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MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a
Behavioural Synthesis System which can automatically generate a number of structural
descriptions of a digital circuit from just a single behavioural one. Although each structural
description is functionally equivalent to the next, it will have different properties, such as
circuit area or delay. The final structural description selected will be the one which best meets
the user’s optimisation goals and constraints.

Run-time Reconfigurable systems operate through multiple configurations of the
programmable hardware on which they are implemented, dynamically allocating resources
‘on the fly’ during their execution. The partially reconfigurable devices upon which they are
based, enable areas of their configuration memory to be rewritten, without disturbing the
operation of existing configurations — unless so desired. This characteristic may be exploited
by partitioning a circuit into a number of distinct temporal contexts, which when ultimately
realised as device-level configurations may be swapped in and out the device’s configuration
memory, as the run-time operation of the circuit dictates. At any point during the execution
of the temporally partitioned circuit, the area required to implement it is equal to the size of
the largest context and not the sum of each of its constituent parts, as would be the case in a
non-reconfigurable implementation. The reduction in circuit area comes at the cost of a
reconfiguration overhead, the time taken to partially reconfigure the device with each
configuration and the frequency at which this form of context switching occurs.

This Thesis describes an extension to the original MOODS system, enabling it to quantify the
trade-off that exists between the potential area reduction offered through run-time
reconfiguration and the subsequent reconfiguration overhead incurred as a result. In addition
to performing the temporal partitioning alongside existing circuit optimisation, MOODS is
now able to automatically generate the infrastructure to support a practical implementation of
the temporal contexts on a commercial Field Programmable Gate Array.



Contents

Chapter 1: INTrOAUCTION ....o.eiiiiieecc et nae e 12
1.1 ThesSiS CONIBULION. ......oiuiiiiiiece et ne e 14
Chapter 2: BaCKgIOUNG.........cc.oiiiiieeceseee et enne e 18
2.1 Programmable and Application-Specific Hardware............cccccoeoevvevviieseeie e, 19
2.2 Temporal and Spatial COMPULALION .........cceeviiriiiiirie e 20
2.3 Reconfigurable RESOUICES ........ccoiiiiiiiiiie et 25
2.3 L FPGAS ..ottt ettt nr et ne e 26
2.3.2 Technology and ArChItECTUE.........ccveiiiieieee e 28

2.4 CAD Tools for Dynamically Reconfigurable LOQIC .........cccooeiiiieiiiir i, 33
2.5 Synthesis and PartitionNing .........ccooueiieriiieiieiesie e st 36
2.6 Architectures for Run-time Reconfiguration ............ccccceeeviveiesieseene e, 44
2.7 SUIMMIAIY ..ottt sttt sttt e et e e aa bt e e esb e e sab e e e bt e e e ebbe e e bb e e e kb e e e bbeesnbneenntnee s 49
Chapter 3: Behavioural SYNTNESIS ..........cociiiiiiiiieieieseee e 51
3.1 Circuit Abstraction and SYNENESIS.........cccuiiiiiiiiiiese e e 51
3.1.1 Behavioural and RTL Circuit SYNthesiS ........ccccovveerieiiienieie e 55
3.1.2 A Renewed Role for Behavioural Synthesis TOOIS...........cccccvvvvevviveiiecinsieenn, 63

3.2 MOODS Behavioural SYNNESIS .........ccoiiiiiiieiiiiesie s 65
3.3 MOODS and other Behavioural Synthesis TOOIS ...........cccoveviriiiieniiie e, 69
3.3.1 SPeCifiCation LANQUAGES .......eeiveieeieeieseesieesieseesieeseessaessaeseesseesseeseesseesseensesnens 69
3.3.2 Compilation and OptiMISAtiON.........ccccviiieiieie e 72

3.4 MOODS and Run-time Reconfiguration ...........ccoceveeeiieninie e 75
3.4.1 Behavioural DeSCIPION .....cccueuiiieiieie ettt 75
3.4.2 ICODE DESCIIPLION. .. .eetiiiesiieie e seeiesee e ste e steestessaesseeneesreesreaseesseesaeennesnens 80
3.4.3 CircUIt OPtIMISALION.....c.veiieieeiecie et saeenneenees 85
3.4.4 Optimisation AlGOrithm ........ccooiiiiiii s 89
3.4.5 Simulated ANNBAIING.......ccuiiiiiiiie e 92
3.4.6 Structural Circuit ADSITACTION .......ccvviiiiieeree e, 94

3.5 SUMMIAIY ...t bbbt st e st e e s rb e e e s st e e e bb e e e beeeanbeeeanes 95



Chapter 4: Temporal Partitioning .........ccccooevieiiieiesieseese e 96

4.1 RESOUICE BINUING.....ciiiiiieiieiieie ettt e e ste e e snaesaeennenneas 96
4.2 Overview of the Target ArChiteCtUIE ........ccoivviiiiiie e 102
4.3 PartitioNiNg MELIICS .....c.ooiiiiiiiie ettt ae e 104
4.4 Problem FOrmUIBLION ........ooviiiiiie s 106
4.5 CHICUIT ATttt bbb bbbttt b e bbbt b e e e e e 108
4.6 Reconfiguration OVErNEad...........cooiiiiiieiiiie e 109
4.7 Frequency of Resource Context SWItChiNg ........ccccovviiiienieniei e, 111
4.8 Scheduling the Context SWILChING........ccoeiiiieiieiicc e 116
4.9 Communciation ChanNElS..........coci i 123
4.10 Balancing the PartitioNS ...........ooviiiiriieieiie e 134
411 COSt FUNCHION ...ttt bbbttt neenne e 135
412 SUMMIBEY ..ttt ettt b e b e et e e st e e e sab e e e ssb e e e nnb e e e nbbeeabeeeenrees 137
Chapter 5: Implementing Run-time Reconfiguration.............ccccceveveieiieennsicseecenn 138
5.1 Architectural ADSTIACTION..........oiiiiiieriec e 139
5.2 System-level ArChITECIUIE. ........oiiiiiie e e 140
5.3 Communication-level ArchiteCture..........cocoviiiiiiinice e, 145
5.3.1 Communication Channels............coviiiiiiiei e 146
5.3.2 Channel CONIOIIEr.......ccuoiiiiieiee e 150

5.4 Device-1evel ArChItECIUIE .........ooiiiieec e s 164
5.5 Implementation i MOODS...........ccoiiier e 170
5.5.1 Resource Binding TransformM ..........cccovveiiiiieiieie e 173
5.5.2 Context SWILCh INSTIUCTION ......c.coviiiiiiiie e 179

5.6 TransSform INEraCtioN .........cooieiiiiiiie e 180
0.7 SUMMIAIY ...ttt ettt ettt sttt e st e e bt e e s bt e e bt e e e bb e e e bb e e e bn e e abeeesntnes 188
Chapter 6: Implementation and ReSUILS............cccovieiiiiieiieie e 191
6.1 Experimental Objectives and Method............ccocueviiiiiiiiie e 191
6.2 ReSUlts and their ANAIYSIS. ..o e 194
6.3 TESE CHICUITS ...ttt bbbt n s 210
5.4 SUIMMIAIY ...ttt ettt sttt st e s bt e e s bt e e e bt e e e bb e e e bb e e e bn e e anbeeesntnes 212
Chapter 7: Run-time Reconfiguration — A €ase StUAY .........ccoceveererinneenenie e 215

7.1 A Run-time Reconfigurable Variable Coding System ..........cccovevviiiniiin e 215



0 = - To3 (o £ 10 o USSR 215

7.2 Variable Coding Strategy and Run-time Reconfiguration..............ccccccevveveneennnn, 219
7.3 SYSEM ATCNITECIUIE ... oottt bbb enes 222
7.3.1 Adaptive Coding SChEME ......ceiiiiieiee s 222
7.3.2 Inter-process and Inter-region ComMmMUNICALIONS .........ccevvererrieereeiiesieseeieneens 227

7.4 SYNENESIS RESUILS ... 231
7.5 RUN-tIME CharaCteriStiCS.......civiiieeiiiieiierie ettt e 233
7.6 SUMIMAIY ...ttt ettt et et be e e b e e be e e st e et e e emb e e beeerneenbeessneenbeennneas 236
Chapter 8: Conclusion and FUrther WOrK...........cccovviieiieie s 238
8.1 CONCIUSION ...ttt bbbttt 238
8.2 FUINEI WOTK ...ttt bttt nre et enes 241
APPENAIX A I IMOODS........eoeee et sae bbb neenreas 243
A.1 Synthesised ArChITECIUIE ........cuocveieie e 243
A.2 Graph TransforMatioNS ..........ccueiveiiiie e ne e 248
A.2.1 Scheduling Transformations ............cooevirriiieiiere s 248
A.2.1 Allocation and Binding Transformations...........cccccevevenenieseenc e 252
Appendix B : Module CharaCteriStiCS...........cciveieiiieiiere e 254
APPENAIX C 1 CASE-STUAY .....ciiiiieieeiesiesie et e et sre e e e sreeeeaneenneens 263
C.1 MESSAQgE ENCOUING ..ottt bbb s 263
C.2 Message Decoding — Sequential Viterbi DeCoder .........ccoovvveienieiiencsie e 269
C.3 Parallel Viterbi DeCOUING.......c.ciiveieaieieeie e se et 276
OV [T o TR @0 £ (U] ] £ o] U PR 280

R B EINICES ... s 283



List of Figures

Figure 2.1 Traditional forms of spatial and temporal resource usage .........c.cceeevevververnenne 21
Figure 2.2 Spatial and temporal use of reconfigurable resources ..........cccccceveviveverivernene 23
Figure 2.3 GeneriC FPGA SIIUCLUIE . .....c.eoiiiiieiiesieeie e e 27
Figure 3.1 Abstraction in CIrCUit repreSentation ..........ccoceverveeninienieenesiee e 52
Figure 3.2 BCH message encoding using a Galois LFSR ..........c.ccccovvviveiiennciec e 56
Figure 3.3 An RTL description of a BCH message encoding CirCuit ...........cccccvevvervenenne. 57
Figure 3.4 A Behavioural VHDL description of the BCH encoder ...........ccccoovviiiennenen. 60
Figure 3.5 Circuit architectures generated by RTL and behavioural synthesis ................ 62
Figure 3.6 MOODS - centric digital circuit Synthesis ..........ccccevveveiiieiiesie e 66
Figure 3.7 MOODS synthesis extended for temporal and spatial partitioning ................. 76
Figure 3.8 Sequential and parallel VHDL amenable to behavioural partitioning ............. 77

Figure 3.9 ICODE Module encapsulation of parallel and sequential VHDL constructs.... 82

Figure 3.10 A 2-dimensional (area/time) design SPACE. ......ccccvvevvereereereeiesee e eee e ens 89
Figure 3.11 MOODS iterative improvement optimisation 100 .........cccccevevvievivcicriveniene 91
Figure 4.1 Static resource binding in high-level Synthesis ..........ccccoveiiiiiniiccee 98
Figure 4.2 Resource reduction through static binding of multi-mode cells in HLS. ........ 100
Figure 4.3 Architectural support for temporal partitioning. ..........cccceeeevivevieeiesieesneiennnnn 103
Figure 4.4 The characteristics of a quadratic equation solver implementation ................ 105
Figure 4.5 A temporal partitioning of the quadratic equation SOIVer...........c.ccoceviriinnnen, 108
Figure 4.6 Context switching of the partitioned quadratic equation solver...................... 112

Figure 4.7 Multi-region context switching of the partitioned quadratic equation solver . 114
Figure 4.8 Scheduling the context switching of reconfigurable regions ...........c..ccco.... 118
Figure 4.9 Impact of module partitioning and placment on communication channels.... 125
Figure 4.10 An example of temporal partitioning .........ccocevoeeienieninie e 128
Figure 4.11 The mapping of concurrent channels ...........cccoccveeiieiici s 130
Figure 4.12 Re-partitioning to improve resource utilisation of reconfigurable regions ... 134
Figure 5.1 Abstraction of the architecture into distinct layers of circuit activity ............. 139
Figure 5.2 Synthesised architectural COMPONENTS...........ccoveiiiiiiieiiie e 142

Figure 5.3 Sub-module execution and signal transfer ..........ccccoveviviviiieciccc e 144



Figure 5.4 Direct sub-module eXecution tIMINg ........ccccevivereeieiieese e 145

Figure 5.5 Device-specific channel implementation ...........cccccvvveviiii v 147
Figure 5.6 Bus Macros — bridging the reconfigurable divide.............ccccocoiniininiiinnnn, 149
Figure 5.7 Typical sub-module partitioning topology ..........cceoveieiiiiiiinieeeseereeee e 150
Figure 5.8 Channel controller subsystems utilised during a channel transaction.............. 152
Figure 5.9 Module address deCOUING ........ccveiuiiierieiiee e 155
Figure 5.10 A temporally partitioned quartic equation SOIVer............cccooeverienieniniinnnn, 156
Figure 5.11 Module execution paths of the quartic equation SOIVer...........ccccevvevieiinnnen, 158

Figure 5.12 Memory maps of module address ROMS for the quartic equation solver-.... 159

Figure 5.13 Communication layer protocol and USAgE ..........cccververreriereerieerieseeseeie e 162
Figure 5.14 Reconfiguration controller and protocol ...........ccoceieeiiiiiinienieseeseee e 166
Figure 5.15 The organisation of configuration data-streams in external memory............ 168

Figure 5.16 Decisions made during application of the context switching transform ....... 175
Figure 5.17 Estimating reconfiguration overhead for the context switching transform... 178
Figure 5.18 Merging control states from within reconfiguration segments...................... 182
Figure 5.19 Group instructions on variable transform and reconfiguration segments ..... 185

Figure 5.20 Inverse-scheduling transforms and the timing of reconfiguration segments. 187

Figure 6.1 Circuit partitioning for circuit area set to a high priority ..........cccceevvvveinnen, 196
Figure 6.2 Circuit partitioning for reconfiguration overhead set to a high priority.......... 197
Figure 6.3 Effect of scheduling each context switch as late as possible............ccccceeeenen. 199
Figure 6.4 Circuit partitioning for channel buffers set to high priority .........c.cccceeveienen. 203
Figure 7.1 A variable COdiNG SYSEM ........oiiiiiiiecieie e 218
Figure 7.2 Flowchart showing BER driven selection of the coding scheme..................... 226
Figure 7.3 Floorplan for the RTR variable coding scheme ..., 227
Figure 7.4 Semaphore communication between two concurrent processes ..........c.oc.e.v... 230

Figure 7.5 Channel bit-error rate relationships between the decoder configurations....... 234

Figure A.1 Control and data-path graphs sections for the BCH encoder algorithm......... 244

Figure A.2 Application of the Sequential merge transform...........ccccoocvvvevniennnininnnn, 251
Figure B.1 Relationships between modules in the Quartic equation solver ..................... 254
Figure B.2 Module execution path of the Quartic equation solver.............ccccvvververinnen, 255
Figure B.3 Alternative module execution path of the Quartic equation solver ................ 256

Figure B.4 Relationships between modules in the Cubic equation solver........................ 257



Figure B.5 Module execution paths of the Cubic equation solver..........c...cccccevvverveinnen, 258

Figure B.6 Relationships between modules in the Quadratic equation solver ................. 259
Figure B.7 Module execution path of the Quadratic equation solVer............ccccceecveinnen, 259
Figure B.8 Module execution paths of the Encryption/Decryption Circuits..................... 260
Figure B.9 Module execution paths of the MatriX CIrCUItS ..........cccccvevvviverieeieiiese e 261
Figure B.10 Module execution paths of the Rijndael Encryption/Decryption circuit...... 262
Figure C.1 Format of a BCH codeword, exemplar codes and the target codes................ 263
Figure C.2 Code dependent message fOrmation ............ccoceverueieenisiinnee e 264
Figure C.3 Encoding circuit for BCH code (15,11,3).....cccviiiiiiiieiieie e sieeeeseese e 265
Figure C.4 Exemplar LFSR €NCOUING.......ccouiiiiieiieieeie e e sae e 266
Figure C.5 Message dependent state transSition..........ccooevvereiienienisiie e 267
Figure C.6 Algorithmic description of the BCH encoder............ccooovviiiirienienienieienins 268
Figure C.7 State Transition Diagram for message decoding using BCH code (15,11,3). 269
Figure C.8 Algorithmic description of the Viterbi decoder...........cccceovviveviveieieenreenn, 271
Figure C.9 Viterbi decoding of BCH (15,11,3) code partitioned over 4 processors ........ 278
Figure C.10 Viterbi decoding of the BCH (15,11,3) code over 2 processors................... 279

Figure C.11 Behavioural VHDL description of the message corrupter circuit ................ 281



List of Tables

Table 6.1 Contrasting the trade-off between circuit area and reconfiguration overhead.. 205

Table 6.2 Variation among the module nets for each exemplar circuit............ccccccevvneen. 208
Table 6.3 MatriX FUNCLIONS. ........coiiiiieiieice e e 208
Table 6.4 Cubic eqUALION SOIVE. .......c.ooiiiiie e 209
Table 6.6 Quartic equation SOIVEN .........cccii i 209
Table 6.6 Rijndael EnCryption/DeCryption .........ccceieiieiieresieeseeie e ste e 209
Table 6.7 ENCryption/DeCrYPHION. .....c.oiiiiiiiieie e 210
Table 7.1 Errors in eight codewords necessary to switch between each code scheme..... 224
Table 7.2 Synthesised RTR variable coding SYSteM..........cccvvvevivereiiiene e see e, 231
Table A.1 Scheduling transformations available for optimsiation of the control graphs . 250
Table A.2 Allocation and binding transformations available during optimisation........... 253
Table B.1 Module characteristics of the Quartic equation SOIVer...........ccccoveieeieniennnnn, 253
Table B.2 Module characteristics of the Cubic equation SOIVer ............cccccvvevveieseenenn, 256
Table B.3 Module characteristics of the Quadratic equation SOIVer.............ccccevevvvieenenn. 258
Table B.4 Module characteristics of the Encryption/Decryption CirCuits. ............c.coc...... 259
Table B.5 Module characteristics 0f the MatriX CIFCUILS...........coceereiienieiii e, 260
Table B.6 Module characteristics of the Rijndael Encryption/Decryption circuits. ......... 261

Table C.1 States visited by the algorithm during the decoding of the (15,11,3) code...... 272
Table C.2 Weights at each state and for every bit of the codeword 000000101000001 ....... 273
Table C.3 Weights at each state and bit of the erroneous codeword 000000101010001 ...... 274
Table C.4 Message correction using Viterbi decoding for codeword 000000101010001 .... 275



UNIVERSITY OF
Southampton

Declaration Of Authorship

I, Donald Esrafili-Gerdeh declare that this thesis and the work presented in it are my own

and has been generated by me as the result of my own original research.

Behavioural Synthesis of Run-time Reconfigurable Systems

| confirm that:

1.

This work was done wholly while in candidature for a research degree at this
University;

Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated;

Where | have consulted the published work of others, this is always clearly attributed;

Where | have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

I have acknowledged all main sources of help;

Where the thesis is based on work done by myself jointly with others, | have made
clear exactly what was done by others and what | have contributed myself;

None of this work has been published before submission.

Signed:

Date: January 2016



Acknowledgements

I would like to take this opportunity to thank several people all of whom have contributed
to the completion of this thesis:

I begin by acknowledging the patience and common sense of my thesis supervisor
Professor Mark Zwolinski, without whom | would not have been able to finish writing this

thesis.

I would also like to thank former colleagues for their friendship in particular: Drs. Tack
Boon Yee, Bleddyn Lawrence, Andrew Chapman, Matthew Sacker, Petros Oikonomakos,
Kosala Amarasinghe and especially Doc and his wife Kathleen for our interesting
conversations.

I would finally like to thank my family for their unconditional support.

Donald Esrafili-Gerdeh.



D. Esrafili-Gerdeh, 2016 Chapter 1: Introduction 12

Chapter 1

1. Introduction

Before the use of Behavioural or High-level Synthesis Tools (HLS), the task of realising an
algorithm in silicon was accomplished by a software description of the algorithm’s behaviour
for execution using programmable computer architectures or through a hardware description
of the circuit structure required to achieve the same behaviour, but in a form suitable for

fabrication.

Raising the level of abstraction at which the hardware is specified, analogous to that of
software design, enables the user of HLS tools to automatically generate many alternative
hardware descriptions from just a single behavioural specification. The number and type of
resources described will vary in response to the resource or time constraints set by the user
and without automation, it is unlikely that the user would have the time to investigate more

than a handful of alternative hardware solutions.

The parallels with a software approach are strengthened following the introduction of
programmable logic devices, such as the Field Programmable Gate Array (FPGA) [1,2]. This
blurred the distinction between software and hardware design because FPGASs provide
software programmable circuit resources. These resources include at least a wiring network
which connects multiple sequential and combinational logic elements to one another and to a
number of input and output pins. Therefore, programming an algorithm using the resources of
an FPGA device is as much a software description of its circuit structure, as it is its function —

albeit one at a low level of abstraction.

FPGAs are typically programmed or ‘configured’ by writing to a configuration memory. This
occurs only once and is read by the device immediately following the application of power. A
subset of FPGAs, characterised as being Dynamically or Run-time Reconfigurable [3],
distinguish themselves from those that are programmable by enabling their resources to be

configured during their initial power-up and crucially, are partially ‘reconfigured’ during their
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execution. The time taken to partially reconfigure a commercial FPGA is several orders of
magnitude greater than the time taken to execute the reconfigured logic resources. The
benefits associated with re-using computational and wiring resources have to be weighed
against the time penalty required to program any resource before it can be used.

When and how the reconfigurable resources are re-programmed has become an increasingly
popular subject for research in the fields of VLSI CAD (Very Large Scale Integration
Computer Aided Design) and Computer Architecture.

The circumstance in which reconfigurable hardware is employed in each of these fields is
distinct. Application-specific hardware is intentionally inflexible, being highly optimised for
one purpose. A complete design specification is available to the HLS tool at compile-time,
when it can take a global view of how instructions are scheduled and allocated to resources. It
also has considerably more time to do it.

This is in contrast to the assignment of memory and CPU resources in computer architectures,
which from the perspective of an Operating System is an undertaking that must occur within a

limited time-frame at run-time, requiring a solution to an open or partially specified problem.

Many problems in Computer Science and VLSI CAD are not solvable in polynomial-time
and having more choice in the number and type of resource, such as those offered by

reconfigurable devices, will further compound the search for their solution.

Research into any area of optimisation aims to reconcile the conflicting goals of finding
optimal solutions to a problem, with as little search time as possible. In practice, CAD of
circuits being no exception, the requirement of searching for an optimal solution is relaxed to

accepting a good solution but one that requires less time to find.

An example of this approach to VLSI CAD is the behavioural synthesis suite MOODS
(Multiple Objective Optimisation in Data and control path Synthesis) [4,5], developed over
several decades at the University of Southampton for the automatic creation and optimisation

of circuit hardware.

MOODS is a high-level synthesis tool, capable of automatically generating a structural
description of a digital circuit from a purely algorithmic description of its behaviour. Heuristic
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search methods are used to examine the scheduling and allocation possibilities in a way that
aims to produce a good solution in a reasonable search time, rather than an optimal one in

exponential time.

Not specifying how or what resources are to used, allows the hardware designer to explore
these characteristics automatically, by varying the priorities and goals associated with circuit
metrics, such as their resource size or delay of the longest path of execution. Each structural
circuit description is functionally equivalent to another but has characteristics specific to the
optimisation goals. Should those requirements or indeed the technology change, the

behavioural specification need not.

1.1 Thesis Contribution

Given an optimisation trade-off between resource reduction and reconfiguration time, the
availability of a behavioural synthesis tool in which to explore it and a commercial device to
characterise the technology and test the results upon; the motivation for the work undertaken
in this thesis is to investigate the role in which reconfigurable resources can play in the

behavioural synthesis of digital hardware.

As a consequence, the MOODS behavioural synthesis tool has been extended to incorporate
the reconfiguration delay of programmable resources, represented in circuit synthesis as their
temporal binding to control and data-path components. When applied as a resource graph
transformation, it models the spatial and temporal aspects associated with time-sharing a
programmable resource, whilst preserving the behaviour of the algorithmic description.

Through the addition of new instructions and their corresponding data-path units, MOODS is
able to quantify and generate the component descriptions necessary for an FPGA device to
perform self-reconfiguration of logic and routing resources during its execution. The
structural descriptions produced are suitable for device-specific optimisation by Register

Transfer Level Synthesis and vendor-specific component placement and wire routing tools.

As with existing control and data-path units, their implementation is achieved through Xilinx
Virtex [6] family primitives. This provides characterisation for metrics representing the circuit
area or critical path delay of all the circuit components. The effect of the resource binding,
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scheduling and allocation transformations is simultaneously quantified through a user directed
cost function. It guides a Simulated Annealing [7] heuristic to accept or reject an optimisation
based upon whether it transforms the circuit structure closer to or further away from meeting

the user supplied target values of area, critical path delay and clock period.

An automated search of the design space explores a multitude of ways in which the hardware
could be generated. The order and the components to which the transformations are applied
are varied in ways that, for all but the simplest designs, would be infeasible for a user to
investigate without automation — especially when optimising for equal priorities and therefore
conflicting objectives. Aspects examined might be: which functional units should be shared to
reduce the circuit area, as opposed to being scheduled in parallel to reduce the delay. Would
sharing a programmable resource at different times also aid in meeting the area target and if
so, could the reconfiguration delay be minimised by scheduling it to occur in parallel to the

execution of other units?

When programmable resources are configured to implement data-path units, the number of
times they are reconfigured will depend upon the type and activity of the instructions
allocated to the data-path units. Should the units be allocated instructions from more than one
path, the delays associated with the resource binding will also vary depending upon the path
taken. Without knowing which path will be taken at run-time, a cost function must make a
trade-off between the area reduction associated with a given resource binding against the
reconfiguration delay derived from the longest path; a worst-case decision based solely upon

one of many paths that are likely to be taken during circuit execution.

The need to rely upon worst-case reconfiguration delays has be greatly reduced by extending
MOODS and HLS in general, to allow a run-time choice of where a data-path unit is bound.
In this way, the partitioning of functional and storage units can change to reflect the

instruction path actually taken at run-time.

However, unlike an entirely run-time approach [8], a multiple resource binding is able to
optimise each alternative binding differently, depending upon the characteristics of the chosen
resource. Binding to a resource of a different size will impose a different constraint on the

scheduling and data-path allocations performed. A serial implementation that is smaller and



D. Esrafili-Gerdeh, 2016 Chapter 1: Introduction 16

slower in one location can have an increased level of parallelism and consequently execute

faster when bound to a larger resource at an alternative location.

The benefit of this hybrid-approach is that it combines the strengths of the compile and run-
time approaches to reconfiguration without adding to their weaknesses. A user can now use
MOODS to explore the extended ‘design space’ which results from applying spatial and
temporal resource binding alongside instruction scheduling and allocation methods. This
takes place at compile-time where there is greater time and computational resources to search
the new territory formed by temporal resource binding.

Selection of the actual resource is taken at run-time from a small number of alternative
resources found during compile-time and therefore inclusive of the history of trade-offs which
lead to their resource binding. By doing so, the partitioning of the data-path units is not
limited to a single partition formed by taking the worst case delay of many paths. Instead, the
units may be re-arranged over multiple resource bindings, each unique to a different
instruction path and each representative of the best, the worst and the spectrum of

reconfiguration path delays in between.

This Thesis is divided into eight chapters. Chapters 2 and 3 provide a background to the
research topic, introducing the concepts behind run-time reconfiguration and behavioural
synthesis, in particular MOODS, the synthesis system on which this research is conducted. It
concludes with a survey of past and present research activities regarding run-time
reconfiguration, in relation to device technology and architecture, CAD tools and

implementations of actual systems.

Chapter 4 introduces the theory behind temporal binding and its utilisation during
optimisation through a cost driven partition of the control and data-path functional units and
subroutines. The MOODS cost function is updated with several metrics which provide an
estimation of the reconfiguration overhead and architecture required to facilitate dynamic

reconfiguration at the device level.

In Chapter 5, the low-level infrastructure necessary to support a physical implementation of a

run-time reconfigurable system is presented.
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The results generated using a simulated annealing based partitioning algorithm is examined in
Chapter 6.

Chapter 7 provides an examination of how the work detailed in the previous chapters can be
applied to the synthesis of a reconfigurable coding system.

Finally, Chapter 8 reviews the contribution of the work described in the thesis and suggests
how the work may be further extended. An appendix is also included which supports several
of the chapters with additional material omitted for the sake of brevity: it includes instruction
level optimisation details as well as the characteristics of the circuits used during the synthesis

and temporal resource binding phases.



D. Esrafili-Gerdeh, 2016 Chapter 2: Background 18

Chapter 2

Background

In the introductory chapter, a reconfigurable system was described as being able to change the
use of electronic programmable resources during its execution. This description cannot be
exclusively attributed to reconfigurable hardware, since programmable computer architectures
are also able to change their function through run-time re-programming of their computational
and memory resources. Some authors might also challenge our presumption of electronic
resources, citing examples from outside the electronic hardware domain such as

reconfigurable photonic and fluidic systems [9].

When searching for a definition for electronic reconfigurable hardware, distinguishing it from
the diversity of existing computer architectures can be challenging. Many authors [10] draw
attention to the large number of parallel resources associated with reconfigurable hardware,
yet a high degree of “spatial computation’ is not unique to reconfigurable hardware; recall the
massively parallel SIMD/MIMD [11] computer architectures of earlier decades, where
systems offering tens of thousands of bit-sized CPUs were joined by programmable

interconnects.

Perhaps, as some authors suggest [12], a defining characteristic of reconfigurable hardware
might lie in the ability to re-purpose the use of its resources? Yet again, there exist
comparable computer hardware — writable micro-coded program stores [13,14], that provide
the ability to form new instruction implementations out of an existing instruction set

architecture and in the same sense enable a re-structuring of the programmable resources.

A more tangible distinction between programmable and reconfigurable resources is provided
by DeHon [3] who defines resource binding as a means of distinguishing between software,
reconfigurable and application-specific implementations of program behaviour: computer

hardware is flexible because binding occurs at run-time during instruction execution;
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application-specific hardware is not because transistor equivalents of instruction behaviour
are fixed during their fabrication. Although the binding of a reconfigurable system occurs
during its configuration, its definition is difficult to pin-down since the characteristics of the
resources are bound early during fabrication but may be allocated as late as a clock cycle prior

to their execution.

Rather than attempt to single-out reconfigurable hardware as a new paradigm for computation
[15], a different perspective on the role of reconfigurable hardware would be to view it in the
context of hardware design. The perspective on reconfigurable hardware taken in this chapter
and the thesis in general, is one that views it as a way of complementing existing hardware

design approaches such as behavioural synthesis.

2.1 Programmable and Application-Specific Hardware

Algorithms for computation and data processing are traditionally realised as software
descriptions of behaviour for a general-purpose processor or as structural descriptions of the
circuit hardware required to implement them. Together they represent two contrasting

approaches to designing electronic hardware, each with a specific circumstance for its use:

General-purpose hardware is based upon the control-flow or Von Neumann (VN) model of
computer architecture [16] — a set of logic and arithmetic resources are programmed by
instructions to transform the data supplied to them, in a way associated with the behaviour of

each instruction and the type of data it acts upon.

The flexibility of the VN architecture is achieved through the generation of memory
addresses, where an instruction or datum is sequentially written to or read from each address
location and where necessary, decoded and subsequently executed to achieve temporal
computation. When a re-writable memory is used, changing the contents of the memory will
change the behaviour of the hardware — making it general-purpose.

There are many advantages to using general-purpose hardware. In addition to the flexibility
gained from programming the hardware to implement different behaviour and the run-time
allocation of resources, there is the cost reduction associated with volume manufacture and

the outsourcing of hardware design and testing. Often, the instruction level parallelism



D. Esrafili-Gerdeh, 2016 Chapter 2: Background 20

naturally inherent to a given algorithm must be serialised to fit the availability of the
computational and storage resources of generic hardware. In these circumstances, not being
able to specify how the instructions are executed and in cases where an operating system is
employed, when execution actually occurs, can necessitate the design of fixed and single

purpose hardware.

Application-specific hardware is often based upon the Data-flow [17] model of computation,
where each instruction operation is allocated to a specific functional unit and its input and
output operands are allocated to memory units connected by wires. The execution of a
program is modelled as data-flowing through each functional unit as soon as it becomes
available. The model is usually extended to the Control and Data-flow [17] model, to enable
the scheduling of each instruction execution to a time step represented by a control graph and
realised in hardware as a specific control state in a Finite State Machine.

In addition to implementing the behaviour of the program, the allocation of functional and
memory units and when they are scheduled to execute is optimised to meet specific
constraints, such as the total number of hardware resources available or the time taken to
execute the longest sequence of program instructions. The hardware that results is unique to
the characteristics of the algorithm being synthesised and the optimisation priorities and

constraints set.

2.2 Temporal and Spatial Computation

Figure 2.1a illustrates a simplified representation of the computational and storage resources
associated with the data-path of a general-purpose processor. Three logical expressions,
Io: c=a and b; i;:d=a or b; i,: g=e and f; are used to program an Arithmetic Logic Unit (ALU)
to perform each logical function and determine which of the Registers are used to store the
variables read by and written to the ALU. The adjacent table shows the scheduling of each
instruction to individual time steps to-t,. When executed sequentially, the use of the resources
can be characterised as being temporal because the ALU and registers are re-used to perform

the instructions at separate times.
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Figure 2.1a: Temporal use of resources for computation exemplified in general-purpose hardware.
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Figure 2.1b: Spatial use of resources for computation exemplified in application-specific
hardware.
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Figure 2.1c: Temporal and Spatial use of resources for computation exemplified in application-specific

hardware.

Figure 2.1: Traditional forms of spatial and temporal resource usage.

Figure 2.1b depicts the equivalent data-path should each instruction be allocated a separate
functional unit and scheduled to execute in a single time step to. The hardware can be
described as application-specific, since the allocation and scheduling of the functional units is
dedicated solely to implementing the instructions described. In this implementation, the
resources exhibit spatial computation as each function unit will execute at the same time,

therefore requiring three of them — dpo, dp; and dp,, respectively.
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There will inevitably be constraints imposed on the number of functional units available and
the number of time steps in which to execute them. The result is a compromise between the
degree of spatial and temporal use of resources necessary to meet the constraints. This
situation is depicted in Figure 2.1c, where instructions iy and i; are allocated individual
functional units dpo and dp;, enabling their spatial execution during the same time step to, as
was the case in Figure 2.1b. However, with a resource constraint of one ‘AND’ functional
logic unit, dpo must be shared between instructions iy and i, thereby forcing the execution of
instruction i, to occur during the next time step t;. In this way, the execution of the

instructions is reliant on the temporal use of the functional unit dp.

Somewhere between these two extremes of flexibility of general purpose and the optimisation
of dedicated hardware lies reconfigurable hardware. What was assumed and not depicted in
the allocation of the data-path functional units was that each would be uniquely bound to its

own resource.

Figure 2.2a explicitly shows the static resource binding inherent to the resource allocation and
scheduling previously shown in Figure 2.1b. The figure illustrates the binding during the time
step t.1, of a resource R, to each of the data-path units.

The negative time denotes the fact that it occurs before execution of the schedule and is
therefore fixed at fabrication or during power-up configuration — should the resources be
programmable. This form of static configuration is representative of the typical usage of
commercial programmable logic devices, which are optimised to read a configuration once,

through an external interface from a non-volatile configuration memory.

Likewise, circuit synthesis has traditionally assumed a fixed binding of functional or memory
units to an implementation in a given technology. Any variation in data-path unit binding
occurs only during circuit compilation, with the purpose of exploring how a different binding

may aid in meeting the design constraints.

Figure 2.2b illustrates the reduction in resource usage, when the assumption of a static
binding for data-path units dpy and dp;, shown in the earlier figure, is dropped in favour of a
dynamic or temporal binding to a reconfigurable resource R;. When reconfiguration is

scheduled to occur during the operation of the hardware resources, those resources are
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described as Run-time or Dynamically Reconfigurable [3]. As shown in the adjacent schedule,
this form of resource sharing requires two extra time steps to re-programme the resource. It is
reminiscent of the choice described earlier, between a smaller number of resources or a
shorter number of time steps. Once programmed, dpo can be executed alongside the static
bound resource dp,, scheduling both their associated instructions to the same time step t;. In
this way, the use of reconfigurable hardware offers the spatial computation associated with an
application-specific choice of functional units, as well as the temporal re-use of resources

embodied by programmable processor hardware.

c
: Time | Instruction schedule
R, Fl bR, tt |iganda b,c isora b,d iyandef g
ab

N d Time |Instruction schedule
ty ip:reconfigure R;=0001
t t
R, '0 0 R, 2'1 R, t  |iyanda b, c iyandef, g
t, |ijgreconfigure R;=0111
ab ab & |iora b, d

Figure 2.2b: Temporal binding of data-path units to reconfigurable resources.

Figure 2.2: Spatial and temporal use of reconfigurable resources.

Hardware permitting, it would also be possible to schedule the execution of instruction i, to
either time steps t, or t,. In doing so, the reconfiguration of resource R; would occur in
parallel to the execution of functional unit dp, bound to resource Ro. In such a case, the
resources of the hardware would be described as being Partially and Dynamically
Reconfigurable [3].

Run-time reconfiguration can be categorised as being Algorithmic, Architectural or

Functional.
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Algorithms which implement the same functionality but with different performance, accuracy,
power or resource requirements are examples of Algorithmic reconfiguration. An application
could be the implementation of an adaptive Viterbi decoder, where decoder performance may
be dynamically altered in response to changing channel conditions. Reconfiguration may
occur on the basis of channel noise to maintain a consistent bit-error rate. Any increase in
channel noise would result in a slower but more accurate running decoder being swapped into

the FPGA hardware and vice-versa in the case of reduced channel noise.

Architectural reconfiguration lends itself to fault tolerant applications, where reconfiguration

is used to modify the hardware topology in the presence of a fault(s).

A particular application might be the tolerance of Single Event Upsets (SEUs) in equipment
used in space and orbit based systems. SEUs result from radiation in the form of high energy
charged particles and may alter the logic state of a static memory element (latch, flip-flop,
RAM cell). User programmed functionality of a field programmable device depends upon the
data kept in the configuration memory, therefore the presence of a fault would have an
adverse effect on design functionality. Partial readback of the affected portion of
configuration memory may be performed and a Cyclic Redundancy Check value generated
and compared to the expected result, to detect an error. The contents of the configuration
memory controlling that portion of the device are then reloaded or even relocated in the event

of a persistent error.

The goal of Functional reconfiguration is to increase the functional density of a system,
through the execution of different functions on the same resource. An algorithm or design is
subject to temporal partitioning through a division into time-exclusive segments which are

swapped on and off a device at run-time.

An application could be a synthesised FPGA based processor implementing user defined
application specific instructions. Such specialised instructions would be loaded into the device
as the run-time conditions of the design dictated. The implementation could be efficient in
terms of performance, replacing long streams of general-purpose instructions and eliminating
the instruction fetch-decode part of the cycle. A significant area reduction would also be

achieved in comparison with a static FPGA implementation of the entire processor design.
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2.3 Reconfigurable Resources

To date, all reconfigurable resources have been referred to without attributing the physical
characteristics associated with a particular architecture and technology. It was a deliberate
omission, in order to separate their concept from any practical constraints that would
otherwise have been imposed by examples of their implementation. In this section of the
chapter, we will provide a brief history of the technologies and techniques which have helped
to popularise run-time reconfiguration as a growing area of research interest. The reader
should also have in the back of their mind the notion that the importance of such techniques is
often contemporary and a change of technology may invalidate them or in some cases

resurrect their employment.

Estrin [18] and colleagues are frequently cited as the being the earliest practitioners of a
‘Reconfigurable’ approach to hardware design: recognising the performance limitations of
general-purpose or ‘fixed’ hardware lead to the creation of ‘variable’ hardware libraries. The
result took the form of the *“Fixed-Plus-Variable” computer architecture and its
implementation relied upon physically ‘pluggable’ module functions which were fabricated

using discrete components.

Research included how to decide between a software or hardware realisation of a
function [19], as well as the practical implications involved in implementing run-time
reconfiguration: reconfiguration was achieved at different levels of abstraction by hand
swapping a module (function) or motherboard (algorithm). As a result, a wide band of
performance gains (2.5-1000) were achieved in comparison with a computer implementation
(IBM 7090).

Where Estrin identified reconfiguration as adapting the hardware to the algorithm, Miller and
Cocker [20] described adaptation in terms of the data-flow aspects of an algorithm’s
computation. This lead to two types of ‘Configurable Computers’: a ‘Search-Mode’
configuration, where the absence of the program counter requires a run-time data-flow
approach: data-dependant operations executing as soon as their input operands become
available.
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A second ‘Interconnect-Mode’ configuration has considerable resemblance to synthesising
reconfigurable logic due to its description of encoding the dependencies between ‘special-
purpose blocks’ of hardware in advance of their run-time execution, at which time the
instructions would control their configuration; suggesting a compile-time approach, as the

instructions were encoded prior to their run-time execution.

In addition to describing the importance of identifying data-flow between operations (as a
means of accelerating computation) Miller and Cocke may also have used the first reference
of the hardware being ‘dynamically reconfigured’, as well as implying partial reconfiguration

by overlapping ‘block execution’ with *block set up’.

It would be over a decade later, when a VVLSI implementation of a ‘configurable array of fine-
grain elements’ was implemented in the form the ‘CAL Architecture’ [15], where it was
described as ‘A New Paradigm for Computation’ and shown to provide significant
performance acceleration when compared to more conventional forms of programmable
computer hardware. The rights to its implementation was later purchased by Xilinx Inc.,
where it formed the basis of the XC6200 [21] series of FPGA, a partially reconfigurable
device with an open-architecture that is widely credited with popularising academic research

into run-time reconfiguration.

2.3.1 FPGAs

All reconfigurable systems are based upon some form of programmable hardware, many
utilise field programmable logic in the form of commercial SRAM FPGAs (Field
Programmable Gate Arrays). In 1985, Xilinx Inc. introduced the first commercial FPGA, a
new class of programmable logic device conceived as a replacement for Mask Programmable
Gate Arrays (MPGASs). MPGAs provided an array of gates with fixed functionality, such as
Nand gates. The routing was done by the designer via the last metal layer in the silicon
process. The principal drawback with MPGAs was the cost of exploring different design

alternatives, since each design required a new chip and routing layer to be manufactured.
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FPGAs alleviated this problem by making the gates and routing network programmable.
Programming the functionality of an FPGA is done ‘in the field” by downloading a

configuration bitstream into the FPGA.

FPGA flexibility is derived from its use of programmable logic cells, routing and 1/O cells as
depicted in Figure 2.3. Initially there was a wide architectural variety in the implementation of
the logic cells, however recently there has been an adoption of the Look Up Table (LUT)
based cell. LUTs are programmed to provide any logic function of their inputs. The internal
architecture of a cell consists of a number of LUTSs, coupled with carry logic, state storage and
multiplexors, to control its internal configuration. A rich routing fabric is provided which may
include millions of possible routing pathways through the device, achieved through Local

Connection Points and Global Routing Switch Boxes.

Global Routing Switch Box

/ Local Connection Points
<
Logic Cell / L 11
1/0 Cell \ Programmable

— e functions — LUTS,
— MUXs, LATCHES

-

/" Programmable
routing

Figure 2.3: Generic FPGA structure.

The programming of the resources is done through SRAM configuration bits. Being SRAM
based, the devices may be programmed an unlimited number of times, with the time required
for configuration proportional to the size of the device and dependent upon the characteristics
of the programming interface. Such volatility of the SRAM cells requires that the
configuration bits are loaded from an external configuration store, typically a serial or parallel

ROM, upon each power-up of the device.
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Programmability comes at the cost of efficiency [22]: the implementation of logic in an FPGA
is less dense (18 times) and slower (3 times) than an ASIC in a comparable process
technology. This is due to the large amount of wiring resources required, leaving less area for

active circuitry.

2.3.2 Technology and Architecture

The majority of research in dynamically reconfigurable systems is in the area of
Reconfigurable Computing. Such systems may be characterised by the strength of the
coupling between a processor and programmable logic, granularity of architecture and depth

of programmability.

a) Coupling: dynamically reconfigurable systems are implemented with varying degrees
of coupling between a processor and programmable logic. Computational efficiency is
increased by making decisions at run-time as to whether computation is executed on
the reconfigurable logic or processor. This ranges from a tight coupling where the
reconfigurable units execute as functional units in the data path (System on a chip
architecture) to a loose coupling, with the programmable logic implemented externally

on a platform and independently of the main processor.

b) Granularity: the granularity refers to the data size of the operations for the
reconfigurable component. In the preceding section, the FPGA was introduced as an
example of hardware programmability upon which reconfigurable systems may be
implemented. However in contrast to the FPGA (fine-grain reconfigurability), the
domain of reconfigurable computing stresses the use of coarse-grain reprogrammable
arrays, which are achieved through custom design. FPGAs are classified as having a
fine granularity of reconfiguration, as the look-up tables, flip-flops and logic gates
operate at the bit level. Coarse-grain architectures provide programmable cells at the

operation level with word level data paths.

c) Depth of programmability: the depth of programmability refers to the number of
configurations (or contexts) stored within the programmable device. The following

configuration memory models have a different unit of reconfiguration, the smallest
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segment of configuration memory that can be reconfigured. It is the dominant factor in the

reconfiguration overhead associated with swapping a context on or off a device.

(i) Single Context

The configuration of the traditional FPGA architecture is achieved through a device
configuration memory capable of storing a single configuration. System wide configurations
are loaded serially from an external memory device, often requiring hundreds of thousands of
clock cycles. This incurs a high reconfiguration overhead, as a small change to the
configuration requires a complete reprogramming of the device. Examples of typical
commercial FPGA devices are Xilinx 4000 [23] series, Altera Flex10K [24].

(ii) Partially Reconfigurable

The introduction of devices capable of dynamic partial reconfiguration made the
implementation of single device run-time reconfiguration feasible. Configurations that do not
use the entire resources or require changes to selective areas of the device are executed
through partial reconfiguration. If required, existing configurations continue to operate during
and after reconfiguration. This reduces the amount of configuration data sent to the device,
which in turn reduces the cost of the reconfiguration overhead. Examples of commercial
FPGA devices are the Xilinx Virtex family [6] and Atmel AT40K [25].

iii) Multi-context

Multi-context devices have many memory bits for each programmable bit location. This is
implemented through on-chip multiple memory planes and can result in a very low overhead
(625 ps) [26] as reconfiguration is carried out by switching internally between the planes,
without requiring external loading of the bitstreams. Configuration planes may also be

partially reconfigurable.

Some thirty Fine and Coarse-grain reconfigurable systems and devices are reported in the
literature. What follows is a brief survey of a representative number of those systems and

devices. Comprehensive surveys may be found in [9,27,28].

The concept of Virtual Hardware within reconfigurable systems was introduced using the
WASMII system [29,30]. Virtual hardware enables configurations or contexts to be swapped
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in and out of a programmable device during its run-time execution. Such a re-use of device
resources reduces the area required for a digital circuit implementation. This is analogous to
the use of Virtual Memory in a software operating system which permits a program to be
larger than the physical memory it resides in by mapping portions of the virtual memory to

the physical memory when required.

WASMII was an early system to conceptualise a multi-context FPGA. The device consists of
an FPGA coupled with a set of multiplexed SRAM. A data-flow graph is partitioned into a
number of pages, each being equivalent in size to the available resources of the FPGA. Each
page is mapped in to the SRAM memory and swapped on or off the FPGA by a Page
Controller. The controller determines when to swap pages and where in the additional register
space to store and retrieve the data used by the pages. In addition to the multiple contexts,
virtual hardware is mapped from external memory. Execution may be overlapped with
configuration by pre-loading a page from external memory to the device configuration
SRAM, whilst the current page is active. Initially a lack of suitable technology forced an
emulation of WASMII using a number of FPGAs coupled with an external memory and a

microprocessor.

WASMII was later realised on an experimental multi-context device referred to as the
Dynamically Reconfigurable Logic Engine (DRLE) [31] developed by NEC Corp. This
architecture had been commercialised in the form of the Dynamically Reconfigurable
Processor 1 [32], targeting image and signal processing, in addition to network packet

processing applications such as routers and switches.

The device consists of an array of 512 equivalent ALU based processing elements (PES) with
local access to a total internal storage memory of 2.2MB. Most significant is the emphasis on
efficient dynamic reconfiguration between 16 configuration context layers, providing an
additional 7680 virtual PEs. The architecture is partially reconfigurable by dynamically
changing the configuration of the PEs and interconnections between them without effecting
the existing configurations. Data-path reconfiguration is controlled through an integrated
Finite State Machine Sequencer. Products and IP cores using the architecture were anticipated

but nothing further was reported after the turn of the millennium.
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The Swappable Logic Unit (SLU) [33] was proposed as a paradigm for virtual hardware,
being analogous to a page or segment in virtual memory systems. The SLU is essentially a
FPGA function with a fixed interface capable of being paged onto the hardware and
connected by an operating system at run-time. The SLUs were made available as library
functions utilised by a high level language such as C. The concept was demonstrated on a
hardware platform [34]. It was argued that due to the relative immaturity of the SLU concept
[35], SLUs were unlikely to be incorporated into existing design tools. A solution was
proposed that detected SLUs within existing bitstreams through a combination of existing

knowledge and automatic detection.

Many reconfigurable implementations are carried out on commercial SRAM FPGAs. These
devices provide the basic requirements — abundant logic and interconnect, on chip memory
and the ability to partially reconfigure ‘on the fly’.

Partially and dynamically reconfigurable devices, such as the Xilinx Virtex [6] family and
Atmel AT40K [25] enable virtual hardware to be implemented using standard FPGAsS.
Unfortunately the devices are not optimised for efficient reconfiguration. The bottleneck
caused by loading the configurations from an external memory forces infrequent context
switching to be the only cost effective option. Xilinx Inc. filed a patent on a time-multiplexed
FPGA in 1995. The patent covers a multi-context programmable FPGA that uses cells similar
to the Xilinx XC4000E FPGA. That is where the similarity ends, since the multi-context
architecture enables each configuration memory cell to have a further eight inactive
configurations. This gives the device a set of eight virtual background layers, where a

configuration switch from background to active layer is executed in 30 ns.

Xilinx do not have any future plans for its production, citing power consumption as a
potential drawback [36]. In addition, larger capacity FPGAS generate greater revenues,

therefore there could be no financial motivation for reducing the size of silicon.

A number of academic time-multiplexed FPGA architectures have been proposed [37,38],

none of which have been realised commercially.

The furthest anyone has been to introducing fine-grain and rapidly reconfigurable devices to
the market-place was Tabula Inc. with the ABAX [26] series of ‘3D Programmable Logic’
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time-multiplexed devices. Tabula Inc. was until recently (first quarter 2015) selling devices
and development boards for communication and networking applications. Although very little
information has been made publicly available about the specification of their devices and is
unlikely to become available (Tabula Inc. has ceased trading), it was a rare example of a
rapidly reconfigurable device offering the type of resources an FPGA user would recognise

e.g. Look-Up Tables, Registers etc.

Being a multi-context architecture, the ABAX device permitted between 8 and 12 device
configurations to be stored on-chip, switching between them incurred a reconfiguration delay
of 625ps [26]. A user’s design would be partitioned between as many as 12 temporal
partitions, where all data-dependencies cut during partitioning were captured by transparent
latches. Unlike other multi-context devices [36,37,38], the architecture incorporated stage
storage as part of the routing.

Tabula’s selling point was that their temporal devices could emulate a spatial device 12 times
its physical size, whilst keeping the spatial and temporal aspects of placement and routing
transparent to the user. Details about the device’s power consumption was described as being
‘application-specific’ but inevitably the decrease in static power consumption (associated with
fewer logic and wiring resources than its spatial equivalent) would have to be offset against

the increase in dynamic power consumption due to rapid reconfiguration.

Commercial research has also examined alternative Coarse-Grain (word-level) data-flow
architectures, such as NEC’s Dynamically Reconfigurable Processor 1 [32] and PACT’s XPP

[39] architecture, both based upon dynamically reconfigurable arrays of processors.

