

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

School of Electronics and Computer Science

Behavioural Synthesis of Run-time Reconfigurable Systems

by

Donald Esrafili-Gerdeh

Thesis for the degree of Doctor of Philosophy

January 2016

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

School of Electronics and Computer Science

Doctor of Philosophy

Behavioural Synthesis of

Run-time Reconfigurable Systems
by Donald Esrafili-Gerdeh

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a
Behavioural Synthesis System which can automatically generate a number of structural
descriptions of a digital circuit from just a single behavioural one. Although each structural
description is functionally equivalent to the next, it will have different properties, such as
circuit area or delay. The final structural description selected will be the one which best meets
the user’s optimisation goals and constraints.

Run-time Reconfigurable systems operate through multiple configurations of the
programmable hardware on which they are implemented, dynamically allocating resources
‘on the fly’ during their execution. The partially reconfigurable devices upon which they are
based, enable areas of their configuration memory to be rewritten, without disturbing the
operation of existing configurations − unless so desired. This characteristic may be exploited
by partitioning a circuit into a number of distinct temporal contexts, which when ultimately
realised as device-level configurations may be swapped in and out the device’s configuration
memory, as the run-time operation of the circuit dictates. At any point during the execution
of the temporally partitioned circuit, the area required to implement it is equal to the size of
the largest context and not the sum of each of its constituent parts, as would be the case in a
non-reconfigurable implementation. The reduction in circuit area comes at the cost of a
reconfiguration overhead, the time taken to partially reconfigure the device with each
configuration and the frequency at which this form of context switching occurs.

This Thesis describes an extension to the original MOODS system, enabling it to quantify the
trade-off that exists between the potential area reduction offered through run-time
reconfiguration and the subsequent reconfiguration overhead incurred as a result. In addition
to performing the temporal partitioning alongside existing circuit optimisation, MOODS is
now able to automatically generate the infrastructure to support a practical implementation of
the temporal contexts on a commercial Field Programmable Gate Array.

Contents

Chapter 1: Introduction ... 12

1.1 Thesis Contribution ... 14

Chapter 2: Background .. 18

2.1 Programmable and Application-Specific Hardware ... 19

2.2 Temporal and Spatial Computation .. 20

2.3 Reconfigurable Resources .. 25

2.3.1 FPGAs .. 26

2.3.2 Technology and Architecture ... 28

2.4 CAD Tools for Dynamically Reconfigurable Logic .. 33

2.5 Synthesis and Partitioning .. 36

2.6 Architectures for Run-time Reconfiguration .. 44

2.7 Summary ... 49

Chapter 3: Behavioural Synthesis ... 51

 3.1 Circuit Abstraction and Synthesis .. 51

3.1.1 Behavioural and RTL Circuit Synthesis .. 55

3.1.2 A Renewed Role for Behavioural Synthesis Tools.. 63

 3.2 MOODS Behavioural Synthesis .. 65

 3.3 MOODS and other Behavioural Synthesis Tools .. 69

3.3.1 Specification Languages .. 69

3.3.2 Compilation and Optimisation ... 72

 3.4 MOODS and Run-time Reconfiguration .. 75

3.4.1 Behavioural Description .. 75

3.4.2 ICODE Description .. 80

3.4.3 Circuit Optimisation... 85

3.4.4 Optimisation Algorithm ... 89

3.4.5 Simulated Annealing .. 92

3.4.6 Structural Circuit Abstraction .. 94

 3.5 Summary ... 95

Chapter 4: Temporal Partitioning .. 96

4.1 Resource Binding .. 96

4.2 Overview of the Target Architecture .. 102

4.3 Partitioning Metrics .. 104

4.4 Problem Formulation .. 106

4.5 Circuit Area ... 108

4.6 Reconfiguration Overhead .. 109

4.7 Frequency of Resource Context Switching .. 111

4.8 Scheduling the Context Switching .. 116

4.9 Communciation Channels ... 123

4.10 Balancing the Partitions .. 134

4.11 Cost Function .. 135

4.12 Summary ... 137

Chapter 5: Implementing Run-time Reconfiguration ... 138

5.1 Architectural Abstraction .. 139

5.2 System-level Architecture ... 140

5.3 Communication-level Architecture ... 145

5.3.1 Communication Channels .. 146

5.3.2 Channel Controller ... 150

5.4 Device-level Architecture ... 164

5.5 Implementation in MOODS .. 170

5.5.1 Resource Binding Transform ... 173

5.5.2 Context Switch Instruction .. 179

5.6 Transform Interaction ... 180

5.7 Summary ... 188

Chapter 6: Implementation and Results ... 191

6.1 Experimental Objectives and Method ... 191

6.2 Results and their Analysis ... 194

6.3 Test Circuits .. 210

6.4 Summary ... 212

Chapter 7: Run-time Reconfiguration − A case study .. 215

7.1 A Run-time Reconfigurable Variable Coding System ... 215

 7.1.1 Background ... 215

 7.2 Variable Coding Strategy and Run-time Reconfiguration 219

7.3 System Architecture .. 222

 7.3.1 Adaptive Coding Scheme ... 222

 7.3.2 Inter-process and Inter-region Communications .. 227

7.4 Synthesis Results .. 231

7.5 Run-time Characteristics ... 233

7.6 Summary ... 236

Chapter 8: Conclusion and Further Work ... 238

8.1 Conclusion .. 238

8.2 Further work ... 241

Appendix A : MOODS.. 243

A.1 Synthesised Architecture ... 243

A.2 Graph Transformations .. 248

 A.2.1 Scheduling Transformations ... 248

 A.2.1 Allocation and Binding Transformations .. 252

Appendix B : Module Characteristics ... 254

Appendix C : Case-study .. 263

C.1 Message Encoding ... 263

C.2 Message Decoding − Sequential Viterbi Decoder ... 269

C.3 Parallel Viterbi Decoding ... 276

C.4 Message Corruption ... 280

References .. 283

List of Figures

Figure 2.1 Traditional forms of spatial and temporal resource usage 21

Figure 2.2 Spatial and temporal use of reconfigurable resources 23

Figure 2.3 Generic FPGA structure . .. 27

Figure 3.1 Abstraction in circuit representation .. 52

Figure 3.2 BCH message encoding using a Galois LFSR ... 56

Figure 3.3 An RTL description of a BCH message encoding circuit 57

Figure 3.4 A Behavioural VHDL description of the BCH encoder 60

Figure 3.5 Circuit architectures generated by RTL and behavioural synthesis 62

Figure 3.6 MOODS – centric digital circuit synthesis ... 66

Figure 3.7 MOODS synthesis extended for temporal and spatial partitioning 76

Figure 3.8 Sequential and parallel VHDL amenable to behavioural partitioning 77

Figure 3.9 ICODE Module encapsulation of parallel and sequential VHDL constructs 82

Figure 3.10 A 2-dimensional (area/time) design space. ... 89

Figure 3.11 MOODS iterative improvement optimisation loop ... 91

Figure 4.1 Static resource binding in high-level synthesis ... 98

Figure 4.2 Resource reduction through static binding of multi-mode cells in HLS. 100

Figure 4.3 Architectural support for temporal partitioning. ... 103

Figure 4.4 The characteristics of a quadratic equation solver implementation 105

Figure 4.5 A temporal partitioning of the quadratic equation solver 108

Figure 4.6 Context switching of the partitioned quadratic equation solver 112

Figure 4.7 Multi-region context switching of the partitioned quadratic equation solver . 114

Figure 4.8 Scheduling the context switching of reconfigurable regions 118

Figure 4.9 Impact of module partitioning and placment on communication channels 125

Figure 4.10 An example of temporal partitioning .. 128

Figure 4.11 The mapping of concurrent channels .. 130

Figure 4.12 Re-partitioning to improve resource utilisation of reconfigurable regions ... 134

Figure 5.1 Abstraction of the architecture into distinct layers of circuit activity 139

Figure 5.2 Synthesised architectural components ... 142

Figure 5.3 Sub-module execution and signal transfer .. 144

Figure 5.4 Direct sub-module execution timing ... 145

Figure 5.5 Device-specific channel implementation .. 147

Figure 5.6 Bus Macros − bridging the reconfigurable divide ... 149

Figure 5.7 Typical sub-module partitioning topology .. 150

Figure 5.8 Channel controller subsystems utilised during a channel transaction 152

Figure 5.9 Module address decoding .. 155

Figure 5.10 A temporally partitioned quartic equation solver .. 156

Figure 5.11 Module execution paths of the quartic equation solver 158

Figure 5.12 Memory maps of module address ROMS for the quartic equation solver 159

Figure 5.13 Communication layer protocol and usage ... 162

Figure 5.14 Reconfiguration controller and protocol ... 166

Figure 5.15 The organisation of configuration data-streams in external memory 168

Figure 5.16 Decisions made during application of the context switching transform 175

Figure 5.17 Estimating reconfiguration overhead for the context switching transform ... 178

Figure 5.18 Merging control states from within reconfiguration segments...................... 182

Figure 5.19 Group instructions on variable transform and reconfiguration segments 185

Figure 5.20 Inverse-scheduling transforms and the timing of reconfiguration segments . 187

Figure 6.1 Circuit partitioning for circuit area set to a high priority 196

Figure 6.2 Circuit partitioning for reconfiguration overhead set to a high priority 197

Figure 6.3 Effect of scheduling each context switch as late as possible 199

Figure 6.4 Circuit partitioning for channel buffers set to high priority 203

Figure 7.1 A variable coding system .. 218

Figure 7.2 Flowchart showing BER driven selection of the coding scheme 226

Figure 7.3 Floorplan for the RTR variable coding scheme .. 227

Figure 7.4 Semaphore communication between two concurrent processes 230

Figure 7.5 Channel bit-error rate relationships between the decoder configurations 234

Figure A.1 Control and data-path graphs sections for the BCH encoder algorithm 244

Figure A.2 Application of the Sequential merge transform .. 251

Figure B.1 Relationships between modules in the Quartic equation solver 254

Figure B.2 Module execution path of the Quartic equation solver 255

Figure B.3 Alternative module execution path of the Quartic equation solver 256

Figure B.4 Relationships between modules in the Cubic equation solver 257

Figure B.5 Module execution paths of the Cubic equation solver 258

Figure B.6 Relationships between modules in the Quadratic equation solver 259

Figure B.7 Module execution path of the Quadratic equation solver 259

Figure B.8 Module execution paths of the Encryption/Decryption circuits 260

Figure B.9 Module execution paths of the Matrix circuits ... 261

Figure B.10 Module execution paths of the Rijndael Encryption/Decryption circuit 262

Figure C.1 Format of a BCH codeword, exemplar codes and the target codes 263

Figure C.2 Code dependent message formation ... 264

Figure C.3 Encoding circuit for BCH code (15,11,3) ... 265

Figure C.4 Exemplar LFSR encoding ... 266

Figure C.5 Message dependent state transition... 267

Figure C.6 Algorithmic description of the BCH encoder ... 268

Figure C.7 State Transition Diagram for message decoding using BCH code (15,11,3) . 269

Figure C.8 Algorithmic description of the Viterbi decoder .. 271

Figure C.9 Viterbi decoding of BCH (15,11,3) code partitioned over 4 processors 278

Figure C.10 Viterbi decoding of the BCH (15,11,3) code over 2 processors 279

Figure C.11 Behavioural VHDL description of the message corrupter circuit 281

List of Tables

Table 6.1 Contrasting the trade-off between circuit area and reconfiguration overhead .. 205

Table 6.2 Variation among the module nets for each exemplar circuit 208

Table 6.3 Matrix functions. ... 208

Table 6.4 Cubic equation solver. .. 209

Table 6.6 Quartic equation solver .. 209

Table 6.6 Rijndael Encryption/Decryption ... 209

Table 6.7 Encryption/Decryption .. 210

Table 7.1 Errors in eight codewords necessary to switch between each code scheme 224

Table 7.2 Synthesised RTR variable coding system ... 231

Table A.1 Scheduling transformations available for optimsiation of the control graphs . 250

Table A.2 Allocation and binding transformations available during optimisation 253

Table B.1 Module characteristics of the Quartic equation solver 253

Table B.2 Module characteristics of the Cubic equation solver 256

Table B.3 Module characteristics of the Quadratic equation solver 258

Table B.4 Module characteristics of the Encryption/Decryption circuits. 259

Table B.5 Module characteristics of the Matrix circuits. .. 260

Table B.6 Module characteristics of the Rijndael Encryption/Decryption circuits. 261

Table C.1 States visited by the algorithm during the decoding of the (15,11,3) code. 272

Table C.2 Weights at each state and for every bit of the codeword 000000101000001 273

Table C.3 Weights at each state and bit of the erroneous codeword 000000101010001 274

Table C.4 Message correction using Viterbi decoding for codeword 000000101010001 275

Declaration Of Authorship

I, Donald Esrafili-Gerdeh declare that this thesis and the work presented in it are my own

and has been generated by me as the result of my own original research.

Behavioural Synthesis of Run-time Reconfigurable Systems

I confirm that:

1. This work was done wholly while in candidature for a research degree at this

University;

2. Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly attributed;

4. Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

7. None of this work has been published before submission.

Signed:

Date: January 2016

Acknowledgements

I would like to take this opportunity to thank several people all of whom have contributed

to the completion of this thesis:

I begin by acknowledging the patience and common sense of my thesis supervisor

Professor Mark Zwoliński, without whom I would not have been able to finish writing this

thesis.

I would also like to thank former colleagues for their friendship in particular: Drs. Tack

Boon Yee, Bleddyn Lawrence, Andrew Chapman, Matthew Sacker, Petros Oikonomakos,

Kosala Amarasinghe and especially Doc and his wife Kathleen for our interesting

conversations.

I would finally like to thank my family for their unconditional support.

Donald Esrafili-Gerdeh.

D. Esrafili-Gerdeh, 2016 Chapter 1: Introduction 12

Chapter 1

1. Introduction

Before the use of Behavioural or High-level Synthesis Tools (HLS), the task of realising an

algorithm in silicon was accomplished by a software description of the algorithm’s behaviour

for execution using programmable computer architectures or through a hardware description

of the circuit structure required to achieve the same behaviour, but in a form suitable for

fabrication.

Raising the level of abstraction at which the hardware is specified, analogous to that of

software design, enables the user of HLS tools to automatically generate many alternative

hardware descriptions from just a single behavioural specification. The number and type of

resources described will vary in response to the resource or time constraints set by the user

and without automation, it is unlikely that the user would have the time to investigate more

than a handful of alternative hardware solutions.

The parallels with a software approach are strengthened following the introduction of

programmable logic devices, such as the Field Programmable Gate Array (FPGA) [1,2]. This

blurred the distinction between software and hardware design because FPGAs provide

software programmable circuit resources. These resources include at least a wiring network

which connects multiple sequential and combinational logic elements to one another and to a

number of input and output pins. Therefore, programming an algorithm using the resources of

an FPGA device is as much a software description of its circuit structure, as it is its function −

albeit one at a low level of abstraction.

FPGAs are typically programmed or ‘configured’ by writing to a configuration memory. This

occurs only once and is read by the device immediately following the application of power. A

subset of FPGAs, characterised as being Dynamically or Run-time Reconfigurable [3],

distinguish themselves from those that are programmable by enabling their resources to be

configured during their initial power-up and crucially, are partially ‘reconfigured’ during their

D. Esrafili-Gerdeh, 2016 Chapter 1: Introduction 13

execution. The time taken to partially reconfigure a commercial FPGA is several orders of

magnitude greater than the time taken to execute the reconfigured logic resources. The

benefits associated with re-using computational and wiring resources have to be weighed

against the time penalty required to program any resource before it can be used.

When and how the reconfigurable resources are re-programmed has become an increasingly

popular subject for research in the fields of VLSI CAD (Very Large Scale Integration

Computer Aided Design) and Computer Architecture.

The circumstance in which reconfigurable hardware is employed in each of these fields is

distinct. Application-specific hardware is intentionally inflexible, being highly optimised for

one purpose. A complete design specification is available to the HLS tool at compile-time,

when it can take a global view of how instructions are scheduled and allocated to resources. It

also has considerably more time to do it.

This is in contrast to the assignment of memory and CPU resources in computer architectures,

which from the perspective of an Operating System is an undertaking that must occur within a

limited time-frame at run-time, requiring a solution to an open or partially specified problem.

Many problems in Computer Science and VLSI CAD are not solvable in polynomial-time

and having more choice in the number and type of resource, such as those offered by

reconfigurable devices, will further compound the search for their solution.

Research into any area of optimisation aims to reconcile the conflicting goals of finding

optimal solutions to a problem, with as little search time as possible. In practice, CAD of

circuits being no exception, the requirement of searching for an optimal solution is relaxed to

accepting a good solution but one that requires less time to find.

An example of this approach to VLSI CAD is the behavioural synthesis suite MOODS

(Multiple Objective Optimisation in Data and control path Synthesis) [4,5], developed over

several decades at the University of Southampton for the automatic creation and optimisation

of circuit hardware.

MOODS is a high-level synthesis tool, capable of automatically generating a structural

description of a digital circuit from a purely algorithmic description of its behaviour. Heuristic

D. Esrafili-Gerdeh, 2016 Chapter 1: Introduction 14

search methods are used to examine the scheduling and allocation possibilities in a way that

aims to produce a good solution in a reasonable search time, rather than an optimal one in

exponential time.

Not specifying how or what resources are to used, allows the hardware designer to explore

these characteristics automatically, by varying the priorities and goals associated with circuit

metrics, such as their resource size or delay of the longest path of execution. Each structural

circuit description is functionally equivalent to another but has characteristics specific to the

optimisation goals. Should those requirements or indeed the technology change, the

behavioural specification need not.

1.1 Thesis Contribution

Given an optimisation trade-off between resource reduction and reconfiguration time, the

availability of a behavioural synthesis tool in which to explore it and a commercial device to

characterise the technology and test the results upon; the motivation for the work undertaken

in this thesis is to investigate the role in which reconfigurable resources can play in the

behavioural synthesis of digital hardware.

As a consequence, the MOODS behavioural synthesis tool has been extended to incorporate

the reconfiguration delay of programmable resources, represented in circuit synthesis as their

temporal binding to control and data-path components. When applied as a resource graph

transformation, it models the spatial and temporal aspects associated with time-sharing a

programmable resource, whilst preserving the behaviour of the algorithmic description.

Through the addition of new instructions and their corresponding data-path units, MOODS is

able to quantify and generate the component descriptions necessary for an FPGA device to

perform self-reconfiguration of logic and routing resources during its execution. The

structural descriptions produced are suitable for device-specific optimisation by Register

Transfer Level Synthesis and vendor-specific component placement and wire routing tools.

As with existing control and data-path units, their implementation is achieved through Xilinx

Virtex [6] family primitives. This provides characterisation for metrics representing the circuit

area or critical path delay of all the circuit components. The effect of the resource binding,

D. Esrafili-Gerdeh, 2016 Chapter 1: Introduction 15

scheduling and allocation transformations is simultaneously quantified through a user directed

cost function. It guides a Simulated Annealing [7] heuristic to accept or reject an optimisation

based upon whether it transforms the circuit structure closer to or further away from meeting

the user supplied target values of area, critical path delay and clock period.

An automated search of the design space explores a multitude of ways in which the hardware

could be generated. The order and the components to which the transformations are applied

are varied in ways that, for all but the simplest designs, would be infeasible for a user to

investigate without automation – especially when optimising for equal priorities and therefore

conflicting objectives. Aspects examined might be: which functional units should be shared to

reduce the circuit area, as opposed to being scheduled in parallel to reduce the delay. Would

sharing a programmable resource at different times also aid in meeting the area target and if

so, could the reconfiguration delay be minimised by scheduling it to occur in parallel to the

execution of other units?

When programmable resources are configured to implement data-path units, the number of

times they are reconfigured will depend upon the type and activity of the instructions

allocated to the data-path units. Should the units be allocated instructions from more than one

path, the delays associated with the resource binding will also vary depending upon the path

taken. Without knowing which path will be taken at run-time, a cost function must make a

trade-off between the area reduction associated with a given resource binding against the

reconfiguration delay derived from the longest path; a worst-case decision based solely upon

one of many paths that are likely to be taken during circuit execution.

The need to rely upon worst-case reconfiguration delays has be greatly reduced by extending

MOODS and HLS in general, to allow a run-time choice of where a data-path unit is bound.

In this way, the partitioning of functional and storage units can change to reflect the

instruction path actually taken at run-time.

However, unlike an entirely run-time approach [8], a multiple resource binding is able to

optimise each alternative binding differently, depending upon the characteristics of the chosen

resource. Binding to a resource of a different size will impose a different constraint on the

scheduling and data-path allocations performed. A serial implementation that is smaller and

D. Esrafili-Gerdeh, 2016 Chapter 1: Introduction 16

slower in one location can have an increased level of parallelism and consequently execute

faster when bound to a larger resource at an alternative location.

The benefit of this hybrid-approach is that it combines the strengths of the compile and run-

time approaches to reconfiguration without adding to their weaknesses. A user can now use

MOODS to explore the extended ‘design space’ which results from applying spatial and

temporal resource binding alongside instruction scheduling and allocation methods. This

takes place at compile-time where there is greater time and computational resources to search

the new territory formed by temporal resource binding.

Selection of the actual resource is taken at run-time from a small number of alternative

resources found during compile-time and therefore inclusive of the history of trade-offs which

lead to their resource binding. By doing so, the partitioning of the data-path units is not

limited to a single partition formed by taking the worst case delay of many paths. Instead, the

units may be re-arranged over multiple resource bindings, each unique to a different

instruction path and each representative of the best, the worst and the spectrum of

reconfiguration path delays in between.

This Thesis is divided into eight chapters. Chapters 2 and 3 provide a background to the

research topic, introducing the concepts behind run-time reconfiguration and behavioural

synthesis, in particular MOODS, the synthesis system on which this research is conducted. It

concludes with a survey of past and present research activities regarding run-time

reconfiguration, in relation to device technology and architecture, CAD tools and

implementations of actual systems.

Chapter 4 introduces the theory behind temporal binding and its utilisation during

optimisation through a cost driven partition of the control and data-path functional units and

subroutines. The MOODS cost function is updated with several metrics which provide an

estimation of the reconfiguration overhead and architecture required to facilitate dynamic

reconfiguration at the device level.

In Chapter 5, the low-level infrastructure necessary to support a physical implementation of a

run-time reconfigurable system is presented.

D. Esrafili-Gerdeh, 2016 Chapter 1: Introduction 17

The results generated using a simulated annealing based partitioning algorithm is examined in

Chapter 6.

Chapter 7 provides an examination of how the work detailed in the previous chapters can be

applied to the synthesis of a reconfigurable coding system.

Finally, Chapter 8 reviews the contribution of the work described in the thesis and suggests

how the work may be further extended. An appendix is also included which supports several

of the chapters with additional material omitted for the sake of brevity: it includes instruction

level optimisation details as well as the characteristics of the circuits used during the synthesis

and temporal resource binding phases.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 18

Chapter 2

Background

In the introductory chapter, a reconfigurable system was described as being able to change the

use of electronic programmable resources during its execution. This description cannot be

exclusively attributed to reconfigurable hardware, since programmable computer architectures

are also able to change their function through run-time re-programming of their computational

and memory resources. Some authors might also challenge our presumption of electronic

resources, citing examples from outside the electronic hardware domain such as

reconfigurable photonic and fluidic systems [9].

When searching for a definition for electronic reconfigurable hardware, distinguishing it from

the diversity of existing computer architectures can be challenging. Many authors [10] draw

attention to the large number of parallel resources associated with reconfigurable hardware,

yet a high degree of ‘spatial computation’ is not unique to reconfigurable hardware; recall the

massively parallel SIMD/MIMD [11] computer architectures of earlier decades, where

systems offering tens of thousands of bit-sized CPUs were joined by programmable

interconnects.

Perhaps, as some authors suggest [12], a defining characteristic of reconfigurable hardware

might lie in the ability to re-purpose the use of its resources? Yet again, there exist

comparable computer hardware – writable micro-coded program stores [13,14], that provide

the ability to form new instruction implementations out of an existing instruction set

architecture and in the same sense enable a re-structuring of the programmable resources.

A more tangible distinction between programmable and reconfigurable resources is provided

by DeHon [3] who defines resource binding as a means of distinguishing between software,

reconfigurable and application-specific implementations of program behaviour: computer

hardware is flexible because binding occurs at run-time during instruction execution;

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 19

application-specific hardware is not because transistor equivalents of instruction behaviour

are fixed during their fabrication. Although the binding of a reconfigurable system occurs

during its configuration, its definition is difficult to pin-down since the characteristics of the

resources are bound early during fabrication but may be allocated as late as a clock cycle prior

to their execution.

Rather than attempt to single-out reconfigurable hardware as a new paradigm for computation

[15], a different perspective on the role of reconfigurable hardware would be to view it in the

context of hardware design. The perspective on reconfigurable hardware taken in this chapter

and the thesis in general, is one that views it as a way of complementing existing hardware

design approaches such as behavioural synthesis.

2.1 Programmable and Application-Specific Hardware

Algorithms for computation and data processing are traditionally realised as software

descriptions of behaviour for a general-purpose processor or as structural descriptions of the

circuit hardware required to implement them. Together they represent two contrasting

approaches to designing electronic hardware, each with a specific circumstance for its use:

General-purpose hardware is based upon the control-flow or Von Neumann (VN) model of

computer architecture [16] − a set of logic and arithmetic resources are programmed by

instructions to transform the data supplied to them, in a way associated with the behaviour of

each instruction and the type of data it acts upon.

The flexibility of the VN architecture is achieved through the generation of memory

addresses, where an instruction or datum is sequentially written to or read from each address

location and where necessary, decoded and subsequently executed to achieve temporal

computation. When a re-writable memory is used, changing the contents of the memory will

change the behaviour of the hardware – making it general-purpose.

There are many advantages to using general-purpose hardware. In addition to the flexibility

gained from programming the hardware to implement different behaviour and the run-time

allocation of resources, there is the cost reduction associated with volume manufacture and

the outsourcing of hardware design and testing. Often, the instruction level parallelism

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 20

naturally inherent to a given algorithm must be serialised to fit the availability of the

computational and storage resources of generic hardware. In these circumstances, not being

able to specify how the instructions are executed and in cases where an operating system is

employed, when execution actually occurs, can necessitate the design of fixed and single

purpose hardware.

Application-specific hardware is often based upon the Data-flow [17] model of computation,

where each instruction operation is allocated to a specific functional unit and its input and

output operands are allocated to memory units connected by wires. The execution of a

program is modelled as data-flowing through each functional unit as soon as it becomes

available. The model is usually extended to the Control and Data-flow [17] model, to enable

the scheduling of each instruction execution to a time step represented by a control graph and

realised in hardware as a specific control state in a Finite State Machine.

In addition to implementing the behaviour of the program, the allocation of functional and

memory units and when they are scheduled to execute is optimised to meet specific

constraints, such as the total number of hardware resources available or the time taken to

execute the longest sequence of program instructions. The hardware that results is unique to

the characteristics of the algorithm being synthesised and the optimisation priorities and

constraints set.

2.2 Temporal and Spatial Computation

Figure 2.1a illustrates a simplified representation of the computational and storage resources

associated with the data-path of a general-purpose processor. Three logical expressions,

io: c=a and b; i1:d= a or b; i2: g=e and f; are used to program an Arithmetic Logic Unit (ALU)

to perform each logical function and determine which of the Registers are used to store the

variables read by and written to the ALU. The adjacent table shows the scheduling of each

instruction to individual time steps t0-t2. When executed sequentially, the use of the resources

can be characterised as being temporal because the ALU and registers are re-used to perform

the instructions at separate times.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 21

Register File

Reg0

time

a

b

c

t0 t1

a

b

c

e

f

g

d d

t2

Alu
Reg1

Reg2

Reg3

Instruction scheduleTime
t0

t1

t2

i0:and Reg0,Reg1,Reg2

i1:or Reg0,Reg1,Reg3

i2:and Reg0,Reg1,Reg2

da
b

Instruction scheduleTime
t0 i0:and a, b, c i1:or a, b, d i2:and e,f, g

Figure 2.1a: Temporal use of resources for computation exemplified in general-purpose hardware.

Figure 2.1b: Spatial use of resources for computation exemplified in application-specific
hardware.

Figure 2.1c: Temporal and Spatial use of resources for computation exemplified in application-specific
hardware.

dp1
i1

Instruction scheduleTime
t0

t1

i0:and a, b, c i1:or a, b, d
i2:and e,f, g

a
b cdp0

i0

e
f gdp2

i2

a
e

b
f

c/gdp0
i0, i2

i1
da

b dp1

s

0
1

0
1

Figure 2.1: Traditional forms of spatial and temporal resource usage.

Figure 2.1b depicts the equivalent data-path should each instruction be allocated a separate

functional unit and scheduled to execute in a single time step t0. The hardware can be

described as application-specific, since the allocation and scheduling of the functional units is

dedicated solely to implementing the instructions described. In this implementation, the

resources exhibit spatial computation as each function unit will execute at the same time,

therefore requiring three of them – dp0, dp1 and dp2, respectively.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 22

There will inevitably be constraints imposed on the number of functional units available and

the number of time steps in which to execute them. The result is a compromise between the

degree of spatial and temporal use of resources necessary to meet the constraints. This

situation is depicted in Figure 2.1c, where instructions i0 and i1 are allocated individual

functional units dp0 and dp1, enabling their spatial execution during the same time step t0, as

was the case in Figure 2.1b. However, with a resource constraint of one ‘AND’ functional

logic unit, dp0 must be shared between instructions i0 and i2, thereby forcing the execution of

instruction i2 to occur during the next time step t1. In this way, the execution of the

instructions is reliant on the temporal use of the functional unit dp0.

Somewhere between these two extremes of flexibility of general purpose and the optimisation

of dedicated hardware lies reconfigurable hardware. What was assumed and not depicted in

the allocation of the data-path functional units was that each would be uniquely bound to its

own resource.

Figure 2.2a explicitly shows the static resource binding inherent to the resource allocation and

scheduling previously shown in Figure 2.1b. The figure illustrates the binding during the time

step t-1, of a resource Rn to each of the data-path units.

The negative time denotes the fact that it occurs before execution of the schedule and is

therefore fixed at fabrication or during power-up configuration – should the resources be

programmable. This form of static configuration is representative of the typical usage of

commercial programmable logic devices, which are optimised to read a configuration once,

through an external interface from a non-volatile configuration memory.

Likewise, circuit synthesis has traditionally assumed a fixed binding of functional or memory

units to an implementation in a given technology. Any variation in data-path unit binding

occurs only during circuit compilation, with the purpose of exploring how a different binding

may aid in meeting the design constraints.

Figure 2.2b illustrates the reduction in resource usage, when the assumption of a static

binding for data-path units dp0 and dp1, shown in the earlier figure, is dropped in favour of a

dynamic or temporal binding to a reconfigurable resource R1. When reconfiguration is

scheduled to occur during the operation of the hardware resources, those resources are

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 23

described as Run-time or Dynamically Reconfigurable [3]. As shown in the adjacent schedule,

this form of resource sharing requires two extra time steps to re-programme the resource. It is

reminiscent of the choice described earlier, between a smaller number of resources or a

shorter number of time steps. Once programmed, dp0 can be executed alongside the static

bound resource dp2, scheduling both their associated instructions to the same time step t1. In

this way, the use of reconfigurable hardware offers the spatial computation associated with an

application-specific choice of functional units, as well as the temporal re-use of resources

embodied by programmable processor hardware.

Instruction scheduleTime

t0
t1

i0:reconfigure R1=0001

t2
t3

i0:and a, b, c i2:and e,f, g

i3:reconfigure R1=0111

i1:or a, b, d

a b

c

dp
0 i0

e f

g

dp
2 i2R0 R2

R1

d

a b

dp
1 i1

t-1 t-1 t-1

Figure 2.2a: Static binding of data-path units to resources.

a b

c

dp
0i0

e f

g

dp
2 i2R0 R2

R1

d

a b

dp
1 i1

t0 t2 t-1

Figure 2.2b: Temporal binding of data-path units to reconfigurable resources.

Instruction scheduleTime

t0 i0:and a, b, c i1:or a, b, d i2:and e,f, g

Figure 2.2: Spatial and temporal use of reconfigurable resources.

Hardware permitting, it would also be possible to schedule the execution of instruction i2 to

either time steps t0 or t2. In doing so, the reconfiguration of resource R1 would occur in

parallel to the execution of functional unit dp2 bound to resource R0. In such a case, the

resources of the hardware would be described as being Partially and Dynamically

Reconfigurable [3].

Run-time reconfiguration can be categorised as being Algorithmic, Architectural or

Functional.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 24

Algorithms which implement the same functionality but with different performance, accuracy,

power or resource requirements are examples of Algorithmic reconfiguration. An application

could be the implementation of an adaptive Viterbi decoder, where decoder performance may

be dynamically altered in response to changing channel conditions. Reconfiguration may

occur on the basis of channel noise to maintain a consistent bit-error rate. Any increase in

channel noise would result in a slower but more accurate running decoder being swapped into

the FPGA hardware and vice-versa in the case of reduced channel noise.

Architectural reconfiguration lends itself to fault tolerant applications, where reconfiguration

is used to modify the hardware topology in the presence of a fault(s).

A particular application might be the tolerance of Single Event Upsets (SEUs) in equipment

used in space and orbit based systems. SEUs result from radiation in the form of high energy

charged particles and may alter the logic state of a static memory element (latch, flip-flop,

RAM cell). User programmed functionality of a field programmable device depends upon the

data kept in the configuration memory, therefore the presence of a fault would have an

adverse effect on design functionality. Partial readback of the affected portion of

configuration memory may be performed and a Cyclic Redundancy Check value generated

and compared to the expected result, to detect an error. The contents of the configuration

memory controlling that portion of the device are then reloaded or even relocated in the event

of a persistent error.

The goal of Functional reconfiguration is to increase the functional density of a system,

through the execution of different functions on the same resource. An algorithm or design is

subject to temporal partitioning through a division into time-exclusive segments which are

swapped on and off a device at run-time.

An application could be a synthesised FPGA based processor implementing user defined

application specific instructions. Such specialised instructions would be loaded into the device

as the run-time conditions of the design dictated. The implementation could be efficient in

terms of performance, replacing long streams of general-purpose instructions and eliminating

the instruction fetch-decode part of the cycle. A significant area reduction would also be

achieved in comparison with a static FPGA implementation of the entire processor design.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 25

2.3 Reconfigurable Resources

To date, all reconfigurable resources have been referred to without attributing the physical

characteristics associated with a particular architecture and technology. It was a deliberate

omission, in order to separate their concept from any practical constraints that would

otherwise have been imposed by examples of their implementation. In this section of the

chapter, we will provide a brief history of the technologies and techniques which have helped

to popularise run-time reconfiguration as a growing area of research interest. The reader

should also have in the back of their mind the notion that the importance of such techniques is

often contemporary and a change of technology may invalidate them or in some cases

resurrect their employment.

Estrin [18] and colleagues are frequently cited as the being the earliest practitioners of a

‘Reconfigurable’ approach to hardware design: recognising the performance limitations of

general-purpose or ‘fixed’ hardware lead to the creation of ‘variable’ hardware libraries. The

result took the form of the “Fixed-Plus-Variable” computer architecture and its

implementation relied upon physically ‘pluggable’ module functions which were fabricated

using discrete components.

Research included how to decide between a software or hardware realisation of a

function [19], as well as the practical implications involved in implementing run-time

reconfiguration: reconfiguration was achieved at different levels of abstraction by hand

swapping a module (function) or motherboard (algorithm). As a result, a wide band of

performance gains (2.5-1000) were achieved in comparison with a computer implementation

(IBM 7090).

Where Estrin identified reconfiguration as adapting the hardware to the algorithm, Miller and

Cocker [20] described adaptation in terms of the data-flow aspects of an algorithm’s

computation. This lead to two types of ‘Configurable Computers’: a ‘Search-Mode’

configuration, where the absence of the program counter requires a run-time data-flow

approach: data-dependant operations executing as soon as their input operands become

available.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 26

A second ‘Interconnect-Mode’ configuration has considerable resemblance to synthesising

reconfigurable logic due to its description of encoding the dependencies between ‘special-

purpose blocks’ of hardware in advance of their run-time execution, at which time the

instructions would control their configuration; suggesting a compile-time approach, as the

instructions were encoded prior to their run-time execution.

In addition to describing the importance of identifying data-flow between operations (as a

means of accelerating computation) Miller and Cocke may also have used the first reference

of the hardware being ‘dynamically reconfigured’, as well as implying partial reconfiguration

by overlapping ‘block execution’ with ‘block set up’.

It would be over a decade later, when a VLSI implementation of a ‘configurable array of fine-

grain elements’ was implemented in the form the ‘CAL Architecture’ [15], where it was

described as ‘A New Paradigm for Computation’ and shown to provide significant

performance acceleration when compared to more conventional forms of programmable

computer hardware. The rights to its implementation was later purchased by Xilinx Inc.,

where it formed the basis of the XC6200 [21] series of FPGA, a partially reconfigurable

device with an open-architecture that is widely credited with popularising academic research

into run-time reconfiguration.

2.3.1 FPGAs

All reconfigurable systems are based upon some form of programmable hardware, many

utilise field programmable logic in the form of commercial SRAM FPGAs (Field

Programmable Gate Arrays). In 1985, Xilinx Inc. introduced the first commercial FPGA, a

new class of programmable logic device conceived as a replacement for Mask Programmable

Gate Arrays (MPGAs). MPGAs provided an array of gates with fixed functionality, such as

Nand gates. The routing was done by the designer via the last metal layer in the silicon

process. The principal drawback with MPGAs was the cost of exploring different design

alternatives, since each design required a new chip and routing layer to be manufactured.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 27

FPGAs alleviated this problem by making the gates and routing network programmable.

Programming the functionality of an FPGA is done ‘in the field’ by downloading a

configuration bitstream into the FPGA.

FPGA flexibility is derived from its use of programmable logic cells, routing and I/O cells as

depicted in Figure 2.3. Initially there was a wide architectural variety in the implementation of

the logic cells, however recently there has been an adoption of the Look Up Table (LUT)

based cell. LUTs are programmed to provide any logic function of their inputs. The internal

architecture of a cell consists of a number of LUTs, coupled with carry logic, state storage and

multiplexors, to control its internal configuration. A rich routing fabric is provided which may

include millions of possible routing pathways through the device, achieved through Local

Connection Points and Global Routing Switch Boxes.

Figure 2.3: Generic FPGA structure.

The programming of the resources is done through SRAM configuration bits. Being SRAM

based, the devices may be programmed an unlimited number of times, with the time required

for configuration proportional to the size of the device and dependent upon the characteristics

of the programming interface. Such volatility of the SRAM cells requires that the

configuration bits are loaded from an external configuration store, typically a serial or parallel

ROM, upon each power-up of the device.

Logic Cell

Programmable
routing

Programmable
functions – LUTs,
MUXs, LATCHES

I/O Cell

L i C ll

Global Routing Switch Box

Local Connection Points

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 28

Programmability comes at the cost of efficiency [22]: the implementation of logic in an FPGA

is less dense (18 times) and slower (3 times) than an ASIC in a comparable process

technology. This is due to the large amount of wiring resources required, leaving less area for

active circuitry.

2.3.2 Technology and Architecture

The majority of research in dynamically reconfigurable systems is in the area of

Reconfigurable Computing. Such systems may be characterised by the strength of the

coupling between a processor and programmable logic, granularity of architecture and depth

of programmability.

a) Coupling: dynamically reconfigurable systems are implemented with varying degrees

of coupling between a processor and programmable logic. Computational efficiency is

increased by making decisions at run-time as to whether computation is executed on

the reconfigurable logic or processor. This ranges from a tight coupling where the

reconfigurable units execute as functional units in the data path (System on a chip

architecture) to a loose coupling, with the programmable logic implemented externally

on a platform and independently of the main processor.

b) Granularity: the granularity refers to the data size of the operations for the

reconfigurable component. In the preceding section, the FPGA was introduced as an

example of hardware programmability upon which reconfigurable systems may be

implemented. However in contrast to the FPGA (fine-grain reconfigurability), the

domain of reconfigurable computing stresses the use of coarse-grain reprogrammable

arrays, which are achieved through custom design. FPGAs are classified as having a

fine granularity of reconfiguration, as the look-up tables, flip-flops and logic gates

operate at the bit level. Coarse-grain architectures provide programmable cells at the

operation level with word level data paths.

c) Depth of programmability: the depth of programmability refers to the number of

configurations (or contexts) stored within the programmable device. The following

configuration memory models have a different unit of reconfiguration, the smallest

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 29

segment of configuration memory that can be reconfigured. It is the dominant factor in the

reconfiguration overhead associated with swapping a context on or off a device.

(i) Single Context

The configuration of the traditional FPGA architecture is achieved through a device

configuration memory capable of storing a single configuration. System wide configurations

are loaded serially from an external memory device, often requiring hundreds of thousands of

clock cycles. This incurs a high reconfiguration overhead, as a small change to the

configuration requires a complete reprogramming of the device. Examples of typical

commercial FPGA devices are Xilinx 4000 [23] series, Altera Flex10K [24].

(ii) Partially Reconfigurable

The introduction of devices capable of dynamic partial reconfiguration made the

implementation of single device run-time reconfiguration feasible. Configurations that do not

use the entire resources or require changes to selective areas of the device are executed

through partial reconfiguration. If required, existing configurations continue to operate during

and after reconfiguration. This reduces the amount of configuration data sent to the device,

which in turn reduces the cost of the reconfiguration overhead. Examples of commercial

FPGA devices are the Xilinx Virtex family [6] and Atmel AT40K [25].

iii) Multi-context

Multi-context devices have many memory bits for each programmable bit location. This is

implemented through on-chip multiple memory planes and can result in a very low overhead

(625 ps) [26] as reconfiguration is carried out by switching internally between the planes,

without requiring external loading of the bitstreams. Configuration planes may also be

partially reconfigurable.

Some thirty Fine and Coarse-grain reconfigurable systems and devices are reported in the

literature. What follows is a brief survey of a representative number of those systems and

devices. Comprehensive surveys may be found in [9,27,28].

The concept of Virtual Hardware within reconfigurable systems was introduced using the

WASMII system [29,30]. Virtual hardware enables configurations or contexts to be swapped

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 30

in and out of a programmable device during its run-time execution. Such a re-use of device

resources reduces the area required for a digital circuit implementation. This is analogous to

the use of Virtual Memory in a software operating system which permits a program to be

larger than the physical memory it resides in by mapping portions of the virtual memory to

the physical memory when required.

WASMII was an early system to conceptualise a multi-context FPGA. The device consists of

an FPGA coupled with a set of multiplexed SRAM. A data-flow graph is partitioned into a

number of pages, each being equivalent in size to the available resources of the FPGA. Each

page is mapped in to the SRAM memory and swapped on or off the FPGA by a Page

Controller. The controller determines when to swap pages and where in the additional register

space to store and retrieve the data used by the pages. In addition to the multiple contexts,

virtual hardware is mapped from external memory. Execution may be overlapped with

configuration by pre-loading a page from external memory to the device configuration

SRAM, whilst the current page is active. Initially a lack of suitable technology forced an

emulation of WASMII using a number of FPGAs coupled with an external memory and a

microprocessor.

WASMII was later realised on an experimental multi-context device referred to as the

Dynamically Reconfigurable Logic Engine (DRLE) [31] developed by NEC Corp. This

architecture had been commercialised in the form of the Dynamically Reconfigurable

Processor 1 [32], targeting image and signal processing, in addition to network packet

processing applications such as routers and switches.

The device consists of an array of 512 equivalent ALU based processing elements (PEs) with

local access to a total internal storage memory of 2.2MB. Most significant is the emphasis on

efficient dynamic reconfiguration between 16 configuration context layers, providing an

additional 7680 virtual PEs. The architecture is partially reconfigurable by dynamically

changing the configuration of the PEs and interconnections between them without effecting

the existing configurations. Data-path reconfiguration is controlled through an integrated

Finite State Machine Sequencer. Products and IP cores using the architecture were anticipated

but nothing further was reported after the turn of the millennium.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 31

The Swappable Logic Unit (SLU) [33] was proposed as a paradigm for virtual hardware,

being analogous to a page or segment in virtual memory systems. The SLU is essentially a

FPGA function with a fixed interface capable of being paged onto the hardware and

connected by an operating system at run-time. The SLUs were made available as library

functions utilised by a high level language such as C. The concept was demonstrated on a

hardware platform [34]. It was argued that due to the relative immaturity of the SLU concept

[35], SLUs were unlikely to be incorporated into existing design tools. A solution was

proposed that detected SLUs within existing bitstreams through a combination of existing

knowledge and automatic detection.

Many reconfigurable implementations are carried out on commercial SRAM FPGAs. These

devices provide the basic requirements – abundant logic and interconnect, on chip memory

and the ability to partially reconfigure ‘on the fly’.

Partially and dynamically reconfigurable devices, such as the Xilinx Virtex [6] family and

Atmel AT40K [25] enable virtual hardware to be implemented using standard FPGAs.

Unfortunately the devices are not optimised for efficient reconfiguration. The bottleneck

caused by loading the configurations from an external memory forces infrequent context

switching to be the only cost effective option. Xilinx Inc. filed a patent on a time-multiplexed

FPGA in 1995. The patent covers a multi-context programmable FPGA that uses cells similar

to the Xilinx XC4000E FPGA. That is where the similarity ends, since the multi-context

architecture enables each configuration memory cell to have a further eight inactive

configurations. This gives the device a set of eight virtual background layers, where a

configuration switch from background to active layer is executed in 30 ns.

Xilinx do not have any future plans for its production, citing power consumption as a

potential drawback [36]. In addition, larger capacity FPGAs generate greater revenues,

therefore there could be no financial motivation for reducing the size of silicon.

A number of academic time-multiplexed FPGA architectures have been proposed [37,38],

none of which have been realised commercially.

The furthest anyone has been to introducing fine-grain and rapidly reconfigurable devices to

the market-place was Tabula Inc. with the ABAX [26] series of ‘3D Programmable Logic’

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 32

time-multiplexed devices. Tabula Inc. was until recently (first quarter 2015) selling devices

and development boards for communication and networking applications. Although very little

information has been made publicly available about the specification of their devices and is

unlikely to become available (Tabula Inc. has ceased trading), it was a rare example of a

rapidly reconfigurable device offering the type of resources an FPGA user would recognise

e.g. Look-Up Tables, Registers etc.

Being a multi-context architecture, the ABAX device permitted between 8 and 12 device

configurations to be stored on-chip, switching between them incurred a reconfiguration delay

of 625ps [26]. A user’s design would be partitioned between as many as 12 temporal

partitions, where all data-dependencies cut during partitioning were captured by transparent

latches. Unlike other multi-context devices [36,37,38], the architecture incorporated stage

storage as part of the routing.

Tabula’s selling point was that their temporal devices could emulate a spatial device 12 times

its physical size, whilst keeping the spatial and temporal aspects of placement and routing

transparent to the user. Details about the device’s power consumption was described as being

‘application-specific’ but inevitably the decrease in static power consumption (associated with

fewer logic and wiring resources than its spatial equivalent) would have to be offset against

the increase in dynamic power consumption due to rapid reconfiguration.

Commercial research has also examined alternative Coarse-Grain (word-level) data-flow

architectures, such as NEC’s Dynamically Reconfigurable Processor 1 [32] and PACT’s XPP

[39] architecture, both based upon dynamically reconfigurable arrays of processors.

A radically different architecture was the Adaptive Computing Machine (ACM) from

QuickSilver Technology Inc. [40]. Being a network on a chip device, it utilised message

passing as opposed to point-to-point routing found in FPGA architectures. The motivation for

the architecture was based upon the assertion that algorithms are heterogeneous in nature and

the homogeneous architectures associated with FPGA-based reconfigurable systems do not

satisfy the demands of adaptive computing. The ACM architecture is therefore heterogeneous,

consisting of five types of nodes: bit manipulative, arithmetic, finite state machine, scalar and

configurable input/output.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 33

The granularity of reconfiguration is extremely coarse, each node executing tasks at the

complete algorithmic level. For example, an individual arithmetic node may be used to

implement different variable-width arithmetic functions such as an FIR filter or Fast Fourier

Transform (FFT). A bit manipulation node may be used as a Linear Feedback Shift Register

or as other variable bit width manipulation functions.

Each node is coupled with a local memory cache and configuration memory. The architecture

provides efficient reconfiguration by utilising a 256 bit configuration bus, enabling every

node to be reconfigured on a clock cycle basis. This enabled the ACM to adapt by tens or

even hundreds of thousands of times a second.

The final approach taken is to assimilate reconfigurability into an SoC (System on a chip)

architecture: RISC processors and DSP cores are used to execute as much functionality in the

software as possible, delegating blocks of programmable logic fabric to those elements of a

design which could benefit from its use for hardware acceleration.

The Chameleon CS2112 [41] was the industry’s first reconfigurable processor: being a SoC,

the device consists of a multi-context run-time reconfigurable logic fabric, coupled with a 32

bit RISC processor core. The reconfigurable fabric consists of an array of 32 bit data-path

units and 16 bit multipliers, partitioned into a set of dynamically reconfigurable slices. Each

slice also has a second configuration memory plane. This enabled another configuration to be

loaded in the background during the execution of the active circuit. Switching from the

background to the active plane could be accomplished in a single clock cycle. Switching a

partition resulted in a small overhead for loading each partial configuration, necessitating a

delay of 4 µs per slice.

2.4 CAD Tools for Dynamically Reconfigurable Logic

The motivation for developing design frameworks which incorporate design capture,

synthesis and simulation for dynamically reconfigurable systems is a lack of support from the

technology vendors themselves, as well as an absence of commercial software to enable the

designer to quantify the trade-offs involved when utilising reconfigurable technology.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 34

A considerable number of academic software tools have been developed to support run-time

reconfigurable systems [42]. The tools vary depending upon the resources which characterise

the target system: reconfigurable computer systems are composed of programmable logic and

software processors. Most are a mixture of industry standard and custom tools, typically

compiling and partitioning standard C into a software executable and a set of hardware

modules for a reconfigurable data-path [43]. Although these tools incorporate many aspects

common to high-level synthesis, their goal is hardware acceleration using a rapid design- flow

similar to conventional computer programming. In contrast, tools for synthesising

reconfigurable logic consider more than one objective and usually require a greater

compilation time to achieve their goals: being application-specific, the hardware generated is

inherently accelerated but generated under tighter resource constraints.

JHDL [44] is a structural/RTL hardware and software co-design environment based on Java,

it enables a designer to use their expertise to optimise layout and circuit composition. The

result is the generation of faster circuits and smaller device bitstreams in one environment.

JHDL manages circuits in a manner similar to the way object-oriented languages maximise

memory, where circuits are treated as objects.

Other alternative forms of languages for hardware design include: Ruby [45], Pebble [46] and

Lava [47]. These languages enable a designer to specify components in a manner that is more

convenient than the use of attributes associated with standard HDL designs.

The development of a framework for creating parameterised core libraries is presented in

[45]. Ruby is used to enable an initial exploration of the design space. The Ruby description

of a core is (manually) translated into parameterised VHDL. This contains attributes for

placement to be processed during automatic synthesis and translation to configuration

bitstream.

The framework was developed further in [46] using the language Pebble, for the initial

description and automatic translation into VHDL. Pebble was developed to enable research

into supporting tools for reconfigurable designs. It can be regarded as a simplified variant of

structural VHDL and its word-level and bit-level descriptions may be customised by different

parameter values such as design size and number of pipeline stages. Optional constraint

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 35

descriptions, such as placement attributes are supported at various levels of abstraction and

run-time reconfiguration is supported with a “Reconfigure-if” statement.

In [47], the Lava hardware description language allows circuits to be described at a high level

whilst permitting layout to be captured. The output netlist contains a fully placed design

which is fed into JBits [48], an API to manipulate and generate Xilinx device bitstreams. The

aim of the approach was to significantly reduce the time taken to generate the bitstreams from

HDL to device configurations, when compared with the conventional design flow. The

preliminary version of the system could generate bitstreams 12 times faster than the

conventional flow. The authors described the potential for further performance increases of 50

times the conventional flow. The obvious application is in the field of reconfigurable

computing where applications require fast compilation.

Other researchers have considered a lower level of abstraction, enabling the designer to have

absolute control over component placement and routing. JBits was developed by Xilinx Inc.

as a non-commercial Java class library to allow users access to the propriety bitstream,

without compromising the security of the intellectual property rights associated with their

devices. JBits permits access to the programmable resources of the FPGA through a set of

class functions and constants. The functions enable configuration data streams to be read from

and written to, where the status of an individual programming resource such a CLB maybe

queried or set to a defined value. The constants define the programmable resources and the

values that they may be set to within the device.

In [49] the idea of extracting functionality from existing bitstreams was taken a step further to

enable the extraction of run-time cores from programmable device configurations. The

objective was to insert a core after the bitstream has been generated, during the last step in the

design process. This was in contrast to commercial toolsets, such as the Xilinx Core

Generator [50], which generate netlists to be processed by the place and route tools early in

the design flow. The cores are referred to as Run-Time Parameterisable Cores [51], as their

generation and addition to existing bitstreams may be done during the run-time execution of a

design.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 36

A JBits core consists of a number of class calls to program the relevant CLB, BlockRAM and

routing resources. It is feasible to design circuits through a series of connected cores, however

this would not take advantage of the availability of pre-tested vendor supplied cores.

The JBits approach proposed the creation of a series of cores and subsequent bitstreams by

querying the resources used in the configuration bitstreams constructed from the IP core. This

technique was used to develop a library of run-time cores which an application running on a

host PC could use to modify an application ‘on the fly’. Unfortunately the run-time cores

required a great deal of understanding of low-level device architecture – too low-level an

abstraction for specifying today’s multi-million gates designs. As a consequence of bypassing

circuit optimisation at higher levels of abstraction, the responsibility for achieving an efficient

circuit structure lay with the designer – a formidable task which would ordinarily employ

design automation at several stages of abstraction: circuit synthesis and partitioning are two

such examples, both of which are essential when implementing run-time reconfigurable

systems.

2.5 Synthesis and Partitioning

Despite the ever increasing body of work covering run-time reconfiguration, there are at its

core a small number of problems which all approaches must consider. These are briefly stated

in order to provide some context to further discussion of the literature:

• Reconfiguration delay: does the programming method of the device affect the level at

which partitioning occurs?

• Is the partitioning approach able to quantify multiple objectives, communication costs

as well as the essential reconfiguration versus resource-reuse trade-off?

• Is the architecture generic or a by-product of the partitioning?

The task during circuit partitioning is the division of a circuit into two (Bi-Partitioning) or

more (K-way Partitioning) parts, each of which must satisfy a constraint on its physical

property [52]: a device pin-count associated with the weights of the edges cut during

partitioning and a resource constraint on the size of each partitions; for bi-partitioning a

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 37

measure of balance is a common requirement, perhaps less often in multi-way partitioning

where a repeated bi-partitioning might require resources of different sizes.

A Temporal Partitioning [42] extends these constraints to incorporate placement: the resource

placement of the partitions must overlap. By implication, the nets cut during spatial

partitioning require little consideration as to their direction; in contrast, the direction of nets

cut during temporal partitioning are more likely to be uni-directional between partitions which

are temporally adjacent. Unlike a spatial partition, a component in one temporal partition may

also be present in another. In doing so, it may preserve a signal state or logic function,

typically also reducing the information necessary to reconfigure the resource.

How temporal partitioning is achieved is greatly influenced by the architecture of the

reconfigurable resource: a multi-context device may restrict the nets to flow in one direction

only, where each context generates a signal which is immediately processed by the next [36].

Other architectures may separate sequential and combinational resources, thereby enabling bi-

directional nets between spatial and temporal resources in the architecture. The Time-

Multiplexed Communication Logic architecture [53] exemplifies this approach. Unlike the

architecture of the Time-Multiplexed FPGA [54] or Time-Switched FPGA [36] there is no

restriction to store signals only between adjacent partitions, therefore nets maybe bi-

directional.

A less exotic architecture which exemplifies both aspects is the FPGA [2]. A device offering

only full reconfiguration has no architectural provision for storing state; a partially

reconfigurable device may reconfigure one of many resources, relying upon the preservation

of state in a resource not being reconfigured.

An early reference in the literature regarding the partitioning of a behavioural hardware

description (Verilog) in to reconfigurable resources is the work by Schmit et al. [55] who

describes the difficulties they encountered when partitioning a circuit’s structure after

allocating and scheduling the data-path units: sharing the functional units without regard to

their interconnection often prevented their placement in the target FPGAs or resulted in poor

utilisation of their pin or logic resources. By grouping operations with common input or

output values in to ‘clusters’ and repeating the process so that a cluster has the potential to be

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 38

a sub-set of another, the authors were able to confine the subsequent stage of scheduling and

data-path allocation to an additional level of hierarchy above that of the operation-level.

Structural partitioning of test circuits over two FPGAs using a Simulated Annealing [7]

algorithm highlights the difference between the best solutions with and without clusters:

without clustering, the logic utilisation of the two devices were 72% and 39% respectively;

with clustering, logic was better distributed at 63% and 43% utilisation. An improvement was

also seen in their IO requirements: without clustering, IO usage was reported to be 78% and

68% of available pins; with clustering, their IO requirements were reduced to 47% and 35%

respectively.

Simulated Annealing was also used to perform partitioning in the work described by Peterson

et al. [56], although the application of the algorithm differs from the latter in its use in

simultaneously scheduling and partitioning a behavioural description (ANSI-C) over a

multiple FPGA ‘Custom Computing Machine’. Hierarchy above that of the operation-level is

represented by partitioning the software specification at subroutine boundaries. In addition to

a potential reduction in the size of the cutset, likely to accompany a restriction of the

interconnection to those nets associated with the passing of function arguments, the

partitioned functions are also in a form that is easily ported for execution as software on the

host computer. As well as increasing the opportunity to explore how a program’s behaviour

may be best implemented in hardware, the availability of a sequential processor may also be a

necessity in circumstances where the logic resources are insufficient or unavailable, as is

likely to be the case when implementing floating-point arithmetic operations.

Both of these approaches required full reconfiguration of the devices which suited the many

operations encapsulated in each procedure or function that was partitioned. As such, they

were early examples of spatial partitioning using reconfigurable hardware.

Later examples described as Temporal Partitioning would appear when the partial

reconfiguration of a single device was examined. An often cited approach is the work by

Vasilko [57]. It is an early recognition of the relevance of HLS Scheduling to the temporal

aspects of partitioning for reconfigurable devices. The approach uses List Scheduling [17] to

determine the assignment of each data-path operation to a single temporal partition.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 39

The method begins with a list of unscheduled operations and a resource-constraint on the

maximum partition size. Each partition is created by removing an operation from the list and

assigning it to the current partition until the resource constraint is exceeded, in which case a

new partition is reconfigured or all the operations are scheduled. As is typical in List

Scheduling, a priority function is used to sort the operations to be scheduled: in Vasilko [57]

it includes a measure of how early a reconfiguration should start in order to hide it with the

execution of operations already scheduled.

Two outcomes are possible: in the event of there being sufficient time to overlap the

reconfiguration of an idle resource from an earlier partition, a partial reconfiguration takes

place. Alternatively, the overhead in reconfiguring the operation is too great for a single

operation and the entire device is reconfigured, incurring the same reconfiguration time but

freeing more resources to be used in subsequent partitions.

With regard to the test circuits, the examples scheduled at the operation level are small, the

largest being in the order of 34 vertices in a data-flow graph. The purely data-flow approach

excludes explicit control structures and therefore the opportunity to overlap reconfiguration

with the execution of structures such as finite loops.

The results proved what seems intuitive, that longer reconfiguration delays cannot be so easily

hidden and as a result are more efficiently handled via full reconfigurations. Reducing the

reconfiguration times encourages more partial reconfigurations and shorter critical paths

because of the ability to hide the reconfigurations. The results were not based upon

commercial devices which would have required thousands of cycles but on multi-context and

single cycle reconfigurable devices.

List scheduling is the most frequently used method for temporal partitioning, a particular

advantage being its linear execution time with respect to the number of operations to

schedule. In [58], the authors took a similar approach by using list scheduling but targeted a

practical implementation, citing the ability to execute the scheduling in linear run-time. The

target architecture utilised an embedded CPU which enabled an on-line scheduler to use list

scheduling for occasions when dependencies between the nodes are not known. List

scheduling was also used for static graphs, supporting both compile and run-time approaches

to temporal partitioning. The scheduling is applied at the task-level of abstraction and a case-

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 40

study showed how a Discrete Cosine Transform may be partitioned over 16 tasks, overlapping

device reconfiguration with the execution of the tasks. A high degree of similarity amongst

the operations within each task is likely to account for the acceptable ratios of reconfiguration

to execution latencies reported in the results.

