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[1] Distinct 4 year averages of absolute dynamic topography reveal striations in all ocean
basins during 1993-2008. Striations are alternating mesoscale jet-like structures observed in
time-averaged zonal geostrophic velocity, iz. They are characterized by speeds O(1 cms ")
and are nominally separated by 200 km in the meridional direction. Similar patterns have
been observed in sea level anomaly, mean dynamic topography, and Argo float
measurements. Use of a tracked-eddy database in concert with a contour identification and
eddy removal algorithm demonstrates that eddies are a dominant source of striations in # in
the South Pacific (20°S-50°S, 200°E-280°E). Eddies with lifetimes > 4 weeks account for
46-57% of the variance in # and correlation coefficients between total and eddy-only u are
0.90-0.93. Attention is given to the ability of the algorithm to correctly identify eddies and
suggests that a more appropriate bound on the variance due to eddies is ~ 30—-70%. This
permits the existence of latent zonal jets and/or ff-plumes. Additional findings of the study
include (1) a large number of eddies having a broad range of amplitudes and scales
contribute most to the eddy-induced patterns and (2) the standard deviation of # does not
decay inversely with averaging period as proposed by a model of random eddies.

Citation: Buckingham, C. E., and P. C. Cornillon (2013), The contribution of eddies to striations in absolute dynamic
topography, J. Geophys. Res. Oceans, 118, 448-461, doi:10.1029/2012JC008231.

1. Introduction

[2] Geostrophic turbulence predicts zonal jets in the ocean
and atmosphere. Under this theory, energy cascades from
small to large scales while enstrophy—i.e., squared vortic-
ity—cascades from large to small scales. The combined
effects of the latitudinal variation in the Coriolis parameter
and the inverse and forward cascades of energy and enstro-
phy, respectively, are thought to result in multiple zonal jets
(MZJs) [Rhines, 1975]. Another theoretical framework for
the existence of zonal jets in the ocean is secondary instabil-
ity theory [Pedlosky, 1975; Berloff et al., 2009].

[3] Until recently, MZJs had not been observed in the
global ocean. While numerical models consistently produced
patterns supporting the existence of MZJs on the Earth [e.g.,
Williams, 1978; Maltrud and Vallis, 1991; Panetta, 1993;
Treguier and Panetta, 1994; Cho and Polvani, 1996; Nakano
and Hasumi, 2005], observational support for the existence of
zonal jets in the ocean have typically been confined to regional
studies such as those in equatorial waters [Firing, 1987;
Gouriou et al., 1987], the Brazil Basin [Hogg and Brechner
Owens, 1999], and the Southern Ocean [Nowlin and Clif-
ford, 1982; Orsi et al., 1995; Sokolov and Rintoul, 2007].
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However, it was not until 2005, and again in 2008,
that patterns resembling MZJs were observed on a global
scale [Maximenko et al., 2005, 2008]. In their 2005 study,
Maximenko and coauthors created a time-average of sea level
anomaly (SLA) and illustrated the existence of zonally-
coherent, mesoscale alternating currents in all of the world’s
oceans. Maximenko and coauthors further demonstrated the
existence of stationary jet-like structures in mean dynamic
topography (MDT) in their 2008 study. The jet-like structures
were referred to as “striations”, in light of uncertainty surround-
ing the physics of these phenomena. An example of striations is
shown in Figure la.

[4] Subsequent studies have examined striations
from various points-of-view. Notable ones include those
by Centurioni et al., [2008] and Ivanov et al. [2009,
2010] in the California Current System and van Sebille
et al. [2011] in the North Atlantic. The latter describes
striations using a three-dimensional reconstruction of the
density field from Argo profiling floats, while the former
uses altimeter-based measurements to examine striations.
In addition, a recent study by Cravatte et al. [2012]
documented a series of zonal jets at intermediate depth
near the equator by averaging drift velocities of Argo
floats at parking depths of 1000 and 1500 m. All studies
suggest the existence of zonally-coherent structures in
time-averaged zonal geostrophic velocity. Most studies
document quasi-stationary striations, although there is
some evidence for a slight meridional migration of patterns
[fvanov et al., 2009]. In addition, both Huang et al. [2007]
and Scott et al. [2008] investigated measures of anisotropy
for the upper ocean and found that the geostrophic velocity

448



BUCKINGHAM AND CORNILLON: STRIATIONS IN ABSOLUTE DYNAMIC TOPOGRAPHY

(@

{ems’)

180°W

Figure 1.

Global maps of time-averaged zonal geostrophic velocity, #, estimated from (a) observed and (b)

simulated SSH, 1993—1996. Observed SSH consist of AVISO/CLS ADT and were spatially high-pass-filtered
prior to estimating zonal geostrophic velocity. Simulated SSH were obtained by superimposing Gaussian eddies
with amplitude, scale, position, and lifetime identically specified by the eddy database [CCS2011] onto an
otherwise flat ocean. Black boxes denote the region examined in this study (20°S-50°S, 200°E-280°E).

field, when averaged in time, has a greater degree of
zonal variance than meridional variance. It is also noteworthy
that patterns similar to striations have been observed in front
probability estimated from microwave sea surface tempera-
ture (SST) [Buckingham and Cornillon, 2010], scatterometer
estimates of surface winds [Maximenko et al., 2010;
Divakaran, 2011], and reanalysis of the southeast Indian
Ocean [Divakaran and Brassington, 2011].

1.1.

[s] Striations have generally been interpreted as jets
[Maximenko et al., 2005; Ivanov et al., 2009; van Sebille
et al., 2011; Kamenkovich et al., 2009; Berloff et al., 2009;
Cravatte et al., 2012]. Such jets have been described as
quasi-zonal in reference to their deviation from strictly zonal
flow [Ivanov et al., 2009; van Sebille et al., 2011; Wang
et al., 2012] and [atent in reference to their small amplitude
relative to the background eddy field [Berloff et al., 2011].
Hristova et al. [2008] suggested that radiating instabilities of
an eastern boundary current could act as a source of zonal jets
for the interior ocean. This idea was extended by Wang et al.

