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BLOOD VESSEL SHAPE DESCRIPTION FOR DETECTION OF ALZHEIMER’S DISEASE 

by Musab Sahrim 

 

Alzheimer’s disease (AD) is the most common form of dementia and is characterised by 

the deposition of aggregated proteins in neurofibrillary tangles or amyloid plaques 

within the vascular structure of the brain. Amyloid plaques consist of amyloid-beta (Aβ) 

in the extracellular spaces of the brain or in the walls of blood vessels, reflecting a failure 

to eliminate Aβ from the ageing brain. The failure to remove Aβ is potentially reflected 

in the vessels’ shape: vessel shape can improve or reduce fluid flow and thus drainage, 

according to tortuosity and other shape factors. 

Neuropathological studies on post-mortem human tissue have described that the small 

vessels of aged brains are more tortuous compared to Young brains and tortuosity 

increases with the presence of Alzheimer pathology[1-4]. There is currently much 

interest in the diagnosis of AD, especially at the early stages where therapy could be 

better directed (or even deployed). The central aim of this thesis is to determine whether 

diagnosis is possible from image data, of brain tissue and MRI scans of the brain. We 

propose that the capillaries can be analysed as a branching structure, which appears to 

be a new analysis for medical images. The approach includes new measurements of the 

branching structure which are enriched by analysis of the vessels’ tortuosity and density. 

The introduction of measures of shape by compactness and Fourier descriptors further 

enriches this study.  

The branching structures are detected by evidence gathering approaches and described 

by their structure. This allows recognition to be achieved; the structure of those samples 

derived from patients with AD differs from that for normal subjects. The descriptions 



can be classified using machine learning techniques, as such, achieving an automated 

process from image to recognition. We analysed the structure of the blood vessels in a 

database of brain tissue images collected from control, age-matched and patients with 

severe AD. The database comprises five subjects of each of the three types imaged in 

controlled conditions, and five MRI images of a normal brain from the Brain Tissue 

Resource of Newcastle UK. We show that by automated image analysis we are able to 

discriminate between brain tissue samples from patients presenting AD and from the 

normal samples.  

We also show discriminative capability between posterior and anterior regions of the 

brain imaged in 3D by MRI. The branching structure is the description that is most suited 

for classification purposes. On this initial dataset, statistically significant differences 

(p=0.04) were seen between anterior and posterior and we can achieve 90% correct 

classification from a combination of these descriptions.  

We are thus confident that these approaches are well suited to further investigation 

aiming for a diagnostic tool for clinical use in the assessment of possibility of 

Alzheimer’s disease. 

 

 

 

 

 

 

 

 

 

 

 



 

Contents 

ABSTRACT ............................................................................................................................... ii 

Contents ................................................................................................................................ iv 

List of abbreviation ........................................................................................................ vii 

List of tables ..................................................................................................................... viii 

List of figures ..................................................................................................................... ix 

Declaration of Authorship .......................................................................................... xi 

Acknowledgements ........................................................................................................ xii 

1. Context and Contributions ................................................................................. 1 

1.1 Context ........................................................................................................... 1 

1.2 Aim and Objectives ....................................................................................... 1 

1.3 Contributions ................................................................................................. 3 

1.4 Publications .................................................................................................... 4 

2. Alzheimer’s disease ................................................................................................ 5 

2.1 Basis ................................................................................................................ 5 

2.2 Diagnosis of Alzheimer’s disease ................................................................ 6 

2.3 Data acquisition and preparation ................................................................. 8 

2.3.1 Introduction ................................................................................................... 8 

2.3.2 Human Tissue Images ................................................................................... 9 

2.3.3 MRI Imaging ................................................................................................. 11 

2.3.4 Pre-processing ............................................................................................. 12 

2.3.4.1 Colour Segmentation ................................................................................ 12 

2.3.4.2 Morphology ................................................................................................ 15 

2.3.5 Classification ................................................................................................ 18 

2.3.5.1 K-Nearest Neighbour ................................................................................. 18 

2.3.5.2 Distance measure ...................................................................................... 18 

2.3.6 Cross validation ........................................................................................... 19 



2.3.7 Feature Assessment .................................................................................... 20 

3. Branching Structure ............................................................................................. 21 

3.1 Introduction .................................................................................................21 

3.2 State of the art .............................................................................................22 

3.3 Model Description .......................................................................................24 

3.3.1 Branching Point ............................................................................................ 24 

3.3.2 The Concept ................................................................................................. 24 

3.4 Properties .....................................................................................................26 

3.4.1 Rotation, scale and position invariance ..................................................... 26 

3.4.2 Model verification for invariance ................................................................ 26 

3.5 Methodology and Experimentation ............................................................30 

3.5.1 Real World Images ....................................................................................... 30 

3.6 Conclusions ..................................................................................................36 

4. Capillary Structure Analysis ........................................................................... 37 

4.1 Overview .......................................................................................................37 

4.2 Branch Density .............................................................................................37 

4.2.1 Introduction ................................................................................................. 37 

4.2.2 Density ......................................................................................................... 37 

4.3 Tortuosity .....................................................................................................38 

4.3.1 Introduction ................................................................................................. 38 

4.3.2 Extraction of tortuosity from curvature ..................................................... 40 

4.4 Compactness ...............................................................................................43 

4.5 Planar Fourier Descriptors ..........................................................................47 

4.6 Analysis of Extracted Features ...................................................................50 

4.6.1 Analysis of Density measurement .............................................................. 50 

4.6.2 Analysis of Tortuosity measurement ......................................................... 52 

4.6.3 Analysis of Compactness ............................................................................ 54 

4.6.4 Analysis of Fourier Descriptors .................................................................. 57 

4.7 Results and Discussion ...............................................................................59 

4.8 Conclusions ..................................................................................................64 



5. MRI Image Analysis.............................................................................................. 66 

5.1 Introduction .................................................................................................66 

5.1.1 Why posterior and anterior? ....................................................................... 66 

5.1.2 Pre-processing ............................................................................................. 67 

5.2 3D Model-based Branching Structures .......................................................71 

5.2.1 Angle description ........................................................................................ 71 

5.2.2 Model Description ....................................................................................... 73 

5.3 3D Feature Detection ..................................................................................74 

5.3.1 3D Tortuosity ............................................................................................... 74 

5.3.2 3D Compactness.......................................................................................... 76 

5.3.3 3D Fourier Descriptors ................................................................................ 78 

5.4 Analysis of 3D Features ..............................................................................80 

5.4.1 Analysis of 3D Model-based Branching Structure ..................................... 80 

5.4.2 Analysis of 3D Tortuosity ........................................................................... 82 

5.4.3 Analysis of 3D Compactness ...................................................................... 83 

5.4.4 Analysis of 3D Fourier Descriptor .............................................................. 85 

5.5 Results and Discussion ...............................................................................87 

5.6 Conclusion ...................................................................................................89 

6. Conclusions and Future Work ........................................................................ 90 

6.1 Overall Conclusions .....................................................................................90 

6.2 Future Work ..................................................................................................93 

Appendix A .......................................................................................................................... 95 

Human tissue images ......................................................................................................95 

Appendix B ....................................................................................................................... 104 

MRI montage images ................................................................................................... 104 

References ........................................................................................................................ 109 

 

 



List of abbreviation  

 

 

AD Alzheimer’s disease 

Old Age-matched control 

2D Two Dimensional   

3D Three Dimensional 

CCR Correct Classification Rate 

LOOCV Leave One Out Cross Validation 

ANOVA Analysis of Variance 

MRI Magnetic resonance imaging 

k-NN k Nearest Neighbours 

SFFS Sequential Floating Forward Selection 

 

 

 

 

 

 

 

 

 

 



List of tables 

 

