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Abstract. The memory timescale that characterizes root-zone soil mois-3

ture remains the dominant measure in seasonal forecasts of land-climate in-4

teractions. This memory is a quasi-deterministic timescale associated with5

the losses (e.g. evapotranspiration) from the soil column and is often inter-6

preted as persistence in soil moisture states. Persistence, however, represents7

a distribution of time periods where soil moisture resides above or below some8

prescribed threshold, and is therefore inherently probabilistic. Using multi-9
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ple soil moisture datasets collected at high resolution (sub-hourly) across dif-10

ferent biomes and climates, this paper explores the differences, underlying11

dynamics, and relative importance of memory and persistence timescales in12

root-zone soil moisture. A first-order Markov process, commonly used to in-13

terpret soil moisture fluctuations derived from climate simulations, is also14

used as a reference model. Persistence durations of soil moisture below the15

plant water-stress level (chosen as the threshold), and the temporal spectrum16

of up- and down-crossings of this threshold, are compared to the memory17

timescale and spectrum of the full time series, respectively. The results in-18

dicate that despite the differences between meteorological drivers, the spec-19

trum of threshold-crossings is similar across sites, and follows a unique re-20

lation with that of the full soil moisture series. The distribution of persis-21

tence times exhibits an approximate stretched exponential type and reflects22

a likelihood of exceeding the memory at all sites. However, the rainfall coun-23

terpart of these distributions shows that persistence of dry atmospheric pe-24

riods is less likely at sites with long soil moisture memory. The cluster ex-25

ponent, a measure of the density of threshold crossings in a time frame, re-26

veals that the clustering tendency in rainfall events (on-off switches) does27

not translate directly to clustering in soil moisture. This is particularly the28

case in climates where rainfall and evapotranspiration are out of phase, re-29

sulting in less ordered (more independent) persistence in soil moisture than30

in rainfall.31
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1. Introduction

Water storage within the soil pores is governed by nonlinear interactions among multiple32

hydro-meteorological and biophysical processes (e.g. rainfall, evapotranspiration, surface33

runoff, and subsurface flow). These storage effects, particularly within the root-zone, tend34

to last for several weeks and are perceived as a principal ‘modulator’ of short-term atmo-35

spheric anomalies and ‘driver’ of longer term seasonal forecasts of over-land atmospheric36

states (e.g. summer rainfall), droughts, and floods. The timescales that characterize37

root-zone soil moisture variability associated with these nonlinear interactions are of sig-38

nificance to a variety of disciplines. This is apparent when noting the wide range of studies39

addressing the role of soil moisture in land-atmosphere feedbacks and rainfall [Delworth40

and Manabe, 1988; Parlange et al., 1992; Entekhabi et al., 1996; Findell and Eltahir , 1997;41

Koster and Suarez , 2001; Wu et al., 2002; Wu and Dickinson, 2004; Alfieri et al., 2008;42

Juang et al., 2007], biogeochemical cycling and ecosystem resilience [D’Odorico et al.,43

2003; Porporato et al., 2004; Guan et al., 2011; Parolari et al., 2014; Paschalis et al.,44

2015], overland and streamflow generation [Thompson and Katul , 2012; Paschalis et al.,45

2014a], large-scale floods [Milly et al., 2002], ponding and onset of water-born diseases46

[Montosi et al., 2012], agriculture-food security [Parent et al., 2006; Lauzon et al., 2004],47

and soil microbial processes [Daly et al., 2008; Manzoni and Katul , 2014].48

One key characteristic of the soil water storage effect is the ‘memory’ timescale, which49

is a rough measure of the time needed by the soil column to ‘forget’ an imposed anomaly50

(such as a rainfall event or lack thereof). Commonly calculated from the corresponding51

time-lagged auto-correlation function, memory is typically on the order of a week to few52
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months (depending on soil properties and meteorological/biophysical variables), and re-53

flects the tendency of the temporal statistics of soil moisture to maintain a finite temporal54

correlation. In analogy with oceans as heat reservoirs in ocean-atmosphere coupling, soil55

moisture memory is invariably relied upon as a measure for seasonal projections of land-56

climate interactions. Examples of its use include studies on soil moisture feedback on57

convective rainfall [Alfieri et al., 2008], summer heat waves [Fischer et al., 2007; Lorenz58

and Seneviratne, 2010], and general impact on the climate system [Seneviratne et al.,59

2006, 2010].60

Fairly often, this ‘memory’ timescale is treated as a surrogate for ‘persistence’ in soil61

moisture states and the two terms are used interchangeably to emphasize that the effects62

of a short-term forcing, such as a storm event, may persist within the soil column long after63

the forcing ceases [e.g. Seneviratne et al., 2006, 2010]. Nevertheless, persistence in non-64

equilibrium systems (e.g. soil moisture) represents a different timescale in its definition65

and underlying dynamics. In simple words, for a process that evolves in time according66

to some dynamics, persistence represents the probability that this process remains in a67

prescribed state (e.g. below/above some threshold or within a certain range) [Majumdar ,68

1999]. Driven by external forcing, non-equilibrium systems tend to exit and re-enter such69

states in the course of time, and hence persistence theory encompasses the probability70

distribution of the time periods spent below/above the prescribed threshold. The den-71

sity of switching between states per unit time and the threshold-crossing statistics (in72

time and spectral domains) are indicative of clustering and intermittency in the process73

(see Bershadskii et al. [2004] and Sreenivasan and Bershadskii [2006] for applications in74

turbulence and convection). These concepts are widely used in non-equilibrium systems75
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and stochastic models to characterize the time periods where a system dwells below/above76

some threshold [Majumdar , 1999]. Theoretical and experimental studies for many systems77

showed that this persistence probability decays as a power law at late times, P0(t) ∼ t−κ78

as t → ∞ [Majumdar , 1999], where P0(t) is the probability that the system remains in79

the prescribed state up to time (t) and the exponent κ is usually nontrivial.80

The concepts of persistence below or above some threshold, and the crossing properties81

of this threshold are not uncommon in hydrological time series analysis and modeling82

[Bras and Rodŕıguez-Iturbe, 1985]. For instance, durations where a river flow remains83

above some design threshold are equivalent to flooding periods. Similarly, the duration84

between two consecutive up-crossings (down-crossings) of this threshold represents the85

time between successive floods (droughts). The distribution of inter-arrival times between86

rainfall events (dry periods) used in rainfall and eco-hydrological studies [Laio et al., 2001;87

Molini et al., 2009; Paschalis et al., 2013, 2014b] is equivalent to a persistence probability.88

In the context of root-zone soil moisture, applications of these concepts include discussions89

on analytical approaches to estimate mean first passage times and crossing dynamics of90

a prescribed threshold [e.g. Rodŕıguez-Iturbe and Porporato, 2005; Borgogno et al., 2010;91

Vico and Porporato., 2013]. These approaches typically assume a probability distribution92

for the occurrence (marked Poisson process) and depth (exponential) of rainfall at the93

daily timescale. Perhaps due to the dearth of high frequency soil moisture measurements94