General Interpretation of Striations

[2012] using a simple, nonlinear barotropic quasi-geostrophic
model. The authors found that nonlinear interactions are
essential in the maintenance of jet-like features emanating
from the eastern boundary. A related interpretation is that
striations are the result of ff-plumes radiating from the eastern
boundary [Centurioni et al., 2008; Melnichenko et al., 2010;
Afanasyev et al., 2012; Di Lorenzo et al., 2012]. The concept
is that processes on the eastern side of the basin radiate Rossby
waves and generate coherent vortices through baroclinic
instability. The anomalies propagate westward under the influ-
ence of f§ and create striations. In this model, striations are the
manifestation of both eddies and jet-like structures emanating
from the eastern boundary.

[6] While it is tempting to interpret striations as jets,
Schlax and Chelton [2008] caution against this. They argue
that westward-propagating anomalies with completely
random positions create patterns similar to those observed.
Developing a model of westward-propagating Gaussian
eddies with amplitudes, scales, lifetimes, and propagation
speeds characteristic of observed eddies, Schlax and Chelton
[2008] demonstrated that random eddies can create striations
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in time-averaged sea surface height (SSH) and the associated
time-averaged zonal geostrophic velocity field, #. In their
model, eddies of large amplitude and scale contribute most
to the observed striations and the standard deviation of u
decays inversely with averaging period. To help illustrate
this mechanism, we display in Figure 2 how an anticyclonic
eddy can create striations in # [see also Scott et al., 2008,
Figure 10]. A similar argument can be made for cyclonic
eddies. More generally, a field of mesoscale eddies with
propagation direction deviant from westward might produce
quasi-zonal patterns.

[7] Figure 1b illustrates # estimated from 4 years of simu-
lated SSH due to eddies. In this example, the eddies are not
random as in the simulations of Schlax and Chelton [2008]
but instead have position, amplitude, scale, and lifetime
specified by a tracked-eddy database [Chelton et al.,
2011a, hereafter, CSS2011]. One notes the existence of
striations in eddy-generated u that are similar in appearance
to observed striations (Figure 1a).

[8] Such arguments leave inconclusive the presence of
zonal jets in the ocean. Given the importance of MZJs to an
understanding of the general circulation of the ocean and po-
tential support for geostrophic turbulence theory [Rhines,
1975; Baldwin et al., 2007] and/or jet formation by secondary
instability mechanisms [Pedlosky, 1975; Berloff et al., 2009],
we seek to quantify what portion of the striation signal is
due to propagating eddies [Schlax and Chelton, 2008] and
what portion remains unexplained.

1.2. Focus of the Study

[9] The focus of the present study is on striations in the sub-
tropical South Pacific Ocean (20°S-50°S, 200°E-280°E;
black box in Figure 1). The region is sufficiently distant from
equatorial and coastal regions and does not enclose strong
current systems such as the Gulf Stream, Kuroshio, and
Antarctic Circumpolar Current where a host of dynamical
processes complicate interpretation of the data. For this
reason, excluding differences in bathymetry, processes gov-
erning striations in the South Pacific should be representative
of those in most midlatitude, open-ocean basins.

[10] In the present study, we examine striations in time-
averaged absolute dynamic topography (ADT). The motiva-
tion for use of ADT in the examination of striations is that it
provides a dynamical quantity from which to appropriately
isolate and identify eddies. In addition and in contrast with

U<o
(a) e 0 (b)

SLA measurements, ADT contains stationary signals that
may include zonal jets. Lastly, we mention that, to the extent
that mesoscale eddies explain a portion of the striation signal
in this data set, these results may shed light on the zonal
patterns in other data sets. For example, at the end of this study
we suggest eddies may be responsible for some portion of the
banded structure observed in SST.

[11] This study is divided into three parts. In section 2, we
describe methods employed in the study, including isolating
eddy signatures and quantifying that portion of the striation
signal attributed to eddies. Section 3 summarizes the results
and is followed by a discussion in section 4.

2. Methods

[12] Following Roemmich and Gilson [2001], we use the
term “eddy” to refer to propagating anomalies seen in the al-
timeter record (and described by Chelton and Schlax [1996],
Chelton et al. [2007], and CCS2011). That is, we do not distin-
guish between linear planetary waves (i.c., Rossby waves) and
nonlinear coherent vortices in the surface ocean. We recognize
that this distinction is important for understanding the dynam-
ics associated with striations—are eddies embedded in MZJs
and therefore derive energy from or feedback energy to the
mean flow [Kamenkovich et al., 2009]?—but argue that it is
not essential for kinematically distinguishing between jets
and coherent, propagating anomalies.

2.1.

[13] The data used in this study are altimeter-derived mea-
surements of SSH and a database of tracked eddies. SSH data
consist of AVISO/CLS delayed-time, merged ADT, interpo-
lated by SSALTO/DUACS onto a quarter-degree grid [Ducet
et al., 2000; Le Traon et al., 2003], separated in duration by
7 days, and referred to as the reference series. (Data set acro-
nyms are expanded in the Acknowledgments section.) These
data span the time period October 1992 to July 2011, although
analysis in this study is limited to data between October 1992
and December 2008. The database of tracked eddies, which is
described by CCS2011 and generated by D. Chelton and M.
Schlax, is available for the aforementioned time period. The
eddy data set used in this study consists of locations, ampli-
tudes, scales, azimuthal speeds, and lifetimes of tracked eddies
having lifetimes > 4 weeks. One will note that the analysis
presented in CCS2011 pertains to eddies with lifetimes

Data Description

westward-flowing jet

eastward-flowing jet

Figure 2. (a) A westward-propagating, anticyclonic eddy in the Southern Hemisphere has zonal and
meridional velocities # and v along the perimeter of the eddy as shown. (b) Because velocity fields are
averaged in time, # has small but finite amplitude while v approaches zero. The effect of the eddy is to
create striations in #. Illustration after Scott et al. [2008].
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> 16 weeks. In spite of this discrepancy, we refer to CCS2011
when speaking of the eddy data set.

[14] The SSH product known as the “reference” series is
used instead of the “updated” series—the reference series
consists of data from two altimeters at any given time
while the updated series consists of data from up to four
altimeters—because the eddy database of CCS2011 was
developed from the reference series and we wish for a close
correspondence between ADT fields and the eddy database.

[15] The AVISO/CLS ADT data described above are the
sum of altimeter-only measurements in the form of SLA and a
1992-2008 estimate of MDT [Rio et al., 2011]. The MDT field,
referred to as combined mean dynamic topography (CMDT), is
estimated using several data sets, including velocity estimates
from drogued drifting buoys, hydrological profiles from conduc-
tivity-temperature-depth casts, and Argo profiling floats and
wind stress reanalysis to remove Ekman effects. The MDT field
also makes use of a geoid model (EIGEN-GRGS.RL02) and an
altimeter-derived mean sea surface product (CLSO1).

