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Abstract This paper deals with pressure estimation from
snapshot and time-resolved three component (3C) volumet-
ric PIV data using Taylor’s hypothesis, an Eulerian and a
pseudo-Lagrangian approach. The Taylor’s hypothesis ap-
proach has been shown to provide accurate results for pres-
sure in the case of 3C planar PIV data with an appropriate
choice of convection velocity (de Kat and Ganapathisubra-
mani, 2013) and here we extend its use on 3C volumetric ve-
locity snapshots. Application of the techniques to synthetic
data shows that the Taylor’s hypothesis approach performs
best using the streamwise mean as the convection velocity
and is affected the least by noise, while the Eulerian ap-
proach suffers the most. In terms of resolution, the pseudo-
Lagrangian approach is the most sensitive. Its accuracy can
be improved by increasing the frame time-separation when
computing the material derivative, at the expense of volume
loss from fluid parcels leaving the FOV. Comparison of the
techniques on turbulent boundary layer data with DNS sup-
ports these observations and shows that the Taylor’s hypoth-
esis approach is the only way we can get pressure when time
information is not present.

Keywords Pressure from PIV, Taylor’s hypothesis,
Eulerian, Lagrangian, acceleration

1 Introduction

Flow pressure information is essential in various engineer-
ing applications, yet there are still difficulties involved when
measuring it directly. In recent years, techniques for indirect
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pressure extraction have been developing. They involve us-
ing PIV velocity data and exploiting the link between pres-
sure and velocity, stemming from the Navier–Stokes (NS)
equations, to derive pressure. Following this line of work,
Gurka et al (1999) used planar PIV velocity data to com-
pute pressure distributions of a water flow in a pipe and of
an impinging air jet and compared the results with reported
data from previous studies. Fujisawa et al (2005) also used
PIV velocity data to numerically solve the pressure Poisson
equation to acquire pressure and fluid forces on a circular
cylinder. Liu and Katz (2006) estimated material accelera-
tions from PIV velocity data, which they subsequently inte-
grated applying an omni-directional virtual boundary inte-
gration scheme. De Kat et al (2008) acquired planar pres-
sure fields, starting from time-resolved PIV velocity data
of a flow past a square-section cylinder and using a Pois-
son solver and they compared the results with surface pres-
sure measurements. Later on, Charonko et al (2010) imple-
mented different Eulerian methods for pressure determina-
tion, using both numerical and experimental velocity data,
and assessed their dependence on grid resolution, sampling
rate, measurement error, and off-axis recording.

Many of these studies used Eulerian methods to com-
pute the material acceleration term. However, the acceler-
ation can also be determined using a Lagrangian approach
and the comparison of the two methods has also been the fo-
cus of several recent works. Using PIV on surface waves to
predict flow accelerations and forces, Jakobsen et al (1997)
compared Eulerian and Lagrangian approaches and the re-
sults indicated that the former approach matched closely the
analytical calculations. The Lagrangian approach exhibited
a small bias, which led to a systematic error in the estima-
tion of flow acceleration and seemed to be limited due to
poor tracking or deformation of fluid volume. This observa-
tion was supported by de Kat and van Oudheusden (2012),
who found that a pseudo-Lagrangian approach (reconstruct-
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ing fluid parcel paths from velocity fields, in contrast with
particle path tracking of LA-techniques) limited in time by
the turnover time of the structures, exhibited more severe
restrictions than an Eulerian one, requiring thick measure-
ment volumes to accurately reconstruct the fluid path. They
also showed that the Eulerian approach suffered more from
measurement noise and was limited in time by the advec-
tion of structures on the boundaries, but not as much as the
pseudo-Lagrangian (de Kat and van Oudheusden, 2012). In
contrast to these findings, results from pressure field eval-
uation of rod–airfoil flow from time-resolved PIV (Violato
et al, 2010) suggested that a pseudo-Lagrangian approach
managed a lower precision error with a larger timestep than
an Eulerian one, which was again shown to suffer from mea-
surement noise. In line with this, Ghaemi et al (2012), used
time-resolved, Tomographic PIV (Tomo-PIV) on a turbu-
lent boundary layer to estimate pressure and showed that a
pseudo-Lagrangian formulation performed much better than
an Eulerian one, when compared with microphone surface
pressure measurements.

In view of these developments and contrasting results,
an alternative method was proposed by de Kat and Ganap-
athisubramani (2013). It was based on an Eulerian approach
but avoided its aforementioned temporal limitations by us-
ing Taylor’s hypothesis for the estimation of the flow ac-
celeration. The technique was successfully implemented on
both synthetic and experimental 3C planar velocity data and
results indicated that pressure could be accurately estimated
with an appropriate choice of convection velocity (de Kat
and Ganapathisubramani, 2013). In this work, we extend
the use of Taylor’s hypothesis to estimate pressure on three-
component volumetric velocity snapshots and compare the
results with those of an Eulerian and a pseudo-Lagrangian
approach. The three different methods are described and a
linear uncertainty propagation analysis is performed to esti-
mate the uncertainty on the resulting pressure fields. A nu-
merical assessment is then carried out using the channel flow
database from John’s Hopkins University (Li et al, 2008;
Perlman et al, 2007; Graham et al, 2013). The dependence
of all methods on grid resolution and noise levels is tested, as
well as the influence of time separation between frames on
the Eulerian and pseudo-Lagrangian approaches and of dif-
ferent convection velocities on Taylor’s hypothesis. Finally,
the methods are implemented on time-resolved Tomo-PIV
data from a turbulent boundary layer and the resulting pres-
sure fields and statistics are compared with each other and
with DNS results.