(such as sub-daily), the latter approximations may mask the significance of higher fre-95

quency dynamics such as storm durations and their own persistence, which constitute the96

atmospheric forcing on root-zone soil moisture.97
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The two timescales (memory and persistence) encode different information about the98

dynamics of root-zone soil moisture, where memory is largely dictated by evapotranspi-99

ration and drainage losses and is essentially quasi-deterministic [Delworth and Manabe,100

1988], and persistence is primarily forced by rainfall and is therefore inherently probabilis-101

tic. Distinguishing between these timescales can have implications on the land-atmosphere102

interaction schemes used in climate models, which rely on soil moisture memory for im-103

proving their predictive skill in seasonal forecasts [Seneviratne et al., 2006]. However, since104

the wetness/dryness of the soil column largely controls the energy fluxes at the surface,105

persistence timescales (indicative of wet/dry states) may be more relevant than memory106

(correlation timescale) as a measure of the land-atmosphere coupling strength. This is107

especially the case when noting that persistence represents a distribution of timescales be-108

low/above a threshold value, whereas regional and general circulation models (RCM and109

GCM) use simplified approximations of the auto-correlation function to estimate memory110

[Koster and Suarez , 2001]. The reliability of such approximations is often affected by111

the non-stationarity of the soil moisture time series and hence the (lack of) stability of112

the corresponding auto-correlation function (sensitivity to the length of the time series,113

sampling frequency, periodicity such as seasonality and interannual variability).114

As a starting point for characterizing a persistence timescale, this work examines the115

statistics and scaling laws of persistence of dry/wet states for several root-zone soil mois-116

ture time series sampled at high resolution (sub-hourly) that experience different vegeta-117

tion cover and climatic forcing (mainly quantified by phase relations between evapotran-118

spiration and rainfall). The soil moisture level below which plants become water-stressed119

is chosen as a threshold for dry/wet states. In particular, the probability distribution of120
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these persistence scales, the frequency of threshold-crossing (clustering properties), their121

temporal correlation (spectrum), and how do these scales compare to the widely used soil122

moisture memory are addressed here. Whenever applicable, similar analysis is conducted123

on rainfall (persistence of dry events) as a means for explaining soil moisture persistence.124

The soil moisture, meteorological variables, and rainfall datasets were measured at differ-125

ent locations encompassing a variety of soil properties, vegetation and climatic regimes to126

allow for an assessment of the impact of these mechanisms on persistence and memory.127

While a distribution of persistence times of soil moisture at high frequencies is not yet128

theoretically accessible, the work here serves to initiate a discussion on the characteristics129

and relative importance of persistence and memory timescales. Although persistence is130

seemingly a more relevant measure of land-atmosphere coupling, the question of how to131

use such a distribution, or characteristics thereof, in lieu of memory (single timescale) in132

land-climate models remains open for further investigation. Connections between persis-133

tence and memory in soil moisture content may be provided through analogies to other134

systems such as those exhibiting self-organized criticality and intermittency corrections135

thereto, although a rigorous treatment of such connections is still lacking and outside of136

the scope here.137

2. Theory

A brief presentation of the governing equations and theoretical background used in the138

analysis of the soil moisture time series is first provided. Further details can be found in139

the work of Majumdar [1999] and Perlekar et al. [2011] on persistence in nonequilibrium140

dynamics and statistical mechanics, of Bershadskii et al. [2004], Sreenivasan and Ber-141

shadskii [2006], Cava and Katul [2009] and Chamecki [2013] on applications in turbulence142

D R A F T January 26, 2016, 7:06pm D R A F T



GHANNAM ET AL.: PERSISTENCE IN SOIL MOISTURE X - 9

research, and Laio et al. [2001], Rodŕıguez-Iturbe and Porporato [2005] and Molini et al.143

[2009] for applications in hydrological contexts.144

2.1. Soil Water Balance

For planar homogeneous conditions, the vertically integrated mass conservation equa-145

tion for soil moisture across the active root-zone depth is given by146

ηZr
ds(t)

dt
= Φ[s(t), t]− χ[s(t), t], (1)

where t [T] is time, Zr [L] is the root-zone depth, η [L3 L−3] is the soil porosity, s(t) [L3
147

L−3] is the effective soil moisture (0 ≤ s(t) ≤ 1), Φ[s(t), t] [L T−1] and χ[s(t), t] [L T−1]148

are rates of infiltration from rainfall and soil moisture losses from the active root-zone149

depth, respectively. The term Φ[s(t), t] is the stochastic component in equation (1) and150

is represented by151

Φ[s(t), t] = P (t)−Q[s(t), t], (2)

where the net rainfall (henceforth throughfall) P (t) = R(t)−I(t) is the difference between152

the rainfall rate R(t), and the fraction of R(t) intercepted by the canopy cover, I(t). The153

statistics (inter-arrival times and depth) of P (t) and R(t) are considered identical to each154

other, only censored and rescaled due to a loss fraction I(t). The second term on the right155

hand side (r.h.s) of equation (2) (Q[s(t),t]) is the rate of surface runoff, which is significant156

when P (t) exceeds the soil moisture saturation deficit and/or the soil saturated hydraulic157

conductivity. The dominant runoff mechanism at the sites considered here is saturation158

excess and the analyzed data (described later) show that measured s(t) rarely reaches159

saturation at all sites. Q[s(t), t] is hence neglected since the main interest here is in the160
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fraction of P (t) that reaches the root-zone. The loss function in equation (1) is given as161

χ[s(t), t] = ET [s(t), t] +Dr[s(t)], (3)

reflecting the sum of losses due to evapotranspiration (transpiration and soil evaporation)162

(ET ) and subsurface drainage (Dr). The dependence of χ[s(t), t] on s(t) is expressed as163

a piecewise function [see e.g. Laio et al., 2001] controlled by characteristic soil moisture164

levels, namely the hygroscopic point sh, the wilting point sw, the plant water-stress level165

s∗, and the field capacity sfc, with sh < sw < s∗ < sfc. The characteristic value sh166

(depends on soil type) represents the soil moisture level below which bare soil evaporation167

becomes negligible, whereas sw (depends on soil and vegetation types) is the value below168

which plant stomata are completely closed and transpiration ceases. These soil moisture169

levels are small and no dynamics below them is further considered here. The value s∗170

depends on soil properties and vegetation type and represents the soil moisture level171

below which plants start reducing transpiration (control stomatal opening) to conserve172

water, i.e. become water-stressed. The values of sw and s∗ are commonly quantified by173

the plant-specific water potential (or equivalently by the site-specific soil matric potential)174

with typical values between -3 MPa to -0.03 MPa, respectively. The soil field capacity in175

the root-zone (sfc) depends on soil and root-induced porosity and is the maximum water-176

holding capacity per unit volume of the soil. At hourly and daily timescales, the second177

term on the r.h.s of equation (3) is quasi-instantaneous and considerable only when soil178

moisture approaches its field capacity (sfc). Katul et al. [2007] argued that this term (Dr)179

may still be important at longer timescales, and its nonlinear dependence on the variable180

s may contribute to low frequency variations in the soil moisture spectrum. An empirical181

representation of this term driven by gravitational drainage is [Clapp and Hornberger ,182
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1978]183

