
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


 

 

 

UNIVERSITY OF SOUTHAMPTON 

 

FACULTY OF BUSINESS, LAW AND ART 

 

Southampton Business School 

Multi-stage stochastic modelling for global supply chain and logistics under 

uncertainty 

 

by 

 

Lin Zhu 

 

Thesis for the degree of Doctor of Philosophy 

 

September_2015 

 





 

 

UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF BUSINESS, LAW AND ART 

Southampton Business School 

Thesis for the degree of Doctor of Philosophy 

MULTI-STAGE STOCHASTIC MODELLING FOR GLOBAL SUPPLY CHAIN AND LOGISTICS 

UNDER UNCERTAINTY 

Lin Zhu 

This research focuses on the applications of multi-stage stochastic models for global supply chain 

and logistics, especially in global production planning problems and international air cargo 

forwarding problems under uncertainties. We first exam a multi-period, multi-product and multi-

plant production planning problem under uncertain demand and quota limitations and develop a 

multi-stage stochastic model to handle this problem. Then we present three types of robust 

models for the same problem: the robust optimization model with solution robustness, the robust 

optimization model with model robustness, and the robust optimization model with the trade-off 

between solution robustness and model robustness. Results show that multi-stage models will 

bring more benefits to their decision-makers. 

The second problem we look at is an international air cargo forwarding problem under 

uncertainty, which means the cargoes need to be transported from regions to destinations via a 

hub. The air forwarders not only have to make a decision about the number of containers to be 

booked for the regions and hub in advance before accurate customers’ information becomes 

available, but also have to decide the number of extra containers to be required or the containers 

to be returned after the realisation of uncertainty. We develop stochastic models and three types 

of robust models for one day’s flights per week and multi-days’ flights per week cases for this air 

cargo forwarding problem. For the large scale problem which means the computer software 

cannot give the optimal solution, we also present a new way to design the genetic algorithm to 

get the better solutions. 

Computational results show that the stochastic models can provide effective and cost-efficient 

solutions; the robust optimization models can provide a more responsive and flexible system with 

less risk. 
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Chapter 1:  Introduction 

A supply chain is a network of transforming natural resources, raw materials, and components 

into a finished product and delivering that product to the customers (Bowersox et al., 2002). 

Mentzer et al. (2001) define supply chain management as “the systemic, strategic coordination of 

the traditional business functions and the tactics across these business functions within a 

particular company and across businesses within the supply chain, for the purposes of improving 

the long-term performance of the individual companies and the supply chain as a whole.” Supply 

chain management mainly contains supplier management, production planning management, 

inventory management, transportation management, customer service management and so on. 

In our research, we will focus on production planning problem and air transportation problem. 

1.1 Background 

In the 21st century, the outcome of globalization in the business environment has contributed to 

the development of supply chain management. Globalization can be characterized by the 

attention given to global systems of supplier relationships and the expansion of supply chains 

over national boundaries and into other continents. Globalization develops international 

operations, which require increasingly worldwide coordination and planning to achieve global 

optimums. This can make possible larger lot sizes, lower taxes, and better environments for the 

products. There are also many challenges when the supply chain is global, for example, different 

currencies in different countries, different tax laws and different trading policies.  

Production planning management, as a fundamental part of supply chain management, has 

inevitably been greatly affected by the development of globalization. A very different situation 

from that which was common not many years previously is faced by manufacturing companies 

operating today. Products can be manufactured in any feasible area of the world, due to the 

substantial differentials in labour salary and raw material supply, continuously improving global 

logistics networks and dramatically decreased transportation costs. Business has been set in a 

global environment, where global corporations and brands dominate most markets in the world. 

Unless manufacturing companies develop competitive strategies, tactics, and operations for the 

global market, they risk being beaten by other manufacturers who have embraced more 

innovative approaches. Forces which are currently driving changes in the global supply chain 

environment include: advancement of information technology and easy access to the Internet; 

development of e-business, which can lead to global visibility for purchasing, production and 

distribution increasingly shortening products lifecycles, which leaves shorter time for 
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manufacturers to produce; increased product variety, which makes it more difficult to accurately 

forecast market demand; global outsourcing of different activities; and empowered customers, 

who demand quick responses and speedy delivery while continuously lowering costs (Wu, 2006). 

Mass production, continuous production, single item manufacturing, batch production and other 

types of production methods have their own type of production planning. Therefore, one period 

plan and multi-period plan are both needed for production planning problems according to which 

production methods the companies choose. 

Meanwhile, due to the rapid development of globalization, many domestic enterprises are facing 

greater competition from international firms than before. The government provides some 

protection policies to protect their own domestic companies, such as import quotas. Import 

quotas are extensively employed by various governments as a means of addressing perceived 

trade (import) imbalances. More specifically, import quotas are employed as a means of 

quantitatively restricting the importation of foreign products. For example, in order to protect 

their domestic companies, the importing countries will only allocate a certain amount of quotas 

to exporting countries. If the exporters want to export more products, they are expected to 

purchase quotas from importing countries first. This generally increases the exporters’ production 

costs and, consequently, their market prices. For the designated country of import, the 

implication is that the unit price of such “foreign” products is expected to be higher than that of 

goods locally produced (thus serving as a means of protecting local production). Import quotas 

are therefore protectionist. In the United States, for example, although by 2009, clothing imports 

had totalled $63.10 billion (a 400% increase from 1990), its domestic industry continued to suffer 

from a steady decline not only in output, but in export as well, thus threatening the survival of 

domestic manufacturers (Lu and Dickerson, 2012). 

Compared to a few years ago, logistics managers today encounter a totally different environment, 

particularly in terms of the supply chain, which has become global in outlook. Significant portions 

of global markets are dominated by multinational corporations and global brands; they enjoy 

large differentials in the costs of production, technologically advanced logistical networks and 

enhanced information technology. These changes enable them to purchase and/or manufacture 

products and materials and sell their products anywhere in the world. However, despite the ease 

of communication and interaction that has been perpetuated by the unprecedented growth of 

globalisation, the distance factor is an issue that is being taken seriously since it is necessary for 

shipments to move across continents and oceans before they reach their intended sites. The 

logistics managers need to consider not only how to make production plans, but also how to 

transport their products to the sales departments. The main options for long distance 

transportation are shipping by sea and air.   
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Figure ‎1.1 Air freight container specifications (source: 

http://www.maximafreight.com/UtilitesAirContainer.aspx) 

Nearly five decades ago, containers were introduced as standard steel boxes designed for the sole 

purpose of convenient, easier and quick handling of cargo. For ship containers, they are often in 

cuboid format stretching 8 feet in width, and in the length either 20 feet, 40 feet or 45 feet. The 

length of ship containers also stand at either 8.5 feet or 9.5 feet (Christiansen et al., 2007) . For air 

http://www.maximafreight.com/UtilitesAirContainer.aspx
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containers, the shape and size are largely dependent on the content and size of the cargo aircraft 

and this tends to limit its size. Figure ‎1.1 illustrates the air freight container specifications supplied 

by IATA (International Air Transport Association) and the ATA (Air Transport Association of 

America). There are 11 types of air container in Figure ‎1.1. Each type of container has its own 

dimensions, volume limit, weight limitation and suitable aircraft models. For examples, Containers 

LD-2 and LD-8 are only suitable for Aircraft B767 whereas Container LD-3 can be loaded in 10 

different models of aeroplanes.    

Transport by air is the quickest way to deliver items over long distances. However, time is money, 

and this can easily factor into the net costs of flying cargo. Transit time has been reduced from 

nearly 60 days for shipping, to just one day or two, because of the massive sizes of cargo planes, 

the high frequency of numerous airlines, and the presence of many airports in major cities around 

the world. Air cargo presently constitutes a marginal percentage of the world’s freight in terms of 

weight. The nature of cargo transported via air is mainly high-value, and low density, and this 

converts all the value of the air freight cargo to constitute a larger proportion compared to the 

entire global market. Crabtree et al. (2014) exemplify that air cargo in the next two decades will 

grow, on average, 4.7% per year. They forecast that after 20 years the number of revenue tonne-

kilometres (RTK) by air will reach more than twice the number reached in 2013.  

Due to the rapid growth in airline business, airline hubs have been considered in recent years to 

facilitate more efficient use of scarce air transportation resources. When air cargo is forwarded 

via hubs in international commerce, goods are brought from the source region in one aircraft to 

the hub in which they are passed to the next aircraft, which will then convey the goods to their 

ultimate destination. The aircraft may or may not be of the same model. Such global air cargo 

forwarding via hubs usually involves two kinds of operation: either the hub may serve purely as a 

trans-shipment core, where products are handed over from an inbound to an outbound aircraft 

with not much storage involved, or the products which arrive may be kept and recorded in 

warehousing within the hub and sent to destinations when required. Whether trans-shipped or 

stored, there is no material alteration of these products. However, a restricted quantity of value-

added actions such as information processing, reconsolidation, repackaging, inventory control, 

and break-bulking may occur at the hub. At the outset, it may appear that this procedure results 

in unnecessary extra handling of goods and increased transportation times but in reality it affords 

users improved flexibility and superior economics (Raguraman, 1997). 

The problems we consider in this research are global production planning and international air 

container booking via a hub.   
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1.2 Research objectives 

The main aims of this research are to provide mathematical models for production planning 

problems and air cargo forwarding problems via a hub, and mathematical algorithms for large-

scale air cargo cases. The specific objectives are: 

• To make production plans for the multi-period, multi-product and multi-plant problem 

under uncertain demands and import quota limits. 

• To provide a more responsive and flexible system with less risk to deal with the 

uncertainties in the multi-period, multi-product and multi-plant problems. 

• To make air containers booking plans for the air cargo forwarding problems with one day’s 

flights per week, which means the air cargoes will be transported from different regions to 

different destinations via a hub in one day. 

• To make air containers booking plans for the air cargo forwarding problem with multi-days’ 

flights per week.  

• To provide genetic algorithms (GA) for solving large-scale air cargoes forwarding problems. 

1.3 Contribution of this research 

This research makes several contributions as follows: 

• In order to solve the multi-period, multi-product and multi-plant problem under uncertain 

demand and import quotas, we develop a multi-stage stochastic linear model. Results show that 

garment manufacturing firms are more likely to derive more benefits from our model than if it 

had adopted a two-stage model. 

• For the same production planning problem, we present three types of robust optimization 

models to provide a more responsive and flexible system with less risk, which is particularly 

important in the current context of global competitiveness. 

• Regarding the air cargo forwarding problems, we present a new problem that the 

forwarders should book air containers in advance, in order to ship the cargoes from different 

regions to different destinations via a hub in which the cargoes need to be repacked and 

consolidated before leaving. 
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• For the new air cargo forwarding problems we build, we develop two-stage (for one day’s 

flights per week) and multi-stage (for multi-day’s flights per week) stochastic models and also 

robust models to make the problems with less risk. 

• For the large size air cargo forwarding problems, we design a GA with the purpose of 

providing solutions because the mathematical software cannot solve them.  

1.4 Outline of the thesis 

The rest of the thesis is organized as follows:  

In Chapter 2, the literature related to the production planning problems and the air cargo 

forwarding problems is reviewed.  Then we review the mathematical models which we use to 

solve the above two problems, such as two-stage stochastic models, multi-stage stochastic 

models and robust models. Finally, we also provide a brief review about GA, which have been 

used to solve large scale booking problems. 

In Chapter 3, we develop a multi-stage stochastic model and three types of multi-stage robust 

models to solve the global production planning problems under demand uncertainty and quota 

limitation. The objectives are to minimise the total production costs. Numerical results and tests 

are then carried out to evaluate and compare these models. 

In Chapter 4, we present a two-stage stochastic model and three types of two-stage robust 

models to solve the international air cargo forwarding problems. After that, all these models are 

developed to multi-stage models to solve the multi-period problems. All the two-stage and multi-

stage models are formulated as mixed-integer programming models. The objectives are to 

minimise the air container booking costs. Due to the computational complexity of the multi-

period problems, we provide a GA to solve the large-scale air cargo forwarding problem. Results 

and tests give the evaluation of these models and comparison between the GA results and exact 

solutions.  

Chapter 5 summarizes the research presented in this thesis. The potential future research based 

on this thesis is also described in this chapter. 
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Chapter 2:  Literature Review 

In the latter years of the 20th century, the supply chains sector has witnessed considerable 

expansion into international locations, particularly in the computer, automobile, and apparel 

industries (Taylor, 1997; Dornier et al., 1998). This growth in globalisation is unprecedented and 

rightfully so; it is accompanied by new challenges that did not exist before. Consequently, the new 

environment of global supply chain management has attracted both academic and practitioner 

interest. Bowersox et al. (2002) articulate a detailed introduction on the management of supply 

chain logistics including procurement and manufacturing, customer accommodation, inventory, 

transportation operations, packaging and so on. In the following sections, two parts will be the 

main focus of review: global production planning and international air cargo forwarding. 

2.1 Production planning 

The challenges associated with production planning, as a very important part of the global supply 

chain, have been addressed by many scholars. Such studies include that of Pyke and Cohen (1993) 

who develop an integrated production-distribution system for a one-product, three-location 

network by obtaining near-optimal solutions. On the other hand, Man et al. (2000) provide a 

multi-objective model for production scheduling planning that employed GAs. Taking into 

consideration production and distribution chains, Lee et al. (2006) develop an integrated 

mathematical model for the semiconductor industry supply chain system.  

If all the necessary information for decision making is known before the planning time, the 

production planning problem will become simpler than the unclear information case. However, in 

the real world, there are many uncertain factors that may influence the production processes. Ho 

(1989) divides uncertainties into two groups: environmental uncertainty, such as demand and 

supply uncertainty, and system uncertainty, such as failure and maintenance time. Carino et al. 

(1994) give a review about production planning models with capacity uncertainty and demand 

uncertainty. This paper categorises these problems into two groups: single-period model and 

multi-period model. Mula et al. (2006) review most of the existing literature regarding production 

planning under uncertainty and list all the general types of uncertainty models used in 

manufacturing systems. They classify the uncertainty models into four areas: conceptual models, 

such as yield factors, safety stocks and safety lead times; analytical models, such as deterministic 

approximations, stochastic programming and Markov decision processes; artificial intelligence 

based models, such as expert systems, fuzzy set theory and multi-agent systems; and simulation 

models, such as Monte Carlo techniques, heuristic methods and dynamic systems. For each area, 
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the uncertainties are divided into demand uncertainty, environmental uncertainty, system 

uncertainty, lead times uncertainty, operation yield uncertainty and supply lead time uncertainty. 

Production planning problems under uncertainty can be classified into many topics, such as 

aggregate planning (Rinks, 1981; Turksen, 1988), hierarchical production planning (Hax and Meal, 

1975; Gfrerer and Zäpfel, 1995), manufacturing resource planning (Billington et al., 1983; 

Grubbström, 1999), material requirement planning (Orlicky, 1975; Murthy and Ma, 1991), supply 

chain planning (Petrovic, 2001; Das and Abdel-Malek, 2003), inventory management (Vujošević et 

al., 1996; Ganeshan, 1999), capacity planning (Eppen et al., 1989; Paraskevopoulos et al., 1991) 

and so on. Thompson and Davis (1990) provide an integrated solution approach for the aggregate 

production planning problem demonstrated on a multi-product, fixed-workforce and multi-period 

example under the uncertainties in selling price, cost, demand, capacity, consumption of capacity, 

and retention of backorders. Meybodi and Foote (1995) develop a multi-objective hierarchical 

production planning and scheduling model under demand uncertainty and production failure. A 

mixed integer linear programming model including capacity constraints, company orders, demand 

forecasting and supply and subcontracting decisions for a rolling horizon planning process is built 

by Rota et al. (1997) to address the uncertainty and complex manufacturing environments. Du 

and Wolfe (2000) propose an active, bucketless and real-time material requirement planning 

system used a hybrid architecture including an object-oriented database, fuzzy logic controllers, 

and neural networks. Their system can particularize the exact releases and due dates for each 

requirement, scheduled receipt, and planned order. For the strategic supply chain planning 

problem, Koutsoukis et al. (2000) describe an integrated decision support system which has an 

embedded decision engine that uses two-stage stochastic programming as an example for 

optimisation under uncertainty. Samanta and Al-Araimi (2001) develop an inventory model using 

fuzzy logic by considering the periodic revision of inventory control with variable order quantity. 

Karabuk and Wu (2003) formulate a multi-stage stochastic programming with uncertain demand 

and capacity for the capacity planning problem for a major US semiconductor manufacturer. 

In order to solve the production planning problems, researchers find many kinds of mathematical 

models and methods to deal with them. Yano (1987) uses a nonlinear programming formulation 

with the objective of minimising the sum of inventory holding costs and tardiness costs to address 

the problem of determining planned lead times in two-level assembly systems with stochastic 

lead times. Jolayemi and Olorunniwo (2004) formulate a deterministic model to maximise total 

profit over a finite planning horizon for planning production and transportation quantities in 

multi-plant and multi-warehouse environment with extensible capacities. Ould-Louly and Dolgui 

(2004) provide a mathematical formulation based on Markov chains to measure the average cost 

for a multi-period and multi-component supply planning problem with random lead time and 
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fixed demand. Lütke Entrup et al. (2005) build mixed-integer linear programming models by 

considering shelf-life issues for the yoghurt production planning and scheduling problems. Wu 

(2011b) develops a two-stage stochastic linear recourse model for production planning problem 

with import quota limits and demand uncertainty. Guan and Philpott (2011) present a multi-stage 

stochastic programming model for the dairy industry by considering uncertain milk supply, price-

demand curves and contracting. Two different robust optimization models that have differing 

variability measures to address the multi-product and multi-period production planning challenge 

of a sawmill business are proposed by Zanjani et al. (2010a).  

There are not many literature contributions on multi-stage production planning problems 

especially employing robust optimization. Until now, only few researchers have addressed import 

quota limitations for production planning problems in the global supply chain system.  

2.2 Air cargo forwarding 

Nowadays, logistical services play a fundamental role in transferring or ferrying goods from their 

point of manufacture to where the customer requires them. Globalisation has made it possible to 

deliver goods within a short time, and particularly those with a short life cycle. These require an 

efficient and fast transportation mode. Over the last two decades or so, the air cargo industry has 

grown in leaps and bounds. To deal with the unprecedented demand, logistical systems are being 

used by all air cargo service providers in order to provide faster, more efficient and more secure 

transportation of goods across the globe. Despite the intervention of technological advancements 

in the propagation of logistical services, the loading of cargo onto aeroplanes is still largely 

dependent on manual labour and the decisions of the grounds crew. According to Hesse and 

Rodrigue (2004) air cargo loading is different from other forms of container loading in various 

respects, such as the fact that the containers used are not always rectangular, and this means that 

irregularly shaped containers are required for some of the cargo. Additionally, the mechanism for 

calculating the logistics costs in air cargo handling is dependent on the volume efficiency and the 

net loading weight of the air containers. 

The first time containers were used was in the 1950s, and ever since curiosity has led to the 

increment of the amount of cargo that can be handled at any one time. According to Vis and De 

Koster (2003), containers are often explained as large boxes that are used in the transportation of 

goods from one point to the next, particularly to the customer’s destination. Storage of goods in 

an efficient manner while transporting them can be structured as a container loading challenge as 

purported by Bortfeldt and Gehring (2001). According to Dyckhoff and Finke (1992), the 
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examination of container loading problems has attracted a lot of scholarly attention over the 

years, and as a result these problems are classified and construed in myriad ways. 

The present literature contributions on the problems of container loading, unfortunately, focus 

mainly on sea container loading. Over the last few years, a lot of publications have been released 

discussing the problems faced when loading air cargo. A substantial amount of literature 

concentrates on the aspect of gravity encountered when loading aircraft. A comprehensive review 

of the computer assisted and manual approaches in loading air cargo is presented by Martin-Vega 

(1985), who considers the centre of gravity through pyramid loading as the most efficient way in 

dealing with air container loading problems. Martin-Vega’s work is extended by Mathur (1998) 

who provides an algorithm that had an improved worst-case performance. In addition, Amiouny 

et al. (1992) formulate a simple greedy heuristics that they apply in balancing when loading 

containers with the presumption that all air cargo containers have to be loaded in a particular 

manner; precisely in a one-dimensional hold. A military application is a very good approach from 

the perspective of Ng (1992), where all air cargoes are loaded and placed in a sequence of 

priorities. The problem of optimizing freight loading was assessed by Mongeau and Bes (2003) 

with the intention of reducing fuel consumption and ensuring the weight is properly balanced in a 

manner that is within the safety regulation provisions and stability. Through the use of a 

mathematical programming, a model is simulated which shows how the containers ought to be 

loaded into the cargo hold of an aircraft, as well as how the containers should be distributed into 

their respective compartments. Yan et al. (2008) point out that a good cargo container loading 

plan not only needs to minimise the airport operating costs, but should also consider the 

uncertain demand in real operations. They formulate a nonlinear mixed integer program to 

resolve daily stochastic demands in practice. 

Some of the challenges encountered during the loading and shipping of air cargos include the cost 

of loading which is pegged on the weight of the entire container, as well as the volume of packing 

(Feng et al., 2015). Yan et al. (2006) studied their model, constructed for cargo container loading 

plans, using the operations of the carrier FedEx. Airlines looking for a best possible baggage limit 

policy, whilst the goods were carried in the remaining aircraft belly space along with customers’ 

luggage, has been identified as a new difficulty by Wong et al. (2009). Most importantly, the due 

date of the consignment transportation has to be adhered to (Fong et al., 2013). Fong et al. (2013) 

optimise the criterion followed during the loading of air cargo and conclude that it should be 

informed by customer needs while considering the optimum usage and the benefit to the aircraft. 

In their research to identify the most appropriate optimal shipment of air cargo, they applied 

three algorithms: the first is the GA extended using the due-date method; the second is the 

extended due-date method; and the third, the GA with the extended due-date method. Bing and 
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Bhatnagar (2013) formulate two models: a single flight and a sequential multi-flight. Both models 

rely on the uncertain capacity restriction from the point of view of the freight forwarders who are 

tasked with determining the booking amounts for spot and contract markets. The models also 

consider the problems of capacity booking. 

A mixed integer linear programming model is formulated by Wu (2008) to assist logistic managers 

in making the necessary decisions when they are dealing with containerization of problems 

encountered while loading air cargo: precisely, when leasing air containers from air carrier service 

providers, as well as how to optimally load air cargo into their required containers. However, the 

model does not address the uncertainty challenge when the accurate information cannot be 

obtained at the time of booking. In order to solve this problem, Wu (2010) proposes a stochastic 

mixed 0-1 model for a dual-response forwarding system for booking air containers and 

determining how cargoes are loaded in the containers simultaneously under uncertainty. Wu 

(2011a) goes further and extends the stochastic model to a robust model for addressing similar 

challenges in which cargo is permitted to be shipped at a later date. The robust model uses a 

quantitative approach to measuring the trade-off between the costs involved and the risks 

expected.  

Only few researchers focus on air container booking problems, especially considering to the 

addition of a hub to consolidate the air freight. There is also no paper contributing on the air 

container booking problems for multi-flight via a hub. 

2.3 Stochastic programming 

Invented in the 1950s as a derivation of mathematical programming, stochastic programming is 

used to assist other mathematical algorithms and models whose data has encountered a 

substantial degree of uncertainty (Beale, 1955; Dantzig, 1955; Charnes and Cooper, 1959). 

Stochastic programming is a beneficial tool that has been used in numerous areas such as fiscal 

planning (Carino et al., 1994); financial planning (Escudero et al., 1993); network planning of 

telecommunications (Sen and Higle, 1999); transportation (Ferguson and Dantzig, 1956); 

generation of electric power (Murphy et al., 1982; Takriti et al., 1996); control of hydropower 

systems (Infanger, 1994); bank portfolios (Kusy and Ziemba, 1986); and the management of 

supply chains (Fisher et al., 1997; Santoso et al., 2005).  

2.3.1 Two-stage stochastic programming 

Dantzig (1955) first propose a two-stage linear programming model, thus it is not surprising that 

by the 1960s stochastic programming has undergone a period of rapid development. For example, 
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while Kataoka (1963) develops a nonlinear model with linear inequality constraints, Warner and 

Prawda (1972) present a mixed integer quadratic model for scheduling. Later, Birge (1985) 

employs decomposition and partitioning methods to develop a multi-stage stochastic linear 

model. Escudero et al. (1993), on the other hand, propose a mixed integer programming model 

for multi-product, multi-period, single-level production planning with demand uncertainty using a 

non-anticipative principle. 

Over the past several decades, two-stage stochastic programming has been widely applied in a 

number of operations management areas, particularly in supply chain management and 

production planning. For example, Bakir and Byrne (1998) propose a two-stage stochastic linear 

programming model for a multi-product, multi-period production problem with only demand 

uncertainty. Subsequently, Kazaz et al. (2005) formulate a two-stage recourse program to 

describe a global production plan with uncertain exchange rate.  

Meanwhile, two-stage stochastic methods were also explored widely (Birge and Louveaux, 1988; 

Huang and Loucks, 2000; Ahmed et al., 2004; Barbaroso and Gcaron, 2004). Darby-Dowman et al. 

(2000) formulate two-stage stochastic programming with recourse model for planting problems in 

horticulture under uncertain weather. Alonso-Ayuso et al. (2003) present two-stage stochastic 0-1 

modelling considering the production topology, plant sizing, product selection, product allocation 

among plants and vendor selection for raw materials. A branch-and-fix coordination heuristic is 

proposed for solving this model. Zanjani et al. (2013) propose a two-stage stochastic linear 

programming approach to deal with a sawmill production planning problem where the non-

homogeneous characteristics of logs incur random process yields. 

2.3.2 Multi-stage stochastic programming 

It can be observed that, since the year 2000, the utilisation of multi-stage stochastic models has 

become widespread. Examples of studies that have employed such models include Ahmed and 

Sahinidis (2003), who build a multi-stage stochastic mixed-integer program model for a stochastic 

capacity expansion problem characterised by fixed-charge cost functions, and forecast 

uncertainties. They are able to demonstrate that the distance between heuristic and accurate 

optimisation solutions could almost disappear with an increase in problem size. Shortly 

afterwards, Alfieri and Brandimarte (2005) provide a general review of multi-stage stochastic 

models applicable to manufacturing. This study was taken forward the following year by 

Brandimarte (2006) who, utilising simulation, develop a multi-stage model for multi-item 

capacitated lot-sizing problems with uncertain demand. Other studies in this area include those of 

Goh et al. (2007) who design a multi-stage global supply chain network model with profit 



Chapter 2: Literature Review 

13 

maximisation and risk minimisation objectives, by using Moreau-Yosida regularisation; Rappold 

and Yoho (2008), who put forward a multi-item integrated production-inventory model with 

highly uncertain demand and Huang and Ahmed (2009) who formulate a multi-stage stochastic 

programming model (for production and capacity planning) under uncertainty, although this is 

constrained by multiple resources, tasks and products. More recently, Zanjani et al. (2010b) 

develop a multi-stage stochastic model with uncertainty in the quality of raw materials and 

demand. Körpeoğlu et al. (2011) use multi-stage stochastic programming to handle the master 

production scheduling problem with finite capacity, controllable processing times, and uncertain 

demand values. This paper also gives an effective formulation for large instances to save 

computation time. Sen and Zhou (2014) provide a multi-stage stochastic decomposition for multi-

stage stochastic programming models to find approximations which were very close to optimal 

solutions, because some of the multi-stage stochastic models are hard to solve when considering 

more uncertainties.  

2.3.3 Robust optimisation 

In the recent global supply chain management environment, accurate information about 

uncertainty becomes harder and harder to obtain. Comparing with stochastic optimisation, robust 

optimisation is provided to solve the optimisation problems with a certain measure of robustness 

to mitigate against uncertainty. Therefore the robust optimisation model can deal with risk and 

uncertainty. The robust optimisation idea was postulated by Mulvey et al. (1995), who use a 

nonlinear regularization function to come up with a robust counterpart approach. The 

regularization function operates as a monitor that automatically reprimands all constraint 

contraventions and uncertainties, which are dealt with using a discrete set of circumstances. This 

model has been applied in numerous areas that emanate from global supply chain challenges, 

particularly from uncertainty challenges. According to Vassiadou-Zeniou and Zenios (1996), when 

using the conventional simulation models that are used in bond pricing, when combined with 

elements from the robust optimisation techniques, beneficial tools for the management of 

callable bonds portfolios are generated. Consequently, it is possible to assert that, through robust 

optimisation, two beneficial models are developed for one period which are capable of addressing 

numerous challenges. 

In the event of dealing with an incapacitated network in which a design problem occurs when 

deciding whether to use an assortment of probable future scenarios or just a single fixed future 

scenario, the robustness approach can be used in choosing the most appropriate selection 

(Gutiérrez et al., 1996). The concept of restricted resource was introduced by Vladimirou and 

Zenios (1997). It integrates parameterized restrictions in stochastic models so as to execute 
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sturdiness in alternative decisions. Vladimirou and Zenios (1997) come up with three optional 

models of stochastic programs with a limited recourse, carried out similar tests on each of them, 

and then compared their performance. They examined the exchange between the firmness of 

recourse decisions and the predicted expense of implementing a resolution in a robust 

optimisation model. 

A robust optimisation model was formulated by Yu (1997) to deal with problems of stochastic 

logistics. He exemplified this using two logistical examples from an airline and wine company and 

exhibited the calculation effectiveness of the robust model. Robust formulations are preferred by 

Darlington et al. (1999) when dealing with the restricted control of systems in uncertainty 

challenges. In the development of stochastic and nonlinear models, a mean-variance robustness 

model is used. They assess the flexibility of the development using a penalty model, and to test 

the robust strategies an engineering and chemical optimisation challenge was used. Additionally, 

Yu and Li (2000) come up with a robust optimisation model to deal with stochastic logistic 

quandaries. They set out a seamless method which, when adapted, would minimise the 

computational burden in practice. 

Furthermore, a robust optimisation model is proposed to address stochastic aggregate production 

planning by Leung and Wu (2004). In their proposal, they formulate model solutions that relied on 

multi-period and multi-period data and then compare their performances before considering the 

exchange between the robustness of the model and the solution. Leung et al. (2007) when 

encountering an uncertain environment deal with the challenge of multi-site production planning 

using the robust optimisation model. In trying to diminish the impacts of vacillation of the unclear 

boundaries involving all the likely scenarios that can occur in the future, Rahmani et al. (2013) 

formulate a robust optimisation model to realise their objectives.  

2.4 Genetic algorithm 

An extensive analysis of the present heuristic approaches revealed that since 1975 when Dr. John 

Holland formulated GAs, they have increasingly been used in various fields and are preferred by 

many scholars in suggesting the best ways of dealing with challenging optimisation and 

combinatorial problems (De Jong, 1975; Davis, 1989; Rudolph, 1994; Thierens and Goldberg, 

1994; Palmer and Kershenbaum, 1995; Reeves, 1997; Cheng et al., 2000). The last decade has 

witnessed a growing interest in the application of GAs to provide solutions for a myriad of single 

and multi-objective challenges encountered in global supply chains management (Dimopoulos 

and Zalzala, 2000; Vidal et al., 2012). 
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GA is a familiar heuristic method, inspired by the biological development of living life forms that 

functions on a population of the resolutions concurrently, which has been extensively employed 

in solving sequencing and scheduling problems. It begins with a set of arbitrary solutions called a 

population. Golberg (1989) coalesces structured, yet randomized, information exchange with the 

notion of survival of the fittest to undertake vigorous examination and utilization of the solution 

space. In the natural world, each individually named chromosome is allocated a fitness value. A 

genetic operator, namely crossover, executes the examination process and the utilization process 

is executed by another operator – mutation. The Darwinian theory of evolution is the basis for the 

selection of the new generation, as in it individuals with better performances will have more 

probability of being chosen. It is managed by the parent selection and offspring acceptance 

strategies. Our choosing GA in this thesis has two rationales: Firstly, GA is a well-known heuristic 

method and its efficiency is confirmed in literature (Bazzazi et al., 2009; Tavakkoli-Moghaddam et 

al., 2009; Lee and Kim, 2010; Lu and Xi, 2010); secondly, a population-based approach such as GA 

is required to enhance our exploration of the solution space. It has been demonstrated that GA-

based methodologies can solve large-sized problems with almost optimal solutions. 

Studies by Altiparmak et al. (2006) establish that GAs operate on an assortment of probable 

solutions, selecting the most resilient of them all, which will generate better approximations to 

the suggested solution. Each generation witnesses the selection of new sets of possibly better 

solutions that are derived from the selection process in which problems are simulated by genetic 

operators. This process, according to Ko and Evans (2007), breeds a fresh and dynamic evolution 

of the population of individuals who have a higher chance of surviving the environment. Some of 

the GA operations are specific to real problems and the efficiency of the solution technique is 

dependent on how effectively the quandary is demarcated for the various genetic processes. 

Torabi et al. (2006) assert that in GA the search parameters of all likely solutions to the problems 

are beaconed onto a set of fixed strings. This process is known as encoding. The GA does not 

directly work on the solution; rather it focuses on how the solutions will be represented. 

Essentially, one of the most crucial stages in GA is the encoding process of the solution space. 

Improper encoding of the various solutions can lead to misguiding the algorithm which will select 

weak or erroneous solutions (Ko and Evans, 2007). The encoding process identified should be 

selected carefully and sequentially so that at each point, the search space is adequately 

represented by a chromosome, or a string. GA commences with supplying various probable 

solutions to the identified problems, which are then all placed in a pool where the initial 

generation is selected randomly. At this stage, the chromosomes selected inherit the best 

qualities from both parents. In other words, the best position of packing and arranging 

items/boxes into the containers is identified. The positioning and packing of bins in air cargo may 
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at times not be most favourable in the preliminary generation, and maximum fitness appears to 

be focused on the optimal point. At this stage, the mutation operator aids in attaining the best 

optimal fitness. The final generated chromosome has both feasible and optimal solutions for the 

packing of the boxes into air containers. Compared to other techniques for optimisation, GA 

conducts a parallel search over a fixed point set in the solution space, and in so doing it avoids 

being stuck in a local optimum. 

The fitness function of a solution chromosome is what determines its survival capabilities. The 

fitness function is informed by the objective function of the predicament (Vidal et al., 2012). The 

higher the fitness value of the solution chromosome, the higher the chances of its selection. After 

selection, the solution chromosomes are placed in a mating pool where they are expected to 

crossover and mutate so as to increase the chances of generating better solution chromosomes 

(Man et al., 2000; Ko and Evans, 2007; Tang, 2011). Aytug et al. (2003) assert that crossover offers 

fundamental alterations in the genes, but the mutation provides only slight alterations to the 

genes that are randomly selected. The mutation probability is much lower compared to the 

crossover probability. Thus, only a slight part of the population solution selects mutation. Once 

the crossover and mutation operations are completed, the better child chromosomes are selected 

and sent to the preceding generation (Rudolph, 1994; Palmer and Kershenbaum, 1995; Man et al., 

2000). Davis (1989) and Altiparmak et al. (2006) stress that in some GA applications; a randomly 

chosen portion of chromosomes is subjected to inversion; other generic operators involve the 

position changing process of the genes in the chromosome while keeping their meaning. These 

genetic operations offer a chance to replace the bad genes with those that are good. 
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Chapter 3:  Global production planning Problem 

With today’s increasingly competitive environment, many international companies, whose 

markets are in the EU and North America, for example, decide to build their factories in 

developing countries, such as Vietnam, mainland China and Thailand, to reduce costs. The sales 

departments collect the market demand information; the headquarters make production plans 

according to the information; and production plans are then distributed to the several 

manufacturing plants (see Figure ‎3.1). The headquarters usually make these plans multi-period, 

such as weekly plans for one month or monthly plans for one season, under uncertainty. 

Uncertainties in production planning areas primarily consist of four factors: demand, processing, 

failure and maintenance times (Bakir and Byrne, 1998). 