2 Method description

Throughout this paper, we use the coordinate system x, y,
and z to denote the streamwise, wall-normal and spanwise

directions respectively and u, v, w to denote the correspond-
ing velocity components. The incompressible NS equations
can be rewritten, solving for the pressure gradient, as fol-
lows:

∇p =−ρ

{
∂u
∂ t

+(u ·∇)u−ν∇
2u
}

(1)

where u is the velocity vector field, p is the pressure field,
ρ is the fluid’s density and ν its kinematic viscosity. Taking
the divergence of the pressure gradient, the result is a Pois-
son equation (2), which can be solved by spatial integration
using a Poisson solver (see de Kat and Ganapathisubramani,
2013). The boundary conditions used are Neumann using
eq. (1).
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(
∂ p
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)
+

∂

∂y

(
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)
+

∂

∂ z

(
∂ p
∂ z

) (2)

The convective and viscous terms in eq. (1) can be read-
ily computed, from full 3D velocity fields. If time infor-
mation is also provided (time-resolved measurements), the
acceleration can be computed using an Eulerian or a La-
grangian approach and the pressure gradients are fully de-
fined. It is important to also note that, by taking the diver-
gence of the pressure gradient and using the continuity equa-
tion, the viscous term drops out in the Poisson formulation.

2.1 Eulerian approach (EU)

Assuming that the temporal velocity gradient is approxi-
mately constant or linear in time within the time interval
between the two snapshots, dt, and for all spatial locations
(Jakobsen et al, 1997), the acceleration at time t (eq. 3), as
well as the pressure gradient (eq. 4) can then be evaluated.

∂u
∂ t

=
1

2dt

{
u|(x,t+dt)−u|(x,t−dt)

}
(3)

∇p =−ρ

{
1

2dt

{
u|(x,t+dt)−u|(x,t−dt)

}
+(u ·∇)u−ν∇

2u
}

(4)

For time-resolved data, another common approach to com-
pute the material acceleration is by following particle trajec-
tories (Lagrangian). A pseudo-Lagrangian approach is out-
lined in the next section.
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2.2 Pseudo-Lagrangian approach (pLA)

Following de Kat and van Oudheusden (2012), we define a
pseudo-Lagrangian description of the flow by reconstructing
fluid-parcel trajectories using a pseudo-tracking approach.
More specifically, using Taylor’s expansion for a time inter-
val, τ and following an iterative procedure, any fluid-parcel
particle trajectory can be estimated for iteration k, as fol-
lows:

xk
p(t,τ) = x+u(x, t)τ +

1
2

Du
Dt

k
(x, t)τ2 (5)

At the next iteration level, indicated with the subscript k+1,
the material acceleration is then computed (eq. 6) and the
pressure gradient (eq. 1) can be fully determined (eq. 7).

Du
Dt

k+1
(x, t) =

u(xk
p(t,∆t), t +∆t)−u(xk

p(t,−∆t), t−∆t)
2∆t

(6)

∇p =−ρ

{
Du
Dt

(x, t)−ν∇
2u
}

(7)

Even though here we focus only on a pseudo-Lagrangian
approach, for completeness it should also be noted that re-
cently, new techniques have been developed that allow for
highly accurate, fully Lagrangian particle tracking informa-
tion. Most notably, Schanz et al (2013, 2014) developed the
‘Shake the Box’ algorithm (STB) which, for a single time-
step, reconstructs a particle track for previous timesteps, pre-
dicts the position of the particle in the next timestep and
corrects this position by shaking the particles to fit in the
measurement volume, using image matching (Schanz et al,
2014). The procedure is completed by finding new particles
and their tracks, removing those that left the volume and re-
peating the image matching where necessary. It was shown
that when converged, STB can accurately detect almost all
particles residing in the measurement volume with fairly low
position errors. In this way, velocity gradients and material
acceleration information—that are very difficult to estimate
accurately from PIV data—become available and provide a
very promising input to the pressure estimation schemes dis-
cussed above.

Regardless of the reconstruction method used though,
acquiring three-dimensional, time-resolved data is challeng-
ing and in cases where this is not possible, alternative meth-
ods have to be used, such as a Taylor’s hypothesis approach
which is described in the following section.

2.3 Taylor’s hypothesis approach (TH)

Taylor’s hypothesis states that, if the mean velocity is sig-
nificantly larger than turbulent fluctuations, turbulent eddies
are ‘frozen’ in time and are simply convected by the mean

flow (Taylor, 1938). In the case of grid generated decay-
ing turbulence, for which it was originally developed, the
hypothesis was shown to perform well (Favre et al, 1955).
In shear flows however, which are of interest here, the hy-
pothesis breaks down (Lin, 1953) since the turbulent fluctu-
ations are transported with convection velocities that differ
from the mean (Fisher and Davies 1964; Zaman and Hus-
sain 1981; Kim and Hussain 1993; Davoust and Jacquin
2011, among others). Structures of different sizes are ex-
pected to behave differently and even different parts of the
same structure might move with different velocities as the
structure evolves over time, making a complete definition
of the convection velocity quite challenging (Krogstad et al,
1998). Previous studies have used spectral information to
estimate it, showing that small scales are indeed travelling
with the local mean following the original form of Taylor’s
hypothesis however this is not true for low frequencies cor-
responding in larger modes (del Álamo and Jiménez, 2009;
Davoust and Jacquin, 2011). De Kat and Ganapathisubra-
mani (2013) showed that using an in-plane filtered axial ve-
locity in a turbulent jet as the convection velocity, yields
more promising results for pressure, than using the mean.
More recently, Geng et al (2015) tested the validity of using
the mean as the convection velocity in the case of a turbu-
lent channel and concluded that the assumption holds well
in the logarithmic and outer layer but fails close to the wall.
In the present study, different convection velocities will be
tested, so a generalised form of Taylor’s hypothesis, with
a spatially changing convection velocity, Uc = (Uc,Vc,Wc)

will be used:

Du′

Dt
=

∂u′

∂ t
+(Uc ·∇)u′= 0 (8)

When only volumetric velocity snapshots are available (3D-
volumetric PIV or DNS), the missing temporal information
can then be extracted from eq. (8) as:

∂u′

∂ t
=−(Uc ·∇)u′ (9)

To examine the implications of using this hypothesis on the
governing equations, we start from the momentum equation,
rewriting it so as to include the chosen convection velocity
(see Geng et al, 2015) and using Reynold’s decomposition:

∂u
∂ t

=−
{

1
ρ

∇p+(u ·∇)u−ν∇
2u
}
⇒

∂u′

∂ t
=− (Uc ·∇)u′−

{
1
ρ

∇p+([U−Uc] ·∇)u′

+ (u′ ·∇)u+(U ·∇)U−ν∇
2u
} (10)
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It is then clear that, Taylor’s hypothesis is well satisfied, if
the sum of the pressure, convective and viscous terms (en-
closed in brackets) is negligible (Geng et al, 2015).