Dr(s) = Kss
c, (4)

for s > s∗, where Ks is the soil saturated hydraulic conductivity at Zr and c is an184

exponent that varies with pore-size distribution. Typical values of c range between ≈ 11185

to ≈ 26 for (loamy) sands and clays, respectively [Clapp and Hornberger , 1978]. Below186

sfc, ET is the dominant component in the loss function and is at its maximum value, the187

potential evapotranspiration (PET ) for s(t) > s∗. Note that PET , while independent188

of soil moisture s(t), is controlled by vegetation type and climatic factors (wind speed,189

radiation, air temperature, humidity, soil type). A common approximation of PET uses190

the Penman-Monteith equation [Monteith, 1965]. In the water-limited regime (s < s∗),191

in addition to the previous factors (vegetation and climatic), ET becomes a function of192

s, where in its simplest form, this dependence is assumed to be quasi-linear [Laio et al.,193

2001; Katul et al., 2007]194

ET = PET
s− sw

s∗ − sw

, (5)

for sw ≤ s ≤ s∗, and sw is the wilting point defined above. Another parametrization of195

the dependence of the loss function on soil moisture are sigmoidal functions (for instance196

hyperbolic tangents) [Budyko, 1961, 1974]. Such regime shifts in the dependence of the197

loss function on soil moisture are expressed by rewriting equation (1) as198

ηZr
ds(t)

dt
= P (t)− PET s− sw

s∗ − sw

, (6)

when sw ≤ s ≤ s∗, and as199

ηZr
ds(t)

dt
= P (t)− PET −Ks

(
s− s∗

sfc − s∗
)c
, (7)
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when s∗ < s ≤ sfc. While gravitational drainage is fast (sub-daily) when soil moisture200

exceeds sfc (hence not included here), this term is retained in equation (7) to account201

for its possible role in slower soil moisture dynamics. In their interpretation of climate-202

model simulated soil moisture, Delworth and Manabe [1988] used a value of s = 0.75sfc203

for this shift from water-controlled dynamics to other environmental-controlled regime,204

which is equivalent to using s∗ = 0.75sfc here. Equations (6) and (7) are stochastic205

ordinary differential equations with an intermittent and random component (P (t)) and a206

quasi-deterministic nonlinear loss term (ET +Dr). On annual or longer timescales, these207

equations are often studied in a ‘Budyko framework’ that relates the actual ET to an208

aridity index (ratio of atmospheric evaporation demand to available water, PET/P ) [e.g.209

Li et al., 2013].210

2.2. Memory and Spectra

The storage term (ds/dt) in equations (6) and (7) is known to introduce a statisti-211

cal ‘memory’ into soil moisture, which in turn influences regional atmospheric processes212

on daily-to-seasonal timescales. This memory effect is manifested in the slow decay of213

the corresponding auto-correlation function, and is often determined from the integral214

timescale (τ) of the auto-correlation function [Priestley , 1981]215

ρs(t, α) =
s′(t)s′(t+ α)

σ2
s

, (8)

where the subscript s denotes soil moisture as a state variable, primes indicate fluctuations216

around the mean value, α is the time lag, and σ2
s is the soil moisture variance. Direct217

approaches to estimate this function have been studied by Koster and Suarez [2001] and218

Seneviratne et al. [2006], mostly at monthly time lags and at global scales. Local to219
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regional spatial scales and higher frequency (subdaily to interannual) dynamics are the220

focus of this work. Note that ρs is expressed in equation (8) as a function of t and time221

lag (α) to signify the non-stationarity of the soil moisture time series.222

When assuming stationarity (i.e. ρs(t, α) = ρs(α)), the integral timescale (memory) of223

soil moisture can be defined in multiple ways. These definitions include the first time lag224

(α) at which ρs(α) crosses zero, the lag at which it drops to 1/e ≈ 0.37 (e-folding) of its225

initial value (= 1) at zero lag (assumes an exponential decay of ρs), or most commonly as226

the area under ρs [Priestley , 1981]227

τ =
∫ +∞

0
ρs(α)dα, (9)

where ρs is assumed to decay to zero and remain negligible as α → ∞. The lack of228

stationarity in the soil moisture time series and the sensitivity of memory estimation to229

different treatments (such as removing periodicity) are discussed in detail in supplemen-230

tary material S1. In essence, the analysis in S1 reveals that the auto-correlation function231

of soil moisture is affected by de-trending (removing monthly, seasonal, or annual means)232

the time series, and while this leads to shorter memory timescale estimates, it also yields233

losses in the variance of the process.234

The normalized temporal spectrum of soil moisture Ens(f), where f is frequency (in235

cycles per unit time), is the Fourier transform of ρs(α) (Wiener-Khinchin theorem)236

Ens(f) = 2
∫ +∞

−∞
ρs(α)e−i2πfαdα, (10)

and thus237

Ens(0) = 4
∫ +∞

0
ρs(α)dα = 4τ, (11)
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since ρs(α) is a real and even function. Therefore, estimating soil moisture memory as238

τ = Ens(0)/4 for a measured or modeled finite time series requires ad-hoc extrapolations239

of the spectral behavior of s(t) as f → 0. The above concepts were pioneered by Delworth240

and Manabe [1988] who hypothesized that this memory stems from evapotranspiration241

by studying equation (1) as a first-order Markov process, where s(t) is governed by a242

white-noise spectrum of rainfall and a linear dependence of χ[s(t)] on s. This simplified243

model results in the well-known Lorentzian stationary soil moisture spectrum (red-noise),244

where Ens(f) ∼ ((2πf)2 + β2)−1, and β = PET/(ηZr) (see Halley [1996] for a review245

on 1/f noises in ecological contexts). While this f−2 scaling received some support from246

long-term measurements [Vinnikov et al., 1996; Wu et al., 2002] and climate model runs247

Delworth and Manabe [1988], recent theoretical efforts and models with varying complexity248

have shown that the temporal spectrum of soil moisture deviates from its Lorentzian form249

(decays faster than f−2) at high frequencies, resembling black- instead of red-noise [e.g.250

Katul et al., 2007; Nakai et al., 2014]. These results were attributed to the fact that the251

rainfall spectrum exhibits a power-law decay (f−0.5 to f−1) at the storm scales [Fraedrich252

and Larnder , 1993; Molini et al., 2009]. Deviations from Lorentzian spectra were also253

reported when including a nonlinear dependence of the drainage term on soil moisture254

and/or including net radiation variability at lower frequencies [Nakai et al., 2014].255

2.3. Persistence and Clustering

Formally, persistence in a stochastic field φ(x, t) fluctuating around its ensemble average256

