

1 **The genomic bases of morphological divergence and reproductive isolation driven by ecological**
2 **speciation in *Senecio* (Asteraceae)**

3

4 Mark A. Chapman ^{*,§}, Simon J. Hiscock[†] and Dmitry A. Filatov^{*}

5 ^{*} Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, United
6 Kingdom

7 [§] Centre for Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield
8 Campus, Southampton, SO17 1BJ, United Kingdom

9 [†] School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, United
10 Kingdom

11 **Short title: Genomics of ecological speciation**

12 Corresponding author: Dmitry A. Filatov, Department of Plant Sciences, University of Oxford,
13 South Parks Rd, Oxford, OX1 3RB, United Kingdom; E-mail: dmitry.filatov@plants.ox.ac.uk; Tel: +44
14 (0)1865 275051; Fax: +44 (0)1865 275074

15

ABSTRACT

17 Ecological speciation, driven by adaptation to contrasting environments, provides an attractive
18 opportunity to study the formation of distinct species, and the role of selection and genomic
19 divergence in this process. Here we focus on a particularly clear-cut case of ecological speciation
20 to reveal the genomic bases of reproductive isolation and morphological differences between
21 closely related *Senecio* species, whose recent divergence within the last ~200,000 years was likely
22 driven by the uplift of Mt. Etna (Sicily). These species form a hybrid zone, yet remain
23 morphologically and ecologically distinct, despite active gene exchange. Here we report a high-
24 density genetic map of the *Senecio* genome and map hybrid breakdown to one large and several
25 small quantitative trait loci (QTL). Loci under diversifying selection cluster in three 5 cM regions
26 which are characterised by a significant increase in relative (F_{ST}), but not absolute (d_{XY}),
27 interspecific differentiation. They also correspond to some of the regions of greatest marker
28 density, possibly corresponding to 'cold-spots' of recombination, such as centromeres or
29 chromosomal inversions. Morphological QTL for leaf and floral traits overlap these clusters. We
30 also detected three genomic regions with significant transmission ratio distortion (TRD), possibly
31 indicating accumulation of intrinsic genetic incompatibilities between these recently diverged
32 species. One of the TRD regions overlapped with a cluster of high species differentiation, and
33 another overlaps the large QTL for hybrid breakdown, indicating that divergence of these species
34 may have occurred due to a complex interplay of ecological divergence and accumulation of
35 intrinsic genetic incompatibilities.

36

37 **Key words:** Adaptation, Genomic Divergence, Hybrid Breakdown, *Senecio*, Speciation

38

40 Interspecific hybridisation is prevalent in plants (Stebbins, 1959; Stace, 1975; Arnold, 1992;
41 Rieseberg & Carney, 1998), and to a lesser, but not insignificant, degree in animals (Mallet, 2005),
42 such that it appears that many species are able to co-exist with congeners, despite some level of
43 hybridisation. The origin and continued existence of a species in the face of gene flow from others
44 is particularly intriguing to students of evolutionary biology (Coyne & Orr, 2004; Lexer & Widmer,
45 2008; Wolf *et al.*, 2010; Feder *et al.*, 2012).

46 Natural hybrid zones usually comprise two species that produce hybrid offspring with some
47 degree of fertility and fitness but do not become homogenised. Hybrid zones often span an
48 ecological gradient, which has led to the suggestion that selection is dependent on the
49 environment (Endler, 1977), and indeed hybrids might be more fit than parental types in an
50 intermediate habitat (Moore, 1977). In the majority of hybrid zones, however, a narrow region of
51 hybridisation and evidence for reduced fitness of hybrids suggests that these are 'tension zones';
52 maintained by a balance between gene flow into the zone and selection against hybrids (Barton &
53 Hewitt, 1989). Although tension zones do not require any ecological gradient or barrier to be
54 stable, they may coincide with an ecological gradient because the movement of the tension zone
55 can be 'trapped' by an ecological gradient, resulting in a complex interplay of genetic (sub-)species
56 incompatibilities and ecological adaptations to distinct environments in the same hybrid zone
57 (Bierne *et al.*, 2011). Clearly, an understanding of the genomics of species that form hybrid zones
58 will reveal insights into the evolutionary interplay between speciation, reproductive isolation and
59 adaptation (Payseur, 2010).

60 For species that arise without allopatric separation it is predicted that the early events in
61 speciation are restricted to small genomic regions (potentially even single genes) which diverge

62 due to selection (Wu, 2001; Nosil *et al.*, 2009). For example if speciation was driven by ecology,
63 alleles at the ‘speciation loci’ will confer a selective advantage in the species’ home environment
64 (Nosil, 2012), and this could lead to the formation of an environmentally dependent hybrid zone.
65 Under this model, genetic divergence accumulates in these speciation loci because of reduced
66 effective gene flow, which also hampers gene flow at linked loci (a process often called
67 ‘divergence hitch-hiking’, DH; Charlesworth *et al.*, 1997; Via, 2012). The speciation loci are
68 therefore predicted to be found in a region (or regions) of the genome characterised by an
69 increased divergence between species (‘speciation island’; Turner *et al.*, 2005), but theory predicts
70 that such ‘islands’ should not be much larger than ~1cM (Feder & Nosil, 2010).

71 Investigations of hybridising species often demonstrate that interspecific divergence is not
72 homogeneous (Peichel *et al.*, 2001; Yatabe *et al.*, 2007; Nosil *et al.*, 2008; Kane *et al.*, 2009;
73 Kulathinal *et al.*, 2009; Renaut *et al.*, 2012; Roesti *et al.*, 2012; Stölting *et al.*, 2013). If subsequent
74 genetic mapping reveals that these loci cluster, then it is sometimes inferred that these islands are
75 demarcating the region(s) of the genome that harbour the genes that were initially involved in the
76 speciation process (Turner *et al.*, 2005; Nadeau *et al.*, 2012). If the metric used to calculate
77 divergence is a relative measure (e.g. F_{ST}) then some regions of the genome containing clusters of
78 ‘high divergence’ loci may instead be regions of low intra-species diversity and not high absolute
79 divergence (Noor & Bennett, 2009; Cruickshank & Hahn, 2014).

80 To further our understanding of genomic divergence during speciation driven by adaptation to
81 contrasting environments, we took advantage of a particularly attractive study system. The two
82 plant species concerned are *Senecio aethnensis* Jan ex DC., a species endemic to Mt. Etna and only
83 found at altitudes above ca. 2,000 m, and *S. chrysanthemifolius* Poir. a species only found at lower
84 altitudes, less than ca. 1,000 m. The species are morphologically distinct in terms of their leaf
85 dissection and the size of their inflorescences, with *S. aethnensis* having non-dissected leaves and

86 large inflorescences, while leaves in *S. chrysanthemifolius* are highly dissected and inflorescences
87 are smaller (Brennan et al. 2009). The difference in these traits is likely to reflect adaptations to
88 high and low altitudes.

89 Both species are strongly self-incompatible with no pre-zygotic barriers to hybridization (Chapman
90 et al., 2005) bar the presence of shared self-incompatibility alleles between individuals (Brennan
91 et al., 2013). Thus, at intermediate altitudes, extensive hybrid swarms of phenotypically and
92 genotypically variable individuals are found, indicative of on-going gene flow (James & Abbott,
93 2005; Brennan et al., 2009). Although hybrids are locally common in the Mt. Etna hybrid zone,
94 cline analysis reveals both intrinsic and extrinsic selection are acting to maintain the structure of
95 the hybrid zone (Brennan et al., 2009). This study demonstrated that there is selection against
96 hybrid genotypes within the hybrid zone as well as divergent selection acting on aspects of the
97 species' leaf and floral morphology (Brennan et al., 2009). A recently published linkage map from a
98 cross between these species identified significant transmission ratio distortion (TRD) in 27% of 127
99 mapped AFLP and SSR markers (Brennan et al. 2014).

100 *Senecio aethnensis* and *S. chrysanthemifolius* are thought to have diverged very recently
101 (<150,000 years before present) and this divergence took place in the face of gene flow (Chapman
102 et al. 2013; Osborne et al 2013). Based on previous transcriptome sequencing of multiple
103 individuals of both species, divergence between this species pair is heterogeneous across the
104 genome and only a small portion (< 3%) of loci exhibited potential hallmarks of divergent selection
105 (Chapman et al., 2013). To expand upon these findings we were interested in testing if the high
106 divergence 'outliers' form discrete islands of increased differentiation, and if there is overlap
107 between quantitative trait loci (QTL) for morphological species differences and any outlier loci. In
108 our mapping population we also mapped hybrid breakdown, a situation in which a subset of the
109 individuals have reduced fitness due to incompatibilities between the parental genomes (Sweigart

110 & Willis, 2012) which has been reported for other pairs or taxa that have diverged due to
111 ecological factors (e.g. Fuller, 2008; Renaud & Bernatchez, 2011). Our results reveal complex
112 interactions between morphological, genetic and transcriptomic changes associated with species
113 divergence. Taken together, the results are consistent with the notion that divergence of the two
114 *Senecio* species was driven by adaptation to contrasting environments of high and low altitude
115 during the uplift of Mount Etna.

116 MATERIALS AND METHODS

117 For this study an F2 population between *S. aethnensis* and *S. chrysanthemifolius* was generated
118 and a subset of the progeny was randomly selected for transcriptome sequencing. From this
119 sequence data, segregating alleles (single nucleotide polymorphisms, SNPs) were identified and
120 used in the construction of a genetic map. In addition, gene expression was quantified for each
121 individual and compared between the healthy and unhealthy F2s to determine which genes and
122 pathways were significantly affected due to hybrid breakdown. Further information is supplied in
123 Appendix S1.

124 **F2 population generation and sequencing:** An F2 population (*S. aethnensis* x *S.*
125 *chrysanthemifolius*) was generated and grown alongside several individuals of the parental species
126 (see Appendix S1). In total 147 F2 plants were grown, 64 of which were selected for RNA-seq
127 analysis. F2 hybrid breakdown was observed in this cross, with 69 plants developing signs of
128 necrosis or stunted growth (collectively termed 'necrotic'; Fig. 1 A-D) and 78 healthy plants (Fig. 1
129 E-F). The 64 sequenced plants comprised 48 healthy and 16 necrotic F2s and apart from this
130 designation were selected randomly. RNA was extracted from leaf tissue of 3 week old seedlings
131 using an RNeasy kit (Qiagen, Manchester, UK) with additional DNase treatment (Qiagen). From
132 each an individual RNA-seq library was constructed, which were then run (as a multiplex) across

133 two lanes of a HiSeq2000 at the Wellcome Trust Centre for Human Genetics. Reads have been
134 submitted to the Short Read Archive (www.ncbi.nlm.nih.gov/sra) under BioProject PRJNA270017.

135 **Sequence Data:** Reads were trimmed and filtered and then mapped back onto the reference
136 transcriptome constructed in Chapman *et al.* (2013) using CLC Genomics Workbench (CLC-GW;
137 ver. 5; <http://www.clcbio.com>). Mapping was carried out with the following settings: mismatch
138 cost 3, insertion cost 3, deletion cost 3, minimum identity 0.95. Reads from the two parental
139 individuals were also mapped back. Mappings were exported as bam files, parsed through
140 *SAMtools* (Li *et al.*, 2009) with settings: minimum base quality 20, minimum mapping quality 5,
141 minimum read depth 5, to convert to fasta files, and aligned in Proseq (Filatov, 2009).

142 Expression analysis was carried out in CLC-GW with the following settings: maximum number of
143 mismatches 2, minimum length fraction 0.8, minimum similarity fraction 0.9, maximum number of
144 hits for a read 10. The number of reads mapped per transcript was converted to RPKM (Mortazavi
145 *et al.*, 2008; Reads per kilobase per million mapped reads; i.e. standardised to the length of the
146 transcript and depth of sequencing; Appendix S1). Loci with significant differential expression
147 were identified by carrying out locus-by-locus *t*-tests and applying a 5% FDR.

148 **Linkage Mapping:** Because we were interested in the genomic distribution of outlier loci relative
149 to non-outliers (see also 'QTL mapping', below) we did not seek to map as many loci as possible
150 from the cross, and instead focussed on the loci with the highest quality reliable genotypic
151 information. We used the following criteria: (1) Parental individuals must be homozygous for
152 different alleles at all SNPs within a locus, (2) At least five SNPs must differentiate the parental
153 alleles, and (3) All 64 F2 individuals must have a genotype (see Appendix S1). Loci with > 15%
154 missing data were removed leaving 966 loci, 112 of which were previously identified (Chapman *et*
155 *al.*, 2013) as high or low differentiation outlier loci. Mapping was carried out in MapDisto (Lorieux,

156 2012), initially grouping the markers using a LOD (logarithm of odds) of 10 and an RF
157 (recombination frequency) of 0.2, unlinked loci were removed, and map orders were then
158 compared using 'order' and 'ripple' using the *seriation II* algorithm and *Sum of Adjacent*
159 *Recombination Frequencies* criteria. The linkage map has been uploaded to Dryad
160 (<http://datadryad.org>) under doi:10.5061/dryad.gb6g6.

161 Although a small subset of markers exhibited TRD (i.e. significant χ^2 test based on expected 1:2:1
162 genotype ratios) these markers were not removed (TRD has been reported in another cross
163 between these species; Brennan *et al.* 2014) and instead we checked that these deviations were
164 not a result of marker scoring errors. DNAs extracted from the two parental individuals and/or a
165 subset of 16 F2 individuals were PCR amplified and Sanger-sequenced or genotyped at the
166 particular loci to ensure that the observed segregation distortion was not an artefact of non-
167 homozygous parental genotypes or biased allelic expression in the F2 (Appendix S1).

168 **Genome-wide analysis of polymorphism and divergence:** To investigate polymorphism and
169 divergence along LGs we plotted genetic differentiation (F_{ST} and d_{XY}) and nucleotide diversity (per
170 species per nucleotide π) from the 20 transcriptome data in Chapman *et al.* (2013), as well as
171 calculated a moving average for these statistics based on a bin size of 10 cM and a step of 5 cM.

