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MODELLING CHANGE IN THE LOWLAND HEATHLANDS OF DORSET 

by Abigail M. Nolan 

A geographical information system (GIS) and regression were used to model vegetation changes that 
have occurred in the lowland heaths of Dorset, England between 1978 and 1996. This research 
contributes to the field of landscape ecology by producing succinct models of the spatial dynamics of 
dwarf shrub vegetation at two scales (patch and pixel). This research also examines whether the much 
hypothesised relationships between change and patch geometry, edge effects, isolation, context and 
the attributes of a patch including the areal extent (and density) of vegetation types in a fragmented 
environment exist, and models the process of succession spatially. Further, the effectiveness of 
management practices in controlling the process of succession was analysed. 

Extensive information was available from complete surveys of the heathlands of Dorset carried out by 
the Institute for Terrestrial Ecology (ITE) in 1978, 1987 and 1996 in which the heathlands were 
divided into 200 m by 200 m pixels. Vegetation change was examined initially on a patch-basis. The 
patches were created by amalgamating cells containing any area of heathland (dry heath, wet heath, 
humid heath and peatland) in 1978. The patches were used as a template for the 1987 and 1996 data. 
An analysis of areal change indicated that three processes appeared to result in vegetation change. 
These were land use change, succession and management. A statistical model of heathland dynamics 
was produced to represent the relationship between percentage change in area of dwarf shrub 
vegetation and several explanatory variables. The explanatory variables were selected based on 
current understanding of dwarf shrub vegetation dynamics in a fragmented environment and which 
were most likely to influence the process of succession. They included patch geometry, context 
(provided by a remotely sensed Landsat TM image), edge effects and the areal extent (and density) of 
dwarf shrub vegetation and invasive species types. 

The patch-based model indicated that two main variables influenced change in dwarf shrub vegetation 
to decline. First, the density of dwarf shrub vegetation in a patch and second, the area of invasive 
species in a patch. Further, it appeared that management arrested the process of succession in some 
cases and caused the area of dwarf shrub vegetation to increase in 'others'. The pixel-based analysis 
did not result in any significant relationships which questions the scale of the analysis, and the signal-
to-noise ratio of the data. 

This research examined the process of succession spatially by modelling the spatial dynamics of the 
dwarf shrub vegetation of Dorset. The analysis provided insight into the spatial process of change. To 
prevent further losses in area of dwarf shrub vegetation fragmentation of the remaining area of dwarf 
shrub vegetation must be prevented, to prevent further fragmentation the area of invasive species in a 
patch must be reduced. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This chapter introduces an analysis of change in a fragmented heath]and environment. It 

begins by discussing the lowland heathland of Dorset, southern England. The processes 

causing change, the factors affecting these processes of change over time and the scale of the 

analysis of change in heathlands are examined. The modelling process is also introduced. 

Finally, the structure of the thesis is defined chapter by chapter to illustrate the premise under 

which each part of the research was undertaken. This research contributes to the field of 

landscape ecology in three ways. First, by producing a succinct model of the spatial 

dynamics of dwarf shrub vegetation at two scales (patch and pixel). Second, by testing the 

(much) hypothesised relationships between change and patch geometry, edge effects, 

isolation, context and the attributes of a patch including the areal extent (and density) of 

vegetation types in a fragmented environment. Third, by modelling the process of succession 

spatially. In addition, the effectiveness of management practices in controlling the process of 

succession was analysed. 

1.2 The lowland heathlands of Dorset 

The lowland heathlands of Dorset were created in the Mesolithic period when humans felled 

the forest and allowed animals to graze, preventing the re-establishment of the climax 

vegetation. Traditional management practices (grazing, cutting and burning) maintained the 

heathlands until the latter half of the twentieth century. Such practices delayed succession of 

the heathlands to woodland and their decline resulted in loss of heathland. This process, 

combined with increased urbanisation, an increase in agricultural conversion and forestry 

plantations, caused considerable fragmentation. 

Lowland heathlands are characterised by low species diversity. Heathlands, such as those in 

Dorset, tend to be dominated by dwarf shrub vegetation, particularly cricoids; heather 

{Calluna vulargris), cross-leaved heath (Erica tetralix) and bell heather {Erica cinerea). The 

Dorset heathlands provide a habitat for many species of conservation importance such as the 

Dartford warbler (Sylvia undata), sand lizard (Lacerta agilis), smooth snake (Coronella 



austriiaca) and marsh gentian (Gentiana pneumonanthe) (Webb and Haskins, 1980). Further, 

these heaths are now the only place in Britain where all six of this country's native reptiles 

co-exist. However, much of the heathland in Dorset has been lost over the last century and a 

half. The heathlands that survived are fragmented and this has increased the likelihood of 

further losses of heathland and the biota that the heaths support (Moore, 1962). Haskins 

(1978) calculated, from Isaac Taylor's maps of Hampshire and Dorset, that around 39,960 ha 

of heathland existed in Dorset between 1759 and 1765. By 1987 only 5,141 ha of heathland 

remained in a much fragmented state (Webb, 1990). It is because so little of the Dorset 

heathlands remain and because of the rare communities and species that the heathlands 

support that they are now a top priority for habitat conservation in Britain (Biodiversity 

Steering Group, 1995). Therefore, there is an urgent need to quantify the problem of 

fragmentation of the heathlands of Dorset by developing more sophisticated, models of 

change in heathlands. Such models will be invaluable to heathland managers. 

1.3 The processes at work in a fragmented heathland environment 

The use of traditional heathland management practices declined over the period analysed in 

this thesis (between 1978 and 1996) led to increased pressure from succession. However, 

succession was not the sole cause of change. Changing land use (urbanisation, forestry and 

agriculture) also resulted in losses of heathland area. Both processes served to fragment the 

heathlands of Dorset. 

Heathland succession involves invasion by scrub, carr (wet scrub vegetation) and woodland 

species. Therefore, the area of invasive species in a fragment and surrounding a fragment, is 

an important component in the process of succession. Webb and Hopkins (1984) state that 

'isolated patches of heathland differ from many other habitat islands because they are usually 

surrounded by communities which are richer in species than the islands themselves and, thus, 

there may be continual pressure from colonisation and succession'. The fragments of 

heathland which remain tend to be isolated patches lying in a matrix of forest, agricultural 

and urban land and are, therefore, likely to be under considerable pressure from succession. 

Land use change on the other hand, is not a function of spatial context (in this analysis). Land 

use change cannot be predicted readily as it does not depend on the composition of an area of 

heathland fragment. Changing land use remained largely unregulated until the late 1980s, 

when legislation was introduced to protect the heathlands. 

Since the 1980s, a third process has also caused change tending to protect the area of 

heathland over time. This process is heathland management. An aim of management is to 



maintain heathland by providing a mosaic of different age stands and thereby a range of 

habitats. 

In all, there are three main processes in action in the heathlands of Dorset, one natural, 

ecological process which is succession and two anthropogenic processes which are land use 

change and management. Succession is the process of change of primary interest in this 

research. It is anticipated that the influence of the factors affecting succession on process of 

landscape change can be identified. 

1.4 The spatial process of fragmentation 

The fragments which constitute the Dorset heathlands are remnant patches isolated initially 

by disturbance of the surrounding area (Forman and Godron, 1986). Important attributes of 

such fragments include the scale of fragmentation, context, degree of isolation, fragment size 

and shape, species distribution (both areal extent and density) and edge effects (Lord and 

Norton, 1990). A fragment's surroundings may influence its chances of survival (Dunning, 

1992; Webb, 1992; Webb et al., 1984). A heathland fragment surrounded by scrub or 

woodland may be under continual pressure from succession. A fragment surrounded by 

houses is under no such pressure although other processes may cause problems (for example, 

anthropogenic activity, wild fire and limited in-migration of heathland species). The size 

(Moore, 1962), shape and perimeter length of a fragment may all influence the rate of change 

(Baskent & Jordan, 1995; LaGro, 1991; Rex & Malanson, 1990). Larger fragments of 

heathland may be more resistant to change as are more rounded fragments, with long thin 

fragments (large perimeters) less so. If the rate of succession across a fragment is uniform, 

then a long thin fragment will be invaded more quickly than a large round patch (if 

succession comes from the edge). From ecological literature it was clear that greater areas of 

scrub, carr or woodland in a fragment or in the edge of a fragment, lead to greater pressure 

from succession due in part to species dispersal (in this case, invasive species). It is most 

likely that pressure from succession in exerted from outside a fragment or from the edges 

(Fagan et al., 1999; Lavers & Haines-Young, 1993; Wilcove et al., 1986; Webb & Hopkins, 

1984). The converse is also true: greater densities of heathland species may imply that a 

patch is not fragmented and, therefore, is less easily invaded. 

Overall, the influence of the spatial geometry of a fragment, context, area of invasive species 

in a fragment or in the edge of a fragment on the process of succession, can provide insight 

into the spatial process of fragmentation in the heathlands of Dorset. 



1.5 The scale of fragmentation 

A patch (fragment) is the most obvious natural ecological unit of a lowland heathland 

environment. Therefore, change was examined initially on a per-patch basis as fragmentation 

appeared to occur at a patch scale. However, within a landscape different patches may 

experience ecological change at different rates, creating complex patterns of change (di 

Castri & Hadley, 1988). Patches are themselves patchy, that is change may also occur at a 

sub-patch level. If change was occurring in the heathlands of Dorset at a sub-patch level, then 

the most obvious choice of scale for further analysis was the pixel scale. The heathlands were 

surveyed on a 200 m by 200 m pixel basis. Although a pixel is not an obvious choice of 

ecological unit, the data limited the choice of scale for a sub-patch analysis of the process of 

fragmentation. Therefore, two analyses were carried out, a per-patch analysis followed by a 

per-pixel analysis of change in the heathland of Dorset. 

1.6 Modelling fragmentation 

Previous analyses indicated that fragmentation of the heathlands of Dorset was occurring at 

an increasing rate, resulting in losses of heathland vegetation. The processes which resulted 

in such change were identified (succession, land use change and management) through close 

examination of the ecological literature (see Chapter 2, 2.2). Further, attributes which 

affected the process of succession were identified and the scale of the analysis of 

fragmentation established. The next step was to isolate patterns of change with the aim of 

modelling them. If the process of change can be understood through the influence of several 

variables on the rate of change, then change can be managed more effectively. Obviously, 

change due to anthropogenic activity (land use change) could not be predicted in such a way. 

The model building process aimed to quantify how variables such as patch size and patch 

shape, context and area (and density) of both heath and invasive species affected the rate of 

change in area of heathland over time. Percentage change rather than areal change in area of 

heathland was the chosen response variable. Percentage change was examined at a patch 

scale but also a pixel scale. Therefore, the explanatory variables altered between the analyses. 

For example, indices of patch geometry no longer applied to pixels and patch edge effects 

were examined with reference to the distance a pixel lay from the edge. 

Once the model building process had been identified, a suitable model was chosen. There are 

many types of spatial ecological modelling (Czaran & Bartha, 1991), but few models have 

been developed for ecological processes identifiable at the landscape (patch) scale (for 



example, Dunning et al, 1992). Regression was chosen as it is a simple technique commonly 

used in ecology. Regression (both simple and multiple) provided the basis for building a 

predictive statistical model of the spatial dynamics of the heathlands of Dorset. Percentage 

change was examined at an 'aggregated primary' category level (percentage change in area of 

heathland) and at a 'primary category' level (percentage change in area of dry heath, wet 

heath, humid heath and peatland) using regression. Further, percentage change was examined 

at the 'secondary category' level. The relationship between percentage change in area of 

dwarf shrub vegetation (and dwarf shrub vegetation type) and individual invasive species 

was examined. The influence of current management practices was also examined. 

1.7 Summary and statement of objective 

Heathlands are plagio-climax communities in a state of arrested succession. Left to their own 

devices they will revert to their climax vegetation: woodland. The heathlands of Dorset are 

no different. The area of heathland has been progressively reduced in extent due to 

urbanisation, forestry plantations, agricultural practices and the decline in traditional 

heathland management practices which prevented the heathlands reverting to woodlands. 

These anthropogenic influences combined with succession have resulted in the fragmentation 

of the heathlands. Anthropogenic influences cannot be readily predicted, but succession can. 

Therefore, the overall aim of this thesis is to isolate the factors affecting the rate of 

succession (correlations analysis) and quantify their influence on percentage change in area 

of heathland using regression modelling. The analysis is undertaken at a patch and a sub-

patch (pixel) level. The models should provide insight into the spatial dynamics of the 

lowland heathland of Dorset and provide a succinct set of guidelines for heathland managers. 

1.8 Thesis structure 

Chapter 1 has introduced the basic research context and aim. Chapter 2 reviews relevant 

literature, including a detailed description of heathlands in general and an outline of the 

historical development and classification of the Dorset heathlands. A discussion is provided 

on the process of succession, the factors which affect this process and the influence of 

management on the heathland. Chapter 3 outlines the study site and the procedures taken to 

acquire and enter the data into a Geographical Information System (GIS). Chapter 4 is 

concerned with modelling at the patch level. Initially, only decreases in area of heathland 

were examined as the focus of interest was succession. Regression was used to identify 

significant relationships between percentage change (decreases) and several explanatory 



variables. Chapter 5 is concerned with modelling change in the heathlands on a per-pixel 

basis. Chapter 6 uses regression to analyse the effects of management on percentage change 

in area of heathland at both the patch and pixel level. The relationship between percentage 

increases and management was examined initially. However, percentage decreases were also 

included in the analysis. Chapter 7 is a discussion of the patch- and pixel-based analyses as 

well as the implications of the findings for the heathlands of Dorset. Chapter 8 concludes the 

thesis by summarising the research findings and pointing out their implications for heathland 

conservation. It also identifies research avenues which require further investigation in the 

light of the research presented in this thesis. 



CHAPTER 2 

HEATHLAND ECOLOGY 

2.1 Introduction 

A thorough review of the literature relating to heathlands, their development and, in 

particular, the study site, that is, the lowland heathlands of Dorset, southern England, is 

presented here. Historical factors which have determined the basic composition of these 

heathlands are outlined before proceeding to a more detailed description of the nature of these 

heathlands. The fragmentation of the heathlands is also examined as are their management 

and conservation. Literature outlining the basics of ecological modelling from its conception, 

through to the main kinds of ecological model used today, is reviewed with particular 

emphasis on statistical regression models as these are the foundation upon which this 

research is based. 

2.2 Historical development of heathlands 

Heathland vegetation dominated by dwarf ericoid shrubs extends over 25° of latitude, from 

northern Spain to beyond the Arctic Circle on the west coast of Norway, and east of Poland, 

with the greatest concentrations of heathland to be found in the countries bordering the North 

Sea. Lowland British heathlands are part of the western Atlantic alliance (Noirfalise & 

Vanesse, 1976). They are mainly concentrated in clusters in Cornwall, Devon, Dorset, 

Hampshire, Surrey, Suffolk and Norfolk. Today, only around one sixth of the area of lowland 

heath (as opposed to upland heath or moorland) that existed in 1800 remains (Michael, 1992). 

Within Britain today, lowland heathlands are rather restricted because of increased 

agriculture and urbanisation. 

Lowland heathland landscapes are in general, semi-natural resulting from, and being 

maintained by, human activity. Heathlands originated during the Mesolithic period when 

deforestation first began. The removal of the forests allowed wild animals to graze preventing 

the re-establishment of the climax vegetation and allowing the establishment of dwarf ericoid 

shrubs. Evidence for this is provided from the pollen analyses carried out by Dimbleby 

(1962) on 32 sites around Britain. The major deforestation of Britain did not begin until later 

in the Neolithic or Bronze Age. 



Heathlands exist on sands, gravels (in some cases glacially deposited), or acidic soils (pH in 

the range 3.5 to 6.7) that are low in fertility and nutrients, notably nitrogen and phosphorus, 

where there are no excessive fluctuations in humidity and, perhaps most importantly, where 

there are factors that arrest the natural succession to woodland 

(Webb & Haskins, 1980). 

2.2.1 Defining heathlands 

It is not easy to impose a precise definition on the word heathland, which relates more to a 

characteristic type of landscape than to its vegetation and fauna (Gimingham, 1992), and yet 

many authors have attempted to classify heathlands (both upland and lowland) for their own 

research. For example, Specht (1979) defined heathlands as vegetation dominated by dwarf 

shrubs, notably heather (Calluna vulgaris), cross-leaved heath {Erica tetralix) and bell 

heather {Erica cinerea). Webb (1990) described heathlands as a plagioclimax community 

dependent on man-induced activities to maintain dwarf-shrub vegetation and to prevent 

secondary succession to woodland and as characterised by low diversity of species, with high 

dominance achieved by a few. The National Vegetation Classification defined heathlands as 

vegetation types in which sub-shrubs play the most important role, sometimes in a dwarfed or 

broken canopy, with such species as Calluna vulgaris and other ericoids, Vaccinium, 

Empetrum and Ulex minor and Ulex gallii usually dominating either alone or in various 

combinations (Rodwell, 1992). Therefore, heathlands can be defined in general terms as 

vegetation dominated by dwarf shrubs, in particular, species of Erica and Calluna. 

The Dorset heathlands can be classified as Atlantic but contain elements of both Armorican 

heathland, chiefly characterised by bell heather {Erica cinerea), Dorset heath {Erica ciliaris) 

and western gorse {Ulex gallii), and Anglo-Norman heathland, in which bell heather {Erica 

cinerea) and dwarf gorse {Ulex minor) are the dominant species (Noirfalise & Vanesse, 

1976). For the most part, the vegetation of the Dorset heathlands (Rodwell, 1992) 

corresponds to the following National Vegetation Classification categories: 

1. H2, Calluna vulgaris - Ulex minor heathland (heather and dwarf-gorse heathland). 

This heathland type is found on freely drained, nutrient-poor acidic soils in eastern 

Dorset. Bell heather {Erica cinerea) and dwarf gorse {Ulex minor) are intimately 

mixed with heather, and wavy hair-grass {Deschampsia flexuosa) is prominent. 

2. H3, Ulex minor - Agrostis curtisii heathland (dwarf gorse and bristle-bent 

heathland). This heathland type is found where soils are less well drained and the 

climate is oceanic (Dorset). Agrostis curtisii (bristle-bent grass) is the most regular 

component along with heather and dwarf gorse. Erica tetralix (cross-leaved heath) 

and Molinia caerulea (purple moor-grass) are also quite prominent. 



3. H4, Ulex gallii - Agrostis curtisii heathland (western gorse and bristle-bent 

heathland). This heathland is characteristic of moist, acidic soils and a warm oceanic 

climate. It, therefore, replaces H3 in western Dorset. It is similar to H3 except that 

Ulex gallii (western gorse) replaces Ulex minor (dwarf gorse). The boundary between 

the two species is remarkably sharp. 

4. Ml6, Erica tetralix - Sphagnum compactum heathland (cross-leaved heathland and 

Sphagnum wet heathland). This is confined to acidic, oligotrophic mineral soils where 

drainage is impeded or there is peat. It is a transitional habitat between drier 

heathlands and sphagnum bogs. Gentiana pneumonanthe (marsh gentian) and Erica 

ciliaris (Dorset heath) grow and Erica tetralix (cross-leaved heath) and Molinia 

caerulea (purple moor-grass) are the predominant vascular plants. 

The research in this thesis was based upon the Dorset Heathland Surveys carried out in 1978, 

1987 and 1996 by the Institute of Terrestrial Ecology. The focus of the survey was dry heath, 

wet heath, humid heath and peatland as the dominant heathland vegetation. The surveys were 

based upon detailed research carried out on the heathlands of Dorset by ecologists such as S. 

Chapman and N. Webb and, therefore, for the purposes of this thesis, a classification based 

on such research was deemed more appropriate than a national vegetation classification for 

heathland. For the purpose of this research heathland, from herein defined as cricoid dwarf 

shrub vegetation, is made up of several dwarf shrub vegetation types outlined below and as 

described by Chapman et al. (1989): 

1. Drv heathland: common heather {Calluna vulgaris) dominant with bell heather 

{Erica cinerea), bristlebent grass (Agrostis curtisii) and dwarf gorse (Ulex minor) or 

western gorse (Ulex gallii). 

2. Humid heathland: common heather (Calluna vulgaris) dominant but with cross-

leaved heath (Erica tetralix) or Dorset heath (Erica ciliaris) and purple moor-grass 

(Molinia caerulea). 

3. Wet heathland: cross-leaved heath (Erica tetralix) or Dorset heath (Erica ciliaris) 

dominant with moss species Sphagnum compactum and Sphagnum tenellum and 

purple moor-grass (Molinia caerulea). 

4. Peatland: valley mire with cotton grass (Eriophorum angustifolium), species of 

moss (Sphagnum), rush (Juncus) and sedge (Carex). 



2.2.2 Historical development of the Dorset heathlands 

The heathlands of Dorset are lowland heathlands, as opposed to upland heathlands or moors. 

Defining lowland heathland as land under one thousand feet dominated by dwarf cricoid 

shrubs does not adequately convey the composite nature of the lowland heathland habitat. 

The principal features of the Dorset heathlands as compared to other British lowland 

heathlands are, according to Moore (1962), that they border the sea and Dorset is the meeting 

place for a number of eastern and western elements in the flora and fauna, for example, the 

overlap of dwarf gorse {Ulex minor) and western gorse (Ulex gallii). The Dorset heathlands 

have developed on the sandy, acidic, tertiary deposits (the Bagshot Beds) of the Poole Basin 

following forest clearances which began in the late Bronze Age, about 3600 B.P. (Webb & 

Haskins, 1980). The open woodland was cleared and heathland and hazel woodland 

developed. This transition was aided by the pastoral activities of the inhabitants of the area 

and a deterioration in the climate. This position was largely unchanged from the Iron Age to 

the 18th century (Webb & Haskins, 1980). 

Isaac Taylors' maps from 1759 and 1765 suggest that at that time there were 39,960 ha of 

heathlands in the Poole Basin, Dorset. At the time of the first Ordnance Survey maps, (1811 

Dorset and 1817 to 1818 Hampshire), about 30,400 ha (80%) of the land of Dorset 

constituted heathland according to Moore (1962). Traditional uses of heathlands, including 

rough grazing and fuel gathering, were practised well into the 19th century. These vast 

heathlands extended uninterrupted from near Dorchester to Southampton's waters. 

Bournemouth grew from a village of 695 people in 1810 to a town of 16,000 by 1881. By 

1896 it had covered much of what was once Poole Heath, yet the total area of heathland was 

still an almost contiguous area of 23,000 ha (Moore, 1962). Urbanisation continued at an 

increasing rate from 1896 to 1934. The Forestry Commission began planting large 

plantations shortly after World War I. The Land Utilization Survey of 1934 showed the area 

of heathland had been reduced to 18,200 ha. Urbanisation, mineral extraction, forestry 

plantations and agriculture caused the area to be reduced once again. Moore's own survey in 

1960 found only 10,000 ha remained and the heathland had been broken into over one 

hundred fragments. Between 1750 and 1934 the rate of loss of heathland was in the order of 

100-150 ha per annum but between 1934 and 1973 this rate had trebled. Rippey (1973) 

revealed that of the 6,100 ha of the Dorset heathlands remaining, only 120 fragments 

extended over 4 ha or more. By 1980 only 14% of the heathlands recorded by Isaac Taylor in 

1750 had survived. 160 fragments of heathland extended over 4 ha or more and the remaining 

608 sites were less than 4 ha. There were only 14 sites which extended over 100 ha and these 

represented an area of 49.1% of the total remaining heathland in 1980 (Webb & Haskins, 

1980). 

Webb (1990) surveyed the changes in the heathlands of Dorset between 1978 and 1987. He 

found that the area once again decreased but by 5% or 425 ha. The main causes of these 

10 



losses were conversion to farmland (46%) and urban and industrial development (50%). 

Further, there was a substantial increase in scrub and woody vegetation. Indeed, this was the 

most striking change recorded. The invasion of the heathlands by gorse {Ulex europaeus), 

birch (Betula) and pine {Pinus) caused an increase in scrub vegetation of 15%. The area of 

carr also increased. Webb also drew attention to the number of areas of humid and wet 

heathland where there was an invasion of tree seedlings. These declines were offset by 

expansion of heath in other areas. For example, tree felling accounted for an increase of 370 

ha. However, this was a prelude to replanting and was, therefore, only a transient gain. Webb 

(1990) found the greatest losses were in the area around Poole Harbour. He also found that 

humid heathlands increased in extent (which he attributed to the fires of 1978) and there was 

a small decrease in the extent of wet heathland. Despite these changes there seem to have 

been few qualitative changes in the flora and fauna of the heathlands. Of the heathland 

vascular plants in Dorset mentioned by Mansel-Pleydell in 1895, five have since become 

extinct (Moore, 1962). 

2.2.3 Summary 

For the purposes of this research, the heathlands of Dorset were defined as dwarf shrub 

vegetation. That is, the heathlands were classified as any combination of dry heath, wet 

heath, humid heath or peatland vegetation types. The dwarf shrub vegetation of Dorset is 

semi-natural and is dominated by dwarf cricoid shrubs. It is a resource ultimately in danger of 

great losses if fragmentation is permitted to continue at its recent rate. Today the dwarf shrub 

vegetation has been reduced to a mosaic of patches in a matrix of forest, agricultural and 

urban land. 

2.3. Heathland dynamics 

A review of the ecological processes in action both in lowland heathlands in general and in 

the dwarf shrub vegetation of Dorset in particular is presented here. The main ecological (as 

opposed to anthropogenic) process affecting heathlands is succession. Heathlands are plagio-

climax communities. That is, if succession is not controlled the heathlands will revert to 

woodland. The dwarf shrub vegetation of Dorset is no different and, therefore, it is necessary 

to control succession to conserve what little of the dwarf shrub vegetation remains. To do 

this, one must first understand the process of succession, and discover what factors are most 

likely to affect it in a fragmented environment. Succession in vegetation in general is 

examined as well as succession in heathlands (succession from heath to non-heath species) 

with particular reference to the dwarf shrub vegetation of Dorset. 
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2.3.1 Vegetation succession 

Succession is a directional temporal change in species composition or relative abundances 

and is a central theme in plant community ecology (Miles, 1987; Glen-Lewin et al., 1992 and 

Miles & Walton, 1993). It has long been recognised but little studied that the rate and pattern 

of succession may also reflect spatial factors (Glen-Lewin et al., 1992). Indeed among over a 

thousand studies of plant secondary succession (Rejmanek, 1995) Holt et al., (1995) were 

unable to find a single experiment specifically designed to asses the role of habitat area for 

succession in isolated patches. However, the present research aimed to build a model of 

change based on factors which affected both the rate and pattern of the spatial process of 

succession. 

2.3.2 Succession in heathlands 

It is only in rare heathland habitats, where continued wind pruning or layering in moist 

humus prolongs the life-span of individuals, that heathlands have a natural tendency to 

survive indefinitely. In the more moderate conditions where heather {Calluna vulgaris) has 

become dominant following forest destruction, each individual bush normally passes through 

a series of growth phases (see below). The rate at which the whole process takes place varies 

considerably according to habitat and geographical location. 

Calluna, left to its own devices, will succumb to the process of succession. The lifecycle of a 

Calluna stand can be loosely described as a series of stages: pioneer, building, mature and 

degenerate. The pioneer stage is the period of establishment and accounts for the first six to 

ten years of growth. The building phase is the most vigorous growth phase lasting between 

seven and fifteen years. Within a period not usually exceeding twenty years the mature stage 

is reached. Gaps appear in the canopy of a Calluna stand and gradually enlarge until, on 

reaching the degenerate phase at the age of thirty to forty years whole individual bushes die 

(Mars, 1988; Barclay-Estrup & Gimingham, 1969; Gimingham, 1960; Watt, 1947). The 

spaces left are seldom filled immediately by a new generation of Calluna plants, except in 

more moist habitats where layering may occur. Instead, this is an opportunity for other 

species to establish. Sometimes these are other plants of the heathland community such as 

bracken {Pteridium aquilinum), or grasses such as wavy hair-grass {Deschampsia flexuosa) or 

common bent {Agrostis capilliaris). However, the gaps may provide a niche for the entry of 

shrubs such as gorse {Erica spp.) or trees such as Betula, Pinus spp. or oak {Quercus). 

Heathland vegetation is inevitably potentially unstable and liable to change (Gimingham, 

1992). 

The main species forming plagio-climax dwarf shrub vegetation communities in Dorset (and 

other lowland heathlands) include cross-leaved heath {Erica tetralix), bell heather {Erica 

cinerea), Calluna vulgaris, dwarf gorse {Ulex minor), western gorse {Ulex gallii), Dorset 
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heath {Erica cilirais) and mire species such as grasses {Molinia) and Sphagnum spp. Prentice 

et al. (1987) suggest that both Erica spp. are early successional species. Alone Erica tetralix 

and Erica cinerea would have short lives, quickly reach maximum extent and begin to die 

back. Generally, however. Erica spp. grow well at first but soon become surrounded by 

species such as Calluna and are vulnerable to competition. Calluna bushes grow more slowly 

than either E. tetralix or E. cinerea, but grow larger and, therefore, they have the advantage 

over the Erica spp. in the long term. In a grazed community, the Erica spp. will, however, 

grow more quickly than Calluna. The Calluna species will predominate in the end because 

its prostrate form allows individuals to grow large and compete for restricted growing space 

more effectively than individuals from the other two species. The pattern of succession in 

these three species outlined above, did, according to Prentice et al., (1987), reflect the 

vegetative successions they observed in the field and sufficiently explained the compositional 

dynamics of a heathland community. 

Succession is not limited to change in heathland species. Rather, heathland species can 

themselves be invaded leading to succession from heath to scrub. Heathlands rarely allowed 

to reach their climax (woodland) due to management practices; different heathland sites have 

different climax vegetation, for example pine woodland or oak woodland. Previously, 

heathland did not reach their climax vegetation types due to traditional uses of heathlands, 

such as grazing. Further, it was misleading to imply succession proceeds deterministically 

(Clements, 1916) as sites may show different trajectories (Miles, 1987). When gaps in the 

heathland occur and succession is not held in check, what is the result? If U. europaeus 

invades heathland, quite substantial areas of the heathland will remain intact. This seems to 

be because U. europaeus does not form an extensive canopy, therefore, heathland species can 

survive in a mosaic of U. europaeus. Pteridium aquilinium may invade old U. europaeus 

sites, and when it does invade few heathland species tend to survive because its dense canopy 

creates too much shade (Bullock pers. comm.). Betula succession into heathland appears to 

take one of two routes. It either invades directly or replaces U. europaeus bushes which have 

already invaded the heathland. Pinus spp. appear to invade directly. Both Betula and Pinus 

spp. shade out heathland species and cause dramatic changes in soil structure and fertility 

preventing the establishment of heath species. It is these successive species whose 

establishment in heathland needs to be controlled. This cycle of succession occurs when gaps 

appear in the heaths and there is an available invasive species seed source (Mitchell et al., 

1997). 

2.3.3 The effects of management on heathland environments 

Heathlands can be managed to arrest succession. The most commonly used methods of 

management, which are based on traditional practices, are grazing and burning (Webb, 1986; 

Gimingham, 1992). However, Moore (1962) in his survey of Dorset, found that only 607 ha 
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(6%) of the total lowland heathland were grazed by stock. He noted that small heathlands 

tended to turn to grass heathlands if over-grazed, or pine woods if left ungrazed. Light 

grazing, especially by cattle and sheep can be used to suppress scrub such as Betula. Cattle, 

sheep and ponies check the growth of vigorous competitive grasses such as purple moor-grass 

(Molinia caerulea) and, thus, encourage a greater diversity of heathland vegetation (Bullock 

& Pakeman, 1997). Trampling by cattle can also reduce the spread of Pteridium aquilinum. In 

addition, grazing produces a range of vegetation heights and structures which is beneficial 

because it increases habitat diversity. Grazing also prolongs the life-cycle of heather (Michael, 

1992X 

Controlled burning, together with other traditional methods of heathland management (such as 

grazing, turf-stripping and cutting of scrub and bracken), prevents tree and scrub colonisation, 

halts degeneration of the scrub layer and maintains soil nutrient concentrations (Webb & 

Haskins, 1980). Well-controlled fires remove most of the bushes without becoming too hot, so 

leaving most of the moss and litter layers intact on the soil surface, protecting the stem bases 

and permitting vegetation regeneration (Gimingham, 1992). 

On the whole, grazing and burning breaks the life cycle of heather before the end of the 

building phase and, therefore, encourages rapid vegetation regeneration, virtually bypassing 

the pioneer phase and leading to reconstitution of a building-phase canopy within two or 

three years. Therefore, both are useful tools for arresting succession. 

Other management practices involve the re-establishment of heathland species rather than the 

control of succession. Webb et al. (1995) found that the Dorset heathlands cover an area of 

approximately 5,500 ha and 4,400 ha of grassland had been converted from heathland in the 

last thirty years. Further, 28% of these grasslands had great potential to be restored to 

heathland and would provide considerable gains for wildlife conservation. 

The traditional methods of heathland management (grazing and burning) during the late 18th 

century had mostly died out by the time of World War II (Webb & Haskins, 1980). It was not 

until about 1987 that any extensive organised conservation management was carried out on 

the Dorset heathlands. Today this management consists largely of bracken spraying, a little 

controlled burning, grazing and scrub cutting. Succession must be arrested for the heathlands 

of Dorset to survive. The best method for achieving this depends on the type of lowland 

heathland one wishes to maintain. Varying management practices have been utilised in Dorset 

but they have been carried out apparently without collusion between different agencies 

(English Nature, National Trust, Royal Society for the Protection of Birds, Herpetological 

Conservation Trust and Dorset Wildlife Trust). One of the specific aims of this research, 

therefore, is to build a database of heathland management practices in Dorset to see the effect 

of each kind of management on the survival of the heathlands. The effect of this new kind of 
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conservation management will be examined in detail in this research. 

The management of heathland is necessary to maintain the range of heathland habitats 

required to support its characteristic flora and fauna. These include areas of bare ground and 

heathland grasses, gorse and scrub, wet heathland, valley mire and open water. Heather must 

be actively managed to ensure that its full range of growth stages are present and to encourage 

it to regenerate successfully. In the absence of management, lowland heathlands tend to be 

invaded by Pteridium aquilinum, scrub species such as Betula, Pinus spp. and Rhododendron 

ponticum and trees and are eventually replaced by woodland (Michael, 1992). 

2.4 Fragmentation 

Succession means not only invasion or the spread of non-heath (dwarf shrub) species, but 

also the loss or decline in dwarf shrub species. Succession is rarely examined spatially, that 

is, it is rarely considered in terms of the spatial components of the landscape (Holt et ai, 

1995). By examining fragmentation, the spatial aspect of succession in a dwarf shrub 

environment can be examined. To do this, it is necessary to examine how the attributes of 

fragments, that is size, shape, species present, edge effects and context, affect the rate of 

succession in a dwarf shrub environment, which will in turn affect fragmentation (either 

causing or preventing further fragmentation). 

2.4.1 The effect of fragmentation of heathlands 

Dorset's heathland fragments represent a type which Forman and Godron (1986) would 

describe as 'remnant'. The fragments have most often resulted from, or been isolated by 

disturbance of the surrounding area. Webb and Vermaat (1990) distinguished three types of 

heathland fragment. Firstly, large fragments with low diversity of heathland vegetation types 

and high levels of dominance of a few species. Vegetation on these fragments corresponds 

with that regarded as typical heathland. Secondly, small fragments which have been created 

by the invasion of heathland by surrounding vegetation. These show a high diversity of 

vegetation types and few dominant species (species tend to be equally abundant). Finally, 

there are small fragments which have a low diversity of vegetation types. Many fragments in 

this group have been formed recently by isolation {i.e., anthropogenic land use change) and 

not succession. 

As fragment size decreases, diversity increases until a point is reached where the rate of 

change in species is considered unacceptable (i.e., the species are no longer considered to be 

typical heathland species) for the purposes of heathland conservation (Webb & Vermaat, 
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1990). Where fragments of vegetation represent examples of plagio-climax communities, 

invasion from surrounding vegetation is of prime importance. Hence, the nature of the 

surroundings and susceptibility to invasion are important characteristics of the patch or 

fragment (Webb & Hopkins, 1984). In these circumstances, the patch should be viewed as a 

component of the landscape in which it occurs (Pagan et al., 1999; Lavers & Haines-Young, 

1993; Wilcove et al, 1986; Webb & Hopkins, 1984). There are, therefore, several attributes 

of patches which, according to ecological theory, play an important role in patch dynamics 

with particular reference to heathland patches. Such attributes include fragment size, 

fragment shape, species density or area, edge effects and context (Baskent & Jordan, 1995; 

LaGro, 1991; Rex & Malanson, 1990; Moore, 1962). Many of these attributes are related to 

and are affected by the scale of the fragment (Lord & Norton, 1990). It is these attributes 

which will be used in this research to investigate the spatial dynamics of the heathlands of 

Dorset. 

Edges not only provide the juxtaposition of two distinct habitat types (both of which may be 

necessary for the activities of an edge adapted species), they are also subjected to physical 

conditions not present in the patch interior (Forman & Godron, 1986; Lavers & Haines-

Young, 1993). Wilcove et al. (1986) suggested that edge effects may penetrate for several 

hundred metres into fragments. Isolated patches differ from many other habitat islands 

because they are usually surrounded by communities which are richer in species and are 

therefore, under continual pressure from colonization and succession (Webb & Hopkins, 

1984). When ecological aspects of edges have been examined, research typically emphasised 

patterns of increased species richness in habitat edges and analyses of vegetation transitions 

near edges (Pagan et al., 1999). However, in this research the focus is on the mechanisms 

through which edges alter ecological processes, in particular, succession. According to Pagan 

et al., (1999) there is a critical need to understand the processes through which habitat edges 

make an impact on species dispersal and community composition in fragmented 

homogeneous landscapes. Purther research is necessary to examine the role of edges in the 

survival of a dwarf shrub fragment. 

Moore (1962) suggested that 'when the habitat of an ecosystem is reduced in size, edge 

effects become important and the key (characteristic) species become increasingly liable to 

extinction through inbreeding or accident'. He concluded therefore that the stability of a 

habitat is to a large extent a function of its size, with the smallest viable size of habitat being 

the smallest which supports a viable population of its weakest characteristic species. The 

larger the fragment, the more likely it is to retain a greater complement of the original species 

and some intact interior (species-area curve). A smaller patch of heath is likely to be invaded 

much more quickly than a larger patch and thus will be lost much more easily than a larger 

patch of heath. This process can be illustrated if we examine the rate of succession. If the rate 

of succession is constant for all fragments irrespective of size, then smaller patches will be 
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invaded more quickly than their larger counterparts in the sense that percentage change in 

area of heath will be much greater for smaller fragments than for larger ones over a specific 

time period. Seagle (1986) modelled a dynamic environment using a landscape dynamics 

model (a first-order Markov model). He included variables such as landscape size, 

disturbance frequency and competition between colonising species. The results showed that 

larger landscapes exhibited greater habitat diversity and constancy, and species richness 

increased with area. Small landscapes supported smaller populations and these were more 

susceptible to local extinctions. Thus, it can be concluded that area or size of a patch, be it 

heathland or otherwise, seems to have considerable influence on the survival of a patch. 

Patch shape has received relatively little attention in ecological literature. However, the 

interaction of patch shape and size influence a number of ecological processes (LaGro, 1991). 

The shape of a patch is likely to influence the survival of a patch. The most likely effect that 

shape exerts on ecological processes is through its control of the ratio of interior to edge in a 

patch. The ratio of interior to edge may alter the function of the entire patch. More 

opportunity arises for exchanges (species dispersal etc.) when more edge exists. Shape alters 

the perimeter to area ratio: a circle minimises it, more convoluted shapes increase it. Shape 

also alters the connectivity within a patch, within a circle all points are within a minimum 

distance and more convoluted shapes produce more isolated areas (Rex & Malanson, 1990). 

Area-to-perimeter ratios are commonly used to measure shape (Baskent & Jordan, 1995). The 

greater the perimeter of the patch for a fixed area the more edge effects play a part in the 

ecological processes at work in the patch. In particular, long thin patches have proportionally 

much more edge and thus, offer greater opportunity for invasion than more round patches 

(Diamond, 1975). Equally, the more rounded a patch, the shorter the perimeter for a fixed 

area, meaning that the rate of loss is reduced. Therefore, the proportion of a patch that is edge 

habitat is substantially dependent upon patch shape. 

The composition of habitat types in a landscape and the spatial arrangement of those habitats 

are the two essential features that are required to describe any landscape according to 

Dunning et ai, (1992). A given element, such as a patch of dwarf shrub vegetation cannot be 

considered in isolation: its surroundings exert a significant influence on it. It is as important 

to manage the surroundings as it is to manage a patch to prevent change (Webb, 1992). 