(indicated by brackets) 〈φ(x, t)〉 according to some prescribed dynamics and at a fixed257

point x is defined as the probability that the quantity sgn[φ(x, t) − 〈φ(x, t)〉] does not258

change up to time t [Majumdar , 1999; Perlekar et al., 2011]. Henceforth, the field φ(x, t)259
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represents the effective soil moisture s(x, t) considered at a fixed location or averaged over260

nearby locations (see section 3), and the ensemble average can be replaced by any other261

relevant threshold, such as sw, s∗ or sfc in this context of soil moisture dynamics. The262

alternations between long quiescent dry phases (such as s < s∗) and wet excursions in263

soil moisture are clearly forced by nonlinear interactions with P (t) and χ[s(t), t]. The two264

phenomenological components of these ‘switches’ are the amplitudes of excursions above265

or below the threshold and the local frequency of oscillations around it. The former is266

related to the strength of an imposed forcing (e.g. (non)occurrence of rainfall) and the267

latter is defined as the tendency of events to ‘cluster’ together. The separation of the268

amplitude variability from oscillatory behavior for the time-dependent variable s(t) can269

be achieved using the telegraphic approximation (TA[s(t)]) [Sreenivasan and Bershadskii ,270

2006]271

TA[s(t)] =
1

2

(
s(t)− s∗

|s(t)− s∗|
+ 1

)
, (12)

where TA(s) is binary (value of 0 or 1) depending on whether s(t) at any time exceeds s∗272

(wet state TA = 1) or resides below it (dry state TA = 0). Figure 1 provides an example273

of the telegraph approximation of a soil moisture time series. Within this framework,274

the TA masks amplitude variations but retains the on-off and off-on switches in the time275

series. Time correlations between these switches, if any, and the distribution of inter-276

pulses between them define persistence. On the other hand, ‘memory’ in a hydrological277

context is the time needed for the system to dissipate/recover from wet/dry states.278

Because such switches need not be entirely random in time, the connection between279

the spectral exponent of the full series s(t) (controlled by both amplitude variation and280

clustering) and that of its TA (controlled by clustering only) reveals the magnitude of frac-281
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tional variance explained by amplitude fluctuations and more importantly, the timescales282

at which they contribute to this variance. If both spectra exhibit power-law decays, with283

ETA(f) ∼ f−m and Ens(f) ∼ f−n, then an empirical relation between m and n, studied284

in turbulence research [Bershadskii et al., 2004; Sreenivasan and Bershadskii , 2006; Cava285

and Katul , 2009], and proved analytically for a range of stochastic processes, is given by286

m =
n+ 1

2
, (13)

such that a Markov-Lorentzian spectrum of soil moisture (n = 2) will result in m = 1.5287

for the TA, and therefore the on-off switches will have a larger spectral content. For288

n > 1 (which is the case for soil moisture), the TA spectrum exhibits slower decay (more289

randomness with m < n) than that of the full series of soil moisture. The usefulness290

of equation (13) lies in the fact that for a wide range of stochastic processes, analytical291

tractability of TA dynamics and the exponent m may be less challenging than that of the292

full dynamics.293

Another dimension to persistence in non-equilibrium dynamical systems used here is294

clustering (density of crossings) and its scaling behavior. Let ψ(T ) be the running density295

of crossing the threshold s∗ in a time interval T , i.e. ψ(T ) = N(T )/T , where N(T ) is the296

number of crossings (upward or downward) of s∗ in the interval T , and let its fluctuations297

be δψ(T ) = ψ(T ) − 〈ψ(T )〉 (where the brackets indicate averaging over a long period),298

then the quantity 〈δψ(T )2〉1/2 represents the local standard deviation of the series ψ(T ),299

and is assumed to decay as300

〈δψ(T )2〉1/2 ∼ T−ω, (14)
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where ω is known as the cluster exponent and is a measure of the tendency of crossing301

events to cluster together. In the case of rainfall clustering, the rain- no rain (distribution302

of dry periods) is used instead of threshold-crossing. As a reference, we note that white303

noise presumably has no clustering properties with ω = 0.5, while a smaller ω (< 0.5)304

indicates an increased clustering tendency with respect to white noise.305

The concepts discussed above are first explored for the first-order Markov process that306

remains widely used as an idealized model for soil moisture dynamics in climate systems307

and was introduced by Delworth and Manabe [1988] when analyzing GCM outputs. This308

process is represented by309

dy

dt
+ λy = F (t), (15)

where y(t) is a stochastic process (analogous to dimensionless effective soil moisture s(t)),310

F (t) (T−1) is assumed to be a white noise process (analogous to P (t)/(ηZr)), and λ =311

(PET/(ηZr)) (analogous to 1/τ and independent of y) is a decay constant that represents312

a linear dependence of the loss function on y. In this framework, the timescale 1/λ is also313

the e-folding time lag (memory) of the exponentially decaying auto-correlation function314

of the process y(t) in the absence of forcing. Equation (15) is analogous to equation (6)315

(water-limited regime) when assuming that rainfall exhibits a white-noise spectrum. The316

first-order Markov process is used here as a guiding model for the behavior of persistence317

and memory scales for the process s(t), and hence two scenarios are considered. The318

first examines equation (15) under a white-noise rainfall forcing (similar to Delworth and319

Manabe [1988]), and the second uses a measured rainfall time series as the forcing on the320

r.h.s of equation (15). In supplementary material S1, the effect of using a constant or321

periodic PET (and hence τ) with each of the two forcing scenarios is also investigated.322
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This supplementary discussion (S1) concluded that both the ‘redness’ of the spectrum of323

s(t) (white-noise rainfall) and the deviations from this ‘redness’ (measured rainfall) is not324

affected by this change of decay timescales. This same result was also pointed out by325

Delworth and Manabe [1988].326

3. Data and Methods

The concepts of persistence, clustering and memory timescales presented above are327

explored for several datasets of high-frequency (half-hourly) root-zone soil moisture mea-328

surements collected at Mae Moh forest (Teak plantation in Thailand, Mar 2006 – Feb329

2012) [Yoshifuji et al., 2006, 2014], Duke forest (both a Loblolly pine plantation (PP) and330

a second-growth oak-hickory hardwood (HW) forest near Durham, NC, USA, Jan 2001331

– Dec 2006) [Katul et al., 2007; Oishi et al., 2013], and the Seto forest (second-growth332

deciduous forest in Japan, Jan 2005 – Dec 2009) [Matsumoto et al., 2008]. Addition-333

ally, eddy-covariance measurements of ET and other meteorological variables at 30-min334

timescales are available at all the sites. Table 1 summarizes the soil, canopy, and climate335

characteristics at each site. The long-term mean annual temperature and rainfall are336

15.5◦C and 1100 mm at Duke forest, 15.1◦C and 1615 mm at Seto forest, and 25.8◦C and337

1284 mm at Mae Moh forest (2000-2004 only). Volumetric soil water content (m3 m−3) was338

measured at several depths covering the root-zone at each site, and at several spatially-339

extended locations (only at Duke forest) using time domain reflectometry (TDR) sensors340

(CS-615, Campbell Scientific, Logan, UT) at Duke PP and Mae Moh sites, vertically ori-341

ented frequency domain sensors (ThetaProbe ML2x, Delta-T Devices, Cambridge, UK)342

at Duke HW site, and TRIME-FM2/P2 (TDR with intelligent MicroElements, IMKO,343

Germany) at Seto forest. The measurement depths beneath the surface were 0.1, 0.2, 0.4,344
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and 0.6 m at Mae Moh site (1 location), and 0.02, 0.05, 0.1, 0.2, and 0.5 m at Seto site345

