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Abstract

We use one-variable Loewner techniques to compute polynomial-
parametric models for MIMO systems from vector-exponential data
gathered at various points in the parameter space. Instrumental in our
approach are the connections between vector-exponential modelling via
bilinear differential forms and the Loewner framework.

Dedicated to the memory of Jan C. Willems- teacher, colleague, friend.

1 Introduction

Parametric system identification arises in those areas where system dynam-
ics depends on one or more parameters, e.g. varying geometric or material
properties. One approach for its solution is that of [?, ?], based on two-
variable rational interpolation techniques and a Loewner matrix associated
with the data. In the single-input, single-output case, this approach pro-
duces a transfer-function or generalized state-space model depending on one
parameter in a higher-order polynomial way.

In this paper we use one-variable Loewner techniques to compute input-
state-output (i/s/o) polynomial-parametric models on the basis of MIMO
vector-exponential trajectories produced by a system at various points in
the parameter space. Instrumental in our approach are the connections
established in [?, ?] between vector-exponential modelling via bilinear dif-
ferential forms and the Loewner framework. The basic tool in this work is
the Loewner matrix and its rank-revealing factorizations, from which a set
of state trajectories is computed in a straightforward way. Different factor-
izations correspond to different state trajectories: we show that by suitably
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factorizing the Loewner matrix one can compute also structured polynomial-
parametric i/s/o models, and we apply this to the case of passive systems.

A few remarks are in order to define the scope of our results. Firstly, no
assumptions are made on the parametric dependence of the underlying sys-
tem, except that at each point in the parameter space where data has been
collected the system can be described by a set of linear, constant-coefficient
differential equations. Secondly, our choice of model class as that consisting
of i/s/o linear, time-invariant models that depend polynomially on a parame-
ter is dictated by purely pragmatic reasons, and does not reflect any intrinsic
belief in the nature of the actual dependence on the parameter. Lacking any
special insight in the physics of the system it is not reasonable to assume
a priori any specific functional dependency on the parameter; moreover, if
such detailed physical knowledge is available, there are more suitable ap-
proaches than a representation-free one. Finally, it is well-known (see [?, ?])
that functional dependency is not preserved across different representations:
for example, an i/o description depending polynomially on a parameter in
general does not correspond to an i/s/o polynomially-parametric representa-
tion, and vice versa. Our choice of polynomially-dependent parametric i/s/o
models is thus motivated purely by practical reasons, namely to identify a
“simple” unfalsified (in the sense of [?]) model for the data.

The paper is organized as follows: in section 2 we state the problem,
and in section 3 we state the assumptions standing in the rest of the paper.
Section 4 contains the main results and is divided in five subsections, dealing
with various aspects of our approach. In section 5 we apply our results
to the parametric identification of passive systems. In the last section of
this paper we discuss our results and their limitations, together with some
research directions currently being pursued.

We will be using extensively notions from behavioral system theory, bilin-
ear/quadratic differential forms and the Loewner framework; for a thorough
exposition we refer to [?, ?, ?], respectively.

Notation

The space of n dimensional real (complex) vectors is denoted by Rn (respec-
tively Cn), and that of m × n real matrices by Rm×n. R•×m denotes the
space of real matrices with m columns and an unspecified finite number of
rows. Given matrices A,B ∈ R•×m, col(A,B) denotes the matrix obtained
by stacking A over B. s The ring of polynomials with real coefficients in
the indeterminate s is denoted by R[s]; the ring of two-variable polynomials
with real coefficients in the indeterminates ζ and η is denoted by R[ζ, η].
Rr×q[s] denotes the set of all r×q matrices with entries in s, and Rn×m[ζ, η]
that of n ×m polynomial matrices in ζ and η. The set of rational m × n
matrices is denoted by Rm×n(s).

The set of infinitely differentiable functions from R to Rq is denoted
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by C∞(R,Rq). D(R,Rq) is the subset of C∞(R,Rq) consisting of compact
support functions. Given λ ∈ C, we denote by eλ· the exponential function
whose value at t is eλt, and by λ∗ its complex conjugate.