Changes on a given patch will be as a result of successional processes within a patch and 

changes generated by the surroundings of a patch. Therefore, for a given patch its future is as 

much dependent upon on its location in the landscape as it is on its present composition 

(Webb et ai, 1984). What surrounds each patch of heathland should influence greatly the 

spatial dynamics of each heathland patch. If a patch is surrounded by scrub it is likely to be 

under considerable pressure from succession whereas a patch surrounded by grassland is 

likely to have a smaller influx of seeds from invasive species. 
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Both the area of dwarf shrub vegetation and the area of invasive species within a patch will 

influence change within that patch. The initial state of a patch will dictate the rate of 

succession where the rate of loss is exponential. Therefore, greater areas of invasive species 

in a patch, or in the edge of a patch make a patch more susceptible to change and the rate of 

succession increases exponentially with area of invasive species. Further, the density of dwarf 

shrub vegetation within a patch will influence its survival. The more dense the coverage of 

dwarf shrub vegetation, the less fragmented it is and the less likely it is to change as 

succession depends upon the presence of a seed source (Mitchell et al., 1997). 

In summary, heaths exist as fragments (or patches) of different sizes. Within fragments there 

are patches of different vegetation - dry heaths, grasslands, scrub etc. Each fragment is 

susceptible to succession. Succession may be affected in turn by species density, patch size, 

spatial configuration (what surrounds a patch), the shape and perimeter of each patch, to 

name but a few. Change in area of dwarf shrub vegetation will be examined in relation to 

several factors (patch size, shape, perimeter edge effects etc.) which from the literature, 

appear to influence the process of succession. 

2.5 Ecological modelling 

Models are an abstraction or simplification of a process or form, rather than a replication of 

the process or form. They do not describe the real world exactly and often do not even 

attempt to do so. Models are built because they help to (1) define the problem to be studied, 

(2) organise our thoughts, (3) understand our data, (4) communicate and test that 

understanding and (5) make predictions. A model is, therefore, an intellectual tool (Starfield 

& Bleloch, 1986). Models based upon ecological knowledge are powerful tools in 

understanding ecosystem behaviour and for setting up research priorities. The understanding 

may be qualitative or semi-quantitative, but either has been shown to be important for 

ecosystem theories and environmental management (J0rgensen, 1995). 

2.5.1 Introduction to ecological modelling 

Ecosystems can be extremely complex and the difficult part of modelling is, therefore, to 

select the ecologically relevant components and processes in a given problem context, which 

requires a profound ecological knowledge. The first step in producing an ecological model is 

to define the problem and the definition needs to be bound by the constituents of space, time 

and subsystems. The bounding of the problem in space and time is usually straightforward, 

and consequently more explicit, than the identification of the subsystems to be incorporated 

into the model (J0rgensen, 1995). 
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There are varied approaches to modelling heterogeneous landscapes (DeAngelis et al, 1985; 

Baker, 1989; Turner & Gardner, 1991) each producing impressive results. Therefore, many 

kinds of ecological model could have been used to build a predictive model of change. 

Indeed, several types of model were considered for this analysis including transition models, 

cellular automata, neural networks and neutral models. However, the focus of this research 

was to quantify the variables affecting change in area of dwarf shrub vegetation as well as to 

build a predictive model of change. Models such as those outlined above may be used in a 

predictive sense but provide limited insight into the causes of change. 

Transition models have been used frequently to predict changes in vegetation (Acevedo et ah, 

1996; Johnston et al., 1996; Pastor er a/., 1993; Usher, 1981; Lippe er a/., 1985). Such 

models project an initial distribution among states forward and therefore, simulate changes 

over time. Transition models are stochastic as opposed to deterministic because model output 

is based on a probability transition p.. between states i and ij (Baker, 1989). Transition models 

are less than suitable for the current application for several reasons. First, the assumption that 

transition probabilites are stationary over time is questionable. Second, such models are 

unable to accommodate higher-order effects tending to focus on temporal change rather than 

spatio-temporal change. Further, such models tend to simulate a point in space and 

extrapolate its findings for the landscape as a whole therefore, assuming the landscape to be 

homogeneous (Hunsaker et al., 1993; Sklar & Costanza, 1991; Baker, 1989). However, 

ecological changes are not so simple and a landscape is rarely homogeneous. Further, the 

state of a cell is not simply a function of its initial state but is influenced by the cells 

surrounding it. Therefore, a transition model was not. 

Cellular automata have often been used to model landscape change (for example, Jeltsch & 

Wissel, 1994; Colasanti & Grime, 1993; Silvertown et al., 1992; Iwasa et al., 1991; Inghe, 

1989; Green, 1989; Czaran & Bartha, 1989; Czaran, 1989). Cellular automata models 

describe the dynamical behaviour of a system treating space and time in a discrete fashion 

(Wolfram, 1984; Silvertown et al., 1992) and are helpful to understand the self-organisation 

of spatial patterns following distinct rules (Breckling & Miiller, 1994). Such models describe 

the behaviour of a system treating space and time in a discrete fashion (Silvertown, 1992; 

Wolfram, 1984; Wolfram, 1983). A cellular automaton uses a regular lattice of cells, the 

states of which vary governed by a set of local rules. Each cell can have a range of possible 

states. The local rules apply equally to every cell and determine at each iteration what the 

state of each cell will be as a function of its current state and the state of the neighbouring 

cells (Silvertown, 1992). Therefore, unlike a transition model a cellular automaton is a spatio-

temporal model. However, cellular automata can provide insight into the causes of landscape 

change only after suitable parameters have been chosen to input into the model. That is, to 

model successfully a system such as a dynamic landscape, it is necessary to have prior 

understanding of the causal factors of change in order to devise parameters (or rules) upon 

19 



which the cellular automata modelling approach is based. This analysis sought to identify and 

quantify the variables that affect change in the heathlands of Dorset. Therefore, cellular 

automata were deemed to be an unsuitable model. 

Neural networks were also considered as a valid approach to model building. Neural 

computing is the study of networks of adaptable nodes which, through a process of learning 

based on examples, stores experiential knowledge and makes it available for use (Aleksander 

& Morton, 1992). The term 'neural networks' is used to describe a number of different 

models intended to imitate some functions of the human brain (Davalo & Nairn, 1991). That 

is, the nodes of the neural net, like the nodes of the brain, are adaptable, they acquire 

knowledge through changes in the function of the node by being exposed to examples. 

However, both in a neural network and the brain, very little is known of the details of how 

this happens (Aleksander & Morton, 1992). Therefore, although a neural network can be used 

to model change, the actual causes of such change are difficult to interpret. Neural networks 

were discounted leading to an alternative approach to model building being considered. 

Neutral models are generated without hypothesising spatial factors that regulate the 

distribution of resources or organisms (Caswell, 1976). A neutral model is one used to 

generate an expected pattern in the absence of specific processes, which is then tested against 

observation or against predictions of alternative models that explicitly include the processing 

question (With & King, 1997). Therefore, the neutral model provides a scale of reference or a 

baseline for evaluating the effect of processes that are not in the model. The resulting patterns 

from such models are neutral to the physical and biotic processes that may shape real 

landscapes (Gardner & O'Neill, 1991). As such they provide a basis for statistical testing of 

observed landscape patterns, or those generated by explicit models and hypotheses of how 

processes affect landscape pattern (With & King, 1997). Although neutral models permit the 

development of spatial indicies to describe landscape patterns, it is a misuse of such models 

to assume that results can be applied directly to real landscapes as they are just part of the 

larger theory of landscape pattern and process from which hypotheses are generated (With & 

King, 1997). In short, neutral models may provide some insight into the causes of change, but 

such insights are limited both in their scope and application. 

One final family of models was considered, these were correlation analysis and regression 

models. This research sought to isolate the factors, which caused change to facilitate the 

prediction of change. A statistical model, in particular correlation and regression analyses, 

allow the user to identify the variables affecting change and facilitate the prediction of 

change. Where the aim of an analysis is to predict (in a statistical sense) one property from 

the measurements on one or more others, then regression is the proper technique (Webster, 

1989). Therefore, correlation analysis was chosen to measure the strength of the relationship 

between change and several factors, which from ecological theory were likely to influence 
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change. Further, when the causal factors behind such change were isolated, regression was 

used to predict such change. Although regression is a simple and, therefore, commonly used 

technique for prediction, the correct use of regression depends upon several assumptions 

being met. This was an important consideration in the choice of regression for model 

building in this analysis. 

2.6 Regression models in ecology 

The intention of modelling is to enhance one's understanding of the available data using a 

quantitative and repeatable process. Further, the general aim of statistical modelling is to 

derive a mathematical representation of the relationship between the mean of an observed 

response variable and a number of explanatory variables and obtain a suitable frequency 

distribution for random variation (Collett, 1991). The initial choice of explanatory variables 

is normally determined by the current understanding of the biology of the system to be 

modelled (Nicholls, 1991). The modelling process identifies important explanatory variables 

and the final model may be useful in deriving predictions. A 5% level of statistical 

significance is normally used in the modelling process. Statistical modelling also invokes 

rules other than statistical significance such as parsimony and biological significance (Neave 

etal. 1996). This section outlines the main features of bivariate regression and multiple 

regression analysis and their use for ecological model building and prediction. Significance 

testing and the analysis of residuals will also be examined. 

2.6.1 Introduction to regression analysis 

The word regression has an odd etymology. In 1886 Francis Galton formulated his 'law of 

Universal regression' (Galton, 1886), which indicated that each peculiarity in man is shared 

by his kinsman but on the average in less degree. Galton was describing the height of sons in 

relation to the height of their fathers. He discovered that the heights of sons of taller than 

average fathers 'regressed' back towards the average. Today we use the word 'regression' to 

mean fitting a line to a plot of one variable against another (Williams, 1993). 

Regression is essentially about prediction (Webster, 1989). Regression illustrates the 

relationship(s) between variables. Given knowledge of the variable X and its relationship with 

the variable Y, regression analysis allows us to use particular values of X to predict the 

corresponding values of Y. Prediction is an important tool to the ecologist. For example, 

predicting which species is most vulnerable following habitat fragmentation (as in the case of 

the heathlands of Dorset) is one of the most pressing problems facing conservation biologists 

(Sarre et al, 1995). This predictive relationship can be shown in terms of the line of best fit. 
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or in terms of the mathematical definition of this line, called a regression line. 

2.6.2 Bivariate regression analysis 

To understand regression one should consider how a line on a graph can describe the 

relationship between sets of scores on two variables. Firstly, a line must be found that, when 

translated into equation form, can describe the relationship between the two variables. The 

equation for that line is called the regression equation (Mason et al, 1991). Although an 

infinite number of lines could be drawn to summarise the points in the scatterplot, the least-

squares regression line is unique. The regression line defines the basis for predicting values 

of Y, given values of X. The regression equation tells us the best-fitting mathematical linear 

relation between X and Y values. That is, given a value of X, it tells us what must be done to 

derive the best estimate of a value of Y. 

y = a + 

where Y' is the predicted value of Y for a selected X value. 

a is a constant; the value at which the straight line intersects the F-axis. 

b is also a constant and is the slope of the straight line. 

X is any value of X that is selected (Mason et al., 1991) 

The slope tells us how many units the variable Y increases for every unit increase in X. 

Generally speaking, a and b are known as regression coefficients (Williams, 1993). The 

statistical aim in fitting a regression line is to place it as close as possible to all of the 

observations. The adopted definition of 'as close as possible' is that it should minimise the 

variance in the squared deviations from it on the F axis (Johnston, 1978). The residual is the 

discrepancy between the model (regression line) and the data. The line of best fit can, thus, be 

achieved by minimising the sum-of-squares of the residuals (least squares fit) (Watt, 1993). 

However, for any realistic application, the scatterplot of points will not be depicted perfectly 

by the line of regression. Not all points will lie on the line exactly, which implies that the 

independent variable cannot account fully for the dependent variable. This occurs for several 

reasons. For example, ecologists study complex patterns and flows, with complex processes 

producing these patterns and flows. It is, therefore, unrealistic to expect one independent 

variable to explain variation in a regression model fully. Even when multiple influences are 

considered (multiple regression), some proportion of most real-world processes is either 

attributable to unknown variables or is the result of unpredictable, random occurrences. 

Despite the above, regression analysis is used commonly in ecological studies (for example, 

Sarre et al., 1995; Abramsky et al., 1986; Aitkin & Francis, 1986; Philippi, 1993; Trexler & 

Travis, 1993, Verboom & Apeldoorn, 1990; Verboom et al., 1991; Apeldoorn et al., 1994; 

Hanski et al., 1995; Andren, 1996). 
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Finally, it should be noted that before employing predictive linear regression in any field of 

research, several assumptions have to be met, or at least be approximately true (Webster, 

1989). There are six basic assumptions (Johnston, 1978): 

1. Linearity: the trend in the data can be represented by a straight line. 

2. Normality: for a given value of X, the Y observations are normally distributed 

around the regression line. 

3. Means of conditional distributions: for every value of X, the mean of (Y] - Y- ) must 

be zero. 

4. Homoscedascity: the conditional distributions should have equal variances. 

5. Autocorrelation: each observation on the independent variable is independent of all 

others. 

6. Lack of measurement error: X is measured without error. 

Linearity implies that the mean value of 7 is a straight line function of X. Regression analysis 

fits a straight-line trend through a scatter of points (Kleinbaum et ai, 1998). Clearly, if the 

trend cannot be represented by a straight line, linear regression analysis will not portray it 

accurately. Although simple linear regression cannot be applied to curvi-linear data, it is 

often possible to transform the trend into a linear form. This is most commonly achieved by 

expressing one or both variables as a logarithm (Johnston, 1978). It is also assumed the data 

are normally distributed. For any fixed value of X, the conditional distributions of the 

residuals of Y are normally distributed. If these conditional distributions are normal, then it is 

almost certain that the distributions of X and Y are also normal (Johnston, 1978). This 

assumption makes it possible to evaluate the statistical significance of the relationship 

between X and Y, as reflected by the fitted line. If the normality assumption is not much 

violated, the conclusions reached by a regression analysis in which normality is assumed will 

generally be reliable and accurate (Kleinbaum et al., 1998). 

The means of the conditional distributions should be zero for every value of X. If they are not 

then the coefficients of the regression equation may be biased estimates. However, when 

deviations from this assumption are relatively small they are not considered serious 

(Johnston, 1978). The variances in the conditional distributions should be equal. 

Homoscedascity implies that the variance of Y is the same for any value of X. That is, that Y 

varies the same amount when Z is a low value as when X is a high value (Kleinbaum et al., 

1998; Mason el al., 1991). Homo- means 'the same' and -scedascity means 'scattered'. If 

this is not the case then 'heteroscedacity' is said to exist. If the heteorscedacity is 

considerable, then the regression coefficients may be severely biased. Logarithmic 

transformation can be used to remove heteroscedacity. It is also assumed that successive 

observations of Y must not be correlated (Mason et al., 1991). Autocorrelation implies that 
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the F-values area statistically independent of one another (Kleinbaum et al., 1998). Most 

ecological data are spatially autocorrelated as are the data used in this analysis. However, this 

does not necessarily imply the residuals are autocorrelated and therefore, this assumption is 

not necessarily violated. Finally, X should be measured without error in order to carry out 

predictive regression (as is the aim of this research). However, if regression is being 

employed as a technique for calibration then one variable should be measured without error 

and if regression is being used to measure a functional relationship then it is assumed there is 

no error in either X or F (Webster, 1989). 

2.6.3 Multiple regression analysis 

The multiple regression model offers a great range of analytical possibilities for the study of 

the complex real world (be it ecological or otherwise) with the promise of greater 

understanding of the matrix of direct and indirect links between variables. Multiple 

regression analyses, like bivariate regression, can be used to test hypotheses and also to 

generate them (Johnston, 1978). 

Multiple regression makes it possible to bring more than one predictor variable to bear in 

predicting scores on a given variable. The effect of each explanatory variable is analysed 

separately and models are built by means of multiple (usually linear, often stepwise) 

regression procedures, (e.g. Richardson & Lum, 1980; Zar, 1984; Owen, 1989; Crawley, 

1993; Philippi, 1993). It can also be used as a method of describing the relative contribution 

of a series of variables in the prediction of a variable (Williams, 1993; Sarre et al., 1995 & 

Morris et al., 1997). 

The multiple regression case extends the equation for ordinary regression to include other 

independent variables. For k independent variables the regression equation is: 

Y=a + biXi + b2X2 + bsXs +.... bkXk 

where, X] and X2 are the two independent variables 

a is the intercept with the Y-axis 
6yis the rate of change in Y for each unit of Xj 

b2 is the rate of change in Y for each unit change in X2, with X} held constant (Mason 

et al., 1991). 

Like bivariate regression, multiple regression is based on assumptions which should be met 

before this technique is used in any field of research. The most important of these 

assumptions are that the independent variables and the dependent variable have a linear 

relationship. The dependent variable is continuous and at least of interval scale. The variation 
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around the regression line is the same for all values of X. This means that Y varies the same 

amount when Z is a small value as when it is a large value (homoscedasticity). Successive 

observations of the dependent variable are uncorrelated and the independent variables should 

not be correlated (Johnston, 1978). 

However, multiple regression appears to work well even when one of these assumptions is 

violated (Mason et al., 1991). Although multiple regression techniques have been applied 

with considerable success in many ecological and ecological-biogeographical studies, these 

techniques also have some pitfalls (see Vincent & Haworth, 1983; James & McCulloch, 

1990; Philippi, 1993). The most frequent limitation arises from the (multi)collinearity of 

explanatory variables (Heikkinen, 1996). The independent variables should not be highly 

correlated. When the independent variables are correlated, this is called multicollinearity. 

One solution to the problem of collinearity is to combine explanatory variables into a smaller 

set of linear combinations or principal components that are, by definition, linearly 

independent of each other (e.g., Osborne & Tigar, 1992; Buckland & Elston, 1993; Eriksson 

el al., 1995; Heikkinen, 1996). The data should be examined for outliers and influential 

points that exert undue influence on the parameter estimation and overall fit of the model 

(Neaveera/., 1996). 

2.6.4 Correlation 

Simple regression analysis models the linear relation between variables; correlation analysis 

illustrates the degree to which variables are linearly related. Correlation is therefore, a useful 

aid in interpreting regression analysis. The coefficient of correlation is a measure of the 

strength of the association between the dependent and independent variables. There are three 

different correlation coefficients commonly used in statistics: Kendall, Pearson and 

Spearman. The most commonly used is Pearson's product-moment correlation coefficient. It 

is a valid measure of correlation if the relationship is linear. To remove the possibility of 

dependence on the scaling of variables, the correlation coefficient is defined in terms of 

standardised versions of the variables, found by subtracting the mean and dividing by the 

standard deviation of each variable separately: 

where, x = X--X and y = Y.-Y 

A measure of correlation that can be more easily interpreted is the coefficient of 

determination (Mason et al., 1991). It is found by squaring the correlation coefficient r 

(Wonnacott & Wonnacott, 1972). The coefficient of determination is the proportion of the 
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total variation in one variable explained by the other variable. The result is a proportion, that 

makes it relatively easy to arrive at a precise interpretation. The coefficient of determination 

is used to provide more insight into the relationship resulting from simple and multiple 

regression analysis by indicating the proportion of the variation in the dependent variable Y, 

which is explained by the independent variable(s) X. The coefficient of determination is 

commonly used in regression analyses for this purpose (for example, Kelly & King, 1995). 

r ' 
_ explained variation of Y 

^(Y.-Y)^ total variation of Y 

It is clear, therefore, that regression is a useful tool of the ecologist for producing not only 

models but also for prediction. One of the main drawbacks of the regression technique, 

however, is finding suitable and significant explanatory variables, be they for a patch of 

heathland or otherwise. 

2.6.5 Transforming data 

For a regression line to present a faithful reflection of the trend in a dataset it is necessary to 

ensure that the relationship between two variables is linear. If this is not the case in the 'raw' 

data, transformations may achieve it (Johnston, 1978). Further, transformations may be used 

to ensure a variable meets the assumptions of the analysis (see section 2.4.3.2) (Sokal & 

Rohlf, 1998). A transformation consists of a replacement of measured values by other values 

(Jongman et al, 1996). Transformation can ensure a better fit of the values in a regression 

model. Many different mathematical functions may be used to transform data. However, a 

particular family of simple transformations has proved useful in a wide range of situations. 

These are the family of power transformations. A power transformation simply changes a 

data value x by raising it to some power p, giving it a transformed value of xP. The most 

commonly used power functions are: 

\.p- \ (not transformed) 

2. p = — (square root) 

3. p = - \ (reciprocal) 

4. p = — (cube root) 

5. p = 2 (square) 

Decreasing the value of p reduces the visual effect of the outliers and spreads out lower 

values. The lower the value of p the stronger the effect of pulling in the upper tail and 

decreasing it in the lower tail. Increasing values of p have the opposite effect, increasing the 

spread of the data in the upper tail and decreasing the spread in the lower tail. Separate 
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transformations of each of the variables may be performed to make the distribution of values 

for that variable more symmetric. Although this is not guaranteed to linearise a relationship, 

it often does so in practice (Griffiths et ai, 1998). 

2.7 Geographical Information Systems and obiect-based modelling 

Spatial analyses can be used to investigate spatial relationships within a single spatial data 

set. This offers particular potential for application in landscape ecology and for the study of 

species-environmental interactions at regional scales. Ecological research is relatively rich in 

theory and concepts that relate to processes and ecological functioning, but it is relatively 

poor in spatial concepts and spatial theory, which underpin the development of spatial 

analytical tools to enhance the functionality and relevance of Geographical Information 

Systems (GIS) for use in ecological research. 

2.7.1 Introduction to GIS 

A GIS is a system of hardware, software, data, people, organisations, and institutional 

arrangements for collecting, storing, analysing and disseminating information about areas of 

the Earth particularly in this case for understanding environmental processes (Nyerges, 

1993). The hardware and software are used for entering, storing, retrieving, transforming, 

measuring, combining, subsetting and displaying spatial data that have been registered to a 

common co-ordinate system. To perform these functions, the data entered into a GIS must 

include information about the spatially explicit location of an entity, as well as its attributes 

(Johnston, 1998). The main difference between GIS and computer-assisted cartography is 

that a GIS can create new information (Parker, 1988). 

2.7.2 Data storage and analysis 

Spatial attributes record data about the location, topology and geometry of spatial objects. 

These are characteristics that separate GIS from other kinds of database management 

systems. This spatial location of objects is recorded either in latitude and longitude co-

ordinates, in co-ordinates of one of the standard cartographic projections, or in arbitrary 

rectilinear co-ordinates with a local origin. One of the useful functions of GIS is the ability to 

transform spatial data from one co-ordinate system to another, so that maps in different 

projections can be compared (Bonham-Carter, 1994). 

Some GIS use raster data structures while others use vector data structures although all GIS 

store data about the location and attributes of real-world entities. Rasters and vectors form the 
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two basic data models used in GIS, and they differ in the way they store data. A raster-based 

GIS, also known as a grid- or pixel-based system, portrays features as a matrix of grid cells, 

each with an individual data value. A vector-based GIS portrays features as nodes, arcs and 

polygons (Johnston, 1998). We are predominately interested in the raster data structure as it 

this structure which has been used for this research. The raster data structure was an 

appropriate choice as the survey data itself were made of 200 m x 200 m cells forming a 

raster grid even before it was entered into the GIS. A raster database portrays features as a 

matrix of equal-area cells that are usually square. The smallest non-divisible element in a 

raster database is a grid cell. Grid cells are inherently two-dimensional even though the 

features they represent may be zero- or one-dimensional. Therefore, features that are 

dimensionless (points) or smaller than the minimum raster dimensions (streams) are difficult 

to depict in a raster GIS. The appropriate raster size should be comparable to the scale at 

which the ecological process of interest is operating (Burrough, 1989; Maguire et al., 1991 

and Johnston, 1998). 

2.7.3 GIS and the spatial dynamics of vegetation 

One of the most powerful aspects of GIS is the ability to examine spatially referenced objects 

over time. Temporal changes in landscape patterns have been analysed with particular 

emphasis on the effects of anthropogenic and natural processes (Stringer et al., 1988; Turner 

& Ruscher, 1988 and Turner, 1990). Landscape patterns are characterised by the number of 

landscape types and the amount of edge between them, by patch shape and indices of 

dominance, diversity and contagion. Functions, such as proximity functions, have been used 

to determine contiguity of landscape patches to provide a descriptor for landscape structure 

(O Neill et al., 1988), or to predict susceptibility and/or the results of disturbance (Gardner et 

al., 1987 and Cuddy et al, 1996). However, many important ecological questions involve the 

analysis and prediction of such changes in landscape pattern over time. It is, therefore, 

necessary to examine how temporal change can be quantified using a GIS. Change detection 

involves comparing spatially explicit databases from two different time periods to determine 

the location and nature of changes over time. Change detection with a GIS can reveal the 

location and spatial extent of change (Wood & Foody, 1993; Michalak, 1993 and Xu & 

Young, 1990). 

Ecologists traditionally detect change by comparing statistical data collected at different 

times and determining whether the magnitude of change is sufficient to meet a test of 

significance. Statistical techniques are usually necessary because measurement of an entire 

population is not always possible, requiring a sample of the population to be selected. GIS 

change detection differs from this approach in that a GIS database represents the entire 

population, rather than a sample thereof. Thus, the concept of statistically significant change 

is generally not applicable in GIS change detection, because populations are being compared 
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in their entirety: any change detected between datasets is significant, regardless of its 

magnitude (Johnston, 1998). Further, the different types of change can themselves be 

classified and displayed using a GIS (for example, Jensen et ai, 1993). 

In the present research, GIS provides a useful tool with which to manipulate the various data 

into the required format prior to applying regression. Further, it facilitates the production of 

maps of change capable of illustrating the spatial structure of change. 

2.8 Remote sensing 

The Dorset Heathland Surveys provided data concerning the area of dwarf shrub vegetation 

and associated species in Dorset. However, the Surveys provided no contextual data. That is, 

there were no data concerning what surrounded the areas of dwarf shrub vegetation surveyed. 

Remote sensing can provide such information. Remote sensing involves the recording of 

energy in the microwave, infrared and visible regions, as well as the long-wavelength portion 

of the ultra-violet (UV) region from the electromagnetic spectrum. Wavelength regions with 

high transmission are called atmospheric windows and are used to acquire remote sensing 

images. Imaging sensors operating in the solar spectral region (0.4-2.5//m) collect reflected 

solar radiation. The nature and geographical distribution of Earth surface materials can be 

inferred from the distribution of reflected energy in this spectral region (Lillesand & Kiefer, 

1994). 

2.8.1 Introduction to remote sensing 

Remote sensors record electromagnetic radiation (EMR) which travels from the source 

directly through the atmosphere or indirectly by reflection or re-radiation to the sensor. 

Electromagnetic energy refers to all energy that moves with the velocity of light in a 

harmonic wave (waves that occur at equal intervals in time) pattern (Floyd & Sabins, 1987). 

All objects whose temperature is greater than absolute zero emit radiation, but the 

distribution of the amount of radiation at each wavelength across the spectrum is not uniform 

(Mather, 1989). Electromagnetic energy can only be detected when it interacts with matter. 

The regions used for remote sensing, are sub-divided into wavebands, such as the blue, green, 

and red wavebands of the visible region. Atmospheric gases absorb electromagnetic energy at 

specific wavelength intervals called absorption bands. Wavelengths shorter than 0.3 |im are 

completely absorbed by the ozone (O3) layer. Particles of liquid water (which constitute 

cloud) absorb and scatter electromagnetic radiation at wavelengths less than about 0.3 |lm. 

Only radiation of microwave and longer wavelengths is capable of penetrating clouds without 
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being scattered, reflected, or absorbed (Lillesand & Kiefer, 1994; Floyd & Sabins, 1987). The 

absorption, reflection and transmission of a vegetation canopy is primarily controlled by the 

physiology and pigment chemistry of its leaves. Multispectral reflectance is related to the 

area and density of leaves seen by the sensor (Curran, 1985). 

2.8.2 Landsat 

Landsat satellites -1,-2, and -3 were launched by the US in 1972, 1975 and 1978, and each 

was decommissioned approximately five years after launch. These early satellites carried 

Multispectral Scanner System (MSS) sensors which detected radiation in four spectral bands 

(green, red and two bands of near-infrared (NIR)). Subsequent satellites carried Thematic 

Mapper (TM) scanners in addition to the MSS scanners. Landsat TM has seven spectral 

bands, three in the visible part of the spectrum (red, blue and green), two mid-infrared bands 

and a single thermal-infrared (TIR) band. The additional bands made TM imagery more 

useful for vegetation discrimination than MSS. TM imagery also has a much finer spatial 

resolution than MSS which can make it more useful for ecological applications (Johnston, 

1998). Therefore, TM imagery has been used for mapping a variety of ecological features (for 

example. Fuller et al., 1994; Veitch et al, 1995), and will be used in the present research. 

2.8.3. Land cover classification and classification accuracy 

A common use of remotely sensed imagery has been the production of land cover and 

vegetation maps. However, before an image can be classified for use in land cover mapping, 

the image must be corrected. The intent of image restoration and correction is to correct an 

image for distortions or degradations which occur during acquisition (image correction is 

discussed in detail in Appendix 1). Further, the precision of the classification achieved 

depends upon the spatial and spectral resolution of the sensor (Stoms & Estes, 1993). The 

overall objective of image classification is to automatically categorize all pixels in an image 

into land cover classes. During classification the spectral patterns in the image are evaluated. 

That is, different feature types manifest different combinations of digital numbers based on 

their inherent spectral reflectance and emittance properties (Lillesand & Kiefer, 1994). A 

supervised classification was carried out for this analysis. The classification was 'supervised' 

by specifying numerical descriptors of the various land cover types present in the scene. To 

do this, representative sample sites of known cover type (training areas) were used to compile 

a key describing the spectral attributes for each feature of interest. Less ambiguous 

identification of land cover and land use generally requires a ground survey of some 

description (Wyatt et al., 1993). Rather than carry out another ground survey, the Dorset 

Heathland Survey data were used as training data for the purposes of classification. A 
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classification is not complete until its accuracy is assessed (Lillesand & Kiefer, 1994). The 

overall accuracy is computed by dividing the total number of correctly classified pixels by 

the total number of reference pixels. An error matrix is an effective way of representing 

classification accuracy as the accuracy of each category is plainly described (Lillesand & 

Kiefer, 1994; Congalton, 1991). Once an image has been classified and the classification 

accuracy assessed, it can be used in subsequent analysis. 

2.8.4 The integration of remote sensing and GIS 

Remote sensing is an important source of GIS data as it provides information on ecological 

properties that have not been mapped (Ehlers et ai, 1991). Both remote sensing and GIS 

involve the manipulation of spatial data in digital form. Remote sensing allows the 

measurement and examination of variation of electromagnetic radiation. GIS, in principle, 

enables the organisation and analysis of these measurements and attribute data to improve the 

mathematical and statistical modelling of the pattern and processes on the surface of the 

Earth (Ehlers et al, 1991). GIS, coupled with data from satellite imagery, is proving to be a 

powerful tool for the development of both general and specialised classification systems 

(Clarke et al., 1986). 

The major disadvantage of satellite imagery as a source of GIS data is its relatively coarse 

spatial resolution. Satellite images can provide data about plant communities and 

environmental conditions, but are unsuitable for studies at the individual organism level. 

Clouds and atmospheric effects also interfere with the quality of the data. Furthermore, 

because satellite imagery depends on spectral reflectance it is only applicable to those 

features which have a distinct spectral signal. Despite these drawbacks the integration of GIS 

and remotely sensed data to facilitate environmental analysis has a distinguished history 

(Young, 1986; Xu & Young, 1990; Walsh et al., 1990; Davis et al., 1991; Wood & Foody, 

1993; Roseberry et al., 1994; Michalak, 1993; Veitch et al., 1995 and Foresman & Millette, 

1997). 

The integration of data from field observations and remote sensing within GIS offers the 

potential for rapid, cost-effective surveying and assessment of biotopes of high conservation 

value (Veitch et al., 1995). However, the usefulness of classifications derived from satellite 

remotely sensed data as an input into a GIS may be questioned when dealing with 

environments which display a gradual change (Wood & Foody, 1993). With regards to the 

heathland of Dorset, the use of remotely sensed data may enable heathland areas to be placed 

into the context of the surrounding land use. Such a synoptic view may be invaluable when 

formulating management strategies that consider the landscape as a whole and not just the 

biotope of interest (Veitch et al., 1995). 
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2.9 Conclusion 

The ultimate aim of this research was to build a predictive, statistical model of dwarf shrub 

vegetation dynamics in Dorset to aid the conservation of this environment. From an 

examination of the literature, it is possible to identify the processes at work in such a patchy 

heathland environment. Succession is the process of most interest since it is predictable. 

However, the factors which arrest or affect the rate of loss of heathland due to succession are 

not clear. A number of factors, in particular patch geometry, but also species density, 

management practices and patch status, are thought to affect rates of change. The model 

building process will test such hypotheses. The tools used in the modelling process include 

GIS and both simple and multiple regression. GIS offers facilities for the description and 

management of spatial environment and ecological data and, with appropriate tools, has the 

potential to be used to analyse and synthesise interactions and variability at different levels of 

spatial and ecological organisation (Aspinall, 1984). Regression analysis is a simple 

modelling technique commonly used in ecology with the added benefit of allowing 

prediction. 
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CHAPTER 3 

FIELD SITE AND DATA 

3.1 Introduction 

'Twilight combined with the scenery of Egdon Heath evolve a thing majestic 

without severity, impressive without showiness, emphatic in its admonitions, 

grand in its simplicity ' (Hardy, 1878) 

Two factors were critical to the development of the heathlands of Dorset, southern England. 

Firstly, the geology of the area, and secondly, the activities of early humans. Therefore, it is 

necessary to study the geological and anthropogenic influences and their locations in detail to 

understand the development of this unique and varied habitat. In Chapter 2, the natural history 

of the heathlands was described in detail. Therefore, this Chapter briefly describes the geology 

of the region. Further, the datasets used for this research are described in detail. The GIS 

analysis of the data is discussed as is the development of a database of heathland management 

for all Dorset. Finally, the response variable and explanatory variables are defined. 

3.1.1 The study site 

The county of Dorset borders the sea and is situated in southern England (Figure 3.1). The 

point at which the Hampshire Basin crosses into eastern Dorset is known as the Poole Basin 

(DWT, 1997). The wealth of flora and fauna has arisen for several reasons. Most 

fundamentally, the geology and geomorphology of the county are extraordinarily diverse 

within a relatively small area (Dorset is only 2, 652 km^) and the derived soils have allowed 

rich and varied habitats to develop. The county's situation along the English Channel seaboard 

means that, apart from being in the warmer south of the country, it is subject both to the 

continental climatic influences of mainland Europe and the maritime influences of the 

Atlantic. As one moves across the county from west to east, there are rapid changes in 

geology, a decrease in rainfall and changes in habitat from those based on clay soils, through 

chalk to sands and gravels (DERC, 1997). 

As in other parts of the world, the heathlands of Europe (like those of Dorset) generally 

belong to acid substrata of low nutrient status. These include stabilised siliceous sand, various 

types of podzolic soils derived from freely drained parent materials including fluvio-glacial 

sands and gravels, glacial tills and weathered rock debris, oligotrophic brown earth soils, 

humic gleys, ranker soils and peat. With some exceptions, heathlands are absent from soils 
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Lowland heath 

Fig. 3.1 The remaining areas of lowland heatland in England and Wales 
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rich in exchangeable nutrients, especially calcium. Phosphorus is also deficient. In the 

majority of heathland soil pH lies in the range 3.4 to 6.5 and the calcium nitrogen (C:N) ratio 

is high (Gimingham et al, 1979). In Dorset, heathland occurs on the Bagshot beds (Tertiary 

deposits) in the east of the region in the area surrounding Poole Harbour (the Poole Basin) 

(Chapman et al., 1989). The Dorset heathlands are typical of lowland heath which occurs at 

altitudes below 300 m (Webb, 1986). Heathland species are supported by peat, valley gravels, 

plateau gravels, Bracklesham beds, Bagshot beds, Bagshot sands and Reading beds. These 

beds have supported heathland since at least Norman times (Moore, 1962). 

Virtually the whole of Dorset lies within a shallow trough, which is the Hampshire Basin. The 

rocks were mainly formed in two separate periods, the older Cretaceous and the Tertiary 

periods. Bagshot beds and Bracklesham beds (the younger Tertiary deposits) are the most 

common in the area. These are found within the Wareham main block, Purbeck, Ringwood, 

Hefthelton, Whitesheet, Uddens and part of Moreton plantations. The beds are a mixture of 

sands, gravels, and clays which give rise to poorer soils (podzols or peat) (DERC, 1985). The 

Tertiary Bagshot and Bracklesham beds of the Poole Basin comprise a variety of inhospitable 

sands and gravels interspersed with clay, and it is upon these that the heathlands of Dorset 

were formed (DWT, 1997). The heathlands of Dorset, which developed on these Tertiary 

deposits, form a convenient unit, the eastern boundary of which is formed by the River Avon. 

This river, together with the River Stour, drains the eastern part of the area into Christchurch 

Harbour, while the Rivers Frome and Piddle drain from the west of the area into Poole 

Harbour (Webb & Haskins, 1978). 

The county of Dorset is a classic geological area in Britain. The Dorset coast contains good 

examples of nearly all the formations from the early Jurassic to the Tertiary (Figs. 3.2 & 3.3). 

These deposits are overlain with alluvial deposits and represent much of the last 200 million 

years of geological history. Inland, the geology is not as well documented as it is less exposed. 

The oldest rocks in Dorset date from the Triassic period (approximately 220 million years 

ago) (DERC, 1985). These rocks are mainly soft muddy rocks, like those, which form the 

taller cliffs near Lyme Regis. The rocks of the Jurassic period (213 to 144 million years ago) 

are characterised by clays and shales, which are soft and easily eroded, supported by layers of 

more resistant limestone, oolite and sandstone. The Cretaceous (144 to 65 million years ago) 

rocks start with the Purbeck limestones, which are overlaid with the soft and easily eroded 

Wealden beds. The Cretaceous sequence is mostly represented by chalk. This is the thickest 

bed of the region and forms distinctive high white cliffs and features such as the Old Harry 

rocks. The youngest rocks are those of the Tertiary (65 to 2 million years ago). These occur to 

the east and are composed of sands, gravels and clays. The clays form the basis of Pooles' 

pottery industry. The sands form Bournemouth's beaches and the dune systems of both 

Studland and Shell Bay (DWT, 1997). 
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DISTRIBUTION OF MESOZOIC AND 
CENOZOIC STRATA IN DORSET 
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Fig. 3.2 The geology of Dorset. 
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As with all lowland heathlands, it was the combination of geology, soils and anthropogenic 

activity which permitted heathland development. However, the heathlands of Dorset differ 

from many similar lowland heathlands for several reasons. The immense variety and range of 

habitats (for example, Dorset is the meeting place for several eastern and western elements in 

the flora and fauna, hence the overlap of dwarf gorse, Ulex minor and western gorse, Ulex 

gallii) is in part the result of the great variety of geological formations in Dorset and is unique 

in Britain (Moore, 1962). 

3.2 The ITE Datasets 

This research is based on three datasets, the product of the Dorset Heathland Surveys of 1978, 

1987 and 1996. It is an immense dataset with potential to provide key information on the 

dynamics of the lowland heathlands of Dorset. 

3.2.1 The Dorset Heathland Surveys 

The first Dorset Heathland Survey was initiated by ITE in 1978 (Webb & Haskins, 1980) and 

was designed as a large-scale, repeatable survey which provided a baseline for monitoring 

change (Rose et ah, 1999). The Survey was repeated in 1987 and 1996. There are few studies 

in the literature in which long-term vegetation changes have been made at a landscape scale 

and the Dorset Heathland Surveys provides one of the best documented examples of the 

patterns of change in a fragmented biotope over an entire landscape (Rose et al, 1999). 

The aims of the initial Dorset Heathland Survey in 1978, were two-fold: first, to provide a 

revision of previous surveys (Moore, 1962; Rippey, 1973) and, second, to provide a more 

detailed basis for the assessment of future trends. In particular, a precise definition of the 

vegetation types recorded and the delimitation of these on the ground was required. To 

achieve the above, the survey was based on a 200 m grid derived from the National Grid. Each 

one kilometre cell of the National Grid was divided into twenty five 200 m x 200 m recording 

cells. This size was chosen as it was deemed the best compromise between that which was 

readily identifiable in the field and yet was small enough to detect any changes in vegetation. 

The recording scheme was a modified version of that used by Chapman (1975) for his study 

of the distribution of E. ciliaris on the Isle of Purbeck (Webb & Haskins, 1980). 

3.2.2 The 1978,1987 and 1996 datasets 

To carry out the 1978 Dorset Heathland Survey, a field survey sheet was drawn up containing 

a list of 260 attributes, each of which would be examined for presence or absence, as well as 
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degree of coverage for every heath)and survey cell. However, only 184 of these attributes 

were utilised in the survey. Vegetation characteristics accounted for 109 of the attributes 

recorded, species records for nine, topographic features for nineteen and land use and 

management for forty seven. Each attribute was recorded as either absent (zero), present but 

not abundant (one), well represented (two), or the dominant vegetation type (three). The 1978 

field survey was carried out between February and June 1978 (Webb & Haskins, 1980). 