A radically different architecture was the Adaptive Computing Machine (ACM) from
QuickSilver Technology Inc. [40]. Being a network on a chip device, it utilised message
passing as opposed to point-to-point routing found in FPGA architectures. The motivation for
the architecture was based upon the assertion that algorithms are heterogeneous in nature and
the homogeneous architectures associated with FPGA-based reconfigurable systems do not
satisfy the demands of adaptive computing. The ACM architecture is therefore heterogeneous,
consisting of five types of nodes: bit manipulative, arithmetic, finite state machine, scalar and

configurable input/output.
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The granularity of reconfiguration is extremely coarse, each node executing tasks at the
complete algorithmic level. For example, an individual arithmetic node may be used to
implement different variable-width arithmetic functions such as an FIR filter or Fast Fourier
Transform (FFT). A bit manipulation node may be used as a Linear Feedback Shift Register

or as other variable bit width manipulation functions.

Each node is coupled with a local memory cache and configuration memory. The architecture
provides efficient reconfiguration by utilising a 256 bit configuration bus, enabling every
node to be reconfigured on a clock cycle basis. This enabled the ACM to adapt by tens or

even hundreds of thousands of times a second.

The final approach taken is to assimilate reconfigurability into an SoC (System on a chip)
architecture: RISC processors and DSP cores are used to execute as much functionality in the
software as possible, delegating blocks of programmable logic fabric to those elements of a

design which could benefit from its use for hardware acceleration.

The Chameleon CS2112 [41] was the industry’s first reconfigurable processor: being a SoC,
the device consists of a multi-context run-time reconfigurable logic fabric, coupled with a 32
bit RISC processor core. The reconfigurable fabric consists of an array of 32 bit data-path
units and 16 bit multipliers, partitioned into a set of dynamically reconfigurable slices. Each
slice also has a second configuration memory plane. This enabled another configuration to be
loaded in the background during the execution of the active circuit. Switching from the
background to the active plane could be accomplished in a single clock cycle. Switching a
partition resulted in a small overhead for loading each partial configuration, necessitating a

delay of 4 us per slice.

2.4 CAD Tools for Dynamically Reconfigurable Logic

The motivation for developing design frameworks which incorporate design capture,
synthesis and simulation for dynamically reconfigurable systems is a lack of support from the
technology vendors themselves, as well as an absence of commercial software to enable the

designer to quantify the trade-offs involved when utilising reconfigurable technology.
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A considerable number of academic software tools have been developed to support run-time
reconfigurable systems [42]. The tools vary depending upon the resources which characterise
the target system: reconfigurable computer systems are composed of programmable logic and
software processors. Most are a mixture of industry standard and custom tools, typically
compiling and partitioning standard C into a software executable and a set of hardware
modules for a reconfigurable data-path [43]. Although these tools incorporate many aspects
common to high-level synthesis, their goal is hardware acceleration using a rapid design- flow
similar to conventional computer programming. In contrast, tools for synthesising
reconfigurable logic consider more than one objective and usually require a greater
compilation time to achieve their goals: being application-specific, the hardware generated is

inherently accelerated but generated under tighter resource constraints.

JHDL [44] is a structural/RTL hardware and software co-design environment based on Java,
it enables a designer to use their expertise to optimise layout and circuit composition. The
result is the generation of faster circuits and smaller device bitstreams in one environment.
JHDL manages circuits in a manner similar to the way object-oriented languages maximise

memory, where circuits are treated as objects.

Other alternative forms of languages for hardware design include: Ruby [45], Pebble [46] and
Lava [47]. These languages enable a designer to specify components in a manner that is more

convenient than the use of attributes associated with standard HDL designs.

The development of a framework for creating parameterised core libraries is presented in
[45]. Ruby is used to enable an initial exploration of the design space. The Ruby description
of a core is (manually) translated into parameterised VHDL. This contains attributes for
placement to be processed during automatic synthesis and translation to configuration
bitstream.

The framework was developed further in [46] using the language Pebble, for the initial
description and automatic translation into VHDL. Pebble was developed to enable research
into supporting tools for reconfigurable designs. It can be regarded as a simplified variant of
structural VHDL and its word-level and bit-level descriptions may be customised by different

parameter values such as design size and number of pipeline stages. Optional constraint
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descriptions, such as placement attributes are supported at various levels of abstraction and

run-time reconfiguration is supported with a “Reconfigure-if” statement.

In [47], the Lava hardware description language allows circuits to be described at a high level
whilst permitting layout to be captured. The output netlist contains a fully placed design
which is fed into JBits [48], an API to manipulate and generate Xilinx device bitstreams. The
aim of the approach was to significantly reduce the time taken to generate the bitstreams from
HDL to device configurations, when compared with the conventional design flow. The
preliminary version of the system could generate bitstreams 12 times faster than the
conventional flow. The authors described the potential for further performance increases of 50
times the conventional flow. The obvious application is in the field of reconfigurable

computing where applications require fast compilation.

Other researchers have considered a lower level of abstraction, enabling the designer to have
absolute control over component placement and routing. JBits was developed by Xilinx Inc.
as a non-commercial Java class library to allow users access to the propriety bitstream,
without compromising the security of the intellectual property rights associated with their
devices. JBits permits access to the programmable resources of the FPGA through a set of
class functions and constants. The functions enable configuration data streams to be read from
and written to, where the status of an individual programming resource such a CLB maybe
queried or set to a defined value. The constants define the programmable resources and the
values that they may be set to within the device.

In [49] the idea of extracting functionality from existing bitstreams was taken a step further to
enable the extraction of run-time cores from programmable device configurations. The
objective was to insert a core after the bitstream has been generated, during the last step in the
design process. This was in contrast to commercial toolsets, such as the Xilinx Core
Generator [50], which generate netlists to be processed by the place and route tools early in
the design flow. The cores are referred to as Run-Time Parameterisable Cores [51], as their
generation and addition to existing bitstreams may be done during the run-time execution of a

design.
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A JBits core consists of a number of class calls to program the relevant CLB, BlockRAM and
routing resources. It is feasible to design circuits through a series of connected cores, however

this would not take advantage of the availability of pre-tested vendor supplied cores.

The JBits approach proposed the creation of a series of cores and subsequent bitstreams by
querying the resources used in the configuration bitstreams constructed from the IP core. This
technique was used to develop a library of run-time cores which an application running on a
host PC could use to modify an application ‘on the fly’. Unfortunately the run-time cores
required a great deal of understanding of low-level device architecture — too low-level an
abstraction for specifying today’s multi-million gates designs. As a consequence of bypassing
circuit optimisation at higher levels of abstraction, the responsibility for achieving an efficient
circuit structure lay with the designer — a formidable task which would ordinarily employ
design automation at several stages of abstraction: circuit synthesis and partitioning are two
such examples, both of which are essential when implementing run-time reconfigurable

systems.

2.5 Synthesis and Partitioning

Despite the ever increasing body of work covering run-time reconfiguration, there are at its
core a small number of problems which all approaches must consider. These are briefly stated

in order to provide some context to further discussion of the literature:

e Reconfiguration delay: does the programming method of the device affect the level at
which partitioning occurs?

e s the partitioning approach able to quantify multiple objectives, communication costs
as well as the essential reconfiguration versus resource-reuse trade-off?

e s the architecture generic or a by-product of the partitioning?

The task during circuit partitioning is the division of a circuit into two (Bi-Partitioning) or
more (K-way Partitioning) parts, each of which must satisfy a constraint on its physical
property [52]: a device pin-count associated with the weights of the edges cut during

partitioning and a resource constraint on the size of each partitions; for bi-partitioning a
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measure of balance is a common requirement, perhaps less often in multi-way partitioning

where a repeated bi-partitioning might require resources of different sizes.

A Temporal Partitioning [42] extends these constraints to incorporate placement: the resource
placement of the partitions must overlap. By implication, the nets cut during spatial
partitioning require little consideration as to their direction; in contrast, the direction of nets
cut during temporal partitioning are more likely to be uni-directional between partitions which
are temporally adjacent. Unlike a spatial partition, a component in one temporal partition may
also be present in another. In doing so, it may preserve a signal state or logic function,

typically also reducing the information necessary to reconfigure the resource.

How temporal partitioning is achieved is greatly influenced by the architecture of the
reconfigurable resource: a multi-context device may restrict the nets to flow in one direction

only, where each context generates a signal which is immediately processed by the next [36].

Other architectures may separate sequential and combinational resources, thereby enabling bi-
directional nets between spatial and temporal resources in the architecture. The Time-
Multiplexed Communication Logic architecture [53] exemplifies this approach. Unlike the
architecture of the Time-Multiplexed FPGA [54] or Time-Switched FPGA [36] there is no
restriction to store signals only between adjacent partitions, therefore nets maybe bi-

directional.

A less exotic architecture which exemplifies both aspects is the FPGA [2]. A device offering
only full reconfiguration has no architectural provision for storing state; a partially
reconfigurable device may reconfigure one of many resources, relying upon the preservation

of state in a resource not being reconfigured.

An early reference in the literature regarding the partitioning of a behavioural hardware
description (Verilog) in to reconfigurable resources is the work by Schmit et al. [55] who
describes the difficulties they encountered when partitioning a circuit’s structure after
allocating and scheduling the data-path units: sharing the functional units without regard to
their interconnection often prevented their placement in the target FPGAS or resulted in poor
utilisation of their pin or logic resources. By grouping operations with common input or

output values in to “clusters’ and repeating the process so that a cluster has the potential to be
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a sub-set of another, the authors were able to confine the subsequent stage of scheduling and

data-path allocation to an additional level of hierarchy above that of the operation-level.

Structural partitioning of test circuits over two FPGAs using a Simulated Annealing [7]
algorithm highlights the difference between the best solutions with and without clusters:
without clustering, the logic utilisation of the two devices were 72% and 39% respectively;
with clustering, logic was better distributed at 63% and 43% utilisation. An improvement was
also seen in their 10 requirements: without clustering, 10 usage was reported to be 78% and
68% of available pins; with clustering, their 10 requirements were reduced to 47% and 35%

respectively.

Simulated Annealing was also used to perform partitioning in the work described by Peterson
et al. [56], although the application of the algorithm differs from the latter in its use in
simultaneously scheduling and partitioning a behavioural description (ANSI-C) over a
multiple FPGA ‘Custom Computing Machine’. Hierarchy above that of the operation-level is
represented by partitioning the software specification at subroutine boundaries. In addition to
a potential reduction in the size of the cutset, likely to accompany a restriction of the
interconnection to those nets associated with the passing of function arguments, the
partitioned functions are also in a form that is easily ported for execution as software on the
host computer. As well as increasing the opportunity to explore how a program’s behaviour
may be best implemented in hardware, the availability of a sequential processor may also be a
necessity in circumstances where the logic resources are insufficient or unavailable, as is

likely to be the case when implementing floating-point arithmetic operations.

Both of these approaches required full reconfiguration of the devices which suited the many
operations encapsulated in each procedure or function that was partitioned. As such, they
were early examples of spatial partitioning using reconfigurable hardware.

Later examples described as Temporal Partitioning would appear when the partial
reconfiguration of a single device was examined. An often cited approach is the work by
Vasilko [57]. It is an early recognition of the relevance of HLS Scheduling to the temporal
aspects of partitioning for reconfigurable devices. The approach uses List Scheduling [17] to

determine the assignment of each data-path operation to a single temporal partition.
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The method begins with a list of unscheduled operations and a resource-constraint on the
maximum partition size. Each partition is created by removing an operation from the list and
assigning it to the current partition until the resource constraint is exceeded, in which case a
new partition is reconfigured or all the operations are scheduled. As is typical in List
Scheduling, a priority function is used to sort the operations to be scheduled: in Vasilko [57]
it includes a measure of how early a reconfiguration should start in order to hide it with the

execution of operations already scheduled.

Two outcomes are possible: in the event of there being sufficient time to overlap the
reconfiguration of an idle resource from an earlier partition, a partial reconfiguration takes
place. Alternatively, the overhead in reconfiguring the operation is too great for a single
operation and the entire device is reconfigured, incurring the same reconfiguration time but

freeing more resources to be used in subsequent partitions.

With regard to the test circuits, the examples scheduled at the operation level are small, the
largest being in the order of 34 vertices in a data-flow graph. The purely data-flow approach
excludes explicit control structures and therefore the opportunity to overlap reconfiguration
with the execution of structures such as finite loops.

The results proved what seems intuitive, that longer reconfiguration delays cannot be so easily
hidden and as a result are more efficiently handled via full reconfigurations. Reducing the
reconfiguration times encourages more partial reconfigurations and shorter critical paths
because of the ability to hide the reconfigurations. The results were not based upon
commercial devices which would have required thousands of cycles but on multi-context and

single cycle reconfigurable devices.

List scheduling is the most frequently used method for temporal partitioning, a particular
advantage being its linear execution time with respect to the number of operations to
schedule. In [58], the authors took a similar approach by using list scheduling but targeted a
practical implementation, citing the ability to execute the scheduling in linear run-time. The
target architecture utilised an embedded CPU which enabled an on-line scheduler to use list
scheduling for occasions when dependencies between the nodes are not known. List
scheduling was also used for static graphs, supporting both compile and run-time approaches

to temporal partitioning. The scheduling is applied at the task-level of abstraction and a case-
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study showed how a Discrete Cosine Transform may be partitioned over 16 tasks, overlapping
device reconfiguration with the execution of the tasks. A high degree of similarity amongst
the operations within each task is likely to account for the acceptable ratios of reconfiguration
to execution latencies reported in the results.

Unlike non-reconfigurable approaches, list scheduling approaches rarely re-use functional
units in existing partitions, placing a greater emphasis on the size of the available resource
rather than its type. The work of Bobda [59] relied on creating a set of partitions in such a
way as to maximise the number of common operations between any successive pair of
partitions. In circumstances when too great a reconfiguration delay would prohibit a device-
level reconfiguration, the author proposes the sharing of functional units between partitions;
he describes how this approach need not automatically result in an increase in the logic
resources necessary to multiplex the input operands of their allocated instructions: in FPGA
architectures where a look-up table is used to pass an input signal to a register resource, an
additional data and select signal along with the updated boolean equation can be programmed
into the existing table. Despite being a useful alternative form of temporal resource sharing, it
does depend on having precise user-control over the technology mapping of individual data-
path components, a level of abstraction that many hardware designers would be reluctant to

design at.

A very different approach to temporal partitioning is taken by formulating the problem as an
Integer Linear Programming task [60], using equation solvers to find a solution which meets
the exact constraints used to enumerate the temporal partitioning. Examples of these
constraints are: uniqueness assignment constraint- a single binding of a node to only one
partition; data-dependence constraint: a variable must be written to before it is read and that
implies its placement in a partition earlier in time than the reading partition.

Once all these variables are described, a commercial equation solver is used. The advantage in
this approach is its ability to generate an optimal solution. The drawback in its use is that it
requires an exact formulation of the architecture. This includes defining exactly all the
properties required during partitioning. As a consequence, it is only suitable for problems

with a very small number of variables.
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Network flow techniques have been proven to be useful in modelling communication costs
between temporal partitions. Approaches using list-scheduling often form partitions solely on
a local temporal view (levelling [59]) without consideration of the cost of buffering
communication. Network flow methods are specifically centred around finding the minimum
cutset. The method is based on the Ford and Fulkerson min-cut max-flow theorem [61]. A
physical analogy would be to consider a series of interconnected water pipes with a single
source and sink and no loss of water when travelling from source to sink. By applying water
at a steady rate, at some point the pipe with the smallest diameter will saturate with a
maximum flow before the others; if cutting it would prevent the flow of water to the sink, it

represents a minimum cut.

The logic gates and input/output nets of a digital circuit can be represented as a set of vertices
and edges in a flow network. A circuit net is modelled by an edge of a single unit capacity. A
saturated path from source to sink occurs when the flow rate equals the maximum capacity of
one. When the network has achieved a maximum flow, there will exist at least one minimum
cut capable of partitioning the graph in half. Since a saturated edge is of a unit flow, the size
of the cut is given by the number of forward edges crossed between the two partitions.
Crucially, all of the potential cuts will be of the same size and ultimately equivalent to the
maximum-flow of the network. Selection of the actual partitioning cut can be made by
considering the size of the vertices connected by the edges of the cut-set and the areas of the
two partitions formed by separating the vertices.

A network flow approach would seem to be an attractive method since each max-flow
computation reduces the requirement for circuit partitioning to comparing the areas of
vertices. However, there are a number of hurdles which prevented its adoption. The most
obvious difficulty is the time taken to repeatedly calculate the maximum flow; after each cut
is made, the area of partitions is not balanced which requires repeated cuts to the larger
partition and potentially as many max-flow computations as there are vertices. Another
difficult lies in accurately representing a cut made across nets in a circuit, complicated by the
fact that an output of a logic gate may drive multiple gate inputs which is often represented by

a single net.
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The Flow-Balanced Bi-partitioning (FBB) method of (Yang and Wong) [62] directly
addresses these problems through the use of an incremental approach to calculating the
maximum flow of a network, whilst selecting only vertices on nets which preserve a balance
criterion specified for the resulting partitions. The authors also showed how nets with multiple
terminals can be represented in a flow network through the use of additional vertices and

edges.

The first application of FBB to temporal partitioning was described in [63]. The approach
used recursive bi-partitioning to create a set of two partitions. A pair of source and sink nodes
are selected and flow is applied between them. This is repeated until at least one saturated
path is found. If cutting it would stop the flow between the source and sink vertices than it is
declared as a potential mincut. Of all the potential edges, one is chosen where moving its
associated vertex would improve the size of a destination partition selected with respect to a
balance target. The benefit of this approach is that is can lead to a solution in polynomial time
but requires the insertion of extra nodes and additional edges to represent multi-pin nets. One
has to be careful to avoid the worst case which is twice the number of nodes and edges than in
the original problem.

Force-directed Scheduling [64] has also been used as a basis for realising temporal
partitioning in high-level synthesis. The objective is to find a schedule to meet a time-
constraint whilst minimising the number of functional units required for instruction
operations. To reduce the schedule requires an exploration of the concurrency of operations
but that requires more functional units. Forced directed scheduling attributes the distribution

of concurrency for a type of functional unit as an abstract measure of force.

The aim of force-directed scheduling is to schedule an operation to reduce the force and
evenly distribute the parallelism of functional units across other units of the same type. A
particular point of interest is that it measures the ramification of scheduling an operation on
any related predecessor or successor operations. For example, scheduling an operation later
might encroach on the control step of a dependent successor; assuming that both cannot be
scheduled to the same control step, doing so would limit the choice of where to schedule the
successor operation. The solution is to find an operation where there is a choice in where it

can be scheduled to affect the number of functional units used e.g. an operation with mobility.
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The ideal control step to schedule the operation would be where it does not increase the
number of functional units used of a similar type. That is not to say no parallelism, but less

parallelism over the possible choice of where to schedule.

Where an operation can be scheduled in more than one place becomes a probability of
distribution. Subtracting the average use of functional units from that probability provides an
indication of an operation’s self-force. Therefore, a small value reflects a small self-force and
a good place to schedule. A large force would be in a place where there are many of the same
parallel units in comparison with the average and not a good choice.

A similar approach can be taken with related operations. A dependent operation may also
have a mobility and choice of where to schedule. There is an average use of functional units
of the same type during that mobility. Finding the difference between the average use of units
before and after the scheduling of the operation in question reflects the effect it has on any
dependents. A reduction in the average use of functional units after the move would suggest

the control step is an unsuitable choice.

The final decision is based upon the sum of the self-force and the successor and predecessor
forces. This is repeated for every control step where the operation might be scheduled. The
control step with the smallest force will represent a smaller than average concurrent use of a

functional unit and a minimal use of resources for that operation.

In [65], the authors describe a force-directed temporal partitioning algorithm which
simultaneously considers resource sharing and partitioning. The purpose of the algorithm is to
minimise the execution time whilst considering the sharing of functional units and how it
might affect the size of a partitioning. The disadvantage of this approach is that allocation is
based solely on local partition properties. A global view of partitioning was implemented in
[66] where each operation on the critical path is initially assigned its own partition. The
algorithm is than able to take a global approach by determining which of the operations from
non-critical paths may join them in a partition. In doing so, it is able to consider both the
resource sharing between their operations, as well as their execution latencies; no provision is

made for the communication cost of signal cut by the partitioning.
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The Genetic Algorithm approach described in [67] differs from the other approaches
described previously, not just in its use of the genetic algorithm but its aim of multi-objective
optimisation. Unlike the other approaches, it sought to minimise resource size, latency and
communication costs. However, a disadvantage in the approach taken is the reliance upon
only accepting moves during partitioning which improve the cost function, no ‘Uphill’

decisions are ever taken.

2.6 Architectures for Run-time Reconfiguration

The approaches described earlier regarding temporal circuit partitioning are based on the

assumption that the architecture is a direct result of the topology inherent to partitioning.

A number of reconfigurable resources are defined and fixed wiring channels are used to
connect them. Their properties such a size and placement are all a part of the trade-offs made
during partitioning. As such these decisions are necessarily off-line because the relationships

between the instructions are statically defined.

There are alternative approaches to run-time reconfiguration, where partitioning decisions are
made on-line. Although the problem being addressed is very different to the use of
reconfiguration for high-level synthesis, difficulty in implementing their architectures at the
device-level often requires pre-defined off-line architectures that are made generic through

use.

From a reconfigurable computing perspective, a programmable device such as an FPGA could
be regarded as another memory to manage. The reality is that the encoding of information
using an FPGA is several magnitudes larger than that which is used for a general-purpose
microprocessor [3]. The obvious explanation for this is that a microprocessor has an existing
architecture, where the fetching of instruction operands is inherent to the programming of the
architecture. In contrast, an FPGA is programmable for a user-defined architecture. There are
numerous resources and these are spatially apart and therefore require a description of how
information between them is to be transported. As a consequence, the task of managing the
device resources at run-time requires a level of abstraction to manage the complexity of

programming the device.
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The approach taken for existing programmable resources, such as computer architectures is to
describe an Operating System to which existing memory management techniques can be
applied [68]. The difficulty in this approach is the proprietary nature of the devices. In order
to prevent reverse engineering of customer implementations, manufacturers are reluctant to
reveal sufficient information to enable the programming of their devices without their toolset.
For example, Xilinx Inc. disclosed information regarding the encoding of logic resources but
nothing to aid in programming the routing. A lot of effort in the reconfigurable community
has been spent on working around the reliance on vendor tools [69]. This divides the
reconfigurable computing community, those who incorporate vendor tools into their hardware
abstraction [70] whilst others rely upon pre-designed architectures which are adjusted at run-
time [8].

Research Tools such as Torc [71] include device vendor tools into their methodology and in
doing so require a general-purpose microprocessor somewhere in the hardware
implementation. This moves the focus to fast compilation; ultimately the end result must be

the generation of device-level configurations at run-time.

In the absence of proprietary information, the approach is to limit the use of the vendor tools
such as Placement and Routing which are the most time-consuming phases during
implementation. An alternative is to rely upon circuit descriptions at the lowest possible level
that allows textual description. For Xilinx devices this approach can be achieved through the
use of the Xilinx Description Language (XDL) [72]. Tools like Torc rely upon manipulating
device level configuration frames in accordance with circuit descriptions at higher levels of
abstraction, XDL as well as C++ or Java. The approach used by these tools is to describe the
structure of a circuit using a high-level language which is then automatically programmed
with the equivalent device-level resources at run-time. Resources are set and reset with each
new requirement for change in program behaviour and consequently FPGA configuration
memory. This approach to run-time reconfiguration is particularly useful where there is

already the overhead of an operating system factored into the hardware expense.

An alternative approach is to reduce the number of run-time decisions by adopting a specific
architecture. A representative example of this approach is described in [8]. A model of a

hardware operating system is presented which is reliant on the use of a generic pre-designed
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one-dimensional architecture. It comprises a series of columnar ‘reconfigurable slots’ into
which a user task could be reconfigured. On either side of this area are static resources

committed to implementing the operating system entirely in hardware.

A portion of the slot is allocated to a ‘Task Communication Bus’ which is a shared
communication channel that spans all available slots. In this way any task can exchange
information regardless of its actual placement. The customisation occurs when a variable
sized task is processed because it is must be implemented through more than one slot. The
operating system ensures that an indivisible number of slots are used and upon completion the

resources are returned to their unit size.

Use of the channel is highly restricted to guarantee no bus contention and no arbiter is
described. This is due to bus communication being solely between adjacent resources; non-
adjacent resources do not use a shared bus and depend upon fixed direct routing channels.

A different technique would be to reduce the need for a shared communications channel by
writing and reading to dedicated memory [34,73]. The method used in both these
implementations of a hardware operating system is to perform on-line scheduling and
allocation of resources to tasks by device configuration frame-manipulation. This requires the
use of JBits [48], a vendor supplied interface to the reconfigurable resources of earlier Virtex
FPGAs that does not reveal proprietary information. In this way, the authors were able to
experiment with scheduling and allocation techniques without requiring a pre-defined
architecture [8].

Tasks could be one or two-dimensional (fractions of a column) and all communication is
between a task and a shared external memory. This enables its parameters to be written or
read by the operating system of a desktop computer. The approach relied upon there being no
communication between the tasks but was able to dynamically allocate wiring resources
between the memory and the task. As the authors stated, this could be adopted to enable

communication between tasks using the shared memory.

A distributed approach to communication has its origins in the massively parallel computer
architectures of the 1980s [11]. Circuit Switching was used to create a fixed path for

connecting two or more communicating resources such as CPUs. The architecture has a
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number of parallels with earlier FPGAs, where routing would be done through a series of

neighbourhood connections.

A connection between non-adjacent resources required the setting of many switches arranged
in a mesh topology for the duration of the communication. The connection would be
‘switched on’ only for the duration of the communication. In this way, the parallelism of the

computer architecture could match the parallelism of the algorithm being described [74].

An example of how circuit switching can be successfully used for communicating between
reconfigured tasks was encapsulated by the Reconfigurable Multiple Bus On a Chip
(RMBOC) [75]. In common with other pre-defined architectures [8], the resources are
modelled as one or two-dimensional resource slots. A large resource can be accommodated by
the reconfiguration of consecutive slots. The architecture separates communication to the top
part of the resource slots. This is a necessity because a drawback of the circuit switching
approach is the difficulty in ensuring that switching points are not already allocated. In the
absence of a wiring database available to computer based approaches [71], the use of routing
resources must be constrained to an area, similar to the approach described by [8]. However,
unlike a single bus which allowed only source and sink connections, the RMBOC utilises

multiple buses connected at switching points.

Each switching point comprises a controller which distributes control information to its
nearest left or right neighbour. Control information includes instructions used to distribute
data between switching controllers, such as commands which open or close a channel.
Although many buses may comprise the path, the path is reserved solely for the single
communication transaction. No other pair of resources may use the path. Upon reaching the
destination, an acknowledge command is returned through the same route. Parallel threads are
supported because access to the switching controller is arbitrated through a round-robin
scheme which selects between each of the adjacent directions and the local resource. Failure
to obtain access to the bus is represented by a cancel command which is returned through the
switch controllers to the source switch. This approach could also greatly increase the length of
the clock period and to reduce that delay, registers are also inserted along the switches to
enable communication to be pipelined. This occurs through a dedicated FIFO queue used to

store commands at each switching controller.
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The drawback with such an approach is that the hardware overhead associated with each
controller is duplicated at each switching point. An extension of this approach is realised
through the use of a packet based network of resources. The Network On Chip (NoC) [76]
architecture is proposed as an answer to the multiple billion transistor chips that are becoming
common place. The generic network comprises a diverse set of resources such as memory,
DSP or logic, all communicating through packets. Unlike circuit switching, a reserved path is
not necessary because each packet has the control information necessary to forward it to the
correct destination. Crucially, no route is pre-determined and resources on the network can

communicate concurrently by taking different paths.

A NoC comprises a number of routers and local processing elements. Information is divided
into packets which encapsulate destination address and data. Any router from the source of
the packet and along the path to the destination router will read this information and direct the
packet towards the destination router and processing element. How packets are directed and
how the routers are connected is the major consideration in designing packet switching

networks.

The shortest distance between a source and sink router is not necessarily the quickest because
of congestion at a router — caused by multiple packets that have been directed to the same
router. A deterministic approach uses dimension ordering of the source and sink routers to
find the shortest path. In a 2D Mesh topology, a packet would traverse along a row given by
the X dimension of the destination coordinate until encountering the Y column/coordinate.
Communication between future packets would travel the same path. The disadvantage of this
approach is the absence of an alternative route should congestion be encountered. In addition,

future packets using the same method would also encounter the same congestion.

Adaptive routing strategies such as reinforcement learning [77] enable each router to learn
information from its neighbour which is collated in a routing table of the fastest routes
between it and the destination router. In this way, a router along the path is able to bypass
congestion and select a faster route. The drawback to this approach is the difficulty in
guaranteeing through formal analysis that deadlock does not occur. In addition, the routing

algorithm stored in a router is also more complex requiring greater resources.
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The use of reconfigurable resources in a NoC architecture is examined in the Dynamic NoC
architecture proposed in [75]. The 2D Mesh architecture is implemented on a Xilinx FPGA,
enabling the routers to be partially reconfigured as logic resources when not in use. The
authors cite this as the motivation for customising logic resources as opposed to using fixed

processing elements on the network.

As with all reconfigurable architectures when decisions are taken to allocate resources at run-
time, the availability of routing resources must be communicated dynamically between the
routers. The router in a non-reconfigurable NoC assumes the existence of four adjacent
routers in a 2D Mesh. This assumption could be no longer valid where adjacent router

resources are to be reconfigured into logic ones.

The strategy taken is to reconfigure only groups of router resources. This guarantees an
adjacent router is always available and also enables other routers to be reconfigured into logic
resources. The approach is implemented in the routing algorithm by only forwarding packets
to routers surrounded by more than one router. The authors suggest that a static routing
algorithm achieve packet forwarding based on measuring the strength of the connectivity

between clusters of routers.

Experimentation with the packet size was used to determine the area (logic and memory
resources) and speed (clock frequency) of subsequent router characteristics using the second
largest Xilinx FPGA and middle of the range devices available at the time. The results
showed that for the largest packet size of 64 bits, the area resources were 46% (logic), 12%
(memory) and 77.3MHz for a router using the middle of the range FPGA. Implementation of
the same router on the larger device required 7% (logic), 4% (memory) and 73.7 MHz. These
resource overheads are irrespective of the actual application. The authors concluded that the
area overheads in synthesising the routers were great because their implementation did not

directly map efficiently to the routing resources of the FPGA.

2.7 Summary

This chapter began by associating the moment when a resource is bound, as the means by
which a reconfigurable resource can be distinguished from a programmable counterpart. It
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pursued the binding analogy by recognising that an early binding of program behaviour is
synonymous with a highly optimised use of resources, a characteristic of application-specific
circuit synthesis. On the contrary, the latest time in which a program might be bound is during
its execution, a characteristic of general-purpose programmable computer hardware; run-time
reconfigurable resources share both these characteristics. This was recognised much earlier

than could be realised in practice, as the literature described.

The reasons for using run-time reconfiguration include: reconfiguring resources between tasks
with differing purpose (functional); reconfiguring resources between the same tasks
implemented differently (algorithmic); reconfiguring in the presence of a fault (architectural).
A myriad possible uses led to the necessity to automate their implementation and the

development of hardware compilers at high and very low levels of abstraction.

Reconfigurable architectures are constrained by how the resources communicate with one
another. Database approaches are the least restrictive but also the slowest due not only to the
large choice of routing options available but also the inclusion of vendor tools in their
generation and updating at run-time. Reducing the number of programmable routing resources
certainly reduces routing decisions as shown in the bus-based architectures. Networked
resources do reflect the parallelism of wiring resources available but do not map efficiently

due to the proprietary nature of the FPGA device configurations.

Despite there being no shortage of architectures and approaches to implementing run-time
reconfiguration, the reality is that FPGAs are the shortest route to their implementation. With
that in mind, the use of high-level synthesis tools are a prerequisite to exploring the benefits

and limitations associated with off-the-shelf programmable and reconfigurable hardware.
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Chapter 3

Behavioural Synthesis

In this chapter, the concepts behind behavioural synthesis are introduced through the use of
MOODS, the synthesis tool that provides the framework for much of the work undertaken in
this thesis. The synthesis of an error-correcting communication system exemplifies the steps
followed during behavioural synthesis which begin with an algorithmic specification of the
circuit and end with an equivalent structural Register Transfer Level description — suitable for
RTL synthesis and ultimately a vendor specific device implementation. The chapter concludes
with a description of how the analogy of a software approach to hardware design can be

extended to the device-level in the form of a late-binding of subroutines.

3.1 Circuit Abstraction and Synthesis

Figure 3.1 depicts the possible stages of circuit representation encountered during circuit
design. Automation in the form of Computer-Aided Design (CAD) tools are utilised to a
varying degree during each stage; more so in the lower stages, where the task of circuit design
becomes increasingly complex and therefore time consuming and prone to human error.
Historically, the deployment of CAD tools has risen through the stages of circuit abstraction,

providing a means of addressing the problems associated with circuit complexity.

At the apex of circuit abstraction, an Algorithmic description expresses the behaviour of a
system and not how it might be implemented; it is very much sought after because it
continues the trend in hardware design of removing detail through each step of circuit
abstraction. In doing so, it begins to mirror the history of software development, which also
followed a similar path: from early programs written in machine or assembler code, to the
present day ubiquity of high-level programming languages and their software compilers,
which provide a means of describing program behaviour without being too constrained by the

idiosyncrasies of the target hardware.
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Circuit abstraction

/\ Algorithmic 3
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Figure 3.1: Abstraction in circuit representation.

Behavioural or High-level Synthesis [78,79] embraces the Algorithmic level of abstraction by
automatically generating a number of Structural representations solely from a single
behavioural description. Although functionally equivalent to the next, each structural
description will differ in terms of its size, speed and power consumption. Ultimately, the
structural representation chosen is the one which best meets the user’s criteria regarding the

applicable circuit characteristics.

As an intermediate step towards a structural representation, the Architectural level of
abstraction seeks to identify how the sub-systems of the specification might be implemented.
For example, in contemporary synthesis, such as hardware/software co-design [80], the

occurrence of many 32-bit arithmetic and logic word operations in the data-path might
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suggest the use of an ALU within a general purpose processor. Other data-path tasks might be
highly parallel and feature irregular bit-level operations — often more efficiently realised using

application specific hardware on a programmable fabric [81].

At present, the majority of industrial circuit synthesis takes place at the Register Transfer
Level (RTL) or Structural of abstraction. At this level, the behaviour of the algorithm is
embodied by at least one Data-path and an associated Controller. The data-path is
characterised in terms of data transfers and transformations between functional units and
storage elements; realised as a network of functional units, such as arithmetic and logic units
(data transformation) and connected through multiplexors, buses and directly through data

nets (data transfer).

The responsibility for scheduling when the data-path operations take place and how, if any, of
the functional units are shared, is left to the circuit designer during Controller Synthesis. As
with the data-path, there are choices in how to implement the controller. One solution to
realising a Finite State Machine could be to use combinational and sequential logic i.e. a hard-
wired approach. Alternatively, the encoded control sequence might be stored in a ROM, as in
the case of a programmable micro-coded [14] controller.

At the Logic-level of abstraction, circuit behaviour is described in terms of Boolean equations
and may be modelled as graph of logic operators, to which boolean minimization and
algebraic methods (e.g. Operator Decomposition, Extraction, Factoring, Substitution, and
Collapsing) are applied during Logic Synthesis.

In practice, logic synthesis is performed as part of RTL synthesis, enabling automatic

optimisation of the combinational and sequential logic described at the structural level.

Despite being mathematical and obviously technology independent, the application of the
algebraic methods will have a tangible effect on the equivalent representation of the circuit at
the next level down: decomposition or substitution of boolean functions can reduce the
number of logic gates needed, collapsing boolean functions will reduce their logic depth;
logical optimisation, such as these at the gate-level, will impact the size and delay of a circuit
at the physical level.
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Sequential logic is also receptive to optimisation, the encoding of a state machine for
example, where the resource requirements of different state encodings may be evaluated.
Synplify [82], in the absence of a specified encoding, will choose the style of encoding based
upon the number of states described in the state machine i.e. sequential when there are less
than 4 states, one-hot for states less than 24 but greater than 4 and gray for any other number

of states.

The last step in logic synthesis is Technology Mapping, where the logic equations are
translated to a specific technology and vendor, such as the FPGA look-up table (LUT). This is
achieved by partitioning the graph over K LUTSs, whilst optimising for user constraints on
area, delay, routing and power [83]. The output of logic synthesis is an optimised circuit,
expressed in the form of a standardised net-list e.g. EDIF, describing the circuit using the
component primitives of the target technology and vendor; during the next stage of
abstraction, it will form the basis for a transformation into a physical implementation of the

circuit.

As illustrated in Figure 3.1, the Physical level of abstraction is the lowest level of circuit
representation. In practice, it covers a range of circuit detail, from a model of the delay a
signal might experience along a particular segment of FPGA routing, to the manipulation of
transistor aspect ratios during Full Custom ASIC design. In the context of circuit synthesis
presented in this thesis, design automation in the physical stage is associated with
implementing the circuit using vendor and FPGA specific tools. These tasks include a further
refining stage of Technology Mapping, using detailed propriety information about the target
architecture; determination of where the device primitives are Placed in the architecture — in
accordance with the optimisation goals and constraints; closely coupled with an attention to
the minimisation of the Routing required to connect the circuit components to one another and
the external input/outputs. Such tasks can be carried out autonomously by the vendor tools,
however, user input is often necessary to achieve the performance requirements of the circuit

implementation.

One vital aspect of circuit synthesis which is common to all stages of abstraction is the
necessity to verify the correctness of the circuit being modelled. This becomes an increasingly

time consuming task, as the length of time spent in verification is proportional to the degree
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of detail used to represent the circuit. For example, with no explicit reference to time at the
algorithmic level, a purely functional simulation can be carried out in much the same way as

software is debugged using a compiler.

At the structural level, simulation begins to become a bottleneck in the development cycle, at
which point hardware Emulation may be utilised to accelerate the simulation process. This
has particular resonance in reconfigurable logic applications because many commercial
emulation systems [84] are FPGA-based, exploiting their re-programmability to implement
different parts of the design being tested.

3.1.1 Behavioural and RTL Circuit Synthesis

In order to exemplify the differences between a Behavioural approach to circuit design and its
RTL counterpart, consider the task of synthesising a parity generator for encoding data using
Bose-Chaudhuri-Hocquengheim (BCH) codes [85]. One such code is characterised as being
15 bits in length, 11 of which directly represent the data to be encoded. The remaining 4 bits
are allocated to parity, enabling the location and correction of any single bit transmission error
of the codeword. The generator polynomial for the code is g(x) = 1 + x + x*. Chapter 7
provides an overview of the use of BCH codes in the context of a run-time reconfigurable

message coding scheme.

One approach to realising the BCH encoder would be to describe the structure of a suitable
circuit. A solution might be to describe a data-path containing a Galois Linear Feedback
Shifter Register (LFSR) comprising four stages (given by the term in the polynomial with the
highest power), where the output of each is wired to the input of the next stage or to an

Exclusive-Or gate, as depicted in Figure 3.2.

One of each pair of inputs to the Exclusive-Or gates corresponds to a particular coefficient of
the generator polynomial, whilst the other is driven by the feedback between the maximum
and minimum terms. A controller (partially represented by the And gate in the feedback path
and Multiplexor on the circuit output) would sequence events, such as the resetting of the
counter after the last message was encoded or ensuring that the current message is
simultaneously shifted into the counter and in to a communication channel, during the 11

clock cycles required to encode the message data. It would also oversee the formation of the
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codeword by flushing the counter for a further 4 cycles, revealing the parity nibble to be

appended to the message.

message / parity

ro rl r2 r3

—= codeword

message bit 1

Figure 3.2: BCH message encoding using a Galois LFSR.

Figure 3.3 shows a VHDL RTL description of the LFSR encoder alongside several other sub-
systems, in a form that would enable an RTL synthesis tool to automatically generate a circuit

capable of encoding a message into a BCH codeword.

When the component/architecture hierarchy is flattened, VHDL essentially models a circuit as
a number of parallel processes, each of which can communicate with another through a series
of inter-process signals which are updated synchronously in step to a global clock. With that
in mind, the description of the coding circuit is divided into a Finite State Machine controller
represented by the ‘ControllerSegential/Combinational’ process constructs and three data-
path processes, also named in accordance with their function: ‘messageFetch’,
‘messageEncode’ and ‘messageParity’ respectively. All processes are connected through a
number of signals, declared at the beginning of the architecture along with the individual

states of the controller.

The execution of each data-path process occurs during a similarly named state of the
controller i.e. process ‘messageFetch’ executes during the ‘messageState’ of the controller. In
this way, the controller orchestrates the generation of the codeword by sequentially executing
one or more concurrent subsystem, enabling each of their associated control signals in the
following order: messageState, encodeState, parityState and codewordState. In addition, all
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library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity encoder is
port(clock:in std_logic;
reset: in std_logic;
message:in unsigned(10 downto 0);
codeword:out unsigned(14 downto 0));
end entity;

architecture rtl of encoder is

type state is (resetState, messageState,encodeState,
parityState,codewordState);

signal presentState,nextState:state;

signal messageBit,parityBit:std_logic;

signal codeMessage:unsigned(10 downto 0);

signal codeParity:unsigned(3 downto 0);

signal count:integer range 0 to 15;

signal readMessage,encodeMessage,
readParity,formCodeword:std_logic;

begin
controllerSequential:

process(clock,reset)
begin
if reset="1" then
presentState<=resetState;
elsif rising_edge(clock) then
presentState<=nextState;
end if;
end process;

controllerCombinational:

process(presentState,count)
begin
readMessage<='0";
encodeMessage<="0";
readParity<="0";
formCodeWord<="0";
case presentState is

when resetState=>
readMessage<="0";
encodeMessage<='0";
readParity<='0";
formCodeWord<="0';
nextState<=messageState;

when messageState=>
readMessage<="1";
nextState<=encodeState;

when encodeState=>
encodeMessage<='1";
if count<message’HIGH then
nextState<=encodeState;
else
nextState<=parityState;
end if;

when parityState=>
readParity<="1";
if count<codeword’HIGH then
nextState<=parityState;
else
nextState<=codewordState;
end if;

when codewordState=>
formCodeword<='1";
nextState<=messageState;

end case;
end process;

messageFetch:

process(clock,reset,message,readMessage,
encodeMessage,readParity)
begin
if reset="1" then
codeMessage<=(others=>'0");
messageBit<="'0";
elsif rising_edge(clock) then
if readmessage="1" then
codeMessage<=message;
count<=0;
else
if encodeMessage="1" then
messageBit<= codeMessage(count);
count<=count+1;
else
if readparity="1' then
count<=count+1;
messageBit<="'0";
end if;
end if;
end if;
end if;
end process;

messageEncode:

process(clock,reset, messageBit,readParity)
variable registers:std_logic_vector(3 downto 0);
variable feedback0,feedbackl:std_logic;
begin
if reset="1" then
registers:=(others=>'0");
parityBit<="0';
elsif rising_edge(clock) then
if encodeMessage="1" or readParity="1" then
feedback0:=(registers(3) xor messageBit);
feedback1:=feedback0 xor registers(0);
registers:=registers(2) & registers(1) & feedbackl & feedbackO;
end if;
end if;
parityBit<=registers(3);
end process;

messageParity:

process(clock,reset,parityBit,readParity)
begin
if reset="1" then
codeParity<=(others=>'0");
elsif rising_edge(clock) then
if readParity="1' then
codeParity<=codeParity(2 downto 0) & parityBit;
else
codeParity<=(others=>'0");
end if;
end if;
end process;

codeword<=(codeParity & codeMessage) when formCodeword="1" else “000000000000000";

end architecture rtl;

Figure 3.3: An RTL description of a BCH message encoding circuit.

S7
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controller states are proceeded by the ‘resetState’, initialising all inter-process signals, the

controller and process variables to a know value.

Interaction between the controller and data-path processes is as follows: following a reset, the
controller enters the state ‘messageState’ and enables the registering of the message via the
‘messageFetch’ process. During each successive execution of the ‘messageEncode’ state, the
message is processed one bit at a time by the LFSR inferred from the ‘messageEncoding’
process, until the controller has transmitted all 11 message bits. The last interaction between
the processes involves a third process labelled ‘messageParity’. As its name suggests, it forms
the parity part of the codeword by accumulating the parity bits generated at the output of the
LFSR, the result of inputting dummy message bits during 4 cycles of the controller’s
‘parityState’. The final state of the controller ‘codewordState’, outputs the BCH codeword by
concatenating the message and the parity signals, after which the next state ‘messageState’ is
also the beginning of the sequence when another message can be registered; the controller

sequence is repeated indefinitely.

What is evident about the style of the coding for the controller and data-path processes is the
amount of detail which must be present for a synthesis tool to infer the correct circuit
components. For example, the variable ‘registers’ used within the ‘MessageEncoder’ process
retains part of its former value when assigned, suggesting a memory implementation since the
variable is read and written to in response to a clock signal. As the assignment occurs on the
rising edge of the clock signal, the memory is interpreted by the synthesis tool as an edge-

sensitive D Flip-Flop.

The vector width of the variable would generate four instances of the Flip-Flop, two of which
are written to using the previous state of the variable, while the remaining two are written to
using the value of the variable ‘feedback’. The value of this variable reflects the state of the
message and controller mask bits, combined with the states fed-back from elements of the
vector variable ‘registers’, identified by the terms of the generator polynomial. An
asynchronous reset of the flip-flop is also inferred by the tool, based upon the conditional test
of the state of the reset signal and its independence to any changes in the logic state of the

clock signal.
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Describing the encoder in this way would fix the architecture to serial processing of the
message bits, requiring 18 cycles to produce a codeword. In doing so, the architecture fully
utilises the data-path components on each encoding cycle which reduces the component count

when implementing the circuit.

An alternative approach to synthesising the encoder is to describe its behaviour and specify
through resource constraints, the kind of physical characteristics required of the resultant
architecture, thereby allowing a behavioural synthesis tool to automatically generate a
compliant architecture and equivalent RTL description. Figure 3.4 shows one possible

behavioural description of the BCH encoder.

The program description explicitly captures the behaviour of the encoder as a series of state
transitions which are taken with respect to the value of each message bit being encoded. After
the last message bit is processed, the value of the final state is used as parity and forms the

codeword by appending it to the original message.

At first glance, an obvious difference between the two listings is that the behavioural encoder
can be represented by a single process, containing fewer lines of code than the RTL
counterpart. This can be explained by the operation of the encoder being explicitly
decomposed into sub-systems in the RTL coding, all of which have implicit control and data-

path equivalents within the behavioural description.

A more subtle distinction is that the function of the encoder is made more apparent when its
behaviour is described. For example, the relationship between the value of the state and the
effect that each message bit has on whether the next state is odd or even; this relationship was

relied upon during the Viterbi decoding of the code-words, as described in Chapter 7.

On close inspection of the statements contained within the process, the coding makes use of
an infinite loop to separate the assignment of variables or port signals in the process body
from their initialisation and without explicit reference to a reset signal, as is the case for all
the RTL process descriptions. In addition, there is no requirement to carry out any variable or
signal assignment based upon the clock or reset signals, since the Finite State-Machine
controller, the data-path and control signals relating them are all generated automatically from

the behavioural description.
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library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity encoder is

port(message:in unsigned(10 downto 0);
codeword:out unsigned(14 downto 0));

end;

architecture behavioural of encoder is
begin

process
constant g:integer:=8;
constant messagelength:integer:=11;
constant generator:integer:=3;
variable state:integer range 0 to 14;

begin
codeword<=(others=>'0");
wait for 20 nS;
loop
state:=0;
for i in 0 to messageLength-1 loop L .
-- moods unroll < synthesis directive
if state<q then
if message(i)='0" then
state:=2*state;
else
stéat%::to_integer(to_unsigned(2*state,4) xor to_unsigned(generator,4));
end if;
else
if message(i)='0" then
Istate::to_integer(to_unsigned(2*state—q,4) Xor to_unsigned(generator,4));
else
state:=2*state-q;
end if;
end if;
end loop;
codeword<=message & to_unsigned(state,4);
wait for 20 ns;
end loop;
end process;
end;

Figure 3.4: A Behavioural VHDL description of the BCH encoder.

The encoding of the message bits is described within the body of the ‘for loop’. Unlike the
sequential statements in the RTL processes, which are automatically inferred as a series of
combinational logic blocks, their hardware interpretation in behavioural synthesis will vary
depending upon the constraints placed upon the tool; an area constraint might enable the
chaining of individual combinational logic units in a single clock cycle or it might force their

sharing across multiple cycles.
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The reader will have noticed the synthesis directive ‘-- moods unroll” occurring as the first
instruction within the for-loop, without it, the hardware required would be repeatedly
executed and shared by each of the 11 iterations of the loop. While not wishing to consider
how the instructions become hardware within the loop at this stage, is clear that in common
with the RTL description, a serial processing of the message bits would be the main

characteristic of the generated architecture.

Instructing the compiler to replicate the instructions by unrolling each loop iteration provides
an opportunity to dramatically increase the number of message bits that can be simultaneously
processed, also requiring an increase in the number of dedicated hardware components. A
higher degree of parallel processing of the message bits would be the dominant characteristic
of this alternative circuit architecture. The degree of instruction parallelism is dependent upon
how the instructions are allocated to data-path components and when they are scheduled to
execute; these in turn would influenced by the importance the user places on the
characteristics of the final architecture, such as the maximum number of cycles it would take

to execute.

The last sequential statement to be repeatedly executed in the loop is the ‘wait for 20 ns’
statement. It specifies that the encoder should update the ‘codeword’ signal at intervals of 20
nanoseconds. As this is an un-timed behavioural description of the encoder, the exact time
when the ‘codeword’ signal is updated will be dependent on how the previous VHDL
statements are scheduled as operations during synthesis. The relevance of the ‘wait for’
statement is limited to simulation only, where precise signal timing would be relevant if the
encoder was a component in a larger circuit specification with a circuit structure; otherwise

simulation of the behavioural description would be to ensure correct function only.

Features such as these, which when taken as a whole, help the user to focus on the
specification of the design rather than details of its implementation, e.g. the generation of
control signals for individual hardware units and when they should be active. This is evident
from the contents of the process description which would not be that dissimilar if coded in a
sequential high level language such as “C’.

If the number of execution cycles and components required for each of these architectures are

plotted as a 2-dimentional graph, as is illustrated in Figure 3.5, it is possible to visualise a
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small ‘design space’ of encoder architectures generated by the Behavioural and RTL

approaches to circuit synthesis.

BCH Encoder Design Space

25

RTL: 73 Logic elements (LE), 18 Cycles (C).

Beh,: LE=89, C=23; Loop unrolled; LE optimised.
Beh,: LE=131, C=13; Loop rolled; LE & C optimised.
Beh,: LE=160, C=12; Loop rolled; C optimised.

Beh,: LE=253, C=12; Loop unrolled; LE & C optimised.
Beh,: LE=575, C=4; Loop unrolled; LE optimised.
Behg: LE=714, C=1; Loop unrolled; C optimised.
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Figure 3.5: Circuit architectures generated by RTL and behavioural synthesis.

The graph illustrates six very different circuit structures, Behy to Behs respectively, which
could be chosen as alternatives to the single RTL solution. Each was automatically generated
using MOODS (Multiple Objective Optimisation for Control and Data path Synthesis) [5], the
in-house behavioural synthesis tool, by simply choosing to keep or unroll the loop contents
and by varying the optimisation priority to minimising the number of components, cycles or
both, in the generated architecture.

A single point on the graph represents the number of cycles and basic elements of logic
required, after the manual and behaviourally generated RTL descriptions are synthesised to
Xilinx FPGA primitives [50]. The number of cycles is a measure of the time taken to generate
a BCH codeword from a message. The size of the circuit is given by the number of basic
elements of logic encompassing combinational and sequential logic through a tally of look-up

tables and registers used in the FSM controller and data-path circuits.
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The results show the extremes of possibilities that can be accomplished using behavioural
synthesis, from Behs, the most parallel solution, where loop unrolling and component sharing
of only mutually exclusive instructions lead to a circuit comprising 714 components, all of
which were executed in a single cycle; to the architecture of Beho, where the consequence of
choosing not to unroll the loop and no restrictions placed upon component sharing, resulted in
a small component count of 89 components, requiring the greatest time (23 cycles) to form
the codeword. Of course, these solutions were generated in response to specifying a higher
priority between the number of components and cycles required of the architecture. In
practice, both are likely to be of equal importance and would produce a compromise between
these two extremes, as exemplified by Beh;; characterised by a component count of 131

components and requiring 13 cycles to produce the codeword.