2 Problem statement

We assume that at point p in the parameter space the generating system is
controllable, represented in observable image form as

w = Mp

(
d

dt

)
` , (1)

where Mp ∈ Rw×m[s]; we also assume that w =

[
u
y

]
with u input and y output

variables. The input-output partition of the external variables corresponds
to a partition

Mp(s) =:

[
Up(s)
Yp(s)

]
, (2)

where Up ∈ Rm×m[s] is nonsingular, and Yp ∈ Rp×m[s].
The data are vector-exponential trajectories at various frequencies and

values of the parameter p, namely

wpi,λi,j (t) = wpi,λi,je
λi,jt , i = 1, . . . , N ′, j = 1, . . . , N (3)

where λi,j ∈ C and wpi,λi,j ∈ Cw, i = 1, . . . , N ′, j = 1, . . . , N . Since (1) is ob-
servable, for every wpi,λi,j corresponding to the external trajectory wpi,λi,j (·)
there exists a unique vector spi,λi,j ∈ Cm such that

wpi,λi,j = Mpi(λi,j)spi,λi,j . (4)

Under some assumptions stated in the next section, we want to compute
from the data (3) a parametric state-space model

d

dt
x = A(p)x+B(p)u

y = C(p)x+D(p)u , (5)

where A(p) ∈ Rn×n[p], B(p) ∈ Rn×m[p], C(p) ∈ Rn×p[p] and D(p) ∈
Rm×m[p], with the property that (A(pi), B(pi), C(pi), D(pi)) defines an un-
falsified state-space model for the data (3); that is, for all i = 1, . . . , N ′ and
k = 1, . . . , N there exists a state trajectory x = xi,k satisfying (5) with
col(u, y) = wpi,λi,k . Such a model (5) will be called an unfalsified paramet-
ric i/s/o model for the data (3). A refinement of such problem consists in
requiring also that the transfer function C(p)(sIn − A(p))−1B(p) +D(p) is
positive-real for all values of p.
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In the following we use also a kernel representation of (1):

Rp

(
d

dt

)
w = 0 , (6)

where Rp ∈ Rp×w[s] represents the dynamics at the point p in the parameter
space. The i/o partition (2) is reflected in the following partition of R:

Rp(s) =:
[
Qp(s) −Pp(s)

]
, (7)

where Pp ∈ Rp×p[s] is nonsingular, and Qp ∈ Rp×m[s].

3 Assumptions

The standing assumptions in the rest of this paper are the following:

1. For each pi, i = 1, . . . , N ′, the first m components of the external
variable w are input variables;

2. The transfer function corresponding to each such i/o partition is proper;

3. For each pi, i = 1, . . . , N ′, the McMillan degree of (1) is n.

With reference to (2) and (7), and using standard behavioral system theory,
it is straightforward to verify that assumptions 1)-3) are equivalent with

1′. For i = 1, . . . , N ′, Upi(s) and Ppi(s) are nonsingular;

2′. Ypi(s)Upi(s)
−1 = Ppi(s)

−1Qpi(s) is proper, i = 1, . . . , N ′;

3′. deg (Upi(s)) = deg (Ppi(s)) = n for i = 1, . . . , N ′.

We moreover assume that

4. For i = 1, . . . , N ′, the data (3) is sufficiently informative, in the sense
that an unfalsified state-space model for the data at point pi

d

dt
x = Apix+Bpiu

y = Cpix+Dpiu , (8)

can be computed from it.

Several different conditions on (3) guarantee that assumption 4) is satisfied;
for example, it can be shown that if the following conditions are satisfied:

4′. N > n(n+ p + m);

4′′. for i = 1, . . . , N ′, λi,j 6= λi,k for j 6= k ,

then a unique model can be computed.
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4 Parametric state-space modelling

4.1 Overview

Our approach is based on the following idea: we first compute from the
primal data (3) a set of dual data, i.e. of vector-exponential trajectories
generated by the dual system at the value pi of the parameter; crucial in
such first step is the concept of mirroring.

Subsequently, for each value of the parameter pi we generate from the
primal and dual data a Loewner matrix Lpi ∈ CN×N , which we proceed to
factorize in a rank-revealing way. From such factorization state trajectories
corresponding to the external trajectories (3) for fixed i are readily obtained.
Using such state trajectories and the primal data, a model (5) is obtained
for p = pi solving a system of linear equations.