Unlike non-reconfigurable approaches, list scheduling approaches rarely re-use functional

units in existing partitions, placing a greater emphasis on the size of the available resource

rather than its type. The work of Bobda [59] relied on creating a set of partitions in such a

way as to maximise the number of common operations between any successive pair of

partitions. In circumstances when too great a reconfiguration delay would prohibit a device-

level reconfiguration, the author proposes the sharing of functional units between partitions;

he describes how this approach need not automatically result in an increase in the logic

resources necessary to multiplex the input operands of their allocated instructions: in FPGA

architectures where a look-up table is used to pass an input signal to a register resource, an

additional data and select signal along with the updated boolean equation can be programmed

into the existing table. Despite being a useful alternative form of temporal resource sharing, it

does depend on having precise user-control over the technology mapping of individual data-

path components, a level of abstraction that many hardware designers would be reluctant to

design at.

A very different approach to temporal partitioning is taken by formulating the problem as an

Integer Linear Programming task [60], using equation solvers to find a solution which meets

the exact constraints used to enumerate the temporal partitioning. Examples of these

constraints are: uniqueness assignment constraint- a single binding of a node to only one

partition; data-dependence constraint: a variable must be written to before it is read and that

implies its placement in a partition earlier in time than the reading partition.

Once all these variables are described, a commercial equation solver is used. The advantage in

this approach is its ability to generate an optimal solution. The drawback in its use is that it

requires an exact formulation of the architecture. This includes defining exactly all the

properties required during partitioning. As a consequence, it is only suitable for problems

with a very small number of variables.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 41

Network flow techniques have been proven to be useful in modelling communication costs

between temporal partitions. Approaches using list-scheduling often form partitions solely on

a local temporal view (levelling [59]) without consideration of the cost of buffering

communication. Network flow methods are specifically centred around finding the minimum

cutset. The method is based on the Ford and Fulkerson min-cut max-flow theorem [61]. A

physical analogy would be to consider a series of interconnected water pipes with a single

source and sink and no loss of water when travelling from source to sink. By applying water

at a steady rate, at some point the pipe with the smallest diameter will saturate with a

maximum flow before the others; if cutting it would prevent the flow of water to the sink, it

represents a minimum cut.

The logic gates and input/output nets of a digital circuit can be represented as a set of vertices

and edges in a flow network. A circuit net is modelled by an edge of a single unit capacity. A

saturated path from source to sink occurs when the flow rate equals the maximum capacity of

one. When the network has achieved a maximum flow, there will exist at least one minimum

cut capable of partitioning the graph in half. Since a saturated edge is of a unit flow, the size

of the cut is given by the number of forward edges crossed between the two partitions.

Crucially, all of the potential cuts will be of the same size and ultimately equivalent to the

maximum-flow of the network. Selection of the actual partitioning cut can be made by

considering the size of the vertices connected by the edges of the cut-set and the areas of the

two partitions formed by separating the vertices.

A network flow approach would seem to be an attractive method since each max-flow

computation reduces the requirement for circuit partitioning to comparing the areas of

vertices. However, there are a number of hurdles which prevented its adoption. The most

obvious difficulty is the time taken to repeatedly calculate the maximum flow; after each cut

is made, the area of partitions is not balanced which requires repeated cuts to the larger

partition and potentially as many max-flow computations as there are vertices. Another

difficult lies in accurately representing a cut made across nets in a circuit, complicated by the

fact that an output of a logic gate may drive multiple gate inputs which is often represented by

a single net.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 42

The Flow-Balanced Bi-partitioning (FBB) method of (Yang and Wong) [62] directly

addresses these problems through the use of an incremental approach to calculating the

maximum flow of a network, whilst selecting only vertices on nets which preserve a balance

criterion specified for the resulting partitions. The authors also showed how nets with multiple

terminals can be represented in a flow network through the use of additional vertices and

edges.

The first application of FBB to temporal partitioning was described in [63]. The approach

used recursive bi-partitioning to create a set of two partitions. A pair of source and sink nodes

are selected and flow is applied between them. This is repeated until at least one saturated

path is found. If cutting it would stop the flow between the source and sink vertices than it is

declared as a potential mincut. Of all the potential edges, one is chosen where moving its

associated vertex would improve the size of a destination partition selected with respect to a

balance target. The benefit of this approach is that is can lead to a solution in polynomial time

but requires the insertion of extra nodes and additional edges to represent multi-pin nets. One

has to be careful to avoid the worst case which is twice the number of nodes and edges than in

the original problem.

Force-directed Scheduling [64] has also been used as a basis for realising temporal

partitioning in high-level synthesis. The objective is to find a schedule to meet a time-

constraint whilst minimising the number of functional units required for instruction

operations. To reduce the schedule requires an exploration of the concurrency of operations

but that requires more functional units. Forced directed scheduling attributes the distribution

of concurrency for a type of functional unit as an abstract measure of force.

The aim of force-directed scheduling is to schedule an operation to reduce the force and

evenly distribute the parallelism of functional units across other units of the same type. A

particular point of interest is that it measures the ramification of scheduling an operation on

any related predecessor or successor operations. For example, scheduling an operation later

might encroach on the control step of a dependent successor; assuming that both cannot be

scheduled to the same control step, doing so would limit the choice of where to schedule the

successor operation. The solution is to find an operation where there is a choice in where it

can be scheduled to affect the number of functional units used e.g. an operation with mobility.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 43

The ideal control step to schedule the operation would be where it does not increase the

number of functional units used of a similar type. That is not to say no parallelism, but less

parallelism over the possible choice of where to schedule.

Where an operation can be scheduled in more than one place becomes a probability of

distribution. Subtracting the average use of functional units from that probability provides an

indication of an operation’s self-force. Therefore, a small value reflects a small self-force and

a good place to schedule. A large force would be in a place where there are many of the same

parallel units in comparison with the average and not a good choice.

A similar approach can be taken with related operations. A dependent operation may also

have a mobility and choice of where to schedule. There is an average use of functional units

of the same type during that mobility. Finding the difference between the average use of units

before and after the scheduling of the operation in question reflects the effect it has on any

dependents. A reduction in the average use of functional units after the move would suggest

the control step is an unsuitable choice.

The final decision is based upon the sum of the self-force and the successor and predecessor

forces. This is repeated for every control step where the operation might be scheduled. The

control step with the smallest force will represent a smaller than average concurrent use of a

functional unit and a minimal use of resources for that operation.

In [65], the authors describe a force-directed temporal partitioning algorithm which

simultaneously considers resource sharing and partitioning. The purpose of the algorithm is to

minimise the execution time whilst considering the sharing of functional units and how it

might affect the size of a partitioning. The disadvantage of this approach is that allocation is

based solely on local partition properties. A global view of partitioning was implemented in

[66] where each operation on the critical path is initially assigned its own partition. The

algorithm is than able to take a global approach by determining which of the operations from

non-critical paths may join them in a partition. In doing so, it is able to consider both the

resource sharing between their operations, as well as their execution latencies; no provision is

made for the communication cost of signal cut by the partitioning.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 44

The Genetic Algorithm approach described in [67] differs from the other approaches

described previously, not just in its use of the genetic algorithm but its aim of multi-objective

optimisation. Unlike the other approaches, it sought to minimise resource size, latency and

communication costs. However, a disadvantage in the approach taken is the reliance upon

only accepting moves during partitioning which improve the cost function, no ‘Uphill’

decisions are ever taken.

2.6 Architectures for Run-time Reconfiguration

The approaches described earlier regarding temporal circuit partitioning are based on the

assumption that the architecture is a direct result of the topology inherent to partitioning.

A number of reconfigurable resources are defined and fixed wiring channels are used to

connect them. Their properties such a size and placement are all a part of the trade-offs made

during partitioning. As such these decisions are necessarily off-line because the relationships

between the instructions are statically defined.

There are alternative approaches to run-time reconfiguration, where partitioning decisions are

made on-line. Although the problem being addressed is very different to the use of

reconfiguration for high-level synthesis, difficulty in implementing their architectures at the

device-level often requires pre-defined off-line architectures that are made generic through

use.

From a reconfigurable computing perspective, a programmable device such as an FPGA could

be regarded as another memory to manage. The reality is that the encoding of information

using an FPGA is several magnitudes larger than that which is used for a general-purpose

microprocessor [3]. The obvious explanation for this is that a microprocessor has an existing

architecture, where the fetching of instruction operands is inherent to the programming of the

architecture. In contrast, an FPGA is programmable for a user-defined architecture. There are

numerous resources and these are spatially apart and therefore require a description of how

information between them is to be transported. As a consequence, the task of managing the

device resources at run-time requires a level of abstraction to manage the complexity of

programming the device.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 45

The approach taken for existing programmable resources, such as computer architectures is to

describe an Operating System to which existing memory management techniques can be

applied [68]. The difficulty in this approach is the proprietary nature of the devices. In order

to prevent reverse engineering of customer implementations, manufacturers are reluctant to

reveal sufficient information to enable the programming of their devices without their toolset.

For example, Xilinx Inc. disclosed information regarding the encoding of logic resources but

nothing to aid in programming the routing. A lot of effort in the reconfigurable community

has been spent on working around the reliance on vendor tools [69]. This divides the

reconfigurable computing community, those who incorporate vendor tools into their hardware

abstraction [70] whilst others rely upon pre-designed architectures which are adjusted at run-

time [8].

Research Tools such as Torc [71] include device vendor tools into their methodology and in

doing so require a general-purpose microprocessor somewhere in the hardware

implementation. This moves the focus to fast compilation; ultimately the end result must be

the generation of device-level configurations at run-time.

In the absence of proprietary information, the approach is to limit the use of the vendor tools

such as Placement and Routing which are the most time-consuming phases during

implementation. An alternative is to rely upon circuit descriptions at the lowest possible level

that allows textual description. For Xilinx devices this approach can be achieved through the

use of the Xilinx Description Language (XDL) [72]. Tools like Torc rely upon manipulating

device level configuration frames in accordance with circuit descriptions at higher levels of

abstraction, XDL as well as C++ or Java. The approach used by these tools is to describe the

structure of a circuit using a high-level language which is then automatically programmed

with the equivalent device-level resources at run-time. Resources are set and reset with each

new requirement for change in program behaviour and consequently FPGA configuration

memory. This approach to run-time reconfiguration is particularly useful where there is

already the overhead of an operating system factored into the hardware expense.

An alternative approach is to reduce the number of run-time decisions by adopting a specific

architecture. A representative example of this approach is described in [8]. A model of a

hardware operating system is presented which is reliant on the use of a generic pre-designed

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 46

one-dimensional architecture. It comprises a series of columnar ‘reconfigurable slots’ into

which a user task could be reconfigured. On either side of this area are static resources

committed to implementing the operating system entirely in hardware.

A portion of the slot is allocated to a ‘Task Communication Bus’ which is a shared

communication channel that spans all available slots. In this way any task can exchange

information regardless of its actual placement. The customisation occurs when a variable

sized task is processed because it is must be implemented through more than one slot. The

operating system ensures that an indivisible number of slots are used and upon completion the

resources are returned to their unit size.

Use of the channel is highly restricted to guarantee no bus contention and no arbiter is

described. This is due to bus communication being solely between adjacent resources; non-

adjacent resources do not use a shared bus and depend upon fixed direct routing channels.

A different technique would be to reduce the need for a shared communications channel by

writing and reading to dedicated memory [34,73]. The method used in both these

implementations of a hardware operating system is to perform on-line scheduling and

allocation of resources to tasks by device configuration frame-manipulation. This requires the

use of JBits [48], a vendor supplied interface to the reconfigurable resources of earlier Virtex

FPGAs that does not reveal proprietary information. In this way, the authors were able to

experiment with scheduling and allocation techniques without requiring a pre-defined

architecture [8].

Tasks could be one or two-dimensional (fractions of a column) and all communication is

between a task and a shared external memory. This enables its parameters to be written or

read by the operating system of a desktop computer. The approach relied upon there being no

communication between the tasks but was able to dynamically allocate wiring resources

between the memory and the task. As the authors stated, this could be adopted to enable

communication between tasks using the shared memory.

A distributed approach to communication has its origins in the massively parallel computer

architectures of the 1980s [11]. Circuit Switching was used to create a fixed path for

connecting two or more communicating resources such as CPUs. The architecture has a

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 47

number of parallels with earlier FPGAs, where routing would be done through a series of

neighbourhood connections.

A connection between non-adjacent resources required the setting of many switches arranged

in a mesh topology for the duration of the communication. The connection would be

‘switched on’ only for the duration of the communication. In this way, the parallelism of the

computer architecture could match the parallelism of the algorithm being described [74].

An example of how circuit switching can be successfully used for communicating between

reconfigured tasks was encapsulated by the Reconfigurable Multiple Bus On a Chip

(RMBOC) [75]. In common with other pre-defined architectures [8], the resources are

modelled as one or two-dimensional resource slots. A large resource can be accommodated by

the reconfiguration of consecutive slots. The architecture separates communication to the top

part of the resource slots. This is a necessity because a drawback of the circuit switching

approach is the difficulty in ensuring that switching points are not already allocated. In the

absence of a wiring database available to computer based approaches [71], the use of routing

resources must be constrained to an area, similar to the approach described by [8]. However,

unlike a single bus which allowed only source and sink connections, the RMBOC utilises

multiple buses connected at switching points.

Each switching point comprises a controller which distributes control information to its

nearest left or right neighbour. Control information includes instructions used to distribute

data between switching controllers, such as commands which open or close a channel.

Although many buses may comprise the path, the path is reserved solely for the single

communication transaction. No other pair of resources may use the path. Upon reaching the

destination, an acknowledge command is returned through the same route. Parallel threads are

supported because access to the switching controller is arbitrated through a round-robin

scheme which selects between each of the adjacent directions and the local resource. Failure

to obtain access to the bus is represented by a cancel command which is returned through the

switch controllers to the source switch. This approach could also greatly increase the length of

the clock period and to reduce that delay, registers are also inserted along the switches to

enable communication to be pipelined. This occurs through a dedicated FIFO queue used to

store commands at each switching controller.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 48

The drawback with such an approach is that the hardware overhead associated with each

controller is duplicated at each switching point. An extension of this approach is realised

through the use of a packet based network of resources. The Network On Chip (NoC) [76]

architecture is proposed as an answer to the multiple billion transistor chips that are becoming

common place. The generic network comprises a diverse set of resources such as memory,

DSP or logic, all communicating through packets. Unlike circuit switching, a reserved path is

not necessary because each packet has the control information necessary to forward it to the

correct destination. Crucially, no route is pre-determined and resources on the network can

communicate concurrently by taking different paths.

A NoC comprises a number of routers and local processing elements. Information is divided

into packets which encapsulate destination address and data. Any router from the source of

the packet and along the path to the destination router will read this information and direct the

packet towards the destination router and processing element. How packets are directed and

how the routers are connected is the major consideration in designing packet switching

networks.

The shortest distance between a source and sink router is not necessarily the quickest because

of congestion at a router – caused by multiple packets that have been directed to the same

router. A deterministic approach uses dimension ordering of the source and sink routers to

find the shortest path. In a 2D Mesh topology, a packet would traverse along a row given by

the X dimension of the destination coordinate until encountering the Y column/coordinate.

Communication between future packets would travel the same path. The disadvantage of this

approach is the absence of an alternative route should congestion be encountered. In addition,

future packets using the same method would also encounter the same congestion.

Adaptive routing strategies such as reinforcement learning [77] enable each router to learn

information from its neighbour which is collated in a routing table of the fastest routes

between it and the destination router. In this way, a router along the path is able to bypass

congestion and select a faster route. The drawback to this approach is the difficulty in

guaranteeing through formal analysis that deadlock does not occur. In addition, the routing

algorithm stored in a router is also more complex requiring greater resources.

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 49

The use of reconfigurable resources in a NoC architecture is examined in the Dynamic NoC

architecture proposed in [75]. The 2D Mesh architecture is implemented on a Xilinx FPGA,

enabling the routers to be partially reconfigured as logic resources when not in use. The

authors cite this as the motivation for customising logic resources as opposed to using fixed

processing elements on the network.

As with all reconfigurable architectures when decisions are taken to allocate resources at run-

time, the availability of routing resources must be communicated dynamically between the

routers. The router in a non-reconfigurable NoC assumes the existence of four adjacent

routers in a 2D Mesh. This assumption could be no longer valid where adjacent router

resources are to be reconfigured into logic ones.

The strategy taken is to reconfigure only groups of router resources. This guarantees an

adjacent router is always available and also enables other routers to be reconfigured into logic

resources. The approach is implemented in the routing algorithm by only forwarding packets

to routers surrounded by more than one router. The authors suggest that a static routing

algorithm achieve packet forwarding based on measuring the strength of the connectivity

between clusters of routers.

Experimentation with the packet size was used to determine the area (logic and memory

resources) and speed (clock frequency) of subsequent router characteristics using the second

largest Xilinx FPGA and middle of the range devices available at the time. The results

showed that for the largest packet size of 64 bits, the area resources were 46% (logic), 12%

(memory) and 77.3MHz for a router using the middle of the range FPGA. Implementation of

the same router on the larger device required 7% (logic), 4% (memory) and 73.7 MHz. These

resource overheads are irrespective of the actual application. The authors concluded that the

area overheads in synthesising the routers were great because their implementation did not

directly map efficiently to the routing resources of the FPGA.

2.7 Summary

This chapter began by associating the moment when a resource is bound, as the means by

which a reconfigurable resource can be distinguished from a programmable counterpart. It

D. Esrafili-Gerdeh, 2016 Chapter 2: Background 50

pursued the binding analogy by recognising that an early binding of program behaviour is

synonymous with a highly optimised use of resources, a characteristic of application-specific

circuit synthesis. On the contrary, the latest time in which a program might be bound is during

its execution, a characteristic of general-purpose programmable computer hardware; run-time

reconfigurable resources share both these characteristics. This was recognised much earlier

than could be realised in practice, as the literature described.

The reasons for using run-time reconfiguration include: reconfiguring resources between tasks

with differing purpose (functional); reconfiguring resources between the same tasks

implemented differently (algorithmic); reconfiguring in the presence of a fault (architectural).

A myriad possible uses led to the necessity to automate their implementation and the

development of hardware compilers at high and very low levels of abstraction.

Reconfigurable architectures are constrained by how the resources communicate with one

another. Database approaches are the least restrictive but also the slowest due not only to the

large choice of routing options available but also the inclusion of vendor tools in their

generation and updating at run-time. Reducing the number of programmable routing resources

certainly reduces routing decisions as shown in the bus-based architectures. Networked

resources do reflect the parallelism of wiring resources available but do not map efficiently

due to the proprietary nature of the FPGA device configurations.

Despite there being no shortage of architectures and approaches to implementing run-time

reconfiguration, the reality is that FPGAs are the shortest route to their implementation. With

that in mind, the use of high-level synthesis tools are a prerequisite to exploring the benefits

and limitations associated with off-the-shelf programmable and reconfigurable hardware.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 51

Chapter 3

Behavioural Synthesis

In this chapter, the concepts behind behavioural synthesis are introduced through the use of

MOODS, the synthesis tool that provides the framework for much of the work undertaken in

this thesis. The synthesis of an error-correcting communication system exemplifies the steps

followed during behavioural synthesis which begin with an algorithmic specification of the

circuit and end with an equivalent structural Register Transfer Level description − suitable for

RTL synthesis and ultimately a vendor specific device implementation. The chapter concludes

with a description of how the analogy of a software approach to hardware design can be

extended to the device-level in the form of a late-binding of subroutines.

3.1 Circuit Abstraction and Synthesis

Figure 3.1 depicts the possible stages of circuit representation encountered during circuit

design. Automation in the form of Computer-Aided Design (CAD) tools are utilised to a

varying degree during each stage; more so in the lower stages, where the task of circuit design

becomes increasingly complex and therefore time consuming and prone to human error.

Historically, the deployment of CAD tools has risen through the stages of circuit abstraction,

providing a means of addressing the problems associated with circuit complexity.

At the apex of circuit abstraction, an Algorithmic description expresses the behaviour of a

system and not how it might be implemented; it is very much sought after because it

continues the trend in hardware design of removing detail through each step of circuit

abstraction. In doing so, it begins to mirror the history of software development, which also

followed a similar path: from early programs written in machine or assembler code, to the

present day ubiquity of high-level programming languages and their software compilers,

which provide a means of describing program behaviour without being too constrained by the

idiosyncrasies of the target hardware.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 52

Figure 3.1: Abstraction in circuit representation.

Behavioural or High-level Synthesis [78,79] embraces the Algorithmic level of abstraction by

automatically generating a number of Structural representations solely from a single

behavioural description. Although functionally equivalent to the next, each structural

description will differ in terms of its size, speed and power consumption. Ultimately, the

structural representation chosen is the one which best meets the user’s criteria regarding the

applicable circuit characteristics.

As an intermediate step towards a structural representation, the Architectural level of

abstraction seeks to identify how the sub-systems of the specification might be implemented.

For example, in contemporary synthesis, such as hardware/software co-design [80], the

occurrence of many 32-bit arithmetic and logic word operations in the data-path might

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 53

suggest the use of an ALU within a general purpose processor. Other data-path tasks might be

highly parallel and feature irregular bit-level operations – often more efficiently realised using

application specific hardware on a programmable fabric [81].

At present, the majority of industrial circuit synthesis takes place at the Register Transfer

Level (RTL) or Structural of abstraction. At this level, the behaviour of the algorithm is

embodied by at least one Data-path and an associated Controller. The data-path is

characterised in terms of data transfers and transformations between functional units and

storage elements; realised as a network of functional units, such as arithmetic and logic units

(data transformation) and connected through multiplexors, buses and directly through data

nets (data transfer).

The responsibility for scheduling when the data-path operations take place and how, if any, of

the functional units are shared, is left to the circuit designer during Controller Synthesis. As

with the data-path, there are choices in how to implement the controller. One solution to

realising a Finite State Machine could be to use combinational and sequential logic i.e. a hard-

wired approach. Alternatively, the encoded control sequence might be stored in a ROM, as in

the case of a programmable micro-coded [14] controller.

At the Logic-level of abstraction, circuit behaviour is described in terms of Boolean equations

and may be modelled as graph of logic operators, to which boolean minimization and

algebraic methods (e.g. Operator Decomposition, Extraction, Factoring, Substitution, and

Collapsing) are applied during Logic Synthesis.

In practice, logic synthesis is performed as part of RTL synthesis, enabling automatic

optimisation of the combinational and sequential logic described at the structural level.

Despite being mathematical and obviously technology independent, the application of the

algebraic methods will have a tangible effect on the equivalent representation of the circuit at

the next level down: decomposition or substitution of boolean functions can reduce the

number of logic gates needed, collapsing boolean functions will reduce their logic depth;

logical optimisation, such as these at the gate-level, will impact the size and delay of a circuit

at the physical level.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 54

Sequential logic is also receptive to optimisation, the encoding of a state machine for

example, where the resource requirements of different state encodings may be evaluated.

Synplify [82], in the absence of a specified encoding, will choose the style of encoding based

upon the number of states described in the state machine i.e. sequential when there are less

than 4 states, one-hot for states less than 24 but greater than 4 and gray for any other number

of states.

The last step in logic synthesis is Technology Mapping, where the logic equations are

translated to a specific technology and vendor, such as the FPGA look-up table (LUT). This is

achieved by partitioning the graph over K LUTs, whilst optimising for user constraints on

area, delay, routing and power [83]. The output of logic synthesis is an optimised circuit,

expressed in the form of a standardised net-list e.g. EDIF, describing the circuit using the

component primitives of the target technology and vendor; during the next stage of

abstraction, it will form the basis for a transformation into a physical implementation of the

circuit.

As illustrated in Figure 3.1, the Physical level of abstraction is the lowest level of circuit

representation. In practice, it covers a range of circuit detail, from a model of the delay a

signal might experience along a particular segment of FPGA routing, to the manipulation of

transistor aspect ratios during Full Custom ASIC design. In the context of circuit synthesis

presented in this thesis, design automation in the physical stage is associated with

implementing the circuit using vendor and FPGA specific tools. These tasks include a further

refining stage of Technology Mapping, using detailed propriety information about the target

architecture; determination of where the device primitives are Placed in the architecture − in

accordance with the optimisation goals and constraints; closely coupled with an attention to

the minimisation of the Routing required to connect the circuit components to one another and

the external input/outputs. Such tasks can be carried out autonomously by the vendor tools,

however, user input is often necessary to achieve the performance requirements of the circuit

implementation.

One vital aspect of circuit synthesis which is common to all stages of abstraction is the

necessity to verify the correctness of the circuit being modelled. This becomes an increasingly

time consuming task, as the length of time spent in verification is proportional to the degree

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 55

of detail used to represent the circuit. For example, with no explicit reference to time at the

algorithmic level, a purely functional simulation can be carried out in much the same way as

software is debugged using a compiler.

At the structural level, simulation begins to become a bottleneck in the development cycle, at

which point hardware Emulation may be utilised to accelerate the simulation process. This

has particular resonance in reconfigurable logic applications because many commercial

emulation systems [84] are FPGA-based, exploiting their re-programmability to implement

different parts of the design being tested.

3.1.1 Behavioural and RTL Circuit Synthesis

In order to exemplify the differences between a Behavioural approach to circuit design and its

RTL counterpart, consider the task of synthesising a parity generator for encoding data using

Bose-Chaudhuri-Hocquengheim (BCH) codes [85]. One such code is characterised as being

15 bits in length, 11 of which directly represent the data to be encoded. The remaining 4 bits

are allocated to parity, enabling the location and correction of any single bit transmission error

of the codeword. The generator polynomial for the code is 𝑔(𝑥) = 1 + 𝑥 + 𝑥4. Chapter 7

provides an overview of the use of BCH codes in the context of a run-time reconfigurable

message coding scheme.

One approach to realising the BCH encoder would be to describe the structure of a suitable

circuit. A solution might be to describe a data-path containing a Galois Linear Feedback

Shifter Register (LFSR) comprising four stages (given by the term in the polynomial with the

highest power), where the output of each is wired to the input of the next stage or to an

Exclusive-Or gate, as depicted in Figure 3.2.

One of each pair of inputs to the Exclusive-Or gates corresponds to a particular coefficient of

the generator polynomial, whilst the other is driven by the feedback between the maximum

and minimum terms. A controller (partially represented by the And gate in the feedback path

and Multiplexor on the circuit output) would sequence events, such as the resetting of the

counter after the last message was encoded or ensuring that the current message is

simultaneously shifted into the counter and in to a communication channel, during the 11

clock cycles required to encode the message data. It would also oversee the formation of the

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 56

codeword by flushing the counter for a further 4 cycles, revealing the parity nibble to be

appended to the message.

D Q D QD Q D Q

message bit
codeword

1 x x2 x3 x4

r0 r1 r2 r3

0

1

message / parity

Figure 3.2: BCH message encoding using a Galois LFSR.

Figure 3.3 shows a VHDL RTL description of the LFSR encoder alongside several other sub-

systems, in a form that would enable an RTL synthesis tool to automatically generate a circuit

capable of encoding a message into a BCH codeword.

When the component/architecture hierarchy is flattened, VHDL essentially models a circuit as

a number of parallel processes, each of which can communicate with another through a series

of inter-process signals which are updated synchronously in step to a global clock. With that

in mind, the description of the coding circuit is divided into a Finite State Machine controller

represented by the ‘ControllerSeqential/Combinational’ process constructs and three data-

path processes, also named in accordance with their function: ‘messageFetch’,

‘messageEncode’ and ‘messageParity’ respectively. All processes are connected through a

number of signals, declared at the beginning of the architecture along with the individual

states of the controller.

The execution of each data-path process occurs during a similarly named state of the

controller i.e. process ‘messageFetch’ executes during the ‘messageState’ of the controller. In

this way, the controller orchestrates the generation of the codeword by sequentially executing

one or more concurrent subsystem, enabling each of their associated control signals in the

following order: messageState, encodeState, parityState and codewordState. In addition, all

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 57

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity encoder is
port(clock:in std_logic;
 reset: in std_logic;

 message:in unsigned(10 downto 0);
 codeword:out unsigned(14 downto 0));

end entity;

architecture rtl of encoder is

type state is (resetState,messageState,encodeState,
 parityState,codewordState);

signal presentState,nextState:state;
signal messageBit,parityBit:std_logic;
signal codeMessage:unsigned(10 downto 0);
signal codeParity:unsigned(3 downto 0);
signal count:integer range 0 to 15;
signal readMessage,encodeMessage,
 readParity,formCodeword:std_logic;

begin

controllerSequential:

process(clock,reset)
begin
 if reset='1' then
 presentState<=resetState;
 elsif rising_edge(clock) then
 presentState<=nextState;
 end if;
end process;

controllerCombinational:

process(presentState,count)
begin
 readMessage<='0';
 encodeMessage<='0';
 readParity<='0';
 formCodeWord<='0';
 case presentState is

 when resetState=>
 readMessage<='0';
 encodeMessage<='0';
 readParity<='0';
 formCodeWord<='0';
 nextState<=messageState;

 when messageState=>
 readMessage<='1';
 nextState<=encodeState;

 when encodeState=>
 encodeMessage<='1';
 if count<message’HIGH then
 nextState<=encodeState;
 else
 nextState<=parityState;
 end if;

 when parityState=>
 readParity<='1';
 if count<codeword’HIGH then
 nextState<=parityState;
 else
 nextState<=codewordState;
 end if;

 when codewordState=>
 formCodeword<='1';
 nextState<=messageState;

 end case;
end process;

codeword<=(codeParity & codeMessage) when formCodeword='1' else "000000000000000";

end architecture rtl;

messageFetch:

process(clock,reset,message,readMessage,
 encodeMessage,readParity)
begin
 if reset='1' then
 codeMessage<=(others=>'0');
 messageBit<='0';
 elsif rising_edge(clock) then
 if readmessage='1' then
 codeMessage<=message;
 count<=0;
 else
 if encodeMessage='1' then
 messageBit<= codeMessage(count);
 count<=count+1;
 else
 if readparity='1' then
 count<=count+1;
 messageBit<='0';
 end if;
 end if;
 end if;
 end if;
end process;

messageEncode:

process(clock,reset, messageBit,readParity)
 variable registers:std_logic_vector(3 downto 0);
 variable feedback0,feedback1:std_logic;
begin
 if reset='1' then
 registers:=(others=>'0');
 parityBit<='0';
 elsif rising_edge(clock) then
 if encodeMessage='1' or readParity='1' then
 feedback0:=(registers(3) xor messageBit);
 feedback1:=feedback0 xor registers(0);
 registers:=registers(2) & registers(1) & feedback1 & feedback0;
 end if;
 end if;
 parityBit<=registers(3);
end process;

messageParity:

process(clock,reset,parityBit,readParity)
begin
 if reset='1' then
 codeParity<=(others=>'0');
 elsif rising_edge(clock) then
 if readParity='1' then
 codeParity<=codeParity(2 downto 0) & parityBit;
 else
 codeParity<=(others=>'0');
 end if;
 end if;
end process;

Figure 3.3: An RTL description of a BCH message encoding circuit.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 58

controller states are proceeded by the ‘resetState’, initialising all inter-process signals, the

controller and process variables to a know value.

Interaction between the controller and data-path processes is as follows: following a reset, the

controller enters the state ‘messageState’ and enables the registering of the message via the

‘messageFetch’ process. During each successive execution of the ‘messageEncode’ state, the

message is processed one bit at a time by the LFSR inferred from the ‘messageEncoding’

process, until the controller has transmitted all 11 message bits. The last interaction between

the processes involves a third process labelled ‘messageParity’. As its name suggests, it forms

the parity part of the codeword by accumulating the parity bits generated at the output of the

LFSR, the result of inputting dummy message bits during 4 cycles of the controller’s

‘parityState’. The final state of the controller ‘codewordState’, outputs the BCH codeword by

concatenating the message and the parity signals, after which the next state ‘messageState’ is

also the beginning of the sequence when another message can be registered; the controller

sequence is repeated indefinitely.

What is evident about the style of the coding for the controller and data-path processes is the

amount of detail which must be present for a synthesis tool to infer the correct circuit

components. For example, the variable ‘registers’ used within the ‘MessageEncoder’ process

retains part of its former value when assigned, suggesting a memory implementation since the

variable is read and written to in response to a clock signal. As the assignment occurs on the

rising edge of the clock signal, the memory is interpreted by the synthesis tool as an edge-

sensitive D Flip-Flop.

The vector width of the variable would generate four instances of the Flip-Flop, two of which

are written to using the previous state of the variable, while the remaining two are written to

using the value of the variable ‘feedback’. The value of this variable reflects the state of the

message and controller mask bits, combined with the states fed-back from elements of the

vector variable ‘registers’, identified by the terms of the generator polynomial. An

asynchronous reset of the flip-flop is also inferred by the tool, based upon the conditional test

of the state of the reset signal and its independence to any changes in the logic state of the

clock signal.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 59

Describing the encoder in this way would fix the architecture to serial processing of the

message bits, requiring 18 cycles to produce a codeword. In doing so, the architecture fully

utilises the data-path components on each encoding cycle which reduces the component count

when implementing the circuit.

An alternative approach to synthesising the encoder is to describe its behaviour and specify

through resource constraints, the kind of physical characteristics required of the resultant

architecture, thereby allowing a behavioural synthesis tool to automatically generate a

compliant architecture and equivalent RTL description. Figure 3.4 shows one possible

behavioural description of the BCH encoder.

The program description explicitly captures the behaviour of the encoder as a series of state

transitions which are taken with respect to the value of each message bit being encoded. After

the last message bit is processed, the value of the final state is used as parity and forms the

codeword by appending it to the original message.

At first glance, an obvious difference between the two listings is that the behavioural encoder

can be represented by a single process, containing fewer lines of code than the RTL

counterpart. This can be explained by the operation of the encoder being explicitly

decomposed into sub-systems in the RTL coding, all of which have implicit control and data-

path equivalents within the behavioural description.

A more subtle distinction is that the function of the encoder is made more apparent when its

behaviour is described. For example, the relationship between the value of the state and the

effect that each message bit has on whether the next state is odd or even; this relationship was

relied upon during the Viterbi decoding of the code-words, as described in Chapter 7.

On close inspection of the statements contained within the process, the coding makes use of

an infinite loop to separate the assignment of variables or port signals in the process body

from their initialisation and without explicit reference to a reset signal, as is the case for all

the RTL process descriptions. In addition, there is no requirement to carry out any variable or

signal assignment based upon the clock or reset signals, since the Finite State-Machine

controller, the data-path and control signals relating them are all generated automatically from

the behavioural description.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 60

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity encoder is
port(message:in unsigned(10 downto 0);
 codeword:out unsigned(14 downto 0));
end;

architecture behavioural of encoder is
begin

 process
 constant q:integer:=8;
 constant messageLength:integer:=11;
 constant generator:integer:=3;
 variable state:integer range 0 to 14;

 begin
 codeword<=(others=>'0');
 wait for 20 nS;
 loop
 state:=0;
 for i in 0 to messageLength-1 loop
 -- moods unroll
 if state<q then
 if message(i)='0' then
 state:=2*state;
 else
 state:=to_integer(to_unsigned(2*state,4) xor to_unsigned(generator,4));
 end if;
 else
 if message(i)='0' then
 state:=to_integer(to_unsigned(2*state-q,4) xor to_unsigned(generator,4));
 else
 state:=2*state-q;
 end if;
 end if;
 end loop;
 codeword<=message & to_unsigned(state,4);
 wait for 20 ns;
 end loop;
 end process;
end;

synthesis directive

Figure 3.4: A Behavioural VHDL description of the BCH encoder.

The encoding of the message bits is described within the body of the ‘for loop’. Unlike the

sequential statements in the RTL processes, which are automatically inferred as a series of

combinational logic blocks, their hardware interpretation in behavioural synthesis will vary

depending upon the constraints placed upon the tool; an area constraint might enable the

chaining of individual combinational logic units in a single clock cycle or it might force their

sharing across multiple cycles.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 61

The reader will have noticed the synthesis directive ‘-- moods unroll’ occurring as the first

instruction within the for-loop, without it, the hardware required would be repeatedly

executed and shared by each of the 11 iterations of the loop. While not wishing to consider

how the instructions become hardware within the loop at this stage, is clear that in common

with the RTL description, a serial processing of the message bits would be the main

characteristic of the generated architecture.

Instructing the compiler to replicate the instructions by unrolling each loop iteration provides

an opportunity to dramatically increase the number of message bits that can be simultaneously

processed, also requiring an increase in the number of dedicated hardware components. A

higher degree of parallel processing of the message bits would be the dominant characteristic

of this alternative circuit architecture. The degree of instruction parallelism is dependent upon

how the instructions are allocated to data-path components and when they are scheduled to

execute; these in turn would influenced by the importance the user places on the

characteristics of the final architecture, such as the maximum number of cycles it would take

to execute.

The last sequential statement to be repeatedly executed in the loop is the ‘wait for 20 ns’

statement. It specifies that the encoder should update the ‘codeword’ signal at intervals of 20

nanoseconds. As this is an un-timed behavioural description of the encoder, the exact time

when the ‘codeword’ signal is updated will be dependent on how the previous VHDL

statements are scheduled as operations during synthesis. The relevance of the ‘wait for’

statement is limited to simulation only, where precise signal timing would be relevant if the

encoder was a component in a larger circuit specification with a circuit structure; otherwise

simulation of the behavioural description would be to ensure correct function only.

Features such as these, which when taken as a whole, help the user to focus on the

specification of the design rather than details of its implementation, e.g. the generation of

control signals for individual hardware units and when they should be active. This is evident

from the contents of the process description which would not be that dissimilar if coded in a

sequential high level language such as ‘C’.

If the number of execution cycles and components required for each of these architectures are

plotted as a 2-dimentional graph, as is illustrated in Figure 3.5, it is possible to visualise a

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 62

small ‘design space’ of encoder architectures generated by the Behavioural and RTL

approaches to circuit synthesis.

Figure 3.5: Circuit architectures generated by RTL and behavioural synthesis.

The graph illustrates six very different circuit structures, Beh0 to Beh5 respectively, which

could be chosen as alternatives to the single RTL solution. Each was automatically generated

using MOODS (Multiple Objective Optimisation for Control and Data path Synthesis) [5], the

in-house behavioural synthesis tool, by simply choosing to keep or unroll the loop contents

and by varying the optimisation priority to minimising the number of components, cycles or

both, in the generated architecture.

A single point on the graph represents the number of cycles and basic elements of logic

required, after the manual and behaviourally generated RTL descriptions are synthesised to

Xilinx FPGA primitives [50]. The number of cycles is a measure of the time taken to generate

a BCH codeword from a message. The size of the circuit is given by the number of basic

elements of logic encompassing combinational and sequential logic through a tally of look-up

tables and registers used in the FSM controller and data-path circuits.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 63

The results show the extremes of possibilities that can be accomplished using behavioural

synthesis, from Beh5, the most parallel solution, where loop unrolling and component sharing

of only mutually exclusive instructions lead to a circuit comprising 714 components, all of

which were executed in a single cycle; to the architecture of Beh0, where the consequence of

choosing not to unroll the loop and no restrictions placed upon component sharing, resulted in

a small component count of 89 components, requiring the greatest time (23 cycles) to form

the codeword. Of course, these solutions were generated in response to specifying a higher

priority between the number of components and cycles required of the architecture. In

practice, both are likely to be of equal importance and would produce a compromise between

these two extremes, as exemplified by Beh1; characterised by a component count of 131

components and requiring 13 cycles to produce the codeword.

It should be clear to the reader that in order to explore a different point in the encoder design

space, the RTL description must be re-written in order to infer a different architecture. No

change is required to the behavioural description, other than to experiment with different

compiler directives, such as loop unrolling. In this way, the size and shape of the encoder

design-space can be automatically explored by the user changing compiler directives and

constraints placed upon the desired properties of the final architecture.

3.1.2 A Renewed Role for Behavioural Synthesis Tools

The industrial use of behavioural synthesis tools has yet to fulfil the role anticipated by the

academic community, where research into techniques and tools is in its fourth decade [86].

Judging by the current product lines of major tool vendors this could be about to change.

Several authors [87,88] provide a historical narrative of the development of academic and

commercial tools, also offering an explanation as to why earlier offerings of behavioural

synthesis tools failed to be adopted as the suitable level of abstraction at which to design

hardware. The simplest explanation is that the quality of results offered by the earlier

generation of commercial tools, such as Behavioral Compiler (Synopsys) and its industrial

peers – Monet (Mentor graphics) and Visual Architect (Cadence), were not on a par with

those generated at the Register Transfer level (RTL).

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 64

Describing hardware at the RTL of abstraction was obviously sufficient to cope with the

increasing complexity of circuits because it would be several years later that high-level

synthesis tools for ASIC and FPGA design would once again be offered by the same vendors:

Synfora Synphony C Compiler (Mentor Graphics), Catapult C (Calypto design/ Synopsys), C

to Silicon and Cynthesiser (Cadence). In addition, the vendors also found themselves part of

a growing group of commercial [89] and open-source tool suppliers [90], all promising to

increase the productivity of the hardware engineer. Very prominent among this group are

those who solely target FPGA devices.

For approximately the same size of silicon, the number and type of programmable resources

offered on an FPGA has changed considerably, when compared to devices which were

available to the previous generation of HLS tools: resources now include system level

components, such as hard and soft processors, dedicated multipliers optimised for digital

signal processing and the necessary interfaces with which to connect them.

Design space exploration at the RTL level makes it very time consuming to alter the

properties of any of the system level components when attempting to meet the required

hardware constraints. There is a renewed role for HLS tools, where designing at a higher-level

of abstraction makes designs re-usable and faster to verify because any changes that need to

occur can be automated at lower levels of circuit abstraction.

With regard to the quality of the generated circuits, it is difficult to obtain an objective

opinion from the vendors themselves. As you might expect, exemplar designs serve only to

highlight the individual strengths of their tools. However, a number of commercial tools have

been independently reviewed [91] and their quality found to be equivalent to circuits that

were designed and optimised at the RTL of abstraction. Similar findings have been reported

by the academic community [87], who also found that the quality of automatically generated

circuits favourable with those that were manually designed. There is also evidence [88] of the

productivity gain associated with exploring the design space and the early detection of design

and coding errors during verification.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 65

3.2 MOODS Behavioural Synthesis

Figure 3.6 illustrates the stages of transformation undertaken by a circuit specification at

different levels of abstraction and the key components responsible in the MOODS

Behavioural Synthesis System. As depicted, a synthesis session begins with an algorithmic

description written in the VHDL hardware description language and a set of user supplied

optimisation criteria: the target size, delay and clock period required of the generated structure

in the chosen technology and the importance (often of equal priority) which the user attaches

to achieving the optimisation goals.

The first change in circuit abstraction occurs during the Compilation of the behavioural

VHDL in to an intermediate language known as ICODE. Its purpose is to substitute what can

often be complex high-level VHDL statements for simple 2 input operations; these will later

be assigned discrete components at the structural level of abstraction.

Some of the tasks performed during the compilation of the source code are akin to those

carried out by any sequential language optimising compiler i.e. verification of code syntax

and use of semantics, code optimisation: dead code elimination, loop unfolding and constant

folding – to name but a few [42]. However, some optimisations take advantage of the

intention to create customised hardware, such as bit-vector packing [92] or hardware specific

operator substitution [93].

As with all compilers, the output of the compilation stage is in a form closer to the hardware

on which the program description is to be implemented i.e. assembler/machine code for

sequential language compilers.

In a similar sense, the output of the optimising VHDL compiler is a step closer to a hardware

oriented description: the code generated at its output is quite literally an ‘Intermediate Code’

(ICODE) towards a structural representation of the algorithmic specification. For example, all

variables are represented in ICODE as bit-vectors, where each vector element might

ultimately be realised by a single register in synthesised circuit.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 66

2.
Optimisation
algorithms

Behavioural
description
(VHDL) files

1. Compiler &
ICODE assembler

ICODE file

Control and data
path graphs

2.
Estimators &

transformations

2.
Cost function &

design evaluation

3.
Structural netlister

Cell
characterisation

&
VHDL description

Libraries

Structural
description
(VHDL) file

4.
RTL Synthesis

5.
Device Vendor

mapping, place & route,
bitstream generation

Work, IEEE,
Std,Moods
Libraries

Optimisation objectives
&

design constraints

Simulation

Behavioural

RTL

Pre & Post
place & route

MOODS

FPGA

Figure 3.6: MOODS – centric digital circuit synthesis.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 67

The semantics of the ICODE language express the functionality of the behavioural

description, as well as model the sequential and concurrent aspects of the algorithm’s data-

flow. This is invaluable to its next step of representation – the construction of the control and

data path graphs.

The motivation for modelling the ICODE description as a set of data and control graphs is to

enable their automatic optimisation through graph-based Transforms. The execution sequence

of the instructions is reflected in the Scheduling of each instruction to a node in the control

graph. Similarly, the behaviour of each instruction is Allocated to a functional unit in the data-

path.

The control and data-path nodes do more than represent when a certain type of instruction is

executed, they also indicate how it will be achieved: each node is bound to a physical

characterisation of the instruction in the target technology. In the context of the work

described in this thesis, that technology is the Xilinx Virtex [6] family of FPGAs.

The time spent in the first stage of the design flow is now rewarded with the opportunity to

automatically optimise the graphs (and ultimately the circuit), in ways which aim to meet the

user’s requirements regarding its physical characteristics. This is achieved in the second stage

of synthesis, under the direction of the optimisation algorithm which applies individual

Scheduling, Allocation and Binding Transforms to selected nodes of the control and data-path

graphs.

The potential effect of a transform is estimated using a number of design metrics. These

include: area (Xilinx CLB [6] slices), delay (critical path) and clock period (execution time of

longest control node). A cost function is used to quantify whether the changes to each of the

metrics combine to bring the circuit’s structure closer to the user’s objectives (in which case it

is accepted and performed), or further away, when the nature of the optimisation algorithm

determines whether to conditionally accept circuit degradation (e.g. Simulated Annealing [7])

or reject it outright, as would be the case with ‘Greedy’ [17] algorithms.

Upon completion of the optimisation stage, the purpose of the third stage is to generate the

RTL VHDL description of the optimised circuit. The cell library is consulted to retrieve the

VHDL description for each of the control and data-path nodes. The topology of their graphs

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 68

(modelled within the data structures), acts to guide how the cell descriptions are related in the

structural description.

The control graph is described as a One-Hot state machine, although its final realisation is

determined during RTL and logic synthesis. During each control state, the activation of its

associated data-path components is described using boolean equations which are based upon

the conditional control signals modelled in the data-structures. These structures also direct

how the input and outputs of all data-path units are connected. For example, multiple inputs to

a data-path node indicate that it is shared by more than one operator, thus implying the

insertion of a multiplexor.

In the context of the work presented in this thesis, the remaining stages of circuit synthesis

employ the use of third party commercial tools. Simplify Pro [82] is used during the fourth

stage, to perform RTL and Logic synthesis. State Machine Encoding, Logic Optimisation and

Technology Mapping are all tailored to the Xilinx Virtex [6] family of FPGAs.

As shown in Figure 3.5, there are a number of junctures in the design flow where the circuit

description may be simulated to verify its functional correctness and others, where increasing

levels of structural detail maybe used to verify the timing of its physical characteristics.

Simulation of the behavioural VHDL description is performed to confirm that the algorithm

captures the functionality of the specification. In the absence of any structural or timing detail,

simulation is very fast i.e. in the order of seconds. Once its behaviour is assured, it can act as a

reference for the functional simulation of the circuit at each stage of circuit description.

The structural VHDL description is simulated with reference to a clock cycle and at this stage

is generally technology independent and therefore relatively fast (measured in minutes).

Simulation at this level provides a means of verifying that the generated Finite State Machine

and Data-Paths preserve the behaviour of the algorithm. In addition, it returns an initial

characterisation of the circuit i.e. an early identification of the Critical Path(s).

Simulation during the last stage of the design flow runs parallel to processes which add

increasing levels of implementation detail. For instance, the circuit netlist generated during

RTL synthesis can be converted to an equivalent VHDL description in terms of the device

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 69

primitives, using unit delay models from the UniSim [50] library. The motivation in doing so

would be to verify that the technology mapping and logic optimisation did not alter the

behaviour of the circuit.

Similarly, after each stage of vendor and device specific implementation (Technology

Mapping, Placement and Routing), a separate VHDL model could be generated to verify the

behavioural correctness of the circuit. It would consist of device primitives taken from the

SimPrim [50] Library and would provide a delay characterisation of the internal architecture

of the target FPGA. The primitives represent the worst case signal propagation delays through

the programmable elements, such as routing, logic block and IO block resources. A

simulation at this level of detail is time consuming (many hours) and often necessary for fine

tuning the performance of the circuit layout. Simulation may reveal that fine tuning is not

sufficient and a return to an earlier stage is required to meet the design constraints; it can be

an iterative process!

In the context of this thesis, the Xilinx Integrated System Environment (ISE 9.2i) [50] is

utilised in the implementation of all practical work. Circuit simulation, through the use of

ModelSim SE 6.2 [94] is performed at each of the levels of representation previously

described.

3.3 MOODS and other Behavioural Synthesis Tools

In practice, Behavioural Synthesis encompasses many distinct transformations to a circuit’s

representation. As previously described, these transformations occur during stages of

synthesis which are common to all behavioural synthesis tools; what differentiates them is

how they are performed.

In this section of the chapter, we will briefly contrast the synthesis approach taken in MOODS

with those of other academic and commercial HLS tools.

3.3.1 Specification Languages

There are at least three important circuit characteristics that any HLS language ought to

express: the parallelism, timing and interfacing of the circuit’s specification.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 70

For Hardware Description Languages, such as VHDL, parallelism and timing are inherent to

the way the circuit is expected to behave when simulated: all parallel processes update their

signals at the same time – a property that is measured only during wait statements.

In RTL synthesis, this would translate into sequential logic which is updated in lockstep to a

global clock – since processes are implicitly synchronised in the simulation model.

In MOODS behavioural synthesis, process synchronisation is explicit and left to the user, who

is required to view a circuit specification in terms of independent but potentially

Communicating Sequential Processes [95]. This approach relies upon MOODS to

automatically determine the level of instruction-level parallelism within a process and

requires the user to manually add a way of synchronising them, should they require data

exchange.

As described in the previous section, software languages based on C have contributed to the

renewed interest in HLS. Parallelism and Timing are not characteristics of sequential

programming languages; these aspects have been added to the language through library

extensions, e.g. the C++ class libraries required for SystemC [96] or explicitly through new

syntax, as is the case in Handel-C [97].

The SystemC classes provide the constructs necessary to model hardware concurrency, in a

way not dissimilar to VHDL – ‘Sc_threads’ in place of VHDL ‘Processes’; unlike VHDL,

SystemC is able to use an object-oriented approach to programming through the C++

language.

Handel-C is a proprietary language used by the DK design Suite [97] HLS tool. It is a subset

of C which borrows much syntax from the OCCAM [98] language. As such it requires that

the user explicitly declare in the source code all parallel processes and the channels with

which they communicate.

Of particular interest is the way the tool assigns each statement to a control state – in exactly

the order coded by the user. This is in contrast to MOODS and other HLS tools, which

perform an out-of-order assignment of instructions to control states, in an order intended to

meet a delay target. An example of an ‘un-timed’ approach was given in section 3.1.1, in the

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 71

behavioural description of the BCH encoder. In the absence of any specific timing, it was

MOODS that decided how many cycles the equivalent operations were going to take: these

ranged from one cycle to twenty three cycles during design space exploration.

In practice, there are likely to be other sub-systems in the circuit specification e.g. where

there’s an encoder, there must also be a decoder! How the sub-systems communicate with one

another will be determined by some sort of input/output protocol, hence there will inevitably

be sections of code that must be ‘timed’ to specific cycles.

The cycle-accurate approach taken in Handle-C is an extreme way of ensuring that the

generated hardware does not violate the required timing. A different but still implicit

approach is to use the language constructs, such as the ‘wait()’ statement in VHDL or

SystemC to create hard clock boundaries. In MOODS, the compiler generates a ‘protect’

instruction in the intermediate language used to represent the VHDL. The protection

suggested by its name is to prevent instructions on either side of it from being assigned to the

same clock cycle. A similar approach is taken by Agility Compiler HLS [89], where

instructions between a SystemC ‘wait()’ also take one clock cycle.

The disadvantage in allowing the user to define hard clock boundaries is that they become an

impenetrable barrier to non-input/output instructions on either side of them. A more

discriminatory approach is to allow the user to annotate the section of ‘timed’ code through

compiler directives or pragmas. This is the approach taken by the Cynthesizer [89] HLS tool,

using ‘pragma: protocol’ labels and by enclosing the affected SystemC code in C++ block

braces‘{}’. As described in [99], a user-guided approach enables the compiler to parallelise

‘timed’ and ‘un-timed’ code sections, in ways it would not be able to do solely through

analysis of the instruction dependencies.

In addition to expressing the parallelism and timing for sub-systems of a circuit specification,

an HLS language must also model how they are to be connected together. In VHDL and

consequently in MOODS, the interfaces of ‘Entities’ are connected through signals; this fixes

how communication will occur in lower levels of abstraction.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 72

The use of System level languages in HLS, such as SystemC [96] enable the user to describe

the connections between the sub-systems during design entry, without describing how they

might be implemented.

SystemC includes a Transaction-Level Modelling standard (TLM-2.0 [96]); when used in

conjunction with SystemC class interfaces, it provides the user with a means of coding class

methods for accessing communication ‘Channels’ that interface with SystemC modules.

The Agility Compiler [89] exemplifies this approach in HLS because it initially allows the

user to consider the characteristics of the data sent through a SystemC Channel, without

specifying the exact protocol used in its transfer; it might be synchronous (Bus),

asynchronous (FIFO) or non-existent (point to point signals wires). Through the use of TLM,

interfaces between sub-systems remain abstract in the behavioural description, without

excluding them from design space exploration at lower levels in the design flow.

3.3.2 Compilation and Optimisation

The reader will recall how the design space for the BCH Encoder was created through the use

of the ‘--MOODS unroll’ directive: placing it in the body of loop required the VHDL

compiler to duplicate its instructions for each bit of the message vector being encoded. As a

consequence, MOODS was able to vary the number of loop instantiations used in the

architecture of the encoder, with respect to the designer’s constraints on its size and execution

time.

All users of HLS tools require them to reproduce some of the architectural techniques (loop

unrolling being one of them) which are frequently used during design space exploration at the

Register Transfer Level. It is at the Compilation stage that the user can influence the size of

the design space through the use of ‘Synthesis Directives’. The motivation behind this

approach is to keep the code architecture-independent (behavioural); enabling the user to

experiment with different architectural techniques without having to actually implement them

in the coding.

Examples of common compiler directives are exemplified in Vivado [100] (originally

AutoPilot) HLS. These include the overlapping of loop iterations (‘set_directive_pipeline’)

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 73

[100] and control over the number of memory ports available through Memory Partitioning

‘set_directive_array_partition’ [100].

Streaming data-flow is an architectural technique which previously warranted an extended

language (streams-C [101]) but is now available as an architectural directive in a general-

purpose tool such as Vivado. A stream is a flow of data that is processed or stored

continuously: a typical use would be in the image processing of pixels by a Sobel filter.

In MOODS, the ‘--MOODS ram’ directive is used to treat an array variable as a memory

block, accessible through a random address. In Vivado, a ‘set_directive_stream’ would

instruct the compiler to access the same array variable using sequential addresses in the form

of a ‘FIFO’ memory.

The disadvantage with abstracting away implementation techniques, as in the case of the

‘stream’ directive, is the potential for user mistakes when working with behavioural and

structural levels of abstraction: an array variable might be used in different ways in the

behavioural specification; implementing it as a ‘FIFO’ memory in hardware could improve its

performance in one aspect of the design, but unintentionally change the overall behaviour,

should another aspect require a random use of the array!

Apart from using synthesis directives, another potential for automatically influencing the

architecture is through the compilation passes themselves. MOODS has been modified to

incorporate many new synthesis capabilities over the decades e.g. Multi-FPGA Partitioning

[102]. One aspect which has not been fully explored is the optimisation passes of the

Behavioural Compiler. An advantage in using a software language is the input from the

software community and the inheritance of ‘state of the art’ compiler techniques. A popular

example of an open source compiler is LLVM [103].

Examples of current HLS tools that use open source compilers are: Vivado [100] (LLVM),

LegUp [90] (LLVM), GAUT [104], (GCC), BAMBU [105] (GCC). In [106], the authors

evaluated 56 distinct LLVM compiler passes and experimented with varying the order in

which they were applied to C programs taken from the CHStone [107] HLS benchmark

programs. The results showed that through careful selection, a subset of passes resulted in a

16% increase in performance of the hardware generated using the LegUp HLS tool.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 74

The stage after compilation is the common place for optimisation to occur – in the form of a

graph representation of the compiled behavioural description, to which scheduling, allocation

and binding techniques [79] are applied; under the guidance of an optimisation method.

The choice of graph representation can have an influence on the choice of optimisation

method: the combined Control and Data-flow CDFG model [108] is used by constructive

approaches for circuit optimisation without assuming an initial solution, such as in List

Scheduling; the Extended Timed Petri Net ETPN model [108,109] is suited to an iterative

optimisation approach, which is repeatedly applied to an existing solution, as used in

Simulated Annealing [7]. The latter graph model is used in MOODS [5] and CAMAD [110],

when compared to other HLS tools such as LegUp [90], they offer a clear distinction in the

approach taken to optimisation.

The constructive approach to optimisation is popular in many HLS tools: CHIPPE [111],

MAHA [112] and HAL [64] are among the early advocates for list-based scheduling

approaches. More recent tools, such as LegUP, BAMBU and GAUT continue the constructive

approach to optimisation. The advantage that these tools gain in doing so is the expectation of

producing a solution in polynomial-time − this is not the case in an iterative approach; the

disadvantage is that at any stage other than the last, the solution is always a partial one; in the

case of list scheduling, this can limit it to relying upon a local and restricted view of the

problem being solved.

Through an iterative approach, MOODS is able to take a global approach to optimisation

because the instructions of the intermediate representation (ICODE) are already individually

scheduled, allocated and bound in the control and data-path graphs prior to their optimisation;

albeit in a manner which is not likely to meet any user constraints imposed on the initial

structure which they embody.

Optimisation in MOODS and CAMAD takes place through graph transforms that individually

aim to improve at least a single characteristic of the structure, such as minimising the critical

path by merging pairs of control graph nodes. Unlike CAMAD, a set of transforms are also

able to ‘undo’ the application of others: splitting a control state that had previously been

merged, may take the exploration of the ‘design space’ in a new direction.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 75

Through multiple transforms, different aspects of the structure may be targeted during the

same synthesis session. Other HLS tools, such as the Cocentric SystemC Compiler [113]

(based upon the Synopsys Behavioral Compiler [114]), CADDY [115] and BAMBU [104]

perform data-path allocation as a separate step to instruction scheduling. Isolating these

essential stages from one another makes it convenient to experiment with different heuristics.

However, it does exclude the subtle inter-dependence between them, a characteristic that is

exploited by the multi-objective approach taken in MOODS.

3.4 MOODS and Run-time Reconfiguration

In this penultimate section of the chapter, we describe only those aspects of MOODS which

were essential in enabling the temporal and spatial partitioning of subroutines using run-time

reconfigurable resources. A more comprehensive account of all aspects of MOODS can be

found in [4,5], where MOODS itself is the subject of the research.

Figure 3.7 depicts key components in the MOODS Behavioural Synthesis, arranged to

emphasise their involvement in the change of abstraction that is inherent when synthesising

reconfigurable logic. Except for the library descriptions of structural components, all other

forms of circuit representation in MOODS originate from the user-supplied behavioural

specification; this is arguably the most influential stage in high-level synthesis and therefore

the first stage of the figure to describe.

3.4.1 Behavioural Description

At this level of abstraction, the goal of synthesising reconfigurable logic is treated no

differently from the way in which a user would code a behavioural specification. As the

reader will recall from the earlier discussion on the role of languages in HLS (section 3.3.1),

the style of coding that is synthesisable in MOODS is formulated around user-defined coarse-

grain parallelism using VHDL ‘Processes’, within which the tool is responsible for

determining all fine-grain (instruction-level) parallelism. Figure 3.8 exemplifies how

concurrent and sequential aspects of a behavioural VHDL description can be partitioned

across functional boundaries.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 76

ICODE

VHDL subroutine
library

Temporal
Partitioning

Partial
Reconfiguration

(Chapter6)

User optimisation
objectives/directives

Behavioural VHDL
Description

VHDL Compiler/
assembler

Structural netlister

(Chapter 4)

RTR
module library

parameters
(Chapter 4,
Chapter 6)

ICODE
MODULES

Control and
data path
graphs

Optimised
Control and
Data path

graphs

RTL Resource
partitions

Device
Bit-

streams

FPGA

FloorPlan

Figure 3.7: MOODS synthesis extended for temporal and spatial partitioning.