It should be clear to the reader that in order to explore a different point in the encoder design
space, the RTL description must be re-written in order to infer a different architecture. No
change is required to the behavioural description, other than to experiment with different
compiler directives, such as loop unrolling. In this way, the size and shape of the encoder
design-space can be automatically explored by the user changing compiler directives and

constraints placed upon the desired properties of the final architecture.

3.1.2 A Renewed Role for Behavioural Synthesis Tools

The industrial use of behavioural synthesis tools has yet to fulfil the role anticipated by the
academic community, where research into techniques and tools is in its fourth decade [86].

Judging by the current product lines of major tool vendors this could be about to change.

Several authors [87,88] provide a historical narrative of the development of academic and
commercial tools, also offering an explanation as to why earlier offerings of behavioural
synthesis tools failed to be adopted as the suitable level of abstraction at which to design
hardware. The simplest explanation is that the quality of results offered by the earlier
generation of commercial tools, such as Behavioral Compiler (Synopsys) and its industrial
peers — Monet (Mentor graphics) and Visual Architect (Cadence), were not on a par with

those generated at the Register Transfer level (RTL).
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Describing hardware at the RTL of abstraction was obviously sufficient to cope with the
increasing complexity of circuits because it would be several years later that high-level
synthesis tools for ASIC and FPGA design would once again be offered by the same vendors:
Synfora Synphony C Compiler (Mentor Graphics), Catapult C (Calypto design/ Synopsys), C
to Silicon and Cynthesiser (Cadence). In addition, the vendors also found themselves part of
a growing group of commercial [89] and open-source tool suppliers [90], all promising to
increase the productivity of the hardware engineer. Very prominent among this group are
those who solely target FPGA devices.

For approximately the same size of silicon, the number and type of programmable resources
offered on an FPGA has changed considerably, when compared to devices which were
available to the previous generation of HLS tools: resources now include system level
components, such as hard and soft processors, dedicated multipliers optimised for digital

signal processing and the necessary interfaces with which to connect them.

Design space exploration at the RTL level makes it very time consuming to alter the
properties of any of the system level components when attempting to meet the required
hardware constraints. There is a renewed role for HLS tools, where designing at a higher-level
of abstraction makes designs re-usable and faster to verify because any changes that need to

occur can be automated at lower levels of circuit abstraction.

With regard to the quality of the generated circuits, it is difficult to obtain an objective
opinion from the vendors themselves. As you might expect, exemplar designs serve only to
highlight the individual strengths of their tools. However, a number of commercial tools have
been independently reviewed [91] and their quality found to be equivalent to circuits that
were designed and optimised at the RTL of abstraction. Similar findings have been reported
by the academic community [87], who also found that the quality of automatically generated
circuits favourable with those that were manually designed. There is also evidence [88] of the
productivity gain associated with exploring the design space and the early detection of design

and coding errors during verification.
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3.2 MOODS Behavioural Synthesis

Figure 3.6 illustrates the stages of transformation undertaken by a circuit specification at
different levels of abstraction and the key components responsible in the MOODS
Behavioural Synthesis System. As depicted, a synthesis session begins with an algorithmic
description written in the VHDL hardware description language and a set of user supplied
optimisation criteria: the target size, delay and clock period required of the generated structure
in the chosen technology and the importance (often of equal priority) which the user attaches
to achieving the optimisation goals.

The first change in circuit abstraction occurs during the Compilation of the behavioural
VHDL in to an intermediate language known as ICODE. Its purpose is to substitute what can
often be complex high-level VHDL statements for simple 2 input operations; these will later

be assigned discrete components at the structural level of abstraction.

Some of the tasks performed during the compilation of the source code are akin to those
carried out by any sequential language optimising compiler i.e. verification of code syntax
and use of semantics, code optimisation: dead code elimination, loop unfolding and constant
folding — to name but a few [42]. However, some optimisations take advantage of the
intention to create customised hardware, such as bit-vector packing [92] or hardware specific

operator substitution [93].

As with all compilers, the output of the compilation stage is in a form closer to the hardware
on which the program description is to be implemented i.e. assembler/machine code for

sequential language compilers.

In a similar sense, the output of the optimising VHDL compiler is a step closer to a hardware
oriented description: the code generated at its output is quite literally an ‘Intermediate Code’
(ICODE) towards a structural representation of the algorithmic specification. For example, all
variables are represented in ICODE as bit-vectors, where each vector element might

ultimately be realised by a single register in synthesised circuit.
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The semantics of the ICODE language express the functionality of the behavioural
description, as well as model the sequential and concurrent aspects of the algorithm’s data-
flow. This is invaluable to its next step of representation — the construction of the control and
data path graphs.

The motivation for modelling the ICODE description as a set of data and control graphs is to
enable their automatic optimisation through graph-based Transforms. The execution sequence
of the instructions is reflected in the Scheduling of each instruction to a node in the control
graph. Similarly, the behaviour of each instruction is Allocated to a functional unit in the data-
path.

The control and data-path nodes do more than represent when a certain type of instruction is
executed, they also indicate how it will be achieved: each node is bound to a physical
characterisation of the instruction in the target technology. In the context of the work
described in this thesis, that technology is the Xilinx Virtex [6] family of FPGAs.

The time spent in the first stage of the design flow is now rewarded with the opportunity to
automatically optimise the graphs (and ultimately the circuit), in ways which aim to meet the
user’s requirements regarding its physical characteristics. This is achieved in the second stage
of synthesis, under the direction of the optimisation algorithm which applies individual
Scheduling, Allocation and Binding Transforms to selected nodes of the control and data-path

graphs.

The potential effect of a transform is estimated using a number of design metrics. These
include: area (Xilinx CLB [6] slices), delay (critical path) and clock period (execution time of
longest control node). A cost function is used to quantify whether the changes to each of the
metrics combine to bring the circuit’s structure closer to the user’s objectives (in which case it
is accepted and performed), or further away, when the nature of the optimisation algorithm
determines whether to conditionally accept circuit degradation (e.g. Simulated Annealing [7])

or reject it outright, as would be the case with ‘Greedy’ [17] algorithms.

Upon completion of the optimisation stage, the purpose of the third stage is to generate the
RTL VHDL description of the optimised circuit. The cell library is consulted to retrieve the

VHDL description for each of the control and data-path nodes. The topology of their graphs
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(modelled within the data structures), acts to guide how the cell descriptions are related in the

structural description.

The control graph is described as a One-Hot state machine, although its final realisation is
determined during RTL and logic synthesis. During each control state, the activation of its
associated data-path components is described using boolean equations which are based upon
the conditional control signals modelled in the data-structures. These structures also direct
how the input and outputs of all data-path units are connected. For example, multiple inputs to
a data-path node indicate that it is shared by more than one operator, thus implying the

insertion of a multiplexor.

In the context of the work presented in this thesis, the remaining stages of circuit synthesis
employ the use of third party commercial tools. Simplify Pro [82] is used during the fourth
stage, to perform RTL and Logic synthesis. State Machine Encoding, Logic Optimisation and

Technology Mapping are all tailored to the Xilinx Virtex [6] family of FPGAs.

As shown in Figure 3.5, there are a number of junctures in the design flow where the circuit
description may be simulated to verify its functional correctness and others, where increasing

levels of structural detail maybe used to verify the timing of its physical characteristics.

Simulation of the behavioural VHDL description is performed to confirm that the algorithm
captures the functionality of the specification. In the absence of any structural or timing detail,
simulation is very fast i.e. in the order of seconds. Once its behaviour is assured, it can act as a
reference for the functional simulation of the circuit at each stage of circuit description.

The structural VHDL description is simulated with reference to a clock cycle and at this stage
is generally technology independent and therefore relatively fast (measured in minutes).
Simulation at this level provides a means of verifying that the generated Finite State Machine
and Data-Paths preserve the behaviour of the algorithm. In addition, it returns an initial

characterisation of the circuit i.e. an early identification of the Critical Path(s).

Simulation during the last stage of the design flow runs parallel to processes which add
increasing levels of implementation detail. For instance, the circuit netlist generated during
RTL synthesis can be converted to an equivalent VHDL description in terms of the device
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primitives, using unit delay models from the UniSim [50] library. The motivation in doing so
would be to verify that the technology mapping and logic optimisation did not alter the

behaviour of the circuit.

Similarly, after each stage of vendor and device specific implementation (Technology
Mapping, Placement and Routing), a separate VHDL model could be generated to verify the
behavioural correctness of the circuit. It would consist of device primitives taken from the
SimPrim [50] Library and would provide a delay characterisation of the internal architecture
of the target FPGA. The primitives represent the worst case signal propagation delays through
the programmable elements, such as routing, logic block and 10 block resources. A
simulation at this level of detail is time consuming (many hours) and often necessary for fine
tuning the performance of the circuit layout. Simulation may reveal that fine tuning is not
sufficient and a return to an earlier stage is required to meet the design constraints; it can be

an iterative process!

In the context of this thesis, the Xilinx Integrated System Environment (ISE 9.2i) [50] is
utilised in the implementation of all practical work. Circuit simulation, through the use of
ModelSim SE 6.2 [94] is performed at each of the levels of representation previously

described.

3.3 MOODS and other Behavioural Synthesis Tools

In practice, Behavioural Synthesis encompasses many distinct transformations to a circuit’s
representation. As previously described, these transformations occur during stages of
synthesis which are common to all behavioural synthesis tools; what differentiates them is

how they are performed.

In this section of the chapter, we will briefly contrast the synthesis approach taken in MOODS
with those of other academic and commercial HLS tools.

3.3.1 Specification Languages

There are at least three important circuit characteristics that any HLS language ought to

express: the parallelism, timing and interfacing of the circuit’s specification.
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For Hardware Description Languages, such as VHDL, parallelism and timing are inherent to
the way the circuit is expected to behave when simulated: all parallel processes update their

signals at the same time — a property that is measured only during wait statements.

In RTL synthesis, this would translate into sequential logic which is updated in lockstep to a

global clock — since processes are implicitly synchronised in the simulation model.

In MOODS behavioural synthesis, process synchronisation is explicit and left to the user, who
IS required to view a circuit specification in terms of independent but potentially
Communicating Sequential Processes [95]. This approach relies upon MOODS to
automatically determine the level of instruction-level parallelism within a process and
requires the user to manually add a way of synchronising them, should they require data

exchange.

As described in the previous section, software languages based on C have contributed to the
renewed interest in HLS. Parallelism and Timing are not characteristics of sequential
programming languages; these aspects have been added to the language through library
extensions, e.g. the C++ class libraries required for SystemC [96] or explicitly through new
syntax, as is the case in Handel-C [97].

The SystemC classes provide the constructs necessary to model hardware concurrency, in a
way not dissimilar to VHDL - *Sc_threads’ in place of VHDL ‘Processes’; unlike VHDL,
SystemC is able to use an object-oriented approach to programming through the C++

language.

Handel-C is a proprietary language used by the DK design Suite [97] HLS tool. It is a subset
of C which borrows much syntax from the OCCAM [98] language. As such it requires that
the user explicitly declare in the source code all parallel processes and the channels with

which they communicate.

Of particular interest is the way the tool assigns each statement to a control state — in exactly
the order coded by the user. This is in contrast to MOODS and other HLS tools, which
perform an out-of-order assignment of instructions to control states, in an order intended to

meet a delay target. An example of an ‘un-timed’ approach was given in section 3.1.1, in the
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behavioural description of the BCH encoder. In the absence of any specific timing, it was
MOODS that decided how many cycles the equivalent operations were going to take: these

ranged from one cycle to twenty three cycles during design space exploration.

In practice, there are likely to be other sub-systems in the circuit specification e.g. where
there’s an encoder, there must also be a decoder! How the sub-systems communicate with one
another will be determined by some sort of input/output protocol, hence there will inevitably

be sections of code that must be ‘timed’ to specific cycles.

The cycle-accurate approach taken in Handle-C is an extreme way of ensuring that the
generated hardware does not violate the required timing. A different but still implicit
approach is to use the language constructs, such as the ‘wait()’ statement in VHDL or
SystemC to create hard clock boundaries. In MOODS, the compiler generates a ‘protect’
instruction in the intermediate language used to represent the VHDL. The protection
suggested by its name is to prevent instructions on either side of it from being assigned to the
same clock cycle. A similar approach is taken by Agility Compiler HLS [89], where

instructions between a SystemC “wait()’ also take one clock cycle.

The disadvantage in allowing the user to define hard clock boundaries is that they become an
impenetrable barrier to non-input/output instructions on either side of them. A more
discriminatory approach is to allow the user to annotate the section of ‘timed” code through
compiler directives or pragmas. This is the approach taken by the Cynthesizer [89] HLS tool,
using ‘pragma: protocol’ labels and by enclosing the affected SystemC code in C++ block
braces*{}’. As described in [99], a user-guided approach enables the compiler to parallelise
‘timed” and ‘un-timed’ code sections, in ways it would not be able to do solely through

analysis of the instruction dependencies.

In addition to expressing the parallelism and timing for sub-systems of a circuit specification,
an HLS language must also model how they are to be connected together. In VHDL and
consequently in MOODS, the interfaces of ‘Entities’ are connected through signals; this fixes

how communication will occur in lower levels of abstraction.
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The use of System level languages in HLS, such as SystemC [96] enable the user to describe
the connections between the sub-systems during design entry, without describing how they

might be implemented.

SystemC includes a Transaction-Level Modelling standard (TLM-2.0 [96]); when used in
conjunction with SystemC class interfaces, it provides the user with a means of coding class

methods for accessing communication ‘Channels’ that interface with SystemC modules.

The Agility Compiler [89] exemplifies this approach in HLS because it initially allows the
user to consider the characteristics of the data sent through a SystemC Channel, without
specifying the exact protocol used in its transfer; it might be synchronous (Bus),
asynchronous (FIFO) or non-existent (point to point signals wires). Through the use of TLM,
interfaces between sub-systems remain abstract in the behavioural description, without
excluding them from design space exploration at lower levels in the design flow.

3.3.2 Compilation and Optimisation

The reader will recall how the design space for the BCH Encoder was created through the use
of the *--MOODS unroll’ directive: placing it in the body of loop required the VHDL
compiler to duplicate its instructions for each bit of the message vector being encoded. As a
consequence, MOODS was able to vary the number of loop instantiations used in the
architecture of the encoder, with respect to the designer’s constraints on its size and execution

time.

All users of HLS tools require them to reproduce some of the architectural techniques (loop
unrolling being one of them) which are frequently used during design space exploration at the
Register Transfer Level. It is at the Compilation stage that the user can influence the size of
the design space through the use of ‘Synthesis Directives’. The motivation behind this
approach is to keep the code architecture-independent (behavioural); enabling the user to
experiment with different architectural techniques without having to actually implement them

in the coding.

Examples of common compiler directives are exemplified in Vivado [100] (originally

AutoPilot) HLS. These include the overlapping of loop iterations (‘set_directive_pipeline’)
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[100] and control over the number of memory ports available through Memory Partitioning

‘set_directive_array_partition’ [100].

Streaming data-flow is an architectural technique which previously warranted an extended
language (streams-C [101]) but is now available as an architectural directive in a general-
purpose tool such as Vivado. A stream is a flow of data that is processed or stored

continuously: a typical use would be in the image processing of pixels by a Sobel filter.

In MOODS, the ‘--MOODS ram’ directive is used to treat an array variable as a memory
block, accessible through a random address. In Vivado, a ‘set_directive_stream’ would
instruct the compiler to access the same array variable using sequential addresses in the form

of a ‘FIFO’” memory.

The disadvantage with abstracting away implementation techniques, as in the case of the
‘stream’ directive, is the potential for user mistakes when working with behavioural and
structural levels of abstraction: an array variable might be used in different ways in the
behavioural specification; implementing it as a ‘FIFO’ memory in hardware could improve its
performance in one aspect of the design, but unintentionally change the overall behaviour,
should another aspect require a random use of the array!

Apart from using synthesis directives, another potential for automatically influencing the
architecture is through the compilation passes themselves. MOODS has been modified to
incorporate many new synthesis capabilities over the decades e.g. Multi-FPGA Partitioning
[102]. One aspect which has not been fully explored is the optimisation passes of the
Behavioural Compiler. An advantage in using a software language is the input from the
software community and the inheritance of ‘state of the art’ compiler techniques. A popular

example of an open source compiler is LLVM [103].

Examples of current HLS tools that use open source compilers are: Vivado [100] (LLVM),
LegUp [90] (LLVM), GAUT [104], (GCC), BAMBU [105] (GCC). In [106], the authors
evaluated 56 distinct LLVM compiler passes and experimented with varying the order in
which they were applied to C programs taken from the CHStone [107] HLS benchmark
programs. The results showed that through careful selection, a subset of passes resulted in a

16% increase in performance of the hardware generated using the LegUp HLS tool.
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The stage after compilation is the common place for optimisation to occur — in the form of a
graph representation of the compiled behavioural description, to which scheduling, allocation

and binding techniques [79] are applied; under the guidance of an optimisation method.

The choice of graph representation can have an influence on the choice of optimisation
method: the combined Control and Data-flow CDFG model [108] is used by constructive
approaches for circuit optimisation without assuming an initial solution, such as in List
Scheduling; the Extended Timed Petri Net ETPN model [108,109] is suited to an iterative
optimisation approach, which is repeatedly applied to an existing solution, as used in
Simulated Annealing [7]. The latter graph model is used in MOODS [5] and CAMAD [110],
when compared to other HLS tools such as LegUp [90], they offer a clear distinction in the

approach taken to optimisation.

The constructive approach to optimisation is popular in many HLS tools: CHIPPE [111],
MAHA [112] and HAL [64] are among the early advocates for list-based scheduling
approaches. More recent tools, such as LegUP, BAMBU and GAUT continue the constructive
approach to optimisation. The advantage that these tools gain in doing so is the expectation of
producing a solution in polynomial-time — this is not the case in an iterative approach; the
disadvantage is that at any stage other than the last, the solution is always a partial one; in the
case of list scheduling, this can limit it to relying upon a local and restricted view of the

problem being solved.

Through an iterative approach, MOODS is able to take a global approach to optimisation
because the instructions of the intermediate representation (ICODE) are already individually
scheduled, allocated and bound in the control and data-path graphs prior to their optimisation;
albeit in a manner which is not likely to meet any user constraints imposed on the initial

structure which they embody.

Optimisation in MOODS and CAMAD takes place through graph transforms that individually
aim to improve at least a single characteristic of the structure, such as minimising the critical
path by merging pairs of control graph nodes. Unlike CAMAD, a set of transforms are also
able to ‘undo’ the application of others: splitting a control state that had previously been

merged, may take the exploration of the *design space’ in a new direction.
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Through multiple transforms, different aspects of the structure may be targeted during the
same synthesis session. Other HLS tools, such as the Cocentric SystemC Compiler [113]
(based upon the Synopsys Behavioral Compiler [114]), CADDY [115] and BAMBU [104]
perform data-path allocation as a separate step to instruction scheduling. Isolating these
essential stages from one another makes it convenient to experiment with different heuristics.
However, it does exclude the subtle inter-dependence between them, a characteristic that is

exploited by the multi-objective approach taken in MOODS.

3.4 MOODS and Run-time Reconfiguration

In this penultimate section of the chapter, we describe only those aspects of MOODS which
were essential in enabling the temporal and spatial partitioning of subroutines using run-time
reconfigurable resources. A more comprehensive account of all aspects of MOODS can be
found in [4,5], where MOODS itself is the subject of the research.

Figure 3.7 depicts key components in the MOODS Behavioural Synthesis, arranged to
emphasise their involvement in the change of abstraction that is inherent when synthesising
reconfigurable logic. Except for the library descriptions of structural components, all other
forms of circuit representation in MOODS originate from the user-supplied behavioural
specification; this is arguably the most influential stage in high-level synthesis and therefore

the first stage of the figure to describe.

3.4.1 Behavioural Description

At this level of abstraction, the goal of synthesising reconfigurable logic is treated no
differently from the way in which a user would code a behavioural specification. As the
reader will recall from the earlier discussion on the role of languages in HLS (section 3.3.1),
the style of coding that is synthesisable in MOODS is formulated around user-defined coarse-
grain parallelism using VHDL ‘Processes’, within which the tool is responsible for
determining all fine-grain (instruction-level) parallelism. Figure 3.8 exemplifies how
concurrent and sequential aspects of a behavioural VHDL description can be partitioned

across functional boundaries.
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-- Behavioural partitioning of sequential and parallel VHDL constructs featured in a communication system
library ieee; use ieee.std_logic_1164.all; use work.bch.all; -- encoder/decoder subprogram library
entity communicationSystem is
port(messageln: in std_logic_vector(6 downto 0); messageOut: out std_logic_vector(6 downto 0));
end entity;

architecture behaviour of communicationSystem is

-- interprocess communication

signal codeWord: std_logic_vector(14 downto 0); signal codeScheme: std_logic; signal code_ready: std_logic:='0"; signal code_received: std_logic:='0";
-- compiler-defined parallelism during synthesis

-- user-defined parallelism -- user-defined parallelism
transmitter: process receiver: process
-- compiler-defined parallelism during synthesis -- compiler-defined parallelism during synthesis
begin begin
variable scheme: std_logic; variable; variable encodedMessage: std_logic_vector(14 downto 0); variable scheme: std_logic; variable; variable encodedMessage: std_logic_vector(14 downto 0);
variable messageFormed: std_logic_vector(6 downto 0); loop
loop -- wait for the transmitter process to generate a codeword
-- wait for the receiver to decode the last codeword while code_ready = code_received loop
while code_ready / = code_received loop wait for 10 ns;
wait for 10 ns; end loop; ) )
end loop; -- read codeWord and coding scheme from transmitter process
-- sequential (subprogram) Behavioural Partitioning encodedMessage:=codeWord; ~ scheme:=codeScheme;
if scheme="0' then -- sequential (subprogram) Behavioural Partitioning
-- encode message read from input port if scheme='0' then ) )
behEncoder(15,11,16,19,messageFormed,encodedMessage); -- decode codeWord using encoder directed scheme
else ViterbiDecoder(15,11,16,19,encodedMessage,decodedMessage);
bchEncoder(15,7,465,256, messageFormed,encodedMessage); else
end if: ViterbiDecoder(15,7,465,256,encodedMessage,decodedMessage);
-- write codeWord and coding scheme to receiver process end if;
codeWord<=encodedMessage; codeScheme<=scheme; -- write message to output port
-- transmit another codeWord to receiver process messageOut<=decodedMessage; )
code_ready<=not code_ready; -- request another codeword from transmitter process
wait for 10 ns; code_received<=not code_received;
end loop; wait for 10 ns;
! end loop;
end process; end process;

end architecture behaviour;

-- Library Subroutine

--MOODS Temporal_Partition

procedure bchEncoder (codeLength: in integer range 0 to 15; messageLength: in integer range 0 to 11;
numStates : in integer range 0 to 465; generator: in integer range 0 to 256;
messageEncoded : out range integer range);

begin .../... end bchEncoder

-- Library Subroutine

-- MOODS Temporal_Partition

procedure viterbiDecoder (codeLength: in integer range 0 to 15; messageLength: in integer range 0 to 11;
numStates : in integer range 0 to 465; generator: in integer range O to 256;
messageEncoded : out range integer range);

begin .../... end viterbiDecoder

Figure 3.8: Sequential and parallel VHDL amenable to behavioural partitioning.
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The behavioural specification describes a rudimentary communication system which relies
upon error correction to recover the number of corrupted messages sent through a ‘noisy’
channel. As illustrated in the figure, its VHDL description can be divided into two coarse-
grain parallel transmitter and receiver ‘Processes’, each of which are further partitioned into

sequential encoder and decoder library subroutines.

On close inspection of each process description, a number of salient points are exemplified
which are essential to the approach taken to partitioning and synthesising at a higher level of
abstraction. The first is the requirement for user-described synchronisation between the
transmitter and receiver processes: as the reader will recall, MOODS does not rely upon
implicit synchronisation of processes; nor does it restrict the scheduling of instruction-level
operations by fixing specific cycles to update process signals. This is shown in each process
description: synchronisation exchanges a message and coding level between the transmitter
and receiver through a data-path ‘Semaphore’, in the form of the ‘data ready’ and

‘data_received’ signals.

The two-phase or ‘toggle’ semaphore ensures an orderly encoding and decoding of the
codewords: the receiver waits for a change in the state of the semaphore, signalling the
availability of the codeword for decoding; similarly, the transmitter does not send another
codeword until the receiver indicates its readiness to process it, through a change in state of

the semaphore.

Another use of the data-path semaphore is to enable the processes which use them to be
implemented in different clock domains [102]. Multiple-clock domains have particular
relevance in the synthesised architecture described in Chapter 5, ensuring that the
reconfiguration of an FPGA occurs at the maximum the device can achieve — decoupling the

‘Reconfiguration Controller’ from the clock domain of the user- specified design.

Continuing the examination of each process description, what immediately becomes apparent
is that the behaviour of each is implemented through a corresponding ‘bchEncoder’ or
‘viterbiDecoder’ subroutine, the ‘interface headers’ of which are shown below the process
concerned. In this way, the coding scheme can be varied by calling each subroutine with the
parameters relevant to the BCH code used. How the coding scheme is decided is not shown

here; however the reader is referred to Chapter 7, where details concerning the relationship
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between coding scheme and channel error rate are described as part of the case-study for run-

time reconfiguration.

The behavioural style of VHDL compiled by MOODS cannot synthesize a process as purely
combinational logic; there is an implicit clock signal and time does pass within a process — the
program statements are scheduled over at least one clock cycle. Unlike its RTL equivalent,
the finite state machine inherent to a behavioural ‘process’ goes some way in mirroring the
sequential nature of the software paradigm; the advantage from a hardware perspective is that
the paradigm does not apply to independent operations, these are likely to be scheduled to
execute in parallel. Leaving the scheduling to MOODS, the style of behavioural coding
exemplified by the figure is reduced to requiring the user to de-construct a specification into a
set of communicating sequential processes which when required could be coded to
synchronise by the user.

The motivation behind separating the encoding and decoding processes as VHDL
‘Procedures’ is clear: a subset of the statements within a process may be related by a common
purpose and warrant their separation through the use of VHDL ‘Procedures’ and ‘Functions’;
in doing so, the user now imposes a behavioural partitioning [116] of the specification.

The advantage gained by implementing a part of the behaviour of each process as a subroutine
is due to the convenience of being able to test it, place it in a library and then re-use it in the
present or future project; subroutines simplify the coding of a specification for the user. That
said, subroutines are unlikely to have an equivalent representation at a lower level of
abstraction: one disadvantage in preserving them is where their execution does not occur on a
given path through the circuit, unlike the subroutines shown in both the Transmitter and
Receiver processes. Regardless of how successfully optimisation is applied to the
corresponding circuit structure, by its very definition, an idle subroutine is likely to waste
several operations; had the subroutines been in-lined, the increased scope for optimising their
number across former subroutine boundaries would likely act to reduce the prevalence of idle

data-path units.

At its simplest, a computer hardware equivalent of the communication system would execute

only those subroutines on the path actually taken during the execution of the design. This
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form of ‘Late-Binding’ of resources is not presently available to MOODS and as a

consequence the software approach available in HLS is limited to designing the hardware.

Through the introduction of reconfigurable resources and the partitioning of a specification
across subroutine boundaries, the software analogy is extended to include the late-binding of
subroutines at the physical-level of an FPGA,; crucially, the partitioning occurs during

compile-time as part of the design space exploration.

There may be occasion when the late-binding of a subroutine is intrinsic to the design
specification. The case-study of the reconfigurable Viterbi decoder described in Chapter 7 is
one such example: through a late-binding of the decoder to a set of reconfigurable resources,
circuits with a similar resource consumption but different performance characteristics are used
to adapt to the noise conditions of a communications channel. At other times, the objective of
partitioning might simply be to reduce the overall use of logic resources, without regard to
how a specification is partitioned; as long as the behaviour is indistinguishable from one that

is not!

In section 3.3.2, synthesis directives were described as the way the user of a HLS tool can
experiment with architectural techniques; it therefore made sense to provide the user and
compiler with a ‘--MOODS Temporal Partition’ directive. Placing the partition directive in
the body of a procedure, allows the user to mark the subroutine as a potential candidate for
temporal and spatial partitioning: there is no presumption of reconfiguration; that is either
determined manually by the user applying the graph transformations at the command prompt
or automatically during the optimisation stage; in either case, the request to partition the
procedure is passed on through to the next stage of representation: the ICODE intermediate

language.

3.4.2 ICODE Description

With reference to Figure 3.7 the directive issued to the Compiler will have resulted in an
intermediate ICODE representation which preserves certain user-guided aspects: a subroutine
execution hierarchy will be represented (absence of the *--MOODS inline’ directive) and the

‘--MOODS Temporal Partition’ is translated into an ICODE assembly directive of the same
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name. In doing so, it ensures that the associated data-structures are marked for the actual
partitioning by the ‘Temporal Binding’ transform in a later stage of synthesis. As in the
compilation stage, there no specific architectural detail, it is a matter of representing the

necessary relationships between instruction behaviour.

Recall from the MOODS design flow that the ICODE (Intermediate Code) representation of a
circuit is the source for the construction of the initial control and data-path graphs. As such, it
is used to describe the behaviour of the circuit at a level of detail which embodies the
function, execution order and data connectivity among its constituent operations. In a way not
dissimilar to that of a microprocessor assembly language, ICODE provides a target
specification for any high level language that can be used to model hardware. The
independence which results from the generation of circuit structure indirectly via the
intermediate code and not from a specific high level language, provides a consistent interface
to the MOODS core functions. This frees the user from describing the circuit behaviour using

a language whose lexicon is at a higher level of abstraction e.g. VHDL.

Figure 3.9 depicts the ICODE description that would be generated by the VHDL compiler
following a parse of the behavioural description of the communication system. All circuit
behaviour in VHDL is ultimately encapsulated by a description of the ‘Architecture’; the
ICODE equivalent of the top level architecture is the *‘Program Module’. In representing the
behaviour of the architecture, it will also initiate the execution of other ICODE modules, each
of which is a translation of a VHDL subroutine, as is the case for the ‘bchEncoder’ and

‘viterbiDecoder’ modules depicted.

The external interface of all ICODE Modules is specified in the parameter list, derived from
the “Entity’ declaration of the VHDL port description. Depending upon the context in which
they are used, VHDL signals and variables are translated into ICODE variables which may be
ICODE “ports’ or ‘registers’; with reference to Figure 3.9, these can be clearly identified in
the first few lines of each ICODE Module.

The syntax of any ICODE instruction is of the general form:

Label: Operation <Inputs>, <Outputs> <Activation list> e.g.

.L000013 PROTECT 1e-010 ACT L000002
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-- ICODE module equivalent of the behavioural communciation system description.
PROGRAM communicationSystem messageln, messageOut

REGISTER tmp2 [0:0] REGISTER tmp3 [0:0]

.L000001 NOOP ACTT L000002 ACTF L000014

.L.000002 uneq code_ready, code_received tmp0

.L000003 IF tmp0 ACCT L000004 ACTF L000005

.L000004 PROTECT 1e-010 ACT L000003

.L.000005 uneq scheme_0, #%60, tmpl

.L000006 IF tmpl ACCT L000007 ACTF L000008

.L000007 MODULEAP hchEncoder #%61111,#%1011,#%10000,%#10011,messageFormed,
encodedMessage ACT L000009

.L000008 MODULEAP bchEncoder #%61111,#%0111,#%111010001,%#100000000,messageFormed,
encodedMessage

.L000009 MOVE encodedMessage_0, codeWord

.L000010 MOVE scheme_0, codeScheme

.L000011 unot code_ready, tmp2

.L000012 MOVE tmp2, code_ready

.L000013 PROTECT 1e-010 ACT L000002

.L000027 ENDMODULE
end architecture behaviour;

MODULE bchEncoder codeLength, messageLength, numStates, generator, message, encodedMessage
TEMPORAL_PARTITION

INPORT codeLength [3:0] OUTPORT encodedMessage [14:0] REGISTER tmp0 REGISTER tmp8
.L000/027 MOVE codeLength, tmp0

.L000099 MOVE tmp8,encodedMessage
.L000100 ENDMODULE

INPORT  messageln [6:0] OUTPORT messageOut [6:0] REGISTER codeWord [14:0] REGISTER codeScheme [0:0] REGISTER messageFormed [10:0] REGISTER scheme_0 [0:0] REGISTER scheme_1 [0:0]
REGISTER messageEncoded_0 [10:0] REGISTER messageEncoded_1 [10:0] REGISTER code_ready [0:0] INIT #%0 REGISTER code_received [0:0] INIT #%0 REGISTER tmp0 [0:0] REGISTER tmp1 [0:0]

.L000014 ueq code_ready, code_received tmp3

.L000015 IF tmp3 ACCT L000016 ACTF L000017

.L000016 PROTECT 1e-010 ACT L000014

.L000017 MOVE codeWord, messageEncoded_1

.L000018 MOVE codeScheme, scheme_1

.L000019 ueq scheme_1 #%0, tmp4

.L000020 IF tmp4 ACTT L000021 ACTF L000022

.L000021 MODULEAP viterbiDecoder #961111,#%1011,#%10000,#%10011,messageEncoded_1,
messageDecoded ACT L000023

.L000022 MODULEAP viterbiDecoder #%1111,#%1011,#%10000,#%10011,messageEncoded_1,
messageDecoded

.L000023 MOVE messageDecoded, messageOut

.L000024 unot code_received, tmp5

.L000025 unot tmp5, code_received

.L000026 PROTECT 1e-010 ACT L000014

MODULE viterbiDecoder codeLength, messageLength, numStates, generator, message, decodedMessage
TEMPORAL_PARTITION

INPORT codeLength [3:0] OUTPORT encodedMessage [14:0] REGISTER tmp0 REGISTER tmp10
.L000/101 MOVE codeLength, tmp0

.L000199 MOVE tmp10,decodedMessage
.L000200 ENDMODULE

Figure 3.9: ICODE Module encapsulation of parallel and sequential VHDL constructs.
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In conjunction with the activation list, the labelling of each instruction explicitly states the
order of its execution, in the context of the other instructions. The sequencing of the
instructions is used at the next stage of abstraction to construct an initial control and data-path
graph to which several types of scheduling, allocation and binding transformations are
applied. The reader is referred to Appendix A, where the relationship between the ICODE

instructions and the graph representation is described in greater detail.

In the context of temporal partitioning, the relevant aspects of ICODE are to be found in its
representation of the parallel VHDL processes and the hierarchical nature of subroutine

execution.

On inspection of the ‘Program’ module in Figure 3.9, the ICODE instructions are divided into
two groups: each group is the ICODE equivalent of the ‘Transmitter’ and ‘Receiver’
processes described in the VHDL specification. By describing the circuits through two
individual processes, the resulting ICODE is also expected to execute concurrently. In
practice, it is realised by the first instruction (‘NOOP’ — instruction .L000002) and has no
other purpose than activating the first instruction of the ICODE sequences translated for a

given process.

The last instruction of each equivalent ICODE process (instructions .L000013 and .L000026)
returns the execution sequence to the beginning of the corresponding process, without either
processes converging; this is as a direct result of using VHDL coarse-grain parallelism:

processes never terminate and therefore never converge.

ICODE and the MOODS internal data-structures do provide support for fine-grain parallelism
through the use of a ‘collect’ instruction. As its name suggests, it may be used to ‘collect’ any
number of fine-grain threads and in doing so enable their convergence. The relevance to
temporal partitioning is through the employment of fine-grain parallelism in modelling partial
reconfiguration: overlapping the segments of each coarse-grain (user-declared process) with a
fine-grain thread enables the cost function routines in MOODS to incorporate partial
reconfiguration delays as part of its data-path delay metric. Furthermore, the cost function is
able to compare the execution delay of a sequence of operations with the parallel delay due to
reconfiguration; the larger of the two will define the delay of the parallel paths prior to their

convergence. During optimisation, the scheduling transforms attempt to hide a
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reconfiguration delay by determining which segment of a user-defined thread is capable of

dominating the delay and schedule a partial reconfiguration accordingly.

With reference to Figure 3.9, the execution of the *bchEncoder’ and ‘viterbiDecoder’ modules
is achieved through the ICODE ‘MODULEAP’ instructions (.L0O00007/8, .L000021/22) from
within the program module. Unlike the other instructions, the absence of an activation list is
not interpreted by MOODS as an activation of the next sequential instruction but as a call to
the module named by the instruction. The module responds by activating its first instruction,
which is to read the first ‘INPORT’ parameter; in this way, control is passed from the calling

module to the called.

Input arguments to sub-modules are passed by reference, that is, no intermediate variable is
used — the arguments are inserted directly into the ‘“MODULEAP”’ instruction. As no other
subroutine is permitted parallel execution in the same thread, the instruction acts to halt its
execution until an ‘ENDMODULE’ instruction is encountered in the called module; it is only
reached once the result of the module’s activation is written to the ‘OUTPORT’, in effect a
direct writing of the result to the associated register. In this way, not only can the ICODE
represent the calling of a VHDL procedure or function within the body of the architecture, it
can also describe a hierarchy of nested ICODE module calls — which occur when a procedure

or function calls another.

As described in the Appendix, the ICODE instructions are used by the Technology Library to
attribute delay and area properties to the control and data-path graphs representing the circuit
structure. Although temporal partitioning is not carried out during the ICODE stage, it is the
next stage of abstraction. To achieve this, the ICODE database was updated with new
instructions and an external data-type: ‘resourceWrite’, ‘resourceRead’, ‘resourceSync’ and

‘ext_var’, respectively.

The ‘resourceWrite/Read’ instructions encapsulate the partial reconfiguration of the FPGA
resources at the device level. This typically requires several thousands of device configuration
cycles and is likely to occur in a different clock domain to the user’s design. Synchronisation
between a user process and the configuration of the device is provided by ‘resourceSync’
instruction. The configuration data is stored externally to the FPGA in RAM or ROM
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depending upon the method used to save state between context switches of a reconfigurable

resource.

The ‘ext_var’ type ensures that the configuration memory is automatically represented at the
graph and RTL level, where it is accessed through the port of the synthesised design during
device reconfiguration. As required by the cost function during circuit characterisation, all the
partitioning-related instructions have equivalent cells to characterise them in the graphs; in the
next stage of circuit representation they will be used to influence how the partitioning is

carried out.

3.4.3 Circuit Optimisation

The motivation for using a high-level synthesis tool like MOODS is the automated means in
which it can examine the consequences of a multitude of different ways to schedule and
implement the instructions/operators that constitute a circuit description. When constraints are
placed upon the search, such as the number of resources available or a minimum length of the
critical path, the scheduling, allocation and binding of the instructions becomes an

optimisation problem.

Unfortunately, these three main tasks of High-Level Synthesis, like many other VLS| CAD
problems (partitioning, floorplanning, circuit placement and routing) do not have to date
specific algorithms to find their optimal solution in polynomial-time (NP-complete). Until the
day arrives when an optimal solution is found (if it can ever be), there exist many heuristic or
approximate methods for generating a good solution for a given optimisation run, none of

which are guaranteed to be optimal.

Before high-level synthesis techniques are applied, there must be some way of quantifying the
characteristics of a given circuit structure. This is achieved through a number of circuit
‘metrics’, principally but not limited to: circuit ‘area’ (e.g. the number of FPGA logic blocks
e.g. Xilinx LUTS [6]), critical path “delay’ (ns) and ‘clock period’ (ns). In MOODS, these
metrics are the primary means of measuring whether or not optimisation is transforming the

circuit structure closer to the user’s requirements.
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Unless a circuit is optimised for one objective, which it seldom is, each individual metric
provides a one dimensional measure of the quality of a circuit’s structure. The difficulty in
circuit synthesis and optimisation in general, is that an improvement in one metric is usually
to the detriment of another. A simple example describes a classic area versus delay ‘trade-off’
in circuit design: The inequality instructions ‘uneq’ (.L000002 and .L000005) could be
allocated to share the same data-path unit provided they are scheduled to execute during
separate control states. This would represent a minimal area for the two instructions.
Alternatively, to achieve a minimal number of control states, the instructions could be
scheduled to execute during the same state. Hence there is a trade-off between reducing the
area of a circuit through sharing the functional units, at the expense of multiple control states

and ultimately a greater circuit delay.

A cost function is used by an optimisation algorithm to quantify just such a multi-dimensional
trade-off. Moreover, it can be used to compare metrics which are often conflicting and return

a single figure that provides a net measure of the ‘quality’ of a given circuit configuration.

The cost function in MOODS takes the form:

cost(circuit) = c;x area + c,x delay + c3x clock period
Where:
e area,delay,clock period are the circuit metrics to be optimised,
e <,y Cc3are weighted constants (e.g. 1(high), 2(low)) which direct the optimisation

priority of their associated metric.

Through the cost function, the user can specify the metrics to be optimised and the order in
which this takes place. As one would expect, the optimisation of a high priority metric takes
precedence over that of all lower priority ones. When they are of equal priority, the cost

function returns an average of the metrics.

Of course, a measure of quality is somewhat meaningless without a frame of reference. That
is provided for in MOODS, through the use of a user defined target value which is associated
with each of the metrics and a memory of the quality of the structural configuration prior to
applying the optimisation method. Combining these concepts, each metric m has the

following attributes:
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®  Muge: IS the user specified goal for the metric following optimisation.

®  Minitiai: reflects the value of the metric prior to any form of optimisation.

®  Mpesent: gives the updated value of the metric upon acceptance of an optimisation
move.

®  Mesiimate: FEtUrNs an approximation of the metric should the move be applied.

Whenever optimisation is applied to the circuit, an improvement or degradation to each metric
is calculated as a change in value, normalised over the initial value. Each metric may have a
different unit of measure and so normalisation enables the cost function to compare each
change in metric with the next, producing one figure representative of the net effect when a
particular form of optimisation applied. This figure may be referred to as a measure of the
“energy” exhibited by the circuit structure. It is not a measure of actual energy, rather it owes
its origin to the Metropolis criterion [117] and algorithm of the same name, used to model the
energy changes required for the equilibrium of molecules at a given temperature. It will be
described in greater detail in due course, as it forms the basis for the Simulated Annealing [7]

algorithm, one of the algorithms employed by MOODS to perform optimisation.
Using the properties associated with each metric, a change in energy AE for the metric m is
formulated as:

Mestimate — Mpresent

AE,, =

(3.0)

Minitial
Therefore, at any point during optimisation, the quality of the circuit structure ‘S’ is given by

the summation of the energy changes to each of the metrics:

COSt(S) = AEarea + AEdelay-}'AEclock period (3'1)

During optimisation of the circuit, any improvement which brings the structure one step
closer to the user’s objectives is expressed through the cost function, in the form of a negative
value. Complementary to that, a positive value denotes its degradation. A value of zero occurs
when the user’s target value for the current level of priority has been reached i.e.
(mmesentand mestimation) < Myargee, at Which point optimisation proceeds with the next
level of priority, until this situation arises again and is responded to in the same manner or all

objectives have been met.
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The delay and clock period metrics are a function of the delay characteristics for each of the
data-path units referenced within an ICODE instruction. During their scheduling, multiple
instructions are executed consecutively or concurrently within a single control state. This
requirement greatly influenced the way the infrastructure to facilitate reconfiguration and
communication between partitions was implemented: each new data-path unit was
combinational. For example, the resourceWrite instructions are repeatedly executed for each
configuration cycle at the device-level, as opposed to implementing them as a finite-state
machine outside of the MOODS core. The reader is referred to Chapter 5 for further details of
the device-level infrastructure. In the absence of a user-specified constraint, the clock period
is governed by the greatest chain or individual instruction delay of any control node. When
specified, it is used in place of the maximum control node delay, as the scheduling is always
sensitive to the limit set by the user and is never permitted to exceed it.

The controller is likely to have multiple control paths, any of which may be taken during its
execution. Without knowledge of the likelihood of a given path being taken, it must be
assumed that all have an equal chance of being followed. The Critical Path is the longest of
these paths, so called because without being able to predict when it might be taken, it
represents a worst case measure of the most number of clock cycles that could be taken during
the course of the controller’s execution; it is therefore a principal target for optimisation, with
the aim of minimising the number of cycles required to traverse it. To be accurate, the control
graph must incorporate the multiple iterations of any bounded loops which lie on its path and
be constantly compared to others during optimisation, to ensure it remains designated as
critical. When multiplied by the clock period (the maximum control node delay), it provides a

metric for the overall circuit ‘delay’.

Despite the disadvantage described above, the fact that the full behavioural specification is
known at compile-time is what differentiates reconfigurable logic from a partial-specification
associated with reconfigurable computing. The placement implied in resource binding can be
determined as part of the design-space exploration, where there is considerably more time and
computational resources to explore it than would be available to a completely run-time

approach.
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3.4.4 Optimisation Algorithm

Before briefly reviewing the optimisation methods available in MOODS, it is worthwhile
considering the context in which they are applied. For a given design, there maybe any
number of different structures that can be used to realise a given circuit behaviour, each of
which maybe functionally equivalent but have different area and delay characteristics. Unlike
RTL synthesis, a design specification for a behavioural synthesis tool constrains the structure
of the design as little as possible. This enables the synthesis tool to find a structure that best

meets the design constraints.

A structure expressed in terms of area and delay characteristics forms the coordinates of a
point in the design space of alternative structures for a given behaviour. The design space is
an n-dimensional space, where n is the number of different aspects of the design specified by

the designer. Figure 3.10 illustrates a 2-dimensional design space, in terms of area and time.

Aejog

Ideal achievable
design region

Initial design

Each point
represents an
alternative
structural design

Final optimised design

Optimal Area/Delay

Unachievable trade-off curve

design region

Area

Figure 3.10: A 2-dimensional (area/time) design space.
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The cost function is used to quantify the absolute state of the design within the design space.
An optimisation algorithm, such as Simulated Annealing [7], uses the cost function to move
the design through this space, from the initial behavioural specification toward an optimal
implementation which meets the designer’s area and delay objectives. If, for each dimension
in the design space, no other point exists with a better value, a design is considered optimal
and lies on the optimal area/time trade-off curve. The curve separates the space into a set of
achievable and unachievable implementations. In reality, the actual achievable region reflects
a proportion of the points in the achievable region that may be obtained.

Knowing exactly which transforms should be applied and in what order is beyond the scope
of this thesis, like other CAD problems, scheduling and allocation are NP-Complete
problems. However, MOODS in common with other solutions to CAD problems adopts a
number of heuristic approaches namely Simulated Annealing and an ad-hoc (quasi-
exhaustive) method based upon the experience gained from multiple experimentation runs of

the annealing algorithm.

Unlike the approach of many of the traditional synthesis tools, where scheduling and
allocating are constructive, MOODS implements an iterative approach to circuit optimisation.
In the constructive approach, at any point during the execution of the heuristic, the design is
always a partial one — it is literally being constructed. In contrast, an iterative approach starts
with a circuit structure which is fully scheduled, allocated and bound and proceeds to modify
it in order to meet the cost function. MOODS achieves iterative optimisation of a design

through multiple repetitions of the optimisation loop depicted in Figure 3.11.

Transforms are applied to modify the data structure, typically merging control steps in the
control graph and sharing functional units in the data path. The application of the scheduling
and allocation transforms is local, in the sense that they affect small portions of the control
graph and data path. Being independent and leaving the design valid before and after their
application, allows the optimisation algorithm to apply the transforms in an order that will
move the design from an initial naive implementation, with one control state per instruction,
one register per variable, one functional unit per operation, to an optimised implementation

which is as close as possible to the user objectives.
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A transform is selected and a portion of the design to which it is applied is determined by the

transform and data selection phase. This is dependent upon the optimisation algorithm itself.

Transform & data
selection

A

Transformation
validity test

Transform
valid ?

no

«— Optimisation

yes

loop

4

Cost function
estimation

Perform
transform

yes

A

Execute
transform

Perform another
iteration ?

End optimisation

Figure 3.11: MOODS iterative improvement optimisation loop.

In Simulated Annealing, a random transform is applied to a random portion of the design,

however the quasi-exhaustive heuristic algorithm applies the transforms in a fixed order to

every part of the design. During the transform validity test stage, decisions are made as to
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whether or not a transform can be applied. This ensures that the qualifying tests of the

transforms are met, such as mutual exclusivity and instruction dependency.

The transform must leave the behaviour of the design unaltered. A successful validity check
leads to the cost function estimation phase, which simulates the changes made to the design
by the transform and the cost function is used to quantify the impact of the transform on the
area and delay metrics. A decision is made to accept or reject the transform based upon the
average energy change A4E, in terms of the cost function. The average energy change provides
a means of determining whether the optimisation of a design is being guided towards or away
from its objectives. An acceptance of the transform results in the changes being applied to the

data structure during the execute transform phase.

3.4.5 Simulated Annealing

The objective during the annealing of solids is to create a highly crystalline structure through
an ‘annealing’ process. In the early stage of this process, the material being annealed is heated
to a temperature at which the molecules gain sufficient energy to move around, having
literally broken the chemical bonds that previously fixed their structure. Controlling the rate at
which the material is cooled gradually restricts the movement of the molecules. This cooling
schedule slowly transforms the material from a high energy liquid state to one of minimal

energy, with the molecules taking the form of a crystal lattice.

Simulated Annealing seeks to mimic this process as a general optimisation method, where
achieving a global optimum is analogous to obtaining a good crystal structure. The
correspondence between the physical process and the optimisation algorithm is as follows:
firstly, a particular configuration of the circuit structure (quantified by the cost function) is
analogous to the energy state of the material being annealed. Secondly, the movement of the
molecules as the material is being heated and cooled is simulated in MOODS through the
random selection of the graph transforms and the data and control nodes to apply them to. The
cooling schedule is modelled in the algorithm by requiring the user to specify the start and
end temperatures, as well as the number of transform selections to apply at each temperature.

The increasing restriction of molecular movement with respect to temperature is simulated in
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the way that each transform is accepted or rejected. At the centre of this decision is the
Metropolis Criterion [117].

Transforms which improve the cost function are unconditionally accepted, where as
degrading transforms are accepted on a probabilistic basis with respect to the annealing
temperature. More specifically, the probability P of allowing an inferior solution is given by:

—AE

P=e T when: AE >0 (3.5)
Where:
AE is the estimated change in energy resulting from the transformation,

T is the annealing temperature.

A uniform random number between O and 1 is chosen and if it is below the probability
threshold P, the degrading transform in question is accepted — otherwise it is always rejected.
In this way, the algorithms mimics the freedom experienced by the molecules at higher
temperatures, the accepting and degrading transforms are both likely to be accepted. This
approach enables the algorithm to explore the design space more freely at higher
temperatures, moving more frequently between adjacent minima in the landscape of the

design space.

As the temperature cools, the probability of accepting a degrading transform becomes smaller
and it becomes gradually more difficult to exit the local minima. Upon reaching the end
temperature, the configuration space is frozen, analogous to the physical process reaching

thermodynamic equilibrium and hopefully a global minimum has been found.

The advantage of simulated annealing is its ability to find global minima without requiring
knowledge of the trade-off mechanisms involved, since the process is reliant upon the cost
function and the transform estimators to encapsulate the design space. The application of
many unsuccessful transforms will result in an increase in the optimisation time. It is a
difficult task to determine what the annealing schedule should be and therefore whether the

chosen schedule is a good one.

From the user’s point of view, employing simulated annealing requires a trade-off between

the quality of the structural solution and the time taken to achieve it. If optimisation is only
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required of the area and delay circuit characteristics, the remaining pseudo-exhaustive

heuristics are faster at reaching a solution, albeit one that may not be as optimal.

3.4.6 Structural Circuit Abstraction

As shown in Figure 3.7, the last phase of MOODS behavioural synthesis occurs when the
internal representation is converted into a structural VHDL description, suitable for further
logic optimisation and synthesis by third party tools. To achieve this, the circuit must be
converted from the internal representation embodied by the data structures, to one conforming

to a ‘Structural’- style of VHDL utilising component instantiations.

The first step towards achieving this goal is to insert the multiplexors in the data-path. To date
their existence would have only been implied. This is due to the inefficiency that would result
should the multiplexors be frequently added or removed during the course of optimisation.
The data structures linking the selection of the multiplexor inputs to the relevant ICODE
instructions must also be updated once they are added to the data-path. Additionally, boolean
equations are generated for all control signals, such as those used in selecting the multiplexors

inputs.