We repeat this procedure for i = 1, . . . , N ′. Finally, we compute a para-
metric state model by combining the pointwise state models thus obtained
using standard scalar polynomial-interpolation techniques.

4.2 Mirroring: computing dual data from primal ones

We introduce the concept of mirroring, already used in solving metric inter-
polation problems (see [?, ?, ?]); this is a technique to obtain data generated
by the dual system from data obtained from the primal one.

Proposition 1. Let B be a controllable linear differential behavior, and let
J ∈ Rw×w represent an involution. Let w ∈ B, w(t) = weλt, and let v ∈ Cw

be such that v∗w = 0. Then Jve−λ
∗· ∈ B⊥J , the dual of B with respect to

J .

Proof. Let M ∈ Rw×m[s] and R ∈ Rp×w[s] with w = p + m induce an ob-
servable image, respectively left-coprime kernel representation of B. Since
R(s)M(s) = 0p×m, it follows that for all λ ∈ C, it holds that im M(λ) =

(im R(λ)∗)⊥. It follows that Jve−λ
∗· ∈ im JR

(
− d
dt

)>
= B⊥J .

4.3 The Loewner matrix

In the following we consider i fixed, but otherwise arbitrarily chosen between
1 and N ′, i.e. we consider the problem of modelling data produced by the
system when the parameter p = pi. We assume that besides the primal ones,
also a set of dual external trajectories

w′pi,µi,ke
µi,k· , k = 1, . . . , N ,

is available (for example through the mirroring technique described in sect.
4.2), and we define the Loewner matrix at p = pi by

Lpi :=

[
w′pi,µi,k

∗
Jwpi,λi,`

µ∗i,k+λi,`

]
k,`=1,...,N

∈ CN×N . (9)
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Since Rpi induces a minimal kernel representation of a controllable system,
it follows that for every k = 1, . . . , N and i = 1, . . . , N ′ there exists a unique
vector vpi,µi,k ∈ Cp such that

w′pi,µi,k = JRpi(µi,k)
>vpi,µi,j . (10)

The first result of this paper is the following.

Theorem 1. Consider the image- and kernel representations (1) and (6).
There exists a Ψpi ∈ Rp×m[ζ, η] such that

(ζ + η)Ψpi(ζ, η) = Rpi(−ζ)>Mpi(η) ∈ Rp×m[ζ, η] . (11)

Let spi,λi,` and vpi,µi,k be defined by (4) and (10), respectively. Then

Lpi = −
[
vpi,µi,k

∗Ψpi(µi,k, λi,`)spi,λi,`
]
k,`=1,...,N

. (12)

Proof. Observe first that Rpi(s)
>Mpi(s) = Rpi(s)

>JJMpi(s) = 0, since
Rpi(s), respectively Mpi(s) induce a kernel-, respectively image representa-
tion of the same behavior. Now apply the relation between the two-variable
representation of a B/QDF and its derivative and Prop. 10.1 p. 1730 of [?]
to conclude that there exist Ψpi ∈ Rp×m[ζ, η] such that (11) holds.

The second part of the claim follows in a straightforward way from the
definition (9) of the Loewner matrix and from equations (4) and (10).

4.4 From factorizations of Lpi to state-space equations

We now show that the Loewner matrix Lpi contains enough information to
compute state trajectories associated with the external trajectories of the
primal- and the dual system at p = pi. Recall that given A ∈ Rn×m, a rank-
revealing factorization of A is any factorization A = U>V with U ∈ Rr×n,
V ∈ Rr×m full rank matrices with r := rank A.

Theorem 2. Denote by n the McMillan degree of im Mpi

(
d
dt

)
. If assump-

tions 4′, 4′′ of sect. 3 holds, and if N ≥ n, then rank Lpi = n.
Moreover, let Lpi = Z∗piVpi be any rank-revealing factorization of the

Loewner matrix (9); denote by Vpi,k, respectively Zpi,`, the k-th, respectively
`-th column of Vpi, respectively Zpi. There exist minimal state representa-

tions of Bpi := im Mpi

(
d
dt

)
, respectively B⊥Jpi := im JRpi

(
− d
dt

)>
, such

that Vpi,ke
λi,k·, respectively Zpi,`e

µi,`·, are minimal state trajectories of Bpi,
respectively B⊥Jpi .