(1 location). Vertically-arrayed rods of 30-cm length integrating soil moisture across the346

root-zone were deployed at Duke PP (24 locations) and Duke HW (6 locations). These347

measurements were averaged both vertically and spatially (when applicable) resulting in348

one multi-year 30-min soil moisture time series at each site.349

The Mae Moe forest is situated in the subtropical region subject to a tropical monsoonal350

climate, while the Duke and Seto forests are in the mid-latitude zone characterized by a351

warm-temperate climate [Nakai et al., 2014]. These datasets offer a unique opportunity352

to examine the individual impact of vegetation and soil type as well as rainfall regimes353

on persistence and memory timescales in soil moisture dynamics. The co-location of the354

pine and hardwood stands at Duke forest, which have comparable rooting zone depth355

restriction (formed by a hard clay pan due to prior agricultural practices at the site), and356

are subjected to the same climatic forcing and soil texture, allows an evaluation of how357

differences in vegetation cover may affect persistence and memory.358

Figure 2 shows the time series of the effective soil moisture and rainfall measurements359

of the four datasets. Seasonality in rainfall is mostly evident at Mae Moh forest and360

less pronounced at the other sites, where it is distributed almost evenly around the year.361

The memory timescale τ for each soil moisture series computed from the empirical auto-362

correlation function is 47.5, 44.6, 38.8 and 24.4 days for Duke-HW, Duke-PP, Mae Moh,363

and Seto forests respectively.364

4. Results and Discussion

To address the study objectives, the probability distributions of soil moisture and rainfall365

at each site are first described to further illustrate the effects of seasonality across the366
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datasets. The analysis demonstrates that the soil moisture states primarily reside away367

from the mean value and exhibit bi-modality associated with seasonality. The plant water-368

stress level s∗ (described above) at each site is chosen as the threshold when employing the369

telegraphic approximation needed for persistence and clustering analysis. The physical370

basis of soil moisture memory within the root-zone followed by a dynamical interpretation371

of s∗ as the threshold for the computations of TA are presented. The spectral scaling and372

distribution of persistence times and their relation to soil moisture memory are then373

determined and discussed.374

4.1. Soil Moisture and Rainfall Distributions

On annual scales with seasonal signatures, the soil moisture PDF is typically bi-modal375

and dependent on whether rainfall and temperature/radiation are in phase, i.e. whether376

the wet season coincides with the growing season [Miller et al., 2007; Viola et al., 2008;377

Feng et al., 2012, 2014]. Here, a qualitative discussion on such distributions is presented to378

illustrate site differences in terms of seasonality and rainfall depth characteristics. Figure379

3 shows the PDF of effective soil moisture and the probability of exceedance of rainfall380

depth (above 1 mm) at the four sites at half-hourly timescale. There is a seasonal signature381

characterized by bi-modality at all sites (especially at Mae Moh forest) except the Seto382

forest, with a tendency for prevalence of wet states at Duke forest due to the evenly383

distributed rainfall around the year. Note that this distribution of soil moisture is also384

controlled by the loss function (χ[s(t), t]) through a ‘regime shift’ type of dependence, with385

a linear relation between ET and s in the water-limited case and a PET otherwise. This386

loss function, within any regime, is primarily responsible for the mode in the distribution387

at low soil moisture levels, while the wet season dominates the generation of the other388
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mode. Examination of the soil moisture PDF in Figure 3 also reveals that the mean of389

the distribution falls between these modes of wet and dry states, which is indicative of the390

prevalence of transient dynamics, where the system resides away from the mean for most391

of the time. The rainfall distributions (right panel of Figure 3) are comparable for the392

four datasets with extreme events associated with the strongly seasonal Asian monsoons393

more likely at the Mae Moh forest site.394

4.2. Physiological Water Stress and Dynamical Equilibria

The difficulty in studying the dynamics of equations (6) and (7) emanate from the regime395

shifts in the dependence of the loss function (ET and Dr) on the variable s, the explicit396

dependence of most variables on time (t), and the intermittent and random behavior of397

rainfall. Nonetheless, a discussion of such dynamics is included here to examine how398

dynamical equilibria and their transient times compare to the water-stress level s∗ and399

the memory scale. For steady state conditions (ds/dt = 0), equation (6) reduces to400

P (t)

ηZr

− PET

ηZr

(
so − sw

s∗ − sw

)
= 0, (16)

where so represents an equilibrium state of the system, and the quantity ηZr is retained401

for dimensional consistency. Equation (16), with an initial condition sw ≤ si ≤ s∗, results402

in an equilibrium soil moisture level given by403

so = (s∗ − sw)
P

PET
+ sw, (17)

and a linear stability analysis around this fixed point reveals that it is always stable404

(slope= −PET/[ηZr(s
∗ − sw)] from equation (16)). In the absence of forcing, where no405

rainfall occurs after t = 0, the stable fixed point is so = sw and by integrating equation406
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(6), the system approaches the wilting point sw exponentially in time as407

s(t) = (si − sw) exp
(−t
τ

)
+ sw, (18)

where the memory timescale τ = ηZr(s
∗ − sw)/PET has been used. The latter timescale408

is a result of the formulations in the previous discussion (equation (11) in subsection 2.2),409

where τ = Ens(0)/4 and Ens(f) ∼ ((2πf)2 + β2)−1, with β = PET/(ηZr), resulting in410

τ = 1/β = ηZr/PET (see Nakai et al. [2014] for more details). The only difference here is411

the factor (s∗ − sw) that emphasizes the dynamics within the water-limited regime. The412

time needed to reach some value s starting from si can be determined as413

tw = τ ln
(
si − sw

s− sw

)
, (19)

such that as s → sw, tw → ∞ (the system approaches sw asymptotically), and therefore414

the memory timescale τ is only a fraction of tw. In fact, noting that the quantity (si −415

sw)/(s− sw)≥ 1, and from equations (18) and (19), τ represents the time needed to reach416

the e-folding of the initial departure (si− sw) from equilibrium. This is the essence of the417

Markovian process in the absence of forcing, where it can be shown that the e-folding time418

τ in equation (18) and that of the corresponding exponentially decaying auto-correlation419

function ρs(α) = exp(−α/τ) are identical. It is emphasized that a crossing lifetime (inter-420

pulse) of a threshold, or approaching a fixed point such as sw, is typically longer than421

the aforementioned memory. The ratio of rainfall to the loss function in this regime422

P/PET controls the position of the stable fixed point on the linear ET -s dependence423

line. This equilibrium approaches the water-stress level (so = s∗) when P/PET ≈ 1,424

but the intermittent nature of rainfall prohibits further analytical tractability. When425