Table 3-1 ANOVA table for comparison between Cosine and Degree based Branching Structure

 ................................................................................................................... 31 

Table 3-2. Tukey HSD test results for Cosine-based Branching Structure. ..................... 32 

Table 4-1. The measurements of invariants in FDs ........................................................... 48 

Table 4-2 ANOVA table for analysis of density .................................................................. 50 

Table 4-3 Multiple comparisons table for Tukey HSD test for density between groups 51 

Table 4-4. ANOVA table for various measurement of Tortuosity..................................... 52 

Table 4-5. Tukey HSD Post Hoc test for logT measurement of Tortuosity. .................... 53 

Table 4-6. ANOVA table for various measurement of Compactness ............................... 54 

Table 4-7. Post Hoc Test for measurements of compactness .......................................... 55 

Table 4-8. Contrast coefficients of ANOVA ........................................................................ 59 

Table 4-9. Test of Homogeneity of Variances of all 2D features ..................................... 60 

Table 4-10. Results of Contrast Analysis of all 2D features ............................................. 61 

Table 4-11. ANOVA table for feature fusion. ..................................................................... 61 

Table 4-12. Post Hoc result using Tukey HSD for feature fusion ..................................... 62 

Table 5-1. Result of Independent Sample t-test of different measurement of 3D Branching 

Structure .................................................................................................... 80 

Table 5-2. Result of Independent Sample t-test for 3D Tortuosity .................................. 82 

Table 5-3. Result of Independent Sample t-test of different measurement of 3D Compactness

 ................................................................................................................... 84 

Table 5-4 Result of SFFS for Fourier descriptors ............................................................... 85 

 

 



ix 

 

List of figures 

 

Figure 2-1. Sample images from different categories ....................................................... 10 

Figure 2-2. RGB images of Young brains ........................................................................... 13 

Figure 2-3. Colour segmentation process using k-means clustering .............................. 14 

Figure 2-4. Thinning Process in sample images. ............................................................... 17 

Figure 3-1. Branching structure .......................................................................................... 21 

Figure 3-2. The window used to detect the branching point ........................................... 24 

Figure 3-3. Synthetic branching structure for 3 branches ................................................ 25 

Figure 3-4. Examples of synthetic branching structure value with rotation invariance . 27 

Figure 3-5. Synthetic branching value with  degrees of rotation ..................................... 27 

Figure 3-6. Examples of synthetic branching value structure with scale invariant......... 28 

Figure 3-7. Synthetic branching value with scaling percentage ....................................... 29 

Figure 3-8. Synthetic branching structure value with position invariance ...................... 29 

Figure 3-9. Flowchart for Branching Structure analysis .................................................... 30 

Figure 3-10. CCR for different numbers of k ..................................................................... 33 

Figure 3-11. CCR using Cosine-based Branching Structure with different groups ......... 34 

Figure 3-12. Confusion Matrices of different group combinations for k=1 .................... 34 

Figure 3-13. Confusion matrices between two groups for k=1 ........................................ 35 

Figure 4-1. Normal tortuosity measurement ..................................................................... 38 

Figure 4-2. Extracting branch points .................................................................................. 41 

Figure 4-3. The tortuosity measurement by Equation (4-2) .............................................. 41 

Figure 4-4. Boundary extraction from binary image ......................................................... 42 

Figure 4-5. The curvature graph of the object in Figure 4-4 ............................................ 42 



x 

 

Figure 4-6. The variety of objects with their compactness ............................................... 43 

Figure 4-7. Comparison between the perimeter and the contact perimeter ................... 45 

Figure 4-8. Variety of shapes and their contact perimeter ............................................... 46 

Figure 4-9. Vessels for FDs analysis. .................................................................................. 47 

Figure 4-10. Comparison between classical and discrete compactness by increasing the 

number of k in k-NN classification technique......................................... 56 

Figure 4-11. CCR using different number of FD coefficient. ............................................ 57 

Figure 4-12. CCR using Complex and Elliptic FD .............................................................. 58 

Figure 4-13. CCRof k for each features between three groups. ....................................... 63 

Figure 5-1. Example of 3D MRI montage of a normal brain ............................................. 68 

Figure 5-2. Comparison between original image and segmented image ........................ 68 

Figure 5-3. 3D view for 3D MRI images .............................................................................. 69 

Figure 5-4. 3D Skeletonisation process in normal brain ................................................... 70 

Figure 5-5. 3D Branching Structure for whole brain ......................................................... 71 

Figure 5-6. Comparison between Azimuth and Elevation angle ...................................... 72 

Figure 5-7. Preprocessing of 3D anterior artery ................................................................ 74 

Figure 5-8. Preprocessing of 3D posterior artery .............................................................. 75 

Figure 5-9. The understanding of contact surface area .................................................... 77 

Figure 5-10. 3D anterior arteries represented as a mesh of 2D triangles....................... 78 

Figure 5-11. Flowchart of 3D FDs Algorithm ..................................................................... 79 

Figure 5-12. CCR using 3D Branching Structure measures .............................................. 81 

Figure 5-13. Recognition of Anterior vs Posterior Vessels by Tortuosity ........................ 83 

Figure 5-14. CCR using 3D compactness measures ......................................................... 84 

Figure 5-15. CCR using 3D Fourier Descriptor .................................................................. 85 

Figure 5-16. CCRfor different features of 3D .................................................................... 87 



xi 

 

 

Declaration of Authorship 

 

 

I, Musab Sahrim, declare that this thesis entitled Blood Vessel Shape Description for Detection 

of Alzheimer’s Disease and the work presented in it are my own and has been generated by 

me as the result of my own original research. I confirm that: 

1. This work was done wholly or mainly while in candidature for a research degree at this 

University; 

 

2. Where any part of this thesis has previously been submitted for a degree or any other 

qualification at this University or any other institution, this has been clearly stated; 

 

3. Where I have consulted the published work of others, this is always clearly attributed; 

 

4. Where I have quoted from the work of others, the source is always given. With the 

exception of such quotations, this thesis is entirely my own work; 

 

5. I have acknowledged all main sources of help; 

 

6. Where the thesis is based on work done by myself jointly with others, I have made clear 

exactly what was done by others and what I have contributed myself; 

 

7. Either none of this work has been published before submission, or parts of this work 

have been published as listed in Section Publications of the thesis: 

 

 

Signed:……………………………………………………………………………………………………………. 

 

 

Date:  …………………………………………………………………………………………………………… 



xii 

 

Acknowledgements 

 

First of all, I would like to acknowledge the contributions of all those who helped me 

throughout this time; firstly to Allah Almighty for giving me this opportunity to explore the 

new world of research with a new environment and people.  

 

I want to acknowledge my supervisors, Professor Mark S Nixon and Dr Roxanna O Carare for 

showing confidence in my abilities and encouraging me despite my failures and weaknesses. 

They continually and convincingly conveyed a spirit of adventure in regard to research and 

strengthened my passion towards completing this research. Without their guidance and 

persistent help this thesis would not have been possible. 

 

I would also like to acknowledge my family, particularly my parents, Dr Sahrim Hj Ahmad and 

Hjh Faridah Hj Ali, my beloved wife, Lily Hanefarezan binti Asbulah, my parents in law, Encik 

Asbulah bin Ajak, Maimunah binti Hj Omar, Ramnah binti Yahdi and my siblings Khawlah, 

Sumayyah, ‘Ammar, ‘Asma and Muhammad who remained extremely supportive and positive 

regardless of the problems that I experienced.  

 

Finally, I am also grateful to all my friends in the University of Southampton who always 

assisted me in the best possible way whenever the need arose. 