172 **QTL mapping:** All healthy F2 plants and several individuals of the parental species were
173 phenotyped for a number of characters that differentiate the parental species (Table 1). Traits
174 were measured on the day of anthesis of the first capitulum. Capitulum and floret traits were
175 measured on the first capitulum. Leaf traits were measured from scanned images of the mid-stem
176 leaf using ImageJ (Rasband, 1997-2013). Traits that deviated from normality in the F2 population
177 (indicated in Table 1) were square-root transformed prior to QTL analysis. QTL analysis was carried
178 out in Windows QTL Cartographer (Wang *et al.*, 2005) after reducing the genotypes to only loci

179 that mapped to unique positions (i.e. where more than one locus mapped to the same position
180 redundant loci were removed), and only including morphological phenotypes for the 48 healthy
181 plants. Morphological traits were mapped using Composite Interval Mapping (CIM) and healthy vs.
182 necrotic was mapped as a binary trait using Interval Mapping (IM), with significance thresholds for
183 all traits determined with 1000 permutations. QTL positions and their 1- and 2-LOD intervals were
184 plotted onto the LGs using MapChart (Voorrips, 2002).

185 Our previous study (Chapman *et al.*, 2013) identified 90 loci that were significantly differentially
186 expressed (DE) between the parental species. Because of DE, these could not be mapped in the F2
187 (too much missing data), therefore the expression of these loci (calculated above) in the 48 WT F2
188 was mapped using CIM to identify eQTL (necrotic plants were not included because gene
189 expression was greatly modified in these plants; see below). Again, significant thresholds were
190 determined with 1000 permutations and were mapped onto LGs using MapChart.

191 **RESULTS**

192 **Mapping population and linkage map:** While the F1 individuals of the cross between *S. aethnensis*
193 and *S. chrysanthemifolius* were all of similar phenotype, intermediate between the parental
194 species (data not shown), the F2 population included a wider variation in phenotypic traits, with
195 some individuals resembling one or the other parental species (e.g. Fig. S1). Curiously, 69 out of
196 147 F2 plants showed a range of stunted and necrotic phenotypes that either died or never
197 reached maturity (Fig. 1). The necrotic plants exhibited phenotypes uncharacteristic of the
198 parental species including mis-shaped or curled leaves, thick ‘brittle’ leaves, and necrosis, which
199 may represent a result of hybrid incompatibility between the parental genomes. The genetic bases
200 of this hybrid breakdown are analysed below.

201 To build a high density map with genic markers we conducted transcriptome sequencing (RNA-
202 seq) for parents and 64 F2 individuals, including 48 progeny with normal phenotype and 16
203 progeny with necrotic phenotypes. The number of reads per individual was at least 5 million 100b
204 paired-end reads (Table S1). Following single nucleotide polymorphism (SNP) calling and stringent
205 filtering (see methods) we arrived at 966 high quality loci segregating in the mapping population.
206 Genetic mapping resolved eleven linkage groups (LGs) and eight unlinked loci. One of the eleven
207 groups comprised only four loci and was loosely linked to one of the larger groups (using relaxed
208 'group' settings: LOD 5.0, RF 0.2) and so was included in this LG. The unlinked loci were dropped
209 and the final map comprised 958 loci across 10 LGs, corresponding to the haploid chromosome
210 number of these species. The LGs varied in length from 44.7 to 112.0 cM and included between 34
211 and 164 loci (Fig. S2). Total map length was 794.6 cM, corresponding to a recombination rate of
212 0.306 cM/Mb based on the estimated genome size of *S. chrysanthemifolius* (2.6×10^9 bp; Bennett
213 & Smith, 1976).

214 **Marker clustering and transmission ratio distortion:** Loci were not evenly distributed along the
215 LGs, with clusters of co-mapping genes clearly visible on several linkage groups; in the most
216 extreme cases, fifty loci or more co-mapped to the exact same positions on LGs 1, 2, 3, 7 and 9
217 (Fig. 2; Fig. S2). Whilst transmission ratio distortion (TRD; real or erroneous; see below) could lead
218 to the incorrect linkage of loci, four of these five regions of the genome were not characterised by
219 significant TRD, with no evidence for deviation from a 1:2:1 genotype ratio based on χ^2 tests. It is
220 possible that these regions could be marking reduced recombination, leading to a genetic map for
221 a relatively large genomic region collapsing into a single point on the map (see Discussion).

222 Markers in the fifth largest cluster (on LG3) and in two other regions of the genome not exhibiting
223 marker clustering (on LGs 2 and 4; asterisks in Fig. S2) were, however, characterised by TRD (χ^2
224 test, $P < 0.001$; Fig. 3). In fact all 134 markers exhibiting TRD at $P < 0.001$ (14.0% of all markers)

225 reside in these three regions of the linkage map (Fig. S2). The TRD regions on LG2 and 3 are
226 characterised by an excess of *S. chrysanthemifolius*-inherited alleles and a deficit of *S. aethnensis*-
227 inherited alleles, respectively (Fig. 3). The third TRD region (on LG4) showed extreme bias in
228 segregation, with no F2 individuals homozygous for *S. chrysanthemifolius* allele at 21 loci. If we
229 relax the level of significance for TRD to $P < 0.05$ we find 64 additional TRD loci. Most of these (38
230 of the 64) are in the vicinity of the TRD loci found at $P < 0.001$, with the remainder found in other
231 regions of the linkage map.

232 Because it is possible that biased allelic expression in heterozygotes could lead to genotyping
233 errors from RNA-seq data resembling this pattern, we genotyped 16 markers from these three
234 TRD regions using DNAs from a subset of the F2 individuals that were used in the RNA-seq
235 genotyping (Table S2). This confirmed the RNA-seq based genotypes for all tested markers; hence
236 these regions of TRD are 'real' and not an artefact of scoring errors or biased allelic expression, for
237 at least the majority of markers. We also confirmed the absence of *S. chrysanthemifolius*
238 homozygous genotypes for the region of LG4; for ten of twelve markers the DNA-based genotypes
239 of the parental and F1 RNA-seq genotypes were identical confirming that the observed lack of
240 homozygotes for the *S. chrysanthemifolius* allele was not an artefact of homozygosity of an F1
241 parent for *S. aethnensis* alleles at these loci.

242 **Genomic distribution of polymorphism and differentiation:** Based on the data obtained from the
243 transcriptome sequencing of ten individuals of each species (Chapman *et al.*, 2013) we compared
244 overall patterns of polymorphism and divergence among LGs. Per locus F_{ST} differed significantly
245 among LGs (one-way ANOVA; $F = 12.66$, 9 d.f., $P = 4.756 \times 10^{-19}$; Fig. S3a), but d_{XY} did not (one-way
246 ANOVA; $F = 0.8701$, 9 d.f., $P = 0.5516$; Fig. S3b). Average heterozygosity (π) differed significantly
247 among LGs and species (two-way ANOVA, LG: $F = 5.57$, 9 d.f., $P = 1.32 \times 10^{-7}$; species: $F = 137.3$, 1
248 d.f., $P = 1.16 \times 10^{-30}$; interaction: NS; Fig. S3c), consistent with our previous finding that *S.*

249 *chrysanthemifolius* contained lower levels of genetic diversity than *S. aethnensis* (Chapman *et al.*,
250 2013).

251 Population differentiation (F_{ST} , d_{XY}) and genetic diversity (π) were highly heterogeneous across the
252 linkage groups. This variation was clearly structured into regions of high and low differentiation,
253 and/or polymorphism (Fig. 4; Fig. S4). If we classify a 10 cM bin with an F_{ST} , d_{XY} or π within the
254 highest (F_{ST} , d_{XY}) or lowest (π) 10% of the distribution as a high differentiation or low
255 polymorphism region, respectively (dashed horizontal lines in Fig. 4), nine regions (where a region
256 comprises one or more contiguous bins) of the genome (comprising 17 bins) showed high
257 differentiation (F_{ST} and/or d_{XY}). Five and seven regions for *S. aethnensis* and *S. chrysanthemifolius*,
258 respectively (nine bins each) showed low polymorphism.

259 **Clustering of high differentiation outlier markers:** Genetic map allows us to test whether the loci
260 highly differentiated between the species cluster in the genome, forming 'speciation islands'
261 described in other species (Turner *et al.*, 2005; Hohenlohe *et al.*, 2010; Scascitelli *et al.*, 2010;
262 Nadeau *et al.*, 2012; Renaut *et al.*, 2012). This linkage map included 112 outliers identified with
263 the Bayescan program (Foll & Gaggiotti, 2008) previously (Chapman *et al.*, 2013). Positive outliers
264 ($n = 81$) are identified on the basis of greater than expected divergence between *S. aethnensis* and
265 *S. chrysanthemifolius* (i.e. few shared alleles). Negative outliers ($n = 31$), on the other hand, have
266 less divergence (more shared alleles). Clusters of positive outliers were visible in the genetic map
267 (red bars in Fig. 4), indeed more than half of the outlier markers (48/81) were found in just three
268 of the 5 cM bins. However, correcting for the total number of loci in each bin, the evidence for
269 clustering was equivocal. Using a 5 cM bin there was some evidence for a significant difference
270 between the observed and expected number of outliers, given the total number of genes in the
271 bin ($P = 0.045$). With a 10 cM bin size, however, the distribution of outliers was not significantly
272 different to that expected ($P = 0.168$).

273 These three outlier clusters, which might have initially passed as speciation islands, are therefore
274 more likely marking regions of high total marker density. The marker clusters (both outliers and
275 non-outliers) (Fig. 4) could represent gene-rich regions of the genome, but more likely they
276 correspond to regions of the genome exhibiting reduced recombination (i.e. higher gene density
277 per cM). To investigate this further we assessed intraspecific polymorphism and interspecific
278 divergence of loci in these three genomic regions containing clusters of markers (Fig. 5). Loci in
279 these three regions exhibited reduced polymorphism (π) relative to the remainder of the genome
280 (*S. aethnensis* 0.0033 ± 0.0031 [SD] within clusters vs. 0.0044 ± 0.0023 outside the clusters, Mann-
281 Whitney U-test $P = 6.08 \times 10^{-9}$; *S. chrysanthemifolius* 0.0021 ± 0.0021 within clusters vs. $0.0032 \pm$
282 0.0022 outside the clusters, Mann-Whitney U-test $P = 5.39 \times 10^{-10}$; Fig. 5) a hallmark of reduced
283 recombination (Begin & Aquadro, 1992).

284 Despite F_{ST} in these three regions being higher than the rest of the genome (0.521 ± 0.267 vs.
285 0.315 ± 0.208 , Mann-Whitney U-test $P = 2.90 \times 10^{-18}$; Fig. 5), absolute divergence, d_{XY} , was not
286 (0.0052 ± 0.0027 vs. 0.0048 ± 0.0023 , Mann-Whitney U-test $P = 0.147$; Fig. 5). This strongly
287 suggests that because F_{ST} is a relative measure of differentiation, contrasting inter- and intra-
288 population diversity, the low diversity (π) in these regions is elevating F_{ST} even though absolute
289 divergence is no higher than the rest of the genome.

290 Looking throughout the genome as a whole, F_{ST} is strongly negatively correlated with distance
291 from the nearest outlier locus (F_{ST} : Spearman's rank correlation coefficient (r_s) = -0.352 , $P = 1.321 \times$
292 10^{-24}), whereas d_{XY} is only weakly correlated ($r_s = -0.094$, $P = 0.0078$; Fig. S5a,b; LG8 was excluded
293 because no positive outliers reside on this LG). This negative correlation between distance from
294 outliers and F_{ST} is mirrored by a positive correlation between distance and genetic diversity (π_{aet} : r_s
295 = 0.151 , $P = 8.399 \times 10^{-6}$; π_{chr} : $r_s = 0.123$, $P = 0.0003$; Fig. S5c).

296 **QTL analysis of interspecific differences:** Individuals of the parental species were significantly
297 different in ten of the 13 studied morphological traits (Table 1). The analysis resolved QTL for all
298 but one trait (D2F). Morphological QTL were found on only four of the 10 LGs, with one to five QTL
299 per trait (Fig. 6). Effect sizes of the QTL were typically moderate (PVE 20-35%; Table 2).
300 Considerable overlap/clustering of QTL was uncovered; however in some cases this is likely due to
301 the traits being directly related (e.g. overlap of QTL for leaf perimeter and leaf dissection on LGs 5
302 and 6). In other cases QTL may co-localise, e.g. floral and leaf traits on LGs 1, 6 and 7, as they
303 represent specific aspects of 'plant size', therefore plants with large leaves also have large
304 inflorescences, for example. Positive outliers from Chapman *et al.* (2013) were found to lie under
305 morphological QTL (based on 1-LOD QTL interval) more often than expected by chance (χ^2 test; $P =$
306 3.22×10^{-7} ; Fig. 6).

307 Ninety loci were previously shown to be differentially expressed (DE) between the two species
308 (Chapman *et al.*, 2013). For 67 we were able to map expression QTL (eQTL) affecting differential
309 expression (average 1.82 eQTL per DE locus; total 122 eQTL; Fig. S6). These eQTL overlapped the
310 morphological and necrotic QTL (Fig. S6) and the positive outliers more than would be expected by
311 chance (Fisher's exact test $P = 0.0045$, $P = 0.0043$ and $P = 0.0003$, respectively).

312 **QTL analysis of hybrid breakdown:** The necrotic plants (Fig. 1) did not reach maturity and may
313 represent the consequences of hybrid breakdown. Genetic mapping resolved one large QTL for
314 hybrid breakdown, explaining 67.5% of the phenotypic variance, plus six smaller QTL (Fig. 6; Table
315 2). Minor necrosis QTL on LGs 1 and 7 were found to co-localise with other morphological QTL
316 (Fig. 6).

317 The marker loci closest to the peak of the LG4 major QTL were homozygous for the allele inherited
318 from the *S. aethnensis* parent in all necrotic F2 plants and were heterozygous in all normal F2
319 plants. In this 14 cM region, homozygous alleles inherited from *S. chrysanthemifolius* were never

320 found in the 64 F2. Loci under the minor QTL did not show such strict differentiation between the
321 normal and necrotic plants, with the exception of loci under one of the LG7 QTL (30 markers on
322 the full map, from cM 91 – 108) that were never homozygous for the *S. aethnensis* parent allele in
323 the 16 necrotic plants.