Although the ICODE instructions are invaluable in relating behaviour to structure in the data
structures, they would serve no purpose in the final description of the circuit structure.
Instead, they guide the generation of control signals that link the data-path units to those

control nodes in which they are scheduled to execute.

During the final modification to the data structures, bypassed data-path units such as registers
are removed during a general tidying of the data-path. Once this is completed, the data
structures can be consulted in order to generate a one-hot finite stage machine controller and

data-paths using the RTL VHDL descriptions of their appropriate cells.

With regard to temporal partitioning, fine-grain parallelism was allowed to occur during the
optimisation stage from within user-defined process threads, enabling reconfiguration to be
scheduled alongside their execution. Modelling reconfiguration in this way was solely to
quantify the area-reconfiguration trade-off inherent to temporal partitioning. The splitting of a
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single user-thread is not modelled in VHDL, therefore all fine-grain parallelism must be

converted to coarse-grain VHDL processes.

In practice, this is achieved at the structural-level of abstraction using data-path semaphores:
each point of thread divergence or convergence is replaced by a data-path semaphore. All
‘ContextSwitch’ instructions which previously represented the reconfiguration delays along
the fine-grain threads are subsequently mapped to a single coarse-grain VHDL process; as a
result, a VHDL compliant ‘Reconfiguration Controller’ is generated, further details regarding
the device-level infrastructure are provided in Chapter 5.

3.5 Summary

The theme of this chapter has been how a circuit specification may be represented at different
levels of abstraction. In Section 3.1, the contrast between a traditional RTL and a HLS
approach was exemplified through a BCH encoder example. It showed how different
architectural solutions can be found by experimenting solely with synthesis directives and
hardware constraints. The section also described the renewed interest in HLS, in part

motivated by the accessibility of FPGAs and the familiarity of software languages.

In Section 3.2, the reader was introduced to a general behavioural synthesis flow featuring
MOODS; it detailed the typical stages of a general flow: from an algorithmic circuit
specification to device-level implementation; the reader will have appreciated the advantage
of synthesising digital circuits at an architecture-free level. Section 3.3 contrasts the approach
taken to optimisation in MOODS with several commercial and academic tools.

In the last section of the chapter, the theme of abstraction was re-visited by considering how it
is used in MOODS to implement a key aspect of the run-time reconfigurable approach: the
partitioning of a design at a high level of abstraction for eventual placement using low-level

reconfigurable resources.
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Chapter 4

Spatial and Temporal Resource
Binding

In earlier chapters, the sharing of circuit resources was described through high-level synthesis
or temporal partitioning and placement techniques. This chapter describes how these
approaches to resource sharing can be combined in MOODS HLS, enabling it to explore the
extended design space formed from the use of reconfigurable resources during architectural

synthesis.

4.1 Resource Binding

The partitioning techniques reviewed in Chapter 2, describe how advantageous it can be to
apply temporal partitioning at a higher-level of abstraction in the design flow; particularly
during high-level synthesis (HLS), where partitioning can benefit from the opportunity to
influence how the circuit architecture is determined. For example, partitioning can occur at a
stage closer to the technology level, such as at the gate-level [36]. However, at this stage in
the design flow, there is no opportunity to decrease the lower bound on the number of parallel
nets that would be cut by the partitioning; a number whose size would have been determined

by the way the functional units connected by the nets were scheduled to execute during HLS.

Having decided that temporal partitioning should occur as part of HLS, determining the form
it should take was influenced by the iterative approach in which MOODS performs circuit
optimisation; that is to say, a tentative scheduling, allocation and cell binding of the control
and data-paths components exists prior to the application of an optimisation heuristic. Other
popular approaches to temporal partitioning, such as List Scheduling [79], are constructive in
nature and until the final stage of their application must rely upon an incomplete measure of

how the circuit resources are used at each stage of the algorithm’s execution.
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To operate within the existing iterative approach to optimisation, all control and data-path
components employed in the execution of a single instruction are initially bound to a single
reconfigurable resource. In this way, the partitioning of the circuit proceeds from an upper
bound on the number of reconfigurable resources — a size that is unlikely to satisfy any
resource constraint, to one that does. In order to achieve such a goal, any resource constraint
must be expressed in terms of the logic capacity of a physical device; as should the

characteristics of each reconfigurable resource.

Customising the physical attributes of a reconfigurable resource is made possible through its
binding to one or more technology cells. The reader will recall the purpose of Technology
Binding in HLS: to physically characterise the control and data-path nodes in a way that can
be quantified through cost function metrics; it also conveniently provides a physical context
for incorporating the temporal partitioning of reconfigurable resources into an existing HLS
tool, such as MOODS.

During technology binding, each control or data-path node is bound to a cell - a
parameterised model of the resources needed to realise each allocated instruction in the
chosen technology. For example, in MOODS HLS, it can provide an estimation of the size of
the resource usage for a data-path node by using the bit-widths of ICODE instruction

variables as a parameter to the cell model.

Several alternative library cells might exist for a different physical implementation of the
same instruction behaviour; a cell featuring greater parallelism in its structure will provide a
reduction in latency when executed, but at the expense of using more resources. This trade-off
between execution delay and resource area can be explored by changing the binding of a

node, enumerating the effect of implementing an instruction with faster or smaller circuits.

Figure 4.1 illustrates this point: during HLS, data-path units (dp,-dps) are allocated identical
instructions (i,-is), each of which is scheduled to execute during a particular control step
(s2-ss) and in the instruction order shown in the control graph; where applicable, the data-

dependency between a pair of data-path units (dpx,dpy) is labelled dy yaccordingly.

In order to implement the behaviour assigned to it during instruction allocation, every data-

path unit is bound and labelled (by) to a selected technology cell (cellr or cellg). Ultimately,
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each technology cell will be replaced by the actual technology specific implementation,
shown in the figure as a fixed or static binding (shy) of a technology cell to a physical resource

(ra-rs).

[chellsj [szcellpj re=cellg
A A A
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critical path
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Figure 4.1: Static resource binding in high-level synthesis.

The flexible nature of cell binding is limited to the hardware compilation stage only and for
clarity, is represented in the figure by the alternative binding (abs) of a single data-path unit to
a different cell in the technology library. Once the process of technology binding is complete,
the link between the behaviour of an operation and how it is implemented is fixed by the
technology binding. Similarly, the choices taken during resource binding will result in a one-
to-one mapping between how and where an operation is implemented by a technology
vendor’s placement and routing tools; choices which by their nature are time-consuming and

as such are also taken during the hardware compilation stage of the design flow.

Of all the instructions scheduled in control graph, instructions (i,- is) are of particular interest:
although they are assumed to carry out the same operation, how that is achieved through cell
binding is influenced by the path on which they are executed; that decision would be taken at
run-time and is dependent on the value of the predicate p, as determined by the execution of
instruction i; during the earlier control step. We assume that control step ss has the greatest
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combinational delay (ds,s) of all the control steps in the schedule and consequently it

determines the length of the clock period.

Of further interest is the scheduling of instructions is-ig due to their execution occurring on the
critical path, that is to say the instructions cannot be scheduled earlier or later without
violating data dependencies or without lengthening the path. In such circumstances, no
scheduling mobility would make cell binding the only means of reducing the path delay. This
would explain the choice of the parallel version of the cell (cellp) during binding: the result of
an optimisation attempt to reduce the latency of the critical path by reducing the control step
with the longest delay, at a cost associated with an increase in the number of resources

required by the parallel cell.

An alternative course of action for the scheduler to take would have been to reduce the length
of the critical path by reducing the number of control steps. Scheduling instructions iz and i4
to the same control step is not possible because they are allocated to the same data-path unit
(dp3). Scheduling instructions is and ig earlier would break the order of their data
dependencies (ds5 and dsg); scheduling all three instructions to the same control step would at
the least double its delay (i4 and is are the same type) to a value we have assumed to be

greater than the combinational delay of control step ss.

The binding of a serial version of the cell (cells) to a data-path unit (dp2) not executed on the
critical path might have been the enabling factor for the binding of the parallel cell: additional
slack in the delay of the non-critical path would favour the binding of the slower cell; its more
modest resource requirements would permit the increase in parallel resources associated with

the faster cell binding whilst meeting the resource constraint of the cost function.

With regard to meeting a resource constraint, an obvious approach is to reduce the number of
data-path units. The availability of instructions of the same type, for example, instructions is
and i4, is often exploited by their allocation to a single data-path unit with a common cell
binding. Mutually exclusive instructions of the same type, such as instructions i, and i3, are
also able to be allocated a single unit; they offer an additional advantage of not prohibiting
instruction level parallelism, as would be the case were the instructions scheduled on the same
path. The inter-dependence between optimisation tasks in HLS, such as instruction allocation

or cell binding makes their application sensitive to the order in which they are applied:
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without a cell capable of implementing both parallel and serial characteristics, MOODS

would be unable to share their data-path units.

Multi-mode cells [118] are the solution to the problem described because as their name
suggests, they allow a common cell binding between data-path units which are allocated
instructions of different types; ALU substitution for separate addition or subtraction cells

being a classic example.

An obvious pre-requisite to the deployment of a multi-mode cell is that its individual size is
smaller than the sum of the separate functions it provides. The sharing of common sub-
structures not only reduces the resource count in terms of the number of data-path units, but
can provide an opportunity for an increase in the parallelism of their execution [119]. Figure
4.2 illustrates this point by replacing cell (cellp) from Figure 4.1) with a multi-mode cell,

which is able to implement the serial cells (cells) in a second mode of operation.
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Figure 4.2: Resource reduction through static binding of multi-mode cells in HLS.

As the internals of the cell shows, parallelism of the faster cell cellp is achieved through a
replication of the slower serial cells. Selection between the twin cells is under the control of a

logic switch S; when active, it allows data-flow between the two serial cells and in doing so
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implements the binding of an equivalent parallel cell. When inactive, the switch enables each

cell to execute independently of the other and crucially in parallel to the other.

Figure 4.2a illustrates how this additional parallelism has been put to good use by the
scheduler: the availability of an extra serial cell enabled it to schedule instruction i, to a state
earlier than the previous schedule, thereby removing state s, and subsequently reducing the

length of the critical path.

When viewed from the perspective of run-time reconfiguration, the multi-modal cell exhibits
the essential property of resource re-use, albeit in a spatial form; in fact, as the reader may

recall, the trade-off between re-use and re-configuration is the modus operandi of RTR.

A combination of a structured and hierarchical approach to cell design, coupled with its use
for physical characterisation in HLS makes cell binding a viable choice for temporal
partitioning. Vasilko et al. [120] used it to parameterise the bit-width for the same type of
functional units in different temporal partitions, relying upon cells which were pre-placed and
routed in the target technology prior to HLS. Bobda [59] and Zhang [121] also exploited the
similarity between operations across different partitions during HLS in order to reduce the
time taken to reconfigure the partitions.

Outside of HLS, cell parameterisation was of particular interest to the reconfigurable
computing community, who sought placement and routing of parameterised circuits [51] or
cores [119] during actual circuit execution. In a way not dissimilar to the compile-time
approaches, the cores were highly stylized to ensure regularity in the use of routing and logic

resources, thereby minimising the complexity of the task.

Similarity in cell binding at the technology level ensures that few changes occur in the unit of
reconfiguration. For example, Bobda [59] reduced the reconfiguration time by re-using
similar functional units and reconfiguring resources only when the design constraints

permitted.

Commonality between device configurations can be thought of as the lifetime of a resource.
For example, Bobda [59] and Zhang [121] effectively consider the life of a functional unit’s
configuration to extend beyond a temporal partition; Cardoso [66] and Trimberger [36]
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spatially share functional units, confining their resource binding to the lifetime of the

partition.

The re-use of circuit structures at the device level is reliant upon no other changes in the unit
of reconfiguration; to do so would require reconfiguration of the unit — defeating the
motivation in using it to reduce the reconfiguration time. The size of the reconfigurable unit in
some devices [21] was convenient for exploiting at the logic level [120]; at most, a fraction of
a logic cell would be wasted in an obsolete device such as the Xilinx XC6200. Current
devices, such as the Virtex family, have a unit of reconfiguration comprising a column or tile

of multiple logic cells, therefore wastage of resource is of much greater concern.

In addition to the placement of logic resources, the transportation of signals between them is
in no small way the crux of the problem; spatial sharing of functional units assumes that the
wires, as well as their loads are always physically present, it just a matter of selecting between
them. Temporal sharing of reconfigurable resources or functional units common to different
partitions of those resources, require a persistent intermediary in the form of an interface;
spatially relating signals generated from different partitions. Some approaches feature no
routing outside of the partition, except to convey the data-flow through to another temporal
partition using the same resource. This is common place for multi-context and fully
reconfigurable devices or just as a means to reduce the complexity of the problem,
Vasilko [120].

What technology binding does not do, is model where those resources are placed; this is not
an omission because resource implementation, such as device layout, typically occurs at a
later stage in a non-reconfigurable design flow. How this happens is the subject of the

remainder of the chapter.

4.2 Overview of the Target Architecture

Figure 4.3 depicts the conceptual architecture which is the goal of the optimisation and
partitioning phases of circuit synthesis. In essence, the infrastructure necessary to execute a
temporally partitioned circuit is automatically generated without user specification (other than
the original behavioural description and the optimisation objectives and constraints).
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Figure 4.3: Architectural support for temporal partitioning.

The circuit modules which collectively embody the algorithmic behaviour of the circuit are
partitioned into a set of “Circuit Contexts’. A single ‘Static’ context comprises the top level
‘Program’ module and those subordinate modules deemed too costly to be made dynamic
during temporal partitioning. The static context is bound to a fixed set of programmable
resources throughout the lifetime of its execution, thus forming the ‘Static Region’ of the
architecture depicted in the figure.

Subordinate modules which are reconfigured ‘on the fly’, do so in the form of a ‘Dynamic’
circuit context, utilising the programmable resources of designated ‘Reconfigurable
Region(s)’ of the FPGA.

The term *Region’ refers to a set of programmable resources, each of which is the minimum
number of device columns necessary to permit an initial binding of the program or
subordinate modules to a programmable resource. Modules may be bound to more than one
resource column on condition that their placement is adjacent and contiguous when

programmed in to the device configuration memory.

In practice, the static region is programmed only once upon device power-up; in contrast,
programming of a reconfigurable region may occur anytime whilst power remains applied to
the device: in between periods of execution, each circuit context remains resident on the
region until it is swapped with another through a partial reconfiguration of the device —

achieved by rewriting the relevant portion of the device’s configuration memory.
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Circuit contexts which are not realised using the programmable resources of an FPGA exist in
an external memory in the form of device configuration data-streams. Although storing the
data-streams presents several additional overheads: one of which is the reconfiguration delay
in their fetching and subsequent loading through the ‘External memory interface’ and is a
significant factor in determining whether the module be made dynamic; any remaining
overheads associated with an external memory are also present in non-reconfigurable FPGA

systems which also store the power-up configuration external to the device.

With the availability of inexpensive Mega-Bit memory, any circuit module represented at this
level of abstraction (device data-streams) is regarded during partitioning as virtual hardware
with no area overhead. Central to this scheme is the interaction between the ‘Reconfiguration
Controller’ and the ‘Static Region’: the controller must be present in the static region to
perform self-reconfiguration of the FPGA at specific control states pre-determined during

temporal partitioning.

Present in every region is the ‘Channel Controller’; its role is to facilitate access to a
‘Communication Channel’ from any region. Communication between any pair of modules not
bound to the same resource must take place through a ‘Channel Interface’, ensuring the
integrity of all control and data signals passing to and from, as well as through the static and

reconfigurable regions during partial reconfiguration of the FPGA.

The characteristics of any communication channel (the number of signals it buffers and their
vector width) along with all other infrastructure depicted in the figure are customised during
partitioning: their attributes are entirely governed by the properties of the behavioural
specification, as well as an optimisation priority assigned by the user to each of the metrics

which quantify the circuit during synthesis.

4.3 Partitioning Metrics

At any point before, during and after optimisation, a design is characterised in terms of its
delay, area and clock period characteristics. Several additional metrics are required to

quantify the effects of temporal partitioning, specifically:

e The total circuit area after partitioning the design into a set of circuit contexts.
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e The time taken to execute the partitioned design through the continual switching of the

target device between the circuit contexts during run-time self-reconfiguration.

e The degree of imbalance among the contexts assigned to a reconfigurable region and

in doing so, provide a measure of the extent to which it is fully utilised.

e The number, width and length characteristics of all communication channels which

bridge the dynamic and static regions of the device.

Figure 4.4 (a) depicts the connectivity between the program module and subordinate modules
employed in an implementation of a quadratic equation solver; it will be used to exemplify the
use of each of the metrics during temporal partitioning.
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Figure 4.4: The characteristics of a quadratic equation solver implementation.
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Each module would have originally taken the form of a behavioural description of a
frequently used function or procedure, held in a library of commonly used routines and parsed
into a set of data structures, alongside the calling module — be that another subroutine or the

program module.

The order of execution for each of the sub-modules called by the program module is shown in
the acyclic graph of (b), along with the sub-graph (c) of nested module calls activated during
the execution of the sub-module *sdivi’. Each vertex in (b, c) is labelled with the number of
the sub-module being executed, where the order of execution is defined by the direction of the
arcs. The initiation of every sub-module execution is referenced by a unique time step shown
adjacent to each vertex. The parallel time steps shown alongside the vertices of the sub-graph
denote multiple executions of the associated module, where the numbering of each vertex is

relative to each execution of the module.

During time step ‘tg’ the graph splits into two distinct paths which derive directly from a
conditional instruction inherent to the behavioural specification, they later converge (not

shown) prior to the start of another execution cycle during step ‘ty’.

The initial area and 1/0 port widths of each of the modules are characterised in Figure 4.4 (d)
and are known prior to partitioning. For the sake of clarity, their attributes remain fixed during
the following overview of each metric. In practice, however, they are variable, since in
addition to temporal partitioning they are also subjected to optimisation using scheduling and
allocation transformations. Their combined effect is examined in greater detail in Chapter 5,

where the resource binding transform is introduced.

4.4 Problem Formulation

Allowing multiple conflicting objectives to be specified enables the optimisation algorithm to
explore the trade-offs between different aspects of the design being synthesised. This is
achieved through the cost function, to produce a figure that it can use to guide the
optimisation of the design to meet the user supplied targets for each circuit characteristic
being quantified. Before defining the cost function, the partitioning problem and each of the

metrics are first formulated.
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A circuit description is represented as a control graph C and data-path D, such that:

@) The graph C=(S,A) is directed, cyclic and composed of a set of control state nodes S
and a set of arcs A, where each pair of control states (n;) € S and (ni+1) € S is connected

by an arc a; €A.

(b) The data-path D=(V,E) consists of V nodes and E edges, where every node vie V
represents an operator, sub-module (function or procedure) and each edge ejje E is a
data dependence between it and the next node v;.

Let:-
Arp  represent the area (slices) of the partitioned graph TP.

Aga  measure the balance or variation in size among the circuit contexts assigned to

a reconfigurable region.

TR quantifies the reconfiguration time (ns) associated with implementing the set of

dynamic circuit contexts.
B returns the number of tri-state buffers required to implement the

communication channels.

The task during synthesis is to find a spatial and temporal partitioning TP of the graph C and
data-path D, whereby some or all of the metrics (Arp. Aga, Tr, and B) meet their associated
targets.

If:-
Sc is a set of modules assigned to the static partition
Dc is the set of all dynamic circuit contexts.
M is the sub-set of sub-module nodes where M 'V

C is a subset of M modules which together form a dynamic circuit context.

For the circuit partition TP = S U D¢, the set of dynamic circuit contexts D¢ is given by:

D. = UR, C;, where n+1 represents the number of circuit contexts (n > 0).
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The Control and Data-paths are correctly partitioned when:
e Sc UD. = M:all sub-modules are mapped to a circuit context
) o Ci = @: each sub-module node v; € M is mapped to only one dynamic context

e S, ND. = @:sub-modules are assigned to either a static or dynamic context.

4.5 Circuit Area

If two or more sub-modules share the same device resource at different times during their
execution, then at any point the area required for their implementation is equal to the largest
module. This notion can be further elaborated to form a group of sub-modules or a circuit
context whose placement is constrained to a specific reconfigurable region of the device.

Figure 4.5 shows one such partitioning of the quadratic equation solver.

The total circuit area is given by the sum of the largest dynamic context ‘Cy’ and the static
region containing the program module. For this configuration the circuit area is 2023.6

CLB slices [6], half the size of an un-partitioned circuit of area 4190.0 slices.
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Figure 4.5: A temporal partitioning of the quadratic equation solver.

The area of the circuit design after spatial and temporal partitioning (Arp) is required to be

less than or equal to the user supplied target i.e. A, <Ay . Circuitarea Arp is the sum of
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the static and reconfigurable regions of the device, where the size of each reconfigurable

region is determined by the largest circuit context assigned to it, formally:

n
Arp = Ag + Z Aregion; » Where n+1 is the number of reconfigurable regions
i=0

Let max(x,y) return the larger of two circuit contexts (x,y) measured in Xilinx CLB slices,
then Arp may also be determined by the overhead associated with interfacing the control and
data channels (Ach) to a region (in the event of the area required by the channels being greater

than the largest circuit context C;) that is:
(Ci,Ciz1s--,Cr) E TEgion;; Aregion, = max(max(ACi,ACHl, ...,Acn),Ach),

where n+1 is the number of circuit contexts assigned to region i.

4.6 Reconfiguration Overhead

A reduction in circuit area achieved through the continuous switching of an FPGA between a
set of configuration contexts incurs a cost in the form of the Reconfiguration Overhead, the
time taken to load a data-stream associated with a temporal circuit context in to the
configuration memory of the device and the frequency at which this occurs during the course

of a design’s execution.

Commercial FPGAs such as the Xilinx Virtex [6] family are not optimised for fast
reconfiguration, the bottleneck being the loading of configurations through a byte wide port at
a maximum frequency of 50MHz or 20 ns per configuration byte. Partitioning at the modular
level requires a partial reconfiguration of at least an entire column of FPGA resources at the

device level.

At any point during the partitioning of the design, the area of a context can be used to
determine the time taken to configure it. The time taken to load a circuit context is given by
the product of the number of configuration cycles required to load a single column of the
FPGA and the number of columns required to implement the context on the device. A column
of a Virtex FPGA consists of 48 configuration frames [6], each of which consists of a
different number of 32-bit words depending upon the actual device chosen.
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The characteristics of a Virtex FPGA, in terms of the number of columns, rows, tri-state
buffers and configuration frame length f_ (in words) varies depending upon the size of FPGA

targeted.

During the course of partitioning, the current area estimation of the design after context
switching is used to select the smallest target FPGA capable of implementing current design.
This “best fit” approach ensures that the circuit contexts are realised through the smallest
configuration data-streams and in doing so, directly impacts upon their reconfiguration times.
A model of the target device provides the attributes required to calculate the metric in
question, whether it be the number of tri-state buffers available for the communication

channel or in this case, the word length f_ of a frame for the target FPGA.
The total number of configuration bits per column= 48 - f| - 32 (bits per word)
= 1536-f_

In SelectMap mode [6], the Virtex configuration bus is one byte wide, therefore:

the number of configuration cycles required per column = 192 - f_

The internal configuration memory state machine of the device requires an additional 24 clock

cycles: the number of configuration cycles required per column = (192 - f,) + 24

The area of a column (CLB slices) = 2 - r, where r is the number of CLB rows in the device
and each CLB comprises 2 slices (Virtex FPGA).

The number of columns (rounded up to the nearest integral column) utilised by a context

Area of context
N 2°r

Therefore, the time taken to load a context T, is given by:

Area of context
= S -+((192 - fL+24))-20ns

This metric provides a lower bound estimation of the reconfiguration time due to the
assumption that the placement of each circuit context is done in such a way as to maximise
the use of each column’s resources. Predicting how the placement and routing tools

implement the partitioned design within each resource is beyond the scope of this thesis,
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however, guiding the process towards an outcome that makes good use of the resources is

necessary to ensure the value in estimating the reconfiguration times.

This is achieved during the implementation stage of the design flow, where a number of
placement constraints are used by the vendor placement and routing tools, to define a general
floor-plan for the partitioned design which, along with other synthesised structures,
collectively form the architecture required to facilitate context switching at the device level.
The estimation of the reconfiguration time need only be accurate enough to steer the decisions
taken during optimisation in a direction, that will ultimately generate a circuit that satisfies the

constraints and targets placed upon its synthesis.

An estimation of the reconfiguration time is sought after, rather than its exact prediction, due
to the level of abstraction at which behavioural synthesis is done. Data-path and control graph
operations are bound to physical cell characterisations which enable more accurate trade-offs
between area and delay criteria during optimisation, however, their scope does not extend to
RTL synthesis and logic optimisation using third party proprietary tools; therefore
optimisation does not account for the device-level refinements which occur during the

implementation of the design using device vendor specific processes such CLB “Packing’.

4.7 Frequency of Resource Context Switching

The second factor and by far the greater contributor to the reconfiguration overhead is the
frequency of context switching required of each reconfigurable region, in order to preserve
the original execution order of the sub-modules described in the behavioural specification.
Figure 4.6 (b) depicts the context switching required of a single region used to implement the
partitioned quadratic equation solver of Figure 4.5, in response to its sub-module order of
execution shown alongside (a). The history of the context switching is marked against the
periods of the graph labelled (to-t16), each denoting a call to and subsequent execution of a
sub-module contained within the circuit context active on the region. The time step ‘ty’
denotes the power-up phase of the target device, when it is configured with the static portions

of the design which include the infrastructure that facilitates run-time self-reconfiguration.
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Figure 4.6: Context switching of the partitioned quadratic equation solver.
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The reconfigurable region is seeded with the first circuit context ‘C,’ after which, the
execution of the design commences at step ‘ty” with the activation of the sub-module “sqi’
currently resident on the region. The next sub-module to be executed is ‘to_int’, since it is
contained within another context ‘Cy’, it must be switched ‘CS’ with context ‘C,’ through a
partial reconfiguration of the reconfigurable region prior to its activation. The process is

repeated ad infinitum.

The reconfiguration time and the number of context switches required of each context are
tabulated (c) alongside, where the sum of each of their products gives the total reconfiguration

overhead of 11.3 ms.

Figure 4.7 shows the results of re-partitioning the quadratic equation solver with the aim of
reducing the degree of context switching. The approach taken in Figure 4.7 (b,c) is to group
together those sub-modules whose execution is frequently alternated between during the
course of the design, for example, modules ‘to_int” and ‘multi’; their assignment to different
circuit contexts was responsible for the majority of the context switching shown in
Figure 4.6 (b). With hindsight, re-partitioning the equation solver with regard to the level of
context switching directly impacts upon the overall reconfiguration overhead, the end result

being a significant reduction in reconfiguration overhead to 6.39 ms.

An additional method to reduce the reconfiguration overhead is depicted in Figure 4.7 (d,e)
and requires the introduction of multiple reconfigurable regions. Ensuring that modules
‘to_int” and ‘multi’ are separately partitioned (Figure 4.7(d)) but concurrently active, reduces
the need to frequently swap between them and has a secondary effect of context ‘C;’
remaining active on its region during all the times scheduled for the execution of its sub-
modules. This eliminates the last context switch necessary in the previous partitioning and in
doing so, reduces the reconfiguration overhead to 3.71 ms.
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Figure 4.7: Multi-region context switching of the partitioned quadratic equation solver.
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Reconfiguration Overhead metric:
If:-

P is the set of all distinct control paths through the circuit on which there

are sub-module calls.

Pi is an individual path through the circuit on which a unique sequence of

sub-module calls lie, where P; € P.

Porob refers to the control path most likely to be taken during the execution
of a circuit and is determined by a profile of the circuit obtained during

its simulation.

Puworst denotes the longest path in terms of the reconfiguration overhead and is
used where specific parameters of the circuit are only know at run-time

or when a set of paths are deemed equally likely to occur.

The reconfiguration overhead Tg for the set of all dynamic circuit contexts D associated with
the control path (Pprop ) most likely to be taken is given by: TF1(D), when P;=Py;.p. When

the most likely path cannot be determined, the path whose order of sub-module execution

incurs the largest reconfiguration time (Pworst) IS Used i.e.
TPwerst (D) = max (T (D), Ty **, ..., Ta™ where P € (P, Py, ..., By).

The reconfiguration overhead is given by the sum of the time taken to swap each of the circuit
contexts on to their designated reconfigurable regions, for all regions; it is evaluated in

relation to the designer’s target such that Tz (D) < Tg,,, .-

n
Ty (region;) = Z Ty '(Cy) , where n+1 is the number of circuit contexts
k=0

m
Ty(D) = Z Ty (region;), where m+1 is the number of reconfigurable regions
=0

CSPi(Cy) is the number of context switches required of circuit context Cy during the

execution of the path P;.
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Teoniig(Ci) is the time taken to reconfigure the target device with the context C;.

Toverlap(Ci) measures the reconfiguration time of C; reduced by overlapping it with the

execution of a section of data-path.

The reconfiguration time of the context Cy is obtained by the product of the number of context
switches required of it and the time taken to load it into the target device’s configuration
memory each time a switch occurs. It can be reduced by the time spent overlapping each
reconfiguration of a dynamic circuit context with the execution of a data-path unit(s), be it an

instruction operation, sub-module function or procedure i.e.
TRPi(Ck) = (CSPi(Ck) ) TC(Ck)) - Toverlap

Although the number of times a circuit context is swapped with another is entirely dependent
upon the modules assigned to it and their sequence of execution given by the path P;, an upper
bound is given by the maximum frequency F of execution calls amongst its member

modules M:

CSpi (C) = max(F (M), (F(My), ..., (F(M,)) where Cy, € (Mo, My, ..., My,)

Each time a dynamic region is partially reconfigured with the circuit context Cy, the time
taken to load the context is proportional to its modular area (slices), device specific
parameters (frame length f_ and the number of CLB rows r) and the time taken for the
reconfiguration controller to interface with an external memory, Tinerface. ThiS process is
inclusive of the time taken to fetch the data-stream representing the context, load it into the
configuration memory of the FPGA and verify that these tasks have been successful prior to

the execution of the context on its designated reconfigurable region.

n
, 1
Te'(C) = (ﬁZAci)((192-fL)+24)-20ns + Tinterface

i=0

4.8 Scheduling the Context Switching

How a design is partitioned and the sequence of module calls which lie on the control path

most likely to be executed, will determine the length of time a circuit context remains on a
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reconfigurable region and the latest time it can be swapped with another. Deciding exactly

when it is swapped is found by scheduling its reconfiguration.

Figure 4.8 (c) illustrates how the reconfiguration of the partitioned quadratic equation solver
tabulated in 4.8 (d) may be implemented, by determining when each of the dynamic circuit
contexts can be swapped in to their designated regions. Each context switch of the target
device exploits its ability to partially reconfigure ‘on the fly’, by overlapping the
reconfiguration of each circuit context with the execution of a sub-module(s) resident on
another dynamic or static region. The motivation behind this approach is to reduce the
reconfiguration time associated with each context switch, its effectiveness is dependent upon
the characteristics of the design being synthesised and the configuration rate of the target
device on which it is implemented. For example, circuit designs which regularly interact with
1/0 devices where there is human participation, such as displaying a graphical user interface,
are more tolerant of the millisecond reconfiguration times associated with commercial FPGAs
which are not optimised for frequent reconfiguration. Therefore, it is the ratio of the
reconfiguration to execution times that will determine the value in overlapping circuit

execution with reconfiguration.

Marked along the program module graph of Figure 4.8 (a) and sub-graph (b), are segments of
graph (So-S4) which overlap the reconfiguration of a circuit context. Each segment may
comprise a number of sub-module calls, in addition to general vertices which enable signal
transfers in their associated module and in practice typically make up the majority of the

graphs and thus, are fodder for the scheduling transformations.

Having determined which of the calls to the sub-module selected during partitioning can be
made directly to the relevant circuit context and which cannot (necessitating a context switch
of the region), the task is to determine when or more specifically where in the graph calling

the sub-module, can the context switch be initiated.

This is achieved using one of three scheduling methods, the first of which is to schedule a
context switch as soon as possible (ASAP) and doing so without overlapping the

reconfiguration of an earlier circuit context.
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At the beginning of segment Sy, the context Cy is scheduled to reconfigure on region 1 at the
earliest opportunity to, this is indicated by the shaded vertex. Although not exemplified in the
graphs, a control state may also mark the beginning of a segment for multiple control paths.
This transpires when the control state is common to the multiple paths, before a path diverges
for example or as a part of a sub-module. The dashed edges which connect the vertices
represent the existence of numerous general vertices, not shown to simplify the example.
Scheduling the reconfiguration this early, provides the greatest potential for reducing the
reconfiguration time of Co, prior to the first execution call of its sub-module sqi, at the end of

the segment.

A complementary approach is illustrated in segment S;, where the latest possible time (tg) to
schedule the reconfiguration of the context C; is shown. Initiating the context switch of the
region one cycle prior to the earliest execution of one of its sub-module to_int, incurs the full

reconfiguration overhead for C,.

At first glance, it appears sensible to give preference to reducing the reconfiguration time by
scheduling ASAP, however this can give rise to a side effect that discourages the partitioning
of those sub-modules which are overlapped by the reconfiguration of another. Consider
sub-modules ‘sqrti’ (ti4) and ‘multi’ (tis) whose execution calls are overlapped during
segment S, by the reconfiguration of C;. The modules, in addition to the program module are
presently assigned to the static context. However, if either or both of them are re-assigned to a
dynamic context, their configuration will overlap with that of context C;. Since this is
prohibited, a solution is to re-assign the modules which collectively form C; to the static
context, subject to approval of the cost function. It is possible that the cost of such a move
proves too great, particularly if the reconfiguration of C; is scheduled much earlier up the
control graph (in doing so, benefiting C; by reducing its reconfiguration time). Depending
upon the method of optimisation employed and when the degradation occurs during
optimisation, the outcome may be sufficient to deter the assignment to the static context of the

sub-modules overlapped by the segment.

Had the reconfiguration of C; been scheduled to commence as late as possible (ALAP), the
overlap in configuration would not have occurred. The cost function would then be presented

with a different scenario to quantify, one where an existing context does not require
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re-assigning to the static region, in order for a sub-module to be assigned to a reconfigurable

one.

Although scheduling the reconfiguration of a context ALAP reduces the occurrence of future
overlaps in configuration, it provides no reduction in the reconfiguration time of a circuit
context. It is not implausible to imagine a scenario where a marginal reduction in such time
may be the deciding factor which leads to the acceptance of a sub-module for temporal
partitioning. To that end, a compromise between the two scheduling extremes is provided by
determining their difference (mobility or slack) and selecting a vertex at random from the
resulting partial graph, which in the case of segment S; is the vertex whose execution occurs

during ty».

Segment Ssillustrates the interaction which can occur between the static and dynamic regions
and how the scheduling might be applied in such circumstances. As a member of the circuit
context C; and currently active on regionl, sub-module ‘sdivi’ is executed (tig) by the
program module resident in the static region. During its execution (sub-graph (b)), a context
switch of region 2 occurs (t;7) where C, is swapped for Cs3 to enable the execution of the
nested sub-module udivi. The time taken to achieve this is reduced by overlapping the
reconfiguration of the udivi with the execution of ‘sign’ in the first reconfigurable region.
Upon completion of the reconfiguration process, ‘udivi’ is executed (txots;) and control is
returned to the program module. No further context switching is necessary during the next

execution of sdivi (t2s).

The final segment of graph S, depicts when the context switch of the second reconfigurable
region is required in order to restore sub-module to_int to the region prior to its execution. In
common with the earlier segment S;, an ALAP scheduling for its reconfiguration has
occurred, but unlike the earlier segment, the scheduling would have been restricted by the
assignment of sub-module udivi to the same region during temporal partitioning. The
interdependence between temporal partitioning and instruction scheduling is a strong
motivator for implementing these tasks in the same stage of high-level synthesis and will be
described in greater detail in the next chapter.



D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 121

If :-

I is the set of ICODE instructions which embody the behaviour of the design

being synthesised.

L represents the set of moduleLeap instructions (sub-module activation

instructions), where L c I.
La isthe ‘moduleLeap’ instruction that executes sub-module A.

Ma  is the set of instructions which are mutually exclusive in their execution to sub-

module A.
R is the set of reconfigurable resources of an FPGA device.
R, is a single reconfigurable resource such that: R; c R.

A dynamic circuit context D¢, can be context switched with another D¢ , over a common
reconfigurable region i.e. D;, € R; and D¢, € R;when neither are concurrently active.

Specifically, if A € C;, B € C;,, then sub-module A may be swapped with B if its activation
takes place on a control path whose execution is mutually exclusive to that of sub-module B
i.e. L, € M, or when the execution of sub-module B occurs after that of A on the same control

path.

When scheduling the context switching of a reconfigurable region(s) with a set of dynamic
circuit contexts, the original order of module execution must be respected; the two modules A

and B for example, whose execution occurs in that order,

Let :-
Sa, Sp denote the control steps where the execution of each module begins.
Sexe(1) represent a single step during which a module is executed.

SD¢, refer to the steps taken to perform the reconfiguration of a circuit context.

Piength return the length of the path where reconfiguration is scheduled to occur, the
beginning of which is denoted by control step So.

In order to swap modules A with B where A € C;j and B € Ci;; and preserve their original

execution dependency, the execution of B is scheduled to commence at:
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] l
Sp =S, + Z Sexe (1) + Z Spc;» where C; € R;and G4 € R; for S, < S;and S, < §;
i=Sa i=k
assuming that R; € R.
i.e. module A is swapped with B on a single reconfigurable region then module B is scheduled
to begin execution at step Sp , only once A has been executed (steps S, — Sj) and the

reconfiguration of the circuit context containing B (steps Sk— S;) has been completed.

Were the circuit contexts to execute on multiple reconfigurable regions i.e. C; € R; and
Ci+1 € Rj41 then the configuration of module B could be scheduled to overlap the execution

of module A. In this case, the configuration mobility of module B maybe any step from the
beginning of the path Sy i.e. ASAP, until the step before the start of its execution Sj.; (ALAP).

If sub-modules A and B lie on complementary paths (following the execution of a conditional
branch instruction) and each path has an equal likelihood of being taken, then only one circuit
context may start reconfiguration before the result of the conditional instruction is known i.e.
ASAP. In the event of a sub-module call to a circuit context which is not configured ‘on
silicon’, the context with the smallest reconfiguration time is chosen to be loaded ALAP: in
doing so, the cost of reconfiguring the wrong context is minimised. This cost can be
eliminated entirely if the context is comprised of both modules A and B, in doing so covering
both eventualities of path execution. The cost function would have to weigh the potential
reduction in reconfiguration time against the binding of resources to one idle module of the

pair, which by definition cannot execute.

This overview would not be complete without mentioning that the scheduling transformations
can also influence the context switching of the reconfigurable regions and therefore their use
is also quantified by this metric. One such example is the Sequential Merge transform. When
data-path operations are chained during the merger of their associated control states, their
ICODE instructions are scheduled to execute within the control step of the earliest. If the
latter state happened to have been selected from the reconfiguration segment of a temporal
circuit then its context switching instruction (denoting the beginning of the segment) will also
be subjected to the merger of the states. The effect will be an earlier scheduling of the

reconfiguration, the result of a lengthening of the segment by the number of control states
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bounded by the two chosen to be merged. There are several other scenarios where the
sequential merge and other transforms have an impact not only upon the scheduling of
reconfiguration, but also on the formation of the partitions themselves and these are presented
in detail in the next chapter.

4.9 Communication Channels

The partitioning of sub-modules over a single static and multiple dynamic circuit contexts
necessitates a permanent communication channel which forms the backbone of the device
level architecture discussed in greater detail in Chapter 5. The communication channel
guarantees the physical connection of the partitioned module’s control and data signals. In
doing so, it enables their inter-region execution and data transfer, independent of the circuit
contexts to which there are assigned and the physical placement of their associated
reconfigurable regions. This is in direct contrast to communication between every pair of
modules in the static region, which is done though dedicated control and data signals internal

to the region.

During the run-time execution of a temporally partitioned design, as circuit contexts are
swapped on and off their reconfigurable regions, the physical interface of each context must
be identical to that of the reconfigurable region to ensure a predictable and unbroken signal
transfer between the static and dynamic regions of the device. This is made possible by
driving each signal through a pair of tri-state buffers whose placement is constrained to
straddle the boundary of a region, thereby forming an interface between the communicating

contexts on either side.

Although in plentiful supply, the number of tri-state buffers available on a Virtex FPGA is
proportional to its size and therefore assigns a hardware cost to the number and bit-width of
those signals which require buffering when entering to or leaving from a reconfigurable
region. As with the reconfiguration metric, the current area estimate of the design after
partitioning is used to select the size of the target device from which the number of available

tri-state buffers are obtained.
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Figure 4.9 shows the relationship between the number of signals cut during temporal
partitioning and the effect this has on characteristics of the communication channels.
Figure 4.9 (a) depicts a partitioning of the quadratic equation solver which targets multiple
reconfigurable regions on the FPGA. The sub-modules are grouped in to their respective
contexts (Co - C3), where each arc represents the numerous data-path signals which pass

between the modules and is marked with the sum of their bit vector widths “W’.

In addition, there are two control lines solely used in the communication between a pair of
modules (not shown for simplicity), one used by the calling module to activate the called
module and the other to signify the completion of its execution and hence the return of control
to the calling module. When a circuit context is swapped with another, the sub-module port
signals overlap in time, determining the width of the channel and therefore the number of tri-
state buffers ‘B’ required to interface it to other regions whose contexts drive or are driven by
it.

Figure 4.9 (b) illustrates the dimensions of the channels required to implement the partitioned
quadratic equation solver. Independent control and data channels are employed to relay the
signals necessary for the execution of a pair of modules at either end of the channel. Their
separation is not motivated by functional necessity, rather an aid to floor planning, where a
channel of small dimensions offers a greater degree of flexibility in its placement during the

device-level implementation.

To reduce the size, number and ultimately the cost of buffering the data and control signals,
each channel is shared by several pairs of modules at either end, provided that they are
mutually exclusive to all others in their regions (recall that to context switch between two
modules requires that neither module be simultaneously active on the reconfigurable region).
Similarly, two pairs of concurrently active modules cannot share the same channel without

some form of arbitration.

Sharing the channel would provide a feasible solution to the only occurrence of concurrent
module execution in the partitioning of Figure 4.9 (a), following the program module’s
activation of module ‘sdivi’. Once enabled, it deepens the execution hierarchy through its

execution of modules *sign’ and “udivi’.
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Such an execution hierarchy requires a degree of concurrency since each initiating module
remains active until the sub-ordinate module completes its execution and returns control.
Hierarchies may have a depth of several modules, each waiting on the successive pair to
complete its execution before it can do the same and return control to its initiating module or

ultimately the program module.

Implementing an arbitration protocol would incur an additional delay overhead in their
execution which may prove too great should the chain of communicating pairs be of
significant length. In addition, it could restrict the use of performance enhancing techniques,
such as the Pipelining of their execution. As such, the static and reconfigurable regions may

be bridged by multiple control and data channels, as exemplified in Figure 4.9 (b).

Two control channels ‘Ch;’, *‘Chs’ are required to implement the control signals associated
with the sdivi sub-module hierarchy, due to its concurrent nature of execution. The control of
all other partitioned modules, being mutually exclusive or sequential in their execution to
sdivi and those modules it activates, may share either of the channels. Each channel is at least
4 bits in width: in this minimum configuration, a single module activation signal enables each
channel to uniquely address two reconfigurable regions, each with a context comprised of a
maximum of 2 modules. The width of a channel is by no means fixed, as the addressing can
be scaled to accommodate any number of regions and sizes of contexts and therefore its actual
width is determined by the formation of the partitions themselves. Further architectural details
can be found in Chapter 5.

Like the control channels, the number of independent data channels used to realise data
transfer reflects the degree of concurrency of the modules that use them. Once again, two
channels ‘Ch,” and ‘Ch,’ are simultaneously active as data signal conduits between all the
regions associated with the ‘sdivi’ sub-module hierarchy. At all other times “‘Ch,’ is shared by

the remaining modules although at any instant, exclusively by a single pair of modules.

Regarding the dimensions of the channels, the width “W’ of Ch; is equal to the context with
the greatest bit-width, that of contexts ‘C,’ and ‘C3’; they require an interface comprising 96
tri-state buffers. The width of 33 buffers for channel Ch, is smaller, due to the greater number

of remaining signals in C;3 being internal to the context and its singular use in the connection
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of module ‘sign’ resident in the static region to its calling module assigned to circuit

context Cs.

The channel utilisation depicted in Figure 4.9 (b) provides a minimum overall width for the
transfer of the modules control and data signals. During partitioning, the total channel width is
compared with the maximum number of buffers per CLB column, returned by a model of the
target device. The model is chosen based on the area of the partitioned design. In doing so, it
gives priority to maximising the logic resources of the device, enabling the best fit for the
static and reconfigurable regions. Referencing the model forms the basis of a validity test
which ensures that the width of the channels required to support the proposed module
partitioning does not exceed the resources offered by the device: to do so would create
channels too large to be implemented on the target device and consequently the partitioning is
rejected before being applied.

Having determined the placement of the module, the temporal partitioner may elect to connect
it using one of several channels that may already pass through the region. Its choice will be
guided by the number of buffers required to implement the channel and as such, should aim to
minimise the increase to the width of all parallel channels and therefore reduce the risk of a

module move being rejected.

In the event of a module successfully fitting in to a circuit context, the actual estimation of the
cost of implementing its communication channels is undertaken. The true cost in buffer
consumption ‘B’ of a channel is given by its width and length, measured by the number of
region boundaries through which it crosses. As a reconfigurable region must span the entire
column of the device, a channel cannot circumvent any region which lies in its path. This is
evident regarding the global channels depicted in Figure 4.9 (b) which pass through all three
static and reconfigurable regions of the device.

Clearly a direct influence on the length of a channel is the location of the modules that use it,
through their assignment to existing contexts. However, it is also the position of the
reconfigurable regions, in relation to the static region which offers the choice of placement for
a module and in doing so, dictates the number of regions that it must cross. This is illustrated
in Figure 4.9 (c), where once again the quadratic equation solver is partitioned over three

regions. However, in this alternative channel implementation, the location of each new region
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was taken into consideration during its creation. As a result, the global channels (Ch;-Chy)
have been replaced by shorter ones (Ch;-Chg), local to the regions which they connect. As a
consequence, the latter channel implementation represents a more cost effective realisation;
the total of all tri-state buffers B has been reduced from 548 to 410 respectively. By assigning
a metric to quantify the number of tri-state buffers required to realise the channel(s), a
measure of the cost effectiveness for a given temporal partitioning of modules is achieved by
comparing the number of buffers required to realise the channel(s) with the maximum
available, once again provided by the model of the target device.

Communication channel metric

Consider the temporal partitioning illustrated in Figure 4.10; it is formed by partitioning a set

of sub-modules, (V;,V,, ...,V;) € M and the program module V,,, such that:
Vi€Cy Vg€ C;, (CyCy) E Region_y; V,eC, V,€ C3 (CyC3)€E Regiong;

VoeCs, V,€ Cs, Vz€ Cs, Cs €Regiong; Vs€C, Vg€ Cs (C4 Cs) € Region,

Region,

Region,

Figure 4.10: An example of temporal partitioning.

There are 7 pairs of inter-region communicating modules depicted in Figure 4.10, where the

connectivity of each is denoted by a single bi-directional arc representing the edges set (e; ;),
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necessary to enable the execution of module V; by module V;. Each execution is realised
through separate control and data signals represented by a subset of edges, namely Ce; ;
and De; ;. An individual edge is associated with at least a single bi/uni-directional one bit

signal exchanged between the pair of modules (V;, V).
If:-

region; denotes the reconfigurable region over which a set of dynamic contexts are swapped,

where: 0 >i > 0,i # 0.

region;_, refers to the static region containing the program module and any sub-modules

deemed too expensive to be made dynamic.

The execution of sub-module V; residing in region, by module V; within region,, attributes a
weight We; ;to those edges e; ; cut by the partitioning of their associated modules over
multiple regions, such that e; ; € ¥, where yis the set of all edges cut by temporal
partitioning. The cut-set is quantified in terms of the number of tri-state buffers employed in
the construction of the pair of data and control channels (Ch,,,, Ch,,4+1), Which together bridge
those edges divided across the regions during partitioning. For example, with reference to
Figure 4.10, in order to implement the partitioned sub-module V;, where V; € C, of the pair
(Vo,V1), requires Weqy, = 2(Ceyq + Dey ;) buffers: recall that each channel signal requires
two buffers, each anchored at either end of the communicating regions that utilise the channel.
Contrast this to sub-module V,, where V, € region,, activated by the program module V,
through a set of edges e, , which are internal to the static region and therefore without need of

a channel and the buffer overhead required in its realisation i.e. W (V, ;) = 0 when e, , & .

If another sub-module, such as Vg, whose execution is not concurrent to V; is also assigned a
dynamic context (C,) and swapped with the context Cy containing Vi, each set of edges will
share a pair of channels (Cho ,Chy), such that (Ceg, Cege) € Chy and (Deg 1, Degg) € Chy.
In this way, although there are 7 pairs of modules and therefore 7 sets of edges, their
partitioning does not require 7 groups of data and control channels, only 2. The rationale for 2
channels comes from an examination of the sub-module hierarchy initiated by sub-module V.
Although it engages 4 sets of edges during its execution, only 2 edges are simultaneously

active between the same regions, namely e, 4, e, 3. Accordingly, they dictate that a minimum
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of 2 groups of concurrently active channels are required at any point during the execution of

the partitioned design.

The mapping of the remaining edges of the hierarchy e g, e3 5 is undertaken by the temporal
partitioner, in such a way as to attempt to satisfy the optimisation objectives associated with
the channel metric and/or other metrics. The same can also be said of the outstanding edges
(eo,7 1 €06 €0,1)- One such mapping of edges to channels which the partitioner may take is as
shown in Figure 4.11: it illustrates the mapping of each set of edges to the minimum number

of concurrently active channels (Chg, Ch;), formally:

(€01, €0,6) €07) € Chyg, (€24, €43, €4, €45) € Chy

At any time during the execution of the design, only a single set of edges may occupy the
channel to which it is assigned. This requires the execution of the pair of modules related by
each set of edges to be either mutually exclusive or non-overlapping in nature. Therefore, an
aspect to consider when mapping each set of edges to a channel is the extent of their
concurrency, since it will determine the minimum number of channels required to carry them

across the boundaries of the regions they connect to.

I I I
I I I
Vv
Co | G Sy < I C,
I €3 | v I v
Vi) Vv, I 4 I 5
€1 | €, A | | €24 I €45
| on,
| cn, |
o I I I
06 | v | €07 | €48
I I
I I I
C; | Cs | Cs | Cs
| | |
Region_; Region, Region, Region,

Figure 4.11: The mapping of concurrent channels.
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The exact permutation of edges assigned to a channel will of course depend upon the
contribution that each set of edges makes to its total weight, determined in part by the width

of the set containing the greatest number of edges e.g.

|CHy| = max(|eo,1|, |eO,6|' |eo,7|)-

The complete cost of realising a channel is then found from its width and the length — the
number of regions it must span to permit the connections between any driving and driven

module.

To uniquely identify the position of a reconfigurable region (in relation to the static region
(regiong)), it is characterised as being positive or negative (left or right of the static region,
respectively). The extremity of a channel, at either end, is associated with the region of the
furthest driving and driven modules. In this way, the length of a channel is given by the

absolute value of the difference between the two regions e.g.

Cho(length) =(-1-1D=2; Chl(length) =(0-2))=2

Evidently, the temporal partitioner should take into consideration the effect which the location
of a region has upon the length of the channels spanning the device: the cost of implementing

a channel at the device level can now be expressed as:

W(Ch;) = 2(|Chi| : Chi(length))

Consequently, at any point during temporal partitioning, the channel metric B(TP) quantifies

the number of buffers necessary to implement all communication channels:

n
B(TP) = Z W(Ch;), for n+1 channels.
i=0
Re-examining the assignment of edges shown in Figure 4.11, in terms of the combined weight
of both the channels, reveals that there exists a large variation in the size of those edges
allocated to each channel. It can be a disadvantage to map each set of edges to the minimum
number of channels, suppose this to be the case and the sizes of each set of edges are as

follows:

|eo,1| = 20 edges, |eo,6| = 25, |eo,7| = 45,
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|ez’4_| = 15, |e4_’3| = 20, |e4’8| = 55, |e4’5| = 60.

