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Introduction

Analyzing the effects of a stroke rehabilitation intervention 
is typically achieved through comparing post- to pretraining 
values on outcome variables, but are there other clinically 
relevant analyses? Motor learning research has provided 
additional methods of interest. One relatively new method 
involves the continuous tracking of recovery profiles that 
can provide insight into rates of change of motor perfor-
mance during an intervention.1-5 Here we investigate the 
continuous tracking of recovery using upper extremity 
robotic training as the intervention.

Robotic interventions have generally been classified as 
having beneficial effects for survivors of stroke, particularly 
for the arm.6-8 While some of these studies have demonstrated 
similar outcomes to concentrated conventional therapy,9-11 
robots offer an unparalleled ability to deliver repetitive 

movements at high rates compared to conventional therapy. 
One such robot is the MIT-MANUS, which, in addition to 
providing a progressive target reaching training paradigm, 
also generates kinematic data through digital movement 
encoders that may provide insight into how the quantity of 
this robotic intervention affects motor recovery during the 

620301 NNRXXX10.1177/1545968315620301Neurorehabilitation and Neural RepairMassie et al
research-article2015

1University of Maryland School of Medicine, Baltimore, MD, USA
2Indiana University, Indianapolis, IN, USA
3University of Maryland College Park, College Park, MD, USA
4VA Maryland Health Care System, Baltimore, MD, USA
5Massachusetts Institute of Technology, Cambridge, MA, USA
6University of Southampton, Southampton, UK

Corresponding Author:
Crystal L. Massie, PhD, OTR, Indiana University, 1140 W Michigan St CF 
306, Indianapolis, IN 46202, USA. 
Email: massiec@iu.edu

A Clinically Relevant Method of  
Analyzing Continuous Change in  
Robotic Upper Extremity  
Chronic Stroke Rehabilitation

Crystal L. Massie, PhD, OTR1,2, Yue Du, MA3, Susan S. Conroy, DSc.PT4,  
H. Igo Krebs, PhD5, George F. Wittenberg, MD, PhD1,4,  
Christopher T. Bever, MD, MBA1,4, and Jill Whitall, PhD1,6

Abstract
Background. Robots designed for rehabilitation of the upper extremity after stroke facilitate high rates of repetition during 
practice of movements and record precise kinematic data, providing a method to investigate motor recovery profiles over 
time. Objective. To determine how motor recovery profiles during robotic interventions provide insight into improving 
clinical gains. Methods. A convenience sample (n = 22), from a larger randomized control trial, was taken of chronic stroke 
participants completing 12 sessions of arm therapy. One group received 60 minutes of robotic therapy (Robot only) and the 
other group received 45 minutes on the robot plus 15 minutes of translation-to-task practice (Robot + TTT). Movement 
time was assessed using the robot without powered assistance. Analyses (ANOVA, random coefficient modeling [RCM] 
with 2-term exponential function) were completed to investigate changes across the intervention, between sessions, and 
within a session. Results. Significant improvement (P < .05) in movement time across the intervention (pre vs post) was 
similar between the groups but there were group differences for changes between and within sessions (P < .05). The 
2-term exponential function revealed a fast and slow component of learning that described performance across consecutive 
blocks. The RCM identified individuals who were above or below the marginal model. Conclusions. The expanded analyses 
indicated that changes across time can occur in different ways but achieve similar goals and may be influenced by individual 
factors such as initial movement time. These findings will guide decisions regarding treatment planning based on rates of 
motor relearning during upper extremity stroke robotic interventions.
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course of robot-aided therapy. It does this by requiring robot-
unassisted evaluations periodically during the training that 
can be used to investigate the continuous time-course of the 
unassisted kinematic data generated by the MIT-MANUS 
across training.5 By examining changes during an interven-
tion, we can assess when the maximum benefit from robot 
training is gained and related questions regarding dosage and 
individual differences in recovery profiles.

The purpose of the study was to investigate how the 
kinematic data, specifically movement time, obtained dur-
ing a MIT-MANUS robotic intervention, could characterize 
motor performance changes. Given our study sample, a par-
allel, but secondary, purpose was to assess whether a within-
session regimen of 45 minutes of repetitive reaching 
training followed by 15 minutes of transition-to-task prac-
tice produced the same timeline of kinematic changes as a 
regimen of 60 minutes of repetitive robotic training. For 
both groups, we explored whether changes occurred within 
versus between sessions, and also when the progress of 
movement times changed, that is, reached a plateau. Better 
understanding of the time-course of improvements during 
an intervention will help guide clinical practice and pre-
scription of robotic interventions for stroke survivors, as 
well as future clinical trials.