  



xiii 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

To my beloved parents, my sweetheart Lily Hanefarezan 
and my siblings 

 

  



 

1 

 

1. Context and Contributions 

1.1 Context 

 

Alzheimer’s disease (AD) is the commonest form of dementia, affecting nearly one million 

people in the UK and with no effective treatment. Diagnosis is difficult, as many 

neurodegenerative conditions present with similar features [5]. Amyloid beta (Aβ) is a normal 

product of metabolism, cleaved from an amyloid precursor protein (APP) [6]. Young brains are 

equipped with different mechanisms to break down and eliminate Aβ, but, with ageing, and 

the background of different genotypes, the elimination of Aβ fails leading to its accumulation 

and to onset of AD [7]. The accumulation of Aβ in the walls of the blood vessels of the brain 

reflects the failure of its elimination along the walls of the blood vessels[8]. 

In recent years, researchers have tried to detect AD in the human brain using image processing 

techniques. Most have used MRI and CT scans to detect the abnormalities in the human brain 

including texture and shape abnormalities. For example, Li detected the shape changes of the 

corpus callosum in AD [9]. In addition, Freeborough evaluated a texture feature vector to 

discriminate the AD with the normal brain [10], while Fischl introduced a new method to 

measure the thickness of the human cerebral cortex by considering the white and the grey 

matter [11].  

1.2 Aim and Objectives 

Although the methods using computer vision have demonstrated some detection capability, 

little attention has been given to analysing the abnormalities of specific components in the 

brain that are affected by Aβ, such as blood vessels, cells and tissues. The concept of early 

onset detection of AD has yet to receive more research attention. Naturally, any approach that 

can detect AD at its onset or early in its progression could be invaluable to medical treatment 

planning.  Many researchers have aimed to extract blood vessels in the fundus of the eye to 

recognize the possibility of diabetic disease and to try to find the feature of blood vessels that 

may contribute to the disease. Similarly, the main aim of this research is to develop fully 

automated framework of an algorithm that could assist the diagnosis of AD for clinicians by 

determining the structure of the blood vessels that may contribute to the discrimination of 

images of a brain with AD from those derived from a normal brain. For this purpose, 

description of a blood vessel through definition of its features is developed, including a novel 

concept of branching structure and other existing measures such as compactness, Fourier 
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descriptors, density and tortuosity. These features will be validated using statistical 

approaches such as ANOVA, t-test and contrast and machine learning techniques such as k-

NN classification and leave-one-out cross validation.  

The above aims will be accomplished by fulfilling the following research objectives: 

1. To approach the novel concept in definition of a vessel’s branching structure as part 

of feature description.  

2. To apply existing techniques that can be used for extracting features for feature 

description of blood vessels. 

3. To develop a 2D-based system using those features for the discrimination of AD brain 

tissue from age-matched control brain and Young brain tissue and to verify its accuracy 

and reliability using cross validation, ANOVA and Contrast analysis.  

4. To extend the 2D-based feature description to a 3D-based system and to verify its 

reliability and accuracy using cross validation and independent t-test. 

5. To perform a comparative study for identifying the most distinguishable features for 

optimum classification.  

In this thesis we test the following hypotheses:  

1) that the geometrical profiles of small vessels and of the brain change with age and 

disease profile; and  

2) the computer visual characteristics of large arteries are different for arteries in the 

posterior circulation (frequently affected by AD), compared with the anterior 

circulation.  

 

In order to test the first hypothesis, we used sections of human brains from Young, age 

matched control and AD brains, where the small blood vessels were imaged after a process 

named immunocytochemistry that shows the profile of blood vessels. For testing the second 

hypothesis, images from magnetic-resonance angiograms showing the large arteries of the 

posterior and the anterior circulation, as well as their branches were used. 
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1.3 Contributions 

One novel concept within this thesis concerns the definition of branching structures. 

Deploying this as a basis was inspired by the branching structures that are common in nature, 

such as in the path of forked lightning or the roots and branches of trees. To date, there has 

been little study describing the branching pattern in such structures. It is intuitive that trees 

differ in their branching structure, and as yet, no mechanism exists to quantify or discriminate 

between them on the basis of their structure (branching). There appears to be as yet no 

explicit mention of branching structure analysis in computer vision. As branching structures 

in brain tissue have yet to be widely studied, it is important to find the abnormalities in the 

branching structure of AD in human brains for the early detection of AD. Here we demonstrate 

a new measure as a novel approach for the classification of AD brain images and normal brain 

images by focusing on the branching structures of the blood vessel within the images. In this 

study, we define the branching structure of blood vessels by the parameters of angle and 

branch length, in that we can detect the signs of AD at an earlier stage by focusing on the 

objects that have been most affected by this disease in early onset detection.  

Another contribution concerns the use of density, tortuosity and compactness to analyse 

the shape of blood vessels. We analyse a discrete measure of compactness that has as yet 

seen little application in automated image analysis.  There are established links between shape 

and disease and we are the first to study this linkage by using automated image analysis. Our 

analysis also proposes a deeper understanding of tortuosity than is often available since 

tortuosity itself is not commonly used in image analysis. 

In this study, we also introduce the application of Fourier descriptors for the shape 

classification of AD. Fourier descriptors are well known for their invariance to rotation, 

position and scaling. The descriptors are normally used in object retrieval, but in our study 

we use them as one of the shape features for classification. 

Our final area of contribution is to define the posterior and anterior brain vessels by these 

features. The features are studied in 3D, in MRI-scanned volumetric images. We shall describe 

how the posterior part of the brain has a connection with the accumulation of A and thus 

with AD.  

We describe the nature of AD in the next chapter, before we describe the data acquisition 

and preparation in the next section. In Chapter 3, we address the new measurement for the 

branching structure. In Chapter 4, we describe analysis of the capillary structure using these 

features for feature description of vessels for discrimination of AD. In Chapter 5, we address 

the extension of the features to 3D for classification, showing the performance capability that 

these new measures can achieve, before conclusions and plans for future work in Chapter 6. 
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1.4 Publications 

1) Sahrim, Musab, Mark S. Nixon, and Roxana O. Carare. "Analysing morphological 
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2. Alzheimer’s disease 

2.1 Basis 

Alzheimer’s disease (AD) is the commonest form of dementia, a disease affecting 

over 850,000 people in the UK, with no effective cure, no sensitive accurate 

diagnosis in vivo and posing a huge burden on society [12]. The term 'dementia' 

defines a set of symptoms that can include loss of memory and other cognitive 

functions, such as communication and reasoning that affect daily life [13]. In 1906, 

the disease was first identified and diagnosed by Prof Alois Alzheimer, who was a 

psychiatrist and neuropathologist, and the disease was named eponymously [14]. 

AD is characterised by the accumulation of protein 'plaques' and 'tangles' within 

the structure of the brain, leading to the death of brain cells. In sporadic non-

familial AD that represents 95% of all AD cases, these plaques and tangles are a 

result of the failure of efficient clearance of proteins from the brain and not an 

overproduction of these proteins. In particular, the plaques appear as a result of 

the failure of elimination of Aβ, a normal by-product derived from the Amyloid 

Precursor Protein (APP) [15]. 

 

Accumulation of Aβ in the brain as plaques and in the walls of blood vessels as 

Cerebral Amyloid Angiopathy (CAA) is a major feature of AD [16]. The plaques 

distributed randomly in the brain do not correlate with the degree of dementia and 

appear in normal ageing. CAA (the accumulation of Aβ in the walls of capillaries 

and arteries) does correlate with the degree of dementia and the clinical picture. 