 

Figure ‎3.1 An example of international company 

3.1 Problem description 

In this research, it is assumed that company managers have to make production plans for the next 

selling season. Their manufacturing plants are allocated in several developing countries. Products 

can be produced by skilled or non-skilled workers in all plants. Each plant has its own machine 

working time and labour working time limitations. Accurate market demand information cannot 

be obtained before making the plans. Therefore we introduce a stochastic model to handle the 

uncertain demand. 
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The focus of this study is the optimisation of production planning within the global manufacturing 

industry. The purpose is using multi-stage stochastic linear model to help managers to make 

multi-period production plans under demand uncertainty and quota limitation. Decisions in the 

first stage tell plants how to produce products in the first period. Decisions in the second stage 

have two parts: one is how to satisfy the uncertainty when different uncertain scenarios are 

realised in the first period; the other one is how to produce products in the second period due to 

different uncertain scenarios occurring. Decisions in the following stages are similar. In the final 

stage, decisions consist only of how to meet the uncertainty in the final period. In this study, we 

assume that uncertainty satisfies a discrete stochastic process. Consequently, scenario trees are 

employed to describe uncertainty with stages in the scenario tree sequentially connected. A 

simple example illustrates that: if the demand in one stage is high, then the probability of high 

demand in the next stage is likely to be greater than if there had been low demand previously. 

Various studies (Dupačová, 2002; Brandimarte, 2006; Huang and Ahmed, 2009), have explored 

the application of multi-stage stochastic models in production planning and management 

scenarios, the application of such models is very pertinent in today’s global manufacturing 

planning sector for three reasons. In the first place, uncertainty is clearly identified as a major 

complicating characteristic of production planning and control (Guide, 2000), thus requiring 

research attention. Secondly, although there is substantial research articulating production 

planning models under uncertainty (Mula et al., 2006; Wu, 2011b), there is generally only limited 

research that has focused on multi-period, multi-product and multi-plant production planning, 

particularly under conditions of import quota limits and demand uncertainty. Thirdly, studies 

(Bakir and Byrne, 1998; Khor et al., 2008; Zanjani et al., 2010b), suggest that multi-period 

production problems associated with uncertainty are unlikely to be robustly addressed utilising 

two-stage stochastic programming approaches. This is due to the fact that the approach requires 

the entire multi-period schedule to be designed prior to the realisation of uncertainty. However, 

with the multi-stage approach, planning decision modification can occur based on the 

incorporation of previously realised uncertainty. 

To address challenges associated with multi-period-product and plant production planning, 

uncertainty consists of two elements: demand uncertainty and import quota limitation. If the 

quantity of the products produced is greater than the demand, this will incur an inventory cost. 

On the other hand, if the production quantity is lower than demand, it is necessary to purchase 

additional products at a high price to satisfy the demand. About the quota limitation, if the quotas 

bought cannot satisfy the demand, the managers have to buy extra quotas on the open market at 

the prevailing market price.  Conversely, the penalty cost for used quotas will be charged. 
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In this study, the models aim to minimise the total costs incurred in meeting production demand. 

Here costs take two parts: (1) “certain costs” which include cost for labour (including regular and 

over working time cost for skilled and non-skilled works and hiring or firing works cost), machine 

(including regular and additional machine cost), raw materials and initial quota purchasing and (2) 

“uncertain costs” which include cost associated with import quota limitations and surplus or 

shortage cost to satisfy the uncertain demand. The models are tested using data from a garment 

manufacturing company. Results from the modelling (a 5-stage model with three possible 

outcome levels), suggest that using multi-stage planning affords varying levels of savings 

according to the profitability environment in which the company operates. 

3.2  Multi-stage stochastic model 

3.2.1 Scenario tree and fixed mix approach scenario tree 

Within managerial thought, the notion of uncertainty generally applies to the prediction of events 

that may occur in (Kahneman and Tversky, 1979). Crucially, however, it implies that due to a 

number of factors including limited knowledge, describing the exact state of the future event is 

difficult (Bell, 1995). Generally, events which represent likely realisations are known as scenarios. 

For multi-stage problems, uncertainty may be represented in the form of a scenario tree, as 

shown in Figure ‎3.2 which depicts a simple 4-stage scenario tree with given probabilities. The 

scenario tree consists of nodes which are linked by arrows. Each node represents a possible 

situation at the corresponding stage. The arrows denote relationship which includes probabilities. 

In the scenario tree shown in Figure ‎3.2, it is observed that scenarios “(11)” and “(21)” have the 

same outcomes at stage 3, but their previous stages are different. Therefore, “(11)” and “(21)” 

mean different scenarios in stage 3. Here we use descriptions, “(121)”, to denote different 

scenarios. Through this method, we can easily find the position and the route from the beginning 

for each scenario. In each stage, the sum of probabilities of the scenarios should be 100%. The 

multi-stage stochastic model principle is easy to understand from the scenario tree. The first stage 

is the decision plan for the first period. The second stage has two parts: urgent plans for the first 

period to satisfy the uncertainty when each scenario is realised and decision plans for the second 

period. The following stage is similarly to the second stage. The final T-stage only has one part, 

urgent plans for the T-1 period, because there is no period to make a plan for. Therefore, the 

number of stages at which decisions are made is one greater than the number of periods of 

uncertainty. 
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In order to compare the t-stage, (t-1)-stage, ⋯, 2-stage models, we introduce the fixed mix 

approach (Fleten et al., 2002). The fixed mix and stochastic versions both need discrete 

probability distributions for the uncertain decision variables. The probabilities in the stochastic 

model can be described as a scenario tree (see Figure ‎3.2). Fixed mix means that the probabilities 

are rebalanced to fixed proportions at future decision nodes. For example in Figure ‎3.3, the 

probabilities in stage 4 are readjusted to 100%. That means the uncertainties in stage 4 exhibit 

similar conditions to those in the previous stage. In our research, we use this kind of fixed mix 

model to reduce the number of stages. Figure ‎3.3 shows that we can combine Stage 3 and 4 

together because the uncertainties in Stage 3 and 4 are the same. Then the 4-stage model 

becomes 3-stage fixed mix model. 

 

Figure ‎3.2 4-stage scenario tree 
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Figure ‎3.3 An example of fixed mix approach scenario tree 

3.2.2 The general multi-stage stochastic model 

The general linear deterministic model can be represented: min𝑐𝑇𝑥, subject to 𝐴𝑥 = 𝑏, where 

vector 𝑥, 𝑥 ≥ 0, is the decision variable (Birge and Louveaux, 1997). 𝐴 is a fixed matrix; 𝑏 is a fixed 

vector; and 𝑐𝑇 is the related parameter with 𝑥. 

For the multi-stage model, 𝑆𝑖 represents the set of all scenarios in stage 𝑖 + 1 and 𝑃𝑠𝑖  is the 

probability of scenario 𝑠𝑖, 𝑠𝑖 ∈ 𝑆𝑖. 𝑥1 denotes the decision variable for production plan in the first 

stage, and 𝑥𝑠𝑖  denotes the decision variable for the production plan when scenario 𝑠𝑖 happens. 𝑦𝑠𝑖  

denotes the decision variable for the uncertain purchasing/inventory plan when scenario 𝑠𝑖 

happens. 𝑐𝑖
𝑇 and 𝑑𝑠𝑖

𝑇  are related parameters with 𝑥𝑠𝑖  and 𝑦𝑠𝑖 respectively. 𝐴 and 𝐵 are fixed 

matrices; and 𝑎𝑖  and 𝑏𝑖𝑠𝑖 are fixed vectors. Therefore, the general t-stage stochastic model (Birge 

and Louveaux, 1997) is: 

min 𝑐1
𝑇𝑥1 + ∑ 𝑝𝑠1(𝑑𝑠1

𝑇 𝑦𝑠1 + 𝑐2
𝑇𝑥𝑠1)

𝑠1∈𝑆1

+⋯+ ∑ 𝑝𝑠𝑡−2(𝑑𝑠𝑡−2
𝑇 𝑦𝑠𝑡−2 + 𝑐𝑡−1

𝑇 𝑥𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+ ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1

𝑠𝑡−1∈𝑆𝑡−1

                                                                                             (3.1) 
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subject to 

𝐴1𝑥1 = 𝑎1, 𝐴2𝑥𝑠1 = 𝑎2,⋯ , 𝐴𝑡−1𝑥𝑠𝑡−2 = 𝑎𝑡−1                                         (3.2)                                       

𝐵11𝑥1 + 𝐵12𝑦𝑠1 = 𝑏1𝑠1 , 𝐵21𝑥𝑠1 +𝐵22𝑦𝑠2 = 𝑏2𝑠2 ,⋯ , 𝐵(𝑡−1)1𝑥𝑠𝑡−2 + 𝐵(𝑡−1)2𝑦𝑠𝑡−1 = 𝑏(𝑡−1)𝑠𝑡−1  (3.3) 

𝑥1, 𝑥𝑠1 , ⋯ , 𝑥𝑠𝑡−2 , 𝑦𝑠1 , ⋯ , 𝑦𝑠𝑡−1 ≥ 0                                                  (3.4) 

In the objective function, 𝑐1
𝑇𝑥1 is the first stage cost.  ∑ 𝑝𝑠𝑖(𝑑𝑠𝑖

𝑇𝑦𝑠𝑖 + 𝑐𝑖+1
𝑇 𝑥𝑠𝑖)𝑠𝑖∈𝑆𝑖   is the cost in 

stage 𝑖 + 1.  ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1𝑠𝑡−1∈𝑆𝑡−1  is the final , 𝑡-stage cost. Thus, minimizing the sum of all 

costs is the objective function. 

3.2.3 Model formulation 

Before proceeding to the modelling description, we list the assumptions used for the production 

planning problem, as follows: 

 Uncertainty satisfies a discrete stochastic process; 

 Raw material cost per unit is certain, just related to what kind of product and which plant 

to produce; 

 Regular and additional machine costs per hour are certain, just related to the plant in 

question; 

 The costs of skilled and non-skilled workers making a unit product are certain, just related 

to what kind of product is produced and at which plant; 

 The costs of hiring or firing skilled and non-skilled workers are certain, just related to the 

plant in question and to the time period; 

 The method used to ensure the quality of products is to control the ratio between skilled 

and non-skilled working time in each plant in the whole periods. 

Notation 

Indices 

𝑖   products (𝑖 = 1,⋯ ,𝑚); 

𝑗   plants (𝑗 = 1,⋯ , 𝑛); 

𝑡   periods (𝑡 = 1,⋯ , 𝑇);  

(𝑠1𝑠2⋯𝑠𝑡)  scenarios in period 𝑡 (with outcomes 𝑠1, 𝑠2,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆). 

Deterministic parameters 
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𝑘𝑖𝑗
1 /𝑘𝑖𝑗

2  cost of skilled/non-skilled workers making a unit of product 𝑖 in plant 𝑗; 

𝑜𝑗
1/𝑜𝑗

2 overtime cost of skilled/non-skilled workers per hour in plant 𝑗; 

ℎ𝑗𝑡
1 /ℎ𝑗𝑡

2  cost of hiring skilled/non-skilled workers per hour in plant 𝑗 at the beginning of period 𝑡; 

𝑓𝑗𝑡
1/𝑓𝑗𝑡

2 cost of reduction of skilled/non-skilled working time per hour in plant 𝑗 at the beginning of 

period 𝑡; 

𝑣𝑗0
1 /𝑣𝑗0

2  initial labour time of skilled/non-skilled workers in plant 𝑗; 

𝛼𝑗  limit for the ratio between skilled and non-skilled workers for production in plant 𝑗; 

𝑙𝑖𝑗
1 /𝑙𝑖𝑗

2   labour time for production of a unit of product 𝑖 in plant 𝑗 by skilled/non-skilled workers; 

𝑟𝑖𝑗  raw material cost of production per unit of product 𝑖 in plant 𝑗; 

𝑎𝑗
1/𝑎𝑗

2 regular/additional machine cost of production per hour in plant 𝑗; 

𝑔𝑖𝑗
1 /𝑔𝑖𝑗

2  machine time for production of a unit of product 𝑖 by skilled/non-skilled workers in plant 

𝑗; 

𝑑𝑖0
+   initial inventory of product 𝑖 at the beginning of the planning horizon; 

𝑐𝑖   initial quota purchasing cost per unit of product 𝑖; 

𝑄𝑖    initial quota quantity of product 𝑖 at the beginning of the planning horizon; 

𝑝(𝑠1𝑠2⋯𝑠𝑡) probability of scenario (𝑠1𝑠2⋯𝑠𝑡) occurrence; 

𝐿𝑗
1/𝐿𝑗

2   maximum capacity of hiring skilled/non-skilled workers in plant 𝑗; 

𝑊𝑗
1/𝑊𝑗

2 maximum overtime for skilled/non-skilled workers in plant 𝑗; 

𝐶𝑗/𝐴𝑗  maximum regular/additional machine capacity of plant 𝑗; 

𝑉𝑗    minimum work time in plant 𝑗; 

𝐼𝑖    maximum inventory capacity for product 𝑖; 

𝐵𝑖      maximum purchasing capacity for product 𝑖; 

Random parameters 

𝐷𝑖(𝑠1𝑠2⋯𝑠𝑡) demand for product 𝑖 in scenario (𝑠1𝑠2⋯𝑠𝑡); 
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𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡)
− /𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡)

+  under-/over-production cost of a unit of product 𝑖 in scenario (𝑠1𝑠2⋯𝑠𝑡); 

𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡)
− /𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡)

+  under-/over-quota cost per unit of product 𝑖 in scenario (𝑠1𝑠2⋯𝑠𝑡). 

Decision variables 

𝑥𝑖𝑗1
1 /𝑥𝑖𝑗1

2  planned production quantities of product 𝑖 by skilled/non-skilled workers in plant 𝑗 for 

first period;  

𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 /𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡)

2   planned production quantities of product 𝑖 by skilled/non-skilled workers 

in plant 𝑗 for period 𝑡 + 1 when scenario (𝑠1𝑠2⋯𝑠𝑡) is realised; 

𝑦𝑗1
1 /𝑦𝑗1

2   planned labour time of hiring skilled/non-skilled workers in plant 𝑗 for first period; 

𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 /𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡)

2  planned labour time of hiring skilled/non-skilled workers in plant 𝑗 for 

period 𝑡 + 1 when scenario (𝑠1𝑠2⋯𝑠𝑡) is realised; 

𝑧𝑗1
1 /𝑧𝑗1

2  planned reduction in labour time of skilled/non-skilled workers in plant 𝑗 for first period; 

𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 /𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡)

2  planned reduction in labour time of skilled/non-skilled working time in plant 

𝑗 for period 𝑡 + 1 when scenario (𝑠1𝑠2⋯𝑠𝑡) is realised; 

𝑢𝑗1
1 /𝑢𝑗1

2   planned regular/additional machine capacities in plant 𝑗 for first period; 

𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 /𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡)

2  planned regular/additional machine capacities in plant 𝑗 for period 𝑡 + 1 

when scenario (𝑠1𝑠2⋯𝑠𝑡) is realised; 

𝑣𝑗1
1 /𝑣𝑗1

2   planned labour time of skilled/non-skilled workers in plant 𝑗 for first period; 

𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 /𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡)

2  planned labour time of skilled/non-skilled workers in plant 𝑗 for period 

𝑡 + 1 when scenario (𝑠1𝑠2⋯𝑠𝑡) is realised; 

𝑤𝑗1
1 /𝑤𝑗1

2   planned overtime of skilled/non-skilled workers in plant 𝑗 for first period; 

𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 /𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡)

2  planned overtime of skilled/non-skilled workers in plant 𝑗 for period 𝑡 + 1 

when scenario (𝑠1𝑠2⋯𝑠𝑡) is realised; 

𝑞𝑖1 initially allocated quota quantity of product 𝑖 in first period; 

𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡) allocated quota quantity of product 𝑖 for period 𝑡 + 1 when scenario (𝑠1𝑠2⋯𝑠𝑡) is 

realised; 

𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)
− /𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)

+  shortage/surplus of product 𝑖 when scenario (𝑠1𝑠2⋯𝑠𝑡) is realised; 
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𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡)
− /𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡)

+  under-/over-quota quantities of product 𝑖 when scenario (𝑠1𝑠2⋯𝑠𝑡) is 

realised. 

3.2.3.1 A multi-stage stochastic linear recourse programming model 

The objective of this model is to minimize the total costs including those costs that are known and 

those uncertain. Some decisions about this problem will be taken after the realization of 

uncertainty; these are referred to as recourse decisions (Birge and Louveaux, 1997). We therefore 

refer to this model as a recourse programming model. 

min𝑍 =∑𝑀𝑡

𝑇

𝑡=1

                                                                         (3.5) 

subject to 

𝑀1 =∑∑𝑟𝑖𝑗(𝑥𝑖𝑗1
1 + 𝑥𝑖𝑗1

2 )

𝑛

𝑗=1

𝑚

𝑖=1

+∑(𝑎𝑗
1𝑢𝑗1

1 + 𝑎𝑗
2𝑢𝑗1

2 )

𝑛

𝑗=1

+∑∑(𝑘𝑖𝑗
1 𝑥𝑖𝑗1

1 + 𝑘𝑖𝑗
2 𝑥𝑖𝑗1

2 )

𝑛

𝑗=1

𝑚

𝑖=1

+∑(𝑜𝑗
1𝑤𝑗1

1 + 𝑜𝑗
2𝑤𝑗1

2 )

𝑛

𝑗=1

+∑(ℎ𝑗1
1 𝑦𝑗1

1 + ℎ𝑗1
2 𝑦𝑗1

2 + 𝑓𝑗1
1𝑧𝑗1

1 + 𝑓𝑗1
2𝑧𝑗1

2 )

𝑛

𝑗=1

+∑𝑐𝑖𝑞𝑖1

𝑚

𝑖=1

  (3.6) 

𝑀𝑡 = ∑ ∑ ⋯ ∑ 𝑝(𝑠1𝑠2⋯𝑠𝑡−1)(∑(𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

− + 𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+

𝑚

𝑖=1

𝑆

𝑠𝑡−1=1

𝑆

𝑠2=1

𝑆

𝑠1=1

 

           +𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

− + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ ) 

           +∑∑𝑟𝑖𝑗(𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
1 + 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2 )

𝑛

𝑗=1

𝑚

𝑖=1

+∑(𝑎𝑗
1𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

1 + 𝑎𝑗
2𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2 )

𝑛

𝑗=1

 

           +∑∑(𝑘𝑖𝑗
1 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

1 + 𝑘𝑖𝑗
2 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2 )

𝑛

𝑗=1

𝑚

𝑖=1

+∑(𝑜𝑗
1𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

1 + 𝑜𝑗
2𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2 )

𝑛

𝑗=1

 

           +∑(ℎ𝑗(𝑡−1)
1 𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

1 + ℎ𝑗(𝑡−1)
2 𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2 + 𝑓𝑗(𝑡−1)
1 𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

1 + 𝑓𝑗(𝑡−1)
2 𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2 )

𝑛

𝑗=1

 

           +∑𝑐𝑖𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

𝑚

𝑖=1

),   𝑡 = 2,3,⋯ , 𝑇 − 1                                                                                     (3.7) 
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𝑀𝑇 = ∑ ∑ ⋯ ∑ 𝑝(𝑠1𝑠2⋯𝑠𝑇−1)(∑(𝑏𝑖(𝑠1𝑠2⋯𝑠𝑇−1)
− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑇−1)

− + 𝑏𝑖(𝑠1𝑠2⋯𝑠𝑇−1)
+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑇−1)

+

𝑚

𝑖=1

𝑆

𝑠𝑇−1=1

𝑆

𝑠2=1

𝑆

𝑠1=1

+ 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑇−1)
− 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑇−1)

− + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑇−1)
+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑇−1)

+ ))                                    (3.8) 

∑(𝑔𝑖𝑗
1 𝑥𝑖𝑗1

1 + 𝑔𝑖𝑗
2 𝑥𝑖𝑗1

2 )

𝑚

𝑖=1

= 𝑢𝑗1
1 + 𝑢𝑗1

2  ,    𝑗 = 1,⋯ , 𝑛                                                                                 (3.9) 

∑(𝑔𝑖𝑗
1 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡)

1 + 𝑔𝑖𝑗
2 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡)

2 )

𝑚

𝑖=1

= 𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 + 𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡)

2  ,      𝑗 = 1,⋯ , 𝑛;  𝑡

= 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                           (3.10) 

∑𝑙𝑖𝑗
1 𝑥𝑖𝑗1

1

𝑚

𝑖=1

= 𝑣𝑗1
1  , 𝑗 = 1,⋯ , 𝑛                                                                                                           (3.11) 

∑𝑙𝑖𝑗
1 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡)

1

𝑚

𝑖=1

= 𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡)
1  , 𝑗 = 1,⋯ , 𝑛; 𝑡 = 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆            (3.12) 

∑𝑙𝑖𝑗
2 𝑥𝑖𝑗1

2

𝑚

𝑖=1

= 𝑣𝑗1
2  , 𝑗 = 1,⋯ , 𝑛                                                                                                           (3.13) 

∑𝑙𝑖𝑗
2 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡)

2

𝑚

𝑖=1

= 𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡)
2  , 𝑗 = 1,⋯ , 𝑛; 𝑡 = 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆            (3.14) 

𝑣𝑗1
1 = 𝑣𝑗0

1 + 𝑦𝑗1
1 − 𝑧𝑗1

1 +𝑤𝑗1
1  ,    𝑗 = 1,⋯ , 𝑛                                                                                           (3.15) 

𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 = 𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

1 + 𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 − 𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡)

1 +𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡)
1  ,    𝑗 = 1,⋯ , 𝑛; 𝑡

= 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                           (3.16) 

𝑣𝑗1
2 = 𝑣𝑗0

2 + 𝑦𝑗1
2 − 𝑧𝑗1

2 +𝑤𝑗1
2  ,    𝑗 = 1,⋯ , 𝑛                                                                                           (3.17) 

𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡)
2 = 𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2 + 𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡)
2 − 𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡)

2 +𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡)
2  ,    𝑗 = 1,⋯ , 𝑛; 𝑡

= 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                           (3.18) 

𝑣𝑗1
1 + 𝑣𝑗1

2 ≥ 𝑉𝑗, 𝑗 = 1,⋯ , 𝑛                                                                                                               (3.19) 

𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 + 𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡)

2 ≥ 𝑉𝑗, 𝑗 = 1,⋯ , 𝑛; 𝑡 = 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                 (3.20) 

𝑢𝑗1
1 ≤ 𝐶𝑗 , 𝑗 = 1,⋯ , 𝑛                                                                                                                         (3.21) 
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𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 ≤ 𝐶𝑗 ,     𝑗 = 1,⋯ , 𝑛; 𝑡 = 1,⋯ , 𝑇 − 2; 𝑠1, ⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                           (3.22) 

𝑢𝑗1
2 ≤ 𝐴𝑗 , 𝑗 = 1,⋯ , 𝑛                                                                                                                         (3.23) 

𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡)
2 ≤ 𝐴𝑗  ,     𝑗 = 1,⋯ , 𝑛; 𝑡 = 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                           (3.24) 

𝑦𝑗1
1 − 𝑧𝑗1

1 ≤ 𝐿𝑗
1 ,       𝑗 = 1,⋯ , 𝑛                                                                                                               (3.25)  

𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 − 𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡)

1 ≤ 𝐿𝑗
1 ,     𝑗 = 1,⋯ , 𝑛; 𝑡 = 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                   (3.26) 

𝑦𝑗1
2 − 𝑧𝑗1

2 ≤ 𝐿𝑗
2 ,       𝑗 = 1,⋯ , 𝑛                                                                                                               (3.27)  

𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡)
2 − 𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡)

2 ≤ 𝐿𝑗
2 ,     𝑗 = 1,⋯ , 𝑛; 𝑡 = 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                   (3.28) 

𝑤𝑗1
1 ≤ 𝑊𝑗

1 , 𝑗 = 1,⋯ , 𝑛                                                                                                                      (3.29) 

𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡)
1 ≤ 𝑊𝑗

1 ,     𝑗 = 1,⋯ , 𝑛; 𝑡 = 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                        (3.30) 

𝑤𝑗1
2 ≤ 𝑊𝑗

2 , 𝑗 = 1,⋯ , 𝑛                                                                                                                      (3.31) 

𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡)
2 ≤ 𝑊𝑗

2 ,     𝑗 = 1,⋯ , 𝑛; 𝑡 = 1,⋯ , 𝑇 − 2; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                        (3.32) 

∑(𝑥𝑖𝑗1
1 + 𝑥𝑖𝑗1

2 )

𝑛

𝑗=1

+ 𝑑𝑖0
+ + 𝑑𝑖(𝑠1)

− − 𝑑𝑖(𝑠1)
+ = 𝐷𝑖(𝑠1) ,    𝑖 = 1,⋯ ,𝑚; 𝑠1 = 1,⋯ , 𝑆                           (3.33) 

∑(𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
1 + 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2 )

𝑛

𝑗=1

+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ + 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)

− − 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)
+ = 𝐷𝑖(𝑠1𝑠2⋯𝑠𝑡) ,   𝑖

= 1,⋯ ,𝑚;  𝑡 = 2,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                  (3.34) 

𝑞𝑖1 + 𝑞𝑖(𝑠1)
− − 𝑞𝑖(𝑠1)

+ = 𝐷𝑖(𝑠1) , 𝑖 = 1,⋯ ,𝑚; 𝑠1 = 1,⋯ , 𝑆                                                         (3.35) 

𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1) + 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ + 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡)

− − 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡)
+ = 𝐷𝑖(𝑠1𝑠2⋯𝑠𝑡) ,   𝑖 = 1,⋯ ,𝑚;  𝑡

= 2,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                           (3.36) 

𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)
− ≤ 𝐵𝑖  , 𝑖 = 1,⋯ ,𝑚;  𝑡 = 1,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                     (3.37) 

𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)
+ ≤ 𝐼𝑖 , 𝑖 = 1,⋯ ,𝑚;  𝑡 = 1,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                      (3.38) 

𝑣𝑗1
1 + 𝑣𝑗(𝑠1)

1 + 𝑣𝑗(𝑠1𝑠2)
1 +⋯+ 𝑣𝑗(𝑠1𝑠2⋯𝑠𝑇−2)

1 ≥ 𝛼𝑗(𝑣𝑗1
2 + 𝑣𝑗(𝑠1)

2 + 𝑣𝑗(𝑠1𝑠2)
2 +⋯+ 𝑣𝑗(𝑠1𝑠2⋯𝑠𝑇−2)

2 ) ,

𝑗 = 1,⋯ , 𝑛;  𝑠1,⋯ , 𝑠𝑇−2 = 1,⋯ , 𝑆                                                                          (3.39) 
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𝑞𝑖1 + 𝑞𝑖(𝑠1) + 𝑞𝑖(𝑠1𝑠2) +⋯+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑇−2) = 𝑄𝑖  , 𝑖 = 1,⋯ ,𝑚;  𝑠1,⋯ , 𝑠𝑇−2 = 1,⋯ , 𝑆     (3.40) 

𝑥𝑖𝑗1
1  , 𝑥𝑖𝑗1

2  , 𝑦𝑗1
1  , 𝑦𝑗1

2  , 𝑧𝑗1
1  , 𝑧𝑗1

2  , 𝑢𝑗1
1  , 𝑢𝑗1

2  , 𝑣𝑗1
1  , 𝑣𝑗1

2  , 𝑤𝑗1
1  , 𝑤𝑗1

2  , 𝑞𝑖1 , 𝑑𝑖(𝑠1)
−  , 𝑑𝑖(𝑠1)

+  , 𝑞𝑖(𝑠1)
−  , 𝑞𝑖(𝑠1)

+  ,  

𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
1  , 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2  , 𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
1  , 𝑦𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2  , 𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
1  , 𝑧𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

2  , 𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
1  , 

𝑢𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
2  , 𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

1  , 𝑣𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
2  , 𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

1  , 𝑤𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
2  , 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1) , 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)

−  , 

𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)
+  , 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡)

−  , 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡)
+ ≥ 0 ,      𝑖 = 1,⋯ ,𝑚;  𝑗 = 1,⋯ , 𝑛;  𝑡 = 2,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡

= 1,⋯ , 𝑆                                                                                                                         (3.41) 

The objective function (3.5) is the total cost. Costs are divided into “certain” and “uncertain” 

costs. The cost for the first stage is represented by (3.6). In the first stage, there is only “certain” 

costs which are comprised of cost associated with raw materials, machines, labour, overtime, 

hiring (and firing) of workers, and initial quota purchasing.  The t-stage cost is listed in (3.7).  The 

first two lines of (3.7) are the “uncertain” costs in t stage. 𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

−  is the shortage 

cost when scenario (𝑠1𝑠2⋯𝑠𝑡−1) is realised; 𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+  is the inventory cost; 

𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

−  is under-quota cost and 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+  is the over-quota cost. 

The rest of (3.7) is the “certain” cost after scenario (𝑠1𝑠2⋯𝑠𝑡−1) happened. The final T stage cost 

is displayed in (3.8). In the final stage, there are only “uncertain” costs. 

Constraints (3.9) and (3.10) imply that the total production time should be equal to the sum of 

regular and additional machine capacities. Constraints (3.11), (3.12), (3.13) and (3.14) are the 

total labour time of skilled/non-skilled workers. Constraints (3.15), (3.16), (3.17) and (3.18) denote 

that the labour time of skilled/non-skilled workers in this stage is equal to the time in previous 

stage plus the changes in this stage. Constraints (3.19) and (3.20) imply that each plant has its 

minimum working time. Constraints (3.33) and (3.34) indicate that in this stage of each scenario, a 

summation of the quantity of the same product produced, the inventory in the previous stage and 

the purchasing in this stage, minus the inventory in this stage will equal to the demand. Similarly, 

constraints (3.35) and (3.36) denote that in each scenario, a summation of the initial quota 

quantity for the same product, the over quota in the previous stage and the under quota in this 

stage, minus the over quota in this stage will equal to the demand. In order to ensure the qualities 

of the products, to be greater than a given constant for each route in the scenario tree, constraint 

(3.39) limits the total working time ratio between skilled and non-skilled workers. Constraint 

(3.40) ensures that for each route in the scenario tree, the sum of the initial quota quantities is 

equal to the value of quota quantity at the beginning of the planning horizon. Constraints (3.21)-

(3.32), (3.37), (3.38) and (3.41) are the boundary conditions. 
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3.2.4 Results and analysis 

3.2.4.1 A practical problem 

The case organisation described in greater detail in Wu (2011b), has its head offices in Hong Kong. 

Manufacturing operations are undertaken across factories located across Asia including Vietnam, 

mainland China and Thailand. The biggest of its factories is located in China. The organisation 

produces three main types of garments. Initial deterministic data including for example material, 

labour and machine cost which is utilised in this study are shown in Appendix A.  

Due to readily available labour, the organisation does not generally expend additional cost hiring 

employees (workers). This implies that ℎ𝑗𝑡
1 /ℎ𝑗𝑡

2 , 𝑓𝑗𝑡
1/𝑓𝑗𝑡

2 and 𝑣𝑗0
1 /𝑣𝑗0

2  are all equal to zero. Generally, 

as the working hours for non-skilled workers cannot exceed that of the skilled workers: 𝛼𝑗 = 1, 

for 𝑗 = 1,⋯ , 𝑛. The initial inventory 𝑑𝑖0
+  is taken to be zero.  

It is assumed that not only will the company satisfy production demand, but it does have a 

warehouse large enough to store surplus products if demand wanes. This implies that 𝐼𝑖 and 𝐵𝑖, 

for 𝑖 = 1,⋯ ,𝑚, are both infinite. Considering the uncertain demand, it is assumed that the three 

events (outcomes) that may happen in each of the four periods are high demand 𝑠1, medium 

demand 𝑠2 and low demand 𝑠3. In the first period, the probabilities of high, medium and low 

demand are 10%, 10% and 80% respectively. For the other three periods, the probabilities will 

depend on what happened in the previous period. Figure ‎3.4 shows the relationship between two 

periods. If the high demand event occurs in this period, then the related probabilities in the next 

period become 20%, 20% and 60%. If the medium demand event happens, then the related 

probabilities in next period changes to 10%, 30% and 60%. On the other hand, if the low demand 

event takes place; the related probabilities in next period will be 5%, 5% and 90%. The total 

probability of each scenario for each period is given by the product of the probability of the 

previous period and the related probability. For example, the total probability of node (𝑠1𝑠3) is 

given by the probability of node (𝑠1) (10%) times the related probability (60%), thus 6%. Table ‎3.1 

gives the shortage/surplus cost per unit, under/over-quota cost per unit and demand in different 

scenarios. 

 

Table ‎3.1 Shortage/surplus cost per unit, under/over-quota cost per unit and demand in different 

outcomes. 

Outcome Product Period 
Shortage 
cost ($) 

Surplus 
cost ($) 

Under-quota 
cost ($) 

Over-quota 
cost ($) 

Demand 
(units) 

𝑠1 1 1 120 2.5 26 4 1900 
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2 120 2.5 26 4 2000 

3 120 2.5 26 4 2100 

4 120 2.5 26 4 2200 

2 

1 72 1.5 17 3 1500 

2 72 1.5 17 3 1700 

3 72 1.5 17 3 1900 

4 72 1.5 17 3 2100 

3 

1 48 1 10 2 1200 

2 48 1 10 2 1300 

3 48 1 10 2 1400 

4 48 1 10 2 1500 

𝑠2 

1 

1 100 2 24 3 1800 

2 100 2 24 3 1900 

3 100 2 24 3 2000 

4 100 2 24 3 2100 

2 

1 60 1 15 2 1400 

2 60 1 15 2 1600 

3 60 1 15 2 1800 

4 60 1 15 2 2000 

3 

1 40 0.5 8 1 1100 

2 40 0.5 8 1 1200 

3 40 0.5 8 1 1300 

4 40 0.5 8 1 1400 

𝑠3 

1 

1 80 1.8 22 2.5 1700 

2 80 1.8 22 2.5 1800 

3 80 1.8 22 2.5 1900 

4 80 1.8 22 2.5 2000 

2 

1 48 0.8 14 1.5 1300 

2 48 0.8 14 1.5 1500 

3 48 0.8 14 1.5 1700 

4 48 0.8 14 1.5 1900 

3 

1 32 0.3 7 0.5 1000 

2 32 0.3 7 0.5 1100 

3 32 0.3 7 0.5 1200 

4 32 0.3 7 0.5 1300 
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Figure ‎3.4 The probabilities for each scenario each stage 

3.2.4.2 Staged decisions 

Due to the four periods, we choose a five-stage model to make the plan. For modelling, we 

employ the use of AIMMS 3.11, see Bisschop and Roelofs (1999), which is known for its ability to 

solve large-scale optimisation and scheduling problems. In the case of this study, modelling will 

involve approximately 2300 constraints and 3000 variables. 

First stage decisions 

In this stage, we provide the production plan for the first period. Table ‎3.2 informs various plants 

on their production targets. Table ‎3.3 indicates the quantities of purchasing quotas for each kind 

of product. Notice that, although product 1 will be produced in a total of 1900 units 

(1200+672+28), allocated quotas are only 1800 because of the uncertainty involved in future 

quota. 

 

Table ‎3.2 Production quantity for first period (units) 

Product 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 

By skilled workers 1200 672 28   1166    
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By non-skilled workers      334  944 256 

Table ‎3.3 Quotas allocated for first period (units) 

Product 1 2 3 

Quota (units) 1800 1500 1200 

 

Second stage decisions 

After the first stage, the uncertainty of the first period is realised. The company not only needs to 

satisfy the demand that might be high, medium or  low in the first period but also needs to plan 

the second period of production. Table ‎3.4 shows for each scenario that happened in the first 

period and how many products and quotas the company should purchase or have in storage.  

 

Table ‎3.4 Shortage/surplus and under-/Over-quota for each scenario in first period (units) 

 
Purchased 
products 

Inventory 
Purchased 

quotas 
Stored quotas 

Product 1 2 3 1 2 3 1 2 3 1 2 3 

Scenario 

(𝑠1)       100      

(𝑠2)    100 100 100     100 100 

(𝑠3)    200 200 200    100 200 200 

However, even though the probability of high demand event is only 10%, the company may need 

to produce enough products to satisfy high demand due to the inventory cost being much 

cheaper than the purchasing cost. Corresponding to high, medium or low demand events in the 

first period, Table ‎3.5 shows different production plans for skilled and non-skilled workers in the 

second period. Quota quantities allocated in the second period also have three different designs 

according to what has occurred over first period (see Table ‎3.6). 

