chi-Square Tests
Asymp. Sig.
Value dr 2-sided)
Pearson Chi-Square | 258167 8 001
Likelihood Ratio 28.253 8 000
N ofValid Cases 90

a. 6 cells (40.0%) have expected count less than 5. The
minimum expected count s 67

J.4.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
2 3 4 5 Total
Condition  Expert 0 2 6 4 12
Matched 2 4 5 1 12
Total 2 & 11 5 24
Chi-Square Tests
Asymp. 8ig
Value df 2-sided)
Pearson Chi-Square 45587 3 207
Likelihood Ratio 5.471 3 140
M of Valid Cases 24

4. 6 cells (75.0%) have expected count |2ss than 5. The
minimum expected count is 1.00
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Expert — Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Expert 0 0 2 6 12
Novice 1 5 4 17 30
Total 1 5 6 23 2
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 53367 4 255
Likelihood Ratio 6663 4 158
M of Valid Cases 42
.7 cells (70.0%) have expectad count less than 5. The
minimum expected countis .29,
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Respanse
1 2 3 4 Total
Condition  Matched 0 2 4 5 12
Novice 1 5 4 17 30
Total 1 7 8 22 42
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 256937 4 628
Likelihood Ratio 2.708 4 608
N of Valid Cases 42

a. 6 cells (60.0%) have expected countless than 6. The

minimum expected countis .29,

J.4.3

Between-Subjects (MCM)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Expert 0 1 4 6 12
Matched 1 4 4 3 12
Total 1 5 8 £l 24
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearsan Chi-Square 4.8007 4 308
Likelihood Ratio 5719 4 221
N ofvalid Cases 24
a. 10 cells (100.0%) have expected count less than 5. The
minimum expected count is .50
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 Total
Condition  Expert 0 1 4 & 2
Novice 1 k] 7 El 30
Total 1 10 11 15 42
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 35577 4 469
Likelihood Ratio 4138 4 388
N of Valid Cases 42

a.7 cells (70.0%) have expectad count I2ss than 5. The

minimum expected count is .29
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Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Matched 1 4 4 3 o 12
Novice 1 El 7 9 4 30
Total 2 13 11 12 4 42
Chi-Square Tests
Asymp. S0
Value df 2-sided)
Pearson Chi-Square 2483 4 648
Likelihood Ratio 3617 4 475
M ofValid Cases 42

a. 7 cells (70.0%) have expected count less than 5. The
minimum expected count is .57

J.4.4 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
2 3 4 H Total
Condition  Expert 3 2 4 3 12
Matched 1 3 3 5 12
Total 4 5 7 8 24
Chi-Square Tests
Asymp. Sig
Valug df 2-sided)
Pearson Chi-Square 1.643% 3 608
Likelihood Ratio 1.897 3 594
N of Valid Cases 24
3.9 cells (100.0%) have expected count less than 5. The
minimum expected countis 2.00.
Expert - Novice
Condition * Response Crosstabulation
Count
Response
2 3 4 5 Total
Caondition  Expert 3 2 4 3 12
Novice 0 4 11 15 30
Total 3 B 15 18 2
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 8.843% 3 031
Likelihood Ratio 8.999 3 029
N ofvalid Cases 42
a. 5 cells (62.5%) have expected countless than 5. The
minimum expected count is .86.
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Response
2 3 4 H Total
Caondition  Matchad 1 3 3 5 12
Novice 0 4 " 15 30
Total 1 7 14 20 42
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 36757 3 289
Likelihood Ratio 3.652 3 302
N of Valid Cases 42

a4 cells (50.0%) have expected count less than 5. The
minimum expectad count is .29
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J.5 SUS Question 4 Responses

J.5.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Ecological 4 [ 1 1 2
LVAL 4 5 3 0 2
McMm 3 L} 2 1 2
Total 11 17 6 2 36
Chi-Square Tests
Asymp. Sig.
Value dr 2-sided)
Pearson Chi-Square 22997 6 830
Likelihood Ratio 2977 6 812
N of Valid Casas 36

a. 9 cells (75.0%) have expected count less than 5. The
minimum expected countis 67.

Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Ecological 7 3 1 1 2
LVAL 4 4 3 1
MCHM 3 5 0 4 12
Total 14 12 4 [ 36
Chi-Square Tests
Asymp. Sig.
Valug df (2-sidad)
Pearson Chi-Square 8.857° [ 182
Likelihood Ratio 89360 6 154
M of Valid Cases 36
.12 cells (100.0%) have expected count less than 5. The
minimum expected countis 1.33,
Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Ecological 13 8 7 1 1 30
LVAL 4 " & a8 1 30
Mcm 5 10 6 7 2 30
Total 22 2 19 16 4 90
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square | 13.099% 8 108
Likelihood Ratio 14.22 a 076
N ofvalid Cases a0

a. 3 cells (20.0%) have expected count less than 5. The
minimum expected count is 1.3

J.5.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 E 7 Total
Condition  Expert 4 5 3 0 2
Watched 4 4 3 1 2
Total 8 ] 6 1 2
Chi-Square Tests
ASymp. 519
valug df (2-sided)
Pearson Chi-Square | 1.111° 3 74
Likelihood Ratio 1.498 3 683
N of valid Cases 24

a. 8 cells (100.0%) have expected count less than 5. The
minimum expected count is

Appendices

319



Joshua Price

Expert - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Expert 4 5 3 0 0 2
Navice 4 11 [ 8 1 30
Total 8 16 9 8 1 42
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square £.6567 4 235
Likelihood Ratio 7.832 4 098
N of Valid Cases 42

a. 6 cells (60.0%) have expected count less than 5. The
minimum expected count is .29,

Matched Novice — Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Matched 4 4 3 1 o 12
Novice 4 11 [ 8 1 30
Total ] 15 9 9 1 42
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 36717 4 452
Likelihood Ratio 4.031 4 402
N of Valid Cases 42

a. 6 cells (60.0%) have expected count less than 5. The
minimum expected countis .29,

J.5.3 Between-Subjects (MCM)

Expert - Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Expert 3 [} 2 1 12
Matched 3 5 o 4 12
Total 6 1 2 5 24
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 3.891° 3 273
Likelihood Ratio 4791 3 188
N of Valid Cases 24

a. 6 cells (75.0%) have expected count less than 5. The
minimum expected countis 1.00.

Expert — Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Caondition  Expert 3 B 2 1 0 12
Novice 5 10 [ 7 2 30
Total ] 16 8 8 2 42
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 2.800° 4 582
Likelihood Ratio 3474 4 482
N of Valid Cases 42

a. 6 cells (60.0%) have expected count less than 5. The
minimum expected count is .57,

Matched Novice — Novice
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Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Caondition  Matched 3 5 0 4 1] 12
Novice 5 10 6 7 2 30
Total 8 15 [ 11 2 42
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 4.006% 4 405
Likelihood Ratio 6.154 4 JAes
N ofValid Cases 42

a.7 cells (70.0%) have expected count less than 5. The
minimum expected count is .57,

].5.4

Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Caount
Response
1 2 3 4 Total
Candition  Expert 4 [ 1 1 2
Matched 7 3 1 1 2
Total 11 £l 2 2 2
Chi-Square Tests
Asymp. 5ig
Valug df (2-sided)
Pearson Chi-Square 1818% 3 611
Likelihood Ratio 1.848 3 605
M ofvalid Cases 24
a. B cells (75.0%) have expected count less than 5. The
minimum expected count is 1
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Caondition  Expert 4 & 1 1 o 12
Movice 13 8 7 1 1 30
Total 17 14 ] 2 1 42
Chi-Square Tests
Asymp. Sig
Value dr (2-sided)
Pearson Chi-Square 34747 4 482
Likelihood Ratio arez 4 436
N ofvalid Cases 42
a.7 cells (70.0%) have expected count less than 5. The
minimum expected count is .24
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Matched 7 3 1 1 0 2
Novice 13 8 7 1 1 30
Total 20 11 8 2 1 42
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 2.277° L} 685
Likelihood Ratio 2665 4 615
N of Valid Cases 42

a.6 cells (60.0%) have expected count less than 5. The
minimurm expected countis .29
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J.6 SUS Question 5 Responses
J.6.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Count
Response
2 3 4 5 Total
Condition  Ecological 3 5 4 0 2
LVAL 2 3 7 o 12
MCM 2 5 4 1 12
Total 7 13 15 1 36
Chi.Square Tests
Asymp. Sig.
Value dr (2-sided)
Pearson Chi-Square 41017 6 663
Likelihood Ratio 4.268 ] 640
Mafvalid Cases 36
a Gcells (75.0%) have expected count less than 5 The
minimum expected count is .33
Matched Novice
Condition * Response Crosstabulation
Count
Response
2 3 4 & Total
Condition  Ecological 2 4 3 3 12
LVAL 1 7 4 0 12
[lel) 1 6 4 1 12
Total 4 17 1 4 36
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 5.005% 6 543
Likelihood Ratio 5.807 6 445
N of Valid Cases 36
a.9 cells (75.0%) have expected count less than 5. The
minimum expected count is 1.33.
Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Caondition  Ecological o o 7 17 ] 30
LvAL o 4 13 10 3 30
MCM 1 5 16 ] 2 30
Total 1 £l 36 33 11 a0
Chi-Square Tests
Asymp. 8ig.
Valug df (2-sided)
Pearson Chi-Square 18,1677 8 020
Likelihood Ratio 21.250 8 007
N ofValid Cases El

a. 8 cells (60.0%) have expected countless than 5. The
minimum expected count is .33

]J.6.2 Between-Subjects (LVAL)

Expert - Matched Novice

Condition * Response Crosstabulation

Count
Response
2 3 4 Total
Candition  Expert 2 3 7 12
Matched 1 7 4 12
Total 3 10 " 24
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 2.752% 2 253
Likelihood Ratio 2814 2 245
MaofValid Cases 24

a. 2 cells (33.3%) have expected countless than 5. The
minimum expectzd count is 1.50
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Expert — Novice

Condition * Response Crosstabulation

Count
Response
2 3 4 H Total
Candition  Expert 2 3 7 0 12
Movice 4 13 10 3 30
Total 6 16 17 3 42
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 3.3467 3 341
Likelihood Ratio 4139 3 247
N ofValid Cases 42
a. 6 cells (75.0%) have expected count less than 6. The
minimum expected count is B6.
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Response
2 3 4 5 Total
Condition  Matched 1 7 4 0 12
Novice 4 13 10 3 30
Tatal 5 20 14 3 2
Chi-Square Tests
Asymp. Sia
Value df 2-sided)
Pearson Chi-Square 1.785% 3 618
Likelihood Ratio 2601 3 457
N of Valid Cases 42

a6 cells (62.5%) have expected count less than 5 The

minimum expected

count is B8,

].6.3

Between-Subjects (MCM)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
2 3 4 5 Total
Condition  Expert 2 3 4 1 2
Matched 1 & 4 1 2
Tatal 3 11 8 2 2.
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 4247 3 a35
Likelihood Ratio A3 3 934
N of Valid Cases 24
a. 6 cells (75.0%) have expected countless than 5. The
minimum expectad count is 1.00
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Expert 0 2 5 4 1 12
Movice 1 5 16 ] 2 30
Total 1 7 2 10 3 42
Chi-Square Tests
Asymp. 8ig.
Valug df (2-sided)
Pearson Chi-Square 1.307* 4 860
Likelihood Ratio 1.647 4 818
M ofValid Cases 42

a. 6 cells (80.0%) have expected count less than 5. The
minimum expected count is .29
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Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Matched 0 1 3 4 1 2
Novice 1 5 16 6 2 30
Total 1 [ 22 10 3 42
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 1.508% 4 825
Likelihood Ratio 1.787 4 775
N of Valid Cases 42

a. 7 cells (70.0%) have expected count less than 5. The
minimum expected countis .28,

].6.4 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
2 3 4 5 Total
Condition  Expert 3 5 4 0 12
Matched 2 4 3 3 12
Total 5 9 7 3 24
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 3.454° 3 327
Likelihood Ratio 4615 3 202
N of Valid Cases 24
a. B cells (100.0%) have expected count less than 5. The
minimum expected countis 1.50
Expert - Novice
Condition * Response Crosstabulation
Count
Response
2 3 4 5 Total
Condition  Expert 3 5 4 0 2
Novice 0 7 6 30
Total 3 12 21 [ 42
Chi-Square Tests
Asymp. 8ig
Valug df (2-sidad)
Pearson Chi-Square 11.8427 3 008
Likelihood Ratio 13.504 3 004
N of Valid Cases 42
a. 5 cells (62.5%) have expected count less than 5. The
minimum expected countis .86
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Response
2 3 4 5 Total
Condition  Matched 2 4 3 3 2
Mavice 0 7 17 6 30
Total 2 1 2 £l 42
Chi-Square Tests
Asymp. 8ig.
Valug df (2-sided)
Pearson Chi-Square 7.232% 3 085
Likelihood Ratio 7.468 3 058
N ofValid Cases 42

a. 4 cells (50.0%) have expected count less than 5. The
minimum expected count is .57
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J.7  SUS Question 6 Responses

J.7.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Ecological 2 7 3 0 2
LVAL 0 7 5 o 2
Mcm 1 5 4 2 2
Total 3 19 12 2 36
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 69217 6 328
Likelihood Ratio 811 & 230
N of Valid Cases 36
a.Gcells (75.0%) have expected countless than 5. The
minimum expectad count is .67
Matched Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 Total
Condition  Ecological [ [ 0 0 12
LVAL 3 2 5 2 12
MCHM 3 4 4 1 2
Total 12 12 9 3 36
Chi-Square Tests
Asymp. Sig.
Valug df (2-sided)
Pearson Chi-Square | 10.167% 8 118
Likelihood Ratio 13.689 6 033
M of Valid Cases 36
a. 12 cells (100.0%) have expected count less than 5. The
minimum expected countis 1.00.
Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 Total
Condition  Ecological £l 16 5 0 30
LVAL 7 9 " 3 30
MCM 3 10 " 3 30
Total 19 35 2 9 90
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square | 14.071% 6 028
Likelihood Ratio 16.866 & 010
N ofValid Cases 80

a 3cells (25.0%) have expected countless than 5. The
minimum expectzd count is 3.00

).7.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Caondition  Expert 0 7 5 0 12
Matched 3 2 5 2 12
Tatal 3 £l 10 2 24
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 7.778° 3 051
Likelihood Ratio 9873 3 020
N of Valid Cases 24

a. 6 cells (75.0%) have expected count less than 5. The
minimum expected count is 1.00.
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Expert - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Expert 0 7 5 0 12
Novice 7 9 1" 3 30
Total 7 16 16 3 42
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 5.862° 3 e
Likelihood Ratio 8.450 3 038
N of Valid Cases 42

a. 5 cells (62.5%) have expected count less than 5. The
minimum expected count is .86

Matched Novice - Novice

Condition * Response Crosstabulation

Caount
Response
1 2 3 4 Total
Condition  Matched 3 2 5 2 12
Novice 7 g " 3 30
Total 10 11 16 5 42
ChiSquare Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 9687 3 809
Likelihood Ratio 1.001 3 801
N ofValid Cases 42

a. 6 cells (52.5%) have expected count less than 5. The
minimum expected count is 1.43,

].7.3 Between-Subjects (MCM)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Expert 1 5 4 2 2
Matched 3 4 4 1 2
Total 4 g 8 3 2.
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 1.4447 3 685
Likelihood Ratio 1.498 3 683
N ofValid Cases 24
a. 8 cells (100.0%) have expected count less than 5. The
minimum expected count is 1.50
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 Total
Caondition  Expert 1 5 4 2 12
Navice 3 10 1" 6 30
Total 4 15 15 8 2
Chi-Square Tests
Asymp. Sig
Walug df (2-sided)
Pearson Chi-Square 2687 3 966
Likelihood Ratio 266 3 966
N of Valid Cases 42

a. G cells (62.5%) have expected count less than 5. The
minimum expectad countis 1.14.
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Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Tatal
Condition  Matched 3 4 4 1 12
Movice 3 10 1" B 30
Total 6 14 15 7 42
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 2.077° 3 557
Likelihood Ratio 2.046 3 563
M of Valid Cases 42

a. 6 cells (62.5%) have expectad count l2ss than 5. The
minimum expected countis 1.71

].7.4 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 Total
Condition  Expert 2 7 3 2
Matched & & o 2
Total ] 13 3 2
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 5.077% 2 .79
Likelihood Ratio 6329 2 042
N ofValid Cases 24
a. 4 cells (66.7%) have expected count less than 5. The
minimum expected count is 1.50.
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 Total
Condition  Expert 2 7 3 2
Novice 9 16 5 30
Total 11 2 8 42
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square .933* 2 627
Likelihood Ratio a71 2 615
M ofValid Cases 42

2.2 cells (33.3%) have expectzd count less than 5. The
minimum expected count is 2.29.

Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 Total
Condition  Matched 6 B o 12
Movice 9 16 5 30
Total 15 22 5 2
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 2.978% 2 22
Likelihood Ratio 4282 2 18
M of Valid Cases 42

a. 3 cells (50.0%) have expected count less than 5. The
minimum expected countis 1.43
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J.8 SUS Question 7 Responses
J.8.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Count
Response
1 2 3 4 & Total
Candition  Ecological 1 1 1 6 3 2
LVAL 1 2 2 4 3
MCM 1 2 2 3 4 12
Total 3 5 5 13 10 36
Chi-Square Tests
Asymp. Sig
Value dr 2-sided)
Pearson Chi-Square 2077 8 978
Likelihood Ratio 2126 ] ar7
N ofValid Cases 36
a 15 cells (100.0%) have expected countless than 5. The
minimum expected countis 1.00
Matched Novice
Condition * Response Crosstabulation
Count
Response
2 3 4 5 Total
Condition  Ecological o 2 3 7 2
LVAL 2 1 3 4 2
Mcm 4 2 4 2 2
Total 3 5 12 13 36
Chi-Square Tests
Asymp. 8ig.
Valug df (2-sided)
Pearson Chi-Square 7.823° 3 251
Likelihood Ratio 9.468 6 149
M ofValid Cases 36
a.12 cells (100.0%) have expected count less than 5. The
minimum expected count is 1.67
Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Ecological o 1 0 16 13 30
LvAL 1 3 2 18 6 30
MCM 1 5 5 1 8 30
Total 2 9 7 45 27 90
ChiSquare Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square | 13.717% 8 089
Likelihood Ratio 16154 8 040
N of Valid Cases a0

a.9 cells (50.0%) have expected count less than 5. The
minimum expected count is .67

].8.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Expert 1 2 2 4 3 12
Matched 0 2 1 5 4 12
Total 1 ] 3 9 7 24
Chi-Square Tests
Asymp. 519,
Value df (2-sided)
Pearson Chi-Square 1.587% 4 811
Likelihood Ratio 1.981 4 739
N of Valid Cases 24

.10 cells (100.0%) have expected count less than & The
minimum expected count is 5
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Expert — Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 Total
Condition  Expert 1 2 2 4 3 2
MNovice 1 3 2 18 6 30
Total 2 5 4 22 9 42
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 29347 4 568
Likelihood Ratio 2.887 4 77
N of Valid Cases 42
a. 7 cells (70.0%) have expected countless than 5. The
minimum expected countis .57
Matched Novice - Novice
Condition * Response Crosstahulation
Count
Response
1 2 3 4 5 Total
Condition  Matched o 2 1 5 4 2
Mavice 1 3 2 18 6 30
Total 1 5 3 2 10 42
Chi-Square Tests
Asymp. 8ig
Value df (2-sided)
Pearson Chi-Square 19197 4 751
Likelihood Ratio 2160 4 706
N ofvalid Cases 42

a.7 cells (70.0%) have expected count less than 5. The

minimum expected

countis .29

].8.3

Between-Subjects (MCM)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Expert 1 2 2 3 4 12
Matehed o 4 2 4 2 12
Total 1 & 4 7 [ 24
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 2476 4 648
Likelihoad Ratio 2.888 4 577
M of Valid Cases 24
a. 10 cells (100.0%) have expected count less than 5. The
minimum expected countis .50
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 Total
Condition  Expert 1 2 2 3 4 2
Navice 1 5 5 " 8 30
Total 2 7 7 14 12 42
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 933 4 a20
Likelihood Ratio 906 4 924
M ofValid Cases 42

a. 6 cells (60.0%) have expected count less than 5. The

minimum expected

countis 57
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Matched Novice - Novice

Condition * Response Crosstabulation

Caount
Response
1 2 3 4 5 Total
Condition  Matched 0 4 2 4 2 12
Novice 1 5 5 " 8 30
Total 1 El 7 15 10 42
Chi-Square Tests
Asymp. Sig
valug df (2-sided)
Pearson Chi-Square 1.898% 4 755
Likelihood Ratio 2108 4 716
N ofValid Cases 42

a. 6 cells (60.0%) have expected count less than 5. The
minimum expected count is .29

].8.4 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Condition  Expert 1 1 1 & 3 12
Matched 0 0 2 3 12
Total 1 1 3 El 10 24
Chi-Square Tests
Asymp. 510
Value dr (2-sided)
Pearson Chi-Square 49337 4 294
Likelihood Ratio 5777 4 216
N ofValid Cases 24
a. 8 cells (80.0%) have expected count less than 5. The
minimum expected countis 50
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 H Total
Caondition  Expert 1 1 1 3 3 12
Movice 0 1 0 16 13 30
Total 1 2 1 22 16 42
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Ch-Square 6.224% 4 183
Likelihood Ratio 6.258 4 A8t
M ofValid Cases 42

a. 7 cells (70.0%) have expected countless than 5. The
minimum expected count is .29,

Matched Novice — Novice

Condition * Response Crosstabulation

Count
Response
2 3 4 H Total
Condition  Matched 0 2 3 7 12
Novice 1 0 16 13 30
Total 1 2 19 2 2
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 7.3267 3 062
Likelihood Ratio 7.783 3 051
M ofValid Cases 42

a. 4 cells (50.0%) have expected count lass than 5. The
minimum expected countis .29,
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J.9 SUS Question 8 Responses
J9o.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Count
Response
1 2 3 4 & Total
Condition  Ecological 1 7 2 1 1 12
LVAL 0 7 4 1 0 12
MCM 0 4 6 2 0 12
Total 1 18 12 4 1 36
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 7.500° 8 484
Likelihood Ratio 8.031 8 430
N of Valid Cases 36
a. 12 cells (80.0%) have expected count less than 5. The
minimum expected countis 33,
Matched Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Caondition  Ecological & 5 1 o o 12
LVAL 3 6 1 2 0 12
MCM 4 2 2 3 1 2
Total 13 13 4 5 1 36
ChiSquare Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 8.377° 8 .39e
Likelihood Ratio 10.221 8 250
N of Valid Cases 36
a.15 calls (100.0%) have expactad count lass than 5. The
minimum expected count is .33
Novice
Condition * Response Crosstabulation
Count
Rasponse
1 2 3 4 Total
Condition  Ecological 10 17 1 2 30
LVAL 3 16 5 B 30
[lel) 5 7 el 9 30
Total 18 40 15 17 El
Chi-Square Tests
Asymp. Sig
Value df (2-sidad)
Pearson Chi-Square 19.636° [ 003
Likelihood Ratio 21518 ] oo
N of Valid Cases a0

a. 0 cells (0.0%) have expected count less than 5. The
minimum expected countis 5.00.