2.1.1. Comment on Spatial Resolution of ADT

[16] CCS2011 (section A.3) provide a thorough summary
of the resolution characteristics of SLA based on meridional
and zonal spectra. Because snapshots of ADT are heavily
determined by SLA, conclusions reached by CCS2011 apply
to our data set, as well. We summarize these below.

[17] CCS2011 found that (1) filtering characteristics of the
optimal interpolation scheme appear to be approximately iso-
tropic when expressed in degrees of latitude and longitude, (2)
filter attenuation can be defined as monotonically increasing
with decreasing wavelength (increasing wavenumber), and
(3) attenuation of the signal at 2° and 3° is 0.5 and 0.0, respec-
tively. Signals having wavelengths of 2-3° are therefore
captured in a qualitative way. Recognizing that the spectral
representation of an eddy covers a large range of wavelengths
with most of the energy located at lower wavenumbers, the
authors estimate the minimum eddy size that such filtering
characteristics will permit. They estimate that Gaussian
eddies with e-folding scale—which is a form of eddy
radius—Iless than 0.4° are significantly attenuated, those with
scale 0.4°-0.6° are somewhat attenuated and those with scale
greater than 0.6° are completely resolved. At midlatitudes, these
scales correspond roughly to 40 and 60 km. Therefore, 60 km
represents the minimum resolvable eddy scale for our data set.

2.2. Processing Steps

2.2.1. Time-Averaging and Spatial Filtering

[18] One of the processing steps commonly used to observe
striations is time-averaging. The argument made for the use of
a time average is that the desired signal is so small in ampli-
tude that it is easily masked in individual snapshots of the
ocean. The averaging period used in this study is 4 years,
and therefore allows us to describe stationary striations. It also
affords us the ability to break the 16-year record examined in
this study into four distinct time intervals.

[19] In addition to time-averaging, it is common to apply a
spatial high-pass filter to the time-averaged field in order to
remove spatial trends irrelevant to the processes under exami-
nation [e.g., Maximenko et al., 2008; van Sebille et al., 2011].
Given the desire to replicate processing steps leading to
striations documented elsewhere, mean ADT is spatially
high-pass-filtered in a manner identical to that described by
Maximenko et al. [2008]. This filtering process consists of

several steps. First, a spatial low-pass filter is applied to the
time-averaged field in order to isolate low wave-
number signals. We refer to this field as LP1. The filter is a
two-dimensional, approximately isotropic Hanning window
with 4.0° half-width. The result of this step is then subtracted
from the original field, resulting in a high-pass-filtered field.
This field is then filtered with the same Hanning window,
isolating low-frequency content missed in the first step. We
refer to this field as LP2. Finally, the sum (LP1 + LP2) is
subtracted from the original field, resulting in a spatially
high-pass-filtered field. The effective magnitude response
of this filtering process is shown in Figure 3.

[20] Filtering the time-averaged field in the above manner
is equivalent to time-averaging spatially high-pass-filtered
fields. This results from the linearity of both the averaging
and high-pass-filtering processes. A second but equally
important point is that the gradient of a time-averaged field
is equal to the time-average of the gradient of underlying
fields. In particular, z estimated from time-averaged ADT
is equal to the time-average of u-fields.

2.2.2.

[21] The general assumption in this study is that one can
decompose the observed velocity signal into that due to eddies
and that due to other processes, which may include jets. The
basis for this decomposition comes from the fact that for the
large-scale (> 30km) ocean, the sum of forces acting on a
parcel of fluid in the horizontal can be written as the sum of
Coriolis and pressure forces [Wunsch and Stammer, 1998].
In combination with the hydrostatic relation, this geostrophic
balance permits estimation of zonal and meridional compo-
nents of surface velocity from dynamic height.

[22] An improved representation of upper ocean dynamics
is the so-called gradient wind balance. This is a three-way
balance of Coriolis, horizontal pressure gradient, and centrip-
etal forces, where the latter term arises due to the curvature
of parcel trajectories [Holton, 1979]. It can be shown that cen-
tripetal forces do not contribute significantly to the observed
height signal. In particular, the magnitude of centripetal accel-
eration in the vicinity of eddies has been estimated at 1-3%
that of the Coriolis acceleration. Given that eddies are the
dominant signal in SSH, and given that the centripetal term
is larger than or equal to other nonlinear terms in the equations
of motion, as well as viscous terms and time-tendency terms,
we conclude that the geostrophic balance is a good approxima-
tion. (Assessing the validity of the geostrophic approximation
requires a systematic scaling of the equations of motion. The
importance of ageostrophic accelerations are determined by
the Rossby (Ro) and Reynolds (Re) numbers applicable to
the flow. It can be shown that time-tendency, nonlinear advec-
tive, and viscous accelerations scale as Ro, Ro, and Ro/Re
times the Coriolis acceleration, respectively. Because the
Rossby number is small (10~?) and the Reynolds number large
(10-10%), we find these accelerations are of order 102, 102
and 107 to 107 times the Coriolis acceleration. [The latter
range results from scaling the viscous acceleration term and
noting that horizontal and vertical eddy viscosities have
different magnitudes. We expect a significant departure from
these scales in the Ekman layer where winds modify the bal-
ance through increased vertical shear—i.e., the 9/0 z(v, 0 u/0 z)
term.] In summary, the error made in making the geostrophic

Identification and Removal of Eddy Signatures
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Figure 3. Effective magnitude response of the filtering
process used in this study. The filter is nearly isotropic in
latitude € and longitude ¢ in units of degree. Wavelengths
in units of kilometers assume 1°=111.2 km and, thus, corre-
spond to meridional distances. The shaded box highlights
wavelengths of 300-500 km.

approximation is at most a few percent). Therefore, the ocean
surface velocities are well approximated by

U= 7%@ - _ g (8775ddy another
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_ ‘g@ _ g (677eddy
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where x and y are eastward and northward distances, respec-
tively, g is the acceleration due to gravity, f'is the Coriolis
parameter, 7 is the absolute dynamic height, and « and v
are zonal and meridional velocities, respectively. Here, we
have used the substitution 77=17cqay + Nother and, owing to
the linearity of the equations, defined zonal geostrophic
velocities due to eddies and other processes. In this study,
we are interested in & because v approaches zero.