P/PET > 1, the system exits the linear dependence regime and equation (7) describes426
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the dynamics. A similar analysis for this equation with an initial condition s∗ ≤ si ≤ sfc427

results in the equilibrium428

so = (sfc − s∗) exp
(

1

c
ln
(
P − PET

Ks

))
+ s∗, (20)

and hence the ratio (P − PET )/Ks controls the stable fixed point. As this ratio ap-429

proaches unity (i.e. difference between rainfall and PET is comparable to saturated430

hydraulic conductivity), the fixed point approaches field capacity, so = sfc. Note that the431

fast dynamics above sfc were ignored, i.e. if the ratio (P − PET )/Ks exceeds one, the432

decay to s(t) = sfc is instantaneous. When P − PET is very small compared to Ks, so433

approaches the water-stress level s∗. These fixed points (s∗ and sfc) are again approached434

asymptotically.435

The above discussion provides a dynamical perspective on the role of the characteristic436

values sw, s∗, and sfc in soil moisture dynamics and memory. Here, the threshold s∗ is437

estimated from the four datasets using a hydrological and a dynamical context (Figure 4).438

Daily averages (48 measurement records sampled at 30-min intervals) of all the variables439

are used in Figure 4. A hyperbolic tangent function of the form ET/PET = a tanh(s) is440

also used as a model for normalized evapotranspiration ET/PET , where PET is calcu-441

lated using the Penman-Monteith equation from the corresponding micro-meteorological442

measurements and ET is determined from the available eddy-covariance measurements.443

While the Seto forest data shows small variance and negligible dependence of ET on s,444

the other sites exhibit comparable water-stress threshold, with s∗ being 0.62, 0.6, 0.54,445

and 0.3 for Mae Moh, Duke-PP, Duke-HW, and Seto forests respectively. The right panel446

of Figure 4 shows soil moisture dynamics in the form ds/dt = f(s) (resembling a vec-447

tor field representation), where ds/dt = ∆s/∆t is the discretized time rate of change448
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in s (differences in daily averages). The relatively large positive values (ds/dt > 0) are449

associated with rainfall events and their negative counterpart (ds/dt < 0) are due to450

drainage losses. These events are ’quasi-instantaneous’ on the daily timescales. The small451

negative and positive fluctuations are attributed to ET losses (when ds/dt < 0) and452

weak rainfall events or otherwise moisture redistribution from below the root-zone (when453

ds/dt > 0). The features in Figure 4 are common to all datasets, where there appears to454

be an approximate balance between the rainfall input and the loss function. Recall that455

ds/dt = 0 = f(s) represents the dynamical equilibrium, and in cases where P balances456

PET , this equilibrium approaches s∗. The latter is evident in the right panels of Figure 4,457

where the stable fixed point is close to the water-stress level approximated in the left panel458

(ET/PET = a tanh(s)). The function f(s) in the vector field is fit to a cubic function,459

O(s3), to capture the likely non-linearity in the dynamics that accommodates rainfall and460

drainage, but we emphasize that higher-order functions in s result in essentially the same461

stable fixed point.462

4.3. Persistence and Clustering

Figure 5 shows the spectrum of the simulated process s(t) and its corresponding TA in463

the Markovian framework (equation (15)) using two types of forcing F (t), a white noise464

process (left panel) and the measured rainfall time series (normalized by ηZr) at one of the465

sites (right panel), selected here as the Duke forest site (section 3) only for illustration.466

Using measurements at the other sites did not result in any significant changes in the467

outcome of the analysis. Since there is no s∗ defined for this idealized model, the TA468

here is calculated using equation (12) around the mean of s(t). The decay constant τ is469

estimated from the measurements as the average of ηZr/PET during the growing season470
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and over five years (length of Duke forest measurements)(see also supplementary material471

S1). As discussed earlier, the f−2 and f−2.7 scaling of the normalized spectrum of s(t) at472

frequencies higher than 1/τ are clear when forced by a white noise and measured rainfall473

spectra respectively. The decay timescale τ (also referred to as separation timescale)474

corresponds to the frequency that defines the transition of the soil moisture spectrum from475

a white noise type at low frequencies to a red (or black) noise type at higher frequencies.476

The relation between the spectral exponents of s(t) and its TA given in equation (13)477

holds reasonably for the two types of rainfall forcing, which suggests some robustness to478

the particulars of the forcing variable. Figure 5 also shows the PDF of Is, the inter-pulses479

below the mean of s(t), normalized by the memory timescale τ . This PDF shows that480

persistence timescales can exceed memory (Is/τ > 1). Note that these persistence times481

are largely controlled by P (t) (which initiates an up-crossing), while positive excursions482

above the mean of s(t) depend on the interplay of P (t) and τ .483

The binary time series (TA) around the threshold s∗ for each dataset is shown in Fig-484

ure 6. The highest density of crossings is evident at the Seto forest, indicating shorter485

persistence times above or below the physiological threshold. Note that for this site, the486

threshold was estimated from the vector field analysis in Figure 4 rather than the water-487

stress level. On the other hand, longer persistence times are evident at the other sites,488

with Mae Moh forest, and due to seasonality in rainfall, exhibiting prolonged wet/dry489

states. The TA at Duke forest has a more pronounced seasonal trend, where persis-490

tence times are shortest (higher frequency of crossings) during the growing season. The491

temporal correlation between these crossing events at each site is shown in the bottom492

panel of Figure 6, through the normalized spectrum of these TA series (ETA(f) ∼ f−m)493
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along with that of the full series (s(t)) spectrum (Ens(f) ∼ f−n). The latter exhibits a494

power-law decay steeper than the Lorentzian f−2 scaling at high frequencies (daily and495

sub-daily) owing to the correlated structure of rainfall at these short timescales, whereas496

the TA spectra have larger variances at all sites. The comparison between the two spectra497

at each site reveals that amplitude fluctuations in soil moisture, which are absent from498

ETA(f), are responsible for the imposition of steeper deterministic decay in Ens(f), par-499

ticularly at high frequencies, hence resulting in larger memory in s(t) relative to its TA500

counterpart. At longer timescales, ETA(f) captures the low frequency fractional variance501

in Ens(f), where at scales comparable to or longer than the soil moisture memory (solid502

vertical line in the bottom panel of Figure 6), the bulk of the variance stems from the503

crossing dynamics (persistence scales). In other words, the memory timescale is dictated504

by deterministic processes (such as τ = ηZr/PET ), while persistence scales are dominated505

by long-term ‘de-correlated’ forcing such as rainfall. The relation between the spectral506

exponents m and n also holds reasonably for the datasets featured here, with a deviation507

of ±0.1 at most. The latter result, while empirical, was shown to be true for velocity and508

temperature statistics in turbulent flows and at different Reynolds numbers [Sreenivasan509

and Bershadskii , 2006].510

Figure 7 shows the distribution of persistence times for both soil moisture (Is) and511

rainfall (IP ) at each site. Note that IP is the inter-arrival times between rainfall events512

and both Is and IP are normalized by the corresponding soil moisture memory τ . These513

distributions are fit to a stretched exponential (a multiplicative PDF of power law and514

exponential decay) of the form [Laherrere and Sornette, 1998]515

PDF(x) ∼ xb−1 exp
(
−xb

)
, (21)
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where b < 1 and x can represent Is/τ or IP/τ . The borderline case b = 1 recovers the ex-516

ponential distribution. The PDF’s in Figure 7 show that there is a tendency of persistence517

times of soil moisture below the threshold s∗ to exceed the memory timescale at all sites,518

albeit as extreme events emphasized by the tails of the distributions. The stretched ex-519

ponential functions fit to the data reflect a power-law behavior at short persistence times520

and an exponential decay at long times. These exponentially decaying long dry periods521

prevail for around two to four times the memory scale, and are indicative of the fact that522

anomaly dissipation (quantified by τ) does not necessitate a switching (transition from523

dry to wet states or vice versa). Another important aspect of the distributions shown in524