CAA reflects an age-related failure of the elimination of Aβ from the brain along 

perivascular drainage pathways. Solutes similar to Aβ drain from the extracellular 

space of the brain along the basement membranes of cerebral capillaries and 

arteries and Aβ is deposited in these pathways as CAA in AD[8]. Failure to eliminate 

Aβ along the perivascular pathways in CAA coincides with the age-related stiffening 

of artery walls. Although the cerebrovascular basement membranes are key 

elements of the perivascular pathways for the elimination of Aβ from the brain, the 

changes that occur in association with age and disease are still largely unknown.   
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2.2 Diagnosis of Alzheimer’s disease 

The most common way to detect AD is by using a neuropsychological test, such as 

the mini-mental state examination for evaluating cognitive impairment [17]. 

However, psychiatric examination in early AD will usually provide normal results 

that show only mild cognitive impairment, and which may not differ from other 

diseases, including other causes of dementia. Thus, the development of new 

markers that are sensitive and specific to AD is crucial to differentiate AD from 

other diseases [18].  

Currently, although the neuropsychiatric examination is improving the detection of 

AD in moderate stages. AD can only be diagnosed with certainty post-mortem, 

using Aβ or tau protein as markers [19]. Aβ is the major contributor in the 

discrimination of AD from other diseases. Geert De Meyer et al. classified AD 

patients and normal patients by analysing the cerebrospinal fluid from Aβ with a 

sensitivity of 94% [20]. The problem with analysing the cerebrospinal fluid is that 

lumbar puncture for obtaining cerebrospinal fluid is invasive, posing risks to the 

patient (including infection and headaches) Rusinek et al. discovered the possibility 

of using regional brain atrophy to predict AD with 87% overall accuracy. They 

suggested that increasing brain atrophy could increase future memory loss [21]. 

However, an atrophic brain is not specific to AD, as it is a feature of many 

neurodegenerative diseases, hydrocephalus and other forms of dementia.  

More recently, Mapstone et al. have suggested that AD can be detected using a 

blood test [22]. The researchers analysed 126 blood samples from patients over 70 

years Old, with 18 of them are detected by 10 lipids (fats) in the blood that could 

develop AD within two to three years, with 90 percent accuracy. Clearly, to detect 

AD via a blood test would be extremely convenient. However, fats in the 

bloodstream vary with diet, ethnicity, and socio-economic status and this signature 

could be shared with other degenerative brain diseases. There is also evidence that 

indicates AD is associated with abnormal levels of certain blood biomarkers [23, 

24]. As such, the notion that AD can be detected via a blood test appears to need 

further evaluation and on large datasets. 

Computational methods are novel and show promise: the approaches can be 

grouped into medical image processing and bio-signal processing. Hassainia et al. 

[25] used Significance Probability Mapping (SPM) to quantify and localize 

Electroencephalography (EEG) in AD. The t-statistic mapping was used to highlight 



 

7 

 

the common changes and z-statistic mapping was used to show the diversity of 

impairment in an AD brain.  

Another method is by using image processing via two types of image – microscopic 

and macroscopic images. Lawrence et al. diagnosed AD patients by calculating the 

features of pyramidal neurons, dentate neurons and amyloid plaques in the 

hippocampus [26]. Some time ago now, Bartoo [27] considered detecting and 

counting the senile plaques using the morphological operation of closing for 

clustering small objects,  with a detection accuracy of 81%. These methods are also 

assessing changes post-mortem and not in vivo.  

Freeborough and Fox evaluated a texture feature vector over MR brain images and 

succeeded in extracting some features for designing a linear classifier; however, 

they did not eliminate irrelevant elements, such as texture changes associated with 

motion artefacts of the images. Their results were also influenced by the large-

scale of the image resulting in co-occurrence features being selected in the 

discriminant function [10].  

Another strategy was developed by Zhi-Wen et al. by extracting blood vessels using 

a skeleton feature and shape curve matching [28].  The shape and branching 

patterns of blood vessels have been correlated with diabetes, hypertension and 

cancer. 
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2.3 Data acquisition and preparation 

2.3.1 Introduction 

Our analysis involves two main environments, which are human tissue brain images acquired 

by microscope and human brain 3D volumes acquired by Magnetic Resonance Imaging (MRI). 

Ethical approval was necessary and obtained for all studies involving humans. Images from 

post-mortem material were obtained through the Newcastle and Edinburgh Brain Banks and 

we were dependent on the number of cases received. The 3D images from living subjects were 

obtained from the Centre for Neurology in Magdeburg, Germany and due to the expensive 

technique and the risks involved, the number of samples is low. Even though the number of 

subjects is lower than the average number of subjects required in a standard analysis by 

computer vision, the number is considered standard in medical research where a pilot study 

is required first to validate the technique. That is the case for the studies in this thesis. 

Furthermore, this pilot study of branching structure description of AD by using a small 

number of subjects has to be done prior to analysing more subjects to improve the reliability, 

stability and accuracy of our model and method. To analyse the in-vivo characteristics of the 

large arteries of the brain, a simple magnetic resonance imaging is not sufficient, as this 

method does not resolve the vasculature. Visualising the cerebral arteries is possible using 

angiograms and these are invasive, requiring the intravascular injection of a contrast agent. 

Employing Magnetic resonance angiograms for the brain is relatively recent, with only 87 

publications reported in Pub-Med in the period 1990-2015.  

Recently, 7 Tesla (7T) MRI has yielded good results for visualizing the cerebral vasculature 

non-invasively, but this technique is extremely expensive and only available in a few European 

centers. The number of patients undergoing this technique is usually small, with fewer than 

10 patients studied at one time [29]. Through our collaborators in the DZNE Magdeburg 

(Centre for Study of Neurodegenerative diseases), we have had access to 7T MRI for five 

patients for this study. As this study is a proof of principle for developing the appropriate 

computer vision techniques that can be combined with 7T MR-Angiograms, the number of five 

patients was considered appropriate. Recent studies using patients with cerebral amyloid 

angiopathy (the feature of AD of interest for this study), employed conventional magnetic 

resonance imaging with a total number of 24 patients [30]. Over 100 patients are employed 

in conventional MR studies but not using 7T MRI or 7T MR-Angiograms [31]. 
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2.3.2 Human Tissue Images 

Slides with human tissue from the Brain Tissue Resource in Newcastle were used, ethical 

approval number 08/H0906/136 (http://www.ncl.ac.uk/iah/campus/facilities/nbtr/). 

Immunocytochemistry was performed on five sections of brains with AD five age matched 

controls (Old) and five Young brains. The sections were taken from the frontal and occipital 

cortices. Tissue sections were blocked in 3% hydrogen peroxide, treated for two minutes at 

37°C with pepsin from porcine gastric mucosa (1 mg/mL in 0.2N HCl, Sigma-Aldrich, Dorset, 

UK), followed by 15% normal goat serum and incubated overnight with anti-collagen IV (1:500, 

AbCam, Cambridge, UK) antibodies.  Sections were washed with PBS, incubated with anti-rat 

or anti-rabbit horseradish peroxidase conjugates (1:400; Vector Labs, Peterborough, UK) and 

developed with nickel-enhanced diaminobenzidine as chromogen.  

 

Images were captured at x10 and x20 magnification, using a Nikon Eclipse E600 

microscope fitted with a digital camera Nikon Coolpix 950. Images of cortical grey 

matter were captured in a zig-zag sequence to ensure that all cortical layers were 

represented in the quantification. The camera resolution allowed capture of images 

of the size 1600 by 1200 pixels, which corresponded to 0.9 mm
2

 of tissue per 

image. 

 

In Figure 2-1, three samples of images from different categories are shown as an 

example of description. These groups are: 

 

a. Elderly subjects who were diagnosed as having AD (AD); 

b. Age-matched elderly subjects not diagnosed as having AD (Old); and  

c. Younger subjects not diagnosed as having AD (Young). 

 

These three groups will be those analysed later.  