The width of each channel would therefore be:

|Chy| = max(20,25,45) = 45, |Ch,| = max(15,20,55,60) = 60 and hence their weights:

W(Chy) = 2(45-2) = 180, W(Ch,) = 2(60 - 2) = 240, generating a total cost of:
B(TP) = 180 + 240 = 420 buffers.

Re-assigning the edges with a greater sensitivity to their size and the number of regions

through which they cross produces the following mapping:
€01, €06 € Chy, €y7,€24 € Chy, €43 € Chy, e4g,e45 € Chs.

The width of each channel would now be:

|Chy| = max(20,25) = 25, |Ch,| = max(45,15) = 45,
|Chy| = 20, |Chs| = max(55,60) = 60.

and subsequently their weights:

W(Chy) = 2(25-1) =50, W(Chy) =2(45-1) =90, W(Ch,) = 2(20-1)=40,
W(Ch3) = 2(60 - 1) = 120, the result of which is a noticeably reduced use of buffers:
B(TP)=300.

Although there are double the number of channels, they can be placed in two parallel groups
and collectively their width is no greater than the two channel implementation i.e.

max(|Chy|, |Chy|) + max(|Chy|, |Chs|) = 45 + 60 = 105.

It should be clear to the reader that the greater the number of channel buffers, the more likely
their channels are to contribute to the circuit partitioning being rejected by the cost function.
In the worst case scenario, the partitioned circuit may not fit on the target device: recall that
the target for the channel metric is set by the size of the buffer resources associated with the
model of the target device. The model may be changed several times during partitioning, to
ensure that the reconfiguration overhead is based upon parameters of the device which
provide the best fit for the static and reconfigurable regions during the device-level
implementation of the partitioned design. Therefore, the temporal partitioner should also take
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into consideration the combined width of the channels when selecting suitable edges to assign

to them.

The effect of each channel characteristic cannot be quantified in isolation, for instance, the
combined width of the 4 channel solution maybe reduced by mapping the edge e, ; to Chs as

follows:
|Chy| = max(20,25) = 25, |Chy| =15, |Chy| =20, |Chs;| =max(45,55,60) = 60,
where the combined size of the two widest channels is:
|Chy| + |Chs| = 25 + 60 = 85.

However, although re-assigning the edge to Chs means that channel Ch; no longer contributes
towards overall parallel width, a secondary effect is an increase in the buffer use since
channel Chs must now pass through two regions and hence the cost of re-assigning the edge

becomes:
€01, €06 € Chy; €34 € Chy; ey3 € Chy; e4g,€45,€97 € Chs.
|Chy| = max(20,25) = 25, |Ch,| =15, |Ch,| =20, |Chz|] =max(45,55,60) = 60,
W(Chy) =2(25-1) =50, W(Chy) =2(15-1) =30, W(Ch,) = 2(20 - 1)=40,
W(Ch3) = 2(60 - 2) = 240; B(TP) = 360 buffers.

Thus far, each aspect regarding the assignment of a set of sub-module edges to a
communication channel has been examined in terms of its singular effect on the channel
metric. Grouping edges of similar regional proximity or weight has an impact on the number
of buffers required to realise a channel, however, the opportunity to do so will of course
depend upon the priority and effect of the other metrics; after all, the fact that an edge has a
weight (that is to say at least one of its associated modules is context switched) is the result of
the cost function in conjunction with the post-partitioning metric determining that the
proposed module move brings the partitioned design a step closer to the user-specified area

target.

In summary, the task during temporal partitioning is to find a mapping of edges cut during
partitioning v, to a set of communication channels Ch, in such a way that its characteristics

(quantified by their number, length and width) require the number of tri-state buffers during
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their implementation to be no greater than the capacity of the resources offered by the target
device i.e. B(TP) < Brgrget-

4.10 Balancing the Partitions

The size of a reconfigurable region is equal to the largest circuit context assigned to it. A large
variation in size among a set of contexts not only results in poor utilisation of the device
resources for that region, but over multiple regions can lead to a larger than desired circuit
area: this is evident when returning to the partitioning of the quadratic equation solver over
multiple reconfigurable regions, as tabulated in Figure 4.8 (d). The total circuit area at any
point during the execution of the equation solver is given by the area of the static partition and
the sum of each of the areas required by the reconfigurable region. This requires 2166.4 CLB
slices to implement the two dynamic regions. Figure 4.12 shows the area reduction which can
arise when partitioning with the aim of reducing the degree of imbalance across the partitions
assigned to a region.

Reconfigurable Circuit Area ig?;t?(;g Reconfigurable Circuit Area S;i?;t?(:g
region context (slices) (slices) region context (slices) (slices)
1 Co 649.5 172.0 1 Co 649.5 8.6
c, 993.5 c, 666.7
2 C, 666.7 253.1 2 C, 993.5 89.7
C, 1172.9 Cs 1172.9
(a) (b)

Figure 4.12: Re-partitioning to improve resource utilisation of reconfigurable regions.

Table 4.12 (a) presents the results of the earlier partitioning when the temporal binding of the
resources was carried out solely to overlap the reconfiguration of one circuit context with the
execution of sub-modules assigned to another. Table 4.12 (b) demonstrates that by simply
exchanging circuit context ‘C;’ with “C,’ the total area can be reduced to 1839.6 CLB slices.

A measure of the imbalance between a set of circuit contexts can be obtained using the
standard deviation of a population, where the population is the set of contexts assigned to an
individual reconfigurable region. Figure 4.12 shows the standard deviation tabulated for each
of the reconfigurable regions. The metric provides a measure of the area variability or spread
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of the context sizes from the average context area for each reconfigurable region, reflecting

the improved balance (high to low) which occurred following the re-assignment of C; and C,.

The reader will appreciate the significance of being able to measure a change in resource
imbalance: during temporal partitioning, a balance metric is used to decide whether a
sub-module should remain in its current partition (be that static or dynamic) or be moved to a
partition where it will have a local effect by improving the balance of the region on which the
partition is executed; in doing so, it offers the ability to influence the cost function in way that

could result in a reduction in the total circuit area.
Balance metric

The metric Aga provides a measure of the spread in area (CLB slices) in circuit contexts
belonging to a reconfigurable region, in doing so, it returns an indication of how well a region

is balanced in relation to the user supplied target, explicitly: Ag,; < ABalygrger:

This is achieved using the standard deviation o of the population of n circuit contexts assigned
to a region. It is evaluated only for those reconfigurable regions affected by the movement of
a sub-module from its present region (source) to a destination. Where both the source and
destination for the module are reconfigurable regions, the overall effect of re-assigning the
module is found by the average spread in context area across the two regions, formally:

Apal = Osource,» Where the destination region is the static partition, else
= O4estination, Where the source is the static partition, else

Osource + Odestination

Oregion =

4.11 Cost Function

Although each of the metrics relate to a single aspect of temporal partitioning, they all have a

common purpose and that is to measure the quality of the design with respect to those circuit
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characteristics deemed important to the design specification. Explicitly, the cost associated

with the set of temporal partitions TP is formulated as:

costrp = Cpart_area * Arp + Creconsig * TR + Cchannetwidatn * B + Cpar * Apar
where: App is the circuit area after temporal partitioning;
Ty returns the reconfiguration overhead for a given partitioning;
B is the number of tri-state buffers used used in the channel implementation;
Apgq: provides a measure of the resource usage by temporal circuit contexts;

Cpart arear Creconfigr Cchannelwiath» Cpar @ré Weighted constants which reflect the

user-specified optimisation priority of the associated metric.

The cost function metrics are expressed as absolute values using technology-specific models,
such as the actual configuration parameters associated with the target FPGA (used in
estimating the reconfiguration times) or the area of a sub-module when assigned to a circuit
context (in terms of the CLB slices required to implement its control states and data-path
units). The motivation in doing so is to ensure that the circuit being synthesised closely

resembles the actual physical implementation at the device level.

Returning to the target architecture shown in Figure 4.3, the reader is reminded of how
essential the synthesis of the infrastructure is to meeting this requirement; its properties are
individual to the design being synthesised, such as determining those periods in which the
reconfiguration controller actively performs context switching of the reconfigurable regions
or the dimensions and number of the communications channels required to connect them.
Enumerating each property enables the temporal partitioner to make the relevant trade-offs
and allows the user to explore their ramification through changes to the priority and constraint

of each of the metrics.

When temporal partitioning occurs alongside optimisation to the control graph, C, and data-
path, D, additional trade-offs are made possible between the area, delay, clock and
partitioning metrics, further enhancing the exploration of alternative realisations of the circuit
during its optimisation. Therefore, the task during optimisation is to minimise the extended

description of the cost function now expressed as:
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Cost(C,D) = Cgreq * area + Cyeiqy * delay + Cepc - clock + costrp,

period

where: Cgrear Caetay, Cetockyerioq 8F€ ONCE again, the priority weighted constants of each

metric.

4.12 Summary

The purpose of this chapter has been to explain how temporal partitioning can be integrated
into MOODS HLS in the form of reconfigurable resource binding. It described how one
approach would be to re-use cells between temporal partitions, in a way not dissimilar to the
traditional spatial re-use relied upon for multi-mode binding. This approach was not adopted
due to the prevalence of conditional control flow in HLS and the uncertainty of knowing the
exact resource configuration available at run-time, necessitating the actual approach relying

more upon spatial sharing within a partition, rather than between them.

A multiple-objective approach to temporal partitioning was formally defined in terms of the
characteristics that a cost function would need to measure through its metrics. In addition to
the essential trade-off between the area reduction and resource reconfiguration, the cost of
communication between the partitioned subroutines is also quantified. Measuring their
characteristics is complicated by the potential transportation of their signals between spatial
and temporal resources; adding an additional requirement to balance their resource use,
further compounds the partitioning problem and provides the motivation for performing
partitioning using a general purpose optimisation algorithm with which to explore their

interaction.
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Chapter 5

Implementing Run-time

Reconfiguration

This chapter details the architecture that is automatically synthesised by MOODS for
communication between the temporal partitions generated during optimisation and those parts
of the architecture which facilitate self-reconfiguration of a Xilinx Virtex FPGA device. In
particular, it describes how the abstract model of the temporal partition embodied by the data-
structures is given form, in the context of the device-level architecture and how it may be

implemented, irrespective of the limitations imposed by the device and vendor support.

The execution of the synthesised circuit is viewed as a series of activations between pairs of
circuit subroutine modules. Each module is assigned to a static or dynamic region of the

FPGA, where the individual module selected is determined by the temporal partitioner.

A module residing on the static region of the device is expected to remain on silicon
throughout the lifetime of the circuit’s execution. This is not the case for those assigned to
reconfigurable regions, which as their name suggests, are subject to continual re-programming
of the resources contained within their boundaries: in this way, the temporal aspect of
partitioning is realised as groups of modules or circuit contexts being repeatedly swapped

with one another.

When not active upon silicon, each circuit context takes the form of a device configuration
data-stream and is stored in an external memory. A reconfiguration controller is deployed to
fetch the data-streams and facilitate the circuit swapping, in accordance with the
reconfiguration schedule determined during module partitioning and operation-level

optimisation.
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The communication channels form the backbone of the architecture, passing through region
boundaries. When under the direction of the channel controller, control and data signals may
be transferred between any pair of communicating modules, irrespective of the region in
which they are placed and without interruption due to device reconfiguration. The structural
VHDL description of the synthesised circuit incorporates the customised architecture required

to implement the partitioning, through run-time self-reconfiguration of the FPGA device.

5.1 Architectural Abstraction

region

|| Datastream ROM | FPGA configuration port |

Figure 5.1: Abstraction of the architecture into distinct layers of circuit activity.

The function of the principle sub-systems such as the reconfiguration and channel controllers
provides a natural means of abstracting a module’s execution protocol into layers of circuit
activity. Figure 5.1 depicts how this can be visualised: at the highest level of abstraction, the
‘System layer’ encapsulates the functionality of the circuit through the execution of the circuit
modules. As depicted, control and data transfer between the modules are carried out without
regard to where the modules are assigned (in terms of their region and circuit context) or the
location of their associated data-streams. These details are processed during the lower levels
of the protocol, the next level of abstraction being the ‘Communication layer’. At this level,
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the module control and data signals are translated into channel operations, for instance,
competing for possession of the channel with other modules which are also concurrently

active in different regions.

Of course, none of the above is possible without the programming of the FPGA’s
configuration memory. This is implemented in the ‘Physical layer’ and is regarded as two
distinct tasks: the fetching of the data-streams and the control of the device configuration port,
both of which are done ‘on the fly’ during circuit execution. The exact moment when these
tasks are undertaken is determined at the system layer, although a context switch of a region is

represented at all layers of abstraction.

At the system layer, it is synchronised to a number of control states in the FSM controller of
the module initiating the circuit swap. The request is relayed along the control channel during
the communication layer and initiates the fetching and loading of the data-streams in the
physical layer. The exception to initiating a context switch solely in the system layer occurs in
the event of a configuration error. The reconfiguration controller can respond to an error
flagged by the device during reconfiguration by re-transmitting the last sequence of
configuration bytes. Should the error persist, the data-stream of the entire circuit context must

be re-loaded, in effect initiating a context switch from within the physical layer.

The response to any remaining error is a transition to a state of system failure in which the
circuit remains idle whilst requesting external input. Although the origin of the error will have
occurred in the physical layer, in a process akin to that of the context switch, it is represented

at different layers of abstraction until reacted to in the system layer.

5.2 System-level Architecture

At this stage of circuit synthesis, the task is to convert the internal representation of the circuit
to a structural description suitable for logic synthesis and technology or device-specific
net-list generation by third party tools. A significant part of the structure is generated directly
from the internal representation, as each control and data-path node is bound to a Library cell
associated with a VHDL RTL description. Generating the Register Transfer Level (RTL)
VHDL description of the program module and sub-modules is, at its simplest, a matter of
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writing the internal representation to file. For instance, representing control signals in the
control graph and net activations on the data-path as logic expressions in the VHDL

description of the circuit.

With the exception of the circuit modules, the remainder of the architecture is generated using
associations between the modules modelled in the data-structures. The generation of the
communication channels is one such example: a single move during partitioning can re-assign
a module to another region, where it may no longer require the use of a channel. It would be
inefficient to constantly add or remove tri-state buffers to the data-path units of the modules
moved during the course of partitioning. Rather, their existence is inferred from the

relationships contained in the data structures and generated once partitioning is complete.

No doubt, the capability of the target device influences the synthesised architecture; however,
it is the relationship between the circuit modules which has the greater impact on the final
architecture; in particular, their relationship to one another and the frequency in which they
are executed. For instance, a principal component of the architecture is the communication
channel. The number of channels is decided during partitioning and the results presented in
Chapter 6 show that where there are many related modules, they tend to be clustered together
and communicate with the Program module through a single channel; this makes sense
because partitioning a module execution hierarchy over a number of regions leads to a high
communication cost. Multiple channels can reduce this cost although being dependent on the
I0 parameter width of the modules, they also are expensive to deploy and therefore rarely

more than one channel is utilised.

Another example where the design specification directly affects the architecture is when the
modules are called from within multiple processes. This does not refer to a single module
which is shared between the processes but a sequence of modules being executed in parallel.
The partitioner may decide that the cost of multiple channels outweighs the overhead
associated with sharing a single channel between the processes, requiring an arbitration circuit

to be added to the architecture.
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Figure 5.2: Synthesised architectural components.

Once optimisation and partitioning of the circuit design is complete, the circuit modules are
realised in the context of the generic architecture depicted in Figure 5.2. It expands upon the

conceptual architecture shown in Figure 5.1, to depict the actual components described within
the structural output of the circuit being synthesised.

At its most fundamental, the architecture comprises a number of isolated areas of the target
device, bridged by several local and/or a single global communication channel. The exact
configuration of the components, as described earlier, is dependent upon the structure of the

design being synthesised and the topology of the partitioned circuit. Of course, for any
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temporal partitioning, there must be at least a pair of static and reconfigurable regions. The
shaded blocks contain a number of partitioned modules and represent the circuit contexts
currently active on their respective regions. Although it is not obligatory, the program
module, being the highest point in the module execution hierarchy is generally assigned to the
static region: to do otherwise, incurs a substantial overhead in context switching and state
saving, since the program module is the source of all sub-module activation and parameter

exchange and therefore the ultimate sink as well.

Alongside the program module, reside other modules, procedures or functions which can be
directly written to and read from by the program module without the use of the
communication channels. Figure 5.3 shows how this is achieved in practice: it illustrates the
signal transfer (in terms of control and data) associated with the execution of a sub-module.
At a purely behavioural level of abstraction, the sub-module call is allied with the execution
of the ICODE ‘ModuleLeap’ instruction. As with all ICODE instructions, its execution is
scheduled to occur during a specific step in the control graph, the legacy of which is a
mapping to a FSM control state during the generation of the RTL description of the circuit.
Although the mapping depicted refers to a one-hot controller implementation, the exact FSM
encoding is determined by the RTL synthesis tool.

Unique to the ModuleLeap instruction is its implementation by a ‘Call’ node, utilised to
invoke the execution of the sub-module in question. In this case, it is the sub-module
procedure which is called and passed the input parameters, variables ‘x’ and ‘y’. In practice,
the parameters are passed by reference, where initially, the registers containing the variables
are read directly by an equivalent pair of temporary registers in the sub-module. The
temporary registers represent the parameters associated with the description of the sub-
module, so called because they are liable to be removed during optimisation. Likewise, any
output variable returned by the sub-module is bypassed and the result written directly to the
variable parameter (register) of the calling module, exemplified in Figure 5.3 by the

variable ‘z’.
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The timing of this mechanism is shown in Figure 5.4. Having been passed token.; from the

preceding state of the calling module (in this case the program module), the registers

containing the variables x, y are loaded (labelled ‘a’ in the figure) during the execution of the

state “‘Co’. In the next clock cycle, at point ‘b’, the token is passed on to the calling state ‘C;’

which promptly activates the sub-module by passing the token to its start node.

A registered version of this signal persists throughout the execution of the sub-module; should

the procedure be called again and passed another pair of variables, the signal is used to drive a

multiplexor select input, to match the sub-module inputs with the pair of register outputs

corresponding to the current sub-module call.

Execution of the sub-module proceeds state by state (two cycles for this example-label “c’),

with the state in possession of the token able to execute the relevant portion of the data-path.
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Figure 5.4: Direct sub-module execution timing.

The token returned from the last state of the sub-module is used, along with the registered
signal from the call node, enabling the output register residing in the calling module to read
the sub-module’s output. The signal also generates the token necessary to activate the control
state following the sub-module call — to read the register containing the variable ‘z’, in some

further computation in the data-path.

5.3 Communication-level Architecture

With the exception of those modules which call and are called entirely within the static
region, either or both of any pair of communicating modules require an address in the
architecture. However, unlike the modules in the static region which will eventually be
connected through dedicated routing, a dynamic module may share the control and data lines
entering its region with the other members of the circuit context. The existence of another
region necessitates a means of identifying the location of the calling and called modules. As

such, a module is identified with the region and context to which it is assigned during
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partitioning. In actuality, a third dimension to the address provides a physical reference to the
location of its configuration data-stream in the external memory, although it is only realised at

the physical layer.

With reference to Figure 5.2, the architecture associated with this layer comprises: the
communication channels (global and local), the channel controller (‘transmitter’, ‘receiver’
and optional ‘arbitration” blocks) local to each region, the location of the partitioned modules
(‘module address ROMs’) and the storage of local variables (‘state saving’), the
characteristics of all are dependent upon the topology of the partitioning.

5.3.1 Communication Channels

The communication channels form the backbone of the architecture and may be regarded as
having a dual purpose: to guarantee the physical connection of the routing between the static
region and successive partial reconfigurations of the reconfigurable regions and to enable the
logical connection of a module in a circuit context to any other, irrespective of the regions in
which they are active. In Chapter 4, the consequences of a move taken during temporal
partitioning were examined in detail. In particular, a number of factors were identified which
defined the characteristics of the communication channels. For example, the choices made by
the partitioner, such as whether to pass the module parameters through an existing channel or
whether or not to create a new one. Another important factor is the mutual exclusivity
between the executing modules and it is inherent to the description of the source circuit.
When the execution of the sub-modules is mutually exclusive, not only can the sub-modules
share the same channel without contention, but with careful scheduling, any partial
reconfiguration initiated during the course of their execution has no effect on the transfer of
their signals across the channel. The advantage of this approach is to utilise the resources
available in the reconfigurable regions, at the expense of tighter scheduling constraints for the

context switches.

A shared channel with arbitration is synthesised when the execution of the sub-modules is not
mutually exclusive and dedicated channels are not targeted. The increased traffic on such a
channel places a greater demand upon the scheduling, as there are likely to be fewer

opportunities to load a circuit context without interfering with the signal transfer along the
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channel. The channel is realised using the resources of the static region of the FPGA. How
this is implemented in practice depends very much upon the properties of the target device
and the level of vendor software provision. Priority is give to the Xilinx Virtex [6] family of
FPGASs because of the level of support provided for the generation of the partial data-streams.

Figure 5.5 shows the layout of the channels when targeting the different members of the
Virtex family of FPGAs. In Figure 5.5 (a), partial reconfiguration of regionsg;

re-programmes the resources spanning the entire column of the Virtex and VirtexIl families.
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Figure 5.5: Device-specific channel implementation.

static

For the reasons described earlier, sub-modules with overlapping execution may read or write
data through the reconfigurable regions of the architecture. This is accomplished through a
number of fixed ports known as Bus Macros. Buffering the signals in this way ensures that
the input/output routing resources of different circuit contexts have the same predictable
physical interface before and after partial reconfiguration of the regions to which they are

assigned.

Alternatively, the data transfers of sub-modules which cannot take place between partial

reconfigurations are routed out through the external pins of the device, along an external
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backplane and read once again through the externals pins, as input to the state region. Having
passed into the region, the signals contest for access to the shared channel and one region is
granted permission to write to it. Implementing the channel in the static region of the device,
secures it and the three-state logic buffers which write to the channel against interruption from
partial reconfiguration. Had the buffers been implemented in the reconfigurable regions, they
would be reprogrammed with no guarantee of a high impedance state being held at their
external output pins. This could lead to signal contention on the channel whenever a partial
reconfiguration took place.

An alternative implementation of the channels is depicted in Figure 5.5 (b) and can be done so
directly using tile-based FPGA resources that can be partially reconfigured in columns 16
CLBs in height. This allows reconfigurable or static regions to be stacked vertically and
horizontally next to one another which can implement the shared channel on the FPGA, by

isolating it from any partial reconfiguration.

A bus macro is utilised when a communication channel interfaces directly to a reconfigurable
region. Figure 5.6 illustrates how the function of the bus macro is realised. Both circuits are
used to pass data or control signals through the perimeter of a static or reconfigurable region.
They are provided by Xilinx Inc. as part of its support for experimenting with the partial

reconfiguration capability of its Virtex family of FPGAs.

Each circuit is replicated, albeit, only in behaviour, since the actual implementation uses
different routing resources to pass the signals from one side to the other. Collectively they
form a bus macro, a pre-routed component i.e. its structure is not subject to optimisation
during RTL synthesis (it appears instantiated in the structural description of the architecture as
a black box), nor is its layout altered during the placement and routing phase of circuit
implementation. To do either, would be to disregard the concept behind its use.

The first generation of bus macro utilised the pair of three-state buffers adjacent to each
Complex Logic Block (CLB in Xilinx terminology) available on the Virtex and Virtex Il
FPGAs. In total, eight buffers are employed to pass four signals in either direction. Although
it represents a significant step forward in comparison with the previous support offered

through JBits [48], it hinders the efficient implementation of non-trivial reconfigurable
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circuits. This is due to the limited availability of the buffers at their designated positions on

the FPGA, in comparison with other resources, such as the CLBs.

output » output
enable—z S_ enable
input ———» «— input
ﬁi outputs
slice slice
inputs g ~
region,, region,
region boundary

Figure 5.6: Bus Macros — bridging the reconfigurable divide.

For any given row, there are four parallel buffer output lines which are used to straddle the
boundary. On either side of the boundary, the bus macro requires four CLB columns along the
row where it is to be placed. Should the region exceed that number, any additional buffers on
the same row cannot be utilised by adding bus macros because no more than four output lines
can cut across the boundary at any given point along the row. This issue was addressed
through the use of the second circuit shown, which as well as fulfilling the same function,
does so without the placement restrictions. Utilising the CLB Slices enables the macro to be
implemented using the basic primitives of the architecture, being numerous and well
distributed throughout the FPGA assures that they are within easy reach of a plethora of

routing resources. As a consequence, the number of signals which can be passed using a
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single macro is doubled. Furthermore, as many as two additional macros can be positioned
either side of the boundary, providing a higher density of channel signals (twenty four) per

row of each static or reconfigurable region.

5.3.2 Channel Controller

The purpose of the temporal partitioning of Figure 5.7 is to illustrate the likely topology
between pairs of calling and called sub-modules which the communication system must be
able to accommodate. An arc connecting each module pair is representative of the bi-

directional control and data signals that pass between them.

o

Reconfigurable
Region,

Static
Region

Reconfigurable
Region,

Figure 5.7: Typical sub-module partitioning topology.

Apart from the minimum partitioning of the program module and two sub-modules, there may
be multiple or single modules in any circuit context i.e. ‘Cy’, ‘C; respectively, of which a

called module might also call another module in a different region to itself, such as the sub-
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module pair (‘a’,’b’). Alternatively, the calling and called sub-modules might reside in the

same circuit context, as is the case with the program and sub-module ‘e’.

Communication between two modules assigned to the same region but configured “on silicon’
at different times is also permitted. This is exemplified by the hierarchical pair of modules
(‘h’,*i”). Sub-module h, in common with the other modules is called by the program module.
In order for it to execute the next module in the hierarchy, module ‘i’, its circuit context needs
to be swapped with that of context ‘C,’. Of course, the context switch must be repeated for
sub-module “h’ to process the results generated by module i.

To implement the partitioning illustrated, it will be necessary for MOODS to customise the
architecture utilising the global communication channel. This is due the assignment of module
‘b’ to a region not adjacent to its calling module. The multiple processes ‘Po’, ‘P1” would
necessitate a form of arbitration to enable the channel to be contested and therefore shared
amongst the three regions. Had the partitioner placed module ‘b’ in either the same region as
its calling module “a’, or in the static region, local communication channels might have been

deployed.

In either case, the communication layer is reliant upon the use of a number of channel
controllers to convert module control and data signals into specific channel operations. As
depicted in Figure 5.8, the controller is not one component, but comprises a number of sub-

systems which fulfil four main duties:
e The opening of a channel transaction — accomplished through the transmitter unit.

e Self-identification by the intended destination region — utilising the channel receiver

unit.

e Channel arbitration to prevent its contention when there are multiple processes present

in the circuit design.

e The bi-directional transfer of module parameters between the calling and called

modules.

e The closure of the channel transaction — also performed by the transmitter unit.
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Figure 5.8 illustrates how the components of the channel controller are connected to perform a
channel transaction, i.e. to open or close a channel. As depicted, the function of the controller

is separated into a transmitter and a receiver unit.
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Control and Data-paths

Control and Data-paths

Figure 5.8: Channel controller subsystems utilised during a channel transaction.

A number of peripheral components are also utilised during the controller operation. As stated
earlier, hierarchy between a pair of executing modules is expressed in terms of a calling and
called (sub-ordinate) module. Initially, the transaction originates from within the calling
module (program or sub-module), where a module call generates a token that is used to

initiate a request to open a channel with the controller of the called sub-module.

Every sub-module execution is represented as a channel transaction between a calling and
called module. Either module has a unique binary address in the architecture, associating it
with the region and circuit context to which it was assigned to during partitioning. Recall that
the scheduling of a module call is marked by the occurrence of a call node in the module’s
control path. When a pair of modules is assigned to the same context, the token from the
calling node is used to directly activate the first node of the module being called. When the
modules are assigned to separate contexts and regions, each token becomes a unique identifier

for the module being called. In this way, all the call nodes in the same region can be strung
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together to form a binary code, which can be encoded by the RTL synthesis tool and used as
the address in memory for the transaction about to take place. The identifiers of all pairs of
calling and called modules are synthesised as a ROM, customised for each instantiation of the
channel cell in the architecture.

Communication between two regions is initiated when the transmitter cell receives a token
driven by any of the call nodes in the circuit context. In accordance with the communication
protocol, the transmitter requests that the channel be opened and places the address of the
source and destination modules on the address lines, as well as writing the module parameters
to the data lines of the channel. With reference to Figure 5.8, the module arguments are made
available to the data channel multiplexors exactly one cycle prior to the token being issued by
the call node. Of course, the module data cannot be written to the channel until the connection
has been established. In order for this to take place, all receiver units periodically check for a
channel transaction by reading the state of the request line. Any transition in its state draws
their attention to the portion of address which identifies the intended destination region of the

transaction.

Having correctly identified itself, the receiver stores the return address of the calling module
before determining which sub-module should be connected to the channel, by decoding the
remaining portion of the address. A token is passed to the start state of the called module,
causing it to read from the data lines. The token is passed on to the remaining states of the
module, as well as the receiver unit which commences the closure of the channel. It is
achieved once again through a handshake between the two regions, this time initiated through
an assertion of the acknowledge line of the channel, to which the transmitter responds by de-

asserting its request line.

Execution of the calling module halts temporarily whilst the called module carries out its
function. The parameters passed to the called sub-module and the results returned from it are
processed as separate transactions of the channel, enabling the communication between
another pair of modules to occur through the channel during the intermission between the
transactions. This frees the channel to transport the data driven by other concurrently active
sub-modules that have been granted access. When sub-module execution originates from

within a single process, all module execution is consecutive i.e. mutually exclusive. Thus
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channel traffic is not interrupted should a partial reconfiguration take place during the channel

transactions, making the scheduling of context switches desirable during such periods.

Upon completion, the called module returns a token which through its local transmitter
initiates a second opening of the channel; with the purpose of returning the results of its
execution. The transactions described earlier are mirrored with the roles of the regions
reversed, such that the region containing the called module requests the transmission of data.
Following the handshake between the regions, the token is returned via the receiver to the
calling module which up till now has been waiting for the results to be returned; it is now able

to process the results in its data-path and continue execution of the process thread.

Another function of the channel infrastructure is the connection of a module’s port signals to
the buffer interface. This is a necessity for a calling and called module pair because it will
generally share the interface with other modules in its circuit context. Recall that a module is
referenced through a region and context address. Figure 5.9 depicts the architecture required

to associate that address with a given module.

The control, address and data signals are passed in to the region from those regions on either
side of it and are sent directly to the channel controller cell through their respective channels.
Execution can occur between any number of sub-module hierarchies, although only a single
pair may transfer data at any given time. This is done through the twin data channels which
can be utilised as input or output, to enable the output of a given module to pass data to the
input of another or vice versa. In this way, it is possible to send and receive data in a single

transfer cycle of the channel.

Multiple module hierarchies may necessitate the activation of more than two regions which
will require several sets of concurrently active module activation/completion control signals.
As shown in Figure 5.9, the control signals utilised at the system layer of communication
require an overhead of four (the clock requires no buffering) control signals for any
simultaneously active pair of modules. This overhead is ‘factored in’ during partitioning
where the benefit of splitting a module hierarchy of a given depth is weighed against the
potential cost, to satisfy a given cost function criteria.
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Execution between any pair of modules is managed through the channel controller, which is
setup as a transmitter or receiver depending upon whether the module concerned is calling or
being called by another. Prior to each module call, the controller is activated and refers to a
local address ROM to physically connect the modules in the architecture.
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Figure 5.9: Module address decoding.

Once a connection is established the cell locates the address of the next pair of modules to be

connected. Access to the control and data ports of a module is achieved by presenting the
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module’s address to the decoder. The origin of the address depends upon whether the
controller transmits or receives a request to communicate with another region. For data
transfer to occur between any pair of modules, both must be connected to the channel buffers

in their region.

In the case of the transmitter, the module decoder is passed the address of the calling module
from a local module address ROM. It also contains the address of the module being invoked
and the region on which it resides. That address is sent to all regions, where having identified
itself through its own communicator cell, the receiving region will decode the remaining part
of the address and connect the called module to the control and data channels. It
acknowledges a successful connection to the transmitting region and the execution of the
module pair may now proceed at the system layer. These events take place through a
handshaking protocol between the communicators which will be formalised in due course.

Reconfigurable

Region, Region Region,

I
. I .
Reconfigurable | Static
I

Figure 5.10: A temporally partitioned quartic equation solver.

Mapping each module call to an address in memory effectively encodes the execution

sequence for each design. The demand upon memory space is small since procedures and
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functions are referenced and not individual operations. For example, the quartic equation
solver of Figure 5.10 (which by no means is a small circuit) comprises 126 module calls in the

entire design.

The size of an address ROM will depend upon the number of module calls and the format
used to encode them. Each address reflects the partitioning itself, in terms of the number of
regions and modules assigned to them. Consider the partitioning of the quartic equation solver
whose module execution sequence is shown in Figure 5.11: it comprises 3 regions on which a
maximum of 4 modules require individual selection; although the static region contains 6
modules, module ‘sign’ requires no address since it is executed within the region and module
‘quadratic’ is not called within the segment of module execution depicted. In total this
requires 4 bits to address any module, 2 bits for the region and a further 2 for selecting a
module within it. Figure 5.12 illustrates how each module address can be mapped to the
address ROM.

The address of every module is tabulated in Figure 5.12 (a): it identifies the region of each
module, be it the static or reconfigurable regions (encoded as 00, 01, 10 respectively), as well
as its identification within the circuit context. When a module is the sole member of its circuit
context, as is the case for modules “cbrti’ and ‘multi’, no individual module identification is
required within each of their respective circuit contexts ‘Cy” and ‘Cs’. Figure 5.12 (b)
illustrates how the addresses are mapped to represent the relationships between the modules
(Figure 5.10) and the order in which they are executed (Figure 5.11).

Each row in the map corresponds to a byte of ROM. It can represent the connection between a
pair of modules or direct the reading of the next through a set of 4 encoded commands. A
command instructs the controller cell’s state machine on how to traverse the memory
locations. Note that this requires an additional address bit to enable the addressing of up to

any 4 modules or commands.

A given byte is composed of the encoded calling module, destination region and the called
module. There are 4 calling modules in the section of graph depicted in Figure 5.11: the top
level program module whose behaviour is encapsulated by the graph and 3 sub-module

hierarchies invoked by modules ‘cosi’, ‘acosi’ and *sdivi’.
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Figure 5.11: Module execution paths of the quartic equation solver.
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Module/ Region | Module
context address | address
cbrti/ Cy 01 --
cosi/ Cy 01 00
chi/Cq 01 01
prog/ Cs 00 00
sdivi/ Cs 00 01
udivi / Cq 00 10
acosi / Cg 00 11
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sign/ Cs n/a n/a
to_int/C, 10 00
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Figure 5.12: Memory maps of module address ROMS for the quartic equation solver.
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With the exception of the latter, the execution of other modules is encoded with an address
ROM which forms part of their circuit context. Module ‘sdivi’ invokes the execution of

modules within its circuit context and does not require an address to connect to them.

Shown alongside each memory map is the pair of modules referenced by the byte, their
associated contexts and a reference in the graph. For example, the first byte would instruct the
controller cell on the static region to connect the program module (decode calling module
address 000) and write the remaining 5 bits onto the address channel. The controller cell of
the target region (region;) would then identify itself as such (region address 01) and decode

the module address (001) to connect module “cbi’ to the data and control channel buffers.

The next occurrence of a controller command ‘no decode’ saves a decoding cycle by not
enabling the address decoder when the calling module appears consecutively. Its value is
evident in Figure 5.12 (b), where the program module dominates sub-module execution for all
but two calls by modules ‘cosi’ and ‘acosi’. A complementary command ‘decode module’
prevents the controller cell of the receiving region from unnecessary identification of the
region address: this occurs when the module called is on the same region as the module
previously executed. Incidentally, consecutive calls to the same module are not represented in
the ROM. This also applies to consecutive connections between a pair of communicating
modules. An example is on path P; between the module pair (*program’, ‘to_int’). Before the
first call to module ‘to_int’, the address of both modules would have been set up in either
region to enable their connection. Upon completion of their execution, the ‘program’ module
calls module ‘sdivi’. As this call is internal to the context, module ‘to_int’ remains connected
to the interface buffers and so does not require any region or address decoding to facilitate its

next execution.

As the control graph of the program module illustrates, for all but the simplest of circuits
there exists some form of conditional control. The order of sub-module execution will change
depending upon the branch taken at any conditional point in the module control flow. The
motivation for the internal commands is to traverse the memory in a way which reflects the

sequence of module calls of any calling module on the same region as the ROM.

The first example of this is the ‘condition’ command. Its location in the sequence of memory

addresses corresponds to a diversion of the path taken by the module currently active on the
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region. A dedicated ‘Condition’ register in the cell reflects the outcome of that decision which
the controller is required to read and act upon. By default, the data bits following the
‘command’ instruction form the address of the next location in memory, which corresponds to
the sequence of module calls taken in the event the condition evaluating to “false’. Had the
result of the condition been ‘true’, the controller would have been instructed to read the
operand of the command instruction, taking it to an alternate sequence of addresses. In this

way, each path of the quartic equation solver can be referenced in memory.

At the end of each path, the ‘begin’ command requests that the controller address counter be
loaded with the next 5 bits which will direct it to the start of the memory and the first module
address byte. Any of the 27 bytes contained in the ROM are located through a 5 bit address
counter. In practice this would address the lower bits of a larger ROM whilst the upper bits

remained fixed.

As each module address ROM is part of a circuit context, it is reconfigured along with the
circuit context and so the resources utilised in its creation will be re-used in the formation of
the next context. To further reduce the area overhead associated with the ROMs, it would be
prudent to utilise where possible the dedicated BlockRAMS [6] which form part of the Virtex
architecture. They may be regarded as ‘free’, in terms of area since they are incorporated as
part of the architecture and exist whether utilised or not. Their size and distribution varies
within the Vertex family of devices. A Virtex2 FPGA features columns of 18Kb blocks
interleaved between the CLB columns. Each blockRAM is also reconfigurable ‘on the fly’
which makes them suitable for incorporation as part of a reconfigurable region. A single
blockRAM is capable of storing 2304 module address references, assuming that a byte is used
to identify the pair of modules being connected. A mid-range device has a further 31 of these
S0 storage capacity is not an issue in the implementation of the address ROMs.

Figure 5.13 depicts the states and their transitions which together encompass the behaviour of
the Controller cell. In essence, it implements the *‘Communication layer’ of the protocol.
Depending upon the partitioning, a controller cell may be a transmitter and/or receiver for its
region. The cell buffers all module parameters passed and received between any pair of
executing modules. In doing so, it guarantees that communication between the modules

occurs only once a point-to-point connection has been established on the architecture.
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Upon ‘power-up’ of the circuit context, the cell initialises the address counter and the
semaphore to zero. It then waits until activated during the ‘System layer’. Where it is
activated (transmit/receive inputs) will determine whether its role is in the form of a
transmitter or receiver in the region. The inputs are determined from the module relationships
inherent to the control graphs. Essentially, each module call from within a module is

associated with the transmitter side of the communicator and vice versa.

Execution of the transmitter proceeds by reading the data byte of the local module address
ROM referenced through the recently initialised address counter. Simultaneously, the other
regions monitor the status of the semaphore, awaiting a transmission. Whether it takes place
or not depends upon the meaning of the data byte, for instance, its purpose may be to guide
the transmitter at a point of divergence in the execution path of the active module. In the event
of the data byte representing a connection, the transmitter proceeds to connect the calling
module (identified within the format of the data byte).

Next the address channel is set to broadcast the remaining bits of the byte which will address
the called module and the region on which it resides. Its direction, along with that of the data
channels is determined by the function of the controller cell. The interface of a transmitting
region is set to output the address onto the channel. On the other end of the address channel,
the interface must input the address to the receiver. Likewise, the direction of each region’s
interface to the data and control channels is also set, to enable the output of the transmitting

region to connect to the inputs of the receiving region and vice versa.

Once the interface of the transmitter is configured, the region initiates transmission by
toggling the state of the request line. This triggers a chain of events at each receiving region
during which time the transmitter waits for a response. It comes when a single region
identifies itself, although this stage may be bypassed (‘# decode only’ command) if the region

featured in the previous connection.

The final stage is to decode the target module’s address and connect the module to the data
and control channels, thus completing the coupling of the regions. Contact is signalled
through the receiver toggling the “‘Ack’ line which places it in a state of readiness awaiting the

next potential transmission.
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The transmitter responds by returning the direction of all channel interfaces to a default mode.
This configures the region to receive an incoming address — it may become the receiver in the

next inter-region connection.

The interface to the control channel also reverts to an input direction e.g. the interface buffers
for the semaphore are reversed to receiving rather than requesting transmission. Similarly, the
orientation of the pair of input/output data channels is fixed for all receiving regions. For
multiple reconfigurable regions, there will be more than one receiving region during the
establishment of a connection and this places the onus on the transmitting region to alter the
direction of its interface to enable an output to drive an input on the receiving end etc. With
the connection now established, control is once more returned by the controller cell to the

system layer where the execution of the pair of modules will now take place.

5.4 Device-level Architecture

When the structural description is generated, the activation of the reconfiguration controller is
expressed in terms of boolean equations that link the control node (now control state) directly
to its enable input. The backbone of the architecture is implemented at this layer. With
reference to Figure 5.14, it comprises the ‘Reconfiguration Controller’ and the protocol for its

deployment in the architecture.

A key facilitator of reconfiguration is the reconfiguration controller, which like the other
structures is described in the cell library as an RTL VHDL component to be instantiated
during the creation of the structural circuit description. Unlike the others, it is only
instantiated once, as every occurrence of a ‘ContextSwitch’ instruction is bound to the
controller. In the structural description of the data-path, it appears as a component whose
execution can overlap that of any other component in the data-path: it achieves this at the
device level by exploiting the partial reconfigurability of the Virtex configuration memory.
Respecting the precedence of module execution in the scheduling of each context switch
ensures that it reconfigures only the circuitry of reconfigurable regions which have completed

their execution.



D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 165

A novelty of the reconfiguration controller is that it enables a Virtex FPGA to partially
reconfigure itself using the programmable logic resources of the device. It does not require an
external controller in the form of a personnel computer, on board or embedded

microprocessor to perform the reconfiguration.

Figure 5.14 (a) illustrates the interface between the controller, the Virtex ‘Configuration Port’
and the external ROMs containing the data-streams. Shown alongside it is the protocol
necessary to perform the reconfiguration process. Upon power-up, the FPGA is configured in
the “Master SelectMap’ [6] mode, where it controls the loading of the full data-stream which
configures the architecture i.e. the static and dynamic regions, along with the communication

channels linking them.

On completion of the full configuration process, control is passed to the programmable logic
resources of the device, where the reconfiguration controller within the static region changes
the FPGA configuration mode to ‘Slave SelectMap’ [6]. Ordinarily, this enables an external
device such as a microprocessor to manage its configuration. However, in this instance, it is
the design being executed on the programmable logic — namely the reconfiguration controller
which oversees the self-reconfiguration process.

Self-reconfiguration is a three stage process: Firstly, the start address of the partial
data-stream is passed to the controller prior to its activation in the control graph of the
program module or subordinate modules. Activation occurs during specific states in the
control graph, predetermined during optimisation under the guidance of the temporal

partitioner.

On receipt of the control token, the controller is initialised with the start address of the
configuration data-stream. Upon each configuration cycle, a byte is passed from the external
ROM where it is stored, through the controller and on to the internal configuration bus of the
FPGA. Providing the FPGA returns no error flag and has processed the current byte, the next

byte is fetched. This process continues until the end of the data-stream is reached.

Unlike a full reconfiguration of the Virtex FPGA, there is no dedicated flag to indicate the
completion of configuration. The solution adopted is to detect the ‘desync’ sequence of bytes
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at the end of every partial data-stream. When encountered by the controller and providing that
no errors were returned by the FPGA it can be used to indicate a successful reconfiguration.
The control of the configuration port is then relinquished and it is placed in a state of high
impedance along with the external ROMs.

The final function of the controller is to pass on the control token and in doing so ensuring
that the dynamic context associated with the partial data-stream is loaded into its designated

reconfigurable region prior to its execution in the control graph.

The FPGA remains in the slave selectMap mode of operation for the duration of the design
being executed until the power is cycled, whereupon the mode of the FPGA is set to master

selectMap, the full data-stream is loaded and the process outlined above is repeated.

It would be rather cumbersome to directly tag a module call with the physical address of the
module configuration data-stream within the control path. A neater solution is to implement
the configuration addressing within the external memory itself. This effectively makes the
reconfiguration controller micro-coded. It may be extended without too much difficulty to
alter the scheduling for the context switching of the temporal partitions on-the-fly. The
motivation for doing so would be to fine tune a bad compile-time partitioning using
information only obtainable at run-time. At present, this approach is supported by the multiple
binding of sub-modules to more than one location, although its present purpose is in the

generation of temporal partitions which require fewer context switches.

Figure 5.15 illustrates the organisation of an external memory necessary to store the data-
streams for the quartic equation solver. The memory locations can be conceptually divided
into two halves. The first effectively encodes each sub-module configuration sequence. The
rationale for doing so is to enable the reconfiguration controller to select the right data-stream
without being passed the actual address from within a module. Instead the address of each

data-stream is held in memory along with the data-streams themselves.

In much the same way as the end of a data-stream is represented by a unique sequence of
bytes recognised by the reconfiguration controller state machine, the order of each data-
stream is marked by a “fetch’ command byte. It directs the state machine to read the next byte

which will point it to the address in memory of the beginning of the relevant data-stream.
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Before performing this task, the state machine writes the address of the command byte into a
dedicated ‘Return address’ register. Once the loading of the data-stream is complete, it

enables the state machine to continue processing the fetch command sequence.

Upon a successful configuration, the address counter is incremented to point to the next
command byte. In the event of a configuration failure, the address provides an opportunity to
re-load the data-stream or acts as a base from which the last known good configuration can be
determined and loaded. Its application in the error recovery process is discussed in due
course. The second half of the memory contains the configuration data-streams to which the
fetch commands refer. Each data-stream may be referenced several times during the execution
of the circuit. This is more economical in terms of memory space than duplicating the data-

streams at every reference.

A circuit is highly likely to have some form of conditional control inherent to its function. To
ensure that the data-streams available to the reconfiguration controller match the order of
modules executed on the current path, any choice made in the control path is mirrored at the
same points along the configuration command sequence in memory. This is achieved by
embedding a ‘condition” command at the appropriate place in the sequence. It informs the
reconfiguration controller to examine the contents of a condition register to determine which
series of command bytes it should process next. In doing so, it ensures that the configuration
sequence will match the order of module calls regardless of which branch is taken. This will
of course depend upon the outcome of the condition itself which would be fed from a
functional unit in the module’s data-path, for instance the output of a comparator unit. Should
that output be ‘false’, the state machine responds by loading the byte immediately after the
condition command or at an address given by its operand when the outcome of the condition
IS ‘true’. In either case, the byte read by the controller is the address of the next consecutive
set of data-streams whose modules will be encountered along the control path taken. The
condition register is written to directly from the control channel. A dedicated channel signal is
required, as the reconfiguration controller is only present in the static region and not local to
the module in which the condition is encountered.

Following this format enables the memory to be organised in a way which corresponds to all

module execution paths through the circuit. Consider once again, the control paths of the
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quartic equation solver (simplified in Figure 5.15 (a) to depict just the sequence of data-
streams invoked along each path). Each path is encoded in the memory through the controller
commands (pre-fixed with ‘#’). Assuming that each memory location can contain both a
command and/or an address byte depending upon its format and that a byte is sufficient to

address all of its locations.

Also shown in Figure 5.15 (b) is a state transition diagram which depicts how the
reconfiguration controller will pass through the memory. It will be utilised to briefly show
how the control path P, is tracked within memory.

Assuming that the address counter is initialised to ‘addry’, the first command byte
“# condition’ directs the controller to read the status of the *‘Condition’ register. It reflects the
state of the first condition depicted in the control graph — which to direct it along the path *P;’
will be assumed to be “false’. The controller responds by incrementing the address, taking it to
the second conditional command byte at memory address ‘add,’. Once again, the path
diverges into two, only this time a ‘true’ register value adds an offset of 6 memory locations
to the address counter, pointing it to the ‘# fetch’ command at memory location *addrg’. The
command byte then directs the controller to the first configuration byte of the data-stream ‘Cj’
and to self-reconfiguration of the device, after it has written the location of the next module

address ‘addry’ to the ‘Return address’ register.

Once the configuration of the FPGA is complete and with no errors encountered, the return
address is incremented to reach the next fetch command at location ‘addy’. It references the
configuration data-stream ‘C,’ and the process described above is repeated until no more
configurations remain; the controller sets the address counter to point to the memory at
address byte ‘addi;” and the controller awaits the execution of the next sequence of

subprogram modules.

5.5 Implementation in MOODS

Before describing how resource binding has been used to achieve circuit partitioning in

MOODS, it is useful to repeat a number of salient points that were identified and described in
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earlier chapters and which have subsequently influenced the approach described in this

chapter.

The first is the use of MOODS for synthesising reconfigurable logic circuits. A particular
strength in the Simulated Annealing approach offered by MOODS is the ability to quantify
the impact of changes to the circuit structure with regard to multiple and often contradictory
constraints on its properties. The reader will recall from Chapter 4, that the use of
reconfigurable resources necessitates the measurement of many aspects of a circuit’s

structure, several of which are also inter-dependent.

An obvious example of this is the trade-off between a resource reduction and the
reconfiguration delay required to permit the sharing of reconfigurable resources at different
times. A more subtle trade-off would be in deciding the size and number of the partitions
required for a given user resource target. Consider what might happen when a subroutine
cannot fit in any of the available temporal partitions and making it reconfigurable would bring

the size of the circuit closer to meeting the resource target.

An existing resource could be reconfigured to form a new temporal partition, at the expense
of an increase in the overall reconfiguration delay. Alternatively, the unused logic of two
adjacent temporal partitions could be merged to form a partition large enough to achieve the
same effect without any increase in reconfiguration delay, the result of combining their
separate delays. Although it would be a less costly approach concerning the reconfiguration
delay, the current vendor design methodology [122] for partial reconfiguration of
programmable resources requires fixed sizes for all resources; therefore, any future re-use of
the combined resource during partitioning would result in a temporal partition of the
combined size. This would require a cost function to accept a larger reconfiguration delay, a
scenario that would be less likely to happen than in the case of accepting a smaller delay
associated with a smaller resource. Thus there is a trade-off between fewer larger partitions or

many smaller ones.

This example excluded the use of existing instruction scheduling and allocation techniques.
For example, space for the functional unit could have been created by sharing functional units
in any of the temporal partitions. This would have to occur between units that are not on the

critical path, in order not to prohibit the scheduling from otherwise reducing its delay by
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executing their instructions in parallel. Through its implementation as a transform, temporal
partitioning can be applied in the same synthesis session as the existing operation-level
transforms, enabling their interaction to guide the cost function to meeting the user-specified
optimisation goals.

For any resource and delay constraint there are likely to be many different ways in the
instructions of a behavioural specification can be scheduled, allocated and partitioned to
reconfigurable resources. As the literature survey concluded, existing heuristic approaches to
temporal partitioning, concentrate on extending existing spatial partitioning or HLS
scheduling techniques, at a loss of generality. Any additional constraint, such as one that
would accompany a new device implementation methodology or the addition of a new metric
would likely require a different heuristic to be developed. Such changes are not an issue when
using Simulated Annealing. However, the drawback in not specifying how the partitioning is
achieved is the greater time taken to search the design space, in comparison with other
methods [66].

A Behavioural partitioning can also reflect well in a cost function due to the likelihood of
there being more data-dependent operations inside a subroutine than outside it, in the form of
parameters passed from a calling subroutine or process, as described earlier in the chapter.
Data-dependencies broken by partitioning, such as a variable written to in one partition and
read a later by another, require additional components to transport their signals in between
reconfigurable resources. Any reduction of additional resources may tip the balance of a cost

function toward accepting the prospective partition.

