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ABSTRACT

The NCEP Global Ensemble Forecasting System (GEFS) is examined in its ability to predict tropical

cyclone and extratropical transition (ET) positions. Forecast and observed tracks are compared in Atlantic

and western North Pacific basins for 2006–08, and the accuracy and consistency of the ensemble are examined

out to 8 days. Accuracy is quantified by the average absolute and along- and cross-track errors of the ensemble

mean. Consistency is evaluated through the use of dispersion diagrams, missing rate error, and probability

within spread. Homogeneous comparisons are made with the NCEP Global Forecasting System (GFS). The

average absolute track error of the GEFS mean increases linearly at a rate of 50 n mi day21 [where 1

nautical mile (n mi) 5 1.852 km] at early lead times in the Atlantic, increasing to 150 n mi day21 at 144 h

(100 n mi day21 when excluding ET tracks). This trend is 60 n mi day21 at early lead times in the western

North Pacific, increasing to 150 n mi day21 at longer lead times (130 n mi day21 when excluding ET tracks).

At long lead times, forecasts illustrate left- and right-of-track biases in Atlantic and western North Pacific

basins, respectively; bias is reduced (increased) in the Atlantic (western North Pacific) when excluding ET

tracks. All forecasts were found to lag behind observed cyclones, on average. The GEFS has good dispersion

characteristics in the Atlantic and is underdispersive in the western North Pacific. Homogeneous comparisons

suggest that the ensemble mean has value relative to the GFS beyond 96 h in the Atlantic and less value in the

western North Pacific; a larger sample size is needed before conclusions can be made.

1. Introduction

Numerical modeling of tropical cyclones has improved

in recent years, owing to improved observations of the

atmosphere, better assimilation methods, improved model

physics, and increased model resolution (Rappaport et al.

2009). As numerical weather prediction (NWP) models

have improved, scientists have investigated the use of

ensemble forecasts for the prediction of a tropical cy-

clone’s path. Zhang and Krishnamurti (1997, 1999) in-

troduced a perturbation technique for tropical cyclone

track prediction based on empirical orthogonal functions

and applied this technique to a global spectral model with

promising results. Goerss (2000) analyzed the mean track

of a multimodel ensemble forecast (referred to as a con-

sensus track), and found that the ensemble mean showed

16%–23% improvement in track forecasts over the best

member in the ensemble within the first 72 h of the fore-

cast during the 1995–96 Atlantic hurricane seasons. More

recently, the GUNA Consensus, a forecast introduced at
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the National Oceanic and Atmospheric Administration/

National Hurricane Center (NOAA/NHC) consisting of

an average of track forecasts from four operational NWP

models [Global Forecast System (AVNI), Geophysical

Fluid Dynamics Laboratory (GFDI), Met Office (UKMI),

and Navy Operational Global Atmospheric Prediction

System (NOGAPS) forecasts interpolated ahead 6 h], was

shown to have forecasts at 96-h lead time that are 18%

more accurate than the best-performing member within

the ensemble during the 2004–06 seasons (Rappaport et al.

2009). Another model consensus, the CONU [which is

similar to the GUNA Consensus but includes the Navy

version of the GFDL Hurricane Model forecast track/

intensity (GFNI)], shows similar skill (Goerss 2007).

Elsberry and Carr (2000) investigated the use of a selec-

tive consensus, in which forecasters remove one or more

members from the ensemble at their discretion. Sampson

et al. (2007) have found that, in the western North Pacific,

forecasters were unable to produce a selective consensus

that consistently improved guidance over a nonselective

consensus. A final approach to extracting guidance from

NWP model forecasts is the so-called superensemble, in

which past model performance is used to assign weighting

to individual members of an ensemble prior to forming

the consensus (Williford et al. 2003).

In addition to multimodel ensemble forecasts, ensem-

ble systems based on the application of perturbations to

a control analysis from a global model have gained in-

creasingly wider use in recent years. Such global ensemble

prediction systems (EPSs) show promise in medium-

range prediction by providing forecasts whose bound-

aries and dynamics are consistent over longer lead times.

Global EPSs in use today include those at the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF), the National Centers for Environmental

Prediction (NCEP), the Meteorological Service of Canada

(MSC), and the Japan Meteorological Agency (JMA). See

Park et al. (2008) for a more exhaustive list of global

ensemble forecasting systems currently in use. Each EPS

is unique in its data assimilation system, perturbation

method, model physics, and boundary conditions, making

comparisons between ensembles difficult. Nevertheless,

Buizza et al. (2005) presented a comparison of ECMWF,

NCEP, and MSC EPS performance from model data in

2002, and work is currently being conducted in com-

paring the performance between EPSs as part of The

Observing System Research and Predictability Experi-

ment (THORPEX) program (Park et al. 2008).

The present paper examines the performance of the

NCEP Global Ensemble Forecasting System (GEFS)

in predicting tropical cyclone and extratropical tran-

sitioning cyclone tracks. The motivation for including

transitioning cyclones in this analysis is that operational

forecast centers must make forecasts for all storms cur-

rently in their warning areas, including those that may

transition within a given forecast period, and accurate

prediction of such transitioning cyclones is a significant

challenge for forecasters. Given the damage and loss of

life that can occur as a result of transitioning storms (Jones

et al. 2003), it is desirable to assess the performance of the

GEFS in predicting extratropical transitioning cyclone

tracks in addition to tropical cyclone tracks.

The NCEP GEFS is a single-model, global ensemble

consisting of 21 members and is run 4 times daily (0000,

0600, 1200, and 1800 UTC) out to 384-h (16 day) lead

time. The underlying model for the GEFS is the NCEP

Global Forecasting System (GFS), a high-resolution

(T382L64 for 0–180-h lead time; T190L64 for 180–384-h

lead time) spectral atmospheric model run 4 times daily

at the Environmental Modeling Center. The GFS anal-

ysis is spectrally truncated and interpolated to a lower-

resolution analysis (T126L281), which then serves as the

control analysis for the ensemble. The analysis field for

each member forecast is created by applying a small

perturbation to the control analysis. The present per-

turbation method used by NCEP is referred to as the

ensemble-transform bred-vector technique (Wei et al.