Proof. To prove the first part of the claim, define Ψpi(ζ, η) from (11). Con-
clude from Prop. 10.1 p. 1730 of [?] that there exist state map matrices
Zpi ∈ R•×g[s] and Xpi ∈ R•×l[s] such that

Ψpi(ζ, η) = Zpi(ζ)>Xpi(η) . (13)
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Conclude that Lpi = S∗piPpi , where Spi and Ppi are defined by

Spi :=
[
Zpi(µ

∗
i,1)vpi,µi,1 . . . Zpi(µ

∗
i,N )vpi,µi,N

]
∈ Cn×N

Ppi :=
[
Xpi(λi,1)spi,λi,1 . . . Xpi(λi,N )spi,λi,N

]
∈ Cn×N .

The rank-revealing factorization of the claim is related to that induced by
Spi and Ppi by a unitary transformation Tpi , i.e. Spi = TpiZpi and Ppi =
TpiVpi , with T>piTpi = Ir. We now prove that assumption 4) implies that
rank(Ppi) = n (equivalently, rank(Vpi) = n); the proof is by contradiction.

Assume that rank(Ppi) = r < n; then there exist αk ∈ C, k = 1, . . . , N ,
not all zero, such that Ppi col(αk)k=1,...,N = 0. Now compute a kernel rep-
resentation of the most powerful unfalsified model (see sect. XV of [?])
of the subspace of C∞(R,Cm) spanned by the vector-exponential functions
spi,λi,ke

λi,k·, k = 1, . . . , N . Denote by Fpi ∈ Rm×m[s] such kernel represen-
tation. Consider the set of trajectories w described by the equations

w = Mpi

(
d

dt

)
`

x = Xpi

(
d

dt

)
`

0 = Fpi

(
d

dt

)
` . (14)

Such behavior is autonomous (see [?]) since det(F ) 6= 0. Moreover, Xpi

(
d
dt

)
is a state map for it, since it is a state map for im Mpi

(
d
dt

)
. Now consider

the latent variable trajectory defined by ˆ̀(·) :=
∑N

k=1 αkspi,λi,ke
λi,k·. Since

Ppi col(αk)k=1,...,N = 0, the corresponding state trajectory x̂ := X
(
d
dt

)
ˆ̀ at

t = 0 is zero. It follows from the autonomy of (14) that ŵ := Mpi

(
d
dt

)
ˆ̀ is

also zero. Recall that Mpi is assumed to be observable (see section 2); it

follows then that ˆ̀= 0, which is in contradiction with the assumption that
not all αk’s are equal to zero and with assumption 4′′. Consequently Ppi
(equivalently, Vpi) has full rank n.

An analogous argument proves that Spi (equivalently, Zpi) has full rank
n. Thus the columns of Zpi and those of Vpi are directions of state-space
trajectories for the dual, respectively primal system.

Remark 1. As mentioned in the proof of Th. 2, rank-revealing factor-
izations of a given matrix are not unique. Thus by suitably choosing the
factorization special state space representations can be obtained; we will
apply this later to derive positive-real parametric models.

We now show how to compute an unfalsified i/s/o representation of the
data gathered at p = pi from a rank-revealing factorization of Lpi .
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Proposition 2. Under assumptions 1) − 3) and 4′), 4′′), let Lpi = Z∗piVpi
be a rank-revealing factorization of Lpi, where Zpi ∈ Cn×N and Vpi ∈ Cn×N .
Define

Λpi := diag (λi,k)k=1,...,N ∈ CN×N

Upi :=
[
upi,1 . . . upi,N

]
∈ Cm×N

Ypi :=
[
ypi,1 . . . ypi,N

]
∈ Cp×N .

There exist Api ∈ Cn×n, Bpi ∈ Rn×m, Cpi ∈ Rp×n, Dpi ∈ Rm×m such that[
VpiΛpi
Ypi

]
=

[
Api Bpi
Cpi Dpi

] [
Vpi
Upi

]
. (15)

Any (Api , Bpi , Cpi , Dpi) satisfying (15) defines a minimal unfalsified state-
space model for the data (3).