1
ρ

∇p+([U−Uc] ·∇)u′+(u′ ·∇)u

+(U ·∇)U−ν∇
2u = 0 ⇒

∇p =−ρ {([U−Uc] ·∇)u′+(u′ ·∇)u

+ (U ·∇)U−ν∇
2u
} (11)

It is then the last equation, that fully determines the pres-
sure gradient, which is subsequently integrated and solved
(eq. 2). It should be noted here that, the term (U ·∇)U is
generally small for fully convective flows, however it was
included here for completeness. In regions where the choice
of convection velocity is not correct, the pressure gradient
equation is no longer balanced and the resulting pressure
fields start to deviate from the exact solution.

3 Uncertainty estimates

In this work, pressure is estimated from experimental—and
therefore imperfect—velocity data. It is then important to
evaluate how an initial uncertainty, εu, on the velocity field
would propagate down to the derived quantity, namely here,
pressure. Following a linear uncertainty propagation proce-
dure, outlined by de Kat and van Oudheusden (2012) (for
more details see JCGM 100:2008) each measured quantity,
x, involved in the estimation of a derived quantity, r, is asso-
ciated with its uncertainty, εx, and its sensitivity coefficient,
θx = ∂ r/∂x, which determines the influence of this uncer-
tainty on the uncertainty of the derived quantity. The prod-
uct of the uncertainty with the sensitivity coefficient gives
the contribution of each measured quantity, x, towards the
total uncertainty of the derived quantity. This total uncer-
tainty, εr, is proportional to the square root of the sum of the
square of the contributions from all the measured quantities
involved in the derivation. More specifically, using eq. (4),
the total uncertainty on the pressure field using EU can be
written as:

εP,EU ∝ εu

√√√√√[ 1
2

( h
∆t

)2

︸ ︷︷ ︸
I

+
|u|
2

2

︸︷︷︸
II

+h2 |∇u|2+|∇v|2+|∇w|2

3︸ ︷︷ ︸
III

(12)

where εP,EU is the total uncertainty on the estimated pres-
sure field, ∆t is the time separation of the velocity fields, |u|
is the magnitude of the velocity vector, |∇u|, |∇v|, and |∇w|
are the magnitudes of the streamwise, wall-normal and span-
wise velocity gradients respectively and h = ∆x = ∆y = ∆z,
is the grid resolution.

Considering a linear fluid-parcel trajectory and follow-
ing eq. (5) and (6) once, the total uncertainty on the esti-
mated pressure field for pLA is:

εP,pLA ∝ εu

√√√√√[ 1
2

( h
∆t

)2

︸ ︷︷ ︸
I

+h2 |∇u|2+|∇v|2+|∇w|2

6︸ ︷︷ ︸
III

(13)

Finally, for TH, following eq. (11), the total uncertainty on
the resulting pressure field can be estimated as follows:

εP,T H ∝

εUc

√√√√√[h2 |∇u′|2+|∇v′|2+|∇w′|2

3︸ ︷︷ ︸
III

]
+ εU AU

+ εu

√√√√√[ 1
2
|U−Uc|2+

|u′|
2

2

︸ ︷︷ ︸
II

+h2 |∇u|2+|∇v|2+|∇w|2

3︸ ︷︷ ︸
III

]
(14)

where εP,T H is the total uncertainty on the estimated pressure
field, εUc is the uncertainty on the convection velocity esti-
mation, εU is the uncertainty on the mean velocity, |u′| is the
magnitude of the velocity fluctuation and |∇u′|,|∇v′|,|∇w′|
are the magnitudes of the gradient of the streamwise, wall-
normal and spanwise velocity fluctuation components re-
spectively. With AU we denote the sensitivity coefficient of
the uncertainty on the mean velocity, which is defined as
follows:

AU =

√[1
2
|U−Uc|2+h2 |∇u|2+|∇v|2+|∇w|2

3

]
+

√[
+
|U|
2

2

+h2 |∇u′|2+|∇v′|2+|∇w′|2
3

]
+

√[
h2 |∇U|2+|∇V|2+|∇W|2

3

]
(15)

For all methods, the letters I, II, and III are used to denote
the uncertainties corresponding to the time, velocity and ve-
locity gradient terms respectively, for reference in the sec-
tions that follow. For TH only the terms related to the un-
certainty in the total velocity field, εu, and in the convection
velocity, εUc are highlighted, since for well converged mean
fields, εU is expected to be small (as a statistical uncertainty)
and its contribution inconsequential with respect to the other
terms. It should also be noted here that, for all methods, the
uncertainty from the viscous term is neglected because, as
mentioned above, the viscous term present in the pressure
gradient equation drops out in the Poisson formulation.

Using equations (12)–(14) on a single DNS velocity vol-
ume (see sect. 4)—to have a realistic estimate of the velocity
and gradient terms—the total uncertainty on the pressure es-
timation for each method is computed, for increasing levels
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of measurement uncertainty on the velocity field (fig. 1a).
For TH (using the streamwise mean velocity as the convec-
tion velocity), different levels of the convection velocity un-
certainty, εUc , and mean velocity uncertainty, εU , are also
presented (fig. 1b). As already mentioned, for zero measure-

εu

ε p
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0.03
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TH, εUc
= 0%, εU = 0%

(a)

εUc
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εu

ε p
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Fig. 1: Total uncertainty on the pressure estimation follow-
ing eq. (11)–(13) for all methods (top). Total uncertainty on
the pressure estimation for TH with increasing levels of εUc

and εU (bottom)

ment noise on the velocity field, both EU and pLA have zero
uncertainty propagating on the estimated pressure. With in-
creasing velocity uncertainty level, there is a linear increase
in the resulting uncertainty in pressure for both methods,
with EU having a much steeper increase due to the extra
velocity term, II, in eq. 12. For TH, if both the uncertainty
on the convection and mean velocity are zero, the propaga-
tion uncertainty on the pressure is zero as well (fig. 1a and
lower limit, fig. 1b). However, a perfect estimate for the con-
vection velocity is unlikely to be found, so a more realistic
situation would include uncertainties on both the convection
and the mean velocity (fig. 1b) with the latter being minimal,
as already mentioned above. In the case of a moderate un-
certainty on the convection velocity, εUc = 4%, and a small
uncertainty on the mean velocity, εU = 0.5% (middle black

line in fig. 1b), TH appears to outperform EU for all velocity
uncertainty levels and pLA for uncertainties on the velocity
larger than 2%, (fig. 1a). Finally, for a moderate level of un-
certainty on both convection and mean velocity εUc = 4%,
εUc = 2%, TH shows larger uncertainty with respect to pLA
for all velocity uncertainty levels and provides slightly more
accurate pressure estimates than EU for velocity measure-
ment uncertainties of 3 and 4%, (upper limit, fig. 1b).