2008), and it differs from its predecessor, the bred-

vector technique, in that perturbations applied to initial

conditions are orthogonal vectors with magnitude and

direction, rather than simply positive–negative pairs. This

change was implemented in May 2006. The number of

perturbation members was also increased at this time,

from 11 to 14, and again from 14 to 20 in 2007.

The outline of the paper is as follows. The forecast

verification methods used in this study are described in

section 2. Results are presented in section 3, followed by

a discussion in section 4. The Appendix details the use of

the bootstrap method to estimate confidence intervals.

2. Methods

The performance of the NCEP GEFS in predicting

tropical cyclone (TC) and extratropical transitioning

(ET) tracks is estimated by comparing forecast and ob-

served tracks in the Atlantic and western North Pacific

basins. Cyclone intensity is not considered in this study.

Forecast verification methods include the computation

of the average absolute and along- and cross-track er-

rors, use of dispersion diagrams, and computation of the

missing rate error and probability within spread. Before

introducing these methods, however, we discuss the set

of forecast and observed cyclone tracks used in the study.

1 As of 1200 UTC 23 February 2010, the horizontal resolution is

T190 (McClung 2009).
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a. Description of forecast and observed tracks

Forecast tracks were obtained from the GEFS through

the use of an automated tracking system (Marchok 2002).

Used operationally at NCEP since 1998, the algorithm

produces position fixes for several low-level parameters,

including relative vorticity at 850 and 700 hPa, minimum

sea level pressure, geopotential height at 850 and 700 hPa,

and minimum wind speed at 850 and 700 hPa.

To locate a maximum or minimum value for a given

variable, the algorithm employs a single-pass Barnes

analysis (Barnes 1964) at grid points centered on the

observed storm position, as determined by a Regional

Specialized Meteorological Center (RSMC). The Barnes

analysis provides an array of Gaussian-weighted mean

position fixes surrounding the initial-guess position. A

position fix is defined as the point at which the Barnes

function is maximized or minimized, depending on the

parameter being analyzed. After a fix is returned from

the first iteration of the analysis, additional iterations are

performed. For each iteration, the Barnes analysis grid is

centered on the position fix from the previous iteration,

and the grid resolution is doubled to obtain a finer es-

timate. Position fixes for all variables are then averaged

together in order to produce a mean position at each

lead time. Parameters with position fixes outside a speci-

fied distance [usually 150 n mi, where 1 nautical mile

(n mi) 5 1.852 km] of the guess position for a given

forecast hour are excluded from the computation of the

mean position. We note that cyclone genesis is not con-

sidered in this study. Thus, the forecast tracks are only

those corresponding to storms that have been identified

and numbered by an RSMC.

Cyclone tracks from the NCEP GFS deterministic

forecast are also used to assess the accuracy of the en-

semble. GFS tracks are obtained by using the same

automated tracking procedure described above. The

current operational version of the NCEP tracker produces

GFS tracks out to 180-h lead time, thereby limiting

comparisons between the two systems. Future versions

of the tracker will extend to 384 h.

As mentioned in the introduction, the NCEP GEFS

has undergone significant changes in recent years. In

addition to those previously mentioned, in May 2006,

a modification was made that relocated cyclone vortices

closer to observed storm positions. This had the effect of

improving initialization. To assess the impacts of in-

creased ensemble size in 2007, the ensemble was ran-

domly sampled so that the ensemble was made up of 15

members for all years. It was found that the differences

in the results were negligible between samples with all

members present and with 15 members present. Because

the differences are negligible, and because subsampling

reduces the number of cases (see the discussion regarding

the ensemble mean below), the results presented in this

paper use the full set of ensemble members.

Observed cyclone positions were obtained from the

NHC (information online at http://www.nhc.noaa.gov/

pastall.shtml#hurdat) and JMA/RSMC (information

online at http://www.jma.go.jp/jma/jma-eng/jma-center/

rsmc-hp-pub-eg/besttrack.html). Figure 1 shows the ob-

served cyclone tracks examined in this study, where solid

lines correspond to cyclones categorized as TCs and

dashed lines represent those categorized as ET. Only

cyclones categorized as tropical depressions or stronger

are considered in the analysis.

Tables 1 and 2 summarize the number of forecast and

observed cyclones available for comparison in the At-

lantic and western North Pacific basins, respectively.

A number of tropical cyclones of significant duration,

and which transitioned into extratropical cyclones, oc-

curred in the Atlantic during the 2006 season, causing

FIG. 1. Observed cyclone tracks within the Atlantic and western North Pacific basins, 2006–08. Cyclone tracks were

obtained from NHC and JMA/RSMC best-track records. Solid and dashed lines represent stages when cyclones were

classified as TC and ET, respectively.
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the Atlantic dataset (Table 1) at longer lead times to

be dominated by cyclones from 2006. In addition to listing

the number of cyclones available for comparison, Tables 1

and 2 list the total number of cases for which forecast–

observation pairs are available. We note that for a given

storm there can be many cases.

b. Definitions

The ensemble mean position is defined as the average

of the member forecast locations at a given lead time:

x
e
5

1

N
�
N

i51
x

i
, (1)

where xi is the position of the ith member of the en-

semble, N is the number of ensemble members, and the

summation is performed in vector space. All distances

have been calculated in a great circle sense to avoid in-

accuracies when working with projections (Froude et al.

2007). In order for an ensemble mean to exist at a given

lead time, we require that at least eight members be

present. This number has been determined empirically,

noting that a smaller number produces unrealistic, jag-

ged forecasts, while requiring a greater number reduces

the total number of cases available for comparison. A

less restrictive constraint was used by Froude et al.

(2007), who determined that five member tracks pro-

vided sufficient statistics for both the NCEP and

ECMWF ensemble systems.

The variance of the ensemble is defined as the average

of the squared distances of members from the mean:

s2 5
1

N
�
N

i51
s2

i 5
R2

E

N
�
N

i51
[cos�1(x

i
� x

e
)]2, (2)

where si is the distance of the ith member to the ensemble

mean and RE is the mean radius of the earth (3440 n mi).

We define the spread s as the square root of this quantity.