-- Behavioural partitioning of sequential and parallel VHDL constructs featured in a communication system
library ieee; use ieee.std_logic_1164.all; use work.bch.all; -- encoder/decoder subprogram library
entity communicationSystem is
 port(messageIn: in std_logic_vector(6 downto 0); messageOut: out std_logic_vector(6 downto 0));
end entity;

architecture behaviour of communicationSystem is
 -- interprocess communication
 signal codeWord: std_logic_vector(14 downto 0); signal codeScheme: std_logic; signal code_ready: std_logic:='0'; signal code_received: std_logic:='0';
-- compiler-defined parallelism during synthesis

end architecture behaviour;

-- user-defined parallelism
receiver: process
 -- compiler-defined parallelism during synthesis
 begin
 variable scheme: std_logic; variable; variable encodedMessage: std_logic_vector(14 downto 0);
 loop
 -- wait for the transmitter process to generate a codeword
 while code_ready = code_received loop
 wait for 10 ns;
 end loop;
 -- read codeWord and coding scheme from transmitter process
 encodedMessage:=codeWord; scheme:=codeScheme;
 -- sequential (subprogram) Behavioural Partitioning
 if scheme='0' then
 -- decode codeWord using encoder directed scheme
 ViterbiDecoder(15,11,16,19,encodedMessage,decodedMessage);
 else
 ViterbiDecoder(15,7,465,256,encodedMessage,decodedMessage);
 end if;
 -- write message to output port
 messageOut<=decodedMessage;
 -- request another codeword from transmitter process
 code_received<=not code_received;
 wait for 10 ns;
 end loop;
end process;

-- user-defined parallelism
transmitter: process
 -- compiler-defined parallelism during synthesis
 begin
 variable scheme: std_logic; variable; variable encodedMessage: std_logic_vector(14 downto 0);
 variable messageFormed: std_logic_vector(6 downto 0);
 loop
 -- wait for the receiver to decode the last codeword
 while code_ready / = code_received loop
 wait for 10 ns;
 end loop;
 -- sequential (subprogram) Behavioural Partitioning
 if scheme='0' then
 -- encode message read from input port
 bchEncoder(15,11,16,19,messageFormed,encodedMessage);
 else
 bchEncoder(15,7,465,256,messageFormed,encodedMessage);
 end if;
 -- write codeWord and coding scheme to receiver process
 codeWord<=encodedMessage; codeScheme<=scheme;
 -- transmit another codeWord to receiver process
 code_ready<=not code_ready;
 wait for 10 ns;
 end loop;
end process;

-- Library Subroutine
--MOODS Temporal_Partition
procedure bchEncoder (codeLength: in integer range 0 to 15; messageLength: in integer range 0 to 11;

 numStates : in integer range 0 to 465; generator: in integer range 0 to 256;
 messageEncoded : out range integer range);

begin …/... end bchEncoder

-- Library Subroutine
-- MOODS Temporal_Partition
procedure viterbiDecoder (codeLength: in integer range 0 to 15; messageLength: in integer range 0 to 11;

 numStates : in integer range 0 to 465; generator: in integer range 0 to 256;
 messageEncoded : out range integer range);

begin …/... end viterbiDecoder

Figure 3.8: Sequential and parallel VHDL amenable to behavioural partitioning.

D
. E

sr
af

ili
-G

er
de

h,
 2

01
6

C
ha

pt
er

 3
: B

eh
av

io
ur

al
 S

yn
th

es
is

 7

7

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 78

The behavioural specification describes a rudimentary communication system which relies

upon error correction to recover the number of corrupted messages sent through a ‘noisy’

channel. As illustrated in the figure, its VHDL description can be divided into two coarse-

grain parallel transmitter and receiver ‘Processes’, each of which are further partitioned into

sequential encoder and decoder library subroutines.

On close inspection of each process description, a number of salient points are exemplified

which are essential to the approach taken to partitioning and synthesising at a higher level of

abstraction. The first is the requirement for user-described synchronisation between the

transmitter and receiver processes: as the reader will recall, MOODS does not rely upon

implicit synchronisation of processes; nor does it restrict the scheduling of instruction-level

operations by fixing specific cycles to update process signals. This is shown in each process

description: synchronisation exchanges a message and coding level between the transmitter

and receiver through a data-path ‘Semaphore’, in the form of the ‘data_ready’ and

‘data_received’ signals.

The two-phase or ‘toggle’ semaphore ensures an orderly encoding and decoding of the

codewords: the receiver waits for a change in the state of the semaphore, signalling the

availability of the codeword for decoding; similarly, the transmitter does not send another

codeword until the receiver indicates its readiness to process it, through a change in state of

the semaphore.

Another use of the data-path semaphore is to enable the processes which use them to be

implemented in different clock domains [102]. Multiple-clock domains have particular

relevance in the synthesised architecture described in Chapter 5, ensuring that the

reconfiguration of an FPGA occurs at the maximum the device can achieve − decoupling the

‘Reconfiguration Controller’ from the clock domain of the user- specified design.

Continuing the examination of each process description, what immediately becomes apparent

is that the behaviour of each is implemented through a corresponding ‘bchEncoder’ or

‘viterbiDecoder’ subroutine, the ‘interface headers’ of which are shown below the process

concerned. In this way, the coding scheme can be varied by calling each subroutine with the

parameters relevant to the BCH code used. How the coding scheme is decided is not shown

here; however the reader is referred to Chapter 7, where details concerning the relationship

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 79

between coding scheme and channel error rate are described as part of the case-study for run-

time reconfiguration.

The behavioural style of VHDL compiled by MOODS cannot synthesize a process as purely

combinational logic; there is an implicit clock signal and time does pass within a process – the

program statements are scheduled over at least one clock cycle. Unlike its RTL equivalent,

the finite state machine inherent to a behavioural ‘process’ goes some way in mirroring the

sequential nature of the software paradigm; the advantage from a hardware perspective is that

the paradigm does not apply to independent operations, these are likely to be scheduled to

execute in parallel. Leaving the scheduling to MOODS, the style of behavioural coding

exemplified by the figure is reduced to requiring the user to de-construct a specification into a

set of communicating sequential processes which when required could be coded to

synchronise by the user.

The motivation behind separating the encoding and decoding processes as VHDL

‘Procedures’ is clear: a subset of the statements within a process may be related by a common

purpose and warrant their separation through the use of VHDL ‘Procedures’ and ‘Functions’;

in doing so, the user now imposes a behavioural partitioning [116] of the specification.

The advantage gained by implementing a part of the behaviour of each process as a subroutine

is due to the convenience of being able to test it, place it in a library and then re-use it in the

present or future project; subroutines simplify the coding of a specification for the user. That

said, subroutines are unlikely to have an equivalent representation at a lower level of

abstraction: one disadvantage in preserving them is where their execution does not occur on a

given path through the circuit, unlike the subroutines shown in both the Transmitter and

Receiver processes. Regardless of how successfully optimisation is applied to the

corresponding circuit structure, by its very definition, an idle subroutine is likely to waste

several operations; had the subroutines been in-lined, the increased scope for optimising their

number across former subroutine boundaries would likely act to reduce the prevalence of idle

data-path units.

At its simplest, a computer hardware equivalent of the communication system would execute

only those subroutines on the path actually taken during the execution of the design. This

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 80

form of ‘Late-Binding’ of resources is not presently available to MOODS and as a

consequence the software approach available in HLS is limited to designing the hardware.

Through the introduction of reconfigurable resources and the partitioning of a specification

across subroutine boundaries, the software analogy is extended to include the late-binding of

subroutines at the physical-level of an FPGA; crucially, the partitioning occurs during

compile-time as part of the design space exploration.

There may be occasion when the late-binding of a subroutine is intrinsic to the design

specification. The case-study of the reconfigurable Viterbi decoder described in Chapter 7 is

one such example: through a late-binding of the decoder to a set of reconfigurable resources,

circuits with a similar resource consumption but different performance characteristics are used

to adapt to the noise conditions of a communications channel. At other times, the objective of

partitioning might simply be to reduce the overall use of logic resources, without regard to

how a specification is partitioned; as long as the behaviour is indistinguishable from one that

is not!

In section 3.3.2, synthesis directives were described as the way the user of a HLS tool can

experiment with architectural techniques; it therefore made sense to provide the user and

compiler with a ‘--MOODS Temporal Partition’ directive. Placing the partition directive in

the body of a procedure, allows the user to mark the subroutine as a potential candidate for

temporal and spatial partitioning: there is no presumption of reconfiguration; that is either

determined manually by the user applying the graph transformations at the command prompt

or automatically during the optimisation stage; in either case, the request to partition the

procedure is passed on through to the next stage of representation: the ICODE intermediate

language.

3.4.2 ICODE Description

With reference to Figure 3.7 the directive issued to the Compiler will have resulted in an

intermediate ICODE representation which preserves certain user-guided aspects: a subroutine

execution hierarchy will be represented (absence of the ‘--MOODS inline’ directive) and the

‘--MOODS Temporal Partition’ is translated into an ICODE assembly directive of the same

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 81

name. In doing so, it ensures that the associated data-structures are marked for the actual

partitioning by the ‘Temporal Binding’ transform in a later stage of synthesis. As in the

compilation stage, there no specific architectural detail, it is a matter of representing the

necessary relationships between instruction behaviour.

Recall from the MOODS design flow that the ICODE (Intermediate Code) representation of a

circuit is the source for the construction of the initial control and data-path graphs. As such, it

is used to describe the behaviour of the circuit at a level of detail which embodies the

function, execution order and data connectivity among its constituent operations. In a way not

dissimilar to that of a microprocessor assembly language, ICODE provides a target

specification for any high level language that can be used to model hardware. The

independence which results from the generation of circuit structure indirectly via the

intermediate code and not from a specific high level language, provides a consistent interface

to the MOODS core functions. This frees the user from describing the circuit behaviour using

a language whose lexicon is at a higher level of abstraction e.g. VHDL.

Figure 3.9 depicts the ICODE description that would be generated by the VHDL compiler

following a parse of the behavioural description of the communication system. All circuit

behaviour in VHDL is ultimately encapsulated by a description of the ‘Architecture’; the

ICODE equivalent of the top level architecture is the ‘Program Module’. In representing the

behaviour of the architecture, it will also initiate the execution of other ICODE modules, each

of which is a translation of a VHDL subroutine, as is the case for the ‘bchEncoder’ and

‘viterbiDecoder’ modules depicted.

The external interface of all ICODE Modules is specified in the parameter list, derived from

the ‘Entity’ declaration of the VHDL port description. Depending upon the context in which

they are used, VHDL signals and variables are translated into ICODE variables which may be

ICODE ‘ports’ or ‘registers’; with reference to Figure 3.9, these can be clearly identified in

the first few lines of each ICODE Module.

The syntax of any ICODE instruction is of the general form:

Label: Operation <Inputs>, <Outputs> <Activation list> e.g.

 .L000013 PROTECT 1e-010 ACT L000002

-- ICODE module equivalent of the behavioural communciation system description.
PROGRAM communicationSystem messageIn, messageOut

INPORT messageIn [6:0] OUTPORT messageOut [6:0] REGISTER codeWord [14:0] REGISTER codeScheme [0:0] REGISTER messageFormed [10:0] REGISTER scheme_0 [0:0] REGISTER scheme_1 [0:0]
REGISTER messageEncoded_0 [10:0] REGISTER messageEncoded_1 [10:0] REGISTER code_ready [0:0] INIT #%0 REGISTER code_received [0:0] INIT #%0 REGISTER tmp0 [0:0] REGISTER tmp1 [0:0]
REGISTER tmp2 [0:0] REGISTER tmp3 [0:0]

.L000001 NOOP ACTT L000002 ACTF L000014

.L000027 ENDMODULE
end architecture behaviour;

.L000014 ueq code_ready, code_received tmp3

.L000015 IF tmp3 ACCT L000016 ACTF L000017

.L000016 PROTECT 1e-010 ACT L000014

.L000017 MOVE codeWord, messageEncoded_1

.L000018 MOVE codeScheme, scheme_1

.L000019 ueq scheme_1 #%0, tmp4

.L000020 IF tmp4 ACTT L000021 ACTF L000022

.L000021 MODULEAP viterbiDecoder #%1111,#%1011,#%10000,#%10011,messageEncoded_1,
messageDecoded ACT L000023

.L000022 MODULEAP viterbiDecoder #%1111,#%1011,#%10000,#%10011,messageEncoded_1,
messageDecoded

.L000023 MOVE messageDecoded, messageOut

.L000024 unot code_received, tmp5

.L000025 unot tmp5, code_received

.L000026 PROTECT 1e-010 ACT L000014

.L000002 uneq code_ready, code_received tmp0

.L000003 IF tmp0 ACCT L000004 ACTF L000005

.L000004 PROTECT 1e-010 ACT L000003

.L000005 uneq scheme_0, #%0, tmp1

.L000006 IF tmp1 ACCT L000007 ACTF L000008

.L000007 MODULEAP bchEncoder #%1111,#%1011,#%10000,%#10011,messageFormed,
 encodedMessage ACT L000009
.L000008 MODULEAP bchEncoder #%1111,#%0111,#%111010001,%#100000000,messageFormed,
 encodedMessage
.L000009 MOVE encodedMessage_0, codeWord
.L000010 MOVE scheme_0, codeScheme
.L000011 unot code_ready, tmp2
.L000012 MOVE tmp2, code_ready
.L000013 PROTECT 1e-010 ACT L000002

MODULE bchEncoder codeLength, messageLength, numStates, generator, message, encodedMessage

TEMPORAL_PARTITION

INPORT codeLength [3:0] OUTPORT encodedMessage [14:0] REGISTER tmp0 REGISTER tmp8

.L000027 MOVE codeLength, tmp0
 …/...
.L000099 MOVE tmp8,encodedMessage
.L000100 ENDMODULE

MODULE viterbiDecoder codeLength, messageLength, numStates, generator, message, decodedMessage

TEMPORAL_PARTITION

INPORT codeLength [3:0] OUTPORT encodedMessage [14:0] REGISTER tmp0 REGISTER tmp10

.L000101 MOVE codeLength, tmp0
 …/...
.L000199 MOVE tmp10,decodedMessage
.L000200 ENDMODULE

Figure 3.9: ICODE Module encapsulation of parallel and sequential VHDL constructs.

D
. E

sr
af

ili
-G

er
de

h,
 2

01
6

C
ha

pt
er

 3
: B

eh
av

io
ur

al
 S

yn
th

es
is

 8

2

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 83

In conjunction with the activation list, the labelling of each instruction explicitly states the

order of its execution, in the context of the other instructions. The sequencing of the

instructions is used at the next stage of abstraction to construct an initial control and data-path

graph to which several types of scheduling, allocation and binding transformations are

applied. The reader is referred to Appendix A, where the relationship between the ICODE

instructions and the graph representation is described in greater detail.

In the context of temporal partitioning, the relevant aspects of ICODE are to be found in its

representation of the parallel VHDL processes and the hierarchical nature of subroutine

execution.

On inspection of the ‘Program’ module in Figure 3.9, the ICODE instructions are divided into

two groups: each group is the ICODE equivalent of the ‘Transmitter’ and ‘Receiver’

processes described in the VHDL specification. By describing the circuits through two

individual processes, the resulting ICODE is also expected to execute concurrently. In

practice, it is realised by the first instruction (‘NOOP’ − instruction .L000002) and has no

other purpose than activating the first instruction of the ICODE sequences translated for a

given process.

The last instruction of each equivalent ICODE process (instructions .L000013 and .L000026)

returns the execution sequence to the beginning of the corresponding process, without either

processes converging; this is as a direct result of using VHDL coarse-grain parallelism:

processes never terminate and therefore never converge.

ICODE and the MOODS internal data-structures do provide support for fine-grain parallelism

through the use of a ‘collect’ instruction. As its name suggests, it may be used to ‘collect’ any

number of fine-grain threads and in doing so enable their convergence. The relevance to

temporal partitioning is through the employment of fine-grain parallelism in modelling partial

reconfiguration: overlapping the segments of each coarse-grain (user-declared process) with a

fine-grain thread enables the cost function routines in MOODS to incorporate partial

reconfiguration delays as part of its data-path delay metric. Furthermore, the cost function is

able to compare the execution delay of a sequence of operations with the parallel delay due to

reconfiguration; the larger of the two will define the delay of the parallel paths prior to their

convergence. During optimisation, the scheduling transforms attempt to hide a

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 84

reconfiguration delay by determining which segment of a user-defined thread is capable of

dominating the delay and schedule a partial reconfiguration accordingly.

With reference to Figure 3.9, the execution of the ‘bchEncoder’ and ‘viterbiDecoder’ modules

is achieved through the ICODE ‘MODULEAP’ instructions (.L000007/8, .L000021/22) from

within the program module. Unlike the other instructions, the absence of an activation list is

not interpreted by MOODS as an activation of the next sequential instruction but as a call to

the module named by the instruction. The module responds by activating its first instruction,

which is to read the first ‘INPORT’ parameter; in this way, control is passed from the calling

module to the called.

Input arguments to sub-modules are passed by reference, that is, no intermediate variable is

used – the arguments are inserted directly into the ‘MODULEAP’ instruction. As no other

subroutine is permitted parallel execution in the same thread, the instruction acts to halt its

execution until an ‘ENDMODULE’ instruction is encountered in the called module; it is only

reached once the result of the module’s activation is written to the ‘OUTPORT’, in effect a

direct writing of the result to the associated register. In this way, not only can the ICODE

represent the calling of a VHDL procedure or function within the body of the architecture, it

can also describe a hierarchy of nested ICODE module calls – which occur when a procedure

or function calls another.

As described in the Appendix, the ICODE instructions are used by the Technology Library to

attribute delay and area properties to the control and data-path graphs representing the circuit

structure. Although temporal partitioning is not carried out during the ICODE stage, it is the

next stage of abstraction. To achieve this, the ICODE database was updated with new

instructions and an external data-type: ‘resourceWrite’, ‘resourceRead’, ‘resourceSync’ and

‘ext_var’, respectively.

The ‘resourceWrite/Read’ instructions encapsulate the partial reconfiguration of the FPGA

resources at the device level. This typically requires several thousands of device configuration

cycles and is likely to occur in a different clock domain to the user’s design. Synchronisation

between a user process and the configuration of the device is provided by ‘resourceSync’

instruction. The configuration data is stored externally to the FPGA in RAM or ROM

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 85

depending upon the method used to save state between context switches of a reconfigurable

resource.

The ‘ext_var’ type ensures that the configuration memory is automatically represented at the

graph and RTL level, where it is accessed through the port of the synthesised design during

device reconfiguration. As required by the cost function during circuit characterisation, all the

partitioning-related instructions have equivalent cells to characterise them in the graphs; in the

next stage of circuit representation they will be used to influence how the partitioning is

carried out.

3.4.3 Circuit Optimisation

The motivation for using a high-level synthesis tool like MOODS is the automated means in

which it can examine the consequences of a multitude of different ways to schedule and

implement the instructions/operators that constitute a circuit description. When constraints are

placed upon the search, such as the number of resources available or a minimum length of the

critical path, the scheduling, allocation and binding of the instructions becomes an

optimisation problem.

Unfortunately, these three main tasks of High-Level Synthesis, like many other VLSI CAD

problems (partitioning, floorplanning, circuit placement and routing) do not have to date

specific algorithms to find their optimal solution in polynomial-time (NP-complete). Until the

day arrives when an optimal solution is found (if it can ever be), there exist many heuristic or

approximate methods for generating a good solution for a given optimisation run, none of

which are guaranteed to be optimal.

Before high-level synthesis techniques are applied, there must be some way of quantifying the

characteristics of a given circuit structure. This is achieved through a number of circuit

‘metrics’, principally but not limited to: circuit ‘area’ (e.g. the number of FPGA logic blocks

e.g. Xilinx LUTS [6]), critical path ‘delay’ (ns) and ‘clock period’ (ns). In MOODS, these

metrics are the primary means of measuring whether or not optimisation is transforming the

circuit structure closer to the user’s requirements.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 86

Unless a circuit is optimised for one objective, which it seldom is, each individual metric

provides a one dimensional measure of the quality of a circuit’s structure. The difficulty in

circuit synthesis and optimisation in general, is that an improvement in one metric is usually

to the detriment of another. A simple example describes a classic area versus delay ‘trade-off’

in circuit design: The inequality instructions ‘uneq’ (.L000002 and .L000005) could be

allocated to share the same data-path unit provided they are scheduled to execute during

separate control states. This would represent a minimal area for the two instructions.

Alternatively, to achieve a minimal number of control states, the instructions could be

scheduled to execute during the same state. Hence there is a trade-off between reducing the

area of a circuit through sharing the functional units, at the expense of multiple control states

and ultimately a greater circuit delay.

A cost function is used by an optimisation algorithm to quantify just such a multi-dimensional

trade-off. Moreover, it can be used to compare metrics which are often conflicting and return

a single figure that provides a net measure of the ‘quality’ of a given circuit configuration.

The cost function in MOODS takes the form:

𝑐𝑜𝑠𝑡(𝑐𝑖𝑟𝑐𝑢𝑖𝑡) = 𝑐1𝑥 𝑎𝑟𝑒𝑎 + 𝑐2𝑥 𝑑𝑒𝑙𝑎𝑦 + 𝑐3𝑥 𝑐𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑

Where:

• 𝑎𝑟𝑒𝑎,𝑑𝑒𝑙𝑎𝑦, 𝑐𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 are the circuit metrics to be optimised,

• 𝑐1, 𝑐2, 𝑐3 are weighted constants (e.g. 1(high), 2(low)) which direct the optimisation

priority of their associated metric.

Through the cost function, the user can specify the metrics to be optimised and the order in

which this takes place. As one would expect, the optimisation of a high priority metric takes

precedence over that of all lower priority ones. When they are of equal priority, the cost

function returns an average of the metrics.

Of course, a measure of quality is somewhat meaningless without a frame of reference. That

is provided for in MOODS, through the use of a user defined target value which is associated

with each of the metrics and a memory of the quality of the structural configuration prior to

applying the optimisation method. Combining these concepts, each metric m has the

following attributes:

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 87

• mtarget: is the user specified goal for the metric following optimisation.

• minitial: reflects the value of the metric prior to any form of optimisation.

• mpresent: gives the updated value of the metric upon acceptance of an optimisation

move.

• mestimate: returns an approximation of the metric should the move be applied.

Whenever optimisation is applied to the circuit, an improvement or degradation to each metric

is calculated as a change in value, normalised over the initial value. Each metric may have a

different unit of measure and so normalisation enables the cost function to compare each

change in metric with the next, producing one figure representative of the net effect when a

particular form of optimisation applied. This figure may be referred to as a measure of the

“energy” exhibited by the circuit structure. It is not a measure of actual energy, rather it owes

its origin to the Metropolis criterion [117] and algorithm of the same name, used to model the

energy changes required for the equilibrium of molecules at a given temperature. It will be

described in greater detail in due course, as it forms the basis for the Simulated Annealing [7]

algorithm, one of the algorithms employed by MOODS to perform optimisation.

Using the properties associated with each metric, a change in energy ΔE for the metric m is

formulated as:

∆𝐸𝑚 =
𝑚𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑚𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 (3.0)

Therefore, at any point during optimisation, the quality of the circuit structure ‘S’ is given by

the summation of the energy changes to each of the metrics:

𝐶𝑜𝑠𝑡(𝑆) = ∆𝐸𝑎𝑟𝑒𝑎 + ∆𝐸𝑑𝑒𝑙𝑎𝑦+∆𝐸𝑐𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 (3.1)

During optimisation of the circuit, any improvement which brings the structure one step

closer to the user’s objectives is expressed through the cost function, in the form of a negative

value. Complementary to that, a positive value denotes its degradation. A value of zero occurs

when the user’s target value for the current level of priority has been reached i.e.

�𝑚𝑝𝑟𝑒𝑠𝑒𝑛𝑡and 𝑚𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛� ≤ 𝑚𝑡𝑎𝑟𝑔𝑒𝑡, at which point optimisation proceeds with the next

level of priority, until this situation arises again and is responded to in the same manner or all

objectives have been met.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 88

The delay and clock period metrics are a function of the delay characteristics for each of the

data-path units referenced within an ICODE instruction. During their scheduling, multiple

instructions are executed consecutively or concurrently within a single control state. This

requirement greatly influenced the way the infrastructure to facilitate reconfiguration and

communication between partitions was implemented: each new data-path unit was

combinational. For example, the resourceWrite instructions are repeatedly executed for each

configuration cycle at the device-level, as opposed to implementing them as a finite-state

machine outside of the MOODS core. The reader is referred to Chapter 5 for further details of

the device-level infrastructure. In the absence of a user-specified constraint, the clock period

is governed by the greatest chain or individual instruction delay of any control node. When

specified, it is used in place of the maximum control node delay, as the scheduling is always

sensitive to the limit set by the user and is never permitted to exceed it.

The controller is likely to have multiple control paths, any of which may be taken during its

execution. Without knowledge of the likelihood of a given path being taken, it must be

assumed that all have an equal chance of being followed. The Critical Path is the longest of

these paths, so called because without being able to predict when it might be taken, it

represents a worst case measure of the most number of clock cycles that could be taken during

the course of the controller’s execution; it is therefore a principal target for optimisation, with

the aim of minimising the number of cycles required to traverse it. To be accurate, the control

graph must incorporate the multiple iterations of any bounded loops which lie on its path and

be constantly compared to others during optimisation, to ensure it remains designated as

critical. When multiplied by the clock period (the maximum control node delay), it provides a

metric for the overall circuit ‘delay’.

Despite the disadvantage described above, the fact that the full behavioural specification is

known at compile-time is what differentiates reconfigurable logic from a partial-specification

associated with reconfigurable computing. The placement implied in resource binding can be

determined as part of the design-space exploration, where there is considerably more time and

computational resources to explore it than would be available to a completely run-time

approach.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 89

3.4.4 Optimisation Algorithm

Before briefly reviewing the optimisation methods available in MOODS, it is worthwhile

considering the context in which they are applied. For a given design, there maybe any

number of different structures that can be used to realise a given circuit behaviour, each of

which maybe functionally equivalent but have different area and delay characteristics. Unlike

RTL synthesis, a design specification for a behavioural synthesis tool constrains the structure

of the design as little as possible. This enables the synthesis tool to find a structure that best

meets the design constraints.

A structure expressed in terms of area and delay characteristics forms the coordinates of a

point in the design space of alternative structures for a given behaviour. The design space is

an n-dimensional space, where n is the number of different aspects of the design specified by

the designer. Figure 3.10 illustrates a 2-dimensional design space, in terms of area and time.

D
elay

Area

Initial design

Final optimised design

Each point
represents an
alternative
structural design

Unachievable
design region

Optimal Area/Delay
trade-off curve

Ideal achievable
design region

Figure 3.10: A 2-dimensional (area/time) design space.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 90

The cost function is used to quantify the absolute state of the design within the design space.

An optimisation algorithm, such as Simulated Annealing [7], uses the cost function to move

the design through this space, from the initial behavioural specification toward an optimal

implementation which meets the designer’s area and delay objectives. If, for each dimension

in the design space, no other point exists with a better value, a design is considered optimal

and lies on the optimal area/time trade-off curve. The curve separates the space into a set of

achievable and unachievable implementations. In reality, the actual achievable region reflects

a proportion of the points in the achievable region that may be obtained.

Knowing exactly which transforms should be applied and in what order is beyond the scope

of this thesis, like other CAD problems, scheduling and allocation are NP-Complete

problems. However, MOODS in common with other solutions to CAD problems adopts a

number of heuristic approaches namely Simulated Annealing and an ad-hoc (quasi-

exhaustive) method based upon the experience gained from multiple experimentation runs of

the annealing algorithm.

Unlike the approach of many of the traditional synthesis tools, where scheduling and

allocating are constructive, MOODS implements an iterative approach to circuit optimisation.

In the constructive approach, at any point during the execution of the heuristic, the design is

always a partial one – it is literally being constructed. In contrast, an iterative approach starts

with a circuit structure which is fully scheduled, allocated and bound and proceeds to modify

it in order to meet the cost function. MOODS achieves iterative optimisation of a design

through multiple repetitions of the optimisation loop depicted in Figure 3.11.

Transforms are applied to modify the data structure, typically merging control steps in the

control graph and sharing functional units in the data path. The application of the scheduling

and allocation transforms is local, in the sense that they affect small portions of the control

graph and data path. Being independent and leaving the design valid before and after their

application, allows the optimisation algorithm to apply the transforms in an order that will

move the design from an initial naïve implementation, with one control state per instruction,

one register per variable, one functional unit per operation, to an optimised implementation

which is as close as possible to the user objectives.

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 91

A transform is selected and a portion of the design to which it is applied is determined by the

transform and data selection phase. This is dependent upon the optimisation algorithm itself.

Transform & data
selection

Transformation
validity test

Transform
valid ?

Cost function
estimation

Perform
transform

Execute
transform

Perform another
iteration ?

End optimisation

yes

no

no

yes

no

yes

Optimisation
loop

Figure 3.11: MOODS iterative improvement optimisation loop.

In Simulated Annealing, a random transform is applied to a random portion of the design,

however the quasi-exhaustive heuristic algorithm applies the transforms in a fixed order to

every part of the design. During the transform validity test stage, decisions are made as to

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 92

whether or not a transform can be applied. This ensures that the qualifying tests of the

transforms are met, such as mutual exclusivity and instruction dependency.

The transform must leave the behaviour of the design unaltered. A successful validity check

leads to the cost function estimation phase, which simulates the changes made to the design

by the transform and the cost function is used to quantify the impact of the transform on the

area and delay metrics. A decision is made to accept or reject the transform based upon the

average energy change ∆E, in terms of the cost function. The average energy change provides

a means of determining whether the optimisation of a design is being guided towards or away

from its objectives. An acceptance of the transform results in the changes being applied to the

data structure during the execute transform phase.

3.4.5 Simulated Annealing

The objective during the annealing of solids is to create a highly crystalline structure through

an ‘annealing’ process. In the early stage of this process, the material being annealed is heated

to a temperature at which the molecules gain sufficient energy to move around, having

literally broken the chemical bonds that previously fixed their structure. Controlling the rate at

which the material is cooled gradually restricts the movement of the molecules. This cooling

schedule slowly transforms the material from a high energy liquid state to one of minimal

energy, with the molecules taking the form of a crystal lattice.

Simulated Annealing seeks to mimic this process as a general optimisation method, where

achieving a global optimum is analogous to obtaining a good crystal structure. The

correspondence between the physical process and the optimisation algorithm is as follows:

firstly, a particular configuration of the circuit structure (quantified by the cost function) is

analogous to the energy state of the material being annealed. Secondly, the movement of the

molecules as the material is being heated and cooled is simulated in MOODS through the

random selection of the graph transforms and the data and control nodes to apply them to. The

cooling schedule is modelled in the algorithm by requiring the user to specify the start and

end temperatures, as well as the number of transform selections to apply at each temperature.

The increasing restriction of molecular movement with respect to temperature is simulated in

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 93

the way that each transform is accepted or rejected. At the centre of this decision is the

Metropolis Criterion [117].

Transforms which improve the cost function are unconditionally accepted, where as

degrading transforms are accepted on a probabilistic basis with respect to the annealing

temperature. More specifically, the probability P of allowing an inferior solution is given by:

P=𝑒
−△𝐸
𝑇 when: ΔE > 0 (3.5)

Where:

ΔE is the estimated change in energy resulting from the transformation,

T is the annealing temperature.

A uniform random number between 0 and 1 is chosen and if it is below the probability

threshold P, the degrading transform in question is accepted – otherwise it is always rejected.

In this way, the algorithms mimics the freedom experienced by the molecules at higher

temperatures, the accepting and degrading transforms are both likely to be accepted. This

approach enables the algorithm to explore the design space more freely at higher

temperatures, moving more frequently between adjacent minima in the landscape of the

design space.

As the temperature cools, the probability of accepting a degrading transform becomes smaller

and it becomes gradually more difficult to exit the local minima. Upon reaching the end

temperature, the configuration space is frozen, analogous to the physical process reaching

thermodynamic equilibrium and hopefully a global minimum has been found.

The advantage of simulated annealing is its ability to find global minima without requiring

knowledge of the trade-off mechanisms involved, since the process is reliant upon the cost

function and the transform estimators to encapsulate the design space. The application of

many unsuccessful transforms will result in an increase in the optimisation time. It is a

difficult task to determine what the annealing schedule should be and therefore whether the

chosen schedule is a good one.

From the user’s point of view, employing simulated annealing requires a trade-off between

the quality of the structural solution and the time taken to achieve it. If optimisation is only

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 94

required of the area and delay circuit characteristics, the remaining pseudo-exhaustive

heuristics are faster at reaching a solution, albeit one that may not be as optimal.

3.4.6 Structural Circuit Abstraction

As shown in Figure 3.7, the last phase of MOODS behavioural synthesis occurs when the

internal representation is converted into a structural VHDL description, suitable for further

logic optimisation and synthesis by third party tools. To achieve this, the circuit must be

converted from the internal representation embodied by the data structures, to one conforming

to a ‘Structural’- style of VHDL utilising component instantiations.

The first step towards achieving this goal is to insert the multiplexors in the data-path. To date

their existence would have only been implied. This is due to the inefficiency that would result

should the multiplexors be frequently added or removed during the course of optimisation.

The data structures linking the selection of the multiplexor inputs to the relevant ICODE

instructions must also be updated once they are added to the data-path. Additionally, boolean

equations are generated for all control signals, such as those used in selecting the multiplexors

inputs.

Although the ICODE instructions are invaluable in relating behaviour to structure in the data

structures, they would serve no purpose in the final description of the circuit structure.

Instead, they guide the generation of control signals that link the data-path units to those

control nodes in which they are scheduled to execute.

During the final modification to the data structures, bypassed data-path units such as registers

are removed during a general tidying of the data-path. Once this is completed, the data

structures can be consulted in order to generate a one-hot finite stage machine controller and

data-paths using the RTL VHDL descriptions of their appropriate cells.

With regard to temporal partitioning, fine-grain parallelism was allowed to occur during the

optimisation stage from within user-defined process threads, enabling reconfiguration to be

scheduled alongside their execution. Modelling reconfiguration in this way was solely to

quantify the area-reconfiguration trade-off inherent to temporal partitioning. The splitting of a

D. Esrafili-Gerdeh, 2016 Chapter 3: Behavioural Synthesis 95

single user-thread is not modelled in VHDL, therefore all fine-grain parallelism must be

converted to coarse-grain VHDL processes.

In practice, this is achieved at the structural-level of abstraction using data-path semaphores:

each point of thread divergence or convergence is replaced by a data-path semaphore. All

‘ContextSwitch’ instructions which previously represented the reconfiguration delays along

the fine-grain threads are subsequently mapped to a single coarse-grain VHDL process; as a

result, a VHDL compliant ‘Reconfiguration Controller’ is generated, further details regarding

the device-level infrastructure are provided in Chapter 5.

3.5 Summary

The theme of this chapter has been how a circuit specification may be represented at different

levels of abstraction. In Section 3.1, the contrast between a traditional RTL and a HLS

approach was exemplified through a BCH encoder example. It showed how different

architectural solutions can be found by experimenting solely with synthesis directives and

hardware constraints. The section also described the renewed interest in HLS, in part

motivated by the accessibility of FPGAs and the familiarity of software languages.

In Section 3.2, the reader was introduced to a general behavioural synthesis flow featuring

MOODS; it detailed the typical stages of a general flow: from an algorithmic circuit

specification to device-level implementation; the reader will have appreciated the advantage

of synthesising digital circuits at an architecture-free level. Section 3.3 contrasts the approach

taken to optimisation in MOODS with several commercial and academic tools.

In the last section of the chapter, the theme of abstraction was re-visited by considering how it

is used in MOODS to implement a key aspect of the run-time reconfigurable approach: the

partitioning of a design at a high level of abstraction for eventual placement using low-level

reconfigurable resources.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 96

 Chapter 4

Spatial and Temporal Resource
Binding

In earlier chapters, the sharing of circuit resources was described through high-level synthesis

or temporal partitioning and placement techniques. This chapter describes how these

approaches to resource sharing can be combined in MOODS HLS, enabling it to explore the

extended design space formed from the use of reconfigurable resources during architectural

synthesis.

4.1 Resource Binding

The partitioning techniques reviewed in Chapter 2, describe how advantageous it can be to

apply temporal partitioning at a higher-level of abstraction in the design flow; particularly

during high-level synthesis (HLS), where partitioning can benefit from the opportunity to

influence how the circuit architecture is determined. For example, partitioning can occur at a

stage closer to the technology level, such as at the gate-level [36]. However, at this stage in

the design flow, there is no opportunity to decrease the lower bound on the number of parallel

nets that would be cut by the partitioning; a number whose size would have been determined

by the way the functional units connected by the nets were scheduled to execute during HLS.

Having decided that temporal partitioning should occur as part of HLS, determining the form

it should take was influenced by the iterative approach in which MOODS performs circuit

optimisation; that is to say, a tentative scheduling, allocation and cell binding of the control

and data-paths components exists prior to the application of an optimisation heuristic. Other

popular approaches to temporal partitioning, such as List Scheduling [79], are constructive in

nature and until the final stage of their application must rely upon an incomplete measure of

how the circuit resources are used at each stage of the algorithm’s execution.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 97

To operate within the existing iterative approach to optimisation, all control and data-path

components employed in the execution of a single instruction are initially bound to a single

reconfigurable resource. In this way, the partitioning of the circuit proceeds from an upper

bound on the number of reconfigurable resources – a size that is unlikely to satisfy any

resource constraint, to one that does. In order to achieve such a goal, any resource constraint

must be expressed in terms of the logic capacity of a physical device; as should the

characteristics of each reconfigurable resource.

Customising the physical attributes of a reconfigurable resource is made possible through its

binding to one or more technology cells. The reader will recall the purpose of Technology

Binding in HLS: to physically characterise the control and data-path nodes in a way that can

be quantified through cost function metrics; it also conveniently provides a physical context

for incorporating the temporal partitioning of reconfigurable resources into an existing HLS

tool, such as MOODS.

During technology binding, each control or data-path node is bound to a cell – a

parameterised model of the resources needed to realise each allocated instruction in the

chosen technology. For example, in MOODS HLS, it can provide an estimation of the size of

the resource usage for a data-path node by using the bit-widths of ICODE instruction

variables as a parameter to the cell model.

Several alternative library cells might exist for a different physical implementation of the

same instruction behaviour; a cell featuring greater parallelism in its structure will provide a

reduction in latency when executed, but at the expense of using more resources. This trade-off

between execution delay and resource area can be explored by changing the binding of a

node, enumerating the effect of implementing an instruction with faster or smaller circuits.

Figure 4.1 illustrates this point: during HLS, data-path units (dp2-dp5) are allocated identical

instructions (i2-i5), each of which is scheduled to execute during a particular control step

(s2-s5) and in the instruction order shown in the control graph; where applicable, the data-

dependency between a pair of data-path units (dpx,dpy) is labelled dx,y accordingly.

In order to implement the behaviour assigned to it during instruction allocation, every data-

path unit is bound and labelled (bn) to a selected technology cell (cellP or cellS). Ultimately,

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 98

each technology cell will be replaced by the actual technology specific implementation,

shown in the figure as a fixed or static binding (sbn) of a technology cell to a physical resource

(r2-r5).

critical path

s0

s1

s2 s3

s4

i3i2

i0

i1(p=bool)

(p) (p)

t0

t1

t2

t3

(a)

s5

i4(p)

d3,4

d4,5

(b)

i5(p) i6(p)
d5,6

sb3

b3

dp3

cellS

r3=cellP

i3,i4

sb2

b2

dp2

cellS

r2=cellS

i2

sb5

ab5

b5

dp5

cellP

r5=cellS

i5

cellcellS

Figure 4.1: Static resource binding in high-level synthesis.

The flexible nature of cell binding is limited to the hardware compilation stage only and for

clarity, is represented in the figure by the alternative binding (ab5) of a single data-path unit to

a different cell in the technology library. Once the process of technology binding is complete,

the link between the behaviour of an operation and how it is implemented is fixed by the

technology binding. Similarly, the choices taken during resource binding will result in a one-

to-one mapping between how and where an operation is implemented by a technology

vendor’s placement and routing tools; choices which by their nature are time-consuming and

as such are also taken during the hardware compilation stage of the design flow.

Of all the instructions scheduled in control graph, instructions (i2- i5) are of particular interest:

although they are assumed to carry out the same operation, how that is achieved through cell

binding is influenced by the path on which they are executed; that decision would be taken at

run-time and is dependent on the value of the predicate p, as determined by the execution of

instruction i1 during the earlier control step. We assume that control step s5 has the greatest

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 99

combinational delay (d5,6) of all the control steps in the schedule and consequently it

determines the length of the clock period.

Of further interest is the scheduling of instructions i3-i6 due to their execution occurring on the

critical path, that is to say the instructions cannot be scheduled earlier or later without

violating data dependencies or without lengthening the path. In such circumstances, no

scheduling mobility would make cell binding the only means of reducing the path delay. This

would explain the choice of the parallel version of the cell (cellP) during binding: the result of

an optimisation attempt to reduce the latency of the critical path by reducing the control step

with the longest delay, at a cost associated with an increase in the number of resources

required by the parallel cell.

An alternative course of action for the scheduler to take would have been to reduce the length

of the critical path by reducing the number of control steps. Scheduling instructions i3 and i4

to the same control step is not possible because they are allocated to the same data-path unit

(dp3). Scheduling instructions i5 and i6 earlier would break the order of their data

dependencies (d4,5 and d5,6); scheduling all three instructions to the same control step would at

the least double its delay (i4 and i5 are the same type) to a value we have assumed to be

greater than the combinational delay of control step s5.

The binding of a serial version of the cell (cellS) to a data-path unit (dp2) not executed on the

critical path might have been the enabling factor for the binding of the parallel cell: additional

slack in the delay of the non-critical path would favour the binding of the slower cell; its more

modest resource requirements would permit the increase in parallel resources associated with

the faster cell binding whilst meeting the resource constraint of the cost function.

With regard to meeting a resource constraint, an obvious approach is to reduce the number of

data-path units. The availability of instructions of the same type, for example, instructions i3

and i4, is often exploited by their allocation to a single data-path unit with a common cell

binding. Mutually exclusive instructions of the same type, such as instructions i2 and i3, are

also able to be allocated a single unit; they offer an additional advantage of not prohibiting

instruction level parallelism, as would be the case were the instructions scheduled on the same

path. The inter-dependence between optimisation tasks in HLS, such as instruction allocation

or cell binding makes their application sensitive to the order in which they are applied:

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 100

without a cell capable of implementing both parallel and serial characteristics, MOODS

would be unable to share their data-path units.

Multi-mode cells [118] are the solution to the problem described because as their name

suggests, they allow a common cell binding between data-path units which are allocated

instructions of different types; ALU substitution for separate addition or subtraction cells

being a classic example.

An obvious pre-requisite to the deployment of a multi-mode cell is that its individual size is

smaller than the sum of the separate functions it provides. The sharing of common sub-

structures not only reduces the resource count in terms of the number of data-path units, but

can provide an opportunity for an increase in the parallelism of their execution [119]. Figure

4.2 illustrates this point by replacing cell (cellP) from Figure 4.1) with a multi-mode cellm

which is able to implement the serial cells (cellS) in a second mode of operation.

less critical path

s0

s1

s2 s3
i2

i0

i1(p=bool)

(p)

(a)

s5

i3(p) i4(p)
d3,4

d4,5

i5(p) i6(p)
d5,6

t0

t1

t2

t3

(b)

b2 b5 b3

i

dp2

r5= cellM< cellP+2*cellS

cellS

dp3

cellS

i2,i4

cellM

i3

sb5

dp5

s

i5

Figure 4.2: Resource reduction through static binding of multi-mode cells in HLS.

As the internals of the cell shows, parallelism of the faster cell cellP is achieved through a

replication of the slower serial cellS. Selection between the twin cells is under the control of a

logic switch S; when active, it allows data-flow between the two serial cells and in doing so

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 101

implements the binding of an equivalent parallel cell. When inactive, the switch enables each

cell to execute independently of the other and crucially in parallel to the other.

Figure 4.2a illustrates how this additional parallelism has been put to good use by the

scheduler: the availability of an extra serial cell enabled it to schedule instruction i4 to a state

earlier than the previous schedule, thereby removing state s4 and subsequently reducing the

length of the critical path.

When viewed from the perspective of run-time reconfiguration, the multi-modal cell exhibits

the essential property of resource re-use, albeit in a spatial form; in fact, as the reader may

recall, the trade-off between re-use and re-configuration is the modus operandi of RTR.

A combination of a structured and hierarchical approach to cell design, coupled with its use

for physical characterisation in HLS makes cell binding a viable choice for temporal

partitioning. Vasilko et al. [120] used it to parameterise the bit-width for the same type of

functional units in different temporal partitions, relying upon cells which were pre-placed and

routed in the target technology prior to HLS. Bobda [59] and Zhang [121] also exploited the

similarity between operations across different partitions during HLS in order to reduce the

time taken to reconfigure the partitions.

Outside of HLS, cell parameterisation was of particular interest to the reconfigurable

computing community, who sought placement and routing of parameterised circuits [51] or

cores [119] during actual circuit execution. In a way not dissimilar to the compile-time

approaches, the cores were highly stylized to ensure regularity in the use of routing and logic

resources, thereby minimising the complexity of the task.

Similarity in cell binding at the technology level ensures that few changes occur in the unit of

reconfiguration. For example, Bobda [59] reduced the reconfiguration time by re-using

similar functional units and reconfiguring resources only when the design constraints

permitted.

Commonality between device configurations can be thought of as the lifetime of a resource.

For example, Bobda [59] and Zhang [121] effectively consider the life of a functional unit’s

configuration to extend beyond a temporal partition; Cardoso [66] and Trimberger [36]

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 102

spatially share functional units, confining their resource binding to the lifetime of the

partition.

The re-use of circuit structures at the device level is reliant upon no other changes in the unit

of reconfiguration; to do so would require reconfiguration of the unit – defeating the

motivation in using it to reduce the reconfiguration time. The size of the reconfigurable unit in

some devices [21] was convenient for exploiting at the logic level [120]; at most, a fraction of

a logic cell would be wasted in an obsolete device such as the Xilinx XC6200. Current

devices, such as the Virtex family, have a unit of reconfiguration comprising a column or tile

of multiple logic cells, therefore wastage of resource is of much greater concern.

In addition to the placement of logic resources, the transportation of signals between them is

in no small way the crux of the problem; spatial sharing of functional units assumes that the

wires, as well as their loads are always physically present, it just a matter of selecting between

them. Temporal sharing of reconfigurable resources or functional units common to different

partitions of those resources, require a persistent intermediary in the form of an interface;

spatially relating signals generated from different partitions. Some approaches feature no

routing outside of the partition, except to convey the data-flow through to another temporal

partition using the same resource. This is common place for multi-context and fully

reconfigurable devices or just as a means to reduce the complexity of the problem,

Vasilko [120].

What technology binding does not do, is model where those resources are placed; this is not

an omission because resource implementation, such as device layout, typically occurs at a

later stage in a non-reconfigurable design flow. How this happens is the subject of the

remainder of the chapter.

4.2 Overview of the Target Architecture

Figure 4.3 depicts the conceptual architecture which is the goal of the optimisation and

partitioning phases of circuit synthesis. In essence, the infrastructure necessary to execute a

temporally partitioned circuit is automatically generated without user specification (other than

the original behavioural description and the optimisation objectives and constraints).

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 103

Synthesis

Behavioural VHDL

Circuit
Description

Interface

Structural VHDL circuit description

Static circuit
context

Static Region

External memory
Interface

Reconfigurable Region(s)

Communication Channel(s)

Channel interface & Controller
Channel interface

& Controller

Reconfiguration
Controller

Dynamic
circuit

context

Figure 4.3: Architectural support for temporal partitioning.

The circuit modules which collectively embody the algorithmic behaviour of the circuit are

partitioned into a set of ‘Circuit Contexts’. A single ‘Static’ context comprises the top level

‘Program’ module and those subordinate modules deemed too costly to be made dynamic

during temporal partitioning. The static context is bound to a fixed set of programmable

resources throughout the lifetime of its execution, thus forming the ‘Static Region’ of the

architecture depicted in the figure.

Subordinate modules which are reconfigured ‘on the fly’, do so in the form of a ‘Dynamic’

circuit context, utilising the programmable resources of designated ‘Reconfigurable

Region(s)’ of the FPGA.

The term ‘Region’ refers to a set of programmable resources, each of which is the minimum

number of device columns necessary to permit an initial binding of the program or

subordinate modules to a programmable resource. Modules may be bound to more than one

resource column on condition that their placement is adjacent and contiguous when

programmed in to the device configuration memory.

In practice, the static region is programmed only once upon device power-up; in contrast,

programming of a reconfigurable region may occur anytime whilst power remains applied to

the device: in between periods of execution, each circuit context remains resident on the

region until it is swapped with another through a partial reconfiguration of the device –

achieved by rewriting the relevant portion of the device’s configuration memory.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 104

Circuit contexts which are not realised using the programmable resources of an FPGA exist in

an external memory in the form of device configuration data-streams. Although storing the

data-streams presents several additional overheads: one of which is the reconfiguration delay

in their fetching and subsequent loading through the ‘External memory interface’ and is a

significant factor in determining whether the module be made dynamic; any remaining

overheads associated with an external memory are also present in non-reconfigurable FPGA

systems which also store the power-up configuration external to the device.

With the availability of inexpensive Mega-Bit memory, any circuit module represented at this

level of abstraction (device data-streams) is regarded during partitioning as virtual hardware

with no area overhead. Central to this scheme is the interaction between the ‘Reconfiguration

Controller’ and the ‘Static Region’: the controller must be present in the static region to

perform self-reconfiguration of the FPGA at specific control states pre-determined during

temporal partitioning.

Present in every region is the ‘Channel Controller’; its role is to facilitate access to a

‘Communication Channel’ from any region. Communication between any pair of modules not

bound to the same resource must take place through a ‘Channel Interface’, ensuring the

integrity of all control and data signals passing to and from, as well as through the static and

reconfigurable regions during partial reconfiguration of the FPGA.

The characteristics of any communication channel (the number of signals it buffers and their

vector width) along with all other infrastructure depicted in the figure are customised during

partitioning: their attributes are entirely governed by the properties of the behavioural

specification, as well as an optimisation priority assigned by the user to each of the metrics

which quantify the circuit during synthesis.

4.3 Partitioning Metrics

At any point before, during and after optimisation, a design is characterised in terms of its

delay, area and clock period characteristics. Several additional metrics are required to

quantify the effects of temporal partitioning, specifically:

• The total circuit area after partitioning the design into a set of circuit contexts.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 105

• The time taken to execute the partitioned design through the continual switching of the

target device between the circuit contexts during run-time self-reconfiguration.

• The degree of imbalance among the contexts assigned to a reconfigurable region and

in doing so, provide a measure of the extent to which it is fully utilised.

• The number, width and length characteristics of all communication channels which

bridge the dynamic and static regions of the device.

Figure 4.4 (a) depicts the connectivity between the program module and subordinate modules

employed in an implementation of a quadratic equation solver; it will be used to exemplify the

use of each of the metrics during temporal partitioning.

Prog

1
4

multi

udiv

8

sign

7

sdivi

6

sqi

2

to_int

3

sqrti

5

(a)

module Area (slices) Net
width(bits)

prog 707.4 n/a
sqi 649.5 64

to_int 52.7 64
multi 666.7 96
sqrti 940.8 64
sdivi 291.9 96
sign 23.5 33
udivi 857.6 96

(d)

7

7

8

(c)

2

3

4

4

3

4

3 5

6

6

3
(b)

to

t1

t2

t3

t4

t5

t6

t7

t11

t15

t8, 12

t9, 13

t10, 14

Figure 4.4: The characteristics of a quadratic equation solver implementation.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 106

Each module would have originally taken the form of a behavioural description of a

frequently used function or procedure, held in a library of commonly used routines and parsed

into a set of data structures, alongside the calling module – be that another subroutine or the

program module.

The order of execution for each of the sub-modules called by the program module is shown in

the acyclic graph of (b), along with the sub-graph (c) of nested module calls activated during

the execution of the sub-module ‘sdivi’. Each vertex in (b, c) is labelled with the number of

the sub-module being executed, where the order of execution is defined by the direction of the

arcs. The initiation of every sub-module execution is referenced by a unique time step shown

adjacent to each vertex. The parallel time steps shown alongside the vertices of the sub-graph

denote multiple executions of the associated module, where the numbering of each vertex is

relative to each execution of the module.

During time step ‘t6’ the graph splits into two distinct paths which derive directly from a

conditional instruction inherent to the behavioural specification, they later converge (not

shown) prior to the start of another execution cycle during step ‘t0’.

The initial area and I/O port widths of each of the modules are characterised in Figure 4.4 (d)

and are known prior to partitioning. For the sake of clarity, their attributes remain fixed during

the following overview of each metric. In practice, however, they are variable, since in

addition to temporal partitioning they are also subjected to optimisation using scheduling and

allocation transformations. Their combined effect is examined in greater detail in Chapter 5,

where the resource binding transform is introduced.

4.4 Problem Formulation

Allowing multiple conflicting objectives to be specified enables the optimisation algorithm to

explore the trade-offs between different aspects of the design being synthesised. This is

achieved through the cost function, to produce a figure that it can use to guide the

optimisation of the design to meet the user supplied targets for each circuit characteristic

being quantified. Before defining the cost function, the partitioning problem and each of the

metrics are first formulated.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 107

A circuit description is represented as a control graph C and data-path D, such that:

(a) The graph C=(S,A) is directed, cyclic and composed of a set of control state nodes S

and a set of arcs A, where each pair of control states (ni)∈ S and (ni+1)∈ S is connected

by an arc ai∈A.

(b) The data-path D=(V,E) consists of V nodes and E edges, where every node vi∈ V

represents an operator, sub-module (function or procedure) and each edge eij∈ E is a

data dependence between it and the next node vj.

 Let:-

ATP represent the area (slices) of the partitioned graph TP.

ABal measure the balance or variation in size among the circuit contexts assigned to

a reconfigurable region.

TR quantifies the reconfiguration time (ns) associated with implementing the set of

dynamic circuit contexts.

B returns the number of tri-state buffers required to implement the

communication channels.

The task during synthesis is to find a spatial and temporal partitioning TP of the graph C and

data-path D, whereby some or all of the metrics (ATP, ABal, TR, and B) meet their associated

targets.

If:-

SC is a set of modules assigned to the static partition

DC is the set of all dynamic circuit contexts.

M is the sub-set of sub-module nodes where VM ⊂

C is a subset of M modules which together form a dynamic circuit context.

For the circuit partition 𝑇𝑃 = 𝑆𝐶 ⋃ 𝐷𝐶 , the set of dynamic circuit contexts DC is given by:

𝐷𝐶 = ⋃ 𝐶𝑖
𝑅
𝑖=0 , where n+1 represents the number of circuit contexts (n > 0).

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 108

The Control and Data-paths are correctly partitioned when:

• 𝑆𝐶 ⋃ 𝐷𝐶 = 𝑀: all sub-modules are mapped to a circuit context

• ⋂ 𝐶𝑖 = ∅𝑛
𝑖=0 : each sub-module node vi ∈ M is mapped to only one dynamic context

• 𝑆𝐶 ⋂ 𝐷𝐶 = ∅: sub-modules are assigned to either a static or dynamic context.

4.5 Circuit Area

If two or more sub-modules share the same device resource at different times during their

execution, then at any point the area required for their implementation is equal to the largest

module. This notion can be further elaborated to form a group of sub-modules or a circuit

context whose placement is constrained to a specific reconfigurable region of the device.

Figure 4.5 shows one such partitioning of the quadratic equation solver.

The total circuit area is given by the sum of the largest dynamic context ‘C0’ and the static

region containing the program module. For this configuration the circuit area is 2023.6

CLB slices [6], half the size of an un-partitioned circuit of area 4190.0 slices.

time

sqi
multi

sdivi
udivi

signc2

sqrti
to_int

c1

prog
static regionreconfigurable region

c0

Circuit
context

Area
(slices)

c2 1172.9
c1 993.5
c0 1316.2

static 707.4

area

Figure 4.5: A temporal partitioning of the quadratic equation solver.

The area of the circuit design after spatial and temporal partitioning (ATP) is required to be

less than or equal to the user supplied target i.e.
argettTPTP AA ≤ . Circuit area ATP is the sum of

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 109

the static and reconfigurable regions of the device, where the size of each reconfigurable

region is determined by the largest circuit context assigned to it, formally:

𝐴𝑇𝑃 = 𝐴𝑆 + � 𝐴𝑟𝑒𝑔𝑖𝑜𝑛𝑖

𝑛

𝑖=0

, where n+1 is the number of reconfigurable regions

Let max(x,y) return the larger of two circuit contexts (x,y) measured in Xilinx CLB slices,

then ATP may also be determined by the overhead associated with interfacing the control and

data channels (ACh) to a region (in the event of the area required by the channels being greater

than the largest circuit context Ci) that is:

(𝐶𝑖,𝐶𝑖+1,…,𝐶𝑛) ∈ 𝑟𝑒𝑔𝑖𝑜𝑛𝑖; 𝐴𝑟𝑒𝑔𝑖𝑜𝑛𝑖 = 𝑚𝑎𝑥(𝑚𝑎𝑥��𝐴𝐶𝑖 , �𝐴𝐶𝑖+1 , … , �𝐴𝐶𝑛�, �𝐴𝑐ℎ),

where n+1 is the number of circuit contexts assigned to region i.

4.6 Reconfiguration Overhead

A reduction in circuit area achieved through the continuous switching of an FPGA between a

set of configuration contexts incurs a cost in the form of the Reconfiguration Overhead, the

time taken to load a data-stream associated with a temporal circuit context in to the

configuration memory of the device and the frequency at which this occurs during the course

of a design’s execution.

Commercial FPGAs such as the Xilinx Virtex [6] family are not optimised for fast

reconfiguration, the bottleneck being the loading of configurations through a byte wide port at

a maximum frequency of 50MHz or 20 ns per configuration byte. Partitioning at the modular

level requires a partial reconfiguration of at least an entire column of FPGA resources at the

device level.

At any point during the partitioning of the design, the area of a context can be used to

determine the time taken to configure it. The time taken to load a circuit context is given by

the product of the number of configuration cycles required to load a single column of the

FPGA and the number of columns required to implement the context on the device. A column

of a Virtex FPGA consists of 48 configuration frames [6], each of which consists of a

different number of 32-bit words depending upon the actual device chosen.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 110

The characteristics of a Virtex FPGA, in terms of the number of columns, rows, tri-state

buffers and configuration frame length fL (in words) varies depending upon the size of FPGA

targeted.

During the course of partitioning, the current area estimation of the design after context

switching is used to select the smallest target FPGA capable of implementing current design.

This “best fit” approach ensures that the circuit contexts are realised through the smallest

configuration data-streams and in doing so, directly impacts upon their reconfiguration times.

A model of the target device provides the attributes required to calculate the metric in

question, whether it be the number of tri-state buffers available for the communication

channel or in this case, the word length fL of a frame for the target FPGA.

The total number of con�iguration bits per column= 48 ∙ fL ∙ 32 (bits per word)

 = 1536∙ fL

In SelectMap mode [6], the Virtex configuration bus is one byte wide, therefore:

the number of con�iguration cycles required per column = 192 ∙ fL

The internal configuration memory state machine of the device requires an additional 24 clock

cycles: the number of con�iguration cycles required per column = (192 ∙ fL) + 24

The area of a column (CLB slices) = 2 ∙ 𝑟, where r is the number of CLB rows in the device

and each CLB comprises 2 slices (Virtex FPGA).

The number of columns (rounded up to the nearest integral column) utilised by a context

 =
 Area of context

2 ∙ 𝑟

Therefore, the time taken to load a context 𝑇𝑟 is given by:

=
 Area of context

2 ∙ 𝑟
 ∙ �(192 ∙ 𝑓𝐿 + 24)� ∙ 20 ns

This metric provides a lower bound estimation of the reconfiguration time due to the

assumption that the placement of each circuit context is done in such a way as to maximise

the use of each column’s resources. Predicting how the placement and routing tools

implement the partitioned design within each resource is beyond the scope of this thesis,

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 111

however, guiding the process towards an outcome that makes good use of the resources is

necessary to ensure the value in estimating the reconfiguration times.

This is achieved during the implementation stage of the design flow, where a number of

placement constraints are used by the vendor placement and routing tools, to define a general

floor-plan for the partitioned design which, along with other synthesised structures,

collectively form the architecture required to facilitate context switching at the device level.

The estimation of the reconfiguration time need only be accurate enough to steer the decisions

taken during optimisation in a direction, that will ultimately generate a circuit that satisfies the

constraints and targets placed upon its synthesis.

An estimation of the reconfiguration time is sought after, rather than its exact prediction, due

to the level of abstraction at which behavioural synthesis is done. Data-path and control graph

operations are bound to physical cell characterisations which enable more accurate trade-offs

between area and delay criteria during optimisation, however, their scope does not extend to

RTL synthesis and logic optimisation using third party proprietary tools; therefore

optimisation does not account for the device-level refinements which occur during the

implementation of the design using device vendor specific processes such CLB ‘Packing’.

4.7 Frequency of Resource Context Switching

The second factor and by far the greater contributor to the reconfiguration overhead is the

frequency of context switching required of each reconfigurable region, in order to preserve

the original execution order of the sub-modules described in the behavioural specification.