The survey was repeated in 1987. With the exception of minor revisions of procedure to meet 

improved standards of computing, the survey was identical to that of 1978. The field survey 

was carried out between November 1986 and July 1987. Every site in Dorset which contained 

heathland was surveyed. In 1978 3,110 cells were surveyed, and this figure rose to 3,360 in 

1987. All cells surveyed in 1978 were re-surveyed in 1987 irrespective of whether they 

contained heathland or not. However, several new areas of heathland developed in the nine 

year period between 1978 and 1987, and these were also surveyed (Webb, 1990). 

In 1996 a new survey was conducted using much the same survey technique but with a 

number of refinements. In addition, areas (mostly former heathland) with the potential for 

heathland recreation were surveyed to provide a baseline for restoration or re-creation 

exercises implemented to meet national and regional biodiversity targets (Anon, 1995). Once 

again all the cells surveyed in 1978 and 1987 were re-surveyed as well as any new cells of 

heathland which had developed (Rose et al, 1999). The survey was carried out between 

March and November 1996. In total 3,993 cells of heathland were surveyed in 1996. 

3.2.3 Primary, aggregated primary and secondary categories 

The 184 attributes surveyed were divided into 'primary',' aggregated primary' and 

'secondary' categories. The primary categories allowed the examination of the spatial 

dynamics of heathlands vegetation types, for example, dry heath, wet heath, humid heath and 

peatland. The aggregated primary categories were devised by combining primary categories. 

For example, dry, wet, humid heath and peatland were combined to form a 'total heathland' 

category thereby, permitting examination of the dynamics of both dwarf shrub vegetation 

(heathland) and invasive species as a whole. The secondary categories allowed the 

examination of the spatial dynamics of invasive species types. Therefore, analysis of the 

spatial dynamics of dwarf shrub vegetation in Dorset was carried out at the following levels of 

generalization. Firstly, the vegetation class scale (aggregated primary categories composed of 

dwarf shrub vegetation, invasive species or 'other'). Secondly, the vegetation type scale 

(primary categorise composed of dry, wet, humid heath, peatland, scrub, carr and wood etc.), 

and finally, the individual species scale (secondary categorised composed of invasive species 

such as Pinus spp. and Betula etc.). 
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Primary vegetation categories were defined for the initial 1978 survey and remained 

unchanged for the following surveys. As outlined above, the primary categories included dry 

heath, humid heath, wet heath and peatland. These four primary categories define the 

classification of 'heath' for this study. Dry heath is an assemblage of plants dominated by 

Calluna vulgaris, growing in association with E. cinerea, U. minor or U. gallii and Agrostis 

curtisii. A few other species may also occur, such as Pteridium aquilinum, tormentil 

(Potentialla erecta) and heath milkwort (Polygala serpyllifolia) (Chapman et ai, 1989). 

Humid heath is an assemblage where Calluna remains the dominant species and grows in 

association with E. tetralix] a mixture containing equal proportions of the two species is often 

found. Sometimes, E. ciliaris is present. Associated species include U. minor or U. gallii and 

Molinia caerulea. Humid heath tends to occur in poorly drained areas, but may also occur in 

areas of transition between dry and wet heath (Chapman et al., 1989). 

Calluna ceases to dominate in wet heath and may even be absent. Wet heath is characterised 

by E. tetralix with mosses such as Sphagnum compactum and Sphagnum tenellum. Depending 

on how wet the soil is species such as Molinia caerulea, Potentilla erecta, cotton grass 

{Eriophorum angustfolium), deergrass {Trichophorum cespitosum), black bog rush {Schoenus 

nigricans), species of sundew (Drosera), rush (Juncus) and sedges (Carex), and the rare marsh 

gentian (Gentiana pneumonanthe) and marsh club moss (Lycopodiella inundata) may also be 

present. The drainage is severely impeded and the water table is within 10 cm of the surface 

for part of the year (Chapman et al., 1989). 

Peatland (strictly valley mire) contains a wider range of species depending on the local 

conditions. Characteristic plants include Sphagnum, Juncus, Carex, Schoenus nigricans, 

Eriophorum angustifolium and common reed (Phragmites australis). 

The definitions of each primary category, as outlined above, were deemed rather narrow for 

the purposes of the Dorset Heathland Surveys. Therefore, for the initial survey a number of 

associated vegetation types were also recorded. These included Betula, U. europaeus and 

Pinus spp. (Chapman et al., 1989). As part of the Dorset Heathland Surveys, nineteen primary 

categories were identified for surveying (Table 3.1). The primary categories were defined as 

Table 3.1 The nineteen primary categories identified for analysis 
Primary Categories 

Dry heath Wet heath Humid heath Peatland 
Brackish Marsh Sand dunes Bare ground Open water 
Agriculture Horticulture Can- Scrub 
Woodland Grassland Houses & gardens Farm Buildings 
Industrial buildings Other buildings Hedges & boundaries 
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vegetation types easily identifiable in the field. For example, wet heath is easily identifiable in 

the field and was characterised as a combination of secondary categories including Sphagnum 

and/or E. tetralix. Sphagnum spp. and/or E. tetralix and/or E. ciliaris, Molinia, scattered 

young Pinus and finally, scattered mature Pinus spp. 

The primary categories were further divided into secondary categories for the surveys. The 

secondary categories were individual species (for example, Betula, Pinus spp. and Quercus). 

Few secondary categories were included in this research. Indeed those chosen from the 

remaining attributes surveyed were invasive species. The remaining attributes included in the 

survey sheet were used to record species which were either rare or had unusual distributions 

(for example, dwarf gorse {U. minor), western gorse (U. gallii) and the marsh gentian 

(Gentiana pneumonanthe)), topographic features such as altitude, aspect and slope and a 

variety of land uses (Chapman et al, 1989). The secondary categories chosen for analysis are 

outlined in Table 3.2. 

Table 3.2 Secondary categories 
Secondary Categories 

Bracken {Pteridium aquilinum) Birch {Betula) Pine {Pinus) 
Gorse {Ulex europaeus) Rhododendron Alder {Alnus) 
Willow (Salix) Oak {Quercus) Mixed deciduous trees 
Western gorse {Ulex gallii) Conifers Broom {Sarothamnus) 

As mentioned previously (see Section 3.2.2), each attribute was surveyed using a score of 

between zero and three. The scores were used as estimates of percentage cover for each 

vegetation type or attribute in a cell. For each grid square attributes were scored on a 

frequency scale as follows: zero absent, or not detected; one present, but less than 10% cover; 

two well represented, greater than 10% but less than 50% cover; three dominant vegetation 

type, more than 50% cover. 

An algorithm developed by Chapman et al. (1989) was adapted to apportion relative 

percentages to the different primary vegetation types in a cell using all the attribute scores for 

that cell. The algorithm ensured that the coverage of each cell for the primary and secondary 

categories summed to 100% (100% cover being equivalent to 40,000 m^). It was then possible 

to calculate the total area of coverage for each attribute and to combine attributes to fit 

specified definitions of heathland (Chapman et al., 1989). The algorithm was implemented as 

a FORTRAN 77 program. Initially the program was run using only the primary categories for 

each of the three Dorset Heathland Surveys. When this program was run three errors were 

discovered in the 1978 dataset. Each of these errors was the result of the sum of a cell 

exceeding 100% coverage. In order to rectify this, the original paper survey sheets were 

examined to see if a clerical error during computer entry was at fault, and this was found to be 
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Table 3.3. The algorithm used to estimate areas from the scores for the percentage cover of 

each attribute in each grid square (adapted from Chapman et al. (1989)) 

(1.) Area of whole 200m x 200 m square = T = 4 ha 

Assume for a particular square that for the primary vegetation category there are ; 

Ni scores for 1 0 < % cover = 10 

N2 scores of 2 10 < % cover = 50 

Ng scores of 3 50 < % cover 

At most one score of three is allowed in a square (N3 = 1) 

Let A l , A2, A3 denote the estimated area represented in this square by scores of 1,2 

and 3 respectively. 

(2.) Each score of 1 is set equal to 5% of the square 

i.e. Al = 0.05 X T 

Then R = T - Ni x A i = Area of square covered by vegetation types with scores of 1 

and/or 3 
(3.) Case of N2 > 0 and N3 = 0. This occurs when no one vegetation type has < 50% 

cover. The area R is divided among the two scores: 

Let A2 = R/N2 

(4.) Case of N2 = 0 and N3 = 1. All of the remaining area R is assumed to be of the one 

most abundant vegetation type 

Let A3 = R 

(5.) The cases left are those with one score of three and one or more scores of 2. The % 

cover represented by a score of 3 was assumed to be at least 55% of the grid square. 

(6.) Case of N2 + 1. In such cases N2 never exceeded 4. 

Let A3 = 0.55 X T = 2.2 ha 

and A2 = (R - A3)/N2 

(7.) Case of N2 = 1 and N3 = L The value of 2 and 3 scores depends on the area R% not 

covered by the Ni vegetation types with a score of L 

If Ni = 0 so R% = 100 let A2 = 30% and A3 = 70% 

At most Ni = 6 so that R% = 70, in which case let A3 = 55% (minimum allowed) and 

let A2 = R% - A3 = 15%. The intermediate situations were calculated by interpolation 

between these two extremes as follows: 

NI 0 1 2 3 4 5 6 

R% 100 95 90 85 80 75 70 

A3 70 67.5 65 625 60 57.5 55 

A2 30 27.5 25 225 20 17.5 15 

the case. The dataset was corrected using the raw data sheet and the program run again. Three 

datafiles resulted, each containing the proportional areal coverage of each of the nineteen 

primary categories per cell for 1978, 1987 and 1996. 
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A similar process was carried out for the secondary categories. The program to run the 

algorithm was altered slightly because the combined secondary categories, which make up 

each of the primary categories, had to sum to 100%. No errors were identified in the datasets. 

Again, three datafiles resulted, each containing the proportional areal coverage of each of the 

secondary categories per cell for 1978, 1987 and 1996. 

Potential errors in a dataset of this type, include those which occurred during the field survey 

and data entry stages. However, precautions taken by ITE during the survey and preparation of 

the data (including, staff training, quality control, data checking during input), have minimised 

error. However, given the nature of the data (primarily, the coarse numerical resolution of the 

classes) it is clear that some uncertainty remains. In particular, coverages may not always be 

an accurate representation of reality. 

Thus, two sets of data resulted. The first, containing the proportional coverages of the primary 

categories on a per-pixel (cell) basis and the second, the proportional coverages of the 

secondary categories on a per-pixel (cell) basis. The nineteen primary categories provided a 

complete description of each pixel (cell) with their cover values summing to 100%; while the 

secondary categories provided a more detailed description of each primary category. The data 

could thus be imported into a Geographical Information System (GIS) (in this case, Arc/Info) 

to examine the long-term trends in the heathland landscape of Dorset between 1978 and 1996. 

3.3 GIS Analysis 

Spatial entities and their attributes may be stored using one of several spatial data models. 

These are most commonly, the raster data model and the vector data model (Chapter 2, 2.7.2). 

The raster data model is the simpler of the two and is based on the division of reality into a 

regular grid of identically shaped cells. Each cell is assigned a single value (ID) which 

represents the attribute for the area of that cell. It was necessary to choose a suitable data 

model for the GIS analysis. As the survey data was based on a grid (the National Grid 

subdivided into 200 m x 200 m pixels), it was logical that the data should be converted to a 

raster 'grid' format in Arc. Every primary and secondary category was, therefore, converted 

from a point coverage to a grid coverage. 

3.3.1 Defining and creating patches of heathland 

Heathland managers generally require information about patches rather than pixels of heath as 

the patch is the normal unit of management. Therefore, an object-based approach was adopted 
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Fig. 3.4 Patches created using pixels containing any area of heath and a nearest neighbour index of 

eight 

5km 10km 15km 

Fig. 3.5 Patches created using pixels containing any area of heath and a nearest neighbour index of 
four 
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Fig. 3.6 Patches created using pixels containing over 50% heath and a nearest neighbour index of 

eight 
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Fig. 3.7 Patches created using pixels containing over 50% heath and a nearest neighbour index of 
four 
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to group both the individual pixels and their attributes (in this case total heathland) into 

higher-order objects (patches of heathland). 

The initial step in this process was to define heath for the purposes of this study. Heath was, 

therefore, deemed to be a combination of four primary categories: dry heath, wet heath, humid 

heath and peatland. The raster grid coverages of these four primary categories were combined 

to form a total heathland category. Scrub, carr and wood were also aggregated to form an 

invasive species category. The remaining twelve primary categories were aggregated to form 

an 'others' category. 

Patches of heath were created using a nearest neighbour index in the GIS. Each cell of 

heathland was examined in turn. If a pixel containing the attribute total heathland existed 

either above, below or on either side of the selected cell (including diagonals) it was combined 

with the original cell to form a patch of heathland, each patch having a unique identifier. In 

total, 116 patches of heathland were created in this way in 1978 (Figure 3.4). This is a 

different approach to that taken by Chapman et al, (1989) who joined together cells on the 

diagonal only if the cells contained over 75% heath. However, it was felt to be the best 

reflection of the patches of heathland in reality as only pixels containing heath were surveyed. 

If two neighbouring pixels contain heath, there is a reasonable chance that the pixels form part 

of the same patch. 

A number of different rules were employed to create the patches (Figures 3.5-3.7), including 

that used by Chapman (1989). 152 patches were created when a nearest neighbour index of 

four was utilised, with diagonals not included. 224 patches resulted from using the same 

nearest neighbour index of four, but for pixels containing 50% heath. 156 patches were 

created using a nearest neighbour index of eight but for pixels containing 50% heath. 

Histograms were plotted of patch area and number to give further insight into the effect of the 

differing patch creation rules outlined above (Fig. 3.8). The most noticeable difference 

between the histograms was variation in the number of smallest patches. When a nearest 

neighbour index of eight was used to amalgamate pixels containing any area of dwarf shrub 

vegetation, approximately eighty small patches resulted (Fig. 3.8 a). This figure rose to over 

100 when a nearest neighbour index of four was utilised (Fig. 3.8 b) and remained relatively 

unchanged when the same nearest neighbour index was used but for pixels containing over 

50% heath (Fig 3.8 c). However, the number of small patches rose to approximately 170 when 

a nearest neighbour index of eight for pixels containing 50% heath was used (Fig. 3.8 d). The 

variation in number of smallest patches meant that the mean patch size also varied: from 1.06 

km^ in Figure 3.8 a to 0.81 km^ in Figure 3.8 b to 0.34 km^ in Figure 3.8 c and finally to 0.24 

km^ in Figure 3.8 d. The number of larger patches remained relatively unchanged irrespective 

of the rules used for their creation 
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(a) (b) 

0 

Patch area (nearest neighbour 8). 1978 (m^) Patch area (nearest neighbour 4), 1978 (m^) 

(C) (d) 

0 ^5 y^s 

Patch area (nearest neighbour 8 and 50% rule). 1978 (m^) P#lch af#« (news* neighbour 4 and 50% mle). 1978 (m̂) 

Fig. 3.8 Histograms of (a) area of patches, 1978 (m^) created using a nearest neighbour index 

of eight for pixels containing any area of heathland; (b) area of patches, 1978 (m^) created 

using a nearest neighbour index of four for pixels containing any area of heathland; (c) area 

of patches, 1978 (m^) created using a nearest neighbour index of eight for pixels containing 

over 50% heathland; (d) area of patches, 1978 (m^) created using a nearest neighbour index of 

four for pixels containing over 50% heathland. 
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By analysing both the maps and histograms of the patches created by each rule, it was decided 

to create the patches for this analysis by combining any pixels of heath including those on the 

diagonals. This method appeared to produce the best and most parsimonious reproduction of 

reality based on the understanding that only cells containing heathland were surveyed. This set 

of patches was retained to analyse the 1987 and 1996 data. 

• Up to 2,000 m2 heath 

• Up to 10,000 m2 heath 

• Up to 20,000 m2 heath 

• Up to 40,000 m2 heath 

Fig. 3.9 Area of heath in a 200m x 200m pixel, 1978 

3.3.2 The area of dwarf shrub vegetation 

The area of dwarf shrub vegetation in a patch or survey pixel was the focus of this research. 

Further, when plotted, the area of dwarf shrub vegetation provided some insight into whether 

the patches created for use in this analysis adequately reflected any natural processes taking 

placing in the dwarf shrub vegetation. From the literature (Chapter 2, 2.3) it seemed that 

larger patches should have a central core composed almost totally of dwarf shrub vegetation 

which is less susceptible to change. With increasing proximity to the edge, the area of dwarf 

shrub vegetation lessens and edges contain little dwarf shrub vegetation and edge effects 

come into play. Therefore, the area of dwarf shrub vegetation in 1978 was mapped to provide 

an insight into whether the 116 patches created formed a reasonable basis for an analysis of 

the processes of change. 

When the area of dwarf shrub vegetation in a pixel in 1978 was mapped, larger patches did 

appear to have a core entirely composed of dwarf shrub vegetation (Fig. 3.9) and the area of 

dwarf shrub vegetation lessened with increasing proximity to the edge. This was anticipated 

based on current understanding of dwarf shrub vegetation dynamics in a fragmented 

environment. Edge pixels are more susceptible to change as they may lie closer to non-dwarf 
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shrub vegetation types. Smaller clusters of pixels contained smaller areas of dwarf shrub 

vegetation. Therefore, the patches created using the 1978 data reflected the sort of 

environment described in the literature. This was an important result as the patches were used 

as a template for the 1987 and 1996 data. 

3.3.3 Contextual data 

The Dorset Heathland Surveys comprised cells of 200 m x 200 m which contained (or had 

previously contained) heathland. The surrounding non-heath vegetation was not considered 

unless it fell within a cell. The use of remotely sensed data enabled the patches of heathland to 

be placed in the context of the surrounding land cover. Such a synoptic view is, according to 

Veitch et ah, (1995), invaluable when formulating management strategies that consider the 

landscape as a whole and not just the biotope of interest. Also, heathland patches do not exist 

independently of their surroundings (See Chapter 2, 2.3.1). Remotely sensed data from the 

Landsat MSS have been used to map the location and extent of the heathland biotope (Veitch 

et al, 1995) and the environment surrounding such heathland. Ecological knowledge was used 

to guide the manipulation of remotely sensed imagery to provide contextual data for a patch. 

Satellite remote sensing has been much used in the UK to map semi-natural vegetation 

(Weaver, 1984; O'Hare, 1987; Williams, 1987; Fuller & Parsell, 1989; Belward et al., 1990 

and Baker et al., 1991). The Landsat Thematic Mapper (TM) is generally considered to 

provide the best combination of radiometric and geometric properties currently available for 

studies of semi-natural vegetation and habitats (Veitch et al., 1995). A remotely sensed TM 

image of Dorset from August 1984 was used in this instance to provide contextual data for 

heathland patches. The image was processed using ESRI's IMAGINE software. Initially, each 

of the seven bands of the image were imported separately into Imagine 3.8 and then combined 

to form a complete image. The image was geometrically corrected using approximately 40 

ground control points (GCP). Once corrected the root mean square (RMS) error was 

calculated to check the accuracy of the geometrically rectified image. The RMS error was less 

than a single pixel which was satisfactory. 

As the image was a complete TM scene, much of it was unnecessary. Therefore, the image 

was subsetted such that the image area covering Hampshire, and the Isle of White were 

removed. The remaining image covered Dorset in its entirety and little else. Next, the image 

was classified, as it was necessary to group pixels in the image into classes which were more 

meaningful than the original digital number values. An unsupervised classification was used 

first to identify spectrally distinguishable clusters present. These were then compared with 

known areas on the ground (aerial photos of Middlebere Heath and OS Map data were used as 

a comparison). Following this comparison, a set of training data were produced for use in 

supervised classification. The supervised classification used only those classes which were 
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identified spectrally and only those wavebands which helped to separate the classes. The 

supervised classification produced a number of land cover classes which were labelled as 

wood, scrub, water and heath, as well as several land use classes including agriculture, 

grassland, bare ground and urban land. Since, succession was the interest only the land cover 

classes were relevant. Further, a classification accuracy assessment indicated the classification 

was 81% accurate (kappa = 0.69). The image was re-sampled to force the pixels in the image 

to match those in the GIS. The pixels (originally 30 m x 30 m) were resampled to become 200 

m X 200 m pixels. 

The classified image was imported into Arc/Info and converted to a grid. The image was used 

to provide contextual information for each patch. However, only a certain radius around each 

patch was necessary to provide the contextual information required. Therefore, each of the 

116 patches (created using the 1978 data as a template) were expanded, initially by two pixels. 

The grid containing the 116 patches was used to mask out the original patches. The result was 

a grid containing just the expanded parts of the patches. This new grid was used to mask the 

image. The resulting grid contained an outline of every patch, two pixels wide and made up of 

the data from the remotely sensed image. This process was repeated and the patches were 

expanded by four pixels. The resulting data indicated which land cover class or classes 

surrounded a patch. The GIS was used to assess the areal coverage of woodland and shrub 

surrounding each patch facilitating an analysis of the effect of area of invasive species 

surrounding a patch on percentage change in area of heath. Therefore, a surrogate variable for 

context was available for use in the analysis of change. The other variables are outlined in 

Section 3.5. 

3.4 Management Data 

Heathland management techniques were outlined in Chapter 2.2.3. However, the use of such 

techniques in Dorset was not reviewed. It has been stated previously that the aim of this 

research was to build a predictive, statistical model of the spatial dynamics (change) of the 

heathlands of Dorset. However, a distinction must be drawn between natural change and 

human-induced change over time. Data on heathland management carried out in Dorset were, 

therefore, a necessity in drawing this distinction. Management data were obtained for the 

heathlands of Dorset in their entirety. These data were used to select patches of heath which 

had been subjected to management between 1978 and 1996. This allowed not only an 

examination of the consequences of differing management practices on the heaths, but more 

importantly, it allowed the uncertainty in the per-patch analysis of ecological dynamics to be 

reduced. 
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3.4.1 Management and conservation of the Dorset heaths 

The most extensive heathland management projects did not commence until after the second 

Dorset Heathland Survey (1987) results were published, making the heathland managers 

aware of quite how precarious the survival of the heathlands had become. Two factors were 

identified as the cause of changes in the Dorset heaths (Webb, 1990). First, there were direct 

losses. Such losses were caused by conversion of heathland to farmland and forestry and to 

urban and industrial development. This type of direct loss had virtually stopped between 1987 

and 1996 due to planning and environmental legislation, and due to the withdrawal of farming 

subsidies. Second, there were losses caused by the succession of heath to scrub and woodland. 

This type of loss is the result of a cessation in traditional management practices (for example, 

grazing and burning). The marked increase in scrub and trees (15% between 1978 and 1987) 

led to the implementation of large programmes of conservation management (Auld et ah, 

1992; Woodrow et al, 1996; Rose et al., in press). 

3.4.2 Acquiring the management data 

The main aims of the conservation projects in Dorset are primarily the rehabilitation of 

degraded heathland, to expand the area and to ensure its ecological diversity and 

sustainability. So far these aims are being achieved mainly by the removal of invading species 

such as gorse, scrub and bracken. At present there are over ten different Government and 

Charitable bodies actively managing different areas of the heaths (Table 3.4) without 

collusion. This made the collection of data concerning heathland management an arduous and 

time consuming task. 

Initially, any organisation which carried out any heathland management was identified and 

then contacted. Meetings took place with each organisation to ascertain the types and degree 

of management being carried out. Records of each organisation's activities were examined 

and the relevant data extracted. Since the Dorset Heathland Surveys were carried out in 1978, 

1987 and 1996, the management data were divided into two categories: 

1. 1978 and 1987 heathland management 

2. 1987 and 1996 heathland management 

The majority of the management practices were recorded on a standard project recording sheet 

with a map attached, indicating the precise area of management. Although the records were 

clear, the maps were quite often not. Many of the maps were very roughly drawn maps with 

no scale, grid references nor even a North bar included. This made pin-pointing the exact 

location and scale of many managed areas difficult. Such problems were overcome by 

drawing every pixel surveyed in the initial Dorset Heathland Survey (1978) onto the relevant 

1:25,000 Ordnance Survey (OS) map. The next step involved highlighting each area managed 
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by each organisation (not the individual management site, but the entire heath). Once this had 

been achieved, a copy of the Arc/Info coverage of each pixel surveyed (again using the 1978 

survey) was magnified to AO size. This map of survey pixels was used to record the type of 

management carried out in each 200 m x 200 m pixel. Two such maps were produced, the first 

for management carried out between 1978 and 1987 and the second, for management carried 

out between 1987 and 1996. 

Table 3.4 Areas of managed heathland throughout Dorset. 
Organisation Area managed Dates managed 

Herpetological Conservation Trust 

Dorset Wildlife Trust 

English Nature 

RSPB 

RSPB Nature Reserves 

Poole Borough Council 

Dorset County Council 

Trust sites and a number of areas for 
other organisations 

Trust Nature Reserves and 
some small other areas 

Nature Reserves - limited in other areas 

Managed sites for other organisations 

Ame and Stoborough 

1971 to present 

1970s to present 

1970s (on some Reserves) to 
present 
1988 to present 

Forest Enterprise and the Forestry 
Commission 

Tiny parts of Canford heath, nothing 
substantial 

Merrytown Heath (Heme Common 
SSSI) 
Sopley Bog (Udden Heath SSSI) 
Tumerspuddle 
Alder Heath Country Park 
(part of Heme) but RSPB & DWT have 
Stewardship for 
last three years 

Most Forestry Commission and Forest 
Enterprise sites across Dorset 

approx. 1977 to present 

1988- 1991 

1989 to present 

1992 to present 

1994 to present 
1974 to present 

approx. 1987 to present 

East Dorset Council 

Christchurch Borough 
Council 
Boumemouth Borough 
Council 

Stephen's Castle, Dewlands Common, approx. 1987 to present 
Parley Common 
and others 

St Catherines Hill 

Turbary Common and 
Kinson Common 

1987 to present 

1988 to present 

Eventually, each area managed was located on the OS maps and the corresponding pixel was 

located on the pixel-based map of the heaths. A colour key was created, each management 

practice having a different colour associated with it. The management type was then entered in 

the relevant pixel of the pixel-based map. When all the management data had been recorded in 

this way, a management database was built. Two datafiles were created, one for each survey 

category. The data formed two main columns, the first being an ID to relate the pixel ID to the 

relevant co-ordinate, the second being a single numeric indicating whether or not that pixel 

was managed. The number one indicated the pixel was unmanaged, two indicated the 
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pixel was managed. The third column to the sixteenth column were also numeric, each 

number being a management type (see Table 3.5). It is important to realise that the 

management data were not complete. There are no data for the specific area of a pixel 

managed and no information such as the intensity of some management practices such as 

grazing. 

Table 3.5 Numeric definition of management type. 
Management Type Management Code Management Type Management Code 

Gorse coppicing 3 Bracken cutting 11 
Foraged 4 Pine removal 12 
Bracken spraying 5 Grazing 13 
Scrub clearance 6 Sand patches created 14 
Rhododendron clearance 7 Heather re-establishment 15 
Controlled burning 9 Mowing 16 
Wild fire 10 

3.4.3 Importing the management data into the GIS 

The initial step in importing data into Arc was to create a template for the data. Therefore, two 

templates were created, one for the 1978 and 1987 data and one for the 1987 and 1996 data. 

The template took the from of sixteen columns, the first being an ID column, the second 

indicating whether or not the pixel was managed and the next columns indicating the type of 

management carried out for that pixel. The raw data were then 'added' to the template. The 

two new datafiles were then 'related' to the co-ordinate file (point coverage for 1978). The 

relation was based on the common ID which indicated which pixel was associated with which 

co-ordinate as well as whether or not the pixel was managed. Thus, a comprehensive database 

of heathland management in Dorset between 1978 and 1996 was developed. Patches which 

were managed could thus be removed from the analysis to examine purely natural change. 

Alternatively, the effect of the varying management practices on area of heath could also be 

examined to see how effective they truly were. 

3.5 Defining the variables 

With the patches of dwarf shrub vegetation having been created, the response variable and 

explanatory variables could be defined. It was necessary for the response variable to reflect 

the dynamics of the dwarf shrub vegetation accurately. The explanatory variables were based 

around a single ecological process: succession to scrub, carr and woodland (Chapter 2, 2.2.2). 

Several factors were hypothesised to influence change in area of dwarf shrub vegetation over 

time. These factors included edge effects, patch geometry, the area of dwarf shrub vegetation 

52 



in a patch, the area of invasive species in a patch, the density of dwarf shrub vegetation in a 

patch, density of invasive species in a patch and context. 

3.5.1 Defining the response variable 

Several alternative response variables could have been chosen to analyse change. However, 

the response variable was defined as the percentage change in area of heathland between 

1978 and 1987 (or between 1987 and 1996). The simple difference in area of heathland 

between 1978 and 1987 might have been plotted on the ordinate in place of the percentage 

change (see Appendix 1). However, percentage change was chosen because area of dwarf 

shrub vegetation was of interest as an explanatory variable. The rationale for selecting the 

percentage change is as follows: if we assume succession by invasion from the edge of the 

patch, and the rate of invasion is constant, larger patches will decrease in area more than 

smaller patches. However, if the initial area covered by several smaller patches were equal to 

the area covered by one larger patch the area lost would be greater for the smaller patches. 

Therefore, it is the percentage lost that is important, not the actual area lost. Further, the 

analysis aimed to examine the relationship between change and area. Using percentage 

change minimised correlation between the response variable and area. For these reasons, the 

variable to be explained was defined as the change in area of heathland between 1978 and 

1987 as a percentage of the area of heathland in 1978. 

3.5.2 Defining the explanatory variables 

Once the response variable had been defined the next step was to define the explanatory 

variables. The explanatory variables were defined based on the properties identified as the 

most likely to influence percentage change in area of dwarf shrub vegetation (Chapter 2, 

2.3.1). That is, variables (see Table 3.6) were chosen because they were deemed of most 

ecological relevance in a patchy environment and because it was hypothesised that each 

would have an effect on the percentage change in the area of dwarf shrub vegetation in a 

patch. Initially, fourteen explanatory variables were chosen based on the aggregated primary 

categories. 

Heathlands are plagio-climax communities. Therefore, succession occurs continually unless 

the process is arrested by management. Succession does not depend solely on invasion from 

outside a patch of dwarf shrub vegetation. Additionally, the seedbank may play a role in 

succession from dwarf shrub vegetation to scrub or wood. The factors likely to result in 

change in area of dwarf shrub vegetation were divided into three. First, factors relating to the 

areal extent of dwarf shrub vegetation and invasive species both in a patch and in the edge of 

a patch. Second, factors relating to patch geometry and third, context. 
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It was hypothesised that percentage change in area of dwarf shrub vegetation was influenced 

by the area of dwarf shrub vegetation in a patch. Larger areas of dwarf shrub vegetation are in 

theory, less susceptible to change. If the rate of succession is constant then larger areas of 

dwarf shrub vegetation will involve smaller percentage change than smaller areas. Further, 

succession depends upon proximity to a seed source. The greater the areal extent of dwarf 

shrub vegetation in a patch, the fewer seed sources available within that patch and, therefore, 

change is less likely. Conversely, the larger the area of invasive species in a patch, the greater 

the pressure from succession and the greater the likelihood of a decline in area of dwarf shrub 

vegetation over time. Therefore, it was hypothesised that the greater the area of invasive 

species in a patch, the greater the percentage change (decrease) in area of dwarf shrub 

vegetation over time 

It was hypothesised that percentage change was influenced by the density of dwarf shrub 

vegetation in a patch. Density described the area of dwarf shrub vegetation in a patch, relative 

to the area of a patch and indicated the degree of fragmentation within a patch. The more 

dense the coverage of dwarf shrub vegetation was across a patch, the less fragmented the 

patch was and the fewer edges open to invasion. It was clear from the literature that the 

greater the degree of internal patch fragmentation the greater the pressure from succession. A 

fragmented patch is in reality made up of several smaller patches and smaller patches are 

more susceptible to change. Further, it was hypothesised that percentage change was 

influenced by the density of invasive species in a patch. The null hypothesis being percentage 

change was not correlated with the density of invasive species. The more dense the coverage 

of invasive species, the greater the pressure from succession and the greater the percentage 

decrease in area of dwarf shrub vegetation. 

It was clear from the literature (Chapter 2, 2.3.1) that edge effects play an important role in 

the process of succession. Therefore, edge effects were hypothesised to result in percentage 

change in area of dwarf shrub vegetation. As the area (or density) of dwarf shrub vegetation 

in the edge of a patch increased, it was hypothesised that (negative) percentage change would 

decrease. The smaller the area of invasive species in the edge of a patch the fewer seed 

sources available for invasion and pressure from succession declines. Conversely, it was 

hypothesised that the greater the area (or density) of invasive species in the edge of a patch, 

the greater the pressure from succession resulting in greater percentage decreases in area of 

dwarf shrub vegetation. As the area of invasive species in the edge of a patch increases, the 

proximity to invasive species increases and seeds rain down on the dwarf shrub vegetation 

resulting in extreme pressure from invasion. 

The literature indicated that patch geometry influences change in a fragmented environment 

(Chapter 2, 2.4.1). Therefore, it was hypothesised that percentage change in area of dwarf 

shrub vegetation was related to patch geometry as patch geometry was likely to influence the 
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Table 3.6 Hypotheses tested using explanatory variables. 
Heathland composition variables 
to test their influence on 
percentage change 

Defining each variable Hypotheses tested 

1. Area of heath in patch The area of heath in a patch was calculated 
by summing the area of heath in each pixel 
in a patch 

The greater the area of heath, the 
smaller the decrease in heath as a 
percentage over time 

2. Area of invasive species in patch The area of invasive species in a patch was 
calculated by summing the area of invasive 
in each pixel in a patch 

The greater the area of invasive species, 
the greater the decrease in heath as a 
percentage over time 

3. Density of heath in patch (area/c x 
40,000) 

Density was calculated by dividing the area 
of heath in a patch by the number of pixels 
in that patch multiplied by 40,000 (the area 
of a pixel in m )̂ 

The greater the density of heath, the 
smaller the decrease in heath as a 
percentage over time 

4. Density of invasive species in 
patch (area/c x 40,000) 

Density was calculated by dividing the area 
of invasive species in a patch by the number 
of pixels in that patch multiplied by 40,000 
(the area of a pixel in m?) 

The greater the density of invasive 
species, the greater the decrease in 
heath as a percentage over time 

5. Area of heath in edge of patch Each patch was shrunk by one pixel (in 
Arc/Info) and the shrunken grid used as a 
mask creating a new grid containing just the 
edge pixels in each patch. The area of heath 
in an edge was calculated by summing the 
area of heath in each pixel in an edge 

The greater the area of heath in the 
edge, the less susceptible a patch is to 
change in area of heath as a percentage 
over time 

6. Area of invasive species in edge 
of patch 

Each patch was shrunk by one pixel (in 
Arc/Info) and the shrunken grid used as a 
mask creating a new grid containing just the 
edge pixels in each patch. The area of 
invasive species in an edge was calculated 
by summing the area of invasive species in 
each pixel in an edge 

The greater the area of invasive species 
in the edge, the more susceptible a 
patch is to change in area of heath as a 
percentage over time 

7. Density of heath in edge of patch 
(area/c x 40,000) 

Density was calculated by dividing the area 
of heath in the edge of a patch by the number 
of pixels in the edge multiplied by 40,000 

The greater the density of heath in the 
edge, the less susceptible a patch is to 
change in area of heath as a percentage 
over time 

8. Density of invasive species in 
edge of patch (area/c x 40,000) 

Density was calculated by dividing the area 
of invasive species in the edge of a patch by 
the number of pixels in the edge multiplied 
by 40,000 

The greater the density of invasive 
species in the edge, the more 
susceptible a patch is to change in area 
of heath as a percentage over time 

9. Ratio of area of heathrinvasive 
species in patch 

The area of heath in a patch was divided by 
the area of invasive species in the same 
patch to calculate a ratio 

The greater the area of heath to invasive 
species, the smaller the decrease in 
heath as a percentage over time 

10. Ratio of area of heath in 
edge:area of invasive species in edge 
of patch 

The area of heath in the edge of a patch was 
divided by the area of invasive species in the 
same edge to calculate a ratio 

The greater the area of heath to invasive 
species in the edge, the smaller the 
decrease in heath as a percentage over 
time 

Geometric variables to test their 
influence on percentage change 

Defining the variables Hypothesis tested 

11. Patch context A remotely sensed image proved contextual 
information 

The greater the area of invasive species 
surrounding a patch, the more 
susceptible a patch is to change in area 
of heath as a percentage over time 

12. Area of patch (as opposed to 
area of dwarf shrub vegetation in a 
patch) 

The area of a patch was calculated by 
multiplying the number of pixels in a patch 
by 40,000 (the area of a pixel) 

The greater the area of the patch, the 
less susceptible it is to change 

13. Length of the perimeter of patch Perimeter was calculated by multiplying the 
number of pixels in the edge of a patch by 
200 (the length of a pixel) 

The longer the perimeter, for a fixed 
heath area the more susceptible the 
patch is to change 

14. Shape of patch ((c x 
40,000)/perimeter) 

Shape was calculated by dividing the area of 
a patch by the perimeter 

The more round the patch, the less 
susceptible the patch is to change 

Where c - count 
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process of succession. It was hypothesised that the area of a patch influenced percentage 

change for reasons similar to that of area of dwarf shrub vegetation (larger patches being less 

susceptible to change if the rate of succession was assumed to be constant). It was 

hypothesised that the perimeter of a patch influenced change. Specifically, the longer the 

perimeter (for a fixed patch area), the greater the influence of edge effects resulting in 

increased pressure from invasion and, therefore, increased percentage change. Shape too can 

influence succession. It was hypothesised that more rounded (disc-shaped) patches were less 

susceptible to change than more elongated patches if the rate of succession was constant. In 

all, the explanatory variables were chosen to indicate what factors influenced percentage 

change in area of dwarf shrub vegetation over time. 

3.5.3 Primary category variables 

Several primary category explanatory variables were chosen to examine the relationship 

between percentage change in area of dwarf shrub vegetation type and the area, density, 

context etc. Indeed, the explanatory variables selected for the primary category analysis were 

mirrored those selected as aggregated primary category explanatory variables. However, 

instead of using the area of dwarf shrub vegetation in a patch, if percentage change in area of 

dry heath was of interest, then the area of dry heath in a patch was chosen as an explanatory 

variable (see Table 3.7 for a complete listing). As with the aggregated primary category 

variables, the explanatory variables were defined based on the properties identified as the 

most likely to influence percentage change in area of dwarf shrub vegetation (Chapter 2, 

2.3.1). As outlined above (see Section 3.5.2), the variables were chosen because they were 

deemed of most ecological relevance in a patchy environment and because it was 

hypothesised that each would have an effect on the percentage change in the area of dwarf 

shrub vegetation type in a patch. The hypotheses tested reflected the aggregated primary 

category hypotheses exactly. 

The patches created based on the presence or absence of dwarf shrub vegetation in a pixel 

remained unaltered for the primary category analysis. Each dwarf shrub vegetation type may 

change at a unique rate however, each dwarf shrub vegetation type is not discrete from other 

dwarf shrub vegetation types. By taking this approach, some of the chosen explanatory 

variables, particularly, the explanatory variables relating to patch geometry, may not 

necessarily reflect reality. Despite this drawback, the primary category explanatory variables 

remained almost unaltered. The explanatory variables relating to patch geometry were 

removed. If the area of for example, peatland in a patch was small, then it could not be 

hypothesised that percentage change would be affected by patch geometry. 
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Table 3.7 Primary category explanatory variables based on a single dwarf shrub vegetation 

type (in this case dry heath), percentage change in area of dry heath being the response 

variable 
Explanatory variable Explanatory variable 
Area of dry heath Area of heath:dry heath 
Area of scrub Area of heath:scrub 
Area of can- Area of heathxarr 
Area of woodland Area of heath: woodland 
Density of dry heath Density heath;dry heath 
Density of scrub Density heath;scrub 
Density of carr Density heathxarr 
Density of woodland Density heath:woodland 
Area of dry heath in edge Area of heath:dry heath in edge 
Area of scrub in edge Area of heathrscrub in edge 
Area of carr in edge Area of heathxarr in edge 
Area of woodland in edge Area of heath:woodland in edge 
Patch context Density heath:dry heath in edge 
Density of dry heath in edge Density heath:scrub in edge 

Density heath:carr in edge 
Density heath:woodland in edge 

Density of scrub in edge of patch 
Density of carr in edge of patch 
Density of woodland in edge of patch 

3.5.4 Secondary category explanatory variables 

A series of secondary category explanatory variables were chosen to examine the relationship 

between percentage change in area of dwarf shrub vegetation (and dwarf shrub vegetation 

type) and several invasive species (Table 3.8). The secondary category explanatory variables 

scaled down the analysis to the species level. Secondary category explanatory variables were 

chosen to examine if the rate of succession varied for different invasive species types. Each 

hypothesis was the same. As the area of an individual invasive species type increased so 

would percentage change. Succession depends on the proximity to a seed source and, 

therefore, the greater the coverage of an invasive species, the greater the pressure from 

succession. 