324 **Gene expression in the F2 population:** Comparisons were made between RNAs extracted from
325 the leaves of wild-type F2 and necrotic F2 seedlings for all loci in the reference transcriptome. Of
326 18,797 loci, 18,687 were expressed in at least one individual, and of these, 2,301 (12.3%) were
327 differentially expressed (DE) based on *t*-tests and a 5% FDR. The majority of DE loci (1709/2301;
328 74.3%) were under-expressed in the necrotic F2 relative to the wild-type F2. Positive outlier loci (n
329 = 199) and differentially expressed loci (i.e. *S. aethnensis* vs. *S. chrysanthemifolius*; n = 90)
330 identified in Chapman *et al.* (2013) were no more likely to be differentially expressed in the F2
331 than non-outliers and non-differentially expressed loci (χ^2 test; $P = 0.882$ and $P = 0.821$,
332 respectively). There was also no difference in interspecific divergence (F_{ST} between *S. aethnensis*
333 and *S. chrysanthemifolius*) between the DE (wild-type F2 vs. necrotic F2) and non-DE loci ($0.202 \pm$
334 0.191 and 0.195 ± 0.191 , respectively; Mann-Whitney $U = 4.67 \times 10^6$, $z = -1.501$, $P = 0.134$)
335 suggesting that genes mis-expressed in the necrotic hybrids are not those that are more (or less)
336 divergent between the species.

337 Several gene ontology (GO) terms were significantly over-represented (FDR < 0.05) in the loci DE
338 between wild-type and necrotic F2 plants, many relating to basic physiological and developmental
339 processes. After reducing the GO terms to the most specific terms (i.e. removing terms which
340 contained more than one over-represented sub-term) there was evidence for genes involved in
341 translation (e.g. ribosomal structural constituents [$P = 4.2 \times 10^{-27}$] and ribosome biogenesis [$P = 5.7$
342 $\times 10^{-3}$]), RNA methylation ($P = 2.3 \times 10^{-7}$), and development of leaves, roots and floral organs, being
343 over-represented (Table S3). After separation into the loci over-expressed (n = 592 loci) and

344 under-expressed (n = 1709 loci) in the necrotic plants different pathways/functions appear
345 affected by up- and down-regulation. In the up-regulated loci (necrotic expression > healthy
346 expression) there is significant (FDR < 0.05) over-representation of just a few GO terms, for
347 example 'protein targeting to the vacuole' ($P = 4.0 \times 10^{-5}$) and 'involved in the peroxisome' ($P = 1.5$
348 $\times 10^{-4}$). In contrast, much more drastic changes are seen in the down-regulated loci (Table S3). Loci
349 involved in the structural constituents of the ribosome were highly over-represented ($P = 2.9 \times 10^{-$
350 ³⁴}), with > 6% of the DE loci and < 1% of the non-DE loci being categorised by this GO term. Other
351 related terms were highly over-represented (e.g. 'RNA methylation', 'translation') suggesting
352 massive disruption of translation in the necrotic plants. Similarly high over-representation was
353 found for multiple GO categories involved in basic growth and development pathways, e.g.
354 stomatal morphogenesis ($P = 5.6 \times 10^{-9}$), cell wall organisation ($P = 3.1 \times 10^{-7}$), leaf morphogenesis
355 ($P = 3.4 \times 10^{-3}$), and floral organ development ($P = 8.3 \times 10^{-3}$). One hundred and thirty four of the
356 2,301 DE loci were mapped in the F2 and were not found to coincide with morphological or hybrid
357 breakdown QTL any more than by chance (1-LOD QTL interval; χ^2 test; $P = 0.937$).

358 DISCUSSION

359 Combining genome scans for outlier loci, with linkage mapping and QTL analysis can be
360 particularly informative with regards the genomics of adaptation and/or speciation (Scotti-
361 Saintagne *et al.*, 2004; Scascitelli *et al.*, 2010; Michel *et al.*, 2011; Via *et al.*, 2012). The genetic and
362 phenotypic divergence of high altitude *S. aethnensis* and low altitude *S. chrysanthemifolius* is a
363 likely example of ecological speciation. The two species appear to have diverged with gene flow
364 relatively recently (Chapman *et al.*, 2013; Muir *et al.*, 2013; Osborne *et al.*, 2013); they are
365 adapted to contrasting environments of high and low altitudes, and demonstrate a number of
366 morphologically divergent traits evolving under divergent selection (Brennan *et al.*, 2009).
367 Contemporary gene flow is evidenced by an extensive hybrid zone with many late generation

368 hybrids (Brennan *et al.*, 2009), in line with the observation that there is almost no intrinsic barrier
369 to heterospecific mating (Chapman *et al.*, 2005) which is promoted by the presence of self-
370 incompatibility (Brennan *et al.*, 2013). This study system therefore represents the ideal situation
371 to understand the interplay between adaptation, reproductive isolation and the origin of new
372 species.

373 To investigate these processes, we carried out linkage mapping of an *S. aethnensis* x *S.*
374 *chrysanthemifolius* F2 population and identified the map positions of highly-differentiated (at the
375 sequence and expression level) outlier loci. Additionally we mapped QTL for the morphological
376 and gene expression differences between these two species and identified QTL for hybrid
377 breakdown. Finally, we interrogated the leaf transcriptomes of the F2 plants to identify
378 differentially expressed (DE) loci, and pathways that are significantly affected in the normal vs.
379 necrotic plants. As far as we are aware we have, for the first time in a plant study system, brought
380 together these complementary investigations to gain an in-depth understanding of the genomics
381 of species divergence and reproductive isolation.

382 **The *Senecio* genetic map:** This study saw the generation of a linkage map for *Senecio* comprising
383 nearly 1,000 markers spread across ten linkage groups, the haploid chromosome number. Average
384 distance between markers was just 0.87 cM (or 2.41 cM if we consider only one marker at each
385 genomic location). It therefore represents an important resource for the study of this group of
386 species.

387 In line with the findings of Brennan *et al.* (2014), we have found evidence for strong transmission
388 ratio distortion (TRD) in 14.0% of markers in the F2 of the crosses between these *Senecio* species.
389 We checked for genotyping errors that could have arisen from biased allelic expression and in just
390 two such markers did the DNA and RNA genotypes not tally perfectly. This TRD could have

391 resulted from the build-up of genomic incompatibilities between the species, and might therefore
392 play a role in preventing gene flow – a possibility we discuss below.

393 **Are there speciation islands in *Senecio*?**: In many pairs of species, sub-species or ecotypes, a
394 heterogeneous pattern of genomic divergence has been uncovered and where these loci have
395 been mapped, the most highly divergent alleles are often found to cluster (Turner *et al.*, 2005;
396 Hohenlohe *et al.*, 2010; Scascitelli *et al.*, 2010; Nadeau *et al.*, 2012; Renaut *et al.*, 2012). This has
397 been used as evidence to support the hypotheses that (1) only a small portion of the genome may
398 confer the differences between species (Wu, 2001), and (2) these speciation loci are nested in
399 small genomic regions ('islands') of increased interspecific divergence (Feder *et al.*, 2012). These
400 islands are predicted to arise due to locally reduced effective gene flow because of linkage to the
401 locus under divergent selection (Divergence Hitch-hiking, DH; Via, 2012).

402 We used this framework to investigate whether speciation islands are present in the *Senecio*
403 genome because we previously demonstrated that average genomic differentiation between
404 these species is quite low (mean F_{ST} across loci = 0.196; mean d_{XY} across loci = 0.0035) but highly
405 heterogeneous (Chapman *et al.*, 2013). In the current study, plotting interspecific divergence onto
406 the genetic map reveals that the genomes of these species are highly heterogeneous with respect
407 to interspecific relative (F_{ST}) and absolute (d_{XY}) divergence (Figs. 2 and 4). Further, the distribution
408 of 81 highly differentiated loci placed on the map is suggestive of putative speciation islands, with
409 48 of the high divergence outliers (59.3%) clustering in only three 5 cM regions of the genome
410 (Fig. 4). This therefore represents the pattern that would be expected under DH. Statistically,
411 however this clustering was at best marginally significant if one takes into account marker density
412 ($P = 0.045$ and 0.168 for 5 and 10 cM bin sizes, respectively). The observed clustering of the
413 outliers is thus mainly due to clustering of many loci in the regions where the genetic map is
414 unresolved (Figs. 2 and 4, Fig. S2).

415 These gene clusters may correspond to gene-rich regions, but locally reduced recombination, for
416 example in the proximity of centromeres (Round *et al.*, 1997) appears a more likely cause. Upon
417 analysis of the three genomic regions containing high numbers of outliers we find no evidence for
418 higher than average absolute inter-species divergence (d_{XY} in Fig. 5). Instead these regions are
419 characterised by significantly reduced intra-species diversity (π in Fig. 5). This is consistent with
420 recent re-analysis of speciation islands in which low polymorphism and not high absolute
421 divergence was typically found for genomic regions previously identified as speciation islands
422 (Cruickshank & Hahn, 2014). However, we do find regions where both F_{ST} and d_{XY} are elevated
423 (e.g. on LGs 2 and 6), indicating that 'speciation islands' with reduced interspecific gene flow may
424 be present in the *Senecio* genome.

425 We also found a strong negative correlation between F_{ST} and distance from the closest outlier
426 locus, but only a weak correlation between d_{XY} and distance (Fig. S5), suggesting that F_{ST} is not
427 independent of surrounding loci and adds to the growing evidence that F_{ST} can be artificially
428 elevated in some regions of the genome due to reduced intraspecific genetic diversity (π)
429 (Cruickshank & Hahn, 2014) as was resolved here (Fig. 7). We cannot therefore conclude that
430 strong divergent selection has given rise to the apparent speciation island-like clustering; this will
431 only be resolved by combining denser linkage maps with physical maps currently being created as
432 part of the *Senecio* genome project (T. Batstone, M.A. Chapman, O.G. Osborne, D.A. Filatov, R.J.
433 Abbott, and S.J. Hiscock, in preparation).

434 Recombination may be reduced not only because of the presence of centromeres, but also due to
435 heterozygosity in F1s for inversions that differentiate the parental taxa. Inversions are known to
436 be the hotspots for accumulation of species divergence and have long been suspected to be
437 involved in speciation (Noor *et al.*, 2001; Rieseberg, 2001; Navarro & Barton, 2003). The relatively
438 recent speciation time estimated for these two species (Chapman *et al.*, 2013; Osborne *et al.*,

439 2013), however, makes it unlikely that these species already differ by several chromosomal
440 rearrangements, given a maximum rate of chromosomal rearrangements in plants estimated to be
441 7-10 per million years (Burke *et al.*, 2004; Barb *et al.*, 2014). Still, inversions are known to
442 segregate within populations of the same species (e.g. Craddock & Carson, 1989; Corbett-Detig &
443 Hartl, 2012; Charron *et al.*, 2014) and can be quickly fixed within one or both species if associated
444 with adaptive alleles (Kirkpatrick & Barton, 2006).

445 Another possible explanation for suppressed recombination (and consequentially marker
446 clustering) is that some of these regions are involved in hybrid breakdown. Indeed, one cluster of
447 outlier markers did show TRD (on LG3; Fig. S2), with homozygous alleles from *S. aethnensis* found
448 at low frequency. Interestingly, Brennan *et al.* (2014) also identified a region of their linkage map
449 with the same pattern of selection against homozygous *S. aethnensis* alleles. Unfortunately, it is
450 not possible to tell whether they identified the same or a different genomic region compared to
451 our map. Another region, on our LG4, was devoid of *S. chrysanthemifolius* homozygous genotypes
452 and harboured the QTL for hybrid breakdown. This could have important implications for gene
453 flow in the *Senecio* hybrid zone, if certain allelic combinations in hybrids are unfit.

454 **Sequence divergence and phenotypic QTL:** It is interesting that two of the clusters of outliers (on
455 LGs 1 and 6) were in regions of the genome harbouring morphological QTL, and outlier loci in
456 general were more likely to be found to coincide with morphological QTL than expected by chance
457 ($P = 3.22 \times 10^{-7}$). Furthermore, eQTL for loci differentially expressed (DE) between the parental
458 species also tended to cluster with morphological QTL ($P = 0.0045$). Brennan *et al.* (2009) studied
459 morphological clines in the *Senecio* hybrid zone and concluded that groups of morphological traits
460 (both leaf and floral) were under environmental-based selection. Given this, we would expect that
461 the regions of the genome that harbour the loci controlling these traits would show increased
462 interspecific divergence and this is precisely what we see – both at the DNA sequence and gene

463 expression levels. Genetic divergence builds up in regions of the genome that control the locally
464 adaptive and ecologically conditioned phenotypes. Similarly, in whitefish and sticklebacks, outlier
465 markers were also found to be present in regions of the genome with morphological QTL for traits
466 that were putatively under selection (Hohenlohe *et al.*, 2010; Renaud *et al.*, 2012).

467 **The genetics of hybrid breakdown:** The presence of a major QTL for hybrid breakdown that did
468 not overlap any outlier markers suggests that, whilst there is selection for divergent morphologies,
469 hybrid breakdown does not appear to be increasing genomic divergence to the same extent.
470 However it is important to remember that 'Bateson-Dobzhansky-Muller' (BDM) hybrid
471 incompatibility is dependent on alleles at more than one locus, with alleles at each locus not
472 intrinsically unfit. Instead it requires that alleles derived at one locus in one species are
473 incompatible with alleles derived at an alternate locus in the other species, which is what we
474 observed. Alleles at the LG4 QTL inherited from the *S. aethnensis* parent when in the homozygous
475 state were incompatible with *S. chrysanthemifolius* alleles at the LG7 (cM 91 – 108) minor QTL.
476 Alternatively, it is possible that the alleles at the major QTL are interacting with a cytoplasmic
477 locus to result in hybrid breakdown. In the F2 we generated, all plants have the same (*S.*
478 *chrysanthemifolius*-derived) cytoplasm and the necrotic plants were all homozygous for *S.*
479 *aethnensis* alleles at the major necrosis QTL. It is noteworthy that Hegarty *et al.* (2009) crossed
480 these two species to generate F1 to F5 generations of hybrids. A strong drop in germination
481 success was noted in the F2 and F3, but there were no noted examples of necrosis such as we
482 uncovered here.