]J.9.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Expert 0 7 4 1 2
Maiched 3 6 1 2 2
Total 3 13 5 3 2.
Chi-Square Tests
ASYmp, Sig.
Value af (2-sided)
Pearson Chi-Seuare £.210% 3 1857
Likelihood Ratio 6503 3 090
M of Valid Cases 24

a. 6 cells (75.0%) have expected count12ss than 5. The
minimum expected count is 1.50
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Expert - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Expert o 7 4 1 2
Novice 3 16 5 6 30
Total 3 2. El 7 42
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 3.050° 3 384
Likelihood Ratio 3.881 3 275
N of Valid Casas 42

a. 4 cells (50.0%) have expected count less than 5. The
minimum expected countis 86

Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Matehed 3 B 1 2 12
Novice 3 16 5 6 30
Total [ 22 6 8 42
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 1.8357 3 607
Likelihood Ratio 1.751 3 626
N of Valid Cases 42

a §cells (62.5%) have expected countless than 5. The
minimum expectzd count is 1.71

]J.9.3 Between-Subjects (MCM)

Expert — Matched Novice

Condition * Response Crosstabulation

Caount
Response
1 2 3 4 5 Total
Candition  Expert 0 4 6 2 0 12
Matched 4 2 2 3 1 12
Total 4 6 g § 1 24
ChiSquare Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 7.867° 4 097
Likelihood Ratio 3.806 4 042
M ofValid Cases 24

a. 10 cells (100.0%) have expected count less than 5. The
minimum expected count is .50,

Expert - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Expert 0 4 6 2 12
Movice 5 7 El El 30
Total 5 11 15 11 42
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 3.869% 3 276
Likelihood Ratio 6213 3 167
M ofValid Cases 42

a. 5 cells (62.5%) have expected countless than 5. The
minimum expected count is 1.43
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Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Matched 4 2 2 3 1 2
Novice 5 7 9 9 o 30
Total £l £l 11 12 1 42
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 4.4467 ) 349
Likelihood Ratio 4428 4 351
N ofvalid Cases 42

a 6 cells (60.0%) have expected count less than 5 The
minimum expected count is .29

].9.4 Between-Subjects (Ecological)

Expert - Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Caondition  Expert 1 7 2 1 1 12
Matched [ 5 1 0 [ 12
Total 7 12 3 1 1 24
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 6.2387 4 182
Likelihood Ratio 7.410 4 16
MaofValid Cases 24
a. B cells (80.0%) have expected count less than 5. The
minimum expected count is 50
Expert - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 H Total
Caondition  Expert 1 7 2 1 1 12
Naovice 10 17 1 2 0 30
Total 11 2. 3 3 1 42
Chi-Square Tests
ASymp. 510
Value df (2-sided)
Pearsan Chi-Square 6.716% 4 152
Likelihood Ratio 6.940 4 39
N ofValid Cases 42

a. 7 cells (70.0%) have expected countless than 5 The
minimum expectad count is .29

Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Candition  Matched [} 3 1 0 12
Movice 10 17 1 2 30
Tatal 16 22 2 2 42
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 22437 3 623
Likelihood Ratio 2730 3 435
N ofValid Cases 42

a. 6 cells (62.5%) have expected count less than & The
minimum expected count is 57,
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J.10 SUS Question 9 Responses
J.10.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Caount
Response
2 3 4 5 Total
Candition  Ecological 0 3 8 1 2
LVAL 1 2 4 5 12
MCW 1 4 5 2 2
Total 2 £l 17 8 36
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 6.446% 3 375
Likelihood Ratio 6.8955 6 325
M ofValid Cases 36
a. 8 cells (75.0%) have expected countless than 5. The
minimum expected count is &7
Matched Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 H Total
Caondition  Ecological 0 3 2 4 3 12
LWAL 1 2 4 4 1 1
MCM 2 2 4 4 0 12
Total 3 7 10 12 4 36
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 6.5867 8 582
Likelihood Ratio 8.211 8 413
N ofvalid Cases 36
a.15 cells (100.0%) have expected countless than 5. The
minimum expectad count is 1.00.
Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Ecological 0 1 4 15 10 30
LvAL 1 4 " 12 2 30
MCW 2 13 El 5 1 30
Total 3 18 24 32 13 50
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square | 34.418° [ 000
Likelihood Ratio 35.806 8 000
N ofValid Cases a0

a. 6 cells (40.0%) have expected countless than 5. The
minimum expected count is 1.00.

J.10.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Caondition  Expert 0 1 2 4 5 12
Matched 1 2 4 4 1 12
Total 1 3 ] 8 6 4
Chi-Square Tests
ASymp. 510
Value df (2-sided)
Pearson Chi-Square 4.667* 4 323
Likelihood Ratio 5317 4 256
N ofValid Cases 24

a. 10 cells (100.0%) have expected count less than & The
minimum expectad count is .50
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Expert — Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Expert 0 1 2 5 2
Navice 1 4 11 12 2 30
Total 1 5 13 16 7 42
Chi-Square Tests
Asymp. Sig.
Valug df (2-sidad)
Pearson Chi-Square 8.088° 4 oeg
Likelihood Ratio 7718 4 102
M of Valid Cases 42
a.7 cells (70.0%) have expectad count 12ss than 5. The
minimum expected countis .29,
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Tatal
Condition  Matched 1 2 4 4 1 12
Novice 1 4 1 2 2 30
Total 2 6 15 6 3 2
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 6777 4 as54
Likelihood Ratio 633 4 959
N ofValid Cases 42

a. 8 cells (80.0%) have expected count less than 5. The
minimum expected countis .57

J.10.3 Between-Subjects (MCM)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Expert 0 1 4 5 2 2
Matched 2 2 4 4 0 2
Total 2 3 g 9 2 2
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 4.4447 4 348
Likelihood Ratio 5.996 4 199
N ofValid Cases 24

a. 10 cells (100.0%) have expected count less than 5. The
minimum expected countis 1.00

Expert — Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Expert 0 1 4 5 2 12
Novice 2 13 El 5 1 30
Total 2 14 13 10 3 2
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 8.3647 4 078
Likelihood Ratio 9319 4 054
N of Valid Cases 42

a.7 cells (70.0%) have expected count less than 5. The
minimum expected countis .57
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Matched Novice - Novice

Condition * Response Crosstahulation

Count
Response
1 2 3 4 5 Total
Condition  Matched 2 2 4 4 0 2
MNovice 2 13 k] 5 1 30
Total 4 15 13 9 1 42
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 4.149% 4 386
Likelihood Ratio 4516 4 3
M of Valid Cases 42

a.7 cells (70.0%) have expectad count 12ss than 5. The
minimum expected countis .29,

J.10.4 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
2 3 4 5 Total
Condition  Expert 0 3 8 1 2
Matched 3 2 4 3 2
Total 3 5 12 4 2
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square £.633% 3 137
Likelihood Ratio 6.766 3 080
N ofvalid Cases 24
a. 6 cells (75.0%) have expected countless than 5. The
minimum expected count is 1.50.
Expert - Novice
Condition * Response Crosstabulation
Count
Response
2 3 4 H Total
Candition  Expert 0 3 8 1 12
Novice 1 4 15 10 30
Total 1 7 2. " 42
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 3.580% 3 311
Likelihood Ratio 4272 3 234
N of Valid Cases 42
a. 4 cells (50.0%) have expected count less than 5. The
minimum expected count is .29
Matched Novice - Novice
Condition * Response Crosstabulation
Count
Response
2 3 4 8 Total
Caondition  Matched 3 2 4 3 12
Novice 1 4 15 10 30
Total 4 6 19 13 2
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 50107 3 an
Likelihood Ratio 4516 3 n
M ofvalid Casas 42

a. 5 cells (62.5%) have expected count less than 5. The
minimum expected countis 1
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J.11 SUS Question 10 Responses
J. 111 Within-Subjects

Expert

Condition * Response Crosstabulation

Count
Response
1 2 3 5 Total
Condition  Ecological 5 3 4 0 12
LVAL 2 6 3 1 12
MCH 3 3 5 1 12
Total 10 12 12 2 36
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 4.4007 6 623
Likelihood Ratio 4.920 & 554
MaofValid Cases 36
a. 12 cells (100.0%) have expected count less than 5. The
minimum expectad count is 67
Matched Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Ecological 6 2 4 0 0 12
LVAL 3 5 3 1 o 12
MCHM 4 2 1 1 12
Total 13 11 9 2 1 36
Chi-Square Tests
Asymp. Sig
Valug df 2-sided)
Pearson Chi-Square 6.0167 8 845
Likelihood Ratio 6.930 8 544
M ofValid Cases 38
a.15 cells (100.0%) have expected count less than 5. The
minimum expected countis .33
Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Ecological El 2 6 3 0 30
LVAL B 14 3 4 3 30
MCcM 2 13 5 8 2 30
Total 17 39 14 15 5 a0
Chi-Square Tests
Asymp. 8ig
Valug df (2-sidad)
Pearson Chi-Square 11.107* 8 196
Likelihood Ratio 12.982 8 12
N of Valid Cases 90

a.6 cells (40.0%) have expected count lass than 5. The
minimum expected countis 1.67.

J.11.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Candition  Expert 2 [} 3 0 1 12
Matched 3 5 3 1 0 12
Total 5 11 6 1 1 24
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Ch-Square 22017 4 682
Likelihood Ratio 3.065 4 547
N ofValid Cases 24

a. 8 cells (80.0%) have expected count less than & The
minimum expected count is .50,

Appendices

337



Joshua Price

Expert - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Condition  Expert 2 [ 3 0 1 12
Movice 3 1 3 4 3 30
Total El 2 [ 4 4 42
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 3.0457 4 650
Likelihood Ratio 4.008 4 405
N of Valid Cases 42

a.7 cells (70.0%) have expected count less than 5. The
minimurm expected countis 1.14,

Matched Novice — Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Condition  Matched 3 5 3 1 0 2
Naovice 6 14 3 4 3 30
Total 9 19 [ 5 3 42
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 2.877° 4 79
Likelihood Ratio 3575 4 467
N of Valid Cases 42

a.7 cells (70.0%) have expected count less than 5. The
minimum expected count is .86

J.11.3 Between-Subjects (MCM)

Expert — Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 5 Total
Condition  Expert 3 3 5 0 1 2
Matched 4 4 2 1 1 2
Total 7 7 7 1 2 2
Chi-Square Tests
Asymp. 8ig
Valug af (2-sided)
Pearson Chi-Square 25717 4 632
Likelihood Ratio 3.001 4 558
N ofValid Cases 24
a.10 cells (100.0%) have expected count less than 5. The
minimum expected countis .50
Expert — Novice
Condition * Response Crosstabulation
Count
Response
1 2 3 4 5 Total
Condition  Expert 3 3 5 o 1 2
Naovice 2 13 3 ] 2 30
Total 5 16 10 8 3 42
Chi-Square Tests
Asymp. 8ig
Value df 2-sided)
Pearson Chi-Square 8.660° 4 070
Likelihood Ratio 10.400 4 034
N of Valid Cases 42

a.7 cells (70.0%) have expected count less than 5. The
minimum expected countis .86,
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Matched Novice - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 H Total
Condition  Matched 4 4 2 1 1 12
Novice 2 13 5 8 2 30
Total B 17 7 9 3 42
Chi-Square Tests
Asymp. Sig
Value of 2-sided)
Pearson Chi-Square £.8567 4 210
Likelihood Ratio 5.502 4 232
N of Valid Cases 42

a.7 cells (70.0%) have expected count less than 5. The
minimum expected countis 86

J.11.4 Between-Subjects (Ecological)

Expert - Matched Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 Total
Condition  Expert 5 3 4 2
Matched 6 2 4 2
Total 11 5 8 2
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Ch-Square 201* 2 865
Likelihood Ratio 292 2 864
N ofValid Cases 24

a. 4 cells (66.7%) have expected countless than 5. The
minimum expected count is 2.50.

Expert - Novice

Condition * Response Crosstabulation

Count
Response
1 2 3 4 Total
Condition  Expert 5 3 4 0 12
Novice ) 12 6 3 30
Total 14 15 10 3 42
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 2.730° 3 435
Likelihood Ratio 3533 3 316
N of Valid Cases 42

a. 5 cells (62.5%) have expected count less than 5. The
minimum expected count is .86

Matched Novice - Novice

Condition * Response Crosstabulation

Caount
Response
1 2 3 4 Total
Condition  Matched 6 2 4 0 2
Navice 8 12 6 3 30
Total 15 14 10 3 42
Chi-Square Tests
Asymp. Sig.
Walueg df (2-sided)
Pearson Chi-Square 4.200° 3 241
Likelihood Ratio 5121 3 163
N ofValid Cases 42

a. 6 cells (62.5%) have expected count lass than 5. The
minimum expected countis .86
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Appendix K: Demographic Data for Chapter 8

Group  Participant Gender Age, Years Experience, Years
1 M 33 6
2 M 52 30
Expert 3 M 58 5
4 M 55 25
5 F 35 7
6 F 31 6
Mean 44.0 15.0
SD 12.3 10.5
1 M 57 N/A
2 M 53 N/A
Matched 3 M 56 N/A
Novice 4 M 32 N/A
5 F 37 N/A
6 F 32 N/A
Mean 44.5 N/A
SD 12.1 N/A
1 F 20 N/A
2 F 24 N/A
3 M 40 N/A
4 F 32 N/A
5 M 34 N/A
6 M 41 N/A
7 F 23 N/A
8 F 20 N/A
9 F 54 N/A
10 F 35 N/A
11 F 47 N/A
Novice 12 M 25 N/A
13 M 28 N/A
14 M 47 N/A
15 F 28 N/A
16 M 39 N/A
17 F 25 N/A
18 F 27 N/A
19 M 46 N/A
20 M 27 N/A
21 M 24 N/A
22 M 61 N/A
23 F 45 N/A
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Group  Participant Gender Age, Years Experience, Years
24 M 28 N/A
25 F 37 N/A
26 M 19 N/A
Novice 27 M 60 N/A
28 M 22 N/A
29 F 53 N/A
30 M 57 N/A
Mean 35.6 N/A
SD 12.9 N/A
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Appendix L: Participant Information Sheet for

Chapter 8

Study Title: Further empirical assessment of an ecological STOC validation tool
Researcher: Joshua Price Ethics number: 14367

Please read this information carefully before deciding to take part in this research. If you are

happy to participate you will be asked to sign a consent form.

What is the research about?
This is a doctorate research project in collaboration between the University of Southampton and

Siemens.

Many adaptive traffic light systems utilise a technique called SCOOT (Split Cycle Offset Optimisation
Technique) to adjust timings based on real-time traffic data from detectors and a model of traffic
behaviour. To ensure accuracy the model must be tailored to local conditions at each junction. A key
parameter is SaTuration OCcupancy (STOC), the discharge rate of traffic over the stop line on green,
which is validated by comparing the observed time for a traffic queue to clear to a modelled time using

a tool called LVAL which provides the model output.

LVAL's interface is textual, requiring you to compare observed and modelled clear times, adjusting the
STOC value used until both values are consistently similar. This study aims to investigate whether a
graphical interface could provide performance improvements over LVAL, in terms of speed, accuracy

and difficulty, for both experienced validators and novices.

Why have I been chosen?
You have been approached because you are either 1) an experienced SCOOT engineer or 2) are a

novice at SCOOT validation.

What will happen to me if I take part?
Basic personal details will be taken (age, gender and validation experience) for the purpose of

calculating sample statistics.

The experiment involves two conditions...
1) LVAL - a textual interface which provides the model clear time, a mechanism to input the
observed clear time and an estimate of the correct STOC value.
2) Ecological - a graphical interface which provides the source data from a detector, enables the
STOC value to be changed and displays the effect on model clear time compared to the

observed value.

In each condition you will first be shown how to use the interface and have an opportunity to practice
with it. Once you are comfortable you will be required to validate three junctions and complete a

subjective workload assessment and usability questionnaire.
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The process will be repeated for the second condition, each should take no more than 20 minutes.

Total experimental time should not exceed 1hr.

Are there any benefits in my taking part?

Your participation will hopefully aid in the development of better systems for use in SCOOT validation.

Are there any risks involved?

Typical office working environment risks only.

Will my participation be confidential?
The research will comply with the Data Protection Act. All data collected will only be used for this

study, will be coded to ensure participant anonymity and kept on a password protected computer.

What happens if I change my mind?

You may withdraw from the study at any time without your legal rights being affected.

What happens if something goes wrong?
If you have any cause of concern or complaint with this research you can contact the research

governance manager (rgoinfo@soton.ac.uk, 02380 595058)

Where can I get more information?

Researcher: Joshua Price - | ENEEEEEENE
Supervisor: Neville Stanton - | SN
siemens contact: Ian Snell - |
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Appendix M:Consent Form for Chapter 8

Study title: Further empirical assessment of an ecological STOC validation tool
Researcher name: Joshua Price
Ethics reference: 14367

Please initial the box(es) if you agree with the statement(s):

[ have read and understood the information sheet (v1.0) and have had the

opportunity to ask questions about the studv

[ agree to take part in this research project and agree for my data to be

used for the purpose of this study

[ understand my participation is voluntary and I may withdraw at any

time without my legal rights being affected

Data Protection

I understand that information collected about me during my participation in this study will be stored on a
password protected computer and that this information will only be used for the purpose of this study. All

files containing any personal data will be made anonymous.

Name of participant (Print NAME).......ccceverirrr e erer e e e e

Signature of participant.........cccocoeeiiririennn s
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Source Data Location Plan for Chapter 8

Appendix N
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Appendix O: Observed Clear Time Data for Chapter 8
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0.1.1 Practice Link

10/03/2015 14:51:18

76 - Bond St/INewf
01336974

oundland Cj

-

Observed Observed
Cycle Clear Time Cycle Clear
(sec) Time (sec)
1 13 14 9
2 9 15 12
3 12 16 9
4 5 17 8
5 15 18 13
6 6 19 10
7 21 20 7
8 17 21 8
9 10 22 9
10 8 23 6
11 6 24 7
12 5 25 10
13 9
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0.1.2 Link A

Appendices

Observed Observed
Cycle Clear Time Cycle Clear Time
03/03/2015 10:48:40008 (sec) (sec)
120 - Bath Rd/Wells Rd 3 Lamps (ANPR ; iLSL 1: 553
00073003 == s 3 18 16 20
4 20 17 7
5 24 18 22
6 13 19 13
7 14 20 23
8 10 21 31
9 24 22 16
10 17 23 9
11 16 24 18
12 24 25 8

13 29
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0.1.3 Link B

Observed Observed
Cycle Clear Time Cycle Clear Time
100372015 10:70 7NN (sec) (sec)
—— 1 18 14 32

76 - Bond St/Newfoundland Circus 2 21 15 23
00944672 3 9 16 18

4 24 17 8

5 33 18 18

6 14 19 20

7 20 20 14

8 7 21 15

9 27 22 14

10 20 23 30

11 15 24 21

12 17 25 20

13 21
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0.1.4 Link C

Appendices

Observed Observed
Cycle Clear Time | Cycle Clear Time
(sec) (sec)
120 - Bath Rd/Wells Rd 3 Lamps (ANPRY ! 19 o 23
01108165 g SN TR il 2 31 15 25
- 3 12 16 22
4 20 17 34
5 33 18 45
6 34 19 19
7 26 20 47
8 23 21 34
9 18 22 13
10 30 23 36
11 31 24 37
12 27 25 35

13 21
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0.1.5 Link D

10/03/2015 11:27:14
76 - Bond St/Newfoundland Circus
01030855

Observed Observed
Cycle Clear Time | Cycle Clear Time
(sec) (sec)

1 11 14 8

2 12 15 12

3 5 16 11

4 14 17 9

5 8 18 10

6 12 19 6

7 8 20 10

8 6 21 7

9 6 22 11

10 11 23 14

11 7 24 12

12 6 25 17

13 9
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0.1.6 Link E

Appendices

1010.3!2015>12:35:05

121 - Bath Rd/Totterdown Bridge
01132640

Observed Observed
Cycle Clear Time | Cycle Clear Time
(sec) (sec)

1 18 14 4

2 20 15 20

3 18 16 22

4 27 17 12

5 19 18 25

6 8 19 12

7 8 20 13

8 10 21 6

9 20 22 11
10 8 23 17
11 11 24 27
12 12 25 10
13 13
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0.1.7 Link F

Observed Observed
Cycle Clear Time | Cycle Clear Time
(sec) (sec)
. 1 4 14 17
1121 - Bath Rd/Totterdown Brdge 2 25 15 18
SR T __ 8 3 22 16 18
. S R 4 14 17 7
4 — A e " 5 20 18 5
6 9 19 23
7 25 20 36
8 12 21 13
9 9 22 7
10 12 23 21
11 7 24 14
12 19 25 16
13 22
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Appendix P: Shapiro-Wilk Test Statistics for
Assessing Dependent Measure’s

Normality (Chapter 8)

P.1 Performance

P.1.1 Final Validation Error

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL| .181 6 200" .935 6 .623
MatLVAL] .151 6 200" 976 6 931
NovLVAL| .151 6 200" 951 6 .749
ExpEco 273 6 184 .837 6 124
MatEco 193 6 200" 904 6 .396
NovEco 241 6 200" .866 6 212
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
P.1.2 Mean Cycle Validation Error
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL] .242 6 .200" .908 6 425
MatLVAL| .236 6 .200" .890 6 319
NovLVAL| .210 6 200" 942 6 .679
ExpEco 197 6 .200" 919 6 498
MatEco 261 6 200" .835 6 119
NovEco 251 6 200" .865 6 208
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
P.1.3 Mean Time Spent Per Cycle
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL| .214 6 200" .938 6 .643
MatLVAL] .333 6 .036 .708 6 .007
NovLVAL| .231 6 200" .840 6 129
ExpEco 265 6 200" 941 6 .668
MatEco 167 6 200" .980 6 .954
NovEco .368 6 011 .679 6 .004

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
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P.1.4 Cycles Required

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

ExpLVAL| .250 6 200" .882 6 279
MatLVAL| .349 6 021 .783 6 .041
NovLVAL| .163 6 200" 944 6 .693
ExpEco 194 6 200" .892 6 329
MatEco | .285 6 139 822 6 .092
NovEco | .272 6 .186 .836 6 120

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction

P.2 System Use

P.2.1 Total Ecological Observed Clear Time Adjustments Per Cycle

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpEco| .358 6 .016 719 6 .010
MatEco| .262 6 200" 922 6 523
NovEco| .275 6 176 777 6 .036

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction

P.2.2 Total Ecological STOC Adjustments Per Cycle
Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpEco| .323 6 .050 .806 6 .067
MatEco| .179 6 .200" 972 6 905
NovEco| .149 6 200" 967 6 875

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction

P.2.3 Estimated STOC Error
Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL| .230 6 200" 900 6 372
MatLVAL| .202 6 200" 918 6 492
NovLVAL] .211 6 200" 958 6 .808

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
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P.2.4 Mean STOC Adjustment

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL| .277 6 166 .864 6 .205
MatLVAL| .236 6 200" .877 6 257
NovLVAL| .178 6 200" 905 6 402
ExpEco 326 6 .045 748 6 .019
MatEco 291 6 123 906 6 413
NovEco 201 6 200" 947 6 717
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
P.3 Workload
P.3.1 Overall Workload
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL| .338 6 031 811 6 .073
MatLVAL| .254 6 200" .840 6 131
NovLVAL| .237 6 200" 874 6 244
ExpEco 214 6 200" 965 6 .854
MatEco 261 6 200" .860 6 191
NovEco 217 6 200" .907 6 417
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
P.3.2 Mental Demand
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL] .241 6 200" 902 6 .387
MatLVAL] .241 6 .200" 841 6 134
NovLVAL| .229 6 .200" .817 6 .083
ExpEco 146 6 200" .988 6 .985
MatEco .198 6 .200" 967 6 875
NovEco 234 6 200" .879 6 266

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
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P.3.3 Physical Demand
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL] .254 6 200" .872 6 234
MatLVAL| .333 6 .036 814 6 .078
NovLVAL| .285 6 .138 831 6 110
ExpEco 241 6 200" 871 6 230
MatEco 204 6 200" 902 6 .389
NovEco | .492 6 .000 496 6 .000
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
P.3.4 Temporal Demand
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL] .295 6 113 821 6 .089
MatLVAL| .372 6 .010 .654 6 .002
NovLVAL| .167 6 200" .960 6 817
ExpEco 217 6 200" .889 6 315
MatEco 209 6 200" 907 6 415
NovEco | .254 6 200" .866 6 212
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
P.3.5 Performance
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL] .183 6 200" .890 6 320
MatLVAL| .189 6 200" 932 6 .596
NovLVAL| .196 6 200" 942 6 673
ExpEco 232 6 200" 907 6 417
MatEco 319 6 .055 .780 6 .039
NovEco | .254 6 200" 907 6 415
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
P.3.6 Effort
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
ExpLVAL| .167 6 200" .957 6 .800
MatLVAL| .210 6 200" 877 6 256
NovLVAL| .215 6 200" .850 6 .158
ExpEco | .220 6 200" 955 6 .781
MatEco .238 6 200" 950 6 737
NovEco | .249 6 200" .892 6 331
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*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction

P.3.7 Frustration

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk

Statistic df Sig. Statistic df Sig.
ExpLVAL| .265 6 200" 799 6 .058
MatLVAL] .167 6 2007 934 6 .614
NovLVAL| .201 6 200" .896 6 .353
ExpEco 234 6 200" 942 6 674
MatEco .333 6 .036 721 6 .010
NovEco 246 6 200" .834 6 117