Figure 4.6 (b) depicts the context switching required of a single region used to implement the

partitioned quadratic equation solver of Figure 4.5, in response to its sub-module order of

execution shown alongside (a). The history of the context switching is marked against the

periods of the graph labelled (t0-t16), each denoting a call to and subsequent execution of a

sub-module contained within the circuit context active on the region. The time step ‘tp’

denotes the power-up phase of the target device, when it is configured with the static portions

of the design which include the infrastructure that facilitates run-time self-reconfiguration.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 112

sign

sign

udivi

sqi

to_int

multi

multi

to_int

multi

to_int sqrti

sdivi

sdivi

sdivi

(a)

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

sign

sign

udivi

C1

CS

CS

C2

CS

C1

CS

C2

CS

C1

CS

C0

C1

CS

C2

Power-up
configuration

Circuit
context

Member
modules

Area
(slices)

Reconfiguration
time (ms) Frequency

C0 sdiv, udiv sign 1172.9 1.46 1
C1 sqrti, to_int 993.5 1.23 4
C2 sqi, multi 1316.2 1.64 3

Reconfiguration overhead = 11.3 msCS

tp

t10

t11

t12

t13

t14

t15

to_int
t16

(b) (c)

Figure 4.6: Context switching of the partitioned quadratic equation solver.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 113

The reconfigurable region is seeded with the first circuit context ‘C2’ after which, the

execution of the design commences at step ‘t0’ with the activation of the sub-module ‘sqi’

currently resident on the region. The next sub-module to be executed is ‘to_int’, since it is

contained within another context ‘C1’, it must be switched ‘CS’ with context ‘C2’ through a

partial reconfiguration of the reconfigurable region prior to its activation. The process is

repeated ad infinitum.

The reconfiguration time and the number of context switches required of each context are

tabulated (c) alongside, where the sum of each of their products gives the total reconfiguration

overhead of 11.3 ms.

Figure 4.7 shows the results of re-partitioning the quadratic equation solver with the aim of

reducing the degree of context switching. The approach taken in Figure 4.7 (b,c) is to group

together those sub-modules whose execution is frequently alternated between during the

course of the design, for example, modules ‘to_int’ and ‘multi’; their assignment to different

circuit contexts was responsible for the majority of the context switching shown in

Figure 4.6 (b). With hindsight, re-partitioning the equation solver with regard to the level of

context switching directly impacts upon the overall reconfiguration overhead, the end result

being a significant reduction in reconfiguration overhead to 6.39 ms.

An additional method to reduce the reconfiguration overhead is depicted in Figure 4.7 (d,e)

and requires the introduction of multiple reconfigurable regions. Ensuring that modules

‘to_int’ and ‘multi’ are separately partitioned (Figure 4.7(d)) but concurrently active, reduces

the need to frequently swap between them and has a secondary effect of context ‘C1’

remaining active on its region during all the times scheduled for the execution of its sub-

modules. This eliminates the last context switch necessary in the previous partitioning and in

doing so, reduces the reconfiguration overhead to 3.71 ms.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 114

Circuit
context

Member
modules

Area
(slices)

Reconfiguration
time (ms) Frequency

C0 sqi 649.5 0.69 1
C1 sqrti, to_int 993.5 1.06 1

C3 sdivi, udivi,sign 1172.9 1.25 1
C2 multi 666.7 0.71 1

Reconfiguration overhead = 3.71 ms

Circuit
context

Member
modules

Area
(slices)

Reconfiguration
time (ms) Frequency

C0 sqi 649.5 0.81 1
C1

sqrti, to_int,
multi 1660.2 2.06 2

C2 sdivi, udivi,sign 1172.9 1.46 1
Reconfiguration overhead = 6.39 ms

sign

sign

udivi

sqi

to_int

multi

multi

to_int

multi

to_int sqrti

sdivi

sdivi

sdivi

(a)

to

t1

t2

t3

t4

t5

t6

t7

t8

t9

sign

sign

udivi

(c)

C1

CS

CS

C2

C1

CS

C0

Power on
configuration

C1

Power on
configuration

C0

CS

C3

C2

CS

Power on
configuration

(b)

(e)

(d)

t10

t11

t12

t13

t14

t16

tp

CS CS CS

to_int

t15

Figure 4.7: Multi-region context switching of the partitioned quadratic equation solver.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 115

Reconfiguration Overhead metric:

If:-

P is the set of all distinct control paths through the circuit on which there

are sub-module calls.

Pi is an individual path through the circuit on which a unique sequence of

sub-module calls lie, where 𝑃𝑖 ∈ 𝑃.

Pprob refers to the control path most likely to be taken during the execution

of a circuit and is determined by a profile of the circuit obtained during

its simulation.

Pworst denotes the longest path in terms of the reconfiguration overhead and is

used where specific parameters of the circuit are only know at run-time

or when a set of paths are deemed equally likely to occur.

The reconfiguration overhead TR for the set of all dynamic circuit contexts D associated with

the control path (Pprob) most likely to be taken is given by: 𝑇𝑅
𝑃𝑖(𝐷), when 𝑃𝑖=𝑃𝑝𝑟𝑜𝑏. When

the most likely path cannot be determined, the path whose order of sub-module execution

incurs the largest reconfiguration time (Pworst) is used i.e.

𝑇𝑅
𝑃𝑤𝑜𝑟𝑠𝑡(𝐷) = 𝑚𝑎𝑥�𝑇𝑅

𝑃𝑖 �(𝐷), 𝑇𝑅
𝑃𝑖+1 , … , 𝑇𝑅

𝑃𝑛 where 𝑃 ∈ (𝑃𝑖, 𝑃𝑖+1, … , 𝑃𝑛).

The reconfiguration overhead is given by the sum of the time taken to swap each of the circuit

contexts on to their designated reconfigurable regions, for all regions; it is evaluated in

relation to the designer’s target such that 𝑇𝑅(𝐷) ≤ 𝑇𝑅𝑡𝑎𝑟𝑔𝑒𝑡 .

 𝑇𝑅
𝑃𝑖�𝑟𝑒𝑔𝑖𝑜𝑛𝑗� = � 𝑇𝑅

𝑃𝑖(𝐶𝑘)
𝑛

𝑘=0

, where n+1 is the number of circuit contexts

𝑇𝑅
𝑃𝑖(𝐷) = � 𝑇𝑅

𝑃𝑖(𝑟𝑒𝑔𝑖𝑜𝑛𝑗)
𝑚

𝑗=0

, where m+1 is the number of reconfigurable regions

If:

𝐶𝑆𝑃𝑖(𝐶𝑘) is the number of context switches required of circuit context Ck during the

 execution of the path Pi.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 116

Tconfig(Ci) is the time taken to reconfigure the target device with the context Ci.

Toverlap(Ci) measures the reconfiguration time of Ci reduced by overlapping it with the

 execution of a section of data-path.

The reconfiguration time of the context Ck is obtained by the product of the number of context

switches required of it and the time taken to load it into the target device’s configuration

memory each time a switch occurs. It can be reduced by the time spent overlapping each

reconfiguration of a dynamic circuit context with the execution of a data-path unit(s), be it an

instruction operation, sub-module function or procedure i.e.

𝑇𝑅
𝑃𝑖(𝐶𝑘) = (𝐶𝑆𝑃𝑖 �(𝐶𝑘) ∙ 𝑇𝐶(𝐶𝑘)) − 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝

Although the number of times a circuit context is swapped with another is entirely dependent

upon the modules assigned to it and their sequence of execution given by the path Pi, an upper

bound is given by the maximum frequency F of execution calls amongst its member

modules M:

𝐶𝑆𝑚𝑎𝑥
𝑃𝑖 (𝐶𝑘) = 𝑚𝑎𝑥(𝐹�(𝑀0), (𝐹�(𝑀1), … , (𝐹�(𝑀𝑛)) where 𝐶𝑘 ∈ (𝑀0, 𝑀1, … , 𝑀𝑛)

Each time a dynamic region is partially reconfigured with the circuit context Ck, the time

taken to load the context is proportional to its modular area (slices), device specific

parameters (frame length fL and the number of CLB rows r) and the time taken for the

reconfiguration controller to interface with an external memory, Tinterface. This process is

inclusive of the time taken to fetch the data-stream representing the context, load it into the

configuration memory of the FPGA and verify that these tasks have been successful prior to

the execution of the context on its designated reconfigurable region.

𝑇𝑅
𝑃𝑖(𝐶𝑘) = ��

1
2 ∙ 𝑟

� 𝐴𝐶𝑖

𝑛

𝑖=0

� ∙ �(192 ∙ 𝑓𝐿) + 24�∙20 𝑛𝑠� + 𝑇𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

 4.8 Scheduling the Context Switching

How a design is partitioned and the sequence of module calls which lie on the control path

most likely to be executed, will determine the length of time a circuit context remains on a

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 117

reconfigurable region and the latest time it can be swapped with another. Deciding exactly

when it is swapped is found by scheduling its reconfiguration.

Figure 4.8 (c) illustrates how the reconfiguration of the partitioned quadratic equation solver

tabulated in 4.8 (d) may be implemented, by determining when each of the dynamic circuit

contexts can be swapped in to their designated regions. Each context switch of the target

device exploits its ability to partially reconfigure ‘on the fly’, by overlapping the

reconfiguration of each circuit context with the execution of a sub-module(s) resident on

another dynamic or static region. The motivation behind this approach is to reduce the

reconfiguration time associated with each context switch, its effectiveness is dependent upon

the characteristics of the design being synthesised and the configuration rate of the target

device on which it is implemented. For example, circuit designs which regularly interact with

I/O devices where there is human participation, such as displaying a graphical user interface,

are more tolerant of the millisecond reconfiguration times associated with commercial FPGAs

which are not optimised for frequent reconfiguration. Therefore, it is the ratio of the

reconfiguration to execution times that will determine the value in overlapping circuit

execution with reconfiguration.

Marked along the program module graph of Figure 4.8 (a) and sub-graph (b), are segments of

graph (S0-S4) which overlap the reconfiguration of a circuit context. Each segment may

comprise a number of sub-module calls, in addition to general vertices which enable signal

transfers in their associated module and in practice typically make up the majority of the

graphs and thus, are fodder for the scheduling transformations.

Having determined which of the calls to the sub-module selected during partitioning can be

made directly to the relevant circuit context and which cannot (necessitating a context switch

of the region), the task is to determine when or more specifically where in the graph calling

the sub-module, can the context switch be initiated.

This is achieved using one of three scheduling methods, the first of which is to schedule a

context switch as soon as possible (ASAP) and doing so without overlapping the

reconfiguration of an earlier circuit context.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 118

(c)

Region Circuit
context

Member
modules

Reconfigurable 1 C0 sqi

C1 sdivi, sign

Reconfigurable 2 C2 to_int

C3 udivi

Static sqrti, multi,
prog

multi

multi

to_int

multi

to_int

(a)

t13

sqrti

sdivi

c

c

c

sqi

to_int

c

c

c

c

c

c

S0

S1

S2

t11

t12

t8

t9

t10

t3

t4

t0

t1

t2

t5

t6

t7

t14

t15

t16

t21

t22

t23

sign

sign

udivi

(b)

t18, 26

t19, 27

t20, 28

c

S3

t17, 25

c

c

c

sdivi

to_int

c
S4

C0

CS (C3)

CS (C0)

 CS (C1)

C1

C2

C3

(d)

t24

t29

t30

CS (C2)

C2

Figure 4.8: Scheduling the context switching of reconfigurable regions.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 119

At the beginning of segment S0, the context C0 is scheduled to reconfigure on region 1 at the

earliest opportunity t0, this is indicated by the shaded vertex. Although not exemplified in the

graphs, a control state may also mark the beginning of a segment for multiple control paths.

This transpires when the control state is common to the multiple paths, before a path diverges

for example or as a part of a sub-module. The dashed edges which connect the vertices

represent the existence of numerous general vertices, not shown to simplify the example.

Scheduling the reconfiguration this early, provides the greatest potential for reducing the

reconfiguration time of C0, prior to the first execution call of its sub-module sqi, at the end of

the segment.

A complementary approach is illustrated in segment S1, where the latest possible time (t6) to

schedule the reconfiguration of the context C1 is shown. Initiating the context switch of the

region one cycle prior to the earliest execution of one of its sub-module to_int, incurs the full

reconfiguration overhead for C2.

At first glance, it appears sensible to give preference to reducing the reconfiguration time by

scheduling ASAP, however this can give rise to a side effect that discourages the partitioning

of those sub-modules which are overlapped by the reconfiguration of another. Consider

sub-modules ‘sqrti’ (t14) and ‘multi’ (t15) whose execution calls are overlapped during

segment S2 by the reconfiguration of C1. The modules, in addition to the program module are

presently assigned to the static context. However, if either or both of them are re-assigned to a

dynamic context, their configuration will overlap with that of context C1. Since this is

prohibited, a solution is to re-assign the modules which collectively form C1 to the static

context, subject to approval of the cost function. It is possible that the cost of such a move

proves too great, particularly if the reconfiguration of C1 is scheduled much earlier up the

control graph (in doing so, benefiting C1 by reducing its reconfiguration time). Depending

upon the method of optimisation employed and when the degradation occurs during

optimisation, the outcome may be sufficient to deter the assignment to the static context of the

sub-modules overlapped by the segment.

Had the reconfiguration of C1 been scheduled to commence as late as possible (ALAP), the

overlap in configuration would not have occurred. The cost function would then be presented

with a different scenario to quantify, one where an existing context does not require

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 120

re-assigning to the static region, in order for a sub-module to be assigned to a reconfigurable

one.

Although scheduling the reconfiguration of a context ALAP reduces the occurrence of future

overlaps in configuration, it provides no reduction in the reconfiguration time of a circuit

context. It is not implausible to imagine a scenario where a marginal reduction in such time

may be the deciding factor which leads to the acceptance of a sub-module for temporal

partitioning. To that end, a compromise between the two scheduling extremes is provided by

determining their difference (mobility or slack) and selecting a vertex at random from the

resulting partial graph, which in the case of segment S2 is the vertex whose execution occurs

during t12.

Segment S3 illustrates the interaction which can occur between the static and dynamic regions

and how the scheduling might be applied in such circumstances. As a member of the circuit

context C1 and currently active on region1, sub-module ‘sdivi’ is executed (t16) by the

program module resident in the static region. During its execution (sub-graph (b)), a context

switch of region 2 occurs (t17) where C2 is swapped for C3 to enable the execution of the

nested sub-module udivi. The time taken to achieve this is reduced by overlapping the

reconfiguration of the udivi with the execution of ‘sign’ in the first reconfigurable region.

Upon completion of the reconfiguration process, ‘udivi’ is executed (t20,t31) and control is

returned to the program module. No further context switching is necessary during the next

execution of sdivi (t24).

The final segment of graph S4 depicts when the context switch of the second reconfigurable

region is required in order to restore sub-module to_int to the region prior to its execution. In

common with the earlier segment S1, an ALAP scheduling for its reconfiguration has

occurred, but unlike the earlier segment, the scheduling would have been restricted by the

assignment of sub-module udivi to the same region during temporal partitioning. The

interdependence between temporal partitioning and instruction scheduling is a strong

motivator for implementing these tasks in the same stage of high-level synthesis and will be

described in greater detail in the next chapter.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 121

If :-

I is the set of ICODE instructions which embody the behaviour of the design

being synthesised.

L represents the set of moduleLeap instructions (sub-module activation

instructions), where 𝐿 ⊂ 𝐼.

LA is the ‘moduleLeap’ instruction that executes sub-module A.

MA is the set of instructions which are mutually exclusive in their execution to sub-

module A.

R is the set of reconfigurable resources of an FPGA device.

RJ is a single reconfigurable resource such that: 𝑅𝐽 ⊂ 𝑅.

A dynamic circuit context 𝐷𝐶𝑖 can be context switched with another 𝐷𝐶𝑖+1over a common

reconfigurable region i.e. 𝐷𝐶𝑖 ∈ 𝑅𝐽 and 𝐷𝐶𝑖+1 ∈ 𝑅𝐽 when neither are concurrently active.

Specifically, if 𝐴 ∈ 𝐶𝑖 , 𝐵 ∈ 𝐶𝑖+1 then sub-module A may be swapped with B if its activation

takes place on a control path whose execution is mutually exclusive to that of sub-module B

i.e. 𝐿𝐴 ∈ 𝑀𝐴 or when the execution of sub-module B occurs after that of A on the same control

path.

When scheduling the context switching of a reconfigurable region(s) with a set of dynamic

circuit contexts, the original order of module execution must be respected; the two modules A

and B for example, whose execution occurs in that order,

Let :-

Sa, Sb denote the control steps where the execution of each module begins.

Sexe(i) represent a single step during which a module is executed.

S𝐷𝐶𝑖 refer to the steps taken to perform the reconfiguration of a circuit context.

Plength return the length of the path where reconfiguration is scheduled to occur, the

beginning of which is denoted by control step S0.

In order to swap modules A with B where A ∈ Ci and B ∈ Ci+1 and preserve their original

execution dependency, the execution of B is scheduled to commence at:

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 122

 𝑆𝑏 ≥ 𝑆𝑎 + � 𝑆𝑒𝑥𝑒

𝑗

𝑖=𝑆𝑎

(𝑖) + � 𝑆𝐷𝐶𝑖

𝑙

𝑖=𝑘

, where 𝐶𝑖 ∈ 𝑅𝑗 and 𝐶𝑖+1 ∈ 𝑅𝑗 for 𝑆𝑎 < 𝑆𝑙 and 𝑆𝑘 < 𝑆𝑙

 assuming that 𝑅𝑗 ∈ 𝑅.

i.e. module A is swapped with B on a single reconfigurable region then module B is scheduled

to begin execution at step Sb , only once A has been executed (steps Sa – Sj) and the

reconfiguration of the circuit context containing B (steps Sk – Sl) has been completed.

Were the circuit contexts to execute on multiple reconfigurable regions i.e. 𝐶𝑖 ∈ 𝑅𝑗 and

𝐶𝑖+1 ∈ 𝑅𝑗+1 then the configuration of module B could be scheduled to overlap the execution

of module A. In this case, the configuration mobility of module B maybe any step from the

beginning of the path S0 i.e. ASAP, until the step before the start of its execution Sj-1 (ALAP).

If sub-modules A and B lie on complementary paths (following the execution of a conditional

branch instruction) and each path has an equal likelihood of being taken, then only one circuit

context may start reconfiguration before the result of the conditional instruction is known i.e.

ASAP. In the event of a sub-module call to a circuit context which is not configured ‘on

silicon’, the context with the smallest reconfiguration time is chosen to be loaded ALAP: in

doing so, the cost of reconfiguring the wrong context is minimised. This cost can be

eliminated entirely if the context is comprised of both modules A and B, in doing so covering

both eventualities of path execution. The cost function would have to weigh the potential

reduction in reconfiguration time against the binding of resources to one idle module of the

pair, which by definition cannot execute.

This overview would not be complete without mentioning that the scheduling transformations

can also influence the context switching of the reconfigurable regions and therefore their use

is also quantified by this metric. One such example is the Sequential Merge transform. When

data-path operations are chained during the merger of their associated control states, their

ICODE instructions are scheduled to execute within the control step of the earliest. If the

latter state happened to have been selected from the reconfiguration segment of a temporal

circuit then its context switching instruction (denoting the beginning of the segment) will also

be subjected to the merger of the states. The effect will be an earlier scheduling of the

reconfiguration, the result of a lengthening of the segment by the number of control states

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 123

bounded by the two chosen to be merged. There are several other scenarios where the

sequential merge and other transforms have an impact not only upon the scheduling of

reconfiguration, but also on the formation of the partitions themselves and these are presented

in detail in the next chapter.

4.9 Communication Channels

The partitioning of sub-modules over a single static and multiple dynamic circuit contexts

necessitates a permanent communication channel which forms the backbone of the device

level architecture discussed in greater detail in Chapter 5. The communication channel

guarantees the physical connection of the partitioned module’s control and data signals. In

doing so, it enables their inter-region execution and data transfer, independent of the circuit

contexts to which there are assigned and the physical placement of their associated

reconfigurable regions. This is in direct contrast to communication between every pair of

modules in the static region, which is done though dedicated control and data signals internal

to the region.

During the run-time execution of a temporally partitioned design, as circuit contexts are

swapped on and off their reconfigurable regions, the physical interface of each context must

be identical to that of the reconfigurable region to ensure a predictable and unbroken signal

transfer between the static and dynamic regions of the device. This is made possible by

driving each signal through a pair of tri-state buffers whose placement is constrained to

straddle the boundary of a region, thereby forming an interface between the communicating

contexts on either side.

Although in plentiful supply, the number of tri-state buffers available on a Virtex FPGA is

proportional to its size and therefore assigns a hardware cost to the number and bit-width of

those signals which require buffering when entering to or leaving from a reconfigurable

region. As with the reconfiguration metric, the current area estimate of the design after

partitioning is used to select the size of the target device from which the number of available

tri-state buffers are obtained.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 124

Figure 4.9 shows the relationship between the number of signals cut during temporal

partitioning and the effect this has on characteristics of the communication channels.

Figure 4.9 (a) depicts a partitioning of the quadratic equation solver which targets multiple

reconfigurable regions on the FPGA. The sub-modules are grouped in to their respective

contexts (C0 - C3), where each arc represents the numerous data-path signals which pass

between the modules and is marked with the sum of their bit vector widths ‘W’.

In addition, there are two control lines solely used in the communication between a pair of

modules (not shown for simplicity), one used by the calling module to activate the called

module and the other to signify the completion of its execution and hence the return of control

to the calling module. When a circuit context is swapped with another, the sub-module port

signals overlap in time, determining the width of the channel and therefore the number of tri-

state buffers ‘B’ required to interface it to other regions whose contexts drive or are driven by

it.

Figure 4.9 (b) illustrates the dimensions of the channels required to implement the partitioned

quadratic equation solver. Independent control and data channels are employed to relay the

signals necessary for the execution of a pair of modules at either end of the channel. Their

separation is not motivated by functional necessity, rather an aid to floor planning, where a

channel of small dimensions offers a greater degree of flexibility in its placement during the

device-level implementation.

To reduce the size, number and ultimately the cost of buffering the data and control signals,

each channel is shared by several pairs of modules at either end, provided that they are

mutually exclusive to all others in their regions (recall that to context switch between two

modules requires that neither module be simultaneously active on the reconfigurable region).

Similarly, two pairs of concurrently active modules cannot share the same channel without

some form of arbitration.

Sharing the channel would provide a feasible solution to the only occurrence of concurrent

module execution in the partitioning of Figure 4.9 (a), following the program module’s

activation of module ‘sdivi’. Once enabled, it deepens the execution hierarchy through its

execution of modules ‘sign’ and ‘udivi’.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 125

96

96
64

64

Prog

sqi

to_int

sqrti

C0

C1

64
96

33

C3

multi

C2

udivi

sdivi

CS

Reconfigurable
Region1

Static
Region

Reconfigurable
Region2

sign

(a)

 Ch2
W(96) B(384)

Ch1 W(4) B(16)

 Ch4
W(33) B(132)

Ch3 W(4) B(16)

Reconfigurable
region1

Static region

CS

C0

or

 C1

(b)

interface

C2

or

C3

interface

interface

interface

Reconfigurable
region2

control

control

data

data

interface
interface

interface

interface
interface

interface

interface
interface

interface
interface

interface
interface

(c)

C2

or

C3

Reconfigurabe
region2

interface

Static region

CS interface

interface
interface

Reconfigurable
region1

C0

or

 C1

interface
interface

Ch1 W(4) B(8)

 Ch2
W(64) B(128)

interface

interface

interface

interface

 Ch4
W(96) B(192)

Ch3 W(4) B(8)

Ch5 W(4) B(8)

interface

interface

 Ch6
W(33)B(66)

Figure 4.9: Impact of module partitioning and placement on communication channels.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 126

Such an execution hierarchy requires a degree of concurrency since each initiating module

remains active until the sub-ordinate module completes its execution and returns control.

Hierarchies may have a depth of several modules, each waiting on the successive pair to

complete its execution before it can do the same and return control to its initiating module or

ultimately the program module.

Implementing an arbitration protocol would incur an additional delay overhead in their

execution which may prove too great should the chain of communicating pairs be of

significant length. In addition, it could restrict the use of performance enhancing techniques,

such as the Pipelining of their execution. As such, the static and reconfigurable regions may

be bridged by multiple control and data channels, as exemplified in Figure 4.9 (b).

Two control channels ‘Ch1’, ‘Ch3’ are required to implement the control signals associated

with the sdivi sub-module hierarchy, due to its concurrent nature of execution. The control of

all other partitioned modules, being mutually exclusive or sequential in their execution to

sdivi and those modules it activates, may share either of the channels. Each channel is at least

4 bits in width: in this minimum configuration, a single module activation signal enables each

channel to uniquely address two reconfigurable regions, each with a context comprised of a

maximum of 2 modules. The width of a channel is by no means fixed, as the addressing can

be scaled to accommodate any number of regions and sizes of contexts and therefore its actual

width is determined by the formation of the partitions themselves. Further architectural details

can be found in Chapter 5.

Like the control channels, the number of independent data channels used to realise data

transfer reflects the degree of concurrency of the modules that use them. Once again, two

channels ‘Ch2’ and ‘Ch4’ are simultaneously active as data signal conduits between all the

regions associated with the ‘sdivi’ sub-module hierarchy. At all other times ‘Ch2’ is shared by

the remaining modules although at any instant, exclusively by a single pair of modules.

Regarding the dimensions of the channels, the width ‘W’ of Ch2 is equal to the context with

the greatest bit-width, that of contexts ‘C2’ and ‘C3’; they require an interface comprising 96

tri-state buffers. The width of 33 buffers for channel Ch4 is smaller, due to the greater number

of remaining signals in C3 being internal to the context and its singular use in the connection

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 127

of module ‘sign’ resident in the static region to its calling module assigned to circuit

context C3.

The channel utilisation depicted in Figure 4.9 (b) provides a minimum overall width for the

transfer of the modules control and data signals. During partitioning, the total channel width is

compared with the maximum number of buffers per CLB column, returned by a model of the

target device. The model is chosen based on the area of the partitioned design. In doing so, it

gives priority to maximising the logic resources of the device, enabling the best fit for the

static and reconfigurable regions. Referencing the model forms the basis of a validity test

which ensures that the width of the channels required to support the proposed module

partitioning does not exceed the resources offered by the device: to do so would create

channels too large to be implemented on the target device and consequently the partitioning is

rejected before being applied.

Having determined the placement of the module, the temporal partitioner may elect to connect

it using one of several channels that may already pass through the region. Its choice will be

guided by the number of buffers required to implement the channel and as such, should aim to

minimise the increase to the width of all parallel channels and therefore reduce the risk of a

module move being rejected.

In the event of a module successfully fitting in to a circuit context, the actual estimation of the

cost of implementing its communication channels is undertaken. The true cost in buffer

consumption ‘B’ of a channel is given by its width and length, measured by the number of

region boundaries through which it crosses. As a reconfigurable region must span the entire

column of the device, a channel cannot circumvent any region which lies in its path. This is

evident regarding the global channels depicted in Figure 4.9 (b) which pass through all three

static and reconfigurable regions of the device.

Clearly a direct influence on the length of a channel is the location of the modules that use it,

through their assignment to existing contexts. However, it is also the position of the

reconfigurable regions, in relation to the static region which offers the choice of placement for

a module and in doing so, dictates the number of regions that it must cross. This is illustrated

in Figure 4.9 (c), where once again the quadratic equation solver is partitioned over three

regions. However, in this alternative channel implementation, the location of each new region

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 128

was taken into consideration during its creation. As a result, the global channels (Ch1-Ch4)

have been replaced by shorter ones (Ch1-Ch6), local to the regions which they connect. As a

consequence, the latter channel implementation represents a more cost effective realisation;

the total of all tri-state buffers B has been reduced from 548 to 410 respectively. By assigning

a metric to quantify the number of tri-state buffers required to realise the channel(s), a

measure of the cost effectiveness for a given temporal partitioning of modules is achieved by

comparing the number of buffers required to realise the channel(s) with the maximum

available, once again provided by the model of the target device.

Communication channel metric

Consider the temporal partitioning illustrated in Figure 4.10; it is formed by partitioning a set

of sub-modules, (𝑉1, 𝑉2, … , 𝑉7) ∈ 𝑀 and the program module 𝑉0, such that:

𝑉1 ∈ 𝐶0, 𝑉6 ∈ 𝐶1, (𝐶0, 𝐶1) ∈ 𝑅𝑒𝑔𝑖𝑜𝑛−1; 𝑉4 ∈ 𝐶2, 𝑉7 ∈ 𝐶3 (𝐶2, 𝐶3) ∈ 𝑅𝑒𝑔𝑖𝑜𝑛1;

𝑉0 ∈ 𝐶𝑆, 𝑉2 ∈ 𝐶𝑆, 𝑉3 ∈ 𝐶𝑆, 𝐶𝑆 ∈ 𝑅𝑒𝑔𝑖𝑜𝑛0; 𝑉5 ∈ 𝐶4, 𝑉8 ∈ 𝐶5 (𝐶4, 𝐶5) ∈ 𝑅𝑒𝑔𝑖𝑜𝑛2.

e0,6

e0,1

V0

V1

C0

V2 V5

V6 V7 V8

C1
C3

C4

C5

e0,2

e2,4

e0,7

e4,8

e4,5

V3

e4,3

V4

Region-1 Region0 Region1 Region2

C2

CS

Figure 4.10: An example of temporal partitioning.

There are 7 pairs of inter-region communicating modules depicted in Figure 4.10, where the

connectivity of each is denoted by a single bi-directional arc representing the edges set (𝑒𝑖,𝑗),

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 129

necessary to enable the execution of module 𝑉𝑗 by module 𝑉𝑖. Each execution is realised

through separate control and data signals represented by a subset of edges, namely 𝐶𝑒𝑖,𝑗

and 𝐷𝑒𝑖,𝑗. An individual edge is associated with at least a single bi/uni-directional one bit

signal exchanged between the pair of modules (𝑉𝑖, 𝑉𝑗).

If:-

𝑟𝑒𝑔𝑖𝑜𝑛𝑖 denotes the reconfigurable region over which a set of dynamic contexts are swapped,

where: 0 > 𝑖 > 0, 𝑖 ≠ 0.

𝑟𝑒𝑔𝑖𝑜𝑛𝑖=0 refers to the static region containing the program module and any sub-modules

deemed too expensive to be made dynamic.

The execution of sub-module 𝑉𝑗 residing in 𝑟𝑒𝑔𝑖𝑜𝑛𝑘 by module 𝑉𝑖 within 𝑟𝑒𝑔𝑖𝑜𝑛𝐿 attributes a

weight 𝑊𝑒𝑖,𝑗 to those edges 𝑒𝑖,𝑗 cut by the partitioning of their associated modules over

multiple regions, such that 𝑒𝑖,𝑗 ∈ 𝜓, where 𝜓 is the set of all edges cut by temporal

partitioning. The cut-set is quantified in terms of the number of tri-state buffers employed in

the construction of the pair of data and control channels (𝐶ℎ𝑚, 𝐶ℎ𝑚+1), which together bridge

those edges divided across the regions during partitioning. For example, with reference to

Figure 4.10, in order to implement the partitioned sub-module 𝑉1, where 𝑉1 ∈ 𝐶0 of the pair

(V0,V1), requires 𝑊𝑒0,1 = 2(𝐶𝑒0,1 + 𝐷𝑒0,1) buffers: recall that each channel signal requires

two buffers, each anchored at either end of the communicating regions that utilise the channel.

Contrast this to sub-module V2, where 𝑉2 ∈ 𝑟𝑒𝑔𝑖𝑜𝑛0, activated by the program module V0

through a set of edges 𝑒0,2 which are internal to the static region and therefore without need of

a channel and the buffer overhead required in its realisation i.e. 𝑊(𝑉0,2) = 0 when 𝑒0,2 ∉ 𝜓.

If another sub-module, such as V6, whose execution is not concurrent to V1 is also assigned a

dynamic context (C1) and swapped with the context C0 containing V1 , each set of edges will

share a pair of channels (Ch0 ,Ch1), such that (𝐶𝑒0,1, 𝐶𝑒0,6) ∈ 𝐶ℎ0 and �𝐷𝑒0,1, 𝐷𝑒0,6� ∈ 𝐶ℎ1.

In this way, although there are 7 pairs of modules and therefore 7 sets of edges, their

partitioning does not require 7 groups of data and control channels, only 2. The rationale for 2

channels comes from an examination of the sub-module hierarchy initiated by sub-module V2.

Although it engages 4 sets of edges during its execution, only 2 edges are simultaneously

active between the same regions, namely 𝑒2,4, 𝑒4,3. Accordingly, they dictate that a minimum

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 130

of 2 groups of concurrently active channels are required at any point during the execution of

the partitioned design.

The mapping of the remaining edges of the hierarchy 𝑒3,8 , 𝑒3,5 is undertaken by the temporal

partitioner, in such a way as to attempt to satisfy the optimisation objectives associated with

the channel metric and/or other metrics. The same can also be said of the outstanding edges

(𝑒0,7 , 𝑒0,6 , 𝑒0,1). One such mapping of edges to channels which the partitioner may take is as

shown in Figure 4.11: it illustrates the mapping of each set of edges to the minimum number

of concurrently active channels (Ch0, Ch1), formally:

(𝑒0,1, 𝑒0,6, 𝑒0,7) ∈ 𝐶ℎ0, (𝑒2,4, 𝑒4,3, 𝑒4,8, 𝑒4,5) ∈ 𝐶ℎ1

At any time during the execution of the design, only a single set of edges may occupy the

channel to which it is assigned. This requires the execution of the pair of modules related by

each set of edges to be either mutually exclusive or non-overlapping in nature. Therefore, an

aspect to consider when mapping each set of edges to a channel is the extent of their

concurrency, since it will determine the minimum number of channels required to carry them

across the boundaries of the regions they connect to.

e0,6

e0,1

V0

V1

C0

V2
V4 V5

V6 V7 V8

C1

C2

C3

C4

e0,2

e4,8

e4,5

V3

e4,3

e0,7

Ch1

Ch0

e2,4

CS

Region-1 Region0 Region1 Region2

C5

CS

Figure 4.11: The mapping of concurrent channels.

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 131

The exact permutation of edges assigned to a channel will of course depend upon the

contribution that each set of edges makes to its total weight, determined in part by the width

of the set containing the greatest number of edges e.g.

|𝐶𝐻0| = 𝑚𝑎𝑥��𝑒0,1�, �𝑒0,6�, �𝑒0,7��.

The complete cost of realising a channel is then found from its width and the length − the

number of regions it must span to permit the connections between any driving and driven

module.

To uniquely identify the position of a reconfigurable region (in relation to the static region

(region0)), it is characterised as being positive or negative (left or right of the static region,

respectively). The extremity of a channel, at either end, is associated with the region of the

furthest driving and driven modules. In this way, the length of a channel is given by the

absolute value of the difference between the two regions e.g.

𝐶ℎ0(𝑙𝑒𝑛𝑔𝑡ℎ) = (|−1 − 1|) = 2; 𝐶ℎ1(𝑙𝑒𝑛𝑔𝑡ℎ) = (|0 − 2|) = 2

Evidently, the temporal partitioner should take into consideration the effect which the location

of a region has upon the length of the channels spanning the device: the cost of implementing

a channel at the device level can now be expressed as:

𝑊(𝐶ℎ𝑖) = 2(|𝐶ℎ𝑖| ∙ 𝐶ℎ𝑖(𝑙𝑒𝑛𝑔𝑡ℎ))

Consequently, at any point during temporal partitioning, the channel metric B(TP) quantifies

the number of buffers necessary to implement all communication channels:

𝐵(𝑇𝑃) = � W(Chi), for n+1 channels
n

i=0

.

Re-examining the assignment of edges shown in Figure 4.11, in terms of the combined weight

of both the channels, reveals that there exists a large variation in the size of those edges

allocated to each channel. It can be a disadvantage to map each set of edges to the minimum

number of channels, suppose this to be the case and the sizes of each set of edges are as

follows:

�𝑒0,1� = 20 edges, �𝑒0,6� = 25, �𝑒0,7� = 45,

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 132

�𝑒2,4� = 15, �𝑒4,3� = 20, �𝑒4,8� = 55, �𝑒4,5� = 60.

The width of each channel would therefore be:

|𝐶ℎ0| = max(20,25,45) = 45, |𝐶ℎ1| = max(15,20,55,60) = 60 and hence their weights:

𝑊(𝐶ℎ0) = 2(45 ∙ 2) = 180, 𝑊(𝐶ℎ1) = 2(60 ∙ 2) = 240, generating a total cost of:

𝐵(𝑇𝑃) = 180 + 240 = 420 buffers.

Re-assigning the edges with a greater sensitivity to their size and the number of regions

through which they cross produces the following mapping:

𝑒0,1, 𝑒0,6 ∈ 𝐶ℎ0, 𝑒0,7, 𝑒2,4 ∈ 𝐶ℎ1, 𝑒4,3 ∈ 𝐶ℎ2, 𝑒4,8, 𝑒4,5 ∈ 𝐶ℎ3.

The width of each channel would now be:

|𝐶ℎ0| = max(20,25) = 25, |𝐶ℎ1| = max(45,15) = 45,

|𝐶ℎ2| = 20, |𝐶ℎ3| = max(55,60) = 60.

and subsequently their weights:

𝑊(𝐶ℎ0) = 2(25 ∙ 1) = 50, 𝑊(𝐶ℎ1) = 2(45 ∙ 1) = 90, 𝑊(𝐶ℎ2) = 2(20 ∙ 1)=40,

𝑊(𝐶ℎ3) = 2(60 ∙ 1) = 120, the result of which is a noticeably reduced use of buffers:

B(TP)=300.

Although there are double the number of channels, they can be placed in two parallel groups

and collectively their width is no greater than the two channel implementation i.e.

max(|𝐶ℎ0|, |𝐶ℎ1|) + max(|𝐶ℎ2|, |𝐶ℎ3|) = 45 + 60 = 105.

It should be clear to the reader that the greater the number of channel buffers, the more likely

their channels are to contribute to the circuit partitioning being rejected by the cost function.

In the worst case scenario, the partitioned circuit may not fit on the target device: recall that

the target for the channel metric is set by the size of the buffer resources associated with the

model of the target device. The model may be changed several times during partitioning, to

ensure that the reconfiguration overhead is based upon parameters of the device which

provide the best fit for the static and reconfigurable regions during the device-level

implementation of the partitioned design. Therefore, the temporal partitioner should also take

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 133

into consideration the combined width of the channels when selecting suitable edges to assign

to them.

The effect of each channel characteristic cannot be quantified in isolation, for instance, the

combined width of the 4 channel solution maybe reduced by mapping the edge 𝑒0,7 to Ch3 as

follows:

|𝐶ℎ0| = max(20,25) = 25, |𝐶ℎ1| = 15, |𝐶ℎ1| = 20, |𝐶ℎ3| = max(45,55,60) = 60,

where the combined size of the two widest channels is:

|𝐶ℎ0| + |𝐶ℎ3| = 25 + 60 = 85.

However, although re-assigning the edge to Ch3 means that channel Ch1 no longer contributes

towards overall parallel width, a secondary effect is an increase in the buffer use since

channel Ch3 must now pass through two regions and hence the cost of re-assigning the edge

becomes:

𝑒0,1, 𝑒0,6 ∈ 𝐶ℎ0; 𝑒2,4 ∈ 𝐶ℎ1; 𝑒4,3 ∈ 𝐶ℎ2; 𝑒4,8, 𝑒4,5, 𝑒0,7 ∈ 𝐶ℎ3.

|𝐶ℎ0| = max(20,25) = 25, |𝐶ℎ1| = 15, |𝐶ℎ1| = 20, |𝐶ℎ3| = max(45,55,60) = 60,

𝑊(𝐶ℎ0) = 2(25 ∙ 1) = 50, 𝑊(𝐶ℎ1) = 2(15 ∙ 1) = 30, 𝑊(𝐶ℎ2) = 2(20 ∙ 1)=40,

𝑊(𝐶ℎ3) = 2(60 ∙ 2) = 240; 𝐵(𝑇𝑃) = 360 buffers.

Thus far, each aspect regarding the assignment of a set of sub-module edges to a

communication channel has been examined in terms of its singular effect on the channel

metric. Grouping edges of similar regional proximity or weight has an impact on the number

of buffers required to realise a channel, however, the opportunity to do so will of course

depend upon the priority and effect of the other metrics; after all, the fact that an edge has a

weight (that is to say at least one of its associated modules is context switched) is the result of

the cost function in conjunction with the post-partitioning metric determining that the

proposed module move brings the partitioned design a step closer to the user-specified area

target.

In summary, the task during temporal partitioning is to find a mapping of edges cut during

partitioning ψ, to a set of communication channels Ch, in such a way that its characteristics

(quantified by their number, length and width) require the number of tri-state buffers during

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 134

their implementation to be no greater than the capacity of the resources offered by the target

device i.e. 𝐵(𝑇𝑃) ≤ 𝐵𝑡𝑎𝑟𝑔𝑒𝑡.

4.10 Balancing the Partitions

The size of a reconfigurable region is equal to the largest circuit context assigned to it. A large

variation in size among a set of contexts not only results in poor utilisation of the device

resources for that region, but over multiple regions can lead to a larger than desired circuit

area: this is evident when returning to the partitioning of the quadratic equation solver over

multiple reconfigurable regions, as tabulated in Figure 4.8 (d). The total circuit area at any

point during the execution of the equation solver is given by the area of the static partition and

the sum of each of the areas required by the reconfigurable region. This requires 2166.4 CLB

slices to implement the two dynamic regions. Figure 4.12 shows the area reduction which can

arise when partitioning with the aim of reducing the degree of imbalance across the partitions

assigned to a region.

Reconfigurable
region

Circuit
context

Area
(slices)

Standard
deviation
(slices)

1 c0 649.5 172.0
c1 993.5

2 c2 666.7
c3 1172.9

253.1

Reconfigurable
region

Circuit
context

Area
(slices)

Standard
deviation
(slices)

1 c0 649.5 8.6
c2 666.7

2 c1 993.5
c3 1172.9

89.7

(a) (b)

Figure 4.12: Re-partitioning to improve resource utilisation of reconfigurable regions.

Table 4.12 (a) presents the results of the earlier partitioning when the temporal binding of the

resources was carried out solely to overlap the reconfiguration of one circuit context with the

execution of sub-modules assigned to another. Table 4.12 (b) demonstrates that by simply

exchanging circuit context ‘C1’ with ‘C2’ the total area can be reduced to 1839.6 CLB slices.

A measure of the imbalance between a set of circuit contexts can be obtained using the

standard deviation of a population, where the population is the set of contexts assigned to an

individual reconfigurable region. Figure 4.12 shows the standard deviation tabulated for each

of the reconfigurable regions. The metric provides a measure of the area variability or spread

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 135

of the context sizes from the average context area for each reconfigurable region, reflecting

the improved balance (high to low) which occurred following the re-assignment of C1 and C2.

The reader will appreciate the significance of being able to measure a change in resource

imbalance: during temporal partitioning, a balance metric is used to decide whether a

sub-module should remain in its current partition (be that static or dynamic) or be moved to a

partition where it will have a local effect by improving the balance of the region on which the

partition is executed; in doing so, it offers the ability to influence the cost function in way that

could result in a reduction in the total circuit area.

Balance metric

The metric ABal provides a measure of the spread in area (CLB slices) in circuit contexts

belonging to a reconfigurable region, in doing so, it returns an indication of how well a region

is balanced in relation to the user supplied target, explicitly: 𝐴𝐵𝑎𝑙 ≤ 𝐴𝐵𝑎𝑙𝑡𝑎𝑟𝑔𝑒𝑡 .

This is achieved using the standard deviation σ of the population of n circuit contexts assigned

to a region. It is evaluated only for those reconfigurable regions affected by the movement of

a sub-module from its present region (source) to a destination. Where both the source and

destination for the module are reconfigurable regions, the overall effect of re-assigning the

module is found by the average spread in context area across the two regions, formally:

𝐴𝐵𝑎𝑙 = 𝜎𝑠𝑜𝑢𝑟𝑐𝑒 , where the destination region is the static partition, else

= 𝜎𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, where the source is the static partition, else

 =
 𝜎𝑠𝑜𝑢𝑟𝑐𝑒 + 𝜎𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

2
.

 𝜎𝑟𝑒𝑔𝑖𝑜𝑛 = ��
(𝐶𝑖 − 𝜇)2

𝑛

𝑛

𝑖=0

, where 𝜇 =
1
𝑛

� 𝐶𝑖

𝑛

𝑖=1

.

4.11 Cost Function

Although each of the metrics relate to a single aspect of temporal partitioning, they all have a

common purpose and that is to measure the quality of the design with respect to those circuit

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 136

characteristics deemed important to the design specification. Explicitly, the cost associated

with the set of temporal partitions TP is formulated as:

𝑐𝑜𝑠𝑡𝑇𝑃 = 𝐶𝑝𝑎𝑟𝑡_𝑎𝑟𝑒𝑎 ∙ 𝐴𝑇𝑃 + 𝐶𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔 ∙ 𝑇𝑅 + 𝐶𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ ∙ 𝐵 + 𝐶𝑏𝑎𝑙 ∙ 𝐴𝐵𝑎𝑙

where: 𝐴𝑇𝑃 is the circuit area after temporal partitioning;

 𝑇𝑅 returns the reconfiguration overhead for a given partitioning;

 B is the number of tri-state buffers used used in the channel implementation;

 𝐴𝐵𝑎𝑙 provides a measure of the resource usage by temporal circuit contexts;

𝐶𝑝𝑎𝑟𝑡_𝑎𝑟𝑒𝑎, 𝐶𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔, 𝐶𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ , 𝐶𝐵𝑎𝑙 are weighted constants which reflect the

 user-specified optimisation priority of the associated metric.

The cost function metrics are expressed as absolute values using technology-specific models,

such as the actual configuration parameters associated with the target FPGA (used in

estimating the reconfiguration times) or the area of a sub-module when assigned to a circuit

context (in terms of the CLB slices required to implement its control states and data-path

units). The motivation in doing so is to ensure that the circuit being synthesised closely

resembles the actual physical implementation at the device level.

Returning to the target architecture shown in Figure 4.3, the reader is reminded of how

essential the synthesis of the infrastructure is to meeting this requirement; its properties are

individual to the design being synthesised, such as determining those periods in which the

reconfiguration controller actively performs context switching of the reconfigurable regions

or the dimensions and number of the communications channels required to connect them.

Enumerating each property enables the temporal partitioner to make the relevant trade-offs

and allows the user to explore their ramification through changes to the priority and constraint

of each of the metrics.

When temporal partitioning occurs alongside optimisation to the control graph, C, and data-

path, D, additional trade-offs are made possible between the area, delay, clock and

partitioning metrics, further enhancing the exploration of alternative realisations of the circuit

during its optimisation. Therefore, the task during optimisation is to minimise the extended

description of the cost function now expressed as:

D. Esrafili-Gerdeh, 2016 Chapter 4: Spatial and Temporal Resource Binding 137

𝐶𝑜𝑠𝑡(𝐶, 𝐷) = 𝐶𝑎𝑟𝑒𝑎 ∙ 𝑎𝑟𝑒𝑎 + 𝐶𝑑𝑒𝑙𝑎𝑦 ∙ 𝑑𝑒𝑙𝑎𝑦 + 𝐶𝑐𝑙𝑜𝑐𝑘𝑝𝑒𝑟𝑖𝑜𝑑 ∙ 𝑐𝑙𝑜𝑐𝑘 + 𝑐𝑜𝑠𝑡𝑇𝑃,

where: 𝐶𝑎𝑟𝑒𝑎, 𝐶𝑑𝑒𝑙𝑎𝑦, 𝐶𝑐𝑙𝑜𝑐𝑘𝑝𝑒𝑟𝑖𝑜𝑑 are once again, the priority weighted constants of each

metric.

4.12 Summary

The purpose of this chapter has been to explain how temporal partitioning can be integrated

into MOODS HLS in the form of reconfigurable resource binding. It described how one

approach would be to re-use cells between temporal partitions, in a way not dissimilar to the

traditional spatial re-use relied upon for multi-mode binding. This approach was not adopted

due to the prevalence of conditional control flow in HLS and the uncertainty of knowing the

exact resource configuration available at run-time, necessitating the actual approach relying

more upon spatial sharing within a partition, rather than between them.

A multiple-objective approach to temporal partitioning was formally defined in terms of the

characteristics that a cost function would need to measure through its metrics. In addition to

the essential trade-off between the area reduction and resource reconfiguration, the cost of

communication between the partitioned subroutines is also quantified. Measuring their

characteristics is complicated by the potential transportation of their signals between spatial

and temporal resources; adding an additional requirement to balance their resource use,

further compounds the partitioning problem and provides the motivation for performing

partitioning using a general purpose optimisation algorithm with which to explore their

interaction.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 138

Chapter 5

Implementing Run-time
Reconfiguration

This chapter details the architecture that is automatically synthesised by MOODS for

communication between the temporal partitions generated during optimisation and those parts

of the architecture which facilitate self-reconfiguration of a Xilinx Virtex FPGA device. In

particular, it describes how the abstract model of the temporal partition embodied by the data-

structures is given form, in the context of the device-level architecture and how it may be

implemented, irrespective of the limitations imposed by the device and vendor support.

The execution of the synthesised circuit is viewed as a series of activations between pairs of

circuit subroutine modules. Each module is assigned to a static or dynamic region of the

FPGA, where the individual module selected is determined by the temporal partitioner.

A module residing on the static region of the device is expected to remain on silicon

throughout the lifetime of the circuit’s execution. This is not the case for those assigned to

reconfigurable regions, which as their name suggests, are subject to continual re-programming

of the resources contained within their boundaries: in this way, the temporal aspect of

partitioning is realised as groups of modules or circuit contexts being repeatedly swapped

with one another.

When not active upon silicon, each circuit context takes the form of a device configuration

data-stream and is stored in an external memory. A reconfiguration controller is deployed to

fetch the data-streams and facilitate the circuit swapping, in accordance with the

reconfiguration schedule determined during module partitioning and operation-level

optimisation.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 139

The communication channels form the backbone of the architecture, passing through region

boundaries. When under the direction of the channel controller, control and data signals may

be transferred between any pair of communicating modules, irrespective of the region in

which they are placed and without interruption due to device reconfiguration. The structural

VHDL description of the synthesised circuit incorporates the customised architecture required

to implement the partitioning, through run-time self-reconfiguration of the FPGA device.

5.1 Architectural Abstraction

Com
mun

ica
tio

n l
ay

er

Sys
tem

 la
ye

r

module parameters

 Phy
sic

al
lay

er

co
ntr

ol
IO

da
ta

IO
ini

tia
te

co
nte

xt
sw

itc
h

module

Channel parameters

req
ue

st

gra
nt

op
en

/cl
os

e
da

ta

cs
 re

gio
n n

region

fet
ch

 da
ta-

str
ea

m m

da
ta-

str
ea

m m

Data-stream ROM FPGA configuration port

Figure 5.1: Abstraction of the architecture into distinct layers of circuit activity.

The function of the principle sub-systems such as the reconfiguration and channel controllers

provides a natural means of abstracting a module’s execution protocol into layers of circuit

activity. Figure 5.1 depicts how this can be visualised: at the highest level of abstraction, the

‘System layer’ encapsulates the functionality of the circuit through the execution of the circuit

modules. As depicted, control and data transfer between the modules are carried out without

regard to where the modules are assigned (in terms of their region and circuit context) or the

location of their associated data-streams. These details are processed during the lower levels

of the protocol, the next level of abstraction being the ‘Communication layer’. At this level,

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 140

the module control and data signals are translated into channel operations, for instance,

competing for possession of the channel with other modules which are also concurrently

active in different regions.

Of course, none of the above is possible without the programming of the FPGA’s

configuration memory. This is implemented in the ‘Physical layer’ and is regarded as two

distinct tasks: the fetching of the data-streams and the control of the device configuration port,

both of which are done ‘on the fly’ during circuit execution. The exact moment when these

tasks are undertaken is determined at the system layer, although a context switch of a region is

represented at all layers of abstraction.

At the system layer, it is synchronised to a number of control states in the FSM controller of

the module initiating the circuit swap. The request is relayed along the control channel during

the communication layer and initiates the fetching and loading of the data-streams in the

physical layer. The exception to initiating a context switch solely in the system layer occurs in

the event of a configuration error. The reconfiguration controller can respond to an error

flagged by the device during reconfiguration by re-transmitting the last sequence of

configuration bytes. Should the error persist, the data-stream of the entire circuit context must

be re-loaded, in effect initiating a context switch from within the physical layer.

The response to any remaining error is a transition to a state of system failure in which the

circuit remains idle whilst requesting external input. Although the origin of the error will have

occurred in the physical layer, in a process akin to that of the context switch, it is represented

at different layers of abstraction until reacted to in the system layer.

5.2 System-level Architecture

At this stage of circuit synthesis, the task is to convert the internal representation of the circuit

to a structural description suitable for logic synthesis and technology or device-specific

net-list generation by third party tools. A significant part of the structure is generated directly

from the internal representation, as each control and data-path node is bound to a Library cell

associated with a VHDL RTL description. Generating the Register Transfer Level (RTL)

VHDL description of the program module and sub-modules is, at its simplest, a matter of

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 141

writing the internal representation to file. For instance, representing control signals in the

control graph and net activations on the data-path as logic expressions in the VHDL

description of the circuit.

With the exception of the circuit modules, the remainder of the architecture is generated using

associations between the modules modelled in the data-structures. The generation of the

communication channels is one such example: a single move during partitioning can re-assign

a module to another region, where it may no longer require the use of a channel. It would be

inefficient to constantly add or remove tri-state buffers to the data-path units of the modules

moved during the course of partitioning. Rather, their existence is inferred from the

relationships contained in the data structures and generated once partitioning is complete.

No doubt, the capability of the target device influences the synthesised architecture; however,

it is the relationship between the circuit modules which has the greater impact on the final

architecture; in particular, their relationship to one another and the frequency in which they

are executed. For instance, a principal component of the architecture is the communication

channel. The number of channels is decided during partitioning and the results presented in

Chapter 6 show that where there are many related modules, they tend to be clustered together

and communicate with the Program module through a single channel; this makes sense

because partitioning a module execution hierarchy over a number of regions leads to a high

communication cost. Multiple channels can reduce this cost although being dependent on the

IO parameter width of the modules, they also are expensive to deploy and therefore rarely

more than one channel is utilised.

Another example where the design specification directly affects the architecture is when the

modules are called from within multiple processes. This does not refer to a single module

which is shared between the processes but a sequence of modules being executed in parallel.

The partitioner may decide that the cost of multiple channels outweighs the overhead

associated with sharing a single channel between the processes, requiring an arbitration circuit

to be added to the architecture.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 142

Module
address

ROM

module
address
decoder

Configuration
port

module
address

ROM

reconfiguration
controller

program module

module
module

module

module
address
decoder

module
address

ROM

module

module

module
address
decoder

module

sqrti

module

module

Local channel

global channel

Local channel static
region

reconfigurable
region0

reconfigurable
region1

transmitter

receiver

transmitter

receiver

channel
arbiter

transmitter

receiver

Local
channel

local
channel

global
channel

signal transfer

state saving state saving

 Figure 5.2: Synthesised architectural components.

Once optimisation and partitioning of the circuit design is complete, the circuit modules are

realised in the context of the generic architecture depicted in Figure 5.2. It expands upon the

conceptual architecture shown in Figure 5.1, to depict the actual components described within

the structural output of the circuit being synthesised.

At its most fundamental, the architecture comprises a number of isolated areas of the target

device, bridged by several local and/or a single global communication channel. The exact

configuration of the components, as described earlier, is dependent upon the structure of the

design being synthesised and the topology of the partitioned circuit. Of course, for any

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 143

temporal partitioning, there must be at least a pair of static and reconfigurable regions. The

shaded blocks contain a number of partitioned modules and represent the circuit contexts

currently active on their respective regions. Although it is not obligatory, the program

module, being the highest point in the module execution hierarchy is generally assigned to the

static region: to do otherwise, incurs a substantial overhead in context switching and state

saving, since the program module is the source of all sub-module activation and parameter

exchange and therefore the ultimate sink as well.

Alongside the program module, reside other modules, procedures or functions which can be

directly written to and read from by the program module without the use of the

communication channels. Figure 5.3 shows how this is achieved in practice: it illustrates the

signal transfer (in terms of control and data) associated with the execution of a sub-module.

At a purely behavioural level of abstraction, the sub-module call is allied with the execution

of the ICODE ‘ModuleLeap’ instruction. As with all ICODE instructions, its execution is

scheduled to occur during a specific step in the control graph, the legacy of which is a

mapping to a FSM control state during the generation of the RTL description of the circuit.

Although the mapping depicted refers to a one-hot controller implementation, the exact FSM

encoding is determined by the RTL synthesis tool.

Unique to the ModuleLeap instruction is its implementation by a ‘Call’ node, utilised to

invoke the execution of the sub-module in question. In this case, it is the sub-module

procedure which is called and passed the input parameters, variables ‘x’ and ‘y’. In practice,

the parameters are passed by reference, where initially, the registers containing the variables

are read directly by an equivalent pair of temporary registers in the sub-module. The

temporary registers represent the parameters associated with the description of the sub-

module, so called because they are liable to be removed during optimisation. Likewise, any

output variable returned by the sub-module is bypassed and the result written directly to the

variable parameter (register) of the calling module, exemplified in Figure 5.3 by the

variable ‘z’.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 144

control
state C0

call
state C1

D Q
LD

D Q
LD

D
at

a-
pa

th

D
at

a-
pa

th

Start
state

end
state

Conditional
control

D Q
LD

P
ro

ce
du

re

D
at

a-
pa

th

execute
module

read sub-module output

write sub-module input
parameters

module
executed

x y

z

token-1 from
previous state

token0 to next state

token1 to next state

Executing instruction:

Moduleap procedure (x,y,z)

Figure 5.3: Sub-module execution and signal transfer.

The timing of this mechanism is shown in Figure 5.4. Having been passed token-1 from the

preceding state of the calling module (in this case the program module), the registers

containing the variables x, y are loaded (labelled ‘a’ in the figure) during the execution of the

state ‘C0’. In the next clock cycle, at point ‘b’, the token is passed on to the calling state ‘C1’

which promptly activates the sub-module by passing the token to its start node.

A registered version of this signal persists throughout the execution of the sub-module; should

the procedure be called again and passed another pair of variables, the signal is used to drive a

multiplexor select input, to match the sub-module inputs with the pair of register outputs

corresponding to the current sub-module call.

Execution of the sub-module proceeds state by state (two cycles for this example-label ‘c’),

with the state in possession of the token able to execute the relevant portion of the data-path.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 145

clock

token-1

C0

read
 inputs

execute
sub-

module

active sub-module

module
executed

procedure

C1

write
output

token1
token

token

token0
token

a

b

c

d

Figure 5.4: Direct sub-module execution timing.

The token returned from the last state of the sub-module is used, along with the registered

signal from the call node, enabling the output register residing in the calling module to read

the sub-module’s output. The signal also generates the token necessary to activate the control

state following the sub-module call – to read the register containing the variable ‘z’, in some

further computation in the data-path.

5.3 Communication-level Architecture

With the exception of those modules which call and are called entirely within the static

region, either or both of any pair of communicating modules require an address in the

architecture. However, unlike the modules in the static region which will eventually be

connected through dedicated routing, a dynamic module may share the control and data lines

entering its region with the other members of the circuit context. The existence of another

region necessitates a means of identifying the location of the calling and called modules. As

such, a module is identified with the region and context to which it is assigned during

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 146

partitioning. In actuality, a third dimension to the address provides a physical reference to the

location of its configuration data-stream in the external memory, although it is only realised at

the physical layer.

With reference to Figure 5.2, the architecture associated with this layer comprises: the

communication channels (global and local), the channel controller (‘transmitter’, ‘receiver’

and optional ‘arbitration’ blocks) local to each region, the location of the partitioned modules

(‘module address ROMs’) and the storage of local variables (‘state saving’), the

characteristics of all are dependent upon the topology of the partitioning.

5.3.1 Communication Channels

The communication channels form the backbone of the architecture and may be regarded as

having a dual purpose: to guarantee the physical connection of the routing between the static

region and successive partial reconfigurations of the reconfigurable regions and to enable the

logical connection of a module in a circuit context to any other, irrespective of the regions in

which they are active. In Chapter 4, the consequences of a move taken during temporal

partitioning were examined in detail. In particular, a number of factors were identified which

defined the characteristics of the communication channels. For example, the choices made by

the partitioner, such as whether to pass the module parameters through an existing channel or

whether or not to create a new one. Another important factor is the mutual exclusivity

between the executing modules and it is inherent to the description of the source circuit.

When the execution of the sub-modules is mutually exclusive, not only can the sub-modules

share the same channel without contention, but with careful scheduling, any partial

reconfiguration initiated during the course of their execution has no effect on the transfer of

their signals across the channel. The advantage of this approach is to utilise the resources

available in the reconfigurable regions, at the expense of tighter scheduling constraints for the

context switches.

A shared channel with arbitration is synthesised when the execution of the sub-modules is not

mutually exclusive and dedicated channels are not targeted. The increased traffic on such a

channel places a greater demand upon the scheduling, as there are likely to be fewer

opportunities to load a circuit context without interfering with the signal transfer along the

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 147

channel. The channel is realised using the resources of the static region of the FPGA. How

this is implemented in practice depends very much upon the properties of the target device

and the level of vendor software provision. Priority is give to the Xilinx Virtex [6] family of

FPGAs because of the level of support provided for the generation of the partial data-streams.