Heathland composition variables to test their 
influence on the rate of succession Hypotheses tested 
1. Area of Pteridium in a patch As area increased percentage change increased 

2. Area of Alnus in a patch As area increased percentage change increased 

3. Area of Betula in a patch As area increased percentage change increased 

4. Area of Pinus in a patch As area increased percentage change increased 

5. Area of Ulex europaeus in a patch As area increased percentage change increased 

6. Area of Rhododendron in a patch As area increased percentage change increased 

7. Area of Salix in a patch As area increased percentage change increased 

8. Area of Quercus in a patch As area increased percentage change increased 
9. Area of conifers in a patch As area increased percentage change increased 
10. Area of Sarothamnus in a patch As area increased percentage change increased 

11. Area of Ulex gallii in a patch As area increased percentage change increased 
12. Area of mixed deciduous woodland in a patch As area increased percentage change increased 
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3.5.5 Alternative explanatory variables 

Several other explanatory variables were chosen for inclusion in the analysis. However, these 

explanatory variables were not hypothesised to cause natural ecological change. Unlike 

succession, land use change is not a natural process resulting in natural ecological change. 

The area and density of 'others' were included as explanatory variables when it became clear 

that changes in land use resulted in change in area of dwarf shrub vegetation (Table 3.9). 

However, the focus of the analysis remained on the relationship between percentage change 

and natural change rather than anthropogenic change. 

This analysis was concerned with natural ecological change however, it was clear from 

previous analyses that changing land use resulted in substantial decreases in area of dwarf 

shrub vegetation (Webb & Haskins, 1980; Webb, 1990 & Veitch, et al, 1995). Therefore, it 

seemed reasonable to examine the effect of land use change on change in area of dwarf shrub 

vegetation without shifting the focus away from natural change. Indeed, the effect of land use 

change cannot easily be predicted as it is not a function of the initial state of a patch. 

Explanatory variables based on the area and density of land use types were included in the 

analysis (Table 3.9). Density reflected the degree of internal patch fragmentation caused by 

land use. Density of 'others' in the edge reflected the peripheral fragmentation of a patch. 

Table 3.9 Alternative explanatory variables not hypothesised to be related to natural changes 

Explanatory variables 
1. Area of 'others' 13. Density of dry heath 
2. Density of 'others' 14. Density of wet heath 
3. Area of 'others' in edge 15. Density of humid heath 
4. Density of 'others' in edge 16. Density of peatland 
5. Area of heath : 'others' 17. Area of dry heath in edge 
6. Density of heath ; 'others' 18. Area of wet heath in edge 
7. Area of heath ; 'others' in edge 19. Area of humid heath in edge 
8. Density of heath : 'others' in edge 20. Area of peatland in edge 
9. Area of dry heath 21. Density of dry heath in edge 
10. Area of wet heath 22. Density of wet heath in edge 
11. Area of humid heath 23. Density of humid heath in edge 
12. Area of peatland 24. Density of peatland in edge 

The influence of dwarf shrub vegetation types on change in other dwarf shrub vegetation 

types was also examined (Table 3.9). It had been hypothesised that change in area of a 

particular dwarf shrub vegetation type (for example, dry heath) would be affected by the area 

of dry heath in a patch. However, the relationship between percentage change in area of dry 

and the area of each of the other dwarf shrub vegetation types was also examined. The area of 

wet heath in a patch was unlikely to affect the rate of succession however, it could influence 

percentage change in area of dry heath. Further, previous analyses of the data identified 

fluctuations between dwarf shrub vegetation types (for example. Rose et ah, 1999). 

Therefore, the influence of these fluctuations on percentage change was examined. 
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3.6 The area of dwarf shrub vegetation 

It was the area of dwarf shrub vegetation in a patch or survey pixel which was the focus of 

this research. Therefore, the area of dwarf shrub vegetation in 1978, 1987 and 1996 was 

mapped to illustrate the changing spatial coverage of dwarf shrub vegetation between the 

three surveys. 

When the area of dwarf shrub vegetation in a pixel in 1978 was mapped (Fig. 3.9), larger 

clusters of pixels appeared to have a core entirely composed of dwarf shrub vegetation. The 

edges of these clusters of pixels contained smaller densities of dwarf shrub vegetation. It may 

be that edge pixels were more susceptible to change as they are likely to lie closer to non-

dwarf shrub vegetation types. Smaller clusters of pixels contained smaller areas of dwarf 

shrub vegetation. 

In 1987 there was little change although at first there appeared to be some change (Fig. 3.10). 

The increase in pixels which contained little dwarf shrub vegetation resulted partly from a 

large number of extra pixels being surveyed in 1987. The area of dwarf shrub vegetation did 

clearly decline in some pixels. When the area of dwarf shrub vegetation in a pixel in 1996 

was mapped (Fig. 3.11) there were clear changes from the previous two maps. The area of 

dwarf shrub vegetation declined in the majority of pixels. The change was very dynamic 

occurring across single isolated pixels and clusters of pixels. The core pixels (that is, pixels 

which lay in the center of a cluster of pixels and were composed almost entirely of dwarf 

shrub vegetation) had remained relatively stable in 1978 and 1987. However, in 1996 the area 

of dwarf shrub vegetation in such pixels declined. 

The dwarf shrub vegetation of Dorset was relatively stable in 1978 and 1987 but not between 

1987 and 1996. In 1996 core pixels previously comprised of dwarf shrub vegetation alone 

were not so any longer. There was no obvious reason for the sudden wide scale decline in 

dwarf shrub vegetation although succession may be exponential and may have accelerated 

between 1978 and 1987. 
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Fig. 3.10 Area of heath in a 200m x 200m pixel, 1987 
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Fig. 3.11 Area of heath in a 200m x 200m pixel, 1996 



3.7 Summary 

The heathlands of Dorset are a unique environment sustaining a wealth of diverse populations 

of both flora and fauna. Further, the geology of Dorset has influenced the development of the 

wealth of flora and fauna found there. However, it is clear that they are an environment under 

threat. The Institute of Terrestrial Ecology carried out three Dorset Heathland Surveys which 

provided a baseline for monitoring change. The surveys examined the presence (or absence) 

of a variety of species, land cover and land use types in a series of 200 m by 200 m cells. 

Areal coverage was recorded on a scale of zero to three. The survey data were divided into 

aggregated primary and primary categories and an algorithm transformed the data from 

scores of between zero and three to areal coverages. The algorithm ensured the coverage of 

each cell summed to 100%. A GIS was used to define patches of dwarf shrub vegetation. 

Contextual data for each patch were acquired from a remotely sensed image. Management 

data were collected and a database of management activities created. Finally, the response 

variable and explanatory variables were chosen as the initial step in the modelling procedure. 

The response variable was percentage change in area of dwarf shrub vegetation. The 

explanatory variables were chosen as the factors most likely to influence the process of 

succession and, therefore, result in percentage change in area of dwarf shrub vegetation. The 

area of dwarf shrub vegetation in 1978, 1987 and 1996 was mapped as this was the variable 

of most interest. These maps provided the first insight into the spatial structure of change in 

the area of dwarf shrub vegetation between 1978 and 1996. The next step was to examine the 

relationship between the response variable and each independent variable. Regression will be 

used to build a predictive model of the resulting significant relationships. 
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CHAPTER 4 

PATCH-BASED ANALYSIS 

4.1 Introduction 

In this chapter, a patch-based perspective was taken to analyse change in area of dwarf shrub 

vegetation. The analysis presented in this chapter comprises several stages. First, overall 

areal change in dwarf shrub vegetation over time was examined. Second, a univariate 

analysis of some of the data was carried out. Third, a spatial element was added by mapping 

change. Fourth, the strength of the relationship (correlation) between percentage change and 

each explanatory variable was examined. Finally, a statistical model of change was 

developed using both simple regression and multiple regression modelling techniques (see 

Chapter 2, 2.4.3). 

4.2 The patch-based perspective 

The patch dynamics perspective was taken because dwarf shrub vegetation (like most 

vegetation) tends to exist as patches (a grouping of dwarf shrub vegetation species), rather 

than as single isolated plants. Physical and ecological disturbances in the landscape produce 

patches, discrete communities in an area of dissimilar community structure or composition 

(Pickett & White, 1985). The dwarf shrub vegetation of Dorset forms patches in a matrix of 

forest agricultural and urban land. Therefore, it is reasonable to expect that processes such as 

succession occur at a patch scale. That is, it is reasonable to expect that succession occurs 

from outside a dwarf shrub vegetation patch and invades inwards. 

Several other factors further support the adoption of a patch-dynamics perspective to model 

dwarf shrub vegetation dynamics in Dorset. Patch dynamics in ecology has been examined 

since the 1970s (Forman & Godron, 1986; Risser et al, 1984; Vankat et al, 1991; Wu, 1994; 

Wu & Levin, 1994; Wu, 1992), although patch dynamics as a conceptual framework has 

been central to landscape ecology in theory and practice since its emergence. Also, it is likely 

that managers of dwarf shrub vegetation require information at a patch scale as this is the 

scale at which they will manage vegetation. 
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Correlation analysis was used to examine the relationship between explanatory variables and 

percentage change in area of dwarf shrub vegetation between 1978 and 1987, and 1987 and 

1996 (see Chapter 3, Table 3.6). Simple regression analysis provided the patch-based 

predictive model. Regression is a statistical method commonly used in ecology to explore 

relations between species and environment (Osborne & Wiley, 1988; Broschart et al., 1989; 

Johnston et al., 1992; Moore et al., 1993; Abramsky et al., 1996; Sarre et al., 1995; Philippi, 

1993; Trexler & Travis, 1993 and Aitkin & Francis, 1982). The initial choice of explanatory 

variables was, as is usual (Nicholls, 1991), determined by hypotheses about the ecological 

processes driving a dwarf shrub vegetation system (see Chapter 2.3.1). 

Initially, change over time in the areal extent of dwarf shrub vegetation was analysed. Any 

increases in area of dwarf shrub vegetation were, in all likelihood, the result of management 

(dwarf shrub vegetation will, in the absence of management or disturbance, undergo 

succession to scrub and woodland) and decreases were most likely due to natural ecological 

succession (for the same reason) or due to changes in land use. Given this rationale, only 

those patches which either did not change or decreased in area of dwarf shrub vegetation over 

time were included in the modelling process. Thus, the small number of patches which 

increased in area of dwarf shrub vegetation were removed. The increases in area of dwarf 

shrub vegetation (managed change) are investigated in Chapter 6. In total, 116 patches were 

created in the GIS using a simple nearest neighbour rule of eight (see Chapter 3.3.2). 

4.3 Areal change 

Areal change on a patch-basis was examined in the aggregated primary categories and the 

primary categories to indicate whether the areal extent of dwarf shrub vegetation in Dorset 

was changing overall. 

4.3.1 Areal change, 1978-1987 

Initially, change was examined at the aggregated primary category level followed by the 

primary category level. 

4.3.1.1 Areal change in aggregated primary categories. 1978-1987 

Areal change (change in the areal extent of each category in km^) and percentage change 

(change in the area of each category as a percentage of the initial area) between 1978 and 

1987 were calculated for each aggregated primary category on a patch basis (Table 4.1). It 

appeared that the losses in area of dwarf shrub vegetation were mostly the result of changes 

in land use ('others' see Chapter 3, 3.2.3 for a definition), rather than succession. However, 
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as the data were not spatially explicit the exact cause or causes of the decline in area of dwarf 

shrub vegetation was not clear. There was an increase in area of invasive species suggesting 

that some succession was occurring, but the increase was not substantial. Overall, there was a 

clear trend towards a loss in area of dwarf shrub vegetation over time. Indeed, the rate of loss 

of dwarf shrub vegetation was 1 % per annum. 

Table 4.1. Areal and percentage change in aggregated primary categories, 1978-1987 

Aggregated primary Total area, Total area, Areal change. Percentage change, 

1978 (km2) 1987 (km^) 1978-1987(km^) 1978-1987(%) 
Total dwarf shrub vegetation 5,510 4,978 -532 - 10 
Invasive species 3,044 3,163 119 4 
'Others' 3,745 4,162 417 U 

4.3.1.2 Areal change in primary categories, 1978-1987 

Areal change and percentage change between 1978 and 1987 were estimated for each 

primary category (see Chapter 3.2.3 for a definition of the primary categories) on a patch 

basis (Table 4.2). Examining the areal change in the primary categories further indicated the 

causes behind the 532 km^ loss in area of dwarf shrub vegetation over the nine years. 

Primary categories Total area. Total area. Areal change. Percentage change, 

1978 (km2) 1987 (km2) 1978-1987 (km2) 1978-1987 (%) 

Dry heath 2,587 L992 -595 -23 
Wet heath 852 811 -41 - 5 
Humid heath L479 L589 110 7 
Peat] and 591 585 - 6 - 1 
Woodland L848 L890 42 2 
Scrub 1,001 L073 72 7 
Carr 194 198 4 2 
Grass 1,072 1,416 344 32 
Agriculture 612 750 138 23 
Horticulture 9 6 - 3 -28 
Farm buildings 8 13 5 63 
Industrial buildings 57 58 1 2 
Other buildings 31 56 25 81 
Houses and gardens 424 568 144 34 
Bare ground 1,057 797 -260 - 25 
Hedges and boundaries 31 51 20 63 
Sand dunes 18 14 - 4 -21 
Open water 369 386 17 4 
Brackish marsh 51 41 - 10 - 19 

The area of dry heath decreased by 595 km^ (23%) in nine years. However, the area of 

humid heath increased by 110 km^ (7%). The area of scrub increased by 72 km^ (7%) in the 

same time. Other noteworthy changes included an increase in area of grassland of 344 km^, 

an increase in the area of agriculture of 154 km^ and an increase in the area of houses and 

gardens of 144 km^. Also, the area of bare ground decreased by 260 km^. Although the data 
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were not spatially explicit, there appears to be a general trend of change from dwarf shrub 

vegetation species to either grassland, agriculture or houses and gardens. Scrub, carr and 

woodland increased relatively little suggesting that little succession occurred. Although the 

different dwarf shrub vegetation types (dry, wet, humid heath and peatland) changed in 

different ways, the overall trend appeared to be towards a loss in area of 'heath' and changes 

in land use appeared to be the most likely cause of such a trend. 

4.3.2 Areal change, 1987-1996 

Areal change and percentage change between 1987 and 1996 were estimated for each 

aggregated primary category on a patch basis. The analysis was repeated at the primary 

category level. 

4.3.2.1 Areal change in aggregated primarv categories. 1987-1996 

Areal change between 1987 and 1996 was estimated (Table 4.3). Over the nine year period 

the area of invasive species increased by 1,454 km^ (46%) and the total area of dwarf shrub 

vegetation decreased by 756 km^ (15%). Most interesting is the reversal in the trend seen in 

1978 towards an increase in 'others'. Between 1978 and 1987 the area of 'others' increased 

by 417 km^, however, between 1987 and 1996 the area of 'others' decreased by 698 km^. 

The trend towards loss in area of dwarf shrub vegetation not only appeared to continue, but, 

the rate of change appeared to accelerate increasing from 1% between 1978 and 1987 to 2% 

between 1987 and 1996. Succession appeared to have replaced land use change as the major 

cause of change in area of dwarf shrub vegetation. 

Table 4.3. Percentage change in aggregated primary categories between 1987-1996 
Aggregated primary Total area, Total area, Areal change, Percentage change, 

1987 (km) 1996 (km) 1987-1996 (km^) 1987-1996 (%) 
Total dwarf shrub 4,978 4,222 -756 - 15 
vegetation 
Invasive species 3,163 4,617 1,454 46 
'Others' 4,162 3,464 :_698 - J l 

4.3.2.2 Areal change in primarv categories. 1987-1996 

Examining areal change in the primary categories provided greater information on the 

patterns of change identified at the aggregated primary category level (Table 4.4). The area of 

dry heath decreased by only 0.92 km^ (4%) over the nine year period in comparison to a 595 

km^ (23%) decrease between 1978 and 1987. The area of wet heath decreased considerably 

(- 466 km^) although between 1978 and 1987 it decreased by only 41 km^. The area of 

peatland also decreased (- 179 km^) over the nine year period in contrast with a decrease of 

only 6 km^ over the previous nine years. The area of humid heath also decreased but to a 

lesser degree (- 25 km^). However, woodland (1011 km^) and scrub (367 km^) increased 

considerably over the nine year period. Succession from dwarf shrub vegetative species to 
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scrub species appeared to have occurred and was the most likely cause of the losses in area of 

dwarf shrub vegetation. 

Table 4.4. Percentage change in primary categories between 1987-1996 
Primary categories Total area, Total area, Areal change. Percentage change, 

1987 (km2) 1996 (km^) 1987-1996 (km^) 1987-1996 (%) 
Dry heath L997 L905 -92 - 4 
Wet heath 811 345 - 466 -57 
Humid heath L589 -25 - 2 
Peatland 585 406 - 179 -30 
Woodland L890 1011 53 
Scrub L073 1,440 367 34 
Carr 198 148 -50 -49 
Grass L416 L748 332 23 
Agriculture 750 377 -373 -50 
Horticulture 6 9 3 31 
Farm buildings 13 15 2 16 
Industrial buildings 58 42 - 16 -27 
Other buildings 56 62 6 11 
Houses and gardens 568 331 -237 -42 
Bare ground 797 333 -464 -58 
Hedges & boundaries 51 121 70 136 
Sand dunes 14 11 - 3 -24 
Open water 386 254 -132 - 34 
Brackish marsh 41 30 - 11 -27 

4.3.2.3 Overall areal change. 1978-1996 

Between the first and last surveys several distinct patterns of change emerged. The area of 

dwarf shrub vegetation decreased as the area of 'others' and the area of invasive species 

increased. However, between 1978 and 1987 change in area of dwarf shrub vegetation as a 

whole most probably resulted from increased urbanisation, agriculture and to a lesser degree, 

invasive species. The influence of changes in land use on change in area of heath lessened 

between 1987 and 1996 as a result of Government planning policies and environmental 

legislation. However, there were large increases in the area of invasive species. Grassland 

continued to increase in area although housing decreased as did agriculture. Thus, the likely 

processes behind the decreases in dwarf shrub vegetation varied over time as did the rates of 

change. 

4.4 Summarising the data distributions 

Histograms for each aggregated primary category explanatory variable in 1978, 1987 and 

1996 were plotted to describe the distribution of each variable. Several of these are shown in 

this section. By comparing histograms of the same variable but for different years, changes in 

the dispersion of data can be examined. Histograms for the primary categories are not given 
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as the results were similar to those for the aggregated primary categories. This similarity is 

unsurprising because the aggregated primary categories, as outlined previously, were derived 

by amalgamating the primary categories. Only patches in which the area of dwarf shrub 

vegetation declined as a percentage of initial area were plotted. 

4.4.1 Histograms of aggregated primary categories, 1978,1987 and 1996 

The majority of patches of dwarf shrub vegetation in 1978 were small, with only a small 

number of larger patches. Indeed most of the patches covered an area of only 40,000 m^ (a 

single pixel) (Fig. 4.1a). The largest patch extended over 9,640,000 m^ and the median patch 

size was 240,000 m^. 

The histogram of the area of dwarf shrub vegetation in a patch in 1978 (Fig. 4.1b) reflected 

the pattern in Figure 4.1a because patches were created based on whether or not a pixel 

contained dwarf shrub vegetation. That is, there is an approximately linear relation between 

patch size and the area of dwarf shrub vegetation in a patch (r^ = 0.91). There was little 

change in this distribution in 1987 (Fig. 4.1c) and 1996 (Fig. 4.Id). However, the number of 

patches containing a very small area of dwarf shrub vegetation increased. All three plots 

appear to indicate that the dwarf shrub vegetation of Dorset is concentrated in a large number 

of very small patches, with the remaining heathland spread across patches of varying sizes. 

Most patches decreased in area of dwarf shrub vegetation between 1978 and 1987 (Fig. 4.1e), 

with fewer experiencing a large negative percentage change. In all, the area of heath 

increased in thirty three patches, decreased in sixty six and remained unchanged in seventeen. 

Percentage change in area of dwarf shrub vegetation between 1987 and 1996 was plotted 

(Fig. 4.If). The area of dwarf shrub vegetation increased in thirty four patches, decreased in 

seventy four and remained unchanged in eight. Small decreases in area of dwarf shrub 

vegetation dominated the majority of patches. Larger percentage decreases occurred in a few 

patches but, in contrast to Figure 4. le, a large number of patches decreased in area of dwarf 

shrub vegetation by 100%, that is, they disappeared. This difference (few patches between 

1978 and 1987 decreasing to zero) will be revisited in Chapter 5, where it has consequences 

for the analysis. Overall, between 1978 and 1996 most patches experienced a large negative 

percentage change in area of dwarf shrub vegetation (Fig. 4.1g) reflecting the frequency 

distribution for percentage change between 1987 and 1996 (Fig. 4. If). 
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4.5 Feature space plots 

The analysis of areal change described overall change in the dwarf shrub vegetation of 

Dorset. It was clear from the analysis that the area of dwarf shrub vegetation was in decline. 

Two processes appeared to account for the decline in dwarf shrub vegetation. However, it 

was not possible to conclude that the decline in dwarf shrub vegetation was a direct 

consequence of changes in land use and of succession. An alternative analysis was carried 

out to gain further insight into the spatial dynamics of the area of dwarf shrub vegetation, the 

area of invasive species and the area of 'others' in a patch. Feature space plots of percentage 

change in each of the aggregated primary categories were plotted to indicate what the area of 

dwarf shrub vegetation was being replaced by. 

Percentage change between 1978 and 1987 was examined initially. Percentage change in area 

of invasive species was plotted against percentage change in area of dwarf shrub vegetation 

(Fig. 4.2a). The area of dwarf shrub vegetation in the majority of patches declined, and in 

many patches the declining dwarf shrub vegetation appeared to be replaced by invasive 

species. When percentage change in area of 'others' was plotted against percentage change in 

area of invasive species (Fig. 4.2b) the area of invasive species did not cause change in the 

area of 'others' and vice versa. Finally, percentage change in area of 'others' was plotted 

against percentage change in area of dwarf shrub vegetation (Fig. 4.2c). Again, the area of 

dwarf shrub vegetation decreased in the majority of patches. However, the area of 'others' 

appeared to account for much of this change. 

Next, percentage change between 1987 and 1996 was examined. Percentage change in area 

of invasive species was plotted against percentage change in area of dwarf shrub vegetation 

(Fig. 4.2d). The decline in area of dwarf shrub vegetation in several patches was related to 

increases in invasive species. When percentage change in area of 'others' was plotted against 

percentage change in area of invasive species (Fig. 4.2e), the area of invasive species 

appeared to be responsible for a considerable amount of change in the area of 'others'. In 

particular, the area of agriculture and bare ground fell, and the area of woodland increased, 

which may account for this relationship. Finally, percentage change in area of dwarf shrub 

vegetation was plotted against percentage change in area of 'others' (Fig. 4.2f). The area of 

'others' accounted for change in area of dwarf shrub vegetation. However, change in land use 

('others') caused fewer changes in area of dwarf shrub vegetation than between 1978 and 

1987. 
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Fig. 4.2 Feature space plots of (a and d) percentage change in area invasive species against 

percentage change in area of dwarf shrub vegetation; (b and e) percentage change in area of 

'others' against percentage change in area if invasive species; (c and f) percentage change in 

of 'others' against percentage change in area of dwarf shrub vegetation. area 

4.6 Mapping change 

It was clear from the analysis of areal change over time (Chapter 4, 4.3) and from the 

histograms (Chapter 4, 4.4) that change was occurring. However, to aid the explanation of 

change, the data were considered in a spatial context. The heathlands of Dorset have been 

mapped at many points in time (Isaac Taylor, 1759 & 1756; Moore, 1962 and Webb & 

Haskins, 1980) to illustrate heathland fragmentation. The spatial element is important. It is 

not enough to know that a patch is changing at a particular rate. It is also important to know 

which patches are changing, especially as patches are not isolated. Change must be examined 

as part of a functioning landscape. 

4.6.1 Mapping change between 1978 and 1987 

Percentage change in area of dwarf shrub vegetation between 1978 and 1987 was mapped on 

a patch basis (Fig. 4.3). The area of dwarf shaib vegetation in the majority of patches 
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decreased between 1978 and 1987. However, change was not uniform across all patches. 

There appeared to be no structure to the change. 

To increase the contrast in the maps, different thresholds of change were used to define 

changes. No change' represented less than or equal to a 10% decrease, or increase, in area of 

dwarf shrub vegetation. Decreased heath' represented a loss of dwarf shrub vegetation of 

greater than -10% and 'increased heath'represented an increase in the area of dwarf shrub 

vegetation of greater than +10%. The data were re-mapped accordingly (Fig. 4.4). The result 

was similar to the original map of change (Fig. 4.3). Again, the overall pattern of change 

appears to be that of a decrease in area of dwarf shrub vegetation in a patch over time, but 

change was not uniform across all patches. 

4.6,2 Mapping change between 1987 and 1996 

Percentage change in area of dwarf shrub vegetation between 1987 and 1996 was mapped on 

a patch basis (Fig. 4.5). There appeared to be little structure to the change. However, the area 

of dwarf shrub vegetation declined in most patches. The alternative mapping thresholds 

described in section 4.5.1 of this chapter were applied and percentage change remapped (Fig. 

4.6). Overall, the picture remained the same. 

4.6.3 Mapping percentage change in the remaining aggregated primary categories 

Percentage change in area of invasive species was mapped (Fig 4.7). Again, there was no 

apparent structure to the change even though the area of invasive species increased in many 

patches. The map of change between 1987 and 1996 (Fig. 4.8) was similar. Change was not 

uniform across all Dorset, but the area of invasive species increased in many patches. 

Percentage change in area of 'others' between 1978 and 1987 was mapped (Fig. 4.9) and was 

similar to that for area of invasive species. The area of 'others' increased in many patches but 

there was no structure to the change. Percentage change in 'others' between 1987 and 1996 

(Fig. 4.10) was similar. 

4.6.4 Mapping percentage change in selected primary categories 

The primary categories which underwent the greatest areal changes over time between 1978 

and 1987, and 1987 and 1996 were mapped (Figs. 4.11-4.16). A positive percentage change 

in grassland between 1978 and 1987 (Fig. 4.11) occurred over most patches, but as before, 

change was not uniform. When percentage change in grassland between 1987 and 1996 was 

mapped (Fig. 4.12) the result was very similar. 
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Fig. 4.3 Percentage change in area of heath in a patch, 1978 -1987 
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Fig. 4.4 Percentage change in area of heath in a patch, 1978 -1987 



I I Decreased heath 

I No change 

H Increased heath 

- . 1 ^ 1 

Fig. 4.5 Percentage change in area of heath in a patch, 1987 -1996 
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Fig. 4.6 Percentage change in area of heath in a patch, 1987 -1996 
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Fig. 4.7 Percentage change in area of invasive species in a patch, 1978 -1987 
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Fig. 4.8 Percentage change in area of invasive species in a patch, 1987 -1996 
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Fig. 4.9 Percentage change in area of "others" in a patch, 1978 -1987 
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Fig. 4.10 Percentage change in area of "others" in a patch, 1987 -1996 
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Fig. 4.11 Percentage change in area of grassland in a patch, 1978 -1987 
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Fig. 4.12 Percentage change in area of grassland in a patch, 1987 -1996 
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Fig. 4.13 Percentage change in area of agriculture in a patch, 1978 -1987 
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Fig. 4.14 Percentage change in area of agriculture in a patch, 1987 -1996 
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Fig. 4.15 Percentage change in area of houses and gardens in a patch, 1978 -1987 
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Fig. 4.16 Percentage change in area of houses and gardens in a patch, 1987 -1996 



Percentage change in agriculture between 1978 and 1987 was mapped (Fig. 4.13). Again 

there was no apparent structure to the change. When percentage change in area of agriculture 

between 1987 and 1996 was mapped (Fig. 4. 14) the area of agriculture declined in many 

patches. Despite this, percentage change was not uniform across all Dorset. 

Finally, percentage change in area of houses and gardens between 1978 and 1987 was 

mapped (Fig. 4.15). Although the area of houses and gardens remained unchanged in many 

patches, there was no structure to the change. Percentage change between 1987 and 1996 was 

similar (Fig. 4.16). However, it had not been expected that the area of houses and gardens 

could decline. This aside, change in area of houses and gardens across all Dorset was not 

uniform. 

Overall, no distinct spatial pattern was discernible from the maps produced, although there 

was an obvious temporal trend towards a decrease in area of dwarf shrub vegetation, an 

increase in invasive species and the area of 'others' increased initially before decreasing. 

4.7 Bivariate and multivariate analysis of change on a patch-basis 

To examine the trends and patterns of change in the dwarf shrub vegetation of Dorset 

quantitatively, both correlation and simple regression were used. It was anticipated that such 

analyses would indicate which explanatory variables best accounted for percentage change in 

area of dwarf shrub vegetation over time. 

Multiple regression is an extension of simple regression to take into account the effect of 

more than one independent variable (X) on the dependent variable (7) (see Chapter 2, 

2.4.3.3). Further, multiple regression allows for correlations between explanatory variables. 

Multiple regression should, in theory, improve the predictive power of the models. 

4,7.1 General introduction to regression analysis 

Correlation analysis was carried out to examine the relationship between percentage change 

and each explanatory variable. Simple regression was then used to test several hypotheses to 

further account for percentage change in area of dwarf shrub vegetation between 1978 and 

1987. The process was repeated for the 1987 and 1996 data. The residuals were examined to 

ensure that their distribution was approximately normal (see Appendix 3). The initial choice 

of explanatory variables was determined by considering the ecological processes underlying 

the system to be modelled (see Nicholls, 1991; Chapter 2, 2.4.3). The explanatory variables 

chosen for model building were based upon current understanding of patch-based ecological 
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processes in dwarf shrub vegetation (Chapter 3, Table 3.6). The response variable was 

defined as percentage change in area of dwarf shrub vegetation (Chapter 3, 3.5.1). 

If the area of dwarf shrub vegetation (or dwarf shrub vegetation type) in a patch was zero, the 

patch was removed from the analysis. If such patches had not been removed, percentage 

change in area of dwarf shrub vegetation would have been zero in several patches because 

the patches did not contain any area of dwarf shrub vegetation (or dwarf shrub vegetation 

type) rather than because the area dwarf shrub vegetation (or dwarf shrub vegetation type) 

remained unchanged. As patches in which the area of dwarf shrub vegetation (or dwarf shrub 

vegetation type) either remained unchanged or decreased were being analysed, such data 

were biased. 

It was necessary to ensure approximately linear bivariate relations between percentage 

change and each of the explanatory variables. To examine the linearity of the relationship 

between percentage change in area of dwarf shrub vegetation between 1978 and 1987 (the 

response variable) and the explanatory variables, the appropriate scatterplots were examined. 

For example, percentage change in area of dwarf shrub vegetation between 1978 and 1987 

was plotted against the area of dwarf shrub vegetation in a patch (Fig. 4.17). The relationship 

appeared to be curvilinear rather than linear. It was necessary to transform each explanatory 

- 6 0 *• 
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Area of heathland. 1978 (square metres) 

Fig. 4.17 Scatterplot of percentage change in area of dwarf shrub vegetation, 1978-1987 (%) 

against the area of dwarf shrub vegetation in a patch. 

variable and the target variable to ensure that each relationship could be approximated with a 

linear model. Several transformations were attempted (Table 4.5) (see Chapter 2, 2.4.3.2). 

The relation which was most linear resulted when the natural logarithm of both axes was 

used. Since patches with zero percentage change in dwarf shrub vegetation were included in 

the analysis a value of one was added to the target and explanatory variables prior to logging. 
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Logistic regression was not used as the data were made linear using a simple logarithmic 

transformation which made the interpretation of results more straight forward. 

Table 4.5. Transformations carried out to ensure an approximately linear relation. 

X 
LogZ 

Arcsine X 

X-

V Y 

4.7.2 Regression for the aggregated primary categories, 1978-1987 

Correlation analysis and simple regression were carried out to examine the degree to which 

variation in percentage change in area of dwarf shrub vegetation could be accounted for by 

each explanatory variable (Chapter 3, Table 3.6; Table 3.7 & Table 3.8). A confidence 

interval of 95% was used. Therefore, there was a one in twenty chance of a Type I error, that 

is, rejecting erroneously the null hypothesis (Hq). Because of the complex nature of the 

ecological system being modelled if the coefficient of determination exceeded 0.10, the 

hypothesis was accepted. 

4.7.2.1 Simple regression for the aggregated primarv categories 

Percentage change in area of dwarf shrub vegetation between 1978 and 1987 was 

significantly correlated with four variables. The largest coefficient of determination resulted 

between percentage change and density of heath in the edge of a patch (r^ = 0.15) (Table 

4.6). Despite the low the relationship was as hypothesised (H\): the more dense the area of 

dwarf shrub vegetation in the edge of a patch, the less susceptible a patch is to loss of heath 

(Fig. 4.18a). Also, percentage change was similarly positively correlated with the area of 

heath in the edge of a patch (Fig. 4.18b). The ratio of dwarf shrub vegetation to density of 

invasive species in a patch (and in the edge of a patch) accounted for between 13% - 14% of 

the variation in percentage change. The relationships supported the hypotheses laid out in 

Chapter 3 (3.5.2). The greater the density of dwarf shrub vegetation in a patch (or the edge of 

a patch), the less susceptible that patch is to change (see Figs. 4.18c-d). 

It is pertinent at this point to comment on the unusual shape of the plots outlined above (Figs. 

4.18a-c). Certain areas of the plot cannot contain data (as a patch of one pixel can only 

remain unchanged or decrease by 100% (that is disappear), as increases were not included in 

this analysis). This accounts for their odd shape. However, the inclusion of zeros (percentage 

change) counters the effect of null areas of the graphs. 
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Table 4.6. Simple regression results for percentage change in area of heath versus patch-

based aggregated primary categories, 1978. Only significant relationships are shown. 
Logged, patch-based explanatory 
variables ^ Ho / H\ Relationship 

Density of heath 1,81 0.00067 0.13 H\ Positive 
Density of heath in edge of a patch 1,81 0.00026 0.15 H\ Positive 
Ratio of heath to invasive species in 1,81 0.00046 0.14 Hi Positive 
the edge 
Ratio of heath to invasive species 1,81 0.00081 0.13 Hi Positive 

(a) (b) 
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a. Log density of heath in the edge of a patch, 1978 (units) 
(r2 = o.15) 

(C) 

c. Log of density of heath ; invasive in edge, 1978 (units) 
(r2 = 0.14) 
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(r2 = 0.13) 

Fig. 4.18 Scatterplots of (a) log percentage change in area of dwarf shrub vegetation, 1978-

1987 against log density of dwarf shrub vegetation in the edge of a patch 1978; (b) log 

percentage change in area of dwarf shrub vegetation, 1978-1987 against log density of dwarf 

shrub vegetation, 1978; (c) log percentage change in area of dwarf shrub vegetation, 1978-

1987 against log ratio of density of dwarf shrub vegetation to invasive species in the edge of 

a patch, 1978; (d) log percentage change in area of dwarf shrub vegetation, 1978-1987 

against log ratio of density of dwarf shrub vegetation to invasive species in a patch, 1978. 
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4.7.2.2 Multiple regression for the aggregated primary categories. 1978-1987 

Percentage change in area of heath between 1978 and 1987 was most highly correlated with 

the density of dwarf shrub vegetation in the edge of a patch. The log of the ratio of area of 

dwarf shrub vegetation to 'others' accounted for a significant part of the residuals (Table 

4.7). In all, 17% of the variation in percentage change was accounted for. The correlation 

between percentage change and density of heath in the edge of a patch may indicate that the 

degree of fragmentation in the edge of a patch influences percentage change. Further, the area 

of dwarf shrub vegetation relative to the area of 'others' (anthropogenic activity) in a patch 

influenced percentage change when density of dwarf shrub vegetation in the edge was held 

constant. The ratio of area of dwarf shrub vegetation to area of 'others' in a patch reflects the 

degree of fragmentation of the area of dwarf shrub vegetation within a patch. Despite the 

small coefficient of determination (r^ = 0.17), the multiple regression equation could be 

considered for use as a predictor of change. The regression equation is as follows: 

Log (percentage change) = 4.2 + 1.1 log (density of dwarf shrub vegetation in the edge) + 

0.3 log (ratio of area of dwarf shrub vegetation to 'others'). 

The equation can be used to account for 17% of the variation in percentage change in area of 

dwarf shrub vegetation between 1978 and 1987. It could be used to predict in the future if it 

can be assumed that set of the relations modelled by the equation are constant over time. 

Table 4.7 Multiple regression for patch-based aggregated primary categories, 1978. 
Logged, patch-based explanatory 
variables df P f2 

Density of heath in the edge 1,81 0.0002 0.15 
+ Area of heath : 'others' Z 8 0 0.0012 0.17 

4.7.3 Regression for the primary categories, 1978-1987 

At the primary category level, four response variables were utilised: the four primary 

categories which made up the total 'heath!and' category. Therefore, the relationships between 

percentage change in area of dry, wet, humid heath and peatland and each of the explanatory 

variables were examined in turn. 

4.7.3.1 Simple regression for drv heath. 1978-1987 

Percentage change in area of dry heath was most highly correlated with the area of scrub in a 

patch and also with the area of carr in the edge of a patch (both = 0.23). As the percentage 

of dry heath lost increased, the area of scrub or the area of carr in the edge of a patch 
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increased (Fig. 4.19a & Fig. 4.19b). Both relationships were as hypothesised. The pressure 

from succession increased with increasing area of invasive species causing the area of dry 

heath to decline. Eleven other explanatory variables each accounted for between 12% and 

18% of the variation in percentage change (Table 4.8). It was hypothesised that percentage 

change would decrease as the density of dry heath in the edge of a patch increased. The 

hypothesis appeared to be supported (Fig. 4.19c). The relationship was similar for the density 

of dry heath in a patch (Fig. 4.19d). However, percentage change was inversely related to the 

area of dry heath and the area of dry heath in the edge of a patch (Fig. 4.19e-f). These 

relationships were not as hypothesised but could have been the result of land use change. Dry 

heath is more easily built upon or converted to agriculture than the wetter heaths (Bullock & 

Webb, 1995). 

Table 4.8. Simple regression for percentage change in area of dry heath versus the patch-

Logged, patch-based, explanatory 
variables df P f2 Ho! 

Hi 
Relationship 

Area of carr in the edge of a patch 1,85 2.01e-06 0.23 H\ Negative 

Area of dry heath L85 0.00025 0.15 Ho Negative 
Area of wet heath 1,85 0.00122 0.12 - Negative 
Area of humid heath 1,85 0.00055 013 - Negative 
Area of woodland in a patch 1,85 0.00064 0.13 H\ Negative 

Area of scrub in a patch 1,85 2.3e-06 0.23 H\ Negative 

Density of dry heath 1,85 8.08e-05 0.17 Hi Positive 

Area of dry heath in the edge of a patch 1,85 0.00013 0.16 Ho Negative 
Area of wet heath in the edge of a patch 1,85 0.00112 0 J 2 - Negative 
Area of humid heath in the edge of a 1,85 0.00049 0.13 - Negative 
patch 
Area of scrub in the edge of a patch 1,85 0.00063 0.13 H\ Negative 

Density of dry heath in the edge of a 1,85 4.32e-05 018 H\ Positive 
patch 
Area of dry heath : scrub 1,85 0.0010 0 1 2 Hi Positive 

In summary, not all the hypotheses laid out in Chapter 3 (3.5.2) were supported. Further, 

several significant relationships were unexpected (see Table 4.8). These relationships 

appeared to indicate that percentage change in area of dry heath is not only affected by 

succession. Fluctuations in area of dwarf shrub vegetation types also influenced change. For 

example, a particularly dry summer may cause wetter areas of dwarf shrub vegetation to dry 

out (N. Webb & R. Rose pers comm.). Therefore, the boundaries between the dwarf shrub 

vegetation types are in continual flux. 
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(a) (b) 

Log area of scrub, 1978 (units) 
(r2 = 0.23) 

(C) 

Log density of dry tieath in edge, 1978 (units) 
(r2 = 0.18) 

(e) 

9 10 11 12 13 14 

Log area of carr in edge, 1978 (units) 
(r2 = 0.23) 

(d) 

Log density of dry tieath, 1978 (units) 
{r2 = o.17) 

(f) 

Log area of dry heath in edge, 1978 (units) 
(r2 = 0.16) 

Log area of dry heath, 1978 (units) 
(r2 = 0.15) 

Fig. 4.19 Scatterplots of (a) log percentage change in area of dry heath, 1978-1987 against 

log area of scrub, 1978; (b) log percentage change in area of dry heath, 1978-1987 against 

log area of carr in the edge, 1978; (c) log percentage change in area of dry heath, 1978-1987 

against log density of dry heath in the edge, 1978; (d) log percentage change in area of dry 

heath, 1978-1987 against log density of dry heath, 1978; (e) log percentage change in area of 

dry heath, 1978-1987 against log area of dry heath in the edge, 1978; (f) log percentage 

change in area of dry heath, 1978-1987 against log area of dry heath, 1978. 
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4.7.3.2 Multiple regression for dry heath. 1978-1987 

Percentage change in area of dry heath between 1978 and 1987 was most highly correlated 

with the area of carr in the edge of a patch (Table 4.9). The area of scrub in the edge of a 

patch accounted for a significant part of the residuals (demonstrating that scrub and carr act 

relatively independently), and two further variables accounted for a significant portion of the 

remainder of the residuals. These were the ratio of density of dry heath to humid heath in a 

patch and the ratio of dry heath to carr in the edge of a patch. The area of carr and scrub in 

the edge of a patch influenced percentage change. Therefore, when the influence of area of 

carr in the edge of a patch was removed, the area of scrub in the edge still accounted for a 

significant amount of the variation in percentage change (5%). The coefficient of 

determination was reasonably large (r-2 = 0.32) and, therefore, the multiple regression 

equation could be considered for use as a predictor of change. The regression equation is as 

follows: 

Log (percentage change) = 0.7 + 0.3 log (area of carr in the edge of a patch) + 0.1 log (area 

of scrub in the edge of a patch) + 1.7 log (ratio of density of 

dry heath to humid heath) + 0.1 log (ratio of area of dry heath 

to carr in the edge of a patch). 