[23] To determine if eddies give rise to striations in , it is
necessary to identify eddies, isolate their ADT signature, and
quantify their contribution to the time-averaged field. One
manner of determining the overall contribution of eddies to
u is to simulate a set of Gaussian eddies with amplitudes,
scales, and lifetimes identical to those observed, compute a
time-average of these fields and compare observed and sim-
ulated u. This has been done and results in # estimated from
Gaussian eddies having striations with similar appearance
but smaller amplitude when compared with observed stria-
tions (Figure 1b). Eddies of parabolic shape [CCS2011]
yield improved but comparable results (not shown). The
discrepancy in the magnitude of striations, coupled with an
imperfect alignment of striations when using eddies of a
prescribed shape motivates use of an automated algorithm
to identify and subtract eddies from individual ADT fields.
This process is described below. We note that Chelton and
Schlax offered to provide contours of eddies identified in
their 2011 study. However, differences in the underlying
data set (SLA vs. ADT) and the spatial filtering applied to
SLA fields prior to identifying eddies has led us to develop
our own contour-identification algorithm but one that
closely follows that described by CCS2011 (Appendix B.2).

) = Ueddy + Uother (1)

anothcr
Ox Ox

) = Veddy + Vothers (2)

2.2.2.1.

[24] The algorithm used in this paper searches for closed
contours at various height levels, starting at —100 cm and

Algorithm Description

increasing in intervals of 0.25cm in its search for anticy-
clonic eddies while starting at + 100 cm and decreasing in
intervals of 0.25cm in its search for cyclonic eddies. Be-
cause height contours are coincident with streamlines of
geostrophic flow, one might also interpret the eddies identi-
fied from this algorithm as “closed circulation cells.”

[25] In identifying closed contours from the combination
of the ADT record and eddy centers in the eddy database,
we require that Chelton-Schlax eddy centers be located
within the closed contour, or perimeter, of the eddy identi-
fied with our algorithm. In addition, we allow closed regions
of the eddy to include pixels out to a distance 2 L from the
eddy center, where L is the “radius of the circle that has
the same area as the region within the closed contour of
SSH with maximum average speed” [CCS2011]. Additional
constraints on the selection of eddies are as follows: (1) eddy
pixels (i.e., those pixels found within eddy perimeters)
cannot be more than a distance D from one another, where
D varies linearly between approximately 670 km at 20°S
and 400 km at 30°S, and is 400 km for latitudes poleward
of 30°S; (2) eddy pixels must not be assigned to more than
one eddy; (3) an object identified as an eddy must contain
at least 8 but no more than 1000 eddy pixels; and (4) the
closed contour of the object must include an extrema
with sign determined by the polarity of the eddy in the eddy
database. The extrema need not be the eddy center specified
in the eddy database. Figure 4a illustrates the identification
of eddy contours in ADT.

[26] Having identified the perimeters of eddies, one pro-
ceeds to remove eddies from ADT fields in order to deter-
mine the role eddies play in creating striations. The removal
of eddies from ADT was accomplished in the following
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Figure 4. [Illustration of (a) the contour-identification and
(b) eddy removal algorithm applied to filtered ADT in the
South Pacific, valid 6 January 1993. Black dots denote eddy
centers obtained from the eddy database.
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manner. ADT values within eddy perimeters were replaced
with those of a smoothed interpolated field. The smoothed
interpolated field was generated by (1) assigning to eddy
pixels within each eddy the value of the threshold used to
obtain a closed contour and (2) spatially low-pass-filtering
this field with a 9 x 9 pixel (2.25° x 2.25°) Gaussian
window having approximately 1.9° half-power width. The
result of removing eddies and replacing them with pixels
from the smoothed field is shown in Figure 4b.

[27] Finally, to estimate average zonal geostrophic veloc-
ity attributed to eddies, we computed the time-average of
ADT with eddies removed and subtracted this from the total
observed time-averaged ADT field. This results in an esti-
mate of mean ADT due to eddies alone and from which
we calculate u due to eddies. We use the terms ., and
Uicddy to denote total and eddy-only u fields, and #gisr = tiotal —
lleady to refer to the difference.

2.2.2.2. Algorithm Characteristics

[28] It is possible that zonally-elongated objects are
frequently identified by the algorithm. This would reduce a
considerable fraction of the striation signal while calling into
question the eddy-nature of ADT anomalies identified here.
From illustrations of eddy contours, this does not appear to
be the case. For example, two pronounced anisotropic struc-
tures are visible in Figure 4a near 27°S—-30°S, 225°E-232°E.
These positive and negative plume-like features are pre-
served by the contour identification and eddy-removal
process (Figure 4b). While qualitative, this gives us some
assurance the algorithm is properly distinguishing between
jets and eddies. A more systematic assessment follows.

[29] To determine if features selected by the algorithm are
anisotropic, on average, we examined the histogram of eddy
perimeters and plotted these as a function of distance from
the centroids of the objects. Figure 5 illustrates the histogram
of eddy perimeters relative to the centroids of identified
eddies, where zonal and meridional distances have been

(number)
10000
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4000

Normalized Meridional Distance

2000

Most Probable Distance = 1.39L
-2 -1 0 1 2
Normalized Zonal Distance

Figure 5. Histogram of eddy perimeter locations deter-
mined by the contour-identification algorithm. Eddy loca-
tions are shown as scaled distances from eddy centroids
and distances are normalized by the horizontal eddy-scale
L as defined in the eddy database.

normalized by the eddy scale L obtained from the database.
One notes two characteristics from this figure. The first is
that the histogram of eddy perimeters reveals little or no
anisotropy in the shapes of identified eddies. The second is
that the most probable perimeter distance is approximately
1.4 L, providing confidence that the threshold distance of
2 L (described above) is reasonable.

[30] Note that the perimeter distance is not the same as the
eddy scale. The former describes the horizontal extent of the
eddy signature in SSH while the latter describes the radius at
which the rotational speed of the eddy is a maximum and has
potential dynamical significance: fluid within this distance is
trapped by the eddy if its circulation speed U exceeds the
propagation speed ¢ of the eddy [CCS2011].