Figure 5.5 shows the layout of the channels when targeting the different members of the

Virtex family of FPGAs. In Figure 5.5 (a), partial reconfiguration of regions0,1

re-programmes the resources spanning the entire column of the Virtex and VirtexII families.

region1
Static region0

Circ
uit

Context
Circ

uit

Context
Circ

uit

Context

Static
contested channel

static

Bus macro Bus macro

Circ
uit

Context Circ
uit

Context

Bus
m

acro

Bus
m

acro

mutually
exlusive

FPGA resources

region1
Static region0

Circ
uit

Context

Bus
m

acro

Bus
m

acro

mutually
exlusive

FPGA resources

contested
channel

Circ
uit

Context

Circ
uit

Context

I/O pins I/O pins I/O
pins

external backplane

(a)

(b)

module parameters

Figure 5.5: Device-specific channel implementation.

For the reasons described earlier, sub-modules with overlapping execution may read or write

data through the reconfigurable regions of the architecture. This is accomplished through a

number of fixed ports known as Bus Macros. Buffering the signals in this way ensures that

the input/output routing resources of different circuit contexts have the same predictable

physical interface before and after partial reconfiguration of the regions to which they are

assigned.

Alternatively, the data transfers of sub-modules which cannot take place between partial

reconfigurations are routed out through the external pins of the device, along an external

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 148

backplane and read once again through the externals pins, as input to the state region. Having

passed into the region, the signals contest for access to the shared channel and one region is

granted permission to write to it. Implementing the channel in the static region of the device,

secures it and the three-state logic buffers which write to the channel against interruption from

partial reconfiguration. Had the buffers been implemented in the reconfigurable regions, they

would be reprogrammed with no guarantee of a high impedance state being held at their

external output pins. This could lead to signal contention on the channel whenever a partial

reconfiguration took place.

An alternative implementation of the channels is depicted in Figure 5.5 (b) and can be done so

directly using tile-based FPGA resources that can be partially reconfigured in columns 16

CLBs in height. This allows reconfigurable or static regions to be stacked vertically and

horizontally next to one another which can implement the shared channel on the FPGA, by

isolating it from any partial reconfiguration.

A bus macro is utilised when a communication channel interfaces directly to a reconfigurable

region. Figure 5.6 illustrates how the function of the bus macro is realised. Both circuits are

used to pass data or control signals through the perimeter of a static or reconfigurable region.

They are provided by Xilinx Inc. as part of its support for experimenting with the partial

reconfiguration capability of its Virtex family of FPGAs.

Each circuit is replicated, albeit, only in behaviour, since the actual implementation uses

different routing resources to pass the signals from one side to the other. Collectively they

form a bus macro, a pre-routed component i.e. its structure is not subject to optimisation

during RTL synthesis (it appears instantiated in the structural description of the architecture as

a black box), nor is its layout altered during the placement and routing phase of circuit

implementation. To do either, would be to disregard the concept behind its use.

The first generation of bus macro utilised the pair of three-state buffers adjacent to each

Complex Logic Block (CLB in Xilinx terminology) available on the Virtex and Virtex II

FPGAs. In total, eight buffers are employed to pass four signals in either direction. Although

it represents a significant step forward in comparison with the previous support offered

through JBits [48], it hinders the efficient implementation of non-trivial reconfigurable

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 149

circuits. This is due to the limited availability of the buffers at their designated positions on

the FPGA, in comparison with other resources, such as the CLBs.

output

 enable

input

output

enable

input

region boundary

sliceslice
inputs

outputs

region0 region1

Figure 5.6: Bus Macros − bridging the reconfigurable divide.

For any given row, there are four parallel buffer output lines which are used to straddle the

boundary. On either side of the boundary, the bus macro requires four CLB columns along the

row where it is to be placed. Should the region exceed that number, any additional buffers on

the same row cannot be utilised by adding bus macros because no more than four output lines

can cut across the boundary at any given point along the row. This issue was addressed

through the use of the second circuit shown, which as well as fulfilling the same function,

does so without the placement restrictions. Utilising the CLB Slices enables the macro to be

implemented using the basic primitives of the architecture, being numerous and well

distributed throughout the FPGA assures that they are within easy reach of a plethora of

routing resources. As a consequence, the number of signals which can be passed using a

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 150

single macro is doubled. Furthermore, as many as two additional macros can be positioned

either side of the boundary, providing a higher density of channel signals (twenty four) per

row of each static or reconfigurable region.

5.3.2 Channel Controller

The purpose of the temporal partitioning of Figure 5.7 is to illustrate the likely topology

between pairs of calling and called sub-modules which the communication system must be

able to accommodate. An arc connecting each module pair is representative of the bi-

directional control and data signals that pass between them.

c0

P0 P1

d i

e

c1
c4

cs

Static
Region

Reconfigurable
Region2

Reconfigurable
Region1

Program

c
a

c2b

f

h

g

c3

Figure 5.7: Typical sub-module partitioning topology.

Apart from the minimum partitioning of the program module and two sub-modules, there may

be multiple or single modules in any circuit context i.e. ‘C0’, ‘C1
’ respectively, of which a

called module might also call another module in a different region to itself, such as the sub-

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 151

module pair (‘a’,’b’). Alternatively, the calling and called sub-modules might reside in the

same circuit context, as is the case with the program and sub-module ‘e’.

Communication between two modules assigned to the same region but configured ‘on silicon’

at different times is also permitted. This is exemplified by the hierarchical pair of modules

(‘h’,‘i’). Sub-module h, in common with the other modules is called by the program module.

In order for it to execute the next module in the hierarchy, module ‘i’, its circuit context needs

to be swapped with that of context ‘C4’. Of course, the context switch must be repeated for

sub-module ‘h’ to process the results generated by module i.

To implement the partitioning illustrated, it will be necessary for MOODS to customise the

architecture utilising the global communication channel. This is due the assignment of module

‘b’ to a region not adjacent to its calling module. The multiple processes ‘P0’, ‘P1’ would

necessitate a form of arbitration to enable the channel to be contested and therefore shared

amongst the three regions. Had the partitioner placed module ‘b’ in either the same region as

its calling module ‘a’, or in the static region, local communication channels might have been

deployed.

In either case, the communication layer is reliant upon the use of a number of channel

controllers to convert module control and data signals into specific channel operations. As

depicted in Figure 5.8, the controller is not one component, but comprises a number of sub-

systems which fulfil four main duties:

• The opening of a channel transaction – accomplished through the transmitter unit.

• Self-identification by the intended destination region – utilising the channel receiver

unit.

• Channel arbitration to prevent its contention when there are multiple processes present

in the circuit design.

• The bi-directional transfer of module parameters between the calling and called

modules.

• The closure of the channel transaction – also performed by the transmitter unit.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 152

Figure 5.8 illustrates how the components of the channel controller are connected to perform a

channel transaction, i.e. to open or close a channel. As depicted, the function of the controller

is separated into a transmitter and a receiver unit.

module
addr. ROM receivertransmitter

addr

ack

req

data

module
select

 token

Module
address

encodering

call

end

startaddr
decoder

start

FSM controller states FSM controller states module0/modulen
inputs

module
 select

Submodule
Control and Data-paths

module pair
addr

 module0/modulen
outputs

Submodule
Control and Data-paths

destination
module addr

module
called

module
addr

Figure 5.8: Channel controller subsystems utilised during a channel transaction.

A number of peripheral components are also utilised during the controller operation. As stated

earlier, hierarchy between a pair of executing modules is expressed in terms of a calling and

called (sub-ordinate) module. Initially, the transaction originates from within the calling

module (program or sub-module), where a module call generates a token that is used to

initiate a request to open a channel with the controller of the called sub-module.

Every sub-module execution is represented as a channel transaction between a calling and

called module. Either module has a unique binary address in the architecture, associating it

with the region and circuit context to which it was assigned to during partitioning. Recall that

the scheduling of a module call is marked by the occurrence of a call node in the module’s

control path. When a pair of modules is assigned to the same context, the token from the

calling node is used to directly activate the first node of the module being called. When the

modules are assigned to separate contexts and regions, each token becomes a unique identifier

for the module being called. In this way, all the call nodes in the same region can be strung

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 153

together to form a binary code, which can be encoded by the RTL synthesis tool and used as

the address in memory for the transaction about to take place. The identifiers of all pairs of

calling and called modules are synthesised as a ROM, customised for each instantiation of the

channel cell in the architecture.

Communication between two regions is initiated when the transmitter cell receives a token

driven by any of the call nodes in the circuit context. In accordance with the communication

protocol, the transmitter requests that the channel be opened and places the address of the

source and destination modules on the address lines, as well as writing the module parameters

to the data lines of the channel. With reference to Figure 5.8, the module arguments are made

available to the data channel multiplexors exactly one cycle prior to the token being issued by

the call node. Of course, the module data cannot be written to the channel until the connection

has been established. In order for this to take place, all receiver units periodically check for a

channel transaction by reading the state of the request line. Any transition in its state draws

their attention to the portion of address which identifies the intended destination region of the

transaction.

Having correctly identified itself, the receiver stores the return address of the calling module

before determining which sub-module should be connected to the channel, by decoding the

remaining portion of the address. A token is passed to the start state of the called module,

causing it to read from the data lines. The token is passed on to the remaining states of the

module, as well as the receiver unit which commences the closure of the channel. It is

achieved once again through a handshake between the two regions, this time initiated through

an assertion of the acknowledge line of the channel, to which the transmitter responds by de-

asserting its request line.

Execution of the calling module halts temporarily whilst the called module carries out its

function. The parameters passed to the called sub-module and the results returned from it are

processed as separate transactions of the channel, enabling the communication between

another pair of modules to occur through the channel during the intermission between the

transactions. This frees the channel to transport the data driven by other concurrently active

sub-modules that have been granted access. When sub-module execution originates from

within a single process, all module execution is consecutive i.e. mutually exclusive. Thus

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 154

channel traffic is not interrupted should a partial reconfiguration take place during the channel

transactions, making the scheduling of context switches desirable during such periods.

Upon completion, the called module returns a token which through its local transmitter

initiates a second opening of the channel; with the purpose of returning the results of its

execution. The transactions described earlier are mirrored with the roles of the regions

reversed, such that the region containing the called module requests the transmission of data.

Following the handshake between the regions, the token is returned via the receiver to the

calling module which up till now has been waiting for the results to be returned; it is now able

to process the results in its data-path and continue execution of the process thread.

Another function of the channel infrastructure is the connection of a module’s port signals to

the buffer interface. This is a necessity for a calling and called module pair because it will

generally share the interface with other modules in its circuit context. Recall that a module is

referenced through a region and context address. Figure 5.9 depicts the architecture required

to associate that address with a given module.

The control, address and data signals are passed in to the region from those regions on either

side of it and are sent directly to the channel controller cell through their respective channels.

Execution can occur between any number of sub-module hierarchies, although only a single

pair may transfer data at any given time. This is done through the twin data channels which

can be utilised as input or output, to enable the output of a given module to pass data to the

input of another or vice versa. In this way, it is possible to send and receive data in a single

transfer cycle of the channel.

Multiple module hierarchies may necessitate the activation of more than two regions which

will require several sets of concurrently active module activation/completion control signals.

As shown in Figure 5.9, the control signals utilised at the system layer of communication

require an overhead of four (the clock requires no buffering) control signals for any

simultaneously active pair of modules. This overhead is ‘factored in’ during partitioning

where the benefit of splitting a module hierarchy of a given depth is weighed against the

potential cost, to satisfy a given cost function criteria.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 155

Execution between any pair of modules is managed through the channel controller, which is

setup as a transmitter or receiver depending upon whether the module concerned is calling or

being called by another. Prior to each module call, the controller is activated and refers to a

local address ROM to physically connect the modules in the architecture.

Module address decoder

Module
port

Module
port

Addr2:0

Addr5:0

Cin/out 0n Din/out 0n Cin/out 1n Din/out 1n

Decode

Cin/out 0n Din/out 0n Enable

Data Channel
0

Data Channel
1

Data Channel
0

Data Channel
1

Control Data

Addr0:7 Data0:7 Control

Module address
ROM

addr0 000 010

calling
module

called
module

addrn 100 001

Data in/out

Data in/out

Control
Channel Control in/out

Addr5:0

Data in/out

Data in/out

Channel
controller

Request data transfer
Acknowledge request/ready

Condition register status

Request Context Switch
Activate module

Module execution complete
Reset

Clk

Address
Channel

Region address
Module address

Module
address

Address
signals

Module
address

01
10

called
region

Connect modules
Modules connected

Communication control
signals

Module control
signals

Figure 5.9: Module address decoding.

Once a connection is established the cell locates the address of the next pair of modules to be

connected. Access to the control and data ports of a module is achieved by presenting the

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 156

module’s address to the decoder. The origin of the address depends upon whether the

controller transmits or receives a request to communicate with another region. For data

transfer to occur between any pair of modules, both must be connected to the channel buffers

in their region.

In the case of the transmitter, the module decoder is passed the address of the calling module

from a local module address ROM. It also contains the address of the module being invoked

and the region on which it resides. That address is sent to all regions, where having identified

itself through its own communicator cell, the receiving region will decode the remaining part

of the address and connect the called module to the control and data channels. It

acknowledges a successful connection to the transmitting region and the execution of the

module pair may now proceed at the system layer. These events take place through a

handshaking protocol between the communicators which will be formalised in due course.

Prog

to_int

acosi

cosi
C1

C0

64

33

96

C2

multi C3

sign

sdivi

CS

Reconfigurable
Region1

Static
Region

Reconfigurable
Region2

udivi

cbi

sqi

sqrti
cbrti

quadratic

64

96

96
19296

96

96

64

64

64

64
64

Figure 5.10: A temporally partitioned quartic equation solver.

Mapping each module call to an address in memory effectively encodes the execution

sequence for each design. The demand upon memory space is small since procedures and

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 157

functions are referenced and not individual operations. For example, the quartic equation

solver of Figure 5.10 (which by no means is a small circuit) comprises 126 module calls in the

entire design.

The size of an address ROM will depend upon the number of module calls and the format

used to encode them. Each address reflects the partitioning itself, in terms of the number of

regions and modules assigned to them. Consider the partitioning of the quartic equation solver

whose module execution sequence is shown in Figure 5.11: it comprises 3 regions on which a

maximum of 4 modules require individual selection; although the static region contains 6

modules, module ‘sign’ requires no address since it is executed within the region and module

‘quadratic’ is not called within the segment of module execution depicted. In total this

requires 4 bits to address any module, 2 bits for the region and a further 2 for selecting a

module within it. Figure 5.12 illustrates how each module address can be mapped to the

address ROM.

The address of every module is tabulated in Figure 5.12 (a): it identifies the region of each

module, be it the static or reconfigurable regions (encoded as 00, 01, 10 respectively), as well

as its identification within the circuit context. When a module is the sole member of its circuit

context, as is the case for modules ‘cbrti’ and ‘multi’, no individual module identification is

required within each of their respective circuit contexts ‘C0’ and ‘C3’. Figure 5.12 (b)

illustrates how the addresses are mapped to represent the relationships between the modules

(Figure 5.10) and the order in which they are executed (Figure 5.11).

Each row in the map corresponds to a byte of ROM. It can represent the connection between a

pair of modules or direct the reading of the next through a set of 4 encoded commands. A

command instructs the controller cell’s state machine on how to traverse the memory

locations. Note that this requires an additional address bit to enable the addressing of up to

any 4 modules or commands.

A given byte is composed of the encoded calling module, destination region and the called

module. There are 4 calling modules in the section of graph depicted in Figure 5.11: the top

level program module whose behaviour is encapsulated by the graph and 3 sub-module

hierarchies invoked by modules ‘cosi’, ‘acosi’ and ‘sdivi’.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 158

cond

to_int

cbi

sqi

sdivi

cbrti

sign

sign

udivi

cond

sqrti

sdivi

acosi

sdivi

sdivi

to_int

sdivi

sqrti

cosi

multi

udivi

sdivi

multi

to_int

multi

P1

P2 P3

True False

FalseTrue

cbrti

sdivi

to_int

sqrti

cbrti

to_int

multi

sqi

to_int

to_int

sqi

to_int

multi

to_int

cs R 2,C3

cs R 1,C0

cs R 2,C3

cs R 2,C3

cs R 2,C2

cs R 2,C3

cs R 1,C0

Figure 5.11: Module execution paths of the quartic equation solver.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 159

addr0

(b)

Region
address

Module
address

01 00
01 01
00 00
00 01
00 10
00 11
n/a n/a
n/a n/a
10 00

Module/
context

cbi / C1

prog / Cs

sdivi / Cs

acosi / Cs

quadratic/Cs

sign / Cs

to_int / C2

cbrti / C 0 01 --

sqi / C 10 01
sqrti / C2 10 10

10

(a)

multi / C3

udivi / Cs

--

2

000 01 001
no decode 10 001
condition addr11

condition addr17

no decode # decode module 010
no decode 01 ---
no decode 10 000
no decode # decode module 001
no decode # decode module 000
no decode # decode module ---

begin addr0

no decode 01 ---
no decode 10 000
no decode # decode module 001
no decode # decode module 000
no decode # decode module ---

#begin addr0

no decode # decode module 010
011 # decode module ---
000 # decode module 000

no decode # decode module 010
no decode 01 000

000 00 010
no decode # decode module 001
no decode 10 ---

000 # decode module ---
begin addr0

addr1
addr2
addr3
addr4
addr5
addr6
addr7
addr8
addr9
addr10
addr11
addr12
addr13
addr14
addr15
addr16
addr17
addr18
addr19
addr20
addr21
addr22
addr23
addr24
addr25
addr26

Calling
module

Receiving
region

Called
module

module/context pair

P1

P3

P2

cosi / C1

prog,cbi / Cs,C1
prog,sqi / Cs,C2

prog,sqrti / Cs,C2
prog,cbrti / Cs,C0
prog,to_int / Cs,C2
prog,sqi / Cs,C2
prog,to_int / Cs,C2
prog,multi / Cs,C3

prog,cbrti / Cs,C0
prog,to_int / Cs,C2
prog,sqi / Cs,C2
prog,to_int / Cs,C2
prog,multi / Cs,C3

prog,sqrti / Cs,C2
acosi,multi / Cs,C3
prog,to_int / Cs,C2
prog,sqrti / Cs,C2
prog,cosi / Cs,C1
cosi,udivi / C1,Cs
cosi,sdivi / C1,Cs
cosi,multi / C1,C3
prog,multi / Cs,C3

Figure 5.12: Memory maps of module address ROMS for the quartic equation solver.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 160

With the exception of the latter, the execution of other modules is encoded with an address

ROM which forms part of their circuit context. Module ‘sdivi’ invokes the execution of

modules within its circuit context and does not require an address to connect to them.

Shown alongside each memory map is the pair of modules referenced by the byte, their

associated contexts and a reference in the graph. For example, the first byte would instruct the

controller cell on the static region to connect the program module (decode calling module

address 000) and write the remaining 5 bits onto the address channel. The controller cell of

the target region (region1) would then identify itself as such (region address 01) and decode

the module address (001) to connect module ‘cbi’ to the data and control channel buffers.

The next occurrence of a controller command ‘no decode’ saves a decoding cycle by not

enabling the address decoder when the calling module appears consecutively. Its value is

evident in Figure 5.12 (b), where the program module dominates sub-module execution for all

but two calls by modules ‘cosi’ and ‘acosi’. A complementary command ‘decode module’

prevents the controller cell of the receiving region from unnecessary identification of the

region address: this occurs when the module called is on the same region as the module

previously executed. Incidentally, consecutive calls to the same module are not represented in

the ROM. This also applies to consecutive connections between a pair of communicating

modules. An example is on path P1 between the module pair (‘program’, ‘to_int’). Before the

first call to module ‘to_int’, the address of both modules would have been set up in either

region to enable their connection. Upon completion of their execution, the ‘program’ module

calls module ‘sdivi’. As this call is internal to the context, module ‘to_int’ remains connected

to the interface buffers and so does not require any region or address decoding to facilitate its

next execution.

As the control graph of the program module illustrates, for all but the simplest of circuits

there exists some form of conditional control. The order of sub-module execution will change

depending upon the branch taken at any conditional point in the module control flow. The

motivation for the internal commands is to traverse the memory in a way which reflects the

sequence of module calls of any calling module on the same region as the ROM.

The first example of this is the ‘condition’ command. Its location in the sequence of memory

addresses corresponds to a diversion of the path taken by the module currently active on the

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 161

region. A dedicated ‘Condition’ register in the cell reflects the outcome of that decision which

the controller is required to read and act upon. By default, the data bits following the

‘command’ instruction form the address of the next location in memory, which corresponds to

the sequence of module calls taken in the event the condition evaluating to ‘false’. Had the

result of the condition been ‘true’, the controller would have been instructed to read the

operand of the command instruction, taking it to an alternate sequence of addresses. In this

way, each path of the quartic equation solver can be referenced in memory.

At the end of each path, the ‘begin’ command requests that the controller address counter be

loaded with the next 5 bits which will direct it to the start of the memory and the first module

address byte. Any of the 27 bytes contained in the ROM are located through a 5 bit address

counter. In practice this would address the lower bits of a larger ROM whilst the upper bits

remained fixed.

As each module address ROM is part of a circuit context, it is reconfigured along with the

circuit context and so the resources utilised in its creation will be re-used in the formation of

the next context. To further reduce the area overhead associated with the ROMs, it would be

prudent to utilise where possible the dedicated BlockRAMS [6] which form part of the Virtex

architecture. They may be regarded as ‘free’, in terms of area since they are incorporated as

part of the architecture and exist whether utilised or not. Their size and distribution varies

within the Vertex family of devices. A Virtex2 FPGA features columns of 18Kb blocks

interleaved between the CLB columns. Each blockRAM is also reconfigurable ‘on the fly’

which makes them suitable for incorporation as part of a reconfigurable region. A single

blockRAM is capable of storing 2304 module address references, assuming that a byte is used

to identify the pair of modules being connected. A mid-range device has a further 31 of these

so storage capacity is not an issue in the implementation of the address ROMs.

Figure 5.13 depicts the states and their transitions which together encompass the behaviour of

the Controller cell. In essence, it implements the ‘Communication layer’ of the protocol.

Depending upon the partitioning, a controller cell may be a transmitter and/or receiver for its

region. The cell buffers all module parameters passed and received between any pair of

executing modules. In doing so, it guarantees that communication between the modules

occurs only once a point-to-point connection has been established on the architecture.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 162

Address
counter

= 0,
Req=Ack=0

Idle state

 module

(module)

Wait for
request

Read address
channel

Identify region

Connect
called module

(decode
address)

Toggle Ack
control line

Activate called
module

module call
Transmitter

System layer

decode only

Positive
identification

Negative
identification

Receiver

Communication layer

Ack != Request

Ack = Request Ack != Request

Ack = Request

module
address

decode module

condition

begin
module
addressRead

data byte

Increment
address
counter

Address
counter

=
instruction
operand

Read
Condition
register

Connect
calling

(decode
address)

Setup
direction of
address &

data channel
interfaces

Write address
called

to channel

Toggle Request
control line

Wait for Ack

Return
direction of

address & data
channels to

default

Activate calling
module

module call

condition
true

condition
false

Figure 5.13: Communication layer protocol and usage.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 163

Upon ‘power-up’ of the circuit context, the cell initialises the address counter and the

semaphore to zero. It then waits until activated during the ‘System layer’. Where it is

activated (transmit/receive inputs) will determine whether its role is in the form of a

transmitter or receiver in the region. The inputs are determined from the module relationships

inherent to the control graphs. Essentially, each module call from within a module is

associated with the transmitter side of the communicator and vice versa.

Execution of the transmitter proceeds by reading the data byte of the local module address

ROM referenced through the recently initialised address counter. Simultaneously, the other

regions monitor the status of the semaphore, awaiting a transmission. Whether it takes place

or not depends upon the meaning of the data byte, for instance, its purpose may be to guide

the transmitter at a point of divergence in the execution path of the active module. In the event

of the data byte representing a connection, the transmitter proceeds to connect the calling

module (identified within the format of the data byte).

Next the address channel is set to broadcast the remaining bits of the byte which will address

the called module and the region on which it resides. Its direction, along with that of the data

channels is determined by the function of the controller cell. The interface of a transmitting

region is set to output the address onto the channel. On the other end of the address channel,

the interface must input the address to the receiver. Likewise, the direction of each region’s

interface to the data and control channels is also set, to enable the output of the transmitting

region to connect to the inputs of the receiving region and vice versa.

Once the interface of the transmitter is configured, the region initiates transmission by

toggling the state of the request line. This triggers a chain of events at each receiving region

during which time the transmitter waits for a response. It comes when a single region

identifies itself, although this stage may be bypassed (‘# decode only’ command) if the region

featured in the previous connection.

The final stage is to decode the target module’s address and connect the module to the data

and control channels, thus completing the coupling of the regions. Contact is signalled

through the receiver toggling the ‘Ack’ line which places it in a state of readiness awaiting the

next potential transmission.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 164

The transmitter responds by returning the direction of all channel interfaces to a default mode.

This configures the region to receive an incoming address − it may become the receiver in the

next inter-region connection.

The interface to the control channel also reverts to an input direction e.g. the interface buffers

for the semaphore are reversed to receiving rather than requesting transmission. Similarly, the

orientation of the pair of input/output data channels is fixed for all receiving regions. For

multiple reconfigurable regions, there will be more than one receiving region during the

establishment of a connection and this places the onus on the transmitting region to alter the

direction of its interface to enable an output to drive an input on the receiving end etc. With

the connection now established, control is once more returned by the controller cell to the

system layer where the execution of the pair of modules will now take place.

5.4 Device-level Architecture

When the structural description is generated, the activation of the reconfiguration controller is

expressed in terms of boolean equations that link the control node (now control state) directly

to its enable input. The backbone of the architecture is implemented at this layer. With

reference to Figure 5.14, it comprises the ‘Reconfiguration Controller’ and the protocol for its

deployment in the architecture.

A key facilitator of reconfiguration is the reconfiguration controller, which like the other

structures is described in the cell library as an RTL VHDL component to be instantiated

during the creation of the structural circuit description. Unlike the others, it is only

instantiated once, as every occurrence of a ‘ContextSwitch’ instruction is bound to the

controller. In the structural description of the data-path, it appears as a component whose

execution can overlap that of any other component in the data-path: it achieves this at the

device level by exploiting the partial reconfigurability of the Virtex configuration memory.

Respecting the precedence of module execution in the scheduling of each context switch

ensures that it reconfigures only the circuitry of reconfigurable regions which have completed

their execution.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 165

A novelty of the reconfiguration controller is that it enables a Virtex FPGA to partially

reconfigure itself using the programmable logic resources of the device. It does not require an

external controller in the form of a personnel computer, on board or embedded

microprocessor to perform the reconfiguration.

Figure 5.14 (a) illustrates the interface between the controller, the Virtex ‘Configuration Port’

and the external ROMs containing the data-streams. Shown alongside it is the protocol

necessary to perform the reconfiguration process. Upon power-up, the FPGA is configured in

the ‘Master SelectMap’ [6] mode, where it controls the loading of the full data-stream which

configures the architecture i.e. the static and dynamic regions, along with the communication

channels linking them.

On completion of the full configuration process, control is passed to the programmable logic

resources of the device, where the reconfiguration controller within the static region changes

the FPGA configuration mode to ‘Slave SelectMap’ [6]. Ordinarily, this enables an external

device such as a microprocessor to manage its configuration. However, in this instance, it is

the design being executed on the programmable logic − namely the reconfiguration controller

which oversees the self-reconfiguration process.

Self-reconfiguration is a three stage process: Firstly, the start address of the partial

data-stream is passed to the controller prior to its activation in the control graph of the

program module or subordinate modules. Activation occurs during specific states in the

control graph, predetermined during optimisation under the guidance of the temporal

partitioner.

On receipt of the control token, the controller is initialised with the start address of the

configuration data-stream. Upon each configuration cycle, a byte is passed from the external

ROM where it is stored, through the controller and on to the internal configuration bus of the

FPGA. Providing the FPGA returns no error flag and has processed the current byte, the next

byte is fetched. This process continues until the end of the data-stream is reached.

Unlike a full reconfiguration of the Virtex FPGA, there is no dedicated flag to indicate the

completion of configuration. The solution adopted is to detect the ‘desync’ sequence of bytes

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 166

Master
configuration

mode

Slave
configuration

mode

switch
configuration

mode

Idle state

Fetch and
decode ROM

data byte

Partially
reconfigure

FPGA

Error recovery

System Failure

Reset
 return address,
command and

condition
registers

context switch

context switch

next byte

re-attempterror

error

unrecoverable
error

ce

D7-0

we

reset

oe

reset clk

MOODS global signals

In_tokens

reset

clk

Virtex FPGA

A7-0

Data[7:0] D7-0

Partial
Datastreams

ROMA7-0

start addr

Chip enable
Output enable

Write enable
 reset

write

Virtex SelectMap
 Configuration Port

Context
Switch cell

cs
init

mode

token_out

clk

Busy

M0-2

Busy/Dout

CCLK
PROGRAM

DONE
INIT
CS

WRITE

cclk
cf
ce
Reset/oe

FULL
DataStream

D7-0

ROM
Programmable resources

“0000...00”

Module
control
states

(a)

(b)

configuration
complete

Figure 5.14: Reconfiguration controller and protocol.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 167

at the end of every partial data-stream. When encountered by the controller and providing that

no errors were returned by the FPGA it can be used to indicate a successful reconfiguration.

The control of the configuration port is then relinquished and it is placed in a state of high

impedance along with the external ROMs.

The final function of the controller is to pass on the control token and in doing so ensuring

that the dynamic context associated with the partial data-stream is loaded into its designated

reconfigurable region prior to its execution in the control graph.

The FPGA remains in the slave selectMap mode of operation for the duration of the design

being executed until the power is cycled, whereupon the mode of the FPGA is set to master

selectMap, the full data-stream is loaded and the process outlined above is repeated.

It would be rather cumbersome to directly tag a module call with the physical address of the

module configuration data-stream within the control path. A neater solution is to implement

the configuration addressing within the external memory itself. This effectively makes the

reconfiguration controller micro-coded. It may be extended without too much difficulty to

alter the scheduling for the context switching of the temporal partitions on-the-fly. The

motivation for doing so would be to fine tune a bad compile-time partitioning using

information only obtainable at run-time. At present, this approach is supported by the multiple

binding of sub-modules to more than one location, although its present purpose is in the

generation of temporal partitions which require fewer context switches.

Figure 5.15 illustrates the organisation of an external memory necessary to store the data-

streams for the quartic equation solver. The memory locations can be conceptually divided

into two halves. The first effectively encodes each sub-module configuration sequence. The

rationale for doing so is to enable the reconfiguration controller to select the right data-stream

without being passed the actual address from within a module. Instead the address of each

data-stream is held in memory along with the data-streams themselves.

In much the same way as the end of a data-stream is represented by a unique sequence of

bytes recognised by the reconfiguration controller state machine, the order of each data-

stream is marked by a ‘fetch’ command byte. It directs the state machine to read the next byte

which will point it to the address in memory of the beginning of the relevant data-stream.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 168

ROM locations
Condition
register

Return
address
register

fetch addr23

...
fetch addr14
fetch addr23

...
fetch addr23
fetch addr20
fetch addr23

...

true

C0

end & restore
config byte

C1

end & restore
config byte

C2

end & restore
config byte

C3

end & restore
config byte

cond

condcs R1,C0

cs R2,C3

cs R2,C3 cs R1,C0

cs R2,C2

P1

P2 P3

cs R2C3

cs R2C3

addr6
addr7

P1

addr9

addr11

addr10

P2

addr3
addr4

P3

(a)

(b)

false
false

true
false# condition addr5

condition addr8
fetch addr14

tru
e false

tru
e false

Read
Condition
register

Increment
address
counter

Write
Return
register

Read
Return
register

Address
counter = 0

Address
counter

instruction
operand

Read data
 byte

condition

false# true

=

end# fetch

addr0

addr1

addr2

addr3

addr4

addr5

addr6

addr7

addr8

addr9

addr10

addr11

addr14

addr15

addr16

addr17

addr18

addr19

addr20

addr21

addr22

addr23

addr24

addr25

Figure 5.15: The organisation of configuration data-streams in external memory.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 169

Before performing this task, the state machine writes the address of the command byte into a

dedicated ‘Return address’ register. Once the loading of the data-stream is complete, it

enables the state machine to continue processing the fetch command sequence.

Upon a successful configuration, the address counter is incremented to point to the next

command byte. In the event of a configuration failure, the address provides an opportunity to

re-load the data-stream or acts as a base from which the last known good configuration can be

determined and loaded. Its application in the error recovery process is discussed in due

course. The second half of the memory contains the configuration data-streams to which the

fetch commands refer. Each data-stream may be referenced several times during the execution

of the circuit. This is more economical in terms of memory space than duplicating the data-

streams at every reference.

A circuit is highly likely to have some form of conditional control inherent to its function. To

ensure that the data-streams available to the reconfiguration controller match the order of

modules executed on the current path, any choice made in the control path is mirrored at the

same points along the configuration command sequence in memory. This is achieved by

embedding a ‘condition’ command at the appropriate place in the sequence. It informs the

reconfiguration controller to examine the contents of a condition register to determine which

series of command bytes it should process next. In doing so, it ensures that the configuration

sequence will match the order of module calls regardless of which branch is taken. This will

of course depend upon the outcome of the condition itself which would be fed from a

functional unit in the module’s data-path, for instance the output of a comparator unit. Should

that output be ‘false’, the state machine responds by loading the byte immediately after the

condition command or at an address given by its operand when the outcome of the condition

is ‘true’. In either case, the byte read by the controller is the address of the next consecutive

set of data-streams whose modules will be encountered along the control path taken. The

condition register is written to directly from the control channel. A dedicated channel signal is

required, as the reconfiguration controller is only present in the static region and not local to

the module in which the condition is encountered.

Following this format enables the memory to be organised in a way which corresponds to all

module execution paths through the circuit. Consider once again, the control paths of the

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 170

quartic equation solver (simplified in Figure 5.15 (a) to depict just the sequence of data-

streams invoked along each path). Each path is encoded in the memory through the controller

commands (pre-fixed with ‘#’). Assuming that each memory location can contain both a

command and/or an address byte depending upon its format and that a byte is sufficient to

address all of its locations.

Also shown in Figure 5.15 (b) is a state transition diagram which depicts how the

reconfiguration controller will pass through the memory. It will be utilised to briefly show

how the control path P2 is tracked within memory.

Assuming that the address counter is initialised to ‘addr0’, the first command byte

‘# condition’ directs the controller to read the status of the ‘Condition’ register. It reflects the

state of the first condition depicted in the control graph − which to direct it along the path ‘P2’

will be assumed to be ‘false’. The controller responds by incrementing the address, taking it to

the second conditional command byte at memory address ‘add2’. Once again, the path

diverges into two, only this time a ‘true’ register value adds an offset of 6 memory locations

to the address counter, pointing it to the ‘# fetch’ command at memory location ‘addr8’. The

command byte then directs the controller to the first configuration byte of the data-stream ‘C3’

and to self-reconfiguration of the device, after it has written the location of the next module

address ‘addr9’ to the ‘Return address’ register.

Once the configuration of the FPGA is complete and with no errors encountered, the return

address is incremented to reach the next fetch command at location ‘add9’. It references the

configuration data-stream ‘C2’ and the process described above is repeated until no more

configurations remain; the controller sets the address counter to point to the memory at

address byte ‘add11’ and the controller awaits the execution of the next sequence of

subprogram modules.

5.5 Implementation in MOODS

Before describing how resource binding has been used to achieve circuit partitioning in

MOODS, it is useful to repeat a number of salient points that were identified and described in

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 171

earlier chapters and which have subsequently influenced the approach described in this

chapter.

The first is the use of MOODS for synthesising reconfigurable logic circuits. A particular

strength in the Simulated Annealing approach offered by MOODS is the ability to quantify

the impact of changes to the circuit structure with regard to multiple and often contradictory

constraints on its properties. The reader will recall from Chapter 4, that the use of

reconfigurable resources necessitates the measurement of many aspects of a circuit’s

structure, several of which are also inter-dependent.

An obvious example of this is the trade-off between a resource reduction and the

reconfiguration delay required to permit the sharing of reconfigurable resources at different

times. A more subtle trade-off would be in deciding the size and number of the partitions

required for a given user resource target. Consider what might happen when a subroutine

cannot fit in any of the available temporal partitions and making it reconfigurable would bring

the size of the circuit closer to meeting the resource target.

An existing resource could be reconfigured to form a new temporal partition, at the expense

of an increase in the overall reconfiguration delay. Alternatively, the unused logic of two

adjacent temporal partitions could be merged to form a partition large enough to achieve the

same effect without any increase in reconfiguration delay, the result of combining their

separate delays. Although it would be a less costly approach concerning the reconfiguration

delay, the current vendor design methodology [122] for partial reconfiguration of

programmable resources requires fixed sizes for all resources; therefore, any future re-use of

the combined resource during partitioning would result in a temporal partition of the

combined size. This would require a cost function to accept a larger reconfiguration delay, a

scenario that would be less likely to happen than in the case of accepting a smaller delay

associated with a smaller resource. Thus there is a trade-off between fewer larger partitions or

many smaller ones.

This example excluded the use of existing instruction scheduling and allocation techniques.

For example, space for the functional unit could have been created by sharing functional units

in any of the temporal partitions. This would have to occur between units that are not on the

critical path, in order not to prohibit the scheduling from otherwise reducing its delay by

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 172

executing their instructions in parallel. Through its implementation as a transform, temporal

partitioning can be applied in the same synthesis session as the existing operation-level

transforms, enabling their interaction to guide the cost function to meeting the user-specified

optimisation goals.

For any resource and delay constraint there are likely to be many different ways in the

instructions of a behavioural specification can be scheduled, allocated and partitioned to

reconfigurable resources. As the literature survey concluded, existing heuristic approaches to

temporal partitioning, concentrate on extending existing spatial partitioning or HLS

scheduling techniques, at a loss of generality. Any additional constraint, such as one that

would accompany a new device implementation methodology or the addition of a new metric

would likely require a different heuristic to be developed. Such changes are not an issue when

using Simulated Annealing. However, the drawback in not specifying how the partitioning is

achieved is the greater time taken to search the design space, in comparison with other

methods [66].

A Behavioural partitioning can also reflect well in a cost function due to the likelihood of

there being more data-dependent operations inside a subroutine than outside it, in the form of

parameters passed from a calling subroutine or process, as described earlier in the chapter.

Data-dependencies broken by partitioning, such as a variable written to in one partition and

read a later by another, require additional components to transport their signals in between

reconfigurable resources. Any reduction of additional resources may tip the balance of a cost

function toward accepting the prospective partition.

The final point relates to how the partial reconfiguration of resources is represented in

MOODS HLS. The author has taken a pragmatic approach which uses the same hardware for

theoretical and practical implementations of partial reconfiguration, despite the fact that

current FPGAs require configuration cycles in the order of several magnitudes greater than

the number of cycles used to execute the resources being configured. This approach

implements reconfiguration in a different clock domain to that of the user’s design. During

synthesis, an equivalent configuration time is modelled during the scheduling of

reconfiguration which enables MOODS to overlap the reconfiguration of a resource with the

execution of another. Crucially, the exact delay can be varied depending upon the

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 173

assumptions made about the number of configuration cycles required to configure a resource

and the period of the clock domain.

5.5.1 Resource Binding Transform

In the previous chapter each characteristic associated with the module-based temporal

partitioning of a design was presented and shown to be quantifiable through a metric. When

embodied by the cost function, together they enable an optimisation algorithm to explore the

trade-offs between the different aspects of the design they represent during its partitioning and

optimisation, in addition to enumerating the cost of the device-level infrastructure which

ultimately implements the design using run-time reconfiguration. The next step will bring

together the work presented thus far, by defining a transform which under the guidance of an

optimisation algorithm will be used to perform the temporal partitioning.

The motivation for using a transform to implement the partitioning of a design is the

opportunity it provides in exploring the combined effects of context switching and control

graph and data-path optimisation during synthesis. This is achieved in practice through its

integration into the existing transform-oriented framework provided by the MOODS synthesis

suite. An example of their interaction is during the early stages of optimisation, where there

are many more control states during which the reconfiguration of a module may be scheduled

to overlap, however, as optimisation progresses their number is reduced due to the chaining of

instructions per state. Those modules where the reduced reconfiguration time is the deciding

factor in whether their assignment to a dynamic context is accepted or rejected during

partitioning, are more likely to be rejected during the later stages of optimisation and are very

likely to be rejected when optimisation is done independently and prior to partitioning.

Although there are numerous ways to partition a design, there are likely to be a number of

distinct moves which may be taken. The task of the transform is to perform any one of these

moves under the direction of the optimisation algorithm. The term ‘direction’ is used to

describe the role in which the optimisation algorithm plays, since a sub-module is selected

from a source context of its choosing and moved to a destination context of its choice. How it

makes its choices is very much dependent upon the nature of the heuristic algorithm used, be

it stochastic or deterministic in its approach, examples of each are currently employed during

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 174

optimisation in MOODS. Before examining the different approaches to temporal partitioning

and the role in which the context switching transform plays while under the supervision of

each optimisation algorithm, let us first consider the behaviour of the transform itself.

Recall that MOODS achieves optimisation of a design through an iterative process of

selecting a transform and a target, simulating the changes that would be made to the design by

the transform and quantifying those changes through the cost function. Only then can it

determine whether or not the optimisation of the design is being guided towards its objectives

– in which case the transform may be applied or away from them, the response to which is

generally rejection depending upon the algorithm used. The deployment of the context

switching transform is completely compatible within just such an optimisation framework.

Assuming that the context switching transform has been selected by the optimisation

algorithm, how it came to be selected is inherent to the nature of each of the optimisation

algorithms and is described in a later section. The effect of executing the transform is to

assign a single sub-module to the static or a dynamic circuit context, although, occasionally a

number of sub-modules may also be re-assigned in the process, the result of clustering those

sub-modules allied through an execution hierarchy.

Figure 5.16 illustrates the reaction (shaded) of the transform to each task and decision

undertaken by the optimisation algorithm. The first task of the optimisation algorithm is to

select the target data structures to which the transform is applied. The type of data structure

will depend upon the transform selected, for example, a pair of control states is targeted for

merger by the scheduling transform ‘Sequential merge’. In the same sense, the context

switching transform is applied to the sub-module and circuit context data structures. The sub-

module is chosen, regardless of where it currently resides, be that in a static context or as part

of a dynamic context.

The next decision illustrated is whether the sub-module should form the basis of a new circuit

context on a new reconfigurable region or be assigned to an existing context and region. This

will be influenced by the properties of the module, such as whether its execution is concurrent

to those currently assigned to the region − in which case their execution must be mutually

exclusive for it to be allocated to the same region. When this condition cannot be met, a new

region must be created. There is no decision to be made during the first execution of the

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 175

Select a
sub-module

Assign to a
new or existing
reconfigurable

region ?

Relations in region?

Cluster or fragment the
sub-module?

Assign to a new or
existing context?

Select a circuit
context

Assign sub-
module to circuit

context

Create a new
circuit context

Re-assign all
relations to the

context of the first

Create a new
region

Yes

N
o

Cluster

Fragm
ent

Place
Left or Right

of Static Region?

New

 Figure 5.16: Decisions made during application of the context switching transform.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 176

transform, where there are no existing regions to choose from, in which case there is only one

course of action and the transform responds accordingly by creating a new region and a

context to which the sub-module is assigned.

Prior to its creation, the placement of the region is determined by the optimisation algorithm.

This is due to the fact that its location, in relation to the static region, determines the number

of regions through which the associated communication channel(s) must pass through, in

order to connect any pair of modules divided between the regions. As the number of buffers

utilised in the construction of a channel is a product of its length (in terms of the number of

regions it crosses), there is a cost incentive to limiting the number of regions bridged by the

channel, which is determined by the placement of the regions it connects.

Alternatively, if an existing region is chosen, what happens next is very much dependent upon

the relationship between the sub-module selected and those currently resident in the region.

The term ‘relationship’ is used to denote the execution hierarchy which may exist among the

sub-modules, where the module selected may initiate the execution of another, currently

resident in the target reconfigurable region or vice versa. In either case, the related sub-

modules cannot be simultaneously active in a common region, unless they are clustered in the

same circuit context or their inter-module signals are buffered, fragmenting their execution

over multiple contexts. The assignment of the existing sub-modules remains undisturbed

when their execution is divided over several circuit contexts. The same cannot be said of the

modules affected by clustering which are re-assigned to the temporal context of the first

related module in the region, along with the module selected earlier.

The decision to fragment or cluster a module hierarchy need not be taken solely by the

optimisation algorithm, the user may regard it as an experimental parameter to independently

evaluate the impact of clustering and/or fragmenting the hierarchy upon the quality of the

final solution.

The final decision taken by the optimisation algorithm is whether or not to create a new

context for the sub-module or assign it to an existing one. Once again, it will be sensitive to

the presence of a module execution hierarchy and the approach subsequently taken in

response to it. The outcome of the decision favours either a smaller ‘footprint’ in the

reconfigurable region targeted or a reduction in the level of context switching it experiences.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 177

There are a number of intervening stages between the selection of a sub-module, circuit

context and the application of the transform; the first of which is an estimation of the effect of

the transform on each of the cost function metrics: it enables the cost function to indicate

whether the effect of the transform constitutes an improvement or degradation in the

optimisation of the design. Figure 5.17 illustrates the steps required to estimate the impact of

the context switching transform and the order in which they must be taken. All the steps are

undertaken, irrespective of which of the moves has been chosen and regardless of the distinct

configurations of sub-module hierarchies that may occur.

Each step need only be carried out for those reconfigurable regions directly affected by a

move, the source of the sub-module (if it is not currently assigned to the static context) and

the destination region.

The first three steps are self-explanatory and correspond directly to the estimation of the area

post-partitioning, dimensions of the communication channel(s) and a measure of the variation

in area of the set of circuit contexts assigned to a reconfigurable region. They were

exemplified in the previous chapter, during the overview of the metrics and formally defined

during the problem definition that followed.

The remaining steps provide an estimation of the reconfiguration overhead associated with the

control paths which may be taken through the circuit being synthesised. Recall that the

reconfiguration overhead of a context is predominantly a product of the time taken to load it

into the configuration memory of the target device and the frequency with which this occurs

during the lifetime of a design’s execution. The sequence of module calls which lie on a given

control path and their assignment during partitioning determines the number of times a

module and the circuit context to which it is assigned are swapped and the context and

modules with which they are swapped.

A profile of the design obtained through a simulation of its execution may aid in the

identification of the control paths that are most likely to be taken in practice. This of course

assumes that in addition to exercising the various aspects of the design, the test-bench can

also accurately model the likely run-time conditions under which the design will operate. In

such cases, the value of this approach is reliant upon there being a significant disparity in the

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 178

Find the largest
circuit context in

the region

Reconfiguration
Overhead

(current path > worst
path?)

Determine the
characteristics of
the Channel(s)

Find the degree of
imbalance among
the circuit contexts

Fetch the first
control path.
current path
= first path

Schedule the
reconfiguration for

each circuit
context in region

Calculate the
reconfiguration

Overhead

Worst path =
current path

Fetch the next
path

N
o

Yes

Figure 5.17: Estimating reconfiguration overhead for the context switching transform.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 179

likelihood of execution among a number of paths and it being a recurrent feature in other

paths of the design. Those paths which do not exhibit a clear contrast in the likelihood of

their execution are then assumed to have an equal chance of being taken, in which case the

task during estimation is to identify the path associated with the greatest reconfiguration

overhead. This is illustrated by the remaining steps of Figure 5.17, where the reconfiguration

overhead associated with each and every path is found. In doing so, an upper bound

estimation of the reconfiguration time can be established for the present configuration of

temporal circuit contexts.

5.5.2 Context Switch Instruction

To maintain the original execution order of the sub-modules and in doing so, preserve the

behaviour of the circuit design being synthesised, every module must be present in its

designated reconfigurable region prior to being activated by any of its associated calls;

regardless of where it has been assigned during partitioning. To do so, necessitates the

continual switching of each reconfigurable region between a set of associated temporal

contexts. Where a context switch is deemed necessary, the activation of the reconfiguration

controller required to perform a self-reconfiguration of the device must also be scheduled.

The earliest a context switch may be initiated is determined by the last execution call to a sub-

module already resident on the shared reconfigurable region. On the contrary, the latest a

context switch may occur is during the cycle prior to the activation of the sub-module

concerned. Together, they define a partial graph from which an arbitrary vertex may also be

selected to schedule a reconfiguration.

When scheduling the reconfiguration of each of the circuit contexts, the initiation of a context

switch is marked using a dedicated instruction. The origin of the ‘ContextSwitch’ instruction,

as its name suggests, does not lie as the others do in the semantics of the behavioural

specification, rather, it owes its existence to the context switching transform. For it is only

during optimisation that each instruction is inserted or removed to and from a control node

under the guidance of the temporal partitioner. This reflects the transparency in which run-

time reconfiguration is deployed during synthesis, in response to the user’s optimisation

objectives and targets, rather than requiring their involvement and any explicit reference to

reconfiguration in the description of the circuit design.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 180

Akin to the majority of ICODE instructions, the context switch (CS) instruction is associated

with a node in the data-path, in its case the reconfiguration controller. There are two operands

of a CS instruction, namely ‘Segment’ and ‘Module-Instance’, which together relate the

control state in which the instruction is assigned with the execution call of the module being

partitioned. The first identifies the end of the reconfiguration segment by recording the actual

module call. When the call occurs within another sub-module, it no longer uniquely

references the segment.

The second operand differentiates between what would otherwise be a number of identical

segments, each the result of a separate call to the module in which the reconfiguration

segment is scheduled. Each addition of a CS instruction to a control state creates a

dependency between the ‘ModuleLeap’ instruction associated with the sub-module call and

itself. Respecting the precedence of the instruction dependency ensures that a module is

activated only after the circuit context to which it is assigned is configured in the

reconfigurable region. A new instruction group is created for the instruction and stored within

the control state, reflecting its independence of any other instructions assigned to the state and

the concurrency in which the reconfiguration controller can operate, to exploit the partial

reconfigurability of the target device. In this way, it is possible to overlap the execution of an

instruction with the reconfiguration of another, albeit as part of a sub-module being

reconfigured.

The importance of the role played by the scheduling of the circuit contexts is primarily

dependent on the extent of its influence in reducing the reconfiguration overhead through the

overlapping of reconfiguration with execution and secondly, in its interaction with the

existing scheduling transformations such as the sequential merging of control states.

5.6 Transform Interaction

Signifying the start of each context switch with a ‘ContextSwitch’ instruction and realising

temporal partitioning through a transform, not only enables the simultaneous application of

the scheduling and context switching transformations within a single optimisation run, but

also ensures that where relevant, any optimisation to the control graph or data path is also

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 181

reflected in the temporal partitioning of the modules affected and the scheduling of the circuit

contexts to which they are assigned.

Figure 5.18 illustrates one such interaction between the application of the Sequential merge

transform and its effect on the scheduling of the temporal circuit contexts. Each section of

control graph depicted in Figure 5.18 (a-d) is committed in some way to reducing the

reconfiguration overhead associated with swapping sub-module ‘X’ with ‘Z’ during the

period of its execution. A shaded vertex denotes the beginning and end of each

reconfiguration segment, where the beginning is identified by the CS instruction assigned to it

and the end is an activating call to the sub-module in question; sub-module ‘Y’ is assigned to

the static context. In actuality, all other vertices would be associated with an ICODE

instruction, not shown in the example for the sake of clarity.

The reader will recall the purpose of the Sequential merge transform, that is to re-assign a

group of instructions associated with one control state ‘n2’ to those of another ‘n1’ and in

doing so, reducing the length of the critical path by one state (subject to there being no

instruction dependencies with those of the intervening states, nor any shared data path nodes

between the instructions allied to the pair of states selected for merger − unless the

instructions are mutually exclusive). The states may exist in any of the modules, be they in the

program module, sub-module or nested sub-module. Each of the four sections of graph

illustrates a different scheduling scenario from which the pair of control states (n1, n2) is

selected for merger:

a) The control state n2 denotes the start of the reconfiguration segment for sub-module Z,

whilst state n1 (the destination of the merger) has no association with any segment. For

those paths on which n2 marks the beginning of a reconfiguration segment, the result

of its amalgamation with n1 will be an earlier context switch of the module, the

consequence of an increase in the segment length. This ASAP effect will decrease the

reconfiguration time for module Z by 15 cycles (the number of states overlapped by

the merger, including those of sub-module Y minus the removal of state n2, upon a

successful merger). If n2 does lie on the path incurring the greatest reconfiguration

overhead (worst path) than a re-evaluation of all paths is undertaken to verify whether

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 182

or not the merger has brought about an improvement in the path which may no longer

differentiate it as the worst.

X

Y

Z

n2

n1

t0

t1

t2

t3

t14

t15

t16

t17

t27

t28

t29

t30

(a)

CS X

X

Y

Z

n2

n1

(d)

X

Y

Z

n2

n1

(c)

 X

 Y

 Z

n2

n1

(b)

CS X CS X CS X

CS Z CS Z CS Z CS Z

MODULELEAP X

MODULELEAP Y

MODULELEAP Z MODULELEAP Z MODULELEAP Z MODULELEAP Z

MODULELEAP Y MODULELEAP Y MODULELEAP Y

MODULELEAP X MODULELEAP X MODULELEAP X

Figure 5.18: Merging control states from within reconfiguration segments.

b) The merger of the pair of control states will result in contention for the configuration

port of the target device. This is due to n1 being part of the reconfiguration segment of

module X and n2, once again, signifying the start of the segment for module Z. If the

states occur in a sub-module, it is pertinent to verify whether or not their segments

relate to a single temporal instance of the module and also if they are executed on the

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 183

same control path, otherwise an overlap in reconfiguration cannot take place. When it

does occur, there are a number of responses which may be adopted.

The first is to prohibit the contention from occurring by ensuring that it is detected and

discarded during the validity test for the sequential merge transform prior to its

estimation. The disadvantage with this approach is the missed opportunity for

optimisation, the consequence of discarding a pair of control states. Another is the

increase in the optimisation time resulting from the time spent re-selecting an

alternative pair of control states, especially when it is a common occurrence.

A different approach is to re-schedule the start of the segment associated with n2, for

example, assigning it to the preceding node Y and in doing so, permitting the merger

of the states whilst avoiding the simultaneous access of the device configuration port.

Alternatively the sub-module of one of the conflicting contexts can be re-assigned to

the static context, in this case X or Y, thus permitting the merger of the control nodes.

The change in the partitioning will require an update of all the affected metrics (area

post-partitioning, channel and reconfiguration overhead). In particular, a revision to

the reconfiguration overhead metric may necessitate the re-determination of the worst

path, the repercussion of change in the swapping characteristics of those modules on

whose paths the conflicting module(s) were executed. Whichever approach is taken to

resolve a reconfiguration overlap, the merger of the control states and the changes

required to permit it are jointly estimated.

c) Once again a conflict will arise following the amalgamation of the two states, both of

which are scheduled to initiate a context switch of a reconfigurable region for their

associated module X or Y − the choice of solution adopted is the same as (b). Upon

application of the transform, one of the CS instructions is either re-assigned or

removed permanently from the control state and once again, the re-evaluation of all

paths is undertaken, in order to identify the path which will incur the greatest

reconfiguration overhead.

d) This scenario is dissimilar to the others, in as much as, although n2 is part of the

reconfiguration segment of module Z, it does not mark the beginning of the segment.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 184

The elimination of n2 (if its instructions are re-assigned to n1) will reduce the length of

its former segment of graph by one state, irrespective of the circumstances of n1 (be it

the start of the segment as shown, part of the segment or not part of any segment).

Consequently, there will be an increase in the reconfiguration time associated with the

loading of sub-module Z and any paths on which it lies. Regarding the worst path,

there is no requirement to search for it, as either, the pair of states are taken from it and

consequently their merger will reduce the length of segment associated with n2 by one

cycle (maintaining its designation as the worst path) or the path on which the pair lie

must have been at least a cycle shorter than the worst path, in which case, its increase

in reconfiguration time can only equal that of the worst path. In either case, the re-

determination of the worst path is unnecessary.

Each of the scenarios described above can also be encountered during the application of the

‘Merge fork and successor’ transform, its purpose is to move the instructions of a successor

state into its predecessor (the fork), in doing so, the control arc is converted into a conditional

instruction making the immediate successor state redundant. Eventually, upon repeated

application of the transform, the fork construct itself becomes superfluous. As an individual

branch, the fork can be regarded as a general control state with a single output arc to a

successor, then a reconfiguration segment affected by the merging of a pair of sequential

general control states would be similarly affected by the merger of a fork and its successor,

had the segment lain on a single branch of the fork. The rest of this section reviews the effect

which the remaining transforms can exert upon the reconfiguration of temporally partitioned

modules.

A variable that is written to and read from by a single instruction executed within its own

control state is an appropriate candidate to which the ‘Group instructions on variable’

transform may be applied. Each read or write is implemented in the data path by a register

with a single input and output data-path net. Merging the write and read instructions within a

single state removes the register and the state in which it was formerly written.

Since either state may be associated with a reconfiguration segment, once again, there is the

possibility that their merger will affect the scheduling of a context switch. There are a number

of circumstances similar to those encountered by the previous transforms. The states may

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 185

occur within a single segment or belong to entirely different segments, in either case the effect

of applying the transform will be a reduction in segment length, at the expense of an increase

in its associated reconfiguration time. However, unlike the other transforms, the target state

(in which the variable is read) must occur after the state where it was written.

t2

t3

t4

t5

t16

t17

t18

t19

t0

t1

X

Y

nr

nw CS X

CS Y

MOVE a,b

MULT b,#2,c

X

Y

nw/r

CS X

CS Y

(a) (b) (c)

X

Y

CS Y

MODULELEAP X MODULELEAP X MODULELEAP X

MODULELEAP Y MODULELEAP Y MODULELEAP Y

MOVE a,b

MULT b,#2,c

MOVE a,b

MULT b,#2,c

Figure 5.19: Group instructions on variable transform and reconfiguration segments.

Depicted by the sections of control graph in Figure 5.19, deciding when to schedule

reconfiguration can present a subtle dilemma if the writing state ‘nw’ of the variable is also

used to mark the beginning of a reconfiguration segment not encompassing the reading state

‘nr’. The amalgamation of the segments will break the instruction dependency between the CS

and ModuleLeap instructions and result in an execution call to module X before it has been

loaded in to its reconfigurable region. To prevent this from happening and to also enable the

transform to be applied, the start of its segment is re-scheduled to the preceding state at time

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 186

step ‘t1’ shown in Figure 5.19 (b) or the instruction dependency and segment can be removed

by assigning the effected module X to the static context (c). The decision as to which response

is deployed is implemented through a parameter set by the user prior to optimisation.

The ‘Inverse Scheduling’ transforms can also exert an effect over the scheduling of a context

switch. The purpose of the first ‘Ungroup-Node Into Time’ transform is to un-chain groups of

instructions whose execution within a particular control state exceeds that of a delay

parameter set during optimisation or through the cost function, to specify a maximum clock

period constraint.

The selected control state may form part of a reconfiguration segment or be used to mark its

beginning, as shown in Figure 5.20 (a). The state is left undisturbed since it has no other

dependent instruction in the state, in contrast to the other instruction group. In Figure 5.20 (b)

the state’s instructions are re-assigned to new control states, where the exact number is

determined by the instruction depth of the group and the size of the target node delay

parameter (25 ns in the example shown) which the transform attempts to meet. Each

additional control state lengthens the segment ‘S’, in effect, scheduling an earlier start for

reconfiguration of the associated module and its circuit context. Should the control state occur

in a sub-module, the change in scheduling must also be taken into account for each and every

temporal instance of that sub-module. For all reconfiguration segments, irrespective of their

module association, only those segments which lie on the control path credited with

generating the greatest reconfiguration time will contribute to the cost function (where there

are a number of control paths, each of which are equally likely to be taken) and ultimately

determine whether or not the transform will be applied.

In much the same way, the ‘Ungroup node into groups’ transform can also act to lengthen a

reconfiguration segment S, although how this is achieved differs to the previous transform, in

that an entire instruction group is extracted to a new control state, as illustrated in

Figure 5.20 (c). When the group chosen initiates the reconfiguration of a segment, its re-

scheduling a cycle later will have no consequence on reducing the length of its associated

segment (Figure 5.20 (d)). Once again, the effect of the transform is repeated, where

applicable, on any number of module instances and only reflected in the cost function when it

occurs on the worst path.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 187

(a)

X

CS X

MODULELEAP X

i2(30 nS)

i3(15 nS)

i1(20 nS)

S

(b)

CS X

X MODULELEAP X

i1(20 nS)

i2(30 nS)

i3(15 nS)

3S

(c) (d)

X

CS X

MODULELEAP X

i2(30 nS)

i3(15 nS)

i1(20 nS)

2S

X

CS X

MODULELEAP X

i2(30 nS)

i3(15 nS)

i1(20 nS)

S

Figure 5.20: Inverse-scheduling transforms and the timing of reconfiguration segments.