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction
P.4 Usability
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk

Statistic df Sig. Statistic df Sig.
ExpLVAL| .214 6 200" .891 6 324
MatLVAL| .220 6 200" .897 6 .356
NovLVAL| .256 6 200" 811 6 .074
ExpEco 239 6 200" .888 6 307
MatEco .249 6 200" .830 6 107
NovEco 186 6 200" 914 6 460

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
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Appendix Q: Test Statistics for Performance

Measures (Chapter 8)

Q.1 Final Validation Error

Q.1.1

Paired Within

Paired Samples Statistics
Std. Error
Mzan N Std. Deviation Mzan
Pair1  BxpertLVAL 4517 3 31871 13052
ExpertEco 4800 6 18569 07581
Pair2  MatchedLVAL 3983 & 20817 0489
MatchedEco 6017 6 31084 13057
Pair3  Movice VAL 6387 30 42089 07684
NaovicgEco 4850 30 25080 04579
Paired Samples Correlations
N Correlation Sig
Pair1  ExpertlVAL & ExpertEco & -.569 238
Pair2  MatchedLVAL & .
MatchedEco & -578 220
Pair3  NoviceLVAL & NoviceEco 30 -232 218
Paired Samples Test
Paired Differences
95% Confidence Interval afthe
Std. Exror Difference
Mesan | Std Deviation Mean Lower Upper t af Sig. (2-tailzd)
Pair1  ExpertLVAL - ExpertEco -.03833 45199 18452 -51267 43600 -.208 5 844
Pair2  MatchedLVAL - N N N N
MatchedEco -.20333 47182 19266 - 69858 28181 -1.055 5 340
Pair3  Movicel VAL - NoviceEco 17367 53759 09815 -.02707 37441 1.768 29 087
Q.1.2 Paired Between
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pairt  ExperLVAL 4517 6 31871 13082
MatchedLVAL 3983 B 20817 08499
Pair2  ExpertEco 4800 6 18569 07581
MatchedEca 6017 i} 31884 13057
Paired Samples Correlations
N Correlation Sia.
Pair1  ExperdlVAL & N .
Watched VAL 5 255 526
Pair2  ExpertEco & MatchedEco ] -012 982
Paired Samples Test
Paired Diffzrznces
95% Confidence Interval of the
st Error Difference
Mean Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)
Pair 1 ExperiLVAL- ~ N ~ _
MatchedLVAL .05333 3347 13642 29735 40402 3 5 712
Pair2  ExperiEco - MatchedEco - 11167 37172 16175 -60176 27843 -.736 5 495

Q.1.3

Expert - Novice (LVAL)

Group Statistics
Std. Error
Condition ] Mean Std. Deviation Mean
Response 1 L} A517 31971 13052
2 30 G387 42089 07684

Independent Samples Test

Independent Between

Levene's Test for Equality of
Variances ttestfor Equality of Means
95% Confidence Inmerval of the
an Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N ~ N —

assumed 996 325 -1.026 34 312 -18700 18228 -55744 18344
Equal variances not N N N N
assumed -1.235 8.883 249 -18700 15146 -53032 15632
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Expert - Novice (Ecological)

Group Statistics

Std. Error
Condition N Mean Std. Deviation Mean
Response 1 & 4500 18569 07581
2 30 4650 .25080 04579

Independent Samples Test

Levene's Testfor Equality of
‘ariances testfor Equality of Means
95% Confidence Interval of the
Mean Std. Enror Difference

F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances . N . aen
assumed 440 511 23 34 818 02500 10837 -19524 24524

Equalvariances not o . .
assumed 282 9.105 784 02500 08856 -17499 22499

Matched Novice - Novice (LVAL)

Group Statistics

Std. Error
Condition N Mean | Std Deviation Maan
Response 1 6 3983 20817 08499
2 30 6387 42089 07684

Independent Samples Test

Levene's Test for Equality of
variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances N N N —
assumed 3213 082 -1.354 34 185 24033 17747 -.60099 12032
Equal variances not N N N
assumed -2.008 14811 054 -.24033 11458 -.48482 00415
Group Statistics
Std. Error
Condition N Mean | Std Deviation Mean
Response 1 6 6017 31984 13057
2 30 4650 25080 04579
Independent Samples Test
Levene's Test for Equality of
Variances t-testfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difsrance
F Sig 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N . e .
assumed 251 620 1.166 34 252 13667 1721 -10154 37487
Equal variances not .
assumed 988 6.289 360 13667 13837 -19818 47151
= =
Q.2 Cycle Validation Error
Q.21 Paired Within
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExpenlVAL 1.3750 [} 64021 26137
ExpertEco 9360 6 49302 20128
Pair2  MatchedLVAL 1.1650 L} 54695 22329
MatchedEco 8583 6 39128 15974
Pair3  MoviceLVAL 1.1760 30 47692 08707
NaviceEca 7910 30 22926 04186
Paired Samples Correlations
N Correlation Sig
Pairt  ExpertlLVAL & ExpertEco [ -.684 A34
Pair2  MatchedLVAL & .
MatehedEco 6 -248 634
Pair3  MoviceLVAL & NavicaEco 30 -222 239
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Differznce
Mean | Std. Deviation Wean Lower Upper t df Sig. (2-tailed)
Pair1  ExperiLVAL - ExpertEco 44000 1.04144 42517 -.65293 153293 1.035 5 348
Pair2  MatchedLVAL - . R B
MatehedEco 30667 74763 30522 - 47792 1.00125 1.005 5 361
Pair3  NoviceLVAL - NoviceEco 38500 57315 10464 17098 53902 3679 29 001

364



Appendices

Q.2.2 Paired Between

Paired Samples Statistics
Std. Error
Mean N Stdl. Deviation Mean
Pair1 ExpertLVAL 1.3750 B 64021 26137
MatchedLVAL 1.1650 6 54695 22329
Pair2  ExpertEco 9350 B 49302 20128
MatchedEco 8583 6 39128 15974
Paired Samples Correlations
N Correlation Sig.
Pair1{ ExpertLVAL & N
MatchedLvaL g -183 726
Pair2  ExpertEco & MatchedEco [ 784 065
Paired Samples Test
Paired Differences
95% Confidence Interval of the
std. Eror Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
i E; WAL -
Pl AL 21000 81571 37384 75098 117098 562 5 599
Pair2  ExperiEco - MaichedEco 07667 30598 12492 -24444 39778 614 5 566

Q.2.3 Independent Between

Expert - Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 3 1.3750 64021 26137
2 30 1.1760 47692 08707

Independent Samples Test

Levens's Testfor Equality of
Variances t-test for Equality of Means
95% Confidence Interval of the
Wean Std. Error Difference
F Sig 1 df Sig. (2-ailed) Difference Difference Lower Upper
Response  Equalvariances N o N
assumed 1.744 195 882 34 384 19800 22651 -.26830 65730
Equalvariances not ey o
assumed 722 6158 497 19800 27549 - 47091 86891

Expert — Novice (Ecological)

Group Statistics
Std. Error

Condition N Mean Std. Deviation Mean
Response 1 & 9350 49302 20128

2 30 7910 22826 04186

Independent Samples Test
Levene's Test for Equality of
Variances ttest for Equality of Means
85% Confidence Interval of the
Wean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances . o o

assumed 9.928 003 1134 34 265 14400 12695 -11389 40199

Equal variances not . .

assumed 700 5440 512 14400 20558 -37186 65986

Matched Novice - Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 B 11650 54695 22329
2 30 1.1760 47692 08707

Independent Samples Test

Levene's Testfor Equality of
Variances ttestfor Equality of Means
95% Confidence Intzrval of the
Mean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N "
assumed 055 816 -.050 34 860 -.01100 21817 -.45438 43238

Equal variances not N ~
assumed -.046 6610 865 -.01100 23967 -.58457 56257
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Matched - Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mzan
Response 1 [ 8583 30128 15974
2 30 7910 22926 04186

Independent Samples Test

Levene's Test for Equality of
Variances t+est for Equality of Means
95% Confidence Interval ofthe
Mean std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N "
assumed 1613 213 580 34 566 06733 11606 -16852 30319
Equalvariances not
assumed 408 5706 698 06733 16513 -34184 47650
=
Q.3 Cycles Required
Q3.1 Paired Within
Paired Samples Statistics
St Eror
Mean N Std. Deviation Mean
Pair1  ExperLvAL "INz 6 487077 1.68848
ExpertEco 6.0550 L} 80079 32692
Pair2  MatchedLVAL 97233 6 2.68770 1.00725
MatchedEco 5.3883 L} 1.28994 52661
Pair3  NoviceLVAL 13.6450 30 467877 85422
NoviceEco 6.4000 30 237527 43366
Paired Samples Correlations
N Correlation Sig.
Pair1  ExpertlVAL & ExpertEco [ 431 394
Pair2  MatchedL VAL &
MatchedEco E 619 194
Pair3  NoviceLVAL & NoviceEco 30 429 018
Paired Samples Test
Faired Diffzrances
95% Confidence Interval of the
J— Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  Experl¥AL - ExperEco 566667 458311 1.87105 85689 10.47635 3.029 5 029
Pair2  MatchedLVAL- _ _
MatchedEco 4.33500 214883 87767 207889 659111 4939 5 004
Pair3  MNovicel VAL - MoviceEco 7.14500 4.24338 77473 5.56049 8.72951 9.223 29 .000
Q.3.2 Paired Between
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExperlVAL 117217 [ 4.87077 1.98848
MatchedLVAL 87233 6 268770 1.08725
Pair2  ExpertEco 6.0550 [ 80079 32602
MatchedEco 53883 6 1.28994 52661
Paired Samples Correlations
N Corelation B
Pair1  ExperlVAL & N
WatchedLvaL & a1 ne
Pair2  ExperEco & MatchedEco [ 492 321
Paired Samples Test
Paired Differznces
95% Confidence Interval of the
Sta. Ermor Difference
Mean Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)
Pair1  ExperlVAL - . S . . N
MatchedLVAL 1.99833 3.93362 1.60588 -2.12974 612641 1.244 5 269
Pair2  ExperiEco - MaichedEco BEGET 1135611 46341 - 52456 1.85788 1.438 5 210
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Q.3.3 Independent Between

Expert - Novice (LVAL)

Group Statistics

5. Enor

Condition N Mean | Std. Deviation Mean
Response 1 5 [ 117217 487077 1.98848

2 30 | 135450 467877 85422

Independent Samples Test
Tavene's Test for Equality of
Variances ttestfor Equality of Means
5% Confidence intenval of the
Mean Std. Error Difference
F Sig t df Sig. (24ailed) | Difference Difference Lower Upper

Equalvariances
Response ot 284 598 -866 34 303 182333 210528 £10173 2 45508

Equal variances not . Y . P .

acsumet -842 5975 427 182333 216420 -6.08461 320704

Expert — Novice (Ecological)

Group Statistics
Std. Error

Condition N Mean Std. Deviation Mean
Response 1 B 6.0550 80079 32692

2 30 6.4000 2.37527 43366

Independent Samples Test
Leveng's Testfor Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N B

assumed 3.461 072 -.348 34 730 -.34500 99061 -2.35816 1.66816

Equal variances not ot

assumed 635 24.825 531 -.34500 54309 -1.46391 77391

Matched Novice - Novice (LVAL)

Group Statistics
Std. Error
Condition M Mean | Std. Deviation Mean
Response 1 [ 9.7233 2.68770 1.00725
2 30 13.5450 467877 85422

Independent Samples Test

Levene's Test for Equalily of
Variances +test for Equality of Means
95% Confidence Interval of the
lzan std. Error Difference
F Sig. t dr Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N -
assumed 1.088 308 -1.924 34 063 -3.82167 1.98665 -7.85903 21570
Equal variances not o P .
2ssumed 2748 | 12429 o1a 382167 1,30058 -5.84785 -79548

Matched - Novice (Ecological)

Group Statistics

Std. Error
Caondition N Mean Std. Deviation Mean
Respaonse 1 6 53883 1.28994 52661
2 30 6.4000 2.37527 43366

Independent Samples Test

Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Intarval of the
Mean Std. Error Differance
F Sig 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N - N

assumed 1.320 259 -1.006 34 22 -1.01167 1.00568 -3.06545 1.03211

Equalvariances not . . . .

assumed -1.483 13.046 162 -1.01167 68219 -2.48492 46158
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Q.4 Time Spent

Q4.1 Paired Within

Paired Samples Statistics

Std. Error
Wean N Std. Deviation Wean
Pair1  ExperiLVAL 10.33 6 2805 1145
ExpertEco 3517 3 4875 1.990
Pair2  MatchedLvAL 5.00 6 3.033 1.238
MatchedEco 30.00 3 3578 1.461
Pair3  NoviceLVAL 893 30 3383 619
MoviceEco 31.20 30 6.359 1161
Paired Samples Correlations
N Correlation Sig
Pair1  ExpertLVAL & ExpertEco 6 946 004
Pair2  MatchedLvAL &
MatchedEca E 33 848
Pair3  NoviceLVAL & NoviceEco 30 464 010
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean | Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  ExpertlLVAL - ExpertEco -24.833 2.401 980 -27.353 -22.313 -25.331 5 .000
Pair2  MatchedLVAL - - ~ B
MatchedEco -21.000 3899 1592 -25.001 -16.909 -13.194 5 .000
Pair3  NaoviceLVAL - NoviceEco -21.267 5.650 1.032 -23.377 -18.157 [ -20615 28 000
Q4.2 Paired Between
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExperlVAL 9.5000 [ 2.94858 1.20416
MatchedLVAL 91667 B 348807 1.42400
Fair2  ExpertEco 18.0000 6 10.05542 410511
MatchedEco 16.7767 B 8.72377 3.96871
Paired Samples Correlations
N Corelation Sia.
Pair1  ExperiLVAL &
MatchedLvAL E 8 o
Pair2  ExpertEco & MatchedEco ] 963 002
Paired Samples Test
Paired Differences
95% Confidence Intzrval ofthe
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  ExperlLVAL - . o . . -
MatchedLVAL 33333 3.60238 1.42884 -334219 4.00886 233 5 825
Pair2  ExperEco - MatchedEco 1.22333 2.71353 110780 -1.62435 4.07101 1.104 5 320

Q.4.3

Expert — Novice (LVAL)

Independent Between

Group Statistics
Std. Error

Condition N Mzan | Std. Deviation Wean
Response 1 [ 1033 2805 1145

2 30 593 3383 619

Independent Samples Test
Levene's Test for Equality of
Variances +Hest for Equality of Means
85% Confidence Interval of the
Wean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Equal variances
Response - Eaualva 916 315 270 34 788 400 1482 2611 3411

Equal variances not o o .

assumed 307 8234 766 400 1.302 -2.687 3387
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Expert — Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 6 2933 8.618 3518
2 30 2403 5436 992

Independent Samples Test

Levene's Testfor Equalty of

Variances ttastfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances o rn - N
assumed 2682 111 1.472 34 057 5,300 2.688 -163 10.763
Equalvariances not . N N
assumsd 1.450 5821 199 5,300 3,656 712 14312

Matched Novice — Novice (LVAL)

Group Statistics

Std. Error

Condition ] Mean Std. Deviation Mean
Response 1 6 4.00 3.033 1.238
2 30 593 3.383 619

Independent Samples Test

Levene's Test for Equality of

Variances t-testfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difsrance

F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N -
assumed 1.108 300 -624 34 537 -933 1.495 -3971 2105

Equal variances not . . -

assumed -674 7.732 520 -933 1.385 -4.146 2279

Matched - Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 3 2533 4967 2.028
2 30 2403 5.436 892

Independent Samples Test

Levene's Test for Equality of

Variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Differance
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N
assumed 386 538 541 kL3 592 1.300 2.401 -3580 6.180
Equal variances not .
assumed 576 7.608 581 1.300 2257 -30953 6.553
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Appendix R: Test Statistics for System Use Measures

(Chapter 8)

R.1 Ecological Observed Clear Time Adjustments

R.1.1 Paired Between

Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExpertEco 1.8367 B 37718 15398
WatchedEco 2.0483 6 4922 20095
Paired Samples Correlations
[ | [ Conelafion T 5. ]
[ Pair 1 ExpertEco & MatchedEco | 6 | 168 | 750 |

Paired Samples Test

Paired Differences

95% Confidence Interval of the
Std. Error Difference
Msan | Std Deviation Wean Lower [ Upper 1 df Sig. (2-tailad)
Pair1  ExperEco- MatchedEca | - 21167 66853 27295 -91331 ‘ 48998 - 775 5 473

R.1.2 Independent Between

Expert — Novice

Group Statistics

Std. Error
Condition N Mean | Std Deviation Mean
Response 1 6 1.8367 37718 15398
2 30 31053 3.94526 72030
Independent Samples Test
Levene's Test for Equality of
Variances t1estfor Equality of Means
95% Confidence Interval of the
Mean std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances ) N " N
assumed 4.308 046 -778 34 442 -1.26867 1.63077 -4.58279 2.04546
Equal variances not . ~ N JU— e
assumed -1.722 31.332 .0as -1.26867 73658 -2.77028 23205

Matched Novice - Novice

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 & 20483 49224 20095
2 30 31053 3.9452 72030

Independent Samples Test

Levene's Testfor Equality of
Variances ttestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Differance

F Sig 1 df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances . . . o
assumed 4082 051 -648 34 521 -1.05700 1.63167 -4.37285 2.25895
Equal variances not " R .
assumed -1.413 32546 167 -1.05700 74781 -257924 46524
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R.2 Ecological STOC Adjustments

R.2.1

Paired Between

Paired Samples Statistics

St Enror
Mean N Std. Deviation Mean
Pairl ExperEco | 10.3733 [ 6.78910 277164
MatchedEeo | 10.7233 5 45422 1.89519
Paired Samples Correlations
[ [ [coremon | 55|
[ Pair1__ExperiEco & WatchedEca | 6 | 063 | s0s |
Paired Samples Test
Paired Differences
5% Confidence Inteval ofhe
St Error Difference
Mean | Std. Deviation Mean Cowsr | Upper t df | Sig. (2-tailed)
Fair |__ExperEeo MalchedEco | - 35000 77822 325708 872283 | 02263 | 107 5 19

R.2.1

Independent Between

Expert — Novice

Group Statistics

Stal. Error
Condition N Mean | Std. Deviation Mean
Response 1 6 | 103733 6.78910 277164
2 30 | 10.0840 454470 82074

Independent Samples Test

Leveng's Test for Equality of
Variancas ttestfor Equality of Msans
5% Confidencs Interval ofhe
Mean std. Error Difference:
F sig t af | sig. (2-tailed) | Differsnce Difference Tower Upper
Responss  Equalvariances N - N
eenrmod 1879 179 131 34 807 28933 220885 -4.10958 477826
Equal variances not . . N N .
esumad 100 | 5928 924 28933 289318 -6.81086 7.39952
Group Statistics
St Error
Condition N Mean | Std. Deviation Mean
Response 1 6 | 107233 46422 1.89519
2 30 | 100840 4.54470 82974
Independent Samples Test
Tevene's Testfor Equallty of
Variances Hest for Equality of Means
5% Confidence Ineval of the
Mean Std. Error
F sig. t ¢ | Sio.4ailew) | Difference Difference Tower Upper
Response  Equalvariances - n -
aeoumod 107 748 314 34 756 53933 203893 350426 476293
Equal variances not N R N
eoumod 308 | 7086 766 53933 206887 -4.24403 552360
V i d ST
R.3 LVAL Estimated STOC Error
ired
R.3.1 Paired Between
Paired Samples Statistics
S Error
Mean N Std. Deviation Mean
Pairl  ExpenLvAL 24150 B 5622 27035
MaichedLVAL | 16583 5 7517 30666
Paired Samples Correlations
[ W [ Comelation [ Sig.__|
Fairl  ExperlVALE
MatchedLVAL | o ‘ 367 | 448 |
Paired Samples Test
Faired Diffsrances
5% Confidencs Interval ofhe
Std. Error Difference
Mean | Std. Deviation Mean Cower | Upper t df | Sig. (2tailed)
Fairl  ExperLVAL- N N N N
Moo VAL 75667 78574 32078 -06792 158125 | 2359 5 065
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R.3.2

Expert — Novice

Independent Between

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 [ 24150 6622: 27035
2 30 1.6810 55054 10216
Independent Samples Test
Levene's Testfor Equality of
ces ttestfor Equality of Means
95% Confidence Interval ofthe
Std. Error ifference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N - - -
assumed 818 372 | 2860 34 007 73400 26750 21069 1.25731
Equalvariances not . . .
assumed 2540 6.507 041 73400 28801 03996 1.42804
Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 6 16583 75117 30666
2 30 16810 55954 10216
Independent Samples Test
Levene's Testfor Equality of
Variances tHestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N o N
assumed 1.740 196 -.086 34 932 -.02267 26458 -.56037 51503
Equalvariances not - .
assumed -070 6.168 948 02267 32323 -.80860 76335
R.4 Average STOC Change
R4.1 Paired Within
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1 ExperLVAL 4233 6 26143 10673
ExpertEco 1.0450 6 1.03357 42195
Pair2 MatchedLVAL BE17 6 62185 25387
MatchedEco B217 6 41600 160683
Pair3 MNovicel' VAL B960 30 42214 07707
MoviceEco 7203 30 33525 06121
Paired Samples Correlations
™ Correlation ED)
Pair1 ExperLVAL & ExpenEco 6 a7 236
Pair2 MatchedLVAL & o .
WatchedEca 6 326 529
Pair3 Movicel VAL & NoviceEco 30 019 923
Paired Samples Test
Paired Differences
95% Confidence Intzrval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1 ExperiLVAL - ExpertEco -62167 90989 37146 -1.57654 33320 -1.674 5 158
Pair2  MatchedLVAL - " . "
MatchedEco 04000 62546 25534 -61638 69638 157 5 2
Pair3 MovicelLVAL - NoviceEco 17567 53419 09753 -.02380 37514 1.801 29 2
ired
R.4.2 Paired Between
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1 ExpertLVAL 4233 B 26143 10673
MatchedLVAL 8617 6 62185 25387
Pair2 ExpertEco 1.0450 6 1.03357 42195
MatchedEco 8217 B 41600 16983
Paired Samples Correlations
N Carrelation Sig.
Pairl  ExperLVAL & N
MatchedLVAL 6 050 926
Pair2 ExpertEco & MatchedEco 6 BES 026
Paired Samples Test
Paired Differences
§5% Confidence Interval of the
Std. Error Differencs
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  ExperLVAL- N I ..
MatehedLVAL -.43833 68642 28023 -1.15869 28202 -1.564 5 79
Pair2 ExpertEco- MatchedEco 22333 705857 28805 -51712 96378 775 5 473

Appendices

373



Joshua Price

R.4.3

Independent Between

Expert - Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Respanse 1 [} 4233 26143 10673
2 30 8960 42214 07707
Independent Samples Test
Levene's Testfor Equality of
ces ttestfor Equality of Means
95% Confidence Intzrval of the
Mean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances N o en .
assumed 1.477 233 -2626 34 013 - 47267 18003 - 83853 -10681
Equal variances not . .
assumed -3590 11.056 004 - 47267 13165 -76224 -18309
Group Statistics
St Eror
Condition N Mean Std. Deviation Mean
Response 1 [} 1.0450 1.03357 42195
2 30 7203 33525 06121
Independent Samples Test
Levene's Testfor Equality of
Variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Diffzrence
F Sig t of Sig. (2-tailad) Differance Differance Lower Upper
Response  Equalvariances N o N
assumed 13.745 001 1.443 34 158 32467 22483 -13244 78177
Equal variances not P o o
assumed 761 5212 479 32467 42637 -.75806 1.40740

Matched Novice - Novice (LVAL)

Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 [ BE1T 62185 25387
2 30 BS60 42214 Q7707
Independent Samples Test
Levene's Tesi for Equalily of
Variances ttest for Equality of Means
G5% Confidence Interval of the
Mzan Std. Error Diftersnce
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N N
assumed 1.347 254 -168 34 868 - 03433 20438 - 44969 38103
Equal variances not . .
assumed -129 5055 901 -03433 26531 - 68470 B1604

Matched Novice - Novice (Ecological)