Proof. The existence of Api , Bpi , Cpi , Dpi follows from the fact that the
columns of the matrix Vpi correspond to state-space trajectories of im Mpi

(
d
dt

)
(see Th. 2). The second part of the claim follows from the following observa-
tion. Denote the k-th column of Vpi by Vpi,k, and define xpi,k(·) := Vpi,ke

λi,k·,
i = 1, . . . , N . From (15) we conclude that such trajectory satisfies (8), where
y := ypi,ke

λi,k· and u := upi,ke
λi,k·.

4.5 Polynomial-parametric unfalsified i/s/o models

Given the set of points pi ∈ C, i = 1, . . . , N ′, we consider a set of parametriz-
ing polynomials for {pi}i=1,...,N ′ , i.e. qk ∈ R[s], k = 1, . . . , N ′ satisfying

qk(pi) = δik , i, k = 1, . . . , N ′, (16)

with δ·,· being the Kronecker delta; one such set is that consisting of the
Lagrange polynomials defined by

qk(p) :=
Πi 6=k(p− pi)
Πi 6=k(pk − pi)

. (17)

If a set of parametrizing polynomials is available, a parametric i/s/o repre-
sentation is obtained in a straightforward way from the matrices Api , Bpi ,
Cpi , Dpi satisfying (15).

Theorem 3. Assume conditions 1)− 3) and 4′), 4′′), and let Api, Bpi, Cpi,
Dpi, i = 1, . . . , N ′, induce unfalsified state-space models for the data (3). Let
{qk(p)}k=1,...,N ′ be a family of parametrizing polynomials for {pi}i=1,...,N ′.
Define A ∈ Rn×n[p], B ∈ Rn×m[p], C ∈ Rp×n[p], and D ∈ Rp×m[p] by

A(p) :=

N ′∑
k=1

Apkqk(p) , B(p) :=

N ′∑
k=1

Bpkqk(p)

C(p) :=

N ′∑
k=1

Cpkqk(p) , D(p) :=

N ′∑
k=1

Dpkqk(p) . (18)
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Then (A(p), B(p), C(p), D(p)) solves the parametric modelling problem.

Proof. Straightforward.

5 Positive-real parametric identification

Since we do not commit ourselves earlier on to a specific state representation,
and instead compute state sequences using rank-revealing factorizations of
the Loewner matrix, we can compute parametric models with special struc-
tures and properties. In this section we examine the case of positive-real sys-
tems; analogous results hold for the lossless- and adjoint port-Hamiltonian
case. Our starting point is a family of representations (Api , Bpi , Cpi , Dpi),
i = 1, . . . , N ′ (and the dual ones) obtained from solving the equations[

VpiΛpi
Ypi

]
=

[
Api Bpi
Cpi Dpi

] [
Vpi
Upi

]
[
ZpiΛ

′
pi

Y ′pi

]
=

[
−A>pi C>pi
−B>pi D>pi

] [
Zpi
U ′pi .

]
(19)

Here the j-th column of Ypi (respectively Y ′pi) is the direction of the output
variable of the j-th data trajectory of the primal data (respectively dual
data), and analogously for Upi and U ′pi , i = 1, . . . , N ′. Λ, respectively Λ′,
are the diagonal matrices with the primal-, respectively dual-, interpolation
points.

We want to compute a parameter-depending realization (5), whose asso-
ciated transfer function is positive-real for all values of p. In the following,
we call a realization (A,B,C,D) of a positive-real transfer function H(s)
unit-storage if K = I is a solution of the positive-real lemma[

−K 0
0 I

] [
A B
C D

]
+

[
A> C>

B> D>

] [
−K 0

0 I

]
≥ 0 . (20)

Proposition 3. Every positive-real transfer function H(s) admits a unit-
storage realization.

Proof. Let (A,B,C,D) be any realization of H(s). Apply the positive-real
Lemma to conclude that there exists K = K> > 0 such that (20) holds.
Factorize K = S>S with S nonsingular, and define A′ := S−1AS, B′ := SB,
C ′ := CS−1, D′ := D. It is straightforward to check that (A′, B′, C ′, D′) is
unit-storage.

Different rank-revealing factorizations of the Loewner matrix Lpi pro-
duce different state trajectories; and such directions in their turn correspond
through (19) to different state representations (Api , Bpi , Cpi , Dpi). We now
characterize those factorizations of Lpi that yield unit-storage realizations.