 

http://www.ncl.ac.uk/iah/campus/facilities/nbtr/
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(a) AD image (b) Old image (c) Young image 

Figure 2-1. Sample images from different categories 

 

Many branches can be seen in the AD sample in Figure 2-1(a) compared to other 

Old and Young images in Figure 2-1(b-c) and the branches are quite 

distinguishable from the background by human vision.  It is these images that are 

studied to determine the possibility of automatically determining structures related 

to the presence of AD, in Chapter 4. 
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2.3.3 MRI Imaging 

MRI is a non-invasive technique that provides good soft tissue contrast and is widely available 

in medical studies. It is used in combination with other imaging modalities, such as Computed 

Tomography (CT), Positron Emission Tomography (PET) and Magnetic Resonance 

Spectroscopy (MRS) to provide the most exact information about certain diseases, such as 

brain tumour, stroke, AD and Multiple Sclerosis.  This technology uses a magnetic field and 

pulses of radio wave energy to acquire the images of the brain that cannot be seen with other 

imaging modalities, such as X-ray, ultrasound or computed tomography (CT) scans. Contrast 

dye may be used in some cases to improve the ability to see certain structures. 

An MRI scan can lead to early detection and treatment of certain diseases. It can provide a 

large amount of information quickly, and may reduce the need for diagnostic surgery. Current 

diagnoses of AD using MRI are considered as a preferred examination made by clinical, 

neuropsychological and neuroimaging assessments. The evaluation is based on nonspecific 

features such as atrophy which is considered a late feature in the progression of AD. Fox et 

al. found that the median atrophy was greater in AD compared to the control group [32]. 

However, the variability of atrophy in the normal aging process makes it difficult to use MRI 

as the diagnostic technique.  

Accumulation of Aβ in the walls of arteries predominantly affects the arteries at the posterior 

aspect of the brain (vertebrobasilar, or posterior circulation) compared to the arteries at the 

anterior part of the base of the brain (carotid, or anterior circulation) [33, 34]. Furthermore, 

in a subset of patients, problems with vision precede any cognitive problems (Young Onset 

Dementia Assessment, UK) [35] . Vision is processed and represented in the occipital cortex, 

supplied by the posterior circulation. The exact reasons why the posterior circulation is 

affected more compared to the anterior circulation are not known. In this project, using 

magnetic resonance imaging angiograms we address the question whether the characteristics 

of the arteries of the posterior circulation of normal individuals are different to those of the 

anterior circulation. If the characteristics differ, we can use the same types of characteristics 

in people with mild cognitive impairment and/or other risk factors for AD, to assess whether 

they are at risk of progressing to AD or not.  

These images are three dimensional volumes. To study shape, the arteries have been manually 

segmented from the MRI scans and are presented as binary volumes containing the posterior 

and anterior cerebral arteries extracted up to the third bifurcation. These are used for 3D 

assessment of arterial shape, in Chapter 5. 
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2.3.4 Pre-processing 

2.3.4.1 Colour Segmentation 

Improving the discrimination capability of a feature extraction process when colour 

information is used for pre-processing is based on the fact that the colour contains extra 

information concerning an object. However, in real situations the colour information always 

depends on light sources, such as the illumination from a flash camera or an outdoor light. In 

addition, it is important to define colour perception in terms of psychophysical dimensions, 

such as chromaticity, purity or brightness. As such, the detection of the branches will be 

parallel to the perception of the specialist. Thus, in order to be able to extract the objects that 

are the branches for feature extraction, we introduced a pre-processing technique by using 

CIELAB clustering-based pre-processing, implemented using the CIELAB colour space, which 

is robust to the changes in illumination and chrominance.  

Different from any colour space like RGB and XYZ, CIELAB has the capability to tolerate 

illumination changes and has the capability to match human perception. CIELAB allows the 

description of colour perception as a three-dimensional space. This includes the L* axis, which 

is known as the lightness and extends from 0 (black) to 100 (white), and the other two 

coordinates, a* and b*, represent redness-greenness and yellowness-blueness, respectively. 

Samples for which a* = b* = 0 are achromatic and thus the L* axis represents the achromatic 

scale of grey from black to white. Therefore, by eliminating the L* axis, we can use the other 

two coordinates for the segmentation of branches. In the microscopic images analysed here, 

the blood vessels (represented by branches), the cells (represented by blobs) and the 

background are visually separated by colour.  Therefore, a new means to derive the blood 

vessels is achieved by combining the two axes a* and b* and k-means clustering. Clustering 

is chosen given its ability to gather the information into distinct groups by specifying the 

number of clusters and a distance metric (which quantifies how close two objects are to each 

other [36]).  

The first stage in segmenting the branches in medical images is the conversion of the RGB 

images to CIELAB (also known as L*a*b*) colour space [37] as shown in Figure 2-3(a-b). We 

can segment an image by grouping them with separation by colour, by ignoring the brightness 

(luminosity). Since the colour information only exists in the 'a*b*' space, the objects are pixels 

with 'a*' and 'b*' values. We use the k-means algorithm to cluster the objects into three clusters 

using the Euclidean distance metric. For every object in an input image, k-means returns an 

index corresponding to a cluster. The image can be segmented by these index values into 

various segments or clusters. 
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Figure 2-2. RGB images of Young brains 

As we can see in the images Figure 2-2, there are three components in this image – the blood 

vessel branches (represented by the branches), the cells (represented by blobs) and the 

background. By defining them into three classes, we specify k=3 as k-means clustering 

requires the number of clusters to be partitioned using the Euclidean distance metric as it can 

be directly related to the computation of the cluster means [36]. Since the use of the Euclidean 

distance as a uniform measure assumes that the colour space is isotropic, the clusters defined 

by this distance will be invariant to translations and rotations [38]. 

Every pixel is labelled in the images using the cluster index from k-means analysis. Using pixel 

labels, the objects in the brain will be separated by colour, which result in three images, as 

Fig 2b-d shown are objects in cluster 1, objects in cluster 2 and the final segmentation.  

By experimental analysis, we conclude that the blobs have the highest mean value since the 

blobs are brighter than the background and the branches. For this reason, we find the mean 

of each cluster images to obtain the values of the three images. We then sort the mean value 

of 3 clusters of images and choose the brightest one which is the cluster with blobs as shown 

in Figure 2-3(c). 

Then the clustered image containing only the blobs will be converted into a binary image for 

purpose of masking as shown in Figure 2-3(d). Addition will be used to overlay the output on 

top of the original image after suitable masking has been carried out (Figure 2-3(e)). As 

depicted in Figure 2-3(f), after the morphology have been done, finally the image has been 

turned into a connected set of binary sets that can be used for analysis in the next chapter. 

The same processes are applied to each of the 15 2D images used in this study.  
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(a) RGB Image (b) CIELAB Image (c) The image that only has 

extracted blobs 

   

(d) Binary clustered Image (e) Output Image after 

overlaid by (d) 

(f) Segmented Image 

Figure 2-3. Colour segmentation process using k-means clustering 
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2.3.4.2 Morphology 

Morphology operations derive from ‘Morphing’ in biology, which means ‘changing a 

shape’[39]. Thus, morphology is the part of bioscience dealing with the study of the form and 

structure of a creature and their specific structural features.  Furthermore, specific aspects of 

the outward appearance like shape, structure, colour and pattern are studied. Encouraged by 

that, Morphology has been used in mathematics for the analysis and processing of 

geometrical structures. It was introduced by G.Matheron and J.Serra in 1964. At that time, 

mathematical morphology was developed for binary images.   