To conclude, for small uncertainty levels on the convec-
tion mean velocity estimation TH can provide a good accu-
racy for pressure estimation with respect to the other two ap-
proaches, especially for high velocity measurement uncer-
tainties (which are likely to occur in high-Reynolds-number
measurements due to the large dynamic range in velocity
scales).

4 Numerical assessment

The next step is to assess the performance of the methods on
synthetic data, therefore we apply them to the John’s Hop-
kins University channel flow database (Li et al, 2008; Perl-
man et al, 2007; Graham et al, 2013). Since the ultimate
goal of this work is to estimate pressure using experimen-
tal data, we used this DNS dataset to simulate synthetic 3D
PIV velocity snapshots on which we then implemented the
different approaches and assessed their accuracy using the
provided DNS pressure fields. The main simulation param-
eters and flow statistics of the original dataset are shown
in Table 1. From this dataset, 30 independent time-frames
of an initial volume located at the logarithmic layer in the
wall normal direction and in the middle of the channel in
x and z were chosen. The points were initially interpolated
onto an equidistant grid, including an appropriate weighting
function to remove the bias due to the initial non-uniform
spacing in y. To simulate the averaging effect of PIV (Schri-
jer and Scarano, 2008), filtering using a Hann window was
performed together with the interpolation to avoid aliasing
effects and the volumes were subsequently cropped to avoid
edge effects. Finally, the noise effect inherent to PIV (Fou-
caut et al, 2004) was accounted for by adding random noise
fields, filtered and cropped as described above, on the veloc-
ity data. To assess the methods’ dependence on resolution,

Table 1: DNS channel non-dimensional flow simulation pa-
rameters

Parameter Value

Friction velocity Reynolds number: Reτ 999.713
Database timestep: dt+ 0.32
Domain Length : Lx×Ly×Lz 8πh×2πh×3πh
Grid : Nx×Ny×Nz 2048×512×1536
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three different filter lengths of l+ = 12, 24, and 48 were used
on an equidistant grid with grid spacing of h+ = 3, 6, and
12, simulating an overlap of 75%. Five different noise levels
(including the zero noise case) were tested, scaled such that
their root-mean-square (rms) value, εu, was given as a cer-
tain percentage (0, 1, 2, 3, and 4%) of the maximum velocity
occurring in the flow (see also de Kat and Ganapathisubra-
mani, 2013).

As mentioned above, TH includes the choice of an ap-
propriate convection velocity (eq. 9). In this work, three dif-
ferent convection velocities were examined. More specifi-
cally, both the mean of the streamwise velocity, Uc =U(y),
constant in the x–z plane, and the filtered version of it, Uc =

U f , (which yielded a locally varying convection velocity
field) were tested. A three dimensional convection velocity
was also examined, where the values of the three compo-
nents were the mean values of the respective flow velocity
components: Uc =U(y), V (y), W (y). The mean fields men-
tioned above, imply time averaging over the selected set of
snapshots. Finally, four different time-separations between
the frames used for the computation of the acceleration were
tested, for EU and pLA. More specifically, for each of the
30 selected time frames, where the pressure was computed,
snapshots located one (n = 1) up to eight (n = 8) time steps
before and after were also selected and used to compute the
acceleration on the central snapshot.

Because of the large parameter space involved, we first
selected the convection velocity and frame time separation
that provided the most accurate results for TH and EU and
pLA respectively. Using these values, which represented the
best performance of each method, we could then compare
across the different methods and also assess their depen-
dence on grid resolution and noise levels. Four different per-
formance measures were computed, all with respect to the
exact and estimated pressure fields. These were the correla-
tion coefficient between the two fields, their coefficient of
determination (R-squared), the normalised variance of their
difference, and the mean squared error between their proba-
bility density functions. For brevity, since all measures indi-
cated similar behaviour, only the correlation coefficient re-
sults will be discussed in the following sections.

4.1 Convection velocity and frame time-separation
dependence

For TH, pressure was determined using the three convection
velocities outlined above. The resulting fields had a higher
average correlation coefficient with the DNS field when the
streamwise mean velocity was used as convection velocity
(Table 2). Therefore, this was the convection velocity used
for the grid and noise resolution dependence study later.
This was also in line with results from Geng et al (2015),

who showed that for the logarithmic region of the bound-
ary layer, using the mean velocity as the convection veloc-
ity is an adequately accurate assumption. For the EU and

Table 2: Average correlation coefficient with varying con-
vection velocities (εu/Umax = 1%, l+ = 12)