483 Associated with hybrid breakdown were differences in gene expression in ca. 12% of the
484 transcriptome when comparing the normal and necrotic F2 plants. This stands in stark contrast to
485 the comparative analysis of the transcriptomes of the parental species (Chapman *et al.*, 2013) in
486 which only 90 of >18,000 loci (ca. 0.5%) were significantly differentially expressed (DE). Although

487 direct comparisons cannot be made because the current and previous study used different tissues,
488 it seems there was a much greater effect of hybrid breakdown on gene expression than there was
489 based on interspecific differences between healthy parental taxa. A study of hybrid breakdown in
490 lake whitefish revealed an intriguingly similar pattern with <0.1% of loci DE between the parental
491 morphs, however 39% of transcripts were DE in a comparison of the transcriptomes of
492 phenotypically abnormal and normal backcross hybrids (Renaut & Bernatchez, 2011). Our analysis
493 was restricted to seedling leaf tissue to reduce the effect of divergent leaf morphology on gene
494 expression in more mature plants, and therefore we are only able to identify DE leaf-expressed
495 loci, and we might find that different numbers or subsets of loci are DE in other tissues.

496 A number of gene ontology (GO) categories associated with basic developmental processes were
497 significantly over-represented in the loci differentially expressed (DE) between necrotic and
498 normal F2 plants, suggesting severe impairment of normal growth and development at the gene
499 expression level. The most drastic changes though were associated with ribosomes and
500 translation; for example, the GO terms 'structural constituent of ribosome', 'RNA methylation' (a
501 hallmark of translation regulation; Motorin & Helm, 2011), and 'translation' were all highly over-
502 represented in the loci that were under-expressed in the necrotic F2s relative to the normal F2s
503 (all FDR $P < 0.0001$; Table S3).

504 Several studies of hybrid breakdown in plants have revealed that genes involved in pathogen- or
505 stress-response are often mis-expressed in the unfit hybrids resulting in necrotic phenotypes (e.g.
506 (Bomblies *et al.*, 2007; Jeuken *et al.*, 2009; Yamamoto *et al.*, 2010). Although we did not see GO
507 terms explicitly involved in pathogen-response being over-represented in our DE loci, homologues
508 of some genes known to play a role in pathogen-response were DE. Of six candidate pathogen-
509 response genes listed as DE in necrotic *Arabidopsis* hybrids (Bomblies *et al.*, 2007), homologues of
510 three (*enhanced disease susceptibility 1*, *phytoalexin deficient 4*, and *pathogenesis-related protein*

511 1) were significantly DE between necrotic and normal *Senecio* F2s. In addition, the Cellular
512 Compartment GO term 'peroxisome' was over-represented in the DE loci; one function of which
513 includes response to fungal pathogens, suggesting that mis-expression of pathogen-response
514 genes might underlie, at least in part, the genetics of reproductive isolation (Lipka *et al.*, 2005).

515 **CONCLUSIONS**

516 This study set out to genetically map the distribution of markers that exhibited putative adaptive
517 divergence and to investigate the genetic basis of morphological divergence and hybrid
518 breakdown. We found that more than half of the markers with previous evidence of adaptive
519 divergence clustered into three regions of the genome; however, the clustering appears to be due
520 to a higher density of genes in regions with reduced recombination, rather than accumulation of
521 divergence outliers in 'speciation islands'. Whether these gene clusters represent inversions
522 distinguishing the two species, or centromeric regions (Gimenez *et al.*, 2013; reviewed in Faria &
523 Navarro, 2010), requires further investigation using our emerging genome sequences for the two
524 species. Interestingly, we also discovered clusters of markers showing significant TRD, indicative of
525 accumulation of intrinsic genetic incompatibilities between these relatively recently diverged
526 (<200,000 years) species. One region of TRD corresponded to a QTL for hybrid breakdown, and the
527 distribution of genotypes at this locus showed evidence for incompatibility with another region of
528 the genome.

529 Divergence of these species may thus have occurred due to a complex interplay of ecological
530 divergence and accumulation of intrinsic genetic incompatibilities. The relative importance of
531 these forces may be evaluated in future studies devoted to dissection of species incompatibilities
532 and genetic analysis of quantitative traits involved in adaptation to contrasting environments of
533 high and low altitudes.

535 We are grateful to Owen Osborne for discussions throughout this project and to Richard Abbott
536 and Adrian Brennan for sharing their recently accepted manuscript. We thank the High-
537 Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics for the generation
538 of the Sequencing data. This study was funded by UK Natural Environment Research Council grant
539 to DAF and SJH (NE/G017646/1).

COMPETING INTERESTS

541 The authors have no competing interests

REFERENCES

544 Arnold, M. L. 1992. Natural hybridization as an evolutionary process. *Annu Rev Ecol Syst* **23**: 237-261.
545 Barb, J. G., Bowers, J. E., Renaud, S., Rey, J. I., Knapp, S. J., Rieseberg, L. H. & Burke, J. M. 2014.
546 Chromosomal Evolution and Patterns of Introgression in *Helianthus*. *Genetics* **197**: 969-979.
547 Barton, N. H. & Hewitt, G. M. 1989. Adaptation, speciation and hybrid zones. *Nature* **341**: 497-503.
548 Begun, D. J. & Aquadro, C. F. 1992. Levels of naturally-occurring DNA polymorphism correlate with
549 recombination rates in *Drosophila melanogaster*. *Nature* **356**: 519-520.
550 Bennett, M. D. & Smith, J. B. 1976. Nuclear DNA amounts in angiosperms. *Philos Trans R Soc Lond B* **274**:
551 227-274.
552 Bierne, N., Welch, J., Loire, E., Bonhomme, F. & David, P. 2011. The coupling hypothesis: why genome scans
553 may fail to map local adaptation genes. *Mol Ecol* **20**: 2044-2072.
554 Bomblies, K., Lempe, J., Epple, P., Warthmann, N., Lanz, C., Dangl, J. L. et al. 2007. Autoimmune response
555 as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. *PLoS Biol* **5**:
556 e236.
557 Brennan, A. C., Bridle, J. R., Wang, A.-L., Hiscock, S. J. & Abbott, R. J. 2009. Adaptation and selection in the
558 *Senecio* (Asteraceae) hybrid zone on Mount Etna, Sicily. *New Phytol* **183**: 702-717.
559 Brennan, A. C., Harris, S. A. & Hiscock, S. J. 2013. The population genetics of sporophytic self-incompatibility
560 in three hybridizing *Senecio* (Asteraceae) species with contrasting population histories. *Evolution*
561 (N.Y.) **67**: 1347-1367.
562 Brennan, A. C., Hiscock, S. J. & Abbott, R. J. 2014. Interspecific crossing and genetic mapping reveal intrinsic
563 genomic incompatibility between two *Senecio* species that form a hybrid zone on Mount Etna,
564 Sicily. *Heredity* **113**: 195-204.
565 Burke, J. M., Lai, Z., Salmaso, M., Nakazato, T., Tang, S., Heesacker, A., et al. 2004. Comparative mapping
566 and rapid karyotypic evolution in the genus *Helianthus*. *Genetics* **167**: 449-457.
567 Chapman, M. A., Forbes, D. G. & Abbott, R. J. 2005. Pollen competition among two species of *Senecio*
568 (Asteraceae) that form a hybrid zone on Mt. Etna, Sicily. *Am J Bot* **92**: 730-735.

569 Chapman, M. A., Hiscock, S. J. & Filatov, D. A. 2013. Genomic divergence during speciation driven by
570 adaptation to altitude. *Mol Biol Evol* **30**: 2553-2567.

571 Charlesworth, B., Nordborg, M. & Charlesworth, D. 1997. The effects of local selection, balanced
572 polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided
573 populations. *Genet Res* **70**: 155-174.

574 Charron, G., Leducq, J. B. & Landry, C. R. 2014. Chromosomal variation segregates within incipient species
575 and correlates with reproductive isolation. *Mol Ecol* **23**: 4362-4372.

576 Corbett-Detig, R. B. & Hartl, D. L. 2012. Population Genomics of Inversion Polymorphisms in *Drosophila*
577 *melanogaster*. *PLoS Genet* **8**.

578 Coyne, J. A. & Orr, H. A. 2004. *Speciation*. Sinauer, Sunderland, Massachusetts, USA.

579 Craddock, E. M. & Carson, H. L. 1989. Chromosomal inversion patterning and population differentiation in a
580 young insular species, *Drosophila silvestris*. *Proc Natl Acad Sci U S A* **86**: 4798-4802.

581 Cruickshank, T. E. & Hahn, M. W. 2014. Reanalysis suggests that genomic islands of speciation are due to
582 reduced diversity, not reduced gene flow. *Mol Ecol* **23**: 3133-3157.

583 Endler, J. A. 1977. *Geographic Variation, Speciation, and Clines*. Princeton University Press, Princeton, USA.

584 Faria, R. & Navarro, A. 2010. Chromosomal speciation revisited: rearranging theory with pieces of evidence.
585 *Trends Ecol Evol* **25**: 660-669.

586 Feder, J. L., Egan, S. P. & Nosil, P. 2012. The genomics of speciation-with-gene-flow. *Trends Genet* **28**: 342-
587 350.

588 Feder, J. L. & Nosil, P. 2010. The efficacy of divergence hitchhiking in generating genomic islands during
589 ecological speciation. *Evolution (N.Y.)* **64**: 1729-1747.

590 Filatov, D. A. 2009. Processing and population genetic analysis of multigenic datasets with ProSeq3
591 software. *Bioinformatics* **25**: 3189-3190.

592 Foll, M. & Gaggiotti, O. 2008. A genome-scan method to identify selected loci appropriate for both
593 dominant and codominant markers: A Bayesian perspective. *Genetics* **180**: 977-993.

594 Fuller, R. C. 2008. Genetic incompatibilities in killifish and the role of environment. *Evolution (N.Y.)* **62**:
595 3056-3068.

596 Gimenez, M. D., White, T. A., Hauffe, H. C., Panithanarak, T. & Searle, J. B. 2013. Understanding the basis of
597 diminished gene flow between hybridizing chromosome races of the house mouse. *Evolution (N.Y.)*
598 **67**: 1446-1462.

599 Hegarty, M. J., Barker, G. L., Brennan, A. C., Edwards, K. J., Abbott, R. J. & Hiscock, S. J. 2009. Extreme
600 changes to gene expression associated with homoploid hybrid speciation. *Mol Ecol* **18**: 877-889.

601 Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A. & Cresko, W. A. 2010. Population
602 genomics of parallel adaptation in Threespine Stickleback using sequenced RAD tags. *PLoS Genet* **6**:
603 e1000862.

604 James, J. K. & Abbott, R. J. 2005. Recent, allopatric, homoploid hybrid speciation: The origin of *Senecio*
605 *squalidus* (Asteraceae) in the British Isles from a hybrid zone on Mount Etna, Sicily. *Evolution (N.Y.)*
606 **59**: 2533-2547.

607 Jeuken, M. J. W., Zhang, N. W., McHale, L. K., Pelgrom, K., den Boer, E., Lindhout, P., et al. 2009. Rin4
608 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. *Plant Cell* **21**:
609 3368-3378.

610 Kane, N. C., King, M. G., Barker, M. S., Raduski, A., Karrenberg, S., Yatabe, Y., et al. 2009. Comparative
611 genomic and population genetic analyses indicate highly porous genomes and high levels of gene
612 flow between divergent *Helianthus* species. *Evolution (N.Y.)* **63**: 2061-2075.

613 Kirkpatrick, M. & Barton, N. 2006. Chromosome inversions, local adaptation and speciation. *Genetics* **173**:
614 419-434.

615 Kulathinal, R. J., Stevison, L. S. & Noor, M. A. F. 2009. The genomics of speciation in *Drosophila*: Diversity,
616 divergence, and introgression estimated using low-coverage genome sequencing. *PLoS Genet* **5**:
617 e1000550.

618 Lexer, C. & Widmer, A. 2008. The genic view of plant speciation: recent progress and emerging questions.
619 *Philos Trans R Soc Lond B* **363**: 3023-3036.

620 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. 2009. The Sequence
621 Alignment/Map format and SAMtools. *Bioinformatics* **25**: 2078-2079.

622 Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., *et al.* 2005. Pre- and postinvasion
623 defenses both contribute to nonhost resistance in *Arabidopsis*. *Science* **310**: 1180-1183.

624 Lorieux, M. 2012. MapDisto: fast and efficient computation of genetic linkage maps. *Molecular Breeding*
625 **30**: 1231-1235.

626 Mallet, J. 2005. Hybridization as an invasion of the genome. *Trends Ecol Evol* **20**: 229-237.

627 Michel, A. P., Sim, S., Powell, T. H. Q., Taylor, M. S., Nosil, P. & Feder, J. L. 2011. Widespread genomic
628 divergence during sympatric speciation. *Proc Natl Acad Sci U S A* **107**: 9724-9729.

629 Moore, W. S. 1977. An evaluation of narrow hybrid zones in vertebrates. *Q Rev Biol* **52**: 263-277.

630 Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. 2008. Mapping and quantifying
631 mammalian transcriptomes by RNA-Seq. *Nat Methods* **5**: 621-628.

632 Motorin, Y. & Helm, M. 2011. RNA nucleotide methylation. *WIREs RNA* **2**: 611-631.

633 Muir, G., Osborne, O. G., Sarasa, J., Hiscock, S. J. & Filatov, D. A. 2013. Recent ecological selection on
634 regulatory divergence is shaping clinal variation in *Senecio* on Mount Etna. *Evolution (N.Y.)* **67**:
635 3032-3042.

636 Nadeau, N. J., Whibley, A., Jones, R. T., Davey, J. W., Dasmahapatra, K. K., Baxter, S. W., *et al.* 2012.
637 Genomic islands of divergence in hybridizing *Heliconius* butterflies identified by large-scale targeted
638 sequencing. *Philos Trans R Soc Lond B* **367**: 343-353.

639 Navarro, A. & Barton, N. H. 2003. Accumulating postzygotic isolation genes in parapatry: A new twist on
640 chromosomal speciation. *Evolution (N.Y.)* **57**: 447-459.

641 Noor, M. A. F. & Bennett, S. M. 2009. Islands of speciation or mirages in the desert? Examining the role of
642 restricted recombination in maintaining species. *Heredity (Edinb)* **103**: 439-444.

643 Noor, M. A. F., Grams, K. L., Bertucci, L. A. & Reiland, J. 2001. Chromosomal inversions and the reproductive
644 isolation of species. *Proc Natl Acad Sci U S A* **98**: 12084-12088.