We begin with a data-based test for positive-realness.
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Proposition 4. Assume that for i = 1, . . . , N ′ the number N of data is such
that N � n+ m, and that for any rank-revealing factorization Lpi = Z∗piVpi

it holds that rank

[
Vpi
Upi

]
= rank

[
Zpi
U ′pi

]
= n+m. The following statements are

equivalent:

1. The realization (Api , Bpi , Cpi , Dpi) is positive-real;

2. The realization (−A>pi , C
>
pi , B

>
pi , D

>
pi) is positive-real;

3. There exists Kpi = K>pi > 0 such that

Y ∗piUpi + U∗piYpi ≥ V
∗
piKpiVpiΛpi + Λ∗piV

∗
piKpiVpi

4. There exists K ′pi = K ′>pi > 0 such that

Y ′∗pi U
′
pi + U ′∗piYpi ≥ −

(
Z∗piK

′
piZpiΛ

′
pi + Λ′∗piZ

∗
piK

′
piZpi

)
Proof. The equivalence between statements 1. and 2. follows in a straightfor-
ward way from the definition of positive-real function. To prove the equiva-

lence of 1. and 3., use the assumption rank

[
Vpi
Upi

]
= n+ m and multiply (20)

on the left by

[
Vpi
Upi

]∗
and on the right by

[
Vpi
Upi

]
to obtain (3).

A similar argument proves the equivalence of 2. and 4.

The following consequence of Prop. 4 gives a characterization of unit-
storage realizations in terms of data.

Corollary 1. Under the assumptions and notation of Prop. 4, the following
statements are equivalent:

1. The realization (Api , Bpi , Cpi , Dpi) is positive-real and unit-storage;

2. The realization (−A>pi , C
>
pi , B

>
pi , D

>
pi) is positive-real and unit-storage;

3. The following LMI holds:[
−I 0
0 I

] [
Api Bpi
Cpi Dpi

]
+

[
A>pi C>pi
B>pi D>pi

] [
−I 0
0 I

]
≥ 0 .

4. The following LMI holds:

Y ∗piUpi + U∗piYpi ≥ V
∗
piVpiΛpi + Λ∗piV

∗
piVpi

5. The following LMI holds:

Y ′∗pi U
′
pi + U ′∗piY

′
pi ≥ −

(
Z∗piZpiΛ

′
pi + Λ′∗piZ

∗
piZpi

)
10



Proof. It follows in a straightforward manner from Prop. 4.

Remark 2. Given the crucial role of unit-storage realizations in what fol-
lows, it is of interest to develop computationally efficient and numerically ac-
curate algorithms to perform the computation of factorizations Lpi = Z∗piVpi
resulting through (19) in unit-storage realizations. This is a matter for future
research; we only sketch a couple of possible solutions here. We could factor
Lpi arbitrarily, and then solve for Kpi an LMI like that in statement (3) or
(4) of Prop. 4. Factorizing Kpi = S>piSpi , defining V ′pi := SpiVpi and solving
the equations (19) yields a unit-storage realization. Alternatively, one can
first compute matrices (Api , Bpi , Cpi , Dpi) satisfying (19), solve the positive-
real lemma for some Kpi , and then compute from a factorization of Kpi the
state-space transformation Spi yielding a unit-storage realization.

Having computed a unit-storage realization of an interpolant for the data
at p = pi, i = 1, . . . , N ′, it follows from the inequality in statement (3) of

Corollary 1 that any convex combination of the system matrices

[
Api Bpi
Cpi Dpi

]
also satisfies the inequality, and is consequently unit-storage positive-real.
Thus if a family of parametrizing polynomials exists providing a “convex
combination” of such models, then it results in a positive-real, and unit-
storage, parametric interpolant.