Group Statistics
Sid Error

Condition N Mean Std. Deviation Mean
Response 1 & 8217 41600 16083

2 30 7203 33528 06121

Independent Samples Test
Tevene's Test for Equaliy of
Variances t-testfor Equality of Means
5% Gonfidence Interval of the
Mean Std. Error Differance
F Sig. 1 df Sig. (2-tailed) Difference Difference Lower Upper

Response sggjlr:?d‘am% 573 458 651 34 520 10133 15576 -21822 41788

Equal variances not _

resumed 561 £.365 594 10133 18052 -33433 53700
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Appendix S: Test Statistics for Workload Measures
(Chapter 8)
S.1 Overall Workload

S.1.1 Paired Within

Paired Samples Statistics
Std. Erfor
Wean N Std. Deviation Wean
Pair1  ExperlVAL 30.83 & B.658 3635
ExpertEco 3533 [ 12,987 5302
Pair2  MatchedlVAL 37.00 & 13115 5354
MatchedEco 18.00 & 8438 3.445
Pair3  NowicelLVAL 37.80 30 12.061 2.202
NoviceEco 24.50 30 12,275 2.241
Paired Samples Correlations
[ Correlation Sig.
Pair1  ExpertlLVAL & ExpertEco 6 675 142
o| | o
Pair3  NovicelL VAL & NoviceEco 30 285 127
Paired Samples Test
Pairzd Differences
95% Confidence Interval of the
St Error Difference
Mean | Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)
Pair1  ExpertlVAL - ExpertEco -4.500 9.586 3.914 -14.560 5.560 -1.150 5 302
Pair2 e 19.000 17.205 7.024 45 37055 | 2705 5 043
Pair3  NowiceLVAL - NoviceEco 13.300 14 653 2657 7.BE6 18.734 5.005 29 000
S.1.2 Paired Between
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExperlLVAL 3083 6 8658 3535
MatchedLVAL 37.00 & 13115 5354
Pair2  ExpentEco 3533 6 12.087 5.302
MatchedEco 18.00 & 8438 3.445
Paired Samples Correlations
N Correlation Sig
S| | e
Pair2  ExperiEco & MatchedEco 6 -454 365

Paired Samples Test

Paired Differances
95% Confidence Interval of the
Std. Error Difference
Wean Std. Deviation Mean Lower Upper 1 df 5ig. (2-tailed)
Pairt ;’;’I;TELX&LAL 6167 15,968 6519 22024 10,500 -948 5 388
Pair2  ExperiEco - MaichedEco 17.333 18.425 7.522 -2.002 36.669 2304 5 069

S.1.3 Independent Between

Expert — Novice (LVAL)

Group Statistics
Std. Eror
Condition N Mean Std. Deviation Mean
Respanse 1 [} 3083 8.658 3535
2 30 37.80 12.061 2.202
Independent Samples Test
Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean std. Error Difference
F Sig. t dr Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances o N
assumed 1624 21 -1.340 34 189 -6.967 5198 -17.53 3.597
Equal variances not N N N
assumed -1.673 9.390 A27 -6.967 4.165 -16.328 2395
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Expert - Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 [ 3533 12.887 5302
2 30 24.50 12.275 224
Independent Samples Test

Levene's Test for Equality of

ariances ttest for Equality of Means
95% Confidence Interval ofthe
Nean Std. Error ifference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N - —
assumed 012 913 1.956 34 10.833 5.537 -.420 22.087
Equal variances not . N _
assumed 1.882 6.908 10.833 5.756 -2815 24.481

Matched Novice - Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 [ 37.00 13115 5.354
2 30 37.80 12.061 2.202
Independent Samples Test

Levene's Testfor Equalty of

Variances ttestfor Equality of Means
95% Confidence Interval of the
WMean Std. Error Differance
F Sig, t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances N

assumed 285 597 - 146 34 -.B00 5466 -11.908 10.308

Equal variances not Y
assumed -138 6.801 -.B00 5789 -14571 1297

Matched Novice — Novice (Ecological)

Group Statistics

Std. Error
Condition N Mean Std. Deviation Mean
Response 1 [ 18.00 8.438 3.445
2 30 24.50 12.275 2.241
Independent Samples Test
Levene's Testfor Equality of
ariances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t of Sig. (2-tailad) Differance Differance Lower Upper
Response  Equal variances ~ . . N N
assumed 862 360 -1.233 34 -6.500 5272 -17.215 4215
Equal variances not - o o
assumed -1.682 9825 -6.500 4110 -16.679 2679
S.2 Mental Demand
S.2.1 Paired Within
Paired Samples Statistics
Std. Error
Mzan N Std. Deviation Mzan
Pair1  BxpertLVAL 4333 3 17.795 7.265
ExpertEco 48.33 6 13.663 5578
Pair2  MatchedLVAL 5333 & 20.656 8433
MatchedEco 2417 6 10.685 4.362
Pair3  Movice VAL 50.83 30 2.7 3874
NaovicgEco 33.00 30 18.651 3.387
Paired Samples Correlations
N Correlation Sig
Pair1  ExpertlVAL & ExpertEco & 706 A7
Pair2  MatchedLVAL &
MatchedEco & -393 A4
Pair3  NoviceLVAL & NoviceEco 30 164 386
Paired Samples Test
Paired Differences
95% Confidence Interval afthe
Std. Exror Difference
Mesan | Std Deviation Mean Lower Upper t af Sig. (2-tailzd)
Pair1  ExpertLVAL- ExpertEco -6.000 12,649 5164 -18.274 -.968 5 377
Pair2  MatchedLVAL - N I . N
MatchedEco 20167 26.724 10910 1122 2673 5 044
Pair3  Movicel VAL - NoviceEco 17.833 25.787 4.708 8.204 3.788 29 001
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2.2 Paired Between

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean
Pairt  ExpertLVAL 4333 3 17.795 7.265
MatehEdL VAL 5333 6 20.656 8.433
Pair2  ExpertEco 48.33 [ 13.663 5578
MatchedEco 2417 [ 10.685 4.362
Paired Samples Correlations
N Corelation Sig
Pair1  ExperlVAL & N
MatchedL VAL 6 023 968
Pair2  ExperEco & MatchedEco 6 -491 323
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  ExperlVAL - . o
Mt hedLVAL -10.000 27.568 11.266 -38.931 18.931 -.889 5 115
Pair2  ExpertEco - MatchedEco 24167 21.075 8.604 2.050 46.284 2.809 5 033

S.2.3 Independent Between

Expert - Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 [ 4333 17.795 7.265
2 30 50.83 21.217 3874

Independent Samples Test

Levene's Test for Equality of
variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances N - -
assumed 816 373 -.808 34 425 -7.500 9.279 -26.358 11.358
Equal variances not N N
assumed -a1 8134 .389 -7.500 8233 -26.43 11.431

Expert — Novice (Ecological)

Group Statistics

Std. Error

Condition N Mean Std. Deviation Mean
Response 1 6 48.33 13.663 5578

2 30 33.00 18.551 3.387

Independent Samples Test
Levens's Testfor Equality of
variances ttestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Diffarence
F Sig. 1 df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances -

assumed 1.850 183 1914 34 064 15333 8012 -850 31616

Equal variances not . . .

assumed 2350 9.152 043 15333 6.526 609 30.058

Matched Novice — Novice (LVAL)

Group Statistics
Std. Error
Condition N Mzan | Std. Deviation Mzan
Response 1 [ 5333 20.656 8.433
2 30 50.83 21.217 3.874

Independent Samples Test

Levene's Test for Equality of
variances ttestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances - N " N
assumed 000 990 264 34 793 2500 9.452 -16.709 21.709
Equal variances not . . . . . P
assumed 269 7.277 795 2,500 9.280 -19.275 24.275
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Matched Novice — Novice (Ecological)

Group Statistics
Std. Error
Condition N Mzan | Std. Deviation Mzan
Response 1 3 2417 10.685 4.362
2 30 33.00 18.551 3.387

Independent Samples Test

Levene's Test for Equality of
variances ttastfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Differance Difference Lower Upper
Response  Equal variances N N "
assumed 3748 061 11 34 270 -8.833 7878 -24.843 777
Equal variances not N N .
assumed -1.599 12.088 136 -8.833 5.523 -20.856 3190
=
S.3 Physical Demand
S.3.1 Paired Within
Paired Samples Statistics
Std. Error
Wean N 5td. Deviation Mean
Pair1  ExperiLVAL 2333 [} 18.408 7.923
ExpertEco 21.67 3 18.074 7379
Pair2  MatchedLvAL 15.00 [} 5477 2236
MatchedEco 1250 3 7.583 3.008
Pair3  NoviceLVAL 13.83 30 11.794 2153
MoviceEco 13.67 30 12,658 2311
Paired Samples Correlations
N Correlation Sig.
Pair1  ExpertLVAL & ExpertEco 6 §79 001
Pair2  MatchedLVAL & N N
MatchedEco § 120 820
Pair3  NoviceLVAL & NoviceEco 30 272 146
Paired Samples Test
Paired Differances
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)
Pair1  ExperiLVAL - ExpertEco 1.667 4.082 1.667 -2618 5951 1.000 5 363
Pair2  MatchedLvAL - .
MatchedEco 2,500 8.803 35604 -6.739 11.738 696 5 518
Pair3  Movicel VAL - NoviceEco 67 14.767 2,696 -5.348 5.681 062 29 951
S.3.2 Paired Between
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExperlVAL 2333 6 19.408 7923
MatchedLVAL 15.00 & 5477 2236
Pair2  ExperEco 2167 [ 18.074 7.378
MatchedEco 12.50 & 7.583 3.096
Paired Samples Correlations
™ Cornelation &
Pair1  ExperlVAL &
WatchedLvaL & -800 056
Pair2  ExperEco & MatchedEco [ - 328 525
Paired Samples Test
Paired Differznces
95% Confidence Interval of the
Sta. Ermor Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  ExperlVAL - N
MatchedL VAL 8333 24014 9.804 -16.868 33534 850 5 434
Pair2  ExperEco - MatchedEco 9167 21775 8.800 -13.685 32.019 1.031 5 350
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S.3.3 Independent Between

Expert - Novice (LVAL)

Group Statistics

Std. Error

Condition N Mean | Std. Deviation Mean
Response 1 3 2333 19.408 7.423

2 30 13.83 11.794 2153

Independent Samples Test
Levene's Testfor Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig 1 df Sig. (2-tailed) |  Difference Difference Lower Upper

Response  Equalvariances N - -

assumed 5.488 025 1610 34 117 9.500 5.900 -2.490 21.490

Equalvariances not . . .

assumed 1157 5.760 203 9.500 8.211 -10.795 29.795

Expert — Novice (Ecological)

Group Statistics
Std. Error
Condition N Mzan | Std. Deviation Mzan
Response 1 6 21.67 18.074 7.379
2 30 1367 12.658 2.311

Independent Samples Test

Levene's Test for Equality of
Variances test for Equality of Means
95% Canfidence Interval of the
Mean Std. Error
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances o mn " " "
assumed 2362 134 1.316 34 197 8.000 6.078 -4.352 20.352
Equal variances not o o
assumed 1.035 6.019 3 8.000 7732 -10.905 26.905

Matched Novice - Novice (LVAL)

Group Statistics
Std. Eror

Condition N Mean Std. Deviation Mean
Response 1 6 15.00 5477 2.236

2 30 13.83 11.794 2153

Independent Samples Test
Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval ofthe
Nean Std. Error Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N N -

assumed 1614 213 235 34 815 1167 4.961 -B916 11.248

Equal variances not N .

assumed 376 16.176 T2 1167 3104 -5.408 7.742

Matched Novice - Novice (Ecological)

Group Statistics

Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 ] 12.50 7.583 3.008
2 30 1367 12,658 2311

Independent Samples Test

Levene's Test for Equality of
Variances t-test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Differance
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N . -
assumed 966 333 -7 34 830 -1.167 5387 -12118 9782

Equal variances not o o .
assumed -.302 11.510 768 -1.167 3863 -9.624 7.200
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S.4 Temporal Demand

S.4.1

Paired Within

Paired Samples Statistics
Std. Error
Mzan N Std. Deviation Mzan
Fair1  BxpertlVAL 40.83 3 11.143 4.549
ExpenEco 35.83 6 15.043 6.509
Pair2  MatchedLVAL 2583 & 20104 8.207
MatchedEca 1333 6 6.055 2472
Pair3a  Novicel VAL 2817 30 15170 2770
NoviceEco 18.50 30 11.829 2.160
Paired Samples Correlations
N Correlation Sig.
Pair1  ExperlVAL & ExpertEco & 980 oo
Pair2  MatchedLVAL &
MatchedEco & 055 98
Pair 3 NoviceLVAL & NoviceEco 30 138 467
Paired Samples Test
Paired Differences
95% Confidence Interval of the
St Error Difference
Wean Std. Deviation Wean Lower Upper 1 df Sig. (2-tailed)
Pair1  BExpertlVAL - ExpertEco 5.000 5477 2236 -748 10748 2.236 5 076
Pair2  MatchedLVAL - N B
WatchedEco 12.500 20676 B.441 -8.188 34188 1.481 5 198
Pair3  NoviceLVAL - NoviceEco 9667 17.905 3.269 2981 16.352 2.957 29 006
S.4.2 Paired Between
Paired Samples Statistics
Std. Error
Mzan N Std. Deviation Mean
Fair1  ExpertlVAL 4083 3 11.143 4.549
MatchedLVAL 2583 6 20104 8.207
Fair2  ExpertEco 3583 3 15.043 6.509
MatchedEco 13.33 6 6.055 2472
Paired Samples Correlations
N Correlation Sig.
Pair1  ExpertlVAL & N
MatchedLVAL E 264 613
Pair 2 ExpertEco & MatchedEco & -.552 256
Paired Samples Test
Pairzd Differences
95% Confidence Interval of the
St Error Difference
Mean | Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)
Pairl  ExperlVAL- I 5 Y - a2
MatchedLVAL 15.000 20.248 B.266 -6.249 36.249 1.815 5 129
Pair 2 ExpertEco - MatchedEco 22.500 19.937 8.139 1577 43.423 2.764 5 040

S.4.3

Independent Between

Expert — Novice (LVAL)

Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 B 4083 11.143 4548
2 30 2817 15170 2770
Independent Samples Test

Levene's Test for Equality of

Variances ttest for Equality of Means
95% Confidence Interval of the
Mean Std. Error Differance
F Sig. t dr Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N . N N
assumed 651 42 1.934 34 062 12667 B.551 -B4B 25979

Equal variances not N N N N
assumed 2378 9177 a4 12,667 5328 654 24.680

380




Expert — Novice (Ecological)

Group Statistics
Std. Error
Condition N Mzan | Std. Deviation Mean
Response 1 [ 35.83 15.943 6.509
2 30 18560 11.829 2.160

Independent Samples Test

Levene's Test for Equality of
Variances test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Differance
F Sig t df Sig. (2-tailed) Differance Difference Lower Upper
Response  Equalvariances N

assumed 1.041 35 3.006 kLY 004 17.333 5608 5.956 28711

Equal variances not P .

assumed 2528 6149 044 17.333 6.857 652 34015

Matched Novice - Novice (LVAL)

Std. Error

Condition N Mean Std. Deviation Mean
Response 1 3 25.83 20104 8.207
2 30 2817 15170 2770

Independent Samples Test

Levene's Test for Equality of
Variances testfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference

F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equal variances . N N . o
assumed 294 591 -.326 34 746 -2333 7.152 -16.867 12201

Equal variances not . N o 5 -

assumed -.269 6.190 796 -2.333 B.662 -23.372 18.706

Matched Novice — Novice (Ecological)

Group Statistics

Std. Error

Condition ] Mean Std. Deviation Mean
Response 1 6 1333 6.055 2472
2 30 1850 11.829 2.160

Independent Samples Test

Levene's Testfor Equality of

variances ttestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equal variances
assumed 1.730 197 -1.034 34 308 -5.167 4.995 15317 4.984
Equal variances not N N -
assumed -1.574 14125 138 -5.167 3283 -12.201 1.868
=
S.5 Perceived Performance
S.5.1 Paired Within
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1 ExpertLVAL 20.00 6 10.488 4282
ExpertEco 2917 B 22675 9.257
Pair2  MatchedLVAL 3917 6 18.552 7.574
MatchadEco 2917 B 23.962 9782
Pair3  NoviceLVAL 49.83 30 18.409 3.544
NoviceEco 30.33 30 16.201 2974
Paired Samples Correlations
] Correlation Sig
Pair1 ExpertLVAL & ExpertEco [ 820 046
Pair2  MatchedLVAL &
MatchedEco g 818 D4g
Pair3  MNoviceLVAL & NoviceEca 30 502 005
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Stel. Deviation Mean Lower Upper i df Sig. (Halled)
Pair1 ExpertLVAL - ExpertEco -9.167 15.303 6.247 -2522 6.892 -1.467 5 202
Pair2  MatchedLVAL- N N
MatchedEco 10.000 13.784 5627 -4 465 24465 1777 5 136
Pair3  MNovicel VAL - MoviceEco 19.500 18.021 3.290 12771 26.229 5.927 29 000
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S.5.2

Paired Between

Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean

Pair1  ExpentlLVAL 20.00 B 10.488 4282

MatchedLVAL 3917 6 18.552 7.574
Pair2  ExpertEco 2017 B 22675 9.257

MatchedEco 2917 6 23862 9.762

Paired Samples Correlations
N Correlation Sig.

Pair1  ExperilLVAL & o

MatchedLVAL E -128 808
Pair2  ExpertEco & MatchadEco B -.241 646

Paired Samples Test
Paired Differences
95% Confidence Intarval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)

Pair1  ExperiLVAL- - o o

MatchedLVAL -18.167 22454 9167 -42730 4387 -2.091 5 091
Pair2  ExpertEco - MatchedEca 000 36.742 15.000 -38.559 38.559 000 5 1.000

S.5.3

Independent Between

Expert - Novice (LVAL)

Group Statistics

Std. Error
Condition N Mean Std. Deviation Mean
Response 1 [ 20.00 10488 4.282
2 30 49.83 19.409 3.544

Independent Samples Test

Levene's Test for Equality of

ances ttestfor Equality of Means
95% Confidence Interval of the
Mean std. Error ifierence
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N - "
esumed 4.001 054 | -3631 El] 001 -29.833 8.216 -46.529 13437
Equalvariances not o N .
assumed -5.368 | 13132 000 -20.833 5.558 -41.828 -17.838

Expert — Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 & 2817 22,675 9.257
2 30 3033 16.291 2974

Independent Samples Test

Levene's Testfor Equalty of

variances ttestfor Equality of Means
95% Confidence Interval ofthe
Wean Std. Error ifference

F Sig. 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N - -
assumed 349 558 -150 34 882 -1.167 7772 -16.960 14,627

Equal variances not . . . .
assumed -120 6.074 408 -1.167 9723 -24.888 22,555

Matched Novice - Novice (LVAL)

Group Statistics

Std. Error

Condition N Mean Std. Deviation Mean
Response 1 6 3817 18.552 7574
2 30 4583 19.409 3544

Independent Samples Test

Levene's Testfor Equality of

ariances ttestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error iflerence
F Sig df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances . . - N N
assumed 294 591 -1.237 34 225 -10.667 8.625 -28.194 6.860
Equalvariances not . . 1 o
assumed -1.276 7.368 n -10.667 8.362 -30.241 8.907
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Matched Novice — Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 2047 23.962 9782
2 30 30.33 16.201 2974

Independent Samples Test

Levene's Testfor Equality of

Variances ttestfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Diffarence
F Sig. 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N
assumed 323 574 -148 34 883 -1.167 7.884 -17.189 14 856
Equal variances not . oz e, .
assumed -114 5.958 913 -1.167 10.225 -26.228 23.804
=
S.6 Perceived Effort
S.6.1 Paired Within
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExperilLvAL 40.00 6 16.432 6.708
ExperEco 3833 & 23168 G458
Pair2  MatchedLVAL 5333 [ 21.134 8.628
MatchadEco 1833 & 9309 3.801
Pair3  NovicelLVAL 4433 30 18.742 3422
NaviceEco 3083 30 18712 3416
Paired Samples Correlations
N Corelation Sig
Pair1  ExperlVAL & ExpertEco & 762 o7e
Pair2  MatchedLVAL &
MatchedEca & oog 987
Pair3  MoviceLVAL & NoviceEco 30 380 033
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  ExperLVAL - ExpertEco 1.667 15.055 6.146 -14.133 17.466 271 5 797
Pair2  MatchedLVAL - o ron .
MatchedEco 35.000 23.022 9.399 10.840 50.160 3724 5 014
Pair3  NoviceLVAL - NoviceEco 13600 20.684 3776 5776 21.22. 35675 9 001
S.6.2 Paired Between
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExpertlLVAL 40.00 B 16.432 6708
MatchedLVAL 5333 6 21134 8628
Pair2  ExpertEco 3833 B 23166 9.458
MatchedEco 18.33 6 9.308 3.801
Paired Samples Correlations
N Correlafion Sig.
Pair1  ExperlVAL & o
MatchedLVAL E 268 560
Pair2  ExpertEco & MatchadEco B 193 714
Paired Samples Test
Paired Differences
95% Confidence Interval oftha
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  ExperlLVAL- . . .
MatchedL VAL -13.333 22730 9.280 -37.187 105621 -1.437 5 10
Pair2  ExpertEco- MatchedEca 20.000 23.238 9.487 -4.387 44.387 2108 5 .089
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S.6.3 Independent Between

Expert - Novice (LVAL)

Group Statistics
Std. Error
Condition N Msan | Std. Deviation Mean
Response 1 [ 40.00 16.432 6.708
2 30 4433 16742 3422

Independent Samples Test

Levene's Test for Equality of
Variances test for Equality of Means
95% Confidence Intarval of the
Wean Std. Error Differance

F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equal variances N N . N .
assumed 1.050 313 -526 34 602 -4.333 8.238 -21.075 12.408

Equal variances not o

assumed - 575 7.848 581 -4.333 7531 -21.757 13.000

Expert - Novice (Ecological)

Group Statistics

Std. Error
Condition N Mean Std. Deviation Mean
Respaonse 1 6 38.33 23166 9.458
2 30 30.83 18.712 3416
Independent Samples Test
Levene's Testfor Equality of
Variances test for Equality of Means
95% Confidence Intzrval ofthe
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances 001 874 863 34 394 7500 8680 -10.160 25160
Equal variances not . o .
assumed T46 6371 482 7.500 10.066 -16.762 31762

Matched Novice - Novice (LVAL)

Group Statistics
Std. Errar

Condition N Mean | Std. Deviation Mean
Response 1 6 5333 21134 8,628

2 30 4433 18.742 3422

Independent Samples Test
Levene's Test for Equality of
Variances ttest for Equality of Means
95% Confidence Interval of the
Mean Std. Error Differance
F sig t df Sig. (2ailed) | Difference Difference Cower Upper

Equal variances
Response  Eaualva 086 gl 1.053 34 300 9.000 8.547 -8370 26,370

Equal variances not e . .

assumed 970 6 668 366 9.000 8282 -13172 31172

Matched Novice - Novice (Ecological)

Group Statistics

Std. Error

Condition N Mean | Std. Deviation Mean
Response 1 [ 18.33 8300 3.801

2 30 30.83 18.712 3416

Independent Samples Test
Levene's Testfor Equality of
ces test for Equality of Means
95% Confidence Interval ofthe
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances . N " -

assumed 3.577 067 -1.584 34 122 -12.500 7.892 -28.538 3.538

Equal variances not . o . o .

assumed -2.446 14.691 028 -12.500 5110 -23.412 -1.588
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S.7 Perceived Frustration