[31] Some limitations should be noted regarding the
contour-identification and eddy removal procedure. These
include the following: (1) the set of eddies identified and
tracked are restricted to those eddies having lifetimes greater
than or equal to 4 weeks; (2) a small percentage (1%) of
eddies identified and tracked by Chelton and Schlax are
not identified in the corresponding ADT fields either due
to the fact that (i) the tracked eddies may not have a
corresponding eddy signature in the altimeter record since
CCS2011 allow for the reappearance of an eddy by looking
ahead several time steps, or (ii) the latitude and longitudes of
eddy tracks have been smoothed [CCS2011, section B.4 of ]
to the extent that eddy centers no longer fall inside the peri-
meters of eddies identified here; (3) the contour-identification
algorithm sometimes connects two visually distinct anomalies
in spatially-filtered ADT fields; and (4) removal of eddies and
the subsequent replacement of eddy pixels with values makes
an assumption about the nature of the SSH field in the absence
of eddies. Here, this assumption is that an ADT signature
exists in the absence of an eddy. Despite these limitations,
we believe this method to be useful in providing an estimate
of the contribution of eddies to striations. We note that items
(1), (2), and (4) underestimate dynamic height due to eddies,
while item (3) has the potential of overestimating mean ADT
due to eddies. In the Discussion section, we attempt to bound
the energy due to eddies.

2.3. Characterization and Comparison of .,
Ueqqay, and Ugise

[32] In determining the contribution of eddies to striations
in 1, we characterize and compare ioal, deddy> and iggr. This is
accomplished by computing variances and covariances of
the fields. We compute the variances, aé, in order to charac-
terize their relative amplitudes and covariances to determine
the degree of similarity amongst the fields. Here, o; repre-
sents a deviation from a spatial average and the averaging
region is chosen to be the South Pacific.

[33] Note that variances of eddy-only and difference fields
do not add to equal the total variance. This is seen in the
expression for the variance of u

2 52 2 2
Ot — Uueddy + s + 20

2
Ueaay Ugiss’ (3)
where the last term is twice the covariance between eddy-
only and difference fields. Normalizing this expression by
the total variance yields an expression for the relative contri-
butions of ieqdy, #gifr, and the covariance between the two
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fields. In particular, the fraction of variance explained by
eddiesiso7, /o7 . Both observed and fractional variances
are reported'Th the Next section.

[34] In addition to comparing relative magnitudes of #ay,
Uleddy, and ugir, correlation coefficients are used to compare
the similarity of fields. In terms of variances and covar-
iances, the signed correlation coefficient is defined as

[Bendat and Piersol, 2000]

—. C)
0,00

o

Pij =

Here, i and j, where i #j, are subscripts used to denote total,
eddy-only, or difference fields. A correlation coefficient
close to +1.0 suggests the two fields are linearly related
through a positive scale factor, while a negative value
demonstrates that # fields have features common to both
but opposite in sign; a value near zero demonstrates little-
to-no linear relationship between the fields.

[35] When computing the above quantities, it is helpful to
subsample iqql, Ueady, and zgir in an effort to obtain decorre-
lated samples. Given that deccorrelation scales within
optimally interpolated fields are 100-300 km—although this
varies with latitude [CCS2011, Appendix A.2]—and recog-
nizing that the signal of interest is zonally-elongated, fields
were sampled every one degree in latitude and every three
degrees in longitude.

3. Results

[36] This section examines the role eddies play in the
generation of striation patterns. Given that eddies are found
to account for a significant fraction of the signal present in
u, the hypotheses posed by Schlax and Chelton [2008] are
tested, including (1) the decay of zonal standard deviation
with averaging period and (2) the amplitudes and scales of
eddies most responsible for striations. First, we examine
zonal and meridional scales of striations to demonstrate that

(@)
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Figure 6.

striations examined in this study are comparable to those in
other studies.

3.1.

[37] Figure 6 depicts zonal and meridional spectra of# as a
function of averaging period. As the averaging period
increases, the energy in the spectra appears to move from
higher to lower zonal wavenumbers, consistent with the
view that westward-propagating anomalies dominate the
time-averaged field [Schlax and Chelton, 2008]. Meridional
spectra reveal a different pattern. One notes that for all aver-
aging periods, a large portion of energy is located within the
0.002-0.003 km™' wavenumber band, corresponding to
wavelengths of 330-500 km. By 7= 60 weeks, the spectra
reveal a single peak near 0.0025km™' (400km), a trend
extending to larger averaging periods. The # fields examined
in the remainder of the study are those having averaging per-
iods of ~ 200 weeks (4 years) and therefore correspond to u
containing large (> 1000km) zonal and ~ 400 km
meridional scales. These zonal and meridional scales show
good agreement with those observed elsewhere [Maximenko
et al., 2008; van Sebille et al., 2011].

Zonal and Meridional Spectra of u

3.2. Comparison of utyal, Ueqay, and #gige

[38] Figure 7 illustrates Ziotal, Ueddy> and igigr estimated from
four 4-year averages of ADT in the South Pacific. Variances
and covariances are shown in Table 1 and normalized var-
iances and correlation coefficients are shown in Table 2.
One observes a high degree of similarity between #,; and
lcddy : correlation coefficients between the two fields range
from 0.90 to 0.93. In addition, an appreciable fraction of var-
iance is explained by eddies; values range from 0.46 to 0.57.
The difference, u4ir, is smaller in amplitude but contains
residual energy at locations similar to #,. This is reflected
in moderate-to-high correlation coefficients between iy
and g (0.77-0.80). The similarity of #icqqy and ugir is
not as high, with correlation coefficients range from 0.45
to 0.58. Lastly, covariance estimates between eddy-only

5
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(a) Zonal and (b) meridional spectra of # in the South Pacific as a function of averaging period.

Solid horizontal lines mark averaging periods of 4 years while vertical dashed lines highlight zonal and
meridional wavelengths of 1000 and 400 km, respectively. Spectra were created using all available
data between | January 1993 and 31 December 2008. Individual 4-year averaging periods show similar
structure. Note that spectral contours are illustrated on a logarithmic scale and units are cm? s > km.
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Figure 7. Comparison of (a—d) iotal, (€-h) eqay, and (i-1) ugir estimated from ADT during four 4 year
averaging periods. Contour lines are shown every 2cms ' and contours in difference Figures 7i~71 corre-
spond to those of ).