645 Nosil, P. 2012. *Ecological Speciation*. Oxford University Press, Oxford.

646 Nosil, P., Egan, S. P. & Funk, D. J. 2008. Heterogeneous genomic differentiation between walking-stick
647 ecotypes: "Isolation by adaptation" and multiple roles for divergent selection. *Evolution (N.Y.)* **62**:
648 316-336.

649 Nosil, P., Funk, D. J. & Ortiz-Barrientos, D. 2009. Divergent selection and heterogeneous genomic
650 divergence. *Mol Ecol* **18**: 375-402.

651 Osborne, O. G., Batstone, T. E., Hiscock, S. J. & Filatov, D. A. 2013. Rapid speciation with gene flow following
652 the formation of Mount Etna, revealed by transcriptome sequencing of endemic Etnean *Senecio*
653 species. *Genome Biol Evol* **5**: 1704-15.

654 Payseur, B. A. 2010. Using differential introgression in hybrid zones to identify genomic regions involved in
655 speciation. *Mol Ecol Resour* **10**: 806-820.

656 Peichel, C. L., Nereng, K. S., Ohgi, K. A., Cole, B. L. E., Colosimo, P. F., Buerkle, C. A., *et al.* 2001. The genetic
657 architecture of divergence between threespine stickleback species. *Nature* **414**: 901-905.

658 Rasband, W. S. (1997-2013) ImageJ (imagej.nih.gov/ij/). pp. U.S. National Institutes of Health, Bethesda,
659 Maryland, USA.

660 Renaud, S. & Bernatchez, L. 2011. Transcriptome-wide signature of hybrid breakdown associated with
661 intrinsic reproductive isolation in lake whitefish species pairs (*Coregonus* spp. Salmonidae).
662 *Heredity (Edinb)* **106**: 1003-1011.

663 Renaud, S., Maillet, N., Normandeau, E., Sauvage, C., Derome, N., Rogers, S. M. *et al.* 2012. Genome-wide
664 patterns of divergence during speciation: the lake whitefish case study. *Philos Trans R Soc Lond B*
665 **367**: 354-363.

666 Rieseberg, L. H. 2001. Chromosomal rearrangements and speciation. *Trends Ecol Evol* **16**: 351-358.

667 Rieseberg, L. H. & Carney, S. E. 1998. Tansley review no. 102: Plant hybridisation. *New Phytol* **140**: 599-624.

668 Roesti, M., Hendry, A. P., Salzburger, W. & Berner, D. 2012. Genome divergence during evolutionary
669 diversification as revealed in replicate lake-stream stickleback population pairs. *Mol Ecol* **21**: 2852-
670 2862.

671 Round, E. K., Flowers, S. K. & Richards, E. J. 1997. *Arabidopsis thaliana* Centromere Regions: Genetic Map
672 Positions and Repetitive DNA Structure. *Genome Res* **7**: 1045-1053.

673 Scascitelli, M., Whitney, K. D., Randell, R. A., King, M., Buerkle, C. A. & Rieseberg, L. H. 2010. Genome scan
674 of hybridizing sunflowers from Texas (*Helianthus annuus* and *H. debilis*) reveals asymmetric
675 patterns of introgression and small islands of genomic differentiation. *Mol Ecol* **19**: 521-541.
676 Scotti-Saintagne, C., Mariette, S., Porth, I., Goicoechea, P. G., Barreneche, T., Bodenes, K., *et al.* 2004.
677 Genome scanning for interspecific differentiation between two closely related oak species *Quercus*
678 *robur* L. and *Q. petraea* (Matt.) Liebl. *Genetics* **168**: 1615-1626.
679 Stace, C. A. 1975. *Hybridisation and the Flora of the British Isles*. Academic Press, London and New York.
680 Stebbins, G. L. 1959. The role of hybridisation in evolution. *Proc Am Philos Soc* **103**: 231-251.
681 Stölting, K. N., Nipper, R., Lindtke, D., Caseys, C., Waeber, S., Castiglione, S. *et al.* 2013. Genomic scan for
682 single nucleotide polymorphisms reveals patterns of divergence and gene flow between
683 ecologically divergent species. *Mol Ecol* **22**: 842-855.
684 Sweigart, A. L. & Willis, J. H. 2012. Molecular evolution and genetics of postzygotic reproductive isolation in
685 plants. *F1000 Biol Rep* **4**: 23.
686 Turner, T. L., Hahn, M. W. & Nuzhdin, S. V. 2005. Genomic islands of speciation in *Anopheles gambiae*. *PLoS*
687 *Biol* **3**: 1572-1578.
688 Via, S. 2012. Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-
689 gene-flow. *Philos Trans R Soc Lond B* **367**: 451-460.
690 Via, S., Conte, G., Mason-Foley, C. & Mills, K. 2012. Localizing FST outliers on a QTL map reveals evidence
691 for large genomic regions of reduced gene exchange during speciation-with-gene-flow. *Mol Ecol* **21**:
692 5546-5560.
693 Voorrips, R. E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. *J Hered*
694 **93**: 77-78.
695 Wang, S., Basten, C. J. & Zeng, Z.-B. 2005. Windows QTL Cartographer 2.5. Department of Statistics, North
696 Carolina State University, Raleigh, NC. (<http://statgen.ncsu.edu/qtlcart/WQTLCart.htm>).
697 Wolf, J. B. W., Lindell, J. & Backstrom, N. 2010. Speciation genetics: current status and evolving approaches.
698 *Philos Trans R Soc Lond B* **365**: 1717-1733.
699 Wu, C.-I. 2001. The genic view of the process of speciation. *Journal of Evolutionary Biology* **14**: 851-865.
700 Yamamoto, E., Takashi, T., Morinaka, Y., Lin, S., Wu, J., Matsumoto, T., *et al.* 2010. Gain of deleterious
701 function causes an autoimmune response and Bateson-Dobzhansky-Muller incompatibility in rice.
702 *Molecular Genetics and Genomics* **283**: 305-315.
703 Yatabe, Y., Kane, N. C., Scotti-Saintagne, C. & Rieseberg, L. H. 2007. Rampant gene exchange across a strong
704 reproductive barrier between the annual sunflowers, *Helianthus annuus* and *H. petiolaris*. *Genetics*
705 **175**: 1883-1893.

706

707 FIGURE LEGENDS

708 **Figure 1** – Plants in the F2 segregated for necrotic phenotypes (A-D) and healthy phenotypes (E,F).

709 **Figure 2** - Representative linkage groups (LG) from the interspecific mapping population. Positive
710 and negative BayeScan outlier loci are indicated in red and blue, respectively. Distances are in
711 Kosambi cM. Asterisks indicate loci showing significant transmission ratio distortion (P < 0.001).
712 The complete map is displayed in Fig. S2.

713 **Figure 3** – Genotype frequencies along the three LGs that showed TRD. Genotypes are AA (blue),
714 *S. aethnensis* homozygote; CC (red), *S. chrysanthemifolius* homozygote; AC (purple) heterozygote.
715 Grey boxes indicate the markers which display significant distortion (χ^2 test, $P < 0.001$).

716 **Figure 4** - F_{ST} , d_{XY} (A), and π (B) are not homogeneous across linkage groups in this *Senecio* species
717 pair. LGs 1-10 from are shown left to right with the scale in map distance. (A) Sliding window
718 (width 10 cM, step 5 cM) analysis of F_{ST} (green line) and d_{XY} (purple line) across the ten linkage
719 groups (left hand scale). The dashed lines indicate the upper 10% of the distribution. Red and blue
720 bars indicate the number (right hand scale) of positive (red) and negative (blue) outliers per 5 cM
721 bin; (B) Sliding window (width 10 cM, step 5 cM) analysis of π in *S. aethnensis* (blue) and *S.*
722 *chrysanthemifolius* (red) across the ten linkage groups. The blue and red dashed line indicates the
723 lower 10% of the distribution for each species. Linkage groups 1 to 10 are indicated in each panel.

724 **Figure 5** – Population genetic data for markers in the three regions of the genome (on LGs 1, 3 and
725 6) exhibiting putative outlier clustering and the rest of the genome.

726 **Figure 6** – QTL for morphological differences and hybrid breakdown. The seven LGs with QTL are
727 shown. Markers mapping to the same position were excluded prior to QTL analysis. Traits (see
728 table 1) are colour-coded (green: leaf, blue: inflorescence, red: plant height; black, necrosis). One-
729 LOD (boxes) and 2-LOD QTL intervals (whiskers) are indicated.

730 **Figure S1** – Parental and F2 leaf silhouettes. Two *S. chrysanthemifolius* leaves are shown on the
731 left and two *S. aethnensis* leaves are shown on the right. Other leaves are from the healthy F2
732 plants.

733 **Figure S2** - Linkage map of the cross between *S. aethnensis* Pro2-21 and *S. chrysanthemifolius*
734 Ran1-5. Positive and negative BayeScan outlier loci are indicated in red and blue, respectively.

735 Distances are in Kosambi cM. Asterisks indicate loci showing significant transmission ratio
736 distortion ($P < 0.001$).

737 **Figure S3** – Among linkage group (LG) differences in F_{ST} (A) and π (B). F_{ST} varied significantly among
738 LGs whether or not the outlier markers were included in the analysis whereas d_{XY} did not. π varied
739 among LGs and species.

740 **Figure S4** - Per locus F_{ST} (top panel) and π (bottom panel; blue = *S. aethnensis*, red = *S.*
741 *chrysanthemifolius*) across all linkage groups.

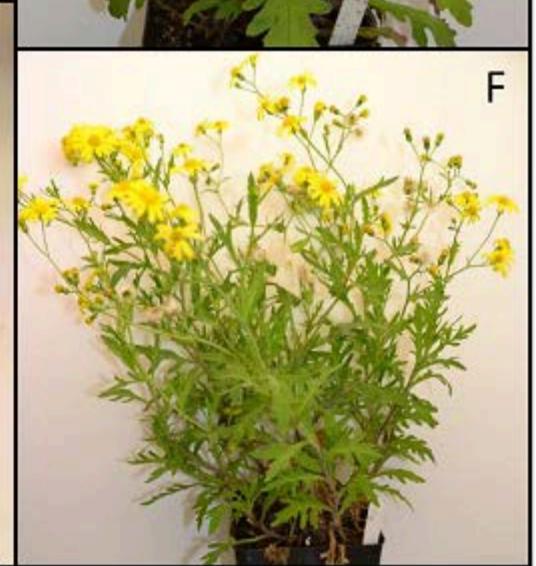
742 **Figure S5** – Distance from nearest outlier locus was significantly negatively correlated with F_{ST} ($P =$
743 1.321×10^{-24}) and d_{XY} ($P = 0.0078$), and positively correlated with nucleotide diversity (π ; $P = 8.399$
744 $\times 10^{-6}$ and $P = 0.0003$ for *S. aethnensis* and *S. chrysanthemifolius*, respectively).

745 **Figure S6** – eQTL (red) for 67 loci differentially-expressed between *S. aethnensis* and *S.*
746 *chrysanthemifolius* superimposed on the morphological/hybrid breakdown QTL map (Fig. 6).

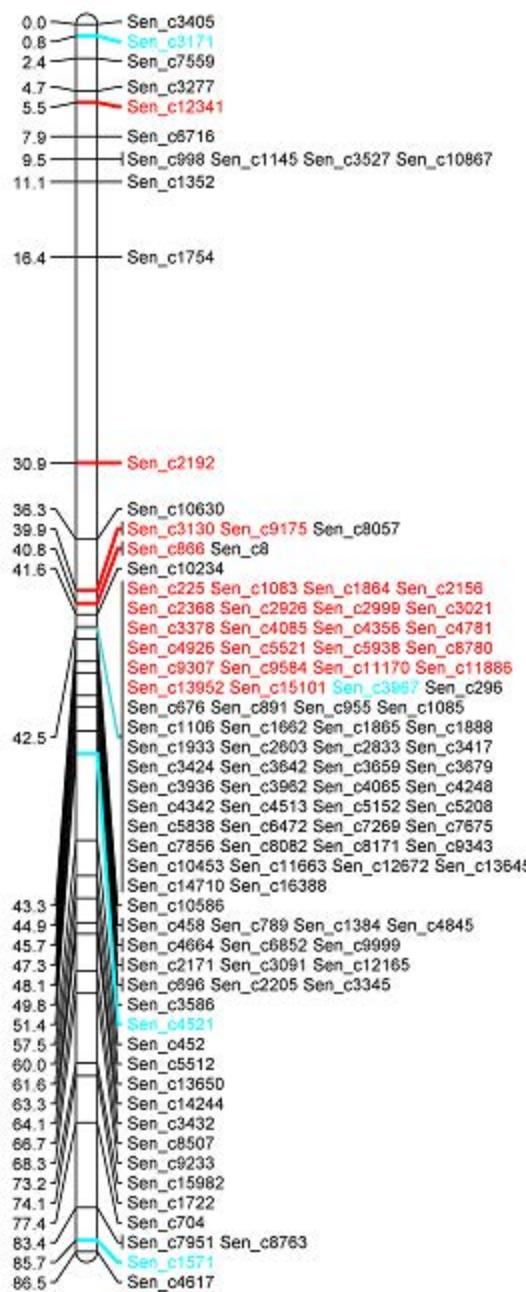
747 **Table S1 (.xls)** – Numbers of sequence reads produced per individual.

748 **Table S2 (.xls)** – Primers used in the targeted genotyping and sequencing.