The equation can be used to account for 32% of the variation in percentage change in area of 

dry heath between 1978 and 1987. It could be used to predict in the future if it can be 

assumed that set of the relations modelled by the equation are constant over time. 

Table 4.9. Multiple regression for patch-based primary categories, 1978. 
Logged, patch-based explanatory 
variables # P 

Area of carr in the edge of patch 1,85 2.01e-o 0.23 
4- Area of scrub in the edge of patch 2,84 1.15e-0 0.28 
4- Density of dry heath : humid heath 3,83 1.34e-0 0.30 
+ Area of dry heath : carr in the edge 4,82 1.51e-0 0.32 

4.7.3.3 Simple regression for wet heath. 1978-1987 

The relationships between percentage change in area of wet heath between 1978 and 1987 

and each independent variable were examined using simple regression. None of the 

independent variables were significant in accounting for the variation in percentage change in 

area of wet heath over time. The highest coefficient of determination resulted when 

percentage change was regressed on the area of wet heath in the edge of a patch (r^ = 0.08). 

It is most likely that the relationships involving wet heath are obscured by those involving 

the more widespread dwarf shrub vegetation types. 
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4.7.3.4 Simple regression for humid heath. 1978-1987 

Simple regression resulted in eight attributes accounting for significant amounts of variation 

in percentage change of humid heath between 1978 and 1987 (Table 4.10). Percentage 

change in area of humid heath was relatively highly correlated with both area of humid heath 

in the edge of a patch (r^ = 0.16) and with area of humid heath in the whole of a patch (r^ = 

0.15). However, these were both inversely related with percentage change in area of humid 

heath, which was the converse of the hypothesised relationship (Fig. 4.20a & Fig. 4.20b). 

Similarly, the ratio of area of humid heath to wet heath had a negative relationship with 

percentage change. The remaining significant relationships all supported the hypotheses. A 

greater density of humid heath in a patch as a whole or in the edge made it less susceptible to 

change, that is, the less fragmented the area of humid heath in a patch is, the less susceptible 

it is to change (Figs. 4.20c). Attributes describing the area (or relative areas) of invasive 

species (woodland and scrub) were also negatively related with percentage change (see Fig. 

4.20d). Greater areas of scrub caused greater losses in area of humid heath. 
(a) (b) 

C 

Log area humid heath edge, 1978 (units) 
(r2 = 0.16) 

Log area humid heath, 1978 (units) 
(r2 = 0.15) 

(C) (d) 

(J* 

5 

Log density humid heath, 1978 (units) 
(r2 = 0.11) 

-3 -

-4 -

Log area scrub, 1978 (units) 
(r2 = 0,11) 

Fig. 4.20 Scatterplots of (a) log percentage change in area of humid heath, 1978-1987 against 

log area of humid heath in the edge of a patch, 1978; (b) log percentage change in area of 

humid heath, 1978-1987 against log area of humid heath, 1978; (c) log percentage change in 

area of humid heath, 1978-1987 against log density of humid heath, 1978; (d) log percentage 

change in area of humid heath, 1978-1987 against log area of scrub, 1978. 
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Table 4.10. Simple regression for percentage change in area of humid heath versus patch-

Logged, patch-based, explanatory 
variables df P y2 m / m Relationship 

Area of humid heath ] ,48 0.0053 0.15 Ho Negative 
Area of scrub 1,48 0.0209 0.11 H\ Negative 

Density of humid heath 1,48 0.0163 0.11 H\ Positive 

Area of humid heath in the edge of a 1,48 0.0040 0.16 Ho Negative 
patch 
Density of humid heath in the edge 1,48 0.0145 0.12 H\ Positive 

Area of humid heath : wet heath in the 1,48 0.4529 0J2 - Negative 
edge 
Area of humid heath : scrub in the edge 1,48 0.0216 0.11 Ho Positive 
Area humid heath ; woodland 1,48 0.0203 0.11 Ho Positive 

4.7.3.5 Multiple regression to examine percentage change in area of humid heath. 1978-1987 

Multiple regression resulted in percentage change in area of humid heath being significantly 

correlated with three variables (Table 4.11). The density of humid heath in the edge of a 

patch accounted for most variation in percentage change. Density of scrub in the edge of a 

patch accounted for a significant part of the residuals and the ratio of density of humid heath 

to scrub in the edge of a patch accounted for a significant amount of the remainder. 

Percentage change was most correlated with the density of humid heath in the edge of a 

patch, indicating that the more fragmented the coverage of humid heath in the edge of a 

patch, the greater the percentage decrease in area. When the density of humid heath in the 

edge of a patch was held constant, percentage change was most significantly correlated with 

the density of scrub in the edge of a patch. The greater the density of scrub in the edge of a 

patch the greater the percentage change. Further, this was reflected in the relationship 

between percentage change and the ratio of density of humid heath to scrub in the edge of a 

patch. In all, percentage change in area of humid heath resulted from invasion of scrub from 

the edge of a patch. The multiple regression equation is as follows: 

Log (percentage change) = 6.2 + 0.63 log (density of humid heath in the edge of a patch) + 

-9.6 log (density of scrub in the edge of a patch) + -3.4 log 

(ratio of density of humid heath to scrub in the edge of a 

patch). 



Table 4.11 Multiple regression for patch-based primary categories, 1978 

variables df P 

Density of humid heath in the edge 1,48 0.014 0.12 
+ Density of scrub in the edge 2,47 0.007 &19 
+ Density of humid heath : scrub in the edge 3,46 0.005 0.23 

4.7.3.6 Simple regression for peatland. 1978-1987 

Finally, percentage change in area of peatland between 1978 and 1987, was regressed on 

each explanatory variable. Percentage change was significantly correlated with a single 

variable: the ratio of area of peatland to scrub in the edge of a patch (Table 4.12). The 

relationship was positive and, therefore, as anticipated (Fig. 4.21). Despite the low 

correlation, this supported the hypothesis that there would be less percentage decrease in area 

of peatland as the area of peatland increased and the area of invasive species decreased in the 

edge of a patch. Further, the relationship indicated that succession played a part in causing 

change in area of peatland. However, as a 95% confidence interval was used and as twenty 

explanatory variables were used in the analysis and a single significant relationship resulted, 

the relationship could easily have occurred though chance. 

2 
SL 
O) 
o 

Log area peatland : scrub edge, 1978 (units) 
(r2 = 0.10) 

Fig. 4.21 Scatterplot of log percentage change in area of peadand, 1978-1987 against log 

ratio of area of peatland to scrub in the edge of a patch, 1978. 

Table 4.12. Simple regression for percentage change in area of peatland versus patch-based 

primary categories, 1978. Only the significant relationships are shown. 
Logged, patch-based, explanatory 
variables df Ho / Hi Relationship 

Area of peatland : scrub in the edge 1 , 4 0 0.0203 0.10 Hi Positive 
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4.7.3.7 Multiple regression to examine percentage change in area of peatland, 1978-1987 

Percentage change in area of peatland was most highly correlated with the ratio of area of 

peatland to scrub in the edge of a patch, but interestingly, the ratio of peatland to carr 

accounted for a significant part of the residuals. Therefore, the greater the area of invasive 

species (such as scrub and carr) compared to the area of peatland in the edge of a patch, the 

more susceptible the patch is to invasion. Percentage change was significantly correlated 

with the ratio of area of peatland to carr when the ratio of peatland to scrub in the edge was 

held constant. 

Logged patch-based explanatory 
df variables df P j.2 

Area of peatland ; scrub in the edge 1,40 0.036 0.10 
+ Area of peatland : carr in patch 2,39 0.056 0.14 

4.7.4 Regression for the secondary categories, 1978-1987 

There were no significant simple regression results when percentage change in area of dwarf 

shrub vegetation was regressed against each of the explanatory variables at the secondary 

category level. It is likely that the low signal-to-noise ratio accounts for the lack of 

significant relationships at the secondary category level. 

4.7.5 Regression results for the aggregated primary categories, 1987-1996 

Regression analysis was carried out at the aggregated primary, primary and secondary 

category levels to indicate which explanatory variables best accounted for percentage change 

in area of dwarf shrub vegetation between 1987 and 1996. 

4.7.5.1 Simple regression for the aggregated primarv categories. 1987 - 1996 

Two significant relationships resulted when simple regression was carried out at the 

aggregated primary category level (Table 4.14). Percentage change was significantly 

correlated with the area of invasive species in a patch. As the area of invasive species 

increased, percentage change decreased, so that the inverse relationship was contrary to that 

hypothesised (Fig. 4.22a). Percentage change was similarly related with the area of invasive 

species in the edge of a patch (Fig. 4.22b). There was no apparent reason for both inverse 

relationships. However, the coefficients of determination were small (r^ = 0.06). Multiple 

regression was not carried out because of the small coefficient of determination. 
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Table 4.14. Simple regression for patch-based aggregated primary categories, 1987. Only the 

Logged patch-based, explanatory 
variables 

df P 7-2 Ho/Hi Relationship 

Area of invasive species in a patch 
Area of invasive species in the edge 

1,80 
1,80 

0.0325 
0.0311 

0.06 
0.06 

Ho 
Ho 

Positive 
Positive 

(a) (b) 

0 

- 1 -

- 2 -

-3 • 

-4 

-5 

a g 

g 

• > • • • • • • * • CL g 
10 12 14 16 

Area of invasive species In a patch, 1987 (units) 
{r2 = 0.6) 

Area of invasive species in tfie edge of a patcfi, 1987 (units) 
(r2 = 0.6) 

Fig. 4.22 Scatterplots of (a) log percentage change in area of dwarf shrub vegetation, 1987-

1996 against log area of invasive species, 1987; (b) log percentage change in area of dwarf 

shrub vegetation, 1987-1996 against log area of invasive species, in the edge of a patch 1987. 

4.7.6 Regression for the primary categories, 1987-1996 

Simple and multiple regression were carried out at the primary category level for 1987 to 

1996. 

4.7.6.1 Simple regression for dry heath. 1987-1996 

Percentage change in area of dry heath between 1987 and 1996 was correlated with each 

explanatory variable. It appeared that percentage change in area of dry heath between 1987 

and 1996 could not be accounted for by any of the selected variables, the highest coefficient 

of determination being 0.05. Again, multiple regression was not carried out because of the 

small coefficients of determination. 

4.7.6.2 Simple regression for wet heath. 1987-1996 

Percentage change in area of wet heath between 1987 and 1996 was correlated with three 

explanatory variables (Table 4.15). The ratio of wet heath to scrub in the edge of a patch 

accounted for most variation in percentage change (r^ = 0.12). The positive relationship was 

as hypothesised (Figs. 4.23a). Percentage change was similarly correlated with the ratio of 
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wet heath to scrub in the edge of a patch (Fig. 4.23b) and the ratio of area of wet heath to can-

in a patch (Fig. 4.23c). Despite the low correlations, succession appeared to cause a 

significant amount of change in area of wet heath between 1987 and 1996. Percentage change 

lessened as the area of wet heath in a patch increased. That is, greater areas of wet heath in a 

patch were less susceptible to change. 

(a) (b) 

O. g 

Log area wet heath : scnib in edge, 1987 (units) 
(r2=o.12) 

Log area wet heath : scrub, 1987 (units) 
(r2 = 0.11) 

(C) 

m -3 • 

Log area wet heath : carr, 1987 (units) 
(r2 = 0.10) 

Fig. 4.23 Scatterplots of (a) log percentage change in area of wet heath, 1987-1996 against 

log ratio of area of wet heath to scrub in the edge of a patch, 1987; (b) log percentage change 

in area of wet heath, 1987-1996 against log ratio of area of wet heath to scrub, 1987; (c) log 

percentage change in area of wet heath, 1987-1996 against log ratio of area of wet heath to 

carr, 1987. 
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Table 4.15. Simple regression results for percentage change in area of wet heath versus 

Logged, patch-based explanatory 
variables df P f.2 Ho/Hi Relationship 

Area of wet heath ; scrub in a patch 1,41 0.0264 0.11 H\ Positive 

Area of wet heath : carr in a patch 1,41 0.0345 0.10 H\ Positive 
Area of wet heath : scrub in the edge 1,41 0.0224 0.12 Hi Positive 

4.7.6.3 Multiple regression for wet heath. 1987-1996 

Percentage change in area of wet heath was most highly correlated with the ratio of wet heath 

to scrub in the edge of a patch. The area of humid heath in a patch accounted for a significant 

part of the residuals (Table 4.16). In this case, the area of wet heath relative to the area of 

scrub in the edge of a patch influenced percentage change the most. Percentage change was 

significantly correlated with the area of humid heath when the ratio of wet heath to scrub in 

the edge was held constant. This may indicate changes between wet heath and humid heath. 

Rose et al, (1999) describe how dwarf shrub vegetation may switch between types. 

Table 4.16. Multiple regression for patch-based primary categories, 1987. 
Logged patch-based explanatory 
variables df P f2 

Area of wet heath : scrub in the edge 1,41 0.022 0.12 
-t- Area of humid heath in patch %40 0.011 &20 

4.7.6.4 Simple regression for humid heath. 1987-1996 

Percentage change in area of humid heath was correlated with thirteen explanatory variables 

(Table 4.17). Percentage change was most highly correlated with the area of humid heath in a 

patch (r^ = 0.20) and the area of humid heath in the edge of a patch (r^ = 0.20). Both 

relationships were positive and the converse of those hypothesised (Fig. 4.24a & Fig. 4.24b). 

However, percentage change was positively correlated with the density of humid heath in a 

patch (Fig. 4.24c). As hypothesised, percentage change decreased as density increased. This 

may be interpreted to mean that the less fragmented the area of humid heath, the less 

susceptible it was to change. Of the remaining significant relationships the inverse 

relationships between percentage change and area (or proportion) of invasive species (scrub 

and carr) were as hypothesised. However, several significant relationships were not as 

hypothesised including the shape of a patch and the density of humid heath in the edge of a 

patch. The relationships between percentage change and area of wet heath in a patch and the 

edge of a patch had not been hypothesised. Clearly, transitions between dwarf shrub 

vegetation types caused change. 
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(a) (b) 

Log area of humid heath, 1987 (units) 
{r2 = 0.20) 

o. 
CD 

Log area of humid heath in the edge of a patch, 1987 (units) 
(r2 = 0.20) 

(C) 

Log density of humid heath, 1987 (units) 
(r2 = 0.15) 

Fig. 4.24 Scatterplots of (a) log percentage change in area of humid heath, 1987-1996 against 

log area of humid heath, 1987; (b) log percentage change in area of humid heath, 1987-1996 

against log area of humid heath in the edge of a patch, 1987; (c) log percentage change in 

area of humid heath, 1987-1996 against log density of humid heath in the edge of a patch, 

1987. 
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Table 4.17. Simple regression for percentage change in area of humid heath versus patch-

Logged, patch-based explanatory 
variables df P y2 Ho/Hi Relationship 

Area of wet heath in a patch 1,40 0.0186 OJ^ Negative 
Area of humid heath in a patch 1,40 0.0033 0.20 Ho Negative 
Area of scrub in a patch 1,40 0.0309 0.11 Hi Negative 
Area of carr in a patch 1,40 0.0295 0.11 H\ Negative 

Density of humid heath in a patch 1,40 0.0108 0.15 H\ Positive 

Area of wet heath in the edge of a patch 1,40 0.0181 0.13 - Negative 
Area of humid heath in the edge of a patch 1,40 0.0030 0.20 Ho Negative 
Area of scrub in the edge of a patch 1,40 0.0301 0.11 H\ Negative 

Area of carr in the edge of a patch 1,40 0.0214 0J3 H\ Negative 

Density of humid heath in the edge 1,40 0.0117 0.15 Ho Negative 
Area of humid heath ; carr in the edge 1,40 0,029 0.11 H\ Positive 

4.7.6.5 Multiple regression for humid heath. 1987-1996 

Multiple regression (in which the Ho variables were excluded) reduced the number of 

significant relationships considerably (Table 4.18). Percentage change in area of humid heath 

was most highly correlated with the density of humid heath in a patch. The density of 

woodland accounted for a significant part of the residuals with the ratio of area of humid 

heath to carr accounted for a significant part of the remainder. Finally, the area of scrub in the 

edge of a patch accounted for a significant part of the remaining remainder. Percentage 

change was correlated with the density of woodland when the effect of density of humid 

heath was held constant. Therefore, fragmentation, both of the coverage of humid heathland 

or the woodland, caused change. When the effect of fragmentation was removed, the ratio of 

area of humid heath to carr and scrub in the edge of a patch were significant. The multiple 

regression equation could be used for prediction. However, the prediction may not be 

accurate because of the small coefficient of determination (r^ = 0.35). The equation is as 

follows: 

Log (percentage change) = 4.4 + 0.5 log (density of humid heath) + 4.2 log (density of 

woodland) + 0.1 log (ratio of area of humid heath to carr in the 

edge of a patch) + 0.1 log (area of scrub in the edge of a patch) 

Table 4.18. Multiple regression for patch-based primary categories, 1987 
Logged patch-based explanatory variables df P j.2 

Density of humid heath in patch 1,40 0.010 0.15 
+ Density of woodland in patch 2,39 0103 a 2 6 
+ Area of humid heath : carr in the edge 3,38 0.002 0.31 
+ Area of scrub in the edge 4,37 0.003 &35 
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4.7.6.6 Simple regression for peatland. 1987-1996 

Finally, percentage change in area of peatland was correlated with each explanatory variable 

(Table 4.19). The variable most highly correlated with percentage change was the ratio of 

area of peatland to carr in a patch (r^ = 0.39). The positive relationship was as hypothesised: 

percentage change decreased as the area of peatland in a patch increased relative to the area 

of carr (Fig. 4.25a). Percentage change was also significantly and negatively correlated with 

area of carr (Fig. 4.25b). As hypothesised, the greater the area of carr in a patch, the greater 

the percentage change in area of peatland. Percentage change was similarly inversely related 

with the area of carr in the edge of a patch (Fig. 4.25c). Consistently, carr appeared to be the 

invasive species type which caused most change in area of peatland. 

(a) (b) 

Log area peatland : carr in a patch, 1987 (units) 
(r2 = 0.39) 

- 6 • 

Log area of carr in a patch, 1987 (units) 
(r2 = 0.15) 

(C) 

Log area of carr in edge of a patch, 1987 (units) 
(r2 = 0.13) 

Fig. 4.25 Scatterplots of (a) log percentage change in area of peatland, 1987-1996 against log 

ratio of area of peatland to carr, 1987; (b) log percentage change in area of peatland, 1987-

1996 against log area of carr, 1987; (c) log percentage change in area of peatland, 1987-1996 

against log area of carr in the edge of a patch, 1987. 
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Table 4.19. Simple regression for percentage change in area of peatland versus patch-based 

Logged, patch-based explanatory 
variables df P j2 Ho! 

Hi 
Relationship 

Area of carr in a patch 1,37 0.0135 0.15 Hi Negative 

Area of carr in the edge of a patch 1,37 0.0208 0.13 Hi Negative 

Area of peatland ; carr in a patch 1,37 2.16e-05 039 Hi Positive 

4.7.6.7 Multiple regression for peatland. 1987-1996 

Percentage change in area of peatland was most highly correlated with the ratio of area of 

peatland to carr in a patch (Table 4.20). The density of peatland in the edge of a patch 

accounted for a significant part of the residuals. The area of peatland relative to the area of 

carr in a patch influenced change. When held constant, the density of peatland in the edge of 

a patch, or the degree of fragmentation of the edge of a patch, also influenced change. Again, 

the multiple regression equation could be used for predictive purposes. The relatively large 

coefficient of determination indicates that this can account for 48% of the variation in 

percentage change in area of peatland. However, the equation should be used with caution. 

The multiple regression equation is as follows: 

Log (percentage change) 0.4 + 0.5 log (ratio of area of peatland to carr in a patch) + 0.5 

log (density of peatland in the edge of a patch) 

Logged patch-based explanatory 
df variables df P f2 

Area of peatland : carr 1,37 2.16e-05 0 3 9 
+ Density of peatland in the edge %36 8.70e-06 0.48 

4.7.7 Regression results for the secondary categories, 1987-1996 

There were no significant simple regression results when percentage change in area of dwarf 

shrub vegetation was regressed against each of the explanatory variables at the secondary 

category level. This was most likely the result of a low signal-to-noise ratio. 
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4.8 Summary and discussion 

It was hypothesised that percentage change was influenced by several factors and these 

factors formed a list of explanatory variables (see Chapter 3, 3.5.2). Initially, areal change in 

dwarf shrub vegetation, invasive species and 'others' (i.e., land use change) were examined. 

Between 1978 and 1987 the area of dwarf shrub vegetation decreased by 532 km^. The most 

likely cause of the decline was land use change (the area of 'others' increased by 417 km^). 

The area of grassland (344 km^), agriculture (138 km^) and houses and gardens (144 km^) 

increased substantially. The area of invasive species rose by 119 km^ indicating that some of 

the decline in area of dwarf shrub vegetation may have resulted from succession. 

Between 1987 and 1996 the area of dwarf shrub vegetation continued to decrease (- 756 

km2). However, the area of 'others' also decreased substantially (- 698 km^). In contrast, the 

area of invasive species increased by 1,454 km^. Despite the apparent reversal of the trend 

towards an increase in changes in land use, the area of grassland continued to increase (332 

km^), but the area of agriculture (- 373 km^) and houses and gardens (- 237 km^) decreased 

(although the fall in area of houses and gardens cannot be readily accounted for). 

It is clear that area of dwarf shrub vegetation was declining rapidly. Between 1978 and 1987 

the major cause of the decline was change in land use. Between 1987 and 1996 succession 

was the major cause of change. Land use change, unlike succession, can occur anywhere, 

irrespective of initial land cover or land use type. The reasons for the apparent decrease in 

land use change between 1987 and 1996 were not clear. One possible explanation is that 

legislation protecting the heaths implemented in the mid 1980s (in particular, changes in the 

European Agricultural Policy whereby land was set aside from agricultural production 

(Veitch et al., 1995)), may have protected the dwarf shrub vegetation from land use change. 

Despite the decline in area lost due to changing land use between 1987 and 1996, the 

substantial increase in area of invasive species meant that the area of dwarf shrub vegetation 

lost between 1987 and 1996 exceeded that lost between 1978 and 1987. 

Simple regression resulted in several significant variables accounting for percentage change. 

The analysis appeared to support several of the initial hypotheses that percentage change was 

influenced by several variables including the initial area of dwarf shrub vegetation in a patch 

(Table 4.21). However, the coefficients of determination were often quite small. 

The regression results may be divided into three (Table 4.21). Firstly, percentage change (at 

both the aggregated primary and primary levels) was in several cases significantly related 

with the density of dwarf shrub vegetation (or dwarf shrub vegetation type) in a patch, or the 

edge of a patch. Secondly, percentage change was in several cases significantly related with 
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Table 4.21 Summary of significant relationships from simple regression. * indicates that the 

hypothesis has been accepted 

to that hypothesised 

• indicates that the relationship is significant but was contrary 

Response variable: % change in Response variable: % change in heath Dry Wet Humid Peatland 
area of heath type Heath Heath Heath 
Explanatory variables Explanatory variables / / j Hi 

78- 87- 78- 87- 78- 87- 78- 87- 78- 87-
87 96 87 96 87 96 87 96 87 96 

1 Area of heath Area of dry heath 
Area of wet heath 
Area of humid heath 
Area of peatland 

• 

• • 

2. Area of invasive species • Area of scrub 
Area of carr 
Area of woodland 

* 

* 

* * 

* * 

3. Area of 'others' 
4. Density of heath * Density of dry heath 

Density of wet heath 
Density of humid heath 
Density of peatland 

* * 

5. Density of invasive species * Density of scrub 
Density of carr 
Density of woodland 

6. Density of 'others' 
7. Area of heath in edge * Area of dry heath in edge 

Area of wet heath in edge 
Area of humid heath in edge 
Area of peatland in edge 

• 

• • 

8. Area of invasive species in edge • Area of scrub in edge 
Area of carr in edge 
Area of woodland in edge 

A 
* 

* 
* 

* 

9. Area of 'others' in edge 
10. Patch context Patch context 
11. Density of heath in edge * Density of dry heath in edge 

Density of wet heath in edge 
Density of humid heath in edge 
Density of peatland in edge 

• 

* 4 
12. Density of invasive species in 
edge 

Density of scrub in edge of patch 
Density of carr in edge of patch 
Density of woodland in edge of patch 

13. Density of 'others' in edge 
Area of heathidry heath 
Area of heath:wet heath 
Area of heath:humid heath 
Area of heathipeatland 

14. Area of heath:invasive species Area of heath:scrub 
Areaofheathicarr 
Area of hea*h:woodland 

* * 

* * 

15. Area of heath:'others' 
Density heathrdry heath 
Density heath:wet heath 
Density heath:humid heath 
Density heath:peatland 
Density heath:dry headi in edge 
Density heath:wet headi in edge 
Density heath:humid heath in edge 
Density heath:peatland in edge 
Density heath:scrub 
Density heath:carr 
Density heath:wood]and • 

Density heath:scrub in edge 
Density heath:carr in edge 
Density heath:woodland in edge 
Area of heath:dry heath in edge 
Area of heath:wet heath in edge 
Area of heath:hiimid heath in edge 
Area of heath:peatland in edge 

16. Area of heathiarea of invasive Area of heatkscnib in edge * • •* 

species in edge Area of heathicarr in edge 
Area of heath: woodland in edge 

* 

17. Area of heath:area of others' in 
edge 
18. Area of a patch 
19. Length of the perimeter 
20. Shape of patch 
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the area of invasive species (or invasive species type) in a patch, or the edge of a patch. 

Thirdly, percentage change at the primary category level was significantly related with the 

ratio of area of dwarf shrub vegetation type to the area of invasive species type in a patch or 

in the edge of a patch. 

Density corresponds to the degree of within-patch fragmentation. It was hypothesised that the 

greater the density of dwarf shrub vegetation in a patch, the less susceptible a patch would be 

to change, and this appeared to be so. Further, the greater the density of dwarf shrub 

vegetation in the edge of a patch, the less likely it was for invasion to occur. Again, this 

hypothesis appeared to be supported. When the coverage of dwarf shrub vegetation in patch 

was not dense the patch was internally fragmented. An internally fragmented patch contains 

areas of invasive species (or 'others'), which may lead to increasing pressure from invasion 

from within the patch. The same is true of density of dwarf shrub vegetation in the edge of a 

patch. When the coverage of dwarf shrub vegetation in the edge of a patch is dense there are 

few areas of non-heathland species. Invasion can only occur in the presence of an available 

seed source. When a patch is not fragmented there are few such seed sources, making the 

patch less susceptible to change. 

The area of invasive species in a patch also influenced percentage change. Invasion, it was 

hypothesised, occurred from outside a patch. Therefore, edges would be expected to 

influence change, and this appeared to be so. The smaller the area of invasive species in the 

edge of a patch, the less the pressure from succession as the seed source is limited. The 

significance of the relationship between percentage change and the ratio of area of dwarf 

shrub vegetation to area of invasive species in the edge of a patch illustrated the constancy of 

the relationship between percentage change and the area of dwarf shrub vegetation and 

invasive species in a patch. Also, it implied that the establishment of species from the 

seedbank had little influence on change as succession appeared to depend on the area of 

invasive species in a patch or in the edge of a patch. 

Although several hypotheses were supported, several were also rejected. In particular, the 

effect of patch context on percentage change was rejected. It was hypothesised that context, 

or 'what surrounded a patch' would influence change. A Landsat TM image (see Chapter 3, 

3.3.2) provided the necessary contextual information. Context may not have proved 

significant for several reasons. First, the image may not have been classified accurately. 

Second, the patches may not reflect reality, and if this was so then context could not 

influence percentage change. 

Percentage change was consistently inversely correlated with the area of dwarf shrub 

vegetation type in a patch. Although the relationship was in many cases significant, it was the 

opposite of that hypothesised. Such inverse relationships may have resulted because the 
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larger the area of dwarf shrub vegetation type, the greater the chance that it is a patch itself 

(rather than a patch within a larger overall dwarf shrub vegetation patch), and hence the 

greater the chance of being surrounded by invasive species. 

Several significant relationships had not been hypothesised. In particular, the effect of each 

dwarf shrub vegetation type on percentage change in each other. For example, percentage 

change in area of dry heath (between 1978 and 1987) was significantly related with the ratio 

of area of dry heath to humid heath. This implied that the area of dry heath was related to the 

area of humid heath in some way. Climate change may cause fluctuations in area of each 

dwarf shrub vegetation type. For example, in a particularly wet year, the border between 

humid and dry heath may become blurred with dry heath in some circumstances becoming 

humid heath. This may account for such a relationship. Also, the gradient between what can 

be defined as dry heath and what can be defined as humid heath is not clear-cut especially as 

warm weather can dry out the more humid heaths out. Therefore, errors in the survey could 

also account for the relationship. 

Despite the areal analysis of change revealing that changing land use, particularly between 

1978 and 1987, appeared to cause change, multiple regression only once indicated that 

percentage change in area of dwarf shrub vegetation was significantly correlated with land 

use (the ratio of area of dwarf shrub vegetation to 'others'). It was clear from the maps (Figs. 

4.3-4.16) that changes in land use occurred across many patches and its influence could not 

be isolated and removed (see Appendix 4). If patches of heath are being turned to grassland 

then it is unreasonable to expect a significant ecological relationship between percentage 

change and the explanatory variables. The fact that 'others' did not prove significant when 

simple regression was carried out is because change between 1978 and 1987 is not related to 

the state of land use in 1978, that is, anthropogenic activity is not predictable. 

The often small coefficients of determination could also be the result of two patch related 

factors. First, it is reasonable that different patterns of change may exist for different patch 

sizes. However, an investigation of the relationship indicated this was not so (Appendix 5). 

Second, the patches may not have been an adequate reflection of reality. However, the patch-

based approach is itself flawed as all patches, irrespective of size are fragmented, that is, they 

are made of several patches, or even individual species. Perhaps a patch-based approach to 

examining change in the dwarf shrub vegetation should, in certain circumstances, be 

questioned. It is suggested that the patch-based analysis is too high-level or generalised and 

the focus should be brought in to examine change at a lower level (pixel-based analysis). 

It is clear that on a patch basis, the explanatory variables chosen to explain percentage 

change in area of dwarf shrub vegetation (or dwarf shrub vegetation type) produced 

coefficients of determination that were quite often small. This was probably the result of 
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noise due to the influence of 'others' and competition between dwarf shrub vegetation types. 

Despite the obvious influence of other factors (such as changes in land use and competition 

between heath species), the signal due to succession remained. 

4.9 Conclusion 

It was clear that change was occurring and for the area of dwarf shrub vegetation in a patch, 

change continued in the same direction towards a decline in area. Changing land use played a 

part in the decline particularly between 1978 and 1987 but between 1987 and 1996 its effect 

dwindled. Natural effects also caused change in area of dwarf shrub vegetation. The effect of 

succession appeared to increase over time. Despite the obvious influence of changing land 

use, the significance of the relationship between percentage change and area of invasive 

species remained clear. The coefficients of determination were often small, but this was the 

result of noise caused by factors such as changing land use, the effect of which could not be 

removed. 

It was hypothesised that several factors influenced percentage change in area of dwarf shrub 

vegetation. In particular, the density of dwarf shrub vegetation (and dwarf shrub vegetation 

type) in a patch and in the edge of a patch, area of invasive species (or invasive species type) 

in a patch and in the edge of a patch and the ratio of dwarf shrub vegetation to invasive 

species in a patch and in the edge of a patch had the greatest influence on percentage change. 

Several attempts to increase the coefficients of determination did not succeed. Despite the 

often small coefficients of determination, the relationship between percentage change, degree 

of fragmentation of the area of dwarf shrub vegetation in a patch and the area of invasive 

species in a patch was clear. 

In the next chapter, a pixel-based analysis is undertaken allowing comparisons between the 

patch-based and pixel-based approaches to be made. 
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CHAPTER 5 

PIXEL-BASED ANALYSIS 

5.1 Introduction 

In this chapter, a pixel-based perspective was taken. The rationale for taking a pixel-based 

approach was that it was reasonable that change occurred at a sub-patch level as patches are 

themselves internally fragmented. The analysis presented in this chapter comprises several 

stages. First, histograms of some of the data were plotted. Second, feature space plots were 

examined. Third, a spatial element was added by mapping change. Finally, a statistical model 

of change was developed using both simple regression and multiple regression modelling 

techniques. 

5.2 The pixel-based perspective 

As in the per-patch analysis, simple regression provided the basis for the per-pixel analysis 

(see Chapter 2, 2.4.3). The initial choice of explanatory variables altered, but remained 

determined by hypotheses based on ecological processes driving a dwarf shrub vegetation 

system. Indices of patch geometry and densities of vegetation types were no longer included. 

The explanatory variables were defined based on the properties identified as the most likely 

to influence percentage change in area of dwarf shrub vegetation (Chapter 2, 2.3.1). That is, 

variables were chosen because they were deemed of most ecological relevance and because it 

was hypothesised that each would have an effect on the percentage change in the area of 

dwarf shrub vegetation in a pixel. The explanatory variables tested hypotheses based on the 

area of individual and grouped species and ratios of area of dwarf shrub vegetation (or dwarf 

shrub vegetation type) to other vegetation types, and on percentage change in area of dwarf 

shrub vegetation over time (Table 5.1). Further, explanatory variables based on pixel context 

were selected. These were the density of invasive species surrounding a pixel and the 

distance a pixel lay from the edge. The area of invasive species in a moving window around a 

pixel was examined using kernel sizes ranging between 200 m and 800 m (see Appendix 6 

for the necessary code). Distance from the edge was calculated using a Euclidean distance 

GIS function. 
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Table 5.1 Hypotheses tested using explanatory variables. 

Heathland variables to test their influence on Hypotheses tested 
the process of succession 

1. Area of heath in pixel The greater the area of heath, the smaller the 
decrease in heath as a percentage over time 

2. Area of invasive species in pixel The greater the area of invasive species, the 
greater the decrease in heath as a percentage 
over time 

3. Ratio of area of heath to invasive species in 
pixel 

The greater the area of heath to invasive species, 
the smaller the decrease in heath as a percentage 
over time 

4. Density of invasive species surrounding a 
pixel (within a 200 m - 800 m radius) 

The greater the area of invasive species 
surrounding a pixel, the greater the pressure 
from succession resulting in increased 
percentage change 

5. Pixel context The greater the distance between a pixel and the 
edge, the less susceptible it is to change 

As in the per-patch analysis, the change of interest is ecological change, that is, change in 

area of dwarf shrub vegetation caused by ecological succession as opposed to change due to 

land use change and management practices. Therefore, only those pixels which either did not 

change or experienced a percentage decrease in area of dwarf shrub vegetation over time 

were included. To facilitate this, a small number of pixels which increased in area of dwarf 

shrub vegetation were removed. 

The initial step in the per-patch analysis was to examine change over time in the areal extent 

of dwarf shrub vegetation. As patches were based upon an amalgamation of pixels, an areal 

analysis of change was unnecessary as the results would be the same (see Chapter 4, 4.3). 

Therefore, the first stage in the per-pixel analysis was to examine histograms for each 

variable in turn. 

5.3 Summarising the data distributions 

Histograms for each aggregated primary category explanatory variable in each of 1978, 1987 

and 1996 were plotted. Several of these are shown in this section. By comparing histograms 

of the same variable but for different years, changes in the dispersion of data can be 

examined. Histograms for the primary categories are not given as the results were similar to 

those for the aggregated primary categories. 
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5.3.1 Histograms of the aggregated primary categories, 1978,1987 and 1996 

The majority of pixels contained a small area of dwarf shrub vegetation (under 10,000 m^) 

(Fig. 5.1a). However, a considerable number of pixels contained medium to large areas of 

dwarf shrub vegetation. In 1987, the histogram remained largely unaltered (Fig. 5.1b). The 

majority of pixels contained an area of dwarf shrub vegetation of under 10,000 m^. There 

was a reduction in the number of pixels containing medium to large areas of dwarf shrub 

vegetation from that in 1978. In 1996 there appeared to be little change with most pixels 

containing a small area of dwarf shrub vegetation (Fig. 5.1c). However, a considerable 

number of pixels contained an area of dwarf shrub vegetation in the region of 20,000 m^. 

Overall, it was clear that the area of dwarf shrub vegetation in a pixel tended to be small and 

there were relatively few cells whose entire areal extent was comprised of dwarf shrub 

vegetation. 
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Fig. 5.1 Histograms of (a) the area of dwarf shrub vegetation in a pixel, 1978 (m ); (b) the 

area of dwarf shrub vegetation in a pixel, 1987 (m^); (c) the area of dwarf shrub vegetation 

in a pixel, 1996 (m"); (d) the area of invasive species in a pixel, 1978 (m~); (e) the area of 

invasive species in a pixel, 1987 (m^); (f) the area of invasive species in a pixel, 1996 (m^). 
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The histogram of area of invasive species in a pixel in 1978 was plotted (Fig. 5. Id). The 

majority of pixels contained a small area of invasive species (under 10,000 m^). The 

frequency distribution of the areal extent of invasive species in 1987 was similar (Fig. 5.1e). 

However, in 1996 the distribution altered (Fig. 5. If). The majority of pixels contained less 

than 10,000 m^ of invasive species, but the number of pixels containing larger areas of 

invasive species rose considerably. 

In summary, the area of dwarf shrub vegetation in a pixel tended to be small but there were a 

considerable number of pixels in 1978 which contained larger areas of dwarf shrub 

vegetation. In 1987 and 1996, the number of pixels containing larger areas of dwarf shrub 

vegetation fell. The area of invasive species in a pixel remained constant between 1978 and 

1987 with most pixels containing a small area of invasive species. However, in 1996 the area 

of invasive species in a large number of pixels increased. Overall, percentage change in area 

of dwarf shrub vegetation in a pixel tended to be large with fewer small negative percentage 

changes. 

5.4 Feature space plots 

As in the per-patch analysis (Chapter 4, 4.5) percentage change in dwarf shrub vegetation, 

invasive species and 'others' in a pixel were plotted against each other. 

Percentage change in invasive species was plotted against percentage change in area of dwarf 

shrub vegetation (Fig. 5.2a). The area of invasive species increased and the area of dwarf 

shrub vegetation decreased in many pixels. Of course, not all the decline in area of dwarf 

shrub vegetation was caused by invasive species. This was clear from the analysis of areal 

change over time (Chapter 4. 4.3). The points above the line in Figure 5.2a are those in which 

invasive species probably contributed to their decline. When percentage change in area of 

'others' was plotted against percentage change in area of invasive species the result was as 

anticipated (Fig. 5.2b). Percentage change in area of 'others' appeared to cause little change 

in area of invasive species and vice versa. Finally, percentage change in area of 'others' was 

plotted against percentage change in area of dwarf shrub vegetation (Fig. 5.2c). Much of the 

decline in dwarf shrub vegetation appeared to be accounted for by increases in area of 

'others'. 

The analysis was repeated for percentage change in each aggregated primary category 

between 1987 and 1996. Initially, percentage change in area of invasive species was plotted 

against percentage change in area of dwarf shrub vegetation (Fig. 5.2d). It seemed that as the 

area of dwarf shrub vegetation decreased, the area of invasive species increased. Percentage 
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change in area of 'others' was plotted against percentage change in area of invasive species 

(Fig. 5.2e). Again, percentage change in area of both 'others' and invasive species had little 
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Fig. 5.2 Feature space plots of (a and d) percentage change in area of invasive species against 

percentage change in area of dwarf shrub vegetation (%); (b and e) percentage change in area 

of 'others' against percentage change in area of invasive species (%); (c and f) percentage 

change in area of 'others' against percentage change in area of dwarf shrub vegetation (%). 

effect on each other. Finally, percentage change in area of 'others' was plotted against 

percentage change in area of dwarf shrub vegetation (Fig. 5.2f). The plot indicated that 

changes in land use caused change in area of invasive species. 