 

Table ‎3.5 Production quantity for second period (units) 

 By skilled workers By non-skilled workers 

Product 1 2 3 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Sc
en

ar
io

 

(𝑠1) 1200 171 629   1163         537  991 309 

(𝑠2)  40 793   580    1067     1020  1140 60 

(𝑠3)  67 667   433    1067     1067  1100  
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Table ‎3.6 Quotas allocated for second period (units) 

Product 1 2 3 

Scenario 

(𝑠1) 2000 1700 1300 

(𝑠2) 1900 1500 1200 

(𝑠3) 1800 1400 1100 

Third stage decisions 

In the second period, the uncertain events also correspond to high, medium and low demand. 

However, the probabilities of these events are dependent on what had occurred during the first 

period. The implication is that over the second period, there are 9 scenarios (3 times 3). For each 

scenario, Table ‎3.7 shows the quantities of shortage/surplus of products and under-/over-quotas.  

 

Table ‎3.7 Shortage/surplus and under-/Over-quota for each scenario in second period (units) 

 
Purchased 
products 

Inventory 
Purchased 

quotas 
Stored quotas 

Product 1 2 3 1 2 3 1 2 3 1 2 3 

Scenario 

(𝑠1𝑠1)              

(𝑠1𝑠2)    100 100 100    100 100 100 

(𝑠1𝑠3)    200 200 200    200 200 200 

(𝑠2𝑠1)       100 100     

(𝑠2𝑠2)    100 100 100      100 

(𝑠2𝑠3)    200 200 200    100 100 200 

(𝑠3𝑠1)       100 100     

(𝑠3𝑠2)    100 100 100      100 

(𝑠3𝑠3)    200 200 200    100 100 200 

 

In the second period, the company still produces enough to satisfy high demand due to no 

purchasing plans. Table ‎3.8 and Table ‎3.9 present detailed plans for the third period for each 

scenario that occurred over the second period. This includes products and quota assignments. We 

can see that Plant 3 will produce the most, due to its cheaper labour cost. 

 

Table ‎3.8 Production quantity for third period (units) 

 By skilled workers By non-skilled workers 

Product 1 2 3 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Sc
en

a
ri

o
 (𝑠1𝑠1)   978 55   1215    1067     685  595 805 

(𝑠1𝑠2)  853 80   1184    1067     616  407 893 
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(𝑠1𝑠3)  729 105   1152    1067     548  220 980 

(𝑠2𝑠1) 63 1026    1472    1011     428  451 949 

(𝑠2𝑠2) 40 929    1472    1031     328  222 1078 

(𝑠2𝑠3) 1200 700    914         786  153 1047 

(𝑠3𝑠1) 1200 900    1554         346  427 973 

(𝑠3𝑠2) 144 917    1554    939     246  199 1101 

(𝑠3𝑠3) 1200 700    925         775  150 1050 

 

Table ‎3.9 Quotas allocated for the third period (units) 

Product 1 2 3 

Scenario 

(𝑠1𝑠1)  1900 1700 1400 

(𝑠1𝑠2) 1900 1700 1300 

(𝑠1𝑠3) 1800 1600 1200 

(𝑠2𝑠1) 2000 1900 1400 

(𝑠2𝑠2) 2000 1800 1300 

(𝑠2𝑠3) 1900 1700 1200 

(𝑠3𝑠1) 2100 1900 1400 

(𝑠3𝑠2) 2000 1800 1300 

(𝑠3𝑠3) 1900 1700 1200 

 

Fourth stage decisions 

Similarly, the uncertain events in the third period are related to the second period. The 

implication being that there are 27 scenarios over this (third) period. All the plans are shown in 

Appendix B. From the results, it is clear that irrespective of what occurs, the company will not 

have a need to purchase products from the market to satisfy the demand.  

Fifth stage decisions 

In the final period, there are 81 scenarios. Over this period, we only need to make plans about 

purchase or storage of products and quotas. Due to a substantial number of scenarios, we do not 

list the entire plan for this period. However, examining the data shows that irrespective of an 

event occurring, units of purchase or inventory for every kind of product in each scenario are no 

more than 200. For detailed results, see Appendix B. 

3.2.4.3 Comparing the 5-stage stochastic model and deterministic model 

Due to the demand uncertainty and import quota limitations, accurate information cannot be 

obtained before the production. The decision makers are unable to construct a perfect production 

plan for all scenarios. Therefore, we provided a multi-stage stochastic model to help them to 

evaluate the benefits and losses of the plan. The total cost of the multi-stage stochastic model is 
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called the expected objective value of the stochastic solution, denoted as ESS, and the result of 

the corresponding deterministic model is called expected value problem or mean value problem, 

denoted as EV. That means we use the expected values of stochastic parameters to replace all the 

stochastic parameters first; then we calculate the solution. Using the EV solution to obtain the 

expected result of the stochastic model is denoted as EEV. The difference between EEV and ESS is 

called the value of the stochastic solution (VSS). The VSS means how many bonuses we can get by 

comparing the stochastic solution and corresponding expected solution value model. We also run 

more tests with different probabilities to see how the VSS changes. The original probability in 

Figure ‎3.4 shows that the company does not expect that products will sell well over the four 

periods, primarily because of a high probability of low demand (80%). We term this condition as a 

“bad economy environment”. Now we consider two other situations, “fair” and “good” economy 

environments. Figure ‎3.5 and Figure ‎3.6 give the probabilities of these two tests. 

 

Figure ‎3.5 The probabilities of fair economy environment 
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Figure ‎3.6 The probabilities of good economy environment 

Table ‎3.10 Comparing the expected value model and stochastic model ($) 

Test ESS EV EEV VSS(EEV-ESS) 

Bad economy 
environment 

408962 402073 421481 12519 

Fair economy 
environment 

412392 408970 416780 4388 

Good economy 
environment 

430113 428387 448481 18368 

 

Table ‎3.10 lists the results of the comparison of the stochastic model and the deterministic model. 

It shows that all the values of EEV are larger than the values of ESS which means using stochastic 

solution can generate more benefits than using the deterministic solution. Particularly in the good 

economy environment, the total cost reduces by $18,368, from $448,481 to $430113. 

3.2.4.4 Comparing the results of fixed mix approaches 

Comparing with the fixed mix approaches, e.g. Fleten et al. (2002), multi-stage stochastic model 

can describe the dynamic information much better. In order to show the benefits of multi-stage 

stochastic models, we conduct additional tests. First, we calculate the results of 3-stage and 4-

stage fixed mix models with the same initial data as the 5-stage model. For the 4-stage model, we 
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use the multi-stage model to solve the first three periods and use fixed mix approach assumption 

to deal with the last period. Similarly, for the 3-stage model, the last two periods will be solved 

using a fixed mix model. Please note, as shown in Figure ‎3.4, that the related probabilities for the 

3-stage and 4-stage models are the same as for the 5-stage model. Then we consider two other 

situations, “fair” and “good” economy environments. We also compute the 2-stage, 3-stage, 4-

stage and 5-stage model for these different tests. We list all results of these tests in Table ‎3.11. 

 

Table ‎3.11 The expected costs of all tests ($) 

Test 
Stochastic 

model 
Expected total 

cost 

Expected 
production 

cost 

Expected 
shortage/ 

surplus cost 

Expected 
under-/over- 

quota cost 

Bad economy 
environment 

2-Stage 423010 409045 8915 5050 
3-Stage 415055 402242 8685 4128 
4-Stage 411806 402450 5588 3768 
5-Stage 408962 401571 3704 3687 

Fair economy 
environment 

2-Stage 420705 409045 6955 4705 
3-Stage 415201 407277 3930 3994 
4-Stage 413576 406822 2987 3767 
5-Stage 412392 406612 2123 3657 

Good economy 
environment 

2-Stage 432865 413860 930 18075 
3-Stage 431819 413306 526 17987 
4-Stage 430800 412876 365 17559 
5-Stage 430113 412476 297 17340 

 

Figure ‎3.7, Figure ‎3.8 and Figure ‎3.9 illustrate changes in total cost, shortage/surplus and under-

/over- quota cost. We observe that during difficult economic conditions, it appears that compared 

to the 2-stage model, the 5-stage model is likely to deliver savings of more than $14,048. We also 

observe that under more positive economic conditions, the difference in total cost between the 2-

stage and 5-stage model is $2,752.  
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Figure ‎3.7 The comparison of expected total cost with different stochastic models 

 

Figure ‎3.8 The comparison of expected shortage/surplus cost with different stochastic models 
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Figure ‎3.9 The comparison of expected under-/over- quota cost with different stochastic models 

It will appear from the results shown in Figure ‎3.7, Figure ‎3.8 and Figure ‎3.9, that employing 

multi-stage decision models will deliver more benefits under poor and fair economic conditions. 

Under good economic conditions which are characterised by low expected shortage/surplus cost, 

the multi-stage production plan matches uncertain demand quite well. In the 5-stage model, the 

expected shortage/surplus cost is only $297. However, because the expected event is highly 

demand under good economic conditions, the initial quota quantity may not be enough to satisfy 

demand. Thus it may become necessary for the company to increase the amount it spends on 

purchasing quotas. As however articulated earlier, such a production strategy may ultimately 

increase production costs. In sum, the test do demonstrate that when in possession of accurate 

market prediction data, the multi-stage stochastic model appears more suitable to solve the 

production problems with uncertainty than the two-stage model. 

 

Table ‎3.12 New test of demands in different outcomes in all periods (units) 

Outcome Product 
Period 

1 2 3 4 

𝑠1 

1 1700 1900 2100 2300 

2 1500 1600 1700 1800 

3 1200 1300 1400 1500 

𝑠2 

1 1600 1700 1800 1900 

2 1300 1500 1400 1600 

3 1100 1200 1300 1400 

𝑠3 

1 1500 1450 1400 1350 

2 1200 1300 1100 1200 

3 1000 1050 1100 1150 
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Table ‎3.13 The total costs of new tests for different models ($) 

Test Stochastic model Total cost 

Bad economy environment 

2-Stage 431334 
3-Stage 419037 
4-Stage 413272 
5-Stage 405365 

Fair economy environment 

2-Stage 420871 
3-Stage 411327 
4-Stage 408918 
5-Stage 406111 

Good economy environment 

2-Stage 420946 
3-Stage 418786 
4-Stage 416959 
5-Stage 415164 

 

We also changed the demand to do the new test for these model. Table ‎3.12 represents the 

demands of this new test in different outcomes in all periods. Based on these demands, 

Table ‎3.13 lists all the total costs for different models.  We can see that 5-stage model is always 

the best model. In bad economy environment, using 5-stage model, the company can save 

$25969 than using 2-stgae model. Even in the smallest fluctuation environment, good economy 

environment, the company still can save $5782.  

In order to show how the uncertainties influence the total cost, we introduce three types of multi-

stage robust optimisation model in the following section. 

3.3 Three types of multi-stage robust models  

Demand uncertainty is an additional significant issue which has an effect on production loading, 

as production is used to meet market demands. In international supply chain administration, 

accurate information regarding the market turns out to be harder and harder to acquire. Market 

demand typically comes from various dealers situated mainly in the European and North 

American markets and they are likely to delay their obligations in favour of their actual needs, 

which then allows producers even less time in which to manufacture their merchandise (Wu, 

2006).  

Compared to those in the past, sellers today possess much more power. Because of the vast 

plethora of data available on the Internet and obtainable from other resources, many more 

opportunities exist in which they are able to compare quality, delivery speed, price and service. In 

a lot of industries, the minimum standard is now a product of high quality, as opposed to a 

position of demarcation. Consequently, manufacturing companies can now achieve a competitive 
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advantage in response to fluctuating market demand by giving customers flexible, responsive and 

quick production while simultaneously maintaining low costs.  

The goods relating to this study are fashion clothes with short lead times. Until accurate market 

demand is observed, for a manufacturing company it is necessary to commence production in its 

plants. Then, when the sales season is approaching, the demand for products will be clear and the 

company has to take appropriate action in its manufacturing strategy.  

There is a large risk of both surplus and shortage for manufacturing goods and purchasing quotas 

in loading production. The use of a stochastic production loading strategy would enable a 

company to keep costs low when responding quickly to fluctuating market demand while 

simultaneously reducing any risk. In dealing with the risk and uncertainty in the stochastic 

production loading process, the adoption of robust optimisation is sufficient. 

From the multi-stage stochastic model in Section 3.2, managers should be able to satisfy all the 

demand exactly. In reality, it is very difficult for the company to satisfy all the market demand due 

to the demand uncertainty. Sometimes, more than several times the product costs may be spent 

to satisfy only a small amount of demand. Therefore, we introduce a robust model with a penalty 

measure to allow violation of the uncertainty constraints. This model is called the robust 

optimisation model with model robustness. Also from the multi-stage stochastic model, although 

only one scenario occurs in any one stage, managers still need to make production plans for every 

scenario. The plans for different scenarios in the same stage may have huge differences. For 

example, in Table ‎3.5, the production plan of product 1 in plant 1 is 1200 units by skilled workers 

in scenario (𝑠1), but 1067 units by non-skilled workers in scenario (𝑠2). Therefore, we can use a 

robust model by adding a measure function to control the variabilities in each stage. This model is 

called the robust optimisation model with solution robustness. We also provide a trade-off robust 

optimisation model to combine these two measures together. The frameworks for the three 

robust models are provided in the following section. 

3.3.1 General robust optimisation framework 

The general multi-stage stochastic model is shown in Section 3.2.2. All the objective functions for 

these three kinds of robust models are based on (3.1). 

3.3.1.1 The robust optimisation model with model robustness. 

A robust optimisation model with model robustness means the violation of the uncertainty 

constraints is permitted, but this is done by the least amount by introducing a penalty function. A 

robust optimisation model with model robustness can be formulated as: 
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min𝑐1
𝑇𝑥1 + ∑ 𝑝𝑠1(𝑑𝑠1

𝑇 𝑦𝑠1 + 𝑐2
𝑇𝑥𝑠1)

𝑠1∈𝑆1

+𝜔1 ∑ 𝑝𝑠1|𝑒1𝑠1|

𝑠1∈𝑆1

+⋯

+ ∑ 𝑝𝑠𝑡−2(𝑑𝑠𝑡−2
𝑇 𝑦𝑠𝑡−2 + 𝑐𝑡−1

𝑇 𝑥𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+𝜔𝑡−2 ∑ 𝑝𝑠𝑡−2|𝑒𝑠𝑡−3𝑠𝑡−2|

𝑠𝑡−2∈𝑆𝑡−2

+ ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1

𝑠𝑡−1∈𝑆𝑡−1

+𝜔𝑡−1 ∑ 𝑝𝑠𝑡−1|𝑒𝑠𝑡−2𝑠𝑡−1|

𝑠𝑡−1∈𝑆𝑡−1

                                (3.42) 

subject to (3.2) and 

𝐵11𝑥1 + 𝐵12𝑦𝑠1 + 𝑒1𝑠1 = 𝑏1𝑠1 , 𝐵21𝑥𝑠1 +𝐵22𝑦𝑠2 + 𝑒𝑠2𝑠1 = 𝑏2𝑠2 ,⋯, 

𝐵(𝑡−1)1𝑥𝑠𝑡−2 + 𝐵(𝑡−1)2𝑦𝑠𝑡−1 + 𝑒𝑠𝑡−2𝑠𝑡−1 = 𝑏(𝑡−1)𝑠𝑡−1                                 (3.43) 

𝑥1, 𝑥𝑠1 ,⋯ , 𝑥𝑠𝑡−2 , 𝑦𝑠1 , ⋯ , 𝑦𝑠𝑡−1 , 𝜔1,⋯ , 𝜔𝑡−1 ≥ 0                                    (3.44) 

In the objective function, a series of ∑ 𝑝𝑠𝑡−1|𝑒𝑠𝑡−2𝑠𝑡−1|𝑆𝑡−1  is defined as the expected infeasibility, 

which is used to measure the violation of the multiple stage constraints. And the series of 

𝜔𝑡−1∑ 𝑝𝑠𝑡−1|𝑒𝑠𝑡−2𝑠𝑡−1|𝑆𝑡−1   is defined as the expected infeasibility cost, where ω is a parameter as 

a measurement of the infeasibility of the constraints of uncertainty.  If 𝜔 = 0, there is no penalty 

for not satisfying the uncertainty constraints. In this case, the quantity of violation can be as large 

as possible. On the other hand, if 𝜔 → +∞, any amount of violation is hardly accepted. That 

means any uncertainty constraints have to be satisfied because of the large penalty 𝜔. Therefore, 

when 𝜔 is set up large enough, the robust optimisation model with model robustness is 

converted to a multi-stage stochastic programming model. 

In order to simplify this model, we can move the absolute value sign out by adding deviation 

variables 𝛿𝑠𝑡 ≥ 0 and some constraints. Then, (3.42) can be formulated as the following linear 

programming model: 

min𝑐1
𝑇𝑥1 + ∑ 𝑝𝑠1(𝑑𝑠1

𝑇 𝑦𝑠1 + 𝑐2
𝑇𝑥𝑠1)

𝑠1∈𝑆1

+𝜔1 ∑ 𝑝𝑠1(𝑒1𝑠1 + 2𝛿𝑠1)

𝑠1∈𝑆1

+⋯

+ ∑ 𝑝𝑠𝑡−2(𝑑𝑠𝑡−2
𝑇 𝑦𝑠𝑡−2 + 𝑐𝑡−1

𝑇 𝑥𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+𝜔𝑡−2 ∑ 𝑝𝑠𝑡−2(𝑒𝑠𝑡−3𝑠𝑡−2 + 2𝛿𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+ ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1

𝑠𝑡−1∈𝑆𝑡−1

+𝜔𝑡−1 ∑ 𝑝𝑠𝑡−1(𝑒𝑠𝑡−2𝑠𝑡−1 + 2𝛿𝑠𝑡−1)

𝑠𝑡−1∈𝑆𝑡−1

              (3.45) 

subject to (3.2), (3.43), (3.44) and 
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−𝑒1𝑠1 − 𝛿𝑠1 ≤ 0,⋯ ,−𝑒𝑠𝑡−2𝑠𝑡−1 − 𝛿𝑠𝑡−1 ≤ 0                                      (3.46) 

The series of constraints −𝑒𝑠𝑡−2𝑠𝑡−1 − 𝛿𝑠𝑡−1 ≤ 0   is to make sure the simplified model is the same 

as the previous model. The reason is, if 𝑒𝑠𝑡−2𝑠𝑡−1 ≥ 0, 𝛿𝑠𝑡−1  will be zero; if 𝑒𝑠𝑡−2𝑠𝑡−1 ≤ 0, 𝛿𝑠𝑡−1 will 

be −𝑒𝑠𝑡−2𝑠𝑡−1. 

3.3.1.2 The robust optimisation model with solution robustness. 

A robust optimisation model with solution robustness means the solution will not differ 

substantially among different scenarios and there is less variability in the objective function across 

scenarios, which presumes a less aggressive management style. A robust optimisation model with 

solution robustness can be formulated as: 

min 𝑐1
𝑇𝑥1 + ∑ 𝑝𝑠1(𝑑𝑠1

𝑇 𝑦𝑠1 + 𝑐2
𝑇𝑥𝑠1)

𝑠1∈𝑆1

+ 𝜆1 ∑ 𝑝𝑠1 |𝑑𝑠1
𝑇 𝑦𝑠1 − ∑ 𝑝𝑠1𝑑𝑠1

𝑇 𝑦𝑠1
𝑠1∈𝑆1

|

𝑠1∈𝑆1

+⋯

+ ∑ 𝑝𝑠𝑡−2(𝑑𝑠𝑡−2
𝑇 𝑦𝑠𝑡−2 + 𝑐𝑡−1

𝑇 𝑥𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+ 𝜆𝑡−2 ∑ 𝑝𝑠𝑡−2 |𝑑𝑠𝑡−2
𝑇 𝑦𝑠𝑡−2 − ∑ 𝑝𝑠𝑡−2𝑑𝑠𝑡−2

𝑇 𝑦𝑠𝑡−2
𝑠𝑡−2∈𝑆𝑡−2

|

𝑠𝑡−2∈𝑆𝑡−2

+ ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1

𝑠𝑡−1∈𝑆𝑡−1

+ 𝜆𝑡−1 ∑ 𝑝𝑠𝑡−1 |𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 − ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1
𝑠𝑡−1∈𝑆𝑡−1

|

𝑠𝑡−1∈𝑆𝑡−1

                             (3.47) 

subject to (3.2), (3.3) and 

𝑥1, 𝑥𝑠1 , ⋯ , 𝑥𝑠𝑡−2 , 𝑦𝑠1 , ⋯ , 𝑦𝑠𝑡−1 , 𝜆1,⋯ , 𝜆𝑡−1 ≥ 0                                    (3.48) 

In the objective function, the series of 𝜆𝑡−1∑ 𝑝𝑠𝑡−1|𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 −∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1𝑠𝑡−1∈𝑆𝑡−1 |𝑠𝑡−1∈𝑆𝑡−1   

is defined as the expected variability cost, where λ is intended as a measurement of the variability 

of the objective function. Clearly, if λ = 0, that means the variability is not considered in decision-

making process. Then the above model becomes a multi-stage stochastic model. On the other 

hand, if 𝜆 → +∞, the absolute value of 𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 − ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1𝑠𝑡−1∈𝑆𝑡−1  will reduce to zero 

(as low as possible). That means no matter which kind of uncertainty is realized, the uncertain 

decision variables 𝑦 will be similar as possible.  
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We can use the same method to remove the absolute value sign by adding deviation variables 

𝜃𝑠𝑡 ≥ 0 and some constraints: 

min𝑐1
𝑇𝑥1 + ∑ 𝑝𝑠1(𝑑𝑠1

𝑇 𝑦𝑠1 + 𝑐2
𝑇𝑥𝑠1)

𝑠1∈𝑆1

+ 𝜆1 ∑ 𝑝𝑠1(𝑑𝑠1
𝑇 𝑦𝑠1 − ∑ 𝑝𝑠1𝑑𝑠1

𝑇 𝑦𝑠1
𝑠1∈𝑆1

+ 2𝜃𝑠1)

𝑠1∈𝑆1

+⋯

+ ∑ 𝑝𝑠𝑡−2(𝑑𝑠𝑡−2
𝑇 𝑦𝑠𝑡−2 + 𝑐𝑡−1

𝑇 𝑥𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+ 𝜆𝑡−2 ∑ 𝑝𝑠𝑡−2(𝑑𝑠𝑡−2
𝑇 𝑦𝑠𝑡−2 − ∑ 𝑝𝑠𝑡−2𝑑𝑠𝑡−2

𝑇 𝑦𝑠𝑡−2
𝑠𝑡−2∈𝑆𝑡−2

+ 2𝜃𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+ ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1

𝑠𝑡−1∈𝑆𝑡−1

+ 𝜆𝑡−1 ∑ 𝑝𝑠𝑡−1(𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 − ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1
𝑠𝑡−1∈𝑆𝑡−1

+ 2𝜃𝑠𝑡−1)

𝑠𝑡−1∈𝑆𝑡−1

            (3.49) 

subject to (3.2), (3.3), (3.48) and 

𝑑𝑠1
𝑇 𝑦𝑠1 − ∑ 𝑝𝑠1𝑑𝑠1

𝑇 𝑦𝑠1
𝑠1∈𝑆1

+ 𝜃𝑠1 ≥ 0,⋯ , 𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 − ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1
𝑠𝑡−1∈𝑆𝑡−1

+ 𝜃𝑠𝑡−1 ≥ 0        (3.50) 

The series of constraints 𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 − ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1𝑠𝑡−1∈𝑆𝑡−1 + 𝜃𝑠𝑡−1 ≥ 0 is to make sure the 

model has the same meaning as the previous one. This can be proved as follows: 

If 𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 ≥ ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1𝑠𝑡−1∈𝑆𝑡−1 , then  𝜃𝑠𝑡−1 = 0. 

If 𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 ≤ ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1𝑠𝑡−1∈𝑆𝑡−1 , then 𝜃𝑠𝑡−1 = −𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 + ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1𝑠𝑡−1∈𝑆𝑡−1 . 

3.3.1.3 The robust optimisation model with the trade-off between model robustness and 

solution robustness. 

When we consider the variability and infeasibility simultaneously, a robust optimisation model 

featuring a trade-off between model and solution robustness can be formulated as: 
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min𝑐1
𝑇𝑥1 + ∑ 𝑝𝑠1(𝑑𝑠1

𝑇 𝑦𝑠1 + 𝑐2
𝑇𝑥𝑠1)

𝑠1∈𝑆1

+𝜔1 ∑ 𝑝𝑠1(𝑒1𝑠1 + 2𝛿𝑠1)

𝑠1∈𝑆1

+ 𝜆1 ∑ 𝑝𝑠1(𝑑𝑠1
𝑇 𝑦𝑠1 − ∑ 𝑝𝑠1𝑑𝑠1

𝑇 𝑦𝑠1
𝑠1∈𝑆1

+ 2𝜃𝑠1)

𝑠1∈𝑆1

+⋯

+ ∑ 𝑝𝑠𝑡−2(𝑑𝑠𝑡−2
𝑇 𝑦𝑠𝑡−2 + 𝑐𝑡−1

𝑇 𝑥𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+𝜔𝑡−2 ∑ 𝑝𝑠𝑡−2(𝑒𝑠𝑡−3𝑠𝑡−2 + 2𝛿𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+ 𝜆𝑡−2 ∑ 𝑝𝑠𝑡−2(𝑑𝑠𝑡−2
𝑇 𝑦𝑠𝑡−2 − ∑ 𝑝𝑠𝑡−2𝑑𝑠𝑡−2

𝑇 𝑦𝑠𝑡−2
𝑠𝑡−2∈𝑆𝑡−2

+ 2𝜃𝑠𝑡−2)

𝑠𝑡−2∈𝑆𝑡−2

+ ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1

𝑠𝑡−1∈𝑆𝑡−1

+𝜔𝑡−1 ∑ 𝑝𝑠𝑡−1(𝑒𝑠𝑡−2𝑠𝑡−1 + 2𝛿𝑠𝑡−1)

𝑠𝑡−1∈𝑆𝑡−1

+ 𝜆𝑡−1 ∑ 𝑝𝑠𝑡−1(𝑑𝑠𝑡−1
𝑇 𝑦𝑠𝑡−1 − ∑ 𝑝𝑠𝑡−1𝑑𝑠𝑡−1

𝑇 𝑦𝑠𝑡−1
𝑠𝑡−1∈𝑆𝑡−1

+ 2𝜃𝑠𝑡−1)

𝑠𝑡−1∈𝑆𝑡−1

            (3.51) 

subject to (3.2), (3.43), (3.44), (3.46), (3.48) and (3.50) 

3.3.2 Multi-stage robust optimisation models 

The multi-stage stochastic model is shown in Section 3.2.3. All these three kinds of robust models 

are based on that stochastic model. 

3.3.2.1 New notation 

New deterministic parameters 

𝜔𝑡
1  unit weighting penalty for the infeasibility of the random demand constraints in period 𝑡; 

𝜔𝑡
2  unit weighting penalty for the infeasibility of the random quota constraints in period 𝑡; 

𝜆𝑡   measurement of the variability of the objective function in period 𝑡. 

New decision variables 

𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡)
1 /𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡)

2      the amount of violation in the demand/quota constraint for product 𝑖 

when scenario (𝑠1𝑠2⋯𝑠𝑡) is realised; 

𝛿𝑖(𝑠1𝑠2⋯𝑠𝑡)/𝛾𝑖(𝑠1𝑠2⋯𝑠𝑡)  deviational variables in demand/quota constraints for product 𝑖 when 

scenario (𝑠1𝑠2⋯𝑠𝑡) is realised; 
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𝜃(𝑠1𝑠2⋯𝑠𝑡)   deviational variables for the robust model with solution robustness when scenario 

(𝑠1𝑠2⋯𝑠𝑡) is realised. 

3.3.2.2 A robust optimisation model with model robustness 

Based on Section 3.3.1.1, the robust optimisation model with model robustness for global 

production planning problem will be built as: 

min𝑍 =∑𝑀𝑡

𝑇

𝑡=1

+∑(∑ ∑ ⋯ ∑ 𝑝(𝑠1𝑠2⋯𝑠𝑡−1)∑(𝜔𝑡−1
1 (𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

1 + 2𝛿𝑖(𝑠1𝑠2⋯𝑠𝑡−1))

𝑚

𝑖=1

𝑆

𝑠𝑡−1=1

𝑆

𝑠2=1

𝑆

𝑠1=1

𝑇

𝑡=2

+𝜔𝑡−1
2 (𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

2 + 2𝛾𝑖(𝑠1𝑠2⋯𝑠𝑡−1))))                                                                (3.52) 

subject to (3.6)-(3.32), (3.37)-(3.41) and 

𝑒𝑖(𝑠1)
1 = 𝐷𝑖(𝑠1) −∑(𝑥𝑖𝑗1

1 + 𝑥𝑖𝑗1
2 )

𝑛

𝑗=1

− 𝑑𝑖0
+ − 𝑑𝑖(𝑠1)

− + 𝑑𝑖(𝑠1)
+  ,    𝑖 = 1,⋯ ,𝑚; 𝑠1 = 1,⋯ , 𝑆           (3.53) 

𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡)
1 = 𝐷𝑖(𝑠1𝑠2⋯𝑠𝑡) −∑(𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)

1 + 𝑥𝑖𝑗(𝑠1𝑠2⋯𝑠𝑡−1)
2 )

𝑛

𝑗=1

− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ − 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)

−

+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡)
+  ,   𝑖 = 1,⋯ ,𝑚;  𝑡 = 2,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                   (3.54) 

𝑒𝑖(𝑠1)
2 = 𝐷𝑖(𝑠1) − 𝑞𝑖1 − 𝑞𝑖(𝑠1)

− + 𝑞𝑖(𝑠1)
+  , 𝑖 = 1,⋯ ,𝑚; 𝑠1 = 1,⋯ , 𝑆                                          (3.55) 

𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡)
2 = 𝐷𝑖(𝑠1𝑠2⋯𝑠𝑡) − 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1) − 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ − 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡)
− + 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡)

+  ,   𝑖 = 1,⋯ ,𝑚;  𝑡

= 2,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                           (3.56) 

−𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡)
1 − 𝛿𝑖(𝑠1𝑠2⋯𝑠𝑡) ≤ 0 , 𝑖 = 1,⋯ ,𝑚;  𝑡 = 1,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆            (3.57) 

−𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡)
2 − 𝛾𝑖(𝑠1𝑠2⋯𝑠𝑡) ≤ 0 , 𝑖 = 1,⋯ ,𝑚;  𝑡 = 1,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆            (3.58) 

𝜔𝑡
1, 𝜔𝑡

2, 𝛿𝑖(𝑠1𝑠2⋯𝑠𝑡), 𝛾𝑖(𝑠1𝑠2⋯𝑠𝑡) ≥ 0 , 𝑖 = 1,⋯ ,𝑚;  𝑡 = 1,⋯ , 𝑇 − 1; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆             (3.59) 

Constraints (3.53) and (3.54) are the difference between demand, production and 

shortage/surplus. Similarly, Constraints (3.55) and (3.56) mean the difference between demand, 

initial quota allocated and under/over-quota. Constraints (3.57) and (3.58) are to make sure to 

take off the absolute value sign. In the objective function (3.52), when the unit weighting 

parameters 𝜔𝑡
1 and 𝜔𝑡

2 increases, the unit penalty cost for the infeasibility of the random demand 

constraints increase. We have to pay more for the violation of the random demand constraint. If 

the value of 𝜔𝑡
1 is increased by enough, the value of 𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡)

1  will be forced to become zero, 
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which means all random demand constraints have to be satisfied for each scenario. The same 

phenomenon occurs at the unit weighting penalty 𝜔𝑡
2 and the corresponding random quota 

constraint (3.55) and (3.56). If 𝜔𝑡
1 and 𝜔𝑡

2, for 𝑡 = 1,⋯ , 𝑇 − 1, are all large enough, the values of 

𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡)
1  and 𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡)

2 , for 𝑡 = 1,⋯ , 𝑇 − 1, are all equal to zero. Then the robust optimisation 

model with model robustness will become to stochastic model. 

3.3.2.3 A robust optimisation model with solution robustness 

Using the introduction in Section 3.3.1.2, we can list the robust optimisation model with solution 

robustness for global production planning problem: 

min𝑍 =∑𝑀𝑡

𝑇

𝑡=1

+∑𝜆𝑡−1 ∑ ∑⋯ ∑ 𝑝(𝑠1𝑠2⋯𝑠𝑡−1)(∑(𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

−

𝑚

𝑖=1

𝑆

𝑠𝑡−1=1

𝑆

𝑠2=1

𝑆

𝑠1=1

𝑇

𝑡=2

+ 𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

− + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ )

− ∑ ∑ ⋯ ∑ 𝑝(𝑠1𝑠2⋯𝑠𝑡−1)(∑(𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

−

𝑚

𝑖=1

𝑆

𝑠𝑡−1=1

𝑆

𝑠2=1

𝑆

𝑠1=1

+ 𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

− + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ )

+ 2𝜃(𝑠1𝑠2⋯𝑠𝑡−1))                                                                                                             (3.60) 

subject to (3.6)-(3.41) and 

−∑(𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

− + 𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

−

𝑚

𝑖=1

 

+𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ ) + ∑ ∑ ⋯ ∑ 𝑝(𝑠1𝑠2⋯𝑠𝑡−1)(∑(𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

−

𝑚

𝑖=1

𝑆

𝑠𝑡−1=1

𝑆

𝑠2=1

𝑆

𝑠1=1

 

+𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

− + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ ) − 𝜃(𝑠1𝑠2⋯𝑠𝑡−1)

≤ 0 , 𝑡 = 2,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                              (3.61) 

𝜆𝑡−1, 𝜃(𝑠1𝑠2⋯𝑠𝑡−1) ≥ 0 , 𝑡 = 2,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                           (3.62) 
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3.3.2.4 A robust optimisation model with the trade-off between model robustness and 

solution robustness 

When the variability and infeasibility are considered together, a robust optimisation model with 

model robustness and solution robustness is developed to solve the global production planning 

problems with demand uncertainty and quota limits. 

min𝑍 =∑𝑀𝑡

𝑇

𝑡=1

+∑(∑ ∑ ⋯ ∑ 𝑝(𝑠1𝑠2⋯𝑠𝑡−1)∑(𝜔𝑡−1
1 (𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

1 + 2𝛿𝑖(𝑠1𝑠2⋯𝑠𝑡−1))

𝑚

𝑖=1

𝑆

𝑠𝑡−1=1

𝑆

𝑠2=1

𝑆

𝑠1=1

𝑇

𝑡=2

+𝜔𝑡−1
2 (𝑒𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

2 + 2𝛾𝑖(𝑠1𝑠2⋯𝑠𝑡−1))))

+∑𝜆𝑡−1 ∑ ∑ ⋯ ∑ 𝑝(𝑠1𝑠2⋯𝑠𝑡−1)(∑(𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

−

𝑚

𝑖=1

𝑆

𝑠𝑡−1=1

𝑆

𝑠2=1

𝑆

𝑠1=1

𝑇

𝑡=2

+ 𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

− + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ )

− ∑ ∑ ⋯ ∑ 𝑝(𝑠1𝑠2⋯𝑠𝑡−1)(∑(𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

−

𝑚

𝑖=1

𝑆

𝑠𝑡−1=1

𝑆

𝑠2=1

𝑆

𝑠1=1

+ 𝑏𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑑𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
− 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

− + 𝑐𝑖(𝑠1𝑠2⋯𝑠𝑡−1)
+ 𝑞𝑖(𝑠1𝑠2⋯𝑠𝑡−1)

+ )

+ 2𝜃(𝑠1𝑠2⋯𝑠𝑡−1))                                                                                                             (3.63) 

subject to (3.6)-(3.32), (3.37)-(3.41), (3.53)-(3.59), (3.61) and (3.62). 

3.3.3 Computational results and analysis 

3.3.3.1 A practical problem  

In this section, solutions will be obtained using the same initial data used in the multi-stage 

stochastic model case in Section 3.2.4.1. Due to the four-period case, in order to make the 

production plan, a five-stage robust model with the trade-off between solution robustness and 

model robustness has been chosen. To obtain the results, we will take 𝜆 = 0.1 and 𝜔1 = 𝜔2 =

100 as an illustration. All the five stages’ decision plans are shown in Appendix C. 