In general, mathematical morphology uses a structuring element as a probe to an input image, 

creating an output image of the same size. It is tool for investigating geometric structures in 

images using the language of set theory.  In Mathematical Morphology, the basic operators 

are related to Minkowski addition and subtraction, which is defined by:  

𝑋⊕𝑇 = {𝑎 + 𝑏: 𝑎 ∈ 𝑋, 𝑏 ∈ 𝑇} =⋃𝑋𝑏
𝑏∈𝑇

 
(2-1) 

and: 

𝑋⊖𝑇 = (𝑋𝑐⊕T)𝑐 =⋂𝑋𝑏
𝑏∈𝑇

 
(2-2) 

Using this method, we can simplify image data by preserving essential shape characteristics 

and eliminating noise. It can also be used to recognise and extract the underlying shape and 

reconstruct it from its distorted and noisy form. 

The primary morphological operations that implement Minkowski addition and subtraction 

are dilation and erosion. More complicated morphological operators can be derived by 

combining erosion and dilation techniques.  Usually, dilation is used to enlarge and expand 

and enlarge the boundaries of regions around the foreground pixels, and erosion is used to 

reduce and delete the foreground pixels.  

In this section, we will only discuss three parts of mathematical morphology, as these will be 

applied in this project.  These are dilation, erosion and thinning.  
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Dilation  

Dilation is an operation that combines two sets using vector addiction of set elements [40]. 

Let A and B be subsets in 2-D space. A: image undergoing analysis, B: Structuring element, 

 ⊕ denotes dilation: 

 
(2-3) 

Let A be a Subset of   and   . The translation of A by x is defined as: 

 (2-4) 

The dilation of A by B can be computed as the union of translation of A by the elements of B:  

 
(2-5) 

The dilation operation is commutative, associative and translation invariant, and, therefore, a 

suitable operator for our purposes. 

Erosion 

Erosion is the morphological dual to dilation. It combines two sets of dilation using the vector 

subtraction [40]. To understand the definition of erosion, let us say that erosion A by B is 

defined by denoting   𝐴⊖𝐵. So:  

𝐴⊖𝐵 = {𝑥 ∈ 𝑍2|𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑏 ∈ 𝐵 , 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛 𝑎 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 𝑎 − 𝑏} (2-6) 

Erosion can be expanded for use in many ways by expressing it in different forms. Erosion 

can also be defined in terms of translation:  

 𝐴⊖𝐵 = {𝑥 ∈ 𝑍2|(𝐵)𝑥 A} (2-7) 

In terms of intersection; 

𝐴⊖𝐵 =  
(2-8) 

Erosion has always been used to shrink the object to remove noise in the binary image.  
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Thinning Algorithm 

The thinning or skeletonisation algorithm is a process that shrinks an object into a 

skeleton. It is one of the morphological operations that is used to remove selected 

foreground pixels from binary images. It preserves the topology (extent and 

connectivity) of the original region while discarding most of the original 

foreground pixels. Figure 2-4 shows the results of a thinning operation on a simple 

binary image.  

 

(a) Original Image (b) Thinned Image 

Figure 2-4. Thinning Process in sample images. 

 

Like other morphological operators, thinning operators take two pieces of data as 

input. One is the input image, which may be either binary or greyscale. The other is 

the structuring element, which determines the precise details of the effect of the 

operator on the image[41].  

In skeletonisation, there are two basic methods for extracting the skeleton of the 

image: using medial axis transform or a thinning algorithm. While the medial axis 

transform uses the distance transformation for skeletonisation, the thinning 

algorithm iteratively deletes the border points of an object satisfying topological 

and geometrical limitations until a smaller set of connected points is obtained.   

Due to the instability of the medial axis transform, we are only using the thinning 

algorithm for this process.  
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2.3.5 Classification 

We shall later describe techniques that can be used to derive feature vectors that describe the 

capillary structures within these images. One analysis is the new study of branching 

structures, and another is the use of established shape measures. These provide feature 

vectors that are used with k Nearest Neighbour analysis which we shall describe here as the 

approaches are routine in computer vision. 

2.3.5.1 K-Nearest Neighbour 

We use the k Nearest Neighbour (k-NN) approach for classification and choose the value of k 

in the range 1 to 5 to encompass the whole data set. We deploy feature selection to choose 

the best tortuosity features. For this, we chose Sequential Floating Forward Selection (SFFS) as 

a standard and proven approach. For validation one can use either internal validation where 

the model is validated on the current data set or external validation where the model is 

validated on a completely new dataset. We employ Leave-One-Out Cross Validation (LOOCV) 

for maximal use of the available dataset. 

2.3.5.2 Distance measure 

The Mahalanobis distance is a measure used to obtain a distance between clusters, where the 

measure reflects not only the cluster spacing but also the cluster spread. On the other hand, 

the Euclidean distance between the means will remain the same whatever the cluster spread 

because it only measures distance between the centres of mass and not the spread. The 

Mahalanobis distance includes the variance and is therefore a more perceptive measure of 

distance.  

The Mahalanobis distance is calculated as: 

𝑑MAH = √(𝑝 − 𝜇)T∑(𝑝 − 𝜇) 
(2-9) 

Where the data samples 𝐩𝑖 = (𝐦1𝒊, 𝐦2𝒊, 𝐦3𝒊… ,𝐦𝑁𝒊)
𝑇
, have mean values 𝛍 =

(𝜇1, 𝜇2, 𝜇3, … , 𝜇𝑁)𝑇and a covariance matrix ∑   which is formed of elements that express the 

variance as:  

∑ =
𝑖𝑗

E[(𝐩𝑖 − 𝛍𝑖)(𝐩𝑗 − 𝛍𝑗)] (2-10) 

 



 

19 

 

This way, the distance is scaled by the variance. Therefore, the distance measure reflects the 

distributions of the data, which are ignored in the Euclidean distance formulation. The 

formulation does rather depend on the structure used for the data.  

 

2.3.6 Cross validation 

Validation should be done in order to evaluate the classifier’s performance by reducing errors 

on the training data. Errors are not a good indicator of the performance on data as new data 

will probably not be exactly the same as the training data. Furthermore, overfitting will occur 

when the fitting of the training data is too precise and will cause poor results on the new data.  

There are two ways to perform the validation: 

1) Internal Validation: to validate a model on the current data set (cross validation); and  

2) External Validation: to validate a model on a completely new dataset. 

For eliminating the effect of overfitting, Cross Validation is introduced[42]. Cross Validation 

is a machine learning method of evaluation by dividing data into two classes: one is used to 

train a model and the other is used to validate the model. In typical cross validation, the 

training and validation sets must be exchanged in successive rounds so that each data point 

has a chance of being validated again.  

Holdout Validation 

Holdout Validation is a way to validate the model by fitting the model on half of the dataset 

as the training set and testing it on the remaining half of the dataset. The test data is held 

out and not looked at during training. Holdout validation avoids the overlap between training 

data and test data, producing more accurate results.  The disadvantage of this method is that 

half of the data is not being utilised, compromising volume.  

K-Fold Cross Validation 

In k-fold cross-validation, the data is first partitioned into k sized segments or folds. 

Consequently, k iterations of training and validation are performed, such that within each 

iteration a different fold of the data is held-out for validation while the remaining k-1 folds 

are used for training. Often the subsets are stratified before the cross validation is performed. 

The true errors are estimated from the average error rate. 
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Leave-one-out Cross Validation (LOOCV) 

LOOCV is a special case of k-fold cross-validation where k equals the number of instances in 

the data. For each iteration, nearly all the data except for a single observation are used for 

training and the model is tested on that single observation. An estimated accuracy obtained 

using LOOCV is known to be almost unbiased but has high variance, leading to an unreliable 

estimate. Nevertheless, it is still widely used for its reliability to solve the problem of 

overfitting as the available data are very rare, especially when only dozens of data samples 

are available. In this thesis we employ LOOCV accuracy for performance evaluation referred 

to as Correct Classification Rate (CCR).  