Table 1. Variances and Covariances of #al, Heddy, and g 3.3. Decay of o; With Averaging Period

Averaging Period 0% . 2 y ol 2 e 2 [39] schlax anfl Chelton [2908] derive an expression 'for
e —weey—ww bk the variance of # due to eddies as a function of averaging

%gg;:;ggg gg;g 8'2% 8‘};2 8'212 8%22 8'1 ég period 7. In this expression, the amplitudes and scales of

2001-2004 1707 0934 0233 1204 0503 0270  cddies determine to a large extent the velocity variance, with

2005-2008 2286 1301 0283  1.652 0.634 0351 the square-root of this quantity falling off as 1/7. To deter-

mine whether the standard deviation ¢; decays as 1/7, we
examined the SSH record as a function of averaging period,
computed ¢; for each averaging period and applied a least-
and difference fields account for 0.29-0.32 times the total squares regression to the data. Here, we computed # from
variance (column 4 in Table 2), leaving a small fraction time-averaged ADT as a function of averaging period, increas-
attributed to the difference (0.12-0.22). ing in 4 week intervals from 4 to 200 weeks (~ 4 years). We
did this for both i and ieqay.

Units are cm? s 2.

Table 2. Fractional Variances and Correlation Coefficients Between #ota, #eady, and Ugire”

Averaging Period 21;: sy / %,W %, it %ml 0 zﬁe syl 2,;%, Protal,eddy Protal diff Peddy.diff
1993-1996 0.46 0.22 0.32 0.91 0.80 0.49
1997-2000 0.52 0.19 0.29 0.92 0.77 0.45
2001-2004 0.55 0.14 0.31 0.95 0.80 0.58
2005-2008 0.57 0.12 0.31 0.96 0.79 0.58
1993-1996" 0.41 0.23 0.36 0.92 0.85 0.58
1997-2000" 0.49 0.23 0.28 0.90 0.76 0.40
2001-2004" 0.58 0.19 0.23 0.91 0.70 0.35
2005-2008" 0.61 0.15 0.24 0.93 0.69 0.38

“Results of applying the contour-identification/removal algorithm to SLA (referenced to an October 1992 to December 2008 mean) are highlighted
by asterisks.
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Figure 8. (a) Standard deviation of i and #eqqy as functions of averaging period, beginning January
1993, increasing in 4-week intervals and ending December 1996. Solid line: least-squares fit, y=a7” with
%=9.301 and f{=— 0.437. Dashed line: y=a7" with 2=9.301 and = — 1 as proposed by a model of ran-
domly-positioned eddies. (b) Same as for Figure 8a but for all time periods and only showing least-squares
fits and proposed falloffs. Regression coefficients are listed in Table 3.

[40] It is worth noting that the expression derived by
Schlax and Chelton [2008] is an expected value computed
at a given point. In the present case, we have defined o3 with
respect to a spatial mean and it is therefore descriptive of the
South Pacific region as a whole. The comparison between
the two forms of o is valid so long as samples within the
region are selected from the same distribution as samples
at any given location.

[41] Figure 8 shows the standard deviation of zonal geo-
strophic velocity o as a function of averaging period 7 starting
January 1993, increasing in 4-week intervals and ending
December 1996. Note that the data are well-approximated by
an equation of the form of y=oc7ﬁ where «=9.301 and
p=—0.437. This is compared with a 1/7T" falloff suggested
by Schlax and Chelton [2008]. In addition to values for the
1993-1996 time period, values of o and f for the other time
periods are shown in Table 3. In all cases, the data follow a
trend distinctly different from 1/7, with values of f ranging
between —0.282 and —0.447. This suggests processes giving
rise to striations are not explained by randomly positioned
eddies, alone.

3.4. Class of Eddies Most Responsible for Striations

[42] An additional hypothesis posed by Schlax and Chelton
[2008] concerning eddies and striations is that eddies of large
amplitude and scale are most responsible for the observed

Table 3. Parameters o and f Obtained From Least-Squares Fits of
4, and oy, During Four Time Periods®

Time Period o(total) P(total) o(eddy) P(eddy)
1993-1996 9.301 -0.437 7.530 -0.461
1997-2000 10.216 —0.447 9.022 —0.488
2001-2004 8.144 -0.357 6.490 -0.366
2005-2008 6.695 —0.282 5.427 -0.295

“The fit has the form y:aTﬂ, where T is the averaging period in weeks.
Units of o are cms™! wks™P,

patterns and that these eddies are few. Recall that each eddy
identified in this study can be cross-referenced to the set of
eddies identified by CCS2011 and are therefore associated
with a given amplitude, scale, lifetime, etc. One can therefore
test this hypothesis by creating % -fields attributed to eddies of
each amplitude and scale and examine #iotal, Zeddy, and #g;sr for
all amplitudes and scales. In particular, eddies of a particular
class contribute most to the observed striations if the variance
of ugigr 1s minimized. (Strictly speaking, eddies of a certain
class contribute most to the observed striations if the mean-
squared value of gy is minimized. However, the mean of
ugr 1S so close to zero that one can achieve the same effect
by simply minimizing the variance.)

[43] Figure 9 depicts the fraction of total variance contained

in agr (e, o a%hma]) as a function of eddy amplitude

Uit
and scale. In addition, it illustrates the correlation coefficient
between o and ieqay as a function of eddy amplitude and
scale. While some variation exists for different averaging

periods, the mean describes the trends in ¢2 /o2  well.

Uaie! ™ Uroral
One notes that the fractional variance is minimized by eddies

of small-to-medium amplitude (1-9 cm) and medium-to-large
scale (50-150km). This trend is reflected among correlation
coefficients, as well, where #.qqy due to eddies of these ampli-
tudes and scales are most correlated with iz, . Ranges of
amplitudes and scales are defined as the amplitudes and
scales for which the mean in fractional variance is less than
0.95 and the mean in correlation exceeds 0.4 (horizontal lines
in Figure 9).