S.7.1

Paired Within

Paired Samples Statistics
Std. Error
Wean N Std. Deviation Mean
Pair1  ExperlLVAL 17.50 3 10.368 4233
ExpentEca 3817 6 22.675 §.257
Pair2  MatchedLVAL 35.00 & 24.290 9918
MatchedEco 10.00 6 7748 3.162
Pair3  Movicel VAL 3917 30 23675 4322
NoviceEco 20.50 30 18.862 3444
Paired Samples Correlations
N Correlation Sig
Pair1  ExperLVAL & ExpertEco & -032 952
Pair2  MatchedLVAL &
MatchedEco § -638 173
Pair3  NoviceLVAL & NoviceEco 30 117 539
Paired Samples Test
Paired Differences
95% Confidence Intarval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  ExpenlVAL- ExpertEco -21 887 25232 10301 -48.146 4813 -2103 5 i:t)
Pair2  MatchedLVAL - . N N A
MatchedEca 25.000 20,833 12179 -6.308 56.308 2.053 5 095
Pair3  NoviceLVAL - NoviceEco 18.667 28.405 5202 8.027 29.307 3.588 29 001
S.7.2 Paired Between
Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExperlLVAL 1760 [ 10.368 4233
MatchedLVAL 35.00 3 24.280 9.916
Pair2  ExpertEco 3817 [ 22675 9.257
MatchedEco 10.00 [ 7.746 3.162
Paired Samples Correlations
N Correlation Sig
Pair1  ExpertlVAL & N N
MatchedLVAL 8 -258 2
Pair2  ExpertEco & MatchedEco 6 085 872
Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Eror Difference
Mean Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)
Pair 1 Expert_VAL- _ N
MatchedLVAL -17.500 28.766 11.744 -47.688 12.688 -1.490 5 196
Pair2  ExperEco - MatchedEco 20167 23.327 9523 4,686 53.647 3.063 5 028
S.7.3 Independent Between
Group Statistics
Std. Error
Condition N Mean Std. Deviation Mean
Response 1 & 17.50 10368 4233
2 30 3917 23.675 4322
Independent Samples Test
Levens's Testfor Equality of
‘ariances t-test for Equality of Means
95% Confidence Interval of the
Mean Std. Error Difterence
F Sig. 1 df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N B N
assumed 9.542 004 -2180 34 036 -21 867 9939 -41.864 -1.469
Equal variances not N N
assumed -3.581 17.570 002 -21.667 6.050 -34.399 -8.934
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Expert - Novice (Ecological)

Group Statistics
Std. Error

Condition N Mean | Std. Deviation Mean
Response 1 & 3917 22675 9.257

2 30 20.50 18.862 3.444

Independent Samples Test
Levene's Testfor Equality of
Variances t-est for Equality of Means
95% Confidence Interval of the
Mean Std. Enror Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N N N . .

assumed 992 326 2144 kLY 038 18.667 8707 972 36.362

Equal variances not . .

assume 1.890 6.458 104 18.667 9.877 -5.082 42425

Matched Novice - Novice (LVAL)

Group Statistics
Sid. Error

Condition N Mean | Std. Deviation Mean
Response 1 & 35.00 24.290 9918

2 30 39.17 23.675 4322

Independent Samples Test
Levene's Testfor Equality of
Variances ttest for Equality of Means
95% Confidence Intarval ofthe
Mean Std. Error Differance
F Sig 1 df sig. (2talled) | Difference Difference Cower Upper

Equal variances
Response  Eovalv 364 550 -382 3 597 -4.167 10.628 -25.766 17.433

Equal variances not - o

assumed -385 7.037 711 4167 10817 -26.718 21.385

Matched Novice — Novice (Ecological)

Group Statistics

Std. Error

Condition N Mean | Std. Deviation Mean
Response 1 & 10.00 7748 3162

2 30 20,50 18.862 3.444

Independent Samples Test
Levene's Testfor Equality of
Variances ttestfor Equality of Means
95% Confidence Interval of the
WMean Std. Error Difference
F Sig 1 af Sig. (2-tailed) | Difference Diffrence Lower Upper

Response  Equalvariances o mn _ -

assumed 2732 108 -1.329 34 103 -10.500 7.903 -26.561 5.561

Equalvariances not - . . -

assumed -2.246 18,229 037 -10.500 4675 -20.278 -722
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Appendix T: Test Statistics for System Usability
Measures (Chapter 8)

T.1 Overall System Usability

T.1.1 Paired Within

Paired Samples Statistics

Std. Error
Mean N Std. Deviation Mean

Pair1  ExperlVAL 745833 [ 6.00347 2.45091

ExpertEco 579167 6 16.07923 666432
Pair2  WatchedLVAL | 56,6667 [ 24.98333 1019940

MatchedEco 85.0000 6 14.01643 6.08961
Pair3  MovicelVAL 54.3333 30 17.57905 3.20048

NoviceEco 776833 30 16.78070 2.88207

Paired Samples Correlations
N Corelation B

Pair1  ExperlVAL & ExpertEco & 1496 708
Pair2  MatchedLVAL & .

MatchedEco & 728 101
Pair3  NoviceLVAL & NoviceEco 30 -.208 270

Paired Samples Test
Paired Differences
95% Confidence Interval of the
Std. Error Differance
Mean Std. Deviation Mean Lower Upper 1 df Sig. (2-tailed)

Pair1  ExperlVAL - ExperiEco 16.66667 16.02082 654047 - 14615 33.47948 2548 5 051
Pair?  MatchedLVAL- _ N N _ .

MatchedEco -28.33333 3727163 1621604 -67.44740 1078073 -1.862 5 122
Pair3  Novicel VAL - MoviceEca -23.25000 25.95711 473010 -32.04254 -13.55748 -4.908 29 000

T.1.2 Paired Between

Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair1  ExperlVAL 745833 8 6.00347 245001
MatchedLVAL | 56.6667 6 2498333 10.18840
Pair2  ExperEco 579167 8 16.07923 6.56432
MatchedEco 85.0000 6 1491643 6.08861
Paired Samples Correlations
N Correlation Sig.
T e, Bl |
Pair2  ExperEco & MatchedEco B 261 618

Paired Samples Test

Paired Differences
95% Gonfidence Interval of the
Std. Error Difference
maan Std. Deviation Mean Cower Upper 1 df Sig. (2-tailed)
Fair ;?fgé—:ﬂ/xL 17.91667 27.85752 11.37278 -11.31801 47.15135 1575 5 176
Pair2  ExperEco - MatchedEco -27.08333 18.86907 7.70326 -46.88520 -7.28146 -3516 5 017

T.1.3 Independent Between

Expert - Novice (LVAL)

Group Statistics

Std. Error

Condition N Mean | Std. Deviation Mean
Response 1 6 745833 6.00347 2.45001

2 30 | 543333 17.57905 3.20048

Independent Samples Test
Levene's Testfor Equality of
Variances t-testfor Equality of Means
95% Confidence Interval of the
Mean Std. Error Difference
F sig 1 df Sig. (2-tailed) Differznce Differznce Lower Upper

Response  Equalvariances N — "

assumed 7.747 .00 2761 34 009 20.25000 7.33318 534716 3515284

Equal variances not . P - . 5

assumed 5015 24.453 ooo 20.25000 4.03828 11.82357 28.57643
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Expert - Novice (Ecological)

Group Statistics

Std. Eror
Condition N Mean Std. Deviation Mean
Response 1 6 57.9167 16.07923 6.56432
2 30 | 77.5833 15.70070 2.88297
Independent Samples Test
Levene's Testfor Equality of
Variances testfor Equality of Means
95% Confidence Interval oftha
Mean Std. Enror Difference
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances N _
assumed 088 768 -2.777 34 009 -19.66667 7.08084 -34.05687 -6.27647
Equalvariances not 5 - g
assumed -2.743 7.070 029 -19.66667 716951 -36.58611 -2.74723

Matched Novice - Novice (LVAL)

Group Statistics

Std. Error

Condition N Mean | Std Deviation Mean
Response 1 6 56.6667 24.98333 10.18940

2 30 543333 17.57905 3.20948

Independent Samples Test
Levene's Testfor Equality of
Variances t-testfor Equality of Means
95% Confidence Interval of the
Mean std. Error Difference
F Sig. 1 df Sig. (2-tailed) Difference Difference Lower Upper

Response  Equalvariances N - B

assumed Bao0 412 277 34 784 233333 8.43051 -14.79953 19.46619

Equal variances not . . . . . N "

assumed 218 6.020 834 233333 10.69245 -23.79965 28.46632

Matched Novice — Novice (Ecological)

Group Statistics
Std. Error
Condition N Mean | Std. Deviation Mean
Response 1 6 | 85.0000 14.91643 6.08961
2 30 | 776833 156.78070 2.88287

Independent Samples Test

Levene's Test for Equality of
Variances ttestfor Equality of Means
G5% Confidence Interval of the
Mean Std. Error Differsnce
F Sig t df Sig. (2-tailed) Difference Difference Lower Upper
Response  Equalvariances R B . B

assumed 138 2 1.058 34 297 741667 7.00568 -6.82060 21.65394
Equal variances not . . Y
assumed 1101 7.428 305 741867 B.73757 -8.33088 2316421

T.2 SUS Question 1 Responses
T.2.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Response
2 E T 5 Total
Condiion  Ecological  Count 2 1 3 0 3
% within Condition 333% | 167% | 60.0% 0.0% | 100.0%
% within Respense [ 100.0% | 50.0% | 429% 00% | 50.0%
% of Total 16.7% 8.3% | 260% 0.0% | 50.0%
LvAL Count 0 1 4 1 3
% within Condition 00% | 16.7% | 667% | 167% | 100.0%
% within Respanse 00% | 50.0% | &74% | 100.0% | 50.0%
% of Total 0.0% 8.3% | 33.3% 83% | 50.0%
Total Count 2 2 7 1 2
% within Condition 187% | 16.7% | 58.3% 83% | 100.0%
% within Responss [ 100.0% | 100.0% | 100.0% | 100.0% | 100.0%
% of Total 167% | 167% | 58.3% 8.3% | 100.0%
Chi-Square Tests
Rsymp. 510
Value df 2-sided)
Pearson Chi-Square 31437 3 370
Likelihood Ratio 4302 3 231
1 of Valid Cases 12

2.8 cells (100.0%) have expected tount l2ss than 5. The
minimum expected countis .50
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Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Caondition  Ecological  Count 0 1 2 1 2 &
% within Condition 0.0% 16.7% 333% 16.7% 33.3% 100.0%
% within Response 0.0% 333% 50.0% 50.0% 100.0% 50.0%
% of Total 0.0% 8.3% 16.7% 8.3% 16.7% 50.0%
LVAL Count 1 2 2 1 0 6
% within Condition 16.7% 333% 333% 16.7% 0.0% 100.0%
% within Response 100.0% 66.7% 50.0% 50.0% 0.0% 50.0%
% of Total B8.3% 16.7% 168.7% 8.3% 0.0% 50.0%
Total Count 1 3 4 2 2 2
% within Condition B.3% 250% 33.3% 16.7% 16.7% 100.0%
% within Respanse 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 26.0% 33.3% 16.7% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 3.333° 4 504
Likelihood Ratio 4.499 4 343
N ofValid Cases 12

a. 10 cells (100.0%) have expected countless than 5. The
minimum expected countis 50

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Ecclogical ~ Count 1 6 3 15 5 30
% within Condition 33% 20.0% 10.0% 50.0% 16.7% 100.0%
% within Response 333% 261% 42.8% 68.2% 100.0% 50.0%
% of Total 1.7% 10.0% 50% 25.0% 8.3% 50.0%
LVAL Count 2 17 4 7 0 30
% within Condition B.7% 56.7% 13.3% 233% 0.0% 100.0%
% within Response 66.7% 73.9% 57.1% 31.8% 0.0% 50.0%
% of Total 33% 28.3% 6.7% 11.7% 0.0% 50.0%
Total Count 3 2 7 22 5 60
% within Condition 50% 38.3% M7% 36.7% 83% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 5.0% 38.3% 11.7% 36.7% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value dr (2-sided)
Pearson Chi-Square | 136467 4 008
Likelihood Ratio 15874 4 003
N ofValid Cases 60

a6 cells (60.0%) have expected count less than 5 The
minimum expectad countis 1.50

T.2.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 H Total

Candition  Expert Caunt 0 0 1 4 1 6
% within Condition 0.0% 0.0% 16.7% 66.7% 16.7% 100.0%
% within Response 0.0% 0.0% 333% 80.0% 100.0% 50.0%
% of Total 0.0% 0.0% 8.3% 33.3% 8.3% 50.0%

Matched  Count 1 2 2 1 0 6

% within Condition 16.7% 33.3% 33.3% 16.7% 0.0% 100.0%
% within Response 100.0% 100.0% 66.7% 20.0% 0.0% 50.0%
% of Total B83% 16.7% 16.7% 8.3% 0.0% 50.0%

Total Count 1 2 3 5 1 2
% within Condition 83% 16.7% 250% 417% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 16.7% 25.0% 41.7% 8.3% 100.0%

Chi-Square Tests
Asymp. Sig

Value df (2-sided)

Pearsan Chi-Square 61337 4 188

Likelihood Ratio 7.812 4 .0ag

N ofValid Cases 12

a. 10 cells (100.0%) have expected count less than 5. The
minimum expectad count is .50
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Expert - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Expert  Count 0 0 1 4 1 &
% within Condition 0.0% 0.0% 16.7% 66.7% 16.7% 100.0%
% within Response 0.0% 0.0% 20.0% 36.4% 100.0% 16.7%
% of Total 0.0% 0.0% 28% 11.1% 2.8% 16.7%
Movice  Count 2 17 4 7 0 30
% within Condition 6.7% 56.7% 13.3% 23.3% 0.0% 100.0%
% within Response 100.0% 100.0% 80.0% 63.6% 0.0% 833%
% of Total 56% 47.2% 111% 109.4% 0.0% 83.3%
Total Count 2 17 5 " 1 36
% within Condition 5.6% 47.2% 13.8% 30.6% 2.8% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 5.6% 47.2% 13.9% 30.6% 2.8% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square | 11.913% 4 018
Likelihood Ratio 13.016 4 011
N ofvalid Cases 36

a. 8 cells (80.0%) have expected count less than 5. The
minimum expected count is

Matched Novice - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Candition  Matched  Count 1 2 2 1 6
% within Condition 16.7% 33.3% 333% 168.7% 100.0%
% within Response 333% 105% 33.3% 12.5% 16.7%
% of Total 28% 6% 56% 28% 16.7%
Mavice Count 2 17 4 7 30
% within Condition 6.7% 56.7% 133% 233% 100.0%
% within Response 66.7% 88.5% 66.7% B7.5% 83.3%
% of Total 5.6% 47.2% 111% 19.4% 83.3%
Total Count 3 19 6 8 36
% within Condition 8.3% 528% 16.7% 222% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 52.8% 16.7% 22.2% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 24167 3 491
Likelihood Ratio 2168 3 538
N of Valid Cases 36

a. 5 cells (52.5%) have expected count less than 5. The
minimum expected count is .50

T.2.3 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Response
2 3 4 5 Total
Condition  Expert Count 2 1 3 0 &
% within Condition 33.3% 16.7% 50.0% 0.0% 100.0%
% within Response 66.7% 33.3% 75.0% 0.0% 50.0%
% of Total 16.7% B8.3% 25.0% 0.0% 50.0%
Matched  Count 1 2 1 2 3
% within Condition 16.7% 333% 16.7% 333% 100.0%
% within Response 333% 66.7% 25.0% 100.0% 50.0%
% of Total 8.3% 16.7% 8.3% 16.7% 50.0%
Total Count 3 3 4 2 2
% within Gondition 250% 250% 333% 16.7% 100.0%
% within Respanse 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 25.0% 33.3% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 3.667° 3 300
Likelihood Ratio 4408 3 212
M of Valid Cases 12

a. 8 cells (100.0%) have expected count less than 5. The
minimum expected countis 1.00.
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Expert — Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Expert  Count 0 2 1 3 0 3
% within Condition 0.0% 33.3% 16.7% 50.0% 0.0% 100.0%
% within Response 0.0% 25.0% 25.0% 16.7% 0.0% 168.7%
% of Total 0.0% 5.6% 28% 8.3% 0.0% 16.7%
Novice  Count 1 6 3 15 5 30
% within Condition 33% 20.0% 10.0% 50.0% 16.7% 100.0%
% within Response 100.0% 75.0% 75.0% 83.3% 100.0% 83.3%
% of Total 28% 16.7% B.3% 41.7% 13.9% 83.3%
Total Count 1 ] 4 18 5 36
% within Condition 28% 22.2% 1M11% 50.0% 13.9% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 2.8% 22.2% 111% 50.0% 13.9% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 1.800% 4 772
Likelihood Ratio 2724 4 605
N of Valid Cases 36
a. 8 cells (80.0%) have expected count less than 5. The
minimum expected count is 17.
Matched Novice - Novice
Condition * Response Crosstabulation
Response
1 2 3 4 5 Total
Condition  Matched  Count 0 1 2 1 2 6
% within Condition 0.0% 16.7% 333% 16.7% 333% 100.0%
% within Response 0.0% 143% 40.0% 6.3% 286% 16.7%
% of Total 0.0% 28% 56% 2.8% 5.6% 16.7%
Movice Count 1 [ 3 15 5 30
% within Condition 33% 20.0% 10.0% 50.0% 16.7% 100.0%
% within Response 100.0% B5.7% 60.0% 938% 71.4% 833%
% of Total 28% 16.7% 8.3% N7% 13.8% 83.3%
Total Count 1 7 5 16 7 36
% within Condition 28% 19.4% 13.9% 44.4% 19.4% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 2.8% 15.4% 13.9% 44.4% 19.4% 100.0%

Chi-Square Tests

Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 41537 4 386
Likelihood Ratio 4112 4 391
N of Valid Cases 36

a. 7 cells (70.0%) have expactad count less than 5. The
minimum expected count is

T.3 SUS Question 2 Responses

T.3

Expert

N |

Within-Subjects

Condition * Response Crosstabulation

a B cells (100.0%) have expected count less than 5. The

minimum expectzd count is 1.00

Response
1 2 3 4 Total
Candition  Ecological  Count 0 2 2 2 6
% within Condition 0.0% 333% 333% 333% 100.0%
% within Response 0.0% 40.0% 100.0% 66.7% 50.0%
% of Total 0.0% 16.7% 16.7% 16.7% 50.0%
LVAL Count 2 3 0 1 6
% within Condition 33.3% 50.0% 0.0% 16.7% 100.0%
% within Response 100.0% 60.0% 0.0% 333% 50.0%
% of Total 16.7% 25.0% 0.0% 8.3% 50.0%
Total Count 2 5 2 3 2
% within Condition 16.7% 41.7% 16.7% 25.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 16.7% 41.7% 16.7% 25.0% 100.0%
Chi-Square Tests
Asymp. Sig
Valug df 2-sided)
Pearson Chi-Square 45633% 3 208
Likelihood Ratio 6.086 3 JA07
N ofValid Cases 12
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Matched Novice

Condition * Response Crosstabulation

Response
1 2 4 Total
Condition  Ecological ~ Count 3 3 0 3
% within Condition 60.0% 60.0% 0.0% 100.0%
% within Response 100.0% 42.9% 0.0% 50.0%
% of Total 26.0% 26.0% 0.0% 50.0%
LVAL Count 0 4 2 3
% within Condition 0.0% 66.7% 333% 100.0%
% within Response 0.0% 571% 100.0% 50.0%
% of Total 0.0% 333% 16.7% 50.0%
Total Count 3 7 2 2
% within Condition 250% 58.3% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 58.3% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 5.143% 2 076
Likelihood Ratio 7.075 2 029
N ofValid Cases 12

a. 6 cells (100.0%) have expected count less than 5. The
minimum expected countis 1.00.

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Condition  Ecological  Count 11 13 2 4 30
% within Condition 36.7% 433% B8.7% 13.3% 100.0%
% within Response 733% 69.1% 16.7% 36.4% 50.0%
% of Total 18.3% 21.7% 3.3% 6.7% 50.0%
LVAL Count 4 8 10 7 30
% within Condition 13.3% 30.0% 33.3% 23.3% 100.0%
% within Response 26.7% 40.8% 833% 63.6% 50.0%
% of Total 6.7% 15.0% 16.7% 11.7% 50.0%
Total Count 15 22 2 " 60
% within Condition 250% 36.7% 20.0% 18.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 36.7% 20.0% 18.3% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square | 10.145% 3 017
Likelihood Ratio 10779 3 013
N of Valid Cases 60

a.0 cells (0.0%) have expectad count l2ss than 5. The
minimum expected count is 5.50.

T.3.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Response
1 2 4 Total
Condition  Expert Count 2 3 1 6
% within Condition 33.3% 50.0% 16.7% 100.0%
% within Response 100.0% 42.9% 333% 50.0%
% of Total 16.7% 25.0% 8.3% 50.0%
Matched  Count 0 4 2 6
% within Condition 0.0% B6.7% 333% 100.0%
% within Response 0.0% 57.1% 66.7% 50.0%
% of Total 0.0% 33.3% 16.7% 50.0%
Total Count 2 7 3 2
% within Condition 16.7% 58.3% 25.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0%
% of Total 16.7% 58.3% 25.0% 100.0%
Chi-Square Tests
Asymp. Sig.
Value dr 2-sided)
Pearson Chi-Square 24767 2 250
Likelihood Ratio 3.256 2 196
N ofValid Cases 12

a 6 cells (100.0%) have expected count less than 5. The
minimum expected countis 1.00
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Expert — Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Condition  Expert  Count 2 3 o 1 6
% within Condition 333% 50.0% 0.0% 16.7% 100.0%
% within Response 33.3% 25.0% 0.0% 125% 16.7%
% of Total 56% 8.3% 0.0% 2.8% 16.7%
Movice  Count 4 El 10 7 30
% within Condition 13.3% 30.0% 333% 233% 100.0%
% within Response 66.7% 750% 100.0% B7.5% 833%
% of Total 111% 25 0% 27 8% 19.4% 833%
Total Count [ 2 10 8 36
% within Condition 16.7% 333% 27.8% 222% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 16.7% 333% 27.8% 22.2% 100.0%
Chi-Square Tests
Asymp. 8ig
valug df (2-sided)
Pearson Chi-Square 3.800° 3 272
Likelihood Ratio 6278 3 153
N ofvalid Cases 36

a. 4 cells (50.0%) have expected count less than 5. The
minimum expected count is 1.00.

Matched Novice - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total

Condition  Matched  Count 0 4 ] 2 6
% within Condition 0.0% B6.7% 0.0% 333% 100.0%
% within Response 0.0% 30.8% 0.0% 222% 16.7%
% of Total 0.0% 111% 0.0% 5.6% 16.7%

Movice Count 4 El 10 7 30

% within Condition 133% 30.0% 333% 233% 100.0%
% within Response 100.0% 69.2% 100.0% 77.8% 83.3%
% of Total 11.1% 25.0% 27.8% 19.4% 83.3%

Total Count 4 13 10 El 36
% within Condition 11.1% 36.1% 278% 25.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 11.1% 36.1% 27.8% 25.0% 100.0%

Chi-Square Tests
Asymp. Sig.

Value df (2-sided)

Pearson Chi-Square 48627 3 182

Likelihood Ratio B.857 3 077

M ofValid Cases 36

a. 6 cells (62.5%) have expected count less than 5. The
minimum expected count is .67,

T.3.3 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Condition  Expert Count 0 2 2 2 3
% within Condition 0.0% 33.3% 333% 33.3% 100.0%
% within Response 0.0% 40.0% 100.0% 100.0% 50.0%
% of Total 0.0% 16.7% 16.7% 16.7% 50.0%
Matched  Count 3 3 0 0 3
% within Condition 50.0% 60.0% 0.0% 0.0% 100.0%
% within Response 100.0% 60.0% 0.0% 0.0% 50.0%
% of Total 25.0% 25.0% 0.0% 0.0% 50.0%
Total Count 3 5 2 2 2
% within Condition 25.0% 417% 16.7% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 41.7% 16.7% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 7.2007 3 088
Likelihood Ratio 8.905 3 019
M ofValid Cases 12

3. 8 cells (100.0%) have expected countless than 5. The
minimum expected countis 1.00.
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Expert - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Caondition  Expert  Count 0 2 2 2 6
% within Condition 0.0% 333% 333% 333% 100.0%
% within Response 0.0% 13.3% 50.0% 333% 16.7%
% of Total 0.0% 56% 5.6% 5.6% 16.7%
Novice  Count " 13 2 4 30
% within Condition 36.7% 43.3% 67% 13.3% 100.0%
% within Response 100.0% BE.7% 50.0% B6.7% 83.3%
% of Total 30.6% 36.1% 5.6% 11.1% 83.3%
Total Count " 15 4 & 36
% within Condition 30.6% 41.7% 11.1% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 30.6% 41.7% 11.1% 16.7% 100.0%
Chi-Square Tests
‘Asymp. Sig
Value dr (2-sided)
Pearson Chi-Square 6.720° 3 081
Likelihood Ratio 7.477 3 058
N ofValid Cases 36

a. G cells (62.5%) have expected count less than 5. The
minimum expected countis 7.