2.3.7 Feature Assessment  

One of the methods to assess the features is to use hypothesis testing such as t-test or ANOVA 

which can be performed using statistical package such as SPSS Statistics [43]. By assessing 

the features, we can choose the best feature to be used for classification. Liu et al.  has 

recorded great accuracy improvement in their classification algorithms by first determining 

discriminatory features using statistical approaches such as chi squared and t-statistic[44]. A 

hypothesis test such as the t-test has been used for identifying protein markers in 

tumour[45].In pattern recognition, ANOVA is used as one of the methods for feature selection 

[46, 47].  

 By running the test according to normality of the data, we can obtain the p-value that indicates 

the significant differences between classes. For example we could use independent sample t-

test for measuring the significance test between two class groups and ANOVA for multiple 

class groups. These assessments are valuable to select and evaluate which features are good 

for classification. If the p -value is smaller than a previously selected threshold value, we could 

interpret that by using this feature all the groups are significantly different. Traditionally the 

threshold values (called significance levels) of the test are chosen as 0.1, 0.05 and 0.01. The 

null hypothesis is defined as a general statement or default position that there is no significant 

difference in features between classes. As the p-value is smaller than the significance level (in 

this analysis we choose the significance level as 0.1), we can reject the null hypothesis and 

we could define that there is difference of features between classes.  

Furthermore, the Contrast analysis and the Post Hoc test are useful for deeper analysis. The 

contrast analysis or planned test is used to answer specific questions regarding the 

hypothesis. The Post Hoc test or unplanned test is a test used after ANOVA to explore the 

differences between the means and to provide specific information on which means are 

significant different from each other. 
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3. Branching Structure 

3.1 Introduction 

Branching patterns can be seen all around us, from tree branches, brain, sea fans to blood 

vessels (Figure 3-1). They are often nature’s preferred method of growth for many organisms 

because they spread out to cover a large area smoothly and efficiently. For example, the 

branched structure of the tree allows the leaves to obtain an even and plentiful amount of 

sunlight whilst also giving it a strong, firm construction. The branching of blood vessels allows 

the body to pump blood to all areas of the body quickly and evenly. Despite their separate 

domains, they still produce what appear to human vision to be similar branching structures. 

However, regardless of the recurrence of this structure in multiple species and level or 

organization, we do not clearly know how these structures form and evolve, nor how to 

differentiate them in terms of their branching structure.  

   

(a) Brain (b) Sea fan (c) Tree 

Figure 3-1. Branching structure 

We describe a new approach to explore the pattern of the branching structure in blood vessels, 

focussing on the brain vessels. This is because branching structures evolve, grow and form 

to survive and adapt within an environment that can change due to instability of the health 

system in the brain or the body itself. For example, a disease like diabetes which occurs in 

the brain can putatively affect the branching structure in the retina. Alternatively, irregularity 

of the branching structure could disrupt the system in the normal brain, affecting blood flow 

and might create a variety of diseases like AD and Downs syndrome. Goldberger explained 

that fractal anatomic structures may show degradation in their branching structure, such as 

loss of dendritic arbor in aging cortical neurons and vascular “pruning” in primary pulmonary 

hypertension [48]. Thus, development of an algorithm to detect the branching structure for 
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feature description may be a novel approach towards the recognition of AD in its early stages 

and help medical practitioners and researchers find the best solution.  

3.2 State of the art 

Blood vessels have previously been analysed in the diagnosis of diabetes, 

hypertension, cancer and atherosclerosis [49]. In recent years, detecting 

abnormalities of the blood vessels has been an important marker for early 

detection or progression of disease. For example, the arterioles, capillaries and 

venules have been found to be irregular in their shape, and unusual in their 

tortuosity and with abnormal hierarchical arrangement in blood vessels affected by 

tumors [50]. Peter et al. mentioned that angiogenesis (the formation of new blood 

vessels) is a distinctive feature to detect a tumor. As such, angiogenesis is 

stimulated by hypoxia in asthma, diabetes and AD which are triggered by the 

extracellular matrix or vascular congestion damaging the supply of oxygen [51]. In 

particular, on the subject of AD, Berislav suggested a need for neurovascular repair 

in AD as there is a strong connection between cognitive decline in AD and 

cerebrovascular disorder. It is explained by the reduced density of the 

microvascular structure, and a higher number of fragmented vessels with less 

intact branches. AD is also characterised by highly irregular capillary surfaces and 

marked changes of vessel diameter [52]. There is also evidence that the efficiency 

of the drainage of Aβ depends on different parts of the brain [53] and the 

accumulation of Aβ appears more in the posterior circulation (derived from the 

vertebral arteries) compared to the anterior circulation (derived from carotid 

arteries).  

Current approaches to analysing branching structure can be divided into non-

medical and medical approaches. In non-medical images, the branching structure 

has been used as a new feature in biometrics for security purposes. Vein structure 

is used as a feature for hand authentication utilising the structural similarity by 

using Delaunay triangulation [54]. In medical approaches, there are many analyses 

of blood vessels in the detection of structural abnormalities.  Diego et al. evaluated 

the angiostatic activity based on topological and fractal parameters[55]. Hashizume 

measured manually the abnormalities of the tumour vessels by their leakiness, 

which is described as consistent with increasing vessel size [56]. Patients with 

Barrett's Oesophagus (BE) present vascular abnormality which is detected by 

investigations based on correlation with histology [57]. Stanton et al. have 

discovered that the bifurcation angles in the retina are lower with hypertensives 
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than normal and the angles decline further with increasing age [58]. Kiani et al. 

found that the capillary density increases when the mean angle of bifurcation 

increases [59]. Elizabeth et al. classified tumours as benign or malignant on the 

basis of vessel tortuosity [60].  

Given that previous researchers have found many features that could be indicators 

to help diagnosis, this research will focus on individual branches rather than on a 

region structure [61, 62] by finding the relationship of branching vessels and 

bifurcation angle. This measure could then be used as one of the features to detect 

the abnormalities in AD. This is the first approach to use branching structure 

analysis of blood vessels, especially in relation to detection of AD. If successful this 

could lead to a more detailed investigation.  
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3.3 Model Description 

3.3.1 Branching Point 

In a manner similar to Calvo et al. [63], a potential branching point obtained from a  

measure  𝐼(𝑉) is calculated for each point 𝑉 of the output of the thinning operator where 𝑁𝑖(𝑉) 

are the neighbours of the analysed point  𝑉, named clockwise consecutively, as in Figure 3-2. 

First, the number of points connected to 𝑉 is counted as 𝐼(𝑉) in Equation (3-1),  

𝐼(𝑉) =
1

2
(∑|𝑁𝑖(𝑉) − 𝑁(𝑖+1)𝑚𝑜𝑑8(𝑉)|

8

𝑖=1

) 

(3-1) 

 

 

𝑁1 𝑁2 𝑁3 

𝑁8 𝑉 𝑁4 

𝑁7 𝑁6 𝑁5 

Figure 3-2. The window used to detect the branching point 

If the measure  𝐼(𝑉) calculated in Equation (3-1) exceeds two then the point 𝑉 is 

classified as a branching point 𝐼𝑏𝑝 as described in Equation (3-2).  

