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ABSTRACT 

Despite a range of epidemiological models existing, the majority of 

these are cohort-level instead of individual-level models.  Individual level 

models allow for contact tracing, where one can see who each individual 

interacts with.  With the increasing popularity of social media amongst 

students, most noticeably the rise of Facebook, we have chosen to 

integrate an evolving social networking model with a conventional 

Susceptible-Infectious-Recovered (SIR) epidemiological model in order to 

simulate how infection is spread by contact with a growing netowkr of 

friends within a population. 

  We considered the case of “Freshers’ Flu”, a form of seasonal influenza, 

in a closed population simulation of new students at university.  This is 

a comparatively well-defined infection with known consistent values for 

the rate of infection and recovery, and is primarily spread by airborne 

transmission.  Using the principles of discrete event simulation, and 

collecting data on lectures, social events and population demographics 

we created unique series of events per individual, combined with a 

personality type defined by their individual average daily friendship 

growth.  

  We ran several scenarios which examined the default case of an 

infection spreading, the recommended university strategy of closing 

campus during an epidemic and the effects of vaccinating specific 

subsets of the population such as individuals on a particular degree 

course or those living in specific halls of residences. 

  The model produced results which were consistent with a typical SIR 

model of an influenza outbreak, although smaller and over a longer time 

period.  The social network and the formation of friends over time 

within the model were shown to have an impact on incidence, the 

number of new cases of infection per day.   

  Prior to lectures commencing, the greatest influence on infection were 

the contacts made in halls of residences, with a background 

contribution from communal and social events.  Post lectures, there was 
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a consistent spike in incidence after the formation of friendships based 

upon studying the same degree.    
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1 Introduction 

The idea of this research is to create a new, novel technique for disease modelling.  

Until very recently most disease models do not work on the individual-level, preferring 

to focus more on population cohorts, such as age-ranges or life-styles (Brouwers, 

2005).  While this approach clearly works, is it the most accurate model possible?  

What loss of accuracy is there due to the “group” nature of such models compared to 

an “individual” model?  Why have so many previous models insisted on using 

compartmental-modelling techniques and eschew many of the comparatively new ideas 

that are being developed? 

Prior to recent years, there have been computing restraints on large-scale models.  An 

individual-based model would, in theory, require more computing time and power to 

run, most likely a cluster of PCs (Carley et al, 2004; Chen et al, 2004; Eubank et al, 

2004; Yahja & Carley, 2005).  This is one reason why such models have not been in 

widespread use.  However, with the advent of dual-core and true native 64bit 

processors, together with falling prices, it is now easier than ever before to affordably 

run large, complex models on nothing more than a simple office PC. 

Additionally, now in the 21
st

 century the internet is becoming increasingly popular.  

This has lead to new waves of innovation online, such as the so-called semantic web, 

or Web 2.0, and rapidly growing sites such as MySpace, YouTube and FaceBook.  These 

new sites all utilise “tagging” which could be considered as meta-data in the context of 

the semantic web.  This greatly increases the amount of information about individuals, 

their behaviour and friends that is available easily and within the public domain (Gross, 

2005; Abram, 2007; Facebook, 2007).   

A realistic individual-based model would, by its very nature, require information about 

the individuals within the model.  While it may be possible to approximate certain 

information, such as age-distributions, on its own this is insufficient for a full-scale 

detailed model.  Individual models are most likely more data-hungry than a normal 

model, which is possibly one reason for their lack of use.  Although all models are 
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generally require data in order to run (Chen et al, 2004; Yahja & Carley, 2005), an 

individual-based model is much more dependent on the quantity, and quality, of data 

available for it (Daumer et al, 2007).   

Particularly for a disease model, we need to know who infectious individuals met, and 

the degree of that contact (Mandell et al.  2005).  Depending on the specific disease 

and method of transmission, it may also be beneficial to have data on the level of the 

interaction.  Possibly this could be estimated from demographic data and social trends 

(Keeling, 2005).   

For example, a disease that is primarily spread by airborne data would require us to 

have data on, amongst other things, who an individual has close relative physical 

contact with, such as living in the same house or working in the same office (Saretok & 

Brouwers, 2007), .  A disease that is spread by direct contact, such as sexual 

transmission, would require far more detailed knowledge of a person (Klovdahl et al, 

1994; Eames & Keeling, 2003; Carley et al, 2004; Brouwers, 2005; Saretok & Brouwers, 

2007).  The two datasets could overlap, which would result in a model without strict 

data constraints, which has obvious benefits for the use of such a model. 

 

Diseases which spread by airborne or similar transmission would hopefully benefit 

from an individual-based model.  Normal compartmental models necessarily make 

assumptions about the number of infections occurring in each time period.  An 

individual-based model could look at EVERY person at each time step and determine 

who is infected, and how or by whom (Carley et al, 2004; Eubank et al, 2004; Ferguson 

et al, 2005; Keeling & Ames, 2005; Deardon et al, 2006).   

These results could subsequently answer some of the key questions that every disease 

model attempts to solve.  How quickly is the disease spreading?  Where would 

treatment resources best be utilised?   

This is not to say that no individual-based models have been attempted before 

(Deardon et al, 2006).  In the last 10 years there have been several such models 
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proposed and used.  However, with the changing world political climate and increase in 

terrorism, such models tend to be focussed on bioterrorism (Carley et al, 2004) and 

media issues, such as avian influenza or SARS (Horimoto & Kawaoka, 2001; Riley et al, 

2003; Gumel et al, 2004; Longini et al, 2004), than natural disease issues, such as the 

seasonal flu.  Still, some individual-based models on influenza etc. have been worked 

on despite this (Saretok & Brouwers, 2007). 

 

1.1 Aims of the model 

The proposed model aims to more provide an alternative individual level approach to 

simulating influenza outbreaks as opposed existing, mostly cmopartmental, models.  

Specifically we focus on outbreaks of the seasonal influenza known as “Fresher’s flu” 

which occurs within the community of first year students at university (AimHigher. 

2007). 

 

The model will combine standard disease modelling techniques, specifically the SIR 

framework, with social networking models and analysis, and spatial modelling 

techniques.  Although social networking and spatial modelling have both been applied 

to disease models before (Kretzcshmar & Morris, 1996; Keeling, 1999; Eubank et al 

2004; Keeling & Ames; 2005, Saretok & Brouwers, 2007) they have never both been 

applied simultaneously in the proposed method for influenza and within such a 

specific environment. 

 

The novel aspect of this model relates to the use of an evolving “contact network” 

amongst the members of the model population.  Existing individual level models have 

utilized static networks for contacts, without the possibility of growth of contacts 

within the model.  The focus on a unique point in an individual’s life, commencing 
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university and making new friends, allows a rare chance to study this network 

evolution and whether there is any impact on an influenza outbreak. 

 

To achieve this we take advantage of revolutions achieved via the internet, with the 

dawn and rise of online social network websites – specifically the Facebook site.  This 

allows us for the first time to study a real-world grounded social network, examine and 

analyse its development and subsequently simulate this inside a virtual world.  In 

doing so we will need to develop new tools to capture data from Facebook, analyse it 

and provide meaningful parameters for the resulting epidemic model. 

 

1.2 Purpose of the model 

The end result of the model is to produce a disease outbreak scenario for the Fresher’s 

flu.  It is hoped that the model could easily be adapted for different situations and 

diseases by simply altering the data source and inputting disease-specific parameters.  

It has already been shown in previous work by others that altering spatial models in 

conjunction with individual-level models is comparatively easy (Lawson, 2001). 

 

Potentially the model could offer a simple and effective comparative option to other 

existing models, allowing users to double-check results of, for example, standard 

compartmental models or even other individual-level models rapidly.  Such validation is 

a particularly important aspect of any modelling process. (Chen et al, 2004). 

 

Previous works have focused on global-scale or country-wide models, where there are a 

range of assumptions to make and collecting accurate data on such a scale is a 

challenge.  Restricting our focus to a university campus population still allows for a 

large population to be modelled – in the order of thousands – but within an 

environment where we will have better access to data, a diverse but also to an extent 
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homogeneous population (a range of ethnicities, but limited age backgrounds for 

example).   

 

Flu, or an “influenza like illness,” is useful to study as a test case given that the 

parameters for flu are well-known and defined in literature.  It also allows us to 

represent real-world events in the somewhat infamous “Freshers’ flu” that is known to 

occur at the start of the university year (although in reality this is just a case of 

seasonal flu compounded by thousands of individuals from different locations 

interacting with each other). 

 

 

1.3 Potential benefits of individual-level models 

Standard disease modelling approaches that use compartmental-models assume a 

homogeneous population mix; other models that do not follow this approach assume 

random mixing of the population.  However, typically there is always a reason, a 

structure for real-life population mixing (O’Neill, 2006). 

 

Individual-level, or agent-based, models (we use these terms interchangeably 

throughout this work) allow us to focus and “follow” actual, or highly approximated, 

movements of individuals within a population.  Instead of assuming random mixing, or 

homogeneous mixing, we know exactly who has interacted with whom and, based on 

an appropriate disease model, who has infected who (or, at least, who has a probability 

of being infected by an infectious individual due to interacting with them).  Essentially 

we are looking at discrete points within a model.  While homogeneous models clearly 

have their uses, hence their widespread usage, it is clear that an individual-level model 

should result in more accurate results (Britton & O’Neill, 2002; Carley et al, 2004; 

Eubank et al, 2004; Dimiris & O’Neill, 2005). 
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Use of such models allows us to examine a wider range of scenarios than is possible 

with a typical compartmental model.  A simplistic example of these is identifying 

“patient zero” in an epidemic, or identifying key areas of the population which should 

be preventatively vaccinated.  Whilst the latter is potentially feasible with a population 

model, the level of detail available is limited to sub-groups within the population which 

need to be defined. 

 

Unfortunately, in order for an individual-model to work correctly and produce 

meaningful results, appropriate levels of data are required.  This makes such models 

inherently more complex to implement than traditional compartmental models which is 

one of the reasons they are used less than the compartmental modelling approach.  

(Deardon et al, 2006). 

 

However, when such models have been used, the results (and models) result in 

intuitive and flexible modelling frameworks that give results that, in comparison to 

real-world data, fit better than results obtained by traditional modelling approaches 

(Gibson, 1997; Keeling et al, 2001).  

 

Another advantage of using individual-level models is that they easily allow for the 

incorporation of spatial modelling (and subsequently spatial-temporal) models into the 

existing model.  Incorporating such models is almost implicit, as we are already 

focussing on a discrete point (an individual) and now we merely add the context of 

time and space (Lawson, 2001; Neal & Roberts, 2004; Deardon et al, 2006). 

 

An individual level approach is particularly relevant in this work where we utilize an 

evolving social network to provide vectors for disease transmission within the 

population.  This necessitates an individual approach in order to provide for the 

formation of contacts between individuals and follow these through the simulation. 



Paul 

Davie  Introduction

  

7 

 

  



Paul 

Davie  Background

  

8 

 

  



Paul 

Davie  Background

  

9 

 

2. Background 

This section describes the history of modelling, and specifically the various popular 

modelling approaches that are used when modelling diseases.  Information is also 

provided about the disease to be modelled, influenza, including details on its 

progression, infectiousness and why it has been chosen for this model. 

2.1 Epidemiological Modelling 

When dealing with a disease outbreak there are usually many unknown questions that 

needed answers immediately, such as should the population be vaccinated or should 

an area be quarantined?  Such questions cannot be answered after the fact, thus 

healthcare professionals must try and forecast the future.  In the 21
st

 century, with a 

perceived threat of bioterrorism, mathematical models for disease outbreaks are a vital 

tool (Carley et al, 2004).  Epidemiological modelling solves these conundrums and 

allows professionals to rapidly model different scenarios and outcomes (Anderson, 

1989, Mooy & Gunning-Schepers, 2001; Ezzati et al, 2003). 

 

In general, epidemiological models are used to assess strategies for containing, or 

curing, disease outbreaks, as these are the main goal of healthcare professionals 

(Anderson & May, 1992, Ferguson et al, 2005).  There are a vast range of different 

models in existence today as mathematicians attempt to aid the healthcare profession 

in planning for disease outbreaks (Keeling & Ames, 2005). 

 

Using modelling techniques allows control and treatment measures for diseases to 

rapidly be redefined, and their potential impact assessed (McLeod et al, 2006).  

Typically there are a large number of unknown parameters which need to be swiftly 

estimated and, if new data becomes available, re-evaluated during an outbreak.  The 

parameters for such models tend to have a degree of uncertainty in their initial 

estimation which results in the models needing to be constantly fine-tuned and 
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adjusted.  Computational approaches obviously allow for far faster responses and 

implementations of these tasks (Gumel et al, 2004).   

 

Epidemiological modelling is also used to focus on the behaviour of a disease in order 

to establish information about the time between infection and infectiousness, period of 

infectivity, and the length of illness (Dye & Gay, 2003).  This modelling area is just as 

important as determining the best management strategy for any incidents as it gives 

professionals vital information on disease progression which could be used as the 

basis of models for the spread of a disease (Nishiura et al, 2004). 

 

The models are virtually unlimited in their scope as, given sufficient data, they can be 

used to model any number of different diseases and goals – such as whether 

prevention or treatment is the best strategy to combat the spread of tuberculosis 

infections (Currie et al, 2003), or tracking down the source of an avian flu outbreak 

(Ferguson et al, 2005) or modelling the spread of the SARS epidemic (Nishiura et al, 

2004) – and are therefore a vital tool to the health profession.   

 

Epidemiological models are also not limited to solely humans; they can be used for 

animals as well, such as during the Foot and Mouth outbreak in the United Kingdon 

(Keeling et al, 2003).  Epidemiological models can also be easily modified to 

incorporate, amongst other popular techniques, temporal, spatial, social networking, 

compartmental and individual-level concepts (Keeling & Ames, 2005; Ford et al, 2006). 

 

 

2.2 Traditional compartmental models 

Traditional, and still widely-used, disease modelling approaches use what is referred to 

as “compartmental models.”  Such models are extensively used to analyse infectious 

disease and, in turn, have themselves been extensively analysed in literature (Mugglin 
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et al, 2002).  These models group a population, whether it is homogeneous or not, into 

homogeneous groups (van den Driessche & Watmough, 2001; Arino & van den 

Driessche, 2003).  These groups are typically, in a basic case, defined as the number of 

individuals in the population that are susceptible to infection, the number of 

individuals that are infected (and/or infectious) and finally the number of individuals 

that have recovered from the infection.  This approach is typified in the SIR disease 

modelling framework (Kermack & McKendrick, 1927; Anderson & May, 1992). 

 

In compartmental models, individuals progress through the different compartments, 

and subsequently stages of disease progression, via pre-defined transition 

probabilities.  These transitions are normally governed by using ordinary differential 

equations (Chen et al, 2004). 

 

However, an obvious problem with such models is that in real-life a population is 

unlikely to be homogeneous.  This therefore requires generalisations about the 

population to be made within any such model, and in interpreting its results (Mugglin 

et al, 2002). 

 

Use of compartmental models has begun to decline slightly as new technology makes 

other techniques, such as individual-level modelling, possible within a reasonable 

timeframe (Deardon et al, 2006).  However such models are also well established with 

researchers and have copious studies on validation, usage as well as tools to support 

them so it is unlikely they will cease to be used. 

 

2.3 Types of Simulation 

Simulation is the creation and use of abstract models of the real world (Shannon 1975) 

in order to solve real world problems (Borshchev, 2004) 
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In the world of simulation there have long been two mainstream established simulation 

techniques; Discrete Event Simulation (DES) and System Dynamics (SD).  However, since 

the 1990s another technique has become known; Agent Based Modelling (ABM) 

(Borshchev, 2004).  There also exists the pre-cursor to SD modelling, the so-called 

Dynamic Systems (DS) approach. 

 

ABM has been had multiple names across different disciplines; Entity Based Modelling, 

Individual Level Modelling, or even just Agent Based Simulation.  In Computer Science 

it is just another tool to be used – it could be argued that Computer Science has driven 

the development far more than either Management Science or Operational Research  

(Siebers et al, 2010) -  whereas Operational Research uses it explicitly as ABM but in 

Management Science there is a degree of overlap and interchangeability with DES.  

Occasionally it is also referred to as “bottom up modelling” or as Cellular Automata 

(Emrich et al, 2007).  There is also the argument that there is no distinction between 

DES and ABM approaches, that they are simply a subset of each other (Siebers et al, 

2010). 

 

Note that there is a distinction between ABM and so-called “mobile agents”. 

Both DES and SD are widely used, with most analysts often opting for the method with 

which they are the most familiar (Meadows, 1980) given the interchangeability between 

the two techniques.  Various studies have compared the two techniques (Morecroft & 

Robinson, 2005, Brailsford & Hilton, 2001) and generally concluded that neither is 

better than the other.  Rather, that they should be seen as complementary modelling 

approaches. 

 

A common concern when selecting the simulation approach is the abstraction between 

the model and the real-world.  The more abstract the model, the greater the risk of it 

being less likely to reflect actual behaviour.  However conversely, the less abstract the 

model is, the greater the data and computational demands become. (Borshchev, 2004; 

Macall & North, 2007, Emrich et al, 2007). 

 

The distinction between the different modelling approaches can be viewed below in Fig 
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2.3.1 System dynamics 

System Dynamics was developed back in the 1950s by an electrical engineer, J W 

Forrester, and was defined as “the study of information feedback characteristics of 

industrial activity to show how the organisational structure, amplification (in policies) 

and time delays (in activities and decisions) interact to influence the success of the 

enterprise” (Forrester, 1958; Forrester, 1961). 

 

Mathematically SD is a system of differential equations (hence the other name of 

Equation Based Models).  SD models do not have individuality, and work with 

aggregates so as to provide a high level of abstraction.  Due to this abstraction it has 

been argued that using SD approaches will only ever result in a model accuracy of 40% 

(Lane, 2000) 

 

To confuse matters further, SD models are also referred to as Equation Based Models, 

Continuous Models or Compartmental Models.  The SIR model for epidemic modelling 

is an example of SD modelling (Anderson & May, 1992; Kermack & McKendrick, 1927) 

There are a range of SD application tools in existing, with Stella being a particularly 

common and well-known one (Stella). 

 

2.3.2 Dynamic Systems 

Dynamic Systems (DS) is predominantly used in engineering, and is often seen the 

ancestor to System Dynamics (Luenburger, 1979; Zeigler et al, 1976).  Such systems 

tend to have a higher complexity of mathematics and usually have integrated specific 

variables such as velocity, acceleration, location.  DS systems are found embedded 
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within engineering design cycles and as such are not really utilised in what would be 

generally referred to as “simulation” in the context of this discussion.   

Matlab is a frequently used tool for DS work (Matlab). 

 

2.3.3. Discrete Event Simulation 

DES can be dated back to the 1960s where Geoffrey Gordon developed the idea of the 

General Purpose Simulation System (GPSS) and brought about an individual-based 

approach (Gordon 1961;  Borshchev, 2004). 

 

In DES, confusingly there are “entities” which can represent individuals or objects etc.  

These entities move through a system (often detailed through a flow chart) and 

typically enter queues, get processed, and utilise resources – collectively these can be 

described as “activities.”  These entities are NOT the same as agents within an ABM 

approach, although they do have similarities and can be used as the basis for an agent.  

We discuss this later in the section. 

 

DES models are stochastic, and are simulated in time steps.  These time  steps are 

typically unequal, as they are triggered by events occurring within the simulation 

(Brailsford & Hilton, 2001).  A DES system is dynamic and evolves in accordance to the 

events within it (Ramadge & Wonham, 1989). 

Again there are a range of tools available for DES, with Simul8 a popular and well-

known one (Simul8). 

 

2.3.4 Differences between Systems Dynamics and Discrete Event Simulation 

 

As DES and SD are the main techniques used, it is helpful to compare the technical and 

theoretical difference between them to help better define them.  Fortunately several 

bits of work have previously been done in this area, as shown below.  

 

System Dynamics Discrete Event Simulation 

- Systems (such as healthcare) 

can be viewed as a series of 

stocks and flows  

- Entities (such as patients) 

are treated as a continuous 

- Systems can be viewed as 

networks of queues and 

activities  

- Objects in a system are 

distinct individuals, each 
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quantity, rather like a fluid, 

flowing through reservoirs 

or tanks connected by pipes  

- The time spent in each 

reservoir is modelled as a 

delay with limited flexibility 

to specify a dwelling time 

other than exponential    

- State changes are 

continuous  

- Models are deterministic  

- Models are simulated in 

finely-sliced time steps of 

equal duration   

 

possessing characteristics 

that determine what 

happens to that individual  

- Activity durations are 

sampled for each individual 

from probability 

distributions and the 

modeller has almost 

unlimited flexibility in the 

choice of these functions 

and can easily specify non-

exponential dwelling times  

- State changes occur at 

discrete points of time  

- Models are by definition 

stochastic in nature  

- Models are simulated in 

unequal timesteps, when 

“something happens”  

Technical Differences between DES and SD 

Brailsford & Hilton, 2001, Morecroft & Robinson, 2005 

 

 

 System Dynamics Discrete Event Simulation  

Perspective  

 

Holistic; emphasis on 

dynamic complexity  

Analytic; emphasis on 

detail  

complexity  

Resolution of models  

 

Homogenised entities, 

continuous policy pressures 

and emergent behaviour  

Individual entities, 

attributes, decision and 

events  
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Data sources  

 

Broadly drawn  

 

Primarily numerical with 

some judgemental 

elements  

Problems studied Strategic  Operational 

Model elements  Physical, tangible, 

judgemental and 

information links  

Physical, tangible and 

some 

informational  

Human agents 

represented in models as  

Boundedly rational policy 

implementers  

Decision makers  

Clients find the model  Transparent/fuzzy glass 

box, nevertheless 

compelling  

Opaque/dark grey box, 

nevertheless convincing  

Model outputs Understanding of structural 

source of behaviour modes, 

location of key performance 

indicators and effective 

policy levers  

Point predictions and 

detailed  performance 

measures across a range of 

parameters, decision rules 

and scenarios  

Conceptual differences between SD and DES Lane 2000) Morecroft & Robinson, 

2005 

 

2.3.5 Agent Based Models 

It is hard to find a specific time when Agent Based Models were first proposed; 

credit is often given to the Santa Fe Institute in the 1990s (Waldrop, 1994) 

which was an attempt to bring together different modelling practitioners to 

share and develop ideas.  However, the concepts have also been used in 

Computer Science for some time, although not explicitly for simulation.  In 

2000, Sterman noted that ABM techniques presented a vast opportunity to 

progress and enhance simulation techniques, although the uptake since then 

has been slow (Sterman 2000, Siebers et al, 2010). 

 

The definition of an agent in an ABM model compared to a DES model is subtle.  

The accepted definition of the agents used in ABM can perhaps be summed up 

as: 
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- An entity demonstrating spatial awareness 

- The ability to learn 

- Pro- and re- activeness 

(Borshchev, 2004, Schieritz & Milling) 

 

This can perhaps be better expressed as “a discrete entity with its own goals 

and behaviours, which is flexible, autonomous and has the capability to adapt 

and modify its behaviours situated within an environment that it is situated 

within.” (Macal & North, 2011). 

 

A few definitions are helpful at this point. 

- Autonomy  in this instance is best defined as where the agent is able to 

make decisions without human input, irrespective of the fact that the 

agent exists within a human created pre-programmed system 

- Situated is defined as the agent interacting with the environment, and is 

able to accept input from it (such as local variables e.g. capacity of a 

room) and manipulate it to an extent 

- Flexibility means that the system works within a reasonable timescale, 

that the agents are goal-orientated, and even pro-active (as well as 

reactive), plus possess the capability to communicate with each other 

and the user. 

 

ABM approaches aim to look at the overall outcomes of individual and local 

interactions in a given space (Reynolds), where the agents are the creators and drivers 

of activity within that space.  The space itself can be an actual spatial plane modelled – 

such as a country or city – or simply a space defined for the specific model. (Scholl, 

2001) 

 

As already stated, DES models use the concept of agents as well.  What therefore is the 

difference between a DES model and an ABM one if they are both using these so-called 

agents?  A brief summary is presented below in Table  

DES Model ABM model 
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- Process oriented (top-down 

modelling approach); focus 

is on modelling the system 

in detail, not the entities 

thesmelves 

- Top-down modelling 

approach  

- One thread of control for the 

system (centralised)  

- Passive entities, where 

something is done to the 

entities while they move 

through the system; 

intelligence (eg, decision 

making) is modelled as part 

in the system rather than at 

entity level 

- Queues are a key element  

- Flow of entities through a 

system; macro behaviour is 

modelled not micro 

- Input distributions are often 

based on collect/measured 

(objective) data 

 

- Individual based (bottom-up 

modelling approach); focus 

is on modelling the entities 

and interactions between 

them 

- Bottom-up modelling 

approach 

- Each agent has its own 

thread of control 

(decentralised) 

- Active entities, that is the 

entities themselves, can take 

on the initiative to do 

something; intelligence is 

represented within each 

individual entity 

- No concept of queues 

- No concept of flows; macro 

behaviour is not modelled, it 

emerges from the micro 

decisions of the individual 

agents 

- Input distributions are often 

based on theories or 

subjective data 

(Siebers et al, 2010) 

 

In general, the main distinction is the focus on the agents within the system 

themselves, and the self-awareness they possess.  Many people may have already used 

ABM approaches without realising it (Siebers et al, 2010). 
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It is possible to reconceptualise existing SD and DES models to ABM models.  Typically 

this is a case of the complexity of the model becoming such that a different modelling 

approach must be sought in order to progress. Converting a DES model to ABM is often 

a case of casting or converting existing resources as agents, as well as the existing 

entities themselves (Borshchev, 2004).   

 

ABM makes use of statecharts (Harel 1987; Borshchev, 2004) to specify the behaviour 

of agents.  Statecharts allow for the graphical expression of different states of agents, 

the transition between them and the behaviour that causes the changes such as 

events, times, and actions. 

 

 

To help distinguish between the entity of a DES model and an agent of an ABM model, 

we show below the conversion of a DES simulation to an ABM one, using statecharts to 

help visually demonstrate the transition (Borshchev, 2004). 
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Essentially the existing entities are converted to agents, with entity creation within the 

model equivalent to agent creation.  Upon instantiation, the newly created agent will 

request service, and switch immediately to a “wait” state until service is granted.    The 

agent is then serviced with “in service” state and following that can either decide 

whether to repeat and wait for service, or to end and be deleted (in this example). 

Agents can be somewhat simplistically defined as “objects with attitude” (Bradshaw, 

1997).  It could well be argued that ABM is simply an extension of DES, and that there 

is no such thing as a true ABM although Computer Science practitioners would likely 

disagree. 

 

There are few specific ABM software packages in existence, often resulting in custom 

applications being required for ABM simulation.  One example is AnyLogic (Anylogic), 

although generally it is more a choice of programming language than software 

package which is required when undertaking ABM simulations (Borshchev, 2004). 

 

An important aspect to note about ABM is that due to the relatively recent emergence 

of them, it is still unclear as to how valid an approach they offer for model abstractions 

compared to DES and SD.  DES and SD have been well-validated over several decades 

(Macall & North, 2011).  Despite the similarities between DES and ABM, the validation 

rules established for DES cannot simply be transferred to ABM, meaning that for many 
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switching to an ABM approach would constitute more work than simply remaining with 

DES/SD methodologies. (Siebers et al, 2010). 

 

However despite this, the advantage of an ABM approach is a closer reflection of the 

real-world, and thus a less abstract modelling approach.  This is of particular interest 

and import when simulation humans as individuals within a model as realistic 

modelling of the specific behaviours and interactions of people remains a key step on 

the path to a model which is 100% reflective of reality and thus truly accurate 

(Bonabeau, 2002; Parunak et al, 1998;  Buchsbaum et al, 2005; Macy & Willer, 2002). 

 

2.3.6 Spatial Modelling 

Modelling the spatial component of an epidemic has long been a goal of 

epidemic modelling, in order to assess the spatial spread of an outbreak within 

a city, country or other defined environment and space.  There are two 

modelling approaches that are normally used to predict the spread of a 

disease. 

 

- Distributed contacts, where an individual is stationary and has a 

distribution of other contacts over space.  This was developed by 

Kendall (1965) and Mollison (1972).  Such models are useful for 

studying disease transmission in a population (Newman, 2002; Meyers 

et al, 2005; Reed & Keeling, 2003) 

- Distributed infectives, where an infection is transmitted via interactions 

between individuals within a population, where the individuals move 

randomly within the model (Noble, 1974). 

However, neither of these approaches are perfect for representing actual 

movement between objects or planes within a model and the real-world, as 

well as the interactions between individuals in such models (Reluga et al, 

2006). 

 

Models that explicitly consider space are necessary in order to effectively 

evaluate the impact of movement controls on a population, such as quarantine 

(Riley et al, 2003; Eubank et al, 2004).  Ignoring this component of a model 
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can lead to errors in the estimation of the impact of the epidemic on the 

modelled population (Durrett & Levin, 1994). 

 

A hybrid of the above two approaches has also been proposed, allowing for the 

diffusing of contacts and movement (and subsequently the spread of a disease) 

within a population (Bailey, 1975; Busenbery & Travis, 1983; Hadeler, 2003).     

This is sometimes referred to as the “restrictive movement” approach (Reluga 

et al, 2006).  Numerous works have been conducted on such models to test, 

develop and validate them (Snyder, 2003; Kot et al, 2004). 

 

Using spatial models allows the user to better consider and reflect the actual 

mobility of people within the real-world, in order to provide better related 

model outputs to real-life problems.  However generally such models focus on 

a macro level of the entire world so there is still a degree of abstraction due to 

the granularity of such a view (Mao & Bian, 2010).  They examine movement 

between countries or large cities, rather than within a finite micro area such as 

a university campus (Balcan et al, 2009; Eubank et al, 2004).   

 

All of these approaches require an individual-level based modelling paradigm 

in order to succeed (Reluga et al, 2006).  Note that this is not necessarily agent 

based modelling (ABM) although aspects of ABM would certainly be required 

for this approach, even if it not explicitly classified as an ABM simulation.  This 

may be through lack of understanding and education about what constitutes 

an ABM approach however.  One of the alternative titles for ABM, Cellular 

Automat a, is sometimes used to describe these models (Verdasca et al, 

2004; Keeling, 1999).  

 

One weakness of this approach, however, can be increased data requirements 

and subsequent computational time (Tsai et al, 2010). 

 

Construction of such models can take various forms.  However a popular one, 

which relates to this study, is the creation of network structure of individuals.  

This approach can be utilised with any of the above detailed methods, 

although perhaps works best for a distributed contacts attempt due to the ease 
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of translating such a model into a network (Keeling, 1999).   The contact 

structure of a network is the primary means that determines an epidemic 

spread through a population (Barbour & Mollison, 1990). 

 

An intriguing hypothesis of the combination of spatial and ABM models, is the 

micro-detail granularity of considering the field of view of each agent (where an 

agent in this context represents an individual within a population) and how 

that relates to transmission of disease.  This was viewed as the “sphere of 

influence” of an individual, defined as a circle with centre of radius the agent 

itself, and contact occurred if spheres of different agents intersected.  With this 

idea it was proposed to look at space to a level commensurate with real world 

scale of metres; an individual would have a sphere with radius 1.5m (Sommer, 

1959; Langston et al, 2006). 

 

This would then allow for specific entity modelled movement such as entry to a 

room through a door where one to two entities could enter, and interact, at a 

time in addition to layout within the room itself – where entities would “sit.” 

 

This was an idea initially considered for this body of work at the start of the 

project in 2005-2006, but subsequently disregarded due to the unnecessary 

granularity it would require the model to have and a lesser desire to make the 

spatial component equivalent to a real-world layout.   

 

However, Emrich et al (2007) have subsequently and independently of this 

work put together a similar model.  In this model, the calculation for infection 

based on contact between individuals is triggered when an agent is detected as 

being within line of sight of another agent, within their field of view.   This is 

represented by a “cone of vision” rather than our proposed sphere of influence 

but is still fascinating to assess. 
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Sadly there does not appear to have been any follow-up work conducted by the 

authors of the paper in the area.  It is however positive to note that at least one 

other group of researchers have successfully developed, and utilised, such a 

methodology with an SIR model.    

 

2.4 Social Network Analysis 

Social Network Analysis (SNA) dates back to the beginnings of the 20
th

 century 

(Freeman, 1996) with the psychiatrist Jacob Moreno introducing concepts such 

as sociometry – the measurement of relationships between a group of 

individuals (Moreno, 1953). 

 

The phrase “social network” itself is attributed to Barnes (2002) although has 

since been popularised in modern culture through the Internet (Ellison et al, 

2007). 

 

At this point it is useful to provide some definitions of concepts which are 

regularly used within SNA. 

 Actor – a discrete entity representing an individual or social unit within 

the network  

 Centrality  - the concept of an actor that is central to a group/network 
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 Degree – the measure of the total number of ties that an actor has 

within the network 

 Group – a finite bonded set of actors within the network – e.g.  everyone 

who works for a specific company 

 Relation – the ties between a pair of actors within the group 

 Size – the number of actors within the social network 

 Social Network – a set of actors, and their relations 

 Tie – the link between actors (this differs from relation in that relation is 

a specific type of tie) 

Of these concepts, centrality is of frequent interest in epidemiologically 

modelling for use in finding the so-called “Index Patient” who can often be a 

highly connected individual within the studied social network and therefore is 

central to the network. (Faust & Wasserman, 1992; Freeman,  1979;  Kistak et 

al, 2010). 

 

The idea of “ties” was developed by Granovetter (1973, 1983) who concluded 

that there were ties linking individuals together within a social network, and 

that these ties could either be “strong” or “weak” depending on the nature of 

the link.   

 

Today weak ties are thought of as the links between individuals within a group 

that affect the status and performance of both the actor and the overall group 

(Vieira, 2005).   Ties can be observed and thus defined through observation 

and study of the structure of a group. 

 

It is worth noting that most social network analysis is confined to a specific 

network that is already structured and therefore developed; little work has 

actually been done on a self-defining and evolving network such as the one 

that will be considered throughout this study.  More recently work has 

focussed on the concepts of “social capital” and “influence” within the network 
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(Lin, 1999; Ellison et al, 2007) and the effects of social interactions upon the 

individual in psychological terms. 

 

By very definition, a social network is a network although this can also be 

expressed functionally as a graph when applying the concepts of graph theory 

(Rapoport, 1963; Harary, 1959).  Alternative notations and expressions are 

algebraic (Rapoport, 1963) and sociometric (Moreno, 1953).  For use in 

infectious disease modelling, the graph theoretic notation is preferred (Carley 

& Wallace, 2001; Hoppensteadt & Hoppensteadt, 1975; Keeling & Ames 2005) 

 

A graph G is defined as “a finite non-empty set V or n vertices together with a 

prescribed set E of q unordered pairs of distinct vertexes of V.  Each pair of 

vertices x={u,v} in E is an edge of E, and x is said to join u and v.”  Vertices thus 

joined are defined as adjacent, although this has no relation in terms of 

specific distance between the vertices, merely that there is a link of some type 

between the two points (Harary, 1959) 

 

From our previous definitions, we can therefore express these (where relevant) 

in graph theory definitions as: 

Social Network Graph Theory 

Actor Vertex 

Ties Edges 

Social network Graph 

Size Order 

 

The number of vertices (which we previously called actors in sociology terms) 

is termed as the order of a graph, and the total number of edges within the 

graph is termed the size of the graph.  Note this key difference between graph 

theory and sociology theory where the size previously defined the number of 

actors within the network (Bollobás, 1998). 
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Within the definitions of graph theory, links between two vertices are defined 

to be either undirected edges or directed edges.  An undirected edge is one 

where there is no direction to the relationship and it typically represents a 

bilateral symmetric relationship.  A directed edge however can be a one-way 

relationship.  Either type of edges may also possess weight.  With this, weight 

is defined as the value of the relationship in the relevant context (Bollobás, 

1998).  For example, in a workplace hierarchy one individual (vertex) could be 

the manager of another individual (vertex) with a directed edge representing 

this (Wasserman & Faust, 1994). 

 

In graph theory, vertices are given labels to distinguish them from each other.  

A label can also refer to a property of the vertex.  There are no specific 

corresponding conventions in sociology, but it is not uncommon to set actors 

given labels even if this is not referred to as labelling in the same manner 

(Wasserman & Faust, 1994). 

 

A challenge for social networking is obtaining the data for the network itself, in 

order to conduct the chosen analysis.  Data collection is frequently a limiting 

factor in conducting analysis of a social network (Vieira, 2005).  It is important 

to decide at what level of the network data must be obtained for.  Data could 

be collected for the specific actors within the network, a specific subset of 

actors within a network or simply on a set of relations between actors within a 

network. 