Uc =U(y) Uc =U f Uc =U(y),V (y),W (y)

rpi 0.80 0.76 0.76

pLA approaches, pressure fields were estimated using the
different time separations to compute acceleration, as out-
lined above. The results for the average correlation coef-

dt+

r p
i

0

0.5

1

0 0.6 1.2 1.8 2.4

EU

pLA

Fig. 2: Average correlation coefficient with varying frame
time-separation (εu/Umax = 1%, l+ = 12). For pLA the
largest timestep yields the best results. The performance of
EU improves for moderate time-steps but deteriorates again
for the largest dt’s used

ficient show that for pLA the most accurate pressure field
is the one computed with the largest time frame separation
(fig. 2). For EU the noise level present in the data influences
the dependence of the method on the time-separation. In the
case of εu/Umax = 1% (fig. 2), an increase of time separa-
tion up to dt+ = 1.28 results in higher correlation values but
the accuracy decreases for larger time-steps. In contrast to
that, for the zero noise case, there is a monotonic decrease
in correlation as the timestep increases (fig. 3 top line). This
is expected since, for EU, an increase of time separation,
dt, decreases the precision error, ε2

u
2dt2 , associated with the

uncertainty on the velocity field, but intensifies the trunca-
tion error, dt2

6
∂ 3u
∂ t , stemming from the discretisation scheme

(see van Oudheusden, 2013), a behaviour also observed for
derivative filters (Foucaut and Stanislas, 2002). Therefore,
for good quality data, as is the case of zero noise, it is the
truncation error that is more prominent and dictates small
time separations to be used. However, for higher noise level
(or experimental results), a small increase of dt might pro-
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vide a better balance between the two error sources (fig. 3
middle and bottom line). A larger increase of dt though,

dt+

r p
i

εu/Umax

0

0.5

1

0 0.6 1.2 1.8 2.4

Fig. 3: Average correlation coefficient with varying frame
time-separation and noise for EU (l+ = 12). When noise is
present in the data a moderate increase in timestep improves
the performance, while for zero noise the minimum timestep
yields the most accurate results

would lead to an increasing truncation error representing the
receding correlation between the velocity fields used for the
computation of the acceleration. For an Eulerian approach
this would in turn lead to an increasing error on the accel-
eration. Moreover, the time derivative for the computation
of the acceleration implies that an increasing timestep will
also lead to aliasing. This explains the drop in correlation for
time-steps larger than dt+= 1.28 for the case of εu/Umax = 1
and 2% (fig. 3 middle and bottom line). Therefore, for EU,
a moderate frame separation is chosen for the rest of the
study (dt+ = 1.28). In the case of pLA, even though the
largest time separation (dt+ = 2.56) yields the best results,
it also leads to a loss of more than 60% of the volume due
to fluid parcels leaving the FOV during the reconstruction of
the parcels’ trajectories. For this reason, we select an inter-
mediate value (dt+ = 1.28) as well, for the rest of the study,
where less than 40% of the volume is lost and the method
still performs adequately.

4.2 Noise dependence

With the convection velocity and time frame separation cho-
sen, pressure was estimated using all methods for the differ-
ent noise levels and the average correlation coefficient be-
tween the exact and estimated pressure fields with respect
to noise was determined (fig. 4). For the zero noise level,
pLA provides very accurate results (correlation coefficient
close to 1) outperforming TH, which reaches values around
0.8. EU has a slightly lower accuracy than pLA (because,
as mentioned above, the timestep selected improves the per-
formance only when noise is present) but still outperforms

TH. As noise increases the correlation coefficient follows
a decreasing trend for all methods, however TH appears to
be the least influenced and outperforms the other two ap-
proaches for all noise levels considered. These observations

εu/Umax

r p
i

0

0.5

1

0 1 2 3 4
0

0.5

1

0 1 2 3 4

TH, Uc = U

EU, dt+ = 1.28

pLA, dt+ = 1.28

Fig. 4: Average correlation coefficient with varying noise
(l+ = 12, dt+ = 1.28 for both EU and pLA). All methods
show decrease in correlation with increasing noise with TH
being the least sensitive to noise and EU suffering the most

are in line with the uncertainty propagation analysis, where
it was shown that for zero noise on the velocity field, pres-
sure estimates with either EU or pLA should not have any
uncertainty propagating through (eq. 12 and 13), while pres-
sure estimates using TH can have an uncertainty relating to
an incorrect convection velocity chosen, as is the case here.
However, as the uncertainty on the velocity increases, EU
and pLA suffer significantly more while TH still retains ac-
ceptable levels of accuracy even at the largest noise level.

4.3 Resolution dependence

Finally, pressure was estimated for the different grid resolu-
tions outlined above and the average correlation coefficient
between the exact and estimated pressure fields was deter-
mined (fig.5). Decrease in grid resolution leads to poorer
performance for all three methods. Similar to the influence
of noise on TH (fig. 3), lower grid resolution results in a de-
crease of the pressure correlation coefficient from about 0.79
for the best resolution, to about 0.6. EU follows a similar
decreasing trend, from a correlation coefficient around 0.53
dropping to 0.3 for the worst resolution. It should also be
noted here that it is the noise effect on EU, that is responsible
for the much lower values of correlation coefficient with re-
spect to TH. For the pLA approach, there is a much sharper
decrease (more than 50%) in accuracy with decreasing reso-
lution which can be of significant importance in the case of
experimental data, where high spatial resolution is be hard
to attain (especially when time-resolved volumetric velocity
fields are required).
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EU, dt+ = 1.28
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Fig. 5: Average correlation coefficient with varying reso-
lution (εu/Umax = 1%, dt+ = 1.28 for both EU and pLA).
Decrease in correlation for lower resolution for all methods
with TH showing the slowest decrease

5 Experimental assessment

For the experimental assessment of the different methods,
time-resolved tomographic PIV experiments in a turbulent
boundary layer were carried out in the recirculating water
tunnel (1.2m × 0.8m × 6.75m) located at the University
of Southampton Experimental Fluids Laboratory. The mea-
surements were made about 5.5 m downstream of the con-
traction’s end where the flow was tripped (with a 10 cm
wide 60-grit sandpaper). For the seeding, 50 µm polyamide
particles (Vestosint 2157) were used. A volume, approxi-
mately 0.08m × 0.18m × 0.02m, in x, y, and z was il-
luminated with a Litron LDY 304 laser and images were
acquired with four Phantom v641 32 GB cameras, with a
2,560 × 1,600 pixels sensor, fitted with Sigma f/2.8 EX
DG Macro lenses with a focal length of 105 mm, in a cross-
like configuration, with a resulting digital resolution of 13
pixels/mm. The bottom two cameras were positioned nor-
mal to the volume middle plane, while the top ones were
inclined downwards at approximately 10◦ (fig. 6). The pla-
nar angle between both sets of cameras was approximately
15◦. A LaVision High Speed Controller was used to syn-
chronise the system. Using DaVis 8.2, we acquired a set of
3,300 particle images at 1.45 kHz, which we subsequently
processed with the same software using an iterative volume
correlation with a final interrogation volume of 64 × 64 ×
64 pixels with an overlap factor of 75%. The nominal flow
conditions, based on the 3,300 evaluated vector fields were:
U∞ ≈ 0.66 m/s, δ ≈ 0.10 m, Reτ ≈ 2400, while the resulting
FOV was approximately 0.8δ × 2δ × 0.18δ in the stream-
wise, wall-normal and spanwise direction respectively (Ta-
ble 3). The mean velocity profile displayed a logarithmic re-
gion (κ = 0.38, B = 4.1 according to Österlund et al, 2000)
for 200 < y+ < 0.15δ (fig. 7). For the computation of the
momentum thickness, θ , Spalding’s law of the wall (Spald-
ing, 1961) was employed for the region from the wall (y+ =