Matched Novice - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Tatal
Condition  Matched ~ Count 3 3 0 0 6
% within Condition 50.0% 50.0% 0.0% 0.0% 100.0%
% within Response 21.4% 18.8% 0.0% 0.0% 16.7%
% of Total 8.3% 8.3% 0.0% 0.0% 16.7%
Nowice Count 11 13 2 4 30
% within Condition 36.7% 433% 8.7% 13.3% 100.0%
% within Response 78.6% 81.3% 100.0% 100.0% 833%
% of Total 30.6% 36.1% 5.6% 111% 83.3%
Total Count 14 16 2 4 36
% within Condition 38.9% 44.4% 5.6% A% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 38.9% 44.4% 5.6% 111% 100.0%
Chi-Square Tests
Asymp. 8ig.
Value df (2-sided)
Pearson Chi-Square 1.479% 3 687
Likelihood Ratio 2450 3 484
N of Valid Cases 36

a.6 cells (75.0%) have expected count less than 5. The
minimurm expected countis .33

T.4 SUS Question 3 Responses
T.4.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Response
1 2 4 Total
Condition  Ecological ~ Count 1 2 3 [
% within Condition 16.7% 333% 50.0% 100.0%
% within Response 100.0% 100.0% 33.3% 50.0%
% of Total B.3% 16.7% 25.0% 50.0%
LVAL Count o o 3 [
% within Condition 0.0% 0.0% 100.0% 100.0%
% within Response 0.0% 0.0% 66.7% 50.0%
% of Total 0.0% 0.0% 50.0% 50.0%
Total Count 1 2 El 2
% within Condition 8.3% 16.7% 75.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0%
% of Total B.3% 16.7% 75.0% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 4.000° 2 136
Likelihood Ratio 5178 2 078
N of Valid Cases 12

a6 cells (100.0%) have expected count less than &. The
minimum expectad countis 50
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Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Ecological ~ Count o 0 0 3 3 3
% within Condition 0.0% 00% 0.0% 50.0% 50.0% 100.0%
% within Response 0.0% 0.0% 0.0% 75.0% 75.0% 50.0%
% of Total 0.0% 0.0% 0.0% 25.0% 25.0% 50.0%
LVAL Count 1 1 2 1 1 3
% within Condition 16.7% 16.7% 33.3% 16.7% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 25.0% 25.0% 50.0%
% of Total B8.3% 83% 16.7% 8.3% 8.3% 50.0%
Total Count 1 1 2 4 4 2
% within Condition 8.3% 8.3% 16.7% 333% 33.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 8.3% 16.7% 33.3% 33.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 6.000% 4 199
Likelihood Ratio 7638 4 106
N of Valid Cases 12
a. 10 cells (100.0%) have expected count less than 5. The
minimum expected count is .50.
Novice
Condition * Response Crosstabulation
Response
1 2 3 4 5 Total
Condition  Ecological ~ Count 0 2 2 11 15 30
% within Condition 0.0% B.7% 6.7% 36.7% 50.0% 100.0%
% within Response 0.0% 16.4% 28.6% 55.0% 78.8% 50.0%
% of Total 0.0% 3.3% 3.3% 18.3% 25.0% 50.0%
LWAL Count 1 " & 9 4 30
% within Condition 33% 36.7% 16.7% 30.0% 13.3% 100.0%
% within Response 100.0% B46% 71.4% 45.0% 211% 50.0%
% of Total 1.7% 18.3% 8.3% 15.0% 6.7% 50.0%
Total Count 1 13 7 21 19 60
% within Condition 1.7% 21.7% 11.7% 33.3% 31.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 1.7% 2M.7% 11.7% 33.3% 31.7% 100.0%
Chi-Square Tests
Asymp. 8ig
Valug df (2-sided)
Pearson Chi-Square | 15.085% 4 005
Likelihood Ratio 16.667 4 002
N of Valid Cases 60

a. 4 cells (40.0%) have expected countless than 6. The
minimum expected count is .50

T.4.2

Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

N ofValid Cases

12

a.10 cells (100.0%) have expected count less than 5. The
minimum expected count is .50.

Response
1 2 3 4 5 Total
Condition  Expert Count o o 1) L} 0 [}
% within Condition 0.0% 0.0% 0.0% 100.0% 0.0% 100.0%
% within Response 0.0% 0.0% 0.0% B5.7% 0.0% 50.0%
% of Total 0.0% 0.0% 0.0% 50.0% 0.0% 50.0%
Matched  Count 1 1 2 1 1 [}
% within Condition 16.7% 16.7% 33.3% 16.7% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 143% 100.0% 50.0%
% of Total B.3% B.3% 16.7% 8.3% 8.3% 50.0%
Total Count 1 1 2 7 1 2
% within Condition B.3% B3% 16.7% 58.3% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total B.3% B.3% 16.7% 58.3% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 8.871% 4 073
Likelihood Ratio 10.894 4 028
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Expert -

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 H Total
Condition  Expert  Count 0 0 0 6 0 6
% within Condition 0.0% 0.0% 0.0% 100.0% 0.0% 100.0%
% within Respaonse 0.0% 0.0% 0.0% 40.0% 0.0% 16.7%
% of Total 0.0% 0.0% 0.0% 16.7% 0.0% 16.7%
Novice  Count 1 11 5 9 4 30
% within Condition 33% 36.7% 16.7% 30.0% 13.3% 100.0%
% within Response 100.0% 100.0% 100.0% 60.0% 100.0% 833%
% of Total 28% 30.6% 138% 25.0% 11.1% 833%
Total Count 1 1" 5 15 4 36
% within Condition 2.8% 30.6% 13.9% 41.7% 11.1% 100.0%
% within Respanse 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 268% 30.6% 13.9% 41.7% 11.1% 100.0%
Chi-Square Tests
Asymp._ Sig
Value df (2-sided)
Pearson Chi-Square | 10.0807 038
Likelihood Ratio 12.250 016
N of Valid Cases 36
a. 8 cells (80.0%) have expected countless than 5. The
minimum expected countis 17
Matched Novice - Novice
Condition * Response Crosstabulation
Response
1 2 3 4 H Total
Condition  Matched — Count 1 1 2 1 1 6
% within Condition 16.7% 16.7% 33.3% 16.7% 16.7% 100.0%
% within Response 50.0% B.3% 28.6% 10.0% 20.0% 16.7%
% of Total 28% 28% 5.6% 28% 28% 16.7%
Novice Count 1 " 5 9 4 30
% within Condition 33% 36.7% 16.7% 30.0% 13.3% 100.0%
% within Response 50.0% 91.7% 71.4% 50.0% 80.0% 83.3%
% of Total 28% 30.6% 13.9% 25.0% 11.1% 83.3%
Total Count 2 2 7 10 5 36
% within Condition 5.6% 33.3% 19.4% 27.8% 13.9% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 5.6% 33.3% 19.4% 27.8% 13.9% 100.0%
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 3.274° 4 513
Likelihood Ratio 2902 4 574
N of Valid Cases 36

a. 7 cells (70.0%) have expected count less than 5. The
minimum expected countis .33,

T.4.3

Expert - Matched Novice

Condition * Response Crosstabulation

a. Bcells (100.0%) have expected count less than 5. The
minimum expected count is .50,
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Response
1 2 4 5 Total
Condition  Expert Count 1 2 3 0 [
% within Condition 16.7% 333% 50.0% 0.0% 100.0%
% within Response 100.0% 100.0% 50.0% 0.0% 50.0%
% of Total B.3% 16.7% 25.0% 0.0% 50.0%
Matched  Count o o 3 3 L}
% within Condition 0.0% 0.0% 50.0% 50.0% 100.0%
% within Response 0.0% 0.0% 50.0% 100.0% 50.0%
% of Total 0.0% 0.0% 25.0% 25.0% 50.0%
Total Count 1 2 ] 3 2
% within Condition 8.3% 16.7% 50.0% 250% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 16.7% 50.0% 25.0% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 6.000° 3 12
Likelihood Ratio 8318 3 040
N of Valid Cases 12

Between-Subjects (Ecological)




Expert -

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Expert  Count 1 2 0 3 0 &
% within Condition 16.7% 333% 0.0% 50.0% 0.0% 100.0%
% within Response 100.0% 50.0% 0.0% 21.4% 0.0% 16.7%
% of Total 2.8% 56% 0.0% 8.3% 0.0% 16.7%
Novice  Count 0 2 2 " 15 30
% within Condition 0.0% B.7% B7% 36.7% 50.0% 100.0%
% within Response 0.0% 50.0% 100.0% 78.6% 100.0% 83.3%
% of Total 0.0% 56% 56% 30.6% 41.7% 83.3%
Total Gount 1 4 2 14 15 36
% within Condition 2.8% 1.1% 56% 38.9% 41.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 2.8% 11.1% 56% 38.9% 41.7% 100.0%
Chi-Square Tests
Asymp. Sig
Valug df (2-sidad)
Pearson Chi-Square 11.829° 4 019
Likelihood Ratio 12347 4 015
M of Valid Cases 36
a. 8 cells (80.0%) have expectad count 12ss than 5. The
minimum expected countis 17,
Matched Novice - Novice
Condition * Response Crosstabulation
Response
2 3 4 5 Total
Condition  Matched  Count 0 0 3 3 3
% within Condition 0.0% 0.0% 50.0% 50.0% 100.0%
% within Response 0.0% 0.0% 21 4% 16.7% 16.7%
% of Total 0.0% 0.0% 8.3% 8.3% 16.7%
Naovice Count 2 2 11 15 30
% within Condition 6.7% 6.7% 36.7% 50.0% 100.0%
% within Response 100.0% 100.0% 78.6% 83.3% 83.3%
% of Total 568% 56% 30.6% 41.7% 83.3%
Total Count 2 2 14 18 36
% within Condition 568% 5.6% 38.9% 50.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 5.6% 56% 38.9% 50.0% 100.0%
Chi-Square Tests
Asymp. 5ig
Valug df (2-sided)
Pearson Chi-Square 1.029% 3 704
Likelihood Ratio 1.672 3 643
N of Valid Cases 36

a6 cells (75.0%) have expected countless than 5 The

minimum expects

T.5 SUS Question 4 Responses

T.5.1

Expert

d countis .33

Condition * Response Crosstabulation

Within-Subjects

.8 cells (100.0%) have expected count less than 5. The

minimum expecte

d countis 50

Response
1 2 3 4 Total
Condition  Ecological ~ Count 2 2 1 1 [
% within Condition 333% 333% 16.7% 16.7% 100.0%
% within Response 40.0% 40.0% 100.0% 100.0% 50.0%
% of Total 16.7% 16.7% 8.3% 8.3% 50.0%
LVAL Count 3 3 0 0 [
% within Condition 50.0% 50.0% 0.0% 0.0% 100.0%
% within Response 60.0% 60.0% 0.0% 0.0% 50.0%
% of Total 25.0% 25 0% 0.0% 0.0% 50.0%
Total Count 5 5 1 1 2
% within Condition 41.7% 41.7% 83% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 41.7% 41.7% 8.3% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig
Valug df 2-sided)
Pearson Chi-Square 2.400% 3 494
Likelihood Ratio 3175 3 365
N ofValid Cases 12
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Matched

Novice

Condition * Response Crosstabulation

Response
1 2 5 Total
Condition  Ecological ~ Count 5 1 0 [
% within Condition 833% 16.7% 0.0% 100.0%
% within Response 71.4% 25.0% 0.0% 50.0%
% of Total 41 7% B3% 0.0% 50.0%
LVAL Count 2 3 1 [
% within Condition 333% 50.0% 16.7% 100.0%
% within Response 28.6% 75.0% 100.0% 50.0%
% of Total 16.7% 250% 8.3% 50.0%
Total Count 7 4 1 2
% within Condition 58.3% 333% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0%
% of Total 58.3% 333% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 3.2867 2 193
Likelihood Ratio 3781 2 153
N ofValid Cases 12
a. 6 cells (100.0%) have expected count less than 5. The
minimum expected count is .50,
Novice
Condition * Response Crosstabulation
Response
1 2 3 4 Total
Condition  Ecological  Count " 13 5 1 30
% within Condition 367% 433% 16.7% 33% 100.0%
% within Response 68.8% 59.1% 33.3% 14.3% 50.0%
% of Total 18.3% 21.7% 8.3% 1.7% 50.0%
LvAL Count 5 El 10 6 30
% within Condition 16.7% 30.0% 333% 20.0% 100.0%
% within Response 31.3% 40.9% 66.7% 85.7% 50.0%
% of Total B83% 15.0% 16.7% 10.0% 50.0%
Total Count 16 22 15 7 60
% within Condition 267% 36.7% 250% 117% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 26.7% 36.7% 25.0% 11.7% 100.0%
Chi-Square Tests
Asymp. Sig.
Valug df (2-sided)
Pearson Chi-Square 8.215° 3 042
Likelihood Ratio 8.699 3 034
N of Valid Cases 60

a. 2 cells (25.0%) have expected countless than 5. The
minimum expected countis 3

T.5

2 Between-Subjects (LVAL)

Expert - Matched Novice

Condition * Response Crosstabulation

a. 6 cells (100.0%) have expected count less than 5. The
minimum expected countis 50,
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Response
1 2 H Total
Condition  Expert Count 3 3 o ]
% within Condition 50.0% 50.0% 0.0% 100.0%
% within Response 60.0% 50.0% 0.0% 50.0%
% of Total 25.0% 25.0% 0.0% 50.0%
Matched  Count 2 3 1 ]
% within Condition 33.3% 50.0% 16.7% 100.0%
% within Response 40.0% 50.0% 100.0% 50.0%
% of Total 16.7% 25.0% 8.3% 50.0%
Total Count 5 6 1 2
% within Condition 41.7% 50.0% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0%
% of Total 41.7% 50.0% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 1.200% 2 549
Likelihood Ratio 1.688 2 452
N of Valid Cases 12




Expert — Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Condition  Expert  Count 3 3 1) 0 [}
% within Condition 50.0% 50.0% 0.0% 0.0% 100.0%
% within Response IT.5% 25.0% 0.0% 0.0% 16.7%
% of Total B.3% B.3% 0.0% 0.0% 16.7%
Movice  Count 5 El 10 L} 30
% within Condition 16.7% 30.0% 33.3% 20.0% 100.0%
% within Response 62.5% 75.0% 100.0% 100.0% 83.3%
% of Total 13.9% 250% 27.8% 16.7% 83.3%
Total Count 8 2 10 L} 36
% within Condition 22.2 333% 27 8% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 22.2 33.3% 27.8% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig
Value dr (2-sided)
Pearson Chi-Square 6.3007 3 088
Likelihood Ratio 8.350 3 039
MaofValid Cases 36

a. 4 cells (50.0%) have expected count less than 5. The
minimum expected count is 1.00.

Matched Novice - Novice

Condition * Response Crosstabulation

Rasponse
1 2 3 4 5 Total
Condition  Matched  Count 2 3 o 0 1 L}
% within Condition 33.3% 50.0% 0.0% 0.0% 16.7% 100.0%
% within Respanse 28.6% 250% 0.0% 0.0% 100.0% 16.7%
% of Total 5.6% 8.3% 0.0% 0.0% 2.8% 16.7%
Novice Count 5 9 10 i o 30
% within Condition 16.7% 30.0% 33.3% 20.0% 0.0% 100.0%
% within Response 71.4% T5.0% 100.0% 100.0% 0.0% 833%
% of Total 13.9% 25.0% 27.8% 16.7% 0.0% 833%
Total Count 7 2 10 6 1 36
% within Condition 15.4% 333% 27.8% 16.7% 28% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 15.4% 33.3% 27.8% 16.7% 2.8% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 9514° 4 043
Likelihood Ratio 10.569 4 032
M ofValid Cases 36

a. G cells (80.0%) have expected count less than 5. The
minimum expected countis 1

T.5.3 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Condition  Expert Count 2 2 1 1 L}
% within Condition 33.3% 333% 16.7% 16.7% 100.0%
% within Response 28.6% 66.7% 100.0% 100.0% 50.0%
% of Total 16.7% 16.7% 8.3% 8.3% 50.0%
Matched  Count 5 1 1) 0 L}
% within Condition 83.3% 16.7% 0.0% 0.0% 100.0%
% within Response T1.4% 333% 0.0% 0.0% 50.0%
% of Total 41.7% B.3% 0.0% 0.0% 50.0%
Total Count 7 3 1 1 2
% within Condition 58.3% 250% B3% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 58.3% 25.0% 8.3% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 36197 3 306
Likelihood Ratio 4441 3 218
N ofvalid Cases 12

a. B cells (100.0%) have expected count less than 5. The
minimum expected count is .50
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Expert -

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total

Condition  Expert  Count 2 2 1 1 6
% within Condition 333% 33.3% 16.7% 16.7% 100.0%

% within Response 15.4% 13.3% 16.7% 50.0% 16.7%

% of Total 5.6% 5.6% 2.8% 2.8% 16.7%

Novice  Count " 13 5 1 30

% within Condition 36.7% 43.3% 16.7% 3.3% 100.0%

% within Respaonse B84.6% B6.7% 833% 50.0% 83.3%

% of Total 30.6% 36.1% 13.9% 2.8% 83.3%

Total Count 13 15 & 2 36
% within Condition 36.1% 41.7% 16.7% 5.6% 100.0%

% within Respanse 100.0% 100.0% 100.0% 100.0% 100.0%

% of Total 36.1% 41.7% 16.7% 5.6% 100.0%

Chi-Square Tests

Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 1.735° 3 620
Likelihood Ratio 1318 3 725
M ofvalid Casas 36

a. 5 cells (62.5%) have expected count less than 5. The
minimum expected count is .33

Matched

Novice - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total

Condition ~ Matched  Count 5 1 0 0 6
% within Condition 83.3% 16.7% 0.0% 0.0% 100.0%
% within Response 31.3% T1% 0.0% 0.0% 16.7%
% of Total 13.9% 28% 0.0% 0.0% 16.7%

Movice Count 1" 13 5 1 30

% within Condition 36.7% 43.3% 16.7% 33% 100.0%
% within Respanse 68.8% 92.9% 100.0% 100.0% 83.3%
% of Total 30.6% 36.1% 13.8% 28% 83.3%

Total Count 16 14 5 1 36
% within Condition 44.4% 38.9% 13.8% 28% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 44.4% 38.9% 13.8% 2.8% 100.0%

Chi-Square Tests
Asymp. Sig

Value dr (2-sided)

Pearson Chi-Square 4.5647 3 207

Likelihood Ratio 5.361 3 147

N ofValid Cases 36

a. 6 cells (75.0%) have expected count less than 5. The
minimum expected countis 17

T.6 SUS Question 5 Responses

T.6.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Response
2 3 4 Total
Condition  Eeological  Count 2 2 2 [
% within Condition 33.3% 333% 33.3% 100.0%
% within Response 50.0% 40.0% 66.7% 50.0%
% of Total 16.7% 16.7% 16.7% 50.0%
LVAL Count 2 3 1 [
% within Condition 33.3% 50.0% 16.7% 100.0%
% within Response 50.0% 60.0% 33.3% 50.0%
% of Total 16.7% 26.0% 8.3% 50.0%
Total Count 4 5 3 2
% within Condition 33.3% 7% 25.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0%
% of Total 33.3% 41.7% 25.0% 100.0%
Chi-Square Tests
Asymp. Sig
Valug df 2-sided)
Pearson Chi-Square 5337 2 768
Likelihood Ratio 541 2 763
M ofValid Cases 12

3. 6 cells (100.0%) have expected count less than 5. The
minimum expected countis 1.50
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Matched

Novice

Condition * Response Crosstabulation

Response
2 3 4 5 Total
Condition  Ecological  Count 0 1 2 3 6
% within Condition 0.0% 16.7% 333% 50.0% 100.0%
% within Response 0.0% 50.0% 50.0% 75.0% 50.0%
% of Total 0.0% 8.3% 16.7% 25.0% 50.0%
LVAL Count 2 1 2 1 6
% within Condition 333% 16.7% 333% 16.7% 100.0%
% within Response 100.0% 50.0% 50.0% 25.0% 50.0%
% of Total 16.7% 8.3% 16.7% 8.3% 50.0%
Total Count 2 2 4 4 2
% within Condition 16.7% 16.7% 333% 33.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 16.7% 16.7% 333% 33.3% 100.0%
Chi-Square Tests
Asymp. 8ig
Value df 2-sided)
Pearson Chi-Square 3.000% 3 392
Likelihood Ratio 3819 3 282
N ofvalid Cases 12
a. 8 cells (100.0%) have expected count less than 5. The
minimum expected count is 1.00.
Novice
Condition * Response Crosstabulation
Response
2 3 4 & Total
Condiion  Ecological ~ Count 1 6 14 El 30
% within Condition 33% 20.0% 46.7% 30.0% 100.0%
% within Response 12.5% 28.6% 70.0% 81.8% 50.0%
% of Total 1.7% 10.0% 233% 15.0% 50.0%
LVAL Count 7 15 & 2 30
% within Condition 233% 50.0% 20.0% 6.7% 100.0%
% within Response B7.5% 71.4% 30.0% 18.2% 50.0%
% of Total 11.7% 25.0% 10.0% 3.3% 50.0%
Total Count 8 2 2 " 60
% within Condition 13.3% 35.0% 333% 18.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 13.3% 35.0% 33.3% 18.3% 100.0%
Chi.Square Tests
Asymp. Sig
Value of 2-sided)
Pearson Chi-Square | 16.0127 3 001
Likelihood Ratio 17.156 3 001
N of Valid Cases 60

a2 cells (26.0%) have expected count less than 5 The

minimum expecte

T.6.2

dcount s 4.00.