 

Commonly collected data are often called structural variables and refers to 

actors (usually in pairs) and measuring the ties between the actors (Scott, 

2000).  For example, collecting data on individuals and their friends would be 

termed as this.  An extension of this is known as the composition variable 

where extra data is collected about the actors, usually to provide extra 

attributes for the actors such as age or gender when looking at people. 

 

Due to the challenge of collecting what can often be a large magnitude of data, 

social networking analysts frequently employ sampling techniques.  The data is 

usually collected from relevant samples of the chosen population set, and from 
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this inferences can be obtained about the overall population (Rapoport, 1963; 

Fararo & Skvoretz, 1984; Goodman, 1949).  This acceptance of sampling is of 

particular use for this study given the potential population size and 

subsequent “cost” of collecting data from the entire population. 

Small Worlds 

 

First theorised by Stanley Milgram in 1967, the small worlds theory posited 

that the world might be “small” in terms of the connections between 

individuals.  This gave rise to the well-known term “6 degrees of separation” 

where any individual in the world can be reached through a network of 

contacts in a few steps, traditionally held to be within 6 contacts (Travers & 

Milgram, 1969).  Credit for the small worlds theory is also given to Pool & 

Kocken (1979) who are believed to have formulate the theory at least a decade 

before Milgram but did not publish their work until 10 years after his paper. 

 

Subsequent works showed that real world networks do exhibit a high degree of 

clustering and that there is, on average, a low “distance” between pairs within 

the overall network (Watts &  Strogartz, 1998).  The theory has since been 

developed along two lines of investigation; psychological and mathematical 

(Vieira, 2005). 

 

The small world hypothesis was demonstrated empirically by Milgran (1967) by 

simply sending out a series of packets to contacts, with instructions for them 

to forward the packets to specific targets.  However the targets were only 

identified in terms of demographics, location and profession rather than by 

name so as to test if there were sufficient interconnected contacts that would 

be able to identify the end targets.   

 

A similar study was also conducted by Korte & Milgram (1970) that confirmed 

the results of the first piece of work.  These are both examined in further detail 

by Kleinfeld (2002).  Furthermore, Dodds et al (2003) conducted a similar, but 

larger-scale, study utilising email chains across the world and still came to a 

similar conclusion.  
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What is meant by “small” in these terms is still subjective, however the general 

definition is accepted as where elements within a network are “near” each other 

– irrespective of spatial difference – if they are sufficient connected through 

edges (Vieira, 2005). 

 

An important outcome of this work, however, was to note that a search 

through a social network does not necessarily depend on a “strong” level of 

connectivity – i.e. where individuals are tied together strongly though family or 

work – but on weaker connectivity such as acquaintances of acquaintances 

A useful offshoot of the small worlds theory are properties about why we 

should even consider the world to be small.  A key one of these is that “a 

network is highly clustered in that most friendship circles are strongly 

overlapping” (Vieira, 2005; Wasserman & Faust, 1994).  This follows from the 

property that ultimately a global network is “sparse” in that individuals are 

connected to a finite number of others which will be several order of 

magnitude smaller than the total network size itself.   Together these 

properties indicate that there will also be a degree of connectivity between 

individuals, particular ones that are “close” to begin with (i.e. there is 1 

intermediate contact between them). 

 

2.5 Online Social Networks 

Interchangeably referred to as Social Network Sites (SNS) or Online Social 

Networks (OSN), online websites that allow users to create social networks date 

back to 1997 if not earlier (Ellison, 2007). 

 

A commonly accepted definition of what constitutes such as site is given as: 

- A service that allows individuals to create a public/private profile 

- Create a list of contacts with whom they share a connection 

- View and navigate their list of connections, and those of other users 

within the system 

The means through which this is achieved varies considerably.  Most such sites 

allow for the creation of personal profiles, but the data required for this varies 

from site to site, often depending on the aims of the site.  For example, a site 

linking people who used to be at school together would focus on academic 
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details more than a site linking people working at the same company. Profiles 

are often defined as a unique page where “one can type oneself into being” 

(Sunden, 2003).  

 

After joining a site, users are typically prompted to identify and make contact 

with others who they have a relationship (where relationship can be personal, 

professional and so forth).    The label for such a relationship has varied over 

time, with “Friend”, “Fan”, “Follower” and “Contact” used at various points 

(boyd, 2006a). 

 

Typically in recent times, “Friend” is used to describe a bilateral two-way 

relationship between individuals.  Most websites require both contacts to 

confirm such a relationship before it is “created.”  The terms “fan” and 

“follower” are generally held to indicate one-way relationships, such as on 

Twitter where individuals may follow celebrities despite not having an actual 

relationship with them in the classical sense (Twitter; Boyd & Ellison, 2010). 

In social networking terms, such sites are viewed as creating “egocentric” 

networks where an individual is at the centre of their personal community.  

This follows the concept of “the world is composed of networks, not groups” 

proposed by Wellman (1988). 

 

Typically friendship structures on such sites are formed by common interest, 

following the concept of “homophily” (Mark, 1998; Mark, 2003; Kandel, 1978; 

McPherson et al, 2001) where individuals are drawn to others that have similar 

demographic backgrounds or interest.  Most social network sites use the data 

provided by users to attempt to “match” them and suggest friends based on 

common values between users. 

 

A range of online sites has appeared since 1997, with the timeline diagram 

below  in Figure 1 from Boyd & Ellison providing a useful illustration of this. 
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Figure 1 Timeline of launch dates of major online social networks (Boyd & Ellison, 

2010) 

 

MySpace is typically credited with bring social networking sites to mainstream 

attention (Ellison, 2007) although this was primarily in America.  MySpace 

began in 2003, although came to attention in 2005 when it was purchased by 

News Corporation.  MySpace was not initially launched with the aim of 

attracting bands, although this soon became a central feature of it (boyd, 

2006b). 
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The public exposure of MySpace led to surge in other networks such as Orkut 

(Ahmad, 2011), Bebo (Ellison, 2006), QQ (McLeod, 2006) and Cyworld (Ewers, 

2006).  This also triggered an increase in the features such sites offered, with 

instant messaging, photo sharing, discussion boards and video sharing all 

becoming commonplace features. 

 

The rise of the online social network did lead to some cases of organisations 

banning such sites, such as the US Military banning MySpace (Frosch, 2007) or 

the Canadian Government banning Facebook (Benzie, 2007). 

 

Many of these sites no longer exist, either due to closure, purchase or merger 

with other sites.  To date, Facebook is the global leader in social networking 

sites although it primarily handles the Western world and is less popular in 

China. 

 

Initially such sites were open to all, without specific theme.  However niche 

sites started to appear from 2004 onwards (with some divergence with online 

dating sites as well, although these are not really considered to be social 

networks) targeted at specific areas of the population.   The most famous of 

these is Facebook, which originally was intended for students at Harvard only 

before expanding to other US universities and eventually being made available 

globally. 

 

We focus further on Facebook in subsequent chapters of this study.  Since 

opening it has rapidly grown to become the leading online social network 

globally, with particular popularity amongst young people. 

 

 

2.6 Influenza and “freshers flu”. 

Influenza, also known as the “flu”, is an easily communicable respiratory disease that is 

caused by a virus that primarily attacks the nose and throat.  It can be spread by either 

airborne or physical contact, thus making it very contagious.  Symptoms usually 

include sudden onset of fever, headaches, coughing, sore throats and general malaise.  



Paul 

Davie  Background

  

33 

 

Upon infection, people can either become instantly infectious themselves, or 

experience an “incubation” period of several days before becoming infectious (WHO, 

2003; Thursky et al, 2003).     

 

The influenza virus is divided into two “versions”, influenza A and influenza B.  Both A 

and B have different sub-types, the most common of which (for humans) are H3N2 and 

H1N1.  Recently a version of influenza, H5N1 which is more famously referred to as 

“avian flu”, has gained notoriety as the next possible global pandemic (Horimoto & 

Kawaoka, 2001). 

 

Unfortunately, the genetic “make-up” of influenza allows it to easily change its genetic 

structure, resulting in a new sub-type that humans do not possess immunity to.  This 

evolution is the cause of the continuing outbreaks of influenza as it is impossible to 

permanently vaccinate against it (WHO, 2003; CDC, 2007). 

 

Most people typically only contract a mild version, the symptoms of which progress 

over several days.  However, it is possible to die from the flu.  Indeed, in the past, 

influenza outbreaks have resulted in thousands of deaths.  Children and the elderly are 

the primary “at-risk” groups, with the elderly having a substantially greater risk of 

dying, although usually from complications arising from the infection (WHO, 2003; 

Kilbourne, 2006; CDC, 2007).    

 

The exact progression of symptoms in an individual varies depending on various 

physical factors unique to the individual (Moser, 1979; Ferguson et al, 2005; Longini et 

al, 2005; CDC, 2007).  It is also common for influenza to have a latent period (Saretok 

& Brouwers, 2007) before an individual becomes infectious.  There are various 

different values for this period in literature.  (Longini et al, 2005) specify a period of 

1.2 days but also allow for an incubation period of 1.9 days; this effectively creates a 
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period where an individual is infectious but does not realise as they are asymptomatic.  

However, (Ferguson et al, 2005) just define a latent period of 1.48   0.47 days, based 

upon the data collected by (Moser, 1979).  Either of these values are used in various 

different models.   

 

The best way to prevent, or minimise, the effect of an influenza outbreak is to 

vaccinate against it.  However, the constantly genetic alternations to the viruses mean 

that new vaccinations must be administered for each new outbreak.  Unfortunately 

there is no specific treatment for influenza; standard antibiotics are only effective on 

bacterial-infections and therefore have no effects on influenza.  However, they can be 

used to treat any complications that may arise due to an influenza infection (Ferguson 

et al, 2005; Yoo & Frick, 2005). 

 

There are often regular seasonal outbreaks of influenza, known as “seasonal influenza” 

throughout the year, although typically there is at least one outbreak during Winter 

(Turner at al, 2003; Dowdle, 2006; Kilbourne, 2006).  One “famous” such seasonal 

outbreak, referred to as “Fresher’s Flu” occurs at the beginning of the new university 

academic year and is particularly prevalent amongst the population of new students 

(Halloran & Longini, 2006; AimHigher, 2007).   

 

As we hope to be able to obtain data for this population, which can be assumed for all 

intents and purposes to be closed, the seasonal influenza known as Fresher’s Flu has 

been chosen as the disease to be modelled in this particular model. 
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3. Literature Review 

In this chapter we consider and explore current research relevant to the field 

which we are examining throughout this thesis, and analyse topics related to 

the proposed work.   

 

Research on epidemiological modelling has been ongoing since the early 

1900s with the proposition of the original SIR model by Kendrick and 

McKormack (1927).  Social network modelling is comparatively more recent, 

having been adopted from an epidemiological perspective since the late 1980s 

to early 1990s (Klovdahl, 1985) despite actual social networking analysis 

dating back to the 1950s and earlier. 

 

Due to the wide range of modelling approaches and theories that are 

essentially being combined for this work, we have by necessity adopted two 

different perspectives to review this literature. 

 

In one we consider the literature on current usage of agent based modelling 

for the spread of epidemics, with particular focus on influenza.  The other 

perspective considers work on social network epidemiological modelling, again 

with focus on influenza, and with preference to usage of real-world social 

networks (e.g. Facebook) where possible. 

 

We also consider the inevitable overlap between these two areas as social 

networking modelling approaches often utilise agent based methodologies. 

Finally we investigate any existing works on utilising Facebook, or indeed other 

comparable online social networks, for data sources and evaluate whether such 

networks can provide an appropriately relevant simulacrum of real-world 

friendships and interactions. 

 

3.1 Network Modelling 

In 2001, Friedman & Aral published a feature assessing the then use of 

network models, and the potential for future use.  They noted that network 

modelling showed great promise for healthcare simulation, and social 

networks in particular were very encouraging.  They viewed networks as 
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offering a “bridge” between a compartmental model which did not allow for in-

depth population analysis and individual-based approaches which were, at the 

time, computationally prohibitive. 

 

Until the 2000s, most epidemic models assumed that mixing within a 

population occurred homogenously.  This was sometimes referred to as the 

“law of mass action” (Ross, 1910; Anderson & May, 1991; Diekmann & 

Heesterbeek, 2000). 

 

Van den Driessche & Watmough (2002) relaxed this assumption slightly for 

their study on compartmental models but did not eliminate it entirely, nor did 

associated works by Grenfell et al (2001) and Watts et al (2005).  They viewed 

the mass action law as sufficiently robust due to its consistency.  This 

assumption also makes for simpler mathematical abstractions and reduces 

computational requirements. 

 

Watts et al (2005) proposed that it was necessary to break a static population 

represented by a network into multiple sub-networks so as to overcome the 

concept of uniform mixing.  This also further supported the theory proposed 

by Bailey (1975) that a large-scale epidemic was ultimately multiple smaller 

epidemics occurring in a variety of sub-populations. 

 

During this time, interest in examining the heterogeneity of a population 

increased, with work being undertaken to examine this by associated 

researchers, but mostly notably Callaway et al (2000), Strogartz (2001), 

Newman et al (2002).   

 

Newman et al (2002) specifically demonstrated that networks could be 

successfully used with the SIR epidemic model.   Although they did not conduct 

validation as such on this concept, they successfully applied the SIR model to a 

range of different network structures using a mixture of mapping models and 

generating functions. 

 

Callaway et al (2000) focused on an intriguing variation of heterogeneity, and 

studied the effects of removing vertices (individuals) from a network and the 
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overall impact on the network.  Prior to this, in a homogenous population 

where each vertex was essentially identical, the only impact would have been 

to reduce the vertices within the network, which had little effect.  Allowing for 

each vertex to be different to some degree, Callaway demonstrated that 

removal of highly connected vertices had a destructive effect on the overall 

network, causing it to collapse.  They referred to this as demonstrating 

percolation theory in this context (Pastor-Satorras & Vespinani, 2001; Newman, 

2002).  This can be viewed as an oblique reference to centrality and the 

consequence of removing highly-connected individuals from a susceptible 

population in an epidemic either through quarantine or vaccination.   

 

As a result of these studies, the importance and potential of contact tracing 

within a network was realised in a practical sense with the models showing that 

mathematically it was possible, and that there was value to such work in 

greater reducing the abstraction between model and reality.   

Volz & Meyers (2007) stated that ideally an epidemic model would include the 

realities of human to human contacts (when modelling a population) and 

defined some key realities to consider: 

 Individuals can only have a finite number of contacts with other 

individuals within the population at any one time; contacts resulting in 

disease transmission are short but can be repeated 

 The quantity and nature of the contacts between individuals is 

heterogeneous 

 The number of contacts an individual has will change over time, as will 

the specific individuals who are contacted 

 

Work on the finite number of contacts, and that such contacts are 

heterogeneous, was carried out amongst others by Newman (2002), Eames & 

Keeling (2002), Meyers et al (2005), Meyers et al (2006). 

 

The SARS outbreak of 2002 proved somewhat timely in providing Meyers et al 

(2005) with the problem of applying a network based contact model in order to 

assess the variability in the SARS outbreak and the confusion over values of the 

reproductive number.  From initial works it was assumed that SARS would 
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trigger a pandemic, given its perceived reproductive number in the range of 

2.2 – 3.6 (Hethcote, 2000; Lipstich, 2003; Riley et al, 2003). 

 

Collectively these works all produced similar conclusions in that there was a 

positive benefit to allowing for finite contacts – rather than the implicit infinite 

contacts within a homogeneous population – and that allowing heterogeneity 

within the contacts was a valuable improvement upon the model. 

 

However they did note that this came at the cost of computational time, and 

complexity.  The above works were conducted on static networks to offset this.  

Note that at the time the majority of these studies were taking place, concepts 

of agent based modelling – as discussed earlier in this work – were still in their 

infancy and had not yet become a mainstream technique. 

 

Also, these works focus primarily on sexually transmitted infections (STI) rather 

than influenza, the area in which this study focusses, as infection in that case 

required actual physical contact resulting in contact tracing becoming a 

valuable tool in modelling the spread of STI diseases (Eames & Keeling, 2002). 

In Volz & Meyer (2007) work in this area, they concluded that static networks 

were justifiable if the change in contacts between individuals was at a lower 

rate than the spread of infection.  However, if the contacts had a severely short 

duration of existence relative to infection propagation, this did not hold and a 

variable network was better suited.  Between these scenarios, they concluded 

that the specific model would depend on the specific dynamics being 

simulated and the data available for which to do so. 

 

However, subsequent to this work, a future study by Volz & Meyer in 2009 

demonstrated that ultimately static network approximations were inadequate, 

and that social mixing in reality (and thus heterogenic contacts) resulted in 

significantly improved accuracy of simulation.  This was confirmed again by 

Volz in two further studies in 2008 looking at SIR models on random networks 

and on random contacts. 

 

One key assumption of these various works by Volz & Meyer was that change 

in neighbours – which they termed Neighbour Exchange (NE) – occurred at a 



Paul Davie  Literature 

Review  

40 

 

constant rate, i.e. ultimately static over a long period of time as the exchanges 

would ultimately repeat. 

 

Bansal et al (2007) also looked at whether a heterogeneous model is superior 

to that of a homogenous one, with particular focus on the SIR model in 

epidemiology.  This study used assorted real-world datasets to compare the 

results to.  They concluded that if the network itself is close to homogeneous 

then a standard compartmental model (such as the default SIR one) is a 

reasonable choice although with only a few modifications one could also use 

an equivalent, albeit simplified, network model. 

 

If a population is scale free, however, or the network of contacts within it is 

still developing then assuming a homogeneous population was determined to 

severely limit both a compartmental model and a network model.  They noted 

various works which attempted to resolve this issue by breaking a population 

down into various sub-populations based on parameters such as age, sex or 

location (Anderson & May, 1985; Grenfell et al, 2002; Hethcote & Yorke, 1984; 

Bjornstad et al, 2002).  Whilst such works did meet with success, they also 

frequently required a subjective and judgmental compartmentalisation of the 

studied populations which may not always reflect actual society.  Additionally, 

it was hard to determine which sub-groupings would be relevant when 

considering specific infections. 

 

Bansal also noted that in a heterogeneous network model, the individuals with 

higher connectivity within the network were more likely to be infected than 

individuals that were less connected.  This distribution decreased however as 

the epidemic progressed, although the subsequent removal of the highly-

connected individuals (through recovery) did then reduce the long-term spread 

of infection. 

 

We have discussed above the work done on allowing for heterogeneous 

networks, and the useful results of this compared to a homogeneous network.  

This slowly leads us towards looking at agent-based models although there are 

other modifications to networks to first consider. 
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Gross et al (2008) looked at the concepts of truly dynamic networks, which 

they postulated would better reflect real world behavior.  This can better be 

described as the ability to dynamically adapt network topology in response to 

the dynamic state of the vertices within the network. 

 

There have been assorted attempts to include dynamism within a network.  

Bornholdt & Rohlf (200) suggested the perhaps simplistic approach of 

dynamically rewiring the network during the simulation.  Vertices which were 

“quiet” would gain edges, whereas vertices that were “busy” would lose them.  

Essentially such a network would self-organise itself.  They found that 

ultimately such a network would move towards all of the vertices having an 

equal, average number of connections over time.  However they conceded that 

in reality this would only be viable for a large, global network and would take 

considerable time to occur naturally. 

 

Zhou & Kurths (2006) adopted a different approach, although still along similar 

self-organising concepts.  In their proposed model, the number of connections 

possessed by each vertex would vary depending on the number of connections 

possessed by neighbouring vertices.  In the model this led to synchronisation 

of number of connections held by each vertex, although again over a period of 

time with frequent oscillations in connections during. 

 

With both of the above models, interestingly the various groups of researchers 

both independently concluded that their models were likely more akin to 

modelling neurological structure which would possess billions of vertices but 

within comparably small space as opposed to “larger” real-world scales. 

Ebel & Bornholdt (2002) adopted a game theoretic approach to look at the 

evolution of a network.  This model had agents as vertices, with games as the 

edges between them.  They allowed agents to independently change their 

network in order to improve their pay-off (utilising a Prisoners Dilemma game 

as the basis of the game theory).  They observed that after multiple small 

rearrangements of the network, it would ultimately achieve equilibrium.  It also 

suggested small-world behaviour within the network from the resulting re-

organisations, with assortative mixing in common with social networks 

(Newman, 2002). 



Paul Davie  Literature 

Review  

42 

 

 

Another game theoretic approach was proposed by Holme & Ghoshal (2006), 

with the variation of each agent had to optimise their centrality within the 

network whilst keeping their number of connections low.  However this 

approach led to instability within the network as the agents arbitrarily removed 

and added links, although this did decrease as the size of the network was 

increased.  As with the Ebel & Bornholdt study, they noticed that the resultant 

end networks also displayed small-world behaviour although equilibrium was 

never achieved as the agents would constantly have to evolve their individual 

networks.   

 

All of these examples can be viewed as comparable to differing extents to 

actual human behaviour in the event of an epidemic.  Humans would 

essentially “rewire” their networks to delete infected individuals, and 

potentially add uninfected individuals or healthcare professionals.  Gross et al 

(2008) studied this further. 

 

Gross et al looked at the possibility of adapting a network dynamically in 

response to the dynamic state of the members of the nodes.  Prior to this work 

had focus on dynamics of networks, or just dynamics on networks, without 

combining the two schools of thought.  They focused on the simplest 

implementation of this, where the number of vertices and edges within the 

network remained constant overall. 

 

Their principle conclusions were that the end state of a network following an 

epidemic can be drastically different to the beginning network state.  This has 

implications for the effectiveness of epidemic solutions such as targeted 

vaccinations.  The changed networks also produced new areas of density and 

clustering, resulting in disease spread occurring from points which at the 

beginning may have been viewed as having minimal risk of standalone 

infection.  However it should be noted that the changes observed to the 

network were as a result of a natural response, and not due to behavioural 

modifications as a result of external influences such as quarantines. 
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Gross also noticed that as the network changed, there was an impact on the 

spread of infection.  Depending on the specific “rewiring” that was occurring, 

this in turn led to oscillations in the peak threshold of number of infections 

throughout the model as opposed to a more conventional single peak. 

Small world networks have come up as a result of several of the papers 

considered above, so we now briefly consider work done on small world 

networks of epidemic spread.   This is of course based on the small world’s 

theory that was discussed previously (Milgram, 1967). 

 

Newman & Watts (1999) and Watts & Strogatz (1999) were early examiners of 

the study of epidemics in small world networks.  Both studies concluded that 

infectious diseases spread quickly, and easily, within a small world due to the 

ease in which one individual can be linked to another.  This did not consider 

spatial elements however, so in terms of real-world equivalence should be 

viewed carefully.  In a small population where spatial connectedness is 

homogeneous the research is useful. 

 

Boots & Sasaki (1999) demonstrated that as the world gets “smaller” through 

individuals becoming increasingly connected, the virulence and spread of 

epidemics increases.  This can be considered on a global scale, through global 

interconnectivity, but also on a smaller scale where a new network is created 

along with new links.  This relates directly to this study where we consider the 

creation of a new network of students at university, and subsequent 

development of links (new friends) between points in that network. 

 

Chirstley et al (2005) examined social networks, paying attention to the 

concept of small worlds, to identify high-risk individuals within the network.  

This makes use of the previously discussed centrality concept, where 

individuals are viewed as being central to the network due to their high degree 

of connectivity to others within the network.  Due to the central theorem of 

small worlds, that everyone is ultimately connected, even though individuals 

who were central to a network could be identified it was unclear as to the 

benefit of removing them from the network.   
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The work theorised that a better parameter to “search” on than simply number 

of connections (leading to centrality) was needed.  Whilst there was a reduction 

in the epidemic, it was not significant and proved challenging to identify the 

correct individuals to isolate.  Ultimately it was deemed comparable with 

isolating based on gender or age due to the interconnectivity within the 

network between individuals. 

 

Han (2007) studied the effect of “warning” parts of a network, in effect either 

vaccinating or quarantining them, of the outbreak of an epidemic.  Due to the 

interconnectivity that small worlds provides – each individual is ultimately 

connected to another via links through others – this did actually lead to a 

reduction in the size of the outbreak within the model.  However this model 

was primarily concerned with the communications and management of an 

outbreak, and made numerous assumptions to simplify the model to allow for 

this.  It did, however, conclude that in a network based model isolating 

elements is beneficial.  

 

However, Vieira (2005) and Bozon et al (2003) also demonstrated that the 

small worlds model is not necessarily suitable for network analysis, particular 

when considering a social network.  They viewed several limits of the model 

that limited it.  These were: 

 Vertices do not have properties; i.e individuals within the population 

would not be unique.  In a dynamic network, considering re-wiring, this 

would limit the parameters upon which rewiring and network change 

could be defined 

 Links between individuals do not characterise actual behaviour  

 Links are equally weighted 

  

Therefore in order to consider a network of unique individuals, with distinct 

properties, as well as properties or weights given to the links between these 

networks, it is necessary to look beyond a network model to the more detailed 

individual level model known as agent based modelling (ABM). 

 

3.2 Agent Based Modelling 
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As discussed in the previous chapter, agent based modelling (ABM) is a newer 

simulation technique than established practices such as system dynamics and 

discrete event simulation.  Indeed, ABM was only properly quantified in the late 

1990s and initially was the province of computer scientists and physicists more 

than mathematicians and analysts. 

 

A key concern that has been frequently highlighted about use of ABM systems 

is the computational and data “costs” that they require.  However, as 

technology improves these costs have lessened with increased computational 

power becoming readily available and as the world becomes increasingly 

connected, increased data on individuals within populations. 

 

Fortunately this has led to somewhat of a surge in work on ABM modelling, 

particular with respect to comparing ABM simulations to existing population-

based ones in order to assess how valid an approach ABM can actually provide. 

Ferguson et al (2005) are typically credited with the first “mainstream” 

approach to modelling an epidemic using ABM techniques.  Interestingly 

however, at the time Ferguson did not call the model an ABM one, referring to 

it as an individual level approach, indicating how awareness of ABM is still low 

amongst the simulation community. 

 

At the time of the work it was viewed as the largest, detailed approach to 

modelling an epidemic micro simulation ever created.  The model focussed on 

containment techniques for an influenza outbreak, inspired by the then recent 

SARS outbreak in Asia.  

 

The model used actual demographic data about populations in Asia, coupled 

with parameters from literature for the actual influenza modelling aspect itself 

(primarily from the Moser (1979) study about an influenza outbreak on an 

airplane).  Agents within the model did not have defined individual contact 

networks as such but were instead distributed across households and then 

assumed to mix with other agents in the same household, local area and 

randomly. 
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The SIR model of infection was used, with some minor tweaking.  As the model 

used agents that moved around the authors adjusted the infectious stage of 

the model to allow for asymptomatic and symptomatic infectious behaviour in 

order to more realistically model the spread of infection through the 

population. 

 

The work was focussed on analysis prevention techniques in the event of an 

outbreak such as vaccination and social-distancing (quarantine).  Unfortunately 

it did not compare its results to an established SIR model to assess accuracy 

and validity of results, although as it was looking at policy outcomes rather 

than a numerical solution this may not have been a concern for the authors. 

Longini et al conducted a similar study to Ferguson, also in 2005, looking at 

the effects of vaccination and quarantine on a similar influenza outbreak in 

Asia, although focussing on rural SE Asia using data from Thailand where 

Ferguson utilised Hong Kong data and looked at China more specifically.   

 

Longini adopted a more conventional network approach, creating a simulated 

population of 500,000.  This model was based on an extension of earlier work 

by Longini et al from 2004, which looked at an influenza outbreak in the USA 

on a much smaller scale – a population of only 2000.  

 

Longini’s work (both 2004 and 2005) were based on prior work by Halloran et 

al from 2002, which looked at a smallpox outbreak scenario used a structured 

population model, again with a population of 2000.  In turn this work was 

based on an earlier piece of work by Halloran & Longini in 2002 looking at 

interventions within communities. 

 

This original work by Halloran & Longini has formed the basis of the successive 

models used by Longini, and originates in a network based model built upon 

population demographics.  In this model (irrespective of scale as it was initially 

just used for a population of 2000 until Longini’s work in 2005) a population 

was stochastically generated based on census data resulting in a model 

population of individuals that were assigned to households and schools (data 

was not available for workplaces).  Due to this the models focussed primarily 

on infection in children. 
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Unfortunately for all of these models, comparison to existing compartmental 

models such as the SIR one was not carried out as the models all focused on 

policy issues rather than specific model validation and verification.    However 

the various models did all draw similar policy conclusions independently 

(although the independence of the Longini work could be queried as it was 

essentially the same model re-used multiple times) about the efficacy of 

quarantining specific areas of population and the use of vaccinations as a 

preventative strategy. 

 

Merler et al followed up on the work of Ferguson et al in 2007, basing their 

model on the 2005 Ferguson model.  Again they referred to this as an 

individual-level approach rather than an agent-based one. 

 

In the Merler work, an influenza outbreak was simulation in Italy and, similar to 

Ferguson, looked at the impact of vaccinations and social-distancing  on an 

outbreak.  As with Ferguson before them, the model allowed for an infection to 

be spread in the home, in schools and workplace and through random mixing.  

Merler viewed their model as having better data than Ferguson, allowing them 

to simulate encounters in schools and workplaces where Ferguson was limited 

to schools based on data on school numbers in Hong Kong.  Merler utilised 

census data for Italy, filtered to focus on households with at least 2 adults and 

teenage children. 

 

The Merler approach differs from Ferguson in one specific aspect.  Ferguson 

assumed that if an individual came into contact with an infected individual and 

that therefore infection risk decreased with the “distance” between individuals 

within the population.  Merler based infection risk on the behaviour of 

individuals in the population.  This was borne of the belief that contacts 

undertaking the same behaviour – such as travelling to work – were more likely 

to come into with each other than they were if the simply lived in the nearby 

area.  Consider how often you come into contact with your neighbours vs 

people at work. 

 



Paul Davie  Literature 

Review  

48 

 

This was based on the work of Glezen (1996) which concluded that places 

where people meet others, such as buses, trains, airplanes, restaurants and 

social areas are amongst the important routes of infection transmission. 

As with the previously discussed Ferguson & Longini studies, the Merler work 

unfortunately did not include a comparison with an existing SIR compartmental 

model for accuracy.  Again though, Merler’s work on assessing techniques for 

managing an epidemic drew similar conclusions to that of Ferguson & Longini.   

 

Merler did however conclude that an individual level model was of more 

potential use than a population-based one and noted that advances in 

computing power would hopefully increase their usage.  Note at the time, this 

study was carried out nearly a decade ago and computing power has 

significantly increased each year since 2005. 

 

We have discussed two early uses of ABM models (although not referred to as 

such by their authors) from Ferguson (2005) and Longini (2005) which are still 

being utilised today as the basis for existing models (Shaman et al, 2010; 

Fraser et al, 2011; Cowling et al, 2010; Cauchemez et al, 2011; Earn at al, 

2012). 

 

However there is another “branch” of modelling other than Ferguson’s and 

Longini’s which originated in 2002 with the work of Eubank.  This work formed 

the basis of subsequent works by Carley et al (2004) on the BioWar model and 

led to further work by Eubank et al in 2004. 

 

The original model used by Eubank in 2002 was not an ABM one as such.  It 

used traditional graph theory techniques to create a population (again using 

demographics in common with the other discussed models) although 

individuals within the population (graph) were fixed.  This was due to 

computational demands in 2002, and the scale of the model – the modelled 

population was of 1.6 million.  The model was actually based on earlier works 

on transport networks to generate contact graphs. 

 

Eubank actually defined the model as being a “sequential dynamic systems” 

one due to its use of graphs.  However he distinguished it from compartmental 
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models as he looked at individuals instead of the overhead population, albeit 

through a graph abstraction.  Eubank did not view the model as a realistic 

model of behaviour, but was interested in looking at contact patterns within it 

– similar to previously discussed network models.  

 

Eubank created fixed activity schedules for the modelled population, although 

these were abstract activities used to simulate daily movement rather than 

specific ones such as going to work, eating, sleeping etc. 

 

In defining the epidemic model within the simulation, Eubank relied on the 

traditional SIR model although adapted the transition rates for a population 

(susceptible to infectious, infectious to recovered) to probabilities of state 

change for an individual.  Eubank theorised on an extension to the model for 

future work that locations (although not explicitly modelled in this simulation) 

could also have bearing on infection probability based on the number of 

infected individuals that had occupied the space. 

 

Importantly Eubank noted that this model was heavily constrained by the lack 

of randomness in the behaviour of his population, and that he was forced to 

assume uniform mixing within the population.  He stated that he thought a 

truly individual-level approach (i.e. agent based) would be an important step 

forwards in the future, and takes note of the work by Ackerman et al (1993) 

which had carried out simple small individual simulations in nursing homes.  

Eubank also noted the possibility of using spatial models and structured 

populations (models with multiple sub-population graphs/networks). 

 

Unfortunately, as with previously discussed works, Eubank did not validate his 

work against standard compartmental models.  He did make mention of them 

in discussing the potential his work had in producing results that better 

reflected the real-world, but did not directly compare model outputs. 

 

Eubank later extended his work in the Eubank et al 2004 paper.  This updated 

model still utilised a network based approach as with his 2002 work, but 

included a social network between contacts of the overall population network.  

This social network was based on activity (remembering that his 2002 model 
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ascribed specific activity flows to each individual) and allowed for contact 

based on concurrent activity of individuals, for example shopping at the same 

supermarket. 

 

Eubank theorised that as his model was based on a transportation network, 

this provided a suitable proxy for a social network as individual choices were 

constrained on where they could go and when they could go to different 

locations. 

 

One notable conclusion from Eubank’s 2004 work was that targeted 

vaccination of highly connected individuals was not effective.  He viewed this 

as analogous to “shattering” the network by removing its “pillars” (the highly 

connected individual vertices within it) but found that even doing so there was 

still an overarching unique giant component to the network.  Essentially this 

meant that targeted vaccination of highly connected individuals was equivalent 

to mass population vaccination, which was simpler to conduct.  He also noted 

that closing high-traffic areas did not “shatter” the population until infection 

numbers of the population were significantly high.  

 

Some of Eubank’s 2002 work was used by Carley et al (2004) for their work on 

BioWar, a large-scale model built to study effects of terrorist smallpox 

outbreaks.  Interestingly in the discussion by Carley of Eubank’s model, it is 

referred to as an “adaptive agent” simulation rather than Eubank’s own 

definition of a dynamic system. 

 

The Carley model was a true agent-based model by their own admission, 

although they noted they encountered problems with sourcing sufficient 

quantity and quality of data, plus the computational run-time of the model was 

prohibitive.   Carley also noted the difficulty in validating such a model given 

the lack of comparable existing models to verify against. 

 

The Carley model also gave credit to earlier works by Epstein et al (2002) who 

proposed a small-scale individual level model for a smallpox outbreak.  Carley 

credited this as one of the first actual uses of agent-based modelling.  Likely 

due to the infancy of ABM in 2002, Epstein referred to the model as an 
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individual-level one, although referred to the components of the model as 

“agents.”   

 

Epstein made reference to the Halloran work from 2002 but noted that the 

Epstein model was truly individual based whereas the Halloran model still 

utilised homogenous population mixing assumptions.  Unfortunately Epstein 

offered no validation of the model as he was concerned with policy outcomes, 

looking at whether preventative immunisation was viable in a smallpox 

outbreak.   

 

The disease model used by Epstein was also basic, although likely due to the 

modelling of smallpox as they assumed that there was no Recovered state and 

measured Infectious states in days rather than probabilities of infection.   

The Carley model utilised a set of algorithms to control the behaviour of the 

agents within the population.  The population was based on census data to 

define demographics, and defining event schedules (based on survey results) 

for each agent.  A limited social network was generated for each agent based 

on their demographics and activities – it assumed agents carrying out an 

activity would come into contact with other agents carrying out the same 

activity at the same time and location. 

 

The model utilised a “tick by tick” timing methodology where the overall model 

would advance by a “tick”  - a pre-defined unit of time – and the behaviour of 

individual agents would react based on the overall model “tick” state.  Activities 

were assigned to hours, days and weeks so as to allow for agents to have 

realistic activity programmes over the course of several weeks, even though 

the “ticks” do not correlate to this, rather they were containing time elements 

to abstract activity within that period of the model run time. 

 

Carley validated the model against real-world empirical data, focussing on the 

details of the virtually created population and measuring the demographics of 

the virtual population against those of real-world ones.  They did note that on 

validating the social network produced – which they validated against 

unpublished works by Klovdahl (Breiger et al, 2003) – the virtual networks were 

smaller than real-world ones.  This was attributed to a lack of flexibility within 
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the model as agents could only mechanically connect to other agents at the 

dictate of the model rather the “freer” real-world equivalent, which led to a 

lower degree of interconnectivity between agents than reality. 