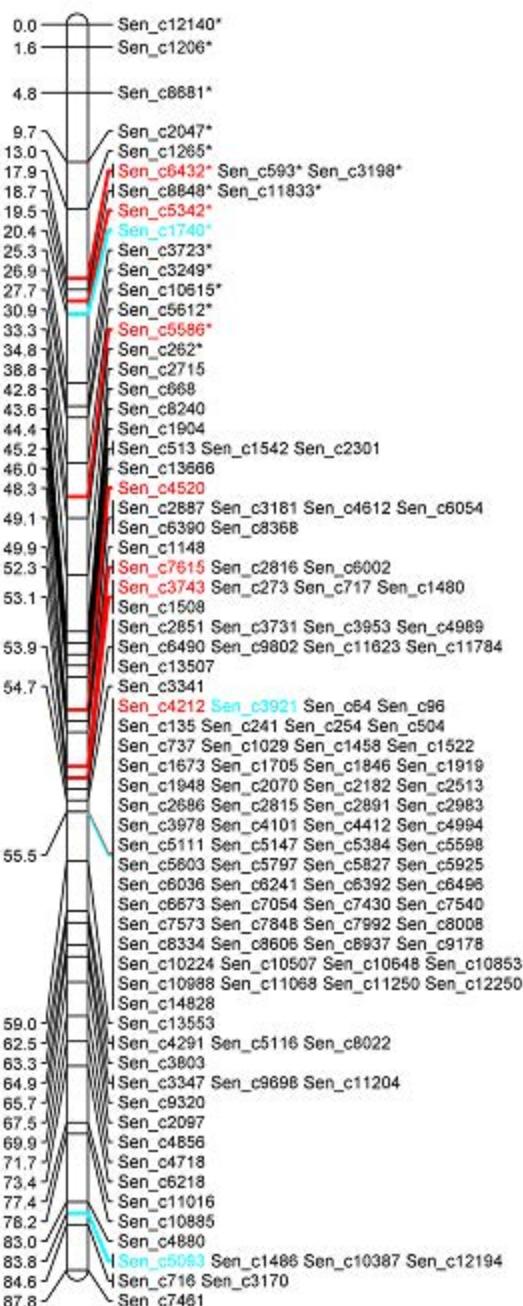
749 **Table S3 (.xls)** – GO terms over-represented in the differentially-expressed loci relative to the non-
750 differentially-expressed loci. (Top) all 2,301 loci, (Middle) 592 loci over-expressed in the necrotic
751 plants and (Bottom) 1,709 loci under-expressed in the necrotic plants.

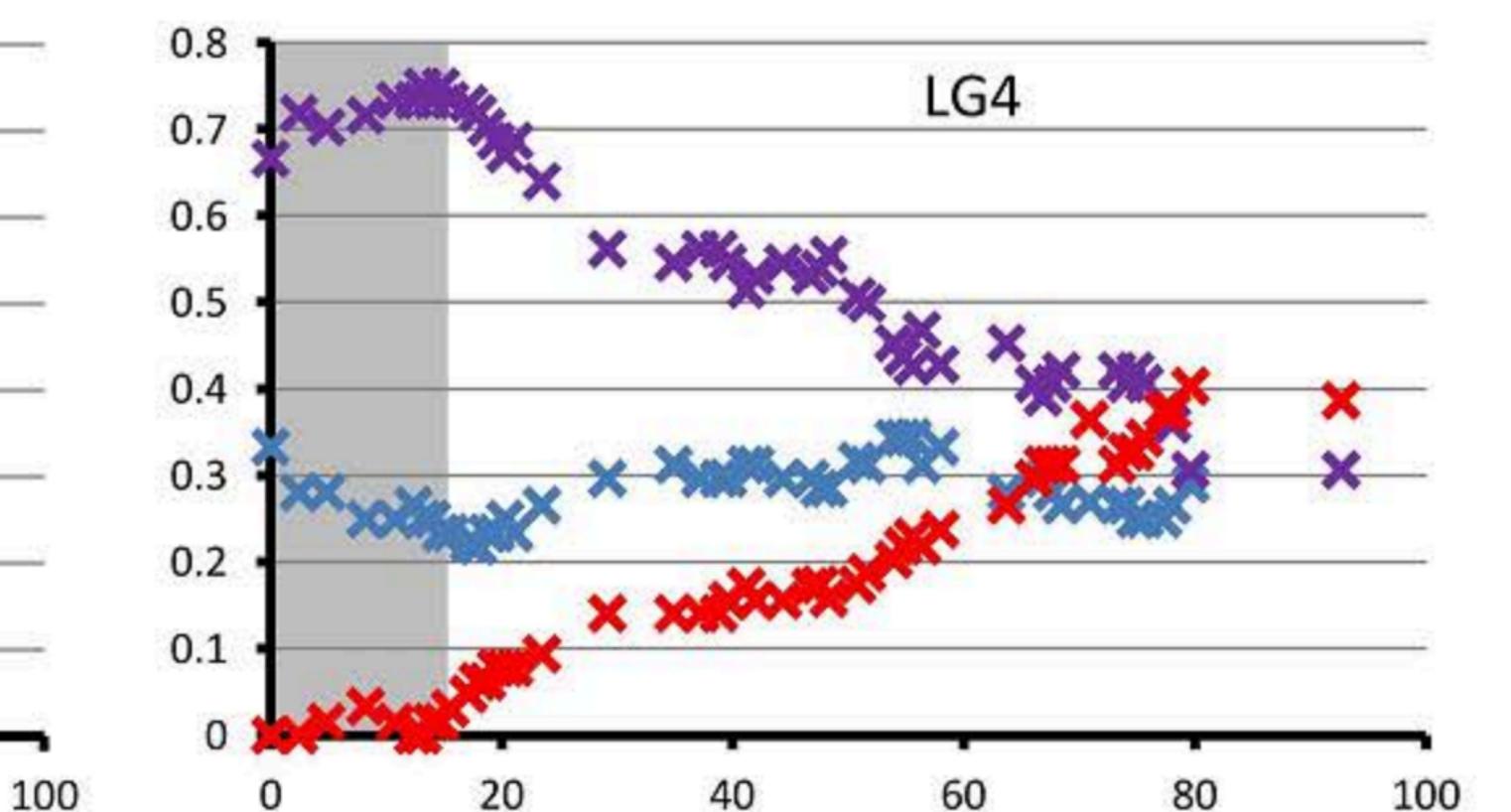
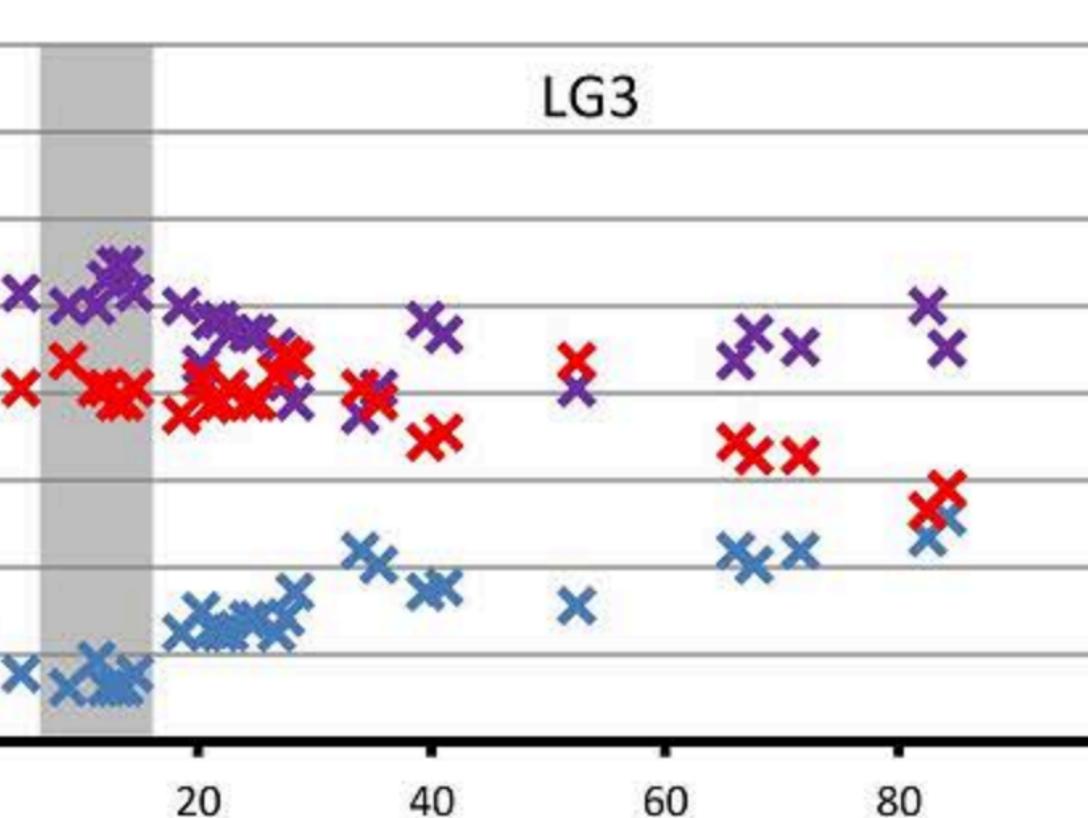
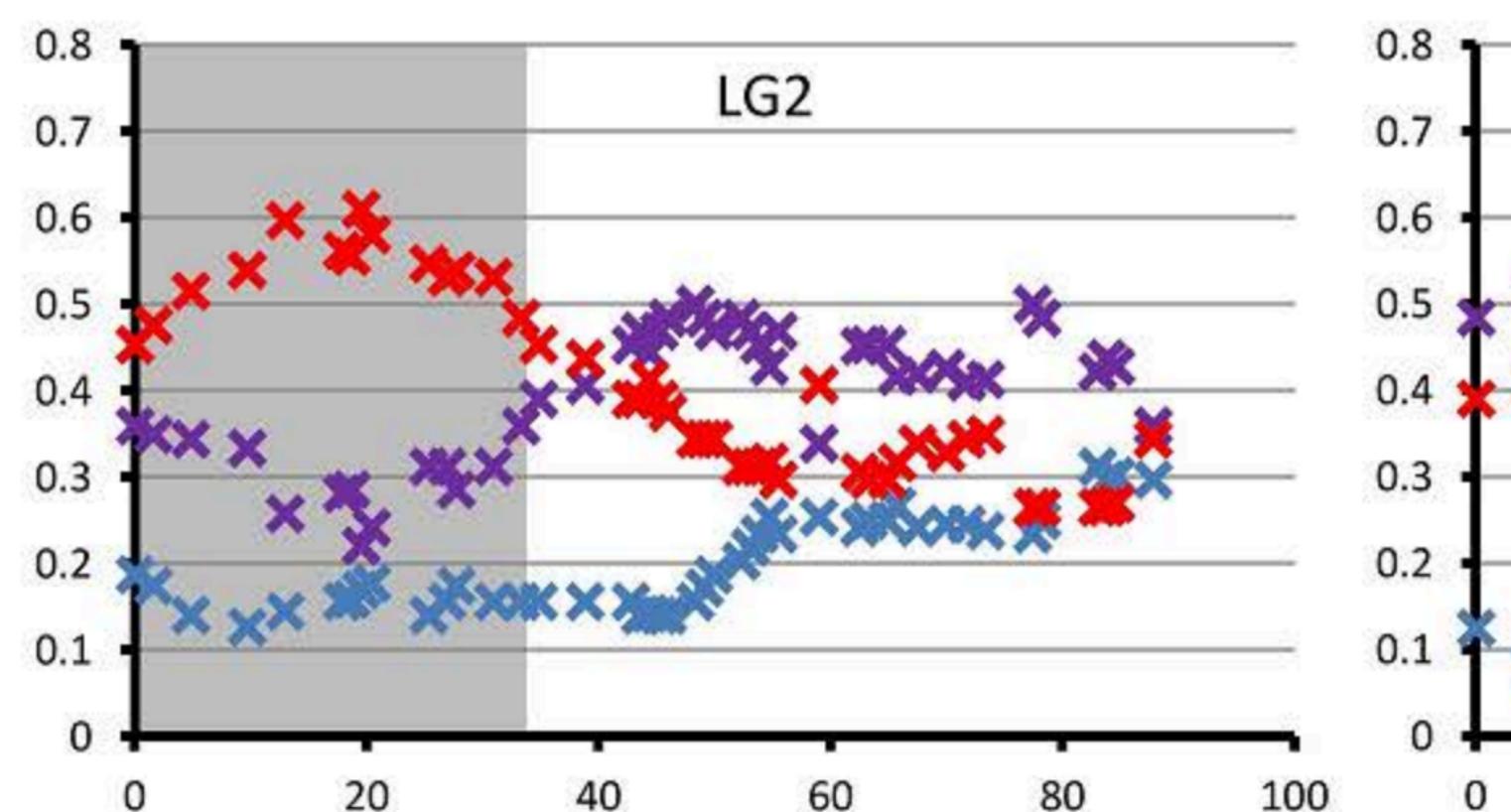

Table 1 – Traits measured in the F2 mapping population. Asterisks denote traits that were square-root transformed before QTL analysis. Acronyms correspond to the trait codes used in the QTL figure (Fig. 2) and table 2. Parental means (untransformed data) \pm S.D. and *t*-test for significant differences between *S. chrysanthemifolius* and *S. aethnensis* are given. ‘n.s.’, non-significant ($P > 0.05$), ‘-’ not measured.