In all, the feature space plots provided little insight into the mechanism of percentage change 

in area of dwarf shrub vegetation because of the large number of data plotted. 

5.5 Mapping change 

The data were considered in a spatial context with the aim of identifying spatial trends. By 

mapping change, change could be examined as part of a functioning landscape. 
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5.5.1 Mapping change between 1978 and 1987 

Percentage change in area of dwarf shrub vegetation between 1978 and 1987 was mapped on 

a pixel basis (Fig. 5.3). Although the area of dwarf shrub vegetation declined in many pixels, 

it was obvious that change was not uniform across the landscape. Using alternate thresholds 

(see Chapter 4, 4.6.1) produced a similar map (Fig. 5.4), although there was an increase in 

the number of pixels remapped as 'unchanged'. Again, there was no spatial structure to this 

change. 

5.5.2 Mapping change between 1987 and 1996 

Percentage change in area of dwarf shrub vegetation between 1987 and 1996 was mapped on 

a pixel basis (Fig. 5.5). Again, there was no spatial structure to the change. The alternative 

thresholds were applied but the result was similar (Fig. 5.6). The area of dwarf shrub 

vegetation declined in most pixels but change was not uniform across Dorset. 

5.5.3 Mapping change in the remaining aggregated primary categories 

Change in the area of invasive species between 1978 and 1987 was mapped (Fig. 5.7). Again, 

there was no apparent spatial structure to the change. When change between 1987 and 1996 

was mapped (Fig. 5.8) the outcome was similar. 

Similarly, when change in area of 'others' between 1978 and 1987 was mapped (Fig. 5.9) 

there was no discernible structure to the pattern of change. Percentage change in area of 

'others' between 1987 and 1996 (Fig. 5.10) was similar, that is percentage change was not 

uniform across Dorset. 

5.5.4 Mapping change in selected primary categories 

The primary categories which changed most between 1978 and 1987, and between 1987 and 

1996 (see Chapter 4, 4.3) were mapped (Figs. 5.11 - 5.16). First, the area of grassland in a 

pixel between 1978 and 1987 was mapped (Fig. 5.11). Many pixels remained unchanged 

(1,951) as very few pixels contained grassland. Of the pixels which did contain some 

grassland, change was not uniform. The map of change between 1987 and 1996 was similar 

(Fig. 5.12). There was no structure to change in pixels which contained grassland. 

Second, change in the areal extent of agriculture between 1978 and 1987 was mapped (Fig. 

5.13). Again, the majority of pixels did not contain areas of agriculture (2,596), and of those 

which did, change was not uniform. Change between 1987 and 1996 was mapped (Fig. 5.14). 

Again, the majority of pixels did not contain agriculture. The area of agriculture decreased in 

the vast majority of pixels but there was no structure to the change. 

108 



I I Decreased heath 

B No change 

H Increased heath 

A 

0 5km Mm 15km 

Fig. 5.3 Percentage change in area of heath in a pixel, 1978 -1987 
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Fig. 5.4 Percentage change in area of heath in a pixel, 1978 -1987 
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Fig. 5.5 Percentage change in area of heath in a pixel, 1987 -1996 
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Fig. 5.6 Percentage change in area of heath in a pixel, 1987 -1996 
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Fig. 5.7 Percentage change in area of invasive species in a pixel, 1978 -1987 
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Fig. 5.9 Percentage change in area of "others" in a pixel, 1978 -1987 
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Fig. 5.10 Percentage change in area of "others" in a pixel, 1987 -1996 
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Fig. 5.11 Percentage change in area of grassland in a pixel, 1978 -1987 
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Fig. 5.12 Percentage change in area of grassland in a pixel, 1987 -1996 
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Fig. 5.13 Percentage change in area of agriculture in a pixel, 1978 -1987 
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Fig. 5.14 Percentage change in area of agriculture in a pixel, 1987 -1996 
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Fig. 5.15 Percentage change in area of houses and gardens in a pixel, 1978 -1987 
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Fig. 5.16 Percentage change in area of houses and gardens in a pixel, 1987 -1996 



Finally, change in the area of houses and gardens between 1978 and 1987 was mapped (Fig. 

5.15). The majority of pixels did not contain any houses or gardens (2,831). There was no 

discernible structure to change in the pixels which did contain houses and gardens. The map 

of change between 1987 and 1996 (Fig. 5.16) was similar. 

Mapping change was an attempt to investigate temporal change spatially. It was clear that 

there was no spatial structure to the temporal change irrespective of whether change was 

mapped at the aggregated primary category level, or the primary category level. 

5.6 Bivariate analysis of change on a pixel-basis 

Simple regression was carried out at the aggregated primary, primary and secondary category 

levels. It was anticipated that simple regression would indicate which explanatory variables 

best accounted for percentage change. The explanatory variables chosen for model building 

were based upon variation in ecological processes in dwarf shrub vegetation described in 

Chapter 2 (section 2.4.1) and were similar to those explanatory variables used during the 

patch-based analyses of change (Chapter 3, Table 3.6) with the exception of those variables 

which described the density of vegetation and the geometry of a patch (see Chapter 3, Table 

3.7 for an example of the explanatory variables used for the pixel-based analysis). Further, as 

in the per-patch analysis, explanatory variables based on land use change and the relationship 

between dwarf shrub vegetation types were included in the analysis, although it had not been 

hypothesised that percentage change would be related with these variables as the analysis 

was concerned with natural change. Multiple regression analysis followed the simple 

regression analysis. 

5.6.1 In general 

As for the patch-based regression analysis (Chapter 4,4.6.1) it was necessary to ensure 

approximately linear bivariate relations between percentage change and each of the 

explanatory variables. To examine the linearity of the relationships between percentage 

change in area of dwarf shrub vegetation between 1978 and 1987 (the response variable) and 

the explanatory variables, bivariate distribution functions (scatterplots) were plotted. For 

example, when percentage change in area of dwarf shrub vegetation between 1978 and 1987 

was plotted against the area of dwarf shrub vegetation in a pixel (Fig. 5.17) it was evident 

that the relationship was not linear. Each %-axis variable was transformed in several ways 

(Chapter 4, Table 4.5) to ensure that each relation could be best approximated with a linear 

model. As in the patch-based analysis, the relation which was most linear resulted when both 

axes were logged. 

116 



10000 20000 30000 4 0000 

Area of heath, 1978 (square metres) 

Fig. 5.17 Scatterplot of percentage change in area of dwarf shrub vegetation in a pixel, 1978-

1987 against the area of dwarf shrub vegetation in a pixel, 1978 (m^). 

5.6.2 Regression for the aggregated primary categories, 1978-1987 

Simple regression was carried out to examine what relationship, if any, existed between 

percentage change in area of dwarf shrub vegetation and each explanatory variable (Table 

5.1). A confidence interval of 95% was used. Therefore, there was a 1:20 chance of a Type I 

error, that is an erroneous rejection of the null hypothesis (Ho)-

5.6.2.1 Simple regression for the aggregated primary categories. 1978- 1987 

Only one attribute accounted for a significan t amount of variation in percentage change in 

area of dwarf shrub vegetation between 197S and 1987 (Table 5.2). Percentage change was 

significantly correlated with area of dwarf shrub vegetation (r^ = 0.08). The area of dwarf 

shrub vegetation in a pixel was inversely related with percentage change which was the 

converse of the hypothesised relationship [H<S) (Fig. 5.18). As the area of dwarf shrub 

vegetation in a pixel increased, so did percentage change. Multiple regression was not carried 

out because of the small coefficient of determination and because the single significant 

relationship was not as hypothesised. 

Table 5.2. Simple regression for percentage change in area of heath versus pixel-based 

aggregated primary categories, 1978. Only the significant relationships are shown. 
Logged, pixel-based, explanatory 
variables df p ^2 HolH\ Relationship 

Area of heath in a pixel 1,2244 O 0.08 Hq Negative 
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Log of area of heath, 1978 (units) 
(r2 = 0.08) 

Fig. 5.18 Scatterplot of log percentage change in area of dwarf shrub vegetation in a pixel, 

1978-1987 against log area of dwarf shrub vegetation in a pixel, 1978. 

5.6.3 Regression for the aggregated primary categories, 1987 -1996 

Regression was carried out at the aggregated primary category level, followed by the primary 

and secondary category levels 

5.6.3.1 Simple regression for the aggregated primary categories. 1987 - 1996 

Simple regression resulted in two attributes accounted for significant amounts of variation in 

percentage change in area of dwarf shrub vegetation between 1987 and 1996 (Table 5.3). 

Area of dwarf shrub vegetation in a pixel was most highly correlated with percentage change 

(r2 = 0.47). The inverse relationship was contrary to that hypothesised (Fig. 5.19a). The 

inverse relationship between percentage change and area of invasive species in a pixel was as 

hypothesised (Fig. 5.19b) (r^ = 0.11). 

Table 5.3. Simple regression for percentage change in area of heath versus pixel-based 

Logged, pixel-based, explanatory 
variables df P Ho/Hi Relationship 

Area of heath in a pixel 1,2537 0 0.47 Ho Negative 

Area of invasive species in a pixel 1,2537 0 0.11 Negative 
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Fig. 5.19 Scatterplots of (a) log percentage change in area of dwarf shrub vegetation, 1987-

1996 against log area of dwarf shrub vegetation in a pixel, 1987; (b) log percentage change in 

area of dwarf shrub vegetation, 1987-1996 against log area of invasive species in a pixel, 

1987. 

5.6.3.2 Multiple regression for the aggregated primary categories, 1987 - 1996 

Percentage change in area of dwarf shrub vegetation between 1987 and 1996 was 

significantly correlated with area of dwarf shrub vegetation in a pixel (r^ = 0.47), but the 

other explanatory variables could not adequately account for any variation in percentage 

change when the influence of area was held constant. 

5.7 An alternative analysis 

It became clear that the regression analysis outlined above was flawed. Based on current 

understanding of dwarf shrub vegetation dynamics in a fragmented environment, it was not 

reasonable that as area of dwarf shrub vegetation increased, percentage change increased. 

The inverse relationship continued when regression was carried out at the primary category 

level. In fact, the coefficients of determination increased. For example, area of wet heath 

accounted for 80% of the variation in percentage change in area of wet heath between 1987 

and 1996. However, the relationship between percentage change and area remained negative. 

Therefore, the regression results indicated that something was not quite right, which led to an 

in-depth analysis of the data. The data were examined to isolate any likely causal factors of 

the highly correlated and negative relationship between percentage change and area. 

The first step taken involved plotting the data. When the log of percentage change was 

plotted against the log of area of dwarf shrub vegetation in a pixel, it became clear that using 
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a logarithmic transformation of the data caused problems. Smaller areas of dwarf shrub 

vegetation were less likely to decrease in area than their larger counterparts because 

vegetation was scored on a scale between zero and three. An area of dwarf shrub vegetation 

of 2,000 m^, the smallest area possible, could only remain unaltered or decrease by 100% (as 

increases were not included in the regression analysis). The small areas of dwarf shrub 

vegetation could only remain unchanged or disappear completely where other areas (for 

example, from 4,000 m^ to 40,000 m^) had the freedom to change. 

There were many small areas of dwarf shrub vegetation which could only change by 0% or 

100%. When such data were log transformed they remained unaltered. However, when the 

other, larger areas of dwarf shrub vegetation were log transformed the mean varied as it had 

the freedom to change. This led to bias in the regression relations causing the large 

coefficients of determination. Further, the initial premise of the first Dorset Heathland Survey 

was that only pixels containing dwarf shrub vegetation were to be surveyed. Over time (for 

example, in 1987), it was likely that at least a small area of the dwarf shrub vegetation 

originally surveyed would remain. As dwarf shrub vegetation was being surveyed, the 

remaining area, irrespective of size, would be recorded. Therefore, the surveys in 1987 and 

1996 may have been biased. 

These two notions gave rise to an investigation of the data. Area of dwarf shrub vegetation in 

1978, 1987 and 1996 was grouped into areas of varying size and percentage change in each 

of the groups examined (Table 5.4). It was clear that the suspected bias appeared to be true. 

The smallest areas of dwarf shrub vegetation were less likely to decline as the majority of 

pixels contained smaller areas of dwarf shrub vegetation. 

Table 5.4 Percentage change in pixels containing various areas of dwarf shrub vegetation in 

1978. 

Area of dwarf shrub vegetation in a pixel (m^) Percentage Area of dwarf shrub vegetation in a pixel (m^) 
decrease (%) 

0 - 3,000 m2 18 

3,000 - 5,000 m2 91 

5,000 - 10,000 m2 54 

10,000 - 40,000 m2 75 

The analysis was repeated for the 1987 data (Table 5.5). However, smaller areas were 

inclined to change as much as middle sized areas, although larger areas of dwarf shrub 

vegetation changed considerably more than their smaller counterparts. Although there 

appeared to be little bias in the data, the problems caused by log transforming the smallest 

areas of dwarf shrub vegetation remained (such data could only change by 0% or 100% and, 

therefore, did not have the freedom to change when logged). To remove the effect of the 
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logarithmic transformation of the data any pixels containing an area of dwarf shrub 

vegetation of 3,000 m^ or less in in 1978 and 1987 were removed and the regression analysis 

repeated. A threshold of 3,000 m^ was used to isolate pixels with 2,000 m^ which introduced 

the bias. This ensured the regressions were consistent throughout the analysis. 

Table 5.5 Percentage change in pixels containing various areas of dwarf shrub vegetation in 

1987. 

Area of dwarf shrub vegetation in a pixel (m^) Percentage Area of dwarf shrub vegetation in a pixel (m^) 
decrease (%) 

0 - 3,000 nfi 45 

3,000 - 5,000 m2 49 

5,000 - 10,000 m2 44 

10,000 - 40,000 m2 71 

5.7.1 Regression for the aggregated primary categories, 1978 -1987 

Simple regression was carried out using the new data, with the areas of less than 3,000 m^ 

removed. In all cases, both axes were log transformed. As a large number of data were 

analysed (in excess of 1,700 pixels on occasion) at the 95% confidence interval, a coefficient 

of determination in excess of 0.02 was statistically significant (because of the large number 

of data: Webster & Oliver, (1990) pp 82). Although such a small coefficient of determination 

was statistically significant, in reality it could not be used for predictive purposes. Regression 

analysis was carried out at the aggregated primary category level, followed by the primary 

and secondary category levels. 

5.7.1.1 Simple regression for the aggregated primary categories. 1978 - 1987 

Percentage change in area of dwarf shrub vegetation between 1978 and 1987 was correlated 

with a single variable. The area of dwarf shrub vegetation in a pixel accounted for 2% of the 

variation in percentage change (Table 5.6). The inverse relationship was not as hypothesised: 

as area increased, percentage change increased (Fig. 5.20). Again, the relationship was not in 

the hypothesised direction, despite the bias having been removed. Multiple regression was 

not carried out as a result of the small coefficients of determination. 

Table 5.6. Simple regression for percentage change in area of dwarf shrub vegetation versus 

Logged, pixel-based, explanatory 
variables df p J.2 HolH\ Relationship 

Area of heath in a pixel 1, 1779 2.8e-10 0.02 Ho Negative 
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Fig. 5.20 Scatterplot of log percentage change in area of dwarf shrub vegetation, 1978-1987 

against log area of dwarf shrub vegetation (> 3,000 m^) in a pixel, 1978. 

5.7.2 Regression for the primary categories, 1978 -1987 

Simple regression was carried out at the aggregated primary category level in 1978 with the 

aim of accounting for percentage change in area of dry heath, humid heath, wet heath and 

peatland in turn. 

5.7.2.1 Simple regression for area of drv heath, 1978 - 1987 

Simple regression resulted in two variables accounting for some variation in percentage 

change in area of dry heath between 1978 and 1987 (Table 5.8). Area of dry heath in a pixel 

and distance each accounted for 2% of the variation in percentage change. As hypothesised, 

both were positively related with percentage change (Fig. 5.21a and Fig. 5.21b). The 

relationships indicated that greater areas of dry heath in a pixel are less susceptible to change 

than smaller areas. Also, pixels towards the centre of a cluster are less easily invaded, 

probably because such pixels tend to be surrounded by a greater area of dwarf shrub 

vegetation. As in the aggregated primary category analysis, the coefficients of determination 

remained small and, therefore, multiple regression was not carried out. However, the 

relationships were in the right direction. 

Table 5.8. Simple regression for percentage change in area of dry heath versus pixel-based 

Logged, pixel-based, explanatory 
variables df P HolHi Relationship 

Area of dry heath in a pixel L973 3.3e-06 0.02 H\ Positive 
Distance from edge 1,973 7.0e-06 0.02 H\ Positive 
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Fig. 5.21 Scatterplots of (a) log percentage change in area of dry heath, 1978-1987 against 

log area of dry heath (> 3,000 m^) in a pixel, 1978; (b) log percentage change in area of dry 

heath, 1978-1987 against log distance from the edge, 1978. 

5.7.2.2 Simple regression for area of wet heath. 1978 - 1987 

No variable was significantly correlated with percentage change in area of wet heath between 

1978 and 1987. 

5.7.2.3 Simple regression for area of humid heath. 1978 - 1987 

Percentage change in area of humid heath in a pixel was correlated with two variables (Table 

5.9). The area of grassland in a pixel accounted for 2% of the variation in percentage change 

and the area of houses and gardens in a pixel accounted for 3% of the variation. Area of 

grassland was negatively related with percentage change (Fig. 5.22a), as was the area of 

houses and gardens in a pixel (Fig. 5.22b). That is, as area increased, percentage change 

increased. Neither relationship had been hypothesised simply because land use change is not 

readily predicted. Again, multiple regression was not carried out. 

Table 5.9. Simple regression for percentage change in area of humid heath versus pixel-based 

Logged, pixel-based, explanatory 
df variables df P HolH\ Relationship 

Area of grassland in a pixel L563 0 0.02 Negative 
Area of houses and gardens in a pixel 1,563 0 (103 Negative 
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Fig. 5.22 Scatterplots of (a) log percentage change in area of humid heath, 1978-1987 against 

log area of grassland in a pixel in a pixel, 1978; (b) log percentage change in area of humid 

heath, 1978-1987 against log area of houses and gardens in a pixel, 1978. 

5.7.2.4 Simple regression for area of peatland. 1978 - 1987 

Simple regression resulted in six attributes accounting for some variation in percentage 

change in area of peatland between 1978 and 1987 (Table 5.10). As hypothesised, percentage 

change was positively correlated with the area of peatland in a pixel (r^ = 0.02) (Fig. 5.23a). 

The relationship between percentage change and the remaining variables had not been 

hypothesised. Percentage change was inversely correlated with area of grassland (r^ = 0.05) 

(Fig. 5.23b) and with area of agriculture in a pixel (r^ = 0.04) (Fig. 5.23c). The ratio of area 

of peatland to wet heath, the ratio of area of peatland to humid heath and the ratio of area of 

peatland to dry heath in a pixel also accounted for some variation in percentage change. 

Percentage change was negatively correlated with the ratio of area of peatland to wet heath 

and the ratio of area of peatland to humid heath (Fig. 5.23d and Fig. 5.23e). As the area of 

peatland increased relative to both the area of wet heath and humid heath in a pixel, 

percentage change increased. Such relationships were the likely result of the influence of 

climatic factors on the various dwarf shrub vegetation types (see Chapter 4, 4.7.3.1). In 

contrast, the relationship between percentage change and the ratio of area of peatland to dry 

heath was positive (Fig. 5.23f). Percentage change decreased as the area of peatland relative 

to the area of dry heath increased. Again, multiple regression analysis was deemed 

unnecessary because of the small coefficients of determination. 
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Fig. 5.23 Scatterplots of (a) log percentage change in area of peatland, 1978-1987 against log 

area of peatland (> 3,000 m^) in a pixel, 1978; (b) log percentage change in area of peatland, 

1978-1987 against log area of grassland in a pixel, 1978; (c) log percentage change in area of 

peatland, 1978-1987 against log area of agriculture in a pixel, 1978; (d) log percentage 

change in area of peatland, 1978-1987 against log ratio of area of peatland to wet heath in a 

pixel, 1978; (e) log percentage change in area of peadand, 1978-1987 against log ratio of area 

of peatland to humid heath in a pixel, 1978; (f) log percentage change in area of peatland, 

1978-1987 against log ratio of area of peatland to dry heath in a pixel, 1978. 
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Table 5.10. Simple regression for percentage change in area of peatland versus pixel-based 

aggregated primary categories, 1978. 
Logged, pixel-based, explanatory 
variables df P r2 HolHi Relationship 

Area of peatland in a pixel 1,237 0.023 0.02 Hi Positive 
Area of grassland in a pixel 1,237 0.000 0.05 - Negative 
Area of agriculture in a pixel 1,237 0.003 0.04 - Negative 
Area of peatland : wet heath in a pixel 1,237 0.005 0.03 - Negative 
Area of peatland : hum.id heath in a 1,237 0.025 0.02 - Negative 
pixel 
Area of peatland : dry heath in a pixel 1,237 0.014 0.02 - Positive 

5.7.3 Regression for the aggregated primary categories, 1987 -1996 

Regression analysis was carried out at the aggregated primary category level, followed by the 

primary and secondary category levels. 

5.7.3.1 Simple regression for the as ere sated primary categories. 1987 - 1996 

The ratio of area of dwarf shrub vegetation to invasive species in pixel accounted for 3% of 

the variation in percentage change in area off dwarf shrub vegetation between 1987 and 1996 

(Table 5.11). The inverse relationship was unexpected (Fig. 5.24). It had been hypothesised 

that as area of dwarf shrub vegetation increased, percentage change declined. Further, it is 

clear from Figure 5.24 that the relationship violates several regression assumptions. For 

example, neither the data nor the residuals are normally distributed. Again, multiple 

regression was not carried out as a result of the small coefficients of determination. 

Log of area of healf i : invasive species, 1987 (units) 
(r2 = 0.03) 

Fig. 5.24 Scatterplot of log area of dwarf shrub vegetation, 1987-1996 against log ratio of 

area of dwarf shrub vegetation to invasive species in a pixel, 1987. 
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Table 5.11. Simple regression for percentage change in area of dwarf shrub vegetation versus 

Logged, pixel-based, explanatory 
variables df p r2 Ho/Hi Relationship 

Area of heath : invasive species in a 1, 1372 7.5e-10 0.03 Ho Negative 
pixel 

Negative 

5.7.4 Regression for the primary categories, 1987 - 1996 

Simple regression was carried out to account for percentage change in area of dry heath, wet 

heath, humid heath and peatland in turn. However, no variable was significantly correlated 

with percentage change in area of dry heath, wet heath and humid heath in a pixel between 

1987 and 1996. 

5.7.4.1 Simple regression for area of peatland. 1987 - 1996 

Percentage change was correlated with a single variable (Table 5.12). The area of peatland in 

a pixel accounted for 3% of the variation in percentage change. The relationship was as 

hypothesised (Fig. 5.25). As area increased, percentage change decreased. 
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Fig. 5.25 Scatterplot of log percentage change in area of peatland, 1987-1996 against log area 

of peatland (> 3,000 m^) in a pixel, 1987. 

Table 5.12. Simple regression results for percentage change in area of heath versus pixel-

Logged, pixel-based, explanatory 
df P variables df P 7-2 HolH\ Relationship 

Area of peatland in a pixel L2a3 &003 0.03 H\ Negative 
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5.8 Summary and discussion 

It was hypothesised that spatial characteristics affect vegetation change at the sub-patch level 

(in this case the pixel level) as patches are likely to be internally fragmented and the 

processes which result in areal change in dwarf shrub vegetation may, therefore, occur at the 

sub-patch level. 

Heathland management, land use change and succession were the three processes in action in 

the lowland heathland of Dorset. The effects of management were partly removed by 

isolating percentage increases in dwarf shrub vegetation and removing them. However, the 

effect of land use change could not be isolated, nor readily predicted. This research was 

primarily focused on the factors which influenced ecological change and whether spatial 

characteristics can predict change. It was hypothesised that several factors influenced 

percentage change (Chapter 2, 2.3.1). Such factors included, the initial area of dwarf shrub 

vegetation (or dwarf shrub vegetation type) in a pixel, the initial area of invasive species (or 

invasive species type) in a pixel, context (the distance a pixel lay from the edge) and density 

of invasive species surrounding a pixel. Factors such as patch geometry (size, shape and 

perimeter) could not influence change as a pixel is of fixed size and shape, in this case a cell 

of 200 m by 200 m 

To test the new set of hypotheses (see Chapter 3, Table 3.7), several analyses were carried 

out. Histograms of the data were examined, feature space plots were developed to indicate 

what dwarf shrub vegetation (and the other aggregated primary categories) were changing to. 

Percentage change in the aggregated primary and a selection of primary categories was 

mapped. Finally, regression (both simple and multiple) was carried out with the specific aim 

of isolating what factors, if any, influence change in area of dwarf shrub vegetation over 

time. 

The areal analysis of change (Chapter 4, 4.3.1) indicated that change was occurring. Land use 

change appeared the dominant process causing change in area of dwarf shrub vegetation 

between 1978 and 1987 with succession also playing a lesser role. The roles reversed 

between 1987 and 1996. However, it was not clear what the dwarf shrub vegetation was 

changing to. Percentage change in area of invasive species was plotted against percentage 

change in area of dwarf shrub vegetation to examine what was replacing dwarf shrub 

vegetation. Percentage change in area of 'others' was also plotted against percentage change 

in area of dwarf shrub vegetation for the same reason. Both invasive species and land use 

change were replacing the declining areas of dwarf shrub vegetation. This trend occurred 

between 1978 and 1987. However, between 1987 and 1996 an increase in invasive species 

appeared to cause most of the decreases in area of dwarf shrub vegetation. 
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Regression was the method chosen to isolate the factors influencing the patterns of change 

identified previously. Percentage change in area of dwarf shrub vegetation between 1978 and 

1987 was negatively correlated with area of dwarf shrub vegetation in a pixel in 1978. As the 

area of dwarf shrub vegetation in a pixel increased so did percentage change. Simple 

regression at the primary category level produced similar results. Percentage change in area 

of dwarf shrub vegetation between 1987 and 1996 was also negatively correlated with area of 

dwarf shrub vegetation (r^ = 0.47). At the primary category level, percentage change was 

consistently negatively correlated with area. Therefore, simple regression analysis appeared 

overwhelmingly to indicate that on a pixel basis, the greater the areal extent of dwarf shrub 

vegetation (or dwarf shrub vegetation type), the greater the percentage change over time. 

There was no ecological basis for the negative relationship between percentage change and 

area. Therefore, the data were analysed in an attempt to discover the cause of such a 

relationship. The smallest possible area of dwarf shrub vegetation in a pixel was 2,000 m^ 

based on the use of a scale of between zero and three to account for presence or absence of a 

vegetation type during surveying. An investigation of the data indicated that log transforming 

the data affected small areas (which could only change by 0% or 100%) differently to larger 

areas, thus biasing the analysis and resulting in the negative relationship between percentage 

change and area. Therefore, pixels containing areas of dwarf shrub vegetation of 3,000 m^ or 

less were removed and the regression analysis repeated. Simple regression analysis on the 

alternate data at the primary category level indicated that percentage change in area of dry 

heath in a pixel between 1978 and 1987 was positively correlated with area of dry heath in a 

pixel (Table 5.12). Although the relationship was now positive and therefore, as 

hypothesised, the coefficient of determination fell from 0.34 to 0.02. 

Simple regression to examine percentage change between 1987 and 1996 at the aggregated 

primary category level and at the primary category level produced similar results. Because of 

the large number of data used in the analysis, a coefficient of determination of 0.02 was 

statistically significant. However, such small coefficients of determination are not useful as 

predictors of change. Further, as a 95% confidence interval was used, to reject the null 

hypothesis (Ho) that a statistically significant relationship did not occur through chance, 

more than four relationships (at the aggregated primary category level and more than two at 

the primary category level) were required to be significant. This was often not the case. 

Therefore, it was not always possible to reject the null hypothesis. That is, the few 

statistically significant relationships which did occur, may have been the result of chance. 

It is reasonable to conclude that despite the small coefficients of determination, percentage 

change in area of dwarf shrub vegetation is not well accounted for by any of the variables 

used in the analysis. 
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Table 5.12 Summary of relationships from simple regression. * indicates that the hypothesis 

Response variable: Response variable: % change Dry Wet Humid Peatland 
% change in area of heath in heath type Heath Heath Heath 
Explanatory variables Hi Hi Explanatory variables Hi Hi Hi Hi Hi Hi Hi Hi 

78- 87- 78- 87- 78- 87- 78- 87- 78- 87-
87 96 87 96 87 96 87 96 87 96 

1. Area of heath * Area of dry heath 
Area of wet heath 
Area of humid heath 
Area of peatland 

* 

* * 

2. Area of invasive species Area of scrub 
Area of can-
Area of woodland 

3. Area of 'others' 
4. Area of heath:invasive • Area of heathrscrub 
species Area of heathxarr 

Area of heath:woodland 
5. Area of heath : 'others' 

Area of heath:dry heath 
Area of heath: wet heath 
Area of heath:humid heath 
Area of heath;peatland 

6. Distance from edge Distance from edge * 
7. Managed Managed 

One hypothesis which did not prove significant and had been hypothesised to have a 

significant influence of percentage change was the density of invasive species surrounding a 

pixel. The per-patch analysis indicated there was a relationship between percentage change 

and area of invasive species. Therefore, the area of invasive species in a moving window 

around a pixel was examined. Despite altering the kernel size (it ranged between 200 m and 

800 m) no significant correlations resulted. Further, it had been hypothesised that the further 

a pixel lay from the edge, the less susceptible it was to change (as edge effects lessen with 

increasing distance from the edge). However, no significant relationship resulted. The lack of 

a significant relationship between percentage change and density of invasive species 

surrounding a pixel and the distance a pixel lay from the edge of a patch were probably a 

result of both noise (in particular, the effect of land use change) and the scale of the analysis. 

5.9 Conclusions 

The pixel-based analysis was undertaken as an alternative to the patch-based analysis. The 

signal (initially identified during the per-patch analysis) which indicated that several 

variables influenced change was still present. However, the relationships which were weak at 

the patch level were now insignificant at the pixel level. Initially, the per-pixel analysis had 

seemed a promising approach, the large coefficients of determination indicating strong 

relationships between percentage change and area. The alternate relationships produced much 

smaller coefficients of determination. However, percentage change decreased with increasing 
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area of dwarf shrub vegetation. In all, the pixel-based analysis did not result in a single 

significant predictive model. The small coefficients of determination are likely to be the 

result of the scale of the analysis. 
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CHAPTER 6 

ANALYSING FOR THE EFFECTS OF MANAGEMENT 

6.1 Introduction 

Heathland management maintains the range of heathland habitats required to support its 

characteristic flora and fauna including areas of bare ground and heathland grasses, gorse and 

scrub, wet heathland, valley mire and open water. Dwarf shrub vegetation must be actively 

managed to ensure that the full range of growth stages are present and to encourage them to 

regenerate successfully (see Chapter 2, 2.2.3). In the absence of management, lowland 

heathlands tend to be invaded by Pteridium aquilinum, scrub species such as Ulex europaeus, 

Betula spp., Pinus spp. and Rhododendron ponticum and are eventually replaced by woodland 

(Michael, 1992). Since 1987 many differing management practices have been implemented on 

the heathlands of Dorset (little management was carried out between 1978 and 1987). 

Therefore, the aim of this chapter is to establish what effect management practices had on the 

dwarf shrub vegetation of Dorset. It is reasonable to expect that some management practices 

are more effective than others, and these practices should be identified in order to aid the 

conservation of the heathlands. Since the Dorset Heathland Surveys were carried out in 1978, 

1987 and 1996, the management data were divided into two categories: management carried 

out between 1978 and 1987 and between 1987 and 1996. Thirteen different management 

practices were utilised: 

I. Gorse coppicing 2. Bracken cutting 

3. Foraged 4. Pine removal 

5. Bracken spraying 6. Grazing 

7. Scrub clearance 8. Sand patches created 

9. Rhododendron clearance 10. Heather re-establishment 

II . Controlled burning 12. Mowing 

13. Wild fire 

Although wildfire is not strictly a type of management, it was included because it results from 

anthropogenic activities and can substantially alter the ecology of a heathland environment. 

The most extensive heathland management projects did not commence until after the second 

Dorset Heathland Survey (1987) results were published, making the heathland managers 

aware of quite how precarious the survival of the heathlands had become. In particular, the 
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marked increase in scrub and trees between 1978 and 1987 (calculated in this research as a 9% 

increase) led to the implementation of large programmes of conservation management (Auld 

etal., 1992; Woodrow et al, 1996; Rose et al., 1999). 

Three processes were identified as being the likely cause of change in the heathlands of 

Dorset. Two of these have been investigated previously (land use change and succession), 

while the third process was heathland management. Although management did not result in 

natural ecological change, it was an important process, the effect of which has not previously 

been measured across all Dorset. 

Management acts in two ways: it arrests the process of succession leading to increases in the 

areal extent of dwarf shrub vegetation and it lessens the percentage decreases in area of dwarf 

shrub vegetation over time (Webb, 1990). Therefore, a distinction was drawn between natural 

ecological change (succession) which can lead to a decline in area of dwarf shrub vegetation 

and human-induced change (management) which may result in an increase in area of dwarf 

shrub vegetation. Initially, if the area of dwarf shrub vegetation in a patch or pixel increased 

as a percentage of initial area between 1978 and 1987 or between 1987 and 1996 then such 

patches or pixels were isolated and included in an analysis of the affect of management on 

area of dwarf shrub vegetation. It was hypothesised that management would result in 

percentage increases in area of dwarf shrub vegetation. 

A second analysis was carried out to examine the effect of management on percentage 

decreases in area of dwarf shrub vegetation. It was hypothesised that percentage decreases 

would lessen with increasing management. To facilitate both of these analyses, management 

data were obtained for the heathlands of Dorset in their entirety. The data were used to 

determine patches (and pixels) of dwarf shrub vegetation which have undergone human-

induced change between 1978 and 1996. It should be recognised that the data were not 

sampled randomly. Indeed, the areas which underwent management were likely to have been 

specifically chosen by heathland managers, thus biasing the data. Initially, a patch-based 

approach to analysing change was taken, followed by a pixel-based approach. In each case, 

the aggregated primary categories, primary categories and secondary categories were 

examined in turn. 

6.2 Summarising the data distributions 

Histograms of patch-based percentage decreases were plotted previously (Chapter 4, Fig. 

4.1a-i). Similarly, histograms of pixel-based percentage decreases have previously been 
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Fig. 6.1 Histograms of (a) area of a patch managed, 1978-1987 (m ); (b) area of a patch 

managed, 1987-1996 (m^); (c) percentage increases in area of dwarf shrub vegetation in a 

patch, 1978-1987 (%); (d) percentage increases in area of dwarf shrub vegetation in a patch, 

1987-1996 (%); (e) percentage increases in area of dwarf shrub vegetation in a pixel, 1978-

1987 (%); (f) percentage increases in area of dwarf shrub vegetation in a pixel, 1987-1996. 
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plotted (Chapter 5, Fig. 5.1a-i). Therefore, histograms of the patch- and pixel-based 

percentage increases were plotted. 

The area of dwarf shrub vegetation in patch that was managed between 1978 and 1987 was 

plotted (Fig. 6.1a). The vast majority of patches were not managed in any way. The areas 

which were managed tended to be small, the mean area managed being just 0.1 km^. 

However, between 1987 and 1996 the area managed increased (Fig. 6.1b). Again, the 

majority of patches were not managed but a considerable number were. The mean area of a 

patch managed between 1987 and 1996 was 0.3 km^. The area managed increased between 

1987 and 1996 largely because the area of dwarf shrub vegetation was in decline while the 

area of invasive species increased resulting in a rise in management activities. 

Histograms of percentage increases were also plotted. Initially, percentage change between 

1978 and 1987 was plotted (Fig. 6.1c). Where the area of dwarf shrub vegetation increased, it 

tended to be substantial. The area of dwarf shrub vegetation increased by about 100% in 

many patches (in which the area increased or remained unchanged), the mean percentage 

increase being 73.3%. However, many patches remained unchanged. Percentage change 

between 1987 and 1996 was similar (Fig. 6.Id). When the area of dwarf shrub vegetation 

increased, the increase tended to be large. Indeed, the area of dwarf shrub vegetation 

increased by 100% or more in many patches. The mean reflected this (94.9%). Fewer patches 

remained unchanged between 1987 and 1996 than between 1978 and 1987. 

Histograms of the area of a pixel managed were not plotted because a pixel was either 

managed as a whole or not at all. However, histograms of percentage change in area of dwarf 

shrub vegetation in a pixel were plotted (Fig. 6.1e-f). The pixel-based histograms reflected 

those outlined above (Fig. 6.1c-d) and therefore will not be described in any detail. Between 

1978 and 1987 and between 1987 and 1996 percentage increases tended to be substantial (in 

excess of 100%). 

6.3 Feature space plots 

Feature space plots of percentage decreases in area of dwarf shrub vegetation, invasive 

species and 'others' were plotted previously on a patch (Chapter 4, Fig. 4.2a-f) and pixel 

basis (Chapter 5, Fig. 5.2a-f). Therefore, feature space plots of patch-based increases were 

plotted. However, the pixel-based space plots are not illustrated because of their similarity 

with the patch-based feature space plots (Fig. 6.2a-f). 
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The patch-based plots indicated whether the percentage increases in area of dwarf shrub 

vegetation (in a patch) resulted from declining areas of invasive species (most likely the 

result of management) or fewer land use changes. Percentage change in area of invasive 

species was plotted against percentage change in area of dwarf shrub vegetation between 

1978 and 1987 (Fig, 6.2a). The area of invasive species decreased in the majority of patches 

in which the areal extent of dwarf shrub vegetation increased. Percentage change in area of 

'others' was plotted against percentage change in area of invasive species (Fig. 6.2b). Neither 

variable appeared to influence percentage change in the other. However, when percentage 

change in area of 'others' was plotted against percentage change in area of dwarf shrub 

vegetation, as the area of dwarf shrub vegetation increased, the area of 'others' decreased 

(Fig. 6.2c). The percentage increases in area of dwarf shrub vegetation tended to be quite 

large. Between 1978 and 1987 increased areal extent of dwarf shrub vegetation appeared to 

result from a reduction in the areal extent of both invasive species and 'others'. 
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Fig. 6.2 Feature space plots of (a and d) percentage change in area of invasive species against 

percentage change in area of dwarf shrub vegetation; (b and e) percentage change in area of 

'others' against percentage change in area of invasive species; (c and f) percentage change in 

area of 'others' against percentage change in area of dwarf shrub vegetation. 

The analysis was repeated to examine the likely cause of percentage increases in area of 

dwarf shmb vegetation between 1987 and 1996. The results reflected those outlined above 

(Figs 6.2a-c). Percentage decreases in area of invasive species appeared to account for 

percentage increases in the area of dwarf shmb vegetation (Fig. 6.2d). Indeed, the percentage 
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increases were, in many patches, large. Percentage change in area of 'others' did not appear 

to cause a decline in area of invasive species (Fig. 6.2e). However, as the area of 'others' 

decreased, the area of dwarf shrub vegetation appeared to increase in several patches (Fig. 

The area of dwarf shrub vegetation did not remain unchanged or increase in many patches 

(fifty between 1978 and 1987 and thirty one between 1987 and 1996). The main difference 

between causes of change between 1978 and 1987 and between 1987 and 1996 was the 

influence of 'others' and invasive species. Between 1978 and 1987, changing land use 

appeared to influence percentage increases in area of dwarf shrub vegetation more than 

changing area of invasive species. The opposite appeared to be true between 1987 and 1996. 

Although it had been hypothesised that management would account for any percentage 

increases in area of dwarf shrub vegetation over time, the process of change appeared to be 

more complicated with changing land use playing a role. 

6.4 The area over which dwarf shrub vegetation was managed 

The area of management in Dorset was mapped. Managed pixels, rather than patches, were 

mapped to indicate just how few areas of dwarf shrub vegetation were actively managed. 

Gorse coppicing, bracken spraying and cutting, pine removal and scrub clearance were the 

most common forms of management practice. However, foraging, rhododendron clearance, 

burning, grazing, heather re-establishment and mowing were also carried out. Initially, the 

area of dwarf shrub vegetation actively managed between 1978 and 1987 was mapped (Fig. 

6.3). Few areas were managed (299 pixels out of a possible 3,110) and of the areas that were, 

many different management practices were used. Between 1987 and 1996, there was a 

substantial rise in the areal extent of management practices (399 pixels) (Fig. 6.4). The 

majority of patches or clusters of pixels were actively managed in some way. Scrub, pine and 

bracken control remained the most common management practices. 