The robust optimisation models’ computational output, using various ω and the multi-stage 

stochastic model, is given in Table ‎3.14. The full cost using the stochastic model is $408962 and 

the full cost using the robust model 𝜆 = 0.1 and 𝜔1 = 𝜔2 = 50 is $408131 (see the third row). 

The total cost decreases by 0.203% using the robust optimisation model, with the expected 

variability decreasing 79.71%. This demonstrates the fact that the robust model offers a less 
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sensitive production loading strategy. Nevertheless, as the robust model does not satisfy all the 

market demand, the infeasibility cost of $1577 is involved. When ω increases to 150, there is no 

infeasibility cost due to too expensive penalty cost. The entire cost of the robust model increases 

by only 0.085% when compared with the stochastic model, which produces a decrease in 

expected variability of 47.79%. Therefore, the five-stage production loading plan proposed by the 

robust model reduces the risk and is not expensive. 

 

 

Table ‎3.14 Comparing the robust model and the stochastic model 

 
Stochastic 

model 

Robust model 

(𝜆 = 0.1, 𝜔1 = 𝜔2 =

50) 

Robust model 

(𝜆 = 0.1, 𝜔1 = 𝜔2 =

100) 

Robust model 

(𝜆 = 0.1, 𝜔1 = 𝜔2 =

150) 

Variability at 
second stage 

488 113 113 113 

Variability at 
third stage 

492 306 306 306 

Variability at 
fourth stage 

568 362 382 374 

Variability at fifth 
stage 

3928 330 1106 2066 

Expected cost 408962 406443 408510 409022 

Expected 
variability 

5476 1111 1907 2859 

Expected 
infeasibility cost 

0 1577 427 0 

Total cost 408962 408131 409127 409308 

 

3.3.3.2 More tests 

In order to show how the model robustness and solution robustness influence the productions. 

We will provide more tests, as per the stochastic model in Section 3.2.4.4, for the three robust 

models separately. 

Computational results for robust optimisation model with solution robustness. 

The robust optimisation with solution robustness computational results for the three tests, in 

which 𝜆 is assigned different values, are presented in Table ‎3.15. 
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Table ‎3.15 Computational results for 5-stage robust optimisation model with solution robustness 

Test 𝜆 Expected cost 
Expected 
variability 

Expected variability 
cost 

Total cost 

Bad economy 
environment 

0 408962 4656 0 408962 

0.1 409022 2859 286 409308 

0.5 409679 1076 538 410217 

0.9 410011 515 464 410475 

Fair economy 
environment 

0 412392 4364 0 412392 

0.1 412395 4324 432 412827 

0.5 412915 2868 1434 414349 

0.9 413501 1822 1640 415141 

Good economy 
environment 

0 430113 6913 0 430113 

0.1 430140 4874 487 430627 

0.5 430154 4809 2405 432559 

0.9 433888 1 1 433889 

 

Firstly, an analysis of the entire trend of the three tests is conducted. A multi-stage stochastic 

recourse model in which the variability is not considered develops from the robust optimisation 

model when 𝜆 = 0. The expected variability for the robust optimisation model is less than that of 

the multi-stage stochastic recourse model for each test, as shown in Table ‎3.15. Therefore, the 

robust optimisation model with solution robustness presents less risky than the stochastic 

recourse model. The overall cost of the multi-stage stochastic recourse model is less than that of 

the robust optimisation model. The total cost of the robust model (𝜆 = 0.9) increases by 0.37% in 

a bad economy environment, 0.67% in a fair economy environment and 0.88% in a good economy 

environment when compared with the recourse model. However, there is a decrease in the 

variability of 88.94% in a bad economy environment, 58.25% in a fair economy environment and 

99.99% in a good economy environment. 

In order to show the benefits of multi-stage robust models, we also calculate the results of 2-

stage, 3-stage and 4-stage models with the same data. In Table ‎3.16, we lists all results of these 

tests. 
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Table ‎3.16 Comparison results of different stages robust model with solution robustness 

Test 𝜆 
Robust 
model 

Total cost Expected cost 
Expected variability 

cost 

Bad economy 
environment 

0.1 

2-stage 424028 423429 599 

3-stage 416261 415483 778 

4-stage 412438 411925 513 

5-stage 409308 409022 286 

0.5 

2-stage 425099 423926 1173 

3-stage 418886 416605 2281 

4-stage 414102 412878 1224 

5-stage 410217 409679 538 

0.9 

2-stage 426038 423926 2112 

3-stage 419666 418635 1031 

4-stage 414465 413901 564 

5-stage 410475 410011 464 

Fair economy 
environment 

0.1 

2-stage 421925 421059 866 

3-stage 416032 415229 803 

4-stage 414210 413586 624 

5-stage 412827 412395 432 

0.5 

2-stage 423453 421945 1508 

3-stage 419018 415601 3417 

4-stage 416507 414067 2440 

5-stage 414349 412915 1434 

0.9 

2-stage 424659 421945 2714 

3-stage 420346 418501 1845 

4-stage 417424 415767 1657 

5-stage 415141 413501 1640 

Good economy 
environment 

0.1 

2-stage 433312 432865 447 

3-stage 432325 431851 474 

4-stage 431313 430806 507 

5-stage 430627 430140 487 

0.5 

2-stage 435660 432865 2795 

3-stage 434199 431874 2325 

4-stage 433321 430825 2496 
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5-stage 432559 430154 2405 

0.9 

2-stage 435660 435660 0 

3-stage 434900 434900 0 

4-stage 434362 434362 0 

5-stage 433889 433888 1 

 

Figure ‎3.10 Total cost of robust models with solution robustness in bad economy environment ($) 
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Figure ‎3.11 Total cost of robust models with solution robustness in fair economy environment ($) 

 

Figure ‎3.12 Total cost of robust models with solution robustness in good economy environment 

($) 

It will appear from the results shown in Figure ‎3.10, Figure ‎3.11 and Figure ‎3.12, that employing 

multi-stage decision models will deliver more positive benefits no matter under good, poor and 

fair economic conditions. In sum, the test do demonstrate that when in possession of accurate 

market prediction data, the multi-stage robust  model with model robustness appears more 

suitable to solve the production problems with uncertainty than the two-stage model. 

Computational results for robust optimisation model with model robustness. 
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Table ‎3.17 shows the computational results of the robust optimisation with model robustness for 

the three tests. In the tests, 𝜔 is used to represent 𝜔1 and 𝜔2. Thus we have: 𝜔 = 𝜔1 = 𝜔2. In 

the three tests, when 𝜔 = 0 there is no penalty for violating the random demand constraints and 

random quota constraints. When 𝜔 increases, the expected infeasibility decreases and the total 

cost increases. When 𝜔 increases by enough, the expected infeasibility becomes zero, which 

means that all random constraints are satisfied because of the higher penalty for the infeasibility. 

The robust optimisation model then becomes the stochastic recourse model (see the final row). 

  

Table ‎3.17 Computational results for 5-stage robust optimisation model with model robustness 

Test 𝜔 Expected cost Expected infeasibility cost Total cost 

Bad economy environment 

0 357094 0 357094 

20 403813 2476 406289 

50 406641 1361 408002 

Fair economy environment 

0 357094 0 357094 

20 407671 2978 410649 

50 411446 500 411946 

Good economy environment 

0 357094 0 357094 

20 419551 8145 427696 

50 430113 0 430113 

 

In Table ‎3.18, we list all results regarding the total cost for 2-stage, 3-stage, 4-stage and 5-stage 

models. Table ‎3.18 shows that employing multi-stage decision models will deliver more positive 

benefits whether under good, poor or fair economic conditions. 

 

Table ‎3.18 Comparison total cost of different stages robust model with model robustness 

Text 𝜔 2-stage 3-stage 4-stage 5-stage 

Bad economy 
environment 

0 357094 357094 357094 357094 

20 410820 407858 406827 406289 

50 418953 411949 409723 408002 

Fair economy 
environment 

0 357094 357094 357094 357094 

20 413139 411533 410964 410649 

50 417277 413807 412668 411946 
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Good economy 
environment 

0 357094 357094 357094 357094 

20 430425 429363 428366 427696 

50 432865 431816 430727 430113 

 

Computational results for robust optimisation model with the trade-off between solution 

robustness and model robustness 

The trade-off between model robustness and solution robustness is determined using parameters 

𝜆 and 𝜔. No penalty for the infeasibility of random constraints in the objective function exists 

when 𝜔 = 0. The infeasibility representing un-fulfilment is a greater value. Obviously, this type of 

production loading plan would not be looked upon with favour by decision-makers. Yet the total 

objective function value is dominated by the penalty function due to the large weights 𝜔1 and 𝜔2 

and would result in a greater total variability and cost. Consequently, a trade-off between the risk 

and the cost always exists. During the production loading process, it is necessary to check the 

proposed robust optimisation model with different 𝜆 in order to measure the trade-off between 

the risk and cost. 

When 𝜆 keeps constant: 

The computational results for a bad economy environment, in terms of the infeasibility, 

variability, and total cost when 𝜆 keeps constant, are shown in Figure ‎3.13, Figure ‎3.14 and 

Figure ‎3.15.  

The variability trend when 𝜔 increases for 𝜆 =0.1, 0.5, and 0.9 respectively is given in Figure ‎3.13. 

For 𝜆 = 0.1, when 𝜔 increases, the variability sharply increases from 660 to 2859. However, the 

variability keeps steady at 2859 after 𝜔 increases to 150. The value of 𝜔 has a small impact on the 

variability when 𝜆 =0.5 and 0.9. This is due to the fact that the infeasibility cost measured by 𝜔 

has less influence on the total cost and the objective function value is dominated by the variability 

cost when 𝜆 is given a large value. 

The trend of the infeasibility when 𝜔 increases for 𝜆 =0.1, 0.5, and 0.9 respectively is shown in 

Figure ‎3.14.The fact that the value of 𝜔 has a large influence on the system’s infeasibility is clear 

to see. 

Figure ‎3.15 shows that when 𝜔 increases, so do the total costs. When the value of 𝜆 is small, the 

has the system is greater impacted by the value of 𝜔. 
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Figure ‎3.13 Variability when 𝜆 keeps constant 

 

 

Figure ‎3.14 Infeasibility when 𝜆 keeps constant 
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Figure ‎3.15 Total cost when 𝜆 keeps constant 

When 𝜔 keeps constant: 

The computational results of a bad economy environment, regarding the infeasibility, variability 

and total cost when 𝜔 keeps constant, are shown in Figure ‎3.16, Figure ‎3.17 and Figure ‎3.18. 

The trend in the variability when 𝜆 increases for 𝜔 =10, 50, 100 and 150 respectively is shown in 

Figure ‎3.16. If 𝜆 increases from 0.1 to 0.9, for 𝜔 = 10, the variability decreases by 76.52%; for 

𝜔 = 50, the variability decreases by 76.42%; for 𝜔 = 100, the variability decreases by 81.91%; 

for 𝜔 = 150, the variability decreases by 83.63%. The value of 𝜆 has a large effect on the 

variability. 

The trend in the infeasibility, when 𝜆 increases for 𝜔 =10, 50, 100 and 150 respectively, can be 

seen in Figure ‎3.17. The greater the value of 𝜔, the less the value of 𝜆 has an impact on the 

infeasibility. If 𝜆 increases from 0.1 to 0.9, for 𝜔 = 10, the infeasibility increases by 4.3%; for 

𝜔 =50, 100 and 150 the value of 𝜆 has no impact on the infeasibility. The reason for this is that 

when 𝜔 is given a large value, the infeasibility cost dominates the objective function value and the 

variability cost measured by 𝜆 has less impact on the total cost. 

The trend in the total cost, when 𝜆 increases for 𝜔 =10, 50, 100 and 150 respectively, is displayed 

in Figure ‎3.18. If there is an increase in 𝜆 from 0.1 to 0.9, for 𝜔 = 10, the total cost increases by 

0.07%, for 𝜔 = 50, the total cost increases by 0.13%; for 𝜔 = 100, the total cost increases by 

0.18%, for 𝜔 = 150, the total costs increases by 0.24%. The total cost increases by only a small 

amount when 𝜆 increases, compared with the changes in infeasibility and variability in Figure ‎3.16 

and Figure ‎3.17. This means that the robust model proposed in this study is not expensive for a 

low-risk production loading system. 
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Figure ‎3.16 Variability when 𝜔 keeps constant 

 

 

Figure ‎3.17 Infeasibility when 𝜔 keeps constant 
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Figure ‎3.18 Total cost when 𝜔 keeps constant 

3.4 Managerial implications and conclusions  

Continued research (Dunlop and Weil, 1996; De Toni and Meneghetti, 2000; Ramcharran, 2001; 

Wu, 2011b) has shown on-going interest among in developing an understanding of how optimised 

planning and control of production may enhance the competitiveness of the garment industry. 

There is an urgent need for firms working within the garment industry to not only shorten their 

fulfilment times for orders but also to optimise their entire supply chains. Thus the effectiveness 

of their production and planning processes has become an essential element of the entire 

manufacturing business operations. For a number of reasons (including the unrealistic 

expectation about being able to forecast demand at a level of granularity that represents reality), 

there has been a robust inclination among scholars to take the view that optimised planning and 

control of the production process is best supported by appropriate mathematical modelling. 

However, as some scholars such as MacCarthy (2006), have shown, there are indeed associated 

limitations when production planning challenges are treated solely as mathematical problems. 

These limitations include for example that (1) production planning problems may not necessarily 

be isolated from the prevailing competitive environments, and (2) the queuing of manufacturing 

transactions are not static. Hence, because production planning and control has a primary interest 

in capacity planning and its management (Guide, 2000), and not solely scheduling (MacCarthy, 

2006), there is a need for scholars to be realistic during modelling on the conditions under which 

one assumes the existence of certainty.  
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In conditions where manufacturing firms face multiple, conflicting, and fluid challenges of various 

configurations, stochastic programming models and robust optimisation models have been 

employed for the optimisation of problems associated with uncertainty.  

Within this research, for the multi-period, multi-product and multi-plant production planning 

problem under demand uncertainty and quota limitation, we develop a multi-stage stochastic 

linear model to solve it. Testing shows that that garment manufacturing firms are more likely to 

derive more benefits from this model. However, as earlier alluded to, multi-stage stochastic linear 

models should be adopted cautiously as their validity is highly dependent on the accuracy of the 

forecasted probability of uncertainty. We find that if the probability changes by a small amount, 

the entire production plan may change a lot. Moreover, the addition of some other factors, such 

as transportation cost, exchange rate cost or uncertain raw materials fees, should make the 

model more applicable to real-life problem applications. 

Manufacturing companies are being made to supply competitive production strategies, due to the 

global supply chain management environment. A quantitative approach to creating a production 

loading strategy when faced with increasingly shortening lead times and uncertain market 

information, in addition to the greater risks entailed, is offered in this study.  

For the same problems in multi-stage stochastic programming, in order to make the model more 

responsive and flexible, three different kinds of robust optimisation model are proposed: the 

robust optimisation model with model robustness; the robust optimisation model with solution 

robustness; and the robust optimisation model with a trade-off between model robustness and 

solution robustness. The same example in multi-stage stochastic programming has been selected 

to test these three types of robust optimisation models. The production loading strategies are 

determined in terms of the cost and risk through the analysis of the various weights in the robust 

models. A series of computational tests illustrate the fact that the robust optimisation models 

have advantages over the stochastic recourse model in managing the uncertainty and risk. The 

robust model solutions can cope with the infeasibility which happens in the multi-stage recourse 

programming model and are progressively less sensitive to the realizations of the stochastic 

variables. However, there is no a priori mechanism for specifying a “correct” choice of the 

parameters, as is prevalent in multi-criteria programming, due to the fact that robust optimisation 

remains synonymous with goal programming. Additionally, a method of specifying a scenario set, 

which also happens when formulating a stochastic recourse programming model, is not offered by 

robust optimisation.
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Chapter 4:  International Air Cargo Forwarding Problem 

In Chapter 3 we introduced the fact that many international companies decide to locate their 

factories in developing countries to save money, although their sales departments are in 

developed countries. After producing the goods in their factories, the headquarters should 

consider transporting their products to their markets. Air transportation is a good choice to 

transport low density and high value products to their sales departments. Therefore, the 

questions of how to make a production plan to satisfy the uncertain market demand, how to book 

air containers, and how to make plans to load air cargoes to these containers in order to transport 

the products to distant markets on time have become a challenge to decision makers. Considering 

the air cargoes forwarding problem, the aim of our research is to help the forwarders to book air 

containers in advance in order to ship the cargoes from different regions to various destinations 

via a hub, where the cargoes need to be repacked and consolidated before leaving (see 

Figure ‎4.1). 

 

Figure ‎4.1 An example of air cargo forwarding problem 

4.1 Problem description 

With the development of high speed electronic mechanical technology in recent years, the most 

important factors to impact container handling have changed from labour to capital and time. 

Therefore, containerisation become a cost-effective and efficient method for shipment. This is 

also true for air cargo shipment due to the outstanding growth of airline business. The air 

forwarding companies handle many functions of delivering air cargoes, such as picking up items, 
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consolidating, packing, booking air containers, preparing documents for air shipment, buying 

cargo insurance, warehousing and tracking. The most important one is consolidation because 

consolidating items can help the forwarders to save the shipment and transport costs. Nowadays, 

hubs have become a significant issue for the air forwarding companies due to their wide usage for 

saving air transportation resources.  

In order to use the aircrafts’ space more effectively, some types of air containers have different 

irregular shapes (see Figure ‎1.1). The air carriers cannot expect that the whole irregular space will 

be occupied by the air cargoes. Therefore the volume limitations provided for these containers 

are smaller than the exact space (Wu, 2008). In this research, we only consider the container 

weight and volume limitations for loading air cargoes, not the shape problems.  

In this research, air cargoes need to be transported from various regions to different destinations 

via a hub where cargoes are combined. Every type of cargo has its own weight and volume. Cargo 

cannot be divided which means that each cargo must be loaded into one container. Air freight 

forwarders need to book air containers in all regions and hub. Notice that, in the hub, containers 

can come from three sources: one is from the regions, containers that can stay in use, called pre-

used containers; another resource is from booking in advance, in which case they are called new 

containers; another resource is urgent booking on the shipping day. Using pre-used containers 

rather than new containers in the hub will get a little discount. 

The air cargo forwarders need to make decisions not only about how many containers should be 

used, but also about how to load the air cargoes into these containers in order to save space and 

minimise the total costs. Containers are normally booked one week before the shipping date in 

order to get a cheap rental price from airlines. The cargo quantity that customers provide is 

uncertain. The forwarders do not want to wait until the actual shipment information is realized, 

because the price for urgent requirement or cancellation of containers on the shipping day is 

much higher than the booking cost one week in advance.  

The price of renting a container in advance depends on container types and the cargo weight 

inside the container. Before the time of rental, accurate information is not available, so the 

forwarders have to make a decision about the quantities and types of containers in all the regions 

and hub, along with how to use the pre-used containers in the hub. Then, after the realization of 

the uncertainty, if the containers that have been booked cannot hold all cargoes, additional 

containers are required with a high penalty cost. On the other hand, if too many containers have 

been ordered, redundant containers have to be returned to the airlines with a penalty due to the 

breaking of a contract. Therefore, the rental cost consists of two parts: the cost of using the 

containers and the cost of penalties for urgent requirement or cancellation on the day of 
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shipping. The cost of using a container is based on a fixed charge, plus a variable charge which 

depends on the total cargo weight that the container holds. The penalty cost includes the cost of 

renting the additional containers and the cost of returning the unused containers on the day of 

shipping. 

4.2 Two-stage stochastic model and robust models 

If there is one day’s flights per week to deal with the forwarder’s products, or there are more than 

one day’s flights per week but each of those days can be treated as individual case, then a two-

stage model will suffice. All cargoes have to be allocated to containers without delay. In this 

section, we provide the two-stage stochastic model and three different types of robust 

optimisation models similar to those in Chapter 3. In the first stage, the air freight forwarders 

have to make a decision, based on inaccurate information, to determine the booking quantities 

and types of containers in all the regions and hub, and also how to use the pre-used containers in 

the hub. In the second stage, in order to make sure all the air cargoes have been transported 

without delay, the forwarders need to make decisions not only to rent more containers or return 

booked containers for each scenario, but also to load all cargoes into the containers for each 

scenario when the uncertainty is realized on the shipping day. 

All the costs will occur on the shipping day, which is quite different from those in Chapter 3. 

Although the air cargo forwarders should pay a deposit for booking air containers one week in 

advance, the deposit still can be used to pay the costs on the shipping day.  

The assumptions we use for the one day’s flights per week air cargo forwarding problem are as 

follows: 

 All the cargoes should be shipped without any delay; 

 Container variable costs are certain, just related to the type of containers; 

 Uncertainty satisfies a discrete stochastic process;  

 The container weight and volume limitations are the only two factors considered for 

loading air cargoes; 

 The total costs of loading and repacking containers in the hub are certain, just related to 

the type of containers; 

 The discount for using pre-used containers is a fixed proportion. 
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4.2.1 Container renting costs 

The cost of using a container includes two parts, fixed cost and variable cost. Once a container is 

selected, the fixed cost needs to be paid. If the weight of cargo loaded into the container exceeds 

some given values, a variable cost will be incurred. These values are called break point. Let 

{1, 2,⋯ , 𝐾} be 𝐾 break points. The 𝐾 break points divide the container weight limit into 𝐾 

intervals. The unit variable cost in a 𝑘 interval is charged at a slope rate 𝛿𝑘. In this study, the air 

carriers provide six break points, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 and 𝑎6, for each type of container, 𝑗 =

1, 2,⋯ , 𝑛. 𝑛 represents the maximum number of air cargo types. 𝑤𝑗 denotes weight of cargo 𝑗 

and 𝑦𝑗  is the quantity of air cargo 𝑗 loaded into this container. The variable cost is a piecewise 

function shown as follows (Wu, 2010). 

𝑐 =

{
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                             (4.1) 

We can simplify (4.1) by adding two new variables 𝑔𝑘 and 𝑧𝑘. 𝑔𝑘 represents the cargo weight in 

the range (𝑎𝑘−1, 𝑎𝑘] in the container. 𝑧𝑘 = {
1

0
   

𝑖𝑓 𝑔𝑘>0

otherwise
. Then the variable cost can change to 

∑ 𝛿𝑘𝑔𝑘
𝐾
𝑘=1  by adding some constraints: 

∑𝑔𝑘

𝐾

𝑘=1

=∑𝑤𝑗𝑦𝑗

𝑛

𝑗=1

                                                                     (4.2) 

                                 𝑔𝑘 ≤ 𝑧𝑘(𝑎𝑘 − 𝑎𝑘−1),    𝑘 = 1, 2,⋯ ,𝐾                                    (4.3) 

                              𝑔𝑘 ≥ 𝑧𝑘+1(𝑎𝑘 − 𝑎𝑘−1),    𝑘 = 1, 2,⋯ ,𝐾                                (4.4) 

Equations (4.3) and (4.4) ensure that 𝑔𝑘 cannot be positive unless the range (𝑎𝑘−1, 𝑎𝑘] is fully 

occupied by the cargo weight. 
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4.2.2 Two-stage stochastic model 

4.2.2.1 Notation 

Indices 

𝑖  types of containers (𝑖 = 1, 2,⋯ ,𝑚); 

𝑗  types of cargoes (𝑗 = 1, 2,⋯ , 𝑛); 

𝑟  regions (𝑟 = 1, 2,⋯ , 𝑅); 

𝑑  destinations (𝑑 = 1, 2,⋯ , 𝐷); 

𝑠  scenarios (𝑠 = 1, 2,⋯ , 𝑆); 

𝑘  numbers of breaking-points for type i container (𝑘 = 1, 2,⋯ ,𝐾𝑖); 

𝑙  numbers of type 𝑖 container (𝑙 = 1, 2,⋯ , 𝐿𝑖). 

Deterministic parameters 

𝑣𝑗  volume of a type 𝑗 cargo; 

𝑤𝑗  weight of a type 𝑗 cargo; 

𝑉𝑖  volume limit of type 𝑖 container; 

𝑊𝑖  weight limit of type 𝑖 container; 

𝑎𝑖𝑘  weight of type 𝑖 container in breaking-points 𝑘; 

𝛿𝑖𝑘  the unit charge rate of type 𝑖 container in the range (𝑎𝑖(𝑘−1), 𝑎𝑖𝑘]; 

𝑐𝑖𝑟
0   fixed cost by renting a type 𝑖 container in region 𝑟; 

𝑐𝑖
ℎ0 fixed cost by renting a type 𝑖 container in hub; 

𝑞𝑗𝑠𝑟 type 𝑗 cargo quantity in scenario 𝑠 in region 𝑟; 

𝑝𝑠  probability of scenario 𝑠; 

𝐿𝑖𝑟 type 𝑖 container available quantity in region 𝑟; 

𝐿𝑖 type 𝑖 container available quantity in all regions, which means 𝐿𝑖 = ∑ 𝐿𝑖𝑟
𝑅
𝑟=1 ; 

𝐿𝑖
ℎ  type 𝑖 container available quantity in hub; 
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𝑐𝑖𝑟
−/𝑐𝑖𝑟

+  the unit penalty cost of requiring/returning type 𝑖 containers on the day of shipping in 

region 𝑟; 

𝑐𝑖
ℎ−/𝑐𝑖

ℎ+ the unit penalty cost of requiring/returning type 𝑖 containers on the day of shipping in 

hub; 

𝑏𝑖 the unit repacking cost of type 𝑖 container in the hub (included unloading, moving the cargoes 

to another container); 

𝜃 the discount rate of fixed cost by using pre-used containers;  

𝑞𝑗𝑠𝑑
ℎ  quantity of type 𝑗 cargo with destination 𝑑 in scenario 𝑠 in the hub. 

Decision variables 

𝑜𝑖𝑟 number of type 𝑖 container for booking in region 𝑟; 

𝑜𝑖
ℎ  number of type 𝑖 container for booking in hub; 

𝑜𝑖𝑠𝑟
− /𝑜𝑖𝑠𝑟

+  number of type 𝑖 container required/returned in scenario 𝑠 on the day of shipping in 

region 𝑟; 

𝑜𝑖𝑠
ℎ−/𝑜𝑖𝑠

ℎ+ number of type 𝑖 container required/returned in scenario 𝑠 on the day of shipping in 

hub; 

𝑜𝑖
ℎ𝑐  number of type 𝑖 pre-used container for booking to continue to use in the hub; 

𝑥𝑖𝑙𝑠𝑟 = {
1

0
   
if the 𝑙th container of type 𝑖 is selected in scenario 𝑠 in region 𝑟

otherwise
; 

𝑦𝑖𝑙𝑗𝑠𝑟𝑑  quantity of type 𝑗 cargo with destination 𝑑 loaded into the 𝑙th container of type 𝑖 in 

scenario 𝑠 in region 𝑟; 

𝑦𝑖𝑙𝑗𝑠𝑑
ℎ  quantity of type 𝑗 cargo with destination 𝑑 loaded into the 𝑙th container of type 𝑖 in 

scenario 𝑠 in hub; 

𝑔𝑖𝑙𝑘𝑠𝑟 cargo weight distributed in the range (𝑎𝑖(𝑘−1), 𝑎𝑖𝑘] inside the 𝑙th container of type 𝑖 in 

scenario 𝑠 in region 𝑟; 

𝑔𝑖𝑙𝑘𝑠𝑑
ℎ   cargo weight distributed in the range (𝑎𝑖(𝑘−1), 𝑎𝑖𝑘] inside the 𝑙th container of type 𝑖 in 

scenario 𝑠 with destination 𝑑 in the hub; 

𝑧𝑖𝑙𝑘𝑠𝑟 = {
1

0
   
if 𝑔𝑖𝑙𝑘𝑠𝑟 > 0

otherwise
; 
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𝑧𝑖𝑙𝑘𝑠𝑑
ℎ   = {

1

0
   
if 𝑔𝑖𝑙𝑘𝑠𝑑

ℎ   > 0

otherwise
; 

𝑥𝑖𝑙𝑠𝑑
ℎ = {

1

0
  
if the 𝑙th type 𝑖 container with destination 𝑑 is selected in scenario 𝑠 in hub

otherwise
 

𝑥𝑖𝑙𝑠𝑑
ℎ𝑐 = {

1

0
  
if 𝑙th type 𝑖 pre − used container with destination 𝑑 is selected in scenario 𝑠 in hub

otherwise
 

𝑦𝑖𝑙𝑗𝑠𝑑
ℎ𝑐  quantity of type 𝑗 cargo with destination 𝑑 loaded into the 𝑙th pre-used container of type 𝑖 

in scenario 𝑠 in the hub; 

𝑔𝑖𝑙𝑘𝑠𝑑
ℎ𝑐  cargo weight distributed in the range (𝑎𝑖(𝑘−1), 𝑎𝑖𝑘] inside the 𝑙th type 𝑖 pre-used container 

with destination 𝑑 in scenario 𝑠 in the hub; 

𝑧𝑖𝑙𝑘𝑠𝑑
ℎ𝑐   = {

1

0
   
if 𝑔𝑖𝑙𝑘𝑠𝑑

ℎ𝑐   > 0

otherwise
. 

4.2.2.2 Two-stage stochastic model 

min∑(𝑀𝑟 +∑∑𝑝𝑠𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑𝑝𝑠𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑆

𝑠=1

𝑚

𝑖=1

)

𝑅

𝑟=1

+∑∑∑∑𝑝𝑠𝑏𝑖𝑥𝑖𝑙𝑠𝑟

𝑆

𝑠=1

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

𝑅

𝑟=1

+∑(𝑁𝑑
𝑐 +𝑁𝑑)

𝐷

𝑑=1

+∑∑𝑝𝑠𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑𝑝𝑠𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑆

𝑠=1

𝑚

𝑖=1

                                                                   (4.5) 

subject to 

𝑀𝑟 =∑∑∑𝑝𝑠𝑐𝑖𝑟
0 𝑥𝑖𝑙𝑠𝑟

𝑆

𝑠=1

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

+∑∑∑∑𝑝𝑠𝛿𝑖𝑘𝑔𝑖𝑙𝑘𝑠𝑟

𝑆

𝑠=1

𝐾𝑖

𝑘=1

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

   𝑟 = 1,⋯ , 𝑅                                           (4.6) 

𝑁𝑑
𝑐 =∑∑∑𝑝𝑠𝜃𝑐𝑖

ℎ0𝑥𝑖𝑙𝑠𝑑
ℎ𝑐

𝑆

𝑠=1

𝐿𝑖

𝑙=1

𝑚

𝑖=1

+∑∑∑∑𝑝𝑠𝛿𝑖𝑘𝑔𝑖𝑙𝑘𝑠𝑑
ℎ𝑐

𝑆

𝑠=1

𝐾𝑖

𝑘=1

𝐿𝑖

𝑙=1

𝑚

𝑖=1

    𝑑 = 1,⋯ ,𝐷                                    (4.7) 

𝑁𝑑 =∑∑∑𝑝𝑠𝑐𝑖
ℎ0𝑥𝑖𝑙𝑠𝑑

ℎ

𝑆

𝑠=1

𝐿𝑖
ℎ

𝑙=1

𝑚

𝑖=1

+∑∑∑∑𝑝𝑠𝛿𝑖𝑘𝑔𝑖𝑙𝑘𝑠𝑑
ℎ

𝑆

𝑠=1

𝐾𝑖

𝑘=1

𝐿𝑖
ℎ

𝑙=1

𝑚

𝑖=1

    𝑑 = 1,⋯ , 𝐷                                       (4.8) 

𝑜𝑖𝑟 =∑𝑥𝑖𝑙𝑠𝑟

𝐿𝑖𝑟

𝑙=1

+ 𝑜𝑖𝑠𝑟
+ − 𝑜𝑖𝑠𝑟

−       𝑖 = 1,⋯ ,𝑚, 𝑟 = 1,⋯ , 𝑅, 𝑠 = 1,⋯ , 𝑆                             (4.9) 

∑∑∑ 𝑦
𝑖𝑙𝑗𝑠𝑟𝑑

𝐿𝑖𝑟

𝑙=1

𝐷

𝑑=1

𝑚

𝑖=1

= 𝑞𝑗𝑠𝑟       𝑗 = 1,⋯ , 𝑛,    𝑟 = 1, ⋯ , 𝑅,   𝑠 = 1, ⋯ , 𝑆                                          (4.10) 
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∑∑ 𝑦
𝑖𝑙𝑗𝑠𝑑
ℎ

𝐿𝑖
ℎ

𝑙=1

𝑚

𝑖=1

+∑∑ 𝑦
𝑖𝑙𝑗𝑠𝑑
ℎ𝑐

𝐿𝑖

𝑙=1

𝑚

𝑖=1

= 𝑞𝑗𝑠𝑑
ℎ       𝑗 = 1,⋯ , 𝑛,    𝑑 = 1, ⋯ , 𝐷,   𝑠 = 1, ⋯ , 𝑆                    (4.11) 

𝑜𝑖
ℎ =∑∑ 𝑥𝑖𝑙𝑠𝑑

ℎ

𝐷

𝑑=1

𝐿𝑖
ℎ

𝑙=1

+ 𝑜𝑖𝑠
ℎ+ − 𝑜𝑖𝑠

ℎ−      𝑖 = 1,⋯ ,𝑚,    𝑠 = 1, ⋯ , 𝑆                                                        (4.12) 

∑∑ 𝑥𝑖𝑙𝑠𝑑
ℎ𝑐

𝐷

𝑑=1

𝐿𝑖

𝑙=1

≤∑∑ 𝑥𝑖𝑙𝑠𝑟

𝐿𝑖𝑟

𝑙=1

𝑅

𝑟=1

          𝑖 = 1,⋯ ,𝑚, 𝑠 = 1,⋯ , 𝑆                                                   (4.13) 

∑∑𝑥𝑖𝑙𝑠𝑑
ℎ

𝐷

𝑑=1

𝐿𝑖
ℎ

𝑙=1

≤ 𝐿𝑖
ℎ       𝑖 = 1,⋯ ,𝑚, 𝑠 = 1,⋯ , 𝑆                                                                          (4.14) 

∑∑ 𝑥𝑖𝑙𝑠𝑑
ℎ𝑐

𝐷

𝑑=1

𝐿𝑖

𝑙=1

= 𝑜𝑖
ℎ𝑐     𝑖 = 1,⋯ ,𝑚, 𝑠 = 1,⋯ , 𝑆                                                                          (4.15) 

∑𝑔𝑖𝑙𝑘𝑠𝑟

𝐾𝑖

𝑘=1

=∑∑𝑤𝑗𝑦𝑖𝑙𝑗𝑠𝑟𝑑

𝐷

𝑑=1

𝑛

𝑗=1

    𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟,   𝑟 = 1,⋯ , 𝑅,   𝑠 = 1,⋯ , 𝑆         (4.16) 

𝑔𝑖𝑙𝑘𝑠𝑟 ≤ 𝑧𝑖𝑙𝑘𝑠𝑟(𝑎𝑖𝑘 − 𝑎𝑖(𝑘−1))     𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖,   𝑘 = 1,⋯ ,𝐾𝑖 ,   𝑟 = 1,⋯ , 𝑅,   𝑠

= 1,⋯ , 𝑆                                                                                                                         (4.17) 

𝑔𝑖𝑙𝑘𝑠𝑟 ≥ 𝑧𝑖𝑙(𝑘−1)𝑠𝑟(𝑎𝑖𝑘 − 𝑎𝑖(𝑘−1))       𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖,   𝑘 = 1,⋯ ,𝐾𝑖,    𝑟 = 1,⋯ , 𝑅,   𝑠

= 1,⋯ , 𝑆                                                                                                                         (4.18) 

∑𝑔𝑖𝑙𝑘𝑠𝑑
ℎ

𝐾𝑖

𝑘=1

=∑𝑤𝑗𝑦𝑖𝑙𝑗𝑠𝑑
ℎ

𝑛

𝑗=1

    𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟,    𝑑 = 1,⋯ ,𝐷, 𝑠 = 1,⋯ , 𝑆                  (4.19) 

𝑔𝑖𝑙𝑘𝑠𝑑
ℎ ≤ 𝑧𝑖𝑙𝑘𝑠𝑑

ℎ (𝑎𝑖𝑘 − 𝑎𝑖(𝑘−1))       𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖,    𝑘 = 1,⋯ ,𝐾𝑖,   𝑟 = 1,⋯ , 𝑅,   𝑠