Figure 7 (for soil moisture) is that they exhibit negligible sensitivity to the magnitude525

of τ (note that the Duke forest sites have much longer memory). On the contrary, and526

except for Mae Moh site, the inter-arrival times between rainfall events rarely exceed the527

corresponding soil moisture memory, i.e. dry atmospheric anomalies are unlikely to per-528

sist longer than the ‘de-correlation’ time in soil moisture statistics (τ). The latter may be529

regarded as a necessary but not sufficient condition for causality between soil moisture and530

convective rainfall, or otherwise that atmospheric states are ‘feeding off’ on this memory.531

This is especially the case at Duke forest sites, where the rainfall persistence timescale532

at which the power-law ceases to exist is around 0.1τ , and therefore longer dry atmo-533

spheric anomalies decay exponentially fast before reaching τ . The analogous regime shift534

(power-law to exponentials) for soil moisture appears to be indifferent to the variability535

in memory across all sites (around 0.3τ). Those events within the exponential part of the536

distributions, for both soil moisture and rainfall, are likely to be statistically independent537
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(memory-less property of exponential distributions). Hence, τ , being towards the tail of538

this part, is likely to be an overestimate of the ‘de-correlation’ time in soil moisture.539

The clustering properties of both soil moisture and rainfall at each site are shown540

in Figure 8. The quantity 〈δψ(T )2〉1/2 indicates similar decay for all the datasets with541

a higher tendency for clustering at Duke forest. At all sites, the cluster exponent w542

ranges between 0.36 to 0.42 for soil moisture and 0.24 to 0.34 for rainfall. Molini et al.543

[2009] found similar clustering properties for rainfall occurrences at different sites, while544

Sreenivasan and Bershadskii [2006] found remarkably close cluster exponents for velocity545

signals in turbulent flows as those of soil moisture here. The differences between the546

cluster exponents of rainfall and soil moisture at each site, with the former exhibiting547

higher tendency of clustering of rainfall occurrence, show that rainfall persistence (or lack548

thereof) does not translate directly to soil moisture. In other words, rainfall occurrence549

alone cannot explain soil moisture switching events between wet and dry states, which550

suggests the significance of rainfall depth (storm strength and duration) relative to the551

storage capacity of the active soil layer on these persistence times. This tendency for552

clustering ceases to exist at all sites beyond seasonal scales (around 100 days), where at553

longer time intervals the cluster exponent approaches unity as a limiting value for both554

soil moisture and rainfall. This unity limit is indicative of statistical independence of555

rainfall occurrences and soil moisture crossing events.556

5. Future Directions

Much of the memory-persistence results reported here remain diagnostic, not prognos-557

tic. The lack of a theoretical or concrete measure of persistence in soil moisture currently558

limits its direct use in land-atmosphere models instead of memory, especially that persis-559
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tence represents a distribution of times (rather than a single timescale) between threshold560

crossings and involves clustering of these crossing events. Nevertheless, connections be-561

tween memory and persistence is an on-going research topic in complex system sciences,562

where there exists a relation between the distribution of these persistence times and the563

corresponding spectrum of the threshold-crossings (spectrum of telegraph approximation564

(TA)) [Jensen, 1998; Bershadskii et al., 2004]. Such relations have been derived for a565

restricted class of systems. For example, when invoking certain analogies with systems566

exhibiting or approaching a state of self-organized criticality (SOC), connections between567

TA spectral exponents (linked to the full spectrum of soil moisture content as evidenced by568

the analysis here) and the inter-pulse PDF can be made. While the latter concept applies569

in the context of spatially-extended dissipative dynamical systems Bak et al. [2004], efforts570

to generalize its characteristics have been made by Jensen [1998] and Majumdar [1999].571

Examples of such systems are the classical sand pile model, turbulence and convection,572

river flow, electric currents through resistors, and many others [Bak et al., 2004]. These573

systems evolve toward a self-similar (fractal) critical state with no intrinsic time or length574

scale. Whether soil moisture as a stochastically-forced process exhibits self-organized crit-575

icality is not fully known, but the system can be regarded as dissipative in the absence of576

rainfall. Since this topic is certainly interesting for future investigation, only a preliminary577

assessment of connecting persistence and memory within this SOC framework to the soil578

moisture datasets used here is provided. Let α and β be the exponents of the power-law579

decay of the PDF of persistence times, and that of the spectrum of the TA respectively,580

then581

β = 3− α, (22)
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is a well-known relation for SOC systems. Note that β here is about 1.57-1.67 (see582

TA spectra in Figure 6) and α ranged between 0.5-0.8 (see power-law fits in Figure 7).583

Intermittency corrections to equation (22) are also studied in the context of turbulence584

and convection, where585

β = 3− α− µ, (23)

and µ represents such corrections. The analysis here and equation (23) show that the586

intermittency explanation µ is of order 0.8. In analogy with intermittency in the tur-587

bulence convection problem studied by Bershadskii et al. [2004], where they addressed588

hot/cold plumes (temperature fluctuations), which are here equivalent to wet/dry states589

(soil moisutre fluctuations), this exponent µ is calculated from the intermittency in soil590

moisture fluctuations as591

χ = ‖ds2

dt
‖, (24)

where s here is soil moisture fluctuations around the threshold s∗. The local average in a592

time window T is593

χT =
1

T

∫ t+T

t
χ(t)dt, (25)

such that for several time windows T (e.g. 0.1, 0.5, 1, 5, 10, 20, 50, 100, ... days), the594

scaling595

〈χ2
T 〉

〈χT 〉2
= T−µ, (26)

describes such intermittency effects and µ is the intermittency exponent. Figure 9 shows596

the intermittency calculations for the soil moisture time series at each site. The exponent597

µ is also shown to be of order 0.8 as predicted by equation (23). While Bershadskii et al.598
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[2004] had a factor of two difference (β = 3−α−µ/2) in their paper, if this correction can599

be verified, then it is possible to link the spectrum of soil moisture to its TA counterpart,600

and use such SOC analogy to infer the PDF of persistence timescales. This framework601

offers an ad hoc result for connecting memory (from spectra) and persistence (through602

SOC + intermittency). However, whether such analogies can be applied in the context of603

soil moisture dynamics, i.e. whether soil moisture exhibits features of an SOC system is604

a topic for a future examination.605

6. Conclusions

This work addressed the different underlying mechanisms and relative importance of the606

concepts of memory and persistence timescales in root-zone soil moisture dynamics. While607

memory is a well-studied and a widely used timescale for soil moisture content in land-608

climate modeling, persistence times below or above some threshold (such as s∗ used here)609

remain under-exploited. These persistence scales are more indicative of the wet and dry610

states of soil moisture, and are perhaps the principal measure of land-atmosphere coupling611

strength. In a comparative context with soil moisture memory, the characteristics of the612

distribution of such persistence times were explored for several high frequency soil moisture613

datasets collected in different biomes and climates. The clustering properties of the soil614

moisture time series (density of threshold-crossing per unit time) were also analyzed. The615

sites spanned tropical monsoon to warm-temperate climates, where rainfall was seasonal616

in the former and distributed almost evenly around the year in the latter. The threshold617

s∗ (plant water-stress level) was estimated for each dataset by relating the water losses618