The final point relates to how the partial reconfiguration of resources is represented in
MOODS HLS. The author has taken a pragmatic approach which uses the same hardware for
theoretical and practical implementations of partial reconfiguration, despite the fact that
current FPGAs require configuration cycles in the order of several magnitudes greater than
the number of cycles used to execute the resources being configured. This approach
implements reconfiguration in a different clock domain to that of the user’s design. During
synthesis, an equivalent configuration time is modelled during the scheduling of
reconfiguration which enables MOODS to overlap the reconfiguration of a resource with the

execution of another. Crucially, the exact delay can be varied depending upon the
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assumptions made about the number of configuration cycles required to configure a resource

and the period of the clock domain.

5.5.1 Resource Binding Transform

In the previous chapter each characteristic associated with the module-based temporal
partitioning of a design was presented and shown to be quantifiable through a metric. When
embodied by the cost function, together they enable an optimisation algorithm to explore the
trade-offs between the different aspects of the design they represent during its partitioning and
optimisation, in addition to enumerating the cost of the device-level infrastructure which
ultimately implements the design using run-time reconfiguration. The next step will bring
together the work presented thus far, by defining a transform which under the guidance of an

optimisation algorithm will be used to perform the temporal partitioning.

The motivation for using a transform to implement the partitioning of a design is the
opportunity it provides in exploring the combined effects of context switching and control
graph and data-path optimisation during synthesis. This is achieved in practice through its
integration into the existing transform-oriented framework provided by the MOODS synthesis
suite. An example of their interaction is during the early stages of optimisation, where there
are many more control states during which the reconfiguration of a module may be scheduled
to overlap, however, as optimisation progresses their number is reduced due to the chaining of
instructions per state. Those modules where the reduced reconfiguration time is the deciding
factor in whether their assignment to a dynamic context is accepted or rejected during
partitioning, are more likely to be rejected during the later stages of optimisation and are very
likely to be rejected when optimisation is done independently and prior to partitioning.

Although there are numerous ways to partition a design, there are likely to be a number of
distinct moves which may be taken. The task of the transform is to perform any one of these
moves under the direction of the optimisation algorithm. The term ‘direction’ is used to
describe the role in which the optimisation algorithm plays, since a sub-module is selected
from a source context of its choosing and moved to a destination context of its choice. How it
makes its choices is very much dependent upon the nature of the heuristic algorithm used, be

it stochastic or deterministic in its approach, examples of each are currently employed during
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optimisation in MOODS. Before examining the different approaches to temporal partitioning
and the role in which the context switching transform plays while under the supervision of

each optimisation algorithm, let us first consider the behaviour of the transform itself.

Recall that MOODS achieves optimisation of a design through an iterative process of
selecting a transform and a target, simulating the changes that would be made to the design by
the transform and quantifying those changes through the cost function. Only then can it
determine whether or not the optimisation of the design is being guided towards its objectives
— in which case the transform may be applied or away from them, the response to which is
generally rejection depending upon the algorithm used. The deployment of the context
switching transform is completely compatible within just such an optimisation framework.
Assuming that the context switching transform has been selected by the optimisation
algorithm, how it came to be selected is inherent to the nature of each of the optimisation
algorithms and is described in a later section. The effect of executing the transform is to
assign a single sub-module to the static or a dynamic circuit context, although, occasionally a
number of sub-modules may also be re-assigned in the process, the result of clustering those
sub-modules allied through an execution hierarchy.

Figure 5.16 illustrates the reaction (shaded) of the transform to each task and decision
undertaken by the optimisation algorithm. The first task of the optimisation algorithm is to
select the target data structures to which the transform is applied. The type of data structure
will depend upon the transform selected, for example, a pair of control states is targeted for
merger by the scheduling transform ‘Sequential merge’. In the same sense, the context
switching transform is applied to the sub-module and circuit context data structures. The sub-
module is chosen, regardless of where it currently resides, be that in a static context or as part
of a dynamic context.

The next decision illustrated is whether the sub-module should form the basis of a new circuit
context on a new reconfigurable region or be assigned to an existing context and region. This
will be influenced by the properties of the module, such as whether its execution is concurrent
to those currently assigned to the region — in which case their execution must be mutually
exclusive for it to be allocated to the same region. When this condition cannot be met, a new

region must be created. There is no decision to be made during the first execution of the
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transform, where there are no existing regions to choose from, in which case there is only one
course of action and the transform responds accordingly by creating a new region and a

context to which the sub-module is assigned.

Prior to its creation, the placement of the region is determined by the optimisation algorithm.
This is due to the fact that its location, in relation to the static region, determines the number
of regions through which the associated communication channel(s) must pass through, in
order to connect any pair of modules divided between the regions. As the number of buffers
utilised in the construction of a channel is a product of its length (in terms of the number of
regions it crosses), there is a cost incentive to limiting the number of regions bridged by the

channel, which is determined by the placement of the regions it connects.

Alternatively, if an existing region is chosen, what happens next is very much dependent upon
the relationship between the sub-module selected and those currently resident in the region.
The term ‘relationship’ is used to denote the execution hierarchy which may exist among the
sub-modules, where the module selected may initiate the execution of another, currently
resident in the target reconfigurable region or vice versa. In either case, the related sub-
modules cannot be simultaneously active in a common region, unless they are clustered in the
same circuit context or their inter-module signals are buffered, fragmenting their execution
over multiple contexts. The assignment of the existing sub-modules remains undisturbed
when their execution is divided over several circuit contexts. The same cannot be said of the
modules affected by clustering which are re-assigned to the temporal context of the first

related module in the region, along with the module selected earlier.

The decision to fragment or cluster a module hierarchy need not be taken solely by the
optimisation algorithm, the user may regard it as an experimental parameter to independently
evaluate the impact of clustering and/or fragmenting the hierarchy upon the quality of the

final solution.

The final decision taken by the optimisation algorithm is whether or not to create a new
context for the sub-module or assign it to an existing one. Once again, it will be sensitive to
the presence of a module execution hierarchy and the approach subsequently taken in
response to it. The outcome of the decision favours either a smaller ‘footprint’ in the

reconfigurable region targeted or a reduction in the level of context switching it experiences.
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There are a number of intervening stages between the selection of a sub-module, circuit
context and the application of the transform; the first of which is an estimation of the effect of
the transform on each of the cost function metrics: it enables the cost function to indicate
whether the effect of the transform constitutes an improvement or degradation in the
optimisation of the design. Figure 5.17 illustrates the steps required to estimate the impact of
the context switching transform and the order in which they must be taken. All the steps are
undertaken, irrespective of which of the moves has been chosen and regardless of the distinct

configurations of sub-module hierarchies that may occur.

Each step need only be carried out for those reconfigurable regions directly affected by a
move, the source of the sub-module (if it is not currently assigned to the static context) and

the destination region.

The first three steps are self-explanatory and correspond directly to the estimation of the area
post-partitioning, dimensions of the communication channel(s) and a measure of the variation
in area of the set of circuit contexts assigned to a reconfigurable region. They were
exemplified in the previous chapter, during the overview of the metrics and formally defined

during the problem definition that followed.

The remaining steps provide an estimation of the reconfiguration overhead associated with the
control paths which may be taken through the circuit being synthesised. Recall that the
reconfiguration overhead of a context is predominantly a product of the time taken to load it
into the configuration memory of the target device and the frequency with which this occurs
during the lifetime of a design’s execution. The sequence of module calls which lie on a given
control path and their assignment during partitioning determines the number of times a
module and the circuit context to which it is assigned are swapped and the context and
modules with which they are swapped.

A profile of the design obtained through a simulation of its execution may aid in the
identification of the control paths that are most likely to be taken in practice. This of course
assumes that in addition to exercising the various aspects of the design, the test-bench can
also accurately model the likely run-time conditions under which the design will operate. In

such cases, the value of this approach is reliant upon there being a significant disparity in the
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likelihood of execution among a number of paths and it being a recurrent feature in other
paths of the design. Those paths which do not exhibit a clear contrast in the likelihood of
their execution are then assumed to have an equal chance of being taken, in which case the
task during estimation is to identify the path associated with the greatest reconfiguration
overhead. This is illustrated by the remaining steps of Figure 5.17, where the reconfiguration
overhead associated with each and every path is found. In doing so, an upper bound
estimation of the reconfiguration time can be established for the present configuration of

temporal circuit contexts.

5.5.2 Context Switch Instruction

To maintain the original execution order of the sub-modules and in doing so, preserve the
behaviour of the circuit design being synthesised, every module must be present in its
designated reconfigurable region prior to being activated by any of its associated calls;
regardless of where it has been assigned during partitioning. To do so, necessitates the
continual switching of each reconfigurable region between a set of associated temporal
contexts. Where a context switch is deemed necessary, the activation of the reconfiguration
controller required to perform a self-reconfiguration of the device must also be scheduled.
The earliest a context switch may be initiated is determined by the last execution call to a sub-
module already resident on the shared reconfigurable region. On the contrary, the latest a
context switch may occur is during the cycle prior to the activation of the sub-module
concerned. Together, they define a partial graph from which an arbitrary vertex may also be

selected to schedule a reconfiguration.

When scheduling the reconfiguration of each of the circuit contexts, the initiation of a context
switch is marked using a dedicated instruction. The origin of the ‘ContextSwitch’ instruction,
as its name suggests, does not lie as the others do in the semantics of the behavioural
specification, rather, it owes its existence to the context switching transform. For it is only
during optimisation that each instruction is inserted or removed to and from a control node
under the guidance of the temporal partitioner. This reflects the transparency in which run-
time reconfiguration is deployed during synthesis, in response to the user’s optimisation
objectives and targets, rather than requiring their involvement and any explicit reference to

reconfiguration in the description of the circuit design.
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Akin to the majority of ICODE instructions, the context switch (CS) instruction is associated
with a node in the data-path, in its case the reconfiguration controller. There are two operands
of a CS instruction, namely ‘Segment’ and ‘Module-Instance’, which together relate the
control state in which the instruction is assigned with the execution call of the module being
partitioned. The first identifies the end of the reconfiguration segment by recording the actual
module call. When the call occurs within another sub-module, it no longer uniquely

references the segment.

The second operand differentiates between what would otherwise be a number of identical
segments, each the result of a separate call to the module in which the reconfiguration
segment is scheduled. Each addition of a CS instruction to a control state creates a
dependency between the ‘ModuleLeap’ instruction associated with the sub-module call and
itself. Respecting the precedence of the instruction dependency ensures that a module is
activated only after the circuit context to which it is assigned is configured in the
reconfigurable region. A new instruction group is created for the instruction and stored within
the control state, reflecting its independence of any other instructions assigned to the state and
the concurrency in which the reconfiguration controller can operate, to exploit the partial
reconfigurability of the target device. In this way, it is possible to overlap the execution of an
instruction with the reconfiguration of another, albeit as part of a sub-module being

reconfigured.

The importance of the role played by the scheduling of the circuit contexts is primarily
dependent on the extent of its influence in reducing the reconfiguration overhead through the
overlapping of reconfiguration with execution and secondly, in its interaction with the

existing scheduling transformations such as the sequential merging of control states.

5.6 Transform Interaction

Signifying the start of each context switch with a ‘ContextSwitch’ instruction and realising
temporal partitioning through a transform, not only enables the simultaneous application of
the scheduling and context switching transformations within a single optimisation run, but

also ensures that where relevant, any optimisation to the control graph or data path is also
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reflected in the temporal partitioning of the modules affected and the scheduling of the circuit

contexts to which they are assigned.

Figure 5.18 illustrates one such interaction between the application of the Sequential merge
transform and its effect on the scheduling of the temporal circuit contexts. Each section of
control graph depicted in Figure 5.18 (a-d) is committed in some way to reducing the
reconfiguration overhead associated with swapping sub-module ‘X’ with ‘Z’ during the
period of its execution. A shaded vertex denotes the beginning and end of each
reconfiguration segment, where the beginning is identified by the CS instruction assigned to it
and the end is an activating call to the sub-module in question; sub-module Y’ is assigned to
the static context. In actuality, all other vertices would be associated with an ICODE

instruction, not shown in the example for the sake of clarity.

The reader will recall the purpose of the Sequential merge transform, that is to re-assign a
group of instructions associated with one control state ‘n,’ to those of another ‘n;” and in
doing so, reducing the length of the critical path by one state (subject to there being no
instruction dependencies with those of the intervening states, nor any shared data path nodes
between the instructions allied to the pair of states selected for merger — unless the
instructions are mutually exclusive). The states may exist in any of the modules, be they in the
program module, sub-module or nested sub-module. Each of the four sections of graph
illustrates a different scheduling scenario from which the pair of control states (ni, n,) is
selected for merger:

a) The control state n, denotes the start of the reconfiguration segment for sub-module Z,
whilst state n; (the destination of the merger) has no association with any segment. For
those paths on which n, marks the beginning of a reconfiguration segment, the result
of its amalgamation with n; will be an earlier context switch of the module, the
consequence of an increase in the segment length. This ASAP effect will decrease the
reconfiguration time for module Z by 15 cycles (the number of states overlapped by
the merger, including those of sub-module Y minus the removal of state n2, upon a
successful merger). If n, does lie on the path incurring the greatest reconfiguration

overhead (worst path) than a re-evaluation of all paths is undertaken to verify whether



D. Esrafili-Gerdeh, 2016

Chapter 5: Implementing Run-time Reconfiguration

182

or not the merger has brought about an improvement in the path which may no longer
differentiate it as the worst.
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Figure 5.18: Merging control states from within reconfiguration segments.

b) The merger of the pair of control states will result in contention for the configuration

port of the target device. This is due to n; being part of the reconfiguration segment of
module X and n, once again, signifying the start of the segment for module Z. If the
states occur in a sub-module, it is pertinent to verify whether or not their segments

relate to a single temporal instance of the module and also if they are executed on the
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d)

same control path, otherwise an overlap in reconfiguration cannot take place. When it

does occur, there are a number of responses which may be adopted.

The first is to prohibit the contention from occurring by ensuring that it is detected and
discarded during the validity test for the sequential merge transform prior to its
estimation. The disadvantage with this approach is the missed opportunity for
optimisation, the consequence of discarding a pair of control states. Another is the
increase in the optimisation time resulting from the time spent re-selecting an

alternative pair of control states, especially when it is a common occurrence.

A different approach is to re-schedule the start of the segment associated with n,, for
example, assigning it to the preceding node Y and in doing so, permitting the merger
of the states whilst avoiding the simultaneous access of the device configuration port.
Alternatively the sub-module of one of the conflicting contexts can be re-assigned to

the static context, in this case X or Y, thus permitting the merger of the control nodes.

The change in the partitioning will require an update of all the affected metrics (area
post-partitioning, channel and reconfiguration overhead). In particular, a revision to
the reconfiguration overhead metric may necessitate the re-determination of the worst
path, the repercussion of change in the swapping characteristics of those modules on
whose paths the conflicting module(s) were executed. Whichever approach is taken to
resolve a reconfiguration overlap, the merger of the control states and the changes
required to permit it are jointly estimated.

Once again a conflict will arise following the amalgamation of the two states, both of
which are scheduled to initiate a context switch of a reconfigurable region for their
associated module X or Y — the choice of solution adopted is the same as (b). Upon
application of the transform, one of the CS instructions is either re-assigned or
removed permanently from the control state and once again, the re-evaluation of all
paths is undertaken, in order to identify the path which will incur the greatest

reconfiguration overhead.

This scenario is dissimilar to the others, in as much as, although n, is part of the

reconfiguration segment of module Z, it does not mark the beginning of the segment.
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The elimination of n; (if its instructions are re-assigned to n;) will reduce the length of
its former segment of graph by one state, irrespective of the circumstances of n; (be it
the start of the segment as shown, part of the segment or not part of any segment).
Consequently, there will be an increase in the reconfiguration time associated with the
loading of sub-module Z and any paths on which it lies. Regarding the worst path,
there is no requirement to search for it, as either, the pair of states are taken from it and
consequently their merger will reduce the length of segment associated with n, by one
cycle (maintaining its designation as the worst path) or the path on which the pair lie
must have been at least a cycle shorter than the worst path, in which case, its increase
in reconfiguration time can only equal that of the worst path. In either case, the re-

determination of the worst path is unnecessary.

Each of the scenarios described above can also be encountered during the application of the
‘Merge fork and successor’ transform, its purpose is to move the instructions of a successor
state into its predecessor (the fork), in doing so, the control arc is converted into a conditional
instruction making the immediate successor state redundant. Eventually, upon repeated
application of the transform, the fork construct itself becomes superfluous. As an individual
branch, the fork can be regarded as a general control state with a single output arc to a
successor, then a reconfiguration segment affected by the merging of a pair of sequential
general control states would be similarly affected by the merger of a fork and its successor,
had the segment lain on a single branch of the fork. The rest of this section reviews the effect
which the remaining transforms can exert upon the reconfiguration of temporally partitioned

modules.

A variable that is written to and read from by a single instruction executed within its own
control state is an appropriate candidate to which the ‘Group instructions on variable’
transform may be applied. Each read or write is implemented in the data path by a register
with a single input and output data-path net. Merging the write and read instructions within a

single state removes the register and the state in which it was formerly written.

Since either state may be associated with a reconfiguration segment, once again, there is the
possibility that their merger will affect the scheduling of a context switch. There are a number

of circumstances similar to those encountered by the previous transforms. The states may
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occur within a single segment or belong to entirely different segments, in either case the effect
of applying the transform will be a reduction in segment length, at the expense of an increase
in its associated reconfiguration time. However, unlike the other transforms, the target state

(in which the variable is read) must occur after the state where it was written.
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Figure 5.19: Group instructions on variable transform and reconfiguration segments.

Depicted by the sections of control graph in Figure 5.19, deciding when to schedule
reconfiguration can present a subtle dilemma if the writing state ‘n,,’ of the variable is also
used to mark the beginning of a reconfiguration segment not encompassing the reading state
‘n,’. The amalgamation of the segments will break the instruction dependency between the CS
and ModuleLeap instructions and result in an execution call to module X before it has been
loaded in to its reconfigurable region. To prevent this from happening and to also enable the

transform to be applied, the start of its segment is re-scheduled to the preceding state at time
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step “ty” shown in Figure 5.19 (b) or the instruction dependency and segment can be removed
by assigning the effected module X to the static context (c). The decision as to which response

is deployed is implemented through a parameter set by the user prior to optimisation.

The “Inverse Scheduling’ transforms can also exert an effect over the scheduling of a context
switch. The purpose of the first “‘Ungroup-Node Into Time’ transform is to un-chain groups of
instructions whose execution within a particular control state exceeds that of a delay
parameter set during optimisation or through the cost function, to specify a maximum clock

period constraint.

The selected control state may form part of a reconfiguration segment or be used to mark its
beginning, as shown in Figure 5.20 (a). The state is left undisturbed since it has no other
dependent instruction in the state, in contrast to the other instruction group. In Figure 5.20 (b)
the state’s instructions are re-assigned to new control states, where the exact number is
determined by the instruction depth of the group and the size of the target node delay
parameter (25 ns in the example shown) which the transform attempts to meet. Each
additional control state lengthens the segment *S’, in effect, scheduling an earlier start for
reconfiguration of the associated module and its circuit context. Should the control state occur
in a sub-module, the change in scheduling must also be taken into account for each and every
temporal instance of that sub-module. For all reconfiguration segments, irrespective of their
module association, only those segments which lie on the control path credited with
generating the greatest reconfiguration time will contribute to the cost function (where there
are a number of control paths, each of which are equally likely to be taken) and ultimately

determine whether or not the transform will be applied.

In much the same way, the *‘Ungroup node into groups’ transform can also act to lengthen a
reconfiguration segment S, although how this is achieved differs to the previous transform, in
that an entire instruction group is extracted to a new control state, as illustrated in
Figure 5.20 (c). When the group chosen initiates the reconfiguration of a segment, its re-
scheduling a cycle later will have no consequence on reducing the length of its associated
segment (Figure 5.20 (d)). Once again, the effect of the transform is repeated, where
applicable, on any number of module instances and only reflected in the cost function when it

occurs on the worst path.
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Figure 5.20: Inverse-scheduling transforms and the timing of reconfiguration segments.

The outcome attributed to each transform thus far, has been a change in the scheduling of
each swap of a temporal circuit context. What remains to be considered is the consequence of
optimising the design for a reduced circuit area, be it through the merging of control states
and the subsequent removal of registers among their dependent instructions or through the
sharing of functional units on the data path. Its relevance to temporal partitioning is through a

change in the circuit area of each sub-module.

At any point during partitioning, the circuit area is found as the combined area of the static
circuit context and each of the reconfigurable regions. Recall that the area of each region is
defined by the largest temporal context assigned to it. Any change in the area of one of its
sub-modules will bring about a re-evaluation of the dimensions of all its contexts, in a bid to
find the largest. Significant changes to the circuit area can also arise from the data-path
allocation transforms, whether the outcome is a reduction in area arising from the mapping of
a single functional unit to two or more instructions, or its increase, as a result of the inverse
allocations transforms — they attempt to reverse the sharing of a data path unit, either for a
single instruction and unit or by separating all instructions by returning to a one-to-one
mapping of an instruction to functional unit. In addition to the effect on the area metrics, any
change in circuit area will also impact on the reconfiguration time. This is due to it being
directly proportional to the area of the module, modelled in terms of its columnar usage of

resources and ultimately at the device level, through its configuration bitstream.
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5.7 Summary

This chapter continues the theme of representing run-time reconfiguration in terms of circuit
abstraction and the infrastructure to realise it: at the highest level, the sub-module behaviour is
encapsulated through a System layer. At this level, the workings of the infrastructure are
completely transparent to any sub-module wishing to activate another. This is applicable
irrespective of the topology or placement of the static and reconfigurable regions, such detail

is relevant only at the next level, the Communication layer.

A temporal partitioning of the subroutine modules will break the assumption that all modules
are ‘on silicon’ at the same time. As a consequence, a fixed communication channel provides
the interface necessary to context switch the resources of an FPGA, in response to the

sequence of module calls executed.

As a result of temporal partitioning, the ‘topology’ of the partitions will determine the
characteristics of the communication infrastructure. One example of a particular topology
might require all subroutine modules to share the same communication channel. In this
scenario, the control and data-path signals passed between a pair of active modules at the
system level are represented as transactions of the channel, the use of which is governed by

protocol.

Central to the communication protocol is a module address ROM, customised during
synthesis to provide each module with a unique binary address in the architecture, irrespective
of the circuit context and region in which it is assigned to during partitioning. Modules
hierarchies of any depth are permitted, where each module can also be placed in any circuit
context and assigned to any region. The exception is the top level program module which
must remain active in the static region throughout the circuit’s execution, from where it can
initiate the first call of any execution hierarchy and receive notification upon its completion of

execution.

As its name implies, the Physical layer provides the device level control necessary to perform
partial reconfiguration of the FPGA. Its remit concerns the fetching of the data-streams and
the control of the device configuration port, both of which are done ‘on the fly’ during circuit

execution. Akin to the module address ROM, all circuit context data-streams are tagged with
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their location in a memory. It contains more than the raw data-streams, as a number of micro-
coded commands are used to locate each data-stream, in the presence of any conditional

control paths on which its module might lie.

Having defined the layers of abstraction, the remainder of the chapter described how the
architecture is implemented in MOODS HLS: a temporal partitioning transform has been
created to partition VHDL subroutines to dynamic circuit contexts, each of which are

assigned to execute upon isolated regions of an FPGA.

A new ICODE instruction has been created to mark when a context switch of a sub-module
partition occurs. It is used by the scheduling routines to overlap each segment of
reconfiguration with the execution of a sub-module already active on the device. In addition
to reducing the reconfiguration time, the scheduling of each temporal context takes into
consideration the frequency in which a circuit context is swapped with another, as dictated by

the execution order of the sub-modules.

The cost function described in the previous chapter measures the trade-off between the area
reduced through temporal partitioning and the reconfiguration penalty incurred. Through the
use of the context switching instruction, the partitioning transform provides the cost function
with a means of denoting when reconfiguration occurs; however, the physical resource use
must also be included in the cost function. In practice, the instruction is allocated to a

reconfiguration controller in the data-path.

The reconfiguration controller enables the MOODS state machine controller to perform self-
reconfiguration of the FPGA through either its external control pins or internal configuration
port; depending upon the characteristics of the target device. In addition to the reconfiguration
controller cell, a number of channel controller cells are also synthesised, as part of the
infrastructure necessary to support partial reconfiguration. Each controller is local to the
region in which it is placed and is the principle means through which one region can
communicate with another. The control and data signals pass through a number of parallel
communication channels, the exact number of which, as with all aspects of the architecture is
determined during synthesis.
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In temporal partitioning, ‘when’ a subroutine will utilise a resource is as important as ‘where’
that resource might be. With that is mind, the chapter concluded with an examination of the
interaction between the subroutine-level resource binding transform and the existing
instruction-level scheduling transforms: it described how a number of scheduling transforms
are exploited to influence the times in which context switching can occur, in some cases even
acting to influence the formation of the partitions. By doing so, the chapter re-iterates the
importance of considering a circuit representation at more than one level of abstraction, a

perspective made practical by the work described in this chapter.
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Chapter 6

Implementation and Results

This chapter presents the results obtained using MOODS behavioural synthesis after
incorporating the approach to temporal and spatial partitioning described in the previous

chapter.

6.1 Experimental Objectives and Method

The purpose of the following experimentation is to assess the use of the simulated annealing
optimisation algorithm when employed during module-based temporal partitioning. However,
the absence of a specific approach to partitioning means that the algorithm can also be used to
explore the relationship between an action or ‘move’ taken during partitioning and its effect
individually and collectively on the partitioning metrics. More specifically, whether or not a
particular move is biased toward a given criterion in a way which drives it closer to or further

away from its user specified target.

The first step required to achieve these aims is to establish the annealing schedule. This
consists of defining the initial and end temperature parameters (Tsart and Teng) respectively,
the magnitude of the temperature steps required to pass through the temperature range and
finally, the number of transformations applied at each temperature step. In cases when
partitioning and optimisation are performed separately, the latter two parameters fix the
number of partitioning moves undertaken to 1000 — the minimum number of moves found
from early experimentation and thought necessary to quantify the behaviour during
partitioning, whilst being sensitive to the time taken to perform the experiments. Where
optimisation to the control and data-paths occurs alongside partitioning, the exact number of
partitioning moves is determined by the optimisation algorithm as it decides which transforms

to apply during each temperature step.
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The next task is to set up the cost function so that during the course of the experimentation,
the effect of partitioning on an individual criterion can be quantified. Recall that each move

taken during partitioning is measured using the cost function:
costrp = Cpartarea : ATP + Creconfig ‘Tg + Cchannelwidth ‘B

where: Cpart areas Creconfigr Cchannelwiath» Cpar @re Weighted constants used to reflect the
user-specified optimisation priority of the area (post partitioning), reconfiguration overhead

and the buffer utilisation metrics respectively.

The impact of circuit partitioning on an individual cost function criterion can be determined
by setting the priority of the criterion to high whilst ensuring that the remainder are set to low.
The task during partitioning and/or optimisation is to meet the target of the highest priority
metric before proceeding to the next. The ‘status quo’ can be maintained throughout the
partitioning and/or optimisation session by setting the criterion under examination at a priority
higher than the others, in conjunction with a target minimising to zero. All criteria targets are
set to zero, with the exception of the channel metric: its target is determined dynamically
during the course of partitioning, from a model of the target FPGA chosen to closely fit the
area which would result from the proposed partitioning of the circuit modules. In doing so, it
provides an upper bound on the number of buffers utilised in the channel(s) linking the
reconfigurable regions on which the circuit contexts are executed. Since it is possible in
MOODS to implement multiplexors using tri-state buffers, for instance, to facilitate the
sharing of data-path units during optimisation, the channel will not have access to all of the
buffer resources available on the FPGA. To investigate the effect this can have on the channel
buffer metric, a percentage of the available buffers is used to realise the communication

channels.

The following cost functions are used during experimentation:
1. Arp(High), Tp(Low), B(Low); Arpigyger = 0
2. Arp(Low), Tp(High), B(Low); Toigrgee =0

3. Arp(Low), Tp(Low), B(High); Bigrger = (100, 50, 33, 25, 10, 1) % of target

device.
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4, ATP(ngh), TD(ngh), B(ngh), ATPtaTget = O, T

Dtarget = 0’ Btarget = 0.

The purpose of the first three cost functions is to examine whether the partitioning moves are
accepted or rejected more frequently when associated with a high priority for a particular cost
function metric. For example, setting the area metric Arp to a higher priority than the others
and assigning a target of area of zero would bias the cost function to using temporal
partitioning to reduce the circuit area. The cost function is more likely to reduce the circuit
area by relying upon moves which create or modify temporal partitions, as opposed to those
which create the reconfigurable regions on which they are swapped.

The fourth cost function assigns a high priority to all metrics and in doing so enables the
trade-offs between all aspects of temporal partitioning to be simultaneously evaluated through
the cost function metrics. With reference to the previous example: the frequent use of
temporal partitioning would now be weighed against the penalty of a reconfiguration delay. A
compromise between the conflicting metrics could favour the re-assignment of subroutines
between existing partitions, rather than rely upon partitioning moves which favour a high
priority in either area or reconfiguration delay metrics through the creation of more temporal
partitions or reconfigurable regions, respectively.

The purpose of the fourth cost function is to examine the most likely scenario required by the
user, which is to partition a circuit with the goal of minimising all metrics without
precedence. The effect of this cost function is of particular interest since unlike the others, it
cannot easily be inferred without evaluation. For example, making the area (post-partitioning)
the highest priority in the cost function, encourages the creation of multiple single module
circuits contexts: the optimum partitioning would be a single reconfigurable region whose
dimensions are defined by the largest circuit context. At the same time, it should also
discourage the addition of modules to those contexts, the consequence of which would be an

enlargement of the associated region.

When examined individually, each of the remaining metrics would seem ‘on paper’ to
improve or degrade in response to specific moves; for instance, the actions which would guide
the area metric towards an optimal outcome should also have a diametrically opposite effect

on the reconfiguration overhead. In this way, it echoes the classic area and delay trade-off
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found in circuit optimisation. However, when all metrics are given equal priority, the final
‘energy change’ which quantifies whether the proposed move is one which will improve or
degrade the partitioning is found by comparing the magnitude of the energy change of each
criterion in turn. The criterion whose energy change dominates (be it in a way which
improves or degrades the partitioning) subsequently determines the outcome of the move, a
task which cannot be undertaken without some way of evaluating a given partitioning. Of
course, this is the motivation behind quantifying the cost of partitioning and data and control
path optimisation, enabling the user to explore the many alternative implementations of a
circuit from a single behavioural description; an undertaking too laborious to perform by
hand.

The remaining experimental parameter determines when the reconfiguration of each context-
switch may occur (ASAP/ALAP) within the confines set by the behaviour of the modules
being partitioned (the sequence of module calls in the control graphs) and their actual

assignment during partitioning.

6.2 Results and their Analysis

The Synthesis results are interpreted by examining the relationship between the average
energy change (dE) measured through the cost function and each action taken during
partitioning. The partitioning ‘moves’ implemented by the context switching transform during
the course of partitioning are: the formation of a new reconfigurable region and circuit context
(to which a module is assigned); the creation of a new circuit context in an existing region; the
expansion of an existing circuit context (a distinction is made should the move result in the
partitioning of a sub-module execution hierarchy) and finally, the assignment of a module to
the static region. Where applicable, the source and destination of the module being moved is
taken into consideration, to identify the effect of re-assigning the modules within the same

region.

During the execution of the annealing algorithm, the effect of each move upon the cost
function criterion under investigation (highest priority) is recorded and categorised as
improving (-dE), degrading (+dE) or having no effect (0 dE).
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The graphs of Figure 6.1 depict the results generated when partitioning a circuit with the
highest priority given to the area metric (post partitioning) for an annealing schedule
commencing at Tsr=200. The schedule was also used for the remaining metrics, unless
stated otherwise. Each energy change (y axis) associated with the particular type of move (x-
axis) is expressed as a percentage of those moves which have the same effect on the metric,

be that an improvement or degradation and are plotted to illustrate any contrasting effect.

Figure 6.1 (a) illustrates that the greatest positive energy change associated with the reducing
the circuit area is achieved through the creation of new circuit contexts. Figure 6.1 (b)
suggests that such contexts are formed without the need to create many new regions; this has
the greatest single degrading effect on the circuit area, short of re-assigning the modules to the

static region (also depicted).

As for the remaining move, that of assigning a module to an existing context, the reader will
notice that its effect is not as distinctive as the others. That is to say, the result of its
application can be equally improving and degrading. The rationale for this is that the process
of assigning a module to a different region or indeed within the same region can reduce the
variation in size of the circuit contexts which are swapped over those regions affected by the
move. In doing so, it can act to reduce the overall circuit area required by the regions.
However, since module selection is done in an arbitrary fashion, there can also be as many

degrading moves, as depicted.

The remaining metrics are examined using the same approach: all moves will have an
improving, degrading or to a lesser extent no effect on a particular metric; but each move is
examined in terms of the magnitude of its effect, the aim being to attribute one or two

principle characteristics of each move with a distinct effect upon a given cost function metric.

In this way, the trade-offs between each of the metrics which to date have been inferred ‘on

paper’ are now verified through experimentation.
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Figure 6.1: Circuit partitioning for circuit area set to a high priority.

The next metric under examination is the reconfiguration overhead, the results of which are
shown in Figures 6.2 (a, b). Unlike the area metric, the general response to partitioning is not

as clearly defined in terms of a predominant improvement or degradation to the
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reconfiguration time, although rather predictably, little degradation comes from assigning the

module to the static region.
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Figure 6.2: Circuit partitioning for reconfiguration overhead set to a high priority.
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The first occurrence of a conflicting outcome is the consequence of creating a new
reconfigurable region. It reflects the dual aspects of the reconfiguration overhead, derived
from the time taken to load each module and the number of swaps required of the circuit
context it is assigned to. Creating a new region and assigning a module to it will always
increase the reconfiguration time proportional to the area of the module and hence the
degradation to the reconfiguration overhead. However, in some circumstances when the
module is taken from an existing region with a high rate of swapping among its contexts, the
net effect over both regions (source and destination) is an improvement to the metric,

reflected in the results as being on average the most improving move.

Another conflicting move and the second most improving move is the result of shuffling the
modules between the circuit contexts, although on average, its improvement is almost equally
matched by moving the modules to the static region. However, this is the least preferred
option since it will also simultaneously degrade the area metric. The degree of swapping of a
circuit context is always a multiple of its reconfiguration time and any attempt to re-assign
modules which are taken from contexts frequently switched between undoubtedly acts to
reduce the reconfiguration overhead, as illustrated. Of course, when this is done without
sensitivity to the characteristics of the circuit e.g. not taking into account structures like finite

loops which are present in the encryption examples, than the degradation can be significant.

Rather predictably, the next most improving (and least degrading) move is to assign the
module to the static region. This is followed by an improvement in the reconfiguration
overhead associated with the creation of new circuit contexts. Once again, the reduction in
reconfiguration time is attributed to the benefit to the source and destination regions in terms
of the reduced swapping. What is unexpected is that it is not the most degrading of moves. Its
role ‘on paper’ is in opposition to the improvement gained by partitioning modules over
circuit contexts. However, the results show the percentage of moves which degrade and not
the extent of that degradation. This is examined in due course when all three metrics are given

equal priority in the cost function.

Figure 6.3 illustrates the effect of scheduling the start of each context switch just prior to the
execution of the modules assigned to them (ALAP), in terms of the percentage of improving

and degrading moves. The results are compared with those in Figure 6.2.
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Figure 6.3: Effect of scheduling each context switch as late as possible.

The reader will observe after comparing the first pair of graphs (6.3(a), 6.2(a)) that there are
two distinct changes in the percentages of moves which improve the reconfiguration
overhead. The first is a marked increase in the occurrence of creating ‘new regions’ to achieve

improvement to the cost function. The second is a significant reduction in the percentage of
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moves that assign a module to an existing context. An explanation for these discrepancies is
that the increased penalty associated with reconfiguring ALAP means that assigning a module
to a new region is more frequently relied upon to reduce the cost of swapping subprogram
modules. As consequence of creating new regions, the number of moves to existing ones is

significantly reduced — as can be seen in the pair of figures 6.3(a), 6.2(a), respectively.

An alternative explanation for a decrease in moving modules to existing partitions is the
absence of any potential overlap in the scheduling of their *Context Switch’ instructions:
section 5.6 in the last chapter describes several scenarios in which the scheduling of the
temporal partitions can interact with the existing scheduling transforms. Scheduling a context
switch as soon as possible (figure 6.2(a)) increases the likelihood of an existing scheduling
transform overlapping the reconfiguration of circuit contexts. An improvement to the cost
function can occur by allowing the affected contexts to merge and this opportunity is removed

when their scheduling occurs as late as possible (figure 6.3(a)).

The remaining move to have been affected by a change in scheduling concerns the creation of
‘new contexts’ on existing reconfigurable regions. As shown in the charts of figures 6.2 (a)
and 6.3 (a), scheduling each reconfiguration as late as possible led to an increase in the
number of new partitions for those test circuits which featured little (Quadratic equation
solver) or no nested sub-module execution (Rijndael, Encryption and Matrix circuits). The
rationale behind this result is that separating a module from other members of the hierarchy
will inevitably increase the reconfiguration overhead due to context switching between a
partitioned sub-module hierarchy; creating new circuits contexts to offset any increase in
reconfiguration delay due to scheduling can only be exploited by circuits without a significant

execution hierarchy.

Regarding the effect that ALAP scheduling has upon the number of degrading moves, a
comparison between figures 6.2(b) and 6.3(b) shows there to be no dramatic increase in their
number; moves which incurred a high reconfiguration delay when scheduled ASAP continue
to do so when the range of their scheduling is constrained. Another explanation is that the
change in the number of improving moves shown in figure 6.3(a) compensated for the
constraint imposed by ALAP scheduling. This explanation is supported by the fact that the
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number of improving or degrading moves to the *static context’ (shown in figures 6.2 and 6.3)

has not significantly changed due to ALAP scheduling.

The effect of the partitioning moves upon the remaining criterion, ‘channel buffers’ is
considered next. Recall that unlike the other metrics (which are minimised to zero), the target
for the channel buffers can be met during experimentation. This occurs when the number of
tri-state buffers implementing the communication channels for a given partitioning of
modules can be realised using the resources of the current target device. During such periods,
the effect of a given move is quantified by the cost function through the next highest priority

criterion, the equally low priority ‘reconfiguration overhead’ and “area’ metrics.

It was necessary to filter out the influence of the lower priority metrics and therefore only
consider the direct relationship between a move and its impact on channel buffer utilisation.
This was achieved by gradually reducing the percentage of the available buffers offered by
the target device until the target was met, whilst recording the effect on the number of
improving and degrading moves. The exemplar circuits do not exhibit any degree of
concurrency in their structure. This means that at any given point during their execution, only
one module need have possession of the communication channel. The resulting bi-directional
channel requires a smaller percentage of available buffer resources and this is reflected in the
results: only when a lower percentage of the available buffers are targeted (25-10%), is there

evidence of a distinct effect upon the channel buffer metric.

The graphs of Figure 6.4 depict the nature of the improving and degrading effects upon the
channel metric, when associated with each type of move taken during partitioning. The results

depicted are generated using an annealing schedule commencing at Tst=200.

A feature which the reader may have noticed is that some circuits exhibit an effect when
subjected to specific moves, whilst others do not. The rationale for this is attributed to the
characteristics of the subprogram modules themselves. For instance, in Figure 6.4 (a) the
improvement brought about by re-assigning the modules to the static region is only present in
those circuits which have the greatest variation in signal nets. In other words, the remaining
circuits do not benefit from this move because their signal characteristics are unlikely to

define the width of the channel e.g. the Rijndael circuit has 5 of the 8 modules with identical
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signal widths. Similar qualities are found in circuits which are also not improved by such a

move — the reader is referred to Appendix B for further details of individual test circuits.

Figure 6.4 (a) depicts the improving effect of other partitioning moves upon the channel
buffer metric. In addition to selecting a destination context on the static region, circuit
contexts on existing reconfigurable regions also present an opportunity for improving the
channel metrics. Two explanations account for this behaviour: the first is a predisposition of
the test circuits and the effect it has upon the channel buffers concerning the assignment of
subprogram modules to existing circuit contexts. Improvement in channel buffer utilisation

occurs for moves that group pairs of dependent modules together in the same circuit context.

Modules which are unrelated to any other in the destination context do not improve the width
of the channel interface. This can be explained by the mapping of the cutset onto a single bi-
directional channel; transferring a module from one reconfigurable region to another has no
effect on its width. Should the destination region encapsulate the complete execution
hierarchy than this would mean that no signals are cut by the partitioning. Of course the cutset
would have to define the channel in terms of its length and/or width to have an impact on an
improvement to its buffer utilisation. Inspection of the graph indicates that those circuits
which gain from such a move all feature multiple subprogram hierarchies, as exemplified by

the equation solvers.

The second explanation for the improvement to the channel buffer metric concerns the length
of the channel itself, irrespective of the data-dependencies between the subprogram modules
which use it. Specifically, improvement may be made to the length of the channel by moving
subprogram modules closer to one another, reducing the number of regions crossed by the

channel and consequently the number of channel buffers required to interface them.

The remaining move to improve the channel buffer metric requires the creation of new circuit
contexts. Again, the results depicted in figure 6.4 (a) show that the source of the modules

moved during partitioning is to be found in the static region.
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Figure 6.4: Circuit partitioning for channel buffers set to high priority.

Once more, improvement in the buffer metric is due to the module being transferred closer to

its relative, however, in this case, the relative(s) may also be re-assigned to the new context in
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the process — depending upon whether the hierarchy is clustered or partitioned across the

region’s contexts.

Unlike the other partitioning moves, the creation of a new region has no improving effect
where a single communication channel is targeted, on the contrary it is the single significant
source of degradation to the channel buffer metric (as shown in the figure 6.4(b)); the creation
of a new region can only serve to lengthen the channel. Although creating new regions is
primarily targeted to relieve existing regions which exhibit a high degree of context
switching, it can act to reduce the length of multiple channels: its effect is to alter the
placement of a region, reducing the number of regions crossed by the channel and in doing so,
its length i.e. a module assigned to the static region wishing to communicate with another two
regions away to its right-hand side, would have to cross through the first region — unless it

was placed to the left-hand side of the static region.

To date, the effect of each type of partitioning move upon a given cost function metric has
been examined in isolation to the others. The motivation for doing so was firstly to determine
the moves which bring each metric closer to its target — obviously useful if partitioning with a
single priority in mind. However, the likely scenario for partitioning is one where all metrics
are required to be minimal — requiring a number of trade-offs to be made among each. The
next step is to examine the behaviour underlying such decisions, where it will be shown that
the properties of the exemplar circuits bias the outcome of certain cost function trade-offs
towards the principle characteristics of each of the metrics presented earlier.

Table 6.1 summarises the trade-offs between the reconfiguration overhead and circuit area
metrics; two partitioning moves are quantified: the first is the reduction in circuit area
achieved through the creation of new circuit contexts which are swapped over a
reconfigurable region, versus the penalty associated with swapping those circuit contexts. The
second addresses the degree of swapping by assigning those modules previously swapped
with one another to the same circuit context, although at the expense of an increase in the
circuit area and the dimensions of the region required. A trade-off is necessary because the
effect on the circuit area and reconfiguration overhead for each move is opposing: an
improvement in one metric at the expense of a degradation to the other. The results of the

circuit partitioning are expressed as a ratio of improving to degrading moves associated with
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each area and reconfiguration trade-off. Shown alongside each trade-off are the original

values for the metrics associated with a given subprogram partitioning; all target criteria are

minimised to zero.

Cost function Area vs Reconfiguration Partitioning Results
Trade-offs
Circuit Area Reconfiguration | New contexts | Existing Area Reconfiguration
Priority | Overhead A(-dE):R(+dE) | contexts (CLB Overhead
Priority A(+dE):R(-dE) | Slices) (ms)
Quadratic | High | Low 20:1 2:1 1880 5.1
Low | High 1:12 1:30 4190 0
High | High 44:1 2:1 1880 5.1
Cubic High | Low 4:1 2:1 6026 3.29
Low | High 1:4 1:20 8965 14.4
High | High 2:1 3:1 6018 3.22
Quiartic High | Low 3:1 8:1 7792 36.4
Low | High 1:4 1:12 15745 | 8.72
High | High 1:1 4:1 8392 36.4
Rijndael High | Low 29:1 1:1 5626 122
Low | High 1:3 1:24 5927 0
High | High 1:2 2:1 5709 6.83
Encryption | High | Low 1:1 2:1 9241 25.0
Low | High 1:3 1:94 9711 0
High | High 1:2 1:1 9344 0.60
Matrix High | Low 1:1 18:1 3483 5.62
Low | High 1:2 1:30 7324 0
High | High 25:1 3:1 3491 5.67

Table 6.1: Contrasting the trade-off between circuit area and reconfiguration overhead.

The effect of prioritising a given metric is clearly shown. For instance, partitioning the

quadratic equation solver with a high priority assigned to the circuit area metric favours the

creation of many circuit contexts: for every move that has a degrading effect on the

reconfiguration time, there are 20 which are beneficial to the circuit area. Similarly (although

less dramatically), for every move that reduces the reconfiguration overhead by targeting an

existing context, there are twice the number which increase the circuit area. The effect is

shown on the outcome of the partitioning, where a bias towards circuit area results in a circuit

of 1880 Xilinx Slices [6]. Partitioning in favour of the reconfiguration overhead prevents any
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reduction in circuit area and incurs no reconfiguration overhead. The bias is evident in the

other exemplar circuits albeit in different proportions.

Of particular interest is the outcome when equal weight is given to the cost function metrics:
the results indicate that partitioning favours the area metric. In some cases, such as the
Quadratic, Cubic and Matrix circuits, the outcome is the same or very close to what it would
have been had partitioning to reduce the circuit area been the highest priority. The motivation
for quantifying the effect as a ratio now becomes clear because in those cases where the
results are the same, the ratios of circuit area to reconfiguration overhead reveal that the cost

function acted more often towards reducing the circuit than reconfiguration delay.

For all other circuits, the result is more of a compromise between the metrics. In these cases,
the reconfiguration overhead tends to offer more resistance to the swapping of the subprogram
modules. For example, reducing the circuit area through the creation of new circuit contexts is
less effective in the Quartic equation solver than it is in the Cubic and Quadratic circuits. This
is because there are a similar number of moves favouring both the reconfiguration and area
metrics; this is not the case regarding the other equation solvers. The effect is also repeated in
the encryption circuits, where the ratios are reversed to reject half as many moves which

would otherwise have been accepted.

An explanation for the resistance offered by the reconfiguration metric is to be found in the
characteristics of the circuits themselves. The length of the Quartic equation solver, in terms
of the number of module calls along the critical path is greater than the other equation solvers;
in fact, the Quadratic equation solver is present as a sub-module. As a consequence, the effect
is a greater reconfiguration overhead due a high degree of swapping among the circuit
contexts. A similar effect occurs in the encryption circuits because of the presence of the
finite loops: any swapping within a loop is magnified by number of cycles it performs - in the

case of encryption circuits this can be as many as 104 times.

Recall that unlike the area and reconfiguration metrics which are minimised to zero, the
channel metric can be satisfied using a target device with more resources than are actually
required by the channels. This does not happen frequently, as the target device tends to get
smaller in terms of its resource capability depending upon how successfully the circuit area is

reduced through partitioning. Three-state buffers are also utilised during data-path
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optimisation to implement the multiplexors which permit the sharing of the functional units.
At some point, there could exist a resource conflict caused by allocating the buffers for
optimisation and therefore reducing the number available for implementing the
communication architecture. To examine the effect this could have on the partitioning
metrics, the channel target was specified as a percentage of the available buffers resources;

the results are presented in Tables 6.3 to 6.7.

As was expected, a tighter constraint placed upon the buffer resources had an impact on their
usage during circuit synthesis. This can be seen in the ‘channel buffers’ column in each of the
tables. However, a secondary effect occurred in the formation of the regions: the tighter the
target, the fewer regions were created during partitioning. The reader will recall that the
greatest form of degradation experienced by the channel metrics (see Figure 6.4(b)) resulted
when the creation of a new region had taken place. This makes sense because each new region
serves to lengthen the channels — the more boundaries there are to cross, the greater the

utilisation of three-state buffers.

The ramification of reducing the number of reconfigurable regions available for context
switching of temporal partitions is a gradual increase in the overall circuit area. A positive
upshot of this is a reduction in the reconfiguration time for a given region; the partitioner is
less likely to compensate by increasing the number of temporal partitions for the remaining
regions. In the majority of the circuits, the effect can reduce the number of regions by half. At
one percent of the available resources, the degradation to the channel metric can be sufficient
to dominate the decision making and reject all potential moves taken during partitioning.
When this effect begins to occur would appear to be dependent upon the characteristics of the
circuit themselves. Table 6.2 shows the variation among the size of module nets for each of
the circuits.

The actual point at which the constraint becomes effective would appear to be related to the
variation in the size of the circuit’s nets. For instance, the matrix circuit appears not to
respond until given the tighter constraint of 50% of available buffer resources; it exhibits the
greatest variation in module net widths (Table 6.2).
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Circuit Standard
Deviation
(subprogram
population)

Matrix functions 125.4

Quiartic equation solver | 37.9

Encryption/Decryption | 19.5

Cubic equation solver 17.9

Rijndael encryption 16.9

Table 6.2: Variation among the module nets for each exemplar circuit.

The next circuit to be most affected by the limited resources is the Quartic equation solver

(33%) which also has a large variation among its module nets. The remaining circuits each

undergo the effect at 10% of their accessible buffer resources. The usefulness of being able to

relate the characteristics of a circuit in terms of buffer resources may assist the designer in

determining the proportion of resources to allocate to circuit optimisation and channel

implementation prior to synthesis.

Cost function

Partitioning Results

Area Reconfiguration | Channel | Target Buffer | Area Reconfiguration | Delay Freq | Channel
Priority | Overhead Buffer | device Target | (CLB | Overhead Buffers
Priority Priority | Buffer Met Slices) | (ms)
Utilisation | (%)
(%)
High | High High 100 79.2 | 3483 | 5.67,2r,S 1945 | 11.8 | 1152
50 46.2 | 3483 |5.59,,S 1152
33 42.1 | 3483 |5.59,,S 1152
25 37.7 | 5179 |4.83,rS 832
10 0 7324 |0 0
1 0 7324 |0 0

Table 6.3: Matrix functions.
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Cost function Partitioning Results
Area Reconfiguration | Channel | Target Buffer | Area Reconfiguration | Delay | Freq Channel
Priority | Overhead Buffer | device Target | (CLB Overhead Buffers
Priority Priority | Buffer Met Slices) | (ms)
Utilisation | (%)
(%)
High | High High 100 100 | 6026 |3.29,3r,s 43.5 | 22.37 | 384
50 100 | 6026 | 3.29, 3r,s 384
33 100 | 6026 |3.29,3r,s 384
25 98.2 | 6026 |3.29,r,s 384
10 345 | 6178 |2.64,r5s 192
1 11.5 | 14086 | 0 0
Table 6.4: Cubic equation solver.
Cost function Partitioning Results
Area Reconfiguration | Channel | Target Buffer | Area Reconfiguration | Delay | Freq Channel
Priority | Overhead Buffer | device Target | (CLB Overhead Buffers
Priority Priority | Buffer Met Slices) | (ms)
Utilisation | (%)
(%)
High | High High | 100 100 | 8392 |36.4,3r,S 51.6 |18.34 | 1152
50 97.5 18392 |36.4,3r,S 1152
33 85.2 | 8415 | 35.7,2r,S 768
25 77.4 | 8815 | 31.5,2r,S 768
10 58.3 | 9784 |22.7,1S 384
1 10.9 | 16021 | O 0
Table 6.5: Quartic equation solver.
Cost function Partitioning Results
Area Reconfiguration | Channel | Target Buffer | Area Reconfiguration | Delay | Freq Channel
Priority | Overhead Buffer | device Target | (CLB Overhead Buffers
Priority Priority | Buffer Met Slices) | (ms)
Utilisation | (%)
(%)
High | High High | 100 100 |5709 |6.83,2r,S 454 |16.31 | 256
50 100 | 5709 6.83,2r,S 256
33 100 | 5709 |6.83,2r,S 256
25 95.5 | 5709 6.83,2r,S 256
10 55.5 | 5709 6.15,r,S 128
1 16 5927 |0 0

Table 6.6: Rijndael Encryption/Decryption.
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Cost function Partitioning Results
Area Reconfiguration | Channel | Target Buffer | Area Reconfiguration | Delay Freq | Channel
Priority | Overhead Buffer | device Target | (CLB Overhead Buffers
Priority Priority | Buffer Met Slices) | (ms)
Utilisation | (%)
(%)
High | High High | 100 100 | 9344 | 603.06us4r,S |4.41 7.3 | 384
50 100 | 9344 | 603.06us,4r,S 384
33 100 | 9344 | 603.06us,4r,S 384
25 100 | 9344 | 603.06us,4r,S 384
10 67.5 | 9337 | 589.03uS,2r,S 256
1 285 |0 0 0

Table 6.7: Encryption/Decryption.