 

Unfortunately again no model to model validation was conducted.  Instead 

Carley looked at model output for absences from activity and the simulation 

(due to illness and death respectively) and compared this to empirical data on 

absenteeism in the workplace and schools, along with expected casualty 

figures for smallpox. 

 

The work of Carley was built on by Chen et al (2004), again focussing on 

smallpox although with a view to model validation.  However Chen’s approach 

echoed that of Carley in validing the model against real-world population data 

(such as absence reports, hospital visits) rather than direct model to model 

validation.  The work of Chen is often used to highlight the importance of 

validating an agent based model population with real-world data however. 

Comparison 

 

The various Eubank and Carley works are frequently cited, along with Ferguson 

and Longini, as being some of the forerunners of current agent based 

modelling epidemic simulations.  Interestingly the Eubank work is more 

frequently cited in work on social networks rather than ABM modelling, which 

is likely due to its focus on network theory (and later addition of a social 

network component) than the Ferguson and Longini works.   However, none of 

these works compare their modelling approaches to existing 

compartmental/population ones. 

 

Fortunately as usage and awareness of agent based approaches has increased, 

researchers have turned to considering the question of how do agent based 

models compare to the more traditional population based ones. 

One of the earliest comparisons of agent based models with 

compartmental/population/equation based models was conducted by Parunak 

et al in 1998.   
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The date is notable as at the time agent based models were still in their infancy 

and not generally recognised in the simulation community.  It should not be 

surprising then that the comparison is focussed on a computer science 

domain, looking at supply-chain models so we do not focus on the models 

themselves but the conceptual conclusions about their future potential that 

Parunak reached. 

 

Parunak came to three principle conclusions on the comparison of the two 

modelling approaches. 

 

First, that the ABM approach was best suited for models that required a high 

degree of localisation and distributed, with entities having to make discrete 

decisions regularly.  In contrast to this, compartmental models could make 

decisions centrally.  

 

Secondly, researchers utilising agent based models should consider carrying 

out explicit model comparison with compartmental models due to the 

uniqueness and individuality of ABM approaches.  Parunak did note that in 

some scenarios that would likely be existing compartmental models which 

could easily be used to draw general conclusions from in comparison, 

particularly if identical model parameters were used. 

 

Finally Parunak concluded that compartmental models were popular due to 

their history, proved validation and expanse of tools available to construct 

them.  Agent based models lacked that development and acceptance and 

considerable work would need to be done within the community for ABM to 

achieve the same use and acceptance as compartmental models. 

 

Of particular note in this area are two Australian studies by Connell et al (2009) 

and Skvortsov et al (2007) who explicitly look at the differences between the 

modelling approaches and evaluate their accuracy. 

 

Skvortsov developed an agent based model called “CROWD” which they used to 

model a population in an Australian town, with a simulated size of 3000.  This 

population was instantiated based on real-world census data of an equivalent 
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town.  Notably the model also included real-world urban data to model specific 

building locations within the simulation from a spatial context. 

The virtual population was randomly assigned to households within the 

modelled city.  A simple activity programme was created for each individual, 

usually comprising of travelling to work/school, remaining there for the day 

and then returning home.   

 

Similar to Carley et al (2004), Skvortsov also compared how connected 

individuals in the virtual network were in comparison to real-world data, the 

importance of which was highlighted by Chen (2004).    In contrast to the 

Carley model where individuals were found to show less clustering than real-

world equivalents, the Skvortsov model showed increased clustering, 

equivalent to the upper boundary of real-life.  This was attributed to the 

smaller population size of the Skvortsov model (3000 compared to the 1.6 

million in the Carley one) and the limited activities of individuals within the 

model; as they typically either went to work or school the opportunity for wider 

contact formation was artificially limited to those environments. 

 

Skvortsov compared the agent based model to a typical SIR compartmental 

model.  No specific infection was modelled, and arbitrary values were used in 

both models for the rates of infection and recovery (the same values were used 

in both models). 

 

Skvortsov found that the agent-based model achieved its peak infection sooner 

than the compartmental model (32 days compared to 61) and 55% of the 

population were infected in the ABM model as opposed to 39% in the SIR one. 

The differences were attributed to the fact that the ABM model allows for 

individual, random, mixing, whereas the compartmental one can only consider 

a homogeneous population assuming uniform mixing.  This meant that areas 

of the population with high contact rates (such as schools) would experience 

rapid infection spread; this would also counteract elements of the population 

with low contact rates.  This was consistent with findings by Dekker (2007) and 

Newman (2003). 
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Figure 2 CROWD Agent Based model results (Skvortsov et al, 2007) 

 

Figure 3 SIR Compartmental Model (Skvortsov et al, 2007) 

 

Connell et al (2009) continued the 2007 work of Skvortsov (utilising the same 

model) but modelling influenza instead of a hypothetical disease, and largely 

came to similar conclusions.  They did note however that for complex 

situations the SIR compartmental model became less well-aligned to the ABM 

model, and the ABM approach offered greater flexibility in this scenario.  

Toroczkai & Guclu (2007) came to a similar conclusion.  Both studies 

suggested that ABM approaches provide a useful tool for “what if” analysis of 

scenarios, particularly as they allowed for more complex studies than a SIR was 

easily capable of providing.   
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Additionally Connell observed that for large quantities of agents, the models 

became less volatile than those with a lower number of agents.  This was 

ascribed to the model ultimately “averaging” out with large numbers of agents, 

whereas the chance of that occurring with a fewer number were less likely.  

This resulted in models with low  numbers of agents within the population not 

producing behaviour equivalent to the average; instead results tended to 

oscillate between extremes of total infection, or no infection, with random 

occasions of scenarios between the two extremes. 

 

Greater discussion on this is provided by Rahmandad & Sterman (2008) who 

also compared agent based models to compartmental models (they referred to 

these as equation-based models).  Note however that this work utilised a SEIR 

(where E refers to Exposed in the disease states) model instead of a SIR model 

and used a comparatively small population size of 200.  A theoretical infection 

was utilised again, with arbitrary values for the rate of infection and recovery. 

In this study, Rahmandad found that there was little difference between the 

two model types.  In this study peak infection is approximately the same, 27% 

of the population, although the agent based model resulted in less of the 

population infected (85% compared to 98%).  However in real terms this was 

only 20 people different out of a population of 200. 
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Figure 4 Compartmental Model (Rahmandad & Sterman, 2008) 

 

Figure 5 Agent Based Model (Rahmandad & Sterman, 2008) 
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Rahmandad conducted further work on varying the network structure used 

within the agent based model to assess any differences this may have caused 

and to study the effect of clustering within the population.  As one would 

expect, a highly clustered and heterogenic population led to rapid disease 

spread, whereas a sparser population had a slow spread of infection 

throughout it. 

 

Rahmandad also varied population size by a factor of 16 (resulting in 

populations of 50 and 800) and observed consistent results in these as to the 

original population size of 200 across the two model types.   

 

They also varied the reproductive number to study if either model was 

particularly sensitive to variation in this.  For large values there was little 

difference between the two approaches, which was to be expected due to the 

high virility of the infection in that scenario.  For low values of the reproductive 

number there was increased variance between the agent based model and the 

compartmental one.  This was ascribed to allowing for greater mixing within 

the agent based model with random chance of infection, the effects of which 

could not be mimicked in the compartmental model.   

 

Overall Rahmandad concluded that the results of the agent based model did 

reasonably reflect the compartmental model.  However the flexibility allowed 

by the agent based model could also lead to variability within the model itself 

and was sensitive to parameters used to define the contacts between 

individuals within the population.   However they viewed the ABM model as 

corresponding to the compartmental model 95% of the time, suggesting that a 

compartmental model encompassed a wide range of outputs. 

 

As with all agent based modelling approaches, Rahmandad noted that the 

availability of data was key, and that without sufficient robust data a 

compartmental model approach was generally viewed as an acceptable 

alternative to an ABM one, despite the lack of flexibility it presented. 

A more recent comparison of agent based models to population based ones 

was carried out by Bosse et al in 2012.  The specific goal of their work was to 
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explore the differences and commonalities between the two modelling 

approaches, with specific focus on use in analysis of epidemics. 

 

The models used were quite basic so as to be programmed within Microsoft 

Excel.  Due to this, the agents within the model were homogeneous, and were 

not able to exhibit differing behaviour to each other.  In theory this was 

expected to result in the model having results closer to that of the population 

based one given random heterogenic mixing is a primary advantage of ABM 

over population based models.   

 

The outcome of the Bosse research was that the results of an agent based 

model were not comparable to those of a population based model, a differing 

opinion to other works we have discussed above.  However this was not stated 

as a 100% definitive outcome as it depended substantially on the nature of the 

model and parameters used. 

 

Bosse noticed that the exception to this was ABM models with low numbers of 

agents within them, at which point the two models did more closely relate to 

each other.  However for larger number of agents, the model results deviated 

significantly.  The difference was attributed to the fact that  low number  of 

agents, an ABM model was approximately the same as a population model; this 

was theorised as population models being a function of an approximation of 

averages of an agent based model.   

 

Conversely Bosse noted that within the agent based model itself, there was less 

variation in model outputs for large numbers of agents than with lower 

numbers.  In those cases scenarios would range from extremes of the entire 

population becoming infected to none of the population getting infected.  This 

was not the case when the model used large numbers of agents however.   

Connell et al (2009) made note of a similar occurrence in their comparison of 

models, as detailed earlier. 

 

Bosse et al did theorise that the difference between the models could be as a 

result of an agent based model having a defined local view, looking at 

interactions between agents, whereas by very definition a population model 
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has a global view.  Such a difference in scale would mean that the two models 

could not be expected to have similar results as they were incapable of 

adopting identical scales and perspectives.  Therefore the choice of which 

modelling approach to use should be dependent on the questions being asked 

of the model.   

 

As a final conclusion Bosse noted that due to the lack of study on model 

comparison, the best approach for researchers to use was to build an 

appropriate population based model that was explicitly designed for 

comparison to the agent based model under study.  Parunak et al (1998) 

suggested a similar methodology should be used when validating agent based 

models. 

 

We have seen so far that (1) agent based models either are not equivalent to 

compartmental models (Bosse et al, 2012) or that (2) they showed faster rates 

of infection and increased outbreak within the population (Skvortsov et al, 

2007). 

 

We now review the work of Ajelli et al from 2010 which demonstrates a third 

outcome of comparing agent based and compartmental models for us to 

consider.  The model considers an outbreak of influenza, although 

interestingly it focuses on an outbreak originating in Hanoi, Vietnam but 

considers only the population of Italy which is infected through individuals 

arriving at various airports across the country.  Ajelli chose this to allow direct 

comparison of the two models whilst discounting any impact of initial random 

seeding within the population of Italy itself. 

 

The compartmental model used was run on a customised platform called 

GLEaM, a model based on global populations linked via a transport network (in 

this case airplanes and airports) whereas the agent based model was designed 

specifically for the problem although little detail is given about it.  As with 

other previously discussed studies, census data was used to provide the basis 

of parameters for generating the model population.  Note however that the 

work did appear biased towards proving the use of the GLEaM model more 
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than the viability of agent based models.  ABM was simply the most 

comparable technique to compare with GLEaM. 

 

A modified SEIR infection model was used, with the modification of allowing for 

a third state of infection resulting in Exposed, Infectious (Asymptomatic), 

Infectious (Symptomatic).    The splitting of the infectious stage allowed for 

more granularity of the modelling of behaviour, i.e. an asymptomatic individual 

would be able to infect others but would continue a normal schedule of events 

until becoming symptomatic.  This allowed for more realistic behaviour 

modelling of the population, although it is likely these assumptions were made 

as the GLEaM model already utilised them from previous use.  

 

Ajelli found that the outputs from the two models showed a high degree of 

correlation.   However the agent based model resulted in a lower percentage of 

the population being infected, although the start and end time points of 

infection were largely consistent with the population based model. 

 

Figure 6 Comparison of ABM and EBM for multiple scenarios (Ajelli et al, 2010) 
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This differs from earlier discussed models where incidence rates, peak 

infection and time of infection all varied.    These results were consistent 

across multiple runs, and even variations of the reproductive number. 

Ajelli attributed the difference to the heterogeneous mixing allowed within the 

agent based model as opposed to the homogeneous mixing with the 

compartmental model.    

 

This is the same reason given by previously considered studies, although for 

different results, implying a degree of volatility within agent based models.  

Ajelli noted that the homogenous approach of the population model prevented 

any detailed structure amongst individuals, causing the higher numbers of 

infection.  It should be noted however than in general the differences between 

the two models averaged at 10% (ignoring the similarity on beginning and end 

of the main outbreak) which is not dissimilar to the Skvortsov study where 

there was a 15% difference in incidence.   

 

Ajelli proposed that a hybrid agent based compartmental model could be a 

viable piece of further work, especially when considering a large-scale 

population – such as a country – but also needing to move from the macro 

level to the micro level of a village population.   This would also combine the 

benefits of large-scale homogenous mixing and local level heterogeneous 

mixing. 

 

3.3 Facebook reflecting the world 

As discussed earlier, Facebook was launched in 2004 and became viewed as 

the “world’s largest social network” from 2009 onwards.  Due to this 

comparatively recent launch there have only been limited studies conducted of 

Facebook (and online social networks) for us to consider, with the majority of 

such studies focussing on social sciences.  This was also limited by Facebook 

having a closed API (Application Programming Interface) until 2007 (Hogan, 

2008). 

 

The study of community structure on Facebook is meant to reflect actual real-

world community structure (Traud et al, 2011).  However, typically such works 
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have only captured a small portion of Facebook and actual individuals’ social 

network structure.  

 

There are two means to extract data from Facebook; downloading it directly as 

proposed by Mayer & Puller (2007), Hogan (2008) and Traud et al (2011), or by 

conducting surveys on real-world individuals to obtain the information directly 

from people such as the studies by Lampe et al (2006), Ellison et al (2007) and 

Hargatti (2007). 

 

The study by Ellison et al contacted over 800 people at a specific university to 

obtain information about their demographics and social network properties; 

they achieved at 35.8% response rate, and limited the study to undergraduates 

only. 

 

They devised a measure of Facebook usage referred to as the “Facebook 

Intensity” which aggregated time spent on Facebook with number of friends on 

Facebook so as to better record Facebook usage.   

 

One key finding reported by Ellison was an average number of friends within 

their sample, which was calculated to be a mean of 4.39, with a standard 

deviation of 2.12 distributed with a Normal dsitribution.  Note this this was a 

comparatively small sample however.  Ellison also noted that on average users 

had between 150 and 200 friends. 

 

The outcomes of Ellison et al findings were that 95% of their study used 

Facebook; Facebook was typically not used to make new friends (people that 

they had never meant in real-life) but used to keep in contact with people they 

already knew.  Ellison concluded that Facebook actually helped maintain real-

world connections as opposed to expanding a real-world network or creating a 

separate virtual network of friends. 

 

Hargatti (2007) conducted a similar piece of work, although focussing more on 

the differences in usage of the various available social networks.  However they 

did note that of the five online social netowrks considered, Facebook was 

significantly more used by their survey group (78.8% compared to the next 
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used, MySpace with 54.6%).  Hargatti also noted that membership of online 

communities (such as Facebook) did show a tendency to reflect membership of 

the real-world equivalents, such as a community for students studying 

computer science at university. 

 

The work by Lampe et al (2006) is interesting in that it draws similar 

conclusions to that of Hargatti and Ellison et al but from a point significantly 

earlier in the development of Facebook.  Lampe used similar methods – 

conducting a survey of 7200 students with a 20% participation rate – to those 

studies in order to obtain their data.  Note that this data collection was 

conducted in Summer 2005, with Facebook having only launched a year 

previously.  The other studies were conducted 3 years after Facebook 

launched, by which time it was the dominant online social network across 

American universities (Boyd & Ellison, 2007). 

 

95% of respondents indicated that they were aware of Facebook, with 84% 

actually using it.  86% used Facebook in order to make contact with people at 

university, although 70% and 69% used it to make contacts with acquaintances 

of friends (friends of friends) or people randomly met respectively.  

Respondents indicated that they did not use Facebook to trigger a face-to-face 

encounter in real-life with someone they had “met” online through Facebook. 

Lampe concluded that users utilised Facebook to reinforce connections that 

already existed in the real world, rather than to find and create new 

connections online.  It is interesting to see this conclusion reached so early in 

the history of Facebook, but reassuring to find the conclusions are supported 

by later works. 

 

These above studies relied upon surveys to gather data about Facebook.  

However, as noted by Marsden (2003) this does give rise to the risk of 

“interviewer effects” and imperfections in recall of the individuals carrying out 

the survey.  Additionally the works by Brewer & Webster (1999) and Brewer 

(2000) noted that when asked directly, individuals struggle to actually 

remember a significant number of their contacts (friends), often resulting in 

under-reporting of results obtained by such surveys.  
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A general overview of this topic was carried about by Lewis et al (2008) who 

concluded that where possible, gathering data direct from Facebook – 

preferably without user involvement to avoid contamination – was the best 

approach to use when studying how an online social network reflects a real-

world social network. 

 

More indirect approaches to model an online social network based on reality 

were conducted by Golder et al (2007) only this study focussed on messages 

sent between individuals on Facebook in order to provide the basis to derive 

the network itself.  The Golder studied looked at approximately 26 million 

(anonymised) messages sent by 4.2 million individuals through Facebook, with 

a focus on users who were members of university/college networks on 

Facebook.   

 

This required the sender and recipient to both use Facebook, although not 

necessarily to be defined as “friends” on Facebook (note that subsequent 

updates to Facebook provided users the option to prevent this and limit 

messages to accepted friends only). 

 

90% of messages exchanged were between friends (as in where they had 

confirmed on Facebook that they were friends, a bilateral relationship).  

However they did note that although most messages were sent to friends, most 

friends did not receive messages.  Upon further examination it appeared there 

were clusters of “high” communicators on the network that were responsible 

for the majority of message traffic, often within a localised group. 

Golder also concluded that the Facebook network was largely grouped by 

shared activities and demographics, primarily university and then field of study 

within the university.  As with other studies, Golder concluded that Facebook 

was used to support existing real-world relationships (through messaging and 

maintaining contact) rather than to form new ones online.  This is consistent 

with the findings of other works discussed, although the first to draw the 

conclusion from data obtained directly from Facebook rather than via survey 

usage. 
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In 2007, Mayer & Puller conducted one of the first studies using data obtained 

directly from Facebook.  The data in this instance was obtained in early 2005; 

the date is significant as Facebook was still establishing itself at the time and 

was limited to American universities.  Rather than devise a means to collect the 

data, it was provided directly by Facebook.   

 

The sample covered 65,000 individuals across 10 universities and was a 

snapshot of one moment in time rather than aggregate date gathered over a 

defined period.  However for some of the universities studied, the Facebook 

networks of their users were new, with networks only recently having been 

created for the specific university.  This provided some variance in values such 

as average number of friends, which ranged from 62.9 to 17.2. 

 

Mayer & Puller noted that the demographics of their collected data closely 

mirrored the real-world demographics of the assorted universities despite the 

collected data (in this case of 6754 individuals) being significantly smaller than 

the total population (17288).  Key demographics noted where gender 

breakdown, ethnicity, parents income and year at university.   These values 

were either identical or generally had an average of 2% variation. 

 

Extending this further they examined the similarity between friends within 

their data.  They observed that students of a similar ethnicity were 5 times 

more likely to become friends with each other than with students of a different 

background (Asian, Hispanic, White, Black).  Gender had a weaker predictor of 

being friends, whereas age (or year of study) was noted to be a strong 

motivational force in forming friendships.   

 

Location was also a strong factor, with students in the same hall of residence 

being 13 times more likely to form friendship links with their “neighbours” 

than with people living at other locations.  Interestingly, studying on the same 

course also had a positive effect on the likelihood of friend formation, 

although this was an order of magnitude lower than the influence of living with 

others and comparable with general factors such as background and mutual 

interests. 
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Overall, Mayer & Puller concluded that there was significant correlation 

between the online social network and the real world social network.  They did 

caution however that correlation also implied segregation, especially when 

considering ethnicity and background.  However, this can be offset by 

considering that in the study 81% of the population was from a White 

background and that the populations were not considered to be particularly 

ethnically diverse. 

 

Traud et al (2011) used a similar set of the Mayer & Puller data for their works, 

although the data was obtained in Summer 2005 from 5 universities.  

Unfortunately they did not compare their work with the Mayer & Puller data to 

assess any change at specific universities. 

 

In general the Traud studied found similar findings to that of Mayer & Puller, 

although their research topic was different.  As well as the importance of halls 

of residence, they noted the importance of underlying university structure. 

One of the universities studied had a “house” organisational structure (in 

addition to course etc) and that this imposed a new motivation for friendship 

formation.  Commonality in subjects being studied was shown to be of greater 

import than identified by Mayer & Puller, although the importance varied 

across university.   

 

Whilst hall of residence remained an important factor, it was not found to be 

so at every university studied although on average it exerted strong influence 

in friendship formation.  Gender was also noted to have a negligible impact; 

they did note that gender specific networks did form but these were generally 

a sub-network of existing friendships. 

 

Hogan (2008) conducted a smaller scale survey, focussing on his own 

individual social network on Facebook to assess how closely it mirrored what 

he considered to be his real-world one.  Hogan utilised the Facebook API to 

create a web based application, integrated with Facebook, in order to access 

data on his personal network. 
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Previous works by boyd (2001 & 2006) as well as Fisher (2004 & 2005) had 

concluded that individuals were capable of assessing their own social network 

through reading and interpretation of it.  Hogan used this as the principle of 

his own work to justify the small sample.  

 

Hogan showed that he could classify his friends into distinct subgroups – such 

as family, high school, university, professional.  He had a personal network of 

27 individuals, but a total Facebook network of 186, with overlap of 19 

individuals.  The 8 non-overlapping contacts were attributed to users that were 

either personal friends from childhood or one-off contacts made for arbitrary 

purposes; essentially these were outliers on the network that did not possess 

any contacts to the rest of the network. 

 

Hogan noted that although his network was accurate based on his personal 

observation, it did not necessarily reflect his daily contacts as it comprised a 

snapshot of a network that had developed over time.  He noted that caution 

was necessary when looking at such networks without context if the data was a 

single snapshot without comparative information to assess change over time. 

A new Facebook dataset was presented by Lewis et al in 2008, although it is 

unclear as to precisely how the dataset was obtained other than “by accessing 

Facebook.”  The dataset represents an updated version of Facebook data 

gathered after Facebook expanded beyond America and the university 

environment. 

 

The Lewis data indicated a greater number of friends per individual, ranging 

from 0 to 569, than had previously been studied.  However this can be 

attributed to the ongoing growth and usage of Facebook, nothing that as 

stated by Hogan a Facebook network represents friends over time which can 

range from years ago to current day. 

 

Lewis did note that the work of Mayer & Puller (2008) and Ellison et al (2007) 

which we have discussed above did still appear to be valid in that Facebook 

was used to maintain real-world contacts rather than develop new ones.  The 

leap in number of friendships was attributed to “weaker” ties between 
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individuals developing and Facebook giving more prominence to this than was 

perhaps necessary.   

 

This was viewed as unavoidable given that whilst Facebook does offer the 

means to weight friendship based on the type (such as “studied at university 

with…”) this is not enforced and uptake is minimal. 

Lewis also observed trends consistent with other studies, namely the 

importance of housing location on friendship formation, as well as common 

interests such as area of study.  Again gender was noted as a weaker likelihood 

for friendship formation. 

 

Lewis did note however that behaviour on Facebook, the extent to which 

individuals “act out their social lives,” differed considerably across students.  

This manifested as clusters of highly connected individuals, who in turn had a 

higher growth of friendship contacts and the opposite extreme of lesser 

connected individuals with minimal network growth.  The overall conclusion 

was that the more time an individual spent on Facebook, the larger their 

Facebook network.  This was consistent across ethnicity, gender and 

socioeconomic status.  

 

3.4 Conclusions 

We have reviewed a range of disciplines and fields in this chapter.  Some of the 

fields and topics under discussion are still comparatively new which has limited 

the breadth of literature available to review and the range of conclusions that 

can be drawn. 

 

Network models of infection have been shown to be established in use in the 

simulation community, although confusion exists as to when a network model 

becomes an agent based model or not.  A similar confusion can be perceived 

on the boundaries between discrete event simulation and agent based 

approaches. 

 

It appears clear that use of agent based modelling methodologies is 

increasing, although the historical weight of system dynamics and discrete 
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event simulation usage and existing models still requires further work, 

confidence and adoption in amongst the simulation community. 

 

Facebook has existed for less than a decade but clearly has great potential for 

use as a data source when modelling individuals across a range of economic, 

social and management disciplines.  The issue remains that Facebook is still 

“new” comparatively and there is limited diversity in the work carried out to 

date.  Encouragingly, however, the works all complement and reinforce each 

other even if there is some variance occurring whilst Facebook continues to 

evolve. 

 

Some key conclusions can be drawn from the literature reviewed: 

 Agent based models are very flexible for considering a population on an 

individual level 

 Agent based models typically require a specific compartmental model to 

be created in for use in validating the agent based model 

 When considering an SIR epidemic model, there is no conclusion on the 

accuracy as such of an agent based model; we have shown studies 

where the ABM solution provides lower, similar and higher incidence 

rates for disease spread.  Variance is attributed to the specific 

interactions and variations within each individual population 

 Agent based models that approximate behaviour do so via limited static 

activity schedules 

 Both network and agent based models to date have considered static 

networks, rather than the development of a network throughout the 

model 

 Models to date consider country or global populations, instead of 

relatively smaller populations such as a university campus 

 Facebook can be viewed as an online equivalent of a real-world network, 

with the caveat that its main use is to reinforce and maintain such 

networks rather than grow them 

 Halls of residence and course are key motivating factors in creation of 

friendship links between individuals 
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 Getting data from Facebook is best achieved through automated 

methods, rather than survey usage.  Surveys could be used to help 

validate data, although with caution.   

 The available automated methods of data extraction from Facebook 

have varied with the ongoing development of Facebook but a range of 

options are potentially available 

 

Based on these conclusions, the work of this study aims to achieve the 

following advances: 

 Provide another means of automated data collection from Facebook 

 Create an agent based model with the following characteristics: 

o An agent’s individual network grows and develops over the model 

runtime rather than being instantiated as a static network 

o The individual networks growth will be determined by 

demographics, activity and location 

o An agent’s behaviour is determined by individual event schedules 

which are unique to the individual 

o An agents behaviour varies dynamically depending on the 

progression of infection 

 Assess the validity of such a model against a standard SIR 

compartmental model 

 



Paul Davie  Literature 

Review  

72 

 



Paul Davie  Modelling 

Approach  

73 

 

4. Modelling approach 

The proposed model combines many different aspects of mathematical and 

epidemiological modelling.  It is hoped that the three different aspects can be easily 

intertwined.  Epidemiological models on the individual-level are becoming increasingly 

popular, as are spatial disease models. (Keeling et al, 2001; Lawson, 2001; Eames & 

Keeling, 2003; Eubank et al, 2004; Deardon et al, 2006).  With the perceived increasing 

threat of bioterrorism, and increase in available data on individuals, combining these 

various modelling aspects appears to be an area gaining increase attention from 

epidemiological modellers (Carley et al, 2004; Chen et al, 2004; Keeling & Ames, 2005; 

Yahja & Carley, 2005). 

 

4.1 Disease model 

A traditional starting place for disease modelling is to use the Susceptible-Infectious-

Recovered (SIR) model.  This is a compartmental model that assumes random mixing 

with a population and progression between stages of the modelled disease are 

governed by transition probabilities and a set of ordinary differential equations.  The 

SIR model assumes that you are working with a homogeneous and closed population 

and can be implemented with either discrete or continuous time variables (Kermack & 

McKendrick, 1927; Anderson & May, 1992; Keeling & Ames, 2005). 

 

The SIR model is appropriate for working with diseases that result in life-long immunity 

after infection (Keeling & Ames, 2005).  Examples of this are measles (Greenfell, 1992), 

seasonal flu (although it is currently not possible to become permanently immune to 

influenza, it is possible to become immune to the seasonal outbreaks of the different 

subtypes (WHO, 2003; Longini et al, 2004; CDC, 2007) or whooping cough (Rohani et 

al, 2000)).  The SIR model is therefore a simple framework to use for developing an 

individual-level model for the Freshers’ Flu. 
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The base equations for the SIR model (using discrete time) are: 
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These equations assume that an infectious individual interacts with an infinite set of 

other individuals (typically the entire Susceptible set of the modelled population) and 

therefore ignores the fact that a population is discrete and heterogeneous, not 

homogeneous (Durrett & Levin, 1994; Wilson, 1996, 1998; Bolker et al., 1997; Keeling 

& Grenfell, 1999).   Whilst one could use multiple sub-populations to attempt to 

introduce a heterogeneous factor to a compartmental model, moving to a full 

individual-level model allows for a greater freedom in doing so without having to 

create arbitrary sub-populations.  Instead we are able to attach different parameters to 

each individual, essentially providing for unlimited sub-populations with minimal 

effort. 

 

From these equations, it is possible to calculate the infectious period for the disease as 



1
.  This value is not set in the model but is derived from  which is defined for the 

model (Kermack & McKendrick, 1927). 
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Furthermore, we can also calculate the reproductive rate, 0R for the particular disease 

being modelled. 

 


0R  

 

0R  is defined as “the average number of secondary cases caused by an infectious 

individual in a totally susceptible population” (Anderson & May, 1992).  0R is therefore 

one of the most important variables for an infectious disease model (MacDonald, 1952; 

Dietz 1975; Keeling & Grenfell, 1999).  It is primarily used for calculating the threshold 

of whether a disease will “enter” the population and cause an epidemic.  This is often 

referred to as “invading a population” and is one of the most-studied aspects in 

ecology (Kornberg & Williamson, 1987) and an important value for any disease model. 

 

If 10 R then the disease can enter the population and spread.  If 10 R  then the 

disease will not spread and eventually die out (Anderson & May, 1992; Keeling & 

Grenfell, 1999).  0R is kept constant throughout the population and model, as are the 

parameters  and , for compartmental models (Keeling & Ames, 2005).   

 

The SIR model has been modified many times, either as a result of a desire to reflect 

more complex behaviour of a disease (Anderson, 1988, Grenfell et al, 2001) or to allow 

for greater structuring of the modelling population (Hethcote & York, 1984; Ghani et 

al, 1997; Keeling et al, 1997; Keeling & Ames, 2005).  These past works form the basis 

of the modifications made for this proposed model. 

 

A common adjustment to the framework is to allow for an extra Exposed stage before 

the Infectious stage (to represent the time after infection before an individual becomes 

infectious); the revised model is referred to as the SEIR model (Greenhalgh, 1992; Li & 
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Muldowney, 1995; Gibson & Renshaw, 1998).  While it has been shown that influenza 

may include an Exposed stage in its progression, initially we will ignore this in favour 

of a simple starting model (Saretok & Brouwers, 2007).   

 

The first concern is to adapt the model from a compartmental model to an individual-

level model.  Fortunately the stages of an influenza infection can be modelled using 

the Susceptible, Infectious, Recovered compartments of SIR (Longini et al, 2004). 

 

The main consideration for the model is the equations that govern the individual 

transition from Susceptible to Infectious.  We assume that this will be based upon the 

ability of an already infectious individual i to infect a susceptible individual.  

Compartmental models have a constant value of  ; however in this model we can allow 

  to vary with each infectious individual (Keeling & Ames, 2005). 

 

Therefore we have: 

 

othersinfect   toi infected ofability 

)(
)(



 


i

tIi

i

s
n

tX





 

 

We no longer need a specific equation to model the transition from Infectious to 

Recovery.  As an individual-level model is being used, we can directly model the 

progression of the infection in each individual.  Therefore, we merely need parameters 

for the duration of infection and simply advance the state of the individual depending 

on the simulation clock. 

 

This allows us to further extend the definition of the parameter i  as follows: 
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This definition is based on the work of (Saretok & Brouwers, 2007) and (Ferguson et al, 

2005).   represents a log-normal curve with parameters 72.0  and 8.1 , 

obtained from estimates in literature (Carrat et al, 2002; Cauchemez et al, 2004). 

 

A 10-day limit on infectiousness is defined as reliable data on infectiousness beyond 

this point is difficult to obtain.  Additionally, the majority of people recover within 10 

days; therefore it is unrealistic to model beyond this (Ferguson et al, 2005; Longini et 

al, 2005).  Typically people are infectious between 3-4 days up to a week (Hayden, 

1998). 

 

Many previous models of influenza have assumed values for the infectiousness period 

of influenza (Rvachev & Longini 1985; Elveback et al, 1976; Ferguson et al, 2005).  

However, recently some models have utilised data from a multiple-exposure event 

onboard an aeroplane (Moser et al, 1976).  Extensive data on the progression of the 

infection was gathered from this study.  Although the data is likely biased somewhat 

towards infection caused by airborne transmission, the limited space of an aeroplane 

also allows it to be used for physical transmission (Ferguson et al, 2005; Saretok & 

Brouwers, 2007).   

 

We therefore have the following equation to govern transition from Susceptible to 

Infectious: 
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However, it is proposed to further extend this.  As the overall model will include a 

social networking component (see below) and the model is individual-level, we can 

incorporate a variable to represent the susceptibility of an individual.  At present the 

model only takes into account the infectiousness of an individual.  It therefore seems 

reasonable to take the opposite value too, and include this (Cauchemez et al, 2004). 

 

We define a new parameter, s  to represent the susceptibility of individual s to 

infection (of influenza).  A review of literature suggests a mean value of 1.15, with a 

confidence interval of [0.81, 1.56].  (Cauchemez et al, 2004; Ferguson et al, 2005).  

This represents a weighting factor in varying susceptibility amongst the population 

when calculating likelihood of infection, essentially allowing for the fact that everyone 

has a different immune system, health background and other factors that would 

influence the risk of infection.     

 

There is little justification for making this parameter time dependent, as was done for 

the individual infectiousness parameter.  That parameter could reasonably be assumed 

to vary with the progression of an individual’s infection (Hayden et al, 1997; Longini et 

al, 2005).  No such justification exists for the susceptible parameter at present, as 

effectively the individual is in a neutral state. 

 

The governing equation for individual’s transition between the Susceptible state and 

the Infectious state is therefore: 
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To summarise, we have currently defined an equation that, using the basis of the 

prevalent SIR model, allows us to calculate the probability of whether an individual can 

be infected at a time t.  At present, the equation allows for variance depending on the 
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individual, but does not take into account specific information for individuals (we are 

sampling a distribution to allow for variance) or consider aspects such as the 

location/activity of the individual.  This will be discussed in the following sections. 

 

 

4.2 Social networking model 

It is clear that networks and models of direct-contact transmission diseases are linked 

(Keeling & Ames, 2005).  Initial disease models, such as the SIR model, were 

compartmental and thus ignored individual-level behaviour and assumed random-

mixing within a population.  However, realistically each individual within a population 

will have a finite number of links with others (Keeling, 1999; Eubank et al, 2004).  We 

therefore turn to social networking theory in order to define this and include it within 

the model. 

 

Social networking has roots in 2 distinct fields; social sciences (Leinhardt, 1977; Scott 

1991; Wasserman & Faust, 1994) and graph/network theory (Harary, 1969; Bollobas 

1985; West, 1996).  This has led to variations in the vocabulary for social networks.  

For this model, we follow the grapy theory field of definitions.   

 

We can therefore define the following terms.  In graph theory, we have “nodes” and 

“edges” (or “vertices”) within a graph.  For this model, this will be re-defined as 

“individuals” and “contacts.”  Although there is no practical difference, it makes 

comprehension somewhat simpler. 

 

We further define the set of contacts for an individual as their “community”; the size of 

this neighbourhood is defined as “degree.”  Some literature uses the term 

“neighbourhood” instead of community; however to avoid confusion with the spatial 

model aspects (see below) we have chosen community for the model. 
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For the purposes of the disease model we wish to know who an individual interacts 

with.  Depending on the purpose of the model, this is either used to “backtrack” 

contacts of individuals to find the source of an infection, or to forecast the spread of 

an infection (Carley et al, 2004).  This model focuses on the latter goal, although 

theoretically could be used for the former. 

 

We therefore must define what constitutes a contact between individuals.  There are 

two possibilities here.  A contact between individuals i and j is only a contact if there is 

a contact between j and i.  This requires that any contact must be two-way and not 

mono-directional (Wasserman & Faust, 1994; Karlberg, 1997).  This is slightly 

restrictive in that it eliminates incidental contacts as people tend not to think of them 

as contacts (Keeling & Ames, 2005). 