Expert — Matched Novice

Condition * Response Crosstabulation

a. 6 cells (100.0%) have expected countless than 5. The
minimum expected countis 1.50

Response
2 3 4 Total
Candition  Expert Count 2 3 1 6
% within Condition 33.3% 50.0% 16.7% 100.0%
% within Respanse 50.0% 60.0% 33.3% 50.0%
% of Total 16.7% 25.0% 8.3% 50.0%
Matched  Count 2 2 2 6
% within Condition 33.3% 333% 33.3% 100.0%
% within Response 50.0% 40.0% 66.7% 50.0%
% of Total 16.7% 16.7% 16.7% 50.0%
Total Count 4 5 3 2
% within Condition 33.3% 41.7% 25.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0%
% of Total 333% 41.7% 25.0% 100.0%
Chi-Square Tests
Asymp. 8ig
Valug df (2-sided)
Pearson Chi-Square 5337 2 788
Likelihood Ratio 541 2 763
M ofValid Cases 12

Between-Subjects (LVAL)
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Expert - Novice

Condition * Response Crosstabulation

Response
2 3 4 5 Total
Condition  Expert  Count 2 3 1 o ]
% within Condition 33.3% 50.0% 16.7% 0.0% 100.0%
% within Response 222 16.7% 143% 0.0% 16.7%
% of Total 5.6% 8.3% 28% 0.0% 16.7%
Moviee  Count 7 15 6 2 30
% within Condition 23.3% 50.0% 20.0% 6.7% 100.0%
% within Response 77 8% 83.3% B5.7% 100.0% 833%
% of Total 19.4% 41.7% 16.7% 5.6% 83.3%
Total Count 9 18 7 2 36
% within Condition 25.0% 50.0% 19.4% 5.6% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 50.0% 19.4% 5.6% 100.0%
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square .B2g® 3 890
Likelihood Ratio 944 3 815
M of Valid Cases 36
a. 5 cells (62.5%) have expectad count 12ss than 5. The
minimum expected countis 33,
Matched Novice - Novice
Condition * Response Crosstabulation
Response
2 3 4 5 Total
Condition  Matched  Count 2 1 2 1 6
% within Condition 333% 16.7% 333% 16.7% 100.0%
% within Response 222% 6.3% 25.0% 333% 16.7%
% of Total 6% 28% 56% 268% 16.7%
Novice Count 7 15 6 2 30
% within Condition 233% 50.0% 20.0% B.7% 100.0%
% within Response 77.8% 93.8% 75.0% 66.7% 83.3%
% of Total 19.4% 417% 16.7% 5.6% 83.3%
Total Count 9 16 8 3 36
% within Condition 26.0% 44.4% 222 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 26.0% 44.4% 222! 8.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 2.450° 3 484
Likelihood Ratio 2.608 3 456
N of Valid Cases 36

a. 5 cells (62.5%) have expected countlessthan 5. The
minimum expected count is 50

T.6.3

Expert - Matched Novice

Condition * Response Crosstabulation

Between-Subjects (Ecological)

a. 8 cells (100.0%) have expected count 1ss than 5. The
minimum expected countis 1.00.
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Response
2 3 4 5 Total

Candition  Expert Count 2 2 2 0 6
% within Condition 33.3% 33.3% 33.3% 0.0% 100.0%
% within Response 100.0% 66.7% 50.0% 0.0% 50.0%
% of Total 16.7% 16.7% 16.7% 0.0% 50.0%

Matched  Count 0 1 2 3 6

% within Condition 0.0% 16.7% 33.3% 50.0% 100.0%
% within Response 0.0% 333% 50.0% 100.0% 50.0%
% of Total 0.0% 8.3% 16.7% 25.0% 50.0%

Total Count 2 3 4 3 2
% within Condition 16.7% 25.0% 33.3% 25.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 16.7% 25.0% 33.3% 25.0% 100.0%

Chi-Square Tests
Asymp. 8ig

Valug df (2-sided)

Pearson Chi-Square 5333 3 148

Likelihood Ratio 7271 3 064

M of Valid Cases 12




Appendices

Expert — Novice

Condition * Response Crosstabulation

Response
2 3 4 5 Total

Condition  Expert  Count 2 2 2 0 &
% within Condition 333% 333% 333% 0.0% 100.0%

% within Response 66.7% 250% 125% 0.0% 16.7%

% of Total 56% 56% 5.6% 0.0% 16.7%

Movice  Count 1 3 14 9 30

% within Condition 3.3% 20.0% 46.7% 30.0% 100.0%

% within Response 33.3% 75.0% B7.5% 100.0% 83.3%

% of Total 28% 16.7% 38.9% 25.0% 83.3%

Total Count 3 8 16 9 36
% within Condition 8.3% 22.2% 44.4% 25.0% 100.0%

% within Response 100.0% 100.0% 100.0% 100.0% 100.0%

% of Total 8.3% 22.2% 44.4% 25.0% 100.0%

Chi-Square Tests

Asymp. 5ig

Value df (2-sided)
Pearson Chi-Square 7.800% 3 .050
Likelihood Ratio 7.567 3 056
M ofvalid Cases 36

a. 5 cells (82.5%) have expected count less than 5. The
minimum expected count is 50,

Matched Novice - Novice

Condition * Response Crosstabulation

Response
2 3 4 5 Total
Condition  Matched ~ Count o 1 2 3 L}
% within Condition 0.0% 16.7% 333% 50.0% 100.0%
% within Response 0.0% 14.3% 125% 250% 16.7%
% of Total 0.0% 2.8% 5.6% 8.3% 16.7%
Movice Count 1 3 14 El 30
% within Condition 3.3% 20.0% 46.7% 30.0% 100.0%
% within Response 100.0% 85.7% 87.5% 75.0% 833%
% of Total 28% 16.7% 38.0% 25.0% 833%
Total Count 1 7 16 2 36
% within Condition 28% 19.4% 44.4% 333% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 2.8% 16 4% 44.4% 333% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 1.0297 3 794
Likelihood Ratio 1.146 3 786
N ofValid Cases 36

a 5 cells (62.5%) have expected count less than 5 The
minimum expected countis .17

T.7 SUS Question 6 Responses
T.7.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Ecological  Count 1 2 2 o 1 6
% within Condition 16.7% 333% 333% 0.0% 16.7% 100.0%
% within Response 50.0% 40.0% 66.7% 0.0% 100.0% 50.0%
% of Total B.3% 16.7% 16.7% 0.0% 8.3% 50.0%
LVAL Count 1 3 1 1 1} [
% within Condition 16.7% 50.0% 16.7% 16.7% 0.0% 100.0%
% within Response 50.0% 60.0% 33.3% 100.0% 0.0% 50.0%
% of Total B.3% 25 0% B.3% 8.3% 0.0% 50.0%
Total Count 2 5 3 1 1 2
% within Condition 16.7% 41.7% 25.0% 8.3% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 16.7% 41.7% 25.0% 8.3% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearsan Chi-Square 26337 4 638
Likelihood Ratio 3.314 4 507
N ofValid Cases 12

a. 10 cells (100.0%) have expected count less than & The
minimum expectad count is .50
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Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Condition  Ecological ~ Count 3 3 0 0 6
% within Condition 50.0% 50.0% 0.0% 0.0% 100.0%
% within Response 60.0% 75.0% 0.0% 0.0% 50.0%
% of Total 25.0% 250% 0.0% 0.0% 50.0%
LVAL Count 2 1 2 1 6
% within Condition 333% 16.7% 33.3% 16.7% 100.0%
% within Response 40.0% 260% 100.0% 100.0% 50.0%
% of Total 16.7% B.3% 16.7% 8.3% 50.0%
Total Count 5 4 2 1 2
% within Condition 41.7% 333% 16.7% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 41.7% 33.3% 16.7% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 4.2007 3 241
Likelihood Ratio 5407 3 144
M of Valid Cases 12

3. 8 cells (100.0%) have expected count less than 5. The
minimum expected count is .50

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Ecological  Count 2 2 4 2 [ 30
% within Condition 40.0% 40.0% 133% 6.7% 0.0% 100.0%
% within Response 80.0% 60.0% 28.6% 25.0% 0.0% 50.0%
% of Total 20.0% 20.0% 6.7% 3.3% 0.0% 50.0%
LWAL Count 3 8 10 [ 3 30
% within Condition 10.0% 26.7% 333% 20.0% 10.0% 100.0%
% within Response 20.0% 40.0% T1.4% 75.0% 100.0% 50.0%
% of Total 50% 13.3% 16.7% 10.0% 5.0% 50.0%
Total Count 15 2 14 8 3 60
% within Condition 25.0% 33.3% 23.3% 13.3% 5.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 33.3% 23.3% 13.3% 5.0% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square | 13.771° 4 008
Likelihood Ratio 15498 4 004
N of Valid Cases 60

a. 4 cells (40.0%) have expected count less than 5. The
minimum expected countis 1.50.

T.7.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total

Condition  Expert Count 1 3 1 1 6
% within Condition 168.7% 50.0% 16.7% 16.7% 100.0%
% within Response 33.3% 75.0% 33.3% 50.0% 50.0%
% of Total B.3% 26.0% 8.3% 8.3% 50.0%

Matched  Count 2 1 2 1 [

% within Condition 33.3% 16.7% 33.3% 16.7% 100.0%
% within Response 66.7% 25.0% 66.7% 50.0% 50.0%
% of Total 16.7% B83% 16.7% 8.3% 50.0%

Total Count 3 4 3 2 2
% within Condition 25.0% 333% 25.0% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 33.3% 25.0% 16.7% 100.0%

Chi-Square Tests
Asymp. Sig.

Value df 2-sided)

Pearson Chi-Square 1.6677 3 644

Likelihood Ratio 1.726 3 631

N of Valid Cases 12

a. 8 cells (100.0%) have expected count less than 5. The
minimum expected countis 1.00.
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Expert -

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 H Total
Caondition  Expert  Count 1 3 1 1 o 6
% within Condition 16.7% 50.0% 16.7% 16.7% 0.0% 100.0%
% within Respanse 25.0% 27.3% 91% 14.3% 0.0% 16.7%
% of Total 28% 8.3% 28% 2.8% 0.0% 16.7%
Novice  Count 3 8 10 6 3 30
% within Condition 10.0% 26.7% 333% 20.0% 10.0% 100.0%
% within Respanse 75.0% 727% 90.9% 85.7% 100.0% 83.3%
% of Total 8.3% 22.2 27.8% 16.7% 8.3% 83.3%
Total Count 4 " " 7 3 36
% within Condition 11.1% 30.6% 30.6% 19.4% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 11.1% 30.6% 30.6% 19.4% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 2174 4 704
Likelihood Ratio 2607 4 626
N of Valid Cases 36
a.7 cells (70.0%) have expected count less than 5. The
minimum expected count is .50
Matched Novice - Novice
Condition * Response Crosstabulation
Response
1 2 3 4 5 Total
Condition  Matched — Count 2 1 2 1 0 [
% within Condition 333% 16.7% 333% 16.7% 0.0% 100.0%
% within Response 40.0% 11.1% 16.7% 14.3% 0.0% 16.7%
% of Total 5.6% 28% 5.6% 2.8% 0.0% 16.7%
Novice Count 3 8 10 [ 3 30
% within Condition 10.0% 26 7% 333% 20.0% 10.0% 100.0%
% within Response 60.0% 88.9% 83.3% 85.7% 100.0% 83.3%
% of Total B.3% 222 27 8% 16.7% 8.3% 833%
Total Count 5 £l 2 7 3 36
% within Condition 13.9% 250% 333% 19.4% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 13.9% 25.0% 33.3% 19.4% 8.3% 100.0%
Chi-Square Tests
ASymp. 5ig
Value df 2-sided)
Pearson Chi-Square 2.789% 4 584
Likelihood Ratio 2876 4 579
N ofvalid Casas 36

a. 7 cells (70.0%) have expected count less than 5. The
minimum expected count is .50,

T.7

3 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

a.8 cells (100.0%) have expected count less than 5 The

minimurm expected

countis .50

Response
1 2 3 5 Total

Condition  Expert Count 1 2 2 1 3
% within Condition 16.7% 33.3% 33.3% 16.7% 100.0%
% within Response 25.0% 40.0% 100.0% 100.0% 50.0%
% of Total B3% 16.7% 16.7% 8.3% 50.0%

Mateched  Count 3 3 o o &

% within Condition 50.0% 50.0% 0.0% 0.0% 100.0%
% within Response 75.0% 60.0% 0.0% 0.0% 50.0%
% of Total 25.0% 25.0% 0.0% 0.0% 50.0%

Total Count 4 5 2 1 2
% within Condition 333% 41.7% 16.7% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 33.3% 41.7% 16.7% 8.3% 100.0%

Chi.Square Tests
Asymp. Sig

Value df (2-sided)

Pearson Chi-Sguare 4.2007 3 241

Likelihood Ratio 5.407 3 144

N ofValid Cases 12

Appendices

405



Joshua Price

Expert - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Expert  Count 1 2 2 0 1 6
% within Condition 16.7% 33.3% 333% 0.0% 16.7% 100.0%
% within Response 77% 143% 333% 0.0% 100.0% 16.7%
% of Total 28% 56% 56% 0.0% 2.8% 16.7%
Novice  Count 2 2 4 2 0 30
% within Condition 40.0% 40.0% 13.3% 67% 0.0% 100.0%
% within Response 92.3% 85.7% B6.7% 100.0% 0.0% 83.3%
% of Total 333% 333% 11.1% 5.6% 0.0% 83.3%
Total Count 13 14 B 2 1 36
% within Condition 36.1% 38.9% 16.7% 56% 28% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 36.1% 38.9% 16.7% 5.6% 2.8% 100.0%
Chi-Square Tests
Asymp._ Sig
Value df (2-sided)
Pearson Chi-Square 74117 4 118
Likelihood Ratio 6.268 4 g0
N of Valid Cases 36

a. 7 cells (70.0%) have expected count less than 5. The
minimum expected countis 17.

Matched Novice - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Caondition  Matched  Count 3 3 o o B
% within Condition 50.0% 50.0% 0.0% 0.0% 100.0%
% within Response 20.0% 20.0% 0.0% 0.0% 16.7%
% of Total 8.3% B8.3% 0.0% 0.0% 16.7%
Novice Count 2 2 4 2 30
% within Condition 40.0% 40.0% 13.3% 6.7% 100.0%
% within Response 80.0% 80.0% 100.0% 100.0% 833%
% of Total 333% 333% 11.1% 5.6% 83.3%
Total Count 15 15 4 2 36
% within Condition 41.7% 41.7% 11.1% 5.6% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 41.7% 41.7% 11.1% 5.6% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 1.440% 3 686
Likelihood Ratio 2416 3 491
N ofValid Cases 36

a 6 cells (75.0%) have expected count less than & The
minimum expectad count is .33

T.8 SUS Question 7 Responses

T.8.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition ~ Ecological ~ Count 1 1 1 2 1 ]
% within Condition 16.7% 16.7% 16.7% 33.3% 16.7% 100.0%
% within Response 100.0% 100.0% 333% 40.0% 50.0% 50.0%
% of Total 8.3% 8.3% 8.3% 168.7% 8.3% 50.0%
LVAL Caunt 0 0 2 3 1 6
% within Condition 0.0% 0.0% 333% 50.0% 16.7% 100.0%
% within Response 0.0% 0.0% 66.7% 60.0% 50.0% 50.0%
% of Total 0.0% 0.0% 16.7% 25.0% 8.3% 50.0%
Total Caunt 1 1 3 § 2 2
% within Condition 8.3% 8.3% 25.0% NT% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 8.3% 25.0% HNT% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 25337 4 839
Likelihood Ratio 3314 4 507
N of Valid Casas 12

a. 10 cells (100.0%) have expected countless than 5. The
minimum expected countis 0.
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Matched

Novice

Condition * Response Crosstabulation

Response
2 3 4 H Total
Caondition  Ecological  Count o 0 3 3 i
% within Condition 0.0% 0.0% 50.0% 50.0% 100.0%
% within Response 0.0% 0.0% 50.0% 75.0% 50.0%
% of Total 0.0% 0.0% 25.0% 25.0% 50.0%
LVAL Count 1 1 3 1 6
% within Condition 16.7% 16.7% 50.0% 16.7% 100.0%
% within Response 100.0% 100.0% 50.0% 25.0% 50.0%
% of Total 8.3% 8.3% 25.0% 8.3% 50.0%
Total Count 1 1 6 4 2
% within Condition 8.3% 8.3% 50.0% 33.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 8.3% 50.0% 33.3% 100.0%
Chi-Square Tests
Asymp. 5ig
Walue df 2-sided)
Pearson Chi-Square 3.000% 3 392
Likelihood Ratio 3818 3 282
N ofvalid Casas 12
a. B cells (100.0%) have expected countless than 5. The
minimum expected count is .50,
Novice
Condition * Response Crosstabulation
Response
1 2 3 4 5 Total
Condition  Ecological  Count 0 0 2 8 2| 30
% within Condition 0.0% 0.0% 6.7% 267% B6.7% 100.0%
% within Response 0.0% 0.0% 222 A7 1% 69.0% 50.0%
% of Total 0.0% 0.0% 3.3% 13.3% 33.3% 50.0%
LVAL Count 1 4 T a 9 30
% within Condition 3.3% 13.3% 233% 30.0% 30.0% 100.0%
% within Response 100.0% 100.0% T7.8% 52.0% 31.0% 50.0%
% of Total 1.7% 6.7% 1.7% 15.0% 15.0% 50.0%
Total Count 1 4 9 17 2 60
% within Condition 1.7% 6.7% 15.0% 28.3% 48.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 1.7% 6.7% 15.0% 28.3% 48.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 12.009° L} 017
Likelihood Ratio 14211 4 007
N of Valid Cases 60

a. 6 cells (60.0%) have expected count less than 5. The
minimum expected count is .50

T.8

2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Response
2 3 4 5 Total

Condition  Expert Count o 2 3 1 B
% within Condition 0.0% 333% 50.0% 16.7% 100.0%

% within Response 0.0% 66 7% 50.0% 50.0% 50.0%

% of Total 0.0% 16.7% 25.0% 8.3% 50.0%

Matched  Count 1 1 3 1 6

% within Condition 16.7% 16.7% 50.0% 16.7% 100.0%

% within Response 100.0% 333% 50.0% 50.0% 50.0%

% of Total 8.3% 8.3% 25.0% 8.3% 50.0%

Total Count 1 3 6 2 2
% within Condition B8.3% 250% 50.0% 16.7% 100.0%

% within Response 100.0% 100.0% 100.0% 100.0% 100.0%

% of Total B.3% 25.0% 50.0% 16.7% 100.0%

Chi-Square Tests

N of Valid Cases

12

Asymp. Sig.

Value df 2-sided)
Pearson Chi-Square 13337 3 721
Likelihood Ratio 1726 3 831

a.8 cells (100.0%) have expactsd count lass than 5. The
minimum expected countis .50,
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Expert -

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 H Total
Condition  Expert  Count o 0 2 3 1 i
% within Condition 0.0% 0.0% 333% 50.0% 16.7% 100.0%
% within Response 0.0% 0.0% 222! 25.0% 10.0% 16.7%
% of Total 0.0% 0.0% 56% 8.3% 28% 16.7%
Novice  Count 1 4 7 8 9 30
% within Condition 33% 13.3% 233% 30.0% 30.0% 100.0%
% within Response 100.0% 100.0% 77.8% 75.0% 90.0% 83.3%
% of Total 28% 111% 19.4% 25.0% 25.0% 83.3%
Total Count 1 4 ] 2 10 36
% within Condition 2.8% 1.1% 250% 333% 27.8% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 2.8% 11.1% 25.0% 333% 27.8% 100.0%
Chi-Square Tests
Asymp. Sig.
Valug df 2-sided)
Pearson Chi-Square 21207 4 714
Likelihood Ratio 2908 4 573
M ofValid Cases 36
3.7 cells (70.0%) have expected count less than 5. The
minimum expected countis 17
Matched Novice - Novice
Condition * Response Crosstabulation
Response
1 2 3 4 H Total
Condition  Matched  Count 0 1 1 3 1 6
% within Condition 0.0% 16.7% 16.7% 50.0% 16.7% 100.0%
% within Respanse 0.0% 20.0% 12.5% 25.0% 10.0% 16.7%
% of Total 0.0% 28% 28% 8.3% 28% 16.7%
Novice Caunt 1 4 7 9 9 30
% within Condition 13% 13.3% 23.3% 30.0% 30.0% 100.0%
% within Response 100.0% 80.0% B7.5% 75.0% 80.0% 83.3%
% of Total 28% 111% 19.4% 25.0% 25.0% 83.3%
Total Count 1 5 8 2 10 36
% within Condition 2.8% 13.9% 22.2% 33.3% 27.8% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 28% 13.9% 22.2% 33.3% 27.8% 100.0%
Chi-Square Tests
Asymp. Sig
Value of (2-sided)
Pearson Chi-Square 1.260% 4 868
Likelihood Ratio 1410 4 842
N of Valid Casas 36

a.7 cells (70.0%) have expected count less than 5. The
minimum expected count is

T.8.3

Expert - Matched Novice

Condition * Response Crosstabulation

Between-Subjects (Ecological)

a.10 cells (100.0%) have expectad countless than 5. The

minimum expected
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eount is .50,

Response
1 2 3 4 5 Total
Condition  Expert Count 1 1 1 2 1 6
% within Condition 168.7% 16.7% 16.7% 333% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 40.0% 25.0% 50.0%
% of Total 8.3% 8.3% 8.3% 16.7% 8.3% 50.0%
Matched  Count 0 0 0 3 3 6
% within Condition 0.0% 0.0% 0.0% 50.0% 50.0% 100.0%
% within Response 0.0% 0.0% 0.0% 60.0% 75.0% 50.0%
% of Total 0.0% 0.0% 0.0% 25.0% 25.0% 50.0%
Total Count 1 1 1 5 4 2
% within Condition 8.3% 8.3% 8.3% H.7% 33.3% 100.0%
% within Respanse 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 8.3% 8.3% 41.7% 33.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 4.200° 4 380
Likelihood Ratio 5407 4 248
N of Valid Cases 12




Expert — Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Expert  Count 1 1 1 2 1 [
% within Condition 16.7% 16.7% 16.7% 33.3% 16.7% 100.0%
% within Response 100.0% 100.0% 333% 20.0% 48% 16.7%
% of Total 28% 28% 28% 5.6% 2.8% 16.7%
Novica  Count o o 2 a8 2 30
% within Condition 0.0% 0.0% 6.7% 26.7% 66.7% 100.0%
% within Response 0.0% 0.0% BE.7% 80.0% 952% 833%
% of Total 0.0% 0.0% 56% 222 556% 833%
Total Count 1 1 3 10 2 36
% within Condition 2.8% 2.8% 8.3% 27.8% 58.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 2.8% 2.8% 8.3% 27.8% 58.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square 12,8237 4 012
Likelihood Ratio 10573 4 032
N of Valid Cases 36
a. 6 cells (80.0%) have expected count less than 5. The
minimurm expected countis 17,
Matched Novice - Novice
Condition * Response Crosstahulation
Response
3 4 5 Total
Condition  Matched — Count o 3 3 ]
% within Condition 0.0% 50.0% 50.0% 100.0%
% within Response 0.0% 27.3% 13.0% 16.7%
% of Total 0.0% 8.3% 8.3% 16.7%
Navice Count 2 8 2 30
% within Condition 6.7% 26.7% 66.7% 100.0%
% within Response 100.0% T27% 87.0% 83.3%
% of Total 5.6% 222 55.6% 833%
Total Count 2 11 2 36
% within Condition 5.6% 30.6% 63.9% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0%
% of Total 5.6% 30.6% 63.9% 100.0%
Chi-Square Tests
Asymp. 5ig
Value df (2-sided)
Pearson Chi-Square 1.5087 2 470
Likelihood Ratio 1.738 2 419
M ofvalid Cases 36

a. 4 cells (86.7%) have expected count less than 5. The
minimum expected count is .33

T.9 SUS Question 8 Responses
T.9.1 Within-Subjects

Expert

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Conditon _ Ecological  Count [} 1 4 1 5
% within Condition 0.0% 16.7% 66.7% 16.7% 100.0%
% within Response 0.0% 20.0% 80.0% 100.0% 50.0%
% of Total 0.0% B3% 333% 8.3% 50.0%
LVAL Count 1 4 1 o [
% within Condition 16.7% 66.7% 16.7% 0.0% 100.0%
% within Response 100.0% B0.0% 20.0% 0.0% 50.0%
% of Total 8.3% 33.3% 8.3% 0.0% 50.0%
Total Count 1 5 5 1 2
% within Condition 8.3% 41.7% 41.7% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 41.7% 41.7% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 5.6007 3 133
Likelihood Ratio 6627 3 085
N of Valid Cases 12

3.8 cells (100.0%) have expected countless than 5. The
minimum expected count is 50
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Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Condition  Ecological  Count 3 3 0 0 6
% within Condition 50.0% 50.0% 0.0% 0.0% 100.0%
% within Response 75.0% 75.0% 0.0% 0.0% 50.0%
% of Total 25.0% 25.0% 0.0% 0.0% 50.0%
LVAL Count 1 1 1 3 3
% within Condition 16.7% 16.7% 16.7% 50.0% 100.0%
% within Response 250% 25.0% 100.0% 100.0% 50.0%
% of Total 8.3% 8.3% 8.3% 25.0% 50.0%
Total Count 4 4 1 3 2
% within Condition 33.3% 33.3% 8.3% 25.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 33.3% 33.3% 8.3% 25.0% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 6.000° 3 112
Likelihood Ratio 7638 3 054
M of Valid Cases 12
3. 8 cells (100.0%) have expected count less than 5. The
minimum expected count is .50.
Novice
Condition * Response Crosstabulation
Response
1 2 3 4 5 Total
Caondition  Ecological  Count 13 2 2 3 o 30
% within Condition 43.3% 40.0% 6.7% 10.0% 0.0% 100.0%
% within Response T66% 54 6% 40.0% 21.4% 0.0% 50.0%
% of Total 21.7% 20.0% 3.3% 5.0% 0.0% 50.0%
LvAL Count 4 10 3 " 2 30
% within Condition 13.3% 33.3% 10.0% 36.7% 6.7% 100.0%
% within Response 235% 45 6% 60.0% 78.6% 100.0% 50.0%
% of Total 6.7% 16.7% 5.0% 18.3% 33% 50.0%
Total Count 17 22 5 14 2 60
% within Condition 28.3% 36.7% 8.3% 23.3% 33% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 28.3% 36.7% 8.3% 23.3% 3.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value df 2-sided)
Pearson Chi-Square | 11.718% 4 020
Likelihood Ratio 13.033 4 .01
N ofValid Cases 60

a4 cells (40.0%) have expected count less than 5. The
minimum expectad count is 1.00.