Methods

Participants

A convenience sample of 22 consecutively enrolled partici-
pants in a study of chronic stroke rehabilitation were 
included in this exploratory study. Participant demograph-
ics are included in Table 1. Participants met inclusion crite-
ria if they were at least 6 months poststroke, had a 
Fugl-Meyer score between 7 and 38, and had adequate arm 
mobility to move a robotic manipulandum to target loca-
tions. The Joint University of Maryland/Baltimore Veterans 
Affairs Medical Center Institutional Review Board and the 
MIT Committee on the Use of Human Subjects as 
Experimental Subjects approved study procedures. All par-
ticipants provided written informed consent.

Procedure

As part of a larger 12-week randomized-control trial, partici-
pants completed 3 days of therapy per week for 4 weeks. 
Each session consisted of 60 minutes of therapy; one group 
(n = 11) received 60 minutes of robotic training (Robot only) 
and the other group (n = 11) received 45 minutes of robotic 
training followed by 15 minutes of transition-to-task practice 

Table 1.  Demographics.

Subject Group Age Gender Type of Stroke Affected Side FM

  1 Robot 37 Male Ischemic Right 27
  2 Robot 70 Male Ischemic Right 35
  3 Robot 53 Male Ischemic Right 33
  4 Robot 41 Male Ischemic Right 26
  5 Robot 50 Female Ischemic Right 26
  6 Robot 62 Female Ischemic Left 34
  7 Robot 79 Female Ischemic Right 14
  8 Robot 55 Female Hemorrhagic Right 22
  9 Robot 68 Male Hemorrhagic Left 27
10 Robot 57 Female Hemorrhagic Right 22
11 Robot 61 Male Ischemic Right 21
Average (SD) 57 (±12) 26 (±6)
12 TTT 52 Male Ischemic Right 20
13 TTT 67 Male Hemorrhagic Right 34
14 TTT 50 Male Hemorrhagic Right 21
15 TTT 50 Male Ischemic Left 34
16 TTT 76 Male Ischemic Left 23
17 TTT 58 Male Hemorrhagic Right 22
18 TTT 34 Male Ischemic Left 19
19 TTT 66 Male Hemorrhagic Left 14
20 TTT 70 Female Ischemic Left 14
21 TTT 48 Male Ischemic Left 22
22 TTT 48 Male Ischemic Left 31
Average (SD) 56 (±12) 23 (±7)

Abbreviations: FM, Fugl-Meyer score; SD, standard deviation; TTT, translation-to-task practice.

 by guest on August 15, 2016nnr.sagepub.comDownloaded from 

http://nnr.sagepub.com/


Massie et al	 705

(Robot + TTT). All of the robotic therapy was on the 
InMotion2 Arm robot (Interactive Motion Technologies, 
Cambridge, MA). Participants sat comfortably at a table with 
their stroke-affected arm resting in a molded cradle with the 
hand around the manipulandum handle. Participants moved 
the handle across a horizontal plane to control the position of 
a cursor in a 2D workspace to hit 8 equidistantly spaced tar-
gets around a circle. During the therapy, the robots were in 
the “active-assist” mode such that the robot provided assis-
tance as necessary if the participant was unable to reach a 
target. The therapy consisted of 320 movement repetitions 
per block, and the robot graded the task difficulty by chang-
ing the time allocated to complete the reaching movement 
and the movement guidance by altering the amount of wall-
stiffness during the treatment.

The TTT practice consisted of 15 minutes of therapist-
guided practice of patient-specific tasks that involved use of 
the whole arm in 3D space. These functionally based activi-
ties were performed in a sitting position and included 
weight bearing activities to promote stabilization and table-
top activities to promote bilateral and unilateral dexterity. 
Examples of tasks included lifting a cup, reaching with a 
brush, and wiping a countertop. Activity progression was 
based on objective measures such as independence with 
lifting, distance of reach, and number of repetitions com-
pleted in the set activity time. A stop watch was used to time 
each of the 2 prescribed TTT activities for 7.5 minutes of 
task training; manual assistance was provided as necessary. 
The same therapist provided all of the robotic and the TTT 
sessions.