 

However, we also need consider whether a contact should be defined as “a contact that 

could lead to the possibility of infection.”  Unfortunately it is difficult to explicit define 

what contacts will have this.  We could obviously restrict contacts to physical 

proximity.  It has been shown that when obtaining data it is difficult to refine contacts 

to this degree of accuracy (Keeling & Ames, 2005; Wasserman & Faust, 1994; Eubank 

et al, 2004; Meyers et al, 2005), therefore an arbitrary determination must be made.  

Furthermore, it may also be necessary to impose a limit on the number of contacts an 

individual can have, i.e. the maximum degree of their community (Ferguson et al, 

2005).    

 

Contacts between individuals can also be weighted to give them importance.  This is 

important for disease modelling as different contacts (such as relationships) will have a 

direct bearing on the chances of an individual being infected.  For example, a friend 

who is seen regularly could have higher weighting than someone who is on the same 

degree course (Wasserman & Faust, 1994).  However, this does lead to problems in 

defining the weighting and obtaining data to support this (Kretzschmar et al, 1996; 
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Eubank et al, 2004; Meyers et al, 2005).  If there is sufficient data, or the number of 

weights are kept to a minimum then it is worthwhile to consider this (Keeling & Ames, 

2005).    

   

For this model we are interested in the degree of an individual’s community, and the 

weighting of each contact.  These should provide the most useful data in building a 

robust and effective overall model.    

 

According to (Keeling & Ames, 2005) there are 3 primary techniques that are 

commonly used to gather network information: infection tracing, contact tracing and 

diary-based studies.  This model focuses on contact tracing.  Infection tracing is 

generally used for back-tracking a contact network to isolate the source of infection 

(Haydon et al, 2003; Riley et al, 2003) which is not the focus of this model.  Contact 

tracing, however, focusing on working forwards through a known network of contacts 

in order to follow (or predict) the spread of a disease (Klovdahl 1985; Kretzschmar et 

al. 1996; Ghani et al. 1997; Ghani & Garnett 1998; Muller et al. 2000; Wylie & Jolly 

2001; Potterat et al. 2002; Eames & Keeling 2003; Fraser et al. 2004). 

 

Contact tracing is actually one of the recommended tools in combating SARS (Donnelly 

et al, 2003; Eames & Keeling, 2003) and has also been used in combating the spread 

of airborne diseases (such as influenza) by identifying “at-risk” populations (Eames & 

Keeling, 2002; Eames & Keeling 2003). 

 

Unfortunately one drawback with using a social network approach is the quantity of 

data required in order to generate a useful network (Wasserman & Faust, 1994; Eubank 

et al, 2004; Carley et al, 2004). 

 

Fortunately it appears that once appropriate data is obtained, actual simulation of a 

disease outbreak within the network is comparatively simple.  Such models, however, 
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principally rely on the observation that “rate for which a susceptible individual is 

infected = transmission rate multiplied by number of infectious within their 

community” (Watts & Strogatz, 1998; Eubank et al, 2004; Meyers et al, 2005).  

 

There is fortunately very little mathematical work that needs to be done to the model 

to include the social network assumptions.  The social network will essentially provide 

the basis for the parameter s  which denotes the individual’s likelihood of being 

infected (their own personal risk).   

 

We can now base s  on the degree of an individual’s community (likelihood of meeting 

infectious individuals), and the weighting of their individual contacts (likelihood of 

meeting an infected contact).  We can express this as: 

 

))( | ,( ijcjiwCis   

 

Where: 

iC  = the degree of the community for individual i 

))( | ,( ijcjiw  = the weighting of the contact between individual i and j given )(ijc , that 

there is a contact between i and j. 

 

However, we can extend this further!  Currently the equation does not allow for a 

change in contact depending on time.  Previously this was stated to be unnecessary.  

Now, it becomes necessary in order to maintain the integrity of the model as it is 

unreasonable to assume that an individual’s contacts are ALL present continuously.  

We therefore make the parameter dependent on time, t to allow for the fact that, 

essentially, the network will change depending on time (and likely location, see below) 

(Carley et al, 2004; Eubank et al, 2004).  
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This gives: 

))( | ,()( ijcjiwCt tis   

 

Ideally the model was also be modified to allow for individual “behaviour” as infection 

progresses (Carley et al, 2004; Zeng & Wagner).  This would allow individuals to truly 

act as individuals within the model and adjust their behaviour based on the “world” 

around them and their disease progression.  This could allow the parameter i  to be 

adjusted to take into account the current progression of infection in individual i.  At 

present this is generated by a lognormal distribution.  However, it could be replaced by 

what would effectively be event-driven behaviour. 

 

The work of (Carley et al, 2004) and (Saretok & Brouwers, 2007) has shown that this 

can be implemented successfully.  It also conveniently incorporates more realistic 

event-driven behaviour into the model (see below) which is already proposed to include 

Discrete Event Simulation (DES) concepts in order to run efficiently. 

 

 

4.3 Spatial model 

Spatial considerations are particularly important for individual-level models (Keeling, 

1999; Keeling & Ames, 2005).  Compartmental models do not allow for changes in 

location as they assume a homogeneous population where location would be 

irrelevant.  However, for an individual-level model location is indeed relevant and of 

considerable importance (Brouwers, 2005). 

 

Originally it was hoped to include an extremely detailed spatial model into the main 

disease model, similar to the advanced pedestrian modelling software developed by 

Legion (Legion, 2007).  Unfortunately it became clear that such a model would require 

detailed data to the extent that more time would be spent on collecting and then 
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translating the data than on the actual disease model, which is the main part of the 

overall model. 

 

Another initial idea was to further extend the disease model in conjunction with the 

spatial model by defining a “sphere of influence” for an individual.  This aim of this 

concept was to, based upon the social network of an individual in a location, model in 

explicit detail the actual “contact” between the two individuals.  To achieve this, each 

individual would have an area defined around them with increasing probabilities of 

infection (if one of the individuals was infectious) as the two areas intersected.  After 

some experimentation, the initial “sphere” approach was changed into a “kite” to 

represent the chances of actual airborne contact; this was based upon the theory that 

two people facing each other had a higher chance of infecting each other than if they 

were facing away from each other. 

 

Unfortunately the computational requirements for this approach were prohibitive and 

there is no evidence in literature to support such ideas.  It could be worth re-visiting 

for a smaller, simpler model however. 

 

A subsequent review of literature reveals that typically assumptions are made for 

spatial models, depending on the time and individual (Carley et al, 2004; Eubank et al, 

2004).  Typically this took the form of event-driven modelling, where information 

about the event defines the parameters for the location (Brouwers, 2005). 

 

Alternatively it is possible to create a spatial network, using the principles behind 

social networking.  In these networks, individuals are positioned within defined spaces, 

usually of given area so only a finite number of other individuals can be present, and 

then connected with other individuals within the area depending on their social 

network (Ames & Keeling, 2002; Read & Keeling, 2003; Keeling & Ames, 2005).  Only 

allowing a finite number of individuals, which varies depending on location/event, 
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functions as a substitute to the detailed architectural approach.  As with social 

networks, spatial networks require a great deal of data to work correctly.  However, 

they are extremely flexible and can be re-generated on a location-to-location basis.    

 

Ideally we would like to combine both the spatial network and event-driven spatial 

model.  This makes sense as it would result in spatial networks for set locations that 

are only occupied by people at the event, subject to their behaviour.  Therefore we 

would, in theory, only have contacts between infectious people who are “well” enough 

to not stay at home, and also who have a contact with a susceptible individual. 

 

As we are focusing on the Fresher’s population, we can make some assumptions on 

locations they will encounter during the model run.  We define the following locations: 

 

Default locations (locations that people WILL visit during a day – we assume they 

cannot leave Southampton). 

 Room in halls of residence (home) 

 Communal areas in halls of residence (e.g. kitchens, dining hall) 

 

Daily locations 

 Lecture theatres (assuming a standard capacity of 150) 

 Café (200 people) 

 Shop (50 people) 

 Supermarket (100 people) 

 

Night-time locations 

 Small bar (100 – 400 people) 

 Medium sized bar (400 – 1000 people) 

 Nightclub (1000+ people) 
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Given the “size” of some of these locations, inevitably we will need to adjust the model 

to allow for random contact as it is unlikely that the larger environments will allow for 

individuals to encounter people outside of their community.  Also, an individual does 

not have to visit each location in a day, or ever.  It is hoped that the data collected will, 

in part, define the locations visited by an individual.  We also assume that individuals 

cannot go to the locations outside of the appropriate times, e.g. they will not go to the 

night club in the morning, or they will not go to a lecture before they are awake.  An 

exact time schedule is yet to be finalised. 

 

Defining the various discrete locations allows us to implicitly assume certain events are 

associated with the locations, for example eating a meal in the café, sitting in a lecture 

in a lecture theatre.  This means we can then define an exposure time for each 

location.  We assume that effectively only 1 event takes place within each location for 

convenience sake (Carley et al, 2004; Saretok & Brouwers, 2007). 

 

(Saretok & Brouwers, 2007) suggest possible probabilities for location depending on 

disease symptom (and thus disease progression).  These are used for each individual 

to decide at appropriate times if they should change their location.  We adapt these for 

the model as follows.  These probabilities are only approximate, however.  It is hoped 

that better values can be estimated from data during Fresher’s Week, and by assuming 

that initial lecture attendance would be high. 

 

 No symptoms Mild symptoms Typical symptoms 

Default locations 0.05 0.4 0.8 

Daily locations 0.475 0.3 0.199 

Night-time 

locations 

0.475 0.1 0.001 
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It should also be possible to define different entity types of individuals, so that there is 

a behavioural distribution to consider, independent of infection (Carley et al, 2004; 

Yahja & Carley, 2005).  This is a normal extension of social networks where we begin 

to differentiate people based on their behaviour (Wasserman & Faust, 1994).  This 

would not impede the individual-level modelling approach as we would not actually be 

modelling the disparate groups, merely assigning different attributes when initialising 

the model.  

 

The exact entity types have not yet been finalised, but it is likely there will only be 1-3 

of them.  Further, such entity types will probably be based upon the degree of 

weighting of an individual’s social network.  Therefore an individual who has high 

degrees of contact with others could be assumed to be more “social” than an individual 

who does not.  Subsequently we can then assume that such an individual would have a 

greater chance of going to night-time locations more often than the other type. 

 

Due to the decision criteria, we must adjust the definition of the term )(tIi to 

exclude such individuals that at t have decided to, for example, remain home.  We 

therefore redefine this as )(),( tlitIi  where l represents the current location.  This 

requires i to be present at the current location; if they have not decided to “be” there 

then they are excluded.   

 

As locations have attributes, such as the number of people they contain, we also define 

an additional parameter for the model to take into account random mixing (and 

therefore contact) and subsequent chance for infection. 

 

We define )(tli  as the random-contact probability for individual i based upon the 

current time t which implicitly defines their location (based upon the event occurring at 

t) 
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The updated transition probability between Susceptible and Infectious states is 

therefore: 
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5. Challenges 

As stated repeatedly earlier, models inherently have many different problems.  

Individual-level models in particular experience perhaps a greater number of these due 

to their high data requirements and subsequent expensive computational demands.  

We now discuss these 2 main issues; this does not exclude or imply that there are no 

other issues for the model.  However these two issues have been identified as the most 

important to the outcome of the model. 

5.1 Time handling 

Time is an important concept, and variable, for any model.  It is particularly important 

for disease models when the actual passage of time defines state changes or triggers 

events.  One of the most important choices when formulating a model is the 

granularity, the unit of time, to use in the model (Becher et al, 2000; Law, 2007). 

 

For an individual-level model, time handling has an extra aspect to consider; the 

computational impact of advancing every discrete individual within the model forwards 

one time unit.  Just consider a model with a population of 5000, being run for 14 days, 

and a time granularity of 5 minutes.  This would result in 60,000 computations being 

required just to process the effect of one hour of time.  For the full model run, over 20 

million calculations would take place, and this assumes that everything occurs linearly 

and that there are no other additional calculations.  These problems are common in 

individual-level modelling (Carley et al, 2004; Hanley, 2006) 

 

Even with modern computing, this amount of computation would have a degrading 

effect on the model run-time.  Additionally, when considering the particular model in 

question, it can be seen that there are sections of time when there will be little or no 

changes in the model taking place; for example during the night when everyone is 

sleeping.  It would be inefficient to model an 8-hour sleeping period for all 5000 

people when it is not required as we could reasonably assume it is sufficient to merely 
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advance the simulation clock by 8 hours and update all the model entities accordingly 

(Pidd, 1998; Law, 2007). 

 

 

5.2 Data requirements 

The proposed model is, unfortunately, somewhat intensive in terms of the data 

required.  This is due to the large amount of information needed to create a working 

and realistic social network (Keeling, 2005). 

 

A social network requires knowing who in the population is “linked” to others in the 

population, and how.  The “how” defines the importance, or weighting, of the link, e.g. 

whether they work together or are related.  This weighting is an important factor for 

the model (Wasserman & Faust, 2004). 

 

As the model is looking at first year students, which gives an estimated population size 

of 5000 for Southampton University, we therefore need to know the friends of each of 

the 5000 people in the population.  It has been suggested in literature that people, on 

average, have 150 people who they are relatively close to.  If this is true, that would 

mean we would end up with at least 750,000 pieces of data (although it is likely there 

would be some repetition)! 

 

One of the reasons social network individual-level models have not gained widespread 

use is the heavy data requirement for them.  In a more open situation, for example the 

possible release of smallpox in a crowded area, there would be little time and 

resources to acquire such data.  Fortunately in this case we are looking at a 

comparatively closed population. 

 

It would also be of some benefit to have information on gender and ages of people in 

order to have a wider spread of end results to analyse.  While the progression of flu 
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has been shown to vary with age, it is unlikely that age will be a factor in this model as 

the majority of people will be in the age range of 18-20.   However, it could be 

interesting to group the model output by age, and gender, to see if the model 

suggests anything interesting.  Similarly, gender should have little influence on the 

disease model results, although it could have an impact on the social network model 

(Halloran et al.  2002). 

 

Also, we are not focusing solely at a social network based on who people are friends 

with, and the strength of those links.  We are also interested in the locations (or 

events) that people encounter during a day, and implicitly the people that they would 

encounter in these situations.  Therefore we require information such as the number of 

people in different halls of residence and numbers on each course.  Extra information 

about extra-curricular activities would also be useful, although it would likely be 

difficult to obtain. 
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5.3 Potential solutions to the problems 

Having identified the primary difficulties with the proposed model, we now discuss 

some potential solutions to these challenges.  It is hoped that these solutions can 

overcome the majority of the obstacles and allow for the development of a successful 

model.    

 

5.3.1 Data Collection 

Fortunately recent advances and innovations on the internet have, in this case, made 

data collection easier than expected.  Previous social networking studies have obtained 

data by getting people to fill out questionnaires on whom their friends, i.e. their social 

network, are.  However this is both labour intensive and has also been shown to not be 

particularly accurate as people have difficulty “ranking” their friends in a useful 

manner.  It was also found that people questioned had trouble recalling a sufficiently 

large number of friends (Wasserman & Faust, 2004). 

 

In 2004 a website, www.facebook.com, was started up.  Aimed primarily at universities 

in America it aimed to allow people to connect and keep in touch with people around 

them (Facebook, 2007a).  However it rapidly expanded and today includes the majority 

of both USA and UK universities, including Southampton University. 

 

As of Summer 2007, Facebook has over 30 million users (Abram, 2007).  The 

University of Southampton network contains over 16,000 members (Facebook, 2007b).  

This number is not indicative of how many of these are current students however as 

anyone who has studied at Southampton can join the network.  However, given the 

comparatively recent launch of Facebook, it can be assumed that the majority are 

current students as demonstrated earlier in the literature review section on the uptake 

of Facebook amongst university students. 
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Facebook allows people to enter information such as their graduation year, gender, 

age, course information and more.  For this model, the graduation year is a key bit of 

information as it will allow us to identify and focus on first year students.  This is not 

100% accurate as not everyone will be on a 3 year course and there may be overlap 

from 4-year courses of study.  However, it should be sufficiently accurate for the 

purposes of the model. 

 

Unfortunately there is no requirement for every user to input the same information so 

inevitably there will be some people missed. Indeed, some users deliberately restrict or 

omit information about themselves to maintain their privacy (Gross, 2005).  There will 

also be some variety in the available information per person.  Also, not everyone will 

use Facebook.  However, given the alternative of trying to interview thousands of 

people and get potentially unreliable information, Facebook is the preferred data 

source for the model.  It is hoped that data can be obtained for at least 500 people 

(10% of potential first year students). 

 

Even more advantageous is the fact that the Facebook API is publicly available which 

suggests it may be possible to automate data collection via a direct interface to the 

Facebook servers, assuming it is possible to program a suitable application and that 

the API allows such widespread access (Facebook, 2007c). 

 

The data needed from Facebook is the friend lists of each user that is identified as a 

first year student at Southampton University.  More specifically, we are only interested 

in friends at Southampton University.  While in the future it may be of some use to 

expand the model to allow for “external” friends, in this case the scope of the model is 

the social network for students at Southampton University. 

 

Facebook also allows people to specify information such as their residence and course 

(as it is aimed at academic students).  Sadly this is not compulsory information.  

However, a brief study of Facebook suggests that most people list their course.  
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Unfortunately residence is far more variable, if only due to spelling mistakes, and it 

may therefore be more complex to extract useful information about this from an 

individual’s profile. 

 

Alternatively, it is hoped that statistics on halls of residence occupancy and course 

numbers could be obtained from the University of Southampton to allow for a 

reasonable approximation of this information.  Also, although people may not specify 

a specific hall of residence as their address, it has been noted that each hall tends to 

have its own “group” within Facebook.  Therefore it may be possible to identify which 

hall people are in via this information.  However, there is no requirement that people in 

that specific hall will be within the correct group, so it is unknown how accurate this 

data will be. 

 

 

5.3.2 Time Handling 

Fortunately there is a comparatively straight-forwards and frequently used technique to 

resolve the time handling issues.  Technically we do not need to consider each discrete 

time point (i.e. every minute in an hour) as changes in state from Susceptible-Infectious 

can only occur during, or after, an event takes place.  This leads us logically to Discrete 

Event Simulation techniques. 

 

Discrete-event simulation (DES) is a modelling technique where the state of variables 

only changes at discrete points in time (Banks et al, 1999).  This is ideal for this 

particular model as, as previously stated, we would prefer to only simulate when an 

event occurs and not the “in between” time. 

 

A DES model utilises an Event List which contains a listing of all future events within 

the model (Schriber & Brunner, 1997; Banks et al, 1999; Law, 2007).  Events take place 

at set times (although they possess duration, we increment the overall model clock and 

asynchronously evaluate the activity progression for each entity within the population) 
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and occur instantly, changing the state of entities within the system.  For this model, 

individuals would be the entities and the various events would be linked to locations at 

which an individual is present, as discussed earlier.    

 

DES simulation handles time by utilising an overall simulation clock (Banks et al, 1999; 

Law, 2007) that is constantly running in the background.  After each event occurs, the 

simulation clock is then forwarded to the time of the next event in the Event List.  Each 

event has a start time, and occasionally an end-time.  The event list is ordered by the 

start time of all the events within the list. 

 

Some models have events scheduled dynamically based on a previous event, e.g. in a 

queue system a departure event would need to be created after an arrival event is 

triggered (Law, 2007).  This should not be required for this model as we would attempt 

to define all the events statically during model initialisation.  However, it may be 

worthwhile later revisiting this and allowing events to evolve based on variables within 

the model.  This is already partially achieved by utilising the decision criteria based on 

the disease progression for an individual.    

 

A minor modification is needed to cater for the disease model as the model would 

need to check after an event if any individual disease states need changing.  For 

example, an individual could move from Infectious to Recovered between events as 

they would have been infected for a sufficiently long period of time.  This should be 

relatively straight-forwards to implement however. 

 

Using DES principles dovetails neatly with the proposed social-network and spatial 

model (Kretzschamr, 1995; Keeling & Grenfell, 1999), although there is currently little 

evidence in literature of such combinations being utilised.  The majority of models 

model discrete time in hourly intervals (Carley et al, 2004; Brouwers, 2005). 

 

 



Paul Davie  Challenges 

97 

 

 

  



Paul Davie  Challenges 

98 

 



Paul Davie  Methodology 

99 

 

6. Methodology 

 

Introduction 

In this section we discuss the methodology and rational behind how the model was 

implemented.  We consider the data required, the sources for it and methods of 

obtaining it. 

 

6.1 The Programmatical Model 

We proposed, and subsequently developed, an agent based (or individual level) to 

model the spread of an influenza outbreak amongst the first year population of the 

University of Southampton. 

 

Each individual created within the simulation population has a range of attributes 

encompassing their personal demographics (such as gender, age) and environmental 

attributes such as their hall of residence and course.  An individual level modelling 

approach allows for individuals to have as few or as many parameters as needed, as 

each is “unique” to the individual.  In this model we focus on a few key ones, although 

note that others – such as ethnicity or socioeconomic status – could be used but have 

not in this instance as they are viewed as having minimal impact on the epidemic. 

 

The unique feature of this model, and a fundamental contribution to literature as a 

result of this study, is the creation of a model where individuals have a dynamic and 

evolving network of contacts, akin to a real-life social network. 

 

Previous models (both agent based, epidemic based, social network based) have not 

incorporated such a feature, relying on static networks typically provided by census 

information.  Such models have usually limited possible locations to homes, schools 

and generic workplaces. 
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The benefit of focusing on a university population is both the variety and control that 

such a scenario offers.  A university timetable is a well-structured sequence of events, 

with known times, locations and attendees.  Moreover our focus on the initial weeks at 

the beginning of university provides access to enhanced data on evening and social 

activity than is readily available for the rest of the year.  This is further improved by the 

nature of Freshers’ Week (the start of the university year) encompassing the majority of 

the first year student population. 

 

However such a time period is also unique in that it is a pivotal point in friendship 

generation for the new students, as the make friends with their “room mate” and 

“course mates” for the first time.   

 

The advent of online social networks, such as our chosen site of Facebook, helps 

capture and quantify this progression of friendships.  For the first time, we are able to 

collect data on, analyze and subsequently simulate the growth of an individual 

friendship network as it forms. 

 

As discussed in the literature review, an individual level modelliing approach has two 

main restrictions; need for authoritative data relevant to the problem, and 

computational demands.  We discuss the data requirements of the model in the 

following sections. 

 

Computational demands for an individual level model can be enormous, depending on 

the population size, scenario time length and attributes of the individuals.  In our 

population of 5000 individuals over an 18 day period (with time intervals of 15 mins) 

we must model thousands of interactions, events and responses. 

 

There is no primary tool for use in creation of an individual based model.  As seen in 

the preceding literature review, such models are in their infancy and the library of tools 

available is slim.  In general, previous researchers have created their own custom 
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models using existing programming languages to achieve their goals.  We adopted the 

same approach. 

 

Much talk can be given to the choice of a programing language; machine code, virtual 

machine, interpreted language, there are tens to choose from.  There is no right or 

wrong choice with a programming language, although each offers a range of positives 

and negatives. 

 

The chosen programming language for this project is PHP.  This is primarily a web 

scripting language (and therefore is classed as an interpreted language) but in truth 

differs little from other languages such as Python or Java.  There is perhaps a 

computational cost to using an interpreted language over one such as C which runs 

natively, however computational power is such these days that the risk is minimal.   

 

Use of a web based language also allows for easy integration with databases, user 

interfaces and a range of programming APIs.  PHP can also be easily run inside an 

Apache server in a clustered environment, if required, and there are a range of 

caching, load balancing and memory efficiency tools available to use, outside of the 

inbuilt language abilities.   

 

PHP possesses object-oriented (OO) attributes which allow for better programming 

practices to be adhered to.  OO is particularly useful for an agent based model as we 

are able to “cast” each agent as a “Person” object, as well as events as “Events” and 

even locations as “Locations.”  This allows an easier conversion from the conceptual 

model to the programmatical one, with just the controllers that create and use the 

objects requiring specific programming work to implement. 

 

The simulation was run on a dedicated Linux server, with PHP running natively in an 

Apache environment.  The MySQL server was hosted separately on a high-performance 

machine in order to spread computational requirements (database work vs scripting 
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work) between the units.  This did allow for the possibility of a bottleneck in data 

transmission between the two units, but this would be unlikely to occur over a gigabit 

network link for collocated machines.  The risk of overwhelming the unit with 

processing if everything was contained on one machine was deemed to be greater than 

the chance of exceeding available network bandwidth.  

 

 

Upon model initialization, the main activity is to create the virtual population.  Note 

that for repeated runs, the same population may be re-used as the values are stored in 

the database.  The user is able to choose whether to create a new population or re-use 

an existing one; it is feasible to keep a range of past populations within the database 

as in terms of file sizes they should only occupy megabytes. 

 

Using the input demographics we assign each individual a degree course, a hall of 

residence, a personality type and also whether they are one of the initial infected 

within the population or not.  We also determine their age and gender at this point.  

Importantly we also define their friendship likelihood (representing the average 

number of friends per day) that they could make.  This is based on the data gathered 

from Facebook and subsequently determined distribution of friendship formation per 

day. 

 

 

Create Model 
Population

Individuals 
created

Assign Course 
of study

Assign 
personality 

type

Create empty 
friend list

Assign to hall 
of residence

Assign 
infection status

Assign 
demographic

Assign 
friendship 
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After creation of the model population, we then need to seed each individual withy the 

model with their own list of events.  This represents possible events that they may 

attend, the actual decision on attendance occurs later.  At this stage, using the newly 

created individual’s hall of residence and degree course we determine their event 

schedule.  This also includes events where hall of residence and school are not 

relevant, such as “sleeping,” “eating” and generic events like the “Freshers Fayre.”  

Following this, an event list is formed for each individual.  These are unlikely to be 

unique to each individual given the likely overlap between halls and schools, although 

there should be a degree of variety throughout the population. 

 

As with the creation of the population, specific event lists can be re-used for successive 

model runs to maintain consistency within the simulation and assess the more random 

friend formation and spread of infection. 

 

Once the model run is initiated, the overall model clock commences.  At each time 

point we evaluate all the individuals that have an event to be triggered at that time.  

This affords us greater computational time as it avoids having to consider the entire 

model population, allowing us to carry out computations for a sub-population that 

exists at that time.   

 

This process is achieved by running a query on the system database to find all 

individuals that have an event starting at the current time point.  We disregard the 

other individuals as they are already active with another event that has yet to finish. 

Lookup Hall & 
School

Search for events 
applicable to 

hall, school plus 
population

Create specific 
event schedule 
for individual
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When the individual attends an event, the likelihood of their being infected (if not 

already) is calculated (using the disease model parameters and equations) with local 

weights for the activity, location and individual friendship network. 

 

At this point we also evaluate the time elapsed since the previous event, and update 

progression of infection (if relevant) with the updated time.  This may result in an 

infectious individual transitioning to the recovered state. 

 

Decision 
about 
event 
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their progression of infection

What personality type do 
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decision accordingly

Is the event a required one - such as 
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There are several means through which a new friendship may be formed, dependent 

on the activity going on and the individuals there.  This is broken down as follows into 

the following states: 

 

State 1- Weighted Chance 

At the commencement of each event the model searches for individuals who share (1) 

hall of residence, (2) course of study and (3) attendance at the event at that time. 

 

State 2 – Common acquaintance 

In this state, preference is given to forming friends from individuals that are friends of 

existing contacts (friend of a friend).  This is weighted by number of connections 

already a formed, a more connected individual has increased chance of forming these 

links. 

 

State 3 – Random chance 

This state encompasses the random mixing from non-related individuals at the event, 

for example, non-connected people present in the cafeteria during lunch.  This state is 

biased towards evening social events when there is a greater likelihood of friendship 

forming than would be likely whilst eating lunch. 

 

There is no requirement for a friendship link to be made at any stage, although the 

various weighting for the different states encourage formation for “popular” people 

who have the relevant personality and friendship parameter as opposed to those that 

do not.  This is in attempt to produce a realistic approximation of the real world. 

 

At each stage, the updated information is stored within the database.  Event 

attendance is logged against the event list per individual, friendships are logged in the 

database of friends (this simply represents a link between individual I and individual j 

and the time at which it occurred) as is infection state and time of infection change 

(infectious or recovered). 

 

Upon model completion the data can be exported into a range of formats (such as CSV 

or XML) for further analysis in Excel.  We choose to use Excel for data analysis given it 

has a range of features already in place, avoiding the need to create new ones 

programmatically.   

 

The data from the simulation run is maintained in the database and requires manually 

destroying to delete.  For the next simulation run the user is able to specify whether to 

re-use the previous population whilst changing model parameters (such as infection 
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rate) or to generate a new population and start again.  It is even possible to edit 

specific individuals within the population through the database based on search 

criteria if required. 

 

6.2 The Data 

As previously stated, data (and the subsequent collection thereof) is one of the most 

important issues to face when working on social networks.  Without enough data the 

resultant network will be too small to serve any practical purpose, or not have enough 

information for meaningful conclusions to be drawn from it. 

 

Data has been a reason behind the lack of many social-network based disease models 

compared to other mainstream modelling techniques, a as a social network model 

requires individual-level modelling which is known to have large data requirements.  

However, the advent of the internet and the subsequent rise of actual social-

networking orientated websites has somewhat reduced this issue.  Collecting useful 

data in sufficient quantities can now be just a case of time as opposed to a prolonged 

and expensive exercise. 

 

This was not to say that data collection for a social network based model is trivial.  

Indeed, a considerable amount of the time spent on data collection for the model was 

expended on the collection and subsequent analysis and refinement of the data for the 

model.  As well as the actual collection it was necessary to develop a refinement 

system in order to classify the data collected and judge whether it was appropriate for 

incorporation into the model.  By comparison, the effort expended to obtain the 

disease parameters was trivial.    

 

 

6.2.1 Primary Data Sources – Social Network Model 

A key part of the proposed model was the use of social networking to attempt to 

increase the accuracy of the model.  While it was possible to create our own social 



Paul Davie  Methodology 

107 

 

network (based on ad-hoc demographic values) it was preferable, and more realistic, to 

create a network based on real data.  This also demonstrated the viability of an actual 

use of our overall model allowing us to compare the simulated social networks to the 

real-life data that had been previously collected. 

 

Fortunately social-networking has become a recent “buzz-word” on the internet, and 

various social networking sites have been opened.  Some of the most popular and well-

known of these include MySpace, Xanga, Orkut and Facebook.  This is not an 

exhaustive list, but includes the most popular sites currently in use today. 

 

Facebook is one of the most frequently used social networking websites currently in 

operation  (http://www.facebook.com).  This site is unique in that, originally, its 

primary target audience were users studying at universities or colleges (Jones, 2005).  

While it may have expanded beyond this, its core membership remains this specific 

population of individuals.   

 

The usefulness of this is obvious; instead of resorting to methods such as surveys, 

which have been proven to often be inconclusive or provide false information for social 

networks (Wasserman, 1994; Gross, 2005), to obtain data for the various network 

parameters we were able to use a ready-made network to provide data for the model.  

The issue then becomes extracting the information contained within the network and 

incorporating it into a new network.  It was also necessary to calculate certain network 

characteristics from the data, such as average number of friends per individual and the 

rates at which individuals make new friends.  These parameters were vital in 

generating a new network for the model yet sufficiently based on the real world to 

provide a reasonable simulated world to work with.   

 

One concern worth noting is that some studies (Gross & Acquisti, 2005; 

Subrahmanyama et al, 2008) have shown that some profiles on social networking 

websites, such as Facebook, can have reliability issues.  As social networking both 

http://www.facebook.com/
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opens and closes barriers on privacy there is some fear over the level of exposure 

individuals are open to.  This has led to some people providing false information about 

themselves as a security measure.   

 

Facebook is an entirely web-based service which users must subscribe to.  Due to its 

focus on educational users, it is typically necessary to use an academic email address 

when subscribing, although this restriction has been relaxed as Facebook develops.  

This helps ensure that only users at the same academic establishment will be able to 

“see” each other (subject to privacy settings).  The emphasis of Facebook however 

remains on joining “networks” such as the university you are studying at; the majority 

of Facebook users remain in the 18-21 age group (Facebook) comprising the typical 

university population. 

 

Users can add as much, or as little, personal information as they wish.  By default, 

Facebooks privacy settings are somewhat lax and allow public access to a wealth of 

personal information (Jones, 2005; Boyd, 2003).  Typical information includes their 

name (a compulsory field), date of birth, gender, relationship status, course 

information and much more.  It is also possible to view the interests of individuals by 

either their expressed interests or by viewing which “groups” they have joined 

(Facebook, 2007).  A list of a user’s friends can also be viewed, although their profiles 

may not be accessible. 

 

It was this inherent openness of the network, as well as other factors, that made 

Facebook such a useful data source.  Subject to individual settings, any member within 

a specific network, such as the University of Southampton, can access the profiles of 

others without restriction.  As already stated, we were concerned simply with obtaining 

network and demographic parameters from Facebook, and not with identifying specific 

people.  Despite the readily accessible nature of data on the site, it was decided for 

ease of privacy and ethical reasons to anonymise the data automatically during the 

collection process. 
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Due to the nature of Facebook, users are only listed as friends with each other if both 

people agree that the other is a friend.  This binary relationship forms the basis of the 

site’s social network and was an important target of the data acquisition performed.  

Indeed, knowledge of the social network structure is a key value for the purposes of 

the model in order to create a suitably realistic simulation. 

 

Groups within Facebook typically focus on a specific interest or activity.  Facebook 

groups are similar in structure to a user profile in that it is possible to view all “friends” 

of a group and typically their interaction with the group.  In some cases, specific 

groups will have a specific demographic, e.g. all students studying mathematics, and 

access to the group restricted.  Typically such restrictions are limited to being “invited” 

to join the group by a friend; the corollary being that in order to join a group of 

mathematicians you must know a friend who is a mathematician or is at least linked in 

some way to another friend who is.  This was of obvious interest in that we are trying 

to collect data that will ultimately allow us to generate our own version of this social 

network within the confines of the model. 

 

 

6.2.2 Secondary Data Sources 

Although the social network is an important component of the model, it is not the only 

aspect that requires data collection.  Nor was the data from Facebook necessarily 

enough for the resulting model.  Although we were able to obtain a statistically 

relevant amount of data it was considered wise, given the importance of the social 

network within the model, to use additional sources of data to corroborate the 

parameters derived from the Facebook data. 

 

With the exception of the network specific parameters which are somewhat tied to 

Facebook itself, the other demographic parameters such as gender proportion within 
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the population or distribution of individuals per course were also obtained from the 

University of Southampton.   

 

Fortunately, upon comparing the “actual” parameters from the university data and the 

parameters collected from Facebook there were minimal differences between the 2 

datasets.  This also serves to partially validate the real-world validity of the data 

collected from Facebook; as mentioned earlier one concern with such data was how 

accurate it was.  We were at the mercy of the individual users on Facebook as to how 

accurate the data on their profiles was. 

 

As well as the social network, there is also the disease model that requires parameters, 

and the spatial model which will also require information.  In this case we can choose 

more specific parameters to collect data for depending on the model. 

 

 

6.3 The Disease Model 

For the disease model, the values for parameters such as infection rate, or time of 

infection, were taken from literature and medical sources.  Such parameters are 

typically known for the purpose of other models detailed in a variety of literature (see 

literature review), and obtained over a period of time involving actual observation and 

study of diseases and their progression.  Such activities were beyond the scope of this 

model which is theoretical, and thus the data for the parameters has come from 

journals and papers in related areas. 

 

It was hoped that some values, such as the number of flu vaccinations or the number 

of reported cases of flu, would come from the local health services.  Southampton 

University has a surgery on campus for the students, and it is compulsory for all new 

students to register with a local doctor.  It was hoped to obtain registration numbers 

as well from the University Health Service and, combined with vaccination numbers, 



Paul Davie  Methodology 

111 

 

make an educated assumption for the parameters relating to number of vaccinated 

individuals within the population.  Unfortunately for various reasons it proved 

impossible to acquire this information.  Instead data from the NHS targets and 

achieved rates for flu vaccination was used.  Fortunately one of the groups deemed “at 

risk” by the NHS includes students in halls of residence. 

 

Data for actual flu incidence was much harder to come by.  Unfortunately the majority 

of people do not actually “report” that they have flu (reporting is typically defined as 

being diagnosed by a doctor and thus officially being classed as having the flu) as the 

symptoms are rarely severe enough to warrant visiting a doctor.  Again, the NHS 

figures for flu were used, combined with an ad-hoc survey of 250 first-year students 

asking whether they had experienced “freshers flu”.  The accuracy of the survey is hard 

to establish as flu symptoms can mimic a number of other illnesses.  However for the 

purposes of this study that data, combined with NHS statistics, was deemed to be 

sufficient for use within the model.  The survey was repeated each year from 2007 – 

2009 with similar results being obtained each time for the question about flu. 