6.3 Test Circuits

The selection of test circuits was done to explore a number of aspects relating to the theme of
this thesis: partitioning across subroutine boundaries and their preservation at different levels

of abstraction, ultimately at the device-level for run-time reconfiguration.

As described in Chapter 3, MOODS HLS has been used to investigate many different aspects
of circuit synthesis and as a result there exist several exemplar designs which were available
to the author to conduct the experiments described within this chapter. The motivation for this
approach is that all designs were not specifically written with run-time reconfiguration in
mind and as a consequence, there was no inherent bias in how they were coded. Before
commenting further on the relevance of their selection, one common characteristic which is
inherent to their selection is how they were coded, specifically in the behavioural-style of
VHDL described in Chapter 3.

As the reader will recall, the behavioural approach to circuit synthesis requires the designer to
view a specification as a set of independent tasks, each of which is implemented as a VHDL
parallel “Process’. Unlike RTL synthesis, the operations of each process/task is automatically
scheduled across multiple clock cycles; as a consequence each task can be further partitioned

by relating sequential behaviour of the operations as VHDL ‘Procedures’.
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With reference to the test circuits, all were described in this way and the author ensured that
none of the procedures were “inlined’ in order to preserve the functional partitioning inherent

in the way that each were coded.

The reader is referred to Appendix B, where the relevant properties of each test circuit are
presented. As described in Chapter 3, MOODS represents a design at different levels of
abstraction. One convenient representation is the ‘module’: at this level of abstraction there is
a one-to-one mapping between each VHDL procedure and an equivalent internal module but a
many-to-one relationship between the VHDL processes and the single ‘Program module’. The
characteristics of each test circuit will now be considered in terms of their equivalent module

representation.

A table of characteristics is shown for each design which provides the reader with an
appreciation of the composition of each example: the number of modules, their resource use
and port widths are tabulated for comparison. Shown below each table is a task graph, where
every node corresponds to a module and each edge represents its execution relationship with
another and is labelled with the size of the control and data-path dependency in bits. The last
characteristic is the module execution sequence: each sequence is presented in the form of one
possible path through there circuit; where appropriate, modules repeated inside finite loops

are labelled with an iteration count.

Having introduced the test circuits, it is necessary to consider their influence during the
experiments. On inspection of their characteristics, what becomes apparent is that the
equation solvers feature multiple levels of module hierarchy which appear frequently on
different paths through each circuit; in contrast the encryption and matrix circuits do not: their

modules can be characterised by their execution within finite loops.

Characteristics such as these present the temporal partitioner with different choices: nested
modules have control and data-path dependencies; context switching them requires
intermediate storage of their control and data-path tokens. In response, the partitioner has the
choice to not swap them over the same resource and cluster them in a single partition or to
partition them across multiple resources; either of these choices will impact on the use of
communication channels in the architecture: clustering them might delete an existing channel,

partitioning them over multiple resources could change the topology of the partitioning,
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necessitating the creation of a new buffer interface in the resource, as well as the potential to

widen the width of the channel.

The Encryption and Matrix circuits present the partitioner with a different scenario: their
independence to one another simplifies their context switching in which case the loop
iteration count becomes the deciding factor. In addition to deciding what to do with modules
inside the loops, the partitioner will be presented with the choice of using their execution to

hide the reconfiguration of those modules executed outside it.

The presence of other forms of control, such as conditional instructions can also be exploited
by ‘prefetching” a module’s configuration before knowing the outcome of the conditional
instruction and whether the module is to be executed. In such circumstances, the partitioner
must consider the limiting effect which a reconfiguration prefetch may have on the
reconfiguration scheduling of any other module on a mutually exclusive branch; two modules

cannot be reconfigured at the same time, one must take precedence!

The advantages of performing temporal partitioning in a HLS tool become apparent when
returning to the area characteristics shown in the tables; the modules require many resources
because there are numerous opportunities for data-path allocation and instruction scheduling
at the operation level of abstraction. Data-path sharing has a ‘spatial’ effect on temporal
partitioning: the size of a module may prevent its binding to a particular resource, only to be
accepted at a later stage in optimisation having been reduced in area by a data-path
optimisation. Similarly, a scheduling transform may also effect the binding of a module to a
reconfigurable resource: the scheduling of those operations which read the arguments passed
to a called module determine the width of a channel; scheduling them to individual control
steps would permit their parameter arguments to share a channel, scheduling them to the same
step forces all of them to be concurrently available through the channel.

6.4 Summary

This chapter presented the results obtained through experimentation using the temporal
partitioning transform, following its integration into the existing simulated annealing-based

optimisation approach taken by MOODS. When used in this way, it enables architectural
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synthesis to simultaneously alter the circuit structure at two different levels of abstraction: at
the operation or instruction-level using scheduling and allocation transforms and at the

module-level using temporal resource binding of reconfigurable resources.

Being a general optimisation algorithm, simulated annealing enables a multi-objective
approach to temporal partitioning. In doing so, it permitted analysis of the relationships
between the new transform and the area, reconfiguration and channel metrics described in
Chapter 4. As with the operation-level transforms, the partitioning transform has ‘on paper’ a
distinct effect upon each of these metrics; their relationships have confirmed through
experimentation and will now be briefly summarised with reference to the characteristics of

the test circuits:

Applying a higher priority to one metric at a time and performing optimisation did give
preference to reducing the characteristic associated with the metric: for circuit area, the
temporal partitioning algorithm acted to reduce the circuit area by favouring the creation of
new temporal partitions over fewer reconfigurable regions. As expected, this was done to the
detriment of the reconfiguration and channel metrics which were set to a lower priority.
Modules moved between the partitions were in general as likely to reduce or increase the
circuit area without regard to the type of circuit and static binding to a reconfigurable resource

did very little to improve circuit area — as expected.

The anticipated effect was also observed when the reconfiguration metric was given the
highest priority in the cost function: very little reduction in circuit area was permitted and in

circuits which exhibited finite loops, no reduction was achieved at all.

With regard to assigning a high priority to minimising the channel buffer metric, the module
interface characteristics of those circuits with the smallest variation in port characteristics,
were the most tolerant in not rejecting moves which might have improved the other metrics.
When the channel metric did take effect, it acted as expected to prevent new regions from
being reconfigured, supporting only moves which re-used existing buffer interfaces or

removed them entirely by a static binding of the modules concerned.

The final cost function metric was of particular interest because by choosing to set all metrics

to the same priority, the effect of their contradictory goals could only be obtained through
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experimentation. Unlike the other cost functions, the results were influenced by a particular
characteristic among the test circuits: the critical path derived from the longest module

execution sequence.

For circuits with large small execution sequences, such as the Encryption and Quartic
equation solver, the reconfiguration overhead is the dominant metric and supports the
clustering of modules in existing contexts. On inspection of their execution sequences all
feature either high loop iteration counts (104 for the encryption circuit) or in the case of the

Quiartic equation solver, a critical path with many module execution calls.

Examination of the execution sequences of both the Matrix and Quadratic equation solver
circuits also support this explanation: the Matrix circuit has a loop count of 4 iterations and
the Quadratic equation solver — a very short critical path. In both these cases, the area metric
is dominant in the cost function and as a consequence favours the creation of new partitions.
The only test circuit which would have been difficult to predict is the Cubic equation solver
whose critical path appears to be neither short or very long, but short enough to support the
area metric and the reduction in area using temporal partitioning; in doing so, it emphasises
the importance of using a HLS tool to examine the trade-offs, since these could only have

been determined through experimentation.
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Chapter 7

Run-time Reconfiguration
- A Case Study

This chapter presents a practical application of the work described to date. Specifically, it
details the implementation of a run-time reconfigurable coding system. In doing so it
exemplifies the stages inherent to synthesising a reconfigurable system — from an algorithmic
description of the circuit behaviour, to an optimised RTL description incorporating the
structures necessary to facilitate run-time self-reconfiguration. It concludes with an

implementation of the synthesised circuit on a commercial partially reconfigurable FPGA.

7.1 A Run-time Reconfigurable Variable Coding
System

7.1.1 Background

Error correcting codes are used to tolerate data corruption which can occur during the
transmission of information in a communications channel. Encoding the message data prior to
its transmission appends redundant parity bits, allowing a decoder on the receiving end of the
channel to detect, locate and subsequently correct the erroneous data. A wireless channel is
very sensitive to signal distortion. One such example is channel fading, where a signal can
undergo a reduction in strength due to propagation effects such as reflections caused by the
atmosphere and land between the transmitter and receiver. For a fixed wire system, a single
code can be selected to correct up to the maximum number of errors that can be expected. In
fact, ‘expected’ is an appropriate way of describing such an approach, as the characteristics of
a fixed channel are more readily predictable than a wireless one. It is this variation in error
predictability which would increase the inefficiency of the channel should a fixed code be

adopted. During periods of weak fading, there would be fewer errors to correct and the full
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corrective ability of a given code would not be required. Worse still, the extra parity bits
could have been data bits. What would be desirable is a means of adapting the coding to suit

the conditions of the channel rather than a ‘one code corrects all” approach.

A solution is to encode the data using a variety of codes, each one selected by the receiver
based upon a prediction of what the future conditions of the channel might be. The transmitter
is not directly in a position to determine the level of corruption (without feedback) as it does
not know the conditions of the channel before transmitting the data. The receiver on the other
hand can attempt to second guess these conditions based upon a recent past history of the

channel.

The variable coding scheme described can be entirely implemented in hardware without the
use of dynamic reconfiguration. Generic encoder and decoder circuits can be parameterised to
implement each of the codes at a modest increase in the hardware overhead (in comparison

with their dedicated counterparts).

From the designer’s point of view, the task is to determine the maximum number of errors
which will have to be corrected and select a means of correcting up to that number efficiency.
This requires a trade-off between the number of errors that can be fixed and the number of
additional parity bits required to detect the errors. Of equal importance in the selection of the
coding scheme is the area and delay metrics of the encoder and decoder circuits, both of

which increase in magnitude in relation to the corrective ability of the coding used.

One approach used to increase the decoding rate is to introduce a degree of concurrency in the
decoding process, partitioning the computational workload over a number of decoders. Of
course, in addition to the communication overhead required to distribute the computation
among the decoders, the main drawback can be the greatly increased circuit area. It is not
immediately obvious how parameterisation can be used to increase the number of decoders
during circuit execution. With the exception of reducing the power consumption, there is little
advantage to not fully utilising all the device resources in switching from one code to the next,
therefore fixing the maximum degree of parallelism for any coding scheme. It is in this
context that the role of dynamic reconfiguration is examined, where device resources
committed to realising n decoders for a given code are reprogrammed to implement m

decoders of any other type. Furthermore, it is possible to target different resources in the
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implementation of each decoder. A large memory required during the decoding of one code
can be realised using the on-chip RAM or look-up tables at the cost of at least two read cycles
per datum (one cycle to set-up the address and another to read the output). Alternatively, the
small memory consumption necessary in decoding another code can be directly implemented
using registers with single read cycles for all data simultaneously. These are examples of
trade-offs taken by a designer during the specification of a circuit. There are also many trade-
offs which are automatically taken during the partitioning and optimisation of the circuit. For
instance, how might the operators of a circuit with n decoders and another with m be assigned
to control states to efficiently share the same resources at different times during their
execution. In this way, a pair of decoders with a large resource footprint can be swapped ‘on

the fly” with eight smaller decoders, in response to a change in the coding scheme.

As the reader will by now appreciate, this comes at the cost of a reconfiguration overhead.
The benefit of adapting to the characteristics of the communication channel would be
overshadowed if the reconfiguration took too long and/or was performed too often. The
problem becomes a task suited for synthesis. In addition to optimisation at the operation-level,
another approach to reducing the impact of the reconfiguration delay would be to overlap the

decoding of codewords alongside the reconfiguration of the decoders themselves.

This approach implies introducing a second region with the reconfigurable resource to enable
the decoding to respond to a change in the coding scheme in two stages. The first region
continues to perform the decoding of the current coding scheme used, whilst the second is
partially reconfigured with the decoders associated with the next scheme. Upon completion of
the reconfiguration, the responsibility for decoding the new scheme is transferred to the
second region. The decoders associated with the former scheme can remain inactive on silicon
in the event of a switch to the former coding or partially reconfigured with a set of decoders to
match the current scheme, thus further multiplying the degree of decoder parallelism. Once
again, this can be achieved without any interruption of service to the region not affected by

reconfiguration.

Ordinarily a duplicate approach might be viewed as simply being redundant. However, when
the target architecture is the FPGA the choice of which memory resource to use for the

codeword and weight tables [123] of the decoder can result in the exclusion of other forms of
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potential memory resource. Utilising resources that would otherwise remain un-programmed
in the target device provides the opportunity for the synthesising a sequential decoder which
provides the execution that enables the overlapping of codeword decoding with the
reconfiguration of a more specialised Viterbi decoder.

Figure 7.1 illustrates the conceptual building blocks of the coding system. At this stage of
synthesis, the emphasis is on the behaviour of the system. It should be regarded as the sum of
two halves. One half is responsible for encoding and transmitting a message comprising
several lines of ASCII characters, whilst the other corrects any errors that may have occurred
during transmission prior to displaying its contents on a VGA display. The transmitter and
receiver are bridged by a number of control and data signals used to coordinate and transfer
the message. For the sake of argument, errors are introduced solely to the message and not to
the controlling signals.

data ready _
_ busy
transmitter - code scheme receiver
codewords
A Data Channel
corrupted codeword
codeword .
‘ Viterbi
oa(::eor | channel decoders code scheme
control corrl:pter

code scheme codeword code data
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Figure 7.1: A variable coding system.

Every character of the message is converted into its ASCII equivalent and spliced to form a
data packet, the length of which is predetermined by the coding used. Each data packet is

encoded in accordance with the present coding scheme to form a binary codeword. The effect
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of a noisy channel is approximated by randomly selecting a codeword and a number of bits to
invert. This occurs either autonomously through the channel corrupter or under manual
control of the operator who may wish to manually demonstrate the characteristics of the

system.

At the other end of the channel, each codeword is decoded and any bits found to be erroneous
are corrected in accordance with limitations of the coding scheme. The coding is altered in
response to the number of corrupted bits encountered during the decoding of the ten most
recent codewords. This sample forms a measure of the quality of the channel and is used to
steer the selection of the coding to achieve a level of service that lies within the bounds of a
predictable probability of error. The receiver initiates a change in the coding scheme,
instructing the transmitter to alter the construction and encoding of the codewords whilst
simultaneously reconfiguring the decoders and parameters for message reconstruction. When
there are a sufficient number of reconstructed ASCII characters the display is updated with
the latest message. In appendix C, the behaviour of each of the building blocks is examined in

greater detail.

7.2 Variable Coding Strategy and Run-time
Reconfiguration

The effect of partitioning the Viterbi decoding over n Processors is a practical scaling of the
decoding time with the number of processors used [124,125], which of course never matches
the theoretical scaling due to the external communication costs involved in updating the
states. It is perfectly feasible to realise the decoding using processors optimised for DSP
applications. Despite the common use of RISC and superscalar architectures, single
processors are unlikely to match the spatial computation offered by a dedicated circuit
whether it be realised as an ASIC or using programmable resources, such as those found on
the FPGA targeted in this chapter.

Through the use of partial reconfiguration, it is possible to change the number of Viterbi
processors working on decoding a stream of codewords. There is no doubt that changing the
coding scheme to suit the conditions of the communication channel would increase the

amount of information that could be transmitted. There is also no doubt that increasing the
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number of processors can also significantly reduce the decoding time. Where there may be
doubt is whether this would be a good application for changing the number of decoders on-
the-fly through partial reconfiguration of the device. Why not simply synthesise a decoder
with n processors that is re-parameterised to decode a range of BCH codes? At one moment it
could be decoding a series of BCH (15,11,3) codewords over 4 processors, at another when
there is a change in the noise of a channel, it might be decoding less information through
BCH (15,5,7) codewords but still operating despite the change in the conditions of the
channel. A drawback with doing this is to be found in the resource requirements of the Viterbi
decoder itself. There are 64 times more states to be updated in the decoding of a BCH
(15,5,7) codeword in comparison with the BCH (15,11,3). The memory requirements for each
state are 15 bits for each copy of the message and a further 4 bits for the hamming distance
weight.

It is also necessary to synthesise two copies of each weight and message table since some of
the predecessor states are used to update more than one state and it would be wrong to update
a state before it is used again in the current cycle to update another. The resource
requirements are therefore 38912 registers — not an insignificant number. That is assuming a
single decoder, multiple decoders although a division of that number collectively require the
same memory across all decoders. However, there is also the issue of how the memory is
shared and whether additional memory is required when transferring data from one processor
to another.

Irrespective of how the communication is implemented, there will always be a number of
redundant registers when the coding scheme switches to a less robust form of error correction,
the same number of decoders required to decode one scheme are also present in another. Put
another way, it is uncertain how 2 processors allocated to decoding the BCH (15,5,7) scheme
could be re-parameterised to implement the 32 processors that could be implemented using

the same number of registers.

This is where partial reconfiguration can be used to employ the unused resources which
otherwise would not be used. More specifically, a library of different decoders can be
synthesised, each of which have similar resource characteristics but most importantly — with

different numbers of decoders. This concept can be further extended to synthesise different



D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration — A Case Study 221

versions of the same decoder. The variation in characteristics might manifest itself through
changes to how the memory is implemented. The robust decoder requires many states and
consequently a larger circuit area to implement when targeting registers, each of which has a
number of separate control lines. At an increased cost to circuit delay, the weight and message
tables could be synthesised from look-up tables or dedicated device memory blocks. The
same approach is not suitable for the smallest decoder, where 16 states consume 608 registers,
a number readily available on even modest-sized FPGAs. Therefore, it is able to benefit from
single cycle read or write times, in comparison with the 2 cycles it takes to read a location in
Xilinx BlockRAM [6].

Alternatively, the resources could be committed to performing another circuit function,
responding perhaps to some infrequent event that would justify the need for a temporary
down-sizing of the decoder, in terms of its degree of parallelism. In either regard, this leaves a
degree of leeway in determining the number of processors and how their circuit structure

might be optimised.

We believe this is a good case study for synthesising reconfigurable logic for the following

reasons:

e Hardware parallelism — the numerous concurrent resources available within an FPGA
is well suited to an application that can exploit such parallelism such as the Parallel
Viterbi decoder.

e Coarse-grain reconfiguration — a feature of current FPGA technology can sometimes
restrict the type of application that can exploit it. In this case, a Viterbi processor is a
coarse change in circuit structure and therefore suits the limitations of current
commercial devices.

e Hardware acceleration, virtual area and hardware adaptation — are prominent areas of
research in reconfigurable systems. Hardware acceleration is exemplified in this
application which occurs in proportion to the number of processors added through
partial reconfiguration. When this is done with regard to the operating conditions of
the channel, it seeks to adapt the coding scheme — parameters and underlying
structure. Through partial reconfiguration, the total resources required are much
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smaller than the sum of each of the constituent sub-systems and hence the system
exploits a degree of virtual area.

e Communication channel synthesis — although partitioning is determined by the method
used to split the number of decoder states among the processors [124], synthesis is
used to determine the characteristics of the channels which connect the Viterbi
processors to one another.

e Circuit optimisation — is used to generate a library of circuits which are synthesised to
create structures with different area/delay characteristics. This can occur alongside the
synthesis of the communication channels.

e Exercise the reconfigurable infrastructure — most crucially, it demonstrates how
circuits can be plugged in and out of the architecture and that the independent

reconfigurable regions correctly communicate with each other.

7.3 System Architecture

7.3.1 Adaptive Coding Scheme

In addition to the transmission of a continuous stream of codewords which will eventually be
re-constructed into information at the receiver, the principal motivation of the communication
systems is the requirement that the encoding of the information be responsive to the
conditions presently experienced in the channel. Moreover, through constant monitoring of
the level of noise experienced on the channel, the coding scheme is adapted to maintain an
approximate level of service with regard to the bit-error rate. What follows is a brief

formulation of how the level of error relates to the selection of the coding scheme.

Recall that because the decoder can return the number of errors corrected (within the
limitations of the BCH code), the receiver is in the best position to monitor the severity of
corruption which must have occurred to the codewords during their transmission. Therefore,
the responsibility of selecting the coding scheme is left to the receiver. It does this by dividing
the stream of decoded codewords into groups of eight codewords or 120 bits; their size was
chosen to enable a comparison with a non-reconfigurable Sequential Viterbi decoder [123]
also synthesised using MOODS. As described in appendix C, inspection of the weight

associated with state Ry, after the last bit of the 15-bit codeword has been decoded, reveals the
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number of errors that were corrected. Its summation of the eight codewords decoded can be
used to return an approximate measure of the probability of error Pe over the group of eight

codewords. For example, the probability of a 1-bit error in the group of codewords would be

P, = Elo = 0.0083 = 0.01 (2dp) or 1%. The next point of consideration is to relate the

probability of error Pe of the group of codewords to the corrective ability of an individual
BCH code. In other words, how many errors in the group of codewords does it take for each
BCH code to fail to meet n % of bit errors. Once this is determined, so too are the conditions

for adapting the coding scheme to the approximate measure of errors on the channel.

If Pe is the probability of error on the channel, the probability of there being more than n

errors occurring on the same channel is given by:
P,=1—(Py+P,..+PB) (7.1)
P,=1-(15.Co.P..(1—P)¥® +15.C;.P..(1 — P)* ...+ 15.C,.P.. (1 — P> (7.2)

For example, the probability of there being more than one error (n=1) in a 15 bit codeword for

a Pe = — is found to be:
120

P1=1_(P0+P1)

120° 120

P=1- (1.L. (1 —L)ls +15.1. (1 -2 )14)

P, = 1 —(0.88203 + 0.11118)
P, = 0.01 (2.d.p)

Using equations 7.1 and 7.2, the probability of there being more errors than the corrective
ability of each of the BCH code can cope with, is calculated with various probabilities of error
in each group of eight codewords. The results are shown in Table 7.1. The first two columns
indicate the relationship between achieving a certain percentage of errors on the channel and
its relation to the cumulative number of errors in a group. This ranges from a 1 to 10% Bit
Error Rate (BER). Alongside them are the probabilities that each BCH code will be unable to
correct the codeword to meet the quality of service associated with the channel error P.. The
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number of bits in which each codeword is in error corresponds directly to the BCH code i.e.
BCH (15,11,3) corrects up to and including 1 bit in a 15 bit codeword, BCH (15,7,5) corrects

2 and BCH (15,5,7) can correct up to 3 bits in error (inclusive).

No errors | Probability Probability Probability Probability
n/120 bits | P, (%) (%) (%) (%)
1 bit group | 1 bit | 2 bit | 3 bit
error codeword codeword codeword
error error error
1 0.0083 (1.0) | 0.01 (0.68) | 0.00 (0.024) | 0.00 (0.00)
2 0.0166 (1.6) | 0.03 (2.53) |0.00(0.181) | 0.00 (0.01)
3 0.0250 (2.5) | 0.05(5.29) | 0.01(0.567) | 0.00 (0.04)
4 0.0333 (3.3) | 0.09 (8.76) 0.00 (0.13)
5 0.0417 (4.1) | 0.13 (12.74) | 0.02 (2.259) | 0.00 (0.28)
6 0.0500 (5.0) | 0.17 (17.10) | 0.04 (3.620) | 0.01 (0.55)
7 0.0583 (5.8) | 0.22 (21.69) | 0.05 (5.330)
8 0.0667 (6.7) | 0.26 (26.41) | 0.07 (7.378)
9 0.0750 (7.5) | 0.31(31.18) | 0.10(9.739) | 0.02 (2.21)
10 0.0833 (8.3) | 0.36 (35.92) | 0.12(12.39) | 0.03 (3.12)
11 0.0917 (9.2) | 0.41 (40.57) | 0.15(15.29) | 0.04 (4.23)
12 0.1000 (10) | 0.45(45.10) | 0.18(18.41) | 0.06 (5.56)

Table 7.1: Errors in eight codewords necessary to switch between each code scheme.

Using the results shown in Table 7.1, it is now possible to relate the number of errors received
in a group of eight codewords to a threshold where one coding scheme fails and another must
be adapted. The thresholds were selected to enable our work to be compared with a non-
reconfigurable parameterised Sequential Viterbi decoder [123]. Assuming that that the BCH
(15,11,3) coding scheme is currently deployed, should an approximate 5 % BER (highlighted
in green) be a desirable operating condition for communication, no more than 3 bits in the

group of 120 bits (eight codewords) can occur in error. Any less, the quality of service
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exceeds the specification, any more, the quality of service cannot be maintained and the next
BCH code (15,7,5) is chosen to encode and decode the message stream. There is quite a large
tolerance (a further 4 bits) until the BCH (15,7,5) coding scheme fails, at 8 bits in 120, the
receiver would request another step up in the level of robustness to the BCH (15,5,7) code. Of
course, should the conditions of the channel improve, the receiver may request a step down in
the level of correction and thereby increase the amount of data that could be encoded through

each codeword.

Figure 7.2 illustrates the bit thresholds at which the coding scheme may be changed. Before
this can take place, the group of eight codewords requires sampling to estimate the probability
of error on the channel P.. This occurs during the top half of the flowchart and simply
requires that eight codewords are counted and the number of errors accumulated — recall that
the number of errors corrected is given by the weight of state O after the last bit of the

previous message bit has been decoded i.e. wy,.

Once the sample is taken, the count is reset for the next sample and so too is the coding
scheme, since it is about to be updated. The threshold at which this happens is either Thres, or
Thres; respectively. Their parameters are set according to the desired BER and the
relationships are summarised in the table adjacent to the flowchart for some exemplar BER
rates. The ascending numeric value of the scheme determines which BCH code is adopted,
with the default scheme being most efficient code BCH (15,11,3). The remaining schemes are
just an increment BCH (15,7,5) or two away BCH (15,5,3). After the scheme is selected, the
number of errors and word count are reset and wait to be set during the next sample of eight

codewords.

Ideally, the switching that occurs between the different coding schemes should not occur too
often because as well as the additional time to change the parameters associated with the new
scheme, there would inevitably be a reconfiguration penalty. Two solutions are adopted to
address these issues. The first is to allow a wide enough band in which several errors need to
occur in order for the scheme to switch up or down. This is as wide as 5 bits for the most
robust code at 5 % BER. In addition to that, the coding scheme never changes from the
smallest code to the largest and vice versa without the intermediate step of the middle BCH

code. This aids in making the system less sensitive to short bursts in signal noise.
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Figure 7.2: Flowchart showing BER driven selection of the coding scheme.
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Secondly, as will be discussed in a later section of the chapter, at least two different decoders
can be present in dedicated regions of the FPGA at the same time. This staged approach

enables reconfiguration to occur in parallel to the decoding of the codewords.

7.3.2 Inter-process and Intra-region Communications

The backbone of the architecture is the inter-process communication between the transmitter
and receiver regions and the intra-process communication between the receiver and
concurrent Viterbi processors. The purpose of the case study is not to demonstrate a fully
featured communication system, rather an application of the synthesised architecture and run-
time reconfiguration. In this spirit, the entire communication is realised using a single FPGA
device. Figure 7.3 illustrates how the main building blocks are implemented on the static and
reconfigurable regions of the FPGA.
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Figure 7.3: Floorplan for the RTR variable coding scheme.

Communication between the transmitter and receiver occurs on the same device, moreover, it

occurs in the static region. The behavioural VHDL coding style implements coarse-grain
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parallelism of operators through process constructs. All ovals in the diagram represent
independent VHDL process constructs and the circles represent the tasks assigned to them.
Although a VHDL process is implemented through a disjointed state-machine, there are
specific times in their execution where communication with one another is necessary. In the
static region, the synchronisation between the transmitter and receiver processes quite literally
performs the communication associated with transmitting data through a communications
channel. To this end, the control side of the transmission is performed through a semaphore.
The actual data transmitted through the semaphore handshaking are the BCH codewords.

In the reconfigurable regions a number of processes may be simultaneously active, decoding a
codeword bit passed to them through the external communication channel. The static version
of the decoding originally used another semaphore to perform the inter-process
synchronisation, however, as the reader will recall, a similar function can be carried out by the
channel controller when required to transfer data across the external or on-chip

communication channels — hence its employment in the receiver.

An additional level of hierarchy is provided among the Viterbi decoders which takes the form
of a single master process and several slave decoders. In this configuration, the master’s role
is to divide up each of the code’s state weight and message tables and pass their values to the
sub-ordinate decoders in the reconfigurable regions. After Viterbi decoding occurs in each of
the regions, synchronisation occurs once more between the master process and each of the
slaves, during which the master collects the weight and message bits found by each decoder
and uses them to update its state tables. This continues until after processing of the last
message bit is complete and the sample of the codeword is added to or a decision can be made

on the robustness and efficiency of the current coding scheme.

The remaining task of the receiver is to extract the transmitted fragment of ASCII code from
each of the codewords, after which the full ASCII characters are re-assembled into their full
codes and the message sent over the communication channel is stored in preparation for its

display.

The last element of coarse-level parallelism in the system is the way in which the message is
displayed on the VGA unit. There is a strict protocol for video generation, in essence a frame

is written once every 16.784 ms. A single frame is composed of 528 lines (480 visible — the
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rest are blanked) lines, each of which are 640 pixels in length. Pixel data be retrieved and
presented within a window of 31.77 us, the period during which a line is written. An entire
frame will occur every 16.784 ms; these are critical timing constraints, requiring a degree of
manual intervention in MOODS. In order to fully explore the design space in MOODS i.e.
with the minimal of timing constraints, this part of the demonstrator was not written using
behavioural VHDL. Rather, RTL VHDL was used to read each re-assembled ASCII character

and format it in a way that was presentable to the user viewing the received message.

In order to do this in real-time, the task was decoupled from the receiver in such a way that
did not require the VGA generator to wait for the most recent decoded message. Instead, its
purpose is to continuously read the ASCII data in a designated message ROM, format it into
lines of characters on the screen and write the resultant messages to the VGA unit. This
procedure is only interrupted by the receiver process, for the sole purpose of updating the
message ROM with the most recent decoded and re-assembled ASCII characters.

Recall that synchronisation between process constructs does not occur at each wait statement -
as is assumed in the RTL simulation model, but explicitly in the code through a dedicated pair
of request and acknowledgement signals or semaphore. As depicted in the Figure 7.3, there
are two occasions where a semaphore is utilised to exchange data between a pair of process.
The same methodology is adopted in both cases. Figure 7.4 illustrates the timing of the pair of
semaphore signals used between the transmitter and receiver processes shown in the previous
figure. This method of process synchronisation is referred to as a toggle semaphore, as the
exchange of data is dependant upon the inequality of the pair of request and acknowledge

signals, the result of either process inverting or toggling one of the pair of signals.

Prior to the request to exchange the codeword, the request and the acknowledgment signals
are equal. This situation arises when the transmitter is busy processing i.e. bit-packing the
ASCII code and encoding the codeword. Meanwhile, the part of the receiver responsible for
reading the codeword idles away the time, awaiting the next codeword whilst the remainder of

the receiver circuits are busy displaying the current message on the VGA unit.

When the transmitter is ready to send the codeword, it inverts the request line. The inequality

between the two signals forces it to enter an idle state, awaiting a response from the receiver.
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Figure 7.4: Semaphore communication between two concurrent processes.

At the same time, the signal inequality awakens the receiver, forcing it to write the codeword
to the master process where it is disseminated bit by bit to each of the Viterbi decoders. Once
decoded, the receiver has the opportunity to alter the coding scheme — it does this by writing
the corresponding 2-bit binary code to the coding ‘scheme’ lines. This is followed by an
inversion of the acknowledgment signal, the effect of which is to restore the equality between
the two signals. Having done so, it returns once again to an idle state, where it awaits the next
codeword request. Quite the opposite occurs to the transmitter, it is forced out of its idle state
and must inspect the level of the coding scheme required. Where appropriate, it alters the
parameters which govern the bit-packing of the ASCII characters and their encoding using the
BCH codes. When encoding of the next codeword is complete, it signals a readiness to

transmit it across the communication channel and the cycle is repeated ad infinitum.
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7.4 Synthesis Results

Table 7.2 depicts the results for each of the synthesised Viterbi decoders and the remaining
sub-system components. The target device is the Xilinx XC1000XV FPGA [6], providing
12,228 CLB Slices and 512 user Input/Output pins. The task was to synthesise the entire
communication system in such a way that it would occupy less than 11000 slices. This is not
an arbitrary figure, as it is approximately 90 % of the FPGA’s logic resource capacity. We
have found through experimentation, that any greater than 90 % of the resources is unlikely to
be floor-planned in a way that is acceptable for generating partial bitstreams.

Circuit Circuit Area Critical path delay | Reconfiguration
Sub-system Description (slices) | (clock cycles: ps) (ms)
decoder 15, 11, 3; Reg.; processors: P1-P4. | 3092 1218 : 24.36 4.98
decoder 15, 7, 5; Reg.; processors: Ps, Ps. | 3542 18221: 364.42 4.98
decoder 15, 5, 7; RAM; processor Py. 2900 116214: 2324.28 -

decoder 15, 7, 5; RAM; processor Py. 2900 31158: 623.16 -

decoder 15, 3, 11; RAM; processor Pq. 2900 3900: 78.00 -

encoder Universal BCH encoder 798 31:0.62 -
formatter | ASCII bit-packer for codes 652 56:1.12 -
corrupter | Channel noise generator 249 20: 0.40 -

all Complete RTR System 8141 - -

all Complete static System 11233 | - -

Table 7.2: Synthesised RTR variable coding system.

The area, delay and reconfiguration constraints are set to high priority in MOODS. All target
values are set to zero. The delay is expressed in terms of the number of cycles required for the

sub-system to perform its function.

Both decoder configurations are assigned to a single reconfigurable region whose size is fixed
by the larger of the two register based reconfigurable decoders encompassing processors
Ps, P¢ BCH (15,7,5). The static decoder Py shares the region using slices as LUT RAM in a
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parameterised version of all three coding schemes. The size of the complete RTR system is

the sum of the reconfigurable and static regions:
circuit area (RTR system) = 3542 + 2900 + 798 + 652 + 249 = 8141 slices.

The number of resources required by the decoders is not necessarily dominated by the
memory requirements of the decoder, rather how the memory is implemented. For instance,
the BCH (15,11,3) decoder stores the weights and codewords for 16 states, yet it requires
more resources than the BCH (15,5,7) decoder which performs the decoding for 1024 states.
The explanation lies in the limited number of registers (2 per CLB Slice) and the abundance
of Look-Up tables that can be used to implement RAM blocks. The reader will appreciate the
rationale behind synthesising the message and weight tables using different memory
resources; components would otherwise be un-programmed in an FPGA implementation

using a single type of memory resource.

In addition to reducing the number of uncommitted FPGA resources, re-using existing
components through run-time reconfiguration resulted in more than a 30% reduction in their
number — as shown in the last two rows of Table 7.2. The area reduction was achieved
through the continual partial reconfiguration of the resources between the two parallel
decoders whose properties are characterised in the first two rows of the table.

The difference between the resource consumption of the two decoders BCH (15,11,3) and
BCH (15,7,5) respectively, would justify further experimentation in optimising the use of
their data-path units. One option might be to utilise the uncommitted resources in the smaller
decoder BCH (15,11,3) through a tightening of its delay constraint, thereby increasing the
parallelism of the data-path units and the resource consumption of the four decoders. The area
requirements for the remaining sub-systems are modest in comparison with the decoders, due

to the absence of memory storage.

A final comment on the properties of synthesised circuits is with regard to the difference
between the resources used by the static and reconfigurable systems: the static version utilises
more than 90% of the resources of the target device (XCV1000). At approximately 66% of
the resources, the reconfigurable system can fit on a smaller device, such as the Xilinx

XCV800 FPGA, where it would be placed in almost 86% of the available logic resources.
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7.5 Run-time Characteristics

The reader will recall from Section 7.3.1 that the number of errors occurring in a sample of
120 bits (8 codewords) taken by the receiver is used to determine whether a change in the
coding scheme is required. Table 7.1 shows the number of errors permitted for each BCH
coding scheme in relation to a desired Bit-Error Rate (BER) of approximately 5%, the

thresholds are reproduced below:

(15, 11, 3): sample errors < 4; (15, 7, 5): sample errors < 8; (15, 5, 7) sample errors < 13.

Figure 7.5 depicts the results generated from automated temporal partitioning: it illustrates
how the threshold values are used by the receiver at run-time to relate the number of errors
found in a sample of codewords to each configuration of sequential and parallel Viterbi

decoders.

A single reconfigurable region of the FPGA is reprogrammed with two temporal partitions,
both of which incorporate the sequential Viterbi processor Py . The logic and routing resources
of the decoder are identical in both partitions, ensuring its continued execution during the

context switch from one temporal partition to the next.

Unlike the sequential decoder, the two parallel Viterbi decoders (Pi-Ps), (Ps,Ps) are
unconstrained in both partitions. Intentionally state-less during reconfiguration, their logic and
routing resources are reconfigured in parallel to the execution of the sequential decoder
without overlapping their resources. As well as providing MOODS with greater freedom to
share data-path components during optimisation, an absence of placement constraints
provides a greater choice when placing and routing components using the device vendor tools;

often an issue when floorplanning designs for partial reconfiguration.

As indicated by their shading, only one Viterbi decoder is ever active during the execution of
a temporal partition. The partitioner selected three combinations of active decoders for each
temporal partition: C1-C3 and C4-Cg respectively; we excluded combinations of decoders that
would have otherwise processed the same coding scheme using both the sequential and

parallel decoders. Exactly when a decoder is active is determined by the value of the BER and
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the threshold of each edge which represents a transition in the coding scheme between the

temporal partitions.
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configuration shown in Figure 7.5 is labelled with the time taken to decode the codeword

Py, . = 24.36 ps, reflecting the parallelism of the four register-based Viterbi processors

P1-P,4 for channel conditions where the BER is smaller than 4 in 120 bits (T).

The sequential processor Py is inactive until a decision is taken by the receiver to change the
coding to a more robust scheme. The protocol used was described earlier in Section 7.3.1 and
depicted in Figure 7.4; transmission using a semaphore takes 2 cycles or 40 ns for the current
50MHz clock signal.

A decision to select a different BCH code will ensure that data transmission continues during
any increase in channel noise. However, it comes at a cost of a reduction in efficiency because
a switch to a more robust code will result in a reduction in data efficiency, as well as an
increase in the time taken to decode a larger code space using a sequential decoder
implementation. For the BCH (15,7,5) code, the encoding efficiency is reduced to 46.7%
whilst the decoder takes 623.16 us to decode a codeword. In the case of the BCH (15,5,7)
code these characteristics are 33.3% and 2324.28 s respectively. Of course, the noise level of
the channel may reduce as well as increase and the option remains to switch to the default

decoder when necessary.

Assuming that the BER threshold T; is exceeded, in order to maintain the quality of service
defined by the interval T,, the parameters of the sequential decoder Py are changed to set the
decoder to match the nearest BCH (15,7,5) code. The next choice available to the receiver
gets to the crux of this RTR approach to decoding: without any change to the current code
scheme or interruption to codeword decoding, the idle resources previously allocated to four
parallel Viterbi processors (C3) may now be reconfigured to realise two parallel versions of
the current scheme BCH (15,7,5) in a different temporal partition (Cs).

To mitigate the high cost of reconfiguration using an FPGA (4.98 ms) the sequential decoder
continues to decode codewords without loss of state throughout the reconfiguration period. As
a result of the context switch, Viterbi decoding is accelerated by approximately 1.7 times after
taking into account the communication costs between the parallel decoders. This scenario
assumed that no change in the coding scheme was necessary (BER< 8/120 bits). Had this not

been the case (T3) and a BCH code with a greater error correcting ability been required e.g.
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BCH (15,5,7), a 40 ns delay in communicating the change in the coding scheme to the
transmitter would be accompanied by the relevant change in the sequential decoder’s

parameters.

In the event of the receiver wishing to relax the scheme to a less robust BCH code, it may rely
upon changing the parameters of the sequential decoder. During prolonged periods of low
channel noise, it could repeat a similar reconfiguration process to the one described earlier,
with the aim of switching (C4 to C,) to the least robust code scheme BCH (15,11,3) but most
parallel version of the Viterbi decoder. Alternatively, the receiver may decide to commit the
reconfigurable resources to occupying the ‘middle ground’ of the coding scheme, a place
where any change in the channel condition is but a short code distance away from its

response.

7.6 Summary

This chapter presented a practical application for the synthesised run-time reconfigurable
architecture described in the earlier chapter: a run-time coding system which changes the
coding scheme and degree of parallel decoding based upon the history of errors it encountered
during the transmission of the codewords. Unlike the test circuits used to generate the results
in chapter 6, this particular application relied upon the explicit use of reconfiguration as part
of the design specification, where partitioning occurred at the subroutine level of abstraction.
High-level synthesis was applied at the operation-level alongside temporal partitioning, where
it took advantage of the discrepancy between the sizes of the partitions to vary the degree of

instruction-level parallelism for each synthesised decoder.

Partitioning across the functional boundaries of the Viterbi decoders associated partial
reconfiguration with a change in the characteristics of each decoder. A prominent
characteristic is the number of states that require updating, which changes dramatically with
each type of BCH code selected. A non-reconfigurable MOODS implementation [123] used a
change in parameters of a sequential Viterbi decoder to implement a variable coding scheme.
The author successfully showed the advantages of adapting the efficiency of the coding
scheme to match the level of noise in a simulated communication channel. The codeword and

weight arrays were implemented using a single port RAM that was used for all three coding
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schemes. The disadvantage of this approach was the idle use of logic resources, particularly
the use of device registers which remained uncommitted in the target FPGA. Other authors
[124,125] used MOODS to synthesise highly optimal parallel versions of the Viterbi decoders
which traded resource consumption against speed of decoding. As with the sequential
decoder, the authors selected one type of memory resource (device registers) to the exclusion

of others during FPGA implementation.

Aside from exercising the architecture generated automatically by MOODS during temporal
partitioning, a strong motivation for the case study was to determine whether the un-
programmed resources could be better put to use in another Viterbi decoder: LUTS which
were previously idle in one decoder might become parallel logic operations in another,
registers used for array variables could also be re-wired for use in the data and control paths.
Such a re-use of resources was not limited to instruction operations alone; at the functional
level, several parallel decoders were able to be reconfigured from the resources of a less

parallel but more robust decoder architecture.

The size of the complete system uses approximately 30 % fewer programmable logic
resources than the non-reconfigurable counterpart. The reduction in size does come at a price
of a 5 ms reconfiguration delay. However, the temporal partitioner was able to generate
partitions comprising two types of Viterbi decoders: a sequential decoder was optimised using
the idle resources of the FPGA, where it continued to decode codewords without interruption
during reconfiguration. A parallel decoder made use of all the remaining programmable logic
resources to accelerate the decoding of codewords. This approach was used to adapt both the
efficiency of the message encoding and codeword decoding to the noise level encountered

during transmission within a rudimentary communication system.

Through its implementation at the device level, the MOODS HLS tool has been successfully
used in conjunction with a temporal partitioning approach, to generate circuit structures which
explore the new territory formed by the incorporation of run-time reconfigurable resources.
We believe that this case study has shown that partitioning and synthesising reconfigurable
logic at the algorithmic level of abstraction provides a better rationale for RTR, when

contrasted with its use as a general area/delay trade-off during circuit optimisation.
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Chapter 8

Conclusion and Further Work

8.1 Conclusion

The theme of this thesis has been how to partition and preserve circuit behaviour at different
levels of abstraction during Behavioural Synthesis, ultimately leading to an implementation at
the device-level using Run-time Reconfiguration (RTR).

In the context of the MOODS behavioural synthesis system this approach required a
Temporal and Spatial Partitioning of a VHDL behavioural circuit specification. As a
consequence of the partitioning, MOODS is now able to perform simultaneous optimisation at
the instruction and subprogram levels of circuit abstraction, in contrast to other temporal

partitioning approaches [58,59] that exclusively target one level of representation.

In response to the use of the ‘Temporal_Partition” compiler directive, preparation by the
MOODS data-structures ensures that a subroutine’s behaviour is preserved at the graph-level
of abstraction: in this form it can be partitioned through a graph modifying transform that is
applied using a Simulated Annealing heuristic. The ability of the simulated annealing
algorithm to explore both improving and degrading optimisations has been an essential aspect
when using commercial Field Programmable Gate Arrays (FPGAs) as the target
reconfigurable resource: FPGA devices are not designed for efficient reconfiguration; the time
taken to reconfigure their resources is several orders of magnitude greater than the time taken

to execute them.

The practical implementation on a FPGA was motivated by the iterative approach taken by
MOODS to optimisation: each control and data-path component is always bound to a specific
technology library, providing the cost function with a direct measure of the properties of the
circuit structure. To operate within this approach, temporal partitioning was also directly

quantified by implementing it in the form of temporal resource binding; through its
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application, partitioning proceeds by sharing a resource between subroutines at the same time
(spatial partition) or at different times (temporal partition) via a reconfiguration of their
common resource. In either case, the use of resource binding provides the interface necessary

to prevent subroutine tokens from being lost or corrupted during reconfiguration.

As described in Chapter 2, the majority of temporal partitioning approaches reported in the
literature [66] rely upon heuristics which seek only to improve a partition; contrary to one’s
instinct, research has shown this can lead to poorer results [126]: occasionally accepting an
optimisation that is know to worsen the metrics can lead the exploration of the ‘design space’
in a direction that might otherwise have never been taken. This has particular resonance in the
approach taken to generate the results presented in Chapter 6, where the relationship between
a cost function and each distinct effect of the temporal partitioning transform would not have
been verified without the ability to allow *hill-climbing’ in the design-space.

In reference to the summary provided in Chapter 6, the results produced through
experimentation do support an understanding of how an individual partitioning ‘move’
improved or degraded each of the cost function metrics. The significance of the results is that
it could form the basis for a more directed approach to applying the transform during
optimisation; however, as the results show, this approach should still incorporate the ability to

‘undo’ the effects of a transform in order to fully explore the design space.

Chapter 5 detailed the infrastructure provided by the author to implement temporal resource
binding at a layer of abstraction suitable for device-level partial reconfiguration. All
components are automatically generated by MOODS during optimisation, in a way that is
architecturally transparent to the user, thus enabling an exploration of the greater design space

formed through the temporal partitioning of subroutine modules.

As described in Chapters 4 and 5, this approach automatically implies a physical placement
inherent to the binding that is often less tangible in the other approaches to temporal
partitioning [65, 66]. The physical link provided by the resource binding supports decisions
taken by the resource binding transform: the placement inherent in a resource binding greatly
aids the task of modelling the physical aspects of partitioning: the length of channels can be
quickly characterised or logic resources increased by determining if two temporal partitions

are adjacent in space and time to allow their merger.
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Despite spanning several generations of vendor tool flows and devices, the infrastructure
supporting RTR incorporates a number of aspects which are fundamental but are currently not
supported by the current vendor tools [122]: there continues to be disparity between the
capabilities of the device and the features of the tools.

Most critical is the lack of provision for creating nested partitions: this is vital for modules in
MOODS to preserve the control and data-path signals when partitioning across module
hierarchies that share the same reconfigurable resource. In the broader use of RTR, state
saving is a necessary prerequisite for implementing more complex systems. An ‘ad-hoc’
approach was implemented by the author who through resource binding was able to preserve
control and data states. An alternative approach which enables the state of registers to be read
and restored requires the user to consult several unrelated documents, some of which are not
documented within the vendors guide to partial reconfiguration [122]: from the perspective of

a user of RTR, information surrounding its implementation can often seem esoteric.

Despite research spanning more than three decades, there has yet to be consensus on what
exemplifies the ideal application for a RTR methodology. That is not to say that there is an
absence of applications for RTR, far from it [9]. There are numerous examples of RTR being
successfully employed in hardware acceleration, particularly for stream-based computation
[127]. Repeated operations made to continuous data-streams (inherent to video and image
processing systems) are particularly well suited to reducing the ratio of reconfiguration to

execution time.

Chapter 7 provided a practical evaluation of the synthesised architecture. Unlike the test
circuits used to generate the results presented in Chapter 6, the partitioning was not
determined by the cost function but as part of the design specification. A 60% reduction in the
resources required for a static version was achieved at penalty of a 5 ms reconfiguration
delay. As described in the chapter summary, a partitioning is possible which incurs no

reconfiguration delay to the transmitter.

This draws attention to the fact that as an automatic optimisation trade-off, run-time
reconfiguration is suited to applications where it can exploit user knowledge in its
implementation. Such an approach to partitioning supports the perspective taken in this thesis

that run-time reconfiguration should also enable the implementation of different structural
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versions of the same behavioural description. This is supported by the partitioning of program
subroutines as opposed to individual instruction operations. Through the resource binding
transform and the device infrastructure, a first step has been taken towards extending the
software analogy to the device-level of abstraction, beyond using subroutine libraries to

simplify coding a specification.

With regard to the reconfiguration characteristics of FPGAs, very little has changed in over a
decade and there is little reason why that should not continue — if change does come, it is just
as likely to take the form of more spatial than temporal layers [128]. Should a new technology
or device come to market, much of the change needed to MOODS would be predominantly

through a change to the technology library!

It is encouraging to see a major vendor of FPGAs also providing a high-level synthesis tool
‘Vivado’ HLS [129] capable of aiding the user in implementing RTR, this can only increase
the user-base. Will there be an upturn in the use of RTR? Perhaps the reader is best placed to
answer that question: it is only through a willingness to assess the suitability of RTR for
oneself and the subsequent demand that it would create, that future research into technology,
tools and techniques can continue to be justified. Furthermore, the answer to many a question
regarding the possibilities and limitations of RTR is to be found within the extended design-
space formed when choosing to synthesise circuit hardware using run-time reconfigurable
resources — it can only be realistically explored through the use of automated HLS tools, such
as MOODS.

8.2 Further Work

As referred to in the Section 8.1, it would be a natural next step to attempt to encapsulate the
trade-offs between each of the partitioning metrics in the form of a dedicated heuristic for
temporal partitioning. The heuristic would rely upon much of the relationships identified
through experimentation using simulated annealing, perhaps applying it in the form of a pre-
optimisation step: a similar approach is available in MOODS to measure the share-ability of
data-path units, preventing independent operations on the critical path from being shared
rather than scheduled to the same control step to reduce the length of the path. Similarly, a
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metric characterising the adjacency of module execution calls would reduce the number of

rejected moves due to high levels of module context switching.

Li et al. [130] describes a scheme which uses an adjacency matrix to spatially partition those
modules which frequently appear next to one another in a stream of module calls at run-time.
As MOODS uses static scheduling, more information about the module sequences is known
in advance at compile-time (as the reader will recall from the module characteristics in
Appendix B). In addition, unlike scheduling at the instruction-level of abstraction, subroutines
do not change their order during scheduling: combining these characteristics, the author has
initially experimented with a metric for measuring subroutine execution ‘similarity’. Unlike
the adjacency matrix it does not require updating during run-time; it can be applied prior to
performing temporal partitioning in order to reduce the number of rejected moves due to
combinations of modules resulting in high context switching delays. It is expected to improve
upon the current approach by filtering out certain combinations of modules without actually

applying and rejecting the resource binding transform.

A final point of interest is that the approach of preserving behaviour through temporal
partitioning extends the view of taking a software approach to hardware design. Without
RTR, this approach is about simplifying the coding of a specification by re-using subroutine
libraries. With RTR, preserving the behaviour and how it is implemented can provide the
basis for design re-use at the structural or device-levels of abstraction; an additional way of

managing current and future design complexity.
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Appendix A: MOODS

This appendix describes how MOODS is able to represent and subsequently optimise a circuit

specification at the instruction-level of abstraction.

Al Synthesised Architecture

The architectural model in MOODS to which all circuits are synthesised is composed of a
number of synchronous Finite State Machines (FSMDs) which control the data-flow through
the data-paths. The FSMD model is represented within the MOODS data structures as a
number of control and data-path graphs, built directly from the behavioural, sequencing and

connectivity information contained within the ICODE description.