6.5 Bivariate analysis of change 

To examine the trends and patterns of change in the dwarf shrub vegetation of Dorset 

quantitatively, simple regression was used. Simple regression was carried out with the aim of 

isolating factors which influenced percentage increases and decreases in area of dwarf shrub 

vegetation. First, a patch-based analysis to examine the relationship between percentage 

increases and the explanatory variables was carried out. The analysis was repeated at a pixel 
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Fig. 6.3 Area of dwarf shrub vegetation managed in a patch, 1978 -1987 
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Fig. 6.4 Area of dwarf shrub vegetation managed in a patch, 1987 -1996 
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level. Second, a patch-based analysis to examine the relationship between percentage 

decreases and the explanatory variables was carried out. Again, the analysis was repeated at a 

pixel level. 

The patch-based analysis explanatory variables included the proportion of a patch managed, 

and the proportion of a patch which underwent different types of management (see Table 

6.1). It was hypothesised that the explanatory variables would account for percentage 

increases in area of dwarf shrub vegetation (or dwarf shrub vegetation type). That is, the 

greater the area managed, the greater the increase in area of dwarf shrub vegetation. There 

was one exception, wild fire can damage the dwarf shrub vegetation postponing the 

development of dwarf shrub vegetation (Bullock & Webb, 1995). 

The pixel-based explanatory variables (and, therefore, the hypotheses) were identical to those 

used for the patch-based analysis (Table 6.1). However, the area of a patch managed was not 

included. 

Table 6.1 Hypotheses tested using explanatory variables. 
Management variables to test their Hypotheses tested 
influence on percentage change 
1. Proportion managed The greater the proportion managed, the 

greater the percentage increase in area of 
dwarf shrub vegetation over time 

2. Proportion where gorse coppiced Ditto 
3. Proportion foraged Ditto 
4. Proportion where bracken sprayed Ditto 
5. Proportion where scrub cleared Ditto 
6. Proportion where rhododendron cleared Ditto 
7. Proportion which underwent controlled Ditto 
burning 
8. Proportion where wild fire took place The greater the area, the smaller the 

percentage increase in area of dwarf shrub 
vegetation over time 

9. Proportion where bracken cutting took The greater the proportion managed, the 
place greater the percentage increase in area of 

dwarf shrub vegetation over time 
10. Proportion where pine removed Ditto 
11. Proportion grazed Ditto 
12. Proportion where heather re- Ditto 
establishment carried out 
13. Proportion mowed Ditto 

Percentage decreases in area of dwarf shrub vegetation (and dwarf shrub vegetation type) 

were also analysed, initially at a patch level, but followed by a pixel-based analysis. It was 

hypothesised that management would arrest the process of succession, resulting in a lesser 

percentage decrease in area of dwarf shrub vegetation (or dwarf shrub vegetation type) over 
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time. The explanatory variables reflected those used in the analysis of percentage increases 

(Table 6.1). 

6.6 Bivariate analysis of percentage increases in area of dwarf shrub vegetation 

As management arrests succession, it was likely that percentage change (increases) in area of 

dwarf shrub vegetation in a patch or a pixel would increase with management. Therefore, the 

relationship between percentage change (increases) and management (or management type) 

on a patch and a pixel basis was examined. The analysis was carried out at two levels. First, 

the effect of management was examined and second, the effect of management type was 

examined. 

6,6.1 Patch-based analysis 

Following the procedure outlined in Chapter 4 (section 4.7.1), when the area of dwarf shrub 

vegetation (or dwarf shrub vegetation type) in a patch was zero, the patch was removed from 

the analysis. If such patches had not been removed, percentage change in area of dwarf shrub 

vegetation would have been zero in several patches because the patches did not contain any 

dwarf shrub vegetation (or dwarf shrub vegetation type) rather than because the area of dwarf 

shrub vegetation (or dwarf shrub vegetation type) remained unchanged, thereby, biasing the 

data. For example, when percentage change in area of wet heath was examined, many 

patches did not contain any wet heath and were, therefore, recorded as undergoing zero 

percentage change over time. If a patch which did not contain wet heath was managed, then 

there is a chance that management and the zero change would be correlated. If there was a 

correlation then it would be false, resulting from the modelling procedure rather than any real 

relationship. Therefore, at the aggregated primary category level and at the primary category 

level, patches which did not contain dwarf shrub vegetation were removed. 

Initially, change in area of dwarf shrub vegetation between 1978 and 1987 was examined on 

an aggregated primary category level. No significant relationships emerged. The analysis was 

repeated at the primary category level but again, no significant relationships resulted. None 

of the explanatory variables accounted for a significant amount of the variation in percentage 

change. 

Change in area of dwarf shrub vegetation between 1987 and 1996 was examined. There were 

no significant regression results when percentage change in area of dwarf shrub vegetation 

was regressed against each explanatory variable. The regression analysis was repeated at the 
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primary category level. However, no variable was significantly correlated with percentage 

change in area of dry heath or humid heath. 

6.6.1.1 Simple regression for percentage change in area of wet heath. 1987-1996 

The relationship between percentage change in area of wet heath between 1987 and 1996 and 

management was examined first. The proportion of a patch managed accounted for 10% of 

the variation in percentage change. However, the inverse relationship was not as 

hypothesised (Fig. 6.5a). 

Table 6.2. Simple regression for percentage change in area of wet heath versus patch-based 

Logged, patch-based explanatory 
variables df p HolHi Relationship 

The proportion of a patch managed 1,32 0.071 0.10 Ho Negative 

When the relationship between percentage change and management type was analysed, 

percentage change was significantly correlated with the proportion of a patch managed using 

bracken spraying (r^ = 0.14) (Table 6.3). The positive relationship was as hypothesised, the 

greater the proportion managed the greater the increase in area of wet heath (Fig. 6.5b). 

Bracken spraying is frequently used by heathland managers. Therefore, the relationship 

between percentage increases and this management type makes sense. 
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Fig. 6.5 Scatterplots of (a) log percentage change (increases) in area of wet heath, 1987-1996 

against log proportion of a patch managed, 1987; (b) log percentage change (increases) in 

area of wet heath, 1987-1996 against log proportion of a patch managed with bracken 

spraying, 1987. 
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Table 6.3. Simple regression for percentage change in area of wet heath versus patch-based 

Logged, patch-based explanatory 
variables df P f2 Ho/Hi Relationship 

Bracken spraying 1,32 0.032 0.14 H\ Positive 

6.6.1.2 Multiple regression for percentage change in area of wet heath. 1987-1996 

Multiple regression was carried out to examine the relationship between percentage change 

and management type (Table 6.4). The proportion of a patch where bracken was sprayed 

accounted for most variation in percentage change and the proportion of a patch cleared of 

pine accounted for a significant portion of the residuals. Therefore, when the influence of 

bracken spraying was removed, percentage change was significantly related with the 

proportion of a patch cleared of pine. Like bracken spraying, pine clearance (particularly, the 

removal of pine seedlings) is one of the most common forms of heathland management 

carried out in Dorset. Therefore, the relationship between percentage change and pine 

clearance was not unexpected. 

Table 6.4. Multiple regression for percentage change in area of wet heath versus patch-based 

Logged, patch-based explanatory 
df variables df P f2 

Bracken spraying 1,32 0.032 0.14 
4- Pine clearance 2,31 0.031 0.20 

6.6.1.3 Simple regression for percentage change in area of peatland. 1987-1996 

Percentage change was not significantly correlated with the proportion of a patch managed. 

Despite this, percentage change in area of peatland between 1987 and 1996 was significantly 

correlated with the proportion of a patch cleared of rhododendron (Table 6.5) (r^ = 0.14). 

The positive relationship was as hypothesised (Fig. 6.6). The greater the proportion of the 

patch managed in this way, the greater the percentage increase in area of peatland. 

Table 6.5. Simple regression for percentage change in area of peatland versus patch-based 

Logged, patch-based explanatory 
variables df P r2 Ho/Hi Relationship 

Rhododendron clearance 1,25 0X#6 0.14 H\ Positive 
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Log rhododendron clearance, 1987 (units) 
(r2 = 0.14) 

Fig. 6.6 Scatterplot of log percentage change (increases) in area of peatland, 1987-1996 

against log area of a patch managed by rhododendron clearance, 1987. 

6.6.1.4 Multiple regression for percentage change in area of peatland. 1987-1996 

Percentage change was most highly correlated with the proportion of a patch managed 

through rhododendron clearance (Table 6.6). When the influence of rhododendron clearance 

was held constant, percentage change was significantly correlated with the proportion of a 

patch managed by pine clearance. The proportion of a patch managed though scrub clearance 

accounted for a significant part of the remainder. Therefore, these three management types 

influenced percentage change (increases) in area of peatland in a patch. It is reasonable that 

percentage increases in area of peatland would be influenced by rhododendron, pine and 

scrub clearance as these (in conjunction with bracken spraying) are the most widely used 

types of management. 

Table 6.6. Multiple regression for percentage change in area of peatland versus patch-based 

aggregated primary categories, 1987. Only significant relationships are shown. 
Logged, patch-based explanatory 
variables df 

Rhododendron clearance 1,25 0.056 0.14 
4- Pine clearance %24 0.048 0.22 
+ Scrub clearance 3,23 0.089 &24 

6.6.2 Pixel-based analysis 

As for the patch-based analysis, any pixels which did not contain dwarf shrub vegetation (or 

dwarf shrub vegetation type) in 1978 and 1987 were isolated, removed and excluded from the 

regression analysis. Further, pixels containing the smallest possible area of dwarf shrub 

vegetation (2,000 m^) were also removed from the analysis (see Chapter 5, 5.8). 
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No explanatory variables were significantly correlated with percentage change (increases) in 

area of dwarf shrub vegetation between 1978 and 1987 and between 1987 and 1996 in a 

pixel. The analysis was repeated at a primary category level but again no variable was 

significantly correlated with percentage change in area of dry heath, wet heath, humid heath 

and peatland between 1978 and 1987, and 1987 and 1996. 

6.7 Bivariate analysis of percentage decreases in area of dwarf shrub vegetation 

As management arrests succession, it was likely that percentage decreases in area of dwarf 

shrub vegetation in a patch or a pixel would lessen with management. Therefore, the 

relationship between percentage decreases and management (and management type) on a 

patch and a pixel basis was examined. 

6.7.1 Patch-based analysis 

No explanatory variables were significantly correlated with percentage change in area of 

dwarf shrub vegetation between 1978 and 1987 and between 1987 and 1996. The analysis 

was repeated at a primary category level but again no variable was significantly correlated 

with percentage change in area of dry heath, wet heath or humid heath between 1978 and 

1987, and 1987 and 1996. However, percentage change in area of peatland between 1987 and 

1996 was significantly correlated with two variables. 

6.7.1.1 Simple regression for percentage change in area of peatland. 1987-1996 

The proportion of a patch managed accounted for 15% of the variation in percentage change 

in area of peatland between 1987 and 1996 in a patch (Table 6.7). The positive relationship 

was as hypothesised (Fig. 6.7a). The greater the proportion of the patch managed, the less the 

percentage decrease in area of peatland. 

Table 6.7. Simple regression for percentage change in area of peatland versus patch-based 

aggregated primary categories, 1987. Only significant relationships are shown. 
Logged, patch-based explanatory 
variables df p ^2 Ho/H\ Relationship 

Proportion of a patch managed 1,37 0.014 0.15 H\ Positive 

Percentage change in area of peatland between 1987 and 1996 was also positively correlated 

with the proportion of a patch cleared of pine (Table 6.8). Again the relationship was as 

hypothesised, pine removal apparently arrested the process of succession (Fig. 6.7b). 
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Table 6.8. Simple regression for percentage change in area of peatland versus patch-based 

Logged, patch-based explanatory 
variables df P HolH\ Relationship 

Pine clearance 1,37 0.009 0.17 H\ Positive 

(a) (b) 

3- n 

O) 
5 

a. g 

Log proportion managed, 1987 (units) 
(r2 = o,17) 

Log pine clearance, 1987 (units) 
(r2 = Q.l5) 

Fig. 6.7 Scatterplots of (a) log percentage change (decreases) in area of peatland, 1987-1996 

against log proportion of a patch managed, 1987; (b) log percentage change in area of 

peatland, 1987-1996 against log area of patch managed by pine clearance, 1987. 

6.7.1.2 Multiple regression for percentage change in area of peatland. 1987-1996 

Multiple regression revealed percentage change was significantly correlated with three 

variables (Table 6.9). When the influence of pine clearance was held constant, the proportion 

of a patch managed through controlled burning accounted for a significant part of the 

residuals and the proportion of a patch grazed, a significant amount of the remainder. 

Therefore, it appeared that each of the three management practices could arrest the process of 

succession leading to lesser percentage decreases in area of peatland in a patch between 1987 

and 1996. Again, the relationship between percentage change and pine clearance is 

reasonable as it is a commonly used method of management. Managed burning and grazing 

are also often used to manage the heathlands of Dorset, but their use is not quite so 

widespread. Despite this, both methods appear to be effective. 
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Table 6.9. Multiple regression for percentage change in area of peatland versus patch-based 

Logged, patch-based explanatory 
variables df P J.2 

Pine clearance 1,37 0IW9 0.17 
+ Managed burning 2,36 0.020 OJ^ 
+ Grazing 3,35 0.039 0.21 

6.7.2 Pixel-based analysis 

Neither management nor management type were significantly correlated with percentage 

change in area of dwarf shrub vegetation between 1978 and 1987 and between 1987 and 

1996. The analysis was repeated at the primary category level but again no variable was 

significantly correlated with percentage change in area of dry heath, wet heath, humid heath 

or peatland between 1978 and 1987, and 1987 and 1996. 

6.8 Summary and discussion 

The management of the dwarf shrub vegetation in Dorset aimed to arrest the process of 

succession and prevent further losses. When traditional management practices died out in the 

latter half of this century, the dwarf shrub vegetation was left to its own devices. As all 

heathlands are semi-natural, when management stopped succession increased. Between 1978 

and 1987 little management was carried out. After the 1987 Dorset Heathland Survey, 

heathland managers became aware of the pressing need for management as the area of 

invasive species was increasing at a rate of 1% per annum. Despite an increase in the area of 

dwarf shrub vegetation managed between 1987 and 1996, the rate of increase in area of 

invasive species accelerated to 2% per annum. Therefore, this analysis aimed to identify if 

management prevented further losses of dwarf shrub vegetation and whether management 

facilitated increases in the areal extent of dwarf shrub vegetation over time. Further, the 

relationship between percentage change and each kind of management practice was 

examined. 

Initially, percentage increases in area of dwarf shrub vegetation in a patch were examined 

(Table 6.10). Percentage change in area of wet heath between 1987 and 1996 was inversely 

correlated with the proportion of a patch managed. The inverse relationship was not as 

hypothesised: as the proportion of a patch managed increased, the percentage increase 

lessened. The relationship may have resulted because management merely arrests succession 

and, in general, does not directly result in increased areal extent. However, no clear reason 
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for the relationship was apparent. Percentage change and management type were also 

analysed. One significant relationship resulted. Percentage change was significantly 

correlated with the proportion of a patch managed using bracken spraying. The positive 

relationship was as hypothesised. Multiple regression indicated that when the influence of 

bracken spraying was held constant, the area cleared of pine influenced percentage increases 

in area of wet heath. Both bracken spraying and pine clearance appeared to account for some 

percentage increases in area of wet heath in a patch between 1987 and 1996. 

Percentage change in area of peatland between 1987 and 1996 was not significantly 

correlated with the proportion of a patch managed (Table 6.10). The lack of a significant 

relationship between percentage increases and the proportion of a patch managed may have 

resulted because management is never applied evenly over an area. Rather, it is concentrated 

in the areas which are most in need of management. Percentage change was significantly and 

positively correlated with management type, in this case the proportion of a patch which 

underwent rhododendron clearance. It appeared that the area of peatland may increase as a 

percentage of initial area if managed effectively (in this case through rhododendron 

clearance). Multiple regression indicated that percentage change was significantly related 

with three variables. Rhododendron clearance accounted for most variation in percentage 

change, pine clearance accounted for a significant portion of the residuals and scrub 

clearance a significant amount of the remainder. In all, rhododendron clearance, pine 

clearance and scrub clearance appeared to influence percentage increases in area of peatland 

in a patch. 

Table 6.10 Summary of relationships from simple regression. * indicates that the hypothesis 

has been accepted, • indicates that the relationship was contrary to that hypothesised. 
Response variable: % increases in 
area of heath 

Response variable: % increases in area of: 
Dry Wet Humid Peatland 

Heath Heath Heath 
Explanatory variables Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi 

78- 87- 78- 87- 78- 87- 78- 87- 78- 87-
87 96 87 96 87 96 87 96 87 96 

1. Proportion of a patch managed • 
2. Gorse coppicing 
3. Foraged 
4. Bracken spraying 

5. Scrub clearance 
6. Rhododendron clearance 

7, Pine removal 
8. Grazing 
9. Controlled burning 
10. Wild fire 
11. Mowing 
12. Heather re-establishment 
13. Bracken cutting 

The relationship between percentage change (increases) and management on a pixel basis 

was also analysed. However, no significant relationships resulted either between percentage 
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change and the area of a pixel managed, or between percentage change and management 

type. In all, it appeared that for some dwarf shrub vegetation types, certain management 

practices (and in the case of wet heath, the proportion of a patch managed) may result in a 

percentage increase in the area of dwarf shrub vegetation in a patch over time. However, at a 

pixel-level, percentage change and management appeared unrelated. 

A second analysis was carried out to examine the relationship between percentage decreases 

in area of dwarf shrub vegetation and the proportion of a patch managed and the type of 

management (Table 6.11). Initially, percentage decreases in area of peatland between 1987 

and 1996 was significantly and positively correlated with the proportion of a patch managed. 

The area of dwarf shrub vegetation declined less as a percentage over time as the proportion 

of a patch managed increased. Management appeared to arrest the process of succession in 

peatland. The relationship between percentage change and management type was also 

examined. Percentage change was significantly correlated with the proportion of a patch 

cleared of pine. As management increased, the percentage decrease lessened. Therefore, both 

management and management type (in the form of pine clearance) appeared to arrest the 

process of succession in peatland. 

Table 6.11 Summary of relationships from simple regression. * indicates that the hypothesis 

has been accepted, • indicates that the relationship was contrary to that hypothesised. 
Response variable: % decreases in 
area of heath 

Response variable: % decreases in area of: 
Dry Wet Humid Peatland 

Heath Heath Heath 
Explanatory variables Hi 

78-
87 

87-
96 

78-
87 

87-
96 

Hi 
78-
87 

Hi 
87-
96 

Hi 
78-
87 

Hi 
87-
96 

Hi 
78-
87 

Hi 
87-
96 

1. Proportion of a patch managed 

2. Gorse coppicing 
3. Foraged 
4. Bracken spraying 
5. Scrub clearance 
6. Rhododendron clearance 
7. Pine removal 

, Grazing 
9. Controlled burning 
10. Wildfire 
11. Mowing 
12. Heather re-establishment 
13. Bracken cutting 

Multiple regression analysis was carried out to examine the relationship between percentage 

decreases in area of peatland and management type. When the influence of pine clearance 

was removed, the proportion of a patch managed by controlled burning was significantly 

correlated with percentage change, as was the proportion of a patch grazed. Therefore, in 

peatland areas the process of succession seemed to be arrested by pine clearance, controlled 

burning and grazing. The relationship between percentage change and burning and grazing is 

particularly interesting as these are both traditional methods of heathland management. 
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Percentage change in area of peatland was consistently correlated with management. The 

most obvious reason for this is that peatlands are less likely to be subjected to land use 

change. Therefore, the effect of noise caused by 'others' is limited. It seemed that wetter 

dwarf shurb vegetation types (wet heath and peatland) were more responsive to management 

than drier dwarf shrub vegetation types (dry heath and humid heath) because it was these 

dependent variables for which significant coefficients of determination were found. It is not 

clear why this was the case, but suggests that it would be useful to study how different types 

of dwarf shrub vegetation respond to management. 

The per-patch analysis to account for percentage change (decreases) in a patch produced few 

significant relationships. However, the per-pixel analysis was even less fruitful. Percentage 

change (decreases) in area of dwarf shrub vegetation (or dwarf shrub vegetation type) in a 

pixel was not significantly correlated with a single variable. This was unexpected. It had been 

hypothesised that percentage change would be positively related with management in a pixel. 

If a pixel was managed then succession should be arrested leading to a decline in percentage 

decreases in area of dwarf shrub vegetation or facilitating a percentage increase in area of 

dwarf shrub vegetation over time. Neither management as a whole nor management type 

appeared to influence percentage change in a pixel in any way. The reason for this was not 

apparent. Perhaps, the effect of management would only be noticeable when pixels in which 

the area of dwarf shrub vegetation increased, or where percentage decreases were lessened by 

management, were amalgamated. By amalgamating pixels to form patches, the effect of 

management would be revealed, leading to a positive relationship between percentage change 

and management. Further, if management was inaccurately assigned to a pixel (as may be the 

case with poor maps held by some management agencies), then the management data would 

be inaccurate geometrically. This may in part account for the lack of significant relationships 

between percentage change and management. At a patch level such inaccuracies would be 

removed by amalgamating the pixels. Whatever the cause, the anticipated pixel-based effect 

was not realized. The pixel-based analysis may have produced small coefficients of 

determination because so few pixels were managed, but it is more likely that data quality 

played a part. 

6.9 Conclusions . 

In conclusion, on a patch level management appeared only to influence change at the primary 

category level. This is because the differing management practices are rarely applied equally 

across a patch or pixel and they are applied to different dwarf shrub vegetation types. 

Therefore, when analysing for the effect of management, it should be at a primary category 

level using management type rather than management as a whole. Management practices 
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appeared to have the required effect, causing fewer decreases in area of peatland and some 

increases in area of both wet heath and peatland as a percentage of initial area. At the pixel 

level management appeared to have little affect. Also, it is important to remember that few 

areas of dwarf shrub vegetation were actively managed between 1978 and 1987, which may 

account for the absence of significant relationships on a patch and a pixel basis. The 

concerted effort to arrest the spread of succession between 1987 and 1996 appeared to fail as 

the area of invasive species increased by 1,454 km^. As management appears to have had 

some effect (on wet heath and peatland) then the effort was not wasted. It remains to be seen 

if the process of succession continues to accelerate between 1996 and the next Dorset 

Heathland Survey in 2005. 
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CHAPTER 7 

DISCUSSION 

'All models are wrong, but some are useful" 

George E.P. Box 

7.1 Introduction 

This chapter expands upon the patch- and pixel-based analyses carried out in Chapters 4, 5 

and 6. Initially, the processes of change are summarised. Then the implications of the results 

of these analyses for the survival of the remaining areas of dwarf shrub vegetation of Dorset 

are discussed in detail. As well as discussing the significant results, an in-depth investigation 

of the likely causes of the lack of significant results in certain cases is also given. The effect 

of management activities is examined in relation to percentage change (increases and 

decreases) in area of dwarf shrub vegetation (and dwarf shrub vegetation type). Further, the 

results of these analyses are compared to other work on area] change in dwarf shrub 

vegetation in Dorset. Also, the broader implications for the analysis and mapping of 

landscape change will be discussed. The conclusions are drawn and discussed in terms of 

their relevance to the future management of the dwarf shrub vegetation of Dorset. 

7.2 Processes of change 

Four main processes causing change were consistently identified by each of the analyses. 

These were changing land use, heathland management, succession and within heathland 

switching between dwarf shrub vegetation types. The effect of land use change was discussed 

in detail in Chapter 4 (section 4.8). Land use change is not a natural ecological process. 

Further, there is little predictable pattern to land use change and, therefore, it should be 

unaffected by patch and pixel spatial characteristics. Land use change could neither be 

predicted nor modelled as it is not a function of initial area. Therefore, attempts were made to 

isolate and remove the effect of land use change with little success. Changing land use 

resulted in considerable change in the area of dwarf shrub vegetation between 1978 and 

1987. However, its effect lessened between 1987 and 1996. Today, direct losses have 

virtually stopped. Conversion to farmland ceased when subsidies were withdrawn and urban 
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industrial development is now controlled through planning and environmental legislation 

(Rose et al, in press). Further losses due to land use change are unlikely. 

The process of succession formed the rationale for the analysis of change outlined in 

Chapters 4, 5 and 6. Succession is a natural ecological process. It is probably a spatial 

process and, therefore, it was hypothesised that it would be affected by the spatial 

characteristics (and spatial composition) of a patch or pixel. It has long been recognised but 

little studied that the rate and pattern of succession may also reflect spatial factors (Glen-

Lewin, 1992). However, this analysis aimed to build a model of change based on factors 

which affected both the rate and pattern of the spatial process of succession. 

Management was discussed in detail in Chapter 6. Management is unlikely to be influenced 

by the spatial characteristics of a patch or pixel. It was hypothesised that management would 

arrest the process of succession and could even increase the area of dwarf shrub vegetation. 

However, as a result, management may also obscure the relationship between patch and pixel 

spatial characteristics and the process of succession. 

The final process of change identified by all the analyses of change was the process of 

transitions between dwarf shrub vegetation types. In particular, the variation in wet heath and 

peatlands. Between 1978 and 1987 Rose et al. (in press) identified little change between the 

two dwarf shrub vegetation types. However, between 1987 and 1996 the area of wet heath 

declined by 45% and the area peatland by 25%. This analysis identified similar changes. 

7.3 Patch-based approach 

The patch-based model seemed a logical choice to analyse change in the dwarf shrub 

vegetation of Dorset (see Chapter 4, 4.2). The dwarf shrub vegetation of Dorset form a 

system of patches in a matrix of forest, agricultural and urban land. However, defining 

patches within any landscape is problematic. Often, it is very difficult to establish the 

biological criteria by which heathland fragments can be defined, since the criteria vary with 

the species under consideration (Webb, 1992). However, this research aimed to determine 

correlates of change in area of dwarf shrub vegetation in Dorset. Once dwarf shrub 

vegetation was defined for the purposes of this analysis, the process of defining a patch 

became more simple. Heathland was defined as any combination of dry heath, wet heath, 

humid heath and peatland. The analysis was based upon the Dorset Heathland Surveys of 

1978, 1987 and 1996. The initial Dorset Heathland Survey was based around the premise that 

any pixel containing dwarf shrub vegetation should be surveyed. Therefore, it seemed 

reasonable to form patches by amalgamating a pixel containing any area of dwarf shrub 
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vegetation with any pixel adjacent to or on a diagonal with a similar pixel, although other 

rules could have been used. For example, Webb and Haskins (1980) created patches based 

purely on physical isolation. Every area of heath which was not in contact with any other was 

considered separately. Chapman et al. (1989) amalgamated pixels with adjoining sides but 

pixels on the diagonals were only included when they were made up of at least 75% 

heathland or its associated vegetation types. Webb (1990) used a similar rule to Chapman et 

al. (1989). Finally, Rose et al. (in press) grouped pixels with some dwarf shrub heath or acid 

grassland based on the rules set out by Chapman et al. (1989). The method used for creating 

patches for the purposes of this research resulted in 116 patches, and these were used as a 

template for the 1987 and 1996 data. 

7.3.1 Summation of the patch-based analysis 

The patch-based approach aimed to test how percentage change in area of dwarf shrub 

vegetation (or dwarf shrub vegetation type) varied in relation to a series of explanatory 

variables. The explanatory variables were chosen because it was likely that they influenced 

the process of succession in a fragmented dwarf shrub vegetation environment (see Chapter 

3, 3.5.2). The patch-based analysis of change produced three main results. First, percentage 

change was consistently correlated with the density of dwarf shrub vegetation (or dwarf 

shrub vegetation type) in a patch (or in the edge of a patch). Second, percentage change was 

consistently correlated with the area of invasive species (or invasive species type) in a patch 

(or in the edge of a patch). Third, percentage change was consistently correlated with the 

ratio of area of dwarf shrub vegetation type to the area of invasive species type in a patch (or 

in the edge of a patch). 

The relationship between percentage change in area of dwarf shrub vegetation and density of 

dwarf shrub vegetation in a patch was interesting. Density relates to the degree of 

fragmentation of the area of dwarf shrub vegetation in a patch. Greater density implies less 

internal fragmentation of the dwarf shrub vegetation in a patch, and less fragmentation makes 

a patch less susceptible to change. Moore (1962) and Webb and Vermaat (1990), also found 

this to be the case. Succession depends upon proximity to a seed source of late successional 

species (Mitchell et al., 1997). When the coverage of dwarf shrub vegetation within a patch 

is dense, it is less fragmented and the availability of a seed source within a patch less likely. 

Therefore, the process of succession in a dense patch of dwarf shrub vegetation is limited. 

Further, percentage change was also influenced by the density of dwarf shrub vegetation in 

the edge of a patch. It had been hypothesised that, as Webb (1992) stated, changes on a given 

patch are as much a result of successional processes within a patch as changes generated by 

the surroundings of a patch; hence, for a given patch its future will depend both on its present 

composition and where it is located in the landscape. Indeed, as hypothesised, the density of 
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dwarf shrub vegetation in the edge of a patch (a surrogate variable for context) appeared as 

important as the density of dwarf shrub vegetation within a patch. 

Edge pixels are precisely that. Every 200 m by 200 m square containing any area of dwarf 

shrub vegetation was surveyed. Therefore, many edge pixels contained little heath as they fell 

at the very edge of a fragment, and such pixels were invaluable as they provided an accurate 

assessment of a patches immediate surroundings. As suggested by Forman and Godron 

(1986) and Lavers and Haines-Young, (1993), the greater the density of dwarf shrub 

vegetation in the edge, the less fragmented the edge of a patch and, therefore, the less like an 

edge it behaves. That is, edges are more easily invaded because they juxtapose dwarf shrub 

vegetation and non-dwarf shrub vegetation species increasing the availability of a seed 

source for succession, and making the edge liable to succession. The relationship between 

percentage change and density of dwarf shrub vegetation in the edge was complex. It implied 

that edges where the area of dwarf shrub vegetation was less fragmented were less 

susceptible to change. Moore (1962) suggested that when a habitat is reduced in size, edge 

effects become important, and this appeared to be so. However, if an edge is not fragmented, 

then in reality it may not be an edge at all. Either way, it is a valid result because it reflects 

the positive relationship between percentage change and lesser degrees of fragmentation. 

Further, the more fragmented the edge of a patch, the more susceptible the patch is to change. 

As edges form the transition between 'heath' and 'non heath', this was to be expected, as the 

presence of available seed sources to facilitate the process of succession would be plentiful 

(Wilcove et al., 1986 and Webb & Hopkins, 1984). Overall, it seems that preventing further 

fragmentation might play a key role in ensuring the survival of the remaining patches of 

dwarf shrub vegetation in Dorset. Indeed, Moore (1962) suggested that the stability of a 

habitat is, to a large extent, a function of its size. However, there was no such relationship 

between percentage change and fragment size, which implies that it is the internal 

fragmentation of a patch which is of most importance. 

At the aggregated primary category level percentage change was significantly correlated with 

the area of invasive species in a patch. At the primary category level, scrub appeared the 

most likely invader of drier heaths whilst carr invaded wetter heaths. As stated previously, 

succession depends upon the availability of a seed source. In a study by Mitchell et al. (1997) 

aerial photographs indicated that a single plant of certain invasive species type in open 

heathlands was enough to facilitate the process of invasion from within a patch. Similarly, 

this analysis showed that area] extent of invasive species in a patch influenced the decline in 

area of dwarf shrub vegetation as a percentage of initial area. Unlike density, area does not 

reflect the degree of internal patch fragmentation. The relationship could imply that the 

process of succession was 'exponential'. Greater areas lead to greater percentage decreases 

which in turn lead to even greater areas of invasive species and further decreases in area of 

dwarf shrub vegetation. Indeed, the rate of succession virtually doubled between 1978 and 
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1987 (1%) and between 1987 and 1996 (2%). Further, percentage change was significantly 

correlated with the area of invasive species in the edge of a patch. The effect of invasive 

species in the edge of a patch indicated the process of succession from the periphery (outside) 

of a patch is also important. The greater the areal extent of invasive species in the edge of a 

patch, the greater the decline in area of dwarf shrub vegetation as a percentage of initial area. 

As Forman and Godron (1986) found, edges form the juxtaposition between dwarf shrub 

vegetation and an alternate environment. It is reasonable that edges are likely to be an 

important seed source facilitating the process of invasion. The areal extent of invasive 

species, be it woodland, scrub or carr (or all three in combination), indicates the degree of 

pressure a patch of dwarf shrub vegetation is under from succession. As area increases, the 

pressure from invasion increases, leading to a decline in area of dwarf shrub vegetation over 

time. Conversely, if there is no seed source supplying the necessary propagules to facilitate 

the process of succession (that is, if the area of dwarf shrub vegetation in a patch is large), 

invasion will not occur. This is where management can play its most effective role in the 

conservation of the dwarf shrub vegetation of Dorset. 

Finally, percentage change was significantly correlated with the ratio of area of dwarf shrub 

vegetation type to invasive species type, again indicating that succession caused change, in 

particular, the ratio of dry heath to scrub, wet heath to scrub or carr and peatland to carr. It 

seemed that the greater the area of dwarf shrub vegetation relative to the area of invasive 

species type, the less the percentage change. Succession depends on the availability of a seed 

source; as the seed source declines with increasing area of dwarf shrub vegetation then the 

process of succession is slowed. The relationship between dry heath and wet heath and scrub 

indicated that scrub was the most likely invader of drier heaths with carr replacing scrub as 

the most likely invader of wetter heaths (wet heath and peatland). Many authors have 

illustrated the importance of edge effects in a fragmented environment (Webb & Hopkins, 

1984; Forman & Godron, 1986; Wilcove et al, 1986, Fagan etal, 1999). Again, the 

hypothesised influence of edge effects appears correct. Percentage change was also 

significantly correlated with the ratio of dwarf shrub vegetation type to invasive species type 

in the edge of a patch reflecting the relationship between percentage change and area of 

invasive species outlined above. Succession from outside a patch (or a patch's periphery) 

caused as much change as succession from within a patch. The greater the area of dwarf 

shrub vegetation relative to the area of invasive species, the less the percentage change. 

The patch-based analysis resulted in several interesting relationships. However, several other 

significant relationships could have resulted (Chapter 2, 2.4.1). In particular, percentage 

change was expected to be correlated with patch geometry (Diamond, 1975; Seagle, 1986; 

Rex & Malanson, 1990; LaGro, 1991 and Baskent & Jordan, 1995), context (Webb ef al., 

1984; Dunning et al., 1992; Webb, 1992) and the area of dwarf shrub vegetation (Micthell et 

al., 1997), but this was not so. For example, LaGro (1991) suggested that patch size and 
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shape influenced several ecological processes. In particular, patch shape was suggested to 

influence change (Rex & Malanson, 1990 and Baskent & Jordan, 1995) as did the perimeter 

of a patch (Diamond, 1975). However, no such relationships were identified in this analysis. 

It had also been hypothesised that a patch's surroundings would exert an influence on change 

(Webb et al, 1984; Dunning et al, 1992 and Webb, 1992). However, the hypothesised 

relationship failed to account for the variation in percentage change. This was most likely the 

result of either data, sampling uncertainty and/or classification error. Further, a single 

remotely sensed image from 1984 was used to provide contextual information. Using a 1984 

image to provide contextual information for patches dating from 1978 and 1987 meant the 

data may not have been an accurate representation of what surrounded each patch at the time 

of the surveys. 

The small coefficients of determination may have resulted for several reasons. First, there 

may be a lack of variance in patch geometry. If most patches were similar geometrically, then 

one would not expect the relationship between change and patch geometry to be significant. 

However, the lack of variance may also have affected other variables. If patches were similar 

geometrically, then they are likely to contain similar areas of dwarf shrub vegetation. Again, 

if the area of dwarf shrub vegetation in many patches is similar, then the lack of a 

relationship between percentage change and area of dwarf shrub vegetation is not surprising. 

Second, many small patches made up of just one or two pixels may have biased the 

relationship. Patch geometry is unlikely to influence the behaviour of a patch formed by the 

amalgamation of one or two cells of dwarf shrub vegetation. However, an alternative analysis 

examined the relationship between percentage change in patches of varying sizes and the 

explanatory variables (see Appendix 5). The coefficients of determination did not increase. 

Third, noise in the data may have obscured the relationship. For example, the coarse 

numerical resolution of the data (the data being based on scores of between zero and three) 

must obscure certain relationships, as will sampling errors. That is, there is a lot of 

uncertainty in the data which must, in part, account for many of the small coefficients of 

determination achieved. In particular, a score of three indicated that between 50% and 100% 

of a pixel was covered by a certain vegetation type. Therefore, it is likely that many finer 

changes were obscured by the scale of the survey. Finally, many patches may not in reality 

be patches. Indeed, Lord and Norton (1990) suggested that patch attributes (for example 

patch geometry) are related to and are affected by the scale of fragmentation. The patches 

created for this analysis were based upon the loosest possible rules to form the least 

fragmented environment which could account for the lack of correlation between percentage 

change and patch geometry. 

It seemed likely that the factors outlined above accounted for the small correlations between 

percentage change and patch area. However, they may also account for the lack of a 

significant relationship between percentage change and area of dwarf shrub vegetation. Patch 
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area and area of dwarf shrub vegetation are intrinsically linked, as patches were created 

solely on the basis that pixels containing any area of dwarf shrub vegetation were 

amalgamated with similar neighbouring pixels. 

This analysis suggests that change is most affected by area of invasive species. That is, 

invasion will not occur without the presence of a seed source. Therefore, the importance of 

area of invasive species far outweighs the importance of area of dwarf shrub vegetation 

(hence the small correlations between change and area), as the dwarf shrub vegetation cannot 

be invaded if invasive species are not present. 

Overall, percentage change was influenced by the density of dwarf shrub vegetation in a 

patch (and in the edge), the area of invasive species in a patch (and in the edge), and the ratio 

of dwarf shrub vegetation to invasive species in a patch (and in the edge). Each of these 

relationships should be taken into consideration by heathland managers. Although the 

ecological literature indicates that such relationships should exist (for example. Diamond, 

1975; Forman & Godron, 1986; Chapman et al, 1989; Webb & Vermaat, 1990; Lavers & 

Haines-Young, 1993; Pagan et al., 1999), the analysis confirms the belief that to protect the 

remaining dwarf shrub vegetation of Dorset, fragmentation must be prevented and invasive 

species removed. 

7.3.2 Prediction 

Several multiple regression equations resulted from the patch-based analysis, and these allow 

the prediction of percentage change in area of dwarf shrub vegetation types over time. Given 

that the maximum amount of variation in percentage change accounted for was 51%, these 

equations should be treated with caution. Further, as the data were logged interpretation is 

not straightforward. The relationships expressed in the predictive models are curvi-linear, 

that is, they are exponential. 

At the aggregated primary category level, 17% of the variation in percentage change was 

accounted for by two variables. The density of dwarf shrub vegetation in the edge of a patch 

was most highly correlated with percentage change while the ratio of area of dwarf shrub 

vegetation to 'others' accounted for a significant portion of the residuals. 

Log (percentage change) = 4.2 + 1.1 log (density of dwarf shrub vegetation in the edge) + 

0.3 log (ratio of area of dwarf shrub vegetation to 'others'). 

At the primary category level, four explanatory variables accounted for 32% of the variation 

in percentage change in area of dry heath between 1978 and 1987. 
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Log (percentage change) = 0.7 + 0.3 log (area of carr in the edge of a patch) + 0.1 log (area 

of scrub in the edge of a patch) + 1.7 log (ratio of density of 

dry heath to humid heath) + 0.1 log (ratio of area of dry heath 

to carr in the edge of a patch). 

If the area of carr in the edge of a patch, the area of scrub in the edge of a patch, the ratio of 

density of dry heath to humid heath and the ratio of density of dry heath to carr in the edge of 

a patch are all known, then percentage change can be predicted. However, the equation 

accounted for only a third of the variation in percentage change. Percentage change in area of 

dry heath between 1987 and 1996 was not significantly correlated with a single variable. 

Percentage change in area of humid heath between 1978 and 1987 was significantly 

correlated with three variables which together accounted for 23% of the variation in 

percentage change. The density of humid heath in the edge of a patch accounted for most 

variation in percentage change. When this variable was held constant, the density of scrub in 

the edge of a patch was significantly correlated with percentage change. The ratio of density 

of humid heath to scrub in the edge of a patch accounted for a significant amount of the 

remaining residuals. It appears that edge effects play an important part in causing change in 

area of humid heath, particularly, the area of both humid heath and scrub in the edge of a 

patch. The multiple regression equation is as follows: 

Log (percentage change) = 6.2 + 0.63 log (density of humid heath in the edge of a patch) + 

-9.6 log (density of scrub in the edge of a patch) + -3.4 log 

(ratio of density of humid heath to scrub in the edge of a 

patch). 