Fig. 6: Schematic (rendering) of the tomographic PIV setup

Table 3: Nominal flow conditions and processing parame-
ters

Parameter Value

Friction velocity Re number: Reτ 2.30 ·103

Momentum thickness Re number: Reθ 4.85 ·103

Friction velocity : Uτ 2.54 ·10−2 [m · s−1]
Viscosity : ν 1.16 ·10−6 [m2 · s−1]
Domain Length : Lx×Ly×Lz 0.8δ ×2δ ×0.18δ [m]
Interrogation volume size: l+x × l+y × l+z 104×104×104
Timestep: dt+ 0.38
Voxel size: l+v 1.63

0) up to the first independent velocity point (i.e. the first
point not influenced by the wall in the volume correlation
process).

y+

U U
τ

0

10

20

30

40

100 101 102 103 104

Spalding 1961

k = 0.38, B = 4.1

Fig. 7: Inner normalised mean velocity profile

The methods described above were subsequently imple-
mented on the acquired volumetric PIV velocity data using
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(a) TH (b) EU - dt+ = 0.38 (c) pLA - dt+ = 0.38

(d) pLA - dt+ = 11.4 (e) pLA - dt+ = 19

Fig. 8: Contour plots of pressure for all methods. Flow is from left to right, axes as appearing on the left, each 200+ long.
TH seems to be the least affected by noise and EU the most while pLA performs much better for very large time-steps but
the resulting volume is greatly reduced

the streamwise mean as the convection velocity for TH and
initially a single timestep as the frame time-separation for
EU and pLA. Since the FOV extended up to the freestream,
we could then apply Dirichlet boundary conditions to the
top surface of the volumes for the Poisson equation (eq.
2). More specifically, pressure was prescribed (p = 0) for
a single point at the top surface of the volume, located in
the freestream. Additionally, the average pressure of the top
surface was also set to zero. Based on the aforementioned
nominal flow conditions, the resulting interrogation window
size was l+ = 104, much coarser than the different resolu-
tions (l+ = 12, 24, and 48) tested on the DNS dataset, but
the time-steps were comparable: dt+ = 0.38 for the experi-
mental dataset and dt+ = 0.32 for DNS.

The results show that for a single timestep (dt+ = 0.38),
both pLA and EU are greatly affected from noise (fig. 8b
and c), to the point where no individual structures can be
identified. The pressure fields using TH (fig. 8a) seem to be
less noisy and some individual formations are discernible.
This is consistent with the observations of the previous sec-
tion, where high levels of noise (more than 3%) present in

the velocity fields, led to a rapid decrease in accuracy for
both EU and pLA approaches (fig. 3), while TH was less
influenced. Numerical assessment in the previous section
showed that pLA suffered the most with poor spatial resolu-
tion (fig. 4). Even for a resolution of l+ = 48, pLA showed
a 50% decrease in correlation with the exact pressure field,
so we would expect the current resolution of l+ = 104 to
be, besides noise, the other main factor responsible for the
poor performance (fig. 8c). However, it is also shown that,
in terms of frame separation, larger time-steps could poten-
tially improve the performance for pLA (fig. 2), with the
limitation being the greatly reduced volumes due to fluid
parcels leaving the FOV. To test this observation, we imple-
mented pLA for several different time separations (8d and
e). The results show that indeed, for larger time-steps, the
evaluated pressure fields are less noisy and some structural
details can be detected. Due to the much coarser spatial res-
olution and high noise levels included, the frame time sepa-
ration needed in order for pLA to show a marked improve-
ment (dt+ = 11.4) was an order of magnitude larger than the
one used for the DNS dataset (dt+ = 1.28). However, also
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due to the larger FOV and coarse resolution, the loss in vol-
ume due to fluid parcels leaving the FOV was also more lim-
ited, which allowed for these large frame separations to be
used. Since no reference pressure was available, it was un-
clear how much these formations, discernible with the Tay-
lor’s hypothesis approach and the pseudo-Lagrangian ap-
proach, resembled the ones present in the flow. However, we
chose to assess the performance of each method using the in-
ner normalised root-mean-square values of pressure p+rms =

prms/(ρU2
τ )—averaged in space and time—and comparing

them with DNS results of similar Re numbers. Therefore,
pressure distributions from turbulent boundary layers of Reθ =

5000 (Reτ = 1460) and Reθ = 6500 (Reτ = 1990) (Sillero
et al, 2013, 2014; Borrell et al, 2013; Simens et al, 2009)
were plotted together with experimental results (figures 9–
12). The two DNS datasets were selected so that the former
approximately matches the Reθ of the present experiments
and the latter the Reτ .