= 1,⋯ , 𝑆                                                                                                                         (4.20) 

𝑔𝑖𝑙𝑘𝑠𝑑
ℎ ≥ 𝑧𝑖𝑙(𝑘−1)𝑠𝑑

ℎ (𝑎𝑖𝑘 − 𝑎𝑖(𝑘−1))       𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖,    𝑘 = 1,⋯ ,𝐾𝑖,   𝑟 = 1,⋯ , 𝑅,   𝑠

= 1,⋯ , 𝑆                                                                                                                         (4.21) 

∑𝑔𝑖𝑙𝑘𝑠𝑑
ℎ𝑐

𝐾𝑖

𝑘=1

=∑𝑤𝑗𝑦𝑖𝑙𝑗𝑠𝑑
ℎ𝑐

𝑛

𝑗=1

    𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟,    𝑑 = 1,⋯ ,𝐷, 𝑠 = 1,⋯ , 𝑆                  (4.22) 
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𝑔𝑖𝑙𝑘𝑠𝑑
ℎ𝑐 ≤ 𝑧𝑖𝑙𝑘𝑠𝑑

ℎ𝑐 (𝑎𝑖𝑘 − 𝑎𝑖(𝑘−1))       𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖,    𝑘 = 1,⋯ ,𝐾𝑖,   𝑟 = 1,⋯ , 𝑅,   𝑠

= 1,⋯ , 𝑆                                                                                                                         (4.23) 

𝑔𝑖𝑙𝑘𝑠𝑑
ℎ𝑐 ≥ 𝑧𝑖𝑙(𝑘−1)𝑠𝑑

ℎ𝑐 (𝑎𝑖𝑘 − 𝑎𝑖(𝑘−1))       𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖,    𝑘 = 1,⋯ ,𝐾𝑖 ,   𝑟 = 1,⋯ , 𝑅,   𝑠

= 1,⋯ , 𝑆                                                                                                                         (4.24) 

∑∑𝑣𝑗𝑦𝑖𝑙𝑗𝑠𝑟𝑑

𝐷

𝑑=1

𝑛

𝑗=1

≤ 𝑉𝑖𝑥𝑖𝑙𝑠𝑟     𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟 , 𝑟 = 1,⋯ , 𝑅,   𝑠 = 1,⋯ , 𝑆                  (4.25) 

∑∑𝑤𝑗𝑦𝑖𝑙𝑗𝑠𝑟𝑑

𝐷

𝑑=1

𝑛

𝑗=1

≤ 𝑊𝑖𝑥𝑖𝑙𝑠𝑟      𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟, 𝑟 = 1,⋯ , 𝑅,   𝑠 = 1,⋯ , 𝑆              (4.26) 

∑𝑣𝑗𝑦𝑖𝑙𝑗𝑠𝑑
ℎ

𝑛

𝑗=1

≤ 𝑉𝑖𝑥𝑖𝑙𝑠𝑑
ℎ           𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟,   𝑑 = 1,⋯ ,𝐷,   𝑠 = 1,⋯ , 𝑆                  (4.27) 

∑𝑤𝑗𝑦𝑖𝑙𝑗𝑠𝑑
ℎ

𝑛

𝑗=1

≤ 𝑊𝑖𝑥𝑖𝑙𝑠𝑑
ℎ         𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟,   𝑑 = 1,⋯ ,𝐷,   𝑠 = 1,⋯ , 𝑆                  (4.28) 

∑𝑣𝑗𝑦𝑖𝑙𝑗𝑠𝑑
ℎ𝑐

𝑛

𝑗=1

≤ 𝑉𝑖𝑥𝑖𝑙𝑠𝑑
ℎ𝑐           𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟,   𝑑 = 1,⋯ ,𝐷,   𝑠 = 1,⋯ , 𝑆                  (4.29) 

∑𝑤𝑗𝑦𝑖𝑙𝑗𝑠𝑑
ℎ𝑐

𝑛

𝑗=1

≤ 𝑊𝑖𝑥𝑖𝑙𝑠𝑑
ℎ𝑐         𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟,   𝑑 = 1,⋯ ,𝐷,   𝑠 = 1,⋯ , 𝑆                  (4.30) 

𝑜𝑖𝑟 , 𝑜𝑖
ℎ,𝑜𝑖

ℎ𝑐 ,𝑜𝑖𝑠𝑟
− , 𝑜𝑖𝑠𝑟

+ , 𝑜𝑖𝑠
ℎ−, 𝑜𝑖𝑠

ℎ+,𝑦𝑖𝑙𝑗𝑠𝑟𝑑 , 𝑦𝑖𝑙𝑗𝑠𝑑
ℎ , 𝑦𝑖𝑙𝑗𝑠𝑑

ℎ𝑐 ,𝑔𝑖𝑙𝑘𝑠𝑟,𝑔𝑖𝑙𝑘𝑠𝑑
ℎ ,𝑔𝑖𝑙𝑘𝑠𝑑

ℎ𝑐 ∈ {0,1,2,⋯ , inf};   

𝑥𝑖𝑙𝑠𝑟, 𝑥𝑖𝑙𝑠𝑑
ℎ , 𝑥𝑖𝑙𝑠𝑑

ℎ𝑐 , 𝑧𝑖𝑙𝑘𝑠𝑟, 𝑧𝑖𝑙𝑘𝑠𝑑
ℎ , 𝑧𝑖𝑙𝑘𝑠𝑑

ℎ𝑐 ∈ {0,1}       𝑖 = 1,⋯ ,𝑚,   𝑙 = 1,⋯ , 𝐿𝑖𝑟 ,    𝑗 = 1,⋯ , 𝑛,    𝑟

= 1,⋯ , 𝑅, 𝑑 = 1,⋯ ,𝐷,   𝑘 = 1,⋯ ,𝐾𝑖, 𝑠 = 1,⋯ , 𝑆                              (4.31) 

The objective function (4.5) is the total cost including container fixed and variable costs in the 

regions, penalty costs for renting or returning containers on the shipping day in the regions, 

repacking costs in the hub, fixed and variable costs for the pre-used containers and new 

containers in the hub and uncertainty costs for renting or returning containers in the hub. 

Constraints (4.6)-(4.8) are the fixed and variable costs for containers in the regions, pre-used 

containers in the hub and new containers in the hub respectively. The container quantity 

constraints in regions and hub are (4.9) and (4.12). The cargo quantity constraints in regions and 

hub are (4.10) and (4.11). Constraint (4.13) means that for each type of container, the quantity of 

using pre-used containers in the hub cannot be greater than the sum of containers used in all 
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regions. Constraint (4.14) ensures that the number of each type of container used in the hub 

cannot exceed the limit. Constraint (4.15) makes sure that the pre-used container using plan 

should be the same no matter which scenario is realised. Constraints (4.16)-(4.24) are container 

variable cost constraints according to (4.2)-(4.4). Constraints (4.25)-(4.31) are boundary 

conditions. 

Because all the costs occur on the shipping day, the model here is quite different with previous 

chapter. And this kind of formulation can make the model looks simpler. The decisions in the first 

stage are 𝑜𝑖𝑟, 𝑜𝑖
ℎ and 𝑜𝑖

ℎ𝑐. 𝑜𝑖𝑟  and 𝑜𝑖
ℎ are the container booking decisions in regions and hub. 

𝑜𝑖
ℎ𝑐 is the decision using pre-used containers in the hub. In the second stage, the decisions 

for urgent renting or returning containers are 𝑜𝑖𝑠𝑟
− , 𝑜𝑖𝑠𝑟

+ , 𝑜𝑖𝑠
ℎ− and 𝑜𝑖𝑠

ℎ+; and the decisions for 

loading air cargoes into the containers are 𝑦
𝑖𝑙𝑗𝑠𝑟𝑑

, 𝑦
𝑖𝑙𝑗𝑠𝑑
ℎ  and 𝑦

𝑖𝑙𝑗𝑠𝑑
ℎ𝑐 . 

4.2.2.3 Computational results  

A practical problem 

The case organisation is described in greater detail in Wu (2010). In it, a logistics company in Hong 

Kong provides air transport services worldwide. It collects shipping information from its 

customers including the characteristics for different types of cargoes, delivery dates, destinations 

and uncertain demand. The air cargoes need to be transported from two regions, Mainland China 

(Region A) and Vietnam (Region B), to the hub in Hong Kong first. The cargoes are unloaded and 

consolidated in Hong Kong before they are sent to two destinations, the EU (Destination α) and 

Northern America (Destination β). There are three types of cargo (𝑛 = 3): large, medium and 

small, with volume 1500, 1200 and 1000 cubic decimetres and weight 750, 600 and 500 kilograms 

respectively. 

The company contacts an airline to rent air containers in advance. There are seven types of 

container (𝑚 = 7) for rent, and currently there is only one of each type of container available in 

each region and hub (𝐿𝑖𝑟 = 𝐿𝑖
ℎ = 1 for each 𝑖 and 𝑟). The airline provides the container 

information in Table ‎4.1, including the fixed cost ($), the volume limit (dm3), the weight limit (kg), 

the breaking points (kg) and the unit charge rate ($/kg). The containers in the regions and hub 

have the same characteristics. If the company decides to continue using the containers in the hub, 

which just come from the regions, it will get 5% discount for the fixed cost, which means 

𝜃 = 95%. 

Table ‎4.1 Air container characteristics 

Container type 1 2 3 4 5 6 7 
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Fixed cost 161617 105898 85207 74373 48713 46553 20695 

Volume limit 6489 6300 5008 4882 3700 3150 1400 

Weight limit 6800 5400 4200 4000 3900 3500 1200 

B
re

ak
in

g 
p

o
in

t 
𝑎𝑖1 3968 2600 2092 1826 1196 1643 505 

𝑎𝑖2 4722 3050 2490 2173 1423 1747 602 

𝑎𝑖3 5290 3467 2789 2434 1594 2000 674 

𝑎𝑖4 5976 3954 3149 2741 1825 2500 758 

𝑎𝑖5 6273 4111 3307 2886 1917 2591 799 

𝑎𝑖6 6800 5400 4200 4000 3900 3500 1200 

C
h

ar
ge

d
 r

at
e 

𝛿𝑖1 0 0 0 0 0 0 0 

𝛿𝑖2 32 32 32 32 32 32 32 

𝛿𝑖3 0 0 0 0 0 0 0 

𝛿𝑖4 29 29 29 29 29 29 29 

𝛿𝑖5 0 0 0 0 0 0 0 

𝛿𝑖6 25 25 25 25 25 25 25 

 

The uncertainty of cargo quantities of each type can be described by three scenarios: high 

demand 𝑠1, medium demand 𝑠2 and low demand 𝑠3. Table ‎4.2 lists the cargo quantities under 

different scenarios and Table ‎4.3 gives the unit penalty cost for returning unused containers and 

renting additional containers on the day of shipping. The penalty costs in the hub will be the same 

in all the regions. Table ‎4.3 also provides the unloading cost for each type of container in the hub. 

 

Table ‎4.2 Cargo quantities under different scenarios 

Scenario 𝑠1 𝑠2 𝑠3 

Region A B A B A B 

Destination α β α β α β α β α β α β 

Cargo 
type 

Large 2 2 2 3 2 1 1 1 1 1 1 1 

Medium 3 3 2 2 2 3 2 2 2 2 1 1 

Small 3 2 2 2 2 2 1 2 2 1 1 2 

 

Table ‎4.3 The unit penalty cost and unloading cost ($) 

Container 
type 

Unit penalty cost for returning 
unused containers 

Unit penalty cost for renting 
additional containers 

Unloading 
cost 

1 100000 200000 16000 

2 70000 150000 10000 

3 60000 120000 8000 
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4 50000 100000 7000 

5 40000 80000 5000 

6 35000 70000 4000 

7 30000 60000 2000 

 

Results and further tests 

We use the mathematical programming software AIMMS 3.14 (with CPLEX 12.6 Solver) to solve 

the model. The model contains 3722 constraints and 2982 variables including 1960 integer 

variables. Due to different probabilities of scenarios, we provide three tests, called good, fair and 

bad economy environments (Test I, II and III).  In a good economy environment, the probabilities 

of high, medium and low demand scenarios are 80%, 10% and 10%. And for fair and bad economy 

environments, the probabilities will change to 10%, 80%, 10%, and 10%, 10%, 80% respectively. 

Table ‎4.4 shows the container booking plan for the first stage decision, and Table ‎4.5 provides the 

second stage decision about renting and returning containers on the day of shipping. 

Table ‎4.4 Container booking plans 

Container type 1 2 3 4 5 6 7 

Test 

I 

Region 
A  1  1 1 1 1 

B   1 1 1 1  

Pre-used container   1 1 2 2  

Hub    1 1 1  

II 

Region 
A  1  1  1 1 

B    1 1 1  

Pre-used container    2 1 2  

Hub     1 1  

III 

Region 
A    1 1 1  

B    1 1 1  

Pre-used container    1 2 2  

Hub       1 

 

Table ‎4.5 Renting/returning containers on the day of shipping 

Container type 
Scenario 𝑠1 Scenario 𝑠2 Scenario 𝑠3 

2 3 4 5 7 3 4 2 3 4 5 6 

Te
st

 

I R
en

t Region 
A             

B             

Hub             

R
e

tu
r

n
 

Region A        1     
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B       1   1   

Hub       1   1 1 1 

II
 

R
en

t Region 
A    1         

B  1           

Hub         1 1   

R
et

u
rn

 

Region 
A             

B             

Hub           1  

II
I 

R
en

t Region 
A 1    1 1       

B  1           

Hub  1 1 1   1      

R
et

u
rn

 

Region 
A             

B             

Hub             
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From Table ‎4.4 we can see that Containers 4, 5 and 6 are the preferred choice by this model. The 

reason is that the costs per volume for these three containers are cheaper than the others. For 

example, the fixed costs per volume (using the fixed cost to divide the volume limit) for each 

container are $24.91, $16.81, $17.01, $15.23, $13.17, $14.78, $14.78. We can see the fixed costs 

per volume for Container 7 is also very cheap, $14.78. The fact is that the volume limit for 

container 7 is 1400 dm3 and the volumes for large, medium and small cargo are 1500, 1200 and 

1000 dm3 respectively, which means no matter how the cargoes are loaded, it will waste at least 

200 dm3 of space. When we delete 200 dm3 from the volume limit for Container 7, the fixed cost 

per volume will increase to $17.25. That is the reason Container 7 is not preferred to Containers 4, 

5 and 6. In the good economy environment, because the high demand scenario is very likely to be 

realized (with 80% probability), the booking plan will prefer to book enough containers to satisfy 

this scenario. That is the reason there is no renting plan in Test I in Table ‎4.5. Similarly there is no 

returning plan in Test III. 

Now we choose the result of Test I to see how the air cargoes are loaded into the containers. 

Table ‎4.6 lists the cargoes loading plan in the regions under different scenarios. L, M and S denote 

the large cargo, medium cargo and small cargo needed to be transported to destination α; l, m 

and s represent the large, medium and small cargo need to be transported to destination β. 

Table ‎4.7 shows the cargoes loading plan in the hub under different scenarios. We can see that in 

the Region A plan, when medium demand scenario 𝑠2 occurred, the solution suggests loading one 

large, two medium and one small cargoes into Container 2 and one small cargo into Container 7.  

When we calculate the volume and weight in Container 2, we find that there is still enough space 

to load one more small cargo. The reason we load the small cargo into Container 7 not Container 

2 is that the penalty cost for returning Container 7 is relatively expensive. 

 

Table ‎4.6 Cargoes loading plan in each region under different scenarios 

Container type 
Scenario 𝑠1 Scenario 𝑠2 Scenario 𝑠3 

Region A Region B Region A Region B Region A Region B 

1       

2 1L 2l 1s  1l 2M 1s    

3  2l 2S 
 

1m 1S 2s  1l 1M 1s 

4 2M 2m 2M 2m 3m 
 

2M 1m 
 

5 1L 1m 1s 1L 2s 2S 2M 1m 1m 2S 1m 1s 

6 3S 1L 1l 2L 1L 1l 1L 1l 1L 1S 

7 1M  1s  1s  
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Table ‎4.7 Cargoes loading plan in the hub under different scenarios 

Container type Scenario 𝑠1 Scenario 𝑠2 Scenario 𝑠3 

α β α β α β 

3 
(From region B) 

2L 2S   2l 1m  2l 1s 

4 
From region A 4M  1L 2M  3M 

 
From hub  4m  

 
 

 

5 

From region A 1L 2S 
 

2M  
 

2m 

From region B  1l 1m 1s 
 

2m 
 

1m 2s 

From hub 1L 1M 1S   2m 1s   

6 

From region A 
 

2l 3S  2L  

From region B 
 

3s  3s 3S  

From hub 
 

2l 2L 
 

 
 

 

Similarly with Section 3.2.4.3, we calculate VSS values to compare the two-stage stochastic model 

and deterministic model. Another evaluation index for the uncertainty in the stochastic model is 

to calculate the difference between ESS and the expected value of the corresponding wait-and-

see (EWS). EWS means to find the optimal solution for each scenario after the uncertainties are 

realized. There are no penalty costs for return or rental containers because all the decisions are 

made after the realization of uncertainties. The difference between ESS and EWS is named the 

expected objective value of the expected value solution, denoted as EVPI. EVPI means how many 

benefits could be achieved if accurate information of air cargo quantity can be obtained before 

making decisions.  

 

Table ‎4.8 Comparing the expected value model and stochastic model ($) 

Test ESS EV EEV EWS 
VSS(EEV-

ESS) 
EVPI(ESS-

EWS) 

I 1206444 1244798 1209838 1154860 3394 52584 

II 979056 910030 987987 920522 8931 58534 

III 866217 680187 875846 759632 9629 106585 

Average 
probability 

1109205 959611 1161510 948003 52305 161202 

 

VSS and EVPI values are listed in Table ‎4.8. It shows that the stochastic model will save more than 

the deterministic model because the values of EEV for all tests are positive. We can find that VSS 

is quite small in Test I-III, less than 0.12% of ESS. The reason is the probability. For example, in 

Test I, the probability of high demand is 80%. When we calculate the expected quantity of air 

cargo and find the nearest integer, the value will become the same as the high demand scenario 
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and the EV solution will become the optimal solution for a high demand scenario. Similarly, EV 

solutions for Test II and Test III are the optimal solutions for medium and low demand scenario 

respectively. Therefore, we provide one more test to see the VSS value, named “average 

probability”, which means the probabilities of high, medium and low demand scenarios are 34%, 

33%, and 33% respectively (the last row of Table ‎4.8). We can see the VSS value is $52305, 

occupying nearly 5% of ESS. Compared with VSS, another evaluation index EVPI has more 

significant influence. Even the lowest value $52584 is already greater than the highest value of 

VSS. And the highest value of EVPI reaches $161202, occupying 14.53% of the total cost, which 

means the forwarders have to pay a lot of money to get the exact quantities of air cargoes before 

booking.       

Table ‎4.9 lists the related costs and computing time for Test I-III. Due to too many integer 

variables and constraints, it takes a while to get solutions, especially in Test I. Test I-III have the 

same initial values, except the probabilities of scenarios. However, the first stage booking plan, 

second stage renting or returning plan, air cargo loading plan and the related costs are different. 

The total cost in Test I is 39.28% greater than in Test III. In order to examine the influence of 

probability on the solutions, we provide 10 more tests with different probability, with other data 

remaining the same. Figure ‎4.2 shows the total cost for each test. We can see that the total cost is 

highly dependent on the probability. Therefore, the forecasting probability should be carefully 

considered in the decision-making process. 

 

Table ‎4.9 Related cost ($) and computing time 

Test I II III 

Fixed cost in regions 525614 430550 368979 

Fixed cost in hub 145238 106353 74820 

Fixed cost using  
pre-used container 

332606 276037 251660 

Variable cost in regions 56921 36703 24694 

Variable cost in hub 21087 12950 4673 

Variable cost using pre-
used container 

40877 30163 21592 

Penalty cost for urgent 
return in regions 

17000 0 0 

Penalty cost for urgent 
return in hub 

17500 4000 0 

Penalty cost for urgent 
rental in regions 

0 20000 45000 

Penalty cost for urgent 
rental in hub 

0 22000 40000 
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Repacking cost 49600 40300 34800 

Total cost 1206444 979056 866217 

Computing time 
(seconds) 

36621.38 3876.64 639.34 

 

 

Figure ‎4.2 The total costs for different tests 

Finally, we extend the practice problem to the three regions and three destinations case. 

Table ‎4.10 presents the cargo quantities under different scenarios for this case. Other initial data 

will remain the same. Table ‎4.11 lists the related costs and computing time in Test I-III. Similar to 

two regions and two destinations case, there are no penalty costs for urgent rental in Test I and 

no penalty costs for urgent return in Test III. The total costs still have large distance among 

different tests. Notice that the computing time is quite long, nearly one day, due to too many 

integer and binary variables. If the problem size becomes larger, the model will need much more 

time to return the solution even probably cannot be solved using AIMMS. 

 

Table ‎4.10 Cargo quantities under different scenarios (three regions and three destinations) 

Scenario 𝑠1 𝑠2 𝑠3 

Region A B C A B C A B C 

Destination α β γ α β γ α β γ α β γ α β γ α β γ α β γ α β γ α β γ 

Cargo 
type 

Large 2 2 3 2 3 3 2 3 2 2 1 2 1 1 2 2 3 2 1 1 2 1 1 1 2 2 2 

Medium 3 3 3 2 2 3 2 2 3 2 3 3 2 2 3 1 2 3 2 2 2 1 1 3 1 1 2 

Small 3 2 3 2 2 2 3 3 3 2 2 2 1 2 1 2 2 2 2 1 1 1 2 1 1 2 2 

900000

950000

1000000

1050000

1100000

1150000

1200000

30%,

20%,
50%

15%,

40%,
45%

35%,

35%,
30%

10%,

30%,
60%

50%,

25%,
25%

20%,

60%,
20%

10%,

70%,
20%

25%,

65%,
10%

75%,

15%,
10%

20%,

25%,
55%

Total cost for differenc tests ($) 

Total cost
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Table ‎4.11 Related cost ($) and computing time for three regions and three destinations case 

Test I II III 

Fixed cost in regions 1478952 1107595 944606 

Fixed cost in hub 237393 119228 108512 

Fixed cost using  
pre-used container 

1021164 905548 804945 

Variable cost in regions 96579 116123 84831 

Variable cost in hub 31586 14187 7263 

Variable cost using pre-
used container 

110606 100689 53003 

Penalty cost for urgent 
return in regions 

50000 6000 0 

Penalty cost for urgent 
return in hub 

26500 3500 0 

Penalty cost for urgent 
rental in regions 

0 72000 132000 

Penalty cost for urgent 
rental in hub 

0 43000 89000 

Repacking cost 141000 104800 89400 

Total cost 3193780 2592669 2313560 

Computing time 
(seconds) 

74643.45 72342.86 69862.21 

4.2.3 Three types of robust models  

Similar to Section 3.3, we also provide three types of robust models with model robustness, 

solution robustness and the trade-off between model robustness and solution robustness 

according to the two-stage stochastic model in Section 4.2.2.2.  

4.2.3.1 A robust optimisation model with model robustness 

Based on Section 3.3.1.1, the robust optimisation model with model robustness for air cargo 

forwarding problems will be built as: 

min∑(𝑀𝑟 +∑∑𝑝𝑠𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑𝑝𝑠𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑆

𝑠=1

𝑚

𝑖=1

𝑅

𝑟=1

+∑∑∑𝑝𝑠𝜔𝑗𝑒𝑗𝑠𝑟𝑑

𝑆

𝑠=1

𝑛

𝑗=1

𝐷

𝑑=1

)

+∑∑∑∑𝑏𝑖𝑡𝑥𝑖𝑙𝑠𝑟

𝑆

𝑠=1

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

𝑅

𝑟=1

+∑(𝑁𝑑
𝑐 +𝑁𝑑)

𝐷

𝑑=1

+∑∑𝑝𝑠𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑𝑝𝑠𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑∑𝑝𝑠𝜔𝑗
ℎ𝑒𝑗𝑠𝑑

ℎ

𝑆

𝑠=1

𝑛

𝑗=1

𝐷

𝑑=1

                                                          (4.32) 

subject to (4.6)-(4.9), (4.12)-(4.31) and  
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∑∑∑𝑦𝑖𝑙𝑗𝑠𝑟𝑑

𝐿𝑖𝑟

𝑙=1

𝐷

𝑑=1

𝑚

𝑖=1

= 𝑞𝑗𝑠𝑟 − 𝑒𝑗𝑠𝑟𝑑       𝑗 = 1,⋯ , 𝑛,    𝑟 = 1,⋯ , 𝑅,   𝑠 = 1,⋯ , 𝑆                             (4.33) 

∑∑𝑦𝑖𝑙𝑗𝑠𝑑
ℎ

𝐿𝑖
ℎ

𝑙=1

𝑚

𝑖=1

+∑∑𝑦𝑖𝑙𝑗𝑠𝑑
ℎ𝑐

𝐿𝑖

𝑙=1

𝑚

𝑖=1

= 𝑞𝑗𝑠𝑑
ℎ −∑𝑒𝑗𝑠𝑟𝑑 −

𝑅

𝑟=1

𝑒𝑗𝑠𝑑
ℎ       𝑗 = 1,⋯ , 𝑛,    𝑑 = 1,⋯ ,𝐷,   𝑠

= 1,⋯ , 𝑆                                                                                                                         (4.34) 

𝑒𝑗𝑠𝑟𝑑 , 𝑒𝑗𝑠𝑑
ℎ ∈ {0,1,2,⋯ , inf}    𝑗 = 1,⋯ , 𝑛,   𝑑 = 1,⋯ ,𝐷,   𝑟 = 1,⋯ , 𝑅,   𝑠 = 1,⋯ , 𝑆                 (4.35) 

Model robustness for air cargo forwarding problems means that the air cargoes can been 

transported next week by adding penalty cost 𝜔𝑗. Therefore, the infeasibility variable 𝑒𝑗𝑠𝑟𝑑 and 

𝑒𝑗𝑠𝑑
ℎ  are all positive. We do not need an absolute value sign here. 

4.2.3.2 A robust optimisation model with solution robustness 

Using the introduction in Section 3.3.1.2, we can list the robust optimisation model with solution 

robustness for the air cargo forwarding problem: 

min∑(𝑀𝑟 +∑∑𝑝𝑠𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑𝑝𝑠𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑆

𝑠=1

𝑚

𝑖=1

+ 𝜆𝑟
1∑𝑝𝑠(∑∑𝑐𝑖𝑟

0 𝑥𝑖𝑙𝑠𝑟

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

𝑆

𝑠=1

𝑅

𝑟=1

+∑∑∑𝛿𝑖𝑘𝑟𝑔𝑖𝑙𝑘𝑠𝑟

𝐾𝑖

𝑘=1

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

+∑𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑚

𝑖=1

+∑𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑚

𝑖=1

−𝑀𝑟 −∑∑𝑝𝑠𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑆

𝑠=1

𝑚

𝑖=1

−∑∑𝑝𝑠𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑆

𝑠=1

𝑚

𝑖=1

+ 2𝜃𝑟𝑠
1 )) +∑∑∑∑𝑏𝑖𝑡𝑥𝑖𝑙𝑠𝑟

𝑆

𝑠=1

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

𝑅

𝑟=1

+∑(𝑁𝑑
𝑐 +𝑁𝑑)

𝐷

𝑑=1

+∑∑𝑝𝑠𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑𝑝𝑠𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑆

𝑠=1

𝑚

𝑖=1

+ 𝜆ℎ
2∑𝑝𝑠(

𝑆

𝑠=1

∑(∑∑𝜃𝑐𝑖
ℎ0𝑥𝑖𝑙𝑠𝑑

ℎ𝑐

𝐿𝑖

𝑙=1

𝑚

𝑖=1

+∑∑∑𝛿𝑖𝑘
ℎ 𝑔𝑖𝑙𝑘𝑠𝑑

ℎ𝑐

𝐾𝑖

𝑘=1

𝐿𝑖

𝑙=1

𝑚

𝑖=1

)

𝐷

𝑑=1

+∑(∑∑𝑐𝑖
ℎ0𝑥𝑖𝑙𝑠𝑑

ℎ

𝐿𝑖
ℎ

𝑙=1

𝑚

𝑖=1

+∑∑∑𝛿𝑖𝑘
ℎ 𝑔𝑖𝑙𝑘𝑠𝑑

ℎ

𝐾𝑖

𝑘=1

𝐿𝑖
ℎ

𝑙=1

𝑚

𝑖=1

)+∑𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑚

𝑖=1

+∑𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑚

𝑖=1

𝐷

𝑑=1

−∑(𝑁𝑑
𝑐 +𝑁𝑑)

𝐷

𝑑=1

−∑∑𝑝𝑠𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑆

𝑠=1

𝑚

𝑖=1

−∑∑𝑝𝑠𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑆

𝑠=1

𝑚

𝑖=1

+ 2𝜃𝑠
h2)                (4.36) 

subject to (4.6)-(4.31) and 

−𝜃𝑟𝑠
1 −∑∑𝑐𝑖𝑟

0 𝑥𝑖𝑙𝑠𝑟

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

−∑∑∑𝛿𝑖𝑘𝑟𝑔𝑖𝑙𝑘𝑠𝑟

𝐾𝑖

𝑘=1

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

−∑𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑚

𝑖=1

−∑𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑚

𝑖=1

+𝑀𝑟 +∑∑𝑝𝑠𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑆

𝑠=1

𝑚

𝑖=1

 

+∑∑𝑝𝑠𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑆

𝑠=1

𝑚

𝑖=1

≤ 0, 𝑟 = 1,⋯ , 𝑅;    𝑠 = 1,⋯ , 𝑆                                      (4.37) 
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−𝜃𝑠
ℎ2 −∑(∑∑𝜃𝑐𝑖

ℎ0𝑥𝑖𝑙𝑠𝑑
ℎ𝑐

𝐿𝑖

𝑙=1

𝑚

𝑖=1

+∑∑∑𝛿𝑖𝑘
ℎ 𝑔𝑖𝑙𝑘𝑠𝑑

ℎ𝑐

𝐾𝑖

𝑘=1

𝐿𝑖

𝑙=1

𝑚

𝑖=1

)−

𝐷

𝑑=1

∑(∑∑𝑐𝑖
ℎ0𝑥𝑖𝑙𝑠𝑑

ℎ

𝐿𝑖
ℎ

𝑙=1

𝑚

𝑖=1

𝐷

𝑑=1

+∑∑∑𝛿𝑖𝑘
ℎ 𝑔𝑖𝑙𝑘𝑠𝑑

ℎ

𝐾𝑖

𝑘=1

𝐿𝑖𝑡
ℎ

𝑙=1

𝑚

𝑖=1

) −∑𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑚

𝑖=1

−∑𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑚

𝑖=1

+∑(𝑁𝑑
𝑐 +𝑁𝑑)

𝐷

𝑑=1

+∑∑𝑝𝑠𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑𝑝𝑠𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑆

𝑠=1

𝑚

𝑖=1

≤ 0,   𝑠 = 1,⋯ , 𝑆                               (4.38) 

𝜃𝑟𝑠
1 , 𝜃𝑠

ℎ2 ≥ 0,   𝑟 = 1,⋯ , 𝑅;    𝑠 = 1,⋯ , 𝑆                                           (4.39) 

4.2.3.3 A robust optimisation model with the trade-off between model robustness and 

solution robustness 

Based on Section 3.3.1.3, we consider the variability and infeasibility together. A robust 

optimisation model with the trade-off between model robustness and solution robustness is 

developed to solve the air cargo forwarding problem with uncertainty. The objective function is 

combined with (4.32) and (4.36). 
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min∑(𝑀𝑟 +∑∑𝑝𝑠𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑𝑝𝑠𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑆

𝑠=1

𝑚

𝑖=1

+ 𝜆𝑟
1∑𝑝𝑠(∑∑𝑐𝑖𝑟

0 𝑥𝑖𝑙𝑠𝑟

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

𝑆

𝑠=1

𝑅

𝑟=1

+∑∑∑𝛿𝑖𝑘𝑟𝑔𝑖𝑙𝑘𝑠𝑟

𝐾𝑖

𝑘=1

𝐿𝑖𝑟

𝑙=1

𝑚

𝑖=1

+∑𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑚

𝑖=1

+∑𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑚

𝑖=1

−𝑀𝑟 −∑∑𝑝𝑠𝑐𝑖𝑟
−𝑜𝑖𝑠𝑟

−

𝑆

𝑠=1

𝑚

𝑖=1

−∑∑𝑝𝑠𝑐𝑖𝑟
+𝑜𝑖𝑠𝑟

+

𝑆

𝑠=1

𝑚

𝑖=1

+ 2𝜃𝑟𝑠
1 ) +∑∑∑𝑝𝑠𝜔𝑗𝑒𝑗𝑠𝑟𝑑

𝑆

𝑠=1

𝑛

𝑗=1

𝐷

𝑑=1

)+∑∑∑∑𝑏𝑖𝑡𝑥𝑖𝑙𝑠𝑟

𝑆

𝑠=1

𝐿𝑖𝑟𝑡

𝑙=1

𝑚

𝑖=1

𝑅

𝑟=1

+∑(𝑁𝑑
𝑐 +𝑁𝑑)

𝐷

𝑑=1

+∑∑𝑝𝑠𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑆

𝑠=1

𝑚

𝑖=1

+∑∑𝑝𝑠𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑆

𝑠=1

𝑚

𝑖=1

+ 𝜆ℎ
2∑𝑝𝑠(

𝑆

𝑠=1

∑(∑∑𝜃𝑐𝑖
ℎ0𝑥𝑖𝑙𝑠𝑑

ℎ𝑐

𝐿𝑖

𝑙=1

𝑚

𝑖=1

+∑∑∑𝛿𝑖𝑘
ℎ 𝑔𝑖𝑙𝑘𝑠𝑑

ℎ𝑐

𝐾𝑖

𝑘=1

𝐿𝑖

𝑙=1

𝑚

𝑖=1

)

𝐷

𝑑=1

+∑(∑∑𝑐𝑖
ℎ0𝑥𝑖𝑙𝑠𝑑

ℎ

𝐿𝑖
ℎ

𝑙=1

𝑚

𝑖=1

+∑∑∑𝛿𝑖𝑘
ℎ 𝑔𝑖𝑙𝑘𝑠𝑑

ℎ

𝐾𝑖

𝑘=1

𝐿𝑖
ℎ

𝑙=1

𝑚

𝑖=1

)+∑𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑚

𝑖=1

+∑𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑚

𝑖=1

𝐷

𝑑=1

−∑(𝑁𝑑
𝑐 +𝑁𝑑)

𝐷

𝑑=1

−∑∑𝑝𝑠𝑐𝑖
ℎ−𝑜𝑖𝑠

ℎ−

𝑆

𝑠=1

𝑚

𝑖=1

−∑∑𝑝𝑠𝑐𝑖
ℎ+𝑜𝑖𝑠

ℎ+

𝑆

𝑠=1

𝑚

𝑖=1

+ 2𝜃𝑠
ℎ2)  

+∑∑∑𝑝𝑠𝜔𝑗
ℎ𝑒𝑗𝑠𝑑

ℎ

𝑆

𝑠=1

𝑛

𝑗=1

𝐷

𝑑=1

                                                                                                (4.40) 

subject to (4.6)-(4.9), (4.12)-(4.31), (4.33)-(4.35) and (4.37)-(4.39). 

4.2.3.4 Computational results  

A practical problem result 

Here we will use the same initial data from the two-stage stochastic model case in Section 4.2.2.3 

to get the solutions. We will take the two-stage robust model with the trade-off between model 

robustness and solution robustness (𝜆𝑟
1, 𝜆ℎ

2 = 0.1 for 𝑟 = 1,⋯ , 𝑅 and 𝜔1 = 𝜔1
ℎ = 32000,  

𝜔2 = 𝜔2
ℎ = 28000, 𝜔3 = 𝜔3

ℎ = 24000) as an example for the good economy environment  to 

see the results. 𝜔1, 𝜔1
ℎ, 𝜔2, 𝜔2

ℎ , 𝜔3, 𝜔3
ℎ are the penalty costs per unit for large, medium and small 

cargo in the regions and hub. Table ‎4.12 presents the booking plan for this model. Container 4, 5, 

6 and 7 are booked in both in regions A and B because these containers are more economical 

than other types of container. One Container 4 and two Container 7 will be returned to regions 

when they arrive in the hub. There are no urgent returns or rentals occurring, due to the 
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reduction of the variability cost. Table ‎4.13 gives the details of unshipped cargoes which means 

they will be considered in the following week. 