We note that Goerss (2000) has defined spread as the

average distance of members from the mean, which

yields a value slightly smaller than the definition given

here. Figure 2 illustrates both the ensemble mean and

spread for a GEFS forecast issued at 1200 UTC 10 June

2006. Spread is shown as a circle with radius s.

c. Measures of accuracy

Forecast accuracy refers to the average correspon-

dence of individual forecasts and the events they predict

(Wilks 2006). The average absolute and along- and cross-

track errors of the ensemble mean provide us with mea-

sures of the ensemble accuracy.

Absolute track error is the distance between observed

and forecast cyclone positions. In the case of the en-

semble mean, this is expressed as

s 5 R
E

cos�1(x
obs
� x

e
), (3)

where xobs is the position of the observed cyclone. Cross-

track error is estimated as the minimum distance of a

TABLE 1. The number of cyclones and cases available for comparison at each lead time in the Atlantic, 2006–08. Numbers outside

parentheses refer to those when considering both TC and ET tracks, while numbers in parentheses refer to those when considering TC

tracks alone. The numbers of cyclones and cases were determined by intersecting available forecasts with observations from NHC best-

track data. The numbers of cases under homogeneous comparison are less because of limitations of the automated tracking procedure.

Lead time (h) 0 24 48 72 96 120 144 168 192 216 240

No. of cyclones 39 (39) 37 (37) 31 (29) 27 (24) 21 (17) 16 (13) 13 (11) 11 (7) 8 (3) 2 (2) 2 (1)

No. of cases 880 (864) 774 (710) 628 (536) 461 (359) 339 (241) 244 (166) 171 (106) 106 (53) 62 (23) 44 (14) 37 (9)

No. of cyclones

(homogenous)

39 (39) 37 (36) 31 (29) 23 (19) 20 (16) 13 (11) 12 (9) 8 (6) 0 (0) 0 (0) 0 (0)

No. of cases

(homogenous)

685 (676) 569 (526) 429 (368) 303 (241) 220 (163) 154 (111) 112 (77) 69 (39) 0 (0) 0 (0) 0 (0)

TABLE 2. As in Table 1, except numbers are shown for the western North Pacific. The numbers of cyclones and cases were determined by

intersecting available forecasts with observations from JMA/RSMC best-track data.

Lead time (h) 0 24 48 72 96 120 144 168 192 216 240

No. of cyclones 58 (58) 56 (56) 50 (49) 43 (40) 36 (33) 33 (30) 26 (22) 16 (11) 15 (10) 9 (6) 3 (1)

No. of cases 1099 (1093) 1032 (974) 864 (767) 658 (557) 489 (405) 339 (276) 241 (178) 155 (106) 95 (57) 45 (23) 11 (3)

No. of cyclones

(homogenous)

58 (58) 54 (54) 49 (48) 42 (39) 34 (32) 27 (25) 23 (20) 15 (11) 0 (0) 0 (0) 0 (0)

No. of cases

(homogenous)

987 (981) 876 (845) 694 (634) 501 (438) 343 (294) 229 (192) 151 (116) 89 (64) 0 (0) 0 (0) 0 (0)
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forecast cyclone position to an interpolated observed

track (Fig. 3). Cross-track error is positive (negative)

when a cyclone is forecast to the right (left) of the ob-

served track. Interpolation is performed using linear

interpolation at a resolution of 1.0 n mi along the length

of the observed track. Care is taken to remove forecasts

from consideration that lie in front of or beyond the

observed track. While this decreases the sample num-

bers slightly, we believe it is appropriate given that ex-

trapolation of observed tracks can produce large errors.

The average cross-track error reveals the left- and right-

of-track biases present in an ensemble.

Along-track error is defined as the great circle dis-

tance between an observed cyclone and the point of

intersection of the cross track with the interpolated ob-

served track (Froude et al. 2007) (Fig. 3). Along-track

error is positive (negative) when a forecast lies ahead

of (behind) an observed cyclone. The average along-

track error reveals the forecast bias in the along-track

direction.

In addition to computing the track errors of the en-

semble mean, we consider homogeneous comparisons of

the GEFS mean, GEFS control, and GFS deterministic

forecasts. The motivation for comparing these forecasts is

to determine if the GEFS mean is more or less accurate

than both the GEFS control and the higher-resolution

GFS forecast. Ideally, the GEFS mean should be more

accurate at all lead times, but crossover in error between

the forecasts may suggest where the value of higher

spatial resolution in the GFS deterministic forecast is

overcome by having additional members in the GEFS

ensemble to account for initial condition errors. One

notes that comparisons of average along- and cross-track

errors reveal biases in the forecasts relative to each other

(not shown). However, since the results are very similar

among the forecasts, we display only homogeneous

comparisons of average magnitudes of the along- and

cross-track errors. Results, therefore, reveal how much

along- and cross-track error is present in the forecasts

relative to each other.

d. Measures of consistency

The consistency of an ensemble refers to the degree to

which observations statistically resemble members of

the ensemble (Wilks 2006). Applied to track prediction,

one expects distances of observed cyclones to the en-

semble mean to resemble distances of ensemble mem-

ber cyclones to the mean. This serves as the basis for the

forecast verification techniques described below.

1) DISPERSION DIAGRAMS

The mean squared error of the ensemble mean is es-

timated as

MSE 5
1

M
�
M

m51
s2, (4)

FIG. 2. Illustration of the NCEP GEFS for a forecast issued at

1200 UTC 10 Jun 2006. GEFS members, the GEFS mean, the

observations, and the spread are shown.

FIG. 3. Graphical illustration of absolute (AB), along- (AT), and

cross-track (CT) errors. Absolute track error is computed as the

distance between a forecast and an observed cyclone location.

Cross-track error is computed as the minimum distance of a fore-

cast to an interpolated observed track. Along-track error is com-

puted as the great circle distance between an observed cyclone

position and the intersection of the cross-track line with the in-

terpolated observed track (black dot). The curvature is exagger-

ated for emphasis.