The outcome attributed to each transform thus far, has been a change in the scheduling of

each swap of a temporal circuit context. What remains to be considered is the consequence of

optimising the design for a reduced circuit area, be it through the merging of control states

and the subsequent removal of registers among their dependent instructions or through the

sharing of functional units on the data path. Its relevance to temporal partitioning is through a

change in the circuit area of each sub-module.

At any point during partitioning, the circuit area is found as the combined area of the static

circuit context and each of the reconfigurable regions. Recall that the area of each region is

defined by the largest temporal context assigned to it. Any change in the area of one of its

sub-modules will bring about a re-evaluation of the dimensions of all its contexts, in a bid to

find the largest. Significant changes to the circuit area can also arise from the data-path

allocation transforms, whether the outcome is a reduction in area arising from the mapping of

a single functional unit to two or more instructions, or its increase, as a result of the inverse

allocations transforms − they attempt to reverse the sharing of a data path unit, either for a

single instruction and unit or by separating all instructions by returning to a one-to-one

mapping of an instruction to functional unit. In addition to the effect on the area metrics, any

change in circuit area will also impact on the reconfiguration time. This is due to it being

directly proportional to the area of the module, modelled in terms of its columnar usage of

resources and ultimately at the device level, through its configuration bitstream.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 188

5.7 Summary

This chapter continues the theme of representing run-time reconfiguration in terms of circuit

abstraction and the infrastructure to realise it: at the highest level, the sub-module behaviour is

encapsulated through a System layer. At this level, the workings of the infrastructure are

completely transparent to any sub-module wishing to activate another. This is applicable

irrespective of the topology or placement of the static and reconfigurable regions, such detail

is relevant only at the next level, the Communication layer.

A temporal partitioning of the subroutine modules will break the assumption that all modules

are ‘on silicon’ at the same time. As a consequence, a fixed communication channel provides

the interface necessary to context switch the resources of an FPGA, in response to the

sequence of module calls executed.

As a result of temporal partitioning, the ‘topology’ of the partitions will determine the

characteristics of the communication infrastructure. One example of a particular topology

might require all subroutine modules to share the same communication channel. In this

scenario, the control and data-path signals passed between a pair of active modules at the

system level are represented as transactions of the channel, the use of which is governed by

protocol.

Central to the communication protocol is a module address ROM, customised during

synthesis to provide each module with a unique binary address in the architecture, irrespective

of the circuit context and region in which it is assigned to during partitioning. Modules

hierarchies of any depth are permitted, where each module can also be placed in any circuit

context and assigned to any region. The exception is the top level program module which

must remain active in the static region throughout the circuit’s execution, from where it can

initiate the first call of any execution hierarchy and receive notification upon its completion of

execution.

As its name implies, the Physical layer provides the device level control necessary to perform

partial reconfiguration of the FPGA. Its remit concerns the fetching of the data-streams and

the control of the device configuration port, both of which are done ‘on the fly’ during circuit

execution. Akin to the module address ROM, all circuit context data-streams are tagged with

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 189

their location in a memory. It contains more than the raw data-streams, as a number of micro-

coded commands are used to locate each data-stream, in the presence of any conditional

control paths on which its module might lie.

Having defined the layers of abstraction, the remainder of the chapter described how the

architecture is implemented in MOODS HLS: a temporal partitioning transform has been

created to partition VHDL subroutines to dynamic circuit contexts, each of which are

assigned to execute upon isolated regions of an FPGA.

A new ICODE instruction has been created to mark when a context switch of a sub-module

partition occurs. It is used by the scheduling routines to overlap each segment of

reconfiguration with the execution of a sub-module already active on the device. In addition

to reducing the reconfiguration time, the scheduling of each temporal context takes into

consideration the frequency in which a circuit context is swapped with another, as dictated by

the execution order of the sub-modules.

The cost function described in the previous chapter measures the trade-off between the area

reduced through temporal partitioning and the reconfiguration penalty incurred. Through the

use of the context switching instruction, the partitioning transform provides the cost function

with a means of denoting when reconfiguration occurs; however, the physical resource use

must also be included in the cost function. In practice, the instruction is allocated to a

reconfiguration controller in the data-path.

The reconfiguration controller enables the MOODS state machine controller to perform self-

reconfiguration of the FPGA through either its external control pins or internal configuration

port; depending upon the characteristics of the target device. In addition to the reconfiguration

controller cell, a number of channel controller cells are also synthesised, as part of the

infrastructure necessary to support partial reconfiguration. Each controller is local to the

region in which it is placed and is the principle means through which one region can

communicate with another. The control and data signals pass through a number of parallel

communication channels, the exact number of which, as with all aspects of the architecture is

determined during synthesis.

D. Esrafili-Gerdeh, 2016 Chapter 5: Implementing Run-time Reconfiguration 190

In temporal partitioning, ‘when’ a subroutine will utilise a resource is as important as ‘where’

that resource might be. With that is mind, the chapter concluded with an examination of the

interaction between the subroutine-level resource binding transform and the existing

instruction-level scheduling transforms: it described how a number of scheduling transforms

are exploited to influence the times in which context switching can occur, in some cases even

acting to influence the formation of the partitions. By doing so, the chapter re-iterates the

importance of considering a circuit representation at more than one level of abstraction, a

perspective made practical by the work described in this chapter.

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 191

Chapter 6

Implementation and Results

This chapter presents the results obtained using MOODS behavioural synthesis after

incorporating the approach to temporal and spatial partitioning described in the previous

chapter.

6.1 Experimental Objectives and Method

The purpose of the following experimentation is to assess the use of the simulated annealing

optimisation algorithm when employed during module-based temporal partitioning. However,

the absence of a specific approach to partitioning means that the algorithm can also be used to

explore the relationship between an action or ‘move’ taken during partitioning and its effect

individually and collectively on the partitioning metrics. More specifically, whether or not a

particular move is biased toward a given criterion in a way which drives it closer to or further

away from its user specified target.

The first step required to achieve these aims is to establish the annealing schedule. This

consists of defining the initial and end temperature parameters (Tstart and Tend) respectively,

the magnitude of the temperature steps required to pass through the temperature range and

finally, the number of transformations applied at each temperature step. In cases when

partitioning and optimisation are performed separately, the latter two parameters fix the

number of partitioning moves undertaken to 1000 – the minimum number of moves found

from early experimentation and thought necessary to quantify the behaviour during

partitioning, whilst being sensitive to the time taken to perform the experiments. Where

optimisation to the control and data-paths occurs alongside partitioning, the exact number of

partitioning moves is determined by the optimisation algorithm as it decides which transforms

to apply during each temperature step.

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 192

The next task is to set up the cost function so that during the course of the experimentation,

the effect of partitioning on an individual criterion can be quantified. Recall that each move

taken during partitioning is measured using the cost function:

𝑐𝑜𝑠𝑡𝑇𝑃 = 𝐶𝑝𝑎𝑟𝑡𝑎𝑟𝑒𝑎 ∙ 𝐴𝑇𝑃 + 𝐶𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔 ∙ 𝑇𝑅 + 𝐶𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑤𝑖𝑑𝑡ℎ ∙ 𝐵

where: 𝐶𝑝𝑎𝑟𝑡_𝑎𝑟𝑒𝑎, 𝐶𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔, 𝐶𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ, 𝐶𝐵𝑎𝑙 are weighted constants used to reflect the

user-specified optimisation priority of the area (post partitioning), reconfiguration overhead

and the buffer utilisation metrics respectively.

The impact of circuit partitioning on an individual cost function criterion can be determined

by setting the priority of the criterion to high whilst ensuring that the remainder are set to low.

The task during partitioning and/or optimisation is to meet the target of the highest priority

metric before proceeding to the next. The ‘status quo’ can be maintained throughout the

partitioning and/or optimisation session by setting the criterion under examination at a priority

higher than the others, in conjunction with a target minimising to zero. All criteria targets are

set to zero, with the exception of the channel metric: its target is determined dynamically

during the course of partitioning, from a model of the target FPGA chosen to closely fit the

area which would result from the proposed partitioning of the circuit modules. In doing so, it

provides an upper bound on the number of buffers utilised in the channel(s) linking the

reconfigurable regions on which the circuit contexts are executed. Since it is possible in

MOODS to implement multiplexors using tri-state buffers, for instance, to facilitate the

sharing of data-path units during optimisation, the channel will not have access to all of the

buffer resources available on the FPGA. To investigate the effect this can have on the channel

buffer metric, a percentage of the available buffers is used to realise the communication

channels.

The following cost functions are used during experimentation:

1. 𝐴𝑇𝑃(High), 𝑇𝐷(Low), 𝐵(𝐿𝑜𝑤); 𝐴𝑇𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 0.

2. 𝐴𝑇𝑃(Low), 𝑇𝐷(High), 𝐵(𝐿𝑜𝑤); 𝑇𝐷𝑡𝑎𝑟𝑔𝑒𝑡 = 0.

3. 𝐴𝑇𝑃(Low), 𝑇𝐷(Low), 𝐵(𝐻𝑖𝑔ℎ); 𝐵𝑡𝑎𝑟𝑔𝑒𝑡 = (100, 50, 33, 25, 10, 1) % of target

device.

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 193

4. 𝐴𝑇𝑃(High), 𝑇𝐷(High), 𝐵(𝐻𝑖𝑔ℎ); 𝐴𝑇𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 0, 𝑇𝐷𝑡𝑎𝑟𝑔𝑒𝑡 = 0, 𝐵𝑡𝑎𝑟𝑔𝑒𝑡 = 0.

The purpose of the first three cost functions is to examine whether the partitioning moves are

accepted or rejected more frequently when associated with a high priority for a particular cost

function metric. For example, setting the area metric 𝐴𝑇𝑃 to a higher priority than the others

and assigning a target of area of zero would bias the cost function to using temporal

partitioning to reduce the circuit area. The cost function is more likely to reduce the circuit

area by relying upon moves which create or modify temporal partitions, as opposed to those

which create the reconfigurable regions on which they are swapped.

The fourth cost function assigns a high priority to all metrics and in doing so enables the

trade-offs between all aspects of temporal partitioning to be simultaneously evaluated through

the cost function metrics. With reference to the previous example: the frequent use of

temporal partitioning would now be weighed against the penalty of a reconfiguration delay. A

compromise between the conflicting metrics could favour the re-assignment of subroutines

between existing partitions, rather than rely upon partitioning moves which favour a high

priority in either area or reconfiguration delay metrics through the creation of more temporal

partitions or reconfigurable regions, respectively.

The purpose of the fourth cost function is to examine the most likely scenario required by the

user, which is to partition a circuit with the goal of minimising all metrics without

precedence. The effect of this cost function is of particular interest since unlike the others, it

cannot easily be inferred without evaluation. For example, making the area (post-partitioning)

the highest priority in the cost function, encourages the creation of multiple single module

circuits contexts: the optimum partitioning would be a single reconfigurable region whose

dimensions are defined by the largest circuit context. At the same time, it should also

discourage the addition of modules to those contexts, the consequence of which would be an

enlargement of the associated region.

When examined individually, each of the remaining metrics would seem ‘on paper’ to

improve or degrade in response to specific moves; for instance, the actions which would guide

the area metric towards an optimal outcome should also have a diametrically opposite effect

on the reconfiguration overhead. In this way, it echoes the classic area and delay trade-off

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 194

found in circuit optimisation. However, when all metrics are given equal priority, the final

‘energy change’ which quantifies whether the proposed move is one which will improve or

degrade the partitioning is found by comparing the magnitude of the energy change of each

criterion in turn. The criterion whose energy change dominates (be it in a way which

improves or degrades the partitioning) subsequently determines the outcome of the move, a

task which cannot be undertaken without some way of evaluating a given partitioning. Of

course, this is the motivation behind quantifying the cost of partitioning and data and control

path optimisation, enabling the user to explore the many alternative implementations of a

circuit from a single behavioural description; an undertaking too laborious to perform by

hand.

The remaining experimental parameter determines when the reconfiguration of each context-

switch may occur (ASAP/ALAP) within the confines set by the behaviour of the modules

being partitioned (the sequence of module calls in the control graphs) and their actual

assignment during partitioning.

6.2 Results and their Analysis

The Synthesis results are interpreted by examining the relationship between the average

energy change (dE) measured through the cost function and each action taken during

partitioning. The partitioning ‘moves’ implemented by the context switching transform during

the course of partitioning are: the formation of a new reconfigurable region and circuit context

(to which a module is assigned); the creation of a new circuit context in an existing region; the

expansion of an existing circuit context (a distinction is made should the move result in the

partitioning of a sub-module execution hierarchy) and finally, the assignment of a module to

the static region. Where applicable, the source and destination of the module being moved is

taken into consideration, to identify the effect of re-assigning the modules within the same

region.

During the execution of the annealing algorithm, the effect of each move upon the cost

function criterion under investigation (highest priority) is recorded and categorised as

improving (-dE), degrading (+dE) or having no effect (0 dE).

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 195

The graphs of Figure 6.1 depict the results generated when partitioning a circuit with the

highest priority given to the area metric (post partitioning) for an annealing schedule

commencing at TStart=200. The schedule was also used for the remaining metrics, unless

stated otherwise. Each energy change (y axis) associated with the particular type of move (x-

axis) is expressed as a percentage of those moves which have the same effect on the metric,

be that an improvement or degradation and are plotted to illustrate any contrasting effect.

Figure 6.1 (a) illustrates that the greatest positive energy change associated with the reducing

the circuit area is achieved through the creation of new circuit contexts. Figure 6.1 (b)

suggests that such contexts are formed without the need to create many new regions; this has

the greatest single degrading effect on the circuit area, short of re-assigning the modules to the

static region (also depicted).

As for the remaining move, that of assigning a module to an existing context, the reader will

notice that its effect is not as distinctive as the others. That is to say, the result of its

application can be equally improving and degrading. The rationale for this is that the process

of assigning a module to a different region or indeed within the same region can reduce the

variation in size of the circuit contexts which are swapped over those regions affected by the

move. In doing so, it can act to reduce the overall circuit area required by the regions.

However, since module selection is done in an arbitrary fashion, there can also be as many

degrading moves, as depicted.

The remaining metrics are examined using the same approach: all moves will have an

improving, degrading or to a lesser extent no effect on a particular metric; but each move is

examined in terms of the magnitude of its effect, the aim being to attribute one or two

principle characteristics of each move with a distinct effect upon a given cost function metric.

In this way, the trade-offs between each of the metrics which to date have been inferred ‘on

paper’ are now verified through experimentation.

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 196

(a)

(b)

Figure 6.1: Circuit partitioning for circuit area set to a high priority.

The next metric under examination is the reconfiguration overhead, the results of which are

shown in Figures 6.2 (a, b). Unlike the area metric, the general response to partitioning is not

as clearly defined in terms of a predominant improvement or degradation to the

0

10

20

30

40

50

60

70

80

90

100

new region new context exist context static region

%
 Im

pr
ov

in
g

Partitioning moves

Area (temporal partitioning): -dE

Quadratic

Cubic

Quartic

Rijndael

Encryption

Matrix

0

10

20

30

40

50

60

70

80

new region new context exist context static region

%
 D

eg
ra

di
ng

Partitioning moves

Area (temporal partitioning): +dE

Quadratic

Cubic

Quartic

Rijndael

Encryption

Matrix

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 197

reconfiguration time, although rather predictably, little degradation comes from assigning the

module to the static region.

(a)

(b)

Figure 6.2: Circuit partitioning for reconfiguration overhead set to a high priority.

0

5

10

15

20

25

30

35

40

45

50

new region new context exist context static region

%
 Im

pr
ov

in
g

Partitioning moves

Delay (reconfiguration overhead): -dE ASAP

Quadratic

Cubic

Quartic

Rijndael

Encryption

Matrix

0

10

20

30

40

50

60

70

80

90

new region new context exist context static region

%
 D

eg
ra

di
ng

Partitioning moves

Delay (reconfiguration overhead): +dE ASAP

Quadratic

Cubic

Quartic

Rijndael

Encryption

Matrix

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 198

The first occurrence of a conflicting outcome is the consequence of creating a new

reconfigurable region. It reflects the dual aspects of the reconfiguration overhead, derived

from the time taken to load each module and the number of swaps required of the circuit

context it is assigned to. Creating a new region and assigning a module to it will always

increase the reconfiguration time proportional to the area of the module and hence the

degradation to the reconfiguration overhead. However, in some circumstances when the

module is taken from an existing region with a high rate of swapping among its contexts, the

net effect over both regions (source and destination) is an improvement to the metric,

reflected in the results as being on average the most improving move.

Another conflicting move and the second most improving move is the result of shuffling the

modules between the circuit contexts, although on average, its improvement is almost equally

matched by moving the modules to the static region. However, this is the least preferred

option since it will also simultaneously degrade the area metric. The degree of swapping of a

circuit context is always a multiple of its reconfiguration time and any attempt to re-assign

modules which are taken from contexts frequently switched between undoubtedly acts to

reduce the reconfiguration overhead, as illustrated. Of course, when this is done without

sensitivity to the characteristics of the circuit e.g. not taking into account structures like finite

loops which are present in the encryption examples, than the degradation can be significant.

Rather predictably, the next most improving (and least degrading) move is to assign the

module to the static region. This is followed by an improvement in the reconfiguration

overhead associated with the creation of new circuit contexts. Once again, the reduction in

reconfiguration time is attributed to the benefit to the source and destination regions in terms

of the reduced swapping. What is unexpected is that it is not the most degrading of moves. Its

role ‘on paper’ is in opposition to the improvement gained by partitioning modules over

circuit contexts. However, the results show the percentage of moves which degrade and not

the extent of that degradation. This is examined in due course when all three metrics are given

equal priority in the cost function.

Figure 6.3 illustrates the effect of scheduling the start of each context switch just prior to the

execution of the modules assigned to them (ALAP), in terms of the percentage of improving

and degrading moves. The results are compared with those in Figure 6.2.

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 199

 (a)

(b)

Figure 6.3: Effect of scheduling each context switch as late as possible.

The reader will observe after comparing the first pair of graphs (6.3(a), 6.2(a)) that there are

two distinct changes in the percentages of moves which improve the reconfiguration

overhead. The first is a marked increase in the occurrence of creating ‘new regions’ to achieve

improvement to the cost function. The second is a significant reduction in the percentage of

0

10

20

30

40

50

60

70

new region new context exist context static region

%
 Im

pr
ov

in
g

Partitioning moves

delay (reconfiguration overhead): -dE ALAP

Quadratic

Cubic

Quartic

Rijndael

Encryption

Matrix

0

10

20

30

40

50

60

70

80

new region new context exist context static context

%
 D

eg
ra

di
ng

Partitioning moves

delay (reconfiguration overhead): +dE ALAP

Quadratic

Cubic

Quartic

Rijndael

Encryption

Matrix

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 200

moves that assign a module to an existing context. An explanation for these discrepancies is

that the increased penalty associated with reconfiguring ALAP means that assigning a module

to a new region is more frequently relied upon to reduce the cost of swapping subprogram

modules. As consequence of creating new regions, the number of moves to existing ones is

significantly reduced − as can be seen in the pair of figures 6.3(a), 6.2(a), respectively.

An alternative explanation for a decrease in moving modules to existing partitions is the

absence of any potential overlap in the scheduling of their ‘Context Switch’ instructions:

section 5.6 in the last chapter describes several scenarios in which the scheduling of the

temporal partitions can interact with the existing scheduling transforms. Scheduling a context

switch as soon as possible (figure 6.2(a)) increases the likelihood of an existing scheduling

transform overlapping the reconfiguration of circuit contexts. An improvement to the cost

function can occur by allowing the affected contexts to merge and this opportunity is removed

when their scheduling occurs as late as possible (figure 6.3(a)).

The remaining move to have been affected by a change in scheduling concerns the creation of

‘new contexts’ on existing reconfigurable regions. As shown in the charts of figures 6.2 (a)

and 6.3 (a), scheduling each reconfiguration as late as possible led to an increase in the

number of new partitions for those test circuits which featured little (Quadratic equation

solver) or no nested sub-module execution (Rijndael, Encryption and Matrix circuits). The

rationale behind this result is that separating a module from other members of the hierarchy

will inevitably increase the reconfiguration overhead due to context switching between a

partitioned sub-module hierarchy; creating new circuits contexts to offset any increase in

reconfiguration delay due to scheduling can only be exploited by circuits without a significant

execution hierarchy.

Regarding the effect that ALAP scheduling has upon the number of degrading moves, a

comparison between figures 6.2(b) and 6.3(b) shows there to be no dramatic increase in their

number; moves which incurred a high reconfiguration delay when scheduled ASAP continue

to do so when the range of their scheduling is constrained. Another explanation is that the

change in the number of improving moves shown in figure 6.3(a) compensated for the

constraint imposed by ALAP scheduling. This explanation is supported by the fact that the

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 201

number of improving or degrading moves to the ‘static context’ (shown in figures 6.2 and 6.3)

has not significantly changed due to ALAP scheduling.

The effect of the partitioning moves upon the remaining criterion, ‘channel buffers’ is

considered next. Recall that unlike the other metrics (which are minimised to zero), the target

for the channel buffers can be met during experimentation. This occurs when the number of

tri-state buffers implementing the communication channels for a given partitioning of

modules can be realised using the resources of the current target device. During such periods,

the effect of a given move is quantified by the cost function through the next highest priority

criterion, the equally low priority ‘reconfiguration overhead’ and ‘area’ metrics.

It was necessary to filter out the influence of the lower priority metrics and therefore only

consider the direct relationship between a move and its impact on channel buffer utilisation.

This was achieved by gradually reducing the percentage of the available buffers offered by

the target device until the target was met, whilst recording the effect on the number of

improving and degrading moves. The exemplar circuits do not exhibit any degree of

concurrency in their structure. This means that at any given point during their execution, only

one module need have possession of the communication channel. The resulting bi-directional

channel requires a smaller percentage of available buffer resources and this is reflected in the

results: only when a lower percentage of the available buffers are targeted (25-10%), is there

evidence of a distinct effect upon the channel buffer metric.

The graphs of Figure 6.4 depict the nature of the improving and degrading effects upon the

channel metric, when associated with each type of move taken during partitioning. The results

depicted are generated using an annealing schedule commencing at TStart=200.

A feature which the reader may have noticed is that some circuits exhibit an effect when

subjected to specific moves, whilst others do not. The rationale for this is attributed to the

characteristics of the subprogram modules themselves. For instance, in Figure 6.4 (a) the

improvement brought about by re-assigning the modules to the static region is only present in

those circuits which have the greatest variation in signal nets. In other words, the remaining

circuits do not benefit from this move because their signal characteristics are unlikely to

define the width of the channel e.g. the Rijndael circuit has 5 of the 8 modules with identical

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 202

signal widths. Similar qualities are found in circuits which are also not improved by such a

move − the reader is referred to Appendix B for further details of individual test circuits.

Figure 6.4 (a) depicts the improving effect of other partitioning moves upon the channel

buffer metric. In addition to selecting a destination context on the static region, circuit

contexts on existing reconfigurable regions also present an opportunity for improving the

channel metrics. Two explanations account for this behaviour: the first is a predisposition of

the test circuits and the effect it has upon the channel buffers concerning the assignment of

subprogram modules to existing circuit contexts. Improvement in channel buffer utilisation

occurs for moves that group pairs of dependent modules together in the same circuit context.

Modules which are unrelated to any other in the destination context do not improve the width

of the channel interface. This can be explained by the mapping of the cutset onto a single bi-

directional channel; transferring a module from one reconfigurable region to another has no

effect on its width. Should the destination region encapsulate the complete execution

hierarchy than this would mean that no signals are cut by the partitioning. Of course the cutset

would have to define the channel in terms of its length and/or width to have an impact on an

improvement to its buffer utilisation. Inspection of the graph indicates that those circuits

which gain from such a move all feature multiple subprogram hierarchies, as exemplified by

the equation solvers.

The second explanation for the improvement to the channel buffer metric concerns the length

of the channel itself, irrespective of the data-dependencies between the subprogram modules

which use it. Specifically, improvement may be made to the length of the channel by moving

subprogram modules closer to one another, reducing the number of regions crossed by the

channel and consequently the number of channel buffers required to interface them.

The remaining move to improve the channel buffer metric requires the creation of new circuit

contexts. Again, the results depicted in figure 6.4 (a) show that the source of the modules

moved during partitioning is to be found in the static region.

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 203

(a)

(b)

Figure 6.4: Circuit partitioning for channel buffers set to high priority.

Once more, improvement in the buffer metric is due to the module being transferred closer to

its relative, however, in this case, the relative(s) may also be re-assigned to the new context in

0

10

20

30

40

50

60

70

80

90

100

new region new context exist context static region

%
 Im

pr
ov

in
g

Partitioning moves

Channel buffers: -dE

Quadratic

Cubic

Quartic

Rijndael

Encryption

Matrix

0

20

40

60

80

100

120

new region new context exist context static region

%
 D

eg
ra

di
ng

Partitioning moves

Channel buffers: +dE

Quadratic

Cubic

Quartic

Rijndael

Encryption

Matrix

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 204

the process − depending upon whether the hierarchy is clustered or partitioned across the

region’s contexts.

Unlike the other partitioning moves, the creation of a new region has no improving effect

where a single communication channel is targeted, on the contrary it is the single significant

source of degradation to the channel buffer metric (as shown in the figure 6.4(b)); the creation

of a new region can only serve to lengthen the channel. Although creating new regions is

primarily targeted to relieve existing regions which exhibit a high degree of context

switching, it can act to reduce the length of multiple channels: its effect is to alter the

placement of a region, reducing the number of regions crossed by the channel and in doing so,

its length i.e. a module assigned to the static region wishing to communicate with another two

regions away to its right-hand side, would have to cross through the first region − unless it

was placed to the left-hand side of the static region.

To date, the effect of each type of partitioning move upon a given cost function metric has

been examined in isolation to the others. The motivation for doing so was firstly to determine

the moves which bring each metric closer to its target − obviously useful if partitioning with a

single priority in mind. However, the likely scenario for partitioning is one where all metrics

are required to be minimal − requiring a number of trade-offs to be made among each. The

next step is to examine the behaviour underlying such decisions, where it will be shown that

the properties of the exemplar circuits bias the outcome of certain cost function trade-offs

towards the principle characteristics of each of the metrics presented earlier.

Table 6.1 summarises the trade-offs between the reconfiguration overhead and circuit area

metrics; two partitioning moves are quantified: the first is the reduction in circuit area

achieved through the creation of new circuit contexts which are swapped over a

reconfigurable region, versus the penalty associated with swapping those circuit contexts. The

second addresses the degree of swapping by assigning those modules previously swapped

with one another to the same circuit context, although at the expense of an increase in the

circuit area and the dimensions of the region required. A trade-off is necessary because the

effect on the circuit area and reconfiguration overhead for each move is opposing: an

improvement in one metric at the expense of a degradation to the other. The results of the

circuit partitioning are expressed as a ratio of improving to degrading moves associated with

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 205

each area and reconfiguration trade-off. Shown alongside each trade-off are the original

values for the metrics associated with a given subprogram partitioning; all target criteria are

minimised to zero.

Cost function Area vs Reconfiguration
Trade-offs

Partitioning Results

Circuit Area
Priority

Reconfiguration
Overhead
Priority

New contexts
A(-dE):R(+dE)

Existing
contexts
A(+dE):R(-dE)

Area
(CLB
Slices)

Reconfiguration
Overhead
(ms)

Quadratic High Low 20:1 2:1 1880 5.1
 Low High 1:12 1:30 4190 0
 High High 44:1 2:1 1880 5.1
Cubic High Low 4:1 2:1 6026 3.29
 Low High 1:4 1:20 8965 14.4
 High High 2:1 3:1 6018 3.22
Quartic High Low 3:1 8:1 7792 36.4
 Low High 1:4 1:12 15745 8.72
 High High 1:1 4:1 8392 36.4
Rijndael High Low 29:1 1:1 5626 122
 Low High 1:3 1:24 5927 0
 High High 1:2 2:1 5709 6.83
Encryption High Low 1:1 2:1 9241 25.0
 Low High 1:3 1:94 9711 0
 High High 1:2 1:1 9344 0.60
Matrix High Low 1:1 18:1 3483 5.62
 Low High 1:2 1:30 7324 0
 High High 25:1 3:1 3491 5.67

Table 6.1: Contrasting the trade-off between circuit area and reconfiguration overhead.

The effect of prioritising a given metric is clearly shown. For instance, partitioning the

quadratic equation solver with a high priority assigned to the circuit area metric favours the

creation of many circuit contexts: for every move that has a degrading effect on the

reconfiguration time, there are 20 which are beneficial to the circuit area. Similarly (although

less dramatically), for every move that reduces the reconfiguration overhead by targeting an

existing context, there are twice the number which increase the circuit area. The effect is

shown on the outcome of the partitioning, where a bias towards circuit area results in a circuit

of 1880 Xilinx Slices [6]. Partitioning in favour of the reconfiguration overhead prevents any

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 206

reduction in circuit area and incurs no reconfiguration overhead. The bias is evident in the

other exemplar circuits albeit in different proportions.

Of particular interest is the outcome when equal weight is given to the cost function metrics:

the results indicate that partitioning favours the area metric. In some cases, such as the

Quadratic, Cubic and Matrix circuits, the outcome is the same or very close to what it would

have been had partitioning to reduce the circuit area been the highest priority. The motivation

for quantifying the effect as a ratio now becomes clear because in those cases where the

results are the same, the ratios of circuit area to reconfiguration overhead reveal that the cost

function acted more often towards reducing the circuit than reconfiguration delay.

For all other circuits, the result is more of a compromise between the metrics. In these cases,

the reconfiguration overhead tends to offer more resistance to the swapping of the subprogram

modules. For example, reducing the circuit area through the creation of new circuit contexts is

less effective in the Quartic equation solver than it is in the Cubic and Quadratic circuits. This

is because there are a similar number of moves favouring both the reconfiguration and area

metrics; this is not the case regarding the other equation solvers. The effect is also repeated in

the encryption circuits, where the ratios are reversed to reject half as many moves which

would otherwise have been accepted.

An explanation for the resistance offered by the reconfiguration metric is to be found in the

characteristics of the circuits themselves. The length of the Quartic equation solver, in terms

of the number of module calls along the critical path is greater than the other equation solvers;

in fact, the Quadratic equation solver is present as a sub-module. As a consequence, the effect

is a greater reconfiguration overhead due a high degree of swapping among the circuit

contexts. A similar effect occurs in the encryption circuits because of the presence of the

finite loops: any swapping within a loop is magnified by number of cycles it performs - in the

case of encryption circuits this can be as many as 104 times.

Recall that unlike the area and reconfiguration metrics which are minimised to zero, the

channel metric can be satisfied using a target device with more resources than are actually

required by the channels. This does not happen frequently, as the target device tends to get

smaller in terms of its resource capability depending upon how successfully the circuit area is

reduced through partitioning. Three-state buffers are also utilised during data-path

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 207

optimisation to implement the multiplexors which permit the sharing of the functional units.

At some point, there could exist a resource conflict caused by allocating the buffers for

optimisation and therefore reducing the number available for implementing the

communication architecture. To examine the effect this could have on the partitioning

metrics, the channel target was specified as a percentage of the available buffers resources;

the results are presented in Tables 6.3 to 6.7.

As was expected, a tighter constraint placed upon the buffer resources had an impact on their

usage during circuit synthesis. This can be seen in the ‘channel buffers’ column in each of the

tables. However, a secondary effect occurred in the formation of the regions: the tighter the

target, the fewer regions were created during partitioning. The reader will recall that the

greatest form of degradation experienced by the channel metrics (see Figure 6.4(b)) resulted

when the creation of a new region had taken place. This makes sense because each new region

serves to lengthen the channels – the more boundaries there are to cross, the greater the

utilisation of three-state buffers.

The ramification of reducing the number of reconfigurable regions available for context

switching of temporal partitions is a gradual increase in the overall circuit area. A positive

upshot of this is a reduction in the reconfiguration time for a given region; the partitioner is

less likely to compensate by increasing the number of temporal partitions for the remaining

regions. In the majority of the circuits, the effect can reduce the number of regions by half. At

one percent of the available resources, the degradation to the channel metric can be sufficient

to dominate the decision making and reject all potential moves taken during partitioning.

When this effect begins to occur would appear to be dependent upon the characteristics of the

circuit themselves. Table 6.2 shows the variation among the size of module nets for each of

the circuits.

The actual point at which the constraint becomes effective would appear to be related to the

variation in the size of the circuit’s nets. For instance, the matrix circuit appears not to

respond until given the tighter constraint of 50% of available buffer resources; it exhibits the

greatest variation in module net widths (Table 6.2).

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 208

Circuit Standard

Deviation

(subprogram

population)

Matrix functions 125.4

Quartic equation solver 37.9

Encryption/Decryption 19.5

Cubic equation solver 17.9

Rijndael encryption 16.9

Table 6.2: Variation among the module nets for each exemplar circuit.

The next circuit to be most affected by the limited resources is the Quartic equation solver

(33%) which also has a large variation among its module nets. The remaining circuits each

undergo the effect at 10% of their accessible buffer resources. The usefulness of being able to

relate the characteristics of a circuit in terms of buffer resources may assist the designer in

determining the proportion of resources to allocate to circuit optimisation and channel

implementation prior to synthesis.

Cost function Partitioning Results
Area
Priority

Reconfiguration
Overhead
Priority

Channel
Buffer
Priority

Target
device
Buffer
Utilisation
(%)

Buffer
Target
Met
(%)

Area
(CLB
Slices)

Reconfiguration
Overhead
(ms)

Delay Freq Channel
Buffers

High High High 100 79.2 3483 5.67,2r,S 194.5 11.8 1152
 50 46.2 3483 5.59,r,S 1152
 33 42.1 3483 5.59,r,S 1152
 25 37.7 5179 4.83,r,S 832
 10 0 7324 0 0
 1 0 7324 0 0

Table 6.3: Matrix functions.

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 209

Cost function Partitioning Results
Area
Priority

Reconfiguration
Overhead
Priority

Channel
Buffer
Priority

Target
device
Buffer
Utilisation
(%)

Buffer
Target
Met
(%)

Area
(CLB
Slices)

Reconfiguration
Overhead
(ms)

Delay

Freq Channel
Buffers

High High High 100 100 6026 3.29, 3r,s 43.5 22.37 384
 50 100 6026 3.29, 3r,s 384
 33 100 6026 3.29, 3r,s 384
 25 98.2 6026 3.29,r,s 384
 10 34.5 6178 2.64,r,s 192
 1 11.5 14086 0 0

Table 6.4: Cubic equation solver.

Cost function Partitioning Results
Area
Priority

Reconfiguration
Overhead
Priority

Channel
Buffer
Priority

Target
device
Buffer
Utilisation
(%)

Buffer
Target
Met
(%)

Area
(CLB
Slices)

Reconfiguration
Overhead
(ms)

Delay Freq Channel
Buffers

High High High 100 100 8392 36.4,3r,S 51.6 18.34 1152
 50 97.5 8392 36.4,3r,S 1152
 33 85.2 8415 35.7,2r,S 768
 25 77.4 8815 31.5,2r,S 768
 10 58.3 9784 22.7,r,S 384
 1 10.9 16021 0 0

Table 6.5: Quartic equation solver.

Cost function Partitioning Results
Area
Priority

Reconfiguration
Overhead
Priority

Channel
Buffer
Priority

Target
device
Buffer
Utilisation
(%)

Buffer
Target
Met
(%)

Area
(CLB
Slices)

Reconfiguration
Overhead
(ms)

Delay Freq Channel
Buffers

High High High 100 100 5709 6.83,2r,S 4.54 16.31 256
 50 100 5709 6.83,2r,S 256
 33 100 5709 6.83,2r,S 256
 25 95.5 5709 6.83,2r,S 256
 10 55.5 5709 6.15,r,S 128
 1 16 5927 0 0

Table 6.6: Rijndael Encryption/Decryption.

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 210

Cost function Partitioning Results
Area
Priority

Reconfiguration
Overhead
Priority

Channel
Buffer
Priority

Target
device
Buffer
Utilisation
(%)

Buffer
Target
Met
(%)

Area
(CLB
Slices)

Reconfiguration
Overhead
(ms)

Delay Freq Channel
Buffers

High High High 100 100 9344 603.06us,4r,S 4.41 7.3 384
 50 100 9344 603.06us,4r,S 384
 33 100 9344 603.06us,4r,S 384
 25 100 9344 603.06us,4r,S 384
 10 67.5 9337 589.03uS,2r,S 256
 1 28.5 0 0 0

Table 6.7: Encryption/Decryption.

6.3 Test Circuits

The selection of test circuits was done to explore a number of aspects relating to the theme of

this thesis: partitioning across subroutine boundaries and their preservation at different levels

of abstraction, ultimately at the device-level for run-time reconfiguration.

As described in Chapter 3, MOODS HLS has been used to investigate many different aspects

of circuit synthesis and as a result there exist several exemplar designs which were available

to the author to conduct the experiments described within this chapter. The motivation for this

approach is that all designs were not specifically written with run-time reconfiguration in

mind and as a consequence, there was no inherent bias in how they were coded. Before

commenting further on the relevance of their selection, one common characteristic which is

inherent to their selection is how they were coded, specifically in the behavioural-style of

VHDL described in Chapter 3.

As the reader will recall, the behavioural approach to circuit synthesis requires the designer to

view a specification as a set of independent tasks, each of which is implemented as a VHDL

parallel ‘Process’. Unlike RTL synthesis, the operations of each process/task is automatically

scheduled across multiple clock cycles; as a consequence each task can be further partitioned

by relating sequential behaviour of the operations as VHDL ‘Procedures’.

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 211

With reference to the test circuits, all were described in this way and the author ensured that

none of the procedures were ‘inlined’ in order to preserve the functional partitioning inherent

in the way that each were coded.

The reader is referred to Appendix B, where the relevant properties of each test circuit are

presented. As described in Chapter 3, MOODS represents a design at different levels of

abstraction. One convenient representation is the ‘module’: at this level of abstraction there is

a one-to-one mapping between each VHDL procedure and an equivalent internal module but a

many-to-one relationship between the VHDL processes and the single ‘Program module’. The

characteristics of each test circuit will now be considered in terms of their equivalent module

representation.

A table of characteristics is shown for each design which provides the reader with an

appreciation of the composition of each example: the number of modules, their resource use

and port widths are tabulated for comparison. Shown below each table is a task graph, where

every node corresponds to a module and each edge represents its execution relationship with

another and is labelled with the size of the control and data-path dependency in bits. The last

characteristic is the module execution sequence: each sequence is presented in the form of one

possible path through there circuit; where appropriate, modules repeated inside finite loops

are labelled with an iteration count.

Having introduced the test circuits, it is necessary to consider their influence during the

experiments. On inspection of their characteristics, what becomes apparent is that the

equation solvers feature multiple levels of module hierarchy which appear frequently on

different paths through each circuit; in contrast the encryption and matrix circuits do not: their

modules can be characterised by their execution within finite loops.

Characteristics such as these present the temporal partitioner with different choices: nested

modules have control and data-path dependencies; context switching them requires

intermediate storage of their control and data-path tokens. In response, the partitioner has the

choice to not swap them over the same resource and cluster them in a single partition or to

partition them across multiple resources; either of these choices will impact on the use of

communication channels in the architecture: clustering them might delete an existing channel,

partitioning them over multiple resources could change the topology of the partitioning,

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 212

necessitating the creation of a new buffer interface in the resource, as well as the potential to

widen the width of the channel.

The Encryption and Matrix circuits present the partitioner with a different scenario: their

independence to one another simplifies their context switching in which case the loop

iteration count becomes the deciding factor. In addition to deciding what to do with modules

inside the loops, the partitioner will be presented with the choice of using their execution to

hide the reconfiguration of those modules executed outside it.

The presence of other forms of control, such as conditional instructions can also be exploited

by ‘prefetching’ a module’s configuration before knowing the outcome of the conditional

instruction and whether the module is to be executed. In such circumstances, the partitioner

must consider the limiting effect which a reconfiguration prefetch may have on the

reconfiguration scheduling of any other module on a mutually exclusive branch; two modules

cannot be reconfigured at the same time, one must take precedence!

The advantages of performing temporal partitioning in a HLS tool become apparent when

returning to the area characteristics shown in the tables; the modules require many resources

because there are numerous opportunities for data-path allocation and instruction scheduling

at the operation level of abstraction. Data-path sharing has a ‘spatial’ effect on temporal

partitioning: the size of a module may prevent its binding to a particular resource, only to be

accepted at a later stage in optimisation having been reduced in area by a data-path

optimisation. Similarly, a scheduling transform may also effect the binding of a module to a

reconfigurable resource: the scheduling of those operations which read the arguments passed

to a called module determine the width of a channel; scheduling them to individual control

steps would permit their parameter arguments to share a channel, scheduling them to the same

step forces all of them to be concurrently available through the channel.

6.4 Summary

This chapter presented the results obtained through experimentation using the temporal

partitioning transform, following its integration into the existing simulated annealing-based

optimisation approach taken by MOODS. When used in this way, it enables architectural

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 213

synthesis to simultaneously alter the circuit structure at two different levels of abstraction: at

the operation or instruction-level using scheduling and allocation transforms and at the

module-level using temporal resource binding of reconfigurable resources.

Being a general optimisation algorithm, simulated annealing enables a multi-objective

approach to temporal partitioning. In doing so, it permitted analysis of the relationships

between the new transform and the area, reconfiguration and channel metrics described in

Chapter 4. As with the operation-level transforms, the partitioning transform has ‘on paper’ a

distinct effect upon each of these metrics; their relationships have confirmed through

experimentation and will now be briefly summarised with reference to the characteristics of

the test circuits:

Applying a higher priority to one metric at a time and performing optimisation did give

preference to reducing the characteristic associated with the metric: for circuit area, the

temporal partitioning algorithm acted to reduce the circuit area by favouring the creation of

new temporal partitions over fewer reconfigurable regions. As expected, this was done to the

detriment of the reconfiguration and channel metrics which were set to a lower priority.

Modules moved between the partitions were in general as likely to reduce or increase the

circuit area without regard to the type of circuit and static binding to a reconfigurable resource

did very little to improve circuit area – as expected.

The anticipated effect was also observed when the reconfiguration metric was given the

highest priority in the cost function: very little reduction in circuit area was permitted and in

circuits which exhibited finite loops, no reduction was achieved at all.

With regard to assigning a high priority to minimising the channel buffer metric, the module

interface characteristics of those circuits with the smallest variation in port characteristics,

were the most tolerant in not rejecting moves which might have improved the other metrics.

When the channel metric did take effect, it acted as expected to prevent new regions from

being reconfigured, supporting only moves which re-used existing buffer interfaces or

removed them entirely by a static binding of the modules concerned.

The final cost function metric was of particular interest because by choosing to set all metrics

to the same priority, the effect of their contradictory goals could only be obtained through

D. Esrafili-Gerdeh, 2016 Chapter 6: Implementation and Results 214

experimentation. Unlike the other cost functions, the results were influenced by a particular

characteristic among the test circuits: the critical path derived from the longest module

execution sequence.

For circuits with large small execution sequences, such as the Encryption and Quartic

equation solver, the reconfiguration overhead is the dominant metric and supports the

clustering of modules in existing contexts. On inspection of their execution sequences all

feature either high loop iteration counts (104 for the encryption circuit) or in the case of the

Quartic equation solver, a critical path with many module execution calls.

Examination of the execution sequences of both the Matrix and Quadratic equation solver

circuits also support this explanation: the Matrix circuit has a loop count of 4 iterations and

the Quadratic equation solver − a very short critical path. In both these cases, the area metric

is dominant in the cost function and as a consequence favours the creation of new partitions.

The only test circuit which would have been difficult to predict is the Cubic equation solver

whose critical path appears to be neither short or very long, but short enough to support the

area metric and the reduction in area using temporal partitioning; in doing so, it emphasises

the importance of using a HLS tool to examine the trade-offs, since these could only have

been determined through experimentation.

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 215

Chapter 7

Run-time Reconfiguration
− A Case Study

This chapter presents a practical application of the work described to date. Specifically, it

details the implementation of a run-time reconfigurable coding system. In doing so it

exemplifies the stages inherent to synthesising a reconfigurable system − from an algorithmic

description of the circuit behaviour, to an optimised RTL description incorporating the

structures necessary to facilitate run-time self-reconfiguration. It concludes with an

implementation of the synthesised circuit on a commercial partially reconfigurable FPGA.

7.1 A Run-time Reconfigurable Variable Coding
 System

7.1.1 Background

Error correcting codes are used to tolerate data corruption which can occur during the

transmission of information in a communications channel. Encoding the message data prior to

its transmission appends redundant parity bits, allowing a decoder on the receiving end of the

channel to detect, locate and subsequently correct the erroneous data. A wireless channel is

very sensitive to signal distortion. One such example is channel fading, where a signal can

undergo a reduction in strength due to propagation effects such as reflections caused by the

atmosphere and land between the transmitter and receiver. For a fixed wire system, a single

code can be selected to correct up to the maximum number of errors that can be expected. In

fact, ‘expected’ is an appropriate way of describing such an approach, as the characteristics of

a fixed channel are more readily predictable than a wireless one. It is this variation in error

predictability which would increase the inefficiency of the channel should a fixed code be

adopted. During periods of weak fading, there would be fewer errors to correct and the full

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 216

corrective ability of a given code would not be required. Worse still, the extra parity bits

could have been data bits. What would be desirable is a means of adapting the coding to suit

the conditions of the channel rather than a ‘one code corrects all’ approach.

A solution is to encode the data using a variety of codes, each one selected by the receiver

based upon a prediction of what the future conditions of the channel might be. The transmitter

is not directly in a position to determine the level of corruption (without feedback) as it does

not know the conditions of the channel before transmitting the data. The receiver on the other

hand can attempt to second guess these conditions based upon a recent past history of the

channel.

The variable coding scheme described can be entirely implemented in hardware without the

use of dynamic reconfiguration. Generic encoder and decoder circuits can be parameterised to

implement each of the codes at a modest increase in the hardware overhead (in comparison

with their dedicated counterparts).

From the designer’s point of view, the task is to determine the maximum number of errors

which will have to be corrected and select a means of correcting up to that number efficiency.

This requires a trade-off between the number of errors that can be fixed and the number of

additional parity bits required to detect the errors. Of equal importance in the selection of the

coding scheme is the area and delay metrics of the encoder and decoder circuits, both of

which increase in magnitude in relation to the corrective ability of the coding used.

One approach used to increase the decoding rate is to introduce a degree of concurrency in the

decoding process, partitioning the computational workload over a number of decoders. Of

course, in addition to the communication overhead required to distribute the computation

among the decoders, the main drawback can be the greatly increased circuit area. It is not

immediately obvious how parameterisation can be used to increase the number of decoders

during circuit execution. With the exception of reducing the power consumption, there is little

advantage to not fully utilising all the device resources in switching from one code to the next,

therefore fixing the maximum degree of parallelism for any coding scheme. It is in this

context that the role of dynamic reconfiguration is examined, where device resources

committed to realising n decoders for a given code are reprogrammed to implement m

decoders of any other type. Furthermore, it is possible to target different resources in the

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 217

implementation of each decoder. A large memory required during the decoding of one code

can be realised using the on-chip RAM or look-up tables at the cost of at least two read cycles

per datum (one cycle to set-up the address and another to read the output). Alternatively, the

small memory consumption necessary in decoding another code can be directly implemented

using registers with single read cycles for all data simultaneously. These are examples of

trade-offs taken by a designer during the specification of a circuit. There are also many trade-

offs which are automatically taken during the partitioning and optimisation of the circuit. For

instance, how might the operators of a circuit with n decoders and another with m be assigned

to control states to efficiently share the same resources at different times during their

execution. In this way, a pair of decoders with a large resource footprint can be swapped ‘on

the fly’ with eight smaller decoders, in response to a change in the coding scheme.

As the reader will by now appreciate, this comes at the cost of a reconfiguration overhead.

The benefit of adapting to the characteristics of the communication channel would be

overshadowed if the reconfiguration took too long and/or was performed too often. The

problem becomes a task suited for synthesis. In addition to optimisation at the operation-level,

another approach to reducing the impact of the reconfiguration delay would be to overlap the

decoding of codewords alongside the reconfiguration of the decoders themselves.

This approach implies introducing a second region with the reconfigurable resource to enable

the decoding to respond to a change in the coding scheme in two stages. The first region

continues to perform the decoding of the current coding scheme used, whilst the second is

partially reconfigured with the decoders associated with the next scheme. Upon completion of

the reconfiguration, the responsibility for decoding the new scheme is transferred to the

second region. The decoders associated with the former scheme can remain inactive on silicon

in the event of a switch to the former coding or partially reconfigured with a set of decoders to

match the current scheme, thus further multiplying the degree of decoder parallelism. Once

again, this can be achieved without any interruption of service to the region not affected by

reconfiguration.

Ordinarily a duplicate approach might be viewed as simply being redundant. However, when

the target architecture is the FPGA the choice of which memory resource to use for the

codeword and weight tables [123] of the decoder can result in the exclusion of other forms of

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 218

potential memory resource. Utilising resources that would otherwise remain un-programmed

in the target device provides the opportunity for the synthesising a sequential decoder which

provides the execution that enables the overlapping of codeword decoding with the

reconfiguration of a more specialised Viterbi decoder.

Figure 7.1 illustrates the conceptual building blocks of the coding system. At this stage of

synthesis, the emphasis is on the behaviour of the system. It should be regarded as the sum of

two halves. One half is responsible for encoding and transmitting a message comprising

several lines of ASCII characters, whilst the other corrects any errors that may have occurred

during transmission prior to displaying its contents on a VGA display. The transmitter and

receiver are bridged by a number of control and data signals used to coordinate and transfer

the message. For the sake of argument, errors are introduced solely to the message and not to

the controlling signals.

Message
construction

Channel
corrupter

receivertransmitter

BCH Encoder

Message
ROM

data ready
busy

code scheme

Data Channel
corrupted
codeword

codeword

ASCII code

operator
noise

control

codewords

code data

code scheme

code scheme

VGA
driver Monitor

code data

control
data

Message
reconstruction

ascii code

Viterbi
decoder

Viterbi
decoders

Viterbi
decoders code scheme

codeword

Figure 7.1: A variable coding system.

Every character of the message is converted into its ASCII equivalent and spliced to form a

data packet, the length of which is predetermined by the coding used. Each data packet is

encoded in accordance with the present coding scheme to form a binary codeword. The effect

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 219

of a noisy channel is approximated by randomly selecting a codeword and a number of bits to

invert. This occurs either autonomously through the channel corrupter or under manual

control of the operator who may wish to manually demonstrate the characteristics of the

system.

At the other end of the channel, each codeword is decoded and any bits found to be erroneous

are corrected in accordance with limitations of the coding scheme. The coding is altered in

response to the number of corrupted bits encountered during the decoding of the ten most

recent codewords. This sample forms a measure of the quality of the channel and is used to

steer the selection of the coding to achieve a level of service that lies within the bounds of a

predictable probability of error. The receiver initiates a change in the coding scheme,

instructing the transmitter to alter the construction and encoding of the codewords whilst

simultaneously reconfiguring the decoders and parameters for message reconstruction. When

there are a sufficient number of reconstructed ASCII characters the display is updated with

the latest message. In appendix C, the behaviour of each of the building blocks is examined in

greater detail.

7.2 Variable Coding Strategy and Run-time
 Reconfiguration

The effect of partitioning the Viterbi decoding over n Processors is a practical scaling of the

decoding time with the number of processors used [124,125], which of course never matches

the theoretical scaling due to the external communication costs involved in updating the

states. It is perfectly feasible to realise the decoding using processors optimised for DSP

applications. Despite the common use of RISC and superscalar architectures, single

processors are unlikely to match the spatial computation offered by a dedicated circuit

whether it be realised as an ASIC or using programmable resources, such as those found on

the FPGA targeted in this chapter.

Through the use of partial reconfiguration, it is possible to change the number of Viterbi

processors working on decoding a stream of codewords. There is no doubt that changing the

coding scheme to suit the conditions of the communication channel would increase the

amount of information that could be transmitted. There is also no doubt that increasing the

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 220

number of processors can also significantly reduce the decoding time. Where there may be

doubt is whether this would be a good application for changing the number of decoders on-

the-fly through partial reconfiguration of the device. Why not simply synthesise a decoder

with n processors that is re-parameterised to decode a range of BCH codes? At one moment it

could be decoding a series of BCH (15,11,3) codewords over 4 processors, at another when

there is a change in the noise of a channel, it might be decoding less information through

BCH (15,5,7) codewords but still operating despite the change in the conditions of the

channel. A drawback with doing this is to be found in the resource requirements of the Viterbi

decoder itself. There are 64 times more states to be updated in the decoding of a BCH

(15,5,7) codeword in comparison with the BCH (15,11,3). The memory requirements for each

state are 15 bits for each copy of the message and a further 4 bits for the hamming distance

weight.

It is also necessary to synthesise two copies of each weight and message table since some of

the predecessor states are used to update more than one state and it would be wrong to update

a state before it is used again in the current cycle to update another. The resource

requirements are therefore 38912 registers – not an insignificant number. That is assuming a

single decoder, multiple decoders although a division of that number collectively require the

same memory across all decoders. However, there is also the issue of how the memory is

shared and whether additional memory is required when transferring data from one processor

to another.

Irrespective of how the communication is implemented, there will always be a number of

redundant registers when the coding scheme switches to a less robust form of error correction,

the same number of decoders required to decode one scheme are also present in another. Put

another way, it is uncertain how 2 processors allocated to decoding the BCH (15,5,7) scheme

could be re-parameterised to implement the 32 processors that could be implemented using

the same number of registers.

This is where partial reconfiguration can be used to employ the unused resources which

otherwise would not be used. More specifically, a library of different decoders can be

synthesised, each of which have similar resource characteristics but most importantly − with

different numbers of decoders. This concept can be further extended to synthesise different

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 221

versions of the same decoder. The variation in characteristics might manifest itself through

changes to how the memory is implemented. The robust decoder requires many states and

consequently a larger circuit area to implement when targeting registers, each of which has a

number of separate control lines. At an increased cost to circuit delay, the weight and message

tables could be synthesised from look-up tables or dedicated device memory blocks. The

same approach is not suitable for the smallest decoder, where 16 states consume 608 registers,

a number readily available on even modest-sized FPGAs. Therefore, it is able to benefit from

single cycle read or write times, in comparison with the 2 cycles it takes to read a location in

Xilinx BlockRAM [6].

Alternatively, the resources could be committed to performing another circuit function,

responding perhaps to some infrequent event that would justify the need for a temporary

down-sizing of the decoder, in terms of its degree of parallelism. In either regard, this leaves a

degree of leeway in determining the number of processors and how their circuit structure

might be optimised.

We believe this is a good case study for synthesising reconfigurable logic for the following

reasons:

• Hardware parallelism – the numerous concurrent resources available within an FPGA

is well suited to an application that can exploit such parallelism such as the Parallel

Viterbi decoder.

• Coarse-grain reconfiguration – a feature of current FPGA technology can sometimes

restrict the type of application that can exploit it. In this case, a Viterbi processor is a

coarse change in circuit structure and therefore suits the limitations of current

commercial devices.

• Hardware acceleration, virtual area and hardware adaptation – are prominent areas of

research in reconfigurable systems. Hardware acceleration is exemplified in this

application which occurs in proportion to the number of processors added through

partial reconfiguration. When this is done with regard to the operating conditions of

the channel, it seeks to adapt the coding scheme – parameters and underlying

structure. Through partial reconfiguration, the total resources required are much

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 222

smaller than the sum of each of the constituent sub-systems and hence the system

exploits a degree of virtual area.

• Communication channel synthesis – although partitioning is determined by the method

used to split the number of decoder states among the processors [124], synthesis is

used to determine the characteristics of the channels which connect the Viterbi

processors to one another.

• Circuit optimisation – is used to generate a library of circuits which are synthesised to

create structures with different area/delay characteristics. This can occur alongside the

synthesis of the communication channels.

• Exercise the reconfigurable infrastructure – most crucially, it demonstrates how

circuits can be plugged in and out of the architecture and that the independent

reconfigurable regions correctly communicate with each other.

7.3 System Architecture

7.3.1 Adaptive Coding Scheme

In addition to the transmission of a continuous stream of codewords which will eventually be

re-constructed into information at the receiver, the principal motivation of the communication

systems is the requirement that the encoding of the information be responsive to the

conditions presently experienced in the channel. Moreover, through constant monitoring of

the level of noise experienced on the channel, the coding scheme is adapted to maintain an

approximate level of service with regard to the bit-error rate. What follows is a brief

formulation of how the level of error relates to the selection of the coding scheme.

Recall that because the decoder can return the number of errors corrected (within the

limitations of the BCH code), the receiver is in the best position to monitor the severity of

corruption which must have occurred to the codewords during their transmission. Therefore,

the responsibility of selecting the coding scheme is left to the receiver. It does this by dividing

the stream of decoded codewords into groups of eight codewords or 120 bits; their size was

chosen to enable a comparison with a non-reconfigurable Sequential Viterbi decoder [123]

also synthesised using MOODS. As described in appendix C, inspection of the weight

associated with state R14 after the last bit of the 15-bit codeword has been decoded, reveals the

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 223

number of errors that were corrected. Its summation of the eight codewords decoded can be

used to return an approximate measure of the probability of error Pe over the group of eight

codewords. For example, the probability of a 1-bit error in the group of codewords would be

𝑃𝑒 = 1
120

= 0.0083 = 0.01 (2 dp) or 1%. The next point of consideration is to relate the

probability of error Pe of the group of codewords to the corrective ability of an individual

BCH code. In other words, how many errors in the group of codewords does it take for each

BCH code to fail to meet n % of bit errors. Once this is determined, so too are the conditions

for adapting the coding scheme to the approximate measure of errors on the channel.

If Pe is the probability of error on the channel, the probability of there being more than n

errors occurring on the same channel is given by:

𝑃𝑛 = 1 − (𝑃0 + 𝑃1 … + 𝑃𝑛) (7.1)

𝑃𝑛 = 1 − (15.𝐶0.𝑃𝑒 . (1 − 𝑃𝑒)15 + 15.𝐶1.𝑃𝑒 . (1 − 𝑃𝑒)14 … + 15.𝐶𝑛.𝑃𝑒 . (1 − 𝑃𝑒)15−𝑛 (7.2)

For example, the probability of there being more than one error (n=1) in a 15 bit codeword for

a 𝑃𝑒 = 1
120

 is found to be:

𝑃1 = 1 − (𝑃0 + 𝑃1)

𝑃1 = 1 − �1. 1
120. �1 − 1

120�
15

+ 15.1. 1
120. �1 − 1

120�
14
�

𝑃1 = 1 − (0.88203 + 0.11118)

𝑃1 = 0.01 (2.d.p)

Using equations 7.1 and 7.2, the probability of there being more errors than the corrective

ability of each of the BCH code can cope with, is calculated with various probabilities of error

in each group of eight codewords. The results are shown in Table 7.1. The first two columns

indicate the relationship between achieving a certain percentage of errors on the channel and

its relation to the cumulative number of errors in a group. This ranges from a 1 to 10% Bit

Error Rate (BER). Alongside them are the probabilities that each BCH code will be unable to

correct the codeword to meet the quality of service associated with the channel error Pe. The

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 224

number of bits in which each codeword is in error corresponds directly to the BCH code i.e.

BCH (15,11,3) corrects up to and including 1 bit in a 15 bit codeword, BCH (15,7,5) corrects

2 and BCH (15,5,7) can correct up to 3 bits in error (inclusive).

No errors

n/120 bits

Probability

Pe (%)

1 bit group

error

Probability

(%)

1 bit

codeword

error

Probability

(%)

2 bit

codeword

error

Probability

(%)

3 bit

codeword

error

1 0.0083 (1.0) 0.01 (0.68) 0.00 (0.024) 0.00 (0.00)

2 0.0166 (1.6) 0.03 (2.53) 0.00 (0.181) 0.00 (0.01)

3 0.0250 (2.5) 0.05 (5.29) 0.01 (0.567) 0.00 (0.04)

4 0.0333 (3.3) 0.09 (8.76) 0.01 (1.247) 0.00 (0.13)

5 0.0417 (4.1) 0.13 (12.74) 0.02 (2.259) 0.00 (0.28)

6 0.0500 (5.0) 0.17 (17.10) 0.04 (3.620) 0.01 (0.55)

7 0.0583 (5.8) 0.22 (21.69) 0.05 (5.330) 0.01 (0.94)

8 0.0667 (6.7) 0.26 (26.41) 0.07 (7.378) 0.01 (1.49)

9 0.0750 (7.5) 0.31 (31.18) 0.10 (9.739) 0.02 (2.21)

10 0.0833 (8.3) 0.36 (35.92) 0.12 (12.39) 0.03 (3.12)

11 0.0917 (9.2) 0.41 (40.57) 0.15 (15.29) 0.04 (4.23)

12 0.1000 (10) 0.45 (45.10) 0.18 (18.41) 0.06 (5.56)

Table 7.1: Errors in eight codewords necessary to switch between each code scheme.