Data Analysis

Before the start of the initial training block and after each 
block of 320 movements, an evaluation was completed 
without robot assistance in the center-out task to 8 targets. 
The robot recorded the position of the cursor at a sampling 
frequency of 200 Hz, and a customized MATLAB program 
was used to process the data offline. Data were filtered with 
a Butterworth low pass filter (7 Hz cutoff). Movement time 
was defined as the amount of time elapsed to reach within 1 
cm of the target. An average movement time for completed 
reaches at each evaluation was calculated. The number of 
blocks varied individually since time, not repetition, was 
held constant, which resulted in some instances when a par-
ticipant did not conclude the intervention time with an eval-
uation. In these cases, the previous evaluation was used as 
the last block. The number of blocks also varied across 
groups given the 45- versus 60-minute schedule on the 
robot. For all participants, a minimum of 2 evaluations per 
session were completed, which indicates a minimum of at 
least 320 repetitions per session.

A repeated measures 2 × 2 ANOVA (time [pre, post] by 
group [Robot only, Robot + TTT]) was used to determine 

pre-post changes and differences between groups. To look 
more closely at when and how the kinematic performance 
changes were occurring, we employed 2 strategies. First, 
we assessed whether changes tended to occur during a treat-
ment session (online gains) or between sessions (offline 
gains).12,13 Online gains were calculated as the rate of 
change within a session, and offline gains were calculated 
as the absolute change between sessions. Online and offline 
gains were compared using a one-way ANOVA to deter-
mine differences between groups. Second, we assessed the 
recovery profiles across blocks with random coefficient 
modeling (RCM). This analysis focused on evaluating the 
overall time spent on the robot such that the blocks of com-
pleted intervention on the robot were numbered sequen-
tially for each participant over the entire study of 12 
sessions. Our initial visual inspection revealed that there 
was a rapid reduction in movement time followed by a 
gradual improvement in movement time at a slower rate. 
The RCM facilitates the analysis of repeated measures in 
which the degree of change may not be linear;14 motor 
learning literature suggests that such a learning process is 
best fitted by a 2-term exponential function.1-4 As such, we 
used a 2-term exponential function with random effects. 
The RCM statistically identifies both individuals that have 
different learning rates and whether group differences exist 
between the marginal models. This step accounts for 
between-subject variability by representing the perfor-
mance trajectory when all individuals are identical, that is, 
when R(i,j) = 0.15,16 As part of the model development, a like-
lihood ratio test confirmed that the 2-term exponential func-
tion with random effects (ie, RCM on a 2-term exponential 
function) fit the data better compared to the 1-term expo-
nential function with random effects ( χdf = =5

2 29 , P < 
.0001). In addition, a likelihood ratio test suggests the RCM 
(Equation 1) rather than a 2-term exponential function with 
only fixed effects is a better fit of the data ( χdf = =3

2 1592 , P 
< .000001).

The model is as follows:
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where MTi t,  is the movement time at block t for individual 
i; βI, β1, β2, β3, β4 represent the fixed effects for the Robot 
only group; γI, γ1, γ2, γ3, γ4 are the adjustment to β1, β2, β3, 
β4 and thus represent the fixed effects for the Robot + TTT 
group; g = 0 or 1 for the Robot only or Robot + TTT group; 
Ri,1, Ri,2, Ri,3, are the random effects; and 
error Ni t, ~ ,µ =( )0 2δ  is the residual at block t for indi-
vidual i. All 3 random effects were assumed to follow nor-
mal distributions, R Ni j j j, ~ , ,µ =( )0 2δ  j = 1, 2, 3. 
Specifically, βI represents the plateau of movement time 
(when t→∞ ). β2 and β4 are the decay rates of the 2 
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exponential terms in Equation 1. Our analyses revealed that 
β4 had a larger magnitude than β2, suggesting that β4 repre-
sents the decay rate of the fast learning component while β2 
represents the decay rate of the slow learning component. 
Correspondingly, β2 and β3 are the coefficients of the slow 
and fast learning components, respectively. The summation 
of βI, β1, and β3 characterizes the movement time at t = 0. 
Meanwhile, the magnitudes of β1 and β3 also affect the 
learning rate because the change of movement time (ie, the 
derivative of Equation 1) relies on β1 and β3. The γ param-
eters represent adjustments to the corresponding β parame-
ters. Thus, the analysis facilitates differentiation between 
groups if the γ parameters are statistically different (P < 
.05). Additionally, the analysis on the parameters R allows 
for statistical comparisons between participants with regard 
to whether an individual participant does or does not show 
the same learning profile as the group. For example, partici-
pants may respond faster to the intervention whereas others 
may respond slower to the intervention. This statistical 
approach controls for large between-subject variability and 
can identify which participant displays a different course of 

change in motor performance over time.15,16 This will be 
valuable in evaluating clinical trials where clinical gains are 
often modest. To facilitate how the results from the RCM 
relate to initial motor function in survivors of stroke, we 
conducted a Pearson’s correlation between the generated 
random coefficients for each individual with initial FM 
scores and movement time.