T.9.2 Between-Subjects (LVAL)

Expert - Matched Novice

Condition * Response Crosstabulation

a. 8 cells (100.0%) have expected countless than 5. The
minimum expected countis 1.00,
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Response
1 2 3 4 Total
Condition  Expert Count 1 4 1 0 &
% within Condition 16.7% 66.7% 16.7% 0.0% 100.0%
% within Response 50.0% 80.0% 50.0% 0.0% 50.0%
% of Total B83% 333% 8.3% 0.0% 50.0%
Matched  Count 1 1 1 3 3
% within Condition 16.7% 16.7% 16.7% 50.0% 100.0%
% within Response 50.0% 20.0% 50.0% 100.0% 50.0%
% of Total B83% B8.3% 8.3% 25.0% 50.0%
Total Count 2 5 2 3 2
% within Gondition 16.7% 417% 16.7% 250% 100.0%
% within Respanse 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 16.7% 41.7% 16.7% 25.0% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 4.8007 3 187
Likelihood Ratio 6.086 3 107
N of Valid Cases 12
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Expert — Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Expert  Count 1 4 1 0 0 6
% within Condition 16.7% 66.7% 16.7% 0.0% 0.0% 100.0%
% within Response 200% 28.6% 250% 0.0% 0.0% 16.7%
% of Total 28% 111% 28% 0.0% 0.0% 16.7%
Novice  Count 4 10 3 " 2 30
% within Condition 133% 333% 10.0% 36.7% B.7% 100.0%
% within Response 80.0% 71.4% 75.0% 100.0% 100.0% 83.3%
% of Total 111% 27.8% 8.3% 30.6% 5.6% 83.3%
Total Count 5 14 4 " 2 36
% within Condition 13.9% 38.9% A% 30.6% 5.6% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 13.9% 38.9% 11.1% 30.6% 5.6% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Fearson Chi-Square | 4.269° 4 an
Likelihood Ratio 6.186 4 186
N of Valid Cases 36

3.9 cells (80.0%) have expected countless than 5. The
minimum expected count is .33

Matched Novice - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Matched  Count ] 1 4 1 0 6
% within Condition 0.0% 16.7% B6.7% 16.7% 0.0% 100.0%
% within Response 0.0% 91% 571% B.3% 0.0% 16.7%
% of Total 0.0% 28% 11.1% 2.8% 0.0% 16.7%
Novice Count 4 10 3 11 2 30
% within Condition 13.3% 333% 10.0% 36.7% B.7% 100.0%
% within Response 100.0% 890.9% 42.9% 81.7% 100.0% 833%
% of Total 111% 27.8% 8.3% 30.6% 5.6% 833%
Total Count 4 " 7 2 2 36
% within Condition M.1% 30.6% 19.4% 333% 6% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 111% 30.6% 19.4% 333% 5.6% 100.0%
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square | 10.512% 4 033
Likelihood Ratio 8.204 4 054
M of Valid Cases 36

a. 7 cells (70.0%) have expected count less than 5. The
minimum expected count s .33

T.9.3 Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Condition  Expert Count 0 1 4 1 &
% within Condition 0.0% 16.7% 66.7% 16.7% 100.0%
% within Response 0.0% 25.0% 100.0% 100.0% 50.0%
% of Total 0.0% B8.3% 33.3% 8.3% 50.0%
Matched  Count 3 3 0 0 [
% within Condition 50.0% 50.0% 0.0% 0.0% 100.0%
% within Response 100.0% 75.0% 0.0% 0.0% 50.0%
% of Total 25.0% 25.0% 0.0% 0.0% 50.0%
Total Count 3 4 4 1 2
% within Condition 250% 333% 33.3% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 33.3% 33.3% 8.3% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square a.000% 3 028
Likelihood Ratio 12137 3 007
M of Valid Cases 12

a. 8 cells (100.0%) have expected countless than 5. The
minimum expected countis .50
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Expert - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total

Condition  Expert  Count 0 1 4 1 6
% within Condition 0.0% 16.7% B6.7% 16.7% 100.0%
% within Response 0.0% T7% 66.7% 250% 16.7%
% of Total 0.0% 2.8% 111% 2.8% 16.7%

Novice  Count 13 2 2 3 30

% within Condition 433% 40.0% B.7% 10.0% 100.0%
% within Response 100.0% 923% 333% 75.0% 833%
% of Total 36.1% 333% 5.6% 8.3% 833%

Total Gount 13 13 6 4 36
% within Condition 36.1% 36.1% 16.7% 111% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 36.1% 36.1% 16.7% 111% 100.0%
Chi-Square Tests

Asymp. 8ig
Valug df (2-sided)

Pearson Chi-Square | 14.354% 3 002

Likelihood Ratio 13263 3 004

M of Valid Cases 36

a. 5 cells (62.5%) have expected count less than 5. The
minimum expected countis

Matched Novice - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total

Condition  Matched  Count 3 3 0 0 6
% within Condition 50.0% 50.0% 0.0% 0.0% 100.0%
% within Response 18.8% 20.0% 0.0% 0.0% 16.7%
% of Total 8.3% 8.3% 0.0% 0.0% 16.7%

Novice Count 13 2 2 3 30

% within Condition 43.3% 40.0% 6.7% 10.0% 100.0%
% within Response 81.3% 80.0% 100.0% 100.0% 833%
% of Total 36.1% 333% 5.6% 8.3% 833%

Total Count 16 15 2 3 36
% within Condition 44.4% 417% 56% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 44.4% 41.7% 5.6% 8.3% 100.0%

Chi-Square Tests
Asymp. Sig.

Value dr (2-sided)

Pearson Chi-Square 14707 3 760

Likelihood Ratio 1.986 3 575

N ofValid Cases 36

a6 cells (75.0%) have expected count less than 5 The
minimum expected countis .33.

T.10 SUS Question 9 Responses
T.10.1  Within-Subjects

Expert

Condition * Response Crosstahulation

Response
3 4 H Total
Condition  Ecological ~ Count 3 3 o ]
% within Condition 50.0% 50.0% 0.0% 100.0%
% within Response 100.0% 429% 0.0% 50.0%
% of Total 25.0% 250% 0.0% 50.0%
LVAL Count 0 4 2 ]
% within Condition 0.0% 66.7% 333% 100.0%
% within Response 0.0% 871% 100.0% 50.0%
% of Total 0.0% 333% 16.7% 50.0%
Total Count 3 7 2 2
% within Condition 250% 58.3% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 58.3% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 51437 2 076
Likelihood Ratio 7.075 2 029
N ofValid Cases 12

a. 6 cells (100.0%) have expected count less than 5. The
minimum expected countis 1.00,
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Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 H Total
Condition  Ecological ~ Count 0 0 2 1 3 6
% within Condition 0.0% 0.0% 333% 16.7% 50.0% 100.0%
% within Respanse 0.0% 0.0% 333% 100.0% 100.0% 50.0%
% of Total 0.0% 0.0% 16.7% 8.3% 25.0% 50.0%
LvAL Count 1 1 4 0 0 6
% within Condition 16.7% 16.7% 66.7% 0.0% 0.0% 100.0%
% within Respanse 100.0% 100.0% 66.7% 0.0% 0.0% 50.0%
% of Total 8.3% 8.3% 33.3% 0.0% 0.0% 50.0%
Total Count 1 1 6 1 3 2
% within Condition 8.3% 8.3% 50.0% 8.3% 25.0% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 8.3% 8.3% 50.0% 8.3% 25.0% 100.0%
Chi-Square Tests
Asymp. 8ig
Valug df 2-sided)
Pearson Chi-Square 6.6677 4 1855
Likelihood Ratio 8.997 4 061
M ofValid Cases 12

.10 cells (100.0%) have expected count less than 5. The
minimum expected countis 50

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Ecological ~ Count 0 2 8 2 8 30
% within Condition 0.0% B8.7% 267% 40.0% 26.7% 100.0%
% within Response 0.0% 15.4% 44.4% 66.7% 80.0% 50.0%
% of Total 0.0% 3.3% 133% 20.0% 13.3% 50.0%
LVAL Count 1 i 10 [ 2 30
% within Condition 33% 36.7% 333% 20.0% 6.7% 100.0%
% within Response 100.0% 84.6% 55.6% 33.3% 20.0% 50.0%
% of Total 1.7% 18.3% 16.7% 10.0% 3.3% 50.0%
Total Count 1 13 18 18 10 60
% within Condition 1.7% 217% 30.0% 30.0% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 1.7% 21.7% 30.0% 30.0% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Ghi-Square | 13.053% 4 011
Likelihood Ratio 14362 4 008
N of Valid Cases 60

a. 2 cells (20.0%) have expected count less than & The
minimum expected countis 50,

T.10.2 Between-Subjects (LVAL)

Expert — Matched Novice

Condition * Response Crosstabulation

Response
3 4 5 Total
Condition  Expert Count 0 4 2 B
% within Condition 0.0% 66.7% 333% 100.0%
% within Respanse 0.0% 571% 100.0% 50.0%
% of Total 0.0% 333% 16.7% 50.0%
Matched  Count 3 3 o B
% within Condition 50.0% 50.0% 0.0% 100.0%
% within Respanse 100.0% 42.8% 0.0% 50.0%
% of Total 25.0% 25.0% 0.0% 50.0%
Total Count 3 7 2 2
% within Condition 25.0% 58.3% 16.7% 100.0%
% within Respanse 100.0% 100.0% 100.0% 100.0%
% of Total 25.0% 58.3% 16.7% 100.0%
Chi-Square Tests
Asymp. 8ig
Valug df (2-sidad)
Pearson Chi-Square 51437 2 076
Likelihood Ratio 7075 2 028
N of Valid Cases 12

a. 6 cells (100.0%) have expectzd count less than 5. The
minimurm expected countis 1.00
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Expert - Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total
Condition  Expert  Count 0 0 0 4 2 6
% within Condition 0.0% 0.0% 0.0% 66.7% 333% 100.0%
% within Response 0.0% 0.0% 0.0% 40.0% 50.0% 16.7%
% of Total 0.0% 0.0% 0.0% 111% 5.6% 16.7%
Novice  Count 1 " 10 L} 2 30
% within Condition 33% 36.7% 333% 20.0% 6.7% 100.0%
% within Response 100.0% 100.0% 100.0% 60.0% 50.0% 833%
% of Total 28% 30.6% 27.8% 16.7% 5.6% 83.3%
Total Count 1 " 10 10 4 36
% within Condition 28% 30.6% 27.8% 27.8% 111% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 2.8% 30.6% 27.8% 27.8% 11.1% 100.0%
Chi-Square Tests
‘Asymp. Sig
Value df 2-sided)
Pearson Chi-Sguare | 11.5207 4 021
Likelihood Ratia 13435 4 009
N of Valid Cases 36
a.7 cells (70.0%) have expectsd count less than 5. The
minimum expected countis 17.
Matched Novice - Novice
Condition * Response Crosstabulation
Response
1 2 3 4 5 Total
Condition  Matched  Count 1 1 4 o o ]
% within Condition 16.7% 16.7% 66.7% 0.0% 0.0% 100.0%
% within Response 50.0% B3% 28.6% 0.0% 0.0% 16.7%
% of Total 28% 28% 111% 0.0% 0.0% 16.7%
Navice Count 1 1 10 6 2 30
% within Condition 33% 36.7% 333% 20.0% 6.7% 100.0%
% within Response 50.0% 91.7% 71.4% 100.0% 100.0% 83.3%
% of Total 28% 30.6% 27.8% 16.7% 5.6% 833%
Total Count 2 2 14 ] 2 36
% within Condition 5.6% 33.3% 38.9% 16.7% 5.6% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 5.6% 333% 38.9% 16.7% 5.6% 100.0%
Chi-Square Tests
Asymp. 8ig
Valug df (2-sided)
Pearson Chi-Square 52207 4 265
Likelihood Ratio 6.032 4 187
M ofValid Cases 36

3.7 cells (70.0%) have expected count less than 5. The
minimum expected count s .33

T.10.3

Expert - Matched Novice

Condition * Response Crosstabulation

Response
3 4 5 Total

Condition  Expert Count 3 3 o [
% within Condition 50.0% 50.0% 0.0% 100.0%

% within Response 60.0% 75.0% 0.0% 50.0%

% of Total 26.0% 25.0% 0.0% 50.0%

Matched  Count 2 1 3 [

% within Condition 333% 16.7% 50.0% 100.0%

% within Response 40.0% 25.0% 100.0% 50.0%

% of Total 16.7% B.3% 25.0% 50.0%

Total Count 5 4 3 2
% within Condition 7% 333% 250% 100.0%

% within Response 100.0% 100.0% 100.0% 100.0%

% of Total 41.7% 33.3% 25.0% 100.0%

Chi-Square Tests

Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 4.200° 2 122
Likelihood Ratio 5.407 2 {067
N ofvalid Cases 12

a. 6 cells (100.0%) have expected count less than 5. The
minimum expected count is 1.5
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Expert — Novice

Condition * Response Crosstabulation

Response
2 3 4 5 Total
Condiion  Expert  Count 0 3 3 [ 6
% within Condition 0.0% 50.0% 50.0% 0.0% 100.0%
% within Response 0.0% 27 3% 20.0% 0.0% 16.7%
% of Total 0.0% 8.3% 8.3% 0.0% 16.7%
Novice  Count 2 8 2 8 30
% within Condition 6.7% 26.7% 40.0% 26.7% 100.0%
% within Response 100.0% T27% 80.0% 100.0% 83.3%
% of Total 5.6% 222 33.3% 222 833%
Total Count 2 1" 15 8 36
% within Condition 5.6% 30.6% 41.7% 22.2% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 5.6% 30.6% 41.7% 22.2% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 30117 3 380
Likelihood Ratio 4537 3 209
N of Valid Cases 36
a. 5 cells (62.5%) have expected count less than & The
minimum expected countis 33,
Matched Novice - Novice
Condition * Response Crosstabulation
Response
2 3 4 H Total
Condition  Matched  Count o 2 1 3 &
% within Condition 0.0% 33.3% 16.7% 50.0% 100.0%
% within Response 0.0% 20.0% T7% 27.3% 16.7%
% of Total 0.0% 5.6% 28% 8.3% 16.7%
Novice Count 2 8 2 8 30
% within Condition 6.7% 26.7% 40.0% 26.7% 100.0%
% within Response 100.0% 80.0% 923% T27% 83.3%
% of Total 5.6% 22.2 333% 22.2 83.3%
Total Count 2 10 13 " 36
% within Condition 5.6% 27.8% 361% 30.6% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 5.6% 27.8% 36.1% 30.6% 100.0%
Chi-Square Tests
Asymp. Sig
Valug df (2-sided)
Pearson Chi-Square 214257 3 547
Likelihood Ratio 2.490 3 477
M ofvalid Cases 36

a. 5 cells (82.5%) have expected countless than 5. The
minimum expected count is .33

T.11 SUS Question 10 Responses

T.11.1

Expert

Condition * Response Crosstabulation

Within-Subjects

a. 8 cells (100.0%) have expected count less than 5. The
minimum expected count is 1.00.

Response
1 2 3 4 Total
Candition  Ecological ~ Count 2 1 2 1 6
% within Condition 33.3% 16.7% 333% 16.7% 100.0%
% within Response 50.0% 25.0% 100.0% 50.0% 50.0%
% of Total 16.7% 8.3% 16.7% 8.3% 50.0%
LVAL Count 2 3 0 1 6
% within Condition 33.3% 50.0% 0.0% 16.7% 100.0%
% within Response 50.0% 75.0% 0.0% 50.0% 50.0%
% of Total 16.7% 25.0% 0.0% 8.3% 50.0%
Total Count 4 4 2 2 2
% within Condition 33.3% 333% 16.7% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 33.3% 333% 16.7% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 3.000% 3 392
Likelihood Ratio 3819 3 282
M ofValid Cases 12
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Matched

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 & Total
Condition  Ecological ~ Count 2 2 1 1 0 6
% within Condition 33.3% 33.3% 16.7% 16.7% 0.0% 100.0%
% within Response 40.0% 66.7% 50.0% 100.0% 0.0% 50.0%
% of Total 16.7% 16.7% 8.3% 8.3% 0.0% 50.0%
LvAL Count 3 1 1 0 1 6
% within Condition 50.0% 16.7% 16.7% 0.0% 16.7% 100.0%
% within Response 60.0% 333% 50.0% 0.0% 100.0% 50.0%
% of Total 25.0% 8.3% 8.3% 0.0% 8.3% 50.0%
Total Count 5 3 2 1 1 2
% within Condition 1.7% 25.0% 16.7% 8.3% 8.3% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 41.7% 25.0% 16.7% 8.3% 8.3% 100.0%
Chi-Square Tests
Asymp. 8ig
Value df (2-sided)
Pearson Chi-Square 2.533° 4 639
Likelihood Ratio 3314 4 507
M of Valid Cases 12
.10 cells (100.0%) have expected count less than 5. The
minimum expected countis 50,
Novice
Condition * Response Crosstabulation
Response
1 2 3 4 Total
Condition  Ecological ~ Count 10 18 4 o 30
% within Condition 33.3% 53.3% 13.3% 0.0% 100.0%
% within Response 71.4% 53.3% 30.8% 0.0% 50.0%
% of Total 16.7% 26.7% 6.7% 0.0% 50.0%
LvAL Count 4 " 9 6 30
% within Condition 13.3% 36.7% 30.0% 20.0% 100.0%
% within Response 28.6% 40.7% 69.2% 100.0% 50.0%
% of Total 6.7% 18.3% 15.0% 10.0% 50.0%
Total Count 14 2 13 [ 60
% within Condition 23.3% 456.0% 21.7% 10.0% 100.0%
% within Respanse 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 23.3% 45.0% 21.7% 10.0% 100.0%

Chi-Square Tests

Asymp. Sig.
Valug df (2-sided)
Pearson Chi-Square 11.420° 3 010
Likelihood Ratio 13879 3 003
N ofValid Cases 60

a. 2 cells (25.0%) have expected countless than 5. The

minimum expected

T.1

countis 3.00

1.2 Between-Subjects (LVAL)

Expert - Matched Novice

Condition * Response Crosstabulation

Response
1 2 3 4 5 Total

Condition  Expert Count 2 3 0 1 0 6
% within Condition 33.3% 50.0% 0.0% 16.7% 0.0% 100.0%

% within Response 40.0% 76.0% 0.0% 100.0% 0.0% 50.0%

% of Total 16.7% 25.0% 0.0% 8.3% 0.0% 50.0%

Matched  Count 3 1 1 0 1 6

% within Condition 50.0% 16.7% 16.7% 0.0% 16.7% 100.0%

% within Response 60.0% 26.0% 100.0% 0.0% 100.0% 50.0%

% of Total 25.0% B83% 8.3% 0.0% 8.3% 50.0%

Total Count 5 4 1 1 1 2
% within Condition 417% 333% B8.3% 8.3% 8.3% 100.0%

% within Respaonse 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

% of Total 41.7% 333% 8.3% 8.3% 8.3% 100.0%

Chi-Square Tests

Asymp. Sig
Value o 2-sided)
Pearson Chi-Square 4.2007 4 380
Likelihood Ratio 5407 4 248
N of Valid Cases 12

a. 10 cells (100.0%) have expected count less than 5. The
minimum expected countis .50.
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Expert — Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Condition  Expert  Count 2 3 0 1 [
% within Condition 333% 50.0% 0.0% 16.7% 100.0%
% within Response 33.3% 21.4% 0.0% 143% 16.7%
% of Total 5.6% 83% 0.0% 2.8% 16.7%
Novice  Count 4 " El [ 30
% within Condition 13.3% 36.7% 30.0% 20.0% 100.0%
% within Response 66 7% 78.6% 100.0% 857% 833%
% of Total 11.1% 30.6% 25.0% 16.7% 83.3%
Total Count & 14 9 7 36
% within Condition 16.7% 38.9% 25.0% 19.4% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 16.7% 38.9% 25.0% 19.4% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 32877 354
Likelihood Ratio 4512 2n
N of Valid Cases 36
a. 4 cells (50.0%) have expected count less than 5. The
minimum expected countis 1.00.
Matched Novice - Novice
Condition * Response Crosstabulation
Response
1 2 3 4 5 Total
Condition  Matched  Count 3 1 1 0 1 6
% within Condition 50.0% 168.7% 168.7% 0.0% 16.7% 100.0%
% within Response 42.9% 8.3% 10.0% 0.0% 100.0% 16.7%
% of Total 8.3% 2.8% 2.8% 0.0% 28% 16.7%
Novice Count 4 1 9 6 0 30
% within Condition 13.3% 36.7% 30.0% 20.0% 0.0% 100.0%
% within Response 571% 91.7% 90.0% 100.0% 0.0% 83.3%
% of Total 111% 30.6% 25.0% 16.7% 0.0% 83.3%
Total Count 7 2 10 6 1 36
% within Condition 19.4% 33.3% 27.8% 16.7% 28% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 19.4% 33.3% 27.8% 16.7% 28% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 10,5772 4 032
Likelihood Ratio 9494 4 050
N of Valid Cases 36

a.6 cells (60.0%) have expectad count less than 5. The

minimum expected

T.1

countis 17,

1.3  Between-Subjects (Ecological)

Expert — Matched Novice

Condition * Response Crosstabulation

a.8 cells (100.0%) have expactad count lass than 5. The
minimum expected countis 1.00.

Response
1 2 3 4 Total
Condition  Expert Caount 2 1 2 1 6
% within Condition 33.3% 16.7% 333% 16.7% 100.0%
% within Response 50.0% 333% 66.7% 50.0% 50.0%
% of Total 16.7% 8.3% 168.7% 8.3% 50.0%
Matched  Count 2 2 1 1 6
% within Condition 33.3% 333% 168.7% 16.7% 100.0%
% within Response 50.0% 66.7% 33.3% 50.0% 50.0%
% of Total 16.7% 16.7% 8.3% 8.3% 50.0%
Total Caount 4 3 3 2 2
% within Condition 33.3% 25.0% 25.0% 16.7% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 33.3% 25.0% 25.0% 16.7% 100.0%
Chi-Square Tests
Asymp. Sig
Value df (2-sided)
Pearson Chi-Square 667° 3 881
Likelihood Ratio GED] 3 878
N of Valid Cases 12
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Expert -

Novice

Condition * Response Crosstabulation

Response
1 2 3 4 Total
Candition  Expert  Count 2 1 2 1 6
% within Condition 33.3% 16.7% 333% 16.7% 100.0%
% within Response 16.7% 5.8% 333% 100.0% 16.7%
% of Total 5.6% 2.8% 5.6% 28% 16.7%
Novice  Count 10 16 4 0 30
% within Condition 33.3% 53.3% 13.3% 0.0% 100.0%
% within Response B33% 941% 66.7% 0.0% 83.3%
% of Total 27.8% 44.4% 1.1% 0.0% 83.3%
Total Count 2 17 6 1 36
% within Condition 33.3% 47.2% 16.7% 28% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 33.3% 47.2% 16.7% 2.8% 100.0%
Chi-Square Tests
Asymp. Sig.
Value df 2-sided)
Pearson Chi-Square 7.6247 3 054
Likelihood Ratio 6.382 3 094
N ofValid Cases 36
a.5 cells (62.5%) have expected count less than 5. The
minimum expected countis 17
Matched Novice - Novice
Condition * Response Crosstabulation
Response
1 2 3 4 Total
Candition  Matched  Count 2 2 1 1 6
% within Condition 33.3% 333% 18.7% 16.7% 100.0%
% within Response 16.7% 1M11% 20.0% 100.0% 16.7%
% of Total 5.6% 5.6% 28% 2.8% 16.7%
Novice Count 10 16 4 1} 30
% within Condition 33.3% 533% 13.3% 0.0% 100.0%
% within Response 83.3% 88.9% 80.0% 0.0% 83.3%
% of Total 27.8% 44.4% 11.1% 0.0% 833%
Total Count 2 18 5 1 36
% within Condition 33.3% 50.0% 13.9% 28% 100.0%
% within Response 100.0% 100.0% 100.0% 100.0% 100.0%
% of Total 33.3% 50.0% 13.9% 268% 100.0%
Chi-Square Tests
Asymp. Sig
Value dr (2-sided)
Pearsan Chi-Square 5.4407 3 142
Likelihood Ratio 4.085 3 255
N of¥alid Cases 36

a. 6 cells (75.0%) have expected count less than 5. The
minimum expected countis 17.
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