1740 W E A T H E R A N D F O R E C A S T I N G VOLUME 25



and the average ensemble variance is estimated by

VAR 5
1

M
�
M

m51
s2. (5)

Here, s is given by Eq. (3) and M is the total number of

cases at a particular lead time. Talagrand et al. (1997)

point out that a consistent ensemble has a mean squared

error approximately equal to the average variance of the

ensemble. For an ensemble of finite size, the ratio of

MSE to VAR is expected to be

MSE

VAR

� �
exp

’ 1 1
2

n 1 1
5

n 1 1

n� 1
, (6)

where n is the number of ensemble members (Ziehmann

2000; Eckel and Mass 2005). Rearranging this relation-

ship, one obtains an expression for the average variance

of a consistent ensemble given the mean squared error

of the ensemble mean:

VAR
exp

’ MSE
n� 1

n 1 1
. (7)

The reason that the average variance is not exactly equal

to the rhs of Eq. (7) is that, in practice, the estimated

mean squared error comprises both forecast and obser-

vation errors. Observation error refers to the uncertainty

in cyclone positions reported by an RSMC. Errors in

observed cyclone position arise from several sources, in-

cluding limited observations, ambiguity associated with

assigning single locations to complex atmospheric sys-

tems (e.g., vertically sheared cyclones or weak systems

containing two cyclonic circulations), and postprocessing

of observed cyclone tracks. Observation error in best-

track data is not formally quantified (E. Fukada 2010,

personal communication; J. Franklin 2010, personal

communication). In the present study, we estimate this

value by comparing differences in best-track records

from JMA/RSMC and the Joint Typhoon Warning Cen-

ter (JTWC) in the western North Pacific. Comparison of

records over the 2006–08 seasons yields a mean squared

difference of approximately (30 n mi)2 5 900 n mi2. As-

suming that differences in cyclone positions reflect un-

certainty in the observed position, rather than differences

in methods employed at respective operational centers,

Eq. (7) can be written as

VAR
exp

5 MSE
n� 1

n 1 1
�VAR

obs
, (8)

where we refer to VARobs 5 900 n mi2 as the observa-

tion variance.

One difficulty in computing Eq. (8) is that the number

of members present in a given forecast may be less than

the total number of members of the ensemble. This oc-

curs when the automated tracking algorithm fails to lo-

cate cyclones in one or more of the member forecasts.

For this reason, the variable n in Eq. (8) is replaced with

an effective ensemble number hni, where the angle

brackets represent averaging over all cases for a given

lead time.

Dispersion diagrams illustrate both the average vari-

ance of the ensemble and MSE of the ensemble mean as

functions of lead time. Since values of VAR and MSE

are small at early lead times and large at later lead times,

it is useful to plot the square root of these quantities.

Thus, dispersion diagrams in the next section illustrate

the root MSE, root VAR, and root expected VAR (i.e.,

the variance expected if the ensemble was consistent).

2) MISSING RATE ERROR

One quantity of interest when examining whether the

spread of an ensemble is appropriate is the percentage of

observed cyclones falling closer to or farther from the

ensemble mean than any one of the ensemble members.

Given n equally likely members, one expects this per-

centage to be 200/(n 1 1)%. The deviation from this

value is termed the missing rate error (MRE; Eckel and

Mass 2005) and is defined as

MRE 5 100
1

M
�
M

m51

0 : s
min

# s
obs

# s
max

1 : otherwise

� �
� 2

n 1 1

0
@

1
A,

(9)

where smin and smax are the minimum and maximum

distances of members from the mean, sobs is the distance

of the observed cyclone to the mean, and M is the total

number of cases at a particular lead time. A positive

(negative) value suggests underdispersion (overdispersion)

of the ensemble.

3) PROBABILITY WITHIN SPREAD

Another useful metric of ensemble consistency is the

probability with spread (PWS). PWS estimates the like-

lihood of observed cyclones falling within the dispersion

of an ensemble, and differs from MRE in that it considers

varying distances from the mean. Expressed in terms of

integer multiples of spread, PWS is defined as

PWS 5
1

M
�
M

m51

0 : s
obs

. k(s)
m

1 : s
obs

# k(s)
m

� �
, (10)

where k is an integer (k 5 1, 2, 3 . . .), m is an integer, M is

the total number of forecasts at a given lead time, sobs is
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the distance of the observed cyclone to the ensemble

mean, and s is the spread of the ensemble. If members

are sampled from a normal distribution with standard

deviation s, one expects PWS corresponding to 1s, 2s,

and 3s to have values near 0.68, 0.95, and 0.99, re-

spectively. These numbers serve as references for results

presented in the next section.

e. Confidence intervals

In the following section, confidence intervals are com-

puted in order to bound our estimates of forecast accu-

racy and ensemble consistency. The method chosen to

estimate the confidence intervals is known as the

bootstrap technique (Efron 1979; Efron and Tibshirani

1993). The advantage of this method is that it makes no

assumptions regarding the distribution of the data.

While the samples are correlated, an investigation of the

bootstrap technique applied to track data suggests that

confidence intervals converge so long as 50 samples are

present (see the appendix). In some instances, the data

have fewer than 50 cases (see Tables 1 and 2). For this

reason, results within this study are limited to lead times

of 192 h (8 days) when examining combined TC–ET

tracks and 168 h (7 days) when examining TC-only

tracks. Confidence intervals are estimated at the 95%

level.

3. Results

Utilizing the above methods, the performance of the

GEFS is reported upon. Results in this section are pre-

sented for the full dataset containing both tropical

cyclones and extratropical transitioning cyclones (TC–

ET), as well as for the subset containing only tropical

cyclones (TC only).

a. Average absolute and along- and cross-track errors

For the full set of TC–ET cases in the Atlantic (Fig. 4),

the average absolute track error of the GEFS increases

at rates of 50 n mi day21 for lead times of 0–144 h and

150 n mi day21 for lead times 144–192 h. For the subset

of TC-only cases (Fig. 5), the rate of error increase is

more gradual, with an increase of 45 n mi day21 for lead

times of 0–144 h, increasing to 100 n mi day21 at longer

lead times. Despite the steady increase in absolute track

error, the GEFS remains mainly free of bias in the along-

track direction and has only a weakly negative cross-

track bias through 96 h for both the TC–ET and TC-only

samples (cf. Figs. 4 and 5). After that time, the GEFS

develops a negative along-track bias, and the magnitude

of that bias at 168 h is significantly stronger in the TC–

ET sample than in the TC-only sample. In addition, the

GEFS develops a negative cross-track bias at longer

lead times (168–192 h), and this bias is likewise stronger

at 168 h in the TC–ET sample than in the TC-only

sample (cf. Figs. 4 and 5). These results indicate that

forecast cyclones fall, on average, behind and to the left

of observed cyclones at longer lead times. Further-

more, the differences at later lead times between the

TC–ET and TC-only samples suggest that the GEFS

may have a slow bias for storms that are recurving into

the westerlies.