Results

The 2 groups were similar at the start of the intervention for 
age (P = .8) and level of impairment (P = .3). See Table 1. 
Movement times significantly decreased over the course of 
the intervention, F = 35.4, P < .001, and this was not differ-
ent between groups (Robot only and Robot + TTT), F = 1.9, 
P = .18, as depicted in Figure 1A. The average movement 
time per block over the course of the intervention is illus-
trated in Figure 1B with the size of the data point indicating 
the number of individuals within the average. The Robot 
only group typically completed more blocks of robotic 
training compared to the Robot + TTT group. The groups 

Figure 1.  (A) Changes in movement time were similar between the 2 groups between the start and end of the 4-week intervention. 
(B) The average for each block on training separated by sessions over the course of the intervention.
TTT, translation-to-task practice. The size of the data point indicates the number of participants within that average because the number of blocks 
completed at each session was different for each participant. Generally, the Robot only group completed more robotic intervention compared to the 
Robot + TTT group, which is observed with larger data points at higher block numbers within each session. The rate of change within the session was 
different between the groups, as was the absolute change in movement time between sessions.  
Note: Color version of the figure is present with the online version of this issue at www.nnr.sagepub.com.
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were then compared to determine if changes within a ses-
sion (online gains) or between sessions (offline gains) were 
different. The groups had significantly different rates of 
change within a session, which was quantified as the slope 
of change. The Robot + TTT group had a significantly 
greater rate of movement time improvement during the 
treatment session (average slope = 0.05) compared to the 
Robot only group (average slope = 0.004, P = .002). The 
absolute changes between sessions were significantly dif-
ferent (P = .001) with the Robot only group having a small 
improvement in movement time between sessions (0.08 
seconds), whereas the Robot + TTT group had on average 
0.2 seconds slower movement times at the start of the fol-
lowing session.

The results of the RCM are depicted in Figures 2 and 3. 
The variances δ j

2 ,  j = 1, 2, 3, of random effects 
R Ni j j j, ~ , ,µ δ=( )0 2  j = 1, 2, 3, were all significantly 
larger than zero (P < .05 for all δ j

2 ,  j = 1, 2, 3). This result 
confirmed that all 3 random effects are necessary to model 
the data set. The marginal models for the groups are depicted 
in Figure 2A. Two different components of learning were 
included in the 2-term exponential model to account for the 
nonlinearity of changes in movement time over the inter-
vention. Both components were found to significantly con-
tribute to the change of movement time (β2 and β4 are 
significant). The initial “fast” component of the trajectory 
profiles were significantly different between the 2 groups 
(see Table 2 for parameter estimates). The slow component 
of learning, however, had the same magnitude between the 
2 groups. This can be observed in Figure 2A, where there 
was a transition between the fast and slow components. 
This transition was more apparent in the Robot + TTT 
group, which tended to occur between 10 and 30 blocks (or 
approximately 4 and 6 sessions). The transition is not as 
pronounced for the Robot only group.

One unique feature of the RCM is that it can control 
for high intersubject variability and identify individual 
subjects who are significantly different from the group. 
These results are provided in Table 3 for the 3 random 
coefficients that were included in the model including 
slow component, fast component, and initial movement 
time. Four subjects had significant deviations for the 
slow component of learning, whereas 9 subjects had 
deviations for the fast component of learning. Three 
subjects had significantly faster initial movement times 
(2.4, 2.5, and 1.7), whereas 1 subject had a signifi-
cantly slower initial movement time (5.9 seconds), 
which were taken into account by the model. Figure 2B 
and C illustrates the variance in individual learning 
curves for each subject in relation to the group mar-
ginal models. The fast component and the initial MT 
coefficients positively correlated to the movement time 
(both were r = .7, P < .01). All other correlations were 
not significant (P > .05).