 

Table ‎4.12 Container booking plan for good economy environment   

Container type 1 2 3 4 5 6 7 

Region 
A    1 1 1 1 

B    1 1 1 1 

Pre-used container    1 2 2  

Hub     1 1  

 

Table ‎4.13 Unshipped cargoes 

Cargo 
Scenario 𝑠1 Scenario 𝑠2 Scenario 𝑠3 

Large Medium Small Large Medium Small Large Medium Small 

Region 
A 2 1    2    

B 2  1       

Hub          

 

Table ‎4.14 lists the computational results of the robust models using different penalty costs for 

unshipped cargoes and the multi-stage stochastic model. The total cost under the stochastic 

model is $1206444 and the total cost under the robust model with 𝜆𝑟
1, 𝜆ℎ

2 =0.1 and 𝜔 =

𝜔ℎ =28000, 24000, 2000 is $1149952. Using the robust optimisation model, the total cost 

decreases by 4.68%, and the expected variability of the robust model decreases 84%, which 

means the robust model presents a less sensitive air cargoes transportation strategy. However, 

the robust model involves the huge infeasibility cost of $382400 for unshipped cargoes. If we 

increase the penalty to 34000, 30000 and 26000, no random constraint is violated. Compare this 

with the stochastic model, in which the expected variability decreases 2.51%, and the total cost of 

the robust model only increases by 0.55%. It means that the robust model is trying to find the 

balance between variability and infeasibility. 

 

Table ‎4.14 Comparing the robust model and the stochastic model for good economy environment   

 
Stochastic 

model 

Robust model 

(𝜆𝑟
1, 𝜆ℎ

2 = 0.1, 

𝜔1 = 𝜔1
ℎ =

28000,  

Robust model 

(𝜆𝑟
1, 𝜆ℎ

2 = 0.1, 

𝜔1 = 𝜔1
ℎ =

30000,  

Robust model 

(𝜆𝑟
1, 𝜆ℎ

2 = 0.1, 

𝜔1 = 𝜔1
ℎ =

32000,  

Robust model 

(𝜆𝑟
1, 𝜆ℎ

2 = 0.1, 

𝜔1 = 𝜔1
ℎ =

34000,  



Chapter 4: International Air Cargo Forwarding Problem 

83 

𝜔2 = 𝜔2
ℎ =

24000, 

𝜔3 = 𝜔3
ℎ =

20000) 

𝜔2 = 𝜔2
ℎ =

26000, 

𝜔3 = 𝜔3
ℎ =

22000) 

𝜔2 = 𝜔2
ℎ =

28000, 

𝜔3 = 𝜔3
ℎ =

24000) 

𝜔2 = 𝜔2
ℎ =

30000, 

𝜔3 = 𝜔3
ℎ =

26000) 

Expected 
cost 

1206444 766475 851396 851396 1206537 

Expected 
variability 

67317 10768 20233 20233 65624 

Expected 
infeasibility 

cost 
0 382400 325600 348800 0 

Total cost 1206444 1149952 1179019 1202219 1213099 

 

Computational results for robust model with solution robustness 

 

Table ‎4.15 gives the computational results of the robust optimisation with solution robustness for 

the three tests, in which 𝜆 is assigned different values. 

 

Table ‎4.15 Computational results for robust optimisation model with solution robustness 

Test 𝜆𝑟
1, 𝜆ℎ

2  
Expected cost 

in regions 
Expected 

cost in hub 
Variability in 

regions 
Variability in 

hub 
Expected 

variability cost 
Total 
cost 

I 

0 599535 606909 32126 35191 0 1206444 

0.1 599856 606681 31612 34012 6562 1213099 

0.5 603060 606777 26485 29451 27969 1237806 

0.9 617517 625185 3361 1 3025 1245727 

II 

0 487253 491803 66474 73735 0 979056 

0.1 487253 491803 66474 73735 14020 993076 

0.5 487253 495775 66474 64564 65518 1048546 

0.9 508945 508060 42134 44169 77672 1094677 

III 

0 438673 427544 131152 127289 0 866217 

0.1 438673 427544 131152 127289 25844 892061 

0.5 466029 450145 68549 78649 73599 989773 

0.9 472314 451103 57355 77178 121080 1044497 
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When 𝜆 = 0, the robust optimisation model becomes a two-stage stochastic model in which the 

variability is not considered. In Table ‎4.15, for each test the expected variability for the stochastic 

model is greater than or equal to that of the robust optimisation model. This means that the 

stochastic model is riskier than the robust optimisation model with solution robustness. The total 

cost of the robust optimisation model is greater than that of the two-stage stochastic model. 

Compared with the recourse model, the total cost of robust model (𝜆 = 0.9) increases by 3.26% in 

Test I, 11.81% in Test II and 20.58% in Test III. However, the variability decreases by 95.01% in 

Test I, 38.47% in Test II and 47.94% in Test III. The variabilities in Test II and III are more than twice 

the value of variability in Test I. That means that it is more important to use the robust model 

with solution robustness in Tests II and III than in Test I, as the risk is higher. 

Computational results for robust model with model robustness 

Table ‎4.16, Table ‎4.17 and Table ‎4.18 show the computational results of the robust optimisation 

with model robustness for the three tests. In the tests, “L”, “M” and “S” means large, medium and 

small cargo respectively. When the penalty index 𝜔 = 0, there is no penalty for unshipped 

cargoes which means all the cargoes will be considered in the next week. When 𝜔 increases, the 

trend of expected infeasibility decreases, and the total cost increases. When 𝜔 increases by a 

large amount, the expected infeasibility becomes zero, which means that all the cargoes should 

be loaded without delay. The robust optimisation model then becomes the stochastic model (see 

the final column in each table). 

Table ‎4.16 Computational results of robust optimisation model with model robustness for Test I 

𝜔1 = 𝜔1
ℎ 

𝜔2 = 𝜔2
ℎ 

𝜔3 = 𝜔3
ℎ 

24000 

20000 

16000 

26000 

22000 

18000 

28000 

24000 

20000 

30000 

26000 

22000 

32000 

28000 

24000 

34000 

30000 

26000 

Expected cost in regions 0 216718 378606 423029 496214 599535 

Expected cost in hub 0 225191 387870 428366 501181 606909 

Unshipped cargoes 
in region A 

sc
en

ar
io

 𝑠1 4L 6M 5S 4L 3M 2S 4L 1M 3L 1M 3L 1S 0 

𝑠2 3L 5M 4S 3L 2M 1S 2L 2S 2S 0 

𝑠3 2L 4M 3S 1M 3S 0 0 0 0 

Unshipped cargoes 
in region B 

sc
en

ar
io

 𝑠1 5L 4M 4S 5L 1M 1S 2L 2S 2L 1S 0 0 

𝑠2 2L 4M 3S 2L 1M 0 0 0 0 

𝑠3 2L 2M 3S 2S 0 0 0 0 

Unshipped cargoes 
in hub 

sc
en

ar
io

 𝑠1 0 0 0 0 0 0 

𝑠2 0 0 0 0 0 0 

𝑠3 0 0 0 0 0 0 



Chapter 4: International Air Cargo Forwarding Problem 

85 

infeasibility cost ($) 1040800 666800 382400 325600 201600 0 

Total cost ($) 1040800 1108709 1148876 1176995 1198995 1206444 

 

 

Table ‎4.17 Computational results of robust optimisation model with model robustness for Test II 

𝜔1 = 𝜔1
ℎ 

𝜔2 = 𝜔2
ℎ 

𝜔3 = 𝜔3
ℎ 

24000 

20000 

16000 

26000 

22000 

18000 

30000 

26000 

22000 

34000 

30000 

26000 

38000 

34000 

30000 

58000 

54000 

50000 

62000 

58000 

54000 

74000 

70000 

66000 

76000 

72000 

68000 

Expected cost in 
regions 

0 216718 380006 380006 452278 452278 475178 475178 487253 

Expected cost in 
hub 

0 225191 387870 387870 449512 449512 468410 468410 491803 

U
n

sh
ip

p
ed

 c
ar

go
es

 
in

 r
e

gi
o

n
 A

 

sc
e

n
ar

io
 

𝑠1 
4L 6M 

5S 
4L 3M 

2S 
4L 1M 4L 1M 2L 2L 1L 1S 1L 1S 0 

𝑠2 
3L 5M 

4S 
3L 2M 

1S 
2L 2L 0 0 0 0 0 

𝑠3 
2L 4M 

3S 
1M 3S 0 0 0 0 0 0 0 

U
n

sh
ip

p
ed

 c
ar

go
es

 
in

 r
e

gi
o

n
 B

 

sc
e

n
ar

io
 

𝑠1 
5L 4M 

4S 
5L 1M 

1S 
2L 2S 2L 2S 3L 1S 3L 1S 0 0 0 

𝑠2 
2L 4M 

3S 
2L 1M 0 0 0 0 0 0 0 

𝑠3 
2L 2M 

3S 
2S 0 0 0 0 0 0 0 

U
n

sh
ip

p
ed

 
ca

rg
o

es
 in

 
h

u
b

 

sc
en

ar
io

 𝑠1 0 0 0 0 0 0 1L 1L 0 

𝑠2 0 0 0 0 0 0 0 0 0 

𝑠3 0 0 0 0 0 0 0 0 0 

infeasibility cost ($) 833600 440000 146000 166000 44000 68000 29400 35400 0 

Total cost ($) 833600 881909 913876 933876 945790 969790 972988 978988 979056 

Table ‎4.18 Computational results of robust optimisation model with model robustness for Test III 

𝜔1 = 𝜔1
ℎ 

𝜔2 = 𝜔2
ℎ 

𝜔3 = 𝜔3
ℎ 

22000 

18000 

14000 

26000 

22000 

18000 

30000 

26000 

22000 

34000 

30000 

26000 

46000 

42000 

38000 

50000 

46000 

42000 

62000 

58000 

54000 

70000 

66000 

62000 

78000 

74000 

70000 

Expected cost in 
regions 

0 214688 316834 335960 335960 347238 384544 419349 438672 

Expected cost in 
hub 

0 223161 320437 344027 344027 351805 371514 408560 427545 

U n s h i p p e d
 c a r g o e s i n
 r e g i o n
 

A
 

sc
e

n
ar

i
o

 

𝑠1 4L 6M 4L 3M 3L 1M 4L 1M 4L 1M 3L 1M 4L 1S 0 0 
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5S 2S 1S 1S 

𝑠2 
3L 5M 

4S 
3L 2M 

1S 
2L 2L 2L 2L 2L 2L 0 

𝑠3 
2L 4M 

3S 
1M 3S 0 0 0 0 0 0 0 

U
n

sh
ip

p
ed

 c
ar

go
es

 
in

 r
e
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infeasibility cost ($) 622800 297200 126400 98000 134000 126000 97200 34600 0 

Total cost ($) 622800 735049 763671 777987 813987 825043 853258 862509 866217 

 

Computational results for robust optimisation model with the trade-off between solution 

robustness and model robustness 

Parameters 𝜆 and 𝜔 are used to measure the trade-off between solution robustness and model 

robustness. When 𝜔 = 0, there is no penalty for the infeasibility of random constraints in the 

objective function. The infeasibility representing un-fulfilment is a higher value. Clearly, decision 

makers would not like this kind of production loading plan. However, a large weight of 𝜔 means 

the penalty function dominates the total objective function value and would result in a higher 

variability and a higher total cost. Therefore, there is always a trade-off between the risk and the 

cost. Figure ‎4.3, Figure ‎4.4 and Figure ‎4.5 show the computational results for Test I in terms of the 

variability, infeasibility, and total cost, when 𝜆 keeps constant. 

Figure ‎4.3 gives the trend of the variability when 𝜔 increases for 𝜆 =0.1, 0.5, and 0.9, 

respectively. For 𝜆 =0.1 and 0.5, when 𝜔 increases, the variabilities sharply increase from 1044 to 

65624 and from 1044 to 34494. When 𝜆 = 0.9, the value of 𝜔 has a small impact on the 

variability. The reason for this is that when 𝜆 is given a large value, the variability cost dominates 

the objective function value, and the infeasibility cost measured by 𝜔 has less impact on the total 

cost. Figure ‎4.4 gives the trend of the infeasibility when 𝜔 increases for 𝜆 =0.1, 0.5, and 0.9, 

respectively. Clearly, the value of 𝜔 has a big influence on the system’s infeasibility. In Figure ‎4.5, 
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when 𝜔 increases, the total cost increases accordingly. The value of 𝜔 has more impact on the 

system when the value of 𝜆 is small. 

 

Figure ‎4.3 Variability when 𝜆 keeps constant 

 

Figure ‎4.4 Infeasibility when 𝜆 keeps constant 
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Figure ‎4.5 Total cost when 𝜆 keeps constant 

Figure ‎4.6, Figure ‎4.7 and Figure ‎4.8 show the computational results of Test I in terms of the 

variability, infeasibility, and total cost, when 𝜔 keeps constant.  

Figure ‎4.6 shows the trend in the variability when 𝜆 increases for different infeasibility penalty 𝜔 

values. When 𝜔 =26000, 22000 and 18000, the variability is the same and very small for different 

𝜆. The reason for this is that the decision plan for each scenario is nearly the same. The different 

cargo quantities among the scenarios will be considered in the next week due to the relatively 

cheap penalty 𝜔 values. When 𝜆 increases from 0.1 to 0.9, for 𝜔 =28000, 24000 and 20000, the 

variability decreases by 93.40%; for 𝜔 =30000, 26000 and 22000, the variability decreases by 

89.90%; for 𝜔 =32000, 28000 and 24000, the variability decreases by 95.79%; and for 𝜔 =34000, 

30000 and 26000, the variability decreases by 99.80%. The value of 𝜆 has a great impact on the 

variability. 

Figure ‎4.7 shows the trend of the infeasibility when 𝜆 increases for different infeasibility penalty 

𝜔 values. When 𝜔 =26000, 22000 and 18000, the infeasibility costs are the same for different 𝜆 

which means the variability cost measured by 𝜆 has no impact on the infeasibility owing to the 

huge infeasibility cost. When 𝜆 increases from 0.1 to 0.9, for 𝜔 =28000, 24000 and 20000, the 

infeasibility cost increases by 27.41%; for 𝜔 =30000, 26000 and 22000, the infeasibility cost 

increases by 26.54%; for 𝜔 =32000, 28000 and 24000, the infeasibility cost increases by 1.83%; 

and for 𝜔 =34000, 30000 and 26000, the infeasibility cost increases very dramatically, from $0 to 

$313600. The value of 𝜆 has a great impact on the infeasibility cost in the last test. 

Figure ‎4.8 shows the trend of the total cost when 𝜆 increases for different infeasibility penalty 𝜔 

values. If 𝜆 increases from 0.1 to 0.9, for 𝜔 =26000, 22000 and 18000, the total cost increases by 
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0.08%, for 𝜔 =28000, 24000 and 20000, the total cost increases by 0.23%; for 𝜔 =30000, 26000 

and 22000, the total cost increases by 0.54%, for 𝜔 =32000, 28000 and 24000, the total cost 

increases by 0.85%; and for 𝜔 =34000, 30000 and 26000, the total costs increases by 1.75%. 

Compared with the changes in variability and infeasibility in Figure ‎4.6 and Figure ‎4.7, the total 

cost only increases by a small amount when 𝜆 increases. 

 

Figure ‎4.6 Variability when 𝜔 keeps constant 

 

 

Figure ‎4.7 Infeasibility when 𝜔 keeps constant 
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Figure ‎4.8 Total cost when 𝜔 keeps constant 

The problem assumes there is one day’s flights per week; the decisions should be made one week 

earlier and unshipped cargo is not allowed. In the next section, we introduce multi-stage model 
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4.3.1 Multi-stage stochastic model 

4.3.1.1 Notation 

Indices 

𝑖  types of containers (𝑖 = 1, 2,⋯ ,𝑚); 

𝑗  types of cargoes (𝑗 = 1, 2,⋯ , 𝑛); 

𝑟  regions (𝑟 = 1, 2,⋯ , 𝑅); 

𝑑  destinations (𝑑 = 1, 2,⋯ , 𝐷); 

𝑡  periods (𝑡 = 1, 2,⋯ , 𝑇); 

(𝑠1𝑠2⋯𝑠𝑡) scenarios in period 𝑡 (with outcomes 𝑠1, 𝑠2,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆); 

𝑘  numbers of breaking-points for type i container (𝑘 = 1, 2,⋯ ,𝐾𝑖); 

𝑙  numbers of type 𝑖 container (𝑙 = 1, 2,⋯ , 𝐿𝑖). 

Deterministic parameters 

𝑣𝑗 volume of a type 𝑗 cargo; 

𝑤𝑗 weight of a type 𝑗 cargo; 

𝑉𝑖 volume limit of type 𝑖 container; 

𝑊𝑖 weight limit of type 𝑖 container; 

𝑎𝑖𝑘𝑟 weight of type 𝑖 container in breaking-points 𝑘 in region 𝑟; 

𝛿𝑖𝑘𝑟  the unit charge rate of type 𝑖 container in the range (𝑎𝑖(𝑘−1)𝑟, 𝑎𝑖𝑘𝑟] in region 𝑟; 

𝑐𝑖𝑟𝑡
0  fixed cost by renting a type 𝑖 container in region 𝑟 in period 𝑡; 

𝐿𝑖𝑟𝑡 type 𝑖 container available quantity in region 𝑟 in period 𝑡; 

𝐿𝑖𝑡 type 𝑖 container available quantity in all regions in period 𝑡, which means 𝐿𝑖𝑡 = ∑ 𝐿𝑖𝑟𝑡
𝑅
𝑟=1 ; 

𝑐𝑖𝑟𝑡
− /𝑐𝑖𝑟𝑡

+  the unit penalty cost of requiring/returning type 𝑖 containers on the day of shipping in 

region 𝑟 in period 𝑡; 

𝑏𝑗𝑟𝑡
+  the storage cost of a type 𝑗 cargo in region 𝑟 in period 𝑡; 
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𝐴𝑟 volume limit of storage room in region 𝑟; 

𝐵𝑟  weight limit of storage room in region 𝑟; 

𝑝(𝑠1𝑠2⋯𝑠𝑡)  probability of scenario (𝑠1𝑠2⋯𝑠𝑡) ; 

𝑎𝑖𝑘
ℎ  weight of type 𝑖 container in breaking-points 𝑘 in region 𝑟; 

𝛿𝑖𝑘
ℎ  the unit charge rate of type 𝑖 container in the range (𝑎𝑖(𝑘−1)

ℎ , 𝑎𝑖𝑘
ℎ ] in the hub; 

𝑐𝑖𝑡
ℎ0 fixed cost by renting a type 𝑖 container in the hub in period 𝑡; 

𝐿𝑖𝑡
ℎ   type 𝑖 container available quantity in the hub in period 𝑡; 

𝑐𝑖𝑡
ℎ−/𝑐𝑖𝑡

ℎ+ the unit penalty cost of requiring/returning type 𝑖 containers on the day of shipping in 

the hub in period 𝑡; 

𝑏𝑖𝑡 the unit repacking cost of type 𝑖 container in the hub in period 𝑡 (included unloading, moving 

the cargoes to another container); 

𝜇 the discount rate of fixed cost by using pre-used containers;  

𝑏𝑗𝑡
ℎ+ the storage cost of a type 𝑗 cargo in the hub in period 𝑡; 

𝐴ℎ  volume limit of storage room in the hub; 

𝐵ℎ   weight limit of storage room in the hub. 

Random parameters 

𝑞𝑗𝑟(𝑠1𝑠2⋯𝑠𝑡) quantity of type 𝑗 cargo in scenario (𝑠1𝑠2⋯𝑠𝑡) in region 𝑟; 

𝑞𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ  quantity of type 𝑗 cargo with destination 𝑑 in scenario (𝑠1𝑠2⋯𝑠𝑡) in the hub. 

Decision variables 

𝑜𝑖𝑟𝑡  number of type 𝑖 container for booking in region 𝑟 in period 𝑡; 

𝑜𝑖𝑟(𝑠1𝑠2⋯𝑠𝑡)
− /𝑜𝑖𝑟(𝑠1𝑠2⋯𝑠𝑡)

+  number of type 𝑖 container required/returned in scenario (𝑠1𝑠2⋯𝑠𝑡) on 

the day of shipping in region 𝑟; 

𝑥𝑖𝑙𝑟(𝑠1𝑠2⋯𝑠𝑡) = {
1

0
   
if the 𝑙th container of type 𝑖 is selected in scenario (𝑠1𝑠2⋯𝑠𝑡) in region 𝑟

otherwise
; 

𝑦𝑖𝑙𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡) quantity of type 𝑗 cargo with destination 𝑑 loaded into the 𝑙th container of type 𝑖 in 

scenario (𝑠1𝑠2⋯𝑠𝑡) in region 𝑟; 
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𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)
+  quantity of type 𝑗 cargo with destination 𝑑 stored for next period in scenario 

(𝑠1𝑠2⋯𝑠𝑡) in region 𝑟; 

𝑔𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡) cargo weight distributed in the range (𝑎𝑖(𝑘−1)𝑟, 𝑎𝑖𝑘𝑟] inside the 𝑙th container of type 

𝑖 in scenario (𝑠1𝑠2⋯𝑠𝑡) in region 𝑟; 

𝑧𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡) = {
1

0
   
if 𝑔𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡) > 0

𝑜therwise
; 

𝑜𝑖𝑡
ℎ   number of type 𝑖 container for booking in the hub in period 𝑡; 

𝑜𝑖(𝑠1𝑠2⋯𝑠𝑡)
ℎ− /𝑜𝑖(𝑠1𝑠2⋯𝑠𝑡)

ℎ+  number of type 𝑖 container required/returned in scenario (𝑠1𝑠2⋯𝑠𝑡) on 

the day of shipping in the hub; 

𝑜𝑖𝑡
ℎ𝑐  number of type 𝑖 pre-used container for booking to continue to use in the hub in period 𝑡; 

𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ

= {
1

0
  
if the 𝑙th type 𝑖 container with destination 𝑑 is selected in scenario (𝑠1𝑠2⋯𝑠𝑡) in the hub

otherwise
; 

𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐 = {

1

0
  

if the 𝑙th type 𝑖 pre − used container with destination
 𝑑 is selected in scenario (𝑠1𝑠2⋯𝑠𝑡) in the hub

otherwise
; 

𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ  quantity of type 𝑗 cargo with destination 𝑑 loaded into the 𝑙th container of type 𝑖 in 

scenario (𝑠1𝑠2⋯𝑠𝑡) in the hub; 

𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐  quantity of type 𝑗 cargo with destination 𝑑 loaded into the 𝑙th pre-used container of 

type 𝑖 in scenario (𝑠1𝑠2⋯𝑠𝑡) in the hub; 

𝑦𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ+  quantity of type 𝑗 cargo with destination 𝑑 stored for next period in scenario 

(𝑠1𝑠2⋯𝑠𝑡) in the hub; 

𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ   cargo weight distributed in the range (𝑎𝑖(𝑘−1), 𝑎𝑖𝑘] inside the 𝑙th container of type 𝑖 

in scenario (𝑠1𝑠2⋯𝑠𝑡) with destination 𝑑 in the hub; 

𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐  cargo weight distributed in the range (𝑎𝑖(𝑘−1)

ℎ , 𝑎𝑖𝑘
ℎ ] inside the 𝑙th type 𝑖 pre-used 

container with destination 𝑑 in scenario (𝑠1𝑠2⋯𝑠𝑡) in the hub; 

𝑧𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ = {

1

0
   
if 𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ > 0

otherwise
; 
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𝑧𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐 = {

1

0
   
if 𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ𝑐 > 0

otherwise
. 

4.3.1.2 Multi-stage stochastic model 

min  ∑(∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)(∑𝑀𝑟𝑡

𝑅

𝑟=1

+𝑁𝑡)

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

)

𝑇

𝑡=1

                                (4.41) 

subject to 

𝑀𝑟𝑡 =∑∑𝑐𝑖𝑟𝑡
0 𝑥𝑖𝑙𝑟(𝑠1𝑠2⋯𝑠𝑡)

𝐿𝑖𝑟𝑡

𝑙=1

𝑚

𝑖=1

+∑∑∑𝛿𝑖𝑘𝑟𝑔𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡)

𝐾𝑖

𝑘=1

𝐿𝑖𝑟𝑡

𝑙=1

𝑚

𝑖=1

+∑𝑐𝑖𝑟𝑡
− 𝑜𝑖𝑟(𝑠1𝑠2⋯𝑠𝑡)

−

𝑚

𝑖=1

+∑𝑐𝑖𝑟𝑡
+ 𝑜𝑖𝑟(𝑠1𝑠2⋯𝑠𝑡)

+

𝑚

𝑖=1

+∑∑𝑏𝑗𝑟𝑡
+ 𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)

+

𝑛

𝑗=1

𝐷

𝑑=1

+∑∑∑𝑏𝑖𝑡𝑥𝑖𝑙𝑟(𝑠1𝑠2⋯𝑠𝑡)

𝐿𝑖𝑟𝑡

𝑙=1

𝑚

𝑖=1

𝑅

𝑟=1

                                                                                      (4.42) 

𝑁𝑡 = ∑(∑∑𝜇𝑐𝑖𝑡
ℎ0𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ𝑐

𝐿𝑖𝑡

𝑙=1

𝑚

𝑖=1

+∑∑∑𝛿𝑖𝑘
ℎ 𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ𝑐

𝐾𝑖

𝑘=1

𝐿𝑖𝑡

𝑙=1

𝑚

𝑖=1

+∑∑𝑐𝑖𝑡
ℎ0𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ

𝐿𝑖𝑡
ℎ

𝑙=1

𝑚

𝑖=1

𝐷

𝑑=1

+∑∑∑𝛿𝑖𝑘
ℎ 𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ

𝐾𝑖

𝑘=1

𝐿𝑖𝑡
ℎ

𝑙=1

𝑚

𝑖=1

+∑𝑏𝑗𝑡
ℎ+𝑦𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ+

𝑛

𝑗=1

)+∑𝑐𝑖𝑡
ℎ−𝑜𝑖(𝑠1𝑠2⋯𝑠𝑡)

ℎ−

𝑚

𝑖=1

+∑𝑐𝑖𝑡
ℎ+𝑜𝑖(𝑠1𝑠2⋯𝑠𝑡)

ℎ+

𝑚

𝑖=1

                                                                                                     (4.43) 

∑∑𝑣𝑗𝑦𝑖𝑙𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡) 

𝐷

𝑑=1

𝑛

𝑗=1

≤ 𝑉𝑖𝑥𝑖𝑙𝑟(𝑠1𝑠2⋯𝑠𝑡)     𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑟𝑡;  𝑡 = 1,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡

= 1,⋯ , 𝑆;  𝑟 = 1,⋯ , 𝑅;                                                                                               (4.44) 

∑∑𝑤𝑗𝑦𝑖𝑙𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)

𝐷

𝑑=1

𝑛

𝑗=1

≤ 𝑊𝑖𝑥𝑖𝑙𝑟(𝑠1𝑠2⋯𝑠𝑡)    𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑟𝑡;  𝑡 = 1,⋯ , 𝑇; 𝑠1, ⋯ , 𝑠𝑡

= 1,⋯ , 𝑆;  𝑟 = 1,⋯ , 𝑅;                                                                                               (4.45) 
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∑𝑣𝑗𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ

𝑛

𝑗=1

≤ 𝑉𝑖𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ           𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑡

ℎ ;  𝑡 = 1,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡

= 1,⋯ , 𝑆;  𝑑 = 1,⋯ ,𝐷;                                                                                              (4.46) 

∑𝑤𝑗𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ

𝑛

𝑗=1

≤ 𝑊𝑖𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ         𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑡

ℎ ;  𝑡 = 1,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡

= 1,⋯ , 𝑆;  𝑑 = 1,⋯ ,𝐷;                                                                                              (4.47) 

∑𝑣𝑗𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐

𝑛

𝑗=1

≤ 𝑉𝑖𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐           𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑡;  𝑡 = 1,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡

= 1,⋯ , 𝑆;  𝑑 = 1,⋯ ,𝐷;                                                                                              (4.48) 

∑𝑤𝑗𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐

𝑛

𝑗=1

≤ 𝑊𝑖𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐         𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑡;  𝑡 = 1,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡

= 1,⋯ , 𝑆;  𝑑 = 1,⋯ ,𝐷;                                                                                              (4.49) 

𝑦𝑗𝑟𝑑𝑠0
+ = 0,   𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑇)

+ = 0        𝑗 = 1,  ⋯ ,  𝑛;  𝑟 = 1,  ⋯ ,  𝑅;  𝑑 = 1,  ⋯ ,  𝐷                          (4.50)           

∑∑∑𝑦𝑖𝑙𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)

𝐿𝑖𝑟𝑡

𝑙=1

𝐷

𝑑=1

𝑚

𝑖=1

+∑𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)
+

𝐷

𝑑=1

= 𝑞𝑗𝑟(𝑠1𝑠2⋯𝑠𝑡) +∑𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡−1)
+

𝐷

𝑑=1

    𝑗 = 1,  ⋯ ,  𝑛;  𝑟

= 1,  ⋯ ,  𝑅;  𝑡 = 1,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                       (4.51) 

𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)
+ ≤∑∑𝑦𝑖𝑙𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡+1)

𝐿𝑖𝑟𝑡

𝑙=1

𝑚

𝑖=1

       𝑗 = 1,  ⋯ ,  𝑛; 𝑟 = 1,  ⋯ ,  𝑅;  𝑑 = 1,  ⋯ ,  𝐷;  𝑡

= 1,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                                   (4.52) 

𝑦𝑗𝑑𝑠0
ℎ+ = 0,    𝑦𝑗𝑑(𝑠1𝑠2⋯𝑠𝑇)

ℎ+ = 0        𝑗 = 1,  ⋯ ,  𝑛;  𝑑 = 1,  ⋯ ,  𝐷                                                        (4.53) 

∑∑𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ

𝐿𝑖𝑡
ℎ

𝑙=1

𝑚

𝑖=1

+∑∑𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐

𝐿𝑖𝑡

𝑙=1

𝑚

𝑖=1

+ 𝑦𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ+ = 𝑞𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ + 𝑦𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡−1)
ℎ+  

−∑𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)
+

𝑅

𝑟=1

        𝑗 = 1,  ⋯ ,  𝑛;  𝑑 = 1,  ⋯ ,  𝐷;  𝑡 = 1,⋯ ,𝑇; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆            (4.54) 

𝑦𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ+ ≤∑∑𝑦𝑖𝑙𝑗(𝑠1𝑠2⋯𝑠𝑡+1)

ℎ

𝐿𝑖𝑡
ℎ

𝑙=1

+∑∑𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡+1)
ℎ𝑐

𝐿𝑖𝑡

𝑙=1

𝑚

𝑖=1

          

𝑚

𝑖=1

𝑗 = 1,  ⋯ ,  𝑛;  𝑑 = 1,  ⋯ ,  𝐷;  𝑡

= 1,⋯ ,𝑇 − 1;  𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                          (4.55) 

𝑜𝑖𝑟𝑡 =∑𝑥𝑖𝑙𝑟(𝑠1𝑠2⋯𝑠𝑡)

𝐿𝑖𝑟𝑡

𝑙=1

+ 𝑜𝑖𝑟(𝑠1𝑠2⋯𝑠𝑡)
+ − 𝑜𝑖𝑟(𝑠1𝑠2⋯𝑠𝑡)

−       𝑖 = 1,⋯ ,𝑚;  𝑟 = 1,⋯ , 𝑅, 𝑡

= 1,⋯ , 𝑇;  𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                                  (4.56) 
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𝑜𝑖𝑡
ℎ =∑∑𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ

𝐷

𝑑=1

𝐿𝑖𝑡
ℎ

𝑙=1

+ 𝑜𝑖(𝑠1𝑠2⋯𝑠𝑡)
ℎ+ − 𝑜𝑖(𝑠1𝑠2⋯𝑠𝑡)

ℎ−       𝑖 = 1,⋯ ,𝑚;  𝑡 = 1,⋯ , 𝑇; 𝑠1, ⋯ , 𝑠𝑡

= 1,⋯ , 𝑆                                                                                                                         (4.57) 

∑∑𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐

𝐿𝑖𝑟𝑡

𝑙=1

𝑅

𝑟=1

≤∑∑𝑥𝑖𝑙𝑟(𝑠1𝑠2⋯𝑠𝑡)

𝐿𝑖𝑟𝑡

𝑙=1

𝑅

𝑟=1

    𝑖 = 1,⋯ ,𝑚;  𝑡 = 1,⋯ , 𝑇; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆   (4.58) 

∑∑𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ

𝐷

𝑑=1

𝐿𝑖𝑡
ℎ

𝑙=1

≤ 𝐿𝑖𝑡
ℎ        𝑖 = 1,⋯ ,𝑚;  𝑡 = 1,⋯ , 𝑇; 𝑠1, ⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                       (4.59) 

∑∑∑𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐

𝐷

𝑑=1

𝐿𝑖𝑟𝑡

𝑙=1

𝑅

𝑟=1

= 𝑜𝑖𝑡
ℎ𝑐      𝑖 = 1,⋯ ,𝑚;  𝑡 = 1,⋯ , 𝑇; 𝑠1, ⋯ , 𝑠𝑡 = 1,⋯ , 𝑆               (4.60) 

∑𝑔𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡)

𝐾𝑖

𝑘=1

=∑∑𝑤𝑗𝑦𝑖𝑙𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)

𝐷

𝑑=1

𝑛

𝑗=1

     𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑟𝑡;  𝑡 = 1,⋯ , 𝑇; 𝑠1, ⋯ , 𝑠𝑡

= 1,⋯ , 𝑆;  𝑟 = 1,⋯ , 𝑅                                                                                                 (4.61) 

𝑔𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡) ≤ 𝑧𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡)(𝑎𝑖𝑘𝑟 − 𝑎𝑖(𝑘−1)𝑟)       𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑟𝑡;  𝑘 = 1,⋯ ,𝐾𝑖;  𝑡

= 1,⋯ , 𝑇;  𝑟 = 1,⋯ , 𝑅; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                           (4.62) 

𝑔𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡) ≥ 𝑧𝑖𝑙(𝑘−1)𝑟(𝑠1𝑠2⋯𝑠𝑡)(𝑎𝑖𝑘𝑟 − 𝑎𝑖(𝑘−1)𝑟)        𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑟𝑡;  𝑘

= 1,⋯ ,𝐾𝑖;  𝑡 = 1,⋯ , 𝑇;  𝑟 = 1,⋯ , 𝑅; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                 (4.63) 

∑𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ

𝐾𝑖

𝑘=1

=∑𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ

𝑛

𝑗=1

    𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑡
ℎ ;  𝑡 = 1,⋯ , 𝑇;  𝑑

= 1,⋯ ,𝐷; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                                   (4.64) 

𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ ≤ 𝑧𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ (𝑎𝑖𝑘
ℎ − 𝑎𝑖(𝑘−1)

ℎ )       𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑡
ℎ ;  𝑡 = 1,⋯ , 𝑇;  𝑘

= 1,⋯ ,𝐾𝑖;  𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                                  (4.65) 

𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ ≥ 𝑧𝑖𝑙(𝑘−1)𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ (𝑎𝑖𝑘
ℎ − 𝑎𝑖(𝑘−1)

ℎ )      𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑡
ℎ ;  𝑡 = 1,⋯ , 𝑇;  𝑘

= 1,⋯ ,𝐾𝑖;  𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                                  (4.66) 
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∑𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐

𝐾𝑖

𝑘=1

=∑𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐

𝑛

𝑗=1

    𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑡
ℎ ;  𝑡 = 1,⋯ , 𝑇;  𝑑

= 1,⋯ ,𝐷; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                                                   (4.67) 

𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐 ≤ 𝑧𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ𝑐 (𝑎𝑖𝑘
ℎ − 𝑎𝑖(𝑘−1)

ℎ )       𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑟𝑡;  𝑡 = 1,⋯ , 𝑇;  𝑘

= 1,⋯ ,𝐾𝑖;  𝑟 = 1,⋯ , 𝑅; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                         (4.68) 

𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐 ≥ 𝑧𝑖𝑙(𝑘−1)𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ𝑐 (𝑎𝑖𝑘
ℎ − 𝑎𝑖(𝑘−1)

ℎ )      𝑖 = 1,⋯ ,𝑚;  𝑙 = 1,⋯ , 𝐿𝑖𝑟𝑡;  𝑡 = 1,⋯ , 𝑇;  𝑘

= 1,⋯ ,𝐾𝑖;  𝑟 = 1,⋯ , 𝑅; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                         (4.69) 

𝑜𝑖𝑟𝑡 , 𝑜𝑖𝑟(𝑠1𝑠2⋯𝑠𝑡)
− , 𝑜𝑖𝑟(𝑠1𝑠2⋯𝑠𝑡)

+ , 𝑜𝑖𝑡
ℎ , 𝑜𝑖(𝑠1𝑠2⋯𝑠𝑡)

ℎ− , 𝑜𝑖(𝑠1𝑠2⋯𝑠𝑡)
ℎ+ , 𝑜𝑖𝑡

ℎ𝑐 , 𝑦𝑖𝑙𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡), 𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)
+ , 𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ , 

 𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐 , 𝑦𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ+ , 𝑔𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡), 𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ , 𝑔𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ𝑐 ∈ {0,1,⋯ , inf};  𝑥𝑖𝑙𝑟(𝑠1𝑠2⋯𝑠𝑡), 

𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ , 𝑥𝑖𝑙𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ𝑐 , 𝑧𝑖𝑙𝑘𝑟(𝑠1𝑠2⋯𝑠𝑡), 𝑧𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ , 𝑧𝑖𝑙𝑘𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ𝑐  ∈ {0,1}        𝑖 = 1,⋯ ,𝑚,    

𝑙 = 1,⋯ , 𝐿𝑖𝑟𝑡;     𝑗 = 1,⋯ , 𝑛;     𝑟 = 1,⋯ , 𝑅;   𝑑 = 1,⋯ ,𝐷, 𝑡 = 1,⋯ , 𝑇;  𝑘 = 1,⋯ , 𝐾𝑖;  𝑠1,⋯ , 𝑠𝑡

= 1,⋯ , 𝑆                                                                                                                         (4.70) 

The objective function (4.41) is the total cost including container fixed and variable cost in the 

regions, penalty cost for renting or returning containers on the shipping day in the regions, 

inventory costs in regions, repacking cost in the hub, fixed and variable cost for the pre-used 

containers and new containers in the hub, inventory costs in the hub and uncertainty cost for 

renting or returning containers to the hub. The details of the objective function can be found in 

the constraints (4.42) and (4.43). Constraints (4.44)-(4.49) ensure that the cargoes loaded into the 

containers cannot exceed the volume and weight limitations. The cargo quantity constraints in 

the regions and hub are (4.50)-(4.55). (4.50) and (4.53) mean the quantities of storage cargo 

before the first period and in the final period must be 0. (4.51) and (4.54) ensure that the quantity 

of cargo should be same. (4.52) and (4.55) mean the quantity of storage cargo in this period is less 

than or equal to the quantity of transported cargo in next. These two constraints make sure the 

assumption that the air cargoes can be transported with one day’s delay. If the assumption should 

be changed to two days or more, we just need to change these two constraints. The container 

quantity constraints in regions and hub are (4.56) and (4.57). Constraint (4.58) means that for 

each type of container, the quantity of using pre-used containers in the hub cannot be greater 

than the sum of containers used in all regions. Constraint (4.59) ensures that the number of each 

type of container used in the hub cannot exceed the limit. Constraint (4.60) makes sure that the 
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pre-used container using plan should be the same no matter which scenario is realised. 