For the full set of TC–ET cases in the western North

Pacific (Fig. 4), the GEFS shows an increase in average

FIG. 4. The average absolute and along- and cross-track errors of the NCEP GEFS mean in the Atlantic and

western North Pacific basins, 2006–08. Error bars illustrate 95% confidence intervals on the mean as determined from

the bootstrap method. Both TC and ET tracks are included in the analysis. Along-track error is positive (negative)

when a forecast lies ahead of (behind) an observed cyclone and cross-track error is positive (negative) when a cyclone

is forecast to the right (left) of the observed track.
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absolute track error with increasing lead time that is

more gradual than in the Atlantic, increasing from 60 to

150 n mi day21 at 144-h lead time. The rate of absolute

track error increase in the western North Pacific is

similar between the TC–ET and TC-only samples (cf.

Figs. 4 and 5); however, the errors are smaller for the

TC-only sample for lead times of 48 h and longer. There

is negligible cross-track bias through 96 h for the TC–ET

sample (Fig. 4), after which there is a steady positive

increase in cross-track error. A negative bias is evident

in the along-track direction, beginning at 48 h and in-

creasing steadily through longer lead times. The TC-

only sample (Fig. 5) produces results qualitatively

similar to those for the TC–ET sample for both the

along- and cross-track errors, although the cross-track

bias is larger in the TC-only sample for medium-range

lead times (96–144 h). These results indicate that

forecasts fall, on average, behind and to the right of

the observed cyclones at longer lead times. Further-

more, the results indicate an increased cross-track bias

in the western North Pacific when considering TC tracks,

alone.

b. Comparison with GFS and GEFS control

Homogeneous comparisons of the GEFS mean, GEFS

control, and GFS deterministic forecasts for the full set of

TC–ET cases (Fig. 6a) show that the GFS has smaller

absolute track errors than both the GEFS control and the

GEFS mean through 72-h lead time, although this trend is

reversed at 96 h, with smaller errors for the GEFS mean

relative to the GFS. In the western North Pacific basin

(Fig. 6a), the relationship between the lower errors of the

GEFS mean relative to the GFS is also evident, but is not

established until 120-h lead time. Even then, the re-

lationship is not as pronounced in this basin when com-

pared with that for the Atlantic basin. Analyses in the

Atlantic basin using the subset of TC-only cases (Fig. 7a)

indicate smaller errors than the TC–ET sample at all lead

times beyond 72 h, and they also indicate the same trend

of the GEFS mean having smaller errors after 72-h lead

time. The results for the TC-only sample in the western

North Pacific (Fig. 7a) show the GFS with smaller errors

than the GEFS mean through 96 h, and then nearly equal

errors between the two models out through 168-h lead

time.

A comparison of average magnitudes of along-track

errors in the Atlantic for the full set of TC–ET cases

(Fig. 6b) reveals smaller errors in the GEFS mean rel-

ative to the GFS for lead times beyond 72 h. The trend is

the same for the sample of TC-only cases (Fig. 7b), but

the magnitude of the along-track errors is smaller for the

TC-only cases for all lead times beyond 72 h. In the

western North Pacific, similar trends exist but are not

established until 120 h (Figs. 6b and 7b). The magni-

tudes of the along-track errors are larger, on average,

for the western North Pacific at lead times beyond 72 h

than for the same lead times in the Atlantic. A com-

parison of the average magnitudes of cross-track error

in the Atlantic (Figs. 6c and 7c) reveals larger cross-

track errors in the GEFS mean relative to the GFS at

almost all lead times for both the TC–ET and TC-only

datasets. The cross-track errors are smaller for the TC-

only dataset relative to the TC–ET set for lead times

beyond 120 h. The results are different for the western

North Pacific, where the GEFS mean has smaller cross-

track errors than the GFS for all lead times beyond

72 h, both for the TC–ET and TC-only datasets (Figs.

6c and 7c).

c. Dispersion diagrams

The dispersion diagrams in Figs. 8a and 9a offer

comparisons of the root MSE and root VAR of the

FIG. 5. As in Fig. 4, but only TC tracks are included in the analysis.

DECEMBER 2010 B U C K I N G H A M E T A L . 1743



GEFS mean as functions of lead time. As discussed

earlier, the two quantities should be very similar. The

expected ensemble variance represents the variance one

would expect given error in the GEFS mean and taking

into account the effective number of ensemble members

and the observation variance [Eq. (8)].

For both the TC–ET and TC-only samples, the variance

of the ensemble in the Atlantic basin is nearly appropriate

FIG. 6. Homogeneous comparison of the (a) average absolute track error, (b) average magnitude of the along-track

error, and (c) average magnitude of cross-track error of the GEFS mean, GEFS control, and GFS deterministic

forecasts in the Atlantic and western North Pacific basins, 2006–08. Both TC and ET tracks are included in the

analysis.
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(Figs. 8a and 9a); root VAR is within 100 n mi of the

expected curve. Taking into account confidence intervals

for these quantities, the GEFS appears slightly under-

dispersive at 24–96 and 168–192 h for the TC–ET sample

(Fig. 8a) as well as at 24–120 h for the TC-only sample

(Fig. 9a). In contrast, the ensemble in the western North

Pacific lacks consistency over all lead times: the square

root of the average ensemble variance falls short of the

expected value for all lead times, and is less than half its

expected value beyond 72 h for both the TC–ET and TC-

only samples (Figs. 8a and 9a). The GEFS is inconsistent

and very underdispersive in the western North Pacific.