Figure 3 depicts individual prediction curves plotted 
against the marginal model. The top 2 plots illustrate 2 sub-
jects whose individual curve does not differ from the mar-
ginal model. The middle 2 plots depict smaller fast learning 
components compared to the marginal model. The bottom 2 
plots depict how a faster initial movement time generally 
just shifted the prediction curve lower, yet these 2 subjects 
did not have different fast or slow learning components, that 
is, the lines have the same shape.

Discussion

Profiles of movement time during unassisted multidirec-
tional reaching, recorded by a robotic device, were inves-
tigated during a 4-week intervention on a shoulder-elbow 
robot with chronic stroke survivors. Improvements in 
movement times were similar after 12 sessions for both 
groups; the expanded analysis, however, determined that 
these gains were achieved differently. Generally, the 
Robot + TTT group had a greater rate of improvement dur-
ing the session, which was not maintained between ses-
sions, whereas the Robot only group had smaller gains 
within a session, but had a small gain in performance 
between sessions. Across all blocks an RCM with a 2-term 
exponential model demonstrated that 2 components of 
learning (fast and slow components) significantly contrib-
uted to the learning profiles. The RCM analysis also iden-
tified participants who were significantly different from 
the group, and the coefficients of the fast component were 
related to initial movement time. Taken together, these are 
important considerations for future rehabilitation studies 
because of the implications for dosing studies and oppor-
tunities to employ sophisticated statistical analyses in 
rehabilitation interventions.

The results of the initial pre-post analysis suggested that 
changes in movement time were not different between 
groups. These changes are similar to previous pre-post 
kinematic reports.17 However, a premature conclusion 
would be that gains were achieved similarly across all par-
ticipants. The between- and within-session analysis pro-
vided an approach to investigate when changes were 
occurring and may provide an opportunity to investigate 
characteristics related to an intervention. In this proof-of-
concept analysis, the between-session data suggested that 
the Robot only group may have an advantage in consolidat-
ing their gains between sessions. This advantage could be 
because the longer session on the robot led to fatigue, caus-
ing slower movement times at the end of the session. 
Alternatively, the TTT component of the intervention could 
have interfered with consolidation between sessions for the 
combination group because more complex, integrated 
movements were practiced. The latter explanation is more 
likely since it explains the greater within-session learning 
by the Robot + TTT group such that they start each session 
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Figure 2.  (A) Group effects of the exponential analysis and random coefficient modeling prediction curves. There was a significant 
difference between groups in the fast component of learning but the slow component was similar. (B) Individual predictive curves for 
the Robot only group. (C) Individual curves for the Robot + TTT group. TTT, translation-to-task practice.  
Note: Color version of the figure is present with the online version of this issue at www.nnr.sagepub.com.

slower than their last performance but quickly regain and 
slightly exceed their previous session’s last value.

We wanted to obtain a detailed picture of the changes in 
movement time over the intervention by investigating the 
rates of performance changes with the RCM analysis. This 
analysis demonstrated that 2 components were significantly 

contributing to changes in movement time over the course 
of the intervention. There was a significant fast component 
of learning that occurred early during the intervention, 
which was followed by a slower component of learning. 
This phenomenon of rapid learning tapering off has been 
previously demonstrated,3 yet the current study applied this 
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Figure 3.  Exemplar data from both groups illustrating the individual data points that were used for the analysis and how the 
prediction curves are similar or different than the group prediction.  
Note: Color version of the figure is present with the online version of this issue at www.nnr.sagepub.com.
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contemporary approach to data collected within an extended 
intervention. The clinical implication from this analysis 
revealed a critical period where performance changes were 
slower. This effect was apparent in both intervention groups, 
and was slightly more pronounced in the Robot + TTT 
group. Most of the gains were attained during the first 20 
blocks of robot training (each block includes 320 move-
ments) with a subsequent diminished rate of gain. Each par-
ticipant would have completed 20 blocks of training during 
different sessions given that the time in the robot therapy 
was held constant rather than number of repetitions. 
Clinically, this suggests that the first 20 blocks of cumula-
tive training (about 5-6 sessions) promotes a faster rate of 
gain, which is followed by slower improvements over the 
additional sessions. This result is similar to Volpe and col-
leagues who observed the biggest improvement in the first 
9 sessions.18 However, it is in contrast to those of Kahn and 
colleagues,19 who suggested improvements of speed from 
robotic training were gradual and continuous over the 
course of the intervention. The difference in our results may 
be due to the type of robotic training used, the fact that they 
had a very low number of movements per session (80 move-
ments vs a range of 320 to 960 in ours), the fact that they did 
not use a combination training but tested robot alone versus 
task-practice alone, the density of their assessments (less 
than ours), and the overall time frame (longer than ours). It 
may also be due to our use of the RCM analysis. We 
observed a change in the rate of improvement that would 
not be detected with a linear model. This highlights the 
importance of using different statistical approaches and the 
potential limitations of using a linear model over repeated 
sessions. The results from the current study suggest that this 
shift in fast to slow gains is an opportunity to explore and 
study different dosing strategies with robotic interventions 