 

6.4 Location Data 

The data needed for the spatial aspect of the mode was primarily taken from the 

timetable system used by the university.  The University of Southampton has a Central 

Timetabling Unit (CTU) responsible for the allocation and provision of timetables.  

Originally the timetable data was intended to be for specific courses of study, e.g. 

Mathematics, Management and Computer Science.  However the timetabling system 

had a great many constraints built into it (such as equipment requirements, staff 

availability, interdisciplinary complexities) which resulted in significant difficulty in 

extracting the data in this manner. 

 

As an alternative approach it was therefore decided to simply take a “snapshot” of a 

small group of first-year students across a variety of schools and subjects.  Whilst this 
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would potentially not provide as much data as the information for specific programs 

due to specific student module choices and requirements, it would broadly provide the 

specifics required.  This was viewed as the optimal approach to acquiring the timetable 

data. 

 

To simplify matters somewhat, joint and combined honours courses were assumed to 

have the same timetable as a single honour course.  For example, students on the 

Mathematics with Computer Science programme will be assigned to the same modules 

as students studying Mathematics, albeit with some additional Computer Science 

modules also on their timetable.  This is what happens with real-life lecture 

assignment, so was a justifiable decision.  However, the actual number of students 

doing joint or combined honours for a program of study was generally of such a small 

percentage, typically no more than 5% of students, that we could reasonably justify 

excluding their extra modules from the model and grouping them with their parent 

degree course. 

 

The extracted data provided information on lecture locations and times, as well as the 

number of students attending the lecture, based upon course registration and actual 

capacity of the lecture theatre.  Unfortunately, except for specific lectures, there are no 

registers of attendance taken at a lecture so it was impossible to establish the exact 

number of students who did actually attend a lecture.  However, given the model takes 

place in the first few weeks of the Autumn term we can reasonably assume that 

attendance at the initial lectures of a course will be as close to 100% as it is ever likely 

to be.  It would be more difficult to justify such assumptions several months later.  

Whilst we cannot state definitively that ALL students were at lectures, we can allow the 

student “personality” attribute to influence attendance rates, with this parameter 

biased towards actual attendance initially. 

 

Whilst gathering the timetabling data, it was also learned that the university is 

attempting to review and improve the current timetabling system via the Change 
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Management for Timetabling project.  The goal of the project is to actually minimise 

the occasions that students need to move between campuses and even buildings.  

Whilst this project is on-going, it could greatly benefit any future work on the model by 

simplifying the movements of students around campus and thus making it easier to 

model the spatial movements of individuals within the simulation. 

 

The timetable data was only of use for the period of time after Freshers Week and only 

for daytime activities.  It did not include Freshers Week events or evening activities 

which would have a high chance of disease transmission taking place. 

 

Due to this, data was also obtained from the halls of residence JCRs about their 

scheduled daytime and evening events, plus the Students’ Union Freshers Week 

timetable.  The JCRs are actually based within the halls of residence and for the initial 

weeks of term they typically direct new students where to go during the day (for 

Freshers Week) and evening.  

 

The Students’ Union runs multiple activities during the daytime of Freshers Week such 

as the Bunfight and Freshers Fayre.  Although no exact data was available for these 

events, attendance was estimated to include over 90% of the first-year population, plus 

a high proportion of second and third year students.  The table below shows some of 

the scheduled events organised by the Students’ Union for Freshers Week.   

 

The Students’ Union estimated that, based on ticket sales and actual event attendance, 

at least 80% of first-year students attended events run by them or those run by the 

JCRs. 
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Event 

Start 

Hour Duration Day Week 

Move In 1 9 540 Sat 1 

Move In 2 9 540 Sun 1 

Welcome Party 1 21 300 Sat 1 

Welcome Party 2 21 300 Sun 1 

RAG Fest 9 300 Mon 2 

Oceana Club 21 300 Mon 2 

Survival Day 9 300 Tues 2 

Film 1 18 180 Tues 2 

Film 2 21 180 Tues 2 

Bunfight 9 360 Wed 2 

Poster Sales 9 480 Wed 2 

Film 3 19 180 Wed 2 

College Club Night 22 240 Wed 2 

Enivro 10 300 Thu 2 

Karaoke 20 360 Thu 2 

Outdoor Film 19 180 Thu 2 

Freshers Fayre 10 360 Fri 2 

Twisted 21 300 Fri 2 

Sports 9 360 Sat 2 

Sugar 21 300 Sat 2 

Film 4 17 180 Sun 2 

Film 5 20 180 Sun 2 

Breakfast 8 60  0 

Lunch 13 60  0 

Supper 19 60  0 

 0 0  0 

Supplementary data was also collected from the Students’ Union Café and various 

other catering outlets on the main campus.  Several weeks into term a survey was 
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carried out by the Students’ Union to establish what first-year students did during their 

initial weeks at university.  Although the survey only achieved 250 responses, the 

information did allow for informed estimates to be made about the use of the Café and 

other outlets on campus.  Combined with actual data from the till reports it was 

possible to extrapolate the busy periods (typically lunch time) and, in conjunction with 

observed attendances at the various daytime events, formulate a reasonable schedule 

of activities for an average student. 

 

 

6.5 Data Collection 

A substantial amount of data was acquired from existing surveys – such as the ones 

carried about by the Students’ Union to establish the effectiveness of various activities 

– for the “social” behaviour of students outside of lectures.  This data in turn defined 

physical locations of students, as well as approximate number of students present in 

each location. 

 

Demographic data about the student composition for the various programmes of study 

and subsequent overall number of first-year students was obtained from the university.  

The data was freely available from the university website as part of the compulsory 

university report to various HE institutions such as HEFCE and HESA.   

 

As stated earlier, timetabling information was obtained in conjunction with the 

university CTU department.  The actual “snapshot” taken was based upon the data 

obtained about the breakdowns for each courses.  This data defined the courses which 

were most suitable for using within the module.  For example, there was little point 

choosing medical courses as they were primarily based at multiple campuses and were 

inconsistent with the other courses.  Alternatively some courses had such low 

subscriptions that there was little purpose including them within the model.   
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After analysing the university demographic data it was decided that actual timetable 

data could only be acquired for approximately 3000 students, 60% of the first-year 

population.  The remaining population studied courses that were substantially different 

to the “core” programmes of studies or were insufficiently subscribed to that there was 

minimal benefit to collecting data on them.  We therefore used the data obtained to 

approximate distributions for the overall model population of 5000, reflecting the 

larger courses within the university.   

 

The social networking data was “mined” from the actual websites themselves.  It was 

decided to focus solely on the Facebook website as, given its original purpose was for 

educational institutions, it is far easier to identify which individuals are first years than 

other sites, such as MySpace.  There is also a greater likelihood that more first-year 

students will be members of the site, aimed as it is towards university students.   

 

It was entirely possible that individuals will be members of some of the other social 

networking sites.  As this was only an initial proof-of-concept this was not deemed a 

concern, and it was felt that sufficient students used Facebook for our purposes.  

Additionally, sites such as Myspace do not require or enforce the need to display “real” 

names, whereas Facebook does – although for data privacy reasons, this is not 

something we are actually concerned with.  Facebook does however display more 

relevant data by default.  A brief feasibility study was conducted with other sites, 

however it was decided that Facebook was more than adequate to use as a data source 

and that any data from other sites would require far more analysis to be of any user 

and was more likely to be incomplete overall. 

 

Our original intent was to simply extract information such as degree course, age, 

gender, number of friends, hall of residence and “social groups” wherever possible.  

Unfortunately there are very few compulsory bits of data on Facebook so the return 

rate on the data extracted was somewhat variable as the data provided depends solely 

on what each individual user wishes to display about themselves.  Whilst the 
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demographic information that could be obtained this way was of interest from a 

sociological perspective, it was also possible to obtain full population demographics 

from the university December snapshot analysis.     

 

In addition to extracting the demographic data of the individuals, we also needed to 

extract the social network information in order to develop the relevant parameters for 

the model; for this model we needed to know how a social network amongst first year 

students would develop and thus calculate a mean and standard deviation that we 

could apply ourselves to generate our own simulated network.  Such parameters do not 

typically exist in literature as they are specific to the generated network, hence our 

need to derive them ourselves.  

 

Of principal concern here was the parameter defining the size of the network, 

specifically how many friends an individual has and the type of friendship link.  

Obviously this parameter cannot be a set value otherwise everyone would have the 

same number of friends and therefore needed to ideally be part of a statistical 

distribution.   It was also necessary to have comparative data for the maximum and 

minimum friendship growths in order to assess if our simulated network was accurate 

compared to the real-world. 

 

To allow for this problem, two approaches were used.  The first was to simply note 

how many friends an individual had that could be confirmed as students at the 

university (and ideally were first-year students).  This allowed for the calculation of a 

mean and standard deviation for number of friends. 

 

However, such values were of limited use as they could only be obtained at the END of 

a time period and would therefore have minimal impact on a model with a lesser 

granularity than that.  Obtaining the number of friends at university before the student 

arrived would essentially be meaningless as there would be no justifiable way of 



Paul Davie  Methodology 

118 

 

ensuring that each individual would have any contact with another (a key point of the 

model).   

 

Therefore it was also necessary to collect data on the number of new friends “made” 

each day.  It was decided this would be collected over a 2 week period, to include both 

Freshers week and the first week of lectures.  Whilst it was likely other friends were 

made after this period, they would fall outside of the timeframe to be modelled.  This 

also had the advantage that we were able to reasonably assume that friends made in 

Week 1 would primarily be people within the same halls of residence whilst friends 

made within Week 2 would be on the same course of study.   

 

6.5.1 Social Data Collection 

In order to access Facebook, users must first login using a chosen username and 

password.  Once logged in, a user can view a “news feed” relaying information about 

any changes made by their friends on the site.  This information can only be accessed 

upon logging in, so as to limit the exposure of users’ personal information to the 

overall internet.  Originally search engines, such as Google, could not index users’ 

profiles; however this has recently changed to an opt-in system wherein users can 

choose to allow Google to index their pages and thus make themselves searchable via 

a standard internet search.  For example, searching for “John Doe” would now bring up 

any Facebook pages for users called John Doe, provided they have adjusted their 

privacy settings accordingly.   

 

Unfortunately no statistics were available on how many users have allowed themselves 

to be searched by various search engines.  However, the data returned by such 

searches appears to be limited to name and a few basic facts about the user; it does 

not include lists of friends and other such information.  Possibly this may change in the 

future which could increase the ease of extracting data about various social networks. 
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Facebook pages are accessed via web browsers, usually by clicking on a relevant hyper 

link within the page.  The structure of the web pages is somewhat simple: 

http://www.facebook.com/profile.php?id=USERID  This structure allows for the 

possibility of mechanical access as the only variable is the USERID parameter.  Further, 

the structure usually varies to become: 

http://SCHOOL.facebook.com/profile.php?id=USERID  Therefore by specifying an 

appropriate SCHOOL parameter we could be certain of only targeting users at a specific 

institution, in this case the University of Southampton.  The SCHOOL parameter for this 

was “soton”. 

 

Therefore in order to access profiles all we required was a suitable USERID.  Outside of 

Facebook, the USERID is meaningless and could therefore be used to anonymise the 

identity of the individuals.  For the purposes of this study, we had no interest in the 

identity of each individual and had no need to be able to locate someone in the “real” 

world.  In fact, after the data was collected we deliberately generated our own 

individual identifiers to ensure data anonymity.  The new IDs also integrated with the 

model structure without any additional work to merge the Facebook-assigned IDs. 

 

For the proposed model, we were studying the population of first-year students at the 

University of Southampton.  As stated above, Facebook contains groups about different 

interests.  One such group was “All new students at Southampton University in 2007”.  

While access to the group was not restricted to just these students, it was viewed as 

more than reasonable to assume that the majority of people within the group will be 

new first-year students (or if not, they were likely to be associated with them in some 

way, usually as a member of a JCR).  This specific group contained over 1500 

members.  There were several other such groups, for example groups dedicated to 

students staying within particular halls of residences.   

 

Unfortunately due to a hardwired restriction within Facebook it was only possible to 

view the first 500 members of these groups.  Fortunately there were enough other 

http://www.facebook.com/profile.php?id=USERID
http://school.facebook.com/profile.php?id=USERID
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such groups, so we were able to obtain a statistically significant sample overall of 1500 

unique individuals that were clearly defined as new first-year students.  We also 

obtained data on approximately 200 individuals who appeared to have strong links 

with the first-years, usually as members of the various hall JCRs.  These individuals 

were also included due to their likely high degree of contact with the first-year 

students, although we disregarded any of their friends outside the dataset as they were 

likely to be of limited importance within the particular social network.  If the model was 

expanded beyond a principally first-year student population then such data would be 

of more relevance.  However that was decided to be beyond the scope of the current 

model, although could be useful in the future as an extension of the model beyond 

first-year students 

 

The majority of the data came from groups advertised as for students starting in the 

current academic year (data was collected from 2007 - 2009, with the possibility of a 

2010 collection).  Supplementary data was collected from the specific halls of 

residence groups, however such groups tended to have a higher proportion of non 

first-year students, normally people who had lived in the hall the previous year and 

were interested in the new intake of students.   

 

The total first-year population was initially somewhat uncertain due to an unknown 

number of international and EU students and whether they would actually attend 

university, but it was believed to be in the range 5000 – 7000.  Therefore 1500 

students represented 30% of the population (at the lower end of the range), an 

acceptable percentage although not ideal.  The growth data (number of friends gained 

per day) of each individual’s social network did however represent a typical Normal 

distribution with extreme maximum and minimum values of growth which would 

correlate with an empirical expectation of real world behaviour.  Ellison (2007) noted a 

Normal distribution of friendships as discussed in the literature review. 

 



Paul Davie  Methodology 

121 

 

One might expect a different distribution to the one attributed given the variation over 

time.  However note that the data was collected during a period where students arrived 

at university, settled into halls (and meeting friends in halls), attending events (random 

mixing), then attending lectures (and meeting friends based on lectures).    As this was 

distributed over two weeks, the peak demonstrated in the middle of the Normal 

distribution correlates with the overlap of end of halls, and beginning of lectures.   

 

Note from the literature review that halls of residence is shown to have a significantly 

stronger influence on friendship formation than studying on the same course, although 

we have noted a lag in friendships being “formalized” on Facebook that is likely due to 

the sheer volume of activity occurring within the time frame studied.  In future this lag 

is likely to decrease with the increasing prevalence of mobile technology eliminating 

the restrictions on access to Facebook by users.  

 

Groups can be accessed mechanically in the same way as a user profile.  Typically the 

website addresses for groups are http://www.facebook.com/group.php?gid=GROUPID.  

Knowing this, it was also possible to access the first 500 people within the group and 

therefore extract their USERIDs.  While at this point there is no way of knowing whether 

all 500 users have a “visible” profile (accessible to anyone regardless of whether they 

are friends or not) or if they are a first year student, it is a reasonable starting point.  

 

Further, once we had the USERIDs and then discarded users that did not fit the relevant 

criteria we could also view the list of friends for each user (again up to a maximum of 

500) and subsequently expand the list of USERIDs collected.  This method was not 

actually utilised as it was possible to extract sufficient data from the group 

membership.  Although there was the potential of increasing the data collected in 

relation to the real-world size of the population the effort required was deemed 

unnecessary.  Additionally, it was likely that any data collected this way would require 

increased validation in order to ensure that only data for University of Southampton 

students was collected and that they were also first-year students.  

http://www.facebook.com/group.php?gid=GROUPID
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It should be noted that since the original data collection, Facebook has adjusted its 

internal structure somewhat.  Previously it was possible to navigate an actual network, 

such as the University of Southampton one, and collate people by network.  This is no 

longer possible as Facebook tries to open itself up further and extend beyond the 

educational institutions customer base.  This would make the above approach of 

studying each individual’s friends somewhat trickier as it would no longer be possible 

to view them by network, and instead we would need to view them individually and 

analyse their data.  This by no means renders this method obsolete; it simply needs to 

be adapted.  This illustrates a frequent problem with extracting data from websites; 

websites are frequently redesigned which often fundamentally alters their structure 

and that of the information embedded within the HTML code on a page. 

 

The method of obtaining the data in summary, was as follows: 

 

1. Target the “Current first-year students”  and related groups in Facebook 

2. Collect the USERIDs of the first 500 users within the groups 

3. Access the profiles of these 500 users to obtain information about them 

4. Analyse the profiles and exclude individuals not attending University of 

Southampton and who are not first-year students 

5. Repeat step 3 until an acceptable percentage of unique individuals’ profiles is 

achieved 

 

Step 4 was the most important step of the process as it filtered out unacceptable data 

points and chose which individuals to include or exclude from the dataset.  At this 

stage we had to decide to assume that our population was closed and that we were 

concerned only with “true” first-year students rather than students repeating a year.  

 

This closed population assumption is a key constraint upon the model itself.  However, 

given the time period we focus on (the start of university) it is a reasonable assumption 



Paul Davie  Methodology 

123 

 

to make.  At this point there will be no new students joining the population due to the 

process of university admissions having already been completed.  Whilst there is of 

course the potential of individuals leaving the population, our specific focus on the 

initial start of university limits the likelihood of this.  We assume individuals will not 

drop out until after the initial round of lectures is complete; it is generally reported 

that students drop out at the end of an academic year (Telegraph, 2013) rather than at 

the beginning. 

 

One possibility for future work would be to widen the population to include non-first 

year students who were on the same course as our population in order to increase 

random mixing and add an “external” body of individuals to our population. 

 

This was achieved through a variety of filters, such as checking ages and assuming 

that the majority of first year students will be 18, and by checking email addresses or 

graduation years.  The University of Southampton email address structure is such that 

students starting in the 2007-2008 academic year would have email addresses ending 

“07” thus making it a simple case of filtering to find them.     

 

As already stated, there are few compulsory fields of data that are shown on Facebook 

so it was unlikely there will be a common value shared by all individuals that can be 

used for validation purposes.  The list of filters was therefore developed to speed up 

the process.  In the cases where the filters failed to exclude or include a student, the 

profile was then manually reviewed (the data extraction process automatically ensured 

data anonymity for privacy reasons) to attempt to discern whether the individual 

should be included or not.  If a suitable baseline could not be established then the data 

was excluded. 

 

Unfortunately obtaining the data was not as simple as could be hoped.  Prior studies 

on data mining Facebook had relative ease in mining profiles for relevant information 

(Gross, 2005; Jones, 2005).  Advances in web technology and privacy standards have 
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changed this somewhat.  This forced us to obtain the data in raw HTML form and then 

analyse it afterwards.  This did not significantly increase the difficulty of mining the 

data, but did increase the level of analysis needed to be performed on the raw data 

itself and the subsequent time required to do so. 
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A sample Facebook page is shown above.  The different sections of the page are clearly 

visible, as are the different types of information contained within each section. 

 

Red = Demographic information about the individual, such as gender, birthday, 

graduation year. 
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Blue = Course & graduation year specific information used to determine whether the 

individual is a first-year student 

Purple = List of people the individual is friends with.  
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6.6 Data Filtering 

HTML (Hyper Text Mark-up Language) is the programming language used to design 

websites.  It is translated by web browsers into a visual ordered representation, 

resulting in the range of different website styles currently in existence.  When a web 

browser actually accesses a website, it downloads the HTML file, which is effectively a 

set of text, and interprets this.  Websites do not offer the data in any other form as 

there is no need.  This means when we extracted the data, the result was a HTML file 

for each user.  Unfortunately 99% of the file was actually superfluous to our needs and 

we therefore needed to filter the content in order to find relevant information. 

 

Here, as with the simplistic URL design of Facebook, we were somewhat aided by the 

structure of the Facebook webpages themselves, and the actual definition of HTML 

itself.  Information is contained by mark-up tags (part of HTML) which have meaning, 

i.e. they describe the data they contain.  For instance, a <title> tag contains a title for a 

page.  While we were not lucky enough to have tags such as <date-of-birth>, there 

were enough suitable tags contained within the files.   

 

For example, date of birth would typically be enclosed by a tag such as <div 

id=birthday>.  In order to extract the targeted data it was sufficient to identify the 

appropriate containing tags and then target them within the HTML file and thus extract 

the information they contain.  This was automated by a simple script which was then 

applied to the files.  Unfortunately HTML does not provide semantic information about 

values contained within the tags so a separate filter was required to analyse the data 

extracted. 

 

An alternative approach that was considered was to remove the HTML tags entirely, 

leaving the raw text.  Given the possible variation in HTML tags – due to different web 

browser rendering methods, or customisation of individual profiles – this would likely 

result in an entirely different dataset.  Instead of then searching for specific tags, 
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which could occur several times in the data, we merely needed to search for the raw 

text. For example, the raw text “Date of Birth” is unlikely to appear anywhere but next 

to an actual date of birth.  Knowing this, and that it would be succeeded by the actual 

information wanted, we were then be able to target our chosen fields this way.  

 

Ultimately a combination of the 2 methods described above was used as this was 

found to yield the best responses due to the wide variety of layouts, visible fields and 

general page structure.  We first used the initial approach of looking for the specific 

HTML tags within the file; where this approach was unsuccessful we applied the second 

approach of disregarding the actual HTML itself and looking at the actual data itself 

and searching for key phrases contained within it.  In some cases we used the first 

approach to narrow the target area of the file and then applied the second method to 

quickly filter out unnecessary data.   

 

Incredibly less than 10% of the data had to be manually examined in order to decide 

whether to discard or retain that specific individual.  Despite this, the process still took 

a considerable amount of time due to the number of filters applied.  On several 

occasions the filters themselves needed to be adjusted or appended to based on the 

previously obtained results to eliminate de-facto “false positive” results.  To ensure the 

most reliable set of the data was attained, the filtering process was run several times 

using a variety of different filters. 

 

The principal filters used were: 

- date of birth, looking at the year of birth that would result in the individual 

being 18 at the time of collection 

- graduation year, defined as 3 years from the current year.  4-year courses are 

excluded due to the uncertainty that we would be collecting data on the correct 

individuals, and the comparatively small percentage of students on such 

courses.  Such students would also share lectures with 3-year students for the 

first year too.  This field was defined as either Network or Education 
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- home, in this case defined as their hall of residence.  Values looked for here 

included the major university halls of residence, Glen Eyre, Montefiore, 

Chamberlain and Connaught, and variations thereof (e.g. Monte, Monte A) 

- Membership of previously defined Groups (e.g. First Years in 2007) 

 

The above list is not exhaustive; as mentioned for the halls of residence there were 

multiple permutations needed for the filters (except date of birth which conformed to a 

consistent standard) in order to extract the data. 

 

In addition to extracting the information about each individual, it was also necessary to 

calculate how many new friends were “made” each day, as detailed previously.  

Fortunately Facebook displays new friendship links when both parties confirm 

friendship, and this is displayed in a consistent manner.  It was therefore a trivial 

modification to adapt the filters to look for this information and subsequently calculate 

the number of new friendship links formed on a daily basis.  This data was then 

applied to a probability distribution to be used in the final model in order to 

realistically simulate the number of friends “made” per day.  As one would expect, 

typically individuals with a large number of friends had a higher number of friends –

per-day than individuals with a lower number.  This discovery has the additional 

benefit of indirectly validating the behaviour scale (described in a later section) and the 

empirical belief that it is possible to have “very friendly” and “reserved” individuals. 
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Individual Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 

1 1 2  4 4 2  4 2 

2 2 3 2 12 3 3 5 2 3 

3 2 2 2 1 1 1 3 1 1 

4 8 3 1 2  2  4  

5 19 12 3 4 1 1 3 1 4 

6  4 7 9 4 5  9 4 

7 2 4 1 2 3 1 1   

8 1 1 2     1 1 

9 1 5 4 1 6  2   

10  18 5   9 3 9 4 

 

The above table shows a sample of the number of friends made over a 9-day period by 

10 different individuals.  In the dataset above, the average number of new friends 

made within the chosen period is 26.5, with an average of 3.64 a day.  The maximum 

and minimum number of new friends per day ranges from 19 to 1.  This sample 

dataset shown is consistent with the actual values obtained from the overall population 

sample.   

 

Encouragingly the parameters are also encouraging with what would be expected from 

an analysis of the likely number of individuals who would be encountered at the 

different points within the week.  The halls of residences have a variety of flat/corridor 

sizes, ranging from corridors of 20 to flats of 6.  The data retrieved shows a 

correlation with some of the potential sets of contacts that each individual could have, 

although such sets become progressively trickier to estimate as time progresses.   

 

6.7 Conducting the data collection 
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The initial data mining was carried out using a web server running a PHP script.  This is 

one of the easiest ways as the server always had inherent access to the internet, thus 

removing the issue of handling network and internet protocols from our program.  

Also, due to the nature of a server, the programme could be left running unattended 

for a significant period of time without the concern of constantly monitoring it or 

ensuring no other programmes interfered with its running.   

 

The scripting language PHP was chosen for its simplicity and ease of use.  Other 

alternative languages include ASP or Perl (such as used in the previously referenced 

Facebook data-mining attempt) were initially considered.  Ultimately they were not 

used for a variety of reasons.  An Apache webserver, which is open-source and free to 

use, was used instead of the Microsoft designed IIS software.  ASP can only be used 

with Microsoft IIS software which must be paid for.  Although ASP has a number of 

features not found in PHP, none of them were needed for the purpose of this exercise.  

Due to the cost of implementing an ASP solution, this method was disregarded. 

 

Similarly with Perl scripts; Perl is a very powerful language however it has fallen into 

disuse as many modern scripting languages offer the same power and are easier to 

utilise. Furthermore, PHP includes a number of useful features for directly accessing a 

website and also contains a built-in function for removing HTML tags.  As removing 

HTML tags was part of the 2
nd

 filtering process used, this was an invaluable feature and 

avoided the necessity of designing a function duplicating those features. 

 

There are several other mainstream programming languages which we could have 

chosen from.  C (created in 1968), C++ (created in 1979), C# (created in 2000) and 

Java (created in 1995) are some of the current, and past, favourites (Deitel & Deitel, 

2002; Deitel & Deitel, 2004; C#, 2007; Java, 2007; Lebenez, 2007).  However, newer 

languages such as Python and Ruby are gaining in popularity, despite being 

interpreted languages instead of compiled ones like C (Martin, 2007). 
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In addition to these programming languages are specific mathematical packages such 

as Matlab (although Matlab is Java based (Matlab, 2007)) or Simul8 or Legion.  There 

are also “old favourites” such as Visual Basic for Applications (VBA, 2007) or Perl. 

 

For ease of a web-based data collection, the PHP language proved adequate and 

effective to use. 

 

Accessing Facebook and extracting the HTML pages was not simply a case of making a 

connection to the website and simply downloading the desired content.  Many current 

websites use a script-database engine to generate content “on the fly”.  This reduces 

the workload on designers who merely need create one template and then allow a 

database to populate it with specific data based on a parameter set.  For example, the 

profile page of a user has a default layout which is then populated with information, 

such as a user’s photo or name, which is extracted from a database and then applied 

to the layout template. 

 

Therefore we essentially had to duplicate the effect of a web browser, in essence 

tricking the website into generating the desired pages which we could then save.  This 

is no different to where a human user would view a page and then save it.  Indeed, this 

was one possible option for extracting the data although due to the already discussed 

privacy and time issues, not a particularly feasible option and was therefore not 

implemented. 

 

Once the PHP script was targeted at the chosen site (Facebook), it was then able to 

“navigate” to the page representing the target group (first year students in 2007 for 

example).  As we already knew the key structure of the page, we were able to instruct 

the program to access the list of people within that group and thus download the first 

500. 
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Having extracted pages representing the first 500 individuals within the target group, 

we then needed the program to analyse these pages and extract, where possible, the 

USERIDs of each individual.  Once this was done, the program was then able to extract 

the profiles for each individual where possible, subject to the individual privacy 

restrictions on each profile. 

 

The analysis of each page (in actuality each page became one file on the server) was 

the most programmatically challenging and intensive part of this process.  As 

described earlier, there were several ways of analysing the page and these constantly 

needed revising.  Until each page was analysed – either to extract the unique identifier 

or to actually obtain the desired data – we were unable to progress to the next stage.  

This was particularly important during the initial stage of extracting the USERIDs as 

without them it was impossible to get the actual per-user data required.  

 

The entire process took a great deal of time, although a proportion of this was due to 

the time taken for the actual web page navigation and generation; it was necessary for 

the target server to generate and serve each page for each request made and then 

transmit it over the internet to our server.  There was also the issue of “lag” in the 

transmission of data from server to server.  Unfortunately this is an intrinsic part of 

using the internet and subject to a variety of conditions which cannot easily be 

modified.  Using the server did however allow the program to run continuously so as to 

mitigate this issue somewhat.    

 

Due to the complexity of the program, it is perhaps best regarded as a “bot”, an 

automated piece of code that can carry out repeated tasks.  In this case the bot is 

capable of logging in to Facebook, navigating the site to specific pages, accessing the 

desired information on the page, saving it, analysing that information and then using 

the results repeat this procedure in order to gather further information. 
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The bot was theoretically capable of accessing multiple profiles concurrently and 

handling the subsequent data returns.  However such an approach would likely have 

had a detrimental effect on the target site – essentially it would appear as if several 

thousand users were accessing the site instantaneously – and was therefore not used.  

The bot therefore staggered its extraction over several days in order to keep server 

load low.  If data was required urgently then this method could easily have been 

adjusted so as to increase the rate-of-return, although with the corresponding risk of 

overloading both our and the target servers. 

 

Since conducting this work, similar approaches have been utilized successfully by 

Catanese et al (2010, 2011, 2012).   These studies focused on an overall extraction of 

Facebook data rather than a targeted population as discussed in the work here. 

 

The Catanese approach differs from the one described here in that it was a “brute 

force” approach, downloading all the data it could find and performing analysis 

separately with a focus on studying general Facebook network characteristics rather 

than the development of individual networks over time. 

 

The bot utilized for this study was specifically seeking first year students at the 

University of Southampton and therefore had to perform “on the go” analysis of users 

to determine if they should be kept or discarded rather than accepting every user 

encountered. 

 

The process had two stages, which occurred in conjunction with each other.  The first 

stage was constant monitoring of the Facebook “source” (in this case the Official 

Freshers’ groups) to track new users joining the group.  Growth of the group 

fluctuated significantly over time, with peak growth occurring around A-Level results 

and a secondary peak occurring after the close of clearing.  After these initial peaks 

growth oscillated between 10 and 50 members a day prior to the start of the university 

term.   
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After the system had obtained the list of members of the group it then studied each 

member individually in order to determine if they fit the target profile of a new first 

year student at the University of Southampton (note the group included staff, second 

and third year students so we could not assume everyone in the group was suitable).  

Figure 7 demonstrates the process. 

 

Figure 7 Process of extracting target profiles 

 

Due to each Facebook user being assigned a unique identifier by Facebook we were 

able to perform incremental updates to the group membership after obtaining the 

initial membership data, reducing the task of constantly sorting through every member 

of the group for no purpose. 

 

Study of the group was conducted twice a day to capture growth before and after the 

lunch time period, which coincided with the scheduling of announcements about 

Freshers’ activities being made through the group. 

 

Having obtained the ongoing membership list of the group to utilize as a starting 

point, the system then monitored each accepted user in order to follow their addition 

of friends.  This monitoring was conducted once a day at midnight so as to reduce 

computational demands on the target system, and as it provided a natural cut-off 

between time points to allow for analysis on a daily level. 
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After an initial data capture, in the same manner as the monitoring of the group, the 

system only needed to conduct incremental updates of each individual friendship list, 

as shown in Fig 8.  Note that in this case to improve efficiency we assumed that lists 

could only remain the same or grew; if the number of friends decreased the entire list 

was not re-analysed to determine the negative change.  In practice very few people 

“unfriend” on Facebook, particularly after having just created a friendship link, so this 

assumption is unlikely to have an impact on the data obtained.  Indeed, subsequent 

analysis indicated that numbers of individual friends did not decrease at all. 

 

Figure 8 Process of extracting friend list 

 

In addition to monitoring the growth of friends per individual, the system also noted 

who the friends were and, if not already present on the overall “master list,” would then 

proceed to mark then to be processed at the next overall friend update (in line with the 

monitoring of the group).  This provide a secondary source of data for finding 

individuals who were not members of the online Facebook group but still matched our 

target profile. 

 

The overall process is summed up in Figure 9. 
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Figure 9 Overall process of accessing Facebook 
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6.8 Storing the Data 

Due to the likely initial size of the data, several options were originally considered to 

store it.  It is important to note that although the data used in the model will eventually 

be based upon parameters obtained from the collected data, the structure of the data 

created for the model will essentially be the same.  Whilst this could have been 

considered later in the modelling process, it was decided that it would be of greater 

benefit to devise a data structure during the data collection stage rather than create 

one later.  This also allowed for some testing of the data structure with actual real-

world data. 

 

Data structure is typically defined by both the size and purpose of the dataset.  

Methods of storing data have changed dramatically in recent years; it is no longer to 

store everything in a text file and, indeed, that is very efficient and programmatically 

inefficient. 

 

Given both the size of the collected data (1500) and the size to be used in the model 

(3000) a storage method that would allow the data to be read quickly and efficiently 

was needed.  This resulted in two possibilities: use of an XML file, or storage within an 

actual database structure. 

 

Use of an XML file was strongly considered, particularly given the XML-friendly style of 

the data.  As XML is loosely based on the HTML standard, it would have been simple to 

translate the data into an XML format, e.g. <gender>Male</gender>.  However, this 

would still result in the data being read from a file during the modelling run-time, a 

method which is considered to be programmatically expensive and unwise. 

 

This therefore led to the concept of storing the data within a MySQL database.  The 

principal advantage of this was that reading information from a database is several 

orders of magnitude faster than reading from a file; typically a database will attempt to 
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keep as much data as possible within the computer memory resulting in rapid access 

times.  As a secondary advantage we could easily define and adapt the database 

structure without the need to manually update our data; the database management 

scheme would do this itself.  

 

MySQL itself is a free database structure that is popular amongst web developers for its 

ease of integration with Linux, Apache webservers and the PHP programming language 

(the so-called LAMP stack).  It is a resilient relational database structure supporting 

useful features such as primary and secondary keys, indexing, caching and stored 

procedures.  It is also able to be clustered easily if required to improve performance. 

 

Additionally, use of a Relational Database structure would allow for implicit links 

between database tables (sets of data) and one-to-many or many-to-many 

relationships.  This has obvious advantages when dealing with a network as the 

structures are in some cases identical.  Furthermore, actual data operations can be 

performed on the database itself, such as running queries to discover the number of 

male individuals within the population.  This eliminates the need to manually calculate 

such parameters and, when the model is actually run, eliminate the need to constantly 

store parameters with the model current status.  Such values could simply be 

calculated by the database itself.  

 

It should also be considered that should the model ever be scaled for large 

populations, such as the population of a country, the computational demands would 

increase significantly.  Databases are already optimised for parallel processing and 

load-balancing.  Use of a database to store the data should therefore offer significant 

speed and computational advantages in the future. 

 

Database structure also allows us to express the entities explicitly.  Indeed, a database 

table is often used to represent a specific entity, with the table fields representing the 

attributes of the entity.  Additionally we can also link two entities together, such as a 
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friendship link, through the use of primary and secondary keys, where the keys 

represent the unique identifier for each individual.   

 

We were therefore able to create a Student table with attributes such as gender, 

course, age and hall of residence.  It was then a simple case of importing the data into 

the database; again our choice of using a PHP script for the original data collection and 

filtration proved useful as PHP scripts are frequently used to interface with databases.  

It took minimal work to adapt the script to store the information within the database, 

and then access as required. 

 



Paul Davie  Methodology 

141 

 

6.9 Parameters for the model from the data 

Following the data collection and subsequent filtering and any secondary collection it 

was possible to finally choose and confirm the parameters and fields to be used for the 

model for the various different attributes. 

 

Person 

- Age (included for any future use with a larger population.  Set at 18 for the 

model) 

- Gender (based on the demographic data from the university) 

- Hall of residence (based on the number of places per hall, data provided by the 

University) 

- Course of study (based on the number of students subscribed to a “parent” 

course for the given calendar year, data provided by the University) 

 

Parent course is defined as the principal programme of study that was deemed 

representative for courses that had joint and combined honours programmes.  For 

example, Maths is the parent course for Maths with Computer Science, Maths and 

German and other such courses. 

 

The course attribute is then linked to the Location entity (described below) in 

conjunction with the Event Schedule (ES).  The ES is, as already described, based upon 

the various academic and social timetables obtained for the initial weeks at university, 

and in conjunction with the behaviour parameter of a Person, the constraints of the 

Location (such as capacity) and current model “time” within the ES defines the 

individual schedule of each person within the model. 