5.1 Eulerian approach

The numerical study in the previous section showed that EU
gave the most accurate results for minimal time separation
in case of very good quality data. However, for increasing
noise present in the data, as is the case of the experimental
results, a moderate increase of timestep improved the per-
formance (fig. 2 and 3). For this reason we tested different
time-separations (dt+ = 0.38–11.4) and plotted the resulting
pressure fields (fig. 9) together with the DNS data (Sillero
et al, 2013, 2014; Borrell et al, 2013; Simens et al, 2009).
Results show that for all time separations the pressure values
are an order of magnitude higher than the DNS data, in line
with the pressure contour plots in fig. 8b. There is however
a decreasing trend with increasing frame separation, which
is more pronounced between dt+ = 0.38 and dt+ = 1.9.
This improvement is—besides the aforementioned decrease
in precision error— due to the coarse spatial resolution of
the data in conjunction with oversampling in time. For the
last two dt’s tested (dt+ = 7.6 and 11.4), the near-wall re-
gion values deviate significantly from the DNS curve and
this could be due to the increasing truncation error (fig. 9a).
In the freestream, especially for the smallest frame separa-
tion, there was an upward branching of the values, prob-
ably due to the boundary conditions imposed. In order to
better compare with the DNS data, we removed these end
points and subtracted the minimum rms pressure: p+rms∗ =

p+rms− p+min, from all values (see fig. 9a), effectively setting
the pressure fluctuations at the freestream to zero. This was
a similar–albeit more simplistic–approach to the de-noising
of pressure measurements employed by Tsuji et al (2012).
The resulting plot (fig. 9b) shows that, even when a con-
stant noise level (corresponding to the pmin) is subtracted,
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Fig. 9: Root-mean-square pressure, normalised with inner
variables, using EU. (a) Results for increasing frame sepa-
ration (dt+ = 0.38–11.4). (b) Same results translated down-
wards using a reference pressure and replotted together with
DNS (Sillero et al, 2013, 2014; Borrell et al, 2013; Simens
et al, 2009) at Reθ = 5000 (Reτ = 1460) and Reθ = 6500
(Reτ = 1990), solid lines

the pressure distribution deviates significantly from the DNS
data.

5.2 Pseudo-Lagrangian approach

The pressure contours in fig. 8d and 8e and the numerical
study results for pLA showed an improvement in perfor-
mance for increasing time separation, leading however to a
decrease in volume. For this reason, similar to EU, we tested
several frame separations for pLA and plotted the results
together with DNS data (Sillero et al, 2013, 2014; Borrell
et al, 2013; Simens et al, 2009). For the first few time-steps
used (dt+ = 0.38–7.6), there was a marked improvement
with increasing dt+ as expected, however the overall pres-
sure values were much higher than the DNS data and not
shown here. For larger time-steps (dt+ = 7.6–22.8) the val-
ues are comparable with the DNS results (fig. 10a), but there
is no clear trend with increasing frame separation. As al-
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ready mentioned for EU, the maximum allowable timesteps
for the method to perform adequately, besides the limita-
tion of volume loss, are also dictated by the combination
of a coarse resolution in space with a very high resolution in
time. Looking more closely at the area where the experimen-
tal points lie (highlighted rectangle in fig. 10a), it is clear
that the frame separations that perform best tend to increase
with increasing distance from the wall (fig. 10b). It has to be
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Fig. 10: Root-mean-square pressure, normalised with in-
ner variables, using pLA together with DNS results (Sillero
et al, 2013, 2014; Borrell et al, 2013; Simens et al, 2009)
at Reθ = 5000 (Reτ = 1460) and Reθ = 6500 (Reτ =

1990), solid lines. (a) Results for increasing frame separa-
tion (dt+ = 7.6–22.8). (b) Zoomed-in region in (a) showing
increasing time-scales with increasing y+

noted that here in favour of consistency, following the same
procedure as with the EU results, the end points were re-
moved and the minimum rms pressure was subtracted from
the distributions as well. Using dt+ = 11.4 yields the best
results for a region up to y+ ≈ 800, while for 800 < y+ <

2500, the best choice is dt+ = 19 and above that, dt+ = 22.8,
even though at that point, the remaining volume is almost re-
duced to a plane (fig. 10b and 8e). Although the exact limits
of these regions are quite uncertain, the general trend agrees

with the increase of streamwise velocity away from the wall.
Therefore, it is noted that a more suitable implementation of
pLA should include a frame separation dt+(y+), increasing
with y+.

5.3 Taylor’s hypothesis approach

Comparing with the DNS data (Sillero et al, 2013, 2014;
Borrell et al, 2013; Simens et al, 2009), shows that TH is
the method least influenced by noise and the pressure distri-
bution follows a similar trend as the DNS results (fig. 11).
Similar to EU and pLA results, the end points were removed
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Fig. 11: Root-mean-square pressure, normalised with inner
variables, using TH together with DNS results (Sillero et al,
2013, 2014; Borrell et al, 2013; Simens et al, 2009) at Reθ =

5000 (Reτ = 1460) and Reθ = 6500 (Reτ = 1990), solid lines

and the minimum rms pressure was subtracted from the dis-
tribution. With the freestream noise subtraction mentioned
above, the rms pressure distribution approximately follows
the lower Re DNS dataset (which has a comparable Reθ with
the experimental results), away from the wall. As expected,
larger discrepancies can be seen closer to the wall, where
the convection velocities likely deviate from the mean (Geng
et al, 2015).

5.4 Time and resolution dependence

As already mentioned, the cross-correlation of particle im-
ages, which is the core of PIV, acts similar to a low-pass
filter in space. In our case the data are also time-resolved
and the finite acquisition frequency imposes a similar fil-
ter in time. Regarding the spatial filtering effects, unlike the
numerical study, where high-resolution data were available
and the effects of different filter sizes were evident (fig. 5),
the experimental data are already quite coarse in space (l+

= 104) and even though further decrease of resolution was
tested, the effects on the final pressure values were minimal.
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The dependence of each method on frame time-separation
was already tested above, however to highlight the differ-
ences between methods and similar to fig. 2 of the numer-
ical study, the normalised errors (in %) between the esti-
mated and DNS values (Sillero et al, 2013, 2014; Borrell
et al, 2013; Simens et al, 2009) were plotted against the dif-
ferent time-steps used (fig. 12). The normalised error, ε∗,
is computed for every wall-normal location, y+, as the av-
erage deviation of the estimated pressure values from the
two corresponding DNS ones and is then averaged across
all y+ locations. The star denotes the procedure followed
in the previous sections where for all approaches, the end
points were removed and the minimum rms pressure was
subtracted from the distribution. It is also important to note
here that, because of the volume losses mentioned above,
the error computed for pLA is based on fewer points as the
timestep increases. The results show that both EU and pLA
approaches improve with larger time-steps, even though for
EU the distribution in the near-wall region deviates signif-
icantly from the DNS values for very large time-steps (see
fig. 9b). When increasing the time-step further (dt+ > 10),
the performance of EU starts to deteriorate mirroring the
trend of fig. 2 in the numerical study. On the other hand pLA
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Fig. 12: Average error (in %) of all methods with respect
to the DNS results. For pLA a moderate timestep ∼ dt+ =