Trait	Description of measurement	Acronym	<i>S. chrysanthemifolius</i>	<i>S. aethnensis</i>	<i>t</i> -test P value
Days to flowering	Days from germination to first anthesis	D2F	-	-	-
Plant Height*	Plant height on day of first anthesis (mm)	Ht	321.54 (\pm 108.79)	285.38 (\pm 23.47)	n.s.
Capitulum Width	Width of apical capitulum (mm)	CapWid	4.83 (\pm 0.21)	6.43 (\pm 0.52)	2.2×10^{-5}
Capitulum Height	Height of apical capitulum (mm)	CapHt	9.50 (\pm 0.50)	10.69 (\pm 0.48)	6.9×10^{-5}
Number of ray florets	Count of rays on apical capitulum	nRays	12.15 (\pm 1.21)	11.00 (\pm 2.14)	n.s.
Ray floret length	Average length of three ray florets (mm)	RayLen	8.73 (\pm 1.29)	11.70 (\pm 2.55)	0.013
Ray floret width	Average width of three ray florets (mm)	RayWid	2.72 (\pm 0.26)	3.97 (\pm 0.67)	8.3×10^{-4}
Leaf length	Length of midleaf (mm) using ImageJ	LfLen	1,415.08 (\pm 180.74)	1,032.63 (\pm 110.95)	8.8×10^{-6}
Leaf area	Area of midleaf (mm^2) using ImageJ	LfArea	378,748 (\pm 85,187)	255,720 (\pm 58,534)	9.5×10^{-4}
Leaf perimeter	Perimeter of midleaf (mm) using ImageJ	LfPerim	17,559 (\pm 3,654)	2,871 (\pm 215)	5.2×10^{-9}
Leaf dissection*	$\text{LfPerim} / \text{LfArea}$	LfDiss	28.88 (\pm 6.52)	5.75 (\pm 0.55)	1.9×10^{-8}
Leaf standardised perimeter*	$\text{LfPerim} / \text{LfLen}$	LfStdPerim	12.51 (\pm 2.89)	2.79 (\pm 0.15)	4.1×10^{-8}
Leaf standardised area	$\text{LfArea} / \text{LfLen}$	LfStdArea	0.44 (\pm 0.05)	0.49 (\pm 0.06)	0.044

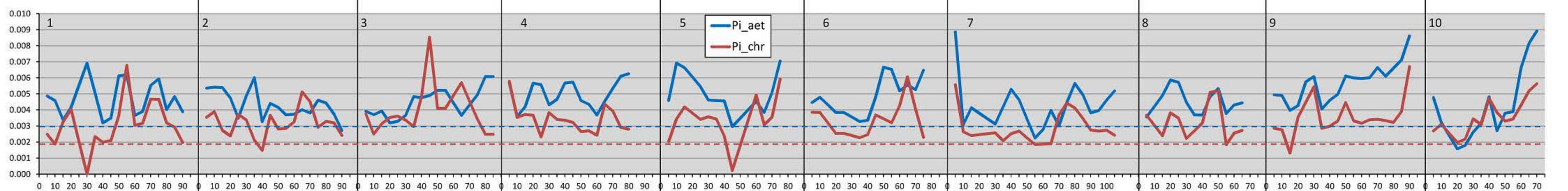
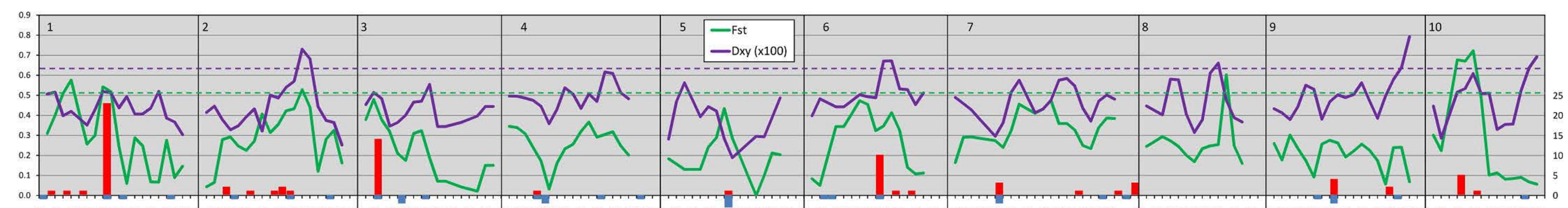

Table 2 – Results of the QTL analysis. Morphological traits (see table 1 for acronyms) were mapped using CIM and necrosis was mapped as a binary trait using IM. LG, linkage group; LOD, logarithm of odds; Add, Additive effect; Dom, dominance effect; PVE, Percentage of variance explained. -2, +2 and -1, +1 indicate the positions (in cM) of the 2-LOD and 1-LOD intervals, respectively.

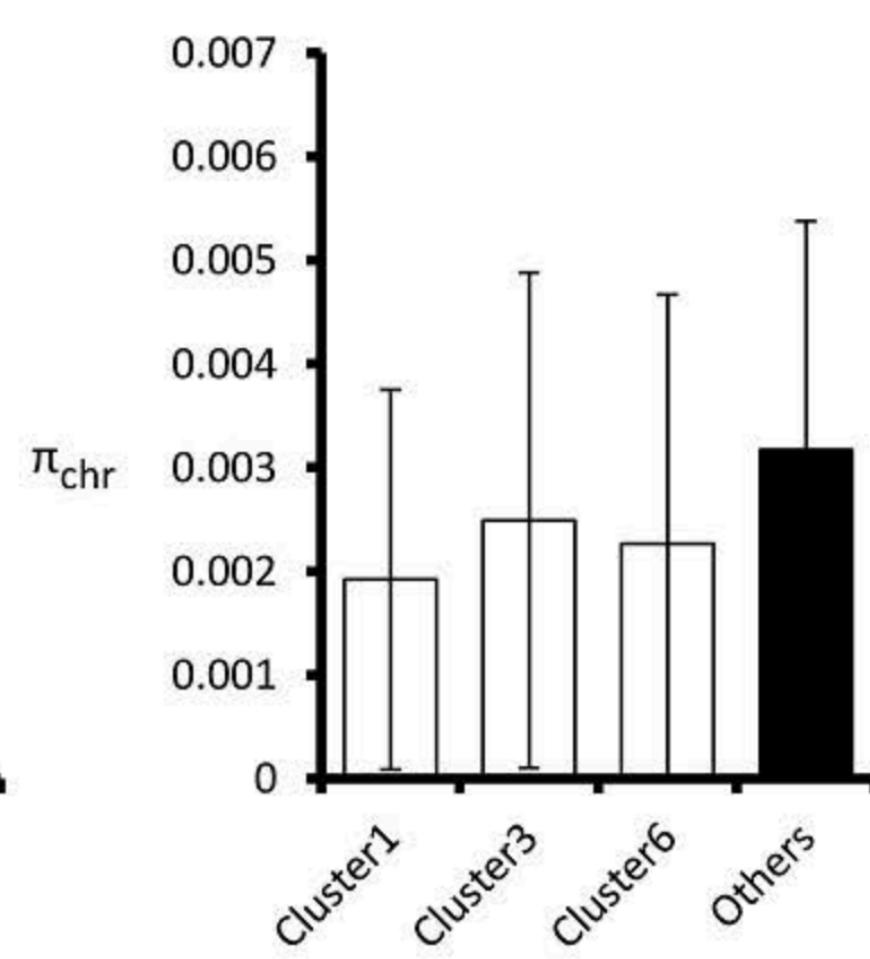
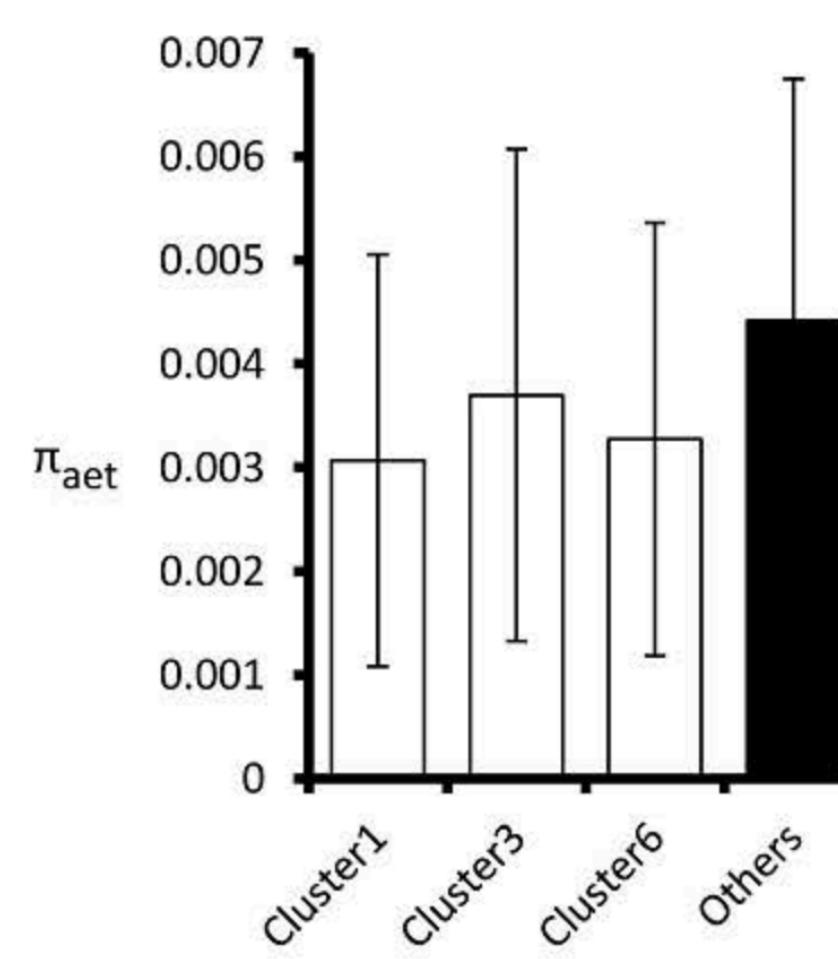
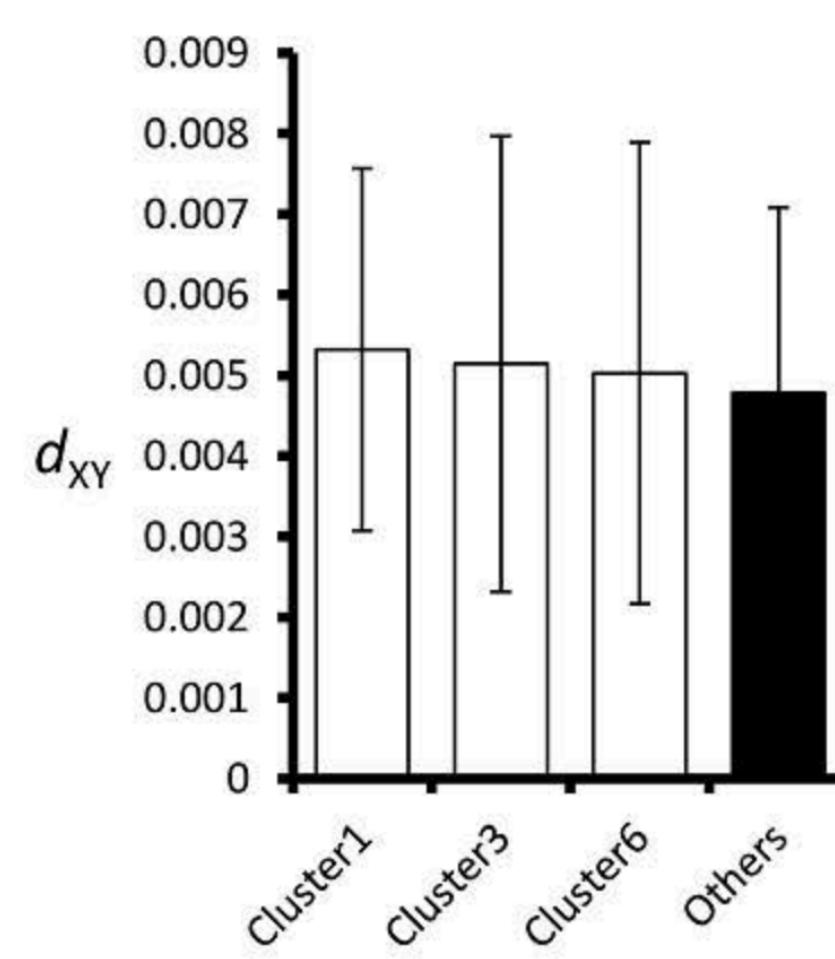
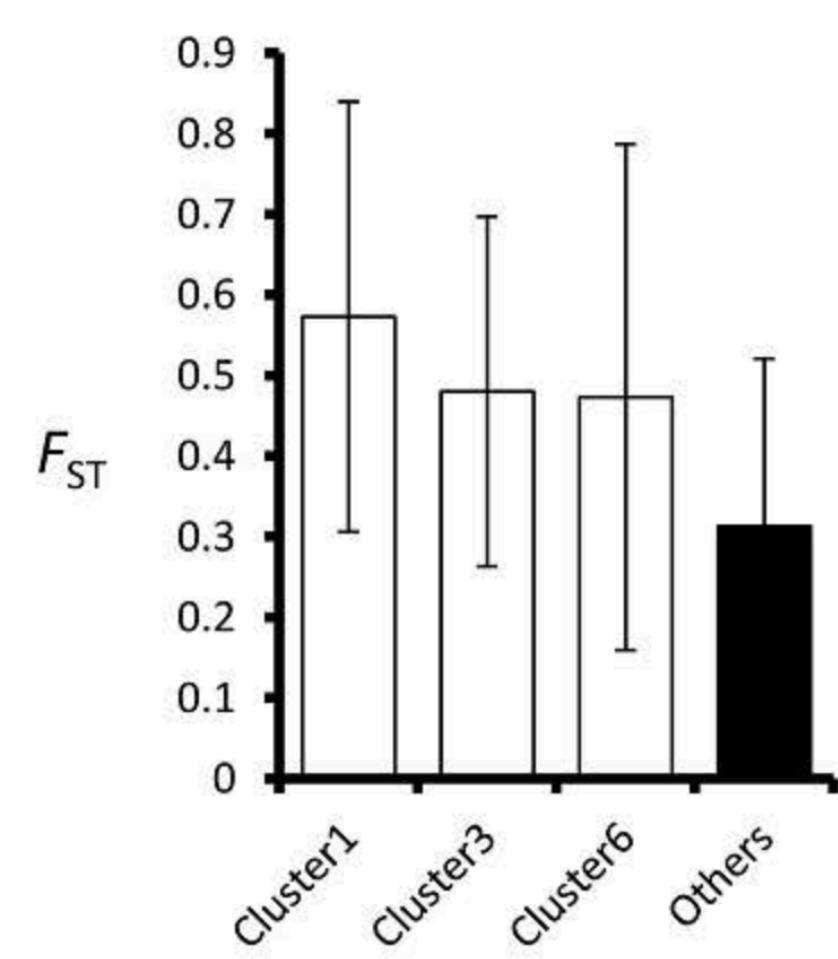
Trait	LG	Peak (cM)	LOD	Add	Dom	-2 LOD	-1 LOD	+1 LOD	+2 LOD	PVE
Ht	7	35.8	4.622	1.61	-0.48	32.5	35.0	36.4	39.7	28.30
Ht	7	65.49	4.107	-1.02	-0.816	64.5	65.05	68	68.8	25.58
CapWid	1	46.18	3.9	0.209	-0.116	24.5	44.5	50.3	55	24.47
CapHt	7	85.34	5.231	0.683	0.687	75	85	86.2	86.5	31.37
nRays	1	8.91	4.731	1.062	0.0396	3	5.5	10.2	26.8	28.85
nRays	1	21.47	5.207	1.104	-0.08	3.3	20.8	22.5	26.5	31.25
RayLen	1	17.14	4.607	-0.75	1.1931	3.5	11	22	23	28.22
RayLen	6	65.23	3.778	-1.05	0.5162	56.2	56.8	65.02	70	23.81
RayWid	1	21.47	11.74	-0.44	0.6582	5.53	11	22	22.5	57.04
LfLen	6	64.23	4.186	-108	77.379	49.2	63.3	70.2	76.03	26.01
LfLen	7	3.33	6.431	208.3	19.498	0	0	6.2	9.8	37.04
LfArea	1	30.58	5.83	0	0	12	27.5	34.55	43.2	34.26
LfArea	5	24.95	4.304	0	0	0	19.9	26.9	42	26.63
LfPerim	1	29.58	3.734	0	0	11	27	40.1	41.5	23.56
LfPerim	5	24.95	5.865	0	0	7.5	16.5	27	28.9	34.43
LfPerim	5	37.01	4.403	0	0	7.3	34.5	40	45	27.15
LfPerim	6	42.83	5.158	0	0	26.8	40.5	46	58	31.00
LfPerim	6	55.28	4.78	0	-432	26.8	50	57.7	58	29.10
LfDiss	5	17.96	4.452	-0.26	0.0911	8	13.5	32.7	43.09	27.41
LfDiss	6	31.79	4.211	-0.27	-0.079	8.7	22.5	39	39.5	26.14
LfDiss	6	75.26	4.459	-0.24	-0.022	59.5	72.5	76.03	76.03	27.45
LfDiss	7	65.49	4.82	-0.26	-0.247	64	65	67	69	29.31
LfStdPerim	7	88.49	4.155	-0.18	-0.144	71	75.5	90	96	25.84
LfStdArea	1	30.58	4.337	-0.04	0.0229	11.7	25	43	43.05	26.81