Using the results shown in Table 7.1, it is now possible to relate the number of errors received

in a group of eight codewords to a threshold where one coding scheme fails and another must

be adapted. The thresholds were selected to enable our work to be compared with a non-

reconfigurable parameterised Sequential Viterbi decoder [123]. Assuming that that the BCH

(15,11,3) coding scheme is currently deployed, should an approximate 5 % BER (highlighted

in green) be a desirable operating condition for communication, no more than 3 bits in the

group of 120 bits (eight codewords) can occur in error. Any less, the quality of service

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 225

exceeds the specification, any more, the quality of service cannot be maintained and the next

BCH code (15,7,5) is chosen to encode and decode the message stream. There is quite a large

tolerance (a further 4 bits) until the BCH (15,7,5) coding scheme fails, at 8 bits in 120, the

receiver would request another step up in the level of robustness to the BCH (15,5,7) code. Of

course, should the conditions of the channel improve, the receiver may request a step down in

the level of correction and thereby increase the amount of data that could be encoded through

each codeword.

Figure 7.2 illustrates the bit thresholds at which the coding scheme may be changed. Before

this can take place, the group of eight codewords requires sampling to estimate the probability

of error on the channel Pe. This occurs during the top half of the flowchart and simply

requires that eight codewords are counted and the number of errors accumulated – recall that

the number of errors corrected is given by the weight of state 0 after the last bit of the

previous message bit has been decoded i.e. 𝑤140 .

Once the sample is taken, the count is reset for the next sample and so too is the coding

scheme, since it is about to be updated. The threshold at which this happens is either Thres0 or

Thres1 respectively. Their parameters are set according to the desired BER and the

relationships are summarised in the table adjacent to the flowchart for some exemplar BER

rates. The ascending numeric value of the scheme determines which BCH code is adopted,

with the default scheme being most efficient code BCH (15,11,3). The remaining schemes are

just an increment BCH (15,7,5) or two away BCH (15,5,3). After the scheme is selected, the

number of errors and word count are reset and wait to be set during the next sample of eight

codewords.

Ideally, the switching that occurs between the different coding schemes should not occur too

often because as well as the additional time to change the parameters associated with the new

scheme, there would inevitably be a reconfiguration penalty. Two solutions are adopted to

address these issues. The first is to allow a wide enough band in which several errors need to

occur in order for the scheme to switch up or down. This is as wide as 5 bits for the most

robust code at 5 % BER. In addition to that, the coding scheme never changes from the

smallest code to the largest and vice versa without the intermediate step of the middle BCH

code. This aids in making the system less sensitive to short bursts in signal noise.

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 226

decode codeword

word count
>8 ? errors = errors + w0

14 word count++

word count = 0
scheme = 0

errors
<=

Thres0?
errors = 0

scheme ++

errors
<=

Thres1?

scheme ++ BER % Thres0 Thres1
1 1 3

2.5 2 5
5.6 3 7

yes

no

yes

no

yes

no

start

Figure 7.2: Flowchart showing BER driven selection of the coding scheme.

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 227

Secondly, as will be discussed in a later section of the chapter, at least two different decoders

can be present in dedicated regions of the FPGA at the same time. This staged approach

enables reconfiguration to occur in parallel to the decoding of the codewords.

7.3.2 Inter-process and Intra-region Communications

The backbone of the architecture is the inter-process communication between the transmitter

and receiver regions and the intra-process communication between the receiver and

concurrent Viterbi processors. The purpose of the case study is not to demonstrate a fully

featured communication system, rather an application of the synthesised architecture and run-

time reconfiguration. In this spirit, the entire communication is realised using a single FPGA

device. Figure 7.3 illustrates how the main building blocks are implemented on the static and

reconfigurable regions of the FPGA.

receiver

static region

slave decodern

slave decoder0

communication channel

channel interfacechannel interface

master
decoder

channel
controller

RTR
controller

reconfigurable
region

message
re-

construction

message
construction

encoder

transmitter

V
G

A
 controller

sem
aphore

sem
aphore

Figure 7.3: Floorplan for the RTR variable coding scheme.

Communication between the transmitter and receiver occurs on the same device, moreover, it

occurs in the static region. The behavioural VHDL coding style implements coarse-grain

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 228

parallelism of operators through process constructs. All ovals in the diagram represent

independent VHDL process constructs and the circles represent the tasks assigned to them.

Although a VHDL process is implemented through a disjointed state-machine, there are

specific times in their execution where communication with one another is necessary. In the

static region, the synchronisation between the transmitter and receiver processes quite literally

performs the communication associated with transmitting data through a communications

channel. To this end, the control side of the transmission is performed through a semaphore.

The actual data transmitted through the semaphore handshaking are the BCH codewords.

In the reconfigurable regions a number of processes may be simultaneously active, decoding a

codeword bit passed to them through the external communication channel. The static version

of the decoding originally used another semaphore to perform the inter-process

synchronisation, however, as the reader will recall, a similar function can be carried out by the

channel controller when required to transfer data across the external or on-chip

communication channels – hence its employment in the receiver.

An additional level of hierarchy is provided among the Viterbi decoders which takes the form

of a single master process and several slave decoders. In this configuration, the master’s role

is to divide up each of the code’s state weight and message tables and pass their values to the

sub-ordinate decoders in the reconfigurable regions. After Viterbi decoding occurs in each of

the regions, synchronisation occurs once more between the master process and each of the

slaves, during which the master collects the weight and message bits found by each decoder

and uses them to update its state tables. This continues until after processing of the last

message bit is complete and the sample of the codeword is added to or a decision can be made

on the robustness and efficiency of the current coding scheme.

The remaining task of the receiver is to extract the transmitted fragment of ASCII code from

each of the codewords, after which the full ASCII characters are re-assembled into their full

codes and the message sent over the communication channel is stored in preparation for its

display.

The last element of coarse-level parallelism in the system is the way in which the message is

displayed on the VGA unit. There is a strict protocol for video generation, in essence a frame

is written once every 16.784 ms. A single frame is composed of 528 lines (480 visible – the

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 229

rest are blanked) lines, each of which are 640 pixels in length. Pixel data be retrieved and

presented within a window of 31.77 µs, the period during which a line is written. An entire

frame will occur every 16.784 ms; these are critical timing constraints, requiring a degree of

manual intervention in MOODS. In order to fully explore the design space in MOODS i.e.

with the minimal of timing constraints, this part of the demonstrator was not written using

behavioural VHDL. Rather, RTL VHDL was used to read each re-assembled ASCII character

and format it in a way that was presentable to the user viewing the received message.

In order to do this in real-time, the task was decoupled from the receiver in such a way that

did not require the VGA generator to wait for the most recent decoded message. Instead, its

purpose is to continuously read the ASCII data in a designated message ROM, format it into

lines of characters on the screen and write the resultant messages to the VGA unit. This

procedure is only interrupted by the receiver process, for the sole purpose of updating the

message ROM with the most recent decoded and re-assembled ASCII characters.

Recall that synchronisation between process constructs does not occur at each wait statement -

as is assumed in the RTL simulation model, but explicitly in the code through a dedicated pair

of request and acknowledgement signals or semaphore. As depicted in the Figure 7.3, there

are two occasions where a semaphore is utilised to exchange data between a pair of process.

The same methodology is adopted in both cases. Figure 7.4 illustrates the timing of the pair of

semaphore signals used between the transmitter and receiver processes shown in the previous

figure. This method of process synchronisation is referred to as a toggle semaphore, as the

exchange of data is dependant upon the inequality of the pair of request and acknowledge

signals, the result of either process inverting or toggling one of the pair of signals.

Prior to the request to exchange the codeword, the request and the acknowledgment signals

are equal. This situation arises when the transmitter is busy processing i.e. bit-packing the

ASCII code and encoding the codeword. Meanwhile, the part of the receiver responsible for

reading the codeword idles away the time, awaiting the next codeword whilst the remainder of

the receiver circuits are busy displaying the current message on the VGA unit.

When the transmitter is ready to send the codeword, it inverts the request line. The inequality

between the two signals forces it to enter an idle state, awaiting a response from the receiver.

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 230

request

acknowledge

codeword
scheme

transm
itter

receiver

request transmission of
codeword

acknowledge receipt &
update coding scheme

request

codeword

acknowledge

scheme

Figure 7.4: Semaphore communication between two concurrent processes.

At the same time, the signal inequality awakens the receiver, forcing it to write the codeword

to the master process where it is disseminated bit by bit to each of the Viterbi decoders. Once

decoded, the receiver has the opportunity to alter the coding scheme − it does this by writing

the corresponding 2-bit binary code to the coding ‘scheme’ lines. This is followed by an

inversion of the acknowledgment signal, the effect of which is to restore the equality between

the two signals. Having done so, it returns once again to an idle state, where it awaits the next

codeword request. Quite the opposite occurs to the transmitter, it is forced out of its idle state

and must inspect the level of the coding scheme required. Where appropriate, it alters the

parameters which govern the bit-packing of the ASCII characters and their encoding using the

BCH codes. When encoding of the next codeword is complete, it signals a readiness to

transmit it across the communication channel and the cycle is repeated ad infinitum.

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 231

7.4 Synthesis Results

Table 7.2 depicts the results for each of the synthesised Viterbi decoders and the remaining

sub-system components. The target device is the Xilinx XC1000XV FPGA [6], providing

12,228 CLB Slices and 512 user Input/Output pins. The task was to synthesise the entire

communication system in such a way that it would occupy less than 11000 slices. This is not

an arbitrary figure, as it is approximately 90 % of the FPGA’s logic resource capacity. We

have found through experimentation, that any greater than 90 % of the resources is unlikely to

be floor-planned in a way that is acceptable for generating partial bitstreams.

Circuit

Sub-system
Circuit

Description

Area

(slices)

Critical path delay

(clock cycles: µs)

Reconfiguration

(ms)

decoder 15, 11, 3; Reg.; processors: P1-P4. 3092 1218 : 24.36 4.98

decoder 15, 7, 5; Reg.; processors: P5, P6. 3542 18221: 364.42 4.98

decoder 15, 5, 7; RAM; processor P0. 2900 116214: 2324.28 -

decoder 15, 7, 5; RAM; processor P0. 2900 31158: 623.16 -

decoder 15, 3, 11; RAM; processor P0. 2900 3900: 78.00 -

encoder Universal BCH encoder 798 31: 0.62 -

formatter ASCII bit-packer for codes 652 56: 1.12 -

corrupter Channel noise generator 249 20: 0.40 -

all Complete RTR System 8141 - -

all Complete static System 11233 - -

Table 7.2: Synthesised RTR variable coding system.

The area, delay and reconfiguration constraints are set to high priority in MOODS. All target

values are set to zero. The delay is expressed in terms of the number of cycles required for the

sub-system to perform its function.

Both decoder configurations are assigned to a single reconfigurable region whose size is fixed

by the larger of the two register based reconfigurable decoders encompassing processors

P5, P6 BCH (15,7,5). The static decoder P0 shares the region using slices as LUT RAM in a

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 232

parameterised version of all three coding schemes. The size of the complete RTR system is

the sum of the reconfigurable and static regions:

 circuit area (RTR system) = 3542 + 2900 + 798 + 652 + 249 = 8141 slices.

The number of resources required by the decoders is not necessarily dominated by the

memory requirements of the decoder, rather how the memory is implemented. For instance,

the BCH (15,11,3) decoder stores the weights and codewords for 16 states, yet it requires

more resources than the BCH (15,5,7) decoder which performs the decoding for 1024 states.

The explanation lies in the limited number of registers (2 per CLB Slice) and the abundance

of Look-Up tables that can be used to implement RAM blocks. The reader will appreciate the

rationale behind synthesising the message and weight tables using different memory

resources; components would otherwise be un-programmed in an FPGA implementation

using a single type of memory resource.

In addition to reducing the number of uncommitted FPGA resources, re-using existing

components through run-time reconfiguration resulted in more than a 30% reduction in their

number – as shown in the last two rows of Table 7.2. The area reduction was achieved

through the continual partial reconfiguration of the resources between the two parallel

decoders whose properties are characterised in the first two rows of the table.

The difference between the resource consumption of the two decoders BCH (15,11,3) and

BCH (15,7,5) respectively, would justify further experimentation in optimising the use of

their data-path units. One option might be to utilise the uncommitted resources in the smaller

decoder BCH (15,11,3) through a tightening of its delay constraint, thereby increasing the

parallelism of the data-path units and the resource consumption of the four decoders. The area

requirements for the remaining sub-systems are modest in comparison with the decoders, due

to the absence of memory storage.

A final comment on the properties of synthesised circuits is with regard to the difference

between the resources used by the static and reconfigurable systems: the static version utilises

more than 90% of the resources of the target device (XCV1000). At approximately 66% of

the resources, the reconfigurable system can fit on a smaller device, such as the Xilinx

XCV800 FPGA, where it would be placed in almost 86% of the available logic resources.

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 233

7.5 Run-time Characteristics

The reader will recall from Section 7.3.1 that the number of errors occurring in a sample of

120 bits (8 codewords) taken by the receiver is used to determine whether a change in the

coding scheme is required. Table 7.1 shows the number of errors permitted for each BCH

coding scheme in relation to a desired Bit-Error Rate (BER) of approximately 5%, the

thresholds are reproduced below:

(15, 11, 3): sample errors < 4; (15, 7, 5): sample errors < 8; (15, 5, 7) sample errors < 13.

Figure 7.5 depicts the results generated from automated temporal partitioning: it illustrates

how the threshold values are used by the receiver at run-time to relate the number of errors

found in a sample of codewords to each configuration of sequential and parallel Viterbi

decoders.

A single reconfigurable region of the FPGA is reprogrammed with two temporal partitions,

both of which incorporate the sequential Viterbi processor P0 . The logic and routing resources

of the decoder are identical in both partitions, ensuring its continued execution during the

context switch from one temporal partition to the next.

Unlike the sequential decoder, the two parallel Viterbi decoders (P1-P4), (P5,P6) are

unconstrained in both partitions. Intentionally state-less during reconfiguration, their logic and

routing resources are reconfigured in parallel to the execution of the sequential decoder

without overlapping their resources. As well as providing MOODS with greater freedom to

share data-path components during optimisation, an absence of placement constraints

provides a greater choice when placing and routing components using the device vendor tools;

often an issue when floorplanning designs for partial reconfiguration.

As indicated by their shading, only one Viterbi decoder is ever active during the execution of

a temporal partition. The partitioner selected three combinations of active decoders for each

temporal partition: C1-C3 and C4-C6 respectively; we excluded combinations of decoders that

would have otherwise processed the same coding scheme using both the sequential and

parallel decoders. Exactly when a decoder is active is determined by the value of the BER and

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 234

the threshold of each edge which represents a transition in the coding scheme between the

temporal partitions.

T1: 0/120 < BER < 4/120

T2: 4/120 < BER < 8/120
T3: 8/120 < BER < 13/120
R: Reconfigure Region

T1-3:Bit Error- Rate (BER) thresholds

Reconfiguration = 4980 µs

P0

15,7,5
P0

P1 P2

P4P3

(15,11,3) x 4

C1

P1-4 exe= 24.36 µs

15,7,5
P0

P1 P2

P4P3

(15,11,3) x 4

P0 exe= 623.16 µs

C3

T1 T2

T1 T2

P0 exe= 78 µs

15,11,3
P0

C4 P5

(15,7,5) x 2

P6
15,11,3

P0

C6 P5

(15,7,5) x 2

P6

P0 exe= 2324.28 µs

T1

T1& R

T3

T2

T2& R
T3& R

T1

T1& R
T3& R

T2& R

T2

T3

P5,6 exe= 364.42 µs

15,5,7
P0

P1 P2

P4P3

(15,11,3) x 4

P0 exe= 2324.28 µs

T3

C2

T3

T1

T3

15,5,7
P0

C5 P5

(15,7,5) x 2

P6

T1

T2

T1

T2

T2

T3

T2

T3

T3

T1

Power on reset

In
cr

ea
se

 d
ec

od
er

pa
ra

lle
lis

m

Increase decoder
parallelism

P0 exe= 2324.28 µs

Figure 7.5: Channel bit-error rate relationships between the decoder configurations.

Upon the application of power, the default code scheme of BCH (15,11,3) is executed on the

reconfigurable region through configuration C1. The BCH (15,11,3) code was selected as the

default because it is the most efficient of the three codes (in terms of data to parity efficiency

(73.3)%); the reader is referred to Figure C.1 of Appendix C for further details. The default

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 235

configuration shown in Figure 7.5 is labelled with the time taken to decode the codeword

𝑃1−4exe = 24.36 µs, reflecting the parallelism of the four register-based Viterbi processors

P1-P4 for channel conditions where the BER is smaller than 4 in 120 bits (T1).

The sequential processor P0 is inactive until a decision is taken by the receiver to change the

coding to a more robust scheme. The protocol used was described earlier in Section 7.3.1 and

depicted in Figure 7.4; transmission using a semaphore takes 2 cycles or 40 ns for the current

50MHz clock signal.

A decision to select a different BCH code will ensure that data transmission continues during

any increase in channel noise. However, it comes at a cost of a reduction in efficiency because

a switch to a more robust code will result in a reduction in data efficiency, as well as an

increase in the time taken to decode a larger code space using a sequential decoder

implementation. For the BCH (15,7,5) code, the encoding efficiency is reduced to 46.7%

whilst the decoder takes 623.16 µs to decode a codeword. In the case of the BCH (15,5,7)

code these characteristics are 33.3% and 2324.28 µs respectively. Of course, the noise level of

the channel may reduce as well as increase and the option remains to switch to the default

decoder when necessary.

Assuming that the BER threshold T1 is exceeded, in order to maintain the quality of service

defined by the interval T2, the parameters of the sequential decoder P0 are changed to set the

decoder to match the nearest BCH (15,7,5) code. The next choice available to the receiver

gets to the crux of this RTR approach to decoding: without any change to the current code

scheme or interruption to codeword decoding, the idle resources previously allocated to four

parallel Viterbi processors (C3) may now be reconfigured to realise two parallel versions of

the current scheme BCH (15,7,5) in a different temporal partition (C6).

To mitigate the high cost of reconfiguration using an FPGA (4.98 ms) the sequential decoder

continues to decode codewords without loss of state throughout the reconfiguration period. As

a result of the context switch, Viterbi decoding is accelerated by approximately 1.7 times after

taking into account the communication costs between the parallel decoders. This scenario

assumed that no change in the coding scheme was necessary (BER< 8/120 bits). Had this not

been the case (T3) and a BCH code with a greater error correcting ability been required e.g.

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 236

BCH (15,5,7), a 40 ns delay in communicating the change in the coding scheme to the

transmitter would be accompanied by the relevant change in the sequential decoder’s

parameters.

In the event of the receiver wishing to relax the scheme to a less robust BCH code, it may rely

upon changing the parameters of the sequential decoder. During prolonged periods of low

channel noise, it could repeat a similar reconfiguration process to the one described earlier,

with the aim of switching (C4 to C1) to the least robust code scheme BCH (15,11,3) but most

parallel version of the Viterbi decoder. Alternatively, the receiver may decide to commit the

reconfigurable resources to occupying the ‘middle ground’ of the coding scheme, a place

where any change in the channel condition is but a short code distance away from its

response.

7.6 Summary

This chapter presented a practical application for the synthesised run-time reconfigurable

architecture described in the earlier chapter: a run-time coding system which changes the

coding scheme and degree of parallel decoding based upon the history of errors it encountered

during the transmission of the codewords. Unlike the test circuits used to generate the results

in chapter 6, this particular application relied upon the explicit use of reconfiguration as part

of the design specification, where partitioning occurred at the subroutine level of abstraction.

High-level synthesis was applied at the operation-level alongside temporal partitioning, where

it took advantage of the discrepancy between the sizes of the partitions to vary the degree of

instruction-level parallelism for each synthesised decoder.

Partitioning across the functional boundaries of the Viterbi decoders associated partial

reconfiguration with a change in the characteristics of each decoder. A prominent

characteristic is the number of states that require updating, which changes dramatically with

each type of BCH code selected. A non-reconfigurable MOODS implementation [123] used a

change in parameters of a sequential Viterbi decoder to implement a variable coding scheme.

The author successfully showed the advantages of adapting the efficiency of the coding

scheme to match the level of noise in a simulated communication channel. The codeword and

weight arrays were implemented using a single port RAM that was used for all three coding

D. Esrafili-Gerdeh, 2016 Chapter 7: Run-time Reconfiguration − A Case Study 237

schemes. The disadvantage of this approach was the idle use of logic resources, particularly

the use of device registers which remained uncommitted in the target FPGA. Other authors

[124,125] used MOODS to synthesise highly optimal parallel versions of the Viterbi decoders

which traded resource consumption against speed of decoding. As with the sequential

decoder, the authors selected one type of memory resource (device registers) to the exclusion

of others during FPGA implementation.

Aside from exercising the architecture generated automatically by MOODS during temporal

partitioning, a strong motivation for the case study was to determine whether the un-

programmed resources could be better put to use in another Viterbi decoder: LUTS which

were previously idle in one decoder might become parallel logic operations in another,

registers used for array variables could also be re-wired for use in the data and control paths.

Such a re-use of resources was not limited to instruction operations alone; at the functional

level, several parallel decoders were able to be reconfigured from the resources of a less

parallel but more robust decoder architecture.

The size of the complete system uses approximately 30 % fewer programmable logic

resources than the non-reconfigurable counterpart. The reduction in size does come at a price

of a 5 ms reconfiguration delay. However, the temporal partitioner was able to generate

partitions comprising two types of Viterbi decoders: a sequential decoder was optimised using

the idle resources of the FPGA, where it continued to decode codewords without interruption

during reconfiguration. A parallel decoder made use of all the remaining programmable logic

resources to accelerate the decoding of codewords. This approach was used to adapt both the

efficiency of the message encoding and codeword decoding to the noise level encountered

during transmission within a rudimentary communication system.

Through its implementation at the device level, the MOODS HLS tool has been successfully

used in conjunction with a temporal partitioning approach, to generate circuit structures which

explore the new territory formed by the incorporation of run-time reconfigurable resources.

We believe that this case study has shown that partitioning and synthesising reconfigurable

logic at the algorithmic level of abstraction provides a better rationale for RTR, when

contrasted with its use as a general area/delay trade-off during circuit optimisation.

D. Esrafili-Gerdeh, 2016 Chapter 8: Conclusion and Further Work 238

Chapter 8

Conclusion and Further Work

8.1 Conclusion

The theme of this thesis has been how to partition and preserve circuit behaviour at different

levels of abstraction during Behavioural Synthesis, ultimately leading to an implementation at

the device-level using Run-time Reconfiguration (RTR).

In the context of the MOODS behavioural synthesis system this approach required a

Temporal and Spatial Partitioning of a VHDL behavioural circuit specification. As a

consequence of the partitioning, MOODS is now able to perform simultaneous optimisation at

the instruction and subprogram levels of circuit abstraction, in contrast to other temporal

partitioning approaches [58,59] that exclusively target one level of representation.

In response to the use of the ‘Temporal_Partition’ compiler directive, preparation by the

MOODS data-structures ensures that a subroutine’s behaviour is preserved at the graph-level

of abstraction: in this form it can be partitioned through a graph modifying transform that is

applied using a Simulated Annealing heuristic. The ability of the simulated annealing

algorithm to explore both improving and degrading optimisations has been an essential aspect

when using commercial Field Programmable Gate Arrays (FPGAs) as the target

reconfigurable resource: FPGA devices are not designed for efficient reconfiguration; the time

taken to reconfigure their resources is several orders of magnitude greater than the time taken

to execute them.

The practical implementation on a FPGA was motivated by the iterative approach taken by

MOODS to optimisation: each control and data-path component is always bound to a specific

technology library, providing the cost function with a direct measure of the properties of the

circuit structure. To operate within this approach, temporal partitioning was also directly

quantified by implementing it in the form of temporal resource binding; through its

D. Esrafili-Gerdeh, 2016 Chapter 8: Conclusion and Further Work 239

application, partitioning proceeds by sharing a resource between subroutines at the same time

(spatial partition) or at different times (temporal partition) via a reconfiguration of their

common resource. In either case, the use of resource binding provides the interface necessary

to prevent subroutine tokens from being lost or corrupted during reconfiguration.

As described in Chapter 2, the majority of temporal partitioning approaches reported in the

literature [66] rely upon heuristics which seek only to improve a partition; contrary to one’s

instinct, research has shown this can lead to poorer results [126]: occasionally accepting an

optimisation that is know to worsen the metrics can lead the exploration of the ‘design space’

in a direction that might otherwise have never been taken. This has particular resonance in the

approach taken to generate the results presented in Chapter 6, where the relationship between

a cost function and each distinct effect of the temporal partitioning transform would not have

been verified without the ability to allow ‘hill-climbing’ in the design-space.

In reference to the summary provided in Chapter 6, the results produced through

experimentation do support an understanding of how an individual partitioning ‘move’

improved or degraded each of the cost function metrics. The significance of the results is that

it could form the basis for a more directed approach to applying the transform during

optimisation; however, as the results show, this approach should still incorporate the ability to

‘undo’ the effects of a transform in order to fully explore the design space.

Chapter 5 detailed the infrastructure provided by the author to implement temporal resource

binding at a layer of abstraction suitable for device-level partial reconfiguration. All

components are automatically generated by MOODS during optimisation, in a way that is

architecturally transparent to the user, thus enabling an exploration of the greater design space

formed through the temporal partitioning of subroutine modules.

As described in Chapters 4 and 5, this approach automatically implies a physical placement

inherent to the binding that is often less tangible in the other approaches to temporal

partitioning [65, 66]. The physical link provided by the resource binding supports decisions

taken by the resource binding transform: the placement inherent in a resource binding greatly

aids the task of modelling the physical aspects of partitioning: the length of channels can be

quickly characterised or logic resources increased by determining if two temporal partitions

are adjacent in space and time to allow their merger.

D. Esrafili-Gerdeh, 2016 Chapter 8: Conclusion and Further Work 240

Despite spanning several generations of vendor tool flows and devices, the infrastructure

supporting RTR incorporates a number of aspects which are fundamental but are currently not

supported by the current vendor tools [122]: there continues to be disparity between the

capabilities of the device and the features of the tools.

Most critical is the lack of provision for creating nested partitions: this is vital for modules in

MOODS to preserve the control and data-path signals when partitioning across module

hierarchies that share the same reconfigurable resource. In the broader use of RTR, state

saving is a necessary prerequisite for implementing more complex systems. An ‘ad-hoc’

approach was implemented by the author who through resource binding was able to preserve

control and data states. An alternative approach which enables the state of registers to be read

and restored requires the user to consult several unrelated documents, some of which are not

documented within the vendors guide to partial reconfiguration [122]: from the perspective of

a user of RTR, information surrounding its implementation can often seem esoteric.

Despite research spanning more than three decades, there has yet to be consensus on what

exemplifies the ideal application for a RTR methodology. That is not to say that there is an

absence of applications for RTR, far from it [9]. There are numerous examples of RTR being

successfully employed in hardware acceleration, particularly for stream-based computation

[127]. Repeated operations made to continuous data-streams (inherent to video and image

processing systems) are particularly well suited to reducing the ratio of reconfiguration to

execution time.

Chapter 7 provided a practical evaluation of the synthesised architecture. Unlike the test

circuits used to generate the results presented in Chapter 6, the partitioning was not

determined by the cost function but as part of the design specification. A 60% reduction in the

resources required for a static version was achieved at penalty of a 5 ms reconfiguration

delay. As described in the chapter summary, a partitioning is possible which incurs no

reconfiguration delay to the transmitter.

This draws attention to the fact that as an automatic optimisation trade-off, run-time

reconfiguration is suited to applications where it can exploit user knowledge in its

implementation. Such an approach to partitioning supports the perspective taken in this thesis

that run-time reconfiguration should also enable the implementation of different structural

D. Esrafili-Gerdeh, 2016 Chapter 8: Conclusion and Further Work 241

versions of the same behavioural description. This is supported by the partitioning of program

subroutines as opposed to individual instruction operations. Through the resource binding

transform and the device infrastructure, a first step has been taken towards extending the

software analogy to the device-level of abstraction, beyond using subroutine libraries to

simplify coding a specification.

With regard to the reconfiguration characteristics of FPGAs, very little has changed in over a

decade and there is little reason why that should not continue − if change does come, it is just

as likely to take the form of more spatial than temporal layers [128]. Should a new technology

or device come to market, much of the change needed to MOODS would be predominantly

through a change to the technology library!

It is encouraging to see a major vendor of FPGAs also providing a high-level synthesis tool

‘Vivado’ HLS [129] capable of aiding the user in implementing RTR, this can only increase

the user-base. Will there be an upturn in the use of RTR? Perhaps the reader is best placed to

answer that question: it is only through a willingness to assess the suitability of RTR for

oneself and the subsequent demand that it would create, that future research into technology,

tools and techniques can continue to be justified. Furthermore, the answer to many a question

regarding the possibilities and limitations of RTR is to be found within the extended design-

space formed when choosing to synthesise circuit hardware using run-time reconfigurable

resources – it can only be realistically explored through the use of automated HLS tools, such

as MOODS.

8.2 Further Work

As referred to in the Section 8.1, it would be a natural next step to attempt to encapsulate the

trade-offs between each of the partitioning metrics in the form of a dedicated heuristic for

temporal partitioning. The heuristic would rely upon much of the relationships identified

through experimentation using simulated annealing, perhaps applying it in the form of a pre-

optimisation step: a similar approach is available in MOODS to measure the share-ability of

data-path units, preventing independent operations on the critical path from being shared

rather than scheduled to the same control step to reduce the length of the path. Similarly, a

D. Esrafili-Gerdeh, 2016 Chapter 8: Conclusion and Further Work 242

metric characterising the adjacency of module execution calls would reduce the number of

rejected moves due to high levels of module context switching.

Li et al. [130] describes a scheme which uses an adjacency matrix to spatially partition those

modules which frequently appear next to one another in a stream of module calls at run-time.

As MOODS uses static scheduling, more information about the module sequences is known

in advance at compile-time (as the reader will recall from the module characteristics in

Appendix B). In addition, unlike scheduling at the instruction-level of abstraction, subroutines

do not change their order during scheduling: combining these characteristics, the author has

initially experimented with a metric for measuring subroutine execution ‘similarity’. Unlike

the adjacency matrix it does not require updating during run-time; it can be applied prior to

performing temporal partitioning in order to reduce the number of rejected moves due to

combinations of modules resulting in high context switching delays. It is expected to improve

upon the current approach by filtering out certain combinations of modules without actually

applying and rejecting the resource binding transform.

A final point of interest is that the approach of preserving behaviour through temporal

partitioning extends the view of taking a software approach to hardware design. Without

RTR, this approach is about simplifying the coding of a specification by re-using subroutine

libraries. With RTR, preserving the behaviour and how it is implemented can provide the

basis for design re-use at the structural or device-levels of abstraction; an additional way of

managing current and future design complexity.

D. Esrafili-Gerdeh, 2016 Appendix 243

Appendix A: MOODS

This appendix describes how MOODS is able to represent and subsequently optimise a circuit

specification at the instruction-level of abstraction.

A1 Synthesised Architecture
The architectural model in MOODS to which all circuits are synthesised is composed of a

number of synchronous Finite State Machines (FSMDs) which control the data-flow through

the data-paths. The FSMD model is represented within the MOODS data structures as a

number of control and data-path graphs, built directly from the behavioural, sequencing and

connectivity information contained within the ICODE description.

Figure A.1 illustrates a fragment of the control and data-path graphs that would automatically

be generated from an ICODE description of the ‘bch encoder’ described in Chapter 3 Figure

3.4; a second graph is also shown to exemplify how concurrency is modelled within the

architecture.

The topology of the control graphs is derived directly from the sequence of instruction

activations contained within the ICODE ‘Program’ and ‘bchEncoder’ modules. Each control

step ‘si’ represents what will ultimately be a single state in the MOODS output description of

the corresponding state machine controller(s).

State transition of the controller is modelled in the graph by a directional arc between each

pair of control nodes. In the structural description of the controller, the firing of an arc is

represented by a token passing from one state to the next. In doing so, it resembles the token

passing mechanism for the execution of the instructions described at the ICODE level i.e. an

instruction is activated by another and only upon completion of its execution. The graph data

structure relates the firing of an arc with the passing of a token, in such a way that the

activation of the control node at the end of the arc is synonymous with the execution of the

associated ICODE instruction.

D. Esrafili-Gerdeh, 2016 Appendix 244

L1: noop ACT L2, L9

encodedMessage

codeWord

=
#1011

tmp0

s10

messageData

tmp0_0

L10: protect 1e-008
ACT L10

s1 codeLength

s2

s3

s4

s7

tmp0 tmp0

L3: IF tmp0 ACTT L4, ACTF L5

L7: move encodedMessage, codeWord

L8: protect 1e-008

L2: ueq codeLength #%1011, tmp0

s5

s6

s15

s8

L5: moduleLeap bchEncoder messageData ...

L15: move tmp0_0, encodedMessage

L6: move messageData, tmp0_0

L2

L2

L6

L15

L7

s16 L16 endmodule

s9 L9: endmodule ACT L000002

L4: moduleLeap bchEncoder messageData ...

L2

L6

L15

L7

L2

L2

dp2

dp0

dp1

dp3

dp4

dp6

dp15

dp5

Figure A.1: Control and data-path graph sections for the BCH encoder algorithm.

The initial assignment of a single instruction to each of the control nodes is depicted

alongside the control graph. It requires no strategy when allocating each instruction to a

control node and in doing so, places no resource constraints upon the initial scheduling.

Optimisation proceeds in the next phase of synthesis, where the merger of a pair of control

states and the subsequent removal of one of them acts to assign more than one instruction per

state.

The direction of the control flow through the graph, be it feed-forward or backward (loop) is

dictated by the nature of the instruction activation list. Unconditional activation of more than

one instruction in the list, as is the case for the ‘NOOP’ instruction ‘L1’, requires the

D. Esrafili-Gerdeh, 2016 Appendix 245

simultaneous firing of multiple control arcs. This in turn, determines the type of control node

used, such as the fork node ‘s1’. There are six types of control node, three of which are

utilised in the graphs depicted. The factors which distinguish them from one another are the

number of their input and output arcs and the circumstance in which they are active.

The presence of a ‘fork’ node in the graph denotes the existence of multiple concurrent

threads of instruction execution. As depicted, it has one input and multiple output arcs, both

of which are fired unconditionally to successor nodes which mark the start of two parallel

control graphs. Each graph defines the order of precedence among the instructions, originally

derived from the source code description of VHDL processes. As specified in the VHDL

source description, each graph is a disjoint free running state machine with no requirement to

re-converge. Processes may synchronise to pass data to one another using semaphores, as

described in the Chapter 5, but when compiling VHDL there is no use for joining concurrent

branches.

Although not supported by the VHDL compiler, for the reasons described above, the ‘collect’

node (not depicted) fires a single output arc only when all of its multiple input arcs have been

activated. In this way it is able to synchronise any number of concurrent input branches. It

remains supported by the MOODS core data structures and is also present as an ICODE

instruction, providing a means of modelling fine grain parallelism for source languages

capable of describing it, such as SystemC [96].

A ‘general’ control node, such as ‘s2’ is ubiquitous throughout the graph because with

exception to ‘moduleLeap’, ‘if’, ‘switchon’ and ‘collect’ instructions, it can be used to

schedule any ICODE operation. It has a single unconditional input and output and is often the

result of optimisation to graphs segments containing other control types.

The next class of control node depicted is the ‘conditional node’ (e.g. ‘s3’), created in

response to the presence of the conditional instruction ‘if’ (‘L3’). The firing of the single

input arc and a condition being met in the data-path with reference to node dp4 and whether

variable ‘tmp0’ is logic low or high, governs which of the mutually exclusive output arcs is

fired.

D. Esrafili-Gerdeh, 2016 Appendix 246

Regardless of which of the conditional control paths is taken in the figure, the ‘call’ nodes

‘s5’,’s6’ are encountered. When one of their mutually exclusive ‘moduleLeap’ instructions

‘L5’,’L6’ is executed, a token is passed to the first instruction of the sub-module. As shown in

the figure, this is represented in the main graph by an output arc which connects the call node

to the first node ‘s6’ in the module’s sub-graph. Execution of the sub-module proceeds,

during which time, the calling module (program) waits because only one ICODE instruction

can ever be active in any given thread of instructions. Upon completing execution, the process

is mirrored: the token is returned to the ‘moduleLeap’ instruction (represented by an arc fired

by the last control node of the sub-graph ‘s16’ in response to the execution of the

‘endmodule’ instruction ‘L16’) and it subsequently activates the next instruction ‘L7’ in the

program module, by doing so, continuing its execution.

A control graph embodies the circuit behaviour by modelling when and in what order the

instructions are expected to execute. What it does not do is describe how the ICODE

operations are implemented in hardware. That is realised in the structural description provided

by the Data-Path graph. As with the control graph, the initial data-path is formed by allocating

one ICODE operation or variable to a single data-path node. This direct relationship between

operation and operator is intentionally broken during optimisation, when some of the data-

path nodes may be shared, reducing the number of data-path units required to implement the

ICODE instructions.

Of course the circuit is only truly modelled when its behaviour (ICODE instructions) and

structure (data-path) are linked. In the data-path, signal transfer as well as a dependency from

one unit to the next is represented by a data-path net. Among the attributes defined for it, such

as bit width, the data flow in the net is described in terms of the activation of an instruction

whose operands i.e. ICODE constants and variables provide the source and sink of the data

being transported along it.

For example, consider the execution of the instance of the equality operator instruction

‘L2: ueq codeLength, #%1011, tmp0’. The data-nets which connect the operands of the

instruction to their data-path units (dp0-dp3) are labelled with the instruction number. In this

way, data flow is always explicitly linked to instruction execution. The rationale for this stems

from the fact that the behaviour of the circuit, as embodied by the ICODE instructions, must

D. Esrafili-Gerdeh, 2016 Appendix 247

remain unaltered throughout optimisation. Whilst their scheduling and allocation to control

and data-path nodes will undoubtedly change during optimisation, much of the information

characterising the data flow can remain unaltered, being expressed in terms of active

instructions rather than directly linked to controller states which may be optimised away. This

aids in reducing the amount of re-processing to the data structures.

The MOODS data structures explicitly model the scheduling of ICODE instructions to each

control node, however, the representation of their execution is implicit, described indirectly

through the control of an instruction’s output variables. More specifically, an instruction is

considered to have been executed when the registers implementing the variable are loaded at

the end of the active control state.

Each control node in the graph is bound to an individual control cell, implemented using a

single register in the state machine. In this way, the controller is synthesised as a one-hot state

machine. The direct mapping of state to variable and subsequently variable to register, need

not be fixed to realise a one-hot encoding. The data structures which describe the activation of

the control arcs and ultimately the next state logic may be altered to realise other forms of

state assignment, such as binary or greyscale. One-hot encoding is presently favoured when

targeting FPGAs because there is generally a register adjacent to a look-up-table in most

architectures i.e. Xilinx Virtex Slice [6]. Of course, the same cannot be said when targeting an

ASIC, where such a state assignment would be deemed fast but expensive in terms of

registers resources.

Binding the control and data-path units to a particular technology enables the user to specify a

target or constraint for a particular metric, such as circuit area. Without such physical

characterisation, the circuit modelled by the control and data-path graphs remains abstract and

unquantifiable to all but the most simple of measures, such as counting the number of control

and data-path nodes when finding the area and critical path delay of the circuit. Once the user

has placed the architecture in the context of a particular technology, presently through the

Xilinx Virtex FPGA library [50], MOODS is able to automate the numerous scheduling and

allocation decisions required to transform the circuit structure into a form that meets the

criteria required by the user.

D. Esrafili-Gerdeh, 2016 Appendix 248

Each control and data-path node is bound to a cell taken from an FPGA technology library.

Although the intricacies of the libraries, as with much of the MOODS data structures, are

beyond the scope of this thesis, it will suffice to mention that it does more than list

characterisation data. It is a repository for pre-determined technology constants, such as the

size of a single register when implemented using a Virtex FPGA [6]. However, it also uses

those constants to generate an estimation of the size of a particular data-path unit when

parameterised with multiple inputs and outputs i.e. the area required when implementing a

vector variable using a register.

The module library is autonomous to MOODS, in that the characterisation data is requested

by MOODS core routines. This decoupling allows new Technology Libraries to be created

without requiring any changes to the MOODS control and data-path modelling and

optimisation routines. The ICODE database adds a level of indirection to the separation of

MOODS and the technology library. Without it, the library has no concept of the behaviour

(in the form of ICODE) a cell is required to characterise. An ICODE instruction encapsulates

the type, number and width of input and output variables. This information is utilised during

optimisation, where two instructions may be allocated to the same data-path unit. It becomes

indispensable during optimisation when assigning two different arithmetic instructions i.e.

addition and subtraction to a general purpose arithmetic and logic unit.

A2 Graph Transformations

Circuit optimisation is achieved in MOODS through the application of scheduling, allocation

and binding transformations. The scheduling transforms act to minimise the number of

control-graph steps, whilst their data-path counterparts reduce the number of data-path units

used to implement the behaviour embodied by the ICODE.

A2.1 Scheduling Transformations

The primary effect of any one of the seven scheduling transformations is to reduce the number

of control graph nodes and ultimately, the number of states utilised in the corresponding state

machine controller. As its name suggests, the scheduling transform is able to alter the

execution schedule of the ICODE instructions in a way that aims to meet the user supplied

D. Esrafili-Gerdeh, 2016 Appendix 249

timing constraints i.e. the critical path and longest state delay or clock period. In practice, the

effect of the seven transforms is to combine or split control states, re-assigning the ICODE

instructions in the course of doing so. The effect of the transform on the critical path delay

and clock period is either an improvement or degradation, depending upon the type of

scheduling transform applied. A reduction in the total number of control states is obviously an

immediate improvement to the length of the critical path. However, should the control states

selected by the transform determine the clock period, the result of assigning additional

instructions to an existing state would be detrimental to the clock period.

Table A.1 lists the effect of each of the seven types of scheduling transforms.

Scheduling transformation Description of behaviour

Sequential merge Given two control states, merge the instructions of the second

state with those of the first and remove the now redundant

second state. Independent instructions are ‘chained’ in the same

group. Non-dependant instructions are assigned to concurrent

groups. Any temporary data-path registers used to transport the

ICODE variables between the instructions are now bypassed.

Merge fork & successor Aims to merge the instructions of a ‘fork’ or ‘conditional’ node

with those associated with the successor node of one of its

branches. The conditional execution of the arc leading to the

instructions of the successor node, is maintained by conditions

imposed upon the execution of the instructions merged with

those of the branching node.

Parallel merge Merge the instructions from two ‘concurrent’ successor nodes of

a ‘fork’ into a single control node. The execution of the affected

instructions remains concurrent. The superfluous fork node is

removed from the graph.

Group

instructions on variable

Chain the instructions which write and read to a variable in

different control states. Frequently used to remove the registers

implementing compiler-generated temporary variables.

D. Esrafili-Gerdeh, 2016 Appendix 250

Ungroup into groups Splits a control state into two by re-assigning a concurrent group

of instructions to a new state.

Ungroup into time slices Splits a single control state and many groups of instructions into

a number of new ones, such that each new state executes one

instruction from each concurrent group within a given time.

Set clock Governs the clock period of the design by utilising the ‘Ungroup

into time’ slices transform, to ensure that the execution delay of

the longest instruction in each state does not violate the user

target for the clock period.

Table A.1: Scheduling transformations available for optimisation of the control graphs.

It is not appropriate to exemplify the application of each of the transforms, for more

information the interested reader is referred to [4,5]. Nonetheless, to enable the reader to

appreciate the use of the scheduling transformations in the context of the control and data-

path graphs, the Sequential merge transform is applied to the segment of the graphs shown

below in Figure A.2 (a).

Figure A.2 (b) depicts the consequences to the graphs should the transform be applied to

control states ‘c19’ and ‘c20’. The main effect is to perform an earlier scheduling of

instruction ‘L20’ which due to the data-dependency present in the form of the ICODE

variable ‘tmp97’, necessitates its chaining with the existing instruction ‘i19’. Of course the

secondary effect is the reduction in the resources allocated to realise the state machine

controller. The execution of the instructions within the group, formed by their merger, is

entirely asynchronous i.e. ‘L20’ is activated solely by ‘L19’. This removes the need for

register ‘tmp97’ which was previously used to pass the variable across the clock boundary

dividing the two control states.

Applying the transform once again to state ‘c19’ and its predecessor ‘c18’, results in the

formation of the two parallel instruction groups as depicted in Figure A.2 (c). Their execution

is concurrent because of the absence of any data-dependency between instructions ‘L18’ and

‘L19’ or ‘L18’ and ‘L20’.

D. Esrafili-Gerdeh, 2016 Appendix 251

18

20

toggle

#0
L18: move “0”,toggle

19 L19: udec messageLength,tmp97

L20: ugt “0”,tmp97 tmp98

-
#1

tmp97

messageLength

>
#0

tmp98

L18: move “0”,toggle

L19: udec messageLength,tmp97

L20: ugt “0”,tmp97 tmp98

18

toggle

#0
L18: move “0”,toggle

-
#1

messageLength

>
#0

tmp98

L19: udec messageLength,tmp97

L20: ugt “0”,tmp97 tmp98

Group 0 Group 1

(a) Initial control and data-path graphs

(b) Graphs following the application of the Sequential merge transform

(c) Repeated application of the transformation

18

toggle

#0

19

-
#1

messageLength

>
#0

tmp98

L18

L19

L19L19

L19

L20
L20

L18

L20
L20

L20

L19

L19 L19

L18 L20

L20

L19

L19L19

L20

Figure A.2: Application of the Sequential merge transform.

D. Esrafili-Gerdeh, 2016 Appendix 252

2.2 Allocation and Binding Transformations

The remaining transformations are employed for optimisation to the data-path graphs. Two

transforms enable sharing of data-path units, be they functional (arithmetic) or storage

(memory or registers). A single binding transform is able to select an alternative library cell

for any given data-path unit, although in practice this is currently limited to a small number of

units. The rest of the transforms provide a means of undoing the allocation, thus enabling the

optimisation algorithm to perform a number of degrading or a hill climbing moves which is

hoped will enable a broad investigation of the many possible alternative circuit structures

during optimisation. Table A.2 describes the effect of each of the data-path allocation and

binding transformations.

 Data-path transformation Description of behaviour

Share functional units Provides a means of reducing the circuit area through the

allocation of multiple instructions to a single data-path unit.

This requires the addition of a multiplexor to the unit’s inputs

which allows two or more instructions (in different control

states) to share it. The instructions needn’t be of the same type

e.g. multi-function ALU units allow for different arithmetic

instructions to be assigned to a single unit.

Share registers ICODE variables with non-overlapping lifetimes or in

mutually exclusive conditional branches can be allocated to

common data-path storage, most frequently registers. The

lifetime analysis is sufficiently sophisticated to also take into

account variable persistence in loops as well as conditional

branches.

Un-share instruction from

unit

An inverse transform which re-assigns a single instruction

from a previously shared functional unit to a newly created

one. The cell library is interrogated to determine the suitable

unit for both the existing and newly created units.

D. Esrafili-Gerdeh, 2016 Appendix 253

Fully un-share unit As its name suggests, all instructions currently allocated to the

functional unit are each assigned their own data-path unit,

employing the previous inverse transform in the process.

Un-share variable from

storage unit.

Similar in concept to its functional unit counterpart, a single

ICODE variable is assigned its own storage unit.

Fully un-share storage

unit

Utilises the transform described above to break-up all

instructions mapped to the storage unit in question.

Alternative binding The sole binding transform enables a data-path unit to be

bound to a different implementation chosen to reduce its area

or delay characteristics.

Table A.2: Allocation and binding transformations available during optimisation.

D. Esrafili-Gerdeh, 2016 Appendix 254

Appendix B: Module characteristics

The contents of this appendix describe the properties of the test circuits used to generate the

results presented in Chapter 6.

Quartic equation solver

Module Area (CLB Slices) Port width (bits)
udivi 908 96
sign 36 33
sdivi 695 96
to_int 154 64
sqrti 1067 64
multi 1194 96
sqi 721 64
quadratic 616 192
cosi 1893 64
acosi 893 64
cbrti 3559 64
cbi 2864 64
program 3530 64
 Σ 18130

Table B.1: Module characteristics of the Quartic equation solver.

96

Prog

quadratic

acosi

cosi

sign

sdivi

to_int

sqrti

sqi
cbrti

multi

cbi

udivi

33

96

64

64

64

64
64

64

64

64

64

Figure B.1: Relationships between modules in the Quartic equation solver.

D. Esrafili-Gerdeh, 2016 Appendix 255

Path 1

multi

to_int

multi

to_int

multi

multi

sqi

sqi

multi

to_int

multi

sqi

to_int

sdivi

→ sign

 udivi

to_int

multi

multi

to_int

multi

to_int

cbi

multi

to_int

sdivi

→ sign

 udivi

cbi

sqi

sqrti

sdivi

→ sign

 udivi

acosi

→ sdivi

 → sign

 udivi

 multi

to_int

sdivi

→ sign

 udivi

to_int

sdivi

→ sign

udivi

sqrti

cosi

→ udivi

 sdivi

 → sign

 udivi

 multi

multi

cosi

→ udivi

 sdivi

 → sign

 udivi

 multi

multi

cosi

→ udivi

 sdivi

 → sign

 udivi

 multi

multi

to_int

to_int

sqi

to_int

multi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

sqi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

quadratic

→ sqi

 to_int

 multi

 to_int

 multi

 sqrti

 sdivi

 → sign

 udivi

 to_int

to_int

sqi

to_int

multi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

sqi

to_int

multi

sqrti

to_int

sdivi

 → sign

 udivi

 quadratic

→ sqi

 to_int

 multi

 to_int

 multi

 sqrti

 sdivi

 → sign

 udivi

 to_int

‘→’ denotes module hierarchy.

Figure B.2: Module execution path of the Quartic equation solver.

D. Esrafili-Gerdeh, 2016 Appendix 256

‘→’ denotes module hierarchy

Figure B.3: Alternative module execution paths of the Quartic equation solver.

Path 2 Path 3

 multi

to_int

multi

to_int

multi

multi

sqi

sqi

multi

to_int

multi

sqi

to_int

sdivi

→ sign

 udivi

to_int

multi

multi

to_int

multi

to_int

cbi

multi

to_int

sdivi

→ sign

 udivi

cbi

sqi

sqrti

cbrti

cbrti

to_int

sdivi

→ sign

 udivi

to_int

sqi

to_int

multi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

sqi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

quadratic

→ sqi

 to_int

 multi

 to_int

 multi

 sqrti

 sdivi

 → sign

 udivi

 to_int

to_int

sqi

to_int

multi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

sqi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

quadratic

→ sqi

 to_int

 multi

 to_int

 multi

 sqrti

 sdivi

 → sign

 udivi

 to_int

 multi

to_int

multi

to_int

multi

multi

sqi

sqi

multi

to_int

multi

sqi

to_int

sdivi

→ sign

 udivi

to_int

multi

multi

to_int

multi

to_int

cbi

multi

to_int

sdivi

→ sign

 udivi

cbi

sqi

sqrti

cbrti

cbrti

to_int

sdivi

→ sign

 udivi

to_int

sqi

to_int

multi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

sqi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

quadratic

→ sqi

 to_int

 multi

 to_int

 multi

 sqrti

 sdivi

 → sign

 udivi

 to_int

to_int

sqi

to_int

multi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

sqi

to_int

multi

sqrti

to_int

sdivi

→ sign

 udivi

quadratic

→ sqi

 to_int

 multi

 to_int

 multi

 sqrti

 sdivi

 → sign

 udivi

 to_int

D. Esrafili-Gerdeh, 2016 Appendix 257

Cubic equation solver

Module Area (CLB Slices) Port width (bits)
udivi 908 96
sign 36 33
sdivi 532 96
to_int 124 64
sqrti 993 64
multi 884 96
sqi 662 64
cosi 1893 64
acosi 898 64
cbrti 3559 64
cbi 2864 64
program 2208 226
 Σ 15561

Table B.2: Module characteristics of the Cubic equation solver.

Prog

acosi

cosi

sign

sdivi

to_int

sqrti

sqi

cbrti

multi

cbi

udivi

64

96

96
33

96

64
64

64

64

64
64

Figure B.4: Relationships between modules in the Cubic equation solver.

D. Esrafili-Gerdeh, 2016 Appendix 258

Path1 Path2

to_int

multi

sqi

to_int

sdivi

→ sign

 udivi

to_int

multi

to_int

multi

to_int

cbi

multi

to_int

sdivi

→ sign

 udivi

cbi

sqi

sqrti

sdivi

→ sign

 udivi

acosi

→ sdivi

 → sign

 udivi

 multi

to_int

sdivi

→ sign

 udivi

to_int

sdivi

→ sign

 udivi

sqrti

cosi

→ udivi

 sdivi

 → sign

 udivi

 multi

multi

cosi

→ udivi

 sdivi

 → sign

 udivi

 multi

multi

cosi

→ udivi

 sdivi

 → sign

 udivi

 multi

multi

to_int

to_int

multi

sqi

to_int

sdivi

→ sign

 udivi

to_int

multi

to_int

multi

to_int

cbi

multi

to_int

sdivi

→ sign

 udivi

cbi

sqi

sqrti

cbrti

to_int

sdivi

→ sign

 udivi

to_int

‘→’ denotes module hierarchy
Figure B.5: Module execution paths of the Cubic equation solver.

D. Esrafili-Gerdeh, 2016 Appendix 259

Quadratic equation solver

Module Area (CLB Slices) Port width (bits)
udivi 883 96
sign 36 33
sdivi 342 96
to_int 80 64
sqrti 966 64
multi 721 96
sqi 649 64
program 720 194
 Σ 4397

Table B.3: Module characteristics of the Quadratic equation solver.

Prog

to_int

sqi

64

sdivi

udivi

sign

sqrti

multi

33

96 96

64

96

64

Figure B.6: Relationships between modules in the Quadratic equation solver.

sqi

to_int

multi

to_int

multi

sqrti

sdivi

→ sign

 udivi

sdivi

→ sign

 udivi

to_int

‘→’ denotes module hierarchy

Figure B.7: Module execution path of the Quadratic equation solver.

D. Esrafili-Gerdeh, 2016 Appendix 260

Encryption/Decryption circuits

Module Area (CLB Slices) Port width (bits)
rbsub 51 16
rtable 75 40
rotl16 53 64
rot18 53 64
ftable 75 40
logtables 206 20
word 41 40
rco 45 64
fbsub 50 16
rotl24 65 64
reorder 85 64
program 11946 132
 Σ 12745

Table B.4: Module characteristics of the Encryption/Decryption circuits.

Path1 Path2 Path3

reorder

○ 104 ftable

 rotl8

 ftable

 rotl16

 ftable

 ○ rotl24

fbsub

reorder

○ 104 rtable

 rotl8

 rtable

 rotl16

 rtable

 ○ rotl24

rbsub

reorder

logtables

reorder

○ 2 rotl24

 fbsub

 rco

 → word

 ○ fbsub

‘→’ denotes module hierarchy; ‘○’ denotes a finite loop.

Figure B.8: Module execution paths of the Encryption/Decryption circuits.

D. Esrafili-Gerdeh, 2016 Appendix 261

Matrix circuits

Module Area (CLB Slices) Port width (bits)
mzero 430 384
mmult-6 1132 576
madd-5 875 576
smmult 1248 416
mtrans 660 384
finddet2 481 288
finddet3 1336 256
det 1235 224
program 1787 290
 Σ9184

Table B.5: Module characteristics of the Matrix circuits.

Path1 Path2

reorder

○ 104 ftable

 rotl8

 ftable

 rotl16

 ftable

○ rotl24

fbsub

reorder

○ 2 rotl24

 fbsub

 rco

 → word

○ fbsub

‘→’ denotes module hierarchy; ‘○’ denotes a finite loop.

Figure B.9: Module execution paths of the Matrix circuits.

D. Esrafili-Gerdeh, 2016 Appendix 262

Rijndael Encryption/Decryption circuits

Module Area (CLB Slices) Port width (bits)
rotl16 53 64
rotl8 53 64
ftable 75 40
word 41 40
rco 46 64
fbsub 51 16
rotl24 65 64
reorder 70 64
program 6929 100
 Σ7383

Table B.6: Module characteristics of the Rijndael Encryption/Decryption circuits.

Path1 Path2

reorder

○ 104 ftable

 rotl8

 ftable

 rotl16

 ftable

○ rotl24

fbsub

reorder

○ 2 rotl24

 fbsub

 rco

 → word

○ fbsub

‘→’ denotes module hierarchy; ‘○’ denotes a finite loop.

Figure B.10: Module execution paths of the Rijndael Encryption/Decryption circuits.

D. Esrafili-Gerdeh, 2016 Appendix

263

Appendix C: Case-study

This appendix describes each of the building blocks of the Run-time reconfigurable adaptive

coding system described in Chapter 7.

C.1 Message Encoding

The Hamming distance is a measure of the difference between encoded words of data, for

instance, the number of bits which vary between two bit patterns. The usefulness of the

Hamming distance is that, if an error coding system enforces a minimum distance of two or

more than there are bit patterns which do not represent valid data bits. In essence, this concept

of a ‘code space’ underpins a considerable body of mathematical theory which is used to

derive schemes to produce codes with various properties. A generalised binary class of

Hamming codes for multiple-error the correction are the Bose-Chaudhuri-Hocquengheim

(BCH) [85] codes.

0 0 0 1... 1 1

n-k parity bits

0 0 0 1 1

k message bits

n transmitted bits

...

100(k/n) % efficient
code word

0

n k dmin

Code
generator

(octal)

2n-k

states
100 (k/n) %
efficiency

(dmin-1)/2
correctable

errors
7 4 3 13 8 57.1% 1
15 11 3 23 16 73.3% 1
15 7 5 721 256 46.7% 2
15 5 7 2467 1024 33.3% 3
31 26 3 45 32 83.9% 1
31 21 5 3551 1024 67.7% 2
31 16 7 107675 32768 51.6% 3
31 11 11 5423325 1048576 35.5% 5
31 6 15 313365047 33554432 19.4% 7

Figure C.1: Format of a BCH codeword, exemplar codes and the target codes.

D. Esrafili-Gerdeh, 2016 Appendix

264

Figure C.1 shows the format of a BCH codeword and a number of exemplar short length

codes. A given BCH code takes the form BCH (n, k, dmin), where a data message of length k is

augmented with n-k parity bits to realise a codeword of length n. The Hamming distance

12min +≤ td enables the correction of
2

1min −=
dt errors. Also tabulated in Figure C.1 are

the parity overheads associated with the size of each message, expressed as a percentage of

the codeword transmitted and hence an expression of the code efficiency. The (15,k,dmin)

family of codes highlighted in the table were selected because they facilitate the correction of

a range of errors (one to three) whilst requiring a generally modest number of states. As the

table shows, the number of states associated with a BCH code grows with the number of

errors it is capable of correcting.

The message to be transmitted is stored in a message ROM, where each character is

represented in the form of ASCII code. The ASCII character cannot always be encoded

directly since the portion of code allocated to data varies depending upon the coding scheme.

Figure C.2 shows how a series of characters is formatted in accordance with k message bits

for a given BCH code, where a coloured bit denotes a splice in the ASCII code and n bits are

added to meet the required length.

character ASCII code k=11 k=7 k=5

a 1000001 00101000001 1000001 00001

b 1000010 01000011100 1000010 01010

c 1000011 00101100010 1000011 11000

d 1000100 xx100011010 1000100 00001

e 1000101 1000101 01001

f 1000110 1000110 01100

 10001

 00110

 xxx10

Figure C.2: Code dependent message formation.

D. Esrafili-Gerdeh, 2016 Appendix

265

Once the bit-packing stage is complete, the next task in the construction of the codeword is

the generation of the parity bits. Figure C.3 depicts a Galois type Linear Feedback Shift

Register (LFSR) circuit capable of encoding a message for the (15,11,3) BCH code. The

feedback connections to the exclusive-or gates correspond to the code’s generator: 238 =1910

=100112 or expressed as a polynomial: 𝑔(𝑥) = 1 + 𝑥 + 𝑥4 .

D Q D QD Q D Q

message

s1

s0 codeword

1 x x2 x3 x4

r0 r1 r2 r3

parity

Figure C.3: Encoding circuit for the BCH (15,11,3) code.

The switches are used (conceptually) to direct the source of the bits that form the codeword as

well as controlling the feedback of the LFSR. Consider encoding the message taken from the

first row of the table shown in Figure C.3 for message length k =11: 00101000001.

Figure C.4 tabulates the progression of the message through the registers. During the first

k=11 cycles each bit of the message is exclusive-ORed with the coefficient of 𝑥4 (held in

r3) before being fed back (switch s1) to be once more exlusive-ORed with the coefficient of 𝑥.

Simultaneously, each bit of the message is also directed via switch s0 to form the first k bits of

the codeword. In the remaining n-k = 15-11 =4 cycles, the switches are flipped to flush the

registers and append their contents as parity, thus forming the codeword 0000 00101000001.