Constraints (4.61)-(4.69) are container variable cost constraints according to (4.2)-(4.4). 

Constraints (4.70) is the variable range.  

4.3.1.3 Computational results  

Here we take a two days’ flight case with two regions and two destinations via a hub as an 

example to see how multi-stage model works. We use the same initial data from the two-stage 

stochastic model case in Section 4.2.2.3. The probabilities for scenarios are the same as in the 

production planning problem in Section 3.2.4. The quantities of air cargo under different 

scenarios in the first day is the same as in Section 4.2.2.3. The quantities of air cargo under 

different outcomes in the second day is in Table ‎4.19. The one day storage costs for large, 

medium and small air cargo in regions and hub are same, $4000, $3600 and $3200 respectively. 

Table ‎4.20 lists the container booking plan for the three-stage stochastic model for Test III. We 

can see that fewer containers are booked in the first period than the second period. The reason is 

that a lot of air cargoes are stored for the second period due to cheap inventory costs. Table ‎4.21 

and Table ‎4.22 give the urgent rental or return plan on the day of shipping in the first and second 

periods.  

Table ‎4.19 Cargo quantities under different outcomes in the second period 

Outcomes 𝑠1 𝑠2 𝑠3 

Region A B A B A B 

Destination α β α β α β α β α β α β 

Cargo 
type 

Large 3 2 3 3 2 1 3 3 2 1 2 2 

Medium 3 2 2 3 3 2 1 2 2 1 1 1 

Small 3 3 3 2 2 2 2 1 2 2 2 1 

 

Table ‎4.20 Container booking plan for three-stage model (made one week before day of shipping) 

Container type 

First period Second period 

Region 
Pre-used container Hub 

Region 
Pre-used container Hub 

A B A B 

1     1    

2     1 1 2  

3      1 1  

4     1  1  

5 1 1 2   1 1  

6 1 1 2 1 1 1 2 1 

7 1 1    1 1  

 
 



Chapter 4: International Air Cargo Forwarding Problem 

99 

Table ‎4.21 Renting/Returning containers on the day of shipping (for first period) 

Container type 

Renting Returning 

Region 
Hub 

Region 
Hub 

A B A B 

Scenario s1 
4 1 1 1    

5   1    

Scenario s2 
4 1      

5       

Scenario s3 
4       

5       

 
 

Table ‎4.22 Renting/Returning containers on the day of shipping (for second period) 

Container type 

Rent Return 

Region 
Hub 

Region 
Hub 

A B A B 

Scenario 

(s1,ss1) 

1  1     

2   1    

3 1  1    

4   1    

(s1,ss2) 
4  1 1    

7 1      

(s1,ss3)        

(s2,ss1) 

2   1    

3 1      

4  1 1    

5   1    

(s2,ss2) 
4  1 1    

5   1    

(s2,ss3)        

(s3,ss1) 
3 1  1    

4  1 1    

(s3,ss2) 5   1    

(s3,ss3)        

 
 

Table ‎4.23 shows the tests in different probabilities for the three-stage stochastic model 

calculated by computer software AIMMS. We can find that AIMMS cannot provide the optimal 

solutions, there are clear distances between the solution and lower bound. The lower bounds are 

provided by AIMMS using Branch and Bound Algorithm. And the computing time takes too long 

especially in Test III, more than three days.  
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Table ‎4.23 AIMMS results for three-stage stochastic model 

Test I II III 

Total cost by AIMMS 2836720 2266843 2022581 

Lower bound 2606252 2073880 1805892 

Distance between AIMMS and Lower bound 8.12% 8.51% 10.71% 

Computing time by AIMMS (seconds) 70860.69 46873.65 140961.85 

4.3.2 Three types of robust models 

Similarly with Section 4.2.3, we also provide three types of robust models with model robustness, 

solution robustness, and the trade-off between model robustness and solution robustness 

according to the multi-stage stochastic model in Section 4.3.1.2.  

4.3.2.1 New notation 

New deterministic parameters 

𝜔𝑗𝑟𝑡  unit penalty for type 𝑗 cargo which cannot be transported any more in region 𝑟 in period 𝑡; 

𝜔𝑗𝑡
ℎ   unit penalty for type 𝑗 cargo which cannot be transported any more in the hub in period 𝑡; 

𝜆𝑟𝑡   measurement of the variability of the objective costs in region 𝑟 in period 𝑡; 

𝜆𝑡
ℎ   measurement of the variability of the objective costs in the hub in period 𝑡; 

New decision variables 

 𝑒𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)    the quantity of type 𝑗 cargo which cannot be transported in this week when 

scenario (𝑠1𝑠2⋯𝑠𝑡) is realised in region 𝑟; 

𝑒𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ     the quantity of type 𝑗 cargo which cannot be transported in this week when scenario 

(𝑠1𝑠2⋯𝑠𝑡) is realised in the hub; 

𝜃𝑟(𝑠1𝑠2⋯𝑠𝑡)   deviational variables for the robust model with solution robustness when scenario 

(𝑠1𝑠2⋯𝑠𝑡)  is realised in region 𝑟. 

𝜃(𝑠1𝑠2⋯𝑠𝑡)
ℎ    deviational variables for the robust model with solution robustness when scenario 

(𝑠1𝑠2⋯𝑠𝑡)  is realised in the hub. 
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4.3.2.2 Multi-stage robust model with model robustness 

Base on Section 4.2.3.1, the multi-stage robust optimisation model with model robustness for air 

cargo forwarding problem will be built as: 

min  ∑(∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)(∑(𝑀𝑟𝑡 +∑∑𝜔𝑗𝑟𝑡𝑒𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)

𝑛

𝑗=1

𝐷

𝑑=1

)

𝑅

𝑟=1

+𝑁𝑡

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑇

𝑡=1

+∑∑𝜔𝑗𝑡
ℎ 𝑒𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ

𝑛

𝑗=1

𝐷

𝑑=1

))                                                                                       (4.71) 

Subject to (4.42)-(4.50), (4.52), (4.53) and (4.55)-(4.70) 

∑∑∑𝑦𝑖𝑙𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)

𝐿𝑖𝑟𝑡

𝑙=1

𝐷

𝑑=1

𝑚

𝑖=1

+∑𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)
+

𝐷

𝑑=1

+∑𝑒𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)

𝐷

𝑑=1

= 𝑞𝑗𝑟(𝑠1𝑠2⋯𝑠𝑡) 

+∑𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡−1)
+

𝐷

𝑑=1

, 𝑗 = 1,  ⋯ ,  𝑛;  𝑟 = 1,  ⋯ ,  𝑅; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                             (4.72) 

∑∑𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ

𝐿𝑖𝑡
ℎ

𝑙=1

𝑚

𝑖=1

+∑∑∑𝑦𝑖𝑙𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ𝑐

𝐿𝑖𝑟𝑡

𝑙=1

𝑚

𝑖=1

𝑅

𝑟=1

+ 𝑦𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ+ + 𝑒𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ = 𝑞𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ  

+𝑦𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡−1)
ℎ+ −∑𝑦𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)

+

𝑅

𝑟=1

        𝑗 = 1,  ⋯ ,  𝑛; 𝑑 = 1,  ⋯ ,  𝐷;  𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆   (4.73) 

𝑒𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡), 𝑒𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)
ℎ ∈ {0,1,2,⋯ , inf}    𝑗 = 1,  ⋯ ,  𝑛;  𝑑 = 1,  ⋯ ,  𝐷;   𝑟 = 1,⋯ , 𝑅;   𝑠1,⋯ , 𝑠𝑡

= 1,⋯ , 𝑆                                                                                                                         (4.74) 

4.3.2.3 Multi-stage robust model with solution robustness 

Similarly with Section 4.2.3.2, we can list the multi-stage robust optimisation model with solution 

robustness for air cargo forwarding problem: 
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min  ∑(∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)(∑𝑀𝑟𝑡

𝑅

𝑟=1

+𝑁𝑡)

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

)

𝑇

𝑡=1

+∑∑𝜆𝑟𝑡(∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)(𝑀𝑟𝑡 −∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)𝑀𝑟𝑡

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑅

𝑟=1

𝑇

𝑡=1

+ 2𝜃𝑟(𝑠1𝑠2⋯𝑠𝑡)))

+∑𝜆𝑡
ℎ(∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)(𝑁𝑡 −∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)𝑁𝑡

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑇

𝑡=1

+ 2𝜃(𝑠1𝑠2⋯𝑠𝑡)
ℎ )                                                                                                                (4.75) 

Subject to (4.42)-(4.70), 

−𝜃𝑟(𝑠1𝑠2⋯𝑠𝑡) −𝑀𝑟𝑡 +∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)𝑀𝑟𝑡

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

≤ 0, 𝑟 = 1,  ⋯ ,  𝑅; 𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆       (4.76) 

−𝜃(𝑠1𝑠2⋯𝑠𝑡)
ℎ −𝑁𝑡 +∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)𝑁𝑡

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

≤ 0          𝑠1,⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                (4.77) 

𝜃𝑟(𝑠1𝑠2⋯𝑠𝑡),𝜃(𝑠1𝑠2⋯𝑠𝑡)
ℎ ≥ 0,   𝑟 = 1,⋯ , 𝑅;    𝑠1, ⋯ , 𝑠𝑡 = 1,⋯ , 𝑆                                                (4.78) 

4.3.2.4 Multi-stage robust model with the trade-off between model robustness and 

solution robustness 

According to Section 4.2.3.3, we consider the variability and infeasibility together. A robust 

optimisation model with the trade-off between model robustness and solution robustness is 

developed to solve the air cargo forwarding problem with uncertainty. The objective function is 

combined with combined (4.71) and (4.75). 
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min∑(∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)(∑(𝑀𝑟𝑡 +∑∑𝜔𝑗𝑟𝑡𝑒𝑗𝑟𝑑(𝑠1𝑠2⋯𝑠𝑡)

𝑛

𝑗=1

𝐷

𝑑=1

)

𝑅

𝑟=1

+𝑁𝑡

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑇

𝑡=1

+∑∑𝜔𝑗𝑡
ℎ 𝑒𝑗𝑑(𝑠1𝑠2⋯𝑠𝑡)

ℎ

𝑛

𝑗=1

𝐷

𝑑=1

))

+∑∑𝜆𝑟𝑡(∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)(𝑀𝑟𝑡 −∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)𝑀𝑟𝑡

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑅

𝑟=1

𝑇

𝑡=1

+ 2𝜃𝑟(𝑠1𝑠2⋯𝑠𝑡)))

+∑𝜆𝑡
ℎ(∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)(𝑁𝑡 −∑∑⋯∑𝑝(𝑠1𝑠2⋯𝑠𝑡)𝑁𝑡

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑆

𝑠𝑡

𝑆

𝑠2

𝑆

𝑠1

𝑇

𝑡=1

+ 2𝜃(𝑠1𝑠2⋯𝑠𝑡)
ℎ )                                                                                                                (4.79) 

subject to (4.42)-(4.50), (4.52), (4.53), (4.55)-(4.70), (4.72)-(4.74) and (4.76)- (4.78). 

4.3.2.5 Computational results  

Here we use the same initial data from the two-stage stochastic model case in Section 4.3.1.3. We 

will take the three-stage robust model with the trade-off between model robustness and solution 

robustness (𝜆 = 0.1 and 𝜔 =30000, 26000, 22000) as an example for the bad economy 

environment to see the results. Table ‎4.24 and Table ‎4.25 present the results of three-stage 

robust optimisation models for Test III. There is no urgent rental or return plan in the first period. 

The reason is the cargoes left in the first period are either stored for the second period or do not 

transported this week. The computing time is also too long, more than 20 hours (see Table ‎4.26). 

Therefore, a GA for quickly finding a better solution is introduced in the next section.  

 

Table ‎4.24 Container booking plan for three-stage model (made one week before shipping day) 

Container type 

First period Second period 

Region 
Pre-used container Hub 

Region 
Pre-used container Hub 

A B A B 

1         

2  1      1 

3     1    

4     1 1 2  

5 1  1 1 1 1 2  

6 1 1 2 1 1 1 2 1 
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7      1 1  

 
 

Table ‎4.25 Renting/Returning containers on the day of shipping (for second period) 

Container type 

Rent Return 

Region 
Hub 

Region 
Hub 

A B A B 

Scenario 

(𝑠1𝑠1) 

1  1     

2 1      

3  1 1    

4   1    

5   1    

7   1    

(𝑠1𝑠2) 
3  1 1    

4   1    

(𝑠1𝑠3)        

(𝑠2𝑠1) 

1 1 1     

2  1     

3   1    

4   1    

(𝑠2𝑠2) 
2  1     

5   1    

(𝑠2𝑠3)        

(𝑠3𝑠1) 1  1     

 2 1 1     

 3   1    

 4   1    

 7 1      

(𝑠3𝑠2) 2 1 1     

 4   1    

 5   1    

(𝑠3𝑠3)        

 
 

Table ‎4.26 AIMMS results for three-stage robust optimisation model 

Test I II III 

Total cost by AIMMS 2727075 2286350 1950941 

Lower bound 2572298 2032928 1720935 

Distance between AIMMS and Lower bound 5.68% 11.08% 11.79% 

Computing time by AIMMS (seconds) 52308.69 84363.07 72315.36 
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4.4 Genetic Algorithm  

The reasons we choose GA to solve the air cargo forwarding problems are the following. Firstly, 

GA is a well-known heuristic approach, inspired by the natural evolution of the living organisms 

that works on a population of the solutions simultaneously. Secondly, GAs have been used 

extensively in solving scheduling and loading problems. The air container booking problem in this 

research also includes the air cargo loading problem. If we know which cargo will be loaded into 

which container, we will obtain the container booking plan automatically. Therefore GAs are 

suitable for solving this problem. Thirdly, GAs can solve large-sized problems, and thus are suited 

to this research. Fourthly, use of GA can increase the chance of finding better solutions because 

the population-based GA needs a large solution space to be explored. 

4.4.1 Design of GA 

Chromosome representation and initialisation 

The initial step of the GA is to design the initial chromosome, which is the most important part. 

Because we transform the air container booking problem into the air cargo loading problem, the 

air cargo loading plan in regions and the hub will be the chromosomes.  

By considering the cargo loading variables, we use a matrix structure to represent the solution of 

the proposed problem. Here we use a very simple case to show how to get the initial solution, one 

day’s cargo loading plan with two regions, two destinations and two scenarios. Cargo loading 

variables in the hub are quite different from those with-in regions because there are more 

options, such as pre-used containers, in the hub. Table ‎4.27 gives the air cargo loading solutions in 

the two regions. In the column named “cargo type”, “1”, “2” and “3” mean large, medium and 

small cargo respectively. Column “container type” means the corresponding cargo should be 

loaded into which type of container. Column “container number” means which number of the 

corresponding type of container is used. For the same type of container, the container number 

should start from 1. When the container is fully occupied by cargoes, if the next cargo still needs 

to be loaded into this type of container, the container number will become 2. The container 

number cannot exceed the available quantity for this type of container. Therefore the data in 

column “container number” can be provided by the data in column “container type”.  In this 

simple case, the available quantity is one for each type of container. The data in columns 

“scenario” and “cargo type” come from the initial data. Hence, the column “container type” will 

be the chromosome for regions (Table ‎4.28).  
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Table ‎4.27 The air cargo loading solutions in regions 

Cargo loading plan in Region 1  Cargo loading plan in Region 2 

Scenario 
Cargo 
type 

Container 
number 

Container 
type 

 Scenario 
Cargo 
type 

Container 
number 

Container 
type 

1 1 1 2  1 1 1 6 

1 1 1 2  1 1 1 1 

1 2 1 4  1 2 1 4 

1 2 1 7  1 2 1 1 

1 3 1 5  1 2 1 3 

1 3 1 6  1 3 1 7 

2 1 1 3  2 1 1 2 

2 1 1 5  2 2 1 4 

2 2 1 3  2 2 1 3 

2 3 1 4  2 3 1 5 

2 3 1 6  2 3 1 3 

2 3 1 5      

 
 

Table ‎4.28 Chromosomes for regions 

Chromosome in Region 1  Chromosome in Region 2 

2  6 

2  1 

4  4 

7  1 

5  3 

6  7 

3  2 

5  4 

3  3 

4  5 

6  3 

5   

 
 

Table ‎4.29 lists the containers used with the plan by regions. We want to explain how to transfer 

the cargo loading problem back to a container booking problem by introducing the container use 

plan. Generally, and not only in this example, if the use plans of all scenarios equal 1 for the same 

container, we should book this container in advance to save money. If the use plans of all 

scenarios equal 0, we do not need to book it. If some are 1 and others are 0, we need a 

comparison to make the decision. If we book it in advance, the “0” cases, will cause urgent return 

costs; if we do not book it, for the “1” cases we need to pay the urgent rental costs. We have to 
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compare these two costs and choose the cheaper to decide whether to book this container. Thus 

the problem can become a container booking problem. 

 

Table ‎4.29 Corresponding container use plans in regions 

Container 
type 

Container use in Region 1  Container 
type 

Container use in Region 2 

Scenario 1 Scenario 2  Scenario 1 Scenario 2 

1 0 0  1 1 0 

2 1 0  2 0 1 

3 0 1  3 1 1 

4 1 1  4 1 1 

5 1 1  5 0 1 

6 1 1  6 1 0 

7 1 0  7 1 0 

 

Similarly, Table ‎4.30 provides the cargo loading plan in the hub. There is a little difference in 

“Container number”: “1” represents a pre-used container from Region 1; “2” represents a pre-

used container from Region 2; “3” represents a container from hub. If we do not get the booking 

plan in the regions, we will not know how many containers are available in hub. Therefore, the 

region plans should be considered first. The data in “container type” is the chromosome for the 

hub (see Table ‎4.31). Table ‎4.32 gives the corresponding container using plan for the hub.  

 

Table ‎4.30 The cargo loading plan in hub 

Scenario 1 1 1 1 1 1 2 2 2 2 2 2 

Cargo type 1 1 1 2 3 3 1 2 3 3 3 3 

Container number 2 2 3 2 2 1 1 3 2 1 2 1 

Container destination 1 1 1 1 1 1 1 1 1 1 1 1 

Container type 2 3 1 2 5 6 3 1 2 4 2 3 

             

Scenario 1 1 1 1 1 1 2 2 2 2 2  

Cargo type 1 2 2 2 2 3 1 1 2 2 3  

Container number 1 1 1 1 3 1 2 1 3 1 1  

Container destination 2 2 2 2 2 2 2 2 2 2 2  

Container type 3 4 5 4 7 5 3 5 2 6 5  

 

Table ‎4.31 The chromosome for hub 

2 3 1 2 5 6 3 1 2 4 2 3 3 4 5 4 7 5 3 5 2 6 5 
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Table ‎4.32 Corresponding container using plan in hub 

Container 
type 

Container 
number 

Scenario 1 Scenario 2 

Container 
destination 

Container 
using 

Container 
destination 

Container 
using 

1 3 1 1 1 1 

2 
2 1 1 1 1 

3 0 0 2 1 

3 

1 2 1 1 1 

2 1 1 2 1 

3 0 0 0 0 

4 

1 2 1 1 1 

2 0 0 0 0 

3 0 0 0 0 

5 

1 2 1 2 1 

2 1 1 0 0 

3 0 0 0 0 

6 
1 1 1 2 1 

3 0 0 0 0 

7 3 2 1 0 0 

 

Once we have the cargo loading plans, we can calculate the values of the container variable 

according to the container quantity constraints (4.9) and (4.12)-(4.15). Container variable cost 

constraints (4.16)-(4.24) do not need to be considered because they are only used to calculate the 

total cost. We just need to make sure that all the cargoes have been loaded in the containers and 

that the total loaded volume and weight for each container do not exceed the limitations. The 

initial population is constructed by the following steps: 

(1) Sort the cargoes in Region 1 firstly by scenario and secondly by cargo type (decreasing 

volume of cargo, which means large cargoes are at the front). Constraint (4.10) is thus 

satisfied. 

(2) Start from the first cargo, randomly choose a type of container from the container set (1 

to 7). If the total loaded volume and weight for this container do not exceed its 

limitations, load this cargo to this container. If the limitations are exceeded, delete this 

type of container from the container set and randomly choose another element. Continue 

doing this in a loop until a suitable container is found. Record the type of container in the 

last column of the cargo loading matrix. Constraints (4.25) and (4.26) are thus satisfied. 

(3) Continue to do step (2) until all the cargoes in Region 1 have suitable containers. 

(4) Calculate the container booking plan and the urgent rental/return plan for Region 1. 
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(5) Schedule the cargoes for all regions according to steps (1)-(4). 

(6) Divide the cargoes in the hub into different groups regarding the destinations and sorting 

them by scenario first and cargo type second (decreasing volume of cargo), as in 

Table ‎4.30. Constraint (4.11) is thus satisfied.  

(7) Starting from the first cargo with Destination 1, randomly choose a type of container from 

the container set (1 to 7). If this type of container is booked in Region 1 and has not been 

chosen before, load this cargo into this container; if this type of container is booked in 

Region 1 and has been chosen for the same destination, if the total loaded volume and 

weight for this container do not exceed its limitations, load this cargo into this container; 

otherwise, check for other regions. If a suitable container still has not been found, 

consider the same type of container in the hub. If this fails, delete this type of container 

from the container set and randomly choose another element to do the same loop until a 

suitable one is found. Record the container number, destination and container type. 

Constraints (4.27)-(4.30) are thus satisfied. 

(8) Schedule the rest of the cargoes in the hub according to step (7). The sequence is ordering 

the first cargo in different groups, then the second cargo in different groups and so on.  

(9) Calculate the container and pre-used container booking plan, the urgent rental/return 

plan in the hub. 

(10) Calculate the total cost. 

Genetic operators design 

In order to efficiently explore the solution space, the crossover and mutation operations are 

needed. We use a five-point crossover for all chromosomes in regions and hub. We will do the 

crossover for regions one by one first, then for the hub. The crossover should follow the rule that, 

after crossover, the total loaded volume and weight for a changed container should not exceed its 

limitations. Otherwise, we will not do a crossover for this cargo. Table ‎4.33 gives an example of 

two parents which are selected to do a five-point crossover. The blue rows should be kept; the 

red rows are for a crossover. After the third crossover, we find that the third and fourth cargo in 

Parent 1 are both loaded into container 7: this will exceed the volume limitation of container 7. 

Therefore we do not do the third crossover. Other crossovers have no problems. Table ‎4.34 lists 

the two children after crossover. Hence, the five-point crossover guarantees that the generated 

children will remain feasible if parents are feasible. 

 

Table ‎4.33 An illustration of two parents which are selected to do a five-point crossover 

Parent 1  Parent 2 



Chapter 4: International Air Cargo Forwarding Problem 

110 

2  6 
2  1 
4  7 
7  1 
5  3 
6  4 
1  2 
5  4 
3  3 
4  5 
6  3 
5  5 

 

Table ‎4.34 The two children after crossover 

Child 1  Child 2 
2  6 
1  2 
4  7 
7  1 
5  3 
4  6 
2  1 
4  5 
3  3 
4  5 
3  6 
5  5 

 

It should be noticed that after crossover in regions, the container booking plan may change. For 

example, after crossover, one container may be cancelled, but it is still used in the pre-used 

container plan in the hub. Therefore, there should be a correction for the cargo loading plan in 

the hub. The steps for this correction are as follow: find the cargoes loaded into that container 

first and move each item one by one into the same type of pre-used container from other regions. 

Otherwise, try to move them one-by-one into the same container type in the hub. If some of 

them are still left, randomly find other container types for them just like the steps in choosing the 

initial population. We will record all the total costs, including doing crossover, for one region or 

the hub and doing crossover for all cargo loading variables and then choose the first two cheaper 

choices one as the output crossover solutions. The mutation operator has a similar process to 

crossover.  

Each operator is performed with a certain probability that is known in advance by the GA 

parameter settings. The crossover rate and mutation rate determine the performance of GA; 

therefore, proper value settings are needed in order to ensure the convergence of GA to the 
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global optimal neighbourhood in a reasonable time. The population size is kept unchanged during 

the crossover and mutation operations. 

Offspring acceptance strategy 

We use a semi-greedy strategy to accept the offspring created by the GA operators. In this 

strategy, an offspring is accepted as the new generation only if its total cost is less than the 

average of its parents. This could make sure the best function value in any generation is no worse 

than that of previous generations. This approach enables GA to reduce the computation time and 

results in a fast convergence toward an optimal solution. 

Parents selection strategy 

The fitness of each solution is obtained by calculating its objective function value, the total cost. 

We use the “roulette wheel” method to select parents. It is preferable that the individuals with 

smaller total costs are chosen as parents for the next generation. 

Stopping criterion 

In order to balance the searching computation time, as well as evolving an approximate optimal 

solution, we use two criteria as stopping rules: (1) the maximum number of evolving generations 

allowed for GA, and (2) the standard deviation of the fitness values of chromosomes in the 

current generation is below a small value. 

4.4.2 Computational results by GA 

We use the same initial values in the two-stage stochastic case in Section 4.2.2.3 to test the GA 

results. The corresponding parameters we choose are: maximum generation 50, population size 

200, crossover rate 0.7 and mutation rate 0.1. Table ‎4.35 lists the tests for GA and the 

comparisons for the two-stage stochastic model. We run the GA programme 30 times and choose 

the average of the results. From Table ‎4.35, we know that AIMMS can get the optimal solution for 

the two-stage stochastic model.  However, the computing time is quite different between 

different tests from 10 minutes to 10 hours. GA only takes no more than 10 minutes, but does not 

find the optimal solution. The distance between GA and AIMMS in Test I is smaller than others, 

occupying 6.82% of the optimal solution. That means in the good economy environment, GA 

could provide better solutions. We also do more tests by changing the corresponding parameters. 

If the population size decreases, the results become worse. And for other tests the average of the 

total costs will be similar, do not have significant change. Therefore we do not list the tests results 

here.    
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Table ‎4.35 Comparison between GA and AIMMS for Two-stage stochastic model 

Test I II III 

Total cost by GA 1288726 1067032 955656 

Total cost by AIMMS 1206444 979056 866217 

Distance between GA and AIMMS 6.82% 8.99% 10.33% 

Computing time for AIMMS to get the optimal result (seconds) 36621.38 3876.64 639.34 

 

Figure ‎4.9 gives one example of the typical convergence process for GA. We can observe that our 

proposed GA reached convergence quickly after 25 generations and stopped at generation 43 due 

to the very low deviation of the population. 

 

 

Figure ‎4.9 The typical convergence process of GA in Test I 

GA for the multi-stage stochastic model could use a similar method of design by adding a new 

container, type 8. If the cargo chooses Container 8, this cargo should be stored for the next day’s 

flight; the stored cargo should be considered first in the next day’s loading plan and Container 8 

cannot be chosen anymore. It could ensure the assumption that the air cargoes can be 

transported with one day’s delay. Table ‎4.36 and Table ‎4.37 present the comparison between GA 

and AIMMS for the three-stage stochastic model and robust model with the trade-off between 

model robustness and solution robustness. We can see that for many tests, the GA can achieve 
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better solutions than AIMMS but still has an obvious distance with the lower bound which is 

provided by AIMMS. Not few times AIMMS provides a little better solution than GA. However 

time is the biggest advantage for GA. All the tests by GA run less than 30 minutes. Figure ‎4.10 lists 

the tests for the three-stage stochastic model with different probabilities. The results of these 

tests are calculated by GA. We can find a similar conclusion in that the three-stage model is 

greatly dependent on the probabilities of scenarios.  

 

Table ‎4.36 Comparison between GA and AIMMS for three-stage stochastic model 

Test I II III 

Total cost by AIMMS 2836720 2266843 2022581 

Total cost by GA 2773415 2208467 1978423 

Lower bound 2606252 2073880 1805892 

Distance between AIMMS and Lower bound 8.12% 8.51% 10.71% 

Distance between GA and Lower bound 6.03% 6.09% 8.72% 

Computing time by AIMMS (seconds) 70860.69 46873.65 140961.85 

 
 

Table ‎4.37 Comparison between GA and AIMMS for three-stage robust optimisation model 

Test I II III 

Total cost by AIMMS 2727075 2286350 1950941 

Total cost by GA 2793648 2253259 1892472 

Lower bound 2572298 2032928 1720935 

Distance between AIMMS and Lower bound 5.68% 11.08% 11.79% 

Distance between GA and Lower bound 7.92% 9.78% 9.06% 

Computing time by AIMMS (seconds) 52308.69 84363.07 72315.36 
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Figure ‎4.10 Total costs for different tests for three-stage stochastic model 

4.5 Conclusion 

In this chapter we build a new international air cargo forwarding problem under uncertainty, 

which means the cargoes need to be transported from regions to destinations via a hub. The air 

forwarders not only have to make a decision about the number of containers to be booked for the 

regions and hub in advance, before accurate customers’ information becomes available, but also 

have to decide the number of extra containers to be required or the containers to be returned 

after the realisation of uncertainty.  

For this air cargo forwarding problem, we develop stochastic models and three types of robust 

optimisation models for one period and multi-period cases. For the large scale problem, for which 

the computer software cannot give an optimal solution, we also present a new way to design a 

genetic algorithm to get better solutions. 

Computational results show that the stochastic models can provide effective and cost-efficient 

solutions; the robust optimisation models can provide a more responsive and flexible system with 

less risk. Moreover, GA can provide better results than mathematical programming software for 

the large size problem. 
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Chapter 5:  Conclusion 

This thesis focuses on the global production planning and international air cargo forwarding 

problems under uncertainty. The final chapter summarizes the overall content of my thesis, 

highlights the specific contributions and introduces the limitations and further research.  

5.1 Summary of research 

Our thesis firstly helps supply chain managers to solve the multi-period production planning 

problems with demand uncertainty and quota limitation. Next, we introduce a new logistics 

problem: the air cargo forwarders should make decisions in regions and hub with uncertain cargo 

quantity to transport their cargoes from different regions to different destinations via a hub. We 

provide both stochastic and robust models to solve the one-day’s flight case and multi-day’s flight 

case.  

At the beginning, we build up a multi-stage stochastic model for multi-period, multi-product and 

multi-plant production planning problems under uncertain demand and limited quota. The 

objective function is to minimise the total production cost. In this model we assume that the 

production plan should satisfy uncertainties exactly. Then we introduce the multi-stage robust 

model with model robustness to remove that assumption. Meanwhile, two more multi-stage 

robust models with solution robustness and the trade-off between model robustness and solution 

robustness are developed to test how the uncertainty impacts the total production cost. 

In the logistics area, we present a new air cargo forwarding problem that means air cargoes 

should be transported from different regions to different destinations via a hub for consolidating. 

The forwarders should make the air containers booking plans for all regions and hub one week in 

advance. According to the general formulation of the multi-stage stochastic model, if there is one 

day’s flight per week to do the air cargo forwarding work, a two-stage model will be enough; if 

there is more than one day’s flights per week, a multi-stage model could be considered. 

Therefore, we provide all the corresponding models for this new problem, including two-stage 

and multi-stage stochastic models and three types of two-stage and multi-stage robust models. 

When the problem size increases, using computer software cannot get the optimal solution. And 

when the problem continues to increase, the software may not be able to run. Therefore, we 

produce a new way to design the GA in order to achieve a feasible and better solution in short 

computing time.  
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Many results and tests show that multi-stage model stochastic models can provide effective and 

cost-efficient solutions; the robust optimisation models can provide a more responsive and 

flexible system with less risk; and the GA we proposed can achieve better solutions than 

computer software for the large-scale problem.   

5.2 Limitations of the thesis 

It is noticed that there are some limitations in this thesis. 

First, the multi-stage stochastic model for production planning problems only focuses on the 

uncertainties with demand and quota limitations. In the real world, a lot of things are uncertain. 

For example, the exchange rate changes at least every hour, which is an important factor for 

international companies; the cost of raw materials may change due to different scenarios being 

realised.   

Second, the multi-stage stochastic models strongly depend on the forecasting probabilities of 

uncertainty. In this thesis, we assume the probabilities are known data. However, it is very 

difficult to obtain extremely accurate forecasting data for multi-period problems. Therefore, a 

perfect forecasting method would help the multi-stage stochastic model to develop much more 

quickly in global supply chains and logistics problems. 

There are many assumptions to make our model simpler. For examples, the raw material costs are 

fixed for the production planning problem; the ratio between skilled and non-skilled working time 

is used only in whole periods to control the products quality; loading and repacking containers 

costs in the hub are fixed. 

Finally, the multi-stage models for air cargo forwarding problems are quite complex. Although the 

GA method we introduced in this thesis could find a feasible and better solution than optimisation 

software, the solution is still the optimal one and has 10% distance with the lower bound. 