(mostly measured ET ) to soil moisture using a sigmoid-like function, and independently619

from a data-based one-dimensional phase space reconstruction to infer the stable fixed620
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point in the dynamics. The estimated threshold s∗ was acceptably close when comparing621

these two methods, indicating that for these datasets, and due to the balance between622

the input (rainfall) and output (loss function), the system approaches s∗ as a stable fixed623

point.624

Despite the differences in the rainfall forcing and vegetation cover among the studied625

sites, the temporal correlations of threshold crossings were similar and followed a unique626

relation with the corresponding correlations in the measured soil moisture series (that627

includes amplitude fluctuations from the threshold). This relation is common in many628

stochastic models and has been shown to hold true for turbulence statistics. The distri-629

bution of the persistence times exhibited a stretched exponential behavior and reflected630

a likelihood of exceeding the memory timescale at all sites. However, the rainfall coun-631

terpart of these distributions showed that at sites with longer soil moisture memory, dry632

atmospheric anomalies become less likely. The cluster exponent revealed that the cluster-633

ing tendency in rainfall events (on-off switches) does not translate directly to clustering634

in soil moisture. This is particularly the case in climates where rainfall and evapotran-635

spiration are out of phase, resulting in less ordered (more independent) persistence in soil636

moisture than in rainfall.637
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Figure 1. A one-year time series of measured effective soil moisture at the Duke-Hardwood

site along with the corresponding telegraphic approximation (TA). The TA has a value of 1

when soil moisture is above the threshold s∗ and a value of 0 when its below.
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Figure 2. Time series of measured effective (dimensionless and depth-averaged) soil moisture

within the root-zone and rainfall at each site sampled at 30-min intervals.
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Figure 3. The probability density function (PDF) of soil moisture and probability of ex-

ceedance of rainfall (> 1mm) for the measurements in Figure 2. Note the bimodality at all sites

except at Seto forest, while extreme rainfall events are more likely at Mae Moh and Seto forests.
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Figure 4. Left panel: The dependence of measured ET on measured effective soil moisture

(symbols) along with a sigmoidal function (a tanh(s)) fit (solid lines). PET is potential evap-

otranspiration calculated from the micro-meteorological measurements and aggregated to daily

values. The dashed vertical lines correspond to the threshold s∗ for each dataset. The colors

in the left and right panels are equivalent, i.e. Duke-Hardwood (black), Duke-Pine (blue), Seto

forest (red), and Mae Moh forest (green). Right panel: vector field representation of ds/dt as a

function of s aggregated to the daily timescale. Large positive and negative values of ds/dt are

associated with quasi-instantaneous rainfall and drainage events. The lines in the right panel

are cubic fits to the function f(s) in the equation ds/dt = f(s). The intersection between these

cubic functions and the ds/dt = 0 line represents a stable fixed point for each data set.
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Figure 5. Persistence and crossing dynamics for a simulated first-order Markov process

(equation (15)) with a white noise rainfall forcing (left column) and measured time series of

rainfall at Duke forest-HW (right column). Upper panel: The normalized spectra of the stochastic

process s(t) (red color) and its TA (blue color) (shifted vertically for clarity). The vertical dotted

line represents the decay frequency (1/τ). Bottom panel: The PDF of the normalized persistence

times (Is/τ) for the two forcing cases.
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Figure 6. Top panel: Time series of the telegraph approximation of soil moisture TA(s)

around the threshold s∗ for each site. TA is binary assuming values of 0 (below) or 1 (above)

when comparing s with s∗. Bottom panel: The normalized power spectra of soil moisture Ens(f)

(red color) along with its TA spectrum, ETA(f) (blue color) for the sites in the upper panel. The

TA spectrum was shifted on the y-axis to illustrate power-law exponents. The dashed vertical

lines in each plot represent, from right to left, frequencies corresponding to diurnal (12 h), daily

(24 h), monthly (720 h), and annual (8760 h) timescales, respectively. The solid vertical lines

are the corresponding memory timescale τ for each site. The power-law fits are also shown.
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Figure 7. The probability density functions of persistence times of soil moisture below s∗ (Is)

(left panel) and inter-arrival times between rainfall events (IP ) (right panel), both normalized by

the corresponding soil moisture memory τ at each site. The solid lines are stretched exponential

fits (see equation 21) to these distributions, with a value of b ranging from 0.8 to 0.9 for all sites.

The dashed lines (red color) in the left panel are power-law fits (slope shown) to the first part of

the PDF. The memory timescale τ for each soil moisture series is 47.5, 44.6, 38.8 and 24.4 days

for Duke-HW, Duke-PP, Mae Moh, and Seto forests respectively.
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Figure 8. The relation 〈δψ(T )2〉1/2 ∼ T−ω for soil moisture (left panel) and rainfall (right

panel). The slopes (log-scale) of the power-law fits represent the cluster exponent w. The vertical

dashed lines are the soil moisture memory scales for each site.
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Figure 9. The intermittency exponent analysis for all sites. See text and equations (25) and

(26) for explanation. The solid black lines represent power-law fits to the data. The scaling of

the y-axis for Seto and Hardwood data was shifted vertically for clarity.
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Table 1. Site description of the three forest sites.

Latitude band Subtropical Midlatitude

Site Mae Moh forest Duke forest Seto forest

Country Thailand USA Japan

Climate Tropical monsoon Warm-temperate Warm-temperate

Land use Teak plantation Hardwood stand Loblolly pine plantation Second-growth forest

Location 18◦25′23′′N 35◦58′41′′N 35◦58′41′′N 35◦15′29′′N

99◦43′05′′E 79◦08′ 39′′W 79◦05′ 39′′W 137◦04′54′′ E

Forest type Deciduous broadleaf Mixed-species deciduous Overstory: evergreen Evergreen and

Understory: mixed deciduous mixed

Forest agea (year) 38 85-105 23 70–80

Dominant species Tectona grandis Linn. f. Carya Pinus taeda Quercus serrata

Quercus Liquidambar styraciflua L. Evodiopanax innovans

Other deciduous Understory: Ilex pedunculosa

26 different species Symplocos prunifolia

Stand density (trees ha−1) 343 930 3200 1900

Canopy height (m) 21.2a 35.0 20.0 9

Throughfall ratio 0.925 0.6 0.6 0.8

Root-zone depth RL (mm) 400 300 300 650

Soil porosity η (–) 0.84b 0.55 0.55 0.62

Data period Mar 2006 – Feb 2012 Jan 2001 – Dec 2006 Jan 2001 – Dec 2006 Jan 2005 – Dec 2009

References Yoshifuji et al. [2006, 2014] Katul et al. [2007]; Oishi et al. [2013] Matsumoto et al. [2008]

aAs of 2006.

bDetermined from the maximum of the observed soil moisture data.
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