FIG. 7. As in Fig. 6, but only TC tracks are included in the analysis.
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d. Missing rate error

Figure 8b illustrates the missing rate error during the

2006 and 2007–08 seasons in the Atlantic and western

North Pacific basins. For the 2006 season in the Atlantic,

MREs for both the TC–ET and TC-only datasets shows

a statistically significant positive value at early lead times

(0–24 h), while being close to the expected value of zero

for all other lead times (Figs. 8b and 9b). This suggests the

ensemble is underdispersive at early lead times, but is

FIG. 8. Measures of ensemble consistency applied to the NCEP GEFS in the Atlantic and western North Pacific

basins, 2006–08. Measures include (a) dispersion diagrams, (b) MRE, and (c) PWS. Both TC and ET tracks are included

in the analysis. In (c), asterisks denote expected probabilities assuming a normal distribution with standard deviation s.
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potentially consistent at later lead times. MREs in the

Atlantic during the 2007–08 seasons show a positive value

for all lead times—close to 25%–30% for lead times of

0–96 h and 20% at later lead times for both the TC–ET

and TC-only samples (Figs. 8b and 9b). MRE at 192 h in

the Atlantic during the 2007–08 seasons is not shown due

to the small sample number.

In the western North Pacific, MREs for both TC–ET

and TC-only samples indicate positive values for all lead

times and both sets of hurricane seasons, with magni-

tudes ranging between 15% and 50% (Figs. 8b and 9b).

This illustrates the inconsistency of the GEFS in the

western North Pacific, and agrees with earlier conclu-

sions made from dispersion curves (cf. Figs. 8a and 9a).

FIG. 9. As in Fig. 8, but only TC tracks are included in the analysis.
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It is not clear why a significant change in MRE exists

between the 2006 and 2007–08 seasons in the Atlantic. It

is possible that the increase in ensemble membership in

2007 would modify the dispersion characteristics of the

ensemble, but one would expect a decrease in MRE to

result from an increase in ensemble size (Buizza and

Palmer 1998). It is useful to point out that a potential

limitation of MRE is that it depends upon the closest

and farthest members from the mean, and so can be

impacted by outliers. For this reason, we consider an-

other measure of consistency, below.

e. Probability within spread

Plots of the probability within spread for both the TC–

ET and TC-only datasets are shown in Figs. 8c and 9c for

distances of 1s, 2s and 3s from the ensemble mean

position. Asterisks denote expected probabilities, as-

suming a normally distributed ensemble with standard

deviation s. While the ensemble is not necessarily

Gaussian, expected probabilities provide some refer-

ence from which to compare results.

In the Atlantic, PWS is less than the expected 0.68 for

1s for all lead times for both the TC–ET and TC-only

samples (Figs. 8c and 9c). In fact, it is lower than 0.50 for

0–96 h. Similarly, probabilities within 2s and 3s are less

than the expected values of 0.95 and 0.99, respectively,

for all lead times. However, it is notable that PWS for

3s is close to the desired value (0.99) for most lead

times. PWS is found to increase with increasing lead

time in the Atlantic, indicating that the ensemble is

more dispersive at longer lead times. In contrast, PWS

in the western North Pacific decreases with increasing

lead time for both the TC–ET and TC-only samples

(Figs. 8c and 9c), at least for curves corresponding to 2s

and 3s.

An interesting point is that there is an increase in PWS

for 1s and 2s at 96-h lead time in the Atlantic (Figs. 8c

and 9c), coincident with the decrease in MRE at the

same lead time during 2007–08 (Fig. 8b, Atlantic) and

in agreement with observations made earlier about the

underdispersion of the ensemble at 0–96-h lead time

(Fig. 8a, Atlantic).

f. Differences in track error when including and
excluding ET tracks

One aspect of GEFS accuracy that can be studied is

the error introduced when including extratropical tran-

sitioning cyclone tracks. Figure 10 indicates that, in the

Atlantic, the inclusion of ET tracks results in an increase

in the average absolute track error beginning after 72 h,

with a sharp increase at 168-h lead time. This increase in

track error is reflected in large negative along- and cross-

track errors. One can also see this by examining Figs. 4

and 5 for the Atlantic at 168 h. The inclusion of ET

tracks results in an increase of average along-track error

from 2200 to 2250 n mi and average cross-track error

from 0 to 240 n mi. This indicates that forecasts of ET

cyclones lie farther behind and to the left of observed

storms in comparison to tropical cyclones, on average.

This error is potentially due to the difficulty the GEFS

has both in timing the extratropical transition of cy-

clones and in forecasting the evolution of the various

synoptic features that control the poleward movement

of a storm into the westerlies.

In the western North Pacific, the inclusion of ET tracks

results in a steady addition of negative cross-track error at

lead times between 24 and 144 h. That is, forecast tracks

are farther left of the observed tracks than when consid-

ering TC tracks alone. This makes sense if observed ET

tracks tend to the right more than GEFS forecast tracks.

FIG. 10. Differences in the average absolute and along- and cross-track errors of the GEFS mean when including and

excluding ET tracks within the analysis. Values are calculated as ‘‘with ET minus without ET.’’
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g. Impacts of the definition of spread on the results

Here, we explore how the definition of spread may

affect the results presented above. We defined spread as

the square root of the average squared distances of

members from the mean [cf. Eq. (2)]. Defined in this

manner, spread is a scalar measure of the dispersion of

the ensemble and is isotropic in its characterization. In

the following discussion, we refer to this as a circular

definition of spread. Another possible definition is the

square root of the average squared distances of mem-

bers from the mean in the along- and cross-track di-

rections. Such a definition is referred to as an elliptical

(A/C) definition of spread. A third possible definition of

spread is the average distances of the members along

and across principal axes. This is referred to as an el-

liptical (principal axes) definition of spread. All three

definitions are illustrated in Fig. 11a.

To determine the degree to which the above defini-

tions correctly characterize the dispersion of the GEFS,

we examined the percent of members enclosed by the

three definitions of spread. Figure 11b illustrates this

percentage for the Atlantic basin, including both TC and

ET tracks during the 2006–08 seasons. (Measures of

spread are scaled to have an area equal to that of the

circular definition.) Results show that circular and el-

liptical (A/C) definitions of spread contain the same

percentages of members, on average. The elliptical

(principal axes) definition of spread best describes the

ensemble, containing approximately 5%–10% more of

the members. This latter result was expected. The fact

that an elliptical (A/C) definition of spread does not

describe the ensemble’s dispersion any better than the

circular definition was not expected. While some atten-

tion has been given to spread in the along- and cross-

track directions (e.g., Yamaguchi et al. 2009, Fig. 11), the

results presented here do not provide support for the use

of such a definition in the work pertaining to the GEFS.