[44] It is important to note that eddy amplitudes may be
biased low due to the existence of spatial gradients in SLA
fields whose horizontal scale exceeds that of the eddy, thereby
hindering identification of eddy contours [CCS2011].
CCS2011 apply a two-dimensional high-pass filter prior to es-
timating eddy amplitudes in an effort to remove such bias.
However, because filter dimensions are large (10° and 20°
half-widths in latitude and longitude, respectively) eddy bias
remains. It is also possible that bias in eddy amplitudes enters
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Figure 9. Fraction of total variance contained in zg;¢r (blue, top) and correlation coefficients between iy,
and #eqqy (red, bottom) as a function of eddy (a) amplitude and (b) scale. Thin lines illustrate values for
each averaging period and thick, dashed lines illustrate the means. Bin widths are 1 cm and 10 km for eddy

amplitude and scale, respectively.

as a result of identifying eddies in SLA referenced to 1993—
1999 rather than ADT or SLA referenced to a longer-duration
period; however, we have determined this to be insignificant
(< 0.3 ¢cm) for our application.

[45] To obtain a more accurate picture of the amplitudes of
eddies giving rise to striation patterns, a set of revised eddy
amplitudes were obtained from the spatially high-pass-
filtered fields used in our study. Given that the filter used
in our study has half-width equal to 4°, large-scale gradients
are attenuated. Eddy amplitudes were obtained in the follow-
ing manner. Amplitudes of anticyclonic (cyclonic) eddies
were estimated by taking the magnitude of the difference
between the maximum (minimum) SSH value within the
eddy and the average height along the perimeter of the eddy
identified during the contour-identification step. In this
respect, the estimation of eddy amplitudes is the same as that
described by CCS2011.
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Figure 10. Fraction of total variance contained in gt
(blue, top) and correlation coefficients between i, and
llcddy (red, bottom) as a function of revised eddy amplitude.

[46] The fraction of total variance contained in g and
correlation coefficients based on revised eddy amplitudes are
shown in Figure 10. Note that the trough (peak) in fractional
variance (correlation) shifts from eddies of low amplitude to
those of moderate amplitude (3—12 cm), where again the range
of amplitudes is defined by those amplitudes for which the
mean falls below 0.95 (exceeds 0.4). This adjusts earlier esti-
mates and suggests that eddies of moderate amplitude and
scale contribute most to the observed patterns.

[47] While these results define the type of eddy most
responsible for the observed striations, they do not tell us
the number of eddies falling into this category relative to
the total number of eddies observed. Figure 11 illustrates
the histogram of eddies in the South Pacific as a function
of revised eddy amplitude and scale. This can be compared
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Figure 11. Histogram of eddies in the South Pacific
(1992-2008) as a function of revised amplitude and scale.
The black box highlights the intersection of amplitudes and
scales most correlated with observed striations.
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with Figure 9c of CCS2011 for the global ocean and for their
eddy amplitudes. The percentage of observations falling
into the intersection of the two classes described above
(ie,, 3-12cm and 50-150km) is approximately 75%, an
appreciable percentage of the total number of observations
(227,000). (Note that the scale and amplitude of an eddy
may change over its lifetime.) From this, we conclude
that striations are not the result of a small number of large-
amplitude and large-scale eddies but rather a significant num-
ber of eddies with a broad range of amplitudes and scales.

4. Conclusions and Discussion

[48] Two conclusions emerge from this study: (1) eddies
contribute significantly to the observed striations and (2) the
model of random eddies proposed by Schlax and Chelton
[2008] does not appear to be correct. We found that a large
number of moderate-amplitude (3—12 cm) and moderate-scale
(50-150 km) eddies contribute significantly to the observed
striations and the standard deviation of u decays with averag-
ing period with a rate different from the inverse relationship
proposed by Schlax and Chelton [2008].

4.1.

[49] This study has focused on striations in the subtropical
South Pacific Ocean. Such a focus naturally restricts conclu-
sions and prevents extrapolation to other regions of the world.
However, we argue that to the extent that dynamics in the
South Pacific are similar to those in other midlatitude, open-
ocean basins, results should extend to these regions, as well.

4.1.1.

[s0] Measurement and systematic errors of altimeter data
include sensor noise, atmospheric errors, sea state biases,
orbit errors, and errors in the removal of inverse barometer
and tidal signals [Martin, 2004]. While collectively these
errors can exceed several centimeters, they are estimated to
be 2 cm when averaged over time and spatial scales similar
to those examined in this study [Cheney et al., 1994]. In
addition to measurement and systematic errors, the altimeter
data used in this study suffer from errors resulting from
interpolation of data between tracks. Recall that the data
used in this study and referred to as the reference series con-
sist of optimally interpolated measurements from two alti-
meters. Because the separation between altimeter tracks can
be large (e.g., 200-300 km for TOPEX/Poseidon and Jason-
1 tracks in our region [Chelton et al., 2001, Figure 61]), the er-
ror can be large. Thus, the reference series may not suitably re-
solve the ocean surface in some locations.

[5s1] One method of gaining insight into the magnitude of
this error is to compare reference and updated products during
a time when data from four satellite altimeters are available.
Pascual et al. [2006] have done this and reported larger SSH
anomalies and enhanced eddy kinetic energy when using the
updated series. In addition, Beron-Vera et al. [2010] demon-
strated qualitative differences between surface structures in
reference and updated data (see, for example, their Figure 4),
but ultimately concluded that mixing inferred from the two
products is similar. Our own comparison during October
2002 to September 2005 (not shown) reveals that differences
in SSH between the two products can be as large as 6cm
(RMS differences of 0.7cm). This provides a plausible

Limitations

Errors in the Altimeter Product

mechanism by which SSH contours identified in this study
(see section 2.2.2.1) might differ from those determined from
the updated series, and hence the real ocean. We acknowledge
this as a potential error.

4.1.2. Errors in Mean Dynamic Topography

[52] Another potential limitation is the use of MDT. We
feel this is a limitation because, in addition to errors in
the optimally interpolated altimeter fields in the form of
SLA, the MDT product used in the study [Rio et al.,
2011] (i.e., CMDT) may contain errors. For example, it is
possible that wind stress reanalyses contain errors that then
propagate to MDT during the calculation of Ekman effects.
In addition, it is notable that the spatial distribution of hy-
drological profiles from Argo floats (2002—-2008) is sub-
stantially greater than those from CTD casts (1993-2008)
[Rio et al., 2011, Figure 2]. We mention this because it is
possible the mesoscale signal in CMDT is more representa-
tive of the latter-half of the averaging period than the entire
19922008 period. Ideally, dynamic height could be esti-
mated by subtracting a high-resolution geoid from
altimeter measurements, allowing an independent compar-
ison of geoid and in situ based MDTs. However, geoid
models with sufficient accuracy on the mesoscale do not
presently exist. We expect such models will be available
in the near future from, for example, data collected by the
Gravity field and steady state Ocean Circulation Explorer
satellite. Finally, we note that a parallel study using altim-
eter-only measurements (i.e., SLA referenced to a 16 year
mean) has been conducted and yielded nearly identical
results. These are shown in Table 2 and are denoted by
asterisks. This may indicate that MDT contains both eddies
and jet-like processes and that the relative ratio of these sig-
nals is similarly reflected in SLA.