Proposition 5. Let the data (3) be given. Assume conditions 1) − 3) and
4′), 4′′) of sect. 3, and that for any rank-revealing factorization Lpi = Z∗piVpi

it holds that rank

[
Vpi
Upi

]
= rank

[
Zpi
U ′pi

]
= n+ m. Assume also that any of the

statements of Prop. 4 holds.
For i = 1, . . . , N ′, there exists an unfalsified unit-storage positive-real

realization (8). If there exist αi ∈ R[p], i = 1, . . . , N ′ such that

1. αi(pj) = δij, the Kronecker delta function;

2. αi(p) ≥ 0 ,

then

d

dt
x =

(
N ′∑
i=1

αi(p)Api

)
︸ ︷︷ ︸

=:A(p)

x+

(
N ′∑
i=1

αi(p)Bpi

)
︸ ︷︷ ︸

=:B(p)

u

y =

(
N ′∑
i=1

αi(p)Cpi

)
︸ ︷︷ ︸

=:C(p)

x+

(
N ′∑
i=1

αi(p)Dpi

)
︸ ︷︷ ︸

=:D(p)

u , (21)

is an unfalsified unit-storage positive-real realization for (3).
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Proof. That unfalsified unit-storage realizations exist for each pi follows from
Prop. 3. To prove the second part of the claim, let {αi(·)}i=1,...,k be any set
of polynomials satisfying the conditions (1)− (2); then[

−I 0
0 I

] [
Api Bpi
Cpi Dpi

]
+

[
A>pi C>pi
B>pi D>pi

] [
−I 0
0 I

]
≥ 0

if and only if for all p[
−I 0
0 I

]
αi(p)

[
Api Bpi
Cpi Dpi

]
+ αi(p)

[
A>pi C>pi
B>pi D>pi

] [
−I 0
0 I

]
≥ 0 ,

which implies that for all p[
−I 0
0 I

] k∑
i=1

αi(p)

[
Api Bpi
Cpi Dpi

]
+

k∑
i=1

αi(p)

[
A>pi C>pi
B>pi D>pi

] [
−I 0
0 I

]
≥ 0 ,

which is equivalent to[
−I 0
0 I

] [
A(p) B(p)
C(p) D(p)

]
+

[
A(p)> C(p)>

B(p)> D(p)>

] [
−I 0
0 I

]
≥ 0 .

This proves the claim.

Remark 3. It is a matter of immediate verification to check that the poly-
nomials αi(p) satisfying conditions 1) − 2) of Prop. 5 can be chosen as
αi(p) = qi(p)

2, where qi is the i-th Lagrange polynomial defined in (17). In
practical applications it may be required of the αi(·) that they are nonnega-
tive only in some subset of the parameter space, for example corresponding
to physically meaningful realizations. Also in the multi-parameter case, the
computation of such polynomials αi(·) is a multivariate nonnegative inter-
polation problem, which in the case d (number of parameters) equal to 1
or 2 is solvable also when the nonnegativity condition is satisfied only on a
restriction of the whole parameter space (see [?]).

Relevant research questions regarding this issue are the determination of
efficient, numerically sound computational procedures to produce polyno-
mials αi(·) satisfying the conditions; and the refinement of such algorithms
to include for example “averaging” of the effects of the parameters (e.g. by

augmenting conditions 1)− 2) of Prop. 5 on the αi(·) with
∑N ′

i=1 αi(p) = 1
in the relevant area of the parameter space).

Remark 4. Using the results in Th. 1, and Prop.s 1 and 4 of [?], a method-
ology analogous to that illustrated in this section can be followed to provide
lossless- and self-adjoint Hamiltonian parametric realizations. For reasons
of space we do not enter into such details.
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6 Conclusions

We presented an approach to the identification of polynomial-parametric
i/s/o models based on rank-revealing factorization of Loewner matrices. Our
approach allows structured parametric representations to be computed in a
straightforward way from the data; we have illustrated the case of positive-
real systems, but analogous results also hold for lossless- and self-adjoint
port-Hamiltonian systems.

Our results fall short of a completely satisfactory answer to the paramet-
ric structured interpolation problem: our procedure imposes a polynomial-
parametric structure on an identified set of models (see the definition of
parametrizing polynomials in (16), and the definition of the αi(·) in Prop.
5). The approach of [?, ?] lets the data speak for themselves instead, by
identifying simultaneously the model and its (polynomial) dependence on
one parameter. The most pressing direction for further research is to en-
compass such generality in the BDF framework. Another important research
question is the application of the BDF approach to (structured) parametric
model order reduction problems (see also [?]).
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