As for how these findings may affect our results, we

believe that the results presented in this study are robust

to changes in the definition of spread, given that differ-

ences in the percentage of members enclosed by the

spread are small and because trends are similar across all

lead times. We suggest that it may be worth exploring

how the track errors of an ensemble mean relate to its

spread in an elliptical (principal axes) coordinate system.

FIG. 11. Three definitions of spread and the percentage of members enclosed by these

spreads. (a) Definitions of spread, including circular, elliptical (in the along- and cross-track

directions), and elliptical (in the along- and cross-principal axes directions). In determining the

percentage of members within the spread, all spreads were scaled to have equal area. Results

are shown for the GEFS in the Atlantic, 2006–08, when both TC and ET tracks are considered.
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This exercise is considered to be beyond the scope of this

study.

4. Summary and discussion

In this section, we summarize the results of our study,

discuss the limitations of these results, and recommend

areas for further investigation that may lead to reduced

track error and improved consistency of the ensemble.

a. Summary

The NCEP GEFS was found to demonstrate a rather

linear increase in track error with increasing lead time in

the Atlantic. This rate is about 50 n mi day21 but in-

creases abruptly at 144-h lead time to 150 n mi day21

when including extratropical transition (ET) tracks. When

considering only tropical cyclone (TC) tracks, the rate

of increase of track error is 100 n mi day21 at these

longer lead times. In the western North Pacific basin,

average absolute track error increases at a rate of

60 n mi day21 at early lead times, and gradually in-

creases to 150 n mi day21 at later lead times when in-

cluding ET tracks. This value is 130 n mi day21 when

considering only TC tracks.

The GEFS ensemble mean was found to display a

slight left-of-track bias at early lead times in the Atlantic

(approximately 30 n mi at 72 h) while there is little or

no bias at these lead times in the western North Pacific

basin. This is true when including and excluding ET

tracks. However, at longer lead times when including

ET tracks, the ensemble is biased to the left of the ob-

served tracks in the Atlantic and to the right of the ob-

served tracks in the western North Pacific. Consideration

of TC tracks alone was found to eliminate this bias in the

Atlantic, but not in the western North Pacific. All forecast

cyclones were found to lie behind observed cyclones at

longer lead times in both basins, suggesting that the en-

semble is slow to recurve storms into the westerlies.

Homogeneous comparison of the GEFS mean, GEFS

control, and GFS deterministic forecasts reveals greater

accuracy of the GEFS mean in the Atlantic basin, while

there is little increase in accuracy relative to the GFS

forecast in the western North Pacific basin. The greater

accuracy of the GEFS mean over the GFS in the At-

lantic basin takes place at 96 h, and continues for lead

times beyond this time.

Ensemble consistency was explored using dispersion

diagrams, the missing rate error (MRE), and the proba-

bility within spread (PWS). Dispersion diagrams suggest

the spread of the ensemble is approximately appropriate

in the Atlantic basin, having the square root of the aver-

age ensemble variance (root VAR) close to the expected

value. There is some evidence of underdispersion at 0–96-h

lead time. In the western North Pacific basin, the con-

sistency of the ensemble is poor: root VAR is less than

the expected value for all lead times, and nearly one-half

the expected value for lead times beyond 96 h. Such a

difference in ensemble consistency across the two basins

is an important finding of this study. High MRE and low

PWS reveal similar aspects of ensemble consistency in

the western North Pacific.

b. Limitations

One of the limitations of the results is the small number

of cyclones considered in the study. In the Atlantic, re-

sults at longer lead times are dominated by cyclones in the

2006 season, which undergo extratropical transition and

are, therefore, characteristic of a certain type of cyclone.

Results in the western North Pacific basin are derived

from a much larger dataset, but even so, cyclones are

limited to the 2006–08 seasons. We acknowledge, there-

fore, that results from this study may not be representa-

tive of the ensemble in other years.

c. Potential areas for improving GEFS forecast skill

The analysis of along- and cross-track errors when

extratropical tracks are included in the Atlantic suggests

that the GEFS has difficulty modeling the transition of

cyclones from tropical to extratropical or that it may

have difficulty predicting the evolution of large-scale

synoptic features that are responsible for steering TCs

into the midlatitudes. Left-of-track bias in the Atlantic

and a tendency of forecasts to lie behind observed cyclones

hint at such a conclusion. In the western North Pacific

basin, a slightly different relationship exists. Forecast cy-

clones are located behind and to the right of observed

cyclones at longer lead times.

In a review article summarizing the current level of

understanding of transitioning cyclones, Jones et al.

(2003) outline difficulties associated with the numerical

prediction of extratropical transitions. The migration of

tropical cyclones into regions of often drier air, the in-

teraction of cyclones with land and cooler waters, the

potential reintensification of cyclones when interacting

with midlatitude systems, and asymmetries that develop

in the wind field can contribute to significant challenges

in modeling transitioning cyclones. The authors further

point out that numerical models, often the primary guid-

ance available to operational forecasters, are limited in

their ability to resolve the small-scale processes necessary

in tropical cyclone prediction, while at the same time ac-

curately depicting midlatitude systems into which these

cyclones move. Payne et al. (2007) examined four opera-

tional models in use at the JTWC that provide guidance to

forecasters predicting TC tracks in the western North

Pacific basin. The motivation of the study was to explore
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the usefulness of the selective consensus track. One of the

four models considered in the study was the GFS. Payne

et al. found that large errors in the GFS deterministic

forecast of tropical cyclones in the 2005 season resulted

mainly from a poor response to the vertical wind shear.

They state that, ‘‘95% of large 96- and 120-h track forecast

errors were due to an incorrect depiction of the vertical

structure of the vortex.’’ GFS vortices were consistently

weaker than the observed vortices, allowing the environ-

mental vertical wind shear to dominate cyclone trans-

lation and, in some cases, dissipation. The underlying

model for this type of error is thought to be an erroneous

decoupling of upper-level winds from the lower-level

winds (Carr and Elsberry 2000; Payne et al. 2007). Payne

et al. (2007) note that this type of error was not present in

the regional models studied.

In 2005, the GFS deterministic forecast was run at

T382L64 within the first 180 h (Campana et al. 2009).