10 yields the best results, even though for larger time-steps
the error remains at similar—albeit a bit higher—levels. The
performance of EU improves for moderate time-steps but
deteriorates again for the largest dt’s used. TH is not time
dependent and shows quite low error levels

shows lower error levels, some slight oscillations (in line
with the behaviour shown in fig. 10b) and the performance
does not deteriorate significantly even for the maximum al-
lowable timestep (despite the volume loss). TH does not use
time information and is represented by a single point at the
right side of the figure, symbolizing the equivalent of an infi-
nite time-step approach. The TH point corresponds to error
levels much lower than EU and comparable to pLA when

very large time-steps are used. Following the previous obser-
vations a dt+ = 11.4 is chosen for both EU and pLA, since
it corresponds to the minimum deviation between estimated
and DNS distributions for both approaches. With the time-
steps chosen, the corresponding pressure distributions of the
three approaches can then be compared with each other and
the DNS results, as shown in the next section.

5.5 Comparison of all methods

Here, the best results from each method are compared (fig.
13). Both TH and pLA match the low-Re DNS dataset, with
TH performing better away from the wall, as expected. EU
has the poorest performance. Based on the numerical study
in the previous sections, the large discrepancies observed for
EU can be attributed to the extra velocity term, II, in eq.
12 in the uncertainty analysis. This term does not appear in
the uncertainty formulation for pLA, whereas for TH, it in-
volves the magnitude of the velocity fluctuations, u′ and of
the difference between the mean and the convection veloc-
ity, U−Uc, which are much smaller. It is obvious that for
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Fig. 13: Comparison of all methods together with DNS re-
sults (solid lines) (Sillero et al, 2013, 2014; Borrell et al,
2013; Simens et al, 2009). TH seems to be the least affected
by noise while pLA performs much better for large time-
steps (dt+ = 11.4) but the resulting volume is greatly re-
duced

the present experimental conditions, both pLA and TH can
provide reasonable results, the former with a considerable
loss in volume and noise sensitivity. For pLA it should also
be noted that, apart from noise, the coarse resolution might
influence significantly the accuracy, based on the results of
the numerical study (fig. 4). An experimental dataset with
improved resolution could perhaps reveal with more detail
whether pLA could improve significantly in performance,
or could bring TH within the resolution limits of the DNS
study (fig. 4) so that we would be able to predict its accu-
racy with more certainty. However, we are already reaching
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the limits of the state-of-the art equipment and significant
improvements in spatial resolution are not possible without
losing time resolution or part of the FOV (which would in
turn render the Dirichlet condition at the freestream, used in
the Poisson formulation, invalid and the pressure estimation
less accurate).

6 Conclusions

A concept to determine pressure using Taylor’s hypothe-
sis approach for 3C volumetric velocity data was developed
and validated numerically, using the channel flow database
from John’s Hopkins University (Li et al, 2008; Perlman
et al, 2007; Graham et al, 2013). Independent synthetic 3C
volumetric PIV snapshots were created from the available
data and pressure was estimated using a Taylor’s hypothe-
sis, an Eulerian and a pseudo-Lagrangian approach. Initially,
it was shown that for TH the use of the streamwise mean
as the convection velocity yielded the most accurate results.
When noise was present in the data, EU performed best us-
ing moderate time-steps which provided a balance between
truncation and precision errors. The pseudo-Lagrangian ap-
proach performed best with increasing time frame separa-
tion. For very large separations, even though the accuracy
of pLA was improved, there were significant edge effects
due to fluid parcel paths outside of the FOV, which resulted
in much smaller pressure fields (up to 50%). With the con-
vection velocity and frame time-separation chosen so as to
get the best possible results, the dependence of all meth-
ods on noise and grid resolution was subsequently tested.
It was shown that even though the Eulerian and pseudo-
Lagrangian approaches performed better in the case of zero
noise and best resolution, their accuracy deteriorated much
quicker than the one attained using TH. Especially in the
case of high noise levels, both EU and pLA failed com-
pletely in determining the pressure, while TH indicated a
maximum decrease of correlation of roughly 20%. These
results were in agreement with a linear uncertainty propa-
gation procedure for the pressure estimation that was also
performed. It was also shown that pLA was the most sen-
sitive of the three methods in terms of grid resolution with
a maximum decrease in correlation of more than 50% for
a decrease in resolution by a factor of four. Time-resolved
volumetric PIV measurements were also performed in a tur-
bulent boundary layer and pressure was estimated on the ac-
quired 3D velocity fields. Results showed that for the mini-
mum time separation, EU and pLA were suffering both from
noise and resolution effects, resulting in pressure values an
order of magnitude larger than what predicted with DNS
at comparable Re numbers. For the pressure fields using
TH noise effects were limited and some structural forma-
tions were discernible, while the rms values of pressure fol-
lowed closely the distributions from DNS. For larger time-

separations, pLA showed a significant improvement, but the
resulting volumes were also significantly smaller—in line
with the numerical assessment observations. Based on both
the numerical and the experimental results, TH seems the
most promising approach in these conditions, while pLA can
also provide good results for large time separations, increas-
ing with distance from the wall. Experimental data with a
higher spatial resolution and of better quality could poten-
tially reinforce these observations, however, large improve-
ments are unlikely due to current limitations in equipment.
Better accuracy could also be attained for the Eulerian ap-
proach by using more advanced correlation schemes on the
‘raw’ particle images. Also, as already mentioned above,
newly developed fully-Lagrangian techniques can provide
very accurate acceleration information which in turn could
lead to highly accurate pressure estimations. The important
point however, is that for single snapshots of velocity, TH is
the only approach of the three than can provide results and
even when time information is available, it outperforms EU
and has a similar accuracy with pLA without suffering from
volume losses.

All data supporting this study are openly available from
the University of Southampton repository at http://dx.
doi.org/10.5258/SOTON/385842
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