Density of humid heath accounted for a significant portion of the variation in percentage 

change, density of scrub in the edge accounted for a significant portion of the residuals and 

the ratio of density of humid heath to scrub in the edge accounted for a significant amount of 

the remainder. Similarly, percentage change in area of humid heath between 1987 and 1996 

was correlated with four variables which accounted for 35% of the variation in percentage 

change. Therefore, the multiple regression equation could be used for prediction. The 

multiple regression equation is as follows: 

Log (percentage change) = 0.7 + 0.3 log (area of carr in the edge of a patch) + 0.1 log 

(area of scrub in the edge of a patch) + 1.7 log (ratio of density 

of dry heath to humid heath) + 0.1 log (ratio of area of dry 

heath to carr in the edge of a patch). 

Consistently, density of humid heath (in a patch or the edge) accounted for most variation in 

percentage change in area of humid heath. The main difference between the multiple 
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regression results to examine the influences on percentage change in area of humid heath 

between 1978 and 1987 and between 1987 and 1996 was that scrub influenced change 

between 1978 and 1987 whereas scrub, carr and woodland all influenced change between 

1987 and 1996. 

Percentage change in area of peatland between 1978 and 1987 was correlated with two 

variables, which in combination accounted for 14% of the variation in percentage change. 

The ratio of area of peatland to scrub in the edge of a patch accounted for most variation 

while the ratio of area of peatland to carr in a patch accounted for a significant amount of the 

residuals. However, percentage change in area of peatland between 1987 and 1996 was 

correlated with three variables, which together accounted for 51% of the variation in 

percentage change. Again, the ratio of area of peatland to carr was significant. When its 

influence was removed, the density of peatland in the edge of a patch accounted for a 

significant amount of the variation in percentage change. The perimeter of a patch accounted 

for a significant amount of the remainder. This multiple regression model provided the most 

accurate predictor of change because of the high coefficient of determination. The large 

coefficient of determination probably resulted because peatland is less likely to be built upon 

or converted to agriculture than a drier dwarf shrub vegetation type. 

Log (percentage change) = 0.7 + 0.3 log (area of carr in the edge of a patch) + 0.1 log (area 

of scrub in the edge of a patch) + 1.7 log (ratio of density of 

dry heath to humid heath) + 0.1 log (ratio of area of dry heath 

to carr in the edge of a patch). 

Overall, the percentage change at the primary category level between 1987 and 1996 

produced more accurate predictive models than those for percentage change between 1978 

and 1987 at the primary catgeory level. However, in all cases, the coefficients of 

determination were small and, therefore, the predictive power of the equations should be 

questioned. 

7.4 Pixel-based approach 

Percentage change between 1978 and 1987 and between 1987 and 1996 was significantly 

correlated with just a few variables with very small coefficients of determination. The 

explanatory variables were chosen because they encompassed factors likely to influence 

succession and, therefore, would influence percentage change. As succession influenced 

percentage change at a patch level then it should have influenced change at a pixel level. In 

particular, percentage change was hypothesised to be significantly correlated with the 
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distance a pixel lay from the edge. Although the importance of edge effects was shown by the 

patch-based analysis and by other authors (Webb & Hopkins, 1984; Wilcove et al., 1996; 

Forman & Godron, 1986; Lavers & Haines-Young, 1993; Pagan etal, 1999), distance from 

the edge did not appear to influence percentage change in a pixel. 

The hypothesised relationship between percentage change and density of invasive species 

surrounding a pixel was not significant. The patch-based analysis illustrated clearly the 

relationship between percentage change and invasive species and previous work has shown 

the importance of proximity to a seed source (Mitchell et al, 1997) and the importance of 

context (Webb et al., 1984; Dunning et al., 1992; Webb, 1992). However, at the pixel level, 

there were no such significant relationships. The lack of a significant relationship between 

percentage change and the area of invasive species in a pixel may have been the result of the 

scale of the analysis. Relative to the area of dwarf shrub vegetation in a pixel, the area of 

invasive species is never likely to be very large because the surveys were biased towards 

dwarf shrub vegetation. Further, because the pixel scale is a human-imposed scale, it is likely 

that the area of invasive species in a pixel is an inadequate measure of the pressure from 

succession. 

Overall, there was no apparent reason for the lack of significant relationships. Based on 

current understanding (Chapter 2, section 2.4.1) the choice of explanatory variables appeared 

justified. Perhaps, the poor relationships arose as a result of the scale of the analysis. Both the 

patch and pixel analyses encompassed both the largest and smallest possible scales of an 

analysis of change in a fragmented environment. That is, the patches were created using the 

loosest possible rules producing the least fragmented environment, whereas the pixel-based 

approach reduced the analysis down to the smallest possible scale. A 200 m by 200 m square 

is an arbitrary divide and it is unlikely that dwarf shrub vegetation functions on such a 

human-imposed scale. However, such a scale was chosen originally because it was expected 

to be small enough to detect vegetation change (Chapman et al., 1989). This invites the 

question, were Chapman et al. (1989) correct in their choice of a 200 m by 200 m scale for 

the Dorset Heathland Surveys? Although it should be taken into consideration that Chapman 

(1975) devised the survey with alternative aims to this analysis. Perhaps the coefficients of 

determination would have been increased by examining percentage change at a level some 

way between a patch and pixel or at an even finer scale. If the scale of the Dorset Heathland 

Survey were altered and the numerical resolution of the data increased (from the current scale 

of between zero and three) then perhaps the correlations would also increase. However, this 

research is unable to provide any indication as to the best scale for a survey of this kind. 

An alternative reason for the lack of significant results from the pixel-based analysis is data 

uncertainties. Inaccuracies in data collection were likely both as a result of score estimates 

and in the correct location of pixels for surveying. A scoring system of between zero and 

160 



three was used to account for the presence or absence of land cover (and land use) types. 

Thus scoring was a subjective process. Further, the exact location of each vegetation type in a 

pixel was unknown. At a patch level a smoothing process takes place across the patches as a 

cluster of pixels were examined in combination. Smoothing increases the signal-to-noise 

ratio for patches. However, there is no such smoothing process at the pixel level. 

Perhaps the lack of correlations between percentage change and the pixel-based explanatory 

variables occurred because the null hypotheses were true. Maybe succession was not 

influenced by the spatial characteristics of species composition in a pixel, and edge effects 

and context do not affect the process of change. If there is a ubiquitous seedbank, or more 

likely, a ubiquitous seed rain then succession would not be a spatial process. That is, if Pinus 

spp. seeds can disperse evenly across an entire patch then succession is not necessarily a 

spatial process for that patch. Further, as the dwarf shrub vegetation of Dorset is so 

fragmented already, perhaps there is no patch remaining which is large enough to avoid such 

ubiquitous seed rain. Perhaps, every patch, irrespective of size, contains an areal extent of 

invasive species large enough to facilitate seed rain into every part of that patch. If this is 

indeed the case then management in the form of the complete eradication of invasive species 

is the only possible preventative measure. 

Such ubiquity of seed rain is unlikely and it also seems unlikely that succession is not 

influenced by the spatial characteristics of species composition in a pixel, and edge effects 

and context do not affect the process of change given how the process of succession in a 

fragmented environment takes place (Chapter 2, 2.3.2). The dwarf shrub vegetation of Dorset 

is a plagio-climax community; in the absence of factors arresting succession they will revert 

to woodland. Succession is a directional temporal change in species composition or relative 

abundances and is a central theme in plant community ecology (Glen-Lewin et al, 1992 and 

Miles & Walton, 1993). Succession depends upon the presence of a seed source (Mitchell et 

al., 1997). Therefore, the presence of a seed source is enough to facilitate the process of 

succession. Further, from the literature it was clear that edge effects in the form of presence 

of invasive species (Webb & Hopkins, 1984; Wilcove et al., 1996; Forman & Godron, 1986; 

Lavers & Haines-Young, 1993; Fagan et al., 1999) and context in the form of area of 

invasive species (Webb et al., 1984; Dunning et al., 1992; Webb, 1992) consistently 

influenced change. Therefore, it seems highly unlikely that the null hypothesis can be 

accepted to account for the lack of significant relationships resulting from the pixel-based 

analysis of percentage change. 

The use of regression may not have been appropriate. However, regression is a commonly 

used method in ecology to model change (for example, Osborne and Wiley, 1988; Broschart 

et al., 1989; Johnston et al., 1992; Moore et al., 1993; Sarre et al., 1995; Abramsky et al., 

1986; Aitkin & Francis, 1982; Philippi, 1993 and Trexler & Travis, 1993; Schumaker, 1996; 
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Matter, 1997, to name but a few). Further, it allows prediction and prediction is an important 

tool to the ecologist. For example, predicting what is most vulnerable following habitat 

fragmentation (as in the case of the heathlands of Dorset) is one of the most pressing 

problems facing conservation biologists (Sarre et al, 1995). Other types of model, such as 

cellular automata, could have been used. However, to build such a model the exact causes of 

change need to be understood in order to parameterize the model. Further, such models 

provide no insight into the processes of change. 

Overall, the pixel-based analysis did not produce any usable models. The reasons behind the 

lack of significant relationships were not clear but it may be a simple question of scale. 

7.5 A comparison of the patch- and pixel-based analyses 

The patch-based analysis produced several usable models. However, the pixel-based analysis 

did not. This does not necessarily mean that change did not occurr at a pixel level. Rather, it 

may be that uncertainties in the data obscured the relationships identified at the patch level. 

Percentage change in a patch was influenced by the density of dwarf shrub vegetation in a 

patch (and in the edge), the area of invasive species in a patch (and in the edge), and the ratio 

of dwarf shrub vegetation to invasive species in a patch (and in the edge). Further, at the 

patch level, percentage change was consistently significantly correlated with area of dwarf 

shrub vegetation although the relationship was the inverse of that hypothesised. The pixel-

based analysis identified a positive relationship between percentage change and the area of 

dwarf shrub vegetation (or dwarf shrub vegetation type) in a pixel, although the coefficients 

of determination were small. 

The inverse relationship between percentage change and area of dwarf shrub vegetation (at 

the primary category level) probably resulted because if the area of, for example, humid 

heath in a patch was large, then edge effects were likely to influence change. However, if a 

patch contained a small area of humid heath, then it is probable that that area of humid heath 

would be protected by the areas of other dwarf shrub vegetation types which surrounded it. 

The opposite is true at the pixel level. A larger area of dwarf shrub vegetation would be less 

susceptible to change than a smaller area simply because a larger area of dwarf shrub 

vegetation implies less invasive species at the pixel scale. 

In all, the pixel-based analysis was less fruitful than the patch-based analysis. This has 

important implications for model building and for the parameterization of other models such 

as cellular automata. 
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7.6 The influence of management on change in a patch and pixel 

Initially, the relationship between percentage change (increases) and management at a patch 

level was analysed. The proportion of a patch managed using pine clearance, rhododendron 

clearance, scrub clearance and bracken spraying all proved significant for certain target 

variables. It was interesting that the significant relationships only occurred at a primary 

category level. Percentage change in area of wet heath was significantly correlated with 

bracken spraying. When the influence of bracken spraying was held constant, percentage 

change was significantly correlated with pine clearance. In all 20% of the variation in 

percentage change was accounted for. Percentage change in peatland was significantly 

correlated with the proportion of a patch cleared of pine, scrub and rhododendron. When the 

influence of rhododendron clearance was held constant, percentage change was significantly 

correlated with pine clearance. Further, when the influence of pine clearance was held 

constant, percentage change was significantly correlated with scrub clearance. In all, 24% of 

the variation in percentage change was accounted for. It appeared that certain management 

caused the area of certain dwarf shrub vegetation to increase. However, most of the analyses 

produced no significant correlations. 

Percentage decreases in area of dwarf shrub vegetation were also examined. Percentage 

decreases in area of peatland was significantly correlated with three variables. When the 

influence of pine clearance was held constant, percentage change was significantly correlated 

with managed burning. Further, when the influence of managed burning was held constant, 

percentage change was significantly correlated with the proportion of a patch grazed. In all, 

21% of the variation in percentage change was accounted for. Management aims to maintain 

dwarf shrub vegetation (Webb, 1990) but this analysis indicated management activities not 

only maintain the area of certain dwarf shrub vegetation types by arresting succession, but 

also resulted in increased areal extent of some dwarf shrub vegetation types. This has 

important implications for heathland managers. However, it is also important to remember 

that the management records upon which the analysis was based, were mostly hand drawn 

maps which were often difficult to interpret and so the data were prone to error, particularly 

through mis-registration. 

The relationships between percentage change and management (and management type) in a 

pixel were examined. The coefficients of determination reflected those from the previous 

pixel-based analysis of percentage decreases in area of dwarf shrub vegetation. No variable 

was significantly correlated with percentage change in area of dwarf shrub vegetation in a 

pixel. It was reasonable to expect that the effect of management would have been felt more 

acutely at the pixel level rather than at the patch level. However, this was not so. The most 

obvious reason for the absence of significant relationships was that the exact area of a pixel 

managed was unknown. Examining the effect of management in a single pixel was not likely 
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to produce significant relationships. Most pixels were not managed and of those that were, 

only a proportion of the pixel may have been managed. 

In the patch-based analysis managed pixels were amalgamated, strengthening the 

relationships. The relationships were further strengthened because proportion rather than area 

of a patch managed was used as the explanatory variable, thereby, taking into account the 

vast areas of patches which remained unmanaged. Perhaps with hindsight, the small 

coefficients of determination between percentage change and management are not surprising. 

However, as in the analysis of percentage decreases in area of dwarf shrub vegetation, it may 

also be a question of scale, the pixel being too large to detect natural processes of change. 

Throughout the analysis percentage change was not correlated with management overall. The 

lack of a significant relationship between percentage change and management probably 

resulted because management is never evenly applied over a patch or pixel. Overall, 

management appeared to arrest the process of succession at a patch-level in a few cases. 

Indeed, it appeared to account for a decline in percentage decreases and in some instances 

even resulted in percentage increases in area of dwarf shrub vegetation 

7.7 Comparison with other analyses 

It is important to remember when making comparative estimates of change to define the term 

heathland. For this analysis it was defined as a combination of dry, wet, humid heath and 

peatland forming what was known as dwarf shrub vegetation. This definition reflected (for 

the most part) that used by Webb and Haskins (1980), Chapman et al. (1989), Webb (1990), 

Webb (1992) and Rose et al. (in press). There was one main difference between these 

analyses and the current analysis, this was the way that patches were formed. Webb and 

Haskins (1980) created patches based purely on physical isolation. Every area of heath which 

was not in contact with any other was considered separately. For example, when a heathland 

fragment was divided by an unmetalled road or disused railway, it was considered a single 

fragment. However, heathland divided by a metalled road or used railway was considered as 

two separate fragments. This approach produced 768 separate fragments. Chapman et al., 

(1989) amalgamated pixels with adjoining sides but pixels on the diagonals were only 

included when they were made up of at least seventy five percent heathland or its associated 

vegetation types. This process produced 141 patches in 1978. Webb (1990) used a similar 

rule to Chapman et al. (1989) which resulted in 135 fragments. Finally, Rose et al. (in press) 

grouped pixels with some dwarf shrub heath or acid grassland based on the rules set out by 

Chapman et al. (1989). This resulted in 137 patches in 1978, 142 in 1987 and 151 in 1996. 

By amalgamating pixels (both adjacent pixels and pixels along the diagonals) based on 

whether or not they contained any area of dry heath, wet heath, humid heath or peatland, this 
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analysis produced 116 patches in 1978, a difference of twenty one patches based on the Rose 

et al. (in press) rule and a difference of twenty five patches based on Chapman et al. (1989) 

rule. This approach to patch-building was adopted because this analysis was concerned with 

dwarf shrub vegetation (that is, dry heath, humid heath, wet heath and peatland alone) while 

the other analyses were interested in heathland. Despite the rather different approach to patch 

formation, the results did not differ substantially. 

The present analysis produced a less fragmented dwarf shrub vegetation environment than 

the other analyses. When the area of dwarf shrub vegetation in a patch was mapped (see 

Chapter 3, Fig. 3.8) it reflected the kind of fragmented environment expected. Larger patches 

had core areas made almost entirely of dwarf shrub vegetation while the edge pixels 

contained little dwarf shrub vegetation (Webb & Hopkins, 1984 and Pagan et al., 1999). That 

is, the area of dwarf shrub vegetation lessened with increasing proximity to the edge. Further, 

density of dwarf shrub vegetation was included as an explanatory variable in the analysis. 

Density took into account the degree of fragmentation of the area of dwarf shrub vegetation 

in a patch. Therefore, if the method of creating patches for this analysis was a less accurate 

representation of reality than those produced by Webb (1990) and Chapman et al. (1989), the 

inclusion of a surrogate variable for fragmentation took this into account. 

As mentioned previously, several other analyses of change in area of dwarf shrub vegetation 

in lowland heathlands of Dorset have been carried out, including Webb and Haskins (1980), 

Chapman et al. (1989), Webb (1990), Webb (1992) and Rose et al. (in press). These analyses 

were also based upon the Dorset Heathland Survey data. However, while this analysis aimed 

to model change in relation to the spatial structure of the dwarf shrub vegetation of Dorset, 

the other analyses aimed to examine gross areal change over time. Therefore, the analyses are 

not directly comparable. However, an areal analysis of change was carried out prior to model 

building and the results of this analysis are readily comparable to the previous analyses 

(Table 7.1). Webb and Haskins (1980), included some scrub on occasion and Rose et al. (in 

press) included some scrub and acid grassland in their definition of 'heathland' which may 

account for the variation in results. Change was calculated based on the same number of 

pixels in 1978 and 1987 and in 1987 and 1996. These analyses produced relatively similar 

results (Table 7.1). 

Of most interest was the isolation of the same processes of change identified in each of these 

analyses. Webb (1990) identified two factors which caused change. First, there were direct 

losses due to land use change, which resulted in a loss of 330 ha of heathland. In particular, 

the expansion of farmland, forestry and urban industrial development. Second, the process of 

succession caused further losses. The area of scrub and woodland increased by 15% between 

1978 and 1987 according to Webb's calculations (1990). Rose et al. (in press) noted similar 

processes of change. 240 ha were lost as a result of land use change and 141 ha were lost due 
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to succession. The authors found the same processes caused change between 1987 and 1996. 

They calculated that the area lost to land use change between 1987 and 1996 was 140 ha 

(including forestry plantations) and a further loss of 140 ha resulted from invasion of scrub, 

carr and woodland. These results reflected the processes of change identified by this analysis. 

Between 1978 and 1987 land use change was the dominant process of change. However, 

succession did result in some losses. This changed between 1987 and 1996 with succession 

replacing land use change as the dominant process causing the area of dwarf shrub vegetation 

to decline. However, land use change did continue to cause heathland change. This analysis 

found that the area of dwarf shrub vegetation declined by 5.3 km^ between 1978 and 1987 

while land use change increased by 4.2 km^ and invasive species by 1.1 km^. Between 1987 

and 1996 the area of dwarf shrub vegetation was still in decline. It decreased by 7.6 km^, 

while the area of land use change decreased by 8.2 km^. However, the area of invasive 

species increased by 13.1 km^. Again, this analysis illustrated the decline in the process of 

land use change and the rapid increase in the area of invasive species. 

Table 7.1 A comparison between the analyses of change in area of heathland in Dorset, 1978 

- 1996 
Total area Total area Total area Percentage Percentage 
of heath in of heath in of heath in change 1978 change 1987 
1978 (ha) 1987 (ha) 1996(ha) - 1987 (%) -1996 (%) 

Webb & Haskins, 5,832 
(1980) 
Chapman et al, (1989) 5,507 - - - -

Webb (1990) - 5,141 - -5 .0 -

Rose et al., (in press) 5,453* 5fK5* 4,720* -7.1* -7.0* 
This research 5,510 4,978 4,222 - 10.0 - 15.0 

*calcu]ated by combining the areal extents of dry heath, wet heath, humid heath and peatland 

based on the same 3,110 pixels from 1978 as calculated by Rose et al. (in press) to make the 

figures comparable. 

7.8 Conclusions 

The dwarf shrub vegetation of Dorset is in decline. Land use change and succession were the 

main causes of this decline. The effect of land use change has been removed, but the process 

of succession appeared unabated despite the best efforts of heathland managers between 1987 

and 1996 (Auld et ah, 1992; Woodrow et ah, 1996). Indeed the rate of succession was 

calculated to be 1% per annum between 1978 and 1987 increasing to 2% between 1987 and 

1996 (this analysis and Rose et al., in press). This analysis has used a statistical modelling 

technique to provide insight into the causes of percentage change in area of dwarf shrub 
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vegetation (and dwarf shrub vegetation type) over time. Modelling indicated that for the 

dwarf shrub vegetation to survive, further fragmentation must be prevented. Fragmentation 

can most easily be controlled by considerably reducing the areal extent of invasive species 

across all Dorset. 

167 



CHAPTER 8 

CONCLUSIONS 

8.1 Summary 

Much of the dwarf shrub vegetation in Dorset has been lost over the last century and a half. 

The dwarf shrub vegetation that has survived has been considerably fragmented and this has 

increased the likelihood of further losses both of dwarf shrub vegetation and the fauna it 

supports (Moore, 1962). Haskins (1978) calculated from Isaac Taylor's maps of Hampshire 

and Dorset that 39,960 ha of heathland existed in Dorset between 1759 and 1765. Today 

4,222 ha remain (Chapter 4, 4.3.2). It is because so little of the dwarf shrub vegetation of 

Dorset remains and because of the rare communities and species they support that they are 

now a top priority for habitat conservation in Britain (Biodiversity Steering Group, 1995). 

Therefore, there was (and still is) an urgent need to quantify the problem of fragmentation by 

developing models of change. Such models will prove invaluable to heathland managers. 

Therefore, the aim of this research was to model the spatial dynamics of the dwarf shrub 

vegetation of Dorset. 

Many analyses of change have been carried out previously (Webb and Haskins, 1980; 

Chapman et al., 1989; Webb, 1990; Webb, 1992 and Rose et al., in press) but this research 

encompassed the first attempt to build models of change. Further, it was one of the first 

attempts to model succession as a spatial process (Rejmanek, 1995; Holt et al., 1995). A GIS, 

remote sensing and regression were used to build models of change in the dwarf shrub 

vegetation of Dorset. Four main processes were identified as causal factors behind the 

decline in area of dwarf shrub vegetation between 1978 and 1987 and between 1987 and 

1996. These were land use change, succession, management and transitions between dwarf 

shrub vegetation types. Anthropogenic effects were not predictable from present dwarf shrub 

vegetation status. Therefore, natural ecological change resulting from succession was the 

focus of this analysis using regression. The relationship between percentage change and a 

series of explanatory variables facilitated the production of models of change. Further, 

explanatory variables were chosen based on their expected influence on the process of 

succession in a fragmented dwarf shrub vegetation environment. Change was examined at a 

patch and a pixel level. Ecological forces operate at different spatial and temporal scales, so 

that changes may themselves be patchy (Dunn et al., 1991). Therefore, within a single 

landscape, different patches (or pixels) change at different rates creating a complex pattern of 

change (di Castri & Hadley, 1988). Taking a patch and a pixel approach was an attempt to 
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take into account the fact that change occurred at different spatial scales. Further, change was 

examined at two levels, an aggregated primary category level (change in the total area of 

dwarf shrub vegetation was examined) and at a primary category level (change in area of dry 

heath, wet heath, humid heath and peatland were examined). 

The patch-based model indicated that three processes were likely to cause a decline in area of 

dwarf shrub vegetation over time. First, density (believed to indicate fragmentation) of the 

remaining dwarf shrub vegetation in a patch (and in the edge of a patch). Second, the areal 

extent of invasive species in a patch. Third, the area of dwarf shrub vegetation relative to the 

area of invasive species in a patch (and in the edge of a patch). Therefore, each of the three 

influenced the process of succession. In all, if fragmentation can be prevented by reducing 

the areal extent of invasive species in a patch then the dwarf shrub vegetation of Dorset 

should remain intact. Further, the analysis indicated that management not only arrested 

change but could result in increases in area of dwarf shrub vegetation over time. The pixel-

based analysis failed to result in any significant relationships. 

8.2 Future Research 

This research produced some significant relationships between percentage change and factors 

related to the process of succession. However, the coefficients of determination were 

relatively small. At the patch-level this appeared to be a function of the effect of land use 

change and uncertainties associated with the data. Future research will involve further 

investigation into the effect of land use change. Further attempts at isolating its effect and 

removing the noise it creates will be made, thereby strengthening the signal resulting from 

the relationship between percentage change and the explanatory variables. 

The pixel-based analysis produced no significant results. Change may well occur at a sub-

patch level but at a super-pixel level. The pixel-based analysis moved from one extreme 

(patches were created using the loosest possible criteria resulting in the least fragmented 

environment) to another (the pixel-based analysis was the smallest possible scale based on 

the data). In the future, patches will be created using a variety of rules and the analyses 

repeated with the aim of isolating the best scale for the analysis of change. Patches can be 

created simply and efficiently using the GIS. 

Finally, this analysis illustrated that change occurred because of two main ecological 

processes; succession and transitions between dwarf shrub vegetation types. The transitions 

between dwarf shrub vegetation types were not examined in any detail in this analysis. 

Future work will involve isolating the factors most likely to cause transitions between dwarf 
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shrub vegetation types and an attempt to model change will be made, thus providing further 

insight into the spatial dynamics of the dwarf shrub vegetation of Dorset. 

8.3 Conclusion 

The heathlands of Dorset are in decline and further fragmentation must be prevented. The 

patch-based analysis produced several significant results. In particular, consistently, 

percentage change was significantly correlated with the density of dwarf shrub vegetation in 

a patch (or in the edge of a patch). As the area of dwarf shrub vegetation became more 

fragmented, percentage change increased. Percentage change was also significantly 

correlated with the area of invasive species in a patch. As area increased, percentage change 

increased. Further, percentage change was significantly correlated with the ratio of area of 

dwarf shrub vegetation to invasive species in a patch (or in the edge of a patch). As the area 

of dwarf shrub vegetation increased relative to the area of invasive species, percentage 

change decreased. However, the relationship between percentage change and the area of 

dwarf shrub vegetation in a patch was not significant. The lack of a significant relationship 

between these two variables may have been caused by several factors, including a low signal-

to-noise ratio and the method used to create patches. In all, the patch-based analysis indicated 

that the prevention of further fragmentation through the removal of invasive species is the 

key to the heathlands survival. 

The pixel-based analysis was unfruitful. Percentage change was not significantly correlated 

with a single variable. The most likely reasons for the lack of significant relations at the pixel 

level was the scale of the analysis and the uncertainties associated with the data. The low 

signal-to-noise ratio was the most likely cause of the small coefficients of determination. 

The analysis of management provided some insight into the influence of management on 

change (both increases and decreases) in area of dwarf shrub vegetation over time. When 

percentage increases were examined, only percentage change in area of wet heath and 

peatland were significantly correlated with management at a patch level. Percentage change 

in area of wet heath (increases) was significantly correlated with the proportion of a patch 

managed using bracken spraying and pine clearance. Percentage change in area of peatland 

(increases) was significantly correlated with the proportion of a patch managed by 

rhododendron clearance, pine clearance and scrub clearance. Further, percentage change in 

area of peatland (decreases) was also significantly correlated with the proportion of a patch 

cleared of pine and managed using controlled burning and grazing. The pixel-based analysis 

failed to produce any significant relationships. Overall, despite considerable effort by 

heathland managers, management does not appear to have a great effect. 
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I hope that these findings will provide a useful insight for heathland managers and will aid in 

the prevention of further losses of the dwarf shrub vegetation of Dorset. 
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Appendix 1 

Image correction 

The intent of image rectification and restoration is to correct image data for distortions or 

degradations that stem from the image acquisition process (Lillesand and Kiefer, 1994). The 

removal of effects (from a remotely sensed image), whose magnitude is known, for example, 

the curvature of the Earth, is known as image restoration. A remotely sensed image can be 

corrected by suppressing the effects whose magnitudes are not known, like atmospheric 

scatter and sensor wobble (Andrews, 1974). 

Raw digital images usually contain geometric distortions so significant that they cannot be 

used as maps. The sources of these distortions range from variations in the altitude, attitude, 

and velocity of the sensor platform, to factors such as panoramic distortion, Earth curvature, 

atmospheric refraction and nonlinearities in the sensors' field-of-view (FOV) (Lillesand and 

Kiefer, 1994). The aim of geometric correction is to make an image conform to a pre-

arranged scheme. This can involve a large number of image manipulations, like the correction 

of predictive sampling errors that arise from changes in aircraft or satellite altitude, or the 

alteration of image projection to produce a stereo pair of images (Batson et al., 1976) or the 

distortion of an image to make a fit onto another image or map (Moik, 1980). These 

geometric corrections can be achieved in a number of ways. The location of lines or pixels 

may be altered in the image or the image completely resampled (Naraghi el al., 1983). Images 

collected by satellites with linear array sensors are systematically distorted as the Earth 

rotates. This effect can be removed by rectifying each scanline during image formation 

(Curran, 1985). 

Image resampling involves the reformation of an image onto a new base by using features 

common to both the image and the new base (Bernstein, 1976). These common features are 

known as ground control points. They are chosen as they are in sharp contrast to their 

surroundings. Ground control points are located on an image by their x and y co-ordinates, 

and on the new base by their latitudinal and longitudinal co-ordinates The functional 

relationships ( / i and /2 ) between x and y and the latitude and longitude are determined by 

least squares regression : 

% = y i ( x , Y) 

)' = y 2 ( X , Y ) 

where (x,y) = distorted image co-ordinates 

(X,Y) = correct (map) co-ordinates 
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/ l > / 2 = transformation functions 

To geometrically transfer an image, using these equations, there are four stages to proceed 

through: 

1. A geometrically correct geographical grid is defined in terms of latitude and 

longitude. 

2. The computer proceeds through each cell in the geographical grid transforming the 

latitudinal and longitudinal co-ordinates to % and y co-ordinates which become the 

new address for an image pixel. 

3. The computer visits this address in the image and transfers the appropriate digital 

number from the nearest pixel (for the nearest neighbour method only) to this address 

and its new home in the geographical grid. 

4. This process is repeated until the grid is full. Once full, the image has been 

geometrically corrected. 
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Appendix 2 

An alternative response variable 

Initially, the response variable was areal change in dwarf shrub vegetation. It is obvious that 

areal change will always be highly correlated with area and therefore, it was not surprising 

that the multiple regression produced several significant relationships (for example. Table 1). 

Multiple regression can be used to take into account, the high correlation between change in 

area and area of heath (for example) by holding area constant and determining whether 

another variable is significantly related with the residuals. Three significant variables 

explained sixty three of the variation in change in area of heath between 1978 and 1987 

(Table 1). However, sixty one of this variation was explained by the area of heath in the edge 

of a patch. The multiple regression results when percentage change in area of dwarf shrub 

vegetation in a patch was used as the response variable can be seen in Table 2 below. The 

correlation coefficient fell considerably when percentage change rather than areal change was 

used as the response variable, because areal change and area are highly correlated. Therefore, 

percentage change was the obvious choice of response variable. 

Log of change in area of heath versus the log of df 
patch-based explanatory variables 

P J.2 

Area of heath in the edge 1,81 
+ Area of 'others' 2, 80 
+ Area of 'others' in the edge 3, 79 

0 
0 
0 

0.61 
0.02 
0.01 

Table 2. Multiple regression results for patch-based aggregated primary categories, 1978 
Log of percentage change in area of heath versus df 
log of patch-based explanatory variables 

p f2 

Area of heath in the edge 1,81 
+ Area of heath : 'others' 2, 80 

0.0002 
0.0012 

0.15 
0.02 
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Appendix 3 

Testing the residuals for normality 

Many of the methods of statistics depend on the assumption that the variables under 

consideration are normally distributed. The meaning of a normal distribution may be most 

easily understood by considering certain graphs such as the histogram. A normal distribution 

is, however, an ideal distribution, the ideal being symmetrical and bell-shaped. In regression 

analysis the residuals should be normally distributed, not the actual variables. The residuals 

can be defined as the difference between the predicted and the observed values . 

The residuals of the most significant variable at the aggregated primary category level (at the 

95% confidence interval) were plotted. Percentage change in area of dwarf shrub vegetation 

between 1978 and 1987 was most highly correlated with density of dwarf shrub vegetation in 

the edge of a patch. The density of dwarf shrub vegetation in the edge of a patch was held 

constant and the residuals plotted as both a scatterplot and a histogram (see below). The 

residuals indicate the variation that is not explained by the logged density of dwarf shrub 

vegetation in the edge of a patch. Therefore, the residuals represent other influences on the 

log of percentage change in area of dwarf shrub vegetation over time. Good prediction 

requires that the residuals be as small as possible. If prediction is good, the line will closely 

fit the data. It is clear that the residuals are not small, the linear model (Chapter 4, Fig. 4.31) 

indicated as much, as did the small (0.15). The histogram indicates that the residuals are 

normally distributed, that is they approximate a bell-shape. Therefore, the regression is a 

valid one. 
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0 20 40 60 80 100 

Residuals with log density heath In an edge, 1978 held constant 

^ -2 0 2 4 

Residuals with log density heath in an edge, 1978 held constant 

The residuals when the logged density of dwarf shrub vegetation in the edge of a patch, 1978 

was held constant. 
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The residuals of the most variable most highly correlated with percentage change in area of 

dwarf shrub vegetation type, that is at the primary category level, between 1978 and 1987 (at 

the 95% confidence interval) were plotted. The highest correlation coefficient resulted when 

percentage change was regressed against the are of scrub in a patch. The area of scrub in a 

patch was held constant and the residuals plotted as both a scatterplot and a histogram (see 

below). Again, the residuals are not small, the linear model (Fig. 4.35) also indicated as much 

as did the small correlation coefficient (r^ = 0.23). Therefore, the model is not a good 

predictor of percentage change in the area of dry heath between 1978 and 1987. It is clear 

from the histogram that the residuals are normally distributed, that is they approximate a bell-

shape. Therefore, the regression is a valid one. 

20 40 60 80 

Residuals with log area scrub. 1978 held constant 

100 •4 -3 -2 -1 0 1 2 3 

Residuals with log area scnjb. 1978 held constant (units) 

The residuals when the logged area of scrub in a patch, 1978 was held constant. 

The residuals of the variable most highly correlated with percentage change in area of a dwarf 

shrub vegetation type at the primary category level (at the 95% confidence interval) were 

plotted. Percentage change in area of peatland was most highly correlated with the ratio of 

peatland to carr in a patch was held constant and the residuals plotted as both a scatterplot 

and a histogram (see below). Again, the residuals are not small, the linear model (Chapter 4, 

Fig. 4.55) indicated as much, as did the small correlation coefficient (r^ = 0.36). Therefore, 

the model is not a good predictor of percentage change in the area of peatland between 1978 

and 1987, however, it is the best model to date. It is clear from the histogram that the 

residuals are normally distributed, that is they approximate a bell-shape. Therefore, the 

regression is a valid one. 
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The residuals when the logged ratio of area of peatland to carr in a patch, 1987 was held 

constant. 
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Appendix 4 

Controlling for the effect of land use change 

When it became clear that changes in land use played an important role in percentage change, 

an alternate analysis was carried out. As land use change obscured the spatial process of 

succession and weakened the analysis because changing land use is not a spatial process, it is 

not dependent on patch size. Initially, patches where the area of 'others' increased by greater 

than 10% were removed thereby erasing some of the effect of land use change. Simple 

regression was then carried out with the aim of improving the relationship between 

percentage change in area of heath in the remaining patches and the explanatory variables. 

However, the correlations did not increase. An alternate threshold was applied, with patches 

in which the area of 'others' rose by over 5% were removed. Simple regression was again 

carried out. Again, the correlation coefficients were no higher than those from the original 

analysis. This led to a second analysis. 

An alternate response variable was used: percentage change in area of invasive species. 

Again, simple regression was carried out with the aim of trying to isolate the influences on 

percentage change in heath, the regression analysis aimed to isolate the causal factors behind 

the changes in invasive species over time. If percentage change in area of dwarf shrub 

vegetation could not adequately be explained because changes in land use were obscuring the 

relationship between percentage change and succession, then using an alternate response 

variable may hold the answer. Percentage change in area of invasive species was used as an 

alternative response variable allowing for the effect of changes in land use and preventing the 

effect of succession being hidden by 'noise'. Feature space plots previously indicated that 

change in area of invasive species resulted from decreases in area of dwarf shrub vegetation, 

not from land use change. Despite the use of the alternative response variable, the correlation 

coefficients did not increase. Therefore, it did not appear possible to remove the obvious 

effect of the influence of land use change. Land use changes serve to obscure relationships 

but not in any systematic way. 
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Appendix 5 

Investigating the effect of patch size 

In theory, different patterns of change could exist for different patch sizes. At the aggregated 

primary category level patches were divided into one of three categories: 'small', 'medium' 

and 'larger' patches. Small patches were defined as those with an area greater than or equal to 

40,000 m^ but smaller than or equal to 250,000 m^. Simple regression was carried out to 

isolate any significant relationships between percentage change in area of dwarf shrub 

vegetation in the twenty five smaller patches and each explanatory variable. However, there 

was no evidence that change was spatially dependent as change was not significantly 

correlated with a single variable relating to smaller patches. Simple regression was repeated 

based on the medium-sized patches (area greater than 250,000 m^ but less than or equal to 

2,999,824 m^). There were thirty eight such patches. Again, no significant relationships 

resulted. Finally, percentage change in the largest patches was examined (area greater than 

2,999,824 m^). There were twenty eight such patches. Simple regression was repeated but 

again, no significant relationship resulted. It appeared that percentage change was not 

dependent on patch size. 
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Appendix 6 

Smoothing Program 

This Spins program was used to calculate the density of invasive species which surrounded 

each pixel. The band width (or kearnal width) could be adjusted to encompass any number of 

pixesl. In the program below the bandwidth is set to six which is the equivalent of 600 m or 

three pixels. 

#You have to set these variables according to the data you are 
working with 
#Note that you can change the bandwidth 
num<-3110 
locationx<-idxy78[, 1] 
locationy<-idxy78[,2] 
attribute<-pixinvad7 8 
bandwidth<-seq(1,num) 
bandwidth[]<-6.0 

#These variables are set up automatically 
count<-seq(1,num) 
density<-seq(1,num) 
distance<-seq(1,num) 
length<-seq(1,num) 

#set the counter and summation variable to zero 
count[]<-0 
density[]<-0.0 

#Now run the program 
# 

print('Should take about 10 minutes to run') 

for(j in 1:num){ 
print(j) 
distance<-sqrt(((locationx[]-locationx[j])**2) + 

((locationy[]-locationy[j])**2)) 
logica<-distance[]<=bandwidth[] 
density[][logica] <- density[][logica] + attribute[]] 
count[][logica] <- count[][logica] + 1 

} 
#No allowance for zero counts here! 
density[]<-density[]/count[] 
# 

test<-cor(pixpchth7887,density) 

newsmooth78<-seq(1,pixsum78) 
newpixhth78<-seq(1,pixsum78) 
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pixsum78<-0 
for(i in 1:3110){ 
if(pixpchth7887[i] <= 0.0){ 

pixsum78<-pixsuin7 8 + l 
newpixpchth7887[pixsum78]<-pixpchth7887[i] 
newsmooth78 [pixsuin78] <-density [i] 
newpixhth7 8[pixsum7 8]<-pixhth7 8[i] 

} 
} 

test<-cor(newpixpchth7887,newsmooth78) 

newdata4<- newpixpchth7B87[newpixhth78>3000] 
newdata5<- newsmooth78[newpixhth78>3000] 
cor(newdata4,newdata5) 

Smoothing Program for the 1987 data 

A similar program was used for the 1987 data. 

#You have to set these variables according to the data you are 
working with 
#Note that you can change the bandwidth 
num<-4751 
locationx<-idxy87[, 1] 
locationy<-idxy87[,2] 
attribute<-pixinvad87 
bandwidth<-seq(1,num) 
bandwidth[]<-8.0 

#These variables are set up automatically 
count<-seq(1,num) 
density<-seq(1,num) 
distance<-seq(1,num) 
length<-seq(1,num) 

#set the counter and summation variable to zero 
count[]<-0 
density[]<-0.0 

#Now run the program 
# 

print('Should take about 10 minutes to run') 
for(j in 1:num){ 

print(j) 
distance<-sqrt(((locationx[]-locationx[j])* *2) + 

((locationy[]-locationy[j])**2)) 
logica<-distance[]<=bandwidth[] 
density[][logica] <- density[][logica] + attribute[j] 
count[][logica] <- count[][logica] + 1 

} 
#No allowance for zero counts here! 
density[]<-density[]/count[] 
# 

181 



newsmooth87<-seq(1,pixsumBV) 
newpixhth87<-seq(1,pixsum87) 

pixsum87<-0 
for(i in 1: 3674) { 
if(pixpchth8796[i] <- 0.0){ 

pixsuin87<-pixsum87 + l 
newpixpchth8796[pixsum87]<-pixpchth8796[i] 
newsmooth87[pixsum87]<-density[i] 
newpixhth87[pixsum87]<-pixhth87[i] 

} 
} 

test<-cor(newpixpchth8796,newsmooth87) 

newdata4<- newpixpchth879 6[newpixhth87>3000] 
newdata5<- newsmooth87[newpixhth87>3000] 
cor(newdata4,newdata5) 

cor(pixinvad87,density) 
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