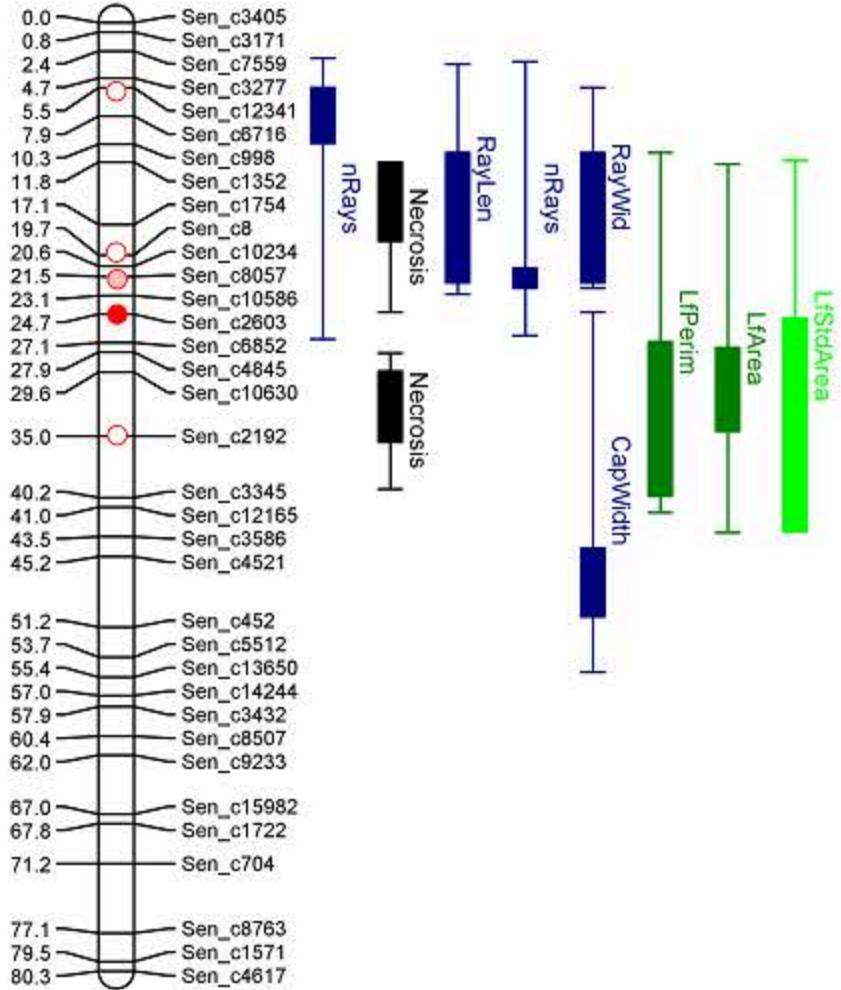

Necrosis	1	16	2.77	-1.33	-0.55	11.8	12	18.5	24.5	18.04
Necrosis	1	32	4.04	-1.12	-0.75	28	29.5	35.5	39.5	25.25
Necrosis	2	63	2.74	-0.84	-1.02	53.5	60	64.8	73	17.89
Necrosis	4	7	15.63	40.32	-73.18	4.7	6.5	11.5	12	67.51
Necrosis	7	81	3.47	-1.08	-0.38	80	80.8	82.3	84.5	22.11
Necrosis	7	103	3.63	-1.20	0.93	91.5	100.8	108.22	108.22	23.00
Necrosis	8	55	4.69	0.02	-1.92	51.5	51.8	56.3	61.1	28.65

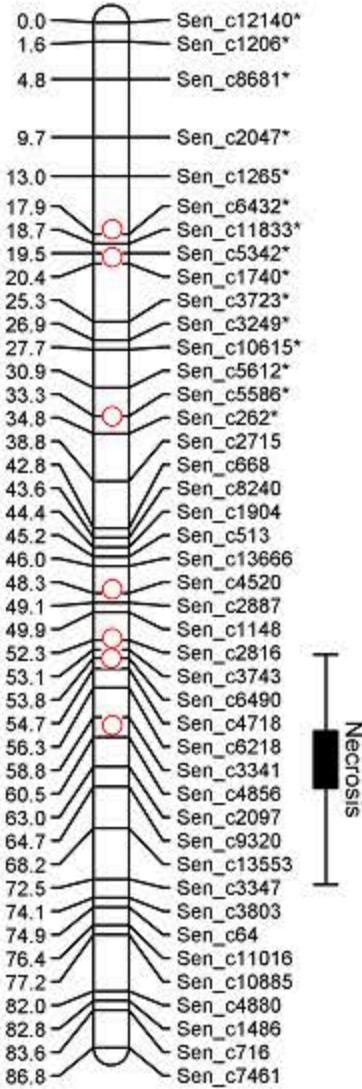
LG1

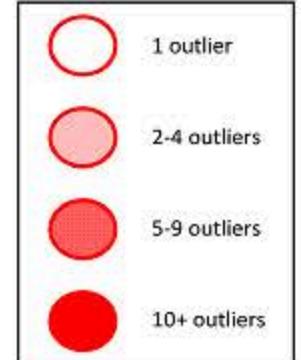
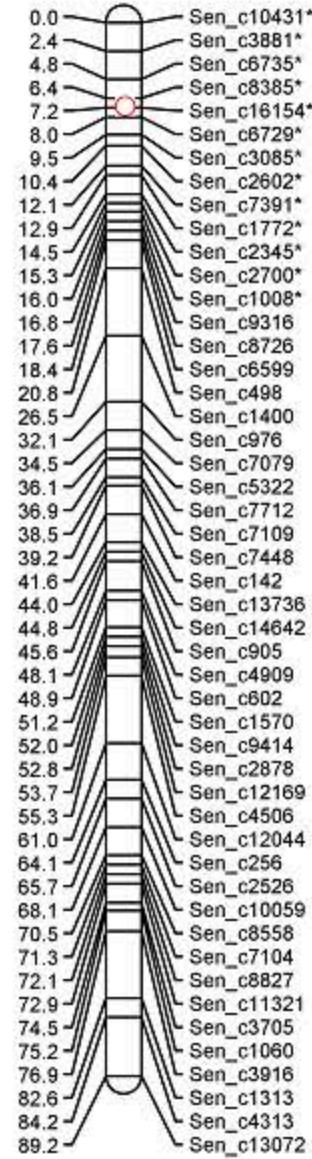


LG2

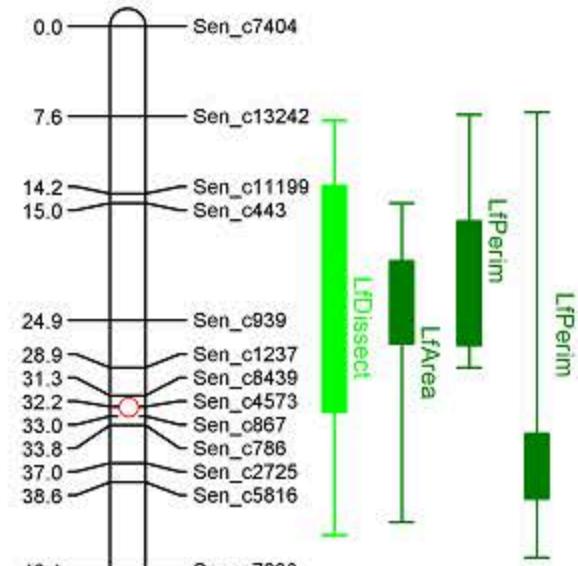





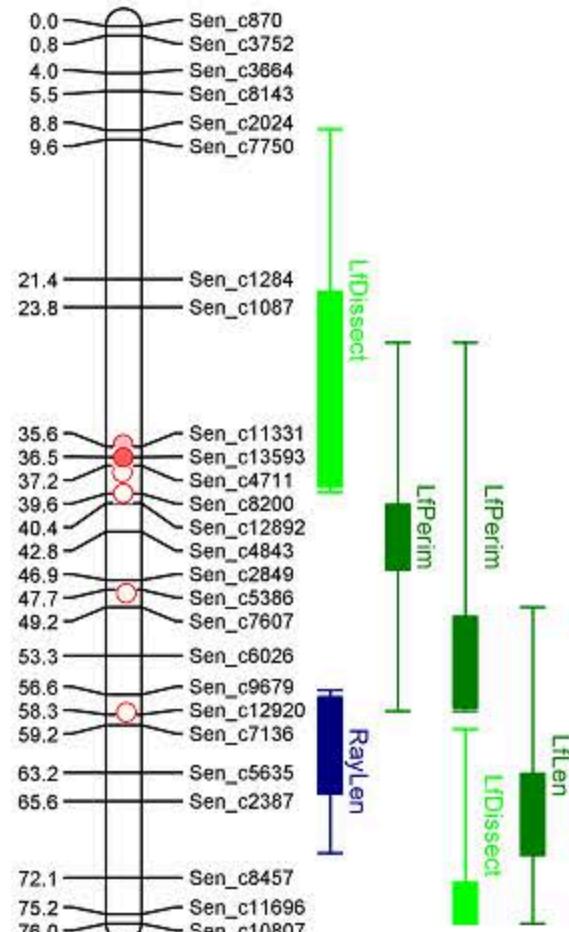

Distance along LG (cM)

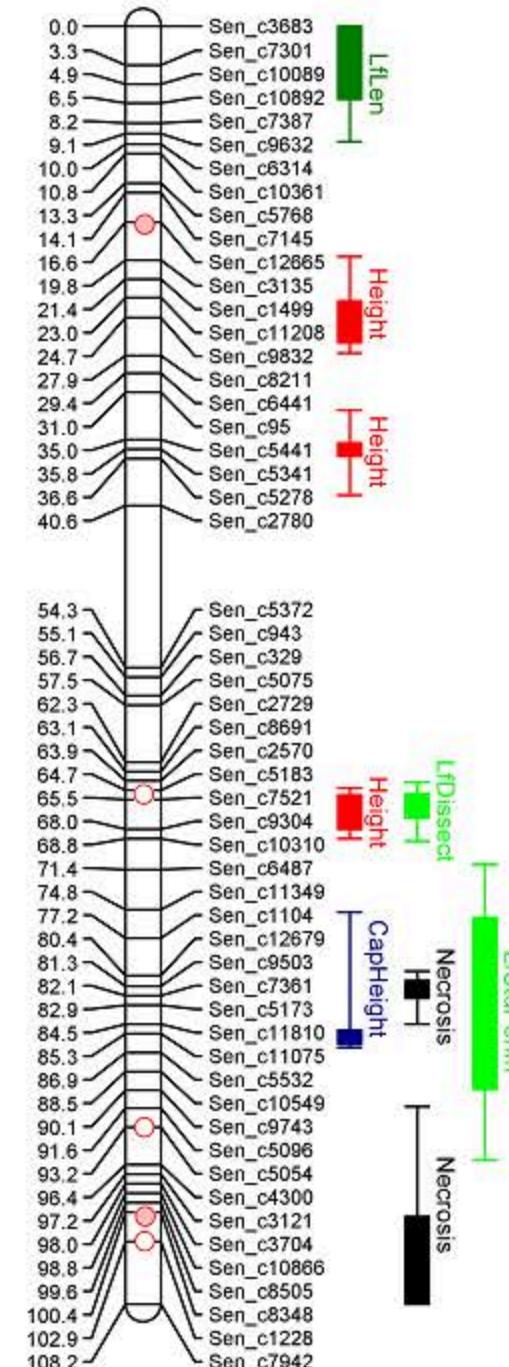
AA
AC
CC

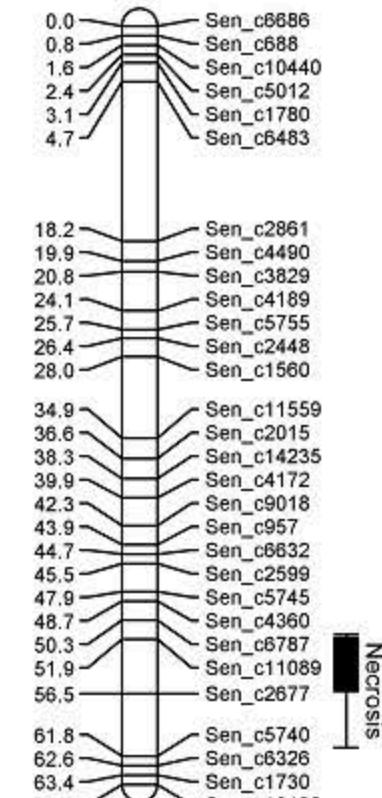




LG1


LG2


LG4


LG5


LG6

LG7

LG8