Given that the GEFS uses the same model as the GFS,

but at lower resolution (T126L28), it follows that prob-

lems described by Payne et al. (2007) are present in the

GEFS, as well. While not shown, similarities in bias re-

vealed by homogeneous comparisons of average along-

and cross-track errors among the GEFS mean, GEFS

control, and GFS deterministic forecasts point to this

being the case. It may be beneficial to run the GEFS at

increased model resolution for several cyclones. One

could select two or three tropical cyclones within each

basin that undergo extratropical transition, and examine

the track error and dispersion characteristics resulting

from this change. Also, it would be useful to look at the

vertical structure of vortices, to determine if structures

are ‘‘resisting’’ the vertical wind shear, as described by

Payne et al. (2007).

Another trait of the ensemble that should receive at-

tention is the low consistency of the GEFS in the west-

ern North Pacific basin. Given the manner in which

perturbations are bred from model integrations (Wei

et al. 2008), it is likely that errors in the model translate

to errors in perturbations applied to the initial condi-

tions. To this end, it may be helpful to compare per-

turbed analysis fields of the GEFS with those of other

EPSs to determine if perturbations are appropriate for

this basin. Also, we note that the ensemble is slightly

underdispersive at early (0–96 h) lead times in the At-

lantic basin, as revealed by dispersion diagrams (Figs. 8a

and 9a), lower PWSs (Figs. 8c and 9c, Atlantic), and

2007–08 MRE values (Figs. 8b and 9b, Atlantic). This

merits additional attention.

On 23 February 2010, the GEFS was upgraded to

have increased horizontal resolution (T190), effectively

moving from 105- to 70-km resolution (McClung 2009).

The number of vertical levels was unchanged. Also, a

stochastic perturbation package was introduced to ac-

count for model uncertainty, which is expected to increase

the spread of the ensemble. These changes will need to be

monitored to assess how they impact the track forecasts

and dispersion characteristics of the GEFS. Since the

GEFS is one of several global EPS in the THORPEX

Interactive Grand Global Ensemble (TIGGE), it will be

important to understand the limitations and tendencies

of the ensemble in interpreting the performance of the

TIGGE. Scientists have conducted preliminary research

in this area (e.g., Park et al. 2008), but much work remains.

Also, an exciting prospect is the use of multimodel, global

ensembles for cyclone track forecasting.
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APPENDIX

Estimating Confidence Intervals Using Bootstrap
Methods

a. Background

Efron (1979) introduced a technique to estimate sta-

tistical parameters from a set of data when limited

numbers of samples are present. The technique, known

as the bootstrap method, generates multiple datasets

from the available data by selecting random samples

with replacement, allowing one to estimate the statisti-

cal parameters regardless of the distribution of the un-

derlying data. One proceeds to estimate a statistic from

each of these synthesized datasets. If the statistic is the

mean, one concludes that the statistic is normally dis-

tributed (Rice 1995). In this manner, confidence in-

tervals can be estimated for the average absolute and

along- and cross-track errors, as well as other quantities.

In practice, however, the bias-corrected and accelerated

(BCa) method provides a more reliable estimate than

standard normal theory and has been used in this study.

For more information, see Efron and Tibshirani (1993,

chapters 13–14).

Unfortunately, the bootstrap method assumes that

the samples are statistically independent. In this study,
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FIG. A1. Illustration of the dependence of confidence intervals on the number of samples used in the bootstrap

method. Mean values and confidence intervals for the (a) absolute, (b) along-track, and (c) cross-track errors of the

GEFS mean at 72- and 168-h lead times. Only TC tracks are considered in the analysis. Convergence of confidence

intervals occurs when 50 or more samples are used.
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samples of track error, variance, MRE, and probability

within spread are grouped according to lead time. Since

forecasts are issued 6 h apart, it is very likely that sam-

ples within a given lead time are correlated. A tradi-

tional method of handling dependence among samples

within a data record is to find the decorrelation time

scale using the autocorrelation function and subsample

the data, selecting only samples separated by an amount

equal to or greater than this time scale (Emery and

Thompson 2001). Due to limited sample size, an alter-

native method has been developed. All samples were

used and the sensitivity of the confidence intervals to the

number of samples going into the bootstrap estimate

was examined. This is illustrated in the next section, and

it is suggested that 50 or more cases is a sufficient criteria

to obtain good confidence intervals.

b. The number of samples required for the
convergence of confidence intervals

The confidence intervals of the average absolute and

along- and cross-track errors of the NCEP GEFS mean

in the Atlantic, excluding extratropical cyclones, were

estimated. In Fig. A1, bootstrap estimates of confidence

intervals for two lead times are shown. Plots at 72-h

lead time illustrate the convergence of the confidence

intervals with increasing sample number when a large

number of samples are available. Calculations at 168-h

lead time demonstrate the bootstrap method applied to

the most limiting case—the dataset and lead time with

the fewest number of cases. The number of samples used

in the bootstrap estimate was progressively increased

from three to the maximum number of samples avail-

able, and confidence intervals were estimated at the

95% level. Samples were chosen at random. At 72-h lead

time the maximum number of samples is 359 while at

168-h lead time this number is 53.

Looking at confidence intervals of average track error

at 72-h lead time, one observes that values vary sig-

nificantly within the first 25 samples but nominally ap-

proach an equilibrium when 50 or more samples are

included. The confidence intervals of the average track

errors when more than 50 samples are included are

characterized by standard deviations of about 9.6, 10.3,

and 7.7 n mi for the absolute, along-, and cross-track

errors, respectively. We believe these standard deviations

are tolerable for the present study. Figure A1 also illus-

trates the variation of the confidence intervals for 168-h

lead time. Inspection of confidence intervals of average

absolute track error when 0–20 samples are included re-

veals large variability in the upper bound. This may be

simply an artifact of the bootstrap method since it has the

potential to replicate outlying values in synthesized data-

sets and, consequently, to bias the confidence intervals.

However, all average track errors show convergence

beyond 32 samples.

Thus, while associated with some variability, confi-

dence intervals estimated using the bootstrap method

provide approximate bounds on average track errors,

despite the correlation between samples. For the present

data, plots of the confidence intervals show convergence

of intervals when at least 50 samples are present. Thus,

in this study, datasets and lead times for which less than

50 cases exist are not considered. This method of esti-

mating confidence levels was also applied to the vari-

ance, missing rate error, and probability within spread.
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