Figure A.1 illustrates a fragment of the control and data-path graphs that would automatically
be generated from an ICODE description of the ‘bch encoder’ described in Chapter 3 Figure
3.4; a second graph is also shown to exemplify how concurrency is modelled within the
architecture.

The topology of the control graphs is derived directly from the sequence of instruction
activations contained within the ICODE ‘Program’ and ‘bchEncoder’ modules. Each control
step ‘si’ represents what will ultimately be a single state in the MOODS output description of
the corresponding state machine controller(s).

State transition of the controller is modelled in the graph by a directional arc between each
pair of control nodes. In the structural description of the controller, the firing of an arc is
represented by a token passing from one state to the next. In doing so, it resembles the token
passing mechanism for the execution of the instructions described at the ICODE level i.e. an
instruction is activated by another and only upon completion of its execution. The graph data
structure relates the firing of an arc with the passing of a token, in such a way that the
activation of the control node at the end of the arc is synonymous with the execution of the
associated ICODE instruction.
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Figure A.1: Control and data-path graph sections for the BCH encoder algorithm.

The initial assignment of a single instruction to each of the control nodes is depicted
alongside the control graph. It requires no strategy when allocating each instruction to a
control node and in doing so, places no resource constraints upon the initial scheduling.
Optimisation proceeds in the next phase of synthesis, where the merger of a pair of control
states and the subsequent removal of one of them acts to assign more than one instruction per
state.

The direction of the control flow through the graph, be it feed-forward or backward (loop) is
dictated by the nature of the instruction activation list. Unconditional activation of more than

one instruction in the list, as is the case for the ‘NOOP’ instruction ‘L1’, requires the
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simultaneous firing of multiple control arcs. This in turn, determines the type of control node
used, such as the fork node ‘s1’. There are six types of control node, three of which are
utilised in the graphs depicted. The factors which distinguish them from one another are the
number of their input and output arcs and the circumstance in which they are active.

The presence of a ‘fork’ node in the graph denotes the existence of multiple concurrent
threads of instruction execution. As depicted, it has one input and multiple output arcs, both
of which are fired unconditionally to successor nodes which mark the start of two parallel
control graphs. Each graph defines the order of precedence among the instructions, originally
derived from the source code description of VHDL processes. As specified in the VHDL
source description, each graph is a disjoint free running state machine with no requirement to
re-converge. Processes may synchronise to pass data to one another using semaphores, as
described in the Chapter 5, but when compiling VHDL there is no use for joining concurrent

branches.

Although not supported by the VHDL compiler, for the reasons described above, the “collect’
node (not depicted) fires a single output arc only when all of its multiple input arcs have been
activated. In this way it is able to synchronise any number of concurrent input branches. It
remains supported by the MOODS core data structures and is also present as an ICODE
instruction, providing a means of modelling fine grain parallelism for source languages

capable of describing it, such as SystemC [96].

A ‘general’ control node, such as ‘s2’ is ubiquitous throughout the graph because with
exception to ‘moduleLeap’, ‘if’, ‘switchon’ and ‘collect’ instructions, it can be used to
schedule any ICODE operation. It has a single unconditional input and output and is often the

result of optimisation to graphs segments containing other control types.

The next class of control node depicted is the ‘conditional node’ (e.g. ‘s3’), created in
response to the presence of the conditional instruction ‘if’ (‘L3’). The firing of the single
input arc and a condition being met in the data-path with reference to node dp4 and whether
variable ‘tmp0’ is logic low or high, governs which of the mutually exclusive output arcs is
fired.
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Regardless of which of the conditional control paths is taken in the figure, the ‘call’ nodes
‘s5’,’s6” are encountered. When one of their mutually exclusive ‘moduleLeap’ instructions
‘L5’,"L6’ is executed, a token is passed to the first instruction of the sub-module. As shown in
the figure, this is represented in the main graph by an output arc which connects the call node
to the first node ‘s6” in the module’s sub-graph. Execution of the sub-module proceeds,
during which time, the calling module (program) waits because only one ICODE instruction
can ever be active in any given thread of instructions. Upon completing execution, the process
is mirrored: the token is returned to the ‘moduleLeap’ instruction (represented by an arc fired
by the last control node of the sub-graph ‘s16’ in response to the execution of the
‘endmodule’ instruction ‘L16°) and it subsequently activates the next instruction ‘L7’ in the

program module, by doing so, continuing its execution.

A control graph embodies the circuit behaviour by modelling when and in what order the
instructions are expected to execute. What it does not do is describe how the ICODE
operations are implemented in hardware. That is realised in the structural description provided
by the Data-Path graph. As with the control graph, the initial data-path is formed by allocating
one ICODE operation or variable to a single data-path node. This direct relationship between
operation and operator is intentionally broken during optimisation, when some of the data-
path nodes may be shared, reducing the number of data-path units required to implement the
ICODE instructions.

Of course the circuit is only truly modelled when its behaviour (ICODE instructions) and
structure (data-path) are linked. In the data-path, signal transfer as well as a dependency from
one unit to the next is represented by a data-path net. Among the attributes defined for it, such
as bit width, the data flow in the net is described in terms of the activation of an instruction
whose operands i.e. ICODE constants and variables provide the source and sink of the data

being transported along it.

For example, consider the execution of the instance of the equality operator instruction
‘L2: ueq codelLength, #%1011, tmp0’. The data-nets which connect the operands of the
instruction to their data-path units (dp0-dp3) are labelled with the instruction number. In this
way, data flow is always explicitly linked to instruction execution. The rationale for this stems

from the fact that the behaviour of the circuit, as embodied by the ICODE instructions, must
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remain unaltered throughout optimisation. Whilst their scheduling and allocation to control
and data-path nodes will undoubtedly change during optimisation, much of the information
characterising the data flow can remain unaltered, being expressed in terms of active
instructions rather than directly linked to controller states which may be optimised away. This

aids in reducing the amount of re-processing to the data structures.

The MOODS data structures explicitly model the scheduling of ICODE instructions to each
control node, however, the representation of their execution is implicit, described indirectly
through the control of an instruction’s output variables. More specifically, an instruction is
considered to have been executed when the registers implementing the variable are loaded at

the end of the active control state.

Each control node in the graph is bound to an individual control cell, implemented using a
single register in the state machine. In this way, the controller is synthesised as a one-hot state
machine. The direct mapping of state to variable and subsequently variable to register, need
not be fixed to realise a one-hot encoding. The data structures which describe the activation of
the control arcs and ultimately the next state logic may be altered to realise other forms of
state assignment, such as binary or greyscale. One-hot encoding is presently favoured when
targeting FPGAs because there is generally a register adjacent to a look-up-table in most
architectures i.e. Xilinx Virtex Slice [6]. Of course, the same cannot be said when targeting an
ASIC, where such a state assignment would be deemed fast but expensive in terms of

registers resources.

Binding the control and data-path units to a particular technology enables the user to specify a
target or constraint for a particular metric, such as circuit area. Without such physical
characterisation, the circuit modelled by the control and data-path graphs remains abstract and
unquantifiable to all but the most simple of measures, such as counting the number of control
and data-path nodes when finding the area and critical path delay of the circuit. Once the user
has placed the architecture in the context of a particular technology, presently through the
Xilinx Virtex FPGA library [50], MOODS is able to automate the numerous scheduling and
allocation decisions required to transform the circuit structure into a form that meets the

criteria required by the user.
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Each control and data-path node is bound to a cell taken from an FPGA technology library.
Although the intricacies of the libraries, as with much of the MOODS data structures, are
beyond the scope of this thesis, it will suffice to mention that it does more than list
characterisation data. It is a repository for pre-determined technology constants, such as the
size of a single register when implemented using a Virtex FPGA [6]. However, it also uses
those constants to generate an estimation of the size of a particular data-path unit when
parameterised with multiple inputs and outputs i.e. the area required when implementing a

vector variable using a register.

The module library is autonomous to MOODS, in that the characterisation data is requested
by MOODS core routines. This decoupling allows new Technology Libraries to be created
without requiring any changes to the MOODS control and data-path modelling and
optimisation routines. The ICODE database adds a level of indirection to the separation of
MOODS and the technology library. Without it, the library has no concept of the behaviour
(in the form of ICODE) a cell is required to characterise. An ICODE instruction encapsulates
the type, number and width of input and output variables. This information is utilised during
optimisation, where two instructions may be allocated to the same data-path unit. It becomes
indispensable during optimisation when assigning two different arithmetic instructions i.e.

addition and subtraction to a general purpose arithmetic and logic unit.

A2 Graph Transformations

Circuit optimisation is achieved in MOODS through the application of scheduling, allocation
and binding transformations. The scheduling transforms act to minimise the number of
control-graph steps, whilst their data-path counterparts reduce the number of data-path units

used to implement the behaviour embodied by the ICODE.

A2.1 Scheduling Transformations

The primary effect of any one of the seven scheduling transformations is to reduce the number
of control graph nodes and ultimately, the number of states utilised in the corresponding state
machine controller. As its name suggests, the scheduling transform is able to alter the
execution schedule of the ICODE instructions in a way that aims to meet the user supplied
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timing constraints i.e. the critical path and longest state delay or clock period. In practice, the
effect of the seven transforms is to combine or split control states, re-assigning the ICODE
instructions in the course of doing so. The effect of the transform on the critical path delay
and clock period is either an improvement or degradation, depending upon the type of
scheduling transform applied. A reduction in the total number of control states is obviously an
immediate improvement to the length of the critical path. However, should the control states
selected by the transform determine the clock period, the result of assigning additional
instructions to an existing state would be detrimental to the clock period.

Table A.1 lists the effect of each of the seven types of scheduling transforms.

Scheduling transformation | Description of behaviour

Sequential merge Given two control states, merge the instructions of the second
state with those of the first and remove the now redundant
second state. Independent instructions are ‘chained’ in the same
group. Non-dependant instructions are assigned to concurrent
groups. Any temporary data-path registers used to transport the

ICODE variables between the instructions are now bypassed.

Merge fork & successor Aims to merge the instructions of a ‘fork” or ‘conditional’ node
with those associated with the successor node of one of its
branches. The conditional execution of the arc leading to the
instructions of the successor node, is maintained by conditions
imposed upon the execution of the instructions merged with
those of the branching node.

Parallel merge Merge the instructions from two ‘concurrent’ successor nodes of
a “fork’ into a single control node. The execution of the affected
instructions remains concurrent. The superfluous fork node is

removed from the graph.

Group Chain the instructions which write and read to a variable in
instructions on variable different control states. Frequently used to remove the registers

implementing compiler-generated temporary variables.




D. Esrafili-Gerdeh, 2016 Appendix 250

Ungroup into groups Splits a control state into two by re-assigning a concurrent group

of instructions to a new state.

Ungroup into time slices Splits a single control state and many groups of instructions into
a number of new ones, such that each new state executes one

instruction from each concurrent group within a given time.

Set clock Governs the clock period of the design by utilising the “‘Ungroup
into time’ slices transform, to ensure that the execution delay of
the longest instruction in each state does not violate the user

target for the clock period.

Table A.1: Scheduling transformations available for optimisation of the control graphs.

It is not appropriate to exemplify the application of each of the transforms, for more
information the interested reader is referred to [4,5]. Nonetheless, to enable the reader to
appreciate the use of the scheduling transformations in the context of the control and data-
path graphs, the Sequential merge transform is applied to the segment of the graphs shown

below in Figure A.2 (a).

Figure A.2 (b) depicts the consequences to the graphs should the transform be applied to
control states ‘c19’ and ‘c20’. The main effect is to perform an earlier scheduling of
instruction ‘L20° which due to the data-dependency present in the form of the ICODE
variable ‘tmp97’, necessitates its chaining with the existing instruction ‘i19’. Of course the
secondary effect is the reduction in the resources allocated to realise the state machine
controller. The execution of the instructions within the group, formed by their merger, is
entirely asynchronous i.e. ‘L20 is activated solely by ‘L19°. This removes the need for
register ‘tmp97’ which was previously used to pass the variable across the clock boundary

dividing the two control states.

Applying the transform once again to state ‘c19’ and its predecessor ‘cl18’, results in the
formation of the two parallel instruction groups as depicted in Figure A.2 (c). Their execution
is concurrent because of the absence of any data-dependency between instructions ‘L18’ and
‘L19’ or ‘L18’ and ‘L20’.
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#0

L18: move “0",toggle
L8| toggle ("messageLength )

L19: udec messageLength,tmp97

L20: ugt “0”,tmp97 tmp98

“ ‘e e e B

(a) Initial control and data-path graphs

#0

L18: move “0",toggle
L18{  toggle (‘messageLength )

L19: udec messagelLength,tmp97

L20: ugt “0",tmp97 tmp98

«$04

(b) Graphs following the application of the Sequential merge transform

‘ messageLength

e L18: move “0"toggle  L19: udec messagelength,tmp97
v #0
L20: ugt “0”,tmp97 tmp98
Group 0 Group 1

i L18 toggle

(c) Repeated application of the transformation

Figure A.2: Application of the Sequential merge transform.
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2.2 Allocation and Binding Transformations

The remaining transformations are employed for optimisation to the data-path graphs. Two
transforms enable sharing of data-path units, be they functional (arithmetic) or storage
(memory or registers). A single binding transform is able to select an alternative library cell
for any given data-path unit, although in practice this is currently limited to a small number of
units. The rest of the transforms provide a means of undoing the allocation, thus enabling the
optimisation algorithm to perform a number of degrading or a hill climbing moves which is
hoped will enable a broad investigation of the many possible alternative circuit structures
during optimisation. Table A.2 describes the effect of each of the data-path allocation and

binding transformations.

Data-path transformation | Description of behaviour

Share functional units Provides a means of reducing the circuit area through the
allocation of multiple instructions to a single data-path unit.
This requires the addition of a multiplexor to the unit’s inputs
which allows two or more instructions (in different control
states) to share it. The instructions needn’t be of the same type
e.g. multi-function ALU units allow for different arithmetic

instructions to be assigned to a single unit.

Share registers ICODE variables with non-overlapping lifetimes or in
mutually exclusive conditional branches can be allocated to
common data-path storage, most frequently registers. The
lifetime analysis is sufficiently sophisticated to also take into
account variable persistence in loops as well as conditional

branches.

Un-share instruction from | An inverse transform which re-assigns a single instruction
unit from a previously shared functional unit to a newly created

one. The cell library is interrogated to determine the suitable

unit for both the existing and newly created units.




D. Esrafili-Gerdeh, 2016

Appendix 253

Fully un-share unit

As its name suggests, all instructions currently allocated to the
functional unit are each assigned their own data-path unit,

employing the previous inverse transform in the process.

Un-share variable from

storage unit.

Similar in concept to its functional unit counterpart, a single

ICODE variable is assigned its own storage unit.

Fully un-share storage

unit

Utilises the transform described above to break-up all
instructions mapped to the storage unit in question.

Alternative binding

The sole binding transform enables a data-path unit to be
bound to a different implementation chosen to reduce its area
or delay characteristics.

Table A.2: Allocation and binding transformations available during optimisation.
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Appendix B: Module characteristics

The contents of this appendix describe the properties of the test circuits used to generate the

results presented in Chapter 6.

Quiartic equation solver

Module Area (CLB Slices) Port width (bits)
udivi 908 96
sign 36 33
sdivi 695 96
to_int 154 64
sqrti 1067 64
multi 1194 96
sqi 721 64
quadratic 616 192
cosi 1893 64
acosi 893 64
cbrti 3559 64
chi 2864 64
program 3530 64
> 18130

Table B.1: Module characteristics of the Quartic equation solver.

Figure B.1: Relationships between modules in the Quartic equation solver.
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Path 1
multi — sign cosi to_int sqrti quadratic
to_int udivi — udivi multi sdivi — Sqi
multi cbi sdivi to_int — sign to_int
to_int sqi — sign | multi udivi multi
multi sqrti udivi | sqgrti to_int to_int
multi sdivi multi to_int to_int multi
sqi — sign multi sdivi sqi sqrti
sqi udivi Ccosi —sign | to_int sdivi
multi acosi — udivi udivi | multi — sign
to_int — sdivi sdivi sqi to_int udivi
multi — sign — sign | to_int multi to_int
sqi udivi udivi | multi sqrti
to_int multi multi sqrti to_int
sdivi to_int multi to_int sdivi
— sign | sdivi Cosi sdivi — sign

udivi | — sign — udivi — sign udivi
to_int udivi sdivi udivi | sqi
multi to_int — sign | quadratic | to_int
multi sdivi udivi | — sqi multi
to_int — sign multi to_int | sqrti
multi udivi multi multi | to_int
to_int sqrti to_int to_int | sdivi
chi to_int multi — sign
multi sqi udivi
to_int
sdivi

‘—’ denotes module hierarchy.

Figure B.2: Module execution path of the Quartic equation solver.
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Path 2 Path 3
multi chi — sign to_int multi chi — sign to_int
to_int sqi udivi multi to_int sqi udivi multi
multi sqrti quadratic sqrti multi sqrti quadratic sqrti
to_int cbrti — Qi to_int to_int cbrti — Qi to_int
multi cbrti to_int sdivi multi cbrti to_int sdivi
multi to_int multi — sign multi to_int multi — sign
sqi sdivi to_int udivi sqi sdivi to_int udivi
sqi — sign multi quadratic sqi — sign multi quadratic
multi udivi sqrti — SQi multi udivi sqrti — SQi
to_int to_int sdivi to_int to_int to_int sdivi to_int
multi sqi — sign multi multi sqi — sign multi
sqi to_int udivi to_int sqi to_int udivi to_int
to_int multi to_int multi to_int multi to_int multi
sdivi to_int to_int sgrti sdivi to_int to_int sgrti
— sign | multi sqi sdivi — sign | multi sqi sdivi
udivi | sqrti to_int — sign udivi | sqrti to_int — sign
to_int to_int multi udivi | to_int to_int multi udivi
multi sdivi to_int to_int multi sdivi to_int to_int
multi — sign | multi multi — sign | multi
to_int udivi | sqrti to_int udivi | sqrti
multi sqi to_int multi sqi to_int
to_int to_int sdivi to_int to_int sdivi
chi multi — sign chi multi — sign
multi sqrti udivi multi sqrti udivi
to_int to_int sqi to_int to_int sqi
sdivi sdivi sdivi sdivi
— sign — sign
udivi udivi

Figure B.3: Alternative module execution paths of the Quartic equation solver.

‘—’ denotes module hierarchy
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Cubic equation solver

Module Area (CLB Slices) Port width (bits)
udivi 908 96
sign 36 33
sdivi 532 96
to_int 124 64
sqrti 993 64
multi 884 96
sqi 662 64
cosi 1893 64
acosi 898 64
cbrti 3559 64
cbi 2864 64
program 2208 226
¥ 15561

Table B.2: Module characteristics of the Cubic equation solver.

Figure B.4: Relationships between modules in the Cubic equation solver.




D. Esrafili-Gerdeh, 2016

Appendix
Pathl Path2
to_int — sign | cosi to_int
multi udivi | — udivi multi
sqi multi sdivi sqi
to_int to_int — sign | to_int
sdivi sdivi udivi | sdivi
— sign | — sign multi — sign
udivi udivi multi udivi
to_int to_int to_int to_int
multi sdivi multi
to_int — sign to_int
multi udivi multi
to_int sqrti to_int
chi cosi chi
multi — udivi multi
to_int sdivi to_int
sdivi — sign sdivi
— sign udivi — sign
udivi multi udivi
chi multi chi
sqi cosi sqi
sqrti — udivi sqrti
sdivi sdivi cbrti
— sign — sign to_int
udivi udivi sdivi
acosi multi — sign
— sdivi | multi udivi
to_int

‘—’ denotes module hierarchy

Figure B.5: Module execution paths of the Cubic equation solver.
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Quadratic equation solver

259

Module Area (CLB Slices) Port width (bits)
udivi 883 96

sign 36 33

sdivi 342 96

to_int 80 64

sqrti 966 64

multi 721 96

sqi 649 64

program 720 194

¥ 4397

Table B.3: Module characteristics of the Quadratic equation solver.

Figure B.6: Relationships between modules in the Quadratic equation solver.

sqi
to_int
multi
to_int
multi
sqrti
sdivi
— sign
udivi
sdivi
— sign

udivi

to_int

‘—’ denotes module hierarchy

Figure B.7: Module execution path of the Quadratic equation solver.
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Encryption/Decryption circuits

260

Module Area (CLB Slices) Port width (bits)
rbsub 51 16
rtable 75 40
rotl16 53 64
rotl8 53 64
ftable 75 40
logtables 206 20
word 41 40
rco 45 64
fbsub 50 16
rotl24 65 64
reorder 85 64
program 11946 132
> 12745

Table B.4: Module characteristics of the Encryption/Decryption circuits.

Pathl Path2 Path3
reorder reorder | reorder
o 104 ftable | logtables | o 2 rotl24
rotl8 fbsub
ftable rco
rotl16 — word
ftable o fbsub
@ rotl24
fbsub
reorder
o 104 rtable
rotl8
rtable
rotl16
rtable
o rotl24
rbsub

‘—’ denotes module hierarchy; o’ denotes a finite loop.

Figure B.8: Module execution paths of the Encryption/Decryption circuits.
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Module Area (CLB Slices) Port width (bits)
mzero 430 384
mmult-6 1132 576
madd-5 875 576
smmult 1248 416
mtrans 660 384
finddet2 481 288
finddet3 1336 256
det 1235 224
program 1787 290
Y9184

Table B.5: Module characteristics of the Matrix circuits.

Pathl Path2

rotl8

ftable

rotl16

ftable | o
o rotl24
fbsub

reorder reorder
o 104 ftable | o 2 rotl24

fbsub
rco

— word
fbsub

‘—’ denotes module hierarchy; ¢o” denotes a finite loop.

Figure B.9: Module execution paths of the Matrix circuits.
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Rijndael Encryption/Decryption circuits

Module Area (CLB Slices) Port width (bits)
rotl16 53 64
rotl8 53 64
ftable 75 40
word 41 40
rco 46 64
fbsub 51 16
rotl24 65 64
reorder 70 64
program 6929 100
>7383

Table B.6: Module characteristics of the Rijndael Encryption/Decryption circuits.

Pathl Path2

reorder reorder

o 104 ftable | o2 rotl24
rotl8 fbsub
ftable rco
rotl16 — word
ftable | o fbsub

o rotl24

fbsub

‘—’ denotes module hierarchy; o’ denotes a finite loop.
Figure B.10: Module execution paths of the Rijndael Encryption/Decryption circuits.
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Appendix C: Case-study

This appendix describes each of the building blocks of the Run-time reconfigurable adaptive

coding system described in Chapter 7.
C.1 Message Encoding

The Hamming distance is a measure of the difference between encoded words of data, for
instance, the number of bits which vary between two bit patterns. The usefulness of the
Hamming distance is that, if an error coding system enforces a minimum distance of two or
more than there are bit patterns which do not represent valid data bits. In essence, this concept
of a ‘code space’ underpins a considerable body of mathematical theory which is used to
derive schemes to produce codes with various properties. A generalised binary class of
Hamming codes for multiple-error the correction are the Bose-Chaudhuri-Hocquengheim
(BCH) [85] codes.

n transmitted bits

A
\J

k message bits n-k parity bits

oo0-0011100--011

A

.
|

100(k/n) % efficient

code word

Code ' d,-12

n k din generator . 100. (I.(/ n) % cor?enctable
states efficiency

(octal) errors
7 4 3 13 8 57.1% 1
15 11 3 23 16 73.3% 1
15 7 5 721 256 46.7% 2
15 5 7 2467 1024 33.3% 3
31 26 3 45 32 83.9% 1
31 21 5 3551 1024 67.7% 2
31 16 7 107675 32768 51.6% 3
31 11 11 5423325 | 1048576 35.5% 5
31 6 15 313365047 | 33554432 19.4% 7

Figure C.1: Format of a BCH codeword, exemplar codes and the target codes.
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Figure C.1 shows the format of a BCH codeword and a number of exemplar short length
codes. A given BCH code takes the form BCH (n, k, dmin), Where a data message of length k is
augmented with n-k parity bits to realise a codeword of length n. The Hamming distance

d

d_. <2t+1 enables the correction of t:m"‘T_1 errors. Also tabulated in Figure C.1 are

min —

the parity overheads associated with the size of each message, expressed as a percentage of
the codeword transmitted and hence an expression of the code efficiency. The (15,k,dmin)
family of codes highlighted in the table were selected because they facilitate the correction of
a range of errors (one to three) whilst requiring a generally modest number of states. As the
table shows, the number of states associated with a BCH code grows with the number of

errors it is capable of correcting.

The message to be transmitted is stored in a message ROM, where each character is
represented in the form of ASCII code. The ASCII character cannot always be encoded
directly since the portion of code allocated to data varies depending upon the coding scheme.
Figure C.2 shows how a series of characters is formatted in accordance with k message bits
for a given BCH code, where a coloured bit denotes a splice in the ASCII code and n bits are

added to meet the required length.

character ASCII code k=11 k=7 k=5
a 1000001 00101000001 1000001 00001
b 1000010 01000011100 1000010 01010
c 1000011 00101100010 1000011 11000
d 1000100 xx100011010 1000100 00001
1000101 1000101 01001
f 1000110 1000110 01100
10001
00110
xxx10

Figure C.2: Code dependent message formation.
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Once the bit-packing stage is complete, the next task in the construction of the codeword is
the generation of the parity bits. Figure C.3 depicts a Galois type Linear Feedback Shift
Register (LFSR) circuit capable of encoding a message for the (15,11,3) BCH code. The
feedback connections to the exclusive-or gates correspond to the code’s generator: 235 =191

=10011; or expressed as a polynomial: g(x) =1+ x + x*.

r0 rl r2 r3

arit S
party 0 o codeword
message ¢ .

Figure C.3: Encoding circuit for the BCH (15,11,3) code.

The switches are used (conceptually) to direct the source of the bits that form the codeword as
well as controlling the feedback of the LFSR. Consider encoding the message taken from the
first row of the table shown in Figure C.3 for message length & =77: 00101000001.

Figure C.4 tabulates the progression of the message through the registers. During the first
k=11 cycles each bit of the message is exclusive-ORed with the coefficient of x* (held in
r3) before being fed back (switch s;) to be once more exlusive-ORed with the coefficient of x.
Simultaneously, each bit of the message is also directed via switch sy to form the first kbits of
the codeword. In the remaining n-k = 15-11 =4 cycles, the switches are flipped to flush the

registers and append their contents as parity, thus forming the codeword 0000 00101000001.

On close inspection, there are a number of characteristics which determine the sequence of the
register contents. Regarding the LFSR as a state machine, where the value of the register
outputs correspond to a particular state, the next state is dependent upon the output of the last
register Qzand the value of the message bit A7 . The effect is to determine whether the register

value is doubled by shifting right one place or added to the generator (modulo-2 arithmetic).
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message m; |DO| QO D1 |Q1|D2|Q2|D3|Q3|codeword |Qn|
00101000001 | O 1 (0 (2 (O (O (O (O |O |- 0
0010100000 |1 o |1 |1 |1 |1 |0 (0 |O |1 3
001010000 |2 o |0 |0 |1 |1 |1 |1 |0 |01 6
00101000 3 1 (0 (12 (O (O (1 |1 |1 |001 12
0010100 4 1 |1 |0 (1 |1 (0 |0 |1 |O001 11
001010 5 o |1 (1 |0 |0 |1 (1 |0 |00001 5
00101 6 0O |0 |0 |1 |1 |0 |0 |1 |O0O00001 10
0010 7 0 |0 [0 |O |0 |1 |1 |0 |1000001 4
001 8 0 |0 |0 |O |O |O (0O |1 |01000001 8
00 9 0O |0 |0 |0 |0 |0 |O |0 |101000001 0
0 100 |0 (0O |0 |O (O |O |O [0 |0101000001 0
- 11 |0 (0 |0 |O (0 |0 |O |0 |00101000001 0
0000 1 |0 (0O |O (O |O |O |O |O |00101000001 -
000 12 |0 (0 |0 |O (O |O |0 |O |000101000001 -
00 13 |0 (0 |0 |O (O |O |O |0 |0000101000001 -
0 14 |0 (O |O |O (O |O (O |O |00000101000001 -
-/1% |0 (0 |O |O (O |O |O |O |000000101000001 |-

Figure C.4: Exemplar LFSR encoding.

Let Q represent the value of the register contents given when the MSB is logic 1 i.e.
Q = 2n k-1 = 215-11-1 — g - Recall that the Generator polynomial G expressed in binary
form is 10011, . The generator g is found by exclusive-oring the polynomial generator ¢ with
the value of Qi.e. g =1011, @ 1000, = 0011,. If R; represents the state of the registers

after message bit 7 has been shifted in and R;, ;denotes the next state then:
Ri.1 =2R; when (R; < QandM; =0)or (R; =QandM; =1) (C.1).

In words, the next state is even when either the current state is less than Qand the message

bit is logic low or the current state is greater or equal to ¢ and the message bit is logic
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high. For example, with reference to the table in Figure C.4 the state at message bit 2 is given
by R2:2'R1:2'3:6When M1:O

Similarly the state at message bit 7 is:

R, =2-Rg=2-10=20=4whereQ + R =10and My = 1.

Although the next state is twice that of the previous value of 10, it cannot be represented as 20

using 4 bits and therefore the next state is returned as 4.
Complementary to that, it also follows that:
Riz1 =2R; @ gwhen(R; < QandM; =1)or(R; = Qand M; =0) (C.2).
Returning to the table for verification, the state at message bit 1 is given by:
Ri=2-R,®3=2-0 ®3=3whenM, =1.
Likewise, state 5 is given by:
Re=2-R, ®3=2-11 ® 3 =5when M, = 0.

Figure C.5 depicts the state transition for any given present state R; to the next R;,;, with

respect to the value of the message bit M;.

2Ra&g

Figure C.5: Message dependent state transition.
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This process is encapsulated by the pseudo-code depicted in Figure C.6. The code is self-
explanatory, in that, it is solely a description of the behaviour. The VHDL description in
MOOQODS is almost identical with some additional type casting of the variables. It can be found
in Chapter 3, Figure 3.3. At this algorithmic level of the abstraction, the function of the
encoder is transparent in the circuit design; the same cannot be said of the Register Transfer

Level descriptions of the circuit shown in Figure 3.3 in Chapter 3.

G =19
numStates = 2codeLength—messageLength

Q — 2codeLength—messageLength— 1

g=G ®Q
state = 0
foriin 0 tomessagelLength loop
if state < Q then
if message; = 0 then
state = 2 - state
else
state = 2 -state @ g
end if
else
if message; = 0 then
state = 2 - (state—q) @ g
else
state = 2 - (state — q)
end if
end if

end loop

Figure C.6: Algorithmic description of the BCH encoder.
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C.2 Message Decoding = Sequential Viterbi Decoder

The state transition diagram of Figure C.7 highlights the sequence of states traversed during
the encoding of the exemplar codeword of Figure C.3, in the context of all possible state
transitions. Each path through the states is unique to the contents of the message. The task
during decoding is to determine that path and in doing so, whether or not any message bit has
been corrupted during transmission, restoring it where necessary. As it has been shown that
during encoding, each state R or R + Q traverses to the next state 2 - R (even) or 2R; @
g (odd) depending upon the logic level of the message bit M;. Working backwards, this
property can be used to determine the pair of preceding states. Only one of these states is
associated with the state transition taken during the encoding of the codeword. Identifying it,

will also reveal the message bit transmitted.

/
/
/
/
/
/
/
/
/
/
/
/

0

9 R
o o
o b

Figure C.7: State Transition Diagram for message decoding using BCH (15,11,3) code.

The Hamming distance can be quantified at each state transition by introducing a weight that
is dependent on the logic level of the message bit. A weight of zero represents no change of
the message bit during transmission, where as an increment in weight is used to reflect its

corruption.
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Returning to the state diagram, consider the state transition (R, to state R;) associated with
the first bit of the codeword M, = 1. Assume for the time being, that no error occurred in the
transmission of the message bit. A weight of O at state R; can be represented for the first
message bit by: WQ =1 —M,= 0. The weight would have been incremented had the
message bit been corrupted during transmission i.e. W3 = 1. For the sake of argument, let us
assume that the transition also occurred error free for the second message bit M; = 0. To have
negligible effect on the weight, the value of the message bit can be assigned directly i.e.
W2 = M= 0. In this way, any error to the message bit (M; = 1) also results in an increment
to the weight, thus: W2 = M; = 1. The Viterbi decoder is now in a position to determine
which of the predecessor states is associated with the message. It does this by comparing each
of their weights and selecting the state whose weight is the smaller of the two. The
relationship between the current state and its predecessor determines the value of the message

bit. The next state relationships used by the encoder are reproduced here:
Riz1 = 2R; when (R; < QandM; =0)or (R; = QandM; =1) (C.1)
Riz1 =2R; ® gwhen (R; < Qand M; = 1) or (R; = Q and M; = 0) (C.2)

Using these equations or Figure C.6 and working backwards provides the preceding state, that
is to say, the state R;_;which along with the message bit M; is responsible for the state

transition the current state R; i.e.
when R; = 2R;, R,y = R;and M; =0or R,y =R;+QandM; =1
whenR; =2R; @ g, Ri_.1 =R;andM; =1or R,_; =R;+Qand M; =0

During the encoding of the message, the starting state is always R,. As shown, this
characteristic is exploited in the decoder weighting of each state by initializing all the states to
a weight greater than that of R i.e. the minimum Hamming distance. In doing so, the initial
weighting ensures that state R, is correctly chosen as the predecessor state when decoding the
first message bit. The decoding method is summarised by the pseudo-code shown in Figure
C.8. Initialisation takes place during lines 1-4, to bias the weight of state R, to zero and the
rest of the states to the minimum Hamming distance. The internal loop bounding lines 6-21

compares the weights of each pair of predecessor states for every state R. The smaller of the
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two, points the way to what is likely to have been the previous state. Using the relationships
described earlier, the message bit likely to be associated with the state transition is found and
consequently set. Note that there is no point in performing the extra test to determine whether
the bit is erroneous, rather the bit is directly updated with the value expected. All that remains
is to write the smaller of the two weights to the state R in question. Of course, the procedure is

repeated by the outer loop for every remaining bit i of the message.

1. wol=0

2. for Rin 1 to numStates — 1 loop

3. wil=dmin

4. end loop

5. foriin0tomessagelength — 1 loop
6. for R in0 tonumStates — 1 loop

7. if w4 m < wiih +1—m;then
8. message; ='0'

9. wip = wht+m;

10. else

11, whp=wiip+1-m

12. message; = '1'

13. endif

4. if wit+1—m; < wiip+m; then
15. message; = '1'

16.  Wiggg =wk '+ 1—-m,

17. else

18. message; = '0'

19, Wirey = Whio +my

20. endif

21. end loop

22. end loop

Figure C.8: Algorithmic description of the Viterbi decoder.
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Table C.1 depicts each pair of predecessor states read by the algorithm for the BCH (15,11,3)

coding scheme and the current odd and even states they are used to update.

Previous Current
states states
Ri1 Ri

R R+Q [2R 2R®g
0 8 0 3
1 9 2 1
2 10 4 7
3 11 6 5
4 12 8 11
5 13 10 9
6 14 12 15
7 15 14 13

Table C.1: States visited by the algorithm during the decoding of the BCH (15,11,3) code.

The next table (C.2) shows the Hamming distances calculated during the decoding of the
codeword described earlier and illustrated in Figure C.4. The first column depicts the
initialisation of the states, which as explained earlier, requires that state Ry be initialised to
zero and the others set to the minimum code distance. In doing so, the method ensures that all
states can be correctly traced back to Ry, thus mirroring the origin of the first state transition
during encoding. The codeword is error free and so the initial zero weight is propagated
(shown in bold) as the decoder recreates the path likely to have been taken during the
encoding of the codeword. This can be verified through the use of Table C.1 and the
equations for the even and odd weights featured in the decoder algorithm equation and
reproduced in equations C.3 and C.4 respectively:

wip = minimum (Wi ! +m;, whih +1—m;) (C.3)

Wireg = minimum (wi* + 1 —m;, wiih +m;) (C.4)
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Starting with the even state Ry, from Table C.1, its preceding states are itself Ry and Rs.
Inspection of the first column of Table C.2 shows the initial weights of both states to be:
W,=0 and Ws=3. Using Equation C.3 and taking into consideration the value of the message

bit mo=1, the weight at state Rg is determined as: W = minimum(1,3) = 1.

Mi My Mg Mi M; Mg My Ms Mg M; Mg Mg My Myy My Mz My
W; - 1 0 0o 0 0 0 1 0 1 0 O 0 0 0 0
W | 0 1 1 1 1 1 1 2 2 O O O 0 0 0 0
w, |3 3 3 3 2 3 1 1 2 2 2 2 1 1 1 1
W, | 3 3 3 3 3 2 2 1 1 2 2 2 2 1 1 1
W; | 3 0 2 2 2 1 2 1 1 1 1 1 1 1 1 1
W, 3 3 3 3 2 3 2 0 1 2 2 2 2 2 1 1
Ws| 3 3 1 3 3 0 2 2 2 1 1 1 1 1 1 1
Weg | 3 3 0 2 2 1 1 2 1 1 1 1 1 1 1 1
w,| 3 3 3 3 1 3 2 1 2 1 1 1 1 1 1 1
Wg | 3 3 3 3 1 2 3 1 0 2 2 2 2 2 2 1
Wg | 3 3 3 2 3 1 1 2 2 2 2 1 1 1 1 1
W 3 3 3 1 3 2 0 2 2 1 1 1 1 1 1 1
Wp; 3 3 3 3 0 2 2 2 1 1 1 1 1 1 1 1
Wp/ 3 3 3 0 2 2 1 2 2 1 1 1 1 1 1 1
Wl 3 3 3 3 1 2 2 2 1 2 1 1 1 1 1 1
Wy 3 3 3 3 2 1 3 1 1 1 1 1 1 1 1 1
Ws 3 3 3 1 3 2 1 1 1 1 1 1 1 1 1 1

Table C.2: Weights at each state and for every bit of the codeword 000000101000001.

In much the same way, the decoding algorithm also updates the weight of the odd state R
except using equation C.4, thus the weight of state Ry is propagated to state Rs.
W2 = minimum(0,4) = 0. The algorithm repeats this procedure for the remaining states and
for every bit of the message M; being decoded. One interesting characteristic of BCH codes is
that if the codeword were to be encoded using the same generator, the final state is always R,,.

In a similar sense, this property is exhibited by the decoder, since the weight of R, following
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the last message bit returns the number of errors corrected i.e. W,* = 0. As will be described
in due course, this property is also exploited during control of the adaptive decoding, where
the number of errors corrected guides the selection of the coding scheme. Table C.3 shows the
eights generated when the algorithm is applied to a corrupted codeword, the result of a switch
in the logic level of the fourth message bit Ms.

Mi My Mg My M; Mg Mg Ms Mg M; Mg Mg Myy My My Miz My
W; - 1 0 o 1 0 0 1 O 1 0 O 0 0 0 0
W | O 1 1 11 1 1 2 1 1 1 1 1 1 1 1
Wi 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1
W, 3 3 3 3 3 3 2 1 2 1 2 1 1 1 1 1
W3 3 0 2 2 2 1 2 1 0 1 2 1 1 1 1 1
W, | 3 3 3 3 2 3 2 1 1 2 1 O 1 1 1 1
Ws | 3 3 1 3 3 1 2 2 1 0 1 O 1 1 2 1
W 3 3 0 2 2 0 1 2 1 1 1 2 2 1 1 1
W7 3 3 3 3 1 3 1 2 2 2 1 O 1 2 1 1
W5 3 3 3 3 1.2 3 O 1 2 2 1 1 1 1 1
Wy 3 3 3 2 3 2 1 2 1 1 1 1 1 1 1 0
Wy | 3 3 3 1 3 1 1 2 2 1 0 1 2 1 1 1
Wi | 3 3 3 3 0 2 2 1 2 1 2 1 1 2 1 1
Wi | 3 3 3 o 2 2 0 2 2 2 1 1 2 1 1 1
Wi | 3 3 3 3 1 1 2 1 1 2 1 1 1 1 0 1
Wy | 3 3 3 3 2 2 3 1 2 1 2 1 0 1 1 1
Wis | 3 3 3 1 3 2 1 1 1 1 1 2 1 0 1 1

Table C.3: Weights at each state and bit of the erroneous codeword 000000101010001.

As before, the decoder uses the minimum weights to identify the correct path (in bold) despite
the presence of the erroneous message bit. Table C.4 illustrates the effect of the algorithm
upon the reconstruction of the codeword itself. Each column of the table refers to the
individual bit of the message or codeword under examination by the algorithm. Every row
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depicts the partial construction of the message local to each state, as each bit of the message is

examined.

M; My Mg M; M, M; M, Ms Mg My,
Messageri | - 1 0 O 1 0 0 1 0
Messagep | - O 00 000 0000 11001 011001 0011001... 000000101000001
Message; | - 1 01 001 0111 10111 000101 0010011... 000000101010000
Message, | - 1 01 001 1111 10001 010111 1010011... 000100101010001
Message; | - 1 10 100 1000 10000 010010 1011001... 000001101010001
Message; | - 1 01 001 1011 10001 110101 1000001... 000000101110001
Messages | - 1 11 001 0001 00001 011011 1010010... 001000101010001
Messages | - 1 01 010 0100 10001 010000 1011101... 000000100010001
Message; | - 1 01 001 0011 11111 010101 0000001.. 000000111010001
Messages | - 1 01 001 1001 10010 111101 1010001... 000000101011001
Messages | - 1 01 111 0001 00101 010011 1011011... 000000101010001
Message;p | - 1 01 011 0001 10101 000001 1010100... 100000101010001
Message;; | - 1 01 001 0001 11011 011101 0010001... 000000101010101
Message; | - 1 01 001 0010 11101 010001 0010000... 000010101010001
Message;s | - 1 01 001 0101 10011 010100 1010101... 000000101010011
Message;s | - 1 01 001 1101 00011 110100 1110001.. 000000001010001
Message;s | - 1 01 101 0001 10100 110001 1010000... 010000101010001

Table C.4: Message correction using Viterbi decoding for codeword 000000101010001.

Having identified the likely predecessor state (from the smaller weight of the two states
presented), the algorithm uses the relationships described by equations C.1 and C.2 to set the
likely logic level of the message bit. As Table C.4 depicts, once the logic level of message bit
M; has been found, the entire message up to and including bit i is appended to the message
associated with the states under examination. As highlighted in bold in table, the original path
associated with the state transitions is re-traced and the driving message bits responsible for
each transition, are reconstructed bit by bit, thereby correcting the incorrectly received
message bit in the process. After the last message bit has been decoded, the corrected

codeword is read from the copy of the codeword associated with state Ro. With reference to
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Table C.3, once again, the weight of state Ry4 after the last message bit has been decoded

returns the number of errors that have been corrected.

C.3 Parallel Viterbi Decoding

The decoding time of the sequential decoder can be reduced linearly by partitioning the
number of states evenly among 2™ decoders or ‘Processors’ [124,125]. In the sequential
decoder the weights and partially corrected codeword associated with each state are accessible
to all other states within the decoder circuit. In practice, the Viterbi decoders used in the
reconfigurable coding scheme require (2¢0delength-messagelengthy of 16-bit words to store
the message and the same number of nibbles (4 bits) to record the hamming distance weights
associated with each of the states. Partitioning the states over a number of decoders can
potentially generate a large cut-set comprising the memory allocated to the Hamming weights
and the i th bit of the codeword.

The underlying characteristic thus far, has been the classification of the states into those that
are smaller or (greater and equal) to Q and their use in the generation of the next set of states.
Grouping these states together on each decoder can significantly reduce the number of signals
cut by the partitioning.

Equation C.5 determines how 2" *~1states can be evenly partitioned over 2™ processors.
Recall that n is the length of the codeword and that k is the portion of that codeword assigned

to the message bits. The set of states Sp partitioned over processor P is given by:
Sp=Pr U Pgyqp (C.5)
Where the set of states less than Q on processor P is given by:
Pr=LP..L(P+1)—1 (C.6)

Let L be the number of states less than Q on each processor P, such that:L = 2*~™"%~1 and
Q = 2™ %=1, Those states on processor P greater than Q are given by adding Q to the decimal

value of each state inthe seti.e. Pr,o = PR+ Q (C.7).
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Consider the task of partitioning the BCH code (15,11,3) over 4 processors. The parameters

are as follows:
n=15k=11,m=2for2? =4 processors
Q — zn—k—l — 215—11—1 =8 L = 215—2—11—1 — 21 = 2.

The parameters indicate that there are 2 states less than 8 on each processor. These states are

determined using equations C.5 for each of the processors numbered 0 to 3 as follows:

States on processor 0

States lessthan Q: P, =02 ...2(0+1) —1=10..1 (usingC.6)
States greater than or equal t0 Q: P.o =0+8..1+8=28..9 (using(C.7)

Therefore the states partitioned to processor O are given by combining both sets:
S0=0..1U8..9=0,1,89 (usingC.5)

Using the same equations, the remaining states are partitioned as follows:
$=2..3uU10..11=2,3,10,11
S, =4..5U12..13 =4,5,12,13
S3=6..7U14..15 =6,7,14,15

Figure C.9 illustrates the external communication (cut-set) between each of the four
processors P1.3. Each processor depicted, contains the states assigned to it using the procedure
described. Recall that in order to update the weight and message bits associated with a given
state Rj, two predecessor states R;.; are required. The relationship between such states is re-
produced in the table alongside the decoders. The transfer of the weights and message bits
between processors is depicted by each unidirectional edge. Each arc originates from the
processor containing the predecessor states and terminates in the processor whose state is
updated using the predecessor states and the decoding method discussed earlier. What makes
the partitioning particularly elegant is that a significant proportion of the connectivity is

contained within the processor itself. For example, consider the even and odd states of the
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first row of the table. The even state Ri= 0 is updated using itself and R;.;=8. This is done
internal to the processor. The two states are also used to update the odd state Rj= 3 which
requires the weight and message bits associated with each state to be transmitted across the

decoder boundaries.

R R;
We Weeq War Woreg
0 8 0 3
1 9 2 1
2 10 4 7
3 11 6 5
4 12 8 11
5 13 10 9
6 14 12 15
7 15 14 13

Figure C.9: Viterbi decoding of BCH (15,11,3) code partitioned over 4 processors.

As another example of the partitioning, consider the state assignment necessary to divide the
decoding over two processors. Once again, the parameters are returned as:
n =15k = 11,m = 1 for 2! = 2 processors

Q — 2n—k—1 — 215—11—1 — 8; L = 215—1—11—1 — 22 = 4.

States on processor 0

States lessthan Q: Pp, =04 ...4(0+1) —1=0..3 (usingC.6)

States greater than or equal to Q: Pg.o =0+8..3+8=8..11 (usingC.7)
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Combining both sets of states determines those state partitioned to processor 0 i.e.
Sy =0..3U8...11=0,1,2,3,89,10,11 (using C.5)

Following the same method reveals the remaining states portioned over processor 1:
S$1=4..7U12..15=45,6,7,12,13,14,15

Figure C.10 shows the impact of the partitioning on the external communication between the
processors. In this case, partitioning the states among two processors balances the number of
internal signal transfers (16) with those exchanged between the two decoders. The reader may
verify this by consulting the relationships between the states shown in the table of Figure C.9.
Another aspect of the partitioning which commends itself to parallel computation is the fixed
degree of input and output arcs. In general the in/out-degree of the task graph when decoding

any BCH code is never any greater than 4.

(4.7)

(6,5)

Figure C.10: Viterbi decoding of BCH (15,11,3) code over 2 processors.

In addition to partitioning the BCH (15,11,3) code over 4 processors, the states of the BCH
(15,7,5) code are divided among 2 processors. The rationale for doing this is discussed in the
next section. Repeated application of the equations used previously, returns the following
state to processor assignment: out of the 256 states used by the decoder, each processor will
be assigned 64 states, all of which are numerically smaller than Q which is found to be 128

i.e. Q = 128; L = 64; given thatn = 15,k = 7,m = 1 for 2 = 2 processors.
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These states are partitioned to processor 0, such that:
States lessthan Q: P, =0+ 64 ...64(0+ 1) — 1 = 0..63 (using C.6)
States greater than or equal t0 Q: Pgo = 0+ 128...63 + 128 = 128...191 (using C.7)

The states assigned to processor 0 are as follows:

Sp=0..63U128...191 (C.5)

Repeating the procedure verifies that those states not assigned to processor O are resident on

the remaining processor i.e.

S1=64..1270U192...255.

C.4 Message Corruption

As its name suggests, the purpose of the message corrupter circuit is to invert one to four bits
of a given codeword and in doing so offer a simple means of emulating the corruption of any
encoded message during its transmission. The role of the corrupter is limited to automating
the selection of random bits of a codeword for corruption- in order to stimulate a change in
coding scheme by the receiver. The reader is referred to Chapter 7 for a full description of its
integration within the adaptive coding scheme.

Figure C.11 shows the behavioural VHDL description of the message corrupter used in the
communication system. It is essentially a description of the behaviour of two linear feedback
shift registers and is therefore a specification for two pseudo-random number generators. The
first produces a pseudo random number between 0 and 63; it is converted to the variable
‘numErrors’ which is used to determine the number of codeword bits to change during
corruption of a codeword. To vary the error rate, the frequency of bit errors is determined by
the size of the variable ‘numErrors’ in relation to a number interval. No errors (numErrors=0)
are most likely to occur for random numbers in the range of 0 to 39; conversely, four errors
(numErrors=4) is the least likely number of errors to occur requiring the random number to be

exactly equal to 63.



D. Esrafili-Gerdeh, 2016 Appendix

281

-- subroutine to corrupt one to four bits of a codeword

procedure messageCorrupter (codeWord: in std_logic_vector(14 downto 0);
randomState: inout std_logic_vector(5 downto 0);
randomStateBit: inout std_logic_vector(3 downto 0);
corruptCodeWord: out std_logic_vector(14 downto 0);
errors: out integer range 0 to 4) is

variable tempWord: std_logic_vector(14 downto 0);
variable taps,eTaps: std_logic;

variable numErrors: integer range 0 to 4;

variable randomBit: integer range 0 to 14;

variable randomNo: integer range 0 to 63;

begin
-- LFSR which determines the number of errors

eTaps:=randomState(0) xor randomState(1);
randomState:=eTaps & randomState(5 downto 1);
randomNo:=to_integer(unsigned(randomState));

if randomNo < 39 then
numeEerrors:=0;

elsif randomNo < 51 then
numErrors:=1;

elsif randomNo < 59 then
numerrors:=2;

elsif randomNo < 63 then
numeEerrors:=3;

else
numEerrors:=4;

end if;

tempWord:=codeWord,

-- LFSR which selects the codeword bits to corrupt

while numErrors > 0 loop
taps:=randomStateBit(0) xor randomStateBit(1);
randomStateBit:=taps & randomStateBit(3 downto 1);
randomBit:=to_integer(unsigned(randomStateBit))- 1;
tempWord(randomBit):= tempWord(randomBit) xor 'L’;

end loop;

corruptCodeWord:=tempWord;

end messageCorrupter;

Figure C11: Behavioural VHDL description of the message corrupter circuit.
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The role of the second LFSR is to perform the corruption of the codeword by pseudo-
randomly selecting the desired number of codeword bits held by variable numErrors,

inverting each bit to achieve the specified level of codeword corruption.

The main objective of the case-study was to provide a means of exercising the automated
RTR infrastructure generated by MOODS during temporal partitioning. However, all building
blocks described in chapter 7 were implemented at the device-level as part of a rudimentary
communication system. As well as successfully testing the automated infrastructure, the case
study showed the feasibility of using RTR to utilise logic resources to increase the parallelism

of Viterbi decoding using FPGA resources which would have otherwise been idle.

The next step for the case study would be to change the message corrupter to implement the
characteristics associated with actual communication channels. A good place to start would be
to incorporate a variable error rate into the message corrupter based upon a Markov Process,
as described in [123]. In doing so, the codewords would be subjected to a variable error rate
typical of the sort of signal ‘fading’ associated with wireless communication channels.
Updating the message corrupter will enable the reconfigurable Viterbi decoders to be assessed
alongside more conventional approaches, where its advantages and disadvantages can be

further evaluated.
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