 

- Number of friends (this is not a parameter per se, as it was felt unwise to 

explicitly limit how many friends an individual could have.  It simply refers to 
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the current number of friends for an individual, and is calculated by the 

database) 

- Behaviour 

 

Behaviour proved complex to quantify.  Originally it was proposed to define limited 

entity types, such as “lazy” or “hard-working”.  However this was somewhat proscriptive 

and purely subjective, in addition to being limited to how many types could be 

reasonably included.  It was therefore decided to avoid fixing an individual to a specific 

type and to adjust this parameter to be a range, initially 1-10, representing different 

behaviour patterns.  1 represents someone who effectively would stay in bed 

continuously (this was included for the case of an infected individual who was very ill 

and whose initial behaviour was low) and 10 being the opposite of this.  Individuals 

would be assigned an initial behaviour which would then vary with factors such as 

progression of illness and other personal factors, such as number of lectures to attend.  

Such additional factors and parameters were obtained from the timetabling 

information and the disease specific parameters. 

 

The various attributes were assigned to each individual based upon the parameters 

derived from the data collected.  The actual generation of each individual is 

comparatively simple to accomplish.  Allocation to hall is defined by the max capacity 

of a specific hall; the model picks a random hall that is not yet full and assigns the 

student to that location.  A similar approach applies to course, based on the course 

information obtained although it is applied by percentage not exact number to reflect 

the varying numbers per course.  It has been well established that university fills halls 

to 100% capacity, so there was no justifiable reason not to create then population 

within this framework. 

 

Network/Friend 

- Individual A (the identifier for the first individual) 

- Individual B (the identifier for the second individual) 
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- Link type (the type of friendship link) 

 

Although a link needs to be binary (one-to-one) is it not necessary to have a value 

representing A is friends with B and another for B is friends with A.  As we have already 

stated, if A is a friend of B, then the corollary is that B is automatically a friend of A.  

The use of the database primary and secondary key accommodates this structure 

automatically allowing the model to easily find such relationships. 

 

Friend relations are not initially generated upon creation of the sample population as 

they are created during the actual run of the model.  Again, as with the other 

generated data values, the relations between individuals were based upon the 

statistical distribution obtained from the data.  However, an element of bias was 

introduced into this in order to better align the model with the real world.  As we have 

established an allowable link between location and number of friends, we therefore 

bias initial friendships towards individuals in the same hall (location) and subsequently 

course of study.  This actually occurred implicitly via the individual event schedules as 

lectures did not occur until the second week of the model, resulting lecture-based 

friendships forming after hall-based ones.   

 

Random friendships are also included for completeness, but the model gives 

preference towards individuals who share physical proximity, as they would be of 

greater probability to have a significant impact on the model after infection begins.  In 

a similar fashion, random mixing is factored in as a weighting for high-attendance 

events, such as evening activities.  

 

To analyse and view the social networks upon completion, the software package Gephi 

was utilised.  This software was able to accept a list of nodes (individuals), plus the 

friendship links (edges in the network) between individuals and then display this as a 

graph.  Gephi was also able to calculate values such as the degree of an individual 

(how many friends they had) and perform filtering on the network to visually identify 
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highly-connected individuals through colour scales grading the degree of each 

individual.    

 

Location 

- Name (purely for ease of reference) 

- Capacity (from data, defines the maximum number of people that can “occupy” 

the location) 

- Utilised capacity (it is hoped this will be allowed to vary with day of the week 

based on the attendance data collected for events) 

- Child (to handle the case when one location is a subset of another, e.g. a bar in 

a hall of residence, parent-child relationship) 

- Current capacity (generated per event) 

- Type (hall of residence, café, nightclub etc) 

- Travel time (this is an array of times based on location types, so the value at 

array position 0 corresponds to the time to travel from a type 0 location to the 

current location etc) 

 

There remains the possibility of including two location parameters, x and y, to assign 

locations coordinates based upon the university campus map, and a map of 

Southampton.  However for the purpose of the current model this has been 

disregarded.  Instead we have allowed for a travel time between locations based upon 

the individuals’ last location.  For example, travel between areas on campus is defined 

as a 5 minute event, whereas travel between a hall of residence and campus is defined 

as a 15 minute event.   

 

As the model was primarily discrete event driven, where each event has a different 

time, we were able to include this by having travel time as an event.  In theory there 

should have been limitations such as the start time of a lecture (on the hour), but these 

are handled implicitly so long as the travel times are not excessive.  For the sake of the 
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model, such values are irrelevant as we merely considered the actual event and not the 

exact start or finish time of it. 

 

As stated earlier, we populated each individual within the model with a “behaviour” 

parameter.  This parameter was also used after the initial week of lectures to 

determine the probability of an individual attending a lecture.  This was achieved 

simply by the generation of a random number and then comparing it to the behaviour 

parameter for the current individual which represents in this case the probability of 

whether the individual will attend the specific lecture or not.  For sake of realism this 

feature could be adjusted to apply only to the start of day rather than a specific event 

during the day.  However this was not implemented for the model as it was believed to 

offer little tangible benefit.  
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7. Results 

In this section we display, analyse and discuss the results of the model.  We consider 

various scenarios, including initial validation and verification scenarios of the model 

itself before focussing on scenarios of greater interest from an epidemiological 

viewpoint, as well as assessing several potential scenario options that the model gives 

us the means to investigate. 

 

7.1 Scenarios 

Disease models are typically intended to focus on certain scenarios of interest to the 

model builder.  However a standard cohort-based model is inherently limited on the 

scenarios it can be used to consider due to the limited data initially input into the 

model.  For example, it may be possible to consider the effects of the model on all 

men but it would not be possible to consider the effects on all men who live in a 

specific location, have a specific job and partake in specific activities.  A general cohort 

model simply does not have the detail definition to formulate such scenarios. 

 

As such the models are usually used for more generalised questions that need to be 

answered.  It is worth noting that frequently this is sufficient, as such a question could 

well be “how fast will the disease spread?” or “what effect will quarantine have?”  Such 

questions, and there answers, are indeed important but are also limited. 

 

By using an individual-level modelling approach we vastly increase the available 

granularity options for the model.  If we know, for example, the hall of residence of an 

individual, their gender, their approximate general movements on a given day and 

some specific points of contact with other individuals then we are able to hypothesise 

and thus attempt to answer a far more specific question. 

 

A simple example of this would be the question of whether to quarantine a specific hall 

of residence or not; or perhaps whether a specific lecture theatre should be closed due 
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to the high likelihood of disease transmission taking place in that location.  Or even 

potentially whether specific individuals should be isolated and the impact that this has 

on the outbreak. 

 

This last scenario is perhaps the most complex possibility to consider because to 

identify a specific individual would be highly reliant on the quality and quantity of data 

available for the model.  It is also, unfortunately, the least practically achievable in 

reality at present. 

 

The model was initially run with baseline and extreme scenarios to test the model 

output and assess if it behaved as one would expect for such scenarios.  These 

scenarios acted as validation and verification for the model before we proceeded to run 

specific scenarios. 

 

These basic scenarios included significantly high and low rates of infection for the 

Freshers’ flu, high and low numbers for the proportion of the population that was 

immunised and a variation in the friend growth parameter. 

 

The extreme scenarios used infection rates of 0, 0.03 (the actual parameter to use 

during simulation) and 0.1, which should correspondingly cause minimal or no 

infections compared to instant population-wide infection (excluding vaccinated 

individuals).   

  

Additional scenarios were also run where 0%, 20%, 50% and 100% of the population 

were vaccinated in order to assess that the model correctly handled vaccinations.  The 

default infection rate of 0.03 was used for this scenario.   

 

In order to validate the social network aspect of the model, and potentially assess the 

impact of that on the infection spread, scenarios where friendship growth parameter 
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means and standard deviation were 0 (no friends at all), the actual calculated 

parameter that was to be used during the actual scenarios, N(7, 3.2), to establish a 

baseline comparison, and a flat mean of 50 were run.  It should be noted then when 

gathering data on friendship growth, the highest single observed friendship growth 

was 45, so a rate of 50 should be deemed a suitably “large” value for validation 

purposes. 

 

There were several scenarios that had been identified to be used as a basis of the 

model.  These were: 

 The default scenario, a normal outbreak of Freshers’ Flu 

without intervention 

 Closing the campus in the event of an outbreak (the 

prescribed university strategy for a large-scale infection) 

 Targeting specific groups of individuals with 

vaccination/removal from the general population 

o Living in specific halls (Montefiore, the largest hall) 

o Studying a specific course (Maths, the largest course 

in our population) 

o Highly connected individuals – those with lots of 

friends 

 

For all these scenarios we assumed that the population, and locations, are closed 

communities.  The initial number of infected individuals (index cases) was defined as 

100, representing 2% of the population and randomly distributed across the population 

upon model initialisation.   Where vaccinations were utilised, this was assumed to have 

occurred prior to the time period modelled, and that no vaccinations were carried out 

during the run of the model. 
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We have not considered variations in the reproductive number, R0, for these results as 

we are primarily interested in the incidence (number of new cases) of infection, rather 

than the question of will the infection spread.  As we use constant values for infection 

and recovery rates, R0 will remain constant throughout the simulation and is therefore 

of little interest. 

 

Within each scenario there were multiple other permutations that could be run and 

studied.   A simple example of this is to consider the gender of individuals within the 

scenario.  This could, for example, allow us to see if women are particularly vulnerable 

to transmission in an evening social event compared to having a meal in the café.  

However in practice gender has been shown to have little impact on the infectiousness 

of flu so this scenario was not ultimately considered.  We were also limited by data so 

could not run more interesting scenario’s such as considering if all international 

students were infected – mimicking the 2003 SARS outbreak – as we had no way of 

telling if such individuals grouped together in halls.  Whilst we could “force” this, there 

would be little difference to looking at an overall hall population. 

 

One standard scenario that we did not consider is age.  As the population was closed, 

generally carries out fixed tasks and will predominantly be comprised of individuals 

aged 18-19 this parameter was unlikely to offer any meaningful results. 

 

It was important to recognise both the potential of the model and the time/resource 

constraints that will be operated under.  Although using an individual-level modelling 

approach provided the potential for a far greater range of scenarios to run than a 

standard cohort-level model care had to be taken to focus on scenarios that would 

have the most beneficial results.  Several scenarios have been highlighted as potential 

candidates for future work.  This does not mean that they are unimportant at present, 

merely that other scenarios are expected to produce more immediate results.  In a real-

world situation answers would be needed in a short timeframe and whilst some 
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scenarios are intellectually intriguing they must be relegated to future work for the 

time being.   

 

The model itself is also still somewhat new, hence this study.  It was therefore prudent, 

if unexciting, to mirror existing scenarios initially in order to judge whether the model 

produces results that can reasonably be seen to conform to the outputs of existing 

models.   

 

 

7.2 Replications & sensitivity 

Unless otherwise stated, 10 replications were run for each scenario.  There exist few 

guidelines on how many replications one should run for a simulation (Hoad et al, 2009, 

Hollocks 2011) and increasingly the decision has become arbitrary dependent on the 

simulation and desired outcome (Law, 2007).  A general rule-of-thumb (Law & 

McComas, 1990) is to conduct at least 3 to 5 observations.  Whilst 10 replications may 

have appeared as a low value, given the run-time of the model and that we were only 

interested in the incidence parameter it was sufficient, if the values converged to an 

acceptable level. 

 

As this was a new model, utilising the new concept of social networking combined with 

an infection model, we focussed primarily on the incidence within the population as 

our primary model output parameter.  Our chosen measure of the validity of this value 

this was to calculate 95% confidence intervals based on the output of the various 

replications.  We used the standard confidence interval calculation (Robinson, 1994, 

Hogg & Tanis, 1997, Law 2007) requiring the calculation of the standard deviation of 

the results to accomplish this.  If the results converged to an acceptable degree, which 

we defined for these purposes as within 5%, then we did not perform additional 

replications.   
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We further compared the results graphically in order to visually assess whether there 

was significant variation in the outcome that would require additional replications to 

be conducted (Robinson, 1994). 

 

Additionally the incidence values were compared to equivalent SIR models of season flu 

and population size to assess if the numbers were comparable (Nichol et al, 2010). 

 

The work was conducted in Microsoft Excel, using the built in formulae and functions 

to calculate averages, standard deviation and other results as required.  The software 

package Gephi was used to plot several network graphs and conduct analysis on the 

social networks themselves (Bastian, 2009, Badge, 2012).  For this, a “typical” network 

was chosen from the population after considering the average number of friends that 

occurred within the model.  This ensured that our chosen network was representative 

of the majority of the model population. 

 

7.3 Input Data 

Aside from the variation used in the running of the scenarios described, the remainder 

of the data was unchanged for each iteration of the model.  Constants throughout 

included the framework for courses, the data on locations and the population 

demographics (excluding infection specific parameters such as vaccination rates). 

 

 

 

 

Course Data 

Course Capacity Lectures Seminars 

Accounting 235 9 5 

Aero/Astro 

Engineering 195 15 3 
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Chemistry 289 16 6 

Civil Engineering 150 17 5 

Computer Science 257 15 3 

Economics 219 9 3 

Electrical 

Engineering 278 20 2 

Environmental 

Science 182 14 3 

Geography 465 12 2 

IT 88 15 3 

Law 457 10 4 

Management 155 7 6 

Maths 553 13 4 

Mechanical 

Engineering 299 18 5 

Physics 275 13 6 

Politics 160 9 3 

Psychology 382 8 7 

Ship Science 86 18 5 

Table 1 - Course Data 

As mentioned previously, the values for courses were scaled to match the number of 

students in halls.  As we focussed on the primary Highfield campus of the university 

we disregarded courses not based on the campus and thus scaled the major courses 

that are based there appropriately.  Individuals within the population were randomly 

assigned to courses, as long as there was space on the course.  Whilst this may not 

utilise specific demographics (such as male/female split) for the courses, and these 

were available, it was deemed unnecessary for the modelling of flu, the infectiousness 

of which is not significantly dependent on gender [ref]. 
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7.3.1 Event Data 

The model created a schedule of events for each degree course based on the number 

of lectures and seminars each degree is allowed to have.  The model then randomly 

assigned events to days and start times (within the time period of 09:00 – 17:00) in 

order to create a timetable.  An individual’s timetable within the model will then be 

based upon that schedule, but with social events and meal events incorporated.  

Attendance at the events was defined by the type of the event, and the personality type 

of the individual, in conjunction with the capacity of the events themselves.   

Location Capacity 

Archers - Gately 160 

Archers - Romero 254 

Archers - St 

Margarets 96 

Bencraft Hall 228 

Chamberlain Hall 167 

Connaught Hall 289 

Glen - Beechmount 

House 45 

Glen - Brunei House 128 

Glen - Chancellors 

Court 605 

Glen - J-Block 97 

Glen - New Terrace 180 

Glen - Old Terrace 100 

Glen - Richard 

Newitt 146 
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Hartley Grove 400 

Highfield Hall 180 

Monte 1 293 

Monte 2 416 

Monte 3 595 

Monte 4 158 

South Hill 190 

Table 2 - Location data 

For the sake of accuracy and due to the variation in numbers per blocks of halls we did 

not group the halls by complex, but left them as blocks.  The data was obtained from 

the university accommodation office and therefore reflects actual hall capacities.     

 

Students were assigned randomly to halls until each hall was full; whilst the university 

may use a more specific method on how students are assigned to halls (for example 

clustering international students) this information was unable to be obtained and 

therefore random assignment was used.  This allows for a potential future expansion 

of the model where the demographics of the population are given increased 

importance within the model and the user may choose to cluster students in halls, or 

social events, based on their country of origin. 

 

Demographics 

Male 45.94% 

Female 54.06% 

Table 3 - Gender demographics 

UK 84.98% 

EU 6.12% 

Overseas 8.90% 

Table 4 - Student country demographics 
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The above demographics were obtained from the university December snapshot of all 

first year students, and were used to generate the demographics of the model 

population. 

 

 

Events 

Event Attended 

% of 

population 

Your Freshers' Ball 2200 42.11% 

Wonderland  1777 34.01% 

Twisted  1341 25.67% 

Glamourpuss  703 13.45% 

Your Freshers 

Welcome Party  1643 31.44% 

Your Freshers 

Welcome Party  1706 32.65% 

 AVERAGE 29.89% 

Table 5 - Evening events 

  



Paul Davie  Results 

157 

 

 

Events Attended Population 

% of 

population 

Glen Eyre  451 1301 34.67% 

Highfield  88 180 48.89% 

Monte  350 1462 23.94% 

Connaught  188 289 65.05% 

Chamberlain  307 757 40.55% 

Bencraft JCR Pack  76 228 33.33% 

  AVERAGE 41.07% 

Table 6 - JCR Events 

One of the weakest parameters in the model was the “personality” type, as there was 

little quantifiable data to utilise as basis for this parameter.  Data on attendance at the 

main night time events during the Freshers’ period was used to extrapolate the 

proportion of the population that attended.  This was combined with the average 

numbers throughout that period of footfall within the communal evening social areas 

in halls.  

 

Combined, these values led to an average value of 35.48% that was ascribed to the 

“outgoing” personality type of the sample population which was then used by the 

model when generating the model population.    
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ID 1251 

Course Physics 

Hall Monte 4 

Age 18 

Nationality UK 

Gender Male 

Personality Outgoing 

Social 

growth 

mean 8 

Vaccinated No 

Status 1 

Infected 

time n/a 

Recovered 

time n/a 

Table 7 - Sample individual 

 

The model then utilised the input data to generate each of the individuals within the 

population, and populating the various halls and courses.  Above is an example of a 

standard entity created by the model.  A status of 1 indicates they are susceptible, 2 

that they are infected and 3 that they have recovered (and are now immune).  If the 

“Vaccinated” parameter is set to true then the individual cannot be infected. 

 

Infected and recovered times detail the time within the model when that particular 

individual becomes infected and then when they later recover.  Social growth mean was 
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derived from the Normal distribution N(7, 3.2) of the observed data of friendship 

growth within a population during Freshers’, and were unique to each individual.   
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Location Capacity Type 

Bridge Bar 200 event 

Chamberlain Bar 200 event 

Connaught Bar 300 event 

Cube 1700 event 

Glen Bar 450 event 

Highfield Bar 100 event 

Monte Bar 450 event 

Stag's Head 450 event 

Students Union 2500 event 

Union Cinema 300 event 

Cafe SUSU 200 meal 

Piazza 300 meal 

Bridge Bar 200 meal 

Table 8 - Social location data 

In addition to the specified “meal” locations, halls were also included in this to allow 

for individuals being able to eat in their halls.  This was required after observing the 

capacities in the available on-campus locations were not large enough for the entire 

model population.  Additionally students are likely to eat their evening meal in halls, 

rather than on-campus. 

 

Meal locations were described explicitly due to the large potential for random mixing 

of individuals at such events.  In lectures, and to a certain extent in halls, individuals 

would be mixing with a regular group of others (as dictated by the unique social 

network for each individual) so it was important to include a wide range of 

opportunities for random mixing such as evening and meal events. 
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Specific locations for lectures were not included in this model, in order to avoid having 

to then timetable lectures and seminars to specific rooms which may not have been 

large enough.  For the purposes of this model it was sufficient to know what events the 

individuals attended, and the total number of people at those events that were in the 3 

possible infection stages (susceptible, infectious, recovered) plus vaccinated. 

  



Paul Davie  Results 

162 

 

Timetable 

Event 

Start 

Hour Duration Day Week 

Move In 1 9 540 Sat 1 

Move In 2 9 540 Sun 1 

Welcome Party 1 21 300 Sat 1 

Welcome Party 2 21 300 Sun 1 

RAG Fest 9 300 Mon 2 

Oceana Club 21 300 Mon 2 

Survival Day 9 300 Tues 2 

Film 1 18 180 Tues 2 

Film 2 21 180 Tues 2 

Bunfight 9 360 Wed 2 

Poster Sales 9 480 Wed 2 

Film 3 19 180 Wed 2 

College Club Night 22 240 Wed 2 

Enivro 10 300 Thu 2 

Karaoke 20 360 Thu 2 

Outdoor Film 19 180 Thu 2 

Freshers Fayre 10 360 Fri 2 

Twisted 21 300 Fri 2 

Sports 9 360 Sat 2 

Sugar 21 300 Sat 2 

Film 4 17 180 Sun 2 

Film 5 20 180 Sun 2 

Breakfast 8 60  0 

Lunch 13 60  0 

Supper 19 60  0 

 0 0  0 
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Table 9 - Event details 

Again, as with meal locations, if an individual did not attend an evening event then 

there were deemed to be in their hall of residence, which act as their default location 

throughout the model. 

 

The two “Move In” events incorporate the so-called “move-in weekend” where 

individuals move into hall for the first time.  Individuals within the population for each 

hall were assigned a random hour within the event for their “start” at that hall upon 

model initialisation.   

 

Breakfast, lunch and supper events were assigned an earliest start time, but the model 

allowed for flexibility of +/- an hour for these events to simulate reality.  Additionally if 

an individual already had an event scheduled that conflicted – such as lecture at lunch 

time – then the lecture was given priority.  Again this reflects reality where some 

individuals may not get lunch breaks on specific days and was a trivial addition to the 

event scheduling aspect of the model. 

 

A similar degree of latitude for when an individual starts an event was applied to other 

social events, again to reflect reality.  Lectures usual occur for a short period of time, 

and there is minimal increase or decrease in attendees during the event; for the 

purposes of the model we allow lecture and seminar events to be a closed population 

(based on an individual’s course).  Events with larger attendance and duration allow 

movement of individuals in and out of the event, although once an individual has 

attended that event on a given day they are not able to re-attend. 

 

Using this information, the model then created a timetable for each individual.  This 

timetable did not include whether the individual will attend the events as that was 

calculated upon run-time and dependent on personality type and progression of 

infection (if any). 
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Event 

Start 

Hour Duration Day 

Seminar-1-

10-1 10 45 Mon 

Lecture-1-

12-1 12 45 Mon 

Lecture-1-

13-2 13 45 Mon 

Lecture-1-

14-3 14 45 Mon 

Lecture-1-

16-4 16 45 Mon 

Seminar-2-

10-2 10 45 Tues 

Lecture-2-

11-5 11 45 Tues 

Seminar-2-

12-3 12 45 Tues 

Seminar-2-

13-4 13 45 Tues 

Lecture-3-9-

6 9 45 Wed 

Lecture-3-

10-7 10 45 Wed 

Lecture-3-

12-8 12 45 Wed 

Lecture-3-

15-9 15 45 Wed 
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Lecture-4-9-

10 9 45 Thu 

Lecture-4-

11-11 11 45 Thu 

Lecture-4-

13-12 13 45 Thu 

Lecture-4-

14-13 14 45 Thu 

Seminar-4-

17-5 17 45 Thu 

Lecture-5-9-

14 9 45 Fri 

Lecture-5-

10-15 10 45 Fri 

Lecture-5-

12-16 12 45 Fri 

Lecture-5-

15-17 15 45 Fri 

Lecture-5-

17-18 17 45 Fri 

Table 10 - Simulated timetable 

This represents a timetable for an individual studying Mechanical Engineering.  The 

numbers after the names represent the lecture/seminar number for that course, the 

day of the week and the start time in order to allow us to distinguish between lectures 

and seminars if the need to arises. 

 

 

7.4 Model Validation 
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Before looking at the scenarios detailed above, it was necessary to conduct validation 

of the model in order to ensure that the results would be valid.  With these scenarios, 

an initial number of the population, 100, was still deemed to be infected at the start of 

the model.   

 

Picking an exact validation approach to use is subjective.  There are various stages and 

approaches to validation, such as validating there are no errors in the programming of 

the model that prevent it from working, assessing the logic of the model structure or 

analyzing the model output itself.  Balci and Sargent discuss this at length in their 

assorted papers on simulation model validation and verification.  In particular, Sargent 

(2010) stated that “A model should be developed for a specific purpose (or application) 

and its validity determined with respect to that purpose” which applies to the model 

discussed herein. 

 

Balci (2005) proposed a set of “golden rules” that should be considered and followed 

when creating a new simulation mode in order to completely validate and verify its 

resulting accuracy.  We consider a few of these rules in relation to the work here (note 

some of the rules are disregarded as they deal with certification against international 

or other standards which is not applicable in this instance). 

 

However Sargent also noted that it can be extremely costly and time consuming to 

determine that a model is absolutely valid for all scenarios of application and therefore 

focus should be on specific examples of the model use (Sargent 1982, 1984a) rather 

than trying to prove the model is perfect.  Sargent also noted that even then, this 

would not ensure 100% validity for every use of the model, however the greater the 

confidence in the model, the greater the value of the model – although this may be 

offset by the “cost” of validation as seen below (Anshoff & Hayes, 1973). 
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Figure 10 Confidence in Model vs Value of Model (Anshoff & Hayes, 1973) 

 

Sargent (2005) o posited several ideas for validation which coincide with Balci’s rules – 

in particular Golden Rule #4 - on the approach of decision making.  Sargent lists three 

methods of the decision making approach: 

- The model developer makes the decision about model validity 

- The model users make the decision about model validity 

- An independent third party makes the decision about model validity 

 

Whilst the third optional is perhaps the most effective in terms of independence and 

rigorousness, it is not viable in this situation (or indeed many).  Also in this case, the 

model user and developer are the same.  This is not a preferred situation, but is the 

most common one.  Balci also notes a preference for developer independence from the 

end user, although again this is not always possible. 

 

The first rule proposed by Balci is that “model validation should be conducted hand-in-

hand with model development.”  We have met this rule by virtue of being both user and 

developer for the model.  In this sense validation has occurred continuously as we 

must constantly validate the programming used, as well as any assumptions and 

decisions made for the model. 
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Balci’s second rule states that the outcome of validation should not be considered a 

binary variable, where the model is either totally perfect or totally imperfect.    As a 

model is always an abstraction of reality, especially in this case, this is important to 

consider when examining differences in results.  Previous work on individual level 

epidemic models, as discussed in the earlier review of literature, noted considerable 

variance when comparing the individual model to the compartmental model but still 

deemed the model acceptable due to the inherent differences in modelling approach. 

 

In common with Sargent (as discussed above), Balci also states that a model should be 

judged on its accuracy for the task and question for which it was built to answer, and 

not a range of questions that it was not designed to aid with.  Models are typically built 

with a specific scenario in mind and should be evaluated for the purpose of that 

scenario rather than others.  This does not guarantee model validity, but allows for 

greater confidence.  A later rule listed by Balci is that a model’s accuracy can only be 

claimed for the situations for which it has been validated. 

 

An important consideration by Balci is on the specific error the model results 

themselves, and the risk of rejection them.  Balci defined three types of error in this 

eventuality: 

- Type 1 error, where the results of model are rejected despite being credible 

- Type 2 error, where the model results are accepted despite being wrong 

- Type 3 error, where the wrong problem is solved 

 

This in turn leads to two types of risk (Balci & Sargent, 1981), defined as: 

- Model builder’s risk, the probability of committing a Type 1 error 

- Model user’s risk, the probability of committing a Type 2 error 

 

Model validation should overall focus on reducing these risks.  In this piece of work, 

again we are both the builder and user so have the potential risks of accepting results 
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which are wrong, or not accepting results which are actually correct.  Fortunately we 

have the benefit of previous literature to rely on when assessing results, as well as 

comparison to a standard SIR model, scenario evaluation and logical approach to 

considering our results. 

 

7.4.1 Comparison with Compartmental Model 

The first validation process was to compare the output of the model to a standard 

compartmental model using the same SIR input parameters.  Note from previous 

discussion in the earlier literature review that many agent-based models have not been 

validated against compartmental models.  For specific epidemic models the validation 

produced a range of results, although all agreed that in general the two models should 

show similar trends and vary primarily on the size and speed of an outbreak occurring. 

 

A basic SIR model was constructed in Excel; there was little need to create a more 

detailed programmatical model given the basic nature of the differential equations 

used by the SIR model.  These can easily be implemented inside an Excel spreadsheet 

with minimal effort, and the computational overhead is negligible.  As the SIR model 

does not contain any random elements there was no need to conduct multiple runs of 

it, as the results will always be the same provided the same initial input parameters are 

used. 
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Figure 11 Comparing SIR and Individual Model Prevalence 

 

If we compare the prevalence of the two models (for an infection rate of 0.03) we see 

that the peak infection occurs at day 10 in the compartmental model, but at day 14 in 

the individual model.  The total value also varies with a  peak prevalence of 3248 for 

the SIR model compared to 1853 for the individual model,  an almost 50% difference. 

 

This data is comparable to the comparison work carried out by Ajelli (2010) which 

found that an individual model resulted in a smaller epidemic, although it did not 

display an equivalent change in the peak times.  However the Rahmandad & Sterman 

(2008) comparison did note this although given the scale of their model (it had a run-

time of 150 days) it is unclear about the validity of this when comparing to our results. 

 

We can also consider the different in incidence between the two models, as shown in 

the below graph.  In this instance we consider the difference between the number of 

new infections per day, as opposed to the total number at each time. 
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Figure 12 Comparing Individual Model and SIR Incidence 

 

As before the peaks between the two models occur at different times, which is to be 

expected from the previous works.  However as the above graph demonstrates, the 

overall trend is very different.  The SIR model has a typical smooth bell shape, whereas 

the individual model does not.  Note also the multiple peaks in incidence in the 

individual model. 

 

The previously studied models attributed variation between their model and the 

compartmental model to the individual interactions within the model itself (which a 

compartmental model cannot demonstrate).  However all of those works used 

essentially static networks and events for individuals to move within during the model, 

as opposed to our model where an individuals’ network of contacts grows over time 

and they attend a range of different events and locations. 

 

Unfortunately there is no data available for an actual outbreak of influenza within the 

campus environment for us to compare against.  We have anecdotal findings from 

surveys showing that students believe they experience the flu, but the survey sample 

size was low and people rarely are fully aware of actually having the flu. 
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For the purposes of this scenario and to allow for comparison, we initiallty observed 

the prevalence of infection (the total number of infected individuals at each time) 

rather than incidence (the number of new infected individuals at each time).  As the i=0 

scenario led to no new infections, this measure allows easier comparison between the 

3 different infection rates. 

 

In order to validate the results, 10 replications were run for each scenario, and the 

average resulted presented.  95% confidence intervals were also calculated to further 

verify the results. 
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7.4.2 Varying the rate of infection 

 

Figure 13 - 0 rate of infection 

 

For the case of 0 rate of infection, the initial index cases were unable to cause 

secondary infections within the population.  The infection did not spread, and the 

initial individuals eventually recovered within 2 weeks, with the majority recovering 

after 1 week of infection.  For the initial cases we have assumed that they were all 

infected at the commencement of the model and that there were not variations in 

infection time prior to the model commencing. 

 

Figure 14 - 0.03 rate of infection 
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For an infection rate of 0.03 (which is the parameter to be used for the model 

scenarios) the results show a typical spread of infection.  The number of infected 

peaked approximately 2 weeks into the model and then decreased as the population 

recovers.  In comparison to real world events, the peak occurred towards the end of 

the first week of lectures, which is the peak initial point in time by which individuals 

would have met people in halls and lectures. 

 

 

Figure 15 - 0.1 rate of infection 

 

The results for the 0.1 infection rate were more interesting.  Although, as would be 

expected, the peak prevalence rate was higher than that for the 0.03 scenario, the 

graph does not show the typical early single peak and decline in prevalence.  Instead 

there were 2 peaks nearly a week apart   

 

Closer consideration of the two peaks suggested a potential explanation for the 

unusual double-peaking.  The first peak was approximately 1 week into the model, 

which is when individuals friendship networks in their home locations (halls of 

residence) would be saturated and further contacts would only be through random 

mixing.  The 2
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corresponds to where individuals would have had a full week of lectures and the 

growth of their social networks based on this would be close to completion.   

 

This effect did not appear on the comparative SIR compartmental model, and has not 

appeared in literature.  However some reviewed studies did not oscillation in the 

epidemic growth when utilizing an individual level model.  This demonstrates the key 

difference between a compartmental and individual model in that the compartmental 

model is unable to account for different behavior within individuals in the population 

over time, whereas the individual one is built for that very reason.  Whilst the results 

are perhaps, upon reflection, not surprising and could be achieved with a 

homogeneous population if we varied the infection rate over time, it is an interesting 

result to observe. 

 

This also suggested that the social networking aspect of the model does indeed affect 

the spread of infection within the population.  For this particular model it appeared to 

limit the spread of infection to an extent.  A typical SIR model with a higher infection 

rate would be expected to show a single peak in incidence earlier in time than a lower 

one, with the peak skewed earlier rather than more centrally within time.  Whilst the 

higher infection rate did lead to significantly higher overall infections within the 

population, the actual peak point in time was still comparable to the 0.03 scenario, 

suggesting that in this model the infection can be limited by the contacts an individual 

has. 

 

The double-peaking was consistent across replications run for this scenario, indicating 

that it was not an aberrant result. 
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Figure 16 - Comparing the impact of rate of infection on prevalence 

 

Comparing the prevalence values for the 3 variations shows that the model does 

respond as expected to variations in the rate of infection. For a 0 rate there is no 

epidemic, and it quickly dies out.  For the standard value of 0.03 a typical transition of 

the population between susceptible, infectious and recovered occurred.  For the high 

value of 0.1 the infection peaks earlier, and numbers of infected were higher.  The 

unusual double-peak indicated an underlying impact of the social network on the 

infection, which was consistent throughout the replications run. 
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infected; for the higher value of infection 87.8% of the population were ultimately 

infected.  The 0 scenario resulted in no new infections in the population. 

 

 

Figure 17 - Incidence for 0.03 infection rate 

 

 

Figure 18 - Incidence for 0.1 infection rate 

 

Interesting, if we consider the graph of the incidence we see the double-peak 

magnified, but at a different point in time.  Comparing both graphs, we see that both 

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

In
ci

d
e

n
ce

Day

0.03

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

In
ci

d
e

n
ce

Day

0.1



Paul Davie  Results 

178 

 

exhibit peaks in incidence, although the 0.03 scenario graph more closely resembles a 

standard SIR incidence graph. 

 

Again, both peaks occur at points within the model when the social networks for 

individuals would be “stalling” - the end of initial contact in halls, and the end of initial 

contact in lectures.  This is more obvious in the 0.1 scenario where incidence drops by 

approximately 50% for a 5-day period before rapidly climbing again. 

 

This possible explanation is bolstered when we considered the recorded average 

growth rate of friends within the model per day.  This clearly demonstrated that 2 

peaks in friendship growth occur, one early into the model after the population has 

moved into halls and one within the 2
nd

 week of the model when lectures commence. 

 

7.4.3 Varying the rate of Friend Growth 

 

Figure 19 - Average friend growth per day 

 

By overlaying the friendship growth graph with the incidence graphs for the two 
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showing a cause-effect link that further validates the proposal that the social network 

of an individual does indeed influence their chances of infection.  

 

 

Figure 20 - Comparing daily average friend growth to incidence 

 

To further examine the impact of friendship on infection within the model, we ran base 

scenarios where the average friendship growth parameters were varied.  A rate of 

infection of 0.03 was still used for these model runs.  Average growth rates of 0 

friends, 7 friends (the standard parameter) and 40 friends were used.   
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Figure 21 - Incidence with varying average friend growth 

 

As the graphs show, the growth of friends and social networks of an individual is 

clearly linked to infection.  With a 0 growth rate, the infection can only be spread 

through random mixing.  This occurred throughout the model, but the likelihood 

would increase when lectures commenced due to the increase in events, and thus 

contacts, that an individual would then have. 

 

With a growth rate of 50, the infection spread mimics that of when we used i=0.1 for 

validation purposes.  However due to these scenarios being run with i=0.03, the overall 

incidence within the model was lower than for i=0.1 
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50 3959 0.7918 

Table 12 - Incidence varying by friend growth 

 

The overall population incidence closely resembled that of when the infection rate was 

varied between the low, default and high range of values, although the higher infection 

rate did lead to an 10% overall higher incidence, although numerically this actually only 

represents approximately 500 extra infected individuals.  