5.3 Recommendations 

To address the limitations introduced above, the following were identified as further research 

directions. 

Firstly, the addition of some other factors, such as transportation cost and exchange rate cost, 

should make the multi-stage stochastic model for production planning problems more applicable 

to real-life problem application. 
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Secondly, cooperation with a forecasting team to get more accurate forecasting data will make 

the multi-stage models more practical. 

Thirdly, reduction of some assumptions could make the modelling more related to reality. The 

raw material costs could be uncertain. The ratio between skilled and non-skilled working time can 

be controlled in each period for each kind of product by adding some constraints. The costs for 

loading and repacking containers could be considered in detail. For example, some containers 

may not need to be repacked if they are fully occupied by cargoes and all the cargoes are going to 

the same destination. 

Finally, considering some other heuristic approaches such as Tabu Search, Simulated Annealing 

and so on might find better solutions or even optimal solutions.  
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Appendix A  

Table A1. Raw material cost, labour cost, labour time and machine time per unit 

 

Table A2. Maximum machine, labour and overtime capacity and minimum work time 

Plan
t 

Perio
d 

Maximu
m 

machine 
regular 
capacity 

(hrs) 

Maximu
m 

machine 
additiona
l capacity 

(hrs) 

Maximu
m 

capacity 
of skilled 
workers 

(hrs) 

Maximu
m 

capacity 
of non-
skilled 

workers 
(hrs) 

Maximu
m 

overtime 
by skilled 
workers 

(hrs) 

Maximu
m 

overtime 
by non-
skilled 

workers 
(hrs) 

Minimu
m labour 

work 
time 
(hrs) 

1 

1 5500 250 4800 2400 2400 1200 2400 

2 5500 250 4800 2400 2400 1200 2400 

3 5500 250 4800 2400 2400 1200 2400 

4 5500 250 4800 2400 2400 1200 2400 

2 

1 5000 250 3840 1920 1920 960 1800 

2 5000 250 3840 1920 1920 960 1800 

3 5000 250 3840 1920 1920 960 1800 

4 5000 250 3840 1920 1920 960 1800 

3 

1 5000 200 2400 1200 1200 600 1500 

2 5000 200 2400 1200 1200 600 1500 

3 5000 200 2400 1200 1200 600 1500 

4 5000 200 2400 1200 1200 600 1500 

 

 

Product Plant 
Raw 

material 
cost ($) 

Labour 
cost of 
skilled 

workers 
($) 

Labour cost 
of non-
skilled 

workers ($) 

Labour 
time for 
skilled 

workers 
(hrs) 

Labour 
time for 

non-skilled 
workers 

(hrs) 

Machine 
time for 
skilled 

workers 
(hrs) 

Machine 
time for 

non-skilled 
workers 

(hrs) 

1 

1 4 4.5 4 2 2.25 1.75 2.25 

2 4.2 4 3.5 2.25 2.5 2 2.5 

3 4.3 3.5 3 2.5 2.75 2.25 2.75 

2 

1 3 4 3.5 1.5 1.75 1.25 1.75 

2 3.2 3.5 3 1.75 2 1.5 2 

3 3.3 3 2.5 2 2.25 1.75 2.25 

3 

1 2 3 2.5 1 1.25 0.75 1.25 

2 2.2 2.5 2 1.25 1.5 1 1.5 

3 2.3 2 1.5 1.5 1.75 1.25 1.75 
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Table A3. Machine cost and overtime labour cost per hour. 

Plant 
Regular machine cost 

for production ($) 
Additional machine 

cost for production ($) 
Overtime cost for 
skilled worker ($) 

Overtime cost for 
non-skilled worker 

($) 

1 0.05 0.055 6 5 
2 0.06 0.065 5 4 
3 0.07 0.075 4 3 

 

Table A4. Initial quota cost per unit and the initial quota quantity. 

Product 1 2 3 

Initial quota cost per unit ($) 20.5 13 6.55 
Initial quota quantity 7700 6800 5200 
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Appendix B  

Table B1. Shortage/surplus and under-/Over-quota for each scenario in third period (units) 

 
Purchased 
products 

Inventory 
Purchased 

quotas 
Stored quotas 

Product 1 2 3 1 2 3 1 2 3 1 2 3 

Scenario 

(𝑠1𝑠1𝑠1)       200 200     

(𝑠1𝑠1𝑠2)    100 100 100 100 100    100 

(𝑠1𝑠1𝑠3)    200 200 200      200 

(𝑠1𝑠2𝑠1)       100 100     

(𝑠1𝑠2𝑠2)    100 100 100      100 

(𝑠1𝑠2𝑠3)    200 200 200    100 100 200 

(𝑠1𝑠3𝑠1)       100 100     

(𝑠1𝑠3𝑠2)    100 100 100      100 

(𝑠1𝑠3𝑠3)    200 200 200    100 100 200 

(𝑠2𝑠1𝑠1)       100      

(𝑠2𝑠1𝑠2)    100 100 100     100 100 

(𝑠2𝑠1𝑠3)    200 200 200    100 200 200 

(𝑠2𝑠2𝑠1)       100 100     

(𝑠2𝑠2𝑠2)    100 100 100      100 

(𝑠2𝑠2𝑠3)    200 200 200    100 100 200 

(𝑠2𝑠3𝑠1)       100 100     

(𝑠2𝑠3𝑠2)    100 100 100      100 

(𝑠2𝑠3𝑠3)    200 200 200    100 100 200 

(𝑠3𝑠1𝑠1)             

(𝑠3𝑠1𝑠2)    100 100 100    100 100 100 

(𝑠3𝑠1𝑠3)    200 200 200    200 200 200 

(𝑠3𝑠2𝑠1)       100 100     

(𝑠3𝑠2𝑠2)    100 100 100      100 

(𝑠3𝑠2𝑠3)    200 200 200    100 100 200 

(𝑠3𝑠3𝑠1)       100 100     

(𝑠3𝑠3𝑠2)    100 100 100      100 

(𝑠3𝑠3𝑠3)    200 200 200    100 100 200 

 

Table B2. Production quantity by skilled workers for fourth period (units) 

Product 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 

Sc
en

ar
io

 

(𝑠1𝑠1𝑠1)  865 268   256    

(𝑠1𝑠1𝑠2)  740 293   224    

(𝑠1𝑠1𝑠3)  418 415   69    

(𝑠1𝑠2𝑠1)  865 268   256    

(𝑠1𝑠2𝑠2)  740 293   224    

(𝑠1𝑠2𝑠3)  418 416   69    

(𝑠1𝑠3𝑠1)  865 268   256    

(𝑠1𝑠3𝑠2)  740 293   225    

(𝑠1𝑠3𝑠3)  418 416   69    

(𝑠2𝑠1𝑠1) 1137 823 184   550    
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(𝑠2𝑠1𝑠2) 1137 698 209   518    

(𝑠2𝑠1𝑠3) 1137 376 331   363    

(𝑠2𝑠2𝑠1) 1160 796 209   518    

(𝑠2𝑠2𝑠2) 1160 671 234   487    

(𝑠2𝑠2𝑠3) 1160 348 356   331    

(𝑠2𝑠3𝑠1)  900 234   1045    

(𝑠2𝑠3𝑠2)  775 259   1013    

(𝑠2𝑠3𝑠3)  452 381   858    

(𝑠3𝑠1𝑠1)  909 224   580    

(𝑠3𝑠1𝑠2)  784 249   548    

(𝑠3𝑠1𝑠3)  462 372   393    

(𝑠3𝑠2𝑠1) 1056 767 249   548    

(𝑠3𝑠2𝑠2) 1056 642 274   517    

(𝑠3𝑠2𝑠3) 1056 319 397   361    

(𝑠3𝑠3𝑠1)  859 274   1146    

(𝑠3𝑠3𝑠2)  734 299   1114    

(𝑠3𝑠3𝑠3)  412 422   959    

 

Table B3. Production quantity by non-skilled workers for fourth period (units) 

Product 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 

Sc
en

ar
io

 

(𝑠1𝑠1𝑠1) 1067     1844  1500  

(𝑠1𝑠1𝑠2) 1067     1776  1313  

(𝑠1𝑠1𝑠3) 1067     1631  829 271 

(𝑠1𝑠2𝑠1) 1067     1844  1500  

(𝑠1𝑠2𝑠2) 1067     1776  1313 87 

(𝑠1𝑠2𝑠3) 1067     1631  829 271 

(𝑠1𝑠3𝑠1) 1067     1844  1500  

(𝑠1𝑠3𝑠2) 1067     1775  1313 87 

(𝑠1𝑠3𝑠3) 1067     1631  829 271 

(𝑠2𝑠1𝑠1) 56     1550  1308 192 

(𝑠2𝑠1𝑠2) 56     1482  1120 280 

(𝑠2𝑠1𝑠3) 56     1337  637 463 

(𝑠2𝑠2𝑠1) 36     1582  1349 151 

(𝑠2𝑠2𝑠2) 36     1513  1162 238 

(𝑠2𝑠2𝑠3) 36     1369  678 422 

(𝑠2𝑠3𝑠1) 1067     1055  1231 269 

(𝑠2𝑠3𝑠2) 1067     987  1043 357 

(𝑠2𝑠3𝑠3) 1067     842  559 541 

(𝑠3𝑠1𝑠1) 1067     1520  1351 149 

(𝑠3𝑠1𝑠2) 1067     1452  1163 237 

(𝑠3𝑠1𝑠3) 1067     1307  680 420 

(𝑠3𝑠2𝑠1) 128     1552  1392 108 

(𝑠3𝑠2𝑠2) 128     1483  1205 195 

(𝑠3𝑠2𝑠3) 128     1339  721 379 

(𝑠3𝑠3𝑠1) 1067     954  1254 246 

(𝑠3𝑠3𝑠2) 1067     886  1066 334 

(𝑠3𝑠3𝑠3) 1067     741  582 518 



Appendix B 

123 

Table B4. Quotas allocated for the fourth period (units) 

Product 1 2 3 

Scenario 

(𝑠1𝑠1𝑠1) 2000 1900 1300 

(𝑠1𝑠1𝑠2) 2000 1900 1300 

(𝑠1𝑠1𝑠3) 2000 1900 1300 

(𝑠1𝑠2𝑠1) 2000 1900 1400 

(𝑠1𝑠2𝑠2) 2000 1900 1400 

(𝑠1𝑠2𝑠3) 2000 1900 1400 

(𝑠1𝑠3𝑠1) 2100 2000 1500 

(𝑠1𝑠3𝑠2) 2100 2000 1500 

(𝑠1𝑠3𝑠3) 2100 2000 1500 

(𝑠2𝑠1𝑠1) 2000 1900 1400 

(𝑠2𝑠1𝑠2) 2000 1900 1400 

(𝑠2𝑠1𝑠3) 2000 1900 1400 

(𝑠2𝑠2𝑠1) 2000 2000 1500 

(𝑠2𝑠2𝑠2) 2000 2000 1500 

(𝑠2𝑠2𝑠3) 2000 2000 1500 

(𝑠2𝑠3𝑠1) 2100 2100 1600 

(𝑠2𝑠3𝑠2) 2100 2100 1600 

(𝑠2𝑠3𝑠3) 2100 2100 1600 

(𝑠3𝑠1𝑠1) 2000 2000 1500 

(𝑠3𝑠1𝑠2) 2000 2000 1500 

(𝑠3𝑠1𝑠3) 2000 2000 1500 

(𝑠3𝑠2𝑠1) 2100 2100 1600 

(𝑠3𝑠2𝑠2) 2100 2100 1600 

(𝑠3𝑠2𝑠3) 2100 2100 1600 

(𝑠3𝑠3𝑠1) 2200 2200 1700 

(𝑠3𝑠3𝑠2) 2200 2200 1700 

(𝑠3𝑠3𝑠3) 2200 2200 1700 

 

Table B5. Shortage/surplus and under-/Over-quota for each scenario in fourth period (units) 

 
Purchased 
products 

Inventory Purchased quotas Stored quotas 

Product 1 2 3 1 2 3 1 2 3 1 2 3 

Sc
en

ar
io

 

(𝑠1𝑠1𝑠1𝑠1)       200 200 200    

(𝑠1𝑠1𝑠1𝑠2)    100 100 100 100 100 100    

(𝑠1𝑠1𝑠1𝑠3)    200 200 200       

(𝑠1𝑠1𝑠2𝑠1)       200 200 100    

(𝑠1𝑠1𝑠2𝑠2)    100 100 100 100 100     

(𝑠1𝑠1𝑠2𝑠3)    200 200 200      100 

(𝑠1𝑠1𝑠3𝑠1) 100 200 200    200 200     

(𝑠1𝑠1𝑠3𝑠2)  100 100    100 100    100 

(𝑠1𝑠1𝑠3𝑠3)    100        200 

(𝑠1𝑠2𝑠1𝑠1)       200 200 100    

(𝑠1𝑠2𝑠1𝑠2)    100 100 100 100 100     

(𝑠1𝑠2𝑠1𝑠3)    200 200 200      100 

(𝑠1𝑠2𝑠2𝑠1)       200 200     

(𝑠1𝑠2𝑠2𝑠2)    100 100 100 100 100    100 

(𝑠1𝑠2𝑠2𝑠3)    200 200 200      200 
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(𝑠1𝑠2𝑠3𝑠1) 100 200 200    100 100    100 

(𝑠1𝑠2𝑠3𝑠2)  100 100         200 

(𝑠1𝑠2𝑠3𝑠3)    100      100 100 300 

(𝑠1𝑠3𝑠1𝑠1)       100 100     

(𝑠1𝑠3𝑠1𝑠2)    100 100 100      100 

(𝑠1𝑠3𝑠1𝑠3)    200 200 200    100 100 200 

(𝑠1𝑠3𝑠2𝑠1)       100 100    100 

(𝑠1𝑠3𝑠2𝑠2)    100 100 100      200 

(𝑠1𝑠3𝑠2𝑠3)    200 200 200    100 100 300 

(𝑠1𝑠3𝑠3𝑠1) 100 200 200         200 

(𝑠1𝑠3𝑠3𝑠2)  100 100       100 100 300 

(𝑠1𝑠3𝑠3𝑠3)    100      200 200 400 

(𝑠2𝑠1𝑠1𝑠1)       200 200 100    

(𝑠2𝑠1𝑠1𝑠2)    100 100 100 100 100     

(𝑠2𝑠1𝑠1𝑠3)    200 200 200      100 

(𝑠2𝑠1𝑠2𝑠1)       200 100     

(𝑠2𝑠1𝑠2𝑠2)    100 100 100 100     100 

(𝑠2𝑠1𝑠2𝑠3)    200 200 200     100 200 

(𝑠2𝑠1𝑠3𝑠1) 100 200 200    100     100 

(𝑠2𝑠1𝑠3𝑠2)  100 100        100 200 

(𝑠2𝑠1𝑠3𝑠3)    100      100 200 300 

(𝑠2𝑠2𝑠1𝑠1)       200 100     

(𝑠2𝑠2𝑠1𝑠2)    100 100 100 100     100 

(𝑠2𝑠2𝑠1𝑠3)    200 200 200     100 200 

(𝑠2𝑠2𝑠2𝑠1)       200 100    100 

(𝑠2𝑠2𝑠2𝑠2)    100 100 100 100     200 

(𝑠2𝑠2𝑠2𝑠3)    200 200 200     100 300 

(𝑠2𝑠2𝑠3𝑠1) 100 200 200    100     200 

(𝑠2𝑠2𝑠3𝑠2)  100 100        100 300 

(𝑠2𝑠2𝑠3𝑠3)    100      100 200 400 

(𝑠2𝑠3𝑠1𝑠1)       100     100 

(𝑠2𝑠3𝑠1𝑠2)    100 100 100     100 200 

(𝑠2𝑠3𝑠1𝑠3)    200 200 200    100 200 300 

(𝑠2𝑠3𝑠2𝑠1)       100     200 

(𝑠2𝑠3𝑠2𝑠2)    100 100 100     100 300 

(𝑠2𝑠3𝑠2𝑠3)    200 200 200    100 200 400 

(𝑠2𝑠3𝑠3𝑠1) 100 200 200        100 300 

(𝑠2𝑠3𝑠3𝑠2)  100 100       100 200 400 

(𝑠2𝑠3𝑠3𝑠3)    100      200 300 500 

(𝑠3𝑠1𝑠1𝑠1)       200 100     

(𝑠3𝑠1𝑠1𝑠2)    100 100 100 100     100 

(𝑠3𝑠1𝑠1𝑠3)    200 200 200     100 200 

(𝑠3𝑠1𝑠2𝑠1)       100     100 

(𝑠3𝑠1𝑠2𝑠2)    100 100 100     100 200 

(𝑠3𝑠1𝑠2𝑠3)    200 200 200    100 200 300 

(𝑠3𝑠1𝑠3𝑠1) 100 200 200        100 200 

(𝑠3𝑠1𝑠3𝑠2)  100 100       100 200 300 

(𝑠3𝑠1𝑠3𝑠3)    100      200 300 400 

(𝑠3𝑠2𝑠1𝑠1)       100     100 

(𝑠3𝑠2𝑠1𝑠2)    100 100 100     100 200 

(𝑠3𝑠2𝑠1𝑠3)    200 200 200    100 200 300 

(𝑠3𝑠2𝑠2𝑠1)       100     200 
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(𝑠3𝑠2𝑠2𝑠2)    100 100 100     100 300 

(𝑠3𝑠2𝑠2𝑠3)    200 200 200    100 200 400 

(𝑠3𝑠2𝑠3𝑠1) 100 200 200        100 300 

(𝑠3𝑠2𝑠3𝑠2)  100 100       100 200 400 

(𝑠3𝑠2𝑠3𝑠3)    100      200 300 500 

(𝑠3𝑠3𝑠1𝑠1)           100 200 

(𝑠3𝑠3𝑠1𝑠2)    100 100 100    100 200 300 

(𝑠3𝑠3𝑠1𝑠3)    200 200 200    200 300 400 

(𝑠3𝑠3𝑠2𝑠1)           100 300 

(𝑠3𝑠3𝑠2𝑠2)    100 100 100    100 200 400 

(𝑠3𝑠3𝑠2𝑠3)    200 200 200    200 300 500 

(𝑠3𝑠3𝑠3𝑠1) 100 200 200       100 200 400 

(𝑠3𝑠3𝑠3𝑠2)  100 100       200 300 500 

(𝑠3𝑠3𝑠3𝑠3)    100      300 400 600 
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Appendix C  

Table C1. Production quantity for first period (units) 

Product 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 

By skilled workers 1200 513 187   967    

By non-skilled workers      533  1200  

 

Table C2. Quotas allocated for first period 

Product 1 2 3 

Quota (units) 1828 1500 1200 

 

Table C3. Shortage/surplus and under-/Over-quota for each scenario in first period (units) 

 
Purchased 
products 

Inventory 
Purchased 

quotas 
Stored quotas 

Product 1 2 3 1 2 3 1 2 3 1 2 3 

Scenario 
(𝑠1)       72      

(𝑠2)    100 100 100    28 100 100 

(𝑠3)    200 200 200    128 200 200 

 

Table C4. Production quantity for second period (units) 

 By skilled workers By non-skilled workers 

Product 1 2 3 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Sc
en

ar
io

 

(𝑠1)  181 752   633    1067     1067  1300  

(𝑠2)  40 793   580    1067     1020  1140 60 

(𝑠3) 
 67 667   433    1067     1067  1100  

 

Table C5. Quotas allocated for second period (units) 

Product 1 2 3 

Scenario 
(𝑠1) 1972 1700 1300 

(𝑠2) 1872 1583 1200 

(𝑠3) 1772 1400 1100 
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Table C6. Shortage/surplus and under-/Over-quota for each scenario in second period (units) 

 
Purchased 
products 

Inventory 
Purchased 

quotas 
Stored quotas 

Product 1 2 3 1 2 3 1 2 3 1 2 3 

Scenario 

(𝑠1𝑠1)        28      

(𝑠1𝑠2)    100 100 100    72 100 100 

(𝑠1𝑠3)    200 200 200    172 200 200 

(𝑠2𝑠1)       100 17     

(𝑠2𝑠2)    100 100 100     83 100 

(𝑠2𝑠3)    200 200 200    100 183 200 

(𝑠3𝑠1)       100 100     

(𝑠3𝑠2)    100 100 100      100 

(𝑠3𝑠3)    200 200 200    100 100 200 

 

Table C7. Production quantity for third period (units) 

 By skilled workers By non-skilled workers 

Product 1 2 3 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Sc
en

ar
io

 

(𝑠1𝑠1)  1200 857 43   859         1041  682 718 

(𝑠1𝑠2)  865 68   1383    1067     417  336 964 

(𝑠1𝑠3) 1200 607 93   794         906  307 893 

(𝑠2𝑠1)  
100

7 
27   880    1067     1020  654 746 

(𝑠2𝑠2)  933    1471    1067     329  223 1077 

(𝑠2𝑠3)  757 77   816    1067     884  280 920 

(𝑠3𝑠1)  966 67   1466    1067     434  539 861 

(𝑠3𝑠2) 1200 708 92   1434         366  351 949 

(𝑠3𝑠3)  816 18   1530    1067     170   1200 

  

Table C8. Quotas allocated for the third period (units) 

Product 1 2 3 

Scenario 

(𝑠1𝑠1)  1914 1800 1400 

(𝑠1𝑠2) 1900 1700 1300 

(𝑠1𝑠3) 1800 1600 1200 

(𝑠2𝑠1) 2000 1817 1400 

(𝑠2𝑠2) 2000 1717 1300 

(𝑠2𝑠3) 1900 1617 1200 

(𝑠3𝑠1) 2100 1900 1400 

(𝑠3𝑠2) 2000 1900 1300 

(𝑠3𝑠3) 1900 1700 1200 
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Table C9. Shortage/surplus and under-/Over-quota for each scenario in third period (units) 

 
Purchased 
products 

Inventory 
Purchased 

quotas 
Stored quotas 

Product 1 2 3 1 2 3 1 2 3 1 2 3 

Scenario 

(𝑠1𝑠1𝑠1)       186 100     

(𝑠1𝑠1𝑠2)    100 100 100 86     100 

(𝑠1𝑠1𝑠3)    200 200 200    14 100 200 

(𝑠1𝑠2𝑠1)       128 100     

(𝑠1𝑠2𝑠2)    100 100 100 28     100 

(𝑠1𝑠2𝑠3)    200 200 200    72 100 200 

(𝑠1𝑠3𝑠1)       128 100     

(𝑠1𝑠3𝑠2)    100 100 100 28     100 

(𝑠1𝑠3𝑠3)    200 200 200    72 100 200 

(𝑠2𝑠1𝑠1)       100 83     

(𝑠2𝑠1𝑠2)    100 100 100     17 100 

(𝑠2𝑠1𝑠3)    200 200 200    100 117 200 

(𝑠2𝑠2𝑠1)       100 100     

(𝑠2𝑠2𝑠2)    100 100 100      100 

(𝑠2𝑠2𝑠3)    200 200 200    100 100 200 

(𝑠2𝑠3𝑠1)       100 100     

(𝑠2𝑠3𝑠2)    100 100 100      100 

(𝑠2𝑠3𝑠3)    200 200 200    100 100 200 

(𝑠3𝑠1𝑠1)             

(𝑠3𝑠1𝑠2)    100 100 100    100 100 100 

(𝑠3𝑠1𝑠3)    200 200 200    200 200 200 

(𝑠3𝑠2𝑠1)       100      

(𝑠3𝑠2𝑠2)    100 100 100     100 100 

(𝑠3𝑠2𝑠3)    200 200 200    100 200 200 

(𝑠3𝑠3𝑠1)       100 100     

(𝑠3𝑠3𝑠2)    100 100 100      100 

(𝑠3𝑠3𝑠3)    200 200 200    100 100 200 

 

Table C10. Production quantity by skilled works for fourth period (units) 

Product 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 

Sc
en

ar
io

 

(𝑠1𝑠1𝑠1)  1133    1341    

(𝑠1𝑠1𝑠2)  994 12   1326    

(𝑠1𝑠1𝑠3)  758 75   1246    

(𝑠1𝑠2𝑠1) 1200 1000    785    

(𝑠1𝑠2𝑠2) 1200 875 25   753    

(𝑠1𝑠2𝑠3) 1200 625 75   690    

(𝑠1𝑠3𝑠1)  1133    1342    

(𝑠1𝑠3𝑠2)  1008 25   1310    

(𝑠1𝑠3𝑠3)  758 75   1247    

(𝑠2𝑠1𝑠1) 1200 1000    1341    

(𝑠2𝑠1𝑠2) 1200 875 25   1310    

(𝑠2𝑠1𝑠3) 1200 625 75   1246    

(𝑠2𝑠2𝑠1) 1200 948 52   719    

(𝑠2𝑠2𝑠2) 1200 823 77   687    
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(𝑠2𝑠2𝑠3) 1200 573 127   624    

(𝑠2𝑠3𝑠1) 1200 1000    1342    

(𝑠2𝑠3𝑠2) 1200 875 25   1311    

(𝑠2𝑠3𝑠3) 1200 625 75   1247    

(𝑠3𝑠1𝑠1) 1200 1000    867    

(𝑠3𝑠1𝑠2) 1200 875 25   835    

(𝑠3𝑠1𝑠3) 1200 625 75   772    

(𝑠3𝑠2𝑠1)  1133    867    

(𝑠3𝑠2𝑠2)  1008 25   835    

(𝑠3𝑠2𝑠3)  758 75   772    

(𝑠3𝑠3𝑠1) 1200 901 99   740    

(𝑠3𝑠3𝑠2) 1200 776 124   708    

(𝑠3𝑠3𝑠3) 1200 526 174   645    

 

Table C11. Production quantity by non-skilled works for fourth period (units) 

Product 1 2 3 
Plant 1 2 3 1 2 3 1 2 3 

Sc
en

ar
io

 

(𝑠1𝑠1𝑠1) 1067     759  845 655 

(𝑠1𝑠1𝑠2) 1067     674  636 764 

(𝑠1𝑠1𝑠3) 1067     554  283 917 

(𝑠1𝑠2𝑠1)      1315  1004 496 

(𝑠1𝑠2𝑠2)      1247  817 583 

(𝑠1𝑠2𝑠3)      1110  442 758 

(𝑠1𝑠3𝑠1) 1067     758  845 655 

(𝑠1𝑠3𝑠2) 1067     690  658 742 

(𝑠1𝑠3𝑠3) 1067     553  283 917 

(𝑠2𝑠1𝑠1)      759  845 655 

(𝑠2𝑠1𝑠2)      690  658 742 

(𝑠2𝑠1𝑠3)      554  283 917 

(𝑠2𝑠2𝑠1)      1381  1090 410 

(𝑠2𝑠2𝑠2)      1313  902 498 

(𝑠2𝑠2𝑠3)      1176  527 673 

(𝑠2𝑠3𝑠1)      758  845 655 

(𝑠2𝑠3𝑠2)      689  658 742 

(𝑠2𝑠3𝑠3)      553  283 917 

(𝑠3𝑠1𝑠1)      1233  981 519 

(𝑠3𝑠1𝑠2)      1165  794 606 

(𝑠3𝑠1𝑠3)      1028  419 781 

(𝑠3𝑠2𝑠1) 1067     1233  981 519 

(𝑠3𝑠2𝑠2) 1067     1165  793 607 

(𝑠3𝑠2𝑠3) 1067     1028  419 781 

(𝑠3𝑠3𝑠1)      1360  1145 355 

(𝑠3𝑠3𝑠2)      1292  957 443 

(𝑠3𝑠3𝑠3)      1155  582 618 
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Table C12. Quotas allocated for the fourth period (units) 

Product 1 2 3 

Scenario 

(𝑠1𝑠1𝑠1) 1986 1800 1300 

(𝑠1𝑠1𝑠2) 1986 1800 1300 

(𝑠1𝑠1𝑠3) 1986 1800 1300 

(𝑠1𝑠2𝑠1) 2000 1900 1400 

(𝑠1𝑠2𝑠2) 2000 1900 1400 

(𝑠1𝑠2𝑠3) 2000 1900 1400 

(𝑠1𝑠3𝑠1) 2100 2000 1500 

(𝑠1𝑠3𝑠2) 2100 2000 1500 

(𝑠1𝑠3𝑠3) 2100 2000 1500 

(𝑠2𝑠1𝑠1) 2000 1900 1400 

(𝑠2𝑠1𝑠2) 2000 1900 1400 

(𝑠2𝑠1𝑠3) 2000 1900 1400 

(𝑠2𝑠2𝑠1) 2000 2000 1500 

(𝑠2𝑠2𝑠2) 2000 2000 1500 

(𝑠2𝑠2𝑠3) 2000 2000 1500 

(𝑠2𝑠3𝑠1) 2100 2100 1600 

(𝑠2𝑠3𝑠2) 2100 2100 1600 

(𝑠2𝑠3𝑠3) 2100 2100 1600 

(𝑠3𝑠1𝑠1) 2000 2000 1500 

(𝑠3𝑠1𝑠2) 2000 2000 1500 

(𝑠3𝑠1𝑠3) 2000 2000 1500 

(𝑠3𝑠2𝑠1) 2100 2000 1600 

(𝑠3𝑠2𝑠2) 2100 2000 1600 

(𝑠3𝑠2𝑠3) 2100 2000 1600 

(𝑠3𝑠3𝑠1) 2200 2200 1700 

(𝑠3𝑠3𝑠2) 2200 2200 1700 

(𝑠3𝑠3𝑠3) 2200 2200 1700 

 

Table C13. Shortage/surplus and under-/Over-quota for each scenario in fourth period (units) 

 
Purchased 
products 

Inventory 
Purchased 

quotas 
Stored quotas 

Product 1 2 3 1 2 3 1 2 3 1 2 3 

Sc
en

ar
io

 

(𝑠1𝑠1𝑠1𝑠1)       214 300 200    

(𝑠1𝑠1𝑠1𝑠2)    100 100 100 114 200 100    

(𝑠1𝑠1𝑠1𝑠3)    200 200 200 14 100     

(𝑠1𝑠1𝑠2𝑠1)       214 300 100    

(𝑠1𝑠1𝑠2𝑠2)    72 100 100 114 200     

(𝑠1𝑠1𝑠2𝑠3)    172 200 200 14 100    100 

(𝑠1𝑠1𝑠3𝑠1)  100 100    200 200     

(𝑠1𝑠1𝑠3𝑠2)       100 100    100 

(𝑠1𝑠1𝑠3𝑠3)    100 100 100      200 

(𝑠1𝑠2𝑠1𝑠1)       200 200 100    

(𝑠1𝑠2𝑠1𝑠2)    100 100 100 100 100     

(𝑠1𝑠2𝑠1𝑠3)    200 200 200      100 

(𝑠1𝑠2𝑠2𝑠1)       200 200     

(𝑠1𝑠2𝑠2𝑠2)    100 100 100 100 100    100 

(𝑠1𝑠2𝑠2𝑠3)    200 200 200      200 
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(𝑠1𝑠2𝑠3𝑠1)  100 100    128 100    100 

(𝑠1𝑠2𝑠3𝑠2)       28     200 

(𝑠1𝑠2𝑠3𝑠3)    100 100 100    72 100 300 

(𝑠1𝑠3𝑠1𝑠1)       100 100     

(𝑠1𝑠3𝑠1𝑠2)    100 100 100      100 

(𝑠1𝑠3𝑠1𝑠3)    200 200 200    100 100 200 

(𝑠1𝑠3𝑠2𝑠1)       100 100    100 

(𝑠1𝑠3𝑠2𝑠2)    100 100 100      200 

(𝑠1𝑠3𝑠2𝑠3)    200 200 200    100 100 300 

(𝑠1𝑠3𝑠3𝑠1)  100 100    28     200 

(𝑠1𝑠3𝑠3𝑠2)          72 100 300 

(𝑠1𝑠3𝑠3𝑠3)    100 100 100    172 200 400 

(𝑠2𝑠1𝑠1𝑠1)       200 200 100    

(𝑠2𝑠1𝑠1𝑠2)    100 100 100 100 100     

(𝑠2𝑠1𝑠1𝑠3)    200 200 200      100 

(𝑠2𝑠1𝑠2𝑠1)       200 183     

(𝑠2𝑠1𝑠2𝑠2)    100 100 100 100 83    100 

(𝑠2𝑠1𝑠2𝑠3)    200 200 200     17 200 

(𝑠2𝑠1𝑠3𝑠1)  100 100    100 83    100 

(𝑠2𝑠1𝑠3𝑠2)           17 200 

(𝑠2𝑠1𝑠3𝑠3)    100 100 100    100 117 300 

(𝑠2𝑠2𝑠1𝑠1)       200 100     

(𝑠2𝑠2𝑠1𝑠2)    100 100 100 100     100 

(𝑠2𝑠2𝑠1𝑠3)    200 200 200     100 200 

(𝑠2𝑠2𝑠2𝑠1)       200 100    100 

(𝑠2𝑠2𝑠2𝑠2)    100 100 100 100     200 

(𝑠2𝑠2𝑠2𝑠3)    200 200 200     100 300 

(𝑠2𝑠2𝑠3𝑠1)  100 100    100     200 

(𝑠2𝑠2𝑠3𝑠2)           100 300 

(𝑠2𝑠2𝑠3𝑠3)    100 100 100    100 200 400 

(𝑠2𝑠3𝑠1𝑠1)       100     100 

(𝑠2𝑠3𝑠1𝑠2)    100 100 100     100 200 

(𝑠2𝑠3𝑠1𝑠3)    200 200 200    100 200 300 

(𝑠2𝑠3𝑠2𝑠1)       100     200 

(𝑠2𝑠3𝑠2𝑠2)    100 100 100     100 300 

(𝑠2𝑠3𝑠2𝑠3)    200 200 200    100 200 400 

(𝑠2𝑠3𝑠3𝑠1)  100 100        100 300 

(𝑠2𝑠3𝑠3𝑠2)          100 200 400 

(𝑠2𝑠3𝑠3𝑠3)    100 100 100    200 300 500 

(𝑠3𝑠1𝑠1𝑠1)       200 100     

(𝑠3𝑠1𝑠1𝑠2)    100 100 100 100     100 

(𝑠3𝑠1𝑠1𝑠3)    200 200 200     100 200 

(𝑠3𝑠1𝑠2𝑠1)       100     100 

(𝑠3𝑠1𝑠2𝑠2)    100 100 100     100 200 

(𝑠3𝑠1𝑠2𝑠3)    200 200 200    100 200 300 

(𝑠3𝑠1𝑠3𝑠1)  100 100        100 200 

(𝑠3𝑠1𝑠3𝑠2)          100 200 300 

(𝑠3𝑠1𝑠3𝑠3)    100 100 100    200 300 400 

(𝑠3𝑠2𝑠1𝑠1)       100 100    100 

(𝑠3𝑠2𝑠1𝑠2)    100 100 100      200 

(𝑠3𝑠2𝑠1𝑠3)    200 200 200    100 100 300 

(𝑠3𝑠2𝑠2𝑠1)       100     200 
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(𝑠3𝑠2𝑠2𝑠2)    100 100 100     100 300 

(𝑠3𝑠2𝑠2𝑠3)    200 200 200    100 200 400 

(𝑠3𝑠2𝑠3𝑠1)  100 100        100 300 

(𝑠3𝑠2𝑠3𝑠2)          100 200 400 

(𝑠3𝑠2𝑠3𝑠3)    100 100 100    200 300 500 

(𝑠3𝑠3𝑠1𝑠1)           100 200 

(𝑠3𝑠3𝑠1𝑠2)    100 100 100    100 200 300 

(𝑠3𝑠3𝑠1𝑠3)    200 200 200    200 300 400 

(𝑠3𝑠3𝑠2𝑠1)           100 300 

(𝑠3𝑠3𝑠2𝑠2)    100 100 100    100 200 400 

(𝑠3𝑠3𝑠2𝑠3)    200 200 200    200 300 500 

(𝑠3𝑠3𝑠3𝑠1)  100 100       100 200 400 

(𝑠3𝑠3𝑠3𝑠2)          200 300 500 

(𝑠3𝑠3𝑠3𝑠3)    100 100 100    300 400 600 
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