On close inspection, there are a number of characteristics which determine the sequence of the

register contents. Regarding the LFSR as a state machine, where the value of the register

outputs correspond to a particular state, the next state is dependent upon the output of the last

register Q3 and the value of the message bit Mi . The effect is to determine whether the register

value is doubled by shifting right one place or added to the generator (modulo-2 arithmetic).

D. Esrafili-Gerdeh, 2016 Appendix

266

message mi D0 Q0 D1 Q1 D2 Q2 D3 Q3 codeword |𝑄𝑛|

00101000001 0 1 0 1 0 0 0 0 0 - 0

0010100000 1 0 1 1 1 1 0 0 0 1 3

001010000 2 0 0 0 1 1 1 1 0 01 6

00101000 3 1 0 1 0 0 1 1 1 001 12

0010100 4 1 1 0 1 1 0 0 1 0001 11

001010 5 0 1 1 0 0 1 1 0 00001 5

00101 6 0 0 0 1 1 0 0 1 000001 10

0010 7 0 0 0 0 0 1 1 0 1000001 4

001 8 0 0 0 0 0 0 0 1 01000001 8

00 9 0 0 0 0 0 0 0 0 101000001 0

0 10 0 0 0 0 0 0 0 0 0101000001 0

- 11 0 0 0 0 0 0 0 0 00101000001 0

0000 11 0 0 0 0 0 0 0 0 00101000001 -

000 12 0 0 0 0 0 0 0 0 0 00101000001 -

00 13 0 0 0 0 0 0 0 0 00 00101000001 -

0 14 0 0 0 0 0 0 0 0 000 00101000001 -

- 15 0 0 0 0 0 0 0 0 0000 00101000001 -

Figure C.4: Exemplar LFSR encoding.

Let Q represent the value of the register contents given when the MSB is logic 1 i.e.

𝑄 = 2𝑛−𝑘−1 = 215−11−1 = 8 ; Recall that the Generator polynomial G expressed in binary

form is 100112 . The generator 𝑔 is found by exclusive-oring the polynomial generator G with

the value of Q i.e. 𝑔 = 10112 ⊕ 10002 = 00112. If Ri represents the state of the registers

after message bit i has been shifted in and 𝑅𝑖+1denotes the next state then:

𝑅𝑖+1 = 2𝑅𝑖 when (𝑅𝑖 < 𝑄 and 𝑀𝑖 = 0) or (𝑅𝑖 ≥ 𝑄 and 𝑀𝑖 = 1) (𝐶. 1) .

In words, the next state is even when either the current state is less than Q and the message

bit is logic low or the current state is greater or equal to Q and the message bit is logic

D. Esrafili-Gerdeh, 2016 Appendix

267

high. For example, with reference to the table in Figure C.4 the state at message bit 2 is given

by: 𝑅2 = 2 ⋅ 𝑅1 = 2 ∙ 3 = 6 when 𝑀1 = 0.

Similarly the state at message bit 7 is:

 𝑅7 = 2 ⋅ 𝑅6 = 2 ∙ 10 = 20 = 4 where 𝑄 + 𝑅 = 10 and 𝑀6 = 1.

Although the next state is twice that of the previous value of 10, it cannot be represented as 20

using 4 bits and therefore the next state is returned as 4.

Complementary to that, it also follows that:

𝑅𝑖+1 = 2𝑅𝑖 ⊕𝑔 when (𝑅𝑖 < 𝑄 and 𝑀𝑖 = 1) or (𝑅𝑖 ≥ 𝑄 and 𝑀𝑖 = 0) (C. 2).

Returning to the table for verification, the state at message bit 1 is given by:

 𝑅1 = 2 ⋅ 𝑅0 ⊕ 3 = 2 ∙ 0 ⊕ 3 = 3 when 𝑀0 = 1.

Likewise, state 5 is given by:

 𝑅5 = 2 ⋅ 𝑅4 ⊕ 3 = 2 ∙ 11 ⊕ 3 = 5 when 𝑀0 = 0.

Figure C.5 depicts the state transition for any given present state 𝑅𝑖 to the next 𝑅𝑖+1, with

respect to the value of the message bit 𝑀𝑖.

R 2R

R+Q2R g

1

0

1

0

Figure C.5: Message dependent state transition.

D. Esrafili-Gerdeh, 2016 Appendix

268

This process is encapsulated by the pseudo-code depicted in Figure C.6. The code is self-

explanatory, in that, it is solely a description of the behaviour. The VHDL description in

MOODS is almost identical with some additional type casting of the variables. It can be found

in Chapter 3, Figure 3.3. At this algorithmic level of the abstraction, the function of the

encoder is transparent in the circuit design; the same cannot be said of the Register Transfer

Level descriptions of the circuit shown in Figure 3.3 in Chapter 3.

Figure C.6: Algorithmic description of the BCH encoder.

𝐺 = 19

𝑄 = 2𝑐𝑜𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ−𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐿𝑒𝑛𝑔𝑡ℎ−1

𝑔 = 𝐺 ⊕ Q

𝑠𝑡𝑎𝑡𝑒 = 0

𝑓𝑜𝑟 𝑖 𝑖𝑛 0 𝑡𝑜 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐿𝑒𝑛𝑔𝑡ℎ 𝑙𝑜𝑜𝑝

 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 < 𝑄 𝑡ℎ𝑒𝑛

 𝑖𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑖 = 0 𝑡ℎ𝑒𝑛

 𝑠𝑡𝑎𝑡𝑒 = 2 ∙ 𝑠𝑡𝑎𝑡𝑒

 𝑒𝑙𝑠𝑒

 𝑠𝑡𝑎𝑡𝑒 = 2 ∙ 𝑠𝑡𝑎𝑡𝑒 ⊕𝑔

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑙𝑠𝑒

 𝑖𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑖 = 0 𝑡ℎ𝑒𝑛

 𝑠𝑡𝑎𝑡𝑒 = 2 ∙ (𝑠𝑡𝑎𝑡𝑒 − 𝑞) ⊕𝑔

 𝑒𝑙𝑠𝑒

 𝑠𝑡𝑎𝑡𝑒 = 2 ∙ (𝑠𝑡𝑎𝑡𝑒 − 𝑞)

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑖𝑓

𝑒𝑛𝑑 𝑙𝑜𝑜𝑝

𝑛𝑢𝑚𝑆𝑡𝑎𝑡𝑒𝑠 = 2𝑐𝑜𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ−𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐿𝑒𝑛𝑔𝑡ℎ.

D. Esrafili-Gerdeh, 2016 Appendix

269

C.2 Message Decoding − Sequential Viterbi Decoder

The state transition diagram of Figure C.7 highlights the sequence of states traversed during

the encoding of the exemplar codeword of Figure C.3, in the context of all possible state

transitions. Each path through the states is unique to the contents of the message. The task

during decoding is to determine that path and in doing so, whether or not any message bit has

been corrupted during transmission, restoring it where necessary. As it has been shown that

during encoding, each state 𝑅 or 𝑅 + 𝑄 traverses to the next state 2 ∙ 𝑅 (even) or 2𝑅𝑖 ⊕

𝑔 (odd) depending upon the logic level of the message bit 𝑀𝑖. Working backwards, this

property can be used to determine the pair of preceding states. Only one of these states is

associated with the state transition taken during the encoding of the codeword. Identifying it,

will also reveal the message bit transmitted.

5

15

14

4

3

6

8

12

11

9

13

2

7

10

1 1

0

1 1

0
1

0

0

0

1

0

01

111

0
0

0
1

1

0

10

0

1
1

0
1

1

0

Figure C.7: State Transition Diagram for message decoding using BCH (15,11,3) code.

The Hamming distance can be quantified at each state transition by introducing a weight that

is dependent on the logic level of the message bit. A weight of zero represents no change of

the message bit during transmission, where as an increment in weight is used to reflect its

corruption.

D. Esrafili-Gerdeh, 2016 Appendix

270

Returning to the state diagram, consider the state transition (𝑅0 to state 𝑅3) associated with

the first bit of the codeword 𝑀0 = 1. Assume for the time being, that no error occurred in the

transmission of the message bit. A weight of 0 at state 𝑅3 can be represented for the first

message bit by: 𝑊3
0 = 1 −𝑀0 = 0. The weight would have been incremented had the

message bit been corrupted during transmission i.e. 𝑊3
0 = 1. For the sake of argument, let us

assume that the transition also occurred error free for the second message bit 𝑀1 = 0. To have

negligible effect on the weight, the value of the message bit can be assigned directly i.e.

𝑊6
1 = 𝑀1= 0. In this way, any error to the message bit (𝑀1 = 1) also results in an increment

to the weight, thus: 𝑊6
1 = 𝑀1 = 1. The Viterbi decoder is now in a position to determine

which of the predecessor states is associated with the message. It does this by comparing each

of their weights and selecting the state whose weight is the smaller of the two. The

relationship between the current state and its predecessor determines the value of the message

bit. The next state relationships used by the encoder are reproduced here:

𝑅𝑖+1 = 2𝑅𝑖 when (𝑅𝑖 < 𝑄 and 𝑀𝑖 = 0) or (𝑅𝑖 ≥ 𝑄 and 𝑀𝑖 = 1) (𝐶. 1)

 𝑅𝑖+1 = 2𝑅𝑖 ⊕𝑔 when (𝑅𝑖 < 𝑄 and 𝑀𝑖 = 1) or (𝑅𝑖 ≥ 𝑄 and 𝑀𝑖 = 0) (C. 2)

Using these equations or Figure C.6 and working backwards provides the preceding state, that

is to say, the state 𝑅𝑖−1which along with the message bit Mi is responsible for the state

transition the current state 𝑅𝑖 i.e.

 when 𝑅𝑖 = 2𝑅𝑖 , 𝑅𝑖−1 = 𝑅𝑖 and 𝑀𝑖 = 0 or 𝑅𝑖−1 = 𝑅𝑖 + Q and 𝑀𝑖 = 1

 when 𝑅𝑖 = 2𝑅𝑖 ⊕𝑔, 𝑅𝑖−1 = 𝑅𝑖 and 𝑀𝑖 = 1 or 𝑅𝑖−1 = 𝑅𝑖 + Q and 𝑀𝑖 = 0

During the encoding of the message, the starting state is always 𝑅0. As shown, this

characteristic is exploited in the decoder weighting of each state by initializing all the states to

a weight greater than that of 𝑅0 i.e. the minimum Hamming distance. In doing so, the initial

weighting ensures that state 𝑅0 is correctly chosen as the predecessor state when decoding the

first message bit. The decoding method is summarised by the pseudo-code shown in Figure

C.8. Initialisation takes place during lines 1-4, to bias the weight of state 𝑅0 to zero and the

rest of the states to the minimum Hamming distance. The internal loop bounding lines 6-21

compares the weights of each pair of predecessor states for every state R. The smaller of the

D. Esrafili-Gerdeh, 2016 Appendix

271

two, points the way to what is likely to have been the previous state. Using the relationships

described earlier, the message bit likely to be associated with the state transition is found and

consequently set. Note that there is no point in performing the extra test to determine whether

the bit is erroneous, rather the bit is directly updated with the value expected. All that remains

is to write the smaller of the two weights to the state R in question. Of course, the procedure is

repeated by the outer loop for every remaining bit i of the message.

Figure C.8: Algorithmic description of the Viterbi decoder.

1. 𝑤0
−1 = 0

2. 𝑓𝑜𝑟 𝑅 𝑖𝑛 1 𝑡𝑜 𝑛𝑢𝑚𝑆𝑡𝑎𝑡𝑒𝑠 − 1 loop

3. 𝑤𝑅
−1 = 𝑑𝑚𝑖𝑛

4. 𝑒𝑛𝑑 𝑙𝑜𝑜𝑝

5. 𝑓𝑜𝑟 𝑖 𝑖𝑛 0 𝑡𝑜 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐿𝑒𝑛𝑔𝑡ℎ − 1 𝑙𝑜𝑜𝑝

6. 𝑓𝑜𝑟 𝑅 𝑖𝑛 0 𝑡𝑜 𝑛𝑢𝑚𝑆𝑡𝑎𝑡𝑒𝑠 − 1 𝑙𝑜𝑜𝑝

7. 𝑖𝑓 𝑤𝑅
𝑖−1 + 𝑚𝑖 < 𝑤𝑅+𝑄

𝑖−1 + 1 −𝑚𝑖 𝑡ℎ𝑒𝑛

8. 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑖 = '0'

9. 𝑤2𝑅
𝑖 = 𝑤𝑅

𝑖−1 + 𝑚𝑖

10. 𝑒𝑙𝑠𝑒

11. 𝑤2𝑅
𝑖 = 𝑤𝑅+𝑄

𝑖−1 + 1 −𝑚𝑖

12. 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑖 = '1'

13. 𝑒𝑛𝑑 𝑖𝑓

14. 𝑖𝑓 𝑤𝑅
𝑖−1 + 1 −𝑚𝑖 < 𝑤𝑅+𝑄

𝑖−1 + 𝑚𝑖 𝑡ℎ𝑒𝑛

15. 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑖 = '1'

16. 𝑤2𝑅⨁𝑔
𝑖 = 𝑤𝑅

𝑖−1 + 1 −𝑚𝑖

17. 𝑒𝑙𝑠𝑒

18. 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑖 = '0'

19. 𝑤2𝑅⨁𝑔
𝑖 = 𝑤𝑅+𝑄

𝑖−1 + 𝑚𝑖

20. 𝑒𝑛𝑑 𝑖𝑓

21. 𝑒𝑛𝑑 𝑙𝑜𝑜𝑝

22. 𝑒𝑛𝑑 𝑙𝑜𝑜𝑝

D. Esrafili-Gerdeh, 2016 Appendix

272

Table C.1 depicts each pair of predecessor states read by the algorithm for the BCH (15,11,3)

coding scheme and the current odd and even states they are used to update.

Previous

states

Ri-1

 Current

states

Ri

R R+Q 2R 2R⨁g

0 8 0 3

1 9 2 1

2 10 4 7

3 11 6 5

4 12 8 11

5 13 10 9

6 14 12 15

7 15 14 13

Table C.1: States visited by the algorithm during the decoding of the BCH (15,11,3) code.

The next table (C.2) shows the Hamming distances calculated during the decoding of the

codeword described earlier and illustrated in Figure C.4. The first column depicts the

initialisation of the states, which as explained earlier, requires that state R0 be initialised to

zero and the others set to the minimum code distance. In doing so, the method ensures that all

states can be correctly traced back to R0, thus mirroring the origin of the first state transition

during encoding. The codeword is error free and so the initial zero weight is propagated

(shown in bold) as the decoder recreates the path likely to have been taken during the

encoding of the codeword. This can be verified through the use of Table C.1 and the

equations for the even and odd weights featured in the decoder algorithm equation and

reproduced in equations C.3 and C.4 respectively:

𝑤2𝑅
𝑖 = minimum (𝑤𝑅

𝑖−1 + 𝑚𝑖, 𝑤𝑅+𝑄
𝑖−1 + 1 −𝑚𝑖) (C.3)

𝑤2𝑅⨁𝑔
𝑖 = minimum (𝑤𝑅

𝑖−1 + 1 −𝑚𝑖, 𝑤𝑅+𝑄
𝑖−1 + 𝑚𝑖) (C.4)

D. Esrafili-Gerdeh, 2016 Appendix

273

Starting with the even state R0, from Table C.1, its preceding states are itself R0 and R8.

Inspection of the first column of Table C.2 shows the initial weights of both states to be:

W0=0 and W8=3. Using Equation C.3 and taking into consideration the value of the message

bit m0=1, the weight at state R0 is determined as: 𝑊0
0 = minimum(1,3) = 1.

Mi M-1 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

Wi - 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0

W0 0 1 1 1 1 1 1 2 2 0 0 0 0 0 0 0

W1 3 3 3 3 2 3 1 1 2 2 2 2 1 1 1 1

W2 3 3 3 3 3 2 2 1 1 2 2 2 2 1 1 1

W3 3 0 2 2 2 1 2 1 1 1 1 1 1 1 1 1

W4 3 3 3 3 2 3 2 0 1 2 2 2 2 2 1 1

W5 3 3 1 3 3 0 2 2 2 1 1 1 1 1 1 1

W6 3 3 0 2 2 1 1 2 1 1 1 1 1 1 1 1

W7 3 3 3 3 1 3 2 1 2 1 1 1 1 1 1 1

W8 3 3 3 3 1 2 3 1 0 2 2 2 2 2 2 1

W9 3 3 3 2 3 1 1 2 2 2 2 1 1 1 1 1

W10 3 3 3 1 3 2 0 2 2 1 1 1 1 1 1 1

W11 3 3 3 3 0 2 2 2 1 1 1 1 1 1 1 1

W12 3 3 3 0 2 2 1 2 2 1 1 1 1 1 1 1

W13 3 3 3 3 1 2 2 2 1 2 1 1 1 1 1 1

W14 3 3 3 3 2 1 3 1 1 1 1 1 1 1 1 1

W15 3 3 3 1 3 2 1 1 1 1 1 1 1 1 1 1

Table C.2: Weights at each state and for every bit of the codeword 000000101000001.

In much the same way, the decoding algorithm also updates the weight of the odd state R3,

except using equation C.4, thus the weight of state R0 is propagated to state R3:

𝑊3
0 = minimum(0,4) = 0. The algorithm repeats this procedure for the remaining states and

for every bit of the message Mi being decoded. One interesting characteristic of BCH codes is

that if the codeword were to be encoded using the same generator, the final state is always 𝑅0.

In a similar sense, this property is exhibited by the decoder, since the weight of R0 following

D. Esrafili-Gerdeh, 2016 Appendix

274

the last message bit returns the number of errors corrected i.e. 𝑊0
14 = 0. As will be described

in due course, this property is also exploited during control of the adaptive decoding, where

the number of errors corrected guides the selection of the coding scheme. Table C.3 shows the

eights generated when the algorithm is applied to a corrupted codeword, the result of a switch

in the logic level of the fourth message bit M3.

Mi M-1 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

Wi - 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0

W0 0 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

W1 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1

W2 3 3 3 3 3 3 2 1 2 1 2 1 1 1 1 1

W3 3 0 2 2 2 1 2 1 0 1 2 1 1 1 1 1

W4 3 3 3 3 2 3 2 1 1 2 1 0 1 1 1 1

W5 3 3 1 3 3 1 2 2 1 0 1 0 1 1 2 1

W6 3 3 0 2 2 0 1 2 1 1 1 2 2 1 1 1

W7 3 3 3 3 1 3 1 2 2 2 1 0 1 2 1 1

W8 3 3 3 3 1 2 3 0 1 2 2 1 1 1 1 1

W9 3 3 3 2 3 2 1 2 1 1 1 1 1 1 1 0

W10 3 3 3 1 3 1 1 2 2 1 0 1 2 1 1 1

W11 3 3 3 3 0 2 2 1 2 1 2 1 1 2 1 1

W12 3 3 3 0 2 2 0 2 2 2 1 1 2 1 1 1

W13 3 3 3 3 1 1 2 1 1 2 1 1 1 1 0 1

W14 3 3 3 3 2 2 3 1 2 1 2 1 0 1 1 1

W15 3 3 3 1 3 2 1 1 1 1 1 2 1 0 1 1

Table C.3: Weights at each state and bit of the erroneous codeword 000000101010001.

As before, the decoder uses the minimum weights to identify the correct path (in bold) despite

the presence of the erroneous message bit. Table C.4 illustrates the effect of the algorithm

upon the reconstruction of the codeword itself. Each column of the table refers to the

individual bit of the message or codeword under examination by the algorithm. Every row

D. Esrafili-Gerdeh, 2016 Appendix

275

depicts the partial construction of the message local to each state, as each bit of the message is

examined.

Mi M-1 M0 M1 M2 M3 M4 M5 M6 M14

MessageRi - 1 0 0 1 0 0 1 0

Message0 - 0 00 000 0000 11001 011001 0011001… 000000101000001

Message1 - 1 01 001 0111 10111 000101 0010011… 000000101010000

Message2 - 1 01 001 1111 10001 010111 1010011… 000100101010001

Message3 - 1 10 100 1000 10000 010010 1011001… 000001101010001

Message4 - 1 01 001 1011 10001 110101 1000001… 000000101110001

Message5 - 1 11 001 0001 00001 011011 1010010… 001000101010001

Message6 - 1 01 010 0100 10001 010000 1011101… 000000100010001

Message7 - 1 01 001 0011 11111 010101 0000001.. 000000111010001

Message8 - 1 01 001 1001 10010 111101 1010001… 000000101011001

Message9 - 1 01 111 0001 00101 010011 1011011… 000000101010001

Message10 - 1 01 011 0001 10101 000001 1010100… 100000101010001

Message11 - 1 01 001 0001 11011 011101 0010001… 000000101010101

Message12 - 1 01 001 0010 11101 010001 0010000… 000010101010001

Message13 - 1 01 001 0101 10011 010100 1010101… 000000101010011

Message14 - 1 01 001 1101 00011 110100 1110001... 000000001010001

Message15 - 1 01 101 0001 10100 110001 1010000… 010000101010001

Table C.4: Message correction using Viterbi decoding for codeword 000000101010001.

Having identified the likely predecessor state (from the smaller weight of the two states

presented), the algorithm uses the relationships described by equations C.1 and C.2 to set the

likely logic level of the message bit. As Table C.4 depicts, once the logic level of message bit

𝑀𝑖 has been found, the entire message up to and including bit i is appended to the message

associated with the states under examination. As highlighted in bold in table, the original path

associated with the state transitions is re-traced and the driving message bits responsible for

each transition, are reconstructed bit by bit, thereby correcting the incorrectly received

message bit in the process. After the last message bit has been decoded, the corrected

codeword is read from the copy of the codeword associated with state R0. With reference to

D. Esrafili-Gerdeh, 2016 Appendix

276

Table C.3, once again, the weight of state R14 after the last message bit has been decoded

returns the number of errors that have been corrected.

C.3 Parallel Viterbi Decoding

The decoding time of the sequential decoder can be reduced linearly by partitioning the

number of states evenly among 2𝑚 decoders or ‘Processors’ [124,125]. In the sequential

decoder the weights and partially corrected codeword associated with each state are accessible

to all other states within the decoder circuit. In practice, the Viterbi decoders used in the

reconfigurable coding scheme require (2𝑐𝑜𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ−𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐿𝑒𝑛𝑔𝑡ℎ) of 16-bit words to store

the message and the same number of nibbles (4 bits) to record the hamming distance weights

associated with each of the states. Partitioning the states over a number of decoders can

potentially generate a large cut-set comprising the memory allocated to the Hamming weights

and the i th bit of the codeword.

The underlying characteristic thus far, has been the classification of the states into those that

are smaller or (greater and equal) to Q and their use in the generation of the next set of states.

Grouping these states together on each decoder can significantly reduce the number of signals

cut by the partitioning.

Equation C.5 determines how 2𝑛−𝑘−1states can be evenly partitioned over 2m processors.

Recall that n is the length of the codeword and that k is the portion of that codeword assigned

to the message bits. The set of states SP partitioned over processor P is given by:

𝑆𝑃 = 𝑃𝑅 ∪ 𝑃𝑅+𝑄 (𝐶. 5)

Where the set of states less than Q on processor P is given by:

𝑃𝑅 = 𝐿𝑃… 𝐿(𝑃 + 1) − 1 (𝐶. 6)

Let L be the number of states less than Q on each processor P, such that:𝐿 = 2𝑛−𝑚−𝑘−1 and

𝑄 = 2𝑛−𝑘−1. Those states on processor P greater than Q are given by adding Q to the decimal

value of each state in the set i.e. 𝑃𝑅+𝑄 = 𝑃𝑅 + 𝑄 (𝐶. 7).

D. Esrafili-Gerdeh, 2016 Appendix

277

Consider the task of partitioning the BCH code (15,11,3) over 4 processors. The parameters

are as follows:

𝑛 = 15,𝑘 = 11,𝑚 = 2 for 22 = 4 processors

𝑄 = 2𝑛−𝑘−1 = 215−11−1 = 8; 𝐿 = 215−2−11−1 = 21 = 2.

The parameters indicate that there are 2 states less than 8 on each processor. These states are

determined using equations C.5 for each of the processors numbered 0 to 3 as follows:

 States on processor 0

States less than Q: 𝑃𝑅 = 0 ∗ 2 … 2(0 + 1) − 1 = 0. .1 (using 𝐶. 6)

States greater than or equal to Q: 𝑃𝑅+𝑄 = 0 + 8 … 1 + 8 = 8 … 9 (using 𝐶. 7)

Therefore the states partitioned to processor 0 are given by combining both sets:

𝑆0 = 0 … 1 ∪ 8. . .9 = 0,1,8,9 (using C. 5)

Using the same equations, the remaining states are partitioned as follows:

𝑆1 = 2 … 3 ∪ 10 … 11 = 2,3,10,11

𝑆2 = 4 … 5 ∪ 12 … 13 = 4,5,12,13

𝑆3 = 6 … 7 ∪ 14 … 15 = 6,7,14,15

Figure C.9 illustrates the external communication (cut-set) between each of the four

processors P1-3. Each processor depicted, contains the states assigned to it using the procedure

described. Recall that in order to update the weight and message bits associated with a given

state Ri, two predecessor states Ri-1 are required. The relationship between such states is re-

produced in the table alongside the decoders. The transfer of the weights and message bits

between processors is depicted by each unidirectional edge. Each arc originates from the

processor containing the predecessor states and terminates in the processor whose state is

updated using the predecessor states and the decoding method discussed earlier. What makes

the partitioning particularly elegant is that a significant proportion of the connectivity is

contained within the processor itself. For example, consider the even and odd states of the

D. Esrafili-Gerdeh, 2016 Appendix

278

first row of the table. The even state Ri= 0 is updated using itself and Ri-1=8. This is done

internal to the processor. The two states are also used to update the odd state Ri= 3 which

requires the weight and message bits associated with each state to be transmitted across the

decoder boundaries.

P0

0

1

8

9

P1

2

3

10

11

P3

6

7

14

15

P2

4

5

12

13

(2,10)4
(3,11)5

11(4,12)
(5,13) 10

(3,11)

6 (2,10)

7

12
13

(7,15)

(6,14)

(4,12)

(5,13)

8

9

(0,8)
(1,9) 3

2

0 8 0 3
1 9 2 1
2 10 4 7
3 11 6 5
4 12 8 11
5 13 10 9
6 14 12 15
7 15 14 13

W2R gW2RWR+QWR

Ri-1 Ri

Figure C.9: Viterbi decoding of BCH (15,11,3) code partitioned over 4 processors.

As another example of the partitioning, consider the state assignment necessary to divide the

decoding over two processors. Once again, the parameters are returned as:

𝑛 = 15,𝑘 = 11,𝑚 = 1 for 21 = 2 processors

𝑄 = 2𝑛−𝑘−1 = 215−11−1 = 8; 𝐿 = 215−1−11−1 = 22 = 4.

States on processor 0

States less than Q: 𝑃𝑅 = 0 ∗ 4 … 4(0 + 1) − 1 = 0. .3 (using 𝐶. 6)

States greater than or equal to Q: 𝑃𝑅+𝑄 = 0 + 8 … 3 + 8 = 8 … 11 (using 𝐶. 7)

D. Esrafili-Gerdeh, 2016 Appendix

279

Combining both sets of states determines those state partitioned to processor 0 i.e.

𝑆0 = 0 … 3 ∪ 8. . .11 = 0,1,2,3,8,9,10,11 (using 𝐶. 5)

Following the same method reveals the remaining states portioned over processor 1:

 𝑆1 = 4 … 7 ∪ 12 … 15 = 4,5,6,7,12,13,14,15

Figure C.10 shows the impact of the partitioning on the external communication between the

processors. In this case, partitioning the states among two processors balances the number of

internal signal transfers (16) with those exchanged between the two decoders. The reader may

verify this by consulting the relationships between the states shown in the table of Figure C.9.

Another aspect of the partitioning which commends itself to parallel computation is the fixed

degree of input and output arcs. In general the in/out-degree of the task graph when decoding

any BCH code is never any greater than 4.

0
1

2

3
8

9

10
11

45
6

7

12
13

14

15

P1P0 (4,7)(2,10)

(6,5)(3,11)

(8,11) (4,12)

(10,9) (5,13)

Figure C.10: Viterbi decoding of BCH (15,11,3) code over 2 processors.

In addition to partitioning the BCH (15,11,3) code over 4 processors, the states of the BCH

(15,7,5) code are divided among 2 processors. The rationale for doing this is discussed in the

next section. Repeated application of the equations used previously, returns the following

state to processor assignment: out of the 256 states used by the decoder, each processor will

be assigned 64 states, all of which are numerically smaller than Q which is found to be 128

i.e. 𝑄 = 128; 𝐿 = 64; given that 𝑛 = 15, 𝑘 = 7,𝑚 = 1 for 21 = 2 processors.

D. Esrafili-Gerdeh, 2016 Appendix

280

These states are partitioned to processor 0, such that:

States less than Q: 𝑃𝑅 = 0 ∗ 64 … 64(0 + 1) − 1 = 0. .63 (using 𝐶. 6)

States greater than or equal to Q: 𝑃𝑅+𝑄 = 0 + 128 … 63 + 128 = 128 … 191 (using 𝐶. 7)

The states assigned to processor 0 are as follows:

 𝑆0 = 0 … 63 ∪ 128. . .191 (𝐶. 5)

Repeating the procedure verifies that those states not assigned to processor 0 are resident on

the remaining processor i.e.

𝑆1 = 64 … 127 ∪ 192 … 255 .

C.4 Message Corruption

As its name suggests, the purpose of the message corrupter circuit is to invert one to four bits

of a given codeword and in doing so offer a simple means of emulating the corruption of any

encoded message during its transmission. The role of the corrupter is limited to automating

the selection of random bits of a codeword for corruption- in order to stimulate a change in

coding scheme by the receiver. The reader is referred to Chapter 7 for a full description of its

integration within the adaptive coding scheme.

Figure C.11 shows the behavioural VHDL description of the message corrupter used in the

communication system. It is essentially a description of the behaviour of two linear feedback

shift registers and is therefore a specification for two pseudo-random number generators. The

first produces a pseudo random number between 0 and 63; it is converted to the variable

‘numErrors’ which is used to determine the number of codeword bits to change during

corruption of a codeword. To vary the error rate, the frequency of bit errors is determined by

the size of the variable ‘numErrors’ in relation to a number interval. No errors (numErrors=0)

are most likely to occur for random numbers in the range of 0 to 39; conversely, four errors

(numErrors=4) is the least likely number of errors to occur requiring the random number to be

exactly equal to 63.

D. Esrafili-Gerdeh, 2016 Appendix

281

-- subroutine to corrupt one to four bits of a codeword

procedure messageCorrupter (codeWord: in std_logic_vector(14 downto 0);
 randomState: inout std_logic_vector(5 downto 0);

 randomStateBit: inout std_logic_vector(3 downto 0);
 corruptCodeWord: out std_logic_vector(14 downto 0);
 errors: out integer range 0 to 4) is

 variable tempWord: std_logic_vector(14 downto 0);
 variable taps,eTaps: std_logic;
 variable numErrors: integer range 0 to 4;
 variable randomBit: integer range 0 to 14;
 variable randomNo: integer range 0 to 63;

 begin

 -- LFSR which determines the number of errors

 eTaps:=randomState(0) xor randomState(1);
 randomState:=eTaps & randomState(5 downto 1);
 randomNo:=to_integer(unsigned(randomState));

 if randomNo < 39 then
 numErrors:=0;
 elsif randomNo < 51 then
 numErrors:=1;
 elsif randomNo < 59 then
 numErrors:=2;
 elsif randomNo < 63 then
 numErrors:=3;
 else
 numErrors:=4;
 end if;

 tempWord:=codeWord;

 -- LFSR which selects the codeword bits to corrupt

 while numErrors > 0 loop
 taps:=randomStateBit(0) xor randomStateBit(1);
 randomStateBit:=taps & randomStateBit(3 downto 1);
 randomBit:=to_integer(unsigned(randomStateBit))- 1;
 tempWord(randomBit):= tempWord(randomBit) xor '1';
 end loop;

 corruptCodeWord:=tempWord;

end messageCorrupter;

Figure C11: Behavioural VHDL description of the message corrupter circuit.

D. Esrafili-Gerdeh, 2016 Appendix

282

The role of the second LFSR is to perform the corruption of the codeword by pseudo-

randomly selecting the desired number of codeword bits held by variable numErrors,

inverting each bit to achieve the specified level of codeword corruption.

The main objective of the case-study was to provide a means of exercising the automated

RTR infrastructure generated by MOODS during temporal partitioning. However, all building

blocks described in chapter 7 were implemented at the device-level as part of a rudimentary

communication system. As well as successfully testing the automated infrastructure, the case

study showed the feasibility of using RTR to utilise logic resources to increase the parallelism

of Viterbi decoding using FPGA resources which would have otherwise been idle.

The next step for the case study would be to change the message corrupter to implement the

characteristics associated with actual communication channels. A good place to start would be

to incorporate a variable error rate into the message corrupter based upon a Markov Process,

as described in [123]. In doing so, the codewords would be subjected to a variable error rate

typical of the sort of signal ‘fading’ associated with wireless communication channels.

Updating the message corrupter will enable the reconfigurable Viterbi decoders to be assessed

alongside more conventional approaches, where its advantages and disadvantages can be

further evaluated.

D. Esrafili-Gerdeh, 2016 References 283

References

1 Freeman, R., “Configurable electrical circuit having configurable logic elements and

configurable interconnects”, US Patent 4,870,302, September 26, 1989.

2 Brown, S. − Rose, J., “FPGA and CPLD architectures: a tutorial”, IEEE Design Test

of Computers, Vol. 12, No. 2, 1996, pp.42-57.

3 DeHon, A., “Dynamically Programmable Gate Arrays: A Step Toward Increased

Computational Density”, Proceedings of the Fourth Canadian Workshop on Field-

Programmable Devices, Toronto, Canada, May 1996, pp.47-54.

4 Baker, K.R., “Multiple Objective Optimisation of Data and Control Paths in a

Behavioural Silicon Compiler”, PhD Thesis, University of Southampton, September

1992.

5 Williams, A.C., “A Behavioural VHDL Synthesis System using Data path

Optimisation”, PhD Thesis, University of Southampton, July 1997.

6 “Virtex 2.5 Field Programmable Gate Array”, Datasheet DS003-1, Xilinx Inc., 2013.

7 Kirkpatrick, S., “Optimization by Simulated Annealing: Quantitive Studies”, Journal

of Statistical Physics, Vol. 34, Nos. 5/6, March 1984, pp.975-986.

8 Walder, H. − Platzner, M., "A runtime environment for reconfigurable hardware

operating systems", Proceedings of the 14th Conference on Field-Programmable Logic

and Applications, January, 2004, pp.831-835.

9 Lyke, J.C., et al., “An Introduction to Reconfigurable Systems”, Proceedings of the

IEEE, Vol. 103, No.3, March 2015, pp.291-317.

D. Esrafili-Gerdeh, 2016 References 284

10 Compton, K. − Hauck, S., “Reconfigurable Computing: A Survey of Systems and

Software,” ACM Computing Surveys, Vol. 34, No. 2, June 2002, pp.171-210.

11 Cypher, R., “The SIMD Model of Parallel Computation”, Springer-Verlag, 1994,

ISBN: 0-387-94139-8.

12 Mangione-Smith, W. H. − Hutchings, B., et al. "Seeking solutions in configurable

computing", Computer Vol.30, No.12, December 1997, pp.38-43.

13 Wilkes, M.V., “The best way to design an automatic calculating machine”,

Proceedings of Manchester University Computer Inaugural Conference, 1951,

pp 16-18.

14 Agrawala, A.K. − Rauscher, T.G., “Foundations of Microprogramming: Architecture,

Software and Applications”, Academic Press, New York, 1976, ISBN: 0120451506.

15 Gray, J.P. − Kean, T.A., “Configurable hardware: a new paradigm for computation”,

Proceedings of decennial Caltech conference on VLSI on Advanced research in VLSI,

June 1989, pp.279-295.

16 von Neumann, J., “ First draft of a Report on the EDVAC”, Moore School of

Electrical Engineering, University of Pennsylvania, 1945.

17 Gajski, D.D. – Ramachandran, L., "Introduction to high-level synthesis", IEEE Design

and Test of Computers, Vol. 11, No.4, 1994, pp.44-54.

18 Estrin, G. – Viswanathan, C.R., “Organisation of Computer systems − The Fixed Plus

Variable Structure Computer”, Proceedings of the Western Joint Computer

Conference, May 1960, pp.33-40.

19 Estrin, G. – Turn, R., “Automatic Assignment of Computation in a Variable Structure

Computer System”, IEEE Transactions on Computers Vol. 12, No.6, December 1963,

pp.747-755.

D. Esrafili-Gerdeh, 2016 References 285

20 Miller, R. − Cocker, J., “Configurable computers: A new class of general-purpose

machines”, Proceedings of the International Symposium on Theoretical Programming,

Vol. 5, January 1972, pp.285-298.

21 “XC6200 Development System DataSheet”, Xilinx Inc., 1997.

22 Kuon, I. – Rose, J., “Measuring the gap between FPGAs and ASICs”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 26,

No. 2, February 2007, pp.203-215.

23 “XC4000E and XC4000X Series Field Programmable Gate Arrays”, Datasheet

DS005, Xilinx Inc., 2013.

24 “FLEX 10K Embedded Programmable Logic Family”, Datasheet DS-F10K-4.2,

Altera Corporation., 2003.

25 “AT40K FPGAs with FreeRAM”, Datasheet 0896E, Atmel Inc., 2013.

26 Halfhill, T.R., “Tabula time machine – rapidly reconfigurable chips will challenge

conventional FPGAs”, MicroProcessor Report, Issue 032910, 2010,

www.MPRonline.com.

27 Hartenstein, R., “A decade of reconfigurable computing: a visionary retrospective”,

Proceedings of the IEEE Conference on Design, Automation and Test in Europe

DATE’01, March 2001, pp.642-649.

28 Todman, T. J., et al., “Reconfigurable computing: architectures and design methods”,k

IEE Proceedings on Computers and Digital Techniques, Vol. 152, No. 2, March 2005,

pp.193-207.

29 Ling, X.P., et al., “WASMII: a data driven computer on a virtual hardware”,

Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines,

April 1993, pp.33-42.

D. Esrafili-Gerdeh, 2016 References 286

30 Shibata, Y., et al., “Towards the realistic “virtual hardware”, International Workshop

on Innovative Architecture for Future Generation High-Performance Processors and

Systems, October 1997, pp.50-55.

31 Shibata, Y., et al., “A virtual hardware system on a dynamically reconfigurable logic

device”, Proceedings of the 17th IEEE International Symposium on Field-

Programmable Custom Computing Machines, April 2000, pp.295 -296.

32 Motomura, M., “A Dynamically Reconfigurable Processor Architecture”,

Microprocessor Forum, October 2002.

33 Brebner, G., “The swappable logic unit: a paradigm for virtual hardware”, Proceedings

of the 5th IEEE International Symposium on Field-Programmable Custom Computing

Machines, April 1997, pp.77-86.

34 Brebner, G., “A Virtual Hardware Operating System for the Xilinx XC6200”,

Proceedings of the 6th International Workshop on Field-Programmable Logic, Smart

Applications, New Paradigms and Compilers, September 1996, pp.327-336.

35 Brebner, G., “Automatic identification of swappable logic units in XC6200 circuitry”,

 Proceedings of the 7th International Workshop on Field-Programmable Logic and

 Applications, London, September 1997, pp.173-182.

36 Trimberger, S., et al., “A Time-Multiplexed FPGA”, Proceedings of the 5th IEEE

International Symposium on FPGA-Based Custom Computing Machines, IEEE

Computer Society, April 1997, pp.22-28.

37 Tau, E., et al., “A First Generation DPGA Implementation”, Third Canadian

Workshop of Field-Programmable Devices, May 1995.

38 Scalera, S.M. − Vazquez, J.R., “The design and implementation of a context switching

FPGA”, Proceedings of the 6th IEEE International Symposium on Field-Programmable

Custom Computing Machines, April 1998, pp.78-85.

D. Esrafili-Gerdeh, 2016 References 287

39 Baumgarte, V., et al., “PACT XPP − A Self-reconfigurable Data Processing

Architecture,” Journal of Supercomputing, Vol. 26, No2, September 2003, pp.167-

184.

40 Furtek, F.C., et al., “Interconnecting heterogeneous nodes in an adaptive computing

machine”, Proceedings of the 14th International Conference on Field-Programmable

Logic and Applications, August 2004, pp.125-134.

41 Tang, X., et al., “A Compiler Directed Approach to Hiding Configuration Latency in

Chameleon Processors”, Proceedings of the 10th International Conference on

Field-Programmable Logic and Applications, August 2000, pp.29-38.

42 Cardoso, J.M.P., et al., “Compiling for reconfigurable computing: A survey”, ACM

Computing Surveys, Vol.42, No.4, June 2010, pp.1-65.

43 Callahan, T.J., et al., “The GARP Architecture and C Compiler”, IEEE Computer,

Vol.33, No.4, April 2000, pp. 62-69.

44 Bellows, P. – Hutchings, B., “JHDL- An HDL for Reconfigurable Systems”,

Proceedings of the 6th IEEE International Symposium on Field-Programmable Custom

Computing Machines, April 1998, pp.175-184.

45 Hogg, J., et al., “New HDL Research Challenges posed by Dynamically

Reprogrammable Hardware”, Proceedings of the 3rd Asia Pacific Conference on

Hardware Description Languages, January 1996.

46 Luk, W. – McKeever, S., “Pebble: A language for Parameterised and Reconfigurable

Hardware Design”, Proceedings of the 8th International workshop on

Field-Programmable Logic and Applications, August 1998, pp.9-18.

47 Singh, S. – Roxby, J., “Lava and JBits: From HDL to bitstream in seconds”,

Proceedings of the 9th IEEE International Symposium on Field-Programmable Custom

Computing Machines, April 2001, pp.91-100.

D. Esrafili-Gerdeh, 2016 References 288

48 Guccione, S. et al., “JBits: Java-based interface for reconfigurable computing”,

Proceedings of the 2nd Annual Military and Aerospace Applications of Programmable

Devices and Technologies Conference, Vol. 261, September 1999.

49 James-Roxby, P. − Guccione, S., “Automatic extraction of run-time parameterisable

cores from programmable device configurations”, Proceedings of the 8th IEEE

International Symposium on Field-Programmable Custom Computing Machines, April

2000, pp.153-161.

50 “Xilinx 9 Software Manuals”, Xilinx Inc., www.xilinx.com.

51 Guccione, S., − Levi, D., “Run-time Parameterizable Cores”, Proceedings of the 9th

International Workshop on Field-Programmable Logic and Applications August 1999,

pp.215-222.

52 Johannes, F.M., “Partitioning of VLSI circuits and systems”, Proceedings of the 33rd

annual Design Automation Conference, June 1996, pp.83-87.

53 Chang, D., − Marek-Sadowska, M., “Partitioning sequential circuits on dynamically

reconfigurabe FPGAs”, IEEE Transactions on Computers, Vol. 48, No.6, June 1999,

pp.565-578.

54 DeHon, A., “Reconfigurable Architectures for General Purpose Computing”, PhD

Thesis, Massachusetts Institute of Technology, September 1996.

55 Schmitt, H., et al., “Behavioral Synthesis for FPGA-based Computing”, Proceedings

of the 2nd International IEEE Workshop on Field-Programmable Custom Computing

Machines, April 1994, pp.125-132.

56 Peterson, J., et al., “Scheduling and partitioning ANSI-C programs onto multi-FPGA

CCM Architectures”, Proceedings of the 4th IEEE International Symposium on Field-

Programmable Custom Computing Machines, April 1996, pp.178-179.

D. Esrafili-Gerdeh, 2016 References 289

57 Vasilko, M. − Ait-Boudaoud, D., “Architectural synthesis techniques for dynamically

reconfigurable logic”, Proceedings of the 6th International Workshop on Field-

Programmable Logic, Smart Applications, New Paradigms and Compilers, September

1996, pp.290-296.

58 Mtibaa, A. − Ouni, B., “An efficient list scheduling algorithm for time placement

problem”, Computers and Electrical Engineering, Vol.33, No. 4, July 2007,

pp.285-298.

59 Bobda, C., “Synthesis of Dataflow Graphs for Reconfigurable Systems using

Temporal Partitioning and Placement”, PhD Thesis, University of Paderborn,

July 2003.

60 Wu, G.M., et al., “Generic ILP-based approaches for time-multiplexed FPGAkkkkkkk

partitioning”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Vol. 20, No. 10, October 2001, pp.1266-1274.

61 Ford, F. − Fulkerson, D., “Flows in Networks”, Princeton University Press, 1962,,,,,,,

ISBN: 9780691146676.

62 Yang, H.H. − Wong, D., “Efficient Network Flow based Min-Cut Balanced

Partitioning”, Proceedings of the IEEE/ACM Conference on Computer-Aided Design,

November 1994, pp.50-55.

63 Lui, H. − Wong, D.F., “Network flow-based circuit partitioning for time-multiplexed

FPGAs”, Proceedings of the IEEE/ACM Conference on Computer-Aided Design,

November 1998, pp.497-504.

64 Paulin, P. − Knight, J.P., “Force-Directed Scheduling for the Behavioral Synthesis of

ASIC’s.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 8, No.6, June 1989, pp.661-679.

D. Esrafili-Gerdeh, 2016 References 290

65 Pandely, A., Vemuri, R., “Combined Temporal Partitioning and Scheduling for

Reconfigurable Architectures”, Proceedings SPIE Photonics East Conference,

Reconfigurable Technology: FPGAs for Computing and Applications, August 1999,

pp.93-103.

66 Cardoso, J., “On Combining Temporal Partitioning and sharing of Functional Units in

compilation for Reconfigurable Architectures”, IEEE Transactions on Computers Vol.

52, No.10, October 2003, pp.1362-1375.

67 Weiguang, S., “Pareto Optimal temporal Partition Methodology for Reconfigurable

Architectures Based on Multi-objective Genetic Algorithm”, Proceedings of the IEEE

26th International Symposium on Parallel and Distributed Processing, Workshops and

PhD forum, May 2012, pp.425-430.

68 Premalatha, B. − Umamaheswari, S., “Survey Of Online Hardware Task Scheduling

And Placement Algorithms For Partially Reconfigurable Computing Systems”,

International Journal of Computing and Corporate Research, Vol.2, No.3, May 2012.

69 Lavin, C., et al., “RapidSmith: Do-It-Yourself CAD TOOLS for Xilinx FPGAs”,

Proceedings of the 21st International Conference on Field-Programmable Logic and

Applications, September 2011, pp.349-395.

70 Steiner, N., Wood, A., “Torc: Towards an Open-Source Tool Flow” Proceedings of

the 19th ACM/SIGDA International symposium on Field Programmable Gate arrays,

February 2011, pp. 41-44.

71 “Torc: tools for open reconfigurable systems”, www.torc.isi.edu, 2016.

72 Beckhoff, C., et al., “The Xilinx Design Language (XDL): tutorial and use cases,”

Proceedings of the 6th International Workshop on Reconfigurable Communications-

centric Systems-on-Chip, June 2011, pp.1-8.

73 Su, L., “The management of dynamically reconfigurable computing systems”, PhD

Thesis, University of Manchester, 2008.

D. Esrafili-Gerdeh, 2016 References 291

74 Hillis, D. − Steele, G., “Data Parallel Algorithms”, Communications of the ACM, Vol.

29, No 12, December 1986, pp.1170-1183.

75 Bobda, C. − Ahmadinia, A., “Dynamic interconnection of reconfigurable modules on

reconfigurable devices”, IEEE Design & Test of Computers, Vol. 22, No.5, September

2005, pp.443-451.

76 Hermani, A., et al., “Network on chip: An architecture for billion transistor era”,

Proceedings of the 18 th IEEE NorChip Conference, Vol.31, November 2000.

77 Boyan, A. − Littman, L., “Packet routing in dynamically changing networks: A

reinforcement learning approach”, Proceedings of the Advances in Neural Information

Systems 6 Conference, December 1993, pp.671-678.

78 McFarland, M.C., et al., "Tutorial on high-level synthesis", Proceedings of 25th

ACM/IEEE Design Automation Conference, June 1988, pp.330-366.

79 Gajski, D.D. − Ramachandran, L., "Introduction to high-level synthesis", IEEE Design

and Test of Computers, Vol. 11, No.4, 1994, pp.45-54.

80 Vahid, F., et al., “A transformation for integrating VHDL behavioral specification

with synthesis and software generation”, Proceedings European Design Automation

Conference, September 1994, pp.552-557.

81 Ebeling, C., et al., “Rapid: Reconfigurable Pipelined Datapath”, Proceedings of the 6th

International Workshop on Field-Programmable Logic and Applications, September

1996, pp.126-135.

82 Synplify Pro and Premier”, datasheet,

www.synopsys.com/Tools/Implementation/FPGAImplementation/CapsuleModule/

synplify-pro-premier.pdf, Synopsys Inc.

D. Esrafili-Gerdeh, 2016 References 292

83 Francis, R., Rose, J., “Chortle: a technology mapping program for lookup table-based

field programmable gate arrays”, Proceedings of the 27th ACM/IEEE Design

Automation Conference, June 1990, pp.613-619.

84 Aldec Inc., www.aldec.com/en/solutions/hardware_emulation_solutions, 2016

85 Bose, R.C. − Ray-Chaudhuri, D.K., “On a Class of error-correcting binary group

codes”, Information and Control, Vol.3, No.3, March 1960, pp.68-79.

86 Martin, G. − Smith, G., “High-Level Synthesis: Past Present, and Future”, IEEE

Design and Test of Computers, Vol. 26, No. 4, July 2009, pp.18-25.

87 Sarkar, S., et al., “Lessons and Experiences with High-Level Synthesis”, IEEE Design

and Test of Computers, Vol. 26, No. 4, July 2009, pp.34-45.

88 Cong, J., et al., “High-Level synthesis for FPGAs: From Prototyping to

Development”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Vol. 30, No.4, March 2011, pp.473-491.

89 Meeus, W., et al., “An overview of today’s high-level synthesis tools”, Design

Automation for Embedded Systems, Vol. 16, No. 3, September 2012, pp.31-51.

90 Canis, A. et al., “LegUP: An Open Source High-Level Synthesis Tool for FPGA-

Based Processor/Accelerator Systems”, ACM Transactions on Embedded Computer

Systems, Vol. 13, No.2, Article No. 24, September 2012, pp.1-27.

91 Berkeley Design Technology Inc., “BDTI High Level Synthesis Tool Certification

Program”, 2010, www.bdti.com.

92 Aho, A.V., et al., “Compilers - Principles, Techniques and Tools”, Addison-Wesley

Publishing Company, 1986, ISBN 0-201-10194-7.

93 Nijhar, T.P.K. − Brown, A. D., “Source level optimisation of VHDL for behavioural

synthesis”, IEE Proceedings on Computers and Digital Techniques, Vol. 144, No. 1,

January 1997, pp.1-6.

D. Esrafili-Gerdeh, 2016 References 293

94 “ModelSim SE User Guide Version 6.2g", Mentor Graphics Corp., 2007.

95 Hoare, C.A.R., “Communicating Sequential Processes, Prentice-Hall Inc., 1985,

ISBN: 0131532715.

96 “IEEE 1666 Standard SystemC Language Reference Manual, IEEE Std. 1666-2011”,

 IEEE Computer Society, January 2012, ISBN 978-0-7381-6801-2.

97 Handel-C Language Reference Manual, Agility Design Solutions, Inc.,

 Palo Alto, CA, 2007.

98 OCCAM 2.1 Reference Manual SGS-Thomson Microelectronics Ltd., 1995.

99 Sanguinetti, J., et al. “Transaction-Accurate Interface Scheduling in High-level

Synthesis”, Proceedings of the 2012 Electronic System Level Synthesis Conference,

June 2012, pp.31-36.

100 “UG902-Vivado-High-Level-Synthesis”, Xilinx Inc., 2014.

101 Gokhale, M., et al., “Stream-oriented FPGA computing in the Streams-C high level

 language”, Proceedings of 8th International IEEE Symposium on Field-

Programmable Custom Computing Machines, April 2000, pp.49-56.

102 Yee, T.B., et al., “Multi-FPGA Synthesis with Asynchronous Communication

SubSystems”, Proceedings of the International Federation for Information Processing

Conference on Very Large Scale Integration, October 2005.

103 LLVM 2010, The LLVM Compiler Infrastructure Project, www.llvm.org.

104 Coussy, P., et al., “GAUT – A Free and Open Source High-Level Synthesis Tool”,

IEEE Design Automation and Test in Europe, University Booth, March 2010.

D. Esrafili-Gerdeh, 2016 References 294

105 Pilato, C., et al., “Bambu: A Free framework for high-level synthesis of complex

applications”, IEEE Design Automation and Test in Europe, University Booth,

March 2012.

106 Huang, Q. – Ruolong, L., “The effect of Compiler Optimisation on high-level

synthesis for FPGAs”, Proceedings of the 21st International IEEE Symposium on

Field-Programmable Custom Computing Machines, April 2013, pp.89-96.

107 Hara, Y. – Tomiyama, H., “Proposal and qualitative analysis of the CHStone

Benchmark Program Suite for Practical C-based High-level Synthesis”, Journal of

Information processing, Vol.17, October 2009, pp.242-254.

108 Gajski, D.D., et al., “Flow Graph Representation”, Proceedings of the 23rd

ACM/IEEE Design Automation Conference, June 1986, pp.503-509.

109 Eles, P. – Kuchcinski, K., “Timing Constraint Specification and Synthesis in

Behavioral VHDL”, Proceedings of the European Design Automation Conference

with Euro-VHDL, September 1995, pp.452-457.

110 Peng, Z., “Synthesis of VLSI System with the CAMAD Design Aid”, Proceedings

 of the 23rd ACM/IEEE Design Automation Conference, June 1986, pp.278-28.

111 Brewer, F. – Gajski, D.D, “Chippe: A System for Constraint Driven Behavioral

Synthesis”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 9, No. 7, July 1990, pp.681-695.

112 Parker, Alice C., et al., “MAHA: A Program for Datapath Synthesis”, Proceedings of

the 23rd ACM/IEEE Design Automation Conference, June 1986, pp.461-466.

113 “CoCentric Fixed-Point Designer User Guide”, version 2002.05 edition, June 2002,

Synopsys Inc.

114 "Behavioral Compiler User Guide", Synopsys Inc., 2000.

D. Esrafili-Gerdeh, 2016 References 295

115 Camposano, R., et al., “Synthesizing Circuits From Behavioral Descriptions”, IEEE

Transactions on Computer-Aided Design, Vol. 8, No. 2, February 1989, pp.171-180.

116 Hara, Y., et al. “Behavioral Partitioning with Exploiting Function-Level parallelism”,

Proceedings of the International SoC Design Conference, Vol. 1, November 2008,

pp.121-124.

117 Metropolis, N. − Rosenbluth, A. − Teller, A. − Teller, E., “Equation of State

Calculations by Fast Computing Machines”, Journal of Chemical Physics, Vol. 21,

No.6, June 1953, pp.1087-1092.

118 Chiricescu, S., et al., “Morphable Multipliers”, Proceedings of the 12th International

Conference on Field-Programmable Logic and Applications: Reconfigurable

Computing Is Going Mainstream, September 2002, pp.647-656.

119 MacBeth, J. − Lysaght, P., “Dynamically Reconfigurable Cores”, Proceedings of the

11th International Conference on Field-Programmable Logic and Applications,

August 2001, pp.462-472.

120 Vasilko, M., “Design Synthesis for Dynamically Reconfigurable Logic Systems”,

PhD Thesis, Bournemouth University, October 2000.

121 Zhang, Xue-jie., et al., “A Combined Approach to High-Level Synthesis for

Dynamically Reconfigurable Systems”, Proceedings of the 10th International

Conference on Field-Programmable Logic and Applications, August 2000,

pp.361-370.

122 “UG702 Xilinx Partial Reconfiguration User Guide”, Xilinx Inc., 2014

123 Green, S., “Development of a variable rate BCH coding system with CRC for

multimedia transmissions in a wireless environment”, MEng Dissertation, University

of Southampton, 2006.

D. Esrafili-Gerdeh, 2016 References 296

124 Reeve, J.S. − Amarasinghe, K., “A FPGA implementation of a parallel Viterbi

decoder for block cyclic and convolution codes”, IEEE International Conference on

Communications, Vol.5, June 2004, pp.2596-2599.

125 Zwolinski, M. − Reeve, J.S., “Behavioural synthesis of an adaptive Viterbi decoder”,

Proceedings of the 2nd IEE/EURASIP conference on DSP enabled radio”,

September 2005.

126 Gupta, R.K. − De Micheli, G., “System-level Synthesis using re-programmable

components”, Proceedings of the 3rd European Conference on Design Automation,

March 1992, pp.2-7.

127 Haynes, S.D., “Video image processing with the sonic architecture”, IEEE

Computer, Vol. 33, No.4, April 2000, pp.50-57.

128 Davis, W., et al., "Demystifying 3D ICs: the pros and cons of going vertical", IEEE

Design & Test of Computers, Vol. 22, No. 6, November 2005, pp.498-510.

129 “UG909 Xilinx Vivado Partial Reconfiguration User Guide”, Xilinx Inc., 2014.

130 Li, Z., et al., “Configuration Caching management techniques for FPGA”,

Proceedings of the 17th IEEE Symposium on Field-Programmable Custom

Computing Machines, April 2000, pp.22-36.

	front cover
	abstract
	Contents
	Contents

	figures
	List of Figures

	tables
	List of Tables

	Declaration of Authorship
	Acknowledgements
	Acknowledgements

	Chapter 1
	Chapter 1

	Chapter2_2015
	Chapter 2
	2.1 Programmable and Application-Specific Hardware
	2.2 Temporal and Spatial Computation
	2.3 Reconfigurable Resources

	Figure 2.3: Generic FPGA structure.
	2.3.2 Technology and Architecture
	2.7 Summary

	Logic Cell
	Logic Cell

	Moods chapter3_0_a
	Chapter 3
	3.1.1 Behavioural and RTL Circuit Synthesis
	Figure 3.5: Circuit architectures generated by RTL and behavioural synthesis.
	3.1.2 A Renewed Role for Behavioural Synthesis Tools
	3.3.1 Specification Languages
	3.3.2 Compilation and Optimisation
	3.4.1 Behavioural Description

	Moods chapter3_0_b
	Moods chapter3_0_c
	3.4.2 ICODE Description

	Moods chapter3_0_d
	Moods chapter3_0_e
	3.4.3 Circuit Optimisation
	3.4.4 Optimisation Algorithm

	Figure 3.10: A 2-dimensional (area/time) design space.
	The cost function is used to quantify the absolute state of the design within the design space. An optimisation algorithm, such as Simulated Annealing [7], uses the cost function to move the design through this space, from the initial behavioural spec...
	3.4.5 Simulated Annealing
	3.4.6 Structural Circuit Abstraction

	As shown in Figure 3.7, the last phase of MOODS behavioural synthesis occurs when the internal representation is converted into a structural VHDL description, suitable for further logic optimisation and synthesis by third party tools. To achieve this,...
	The first step towards achieving this goal is to insert the multiplexors in the data-path. To date their existence would have only been implied. This is due to the inefficiency that would result should the multiplexors be frequently added or removed d...
	Although the ICODE instructions are invaluable in relating behaviour to structure in the data structures, they would serve no purpose in the final description of the circuit structure. Instead, they guide the generation of control signals that link th...
	In practice, this is achieved at the structural-level of abstraction using data-path semaphores: each point of thread divergence or convergence is replaced by a data-path semaphore. All ‘ContextSwitch’ instructions which previously represented the rec...
	3.5 Summary

	Chapter 4 Temporal Partioning
	4.5 Circuit Area
	If two or more sub-modules share the same device resource at different times during their execution, then at any point the area required for their implementation is equal to the largest module. This notion can be further elaborated to form a group of ...
	The total circuit area is given by the sum of the largest dynamic context ‘C0’ and the static region containing the program module. For this configuration the circuit area is 2023.6 CLB slices [6], half the size of an un-partitioned circuit of are...
	4.8 Scheduling the Context Switching
	4.12 Summary

	Chapter5 Implementation
	Chapter 5
	5.1 Architectural Abstraction
	5.2 System-level Architecture
	5.5.1 Resource Binding Transform
	5.5.2 Context Switch Instruction
	5.6 Transform Interaction

	Chapter 6 (results)
	Chapter 6
	6.4 Summary

	Chapter7 Practical application of rtr
	Chapter 7

	Conclusion
	Chapter 8
	Conclusion and Further Work

	appendix a
	This appendix describes how MOODS is able to represent and subsequently optimise a circuit specification at the instruction-level of abstraction.
	A1 Synthesised Architecture
	A2 Graph Transformations
	A2.1 Scheduling Transformations
	2.2 Allocation and Binding Transformations
	Table A.2: Allocation and binding transformations available during optimisation.

	appendix b
	appendix c
	References
	References
	1 Freeman, R., “Configurable electrical circuit having configurable logic elements and configurable interconnects”, US Patent 4,870,302, September 26, 1989.