 

 Growth rate 7 Growth rate 50 

Friends Total % of population Total % of population 

1 to 10 1700 0.34 55 0.011 

11 to 20 460 0.092 104 0.0208 

21 to 30 1820 0.364 688 0.1376 

31 to 40 940 0.188 2312 0.4624 

41 and 

above 

80 

0.016 1841 0.3682 

Table 13 - Comparing varying friend growth to number of friends per individual 
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Figure 22 - Number of friends per individual with varying friend growth rate 

 

For the sake of completion, the above tables show that varying the average friendship 

growth does result in individuals having larger social networks within the model.  That 

is, when we increase the rate at which individual friendship networks can grow, the 

model responds accordingly with the average number of friends increasing as growth 

rate increases. 
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Figure 23 - Social network of an individual 

 

The above diagram shows the friend network of one individual within the model, at the 

end of the simulation.  It can be seen that there is a mix of indivudals that are highly 

connected to each other, and some which simply have no connection to each other at 

all.  These are typically contacts formed through “event” contact predominately via 

random mixing. 
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Figure 24 - Social network of an individual for halls 

   

 

 

Focussing on just the friends that are connected through being in the same hall we see 

that there is a high degree of connection within this network – the average number of 

connections per friend (the degree of each individual) in halls was 9 for this particular 

individual.  
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Figure 25 - Social network of an individual for lectures 

 

If we look at the network of individuals based upon lectures we see that it is far larger, 

and more highly interconnected than the network for halls.  This is to be expected 

given the individuals would be in more frequent contact, dependent on their 

timetables, and for a larger period of time than in halls, outside of the 1
st

 week of the 

simulation.  In the above example, the average degree (number of connections 

between individuals) is 20.  This also helps support the data shown by the graphs of 

incidence which increased sharply once lectures started, and the above network would 

have been formed. 
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Figure 26 - Number of connections per friend 

 

If we consider just the graph of number of connections between individuals in our 

example, we see that within the lecture network there is wide range of connected 

individuals, from those who are not connected to anyone, to a few individuals who are 

highly connected.  The total number of nodes (individuals) in this example was 98, for 

an individual on the Aero/Astro Engineering course, representing approximately 50% 

of the individuals on that course.  

 

 

 

7.4.4 Varying the population vaccination rate 

For validation purposes we also considered the impact of varying vaccination rates.  

This served to demonstrate that the model did utilise vaccinations correctly, and also 

would allow for the potential of future work on which elements of the population 

should be vaccinated – a standard epidemiology question when modelling infection.  

Rates of 0%, 20%, 50% and 100% were used for these tests.  Note that for the other 

scenarios a vaccination rate of 0% was used.  The infection rate was left at 0.03 to 

assess the sole impact of vaccinations. 
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Figure 27 - Incidence with varying population vaccination rates 

 

 

Vaccination 

rate Incidence 

% of 

population 

0% 2694.29 53.89% 

10% 1822.2 36.44% 

20% 181 3.62% 

50% 0 0.00% 

Table 14 - Incidence with varying population vaccination rates 

 

Examining the overall incidence rates for the population shows the effect that the 

variation in vaccination rates has.  As expected, as the percentage of the population 

that is vaccinated increased, the overall incidence dropped.  The model assumed that 

the efficacy of vaccinations was 100% and permanent for the duration of the model. 

 

For vaccination rates of 0% and 20% the incidence still showed the previously noted 

early spike in incidence at 5 days, although this was less than before (136 new infected 

at 0% compared to 80 new infected at 20% vaccinated, on average). 
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7.5 Default Scenario 

We have already considered and discussed a large part of the default scenario in the 

validation section above.  For this scenario the default values for the infection, recovery 

and friendship growths were used.  10 iterations were run, as the results converged to 

an acceptable degree within those iterations.  The same initial population was used for 

each iteration of the simulation, based upon the input demographics and 

characteristics of the population. 

 

Total incidence across the population ranged from 52% to 61%; in real-terms this was 

between 2603 and 3125 individuals were infected.  An average of 2920 (58.31%) were 

infected, with a 95% confidence interval of +/- 1.89%.  The average number of friends 

made per day was 5.9 per individual, with a minimum of 0 and a maximum of 37 on 

average over the iterations of the simulation. 

 

Figure 28 - Incidence for the default scenario 

 

It is worth considering “where” the infections took place, as one of the aims of this 
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being made, there are no fixed locations as such, but rather locations by event such as 

a lecture location or a food location.  We consider here Mon-Fri in the first 2 weeks of 

the model for comparative purposes.  Locations have been grouped in “halls”, which 

includes activities in halls, “lectures” which includes lectures and seminars, “events” 

which is any day or evening event that people attended and “food” which are the 

communal eating areas in both halls and on campus. 

 

 

 

Location Mon Tue Wed Thu Fri 

Halls 51 59 48 43 34 

Lectures 0 0 0 0 0 

Events 21 10 45 11 49 

Food 28 31 7 46 17 

Table 15 - Incidence per location type in week 2 

 

Location Mon Tue Wed Thu Fri 

Halls 34 24 7 10 5 

Lectures 33 51 73 64 72 

Events 5 3 8 9 10 

Food 28 22 12 17 13 

Table 16 - Incidence per location type in week 1 
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Figure 29 - Incidence per location type in week 1 

 

 

 

Figure 30 - Incidence per location type in week 2 

 

The results show the impact that a change in activity by an individual has.  In the first 

week, before lectures, incidence is primarily “occurring” in halls and as a result of 

attending events.  The fluctuations in the events versus food coincide with the 

timetabled “big” events on Wed and Fri, compared to little or no events the rest of the 

week. 
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Once lectures commenced, incidence primarily occurs as a result of individuals 

attending these.  There was still an influence due to events, as a rise in percentage 

incidence at events can be seen towards the end of the week when larger evening 

events occurred.  Excluding that, due to the social networks having already formed in 

halls, attending lectures was clearly the biggest influence.  This lends credence to the 

scenario of “closing campus” to contain an epidemic. 
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Hall Total Percentage of hall Percentage of population 

Glen 971 69.37% 19.42% 

Monte 928 66.28% 18.56% 

Chamberlain 366 52.25% 7.32% 

Highfield 137 76.38% 2.75% 

Connaught 238 82.39% 4.76% 

Table 17 - Incidence per hall 

 

As we knew the halls that the population are based in, it was possible to extract 

increased detail about the incidence by halls.  For the purposes of this, halls were 

grouped into halls complex, rather than the individual buildings within them – such as 

Chamberlain which is made up of 3 halls on the same site.  Note this does not 

represent where an individual was infected, but shows where an individual lived.   

 

The halls with higher populations, Glen and Monte, had the overall highest incidence 

within the population.  However smaller halls such as Highfield and Connaught had a 

higher percentage incidence of the population within the halls, than in the overall 

population. 

 

Again this was to be expected given the respective sizes of the halls.  The larger halls 

simply had more people to infect in order to achieve 100% infection, whereas infection 

in the smaller halls could easily spread given the limited numbers of individuals based 

there.  This is dependent on infected individuals “entering” the smaller halls population 

in the first instance however, with the larger halls having a greater exposure to 

infected individuals by merit of having a larger population.  Everything is ultimately 

relatively in such cases. 
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7.6 Scenario 1: Closing campus 

As discussed previously, lectures appeared to have a high correlation between 

attendance and infection of individuals.  The prescribed university strategy in the event 

of an epidemic is to close campus, with the effect of cancelling lectures and events on 

the campus.  We have already seen in the default scenario that once lectures 

commence, the incidence within the model is attributed to individuals attending them.   

 

 

Figure 31 - Incidence for Scenario 1: Closing campus 

 

By closing campus, the overall incidence in the population decreased.  Total incidence 

ranged from 27% to 35% with an average of 33% across the iterations run. A 95% 

confidence interval was 33% +/- 1.4%.  In real terms this represented a range of 1395 

to 1796 infected individual within the population.  Overall closing campus resulted in a 

decrease of 25% on the average incidence within the population. 

 

Closing campus still resulted in the double-peak of incidence that occurred at the time 

when lectures commenced.  However due to campus being closed in this scenario, it is 

likely the second peak occurs due to the increased impact of location upon infect, with 
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individuals only able to “exist” in one location for every time point of the model run 

once lectures commenced.   

 

However, daily incidence was lower than with campus open.  This was likely due to the 

fact the social networks of the individuals limited their contact to within halls which 

mean their networks could not grow to the same extent as before.  Average friends per 

day dropped to 4.2 from 5.95 for the default scenario.  

 

Friends Open Campus Closed Campus 

0 to 25 2.46% 9.86% 

25 to 50 8.16% 66.50% 

51 to 75 13.10% 15.38% 

76 to 

100 38.08% 4.66% 

100 to 

150 23.56% 2.04% 

150 to 

200 10.86% 1.56% 

> 200 3.78% 0.00% 

Table 18 - Comparing friends for different scenarios 
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Figure 32 - Comparing friends for open and closed campus 

 

Looking at the total number of friends per individual, we can also see that this dropped 

from the largest number of fiends in the range of 76-100 to the range 25-50 when 

campus was closed.  This also helps demonstrate that the social network aspect of the 

model responds to changes in events by adjusting itself and not expanding when there 

is a lack of events to trigger contact bonds.   

 

Closing campus reduced the number of events (and their locations) which therefore 

limited the potential chances of contact between individuals.  Whilst potentially it may 

be logical to expect confining individuals to a specific area to lead to an increase in 

incidence, and in this model friendship growth, in reality the closure of campus 

scenario is meant to mimic quarantine.  In that case it would be sensible in real-life 

that students would isolate themselves in their rooms during an outbreak.  This 

actually occurred during the SARS outbreak of 2003 when international students 

voluntarily quarantined themselves in halls and limited their contact with others. 
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7.7 Scenario 2: Targeting specific groups within the 

population 

In this scenario we vaccinated different major groups within the population.  This 

allowed us to assess the impact of these groups both upon the infection incidence and 

the social networking of the model, which has already been demonstrated to be 

impacted when we limit the contact possibilities and vaccinate the population. 

 

We have already shown the impact of varying vaccination rates upon the population.  

For this scenario we assume a vaccination success rate of 100% and that all individuals 

within our target group have been successfully vaccinated prior to the model running.  

As we have already demonstrated the impact of closing campus upon the model there 

was little to be gained from allowing vaccination within the model run time. 

 

We first considered the impact of vaccinating one of the larger halls of residence, in 

this case Monte (the largest out of all the halls), upon the incidence.  This was 

equivalent to vaccinating 30% of the population. 

 

 

Figure 33 - Incidence for scenario 2 - targetting halls 
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Vaccinating all of the individuals within the chosen hall led to reduction of overall 

incidence in the population to an average of 31.8%, in the range of 27.5% - 36.5% with 

a 95% confidence interval of 2.1%.  There was no impact on social network growth for 

this model variation as individuals still attended lectures and events as normal. 

 

Clearly isolating halls from the overall population had an impact on incidence, but this 

was effectively equivalent to vaccinating over 20% of the population so little 

conclusions can be drawn from this other than vaccination of a significant proportion 

of the population is worthwhile. 

 

We did not consider the other halls for this scenario as they were either of equivalent 

size to our chosen hall, or their contribution to the overall population was deemed not 

worthy of studying – it would be equivalent to vaccinating less than 20% of the 

population and we have already examined the 20% vaccination scenario.   

 

We have already established that lectures lead to significant increase in overall 

incidence, so targeting specific course cohorts was a logical next stage. 

 

The largest course in the population is Maths, so we first chose to look at the impact of 

vaccinating all of the individuals within the population on that course.  This 

represented approximately 10% of the population. 
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Course Incidence 

Accounting 51.43% 

Aero/Astro 

Engineering 78.39% 

Chemistry 80.69% 

Civil Engineering 84.82% 

Computer Science 65.06% 

Economics 20.07% 

Electrical Engineering 71.57% 

Environmental 

Science 55.00% 

Geography 40.20% 

IT 74.80% 

Law 46.15% 

Management 55.46% 

Maths 71.19% 

Mechanical 

Engineering 78.81% 

Physics 72.63% 

Politics 33.04% 

Psychology 20.14% 

Ship Science 92.34% 

Table 19 - Incidence per degree course 
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Figure 34 - Incidence per degree course 

 

A look at the breakdown of incidence per course shows a range of values, from a 

minimum of 20% incidence to a maximum of 92% incidence.  However there was also a 

strong correlation between incidence, course size and course event frequency – the 

number of lectures and seminars. 

 

One example of this is students on the Law course.  They represented approximately 

9% of the population.  Similar courses within the population are Maths (10%) and 

Psychology (7%).  However the incidences within the individuals in these cohorts vary 

significantly. 
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Figure 35 - Comparing incidence for Psychology, Maths & Law 

 

Course Events % of population Incidence 

Psychology 15 7.60% 20.10% 

Maths 17 11.10% 71.20% 

Law 14 9.10% 46.40% 

Table 20 - Comparing incidence for Psychology, Maths & Law 

 

From this we can see that although Maths students only had 2-3 more lectures per 

week than Psychology and Law students, the greater size of the course population had 

an impact upon the incidence of students on that course. 
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Figure 36 - Correlation between incidence and percentage of population on a specific 

degree course 

 

 

Figure 37 - Correlation between incidence and number of events per degree course 
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Ship Science 23 1.70% 92.30% 

Table 21 - Comparing number of events and degree size to incidence 

 

When we look at the correlation between events and incidence there is a clearer link.  

Those with more events, which represent the number of lectures/seminars an 

individual would have and therefore the potential of making contact with others, have 

a higher incidence level within that cohort of the population.   

 

 

Figure 38 - Correlation between incidence and average number of friends per course 

 

Course Incidence Average Friends % of course 

Politics 33% 24 15.00% 

Maths 71.20% 58 10.49% 

Mechanical Engineering 78.80% 39 13.04% 

Ship Science 92.30% 21 24.42% 

Table 22 - Correlation between incidence and average number of friends per course 
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If we consider the number of friends compared to incidence there is a rough 

correlation between a high number of friends and increased incidence.  However this 

was perhaps limited by the size of course, which has an impact on the development of 

the individual social networks, particular given we have shown that halls of residence 

has a stronger bias towards a friendship forming. 

 

Ship Science had an average friend rate of 21, which represented nearly a quarter of 

the course.  It also had an incidence rate of 92.3%.  However, Maths had an average 

friend rate of 58 but incidence of 71.2%.  There was, however, a difference in their size 

relative to the overall population.  Maths made up 11.1% whereas Ship Science was 

only 1.7%.  This suggests that although the individual social networks do clearly have 

an impact on incidence, there is also a strong influence from random mixing of 

contacts due to the attendant population density at each event.   

 

This is interesting in the context of the literature review, and the friendship network 

where we saw that common courses had a weaker effect on friendship formation than 

halls and as we expect the infection to follow the network of friends rather than the 

background of course contacts. 

 

However, although there is increased incidence within certain courses, it is by no 

means certain this is due to the courses themselves.  If we look further at the data, and 

correlate against which halls individuals are in we may discover an underlying influence 

to this pattern. 

 

Course % of 
population 

Incidence Glen Monte Chamberlain Highfield Connaught 

Politics 3.20% 33% 32% 28.00% 15.00% 5.00% 20.00
% 

Maths 11.10% 71.20% 37.00% 38.00% 9.00% 1.00% 16.00
% 

Mechanical 
Engineering 

5.90% 78.80% 42.00% 31.00% 9.00% 0.00% 18.00
% 
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Studying the breakdown of course population across the halls did not reveal an 

underlying influence from halls.  The breakdown of the population was in general 

consistent with the variation in hall sizes, with the larger halls of Glen and Monte 

having a larger proportion on the courses than the smaller halls did. 
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7.8 Scenario 3: Remove the “popular” people 

The previous scenarios showed that although the social network of an individual, 

which defined their contacts, had an impact on the incidence within the population, the 

overall population density and background random mixing was also significant.  To 

further examine the impact of friends, an additional scenario was examined where 

individuals with large friendship growth rates were immunised.  This scenario was of 

great interest due to unknown influence a highly connected individual would have on 

incidence.  Potentially such individuals could cumulatively have been connected to 

every individual within the population.   

 

This scenario presented several obstacles.  We initially allowed each individual within 

the population a daily friendship growth rate based upon our observed distribution of 

real-life friendship growth over the same real-life time period of Freshers’ Week.  

However upon initialisation there is no guarantee that these individuals would then end 

up with larger social networks than others.  For example, if an individual was in a low-

population hall of residence, even if their friend-growth parameter was high they would 

be limited by the available pool of friends. 

 

Additionally this scenario is, for now, only interesting from a theoretical perspective.  It 

would currently not be practically viable to attempt to identify the “popular” people in a 

population in order to vaccinate them.  It would be simpler, and demonstrably more 

effective, to target a course of hall cohort of the population. 
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Figure 39 - Friend growth compared to average number of friends 

 

Fortunately there was a high correlation between daily friendship growth, and total 

number of friends which again proves the social network aspect of the model behaves 

as we would hope and expect.  It was therefore a reasonable assumption to make that 

vaccinating individuals initially with high growth rate would result in immune 

individuals with large social networks.  As before, vaccination was assumed to be 100% 

effective and to have occurred prior to model initialisation. 

 

 

Figure 40 - Incidence when immunising popular individuals 
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There was an impact due to vaccinating the popular individuals, although it is hard to 

quantify the exact impact.  Average incidence in the population was 2322, which 

represents 46% of the population.  This was down from the default scenario (52% of 

the population) but not significantly so.  However there was a reasonably large 

confidence interval at 95% of +/- 102.3.  For this particular scenario, 20 iterations were 

run opposed to the 10 we have used before, but this still did not result in any 

particular convergence of results. 

 

 

Figure 41 - Comparing incidence for the default scenario to vaccinating popular 

individuals 

 

Comparing the scenario to the default one, we saw that immunisation of the popular 

individuals within the population did smooth out the curve of the incidence, and 

reduce the peak incidence, although the peak did still occur at approximately the same 

time points within the simulation. 

 

This suggests that popular individuals can act as infectious loci within the population, 

although perhaps due to the large size of their social networks it is difficult for them to 

have a consistently quantifiable impact.  There were simply too many contacts for them 
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to interact with on a regular basis sufficiently frequently to cause high levels of 

incidence.   

 

Also as there is still a significant peak in incidence once lectures commence, this still 

suggests that events and population density has a significant impact on incidence.  

Additionally the popular individuals’ network growth was still limited by the 

opportunities to grow presented by events.  Vaccination of them may result in lowering 

the incidence, but it would not noticeably delay an epidemic outbreak. 

 

Having considered vaccinating the popular individuals, we also consider what would 

happen if they were all infected initially within the population, in addition to our 

standard 100 index cases.  The same batch of individuals that had previously been 

identified as popular was used for this scenario, albeit with no vaccination and being 

defined as infectious from the model commencement.  As with our other index cases 

we assumed that there were infected as soon as the model began and there was no 

prior period of infectivity that would contribute towards an earlier recovery rate. 

 

 

Figure 42 - Incidence when infecting popular individuals initially 
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By infecting the popular individuals, we obtained model outputs similar to the classical 

SIR incidence graph.  In this case overall incidence was 71%, with a 95% confidence 

interval of +/- 1.8%.  In this scenario incidence peaked several days earlier than before, 

and there was no obvious impact of the change of events between no lectures and the 

start of lectures.  This suggested that if sufficiently connected individuals within the 

population were infectious then they could trigger an epidemic. 

 

Figure 43 - Comparing incidence between the default scenario, 0.1 infection rate and 

infection popular individuals initially 
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8 Discussion 

For a high value of infection rate, the infection incidence of the population swiftly grew 

and within a few time periods the majority of the population was infected.  The 

remaining uninfected were usually those members of the population who had been had 

limited social networks due to a low friend-growth parameter. 

 

Conversely, but as one would expect, a low rate of infection resulted in very few 

infections among the population and therefore a low overall incidence value.  The 

outbreak essentially burnt out, again consistent with what one would expect to 

observe with a low value for. 

 

Similar results were observed for variations in the immunisation rate, again in line with 

what one would expect to see as the result of these changes.   

 

 

8.1 Friend Growth 

Varying friend growth had a range of effects, although again somewhat in line with 

what would be generally expected.  A low friend growth resulted in lower incidences of 

infection.   

 

It is important to note that numbers of friends, typically broken down into friends who 

are “neighbours” (i.e. live in the same accommodation as), friends who are on the same 

degree and friends who are encountered at events make up a substantial element of 

the disease model.  Therefore variations in how many friends are made would be 

expected to result in corresponding changes to disease incidence. 

 

 

Typically the model resulted in a higher proportion of friends attending the same 

course.  This is to be expected as the numbers of individuals on a degree compared to 
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the numbers who would be “met” in halls or at an event were proportionally higher.  

Moreover individuals do spend more time in “degree events” than anywhere else – with 

the exception of the primary Freshers’ Week events.  However these typically produced 

random mixing and limited friend creation beyond that of neighbours until the end of 

the week.  This was also impacted by the disease progression in which infections 

would not start to occur until later in the week, following the creation of the lecture-

based social network. 

 

 

As the model output did allow for tracking of individuals and their movement 

throughout the model and their subsequent friend networks, it was possible to see the 

impact that a “popular” individual had.  However this could be considered as a 

somewhat manufactured impact due to the lack of data to support the parameter 

definitions.  We tested this by both vaccinating and infecting these individuals upon 

model initialisation to assess their impact.   

 

The results of this were inclusive for vaccination; whilst there was a reduction 

incidence it was not as significant as a wider, and easier to implement, vaccination 

programme.  However, initial infection of the “popular” individuals did lead to an 

increase in incidence, and a more typical SIR rise and fall. 

 

In general, an infected individual had a direct impact on their specific networks of 

friends.  This typically scaled high to low in order of degree friends, location friends 

and event friends, respectively.  However this order was altered later in the model as 

the impacts of friends on the same lecture increased, and these exerted a higher 

influence on incidence than the initial influence of friends made in halls.   

 

If the infection rate was low, an infected individual was still likely to infect those they 

spent more time with overall.  It would have been interesting to observe the result of 
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lectures occurring at the same time as the initial week events, but unfortunately y this 

is not a real-life scenario and there is no data to support such a simulation run. 

 

It was tricky to quantify the impact of night time events due to the large capacities and 

high proportion of random mixing.  Although individuals’ friendship networks for 

events tended to be smaller, due to the overall large population of these events the 

actual infection likelihood was less than would be expected.  Moreover, the impact of 

daytime hall events or lectures was higher than the evening events so it was impossible 

to assess their effect on the model.  Closing the campus would also result in closing 

these events, and would appear to be the most effective containment scenario.  

 

A general perception before running the model was that high traffic events would have 

an impact on disease incidence.  However this was not particularly true for this model, 

despite the longer contact period afforded by such events.  This was likely due to the 

weak bonds formed within the social network due to these events when compared to 

friends made in halls and lectures.  There was also increased contact with such friends, 

whereas the contact with friends at an event was usually one-off or irregular compared 

to the other friendship types. 

 

 

 

 

8.2 Impact of events 

If events were eliminated from the model, there was a subsequent decrease in 

incidence.  This did vary with the other parameters in the model; for example a high 

infection rate would essentially overwhelm the model as the infection would be able to 

spread throughout halls.  However elimination of events was only effective for lectures; 

initial infection in the model was primarily due to contacts within halls which did not 

include many events as such, 
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It should be noted that lectures did not start until week 1 within in the model 

simulated timeframe so they did typically cause infections to present later than other 

variables. 

 

The impact of communal “food” events was hard to assess due to the overwhelming 

effect of hall and lecture based infection.  Whilst there was clearly a contribution to 

incidence from individuals attending these events, it was not as large an influence as 

attendance at events where the social networks of individuals led to more direct 

contact rather than random mixing with the background population. 

 

 

8.3 Impact of friends 

Neighbours (friends who lived in the same accommodation or were on the same 

course) had a strong impact on the model results.  This is to be expected as, in reality, 

they would be individuals with the closest long-term physical contact to each other in 

(what would be defined as) a confined space.   

 

The model also demonstrated that if quarantine was introduced (either in closing 

lectures or containing halls) in a form that keeps individuals within the same location 

then the disease outbreak does peak and then collapse. 

 

Additionally if a specific location was targeted for the beginning of an outbreak – i.e. 

all individuals within one hall were vaccinated - then the overall incidence did decrease, 

although this was comparable with simply vaccinating an equivalent proportion of the 

population. 

 

Again personality type had an impact on the effect of this.  If a high proportion of 

individuals had limited friends (shy) then the disease was effectively contained in a 
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quarantine scenario.  If a lot of the individuals were outgoing then the disease spread 

quickly, in a similar fashion to having a high initial number of infected.  Those on 

highly-populated degrees courses acted as vectors into those particular sub-

populations if they had not recovered sufficiently. However due to the initial infection 

and a 7-10 day gap until lectures and subsequent friendships forming the impact of 

this varied. 
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9 Future Work & Development 

The model that we have demonstrated and discussed is very much a barebones proof-

of-concept model.  During its creation several assumptions were made and discussed; 

these assumptions all lead to future work potential of expanding and enhancing the 

model. 

 

As an individual-level model, the model is only as effective as the data about the 

individuals provided to it.  The social network aspect of the model is the primary 

unique feature of it, yet much works remains possible to expand and enhance this 

area.  As the results showed, the social network does have an impact on the model but 

the network and connections we have used are essentially crude and limited by our 

assumptions, data and time.   

 

The scenarios we have considered are legitimate scenarios in epidemiology.  However 

the basis and purpose for creating and running an individual-level model was to be 

able to provide a far greater level of detail of results to the end user.  Whilst we were 

able to produce a range of results, and refine various scenarios there is much more 

that could be achieved with increased data.  A standard scenario that we have not 

considered fully is the impact of targeted vaccination within the population during the 

model run.  We only considered vaccination impact from the initialisation of the model, 

rather than at a point within it, although we were able to target specific cohorts within 

the population perhaps more effectively that previous models. 

 

9.1 Events & Timetables 

One aspect of the model, made possible by basing the simulation within a university, 

was the regular timetable of the individuals (entities) within the model.  An actual 

timetabling solution – where we would take the known events and available rooms and 

then assign an event to a room - was beyond the scope of this work.  Indeed 

timetabling solutions already exist, so little could be gained from that.  However a key 
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part of the model is the potential ability of being able to identify where maximum 

impact, in the case of an outbreak, could be made in certain quarantine scenarios. 

 

The model discussed used actual data to create the entities within it, such as 

proportion of students studying computer science or the available rooms on campus 

and their sizes.  However it did not use actual timetable data to create the daytime 

schedule of lectures.   As previously discussed this data was hard to obtain from the 

university and, for the sake of this version of model, ultimately not required.   

One future piece of work would, however, be to properly integrate timetabling data 

into the model so as to obtain a far more accurate, and real-world, view of an 

individual’s movements within the model itself. 

 

Additionally the data used for events was simplistic, although made justifiable by the 

setting of the simulation within Freshers Week.  The model has focussed on the 

mainstream events for which data was readily available.  Further work could refine 

these events so as to obtain a more accurate view on the evening events.  The model 

outputs showed a somewhat lack of correlation between evening events and the 

infection incidence; whilst this may be an actual outcome or even just due to the 

limitations of the model and assumptions made for it, it would be worth expanding the 

knowledge of these events which lead to large-scale “mixing” of individuals. 

 

We also had to make several assumptions about when individuals eat, and the 

locations that this occurs in (halls or communal eating areas).  Unfortunately we were 

limited on time and data to improve upon this.  One area of expansion would be to 

obtain accurate footfall for such areas, as well as assessing exactly where and when 

the population broadly eats in order to better model this.  In conjunction with actual 

timetable data this would greatly improve one weak component of the model. 
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9.2 Expanding the spatial component 

One aspect of the model that was initially discussed was the spatial component.  Due 

to time constraints this component was minimalized in impact in favour of the social 

networking component which was the major aspect of the model.  As stated earlier, we 

did not fully consider actual locations based on timetable which unfortunately limits 

the conclusions that can be drawn about the impact of location.  We have only been 

able to determine that events which require certain locations, such as lectures, do have 

an influence on incidence.  This prevented us from being able to run scenarios where 

specific locations (other than halls of residences) were closed.  There is substantial 

future work that could be progressed on this element of the model, and this would be 

most effective if done in conjunction with the progression of the timetabling and event 

scheduling as discussed above. 

 

If locations were to be assigned Cartesian coordinates and then actual distances 

between the mapped, it would be possible to establish accurate travel times between 

locations, and allow for random mixing with other individuals during this.  At present 

the model moves from one event to another using discrete event simulation which, 

whilst acceptable for a proof of concept, does not utilise the full potential of an 

individual-level model. 

 

An individual-level model such as this would be far more effective if we could consider 

with greater granularity the movements of an individual within the model.  As we have 

mentioned before, discrete-event simulation methodology was used to create and 

simulate timetables for each individuals.  However this method leaves certain gaps 

within the timetable for each individual such as the progression between events and 

locations.  Whilst this would likely just result in an increase in background mixing, 

there is the potential that we could identify crossover points within locations or routes 

on campus that could form potential infection hotspots.  We could then refine the 

scenario of closing the campus to close these specific locations and routes. 
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Some initial work was also done on “circles of influence” around an individual which 

would impact their likelihood of infection.  However this was dropped from the model 

as an unnecessary level of detail, albeit one that could still be of use in the future if we 

were ever able to achieve that level of detail within the model.  The worth of this would 

be if a particular location was identified as being a key node in an infection and one 

wished to model the interactions of individuals within that location, focussing on the 

infected individuals. 

 

 

9.3 Expanding the infection 

For the purposes of the model a simple “disease” was used; the ‘Freshers Flu’ which 

has a well-defined progression of infection and recovery.  However there is no reason 

why alternative diseases could not be used within the model.  As the actual infection 

methods are controlled by the disease parameters, this easily allows the model to be 

used for alternative diseases – as was the original intent to create a flexible model.  

The only constraint, at present, is that the diseases follow the SIR pattern.   

 

Additionally for this simulation and its scenarios we assumed that infection 

progression was linear.  An individual became infected for a determined period of time 

and then recovered.  In reality an individual would have varying levels of infectivity 

dependent on their progression and display of symptoms.  Initially they would be 

asymptomatic before becoming fully symptomatic with maximum infectivity.  Whilst we 

allowed a slight variation in behaviour based upon their personality, this did not fully 

reflect the true progression and effect of infection, and the variable rates. 

 

We also assumed that vaccinations had a 100% success rate, and had no variable 

efficacy.  It would be possible to allow a variable success rate for vaccinations in order 

to vary the infection rate per individual even if they were vaccinated.   
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This is not to rule out diseases that have a less predictable infection and recovery 

period, it would simply require further modification to the model to implement the 

disease specific infection model.  Indeed one early discussion looked at potential SIS 

models which may be of interest in a relatively closed and confined population of first-

year students living in hall at university.  However the SIR model with a closed 

population remains the simplest practical infection model to implement and compare 

to. 
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9.4 Personality types 

One of the weakest aspects of the model was assigning types to individuals, which 

were then used to assist in defining their attendance at events (both lectures and social 

events) as well as having a weighting on their recovery time.  These parameters proved 

to have the least impact, potentially because there were the least understood and the 

hardest to quantify. 

 

In the model the parameters were derived from survey data on the lifestyle of students 

at Southampton University in conjunction with data on attendance at evening events.  

These parameters could be improved by far greater data capture. 

 

For example, it would be possible to gather data on attendance at other venues in 

Southampton during the modelled period of Freshers Week.  It would also be possible 

to survey the traffic in halls each night to obtain an accurate view of how many 

students went out, and how many stayed home and “mixed” with the population in 

halls. 

 

It would also be possible to obtain better data on lecture attendance.  For the purpose 

of the model the assumption was made that as we were looking at the period that 

included the first few weeks of lectures it was reasonable to assume that attendance at 

those lectures would be high.  However it would be possible to identify key lectures – 

those with largest capacities and subscriptions – and subsequently collect the data on 

the attendance at these events.   

 

The model output indicated that hall of residence and course had the greatest 

influence on the infection incidence so it is logical that future work should focus more 

specifically on refining the parameters that control those variables to ensure this was 

not the effect of the assumptions made. 

 



Paul Davie  Future Work 

223 

 

  



Paul Davie  Future Work 

224 

 

9.5 Improving the social network 

The novel aspect of this entire modelling process was the use of social networking in 

order to simulate the infection spreading throughout the network.  As the newest part 

of the model, there is definite future work that could be conducted to improve this. 

One simple enhancement would be to better integrate with an existing social network, 

such as Facebook.  For the model, we calculated parameters for “friendship growth” 

and the strength of the links within the network by studying the creation of real-world 

friendships during the Freshers’ period.  Since that work was carried out, Facebook has 

evolved.  It would now be trickier to conduct such analysis by the methods that were 

used before, although not impossible. 

 

However with the phenomenon of social networking has come applications that 

integrate within said networks that would allow for direct data capture (anonymously 

to maintain privacy) and could feed in to a real-time simulation of the designated 

population. 

 

It would therefore be possible to now build an application within Facebook which users 

could “install” and allow us to get a real-time (and still anonymous) growth of the social 

network.  One could even add functionality to allow users to declare themselves “ill” 

and “better” to get better data on the various parameters.   

 

Ultimately it could be possible to transfer the ENTIRE model itself onto an existing 

social network, leaving the running of various vaccination or quarantine scenarios the 

only work to carry out with real-time data.  Having now proved the concept of the 

model it would be a fascinating approach to undertake in order to extend the model to 

the next level of providing accurate and real-time data that can then be analysed 

rapidly. 
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There is still a lot of work that can be done with the model.  If individual-level models 

do continue to become more popular in place of traditional cohort based models then 

then expansion possibilities are only limited by the data available to fuel the individual-

level model. 

 

Social networks and overarching analysis and data warehouses that allow modelling of 

individuals are only going to grow and increase in importance.  This model has 

demonstrated the potential of combining social networking and infection modelling, 

and future work can only build and improve upon this.  
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10 Conclusion 

The aim of this work from the outset was to model influenza outbreaks, with specific 

focus on the seasonal outbreak known as “Freshers’ Flu”, within a first-year university 

population and assess the effect of incorporating a growing network of contacts within 

the population.  The purpose was to create an extensible model utilising social 

networking as a basis for spreading the infection throughout a population, and 

combining a spatial element to aid in the simulation and provide comparison to real-

life. 

 

We began this approach with several unknowns to consider and discover.  The key 

problem to overcome was the lack of data on the formation of a social network.  We 

chose to focus on the first-year population at the university, which provided a base 

population of approximately 5000.  We also assumed that this population was closed 

for ease, otherwise we would have been faced with a real-world equivalent population 

of 25000.  We also limited ourselves to one campus, and its surrounding halls. 

One of the inspirations for this work was the rapid uptake amongst students of the 

online social network of Facebook.  This allowed uses to establish a confirmed 2-way 

“friendship” and form their own social networks.  We used this as a basis to determine 

the parameters of our simulated social network. 

 

We developed an automated collection and filtration system to scan Facebook over the 

course of the Freshers’ period and subsequent week of lectures in order to obtain 

values for friendship growth per student.  From this we observed that growth was 

distributed with Normal distribution, with a small percentage of individuals having 

significantly more friends than others whilst had less.  This allowed us to calculate a 

normally distributed mean and standard deviation for friendship growth over the 

Freshers’ period which we then incorporated within our model to simulate growth and 

development of a social network for each individual within the model.  We were able to 

collect data over a period of three years for approximately 1500 individuals, a 
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cumulative total of 4500, which provided a consistent basis to model a simulation 

population of 5000. 

 

Another problem that was faced was how to accurately simulate the behaviour of 5000 

individuals for a prolonged and varied period of time as each individual would 

ultimately have their own unique schedule of events to carry out within the model.  We 

settled on utilising Discrete Event Simulation techniques for this, which led to the issue 

of obtaining enough data to population the simulation in this fashion. 

 

Fortuitously our choice of the first-year university population at the beginning of the 

academic year resulted in a comparatively regimented timetable, for which a great deal 

of data was available.  Moreover the timetable was broadly consistent over a range of 

years, which helped justify the social network data that we had collected over the same 

period. 

 

The initial aspiration for the level of individual level modelling that we wished to 

achieve ultimately proved beyond the scope of this work.  It was hoped to be able to 

model an individual within the population to the point that we could track their 

physical movements through simulated locations.  Unfortunately due to time and data 

limitations this led us to require creating and solving a timetabling scenario for 

individuals and lectures.  This was beyond the scope of the work, and so we had to 

reduce the level of detail within the simulation for actual locations. 

 

Instead of modelling actual lecture theatres, we simply had lectures occurring in 

locations that were suitable for them – i.e. they were suitable size, and only the one 

lecture would occur at a time. 

 

Fortunately we were still able to include potentially more interesting locations such as 

halls of residences.  Data was available on the capacities of these, and we randomly 

distributed the population through these upon model initialisation.  This then allowed 
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us to consider scenarios where individual halls could be closed, or simply closing the 

university campus and confining (quarantining) individuals within their own halls. 

Ultimately our results showed that incidence had a higher correlation with the activity 

occurring, rather than the actual location as such.  Excluding our extreme scenarios of 

high infection rates or high vaccination rates, the incidence results per day generally 

exhibited two distinct peaks in incidence during the simulation. 