and highlights the importance of continuous monitoring of 
performance. For example, the robot could require greater 
challenges as changes in motor performance slowed. The 
decreased rate of gains and differences in learning between 
subjects over the course of the intervention may be possible 
explanations for why clinical gains from robot studies are 
often limited. Analyses like the RCM, with a 2-term expo-
nential function, offer rehabilitation scientists new avenues 
for analyzing data from studies that have measures that are 
repeatedly collected (eg, movement time on a certain task).

One clear advantage to the RCM approach is that it allows 
for the detection of individuals whose pattern of performance 
over time differs from that of the group. As such, this analysis 
controls for intersubject variability, which is critical for pop-
ulations such as stroke that have inherent variability. The tra-
ditional option to control for variability in clinical trials is to 
have strict inclusion/exclusion criteria, but this is statistically 
inefficient, increases recruitment burden, and decreases 
external validity.20,21 More novel approaches implement 
appropriate statistical analyses that can control for inherent 
variability, as was done in the current study. The RCM identi-
fied a number of participants in each group who exhibited 
similar profiles over time whereas a few had different pat-
terns (see Tables 2 and 3). The individual curves suggest that 
robotic treatment should be evaluated during the first 20 
blocks of training to establish if patients are following the 
typical trajectory, as some patients may have a slow or no 
response at all to treatment (example participant 22 in Figure 
2C) or are responding more quickly (see Figure 2). Statistical 
identification of subjects is a significant step for clinical 
research and generates new avenues for determining the fac-
tors that influence response to treatment. Further developing 
these performance profiles provides clinicians with better 
options to modify treatment plans, which should increase 
effectiveness of robotic treatments.

Finally, we explored the relationships between the gener-
ated coefficients from the RCM and individual initial motor 
severity (FM scores and movement time). The fast phase and 
initial MT coefficients were significantly related to the 
movement time (seconds). This analysis suggests that an 
individual with a slower movement times at the start of the 
intervention had decreased fast learning rates without 
achieving a strong plateau. For example, see Subjects 4, 5, 
and 8 in Figure 2B. These relationships and relationships 
with functional change and final performance need to be 
explored more fully with a robotic dosing related study.

Conclusions

By using sophisticated statistical analyses to more fully 
understand how performance changes over time, we dem-
onstrated different rates of learning during the intervention 
(fast and slow components) that were not apparent with a 
more traditional pre-post statistical approach. The RCM 

Table 2.  Parameter Estimates for the Nonlinear Modela.

Parameter Estimate t Value p Value

βI 1.8 14.7 <.0001b

γI 0.15 0.8 .4
β1 0.9 9.1 <.0001b

γ1 −0.3 −1.9 .07
β2 −0.0326 −4.0 .0009
γ2 0.0092 0.7 .5
β3 1.2 5.7 <.0001c

γ3 0.7 2.7 .01c

β4 −0.5 −2.9 .01
γ4 −0.12 −0.5 .7

aBolded parameters (β2 and β4) indicate that the 2 components of learning 
(slow and fast) significantly contributed to changes in movement time.
bIndicates that the component significantly contributed to the model but 
was not different between groups.
cIndicates that a significant difference between the Robot only and Robot 
+ TTT groups was detected for the fast component of learning.
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highlighted a critical period within the intervention where 
motor performance appeared to reach a plateau and poten-
tial differences between groups in terms of when improve-
ments become consolidated. The RCM approach also 
allowed for analysis at the individual level, which can assist 
to identify individuals who may not be responding to the 
intervention like other participants. These areas of discus-
sion provide avenues for implementation with future robotic 
intervention studies and have implications for the clinical 
use of robotic training.
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