[53] Recall that ageostrophic terms in the equations of mo-
tion have been neglected in this study. While the geostrophic
approximation is accurate for individual snapshots of the up-
per ocean, it has yet to be determined whether ageostrophic
terms are negligible when averaged for many years. In partic-
ular, deviations from geostrophy, such as those resulting from
eddy-eddy or eddy-mean flow interactions, may accumulate in
time. We have not estimated the magnitude nor the spatial dis-
tribution of these deviations relative to the observed striations.

4.1.3. Algorithm Limitations

[s4] The most significant limitation of this study is the
ability of the eddy identification and removal algorithm to
correctly identify eddies. Our ability to separate eddies from
the background mesoscale field is limited by two factors.
First, the combined eddy tracking, contour-identification
and eddy removal process is thought to underestimate the
magnitude of eddies. As discussed in section 2, this results
primarily from the contour-identification and eddy removal
process, in which eddy pixels are replaced with those of a
smoothed interpolated field. The second limiting factor is
that the algorithm incorrectly connects distinct features,
resulting in more energy being attributed to eddies than is
warranted. Given a latent jet signal and eddies with compa-
rable magnitudes, we might expect our confidence in the
aforementioned percentages (i.e., 46—57%) to decrease. To
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this end, we estimate bounds on the percentage of variance
attributed to eddies using simulated eddies and jets.

[s5] We simulated 16 years (1993-2008) of Gaussian eddies
with positions, lifetimes and horizontal scales identically spec-
ified by the tracked eddy database and amplitudes specified by
revised eddy amplitudes. We then applied the algorithm to the
eddy-only data set. We find that approximately 27% of the sim-
ulated eddy variance is missed by the contour-identification
and removal algorithm. Similarly, we simulated both eddies
and stationary jets (the latter having amplitudes of 1cm in
dynamic height), and applied the algorithm to these fields.
We find that the algorithm improperly attributes approximately
32% of the jet variance to eddies. Upper and lower bounds on
the percentage of variance attributed to eddies can, therefore, be
defined as 68% (lower) and 127% (upper) of ¢, /0% . In

eddy ! Urotal ©

conjunction with values specified in Table 2, this suggests
31-72% of the total variance in the striation signal can be
explained by eddies. While broad, these bounds on the variance
attributable to eddies describe important aspects of the striation
signal. They demonstrate that eddies account for an appreciable
fraction of the striation signal (at least 31%) but do not account
for all of the jet-like signal (at most 72%). While eddies in this
study have been defined as those with lifetimes > 4 weeks, we
believe that the variance in the striation signal decreases with
decreasing eddy lifetime. This may point to the existence of
latent f§ -plumes and/or MZJs.

[s6] Itis notable that two plume-like structures are observed
in ADT near 27°S-30°S, 225°E-232°E (Figure 4a). Jet-like
plumes such as these might result from radiating instabilities
of an eastern boundary current [Hristova et al., 2008; Wang
et al., 2012], but given the distance from the South American
coast, it is more likely the result of intense flow past seamounts
[Rhines, 1994] or island archipelagos.

4.2. The Contribution of Eddies to Striations in SST

[57] We close this study with a reference to striations in a
secondary data set.

[s8] Figure 12 displays time-averaged SST during
20052008, where SST measurements are those from the
Advanced Microwave Scanning Radiometer for the Earth
Observing System and have been spatially high-pass-filtered
in the same manner as ADT. One notes the existence of zonal
patterns in SST much like those seen in ADT. Indeed, contours
of time-averaged ADT (2005-2008) coincide with contours in
SST. The correlation coefficient between the two fields is 0.54
and increases when ADT is shifted west of its present location
(not shown), implying that SST and ADT are highly correlated
but that mesoscale SST anomalies lie west, on average, of
mesoscale anomalies in ADT.

[s9] These results are consistent with earlier studies examin-
ing the relationship between SST and SSH in the North Pacific
[Roemmich and Gilson, 2001; Qiu and Chen, 2005] and we
note that a similar correlation and spatial offset have been
found to exist between surface chlorophyll concentration and
SLA in the South Pacific [Chelton et al., 2011b]. Given the
role of eddies in forming striations in ADT and given moder-
ate correlation values between SST and ADT, it is likely that
eddies contribute substantially to striations in SST. Similar
arguments might be made for patterns observed in density
fields derived from Argo floats [van Sebille et al., 2011;
Cravatte et al., 2012] and wind measurements over the ocean
surface [Maximenko et al., 2010; Divakaran, 2011], given an
observed relationship between upper ocean density anomalies
and eddies [Roemmich and Gilson, 2001; Qiu and Chen,
2005] and surface winds and eddies [Park et al., 2006; Small
et al., 2008; Chelton and Xie, 2010], respectively.

[60] It is also notable that the striation signal in both SST
and ADT appear to be influenced by bottom topography.
This is evident in Figure 12, where bathymetric features
shallower than 2500 m are overlaid in black. Note that large
values of mean SST and ADT are observed east of the
East Pacific Rise (running approximately north-south at
245°E-250°E) and striations in both data sets appear
influenced by subsurface archipelagos—for example, those
bathymetric features extending northwest from Easter Island
(26°S, 250°E). It is likely that eddy tracks [Schlax and
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Figure 12. Time-averaged SST (2005-2008) with contours of time-averaged ADT (2005-2008)
overlaid. Contours are given every 0.5 cm between —1 and 1 cm and both SST and ADT fields have been
spatially high-pass-filtered in a manner following Maximenko et al. [2008]. Bathymetric features shal-

lower than 2500 m are highlighted in black.
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Chelton, 2008, Figure la] reveal the influence of bottom
topography, as well. Such arguments support the concept
of preferred pathways for eddies [Scott et al., 2008;
Maximenko et al., 2008] and may help explain the observed
decay of ¢; with averaging period.
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