 

One peak, which was the lower of the two, occurred within the first week of the 

simulation, prior to the commencement of the lecture section of each individual’s 

timetable.  At this stage within the model run (and this remained consistent across the 

replications that were run for each scenario) the social networks of each individual 

were primarily made up of individuals that they were connected to by hall, people they 

lived with.  The effects of encountering individuals at events and communal social 

areas such as meal times were limited in comparison. 

 

Events (as in activities with high capacities rather than what we define as an event of 

the model) contributed a higher percentage to incidence than meal locations.  This was 

not entirely unexpected as the density of individuals encountered at social events 

compared to meal events was in general significantly due to the event capacities.  

Furthermore, those events occurred over a longer period of time (with more people) 

allowing for increased likelihood of infection. 

 

It is possible that the model understated the impact and risk of infection at these 

events.  However, it would also seem more likely that an individual has a greater 

chance of being infected from people that they are directly in contact with on a regular 

basis rather than what was essential random mixing based upon attending the same 

event.  The development of the social network for each individual did support this, 

although again there is no way of fully assessing how viable this is.   
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Our initial data capture and analysis was unable to fully establish the reason for the 

formation of friendships, so we were forced to correlate this with the known schedule 

of activities that were occurring.  Also, friendships that were observed on Facebook 

might have been shifted in time.  For a friendship to exist, both individuals (nodes 

within the network) must “accept” the connection to each other.  This could have led to 

a contact occurring before the actual friendship occurred.  This risk was somewhat 

mitigated by consideration of the fact that for our model individuals started without an 

existing social network – an assumption made possible by the setting of starting at 

university.  As our simulation time commenced from the beginning of this period in 

time, which coincided with our data collection, even if time-shifting occurred our 

simulation would be equivalent to observed data.  Moreover, there were no prior 

events to our simulation to consider, as we defined our initial index cases as being 

infected for the first time upon model initialisation. 

 

The second peak, which in general represented the peak incidence for each scenario, 

occurred in the middle of week 2 of the simulation.  This was after several days of 

lectures and the growth of each individual social network as a consequence of this.  

Comparing the size of networks pre and post the start of lectures, the impact of this 

was clear.  The contacts made as a result of the degree course contributed the most, 

overall, to incidence within the population. 

 

Unfortunately this was both simultaneously useful and unhelpful.  Whilst it aided 

validation of our aim of enhancing an epidemiological model with social networking 

concepts, it also made a real-life solution to an epidemic harder more abstract.   

Our model, and scenarios, showed that lectures had the greatest impact upon 

incidence overall.  However vaccination scenarios for large degree courses had 

negligible impact compared to simply vaccinating an equivalent proportion of the 

overall population, which would be easier to actually implement.  Moreover, the 

existing epidemic response strategy of closing campus proved to be the most effect 

solution to containing an epidemic.   
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As stated, this has both positive and negative impact.  We have shown that an existing 

response is indeed a valid and effective one which also helps validate the results of the 

model output.   However, due to the data requirements of an individual-level based 

model, unfortunately the useful practicality of the model are somewhat less if it simply 

confirms an existing strategy that could be tested via conventional SIR modelling 

techniques. 

 

The more intriguing scenario of targeting an individual who could act as a vector of 

infection across the population due to be highly connected to a significant proportion 

of the population did prove interesting. 

 

Although in this scenario is hard to relate to the real world, it was interesting to 

observe the impact that highly-connected (or “popular” individuals) within the network 

had.  We considered both the infection and vaccination scenarios for these individuals.   

Vaccination was of minimal impact, which to an extent is helpful as targeting such 

individuals in real-life would be problematic.  Even in our simulation we randomly 

created such popular individuals; there is no practical way of identifying such people 

until after the formation of their social network, which is counter-productive as it is the 

very formation that allows infection to spread. 

 

However, the infection scenario for these individuals did prove to be of greater 

interest.  Compared to a higher infection rate, the highly connected individuals were 

not as great a risk.  However, they still led to a significant increase in overall incidence 

within the model. 

 

Interestingly, this scenario also led to incidence results which were more typical of an 

SIR model, a standard increase and decline over time.  The double-peak that we had 

observed in other scenarios was essentially smoothed out, although there was still a 

slight variation in incidence which would appear likely due to the commencement of 

lectures. 
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This scenario does, however, help lend credence to the accepted response of 

quarantine.  By containing individuals who have the potential to form large social 

networks, the overall incidence would be reduced and an outbreak aborted. 

 

Comparison to a standard compartmental SIR model, as well as a review of literature, 

led us expecting a range of outcomes.  The earlier review of literature demonstrated 

that individual models were a useful indicator of the outbreak of an epidemic, but 

could easily over- or under- estimate such an outbreak when compared to a 

compartmental approach. 

 

The results of this work mirror those previous conclusions.  In direct comparison to a 

compartmental model, the proposed model produced a smaller outbreak that occurred 

later.  However, as with previous works, it is more than likely that this is due to the 

assumptions, variations and idiosyncrasies of the particular model and how individuals 

within it interact. 

 

In particular, the evolving social network is likely to be the limiting factor on epidemic 

spread within this model as the disease parameters themselves are based on research 

and used extensively by others.   

 

We have seen from literature that an online social network (such as Facebook) does 

provide an excellent approximation of real-world contacts and can be viewed as a good 

basis for simulation.  However there are no works studying the evolvement of such 

networks, particularly in the unique case studied within this work. 

 

Whilst we model such a network, and its growth, which should better reflect reality, 

does this have a beneficial impact on the model?  Has making the model a better 

relation to reality actually reduced its efficacy in predicting an outbreak? 
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The average disease incidence for our default model was approximately 52% of the 

population within 2 weeks.  This is perhaps higher than we would expect based on an 

infection rate of just 0.03 with a population of 5000.  If we consider the average 

number of friends per individual within the model of 125, this would in theory mean 

than an infected person could be expected to infect 3.75 other people whom they 

come in to contact per day, assuming consistent contacts.  If we observe the values of 

prevalence for the default model, the actual prevalence (a peak of 1853) does perhaps 

seem a little high. 

 

However the social network built within the model allowed for weighting of contacts 

based upon their “type” such as whether they were lecture contacts or hall contacts.  

The average number of events per day, during lectures, was typically 5 which would 

allow for increased contact opportunities, particularly within individuals on the same 

course. 

 

As stated before, we were unable to fully model locations within the model to the 

extent that had been originally aspired to.  However the assumptions that were made 

on this aspect of the model do not appear to have unduly diminished the accuracy and 

outcomes of the model.  Of key importance was the ability to assign individuals to 

specific halls, which helped to demonstrate how an infection could initially spread in a 

comparatively closed location population. 

 

Whilst we were not able to model lecture theatres and other locations to the degree 

that was originally envisaged, it ultimately resulted in very little detriment to the 

model.  It would appear that WHAT people do and WHO they do it with is generally 

more important than WHERE they do it.  This is encouraging for the development of a 

social network based epidemiology model where one could potentially disregard 

potentially time-consuming location aspects and focus on providing greater detail to 

our events. 
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Our results showed that events, population density at these events and the contacts 

encountered had a large impact.  Given the majority of events would have a 

comparatively low capacity (an average of 263) it seems likely that in fact being able to 

isolate these areas would have had little practical consequence in trying to prevent or 

limit an epidemic outbreak. 

 

However there was evidence that background infection rates based upon the number 

of infected individuals at an event who were not connected to the social networks of 

others did contribute towards overall incidence. 

 

There is still considerable future work and improvements that could be conducted and 

implemented with the model.  The most beneficial would be to enhance the infection 

aspect of the model to closer simulate real world behaviour.   By adding consideration 

for asymptomatic and symptomatic infection, and incorporating this more closely with 

an individual’s event schedule it should be possible to refine the results.  That could 

potentially affect the results for incidence which we suspect might be slightly higher 

than would be expected for the scenarios we have conducted. 

 

The full power of an individual level modelling approach was not used within this 

model.  Although we incorporated data on population demographics, little usage of 

gender or country of origin was made.  Whilst it does not seem likely that these would 

contribute to a significant alteration in the observed incidence rates, it would be 

beneficial to be able to consider the population in cohorts of equivalent size to halls of 

residence but with different parameters.  An example of this would be country of 

origin, which could potentially affect social networks if individuals only connect 

primarily with others from the same country as them.  As country of origin 

encompasses a larger proportion of the population than specific degree courses this 

could be interesting future work to examine. 
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Overall the model worked; the social network aspect had a definitive impact on 

incidence and produced results that were consistent with expectation but also 

revealing some interesting trends in incidence.  A key discovery was the unexpected 

double-peak of incidence which would appear to be as a direct result of the social 

network and, to an extent, the event schedules we define for individuals within the 

population.  Incidence might have been larger than anticipated, but with little 

equivalent individual-level modelling approaches under the same circumstances to 

compare too, it is impossible to fully assess this.  However, even if incidence was 

greater than one would expect, it was by no means excessively greater or lower and 

may actually reflect actual reality. 

 

Whilst it was disappointing that work on the spatial aspect was curtailed due to 

constraints, this ultimately appears to have had little impact on the overall model 

outcome.   

 

The data was one limit on the model, but this was expected from the outset due to the 

well-known high data requirements for individual level modelling.  Ultimately we were 

able to maintain reasonable data requirements by making several assertions and 

adapting the model to prioritise the social network aspect rather than other planned 

areas which ultimately were too time consuming or the benefits less obvious. 

There is much future work that could be carried out on this model, from both an 

epidemiological and a social perspective.  Future work may be most productive if 

focussed on extending the social networking capabilities into a real-time model of the 

student population at a university or similar environment and a wider focus on 

obtaining real-world data on the spread of flu in such a population so as to compare 

the model output with. 

 

Following the review of literature this work set out to study three key areas and 

contribute the results to the ongoing body of work in the area: 

1. Provide another means of automated data collection from Facebook 
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2. Create an agent based model with the following characteristics: 

a. An agent’s individual network grows and develops over the model 

runtime rather than being instantiated as a static network 

b. The individual networks growth will be determined by 

demographics, activity and location 

c. An agent’s behaviour is determined by individual event schedules 

which are unique to the individual 

d. An agents behaviour varies dynamically depending on the 

progression of infection 

3. Assess the validity of such a model against a standard SIR 

compartmental model 

 

We have achieved (1) through automating a targeted such of Facebook.  Since that 

work has been done, other studies (mainly by Catanese) have been conducted focusing 

on over social networks and data harvesting.  These are similar to ours, but not 

targeted or focused on looking at the evolution of a social network over time 

(particularly in the unique micro-environment we studied). 

 

The model was created, with its novel function of (2a) creating a developing social 

network over time.  This was achieved through (2b) assessing the states for friendship 

creation, and (2c) generating event schedules for each individual within the network.  

In turn this led to (2d) although perhaps more subjectively and with weaker 

assumptions than may be wished for.   

 

The evolving network remains the primary new piece of work conducted in this study.  

It does present some interesting questions, such as is contact tracing a valid approach 

in epidemiology in every situation?  We have achieved a reasonable re-creation of real-

world friendships but seen this limits an epidemic.  Would a real-life epidemic be 

constrained by the lack of a formalized friendship relationship?  The answer is unlikely. 
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During use of the model we achieved (3), comparing it to a standard SIR 

compartmental model.  Unfortunately, as with other modelling works, the results of 

this were inconclusive.  The model certainly did not indicate a virulent epidemic, but 

was also lower, and slower, than the compartmental one.  With a lack of knowledge on 

an actual Freshers’ flu outbreak, this work is ultimately inconclusive on its merits. 
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11 Further Reflections  

 

The purpose of this section is to reflect and review the overall work of this study.  

Many years have passed since the work began, and a range of technological and 

societal changes have occurred in that time which have a direct impact on the research 

conducted.  This section endeavours to apply a retrospective view to the initially 

proposed model and work, clarify research objectives and explain the potential 

contribution to literature.  The world today is a very different place, especially within 

the society and population of a university environment, and research in this and 

related areas has been constantly ongoing.   

 

Here we consider some of the latest additions to literature in the related areas of data 

collection from online social networks, created individual-level epidemic social network 

models and providing useful strategies for epidemic control or prevention within 

educational institutions. 

 

Looking at the developments that have occurred will allow us to consider what, with 

hindsight, could have been done differently with this research and what has been 

learnt from the work carried out. 

 

11.1 Changes in Technology & Society 

Since this work was first proposed and initiated, society has changed both 

sociologically and technologically.  During this time there has been considerable 

progress, development and change in individual’s usage of the internet, particular with 

regards to social networking, as well as constant evolution in the hardware used for 

this.  Concepts which seemed novel, and perhaps taboo, nearly 10 years ago are now 

accepted in everyday life – particular amongst the next generations of the population. 

Computer power too has increased, with the average mobile device carried by most of 

the population possessing more power than some desktop PCs had over a decade ago.  

This has led to improved processing power available for model run-time as well as data 

collection and analysis. 

 

This study set out to create a social network based individual level model of an 

infectious disease, specifically the seasonal flu, the so-called “freshers’ flu” within a 

university environment.  The aim was to demonstrate the superior nature of such a 

model compared to traditional compartmental models and in turn provide practical 

answers to epidemic outbreaks within a university. 
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11.2 Research Questions 

Whilst perhaps not clearly stated earlier, the key research questions that this work set 

out to answer were: 

 

• Is it better to use individual based models or cohort based models when 

modelling infectious diseases using a social network?    

 

As stated before, cohort (or compartmental models) have existed and been used for 

nearly 100 years, with the ubiquitous SIR model (Kermack & McKendrick, 1927) still 

being used to this day to model infectious disease.  The hope was to demonstrate the 

power of an individual level model in conjunction with a social network so as to better 

simulate the real-world contacts and interactions between individuals within the target 

population. 

 

• How can the challenges of social network data collection be overcome, given the 

increasing number of online networks and greater privacy concerns? 

 

At the time of the initial development of this work, social networking in the 

mainstream sense had only existed for a few years.  It presented a vast opportunity for 

data collection at an individual level without the effort of manual surveys.  Indeed 

some existing work pointed to the improved results from such approaches in accurate 

and reliable data. 

 

• Do the data challenges of a social networking model render it unhelpful when 

applied to a quickly progressing infection such as seasonal flu?  In which situations is 

the model suitable?  

 

As stated above, social networks present a vast opportunity for data collection.  

Perhaps this opportunity is too much, with the effort required to collect such data and 

cleanse it detrimental to the overall outcome.  Moreover as social networks have 

developed, and society itself evolved, are there now better approaches to use? 

When this work was first proposed there was also no differential between using the 

model to help with a real-time epidemic as opposed to examining different scenarios in 

a theoretical context so as to advise on strategies that should be implemented in the 

event of an outbreak. 

 

Revisiting the work, it is clear now that this distinction was required, given the impact 

data collection and analysis has on the time-scales involved for use of the model.  As 

we discuss later in this section, there is also now a large volume of work focusing on 
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real-time reactive modelling of disease outbreaks, primarily using Twitter and other 

real-time surveillance, to control an epidemic.  Whilst this may not have been clear at 

the onset of this work, it is now far clearer that the aim of the work should be to focus 

on proactive advance planning in the case of an outbreak, rather than real-time 

response.  Whilst the improved contact tracing potential of the model could be used, 

Facebook is less agile and immediate than Twitter for this purpose, as we detail later in 

this work. 

 

• How useful is an integrated social network disease model in providing practical 

recommendations to minimise the impact of seasonal flu within a university 

environment?  

 

This represented the real-world application of the model. Freshers’ flu was, and is, a 

known issue within the university environment.  Additionally the global concern of an 

overdue worldwide influenza outbreak remains, and the diverse but closed nature of 

the university population makes it (along with other educational establishments) at 

significant risk to an outbreak.  Effective strategies to control, vaccinate and manage a 

potential epidemic are still critical. 

 

• Overall, is it possible to create an individual-level social network SIR model to 

simulate the spread of Fresher’s flu within a university environment and test strategies 

for prevention and containment of an epidemic? 

 

This question aims to encapsulate all of the above questions as the overall aim of the 

work in this study.  To summarise, an individual-level SIR-based model of a flu 

epidemic was created, with the simulated population demographics drawn from real-

world data on the first-year population of the University of Southampton.  Analysis of 

data collected from Facebook allowed for the development of each individual’s own 

friendship network within the model, simulating equivalent real world contacts.  This 

did require a range of assumptions and simplifications to be made, which are 

discussed previously in this work, and perhaps indicate the scale of the task. 

 In reflection this question is perhaps too encompassing; the data collection and 

privacy issues alone are, as detailed below, significant before one even considers 

applying a social network model to an SIR infection model and running it over a range 

of scenarios.    

 

The computational demands of this should not be underestimated, even with current 

computing power, due to the DES nature of the individual timetable that requires 

modelling and evaluating for each member of the simulated population.  It transpired 
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that although programmatically the demands were not arduous, the model run-time 

was significant. 

 

11.3 Changing trends of social media 

In the beginning part of the 21st century, mobile devices were still new.  Even when 

this work commenced, so-called “smartphones” had yet to truly penetrate the mass-

market.  Indeed, the now ubiquitous iPhone and assorted sphere of devices did not 

launch until 2007 and took several years to establish market dominance.   

Although our target social network of choice, Facebook, launched in 2004 it too 

needed time to establish dominance in the social network “marketplace.”  Smartphone 

devices have helped to reduce the barrier of access to online social networks, with the 

most popular – generally held as Facebook and Twitter in the Western world – now 

coming pre-loaded on such devices.  Indeed, having a profile on these networks is now 

as expected within the population as having an email address or phone number. 

 

This social change could easily be the subject of an entire discourse of its own.  

However in relation to the earlier work described here, the key points remain the 

dominance of Facebook and the stability in use and size it has achieved (Nuthall & 

Gelles, 2010).  Its nearest competitor, Twitter, has stabilised as well but focuses on a 

different market as such.  Again, it is increasingly common for an individual to have 

profiles on both networks, albeit with different purposes. 

 

This widespread adoption is maintained by the up and coming generations, specifically 

those coming to university in the 18-21 age range.  This is not to say that other social 

networks, or communications means, have not been created and permeated that target 

audience.  Social networks, or “apps”, such as Instagram and Snapchat have gained 

prominence within that age range. However their focus is predominantly on messaging 

(or “chatting” if you will) rather than established a social network in the traditional 

sense.  Indeed, some of these new systems central tenet is to work to NOT create a 

network, destroying content shortly after it is created (or messaged depending on the 

context). 

 

Facebook remains, however, a popular network.  However its usage has changed as it 

has become accepted into mainstream everyday life.  When this work initially began we 

made reference and comment to the challenges of establishing “real” data from the 

network.  Occurrences of fake “marriage” or “relationships” were common; today this is 

less the case with real-world data being the norm and little mock data being found.  

This has in turn led to a greater focus on personal data privacy and concern over what 

data about an individual is shared on the network.  This concern is only exacerbated by 
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Facebook’s desire to improve profitability by making its information ever more 

accessible to the world, whilst complying with increasingly stringent global data 

protection laws.  

 

11.4 Data collection from online social networks 

Aimeur & Lafond (2013) considered the “scourge of internet personal data collection” 

and looked at the challenges this presents.  Now, more than ever before, it is a case of 

quality over quantity (Morosov, 2011) with the widespread adoption and usage of 

social networks generating so much data that finding high-quality data sources is an 

increasing struggle. 

 

There also now exists the challenge of conducting such research ethically.  In the past, 

anonymising such data (once collected) was comparatively trivial.  Now, however, given 

the depth of data available it has been demonstrated that it is comparably simple to 

undo the anonymous data by mapping it to existing available real-world data.  

Narayanan & Shmatikov (2009) detail this, and demonstrate the potential peril of 

believing such data is anonymous.  It should be noted however that their study focused 

more on individuals attempting to remain anonymous online, rather than the forced 

application of anonymity to collected data. 

 

Patriquin (2007) also demonstrated the overlap in profiles of different social networks 

(for example Twitter and Facebook) and suggested an equivalence in the resultant 

networks on the different medium. 

 

Muscanell & Guadagno (2014) examined the impact of gender on social networking 

usage, looking specifically at Facebook and a university undergraduate population.  

Their studies showed that gender does have an impact on the usage and information 

of a Facebook profile, whereas previously this impact was negligible.  Women used 

Facebook for maintaining relationships (where relationships are viewed as the links 

between two individuals) but men used it for the creation of relationships.   

 

Although this study looked at only a small sample, 238, people, the results do suggest 

potential issues with the accuracy of data previously gathered from Facebook.  

Potentially the number of new friends was under-represented for female users (who 

represent over 50% of the University of Southampton student population) and also 

over-represented for male users.  However a corollary to this was shown by Smith 

(2009) who saw that although Facebook numbers are increasing, the biggest increase 

(in usage as well as registration) was amongst women aged 50+, and suggested that 

the gender bias may have been embedded since the beginning of Facebook, and also 
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closely resembles real life relationships.  Unfortunately given Facebook relationships 

are, ultimately, just links on a network this is perhaps less than helpful.  

 

Tong et al (2008) demonstrated an additional issue with the popularity of Facebook, 

where some users can have hundreds of “friends.”  These users were shown to have a 

negative impact on the network, with those that have a lower (or closer to average) 

number viewed as more acceptable friends and thus, ironically, more likely to gain 

friends. Whether this behaviour would hold within the scenario of Freshers’ week 

where people met new acquaintances for the first time at the start of a potential 3+ 

year relationship is unknown. 

 

A study by Kramer & Winter (2008) showed support for our assumption of “extrovert” 

and “introvert” personality (or loud and quiet) and their impact on Facebook networks.  

However the caveat to this was that the extrovert personalities are now (with current 

privacy options) more likely to have their data and profile accessible than the introvert 

type.  This suggests the risk that data gathered from Facebook now could be biased 

towards the extrovert type, and marginalise others.  Given the assumptions of their 

impact on the proposed model, this is concerning. 

 

Despite the concerns that have appeared with regards to Facebook data, and that did 

not exist at the beginning of this research, Facebook still remains a valuable data 

collection tool (Casler et al, 2013,  Guadagano et al, 2013). 

 

Wilson, Gosling & Graham (2012) conducted one of the larger studies into use of 

Facebook data in research, concluding that there is no one “right” data collection 

technique suitable for Facebook.  In part this is due to the constant development of 

Facebook, whose API changes on a regular basis.  In current political climates the 

resultant changes tend to result in less user data availability compared to that of pages 

which is problematic for this study.  Due to this, they stated that survey, self-reporting 

and manual capture of data are increasingly the best methods of accessing data from 

Facebook, although with the trade-off of a smaller dataset for the effort invested.  

There remains also the risk that self-generated data is biased (Hargatti, 2007). 

 

Guadagano et al (2013 argued that automated data collection – in a similar manner to 

this study’s own presented method – remain underutilised and should be investigated 

further.  They developed a “Facebook History Collector” to further this.  The concepts 

for this are remarkably similar to own our work, analysing the underlying HTML 

structure of Facebook pages in order to discern the relevant data.  It is reassuring to 

note that nearly 10 years later, this technique is still viewed as under-utilised but also 
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still viable.  Indeed Guadagano et al also make comment to the practical difficulties of 

such data capture due to ongoing Facebook development, a challenge this work itself 

was confronted with. 

 

Our proposed model relied upon collection of Facebook data; this was shown at the 

time to be a complex exercise in data collection, although the data did have a high 

degree of comparable accuracy to real-world social networks.  However, looking at the 

present societal development, and Facebook itself, we can see that the data collection 

challenges of Facebook remain the same (if not worse), and the data itself has 

potentially grown distant or certainly less representative of the population.  Despite 

the popularity of Facebook, it remains unwieldy. 

 

11.4.1 Twitter, not Facebook 

Since the launch of Facebook, a rival service of Twitter has emerged.  Although this 

focuses on “microblogging”, messages that are limited to 140 characters in length, it 

has become increasingly popular.  In line with this, research has also been invested in 

the usage of Twitter data for modelling with numerous studies done (Janset et al, 

2009; Laorsa et al, 2012; Thelwall et al, 2011; Walton & Rice, 2012).  It appears also 

that Twitter data is in theory easier to access and manipulate, whilst still giving an 

acceptable model of real-world social networks (Cantrell & Lupinacci, 2007; Davenport 

et al, 2014). 

 

As ever, there is a caveat to this.  Although Twitter data is more accessible via it’s API, 

it’s use as a social network as required by our model is different.  For the proposed 

model we required a “friendship growth coefficient” to create an evolving social 

network.  This was achieved via Facebook data because of the requirement of a 1-to-1 

relationship between individuals that both parties had to accept.  On Twitter, many-to-

one relationships are more common (defined as “followers”).  It is possible for one 

person to follow another, without a corresponding follow from the other.  This is not a 

fault of Twitter, but a design feature.  In practice close friends do have reciprocal 

follows, but this is not guaranteed (Grieve et al, 2014; Hughes et al, 2012). 

Twitter has been used extensively for real-time event monitoring, via searching for 

specific hashtags or phrases in tweets (Signori et al, 2011; O’Connor et al, 2013; 

Padmanabhan et al, 2014; Verladi et al, 2014).  This has shown great promise for real-

time reactiveness to an epidemic outbreak, particular when combined with geotagging 

data (where a user specifies their tweet/post location via GPS) in order to provide a 

geographic map of an outbreak. 
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Sadilek et al (2012) present an interesting investigation into this, modelling the spread 

of an epidemic via social interactions.  This is analogous to this researches proposal, 

however the Sadilek method works in real-time (or near to) and is therefore reactive 

compared to our proposed proactive model.  Ginsberg et al (2009) conducted similar 

work but utilised conventional search engines to seek key phrases (such as “got the 

flu”).  Both of these works built upon previous work previously discussed by Eubank et 

al (2004) in modelling diseases by building social networks.   There have been 

numerous studies in this area (Ritterman et al, 2009; Lampos et al, 2010; Signori et al, 

2011; Krieck et al, 2011; Sadilek et al, 2012) with influenza (flu) a frequent topic of 

study. 

 

This indicates a keen interest by the research community as a whole into social 

networking and epidemic spread.  However this work appears to have been focussed 

on real-time analysis via Twitter and is by its nature reactive.  Even studies which work 

on flu, and form comparable models to our proposed one, rely on real-time 

information.  Such models typically concern themselves with tracking the geographic 

location of an outbreak and therefore containment, as opposed to prevention, 

vaccination and treatment via targeting key vectors within a population.  Although they 

utilise social networks, the definition is vague; our model generates an evolving social 

network whereas they sample existing real-world ones, and due to reliance on key 

words are only ever seeing a small sample.  Due to the restraints of Twitter, these 

cannot be considered true social networks representing relationships due to the non-

requirement of 1-to-1 confirmation of a relationship. 

 

11.5 Control strategies in academic environments 

That said, there has been some work focussed on examining control strategies within 

academic environments, considering targeting closures or overall closures.  Gemmetto 

et al (2014) conducted one such study in a school environment, focusing on flu, and 

simulating an SEIR model. 

 

Their approach is interesting in the fact that it generated a physical contact network, 

using sensors worn by the students at the school to generate a model.  This in turn led 

to a social network being formed, by considering length of contact when correlated 

with time & location; for example a lecture or eating in the café.  This is analogous to 

our work on aligning event timetables with social networks; the conclusion of 

Gemmetto et al was that individuals had increased contact with similar individuals, i.e. 

those in the same lecture, than through random contact, or similar demographics 

(age/gender/home location).  This looks to reinforce and confirm the assumptions in 

our model, but with actual physical data. 
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The results of the study suggested that targeted “closure” (either vaccination or 

containment) was the optimal account in terms of resource allocation and long-term 

impact.  The broader “close the school” approach was, as one would imagine, also 

effective but blunt.  Targeting individuals was of limited impact, primarily due to the 

model not identifying high-contact individuals (those with lots of friends) combined 

with the infective rate of flu and the limited data collected on when an individual was 

infected.  The results were also deemed specific to the school studied, and should not 

be used on a larger scale without increased data. 

 

Hadjichrysanthou & Sharkey (2015) consider intervention strategies using an SIS 

individual-level model where individuals are ranked by their impact and importance on 

infectivity.  These individuals are then targeted for treatment or containment.  This 

differs to the approach of Bargatti (2005), Sharkey (2008) and Keeling & Shattock 

(2012) which used centrality measures or ranking to target individuals in a comparable 

individual-level SIR or SIS model.  The underlying equations used for the individual-

level SIR model are similar, or equivalent, to the ones we utilised in this research. 

 

Their work also suggested that as well as the importance of key individuals within the 

model, the nature of the links between individuals was also important, and suggested 

that targeting such links could be more effective than targeting the highly connected 

individuals.  Similar conclusions are shown by Starnini (2013) and Taylor et al (2012).   

 

This is similar the outcome of this work examining the best strategies for minimising 

flu impact, considering whether to target key individuals or events that the population 

are involved in. Maharaj & Kleczkowski (2012) further support this, but with the caveat 

that the strategies are only worth implementing if they are going to be utilised fully; 

partial implementation of social distancing (restricting contacts between individuals) 

has mixed results, and when considered against the resources required can be 

detrimental overall. 

 

11.6 Research Questions Revisited 

We consider again the research questions of this work: 

 

• Is it better to use individual based models or cohort based models when 

modelling infectious diseases?    

 

Individual-level models remain better for targeted intervention in an epidemic.  There 

are increasing studies, with an increasing use of data, to target key individuals in an 
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outbreak. More measures of “key” are being created, through definitions of centrality, 

most connected or mobility within a physical space. 

 

Combining a social network with discrete events has been shown to be effective, with 

similar works now being carried out by others.  The links between individuals are now 

being considered more than previously.  If anything it appears that identifying key 

individuals in a network is perhaps an excessive use of resources in the real-world.  

Containment strategies based on the links between people are simpler to use, and 

when combined with monitoring data, quicker to effect. 

 

• How can the challenges of social network data collection be overcome, 

given the increasing number of online networks and greater privacy 

concerns? 
 

• Do the data challenges of a social networking model render it 

unhelpful when applied to a quickly progressing infection such as 

seasonal flu?  
 

These two above questions are best considered together, as the data collection from 

an online social network is inherently linked to the subsequent data challenges of 

creating, running and applying a social networking epidemic model. 

 

Recent literature has shown that social networking data collection remains a problem; 

Facebook remains an “unpopular” data source due to the inherent difficulties of 

automated data collection from it.  Whilst human-led collection, such as surveys, is a 

viable alternative this requires far greater resources and the results are often 

suspected to be biased. 

 

It seems that Twitter is the most popular social networking data source for researchers 

today.  However, it has typically only been used to monitor and react to outbreaks 

reactively, rather than create models of a population and target key individuals 

proactively.  However given the comparable ease of access to Twitter data, this may be 

a more effective solution for real-world problems.  It is also possible to create social 

networks of relationships from Twitter, although these can be viewed as flawed 

compared to a Facebook-derived network due to the lack of an enforced 1-to-1 

relationship. 

 

• How useful is an integrated social network disease model in providing practical 

recommendations to minimise the impact of seasonal flu within a university 

environment? 
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Several studies have looked at educational environments, and examined various 

scenarios for reducing the impact of a flu outbreak.  Again, there remains a trade-off 

between targeting (and the data requirements) and global closure responses.  Models 

that can effect targeting would appear to be preferred, and it is interesting to note that 

as well as targeting individuals within a network, there is a consensus about targeting 

the links between individuals (such as activities or locations). 

 

 

• Overall, is it possible to create an individual-level social network SIR model to 

simulate the spread of Fresher’s flu within a university environment and test strategies 

for prevention and containment of an epidemic? 

 

Much of the “answer” to this question has been discussed above.  Yes, it is indeed 

possible as this work did create such a model.  Should it be done however?  The 

definitive answer to this is harder to quantify. Certainly there have been lessons learnt 

by carrying out the work, with the later research carried out by others and discussed 

above supporting some of the conclusions and aims of this work.   

 

It is perhaps gratifying to see that some of the negative conclusion – for example the 

struggle of Facebook data collection – have been confronted by others, with little real 

difference in conclusion to this works own.  

 

A grand model such as this is, in hindsight, too much for one study to focus on.  

Several areas of interest have emerged from the work – primarily the collection of data 

from Facebook, and how social networks created from this data closely simulate the 

real-world.   

 

The study of the individual-level model has by now been conducted by others as well 

and demonstrated to be effective, as suspected, but limited by data and assumptions.  

Adding more elements to this type of model, such as the discrete events for each 

individual, and attempting to create a true representation of a real-world social 

network within a university population ultimately over-complicated the model.   

Confusion also over the timescale of model usage limit the use of this work; the 

uncertainty about whether the model should be used in real-time for real-world 

situations, or in advance for scenario planning ultimately hindered focusing on either 

need sufficiently.  Now, at the end, we can say that we have learnt and demonstrated 

that the model should be used for planning rather than live simulation.  Reassuringly, 

given developments in real-time surveillance by other online social networks and 

technology, this is ultimately not necessarily a negative conclusion. 
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11.7 Critical Appraisal 

A dispassionate look at our research shows its weakness for a real-world situation.  

Facebook data is time-consuming to collect and, potentially as society evolves, less 

reliable than before.  Facebook remains under-utilised as a data source (although there 

appear to be many psychological studies underway) and will likely always be, when 

compared to alternatives such as Twitter. 

If anything, this research in hindsight should conclude that its contribution to literature 

is a cautionary tale, of what methods NOT to use.  We acknowledge the strength of 

Facebook data, but confirm the difficulty of collecting it.  The overall model is unwieldy 

and certainly less agile than reactive Twitter based models the likes of which are 

currently being researched and developed.   

 

Combining with an individual-level SIR model remains a novel approach (when using 

Facebook as a source) but the conclusion is that this is a time-consuming, demanding 

approach and perhaps ill-suited to real-world usage.  Integrated social network models 

have been used to look at flu, confirming our original hopes and aims of their use; 

however more agile approaches appear to be better in the real-world. 

 

Notwithstanding the above conclusion, we can also conclude the corollary.  As stated 

earlier, there was confusion during this work on the end usage of the model; a real-

time, real-world, responsive model or a preparatory, proactive, planning model.  We 

state above the real-time aspects should not be pursued.  However, usage as a 

theoretical planning model remains a viable option, especially when this usage 

removes the issue of model run-time and complexity.  

 

If anything, we have seen from research discussed above that real-time models do not 

need to be 100% accurate simulations; a reasonable abstraction is enough to infer 

results about the population from.  As technology, through online social networks and 

mobile devices, increasingly makes real-time surveillance options more expansive and 

representative of the true world population, this accuracy will also improve.  However 

in lieu of this, and when one has the time to indulge in aa detailed model, the 

individual-level approach using a social network can still provide useful conclusions 

and aid the choosing and validating of epidemic control and prevention strategies. 

 

The research appears to remain unique in its overall aims, if not successful in 

developing a new, usable model that can be easily applied to flu prevent in university 

environments.  Individual-level models with social networks are clearly growing in use, 

and increasing research is being released to help standardise these.  Particular 
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application of the SIR individual model is well accepted, and providing relevant data 

can be provided, seems a strong approach. 

 

A key learning point from this work is to be precise in the future needs of the model, 

working out how it could and would actually be used in the real-world. There is 

recognition, too, of the danger of combining too many novel concepts in one package.  

Theoretically the concept appears elegant.  However in practice it is clumsy and results 

in sub-par manifestations of the different theories and disciplines originally espoused.  

The power of online social networks as data sources for improving modelling accuracy 

has clearly been shown repeatedly, but care must be taken in how to apply this 

constructs formed from this data in the real-world to provide meaningful conclusions.  

Clarity of expectation is key, especially with what was initially such an open, under-

researched area of investigation. 

 

If this work was to be started from afresh, the suggestion would be to look at more 

reactive methods of modelling, with a definite focus on Twitter.  This is perhaps a 

narrower field than before with less chance of original work however; several years ago 

this would not have been the case, but in the current age there has been substantial 

work in this area and real-time monitoring for outbreaks via Twitter.  A simpler model, 

with a clear goal of providing real-time responses would be produced with the goal of 

providing accurate information for real-time decision making.  An interesting off-shoot 

of this would be to compare the nature of a model provided by Twitter data to that 

provided by Facebook data, assuming one could demonstrate and overcome the 

inherent directed versus undirected natures of the two systems friendship networks. 

 

Alternatively, one could still use social networking data, provided the expectation was 

for a model that was used to inform decisions in advance of an epidemic, or validate 

them in the aftermath.  The subsequent model should, however, be simplified.  The 

allure of a structured event environment of a university should ultimately be 

disregarded in favour of looking at contacts between individuals.  As other work has 

shown, ultimately specific prevention strategies of “close a lecture theatre” or 

“quarantine a specific programme of study” are too precise to have vast impact on the 

outcome, unless the number of individuals involved is such that it would affect a 

signification portion of the population. 
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