𝐼𝑏𝑝 = {
1 𝐼(𝑉) > 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-2) 

 

3.3.2 The Concept 

A basic branching structure has three branches and can be described by a combination of the 

length of the branches and the angle between them. 
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Figure 3-3. Synthetic branching structure for 3 branches 

 

Essentially, we have segments of blood vessels that are at different inclinations to the 

branching point. For a branching point 𝐵 with 𝑁 branches each of length 𝐿(𝑛), the branching 

structure, as shown in Figure 3-3, can be described by a composite measure, which is derived 

from the branch length and the relative inclination of the vessels. The average vector product 

of pairs of branches and the angle between them, gives the measure 𝐵𝑐𝑜𝑠, as 

 𝐵𝑐𝑜𝑠 =
∑ [𝐿(𝑖)+ 𝐿(𝑗)]× cos (𝜃(𝑖, 𝑗))𝑖=1,𝑁,𝑗=1,𝑁

∑ 𝐿𝑁𝑁
⁄ 𝑖 ≠ 𝑗 (3-3) 

 

In the results section, this is termed the Cosine-based Branching Structure. There might be 

alternative descriptions and this is a natural starting point as it offers a description of any 

branching structure and one that fits with usual computer vision objectives. The basis can be 

extended to networks of branching points; its description can be extended to more branches 

than three. As this equation appears to favour smaller angles, a version without the cosine 

function was also deployed,𝐵𝜃 in Equation (3-4). In the results section, this is termed the 

Degree-based Branching Structure. 

 𝐵𝜃 =
∑ [𝐿(𝑖)+ 𝐿(𝑗)]×𝜃(𝑖, 𝑗)𝑖=1,𝑁,𝑗=1,𝑁

∑ 𝐿𝑁𝑁
⁄ 𝑖 ≠ 𝑗 (3-4) 
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3.4 Properties 

3.4.1 Rotation, scale and position invariance 

Feature descriptions should have robustness (invariance) so that their descriptions 

do not vary with change in conditions. Every object model should have the same 

value for any condition, such as when rotated, transformed (translated) or scaled. 

For rotation, this model should be robust to any overall orientation of the 

branches. Thus, the value of branching structure is not affected by measurements 

of branch length and angle in a rotated version. The model should also be position 

invariant, as every value of the branching structure is the same for every position 

of the branches. As the zoom factor of the images is not usually fixed, the model 

should offer scale invariance, as the description should not change by the zooming 

factor.  In this way, this model can adapt automatically to the unknown scale 

variations that may occur because of objects and substructures of  varying  

physical  size  as  well  as  objects  with  varying  distances  to  the  camera [64]. 

Accordingly, this measure was formulated to ensure the description is invariant to 

rotation, scale and position. The formula contains the normalised length of the 

branches, hence it will be scale invariant and because it also involves the angle 

between two branches, it is rotation-invariant. It is also position invariant and 

mandates that the branching point has to be detected in a pre-processing stage. 

3.4.2 Model verification for invariance 

Our method has been tested using a synthetic image containing branches in 

several conditions to demonstrate it is rotation, scale and position invariant. 

Firstly, for rotation-invariance, the whole shape is rotated by 0 to 360 degrees. 

Then, the length is changed from ratios of 10% to 400% of an original size to verify 

that our method is scale-invariant. Finally, the branching structure is moved to 

different positions to analyse position-invariance.  
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Rotation Invariant Verification 

    

𝐵𝑐𝑜𝑠 = 1  
Degree=20° 

𝐵𝑐𝑜𝑠 = 1  
Degree=130° 

𝐵𝑐𝑜𝑠 = 1  
Degree=215° 

𝐵𝑐𝑜𝑠 = 1  
Degree=311° 

Figure 3-4. Examples of synthetic branching structure value with rotation invariance 

 

In the first experiment, the branching structure model is shown to have rotation invariance by 

using synthetic images with degrees of rotation from 0°  to 360°. As the examples in Figure 3-4 

show, the same values of 𝐵𝑐𝑜𝑠 are obtained for all the objects hence the measure appears to 

be to rotation invariant. The graph in Figure 3-5 concludes the experimental analysis showing 

the measure 𝐵𝑐𝑜𝑠 versus the amount of rotation.    

 

Figure 3-5. Synthetic branching value with  degrees of rotation 
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Scale Invariant Verification 

In order to justify that the model is invariant to scaling, a mathematical proof for theoretical 

justification together with synthetic image analysis for experimental justification have been 

performed. The scale invariant (𝑛*scale) will be substituted into Equation (3-4) and will be 

justified as in Equation (3-5), and the result shows that the measure remains unchanged. This 

analysis applies to both the Cosine- and the Degree-based Branching Structures. 

Next, the experimental proof will use synthetic images and scale factors from 10% to 400%. 

As the examples in Figure 3-6 show that the same values are obtained for each object (𝐵𝑐𝑜𝑠 =

1) for all scales, hence the measure appears to be scale invariant. The graph in Figure 3-7 

concludes the experimental analysis, showing the feature values versus scaling percentage. 

 

 

 

[(𝐿𝑖 + 𝐿𝑗) × cos 𝜃𝑖,𝑗] + [(𝐿𝑗 + 𝐿𝑘) × cos 𝜃𝑗,𝑘] + [(𝐿𝑘 + 𝐿𝑖) × cos 𝜃𝑘,𝑖]

∑ 𝐿𝑁

=
[(𝑛𝐿𝑖 + 𝑛𝐿𝑗) × cos 𝜃𝑖,𝑗] + [(𝑛𝐿𝑗 + 𝑛𝐿𝑘) × cos 𝜃𝑗,𝑘] + [(𝑛𝐿𝑘 + 𝑛𝐿𝑖) × cos 𝜃𝑘,𝑖]

𝑛 ∑ 𝐿𝑁

=
[𝑛(𝐿𝑖 + 𝐿𝑗) × cos 𝜃𝑖,𝑗] + [𝑛(𝐿𝑗 + 𝐿𝑘) × cos 𝜃𝑗,𝑘] + [𝑛(𝐿𝑘 + 𝐿𝑖) × cos 𝜃𝑘,𝑖]

𝑛 ∑ 𝐿𝑁

=
𝑛{[(𝐿𝑖 + 𝐿𝑗) × cos 𝜃𝑖,𝑗] + [(𝐿𝑗 + 𝐿𝑘) × cos 𝜃𝑗,𝑘] + [(𝐿𝑘 + 𝐿𝑖) × cos 𝜃𝑘,𝑖]}

𝑛 ∑ 𝐿𝑁

=
[(𝐿𝑖 + 𝐿𝑗) × cos 𝜃𝑖,𝑗] + [(𝐿𝑗 + 𝐿𝑘) × cos 𝜃𝑗,𝑘] + [(𝐿𝑘 + 𝐿𝑖) × cos 𝜃𝑘,𝑖]

∑ 𝐿𝑁
 

 

(3-5) 

    

𝐵𝑐𝑜𝑠 = 1 
Scale Factor= 0.25 

𝐵𝑐𝑜𝑠 = 1 

Scale Factor = 0.5 
𝐵𝑐𝑜𝑠 = 1   

Scale Factor = 2 

𝐵𝑐𝑜𝑠 = 1 

Scale Factor = 3.5 

Figure 3-6. Examples of synthetic branching value structure with scale invariant 
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Figure 3-7. Synthetic branching value with scaling percentage 

 

 

 

Position Invariant Verification 

 Finally, we test this measurement for position invariance. From the results shown in 

Figure 3-8, our model tested on the synthetic image is confirmed to be position invariant as 

the same value of 𝐵𝑐𝑜𝑠 = 1 is obtained for all positions. Thus for the summary, our model 

appears, by the synthetic images to be rotation, scaling and position invariant as in Figure 3-4, 

Figure 3-6 and Figure 3-8 show the consistency of the branching structure value with 0% error 

rate. Furthermore, this technique could find shapes reliably and robustly, irrespective of the 

value of any parameter that can control the appearance of a shape.  
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𝐵𝑐𝑜𝑠 = 1 
Position vector=[0 0] 

𝐵𝑐𝑜𝑠 = 1 

Position vector=[0 1] 

𝐵𝑐𝑜𝑠 = 1   
 Position vector=[1 1] 

𝐵𝑐𝑜𝑠 = 1 

 Position vector=[1 0] 

Figure 3-8. Synthetic branching structure value with position invariance 
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3.5 Methodology and Experimentation 

 

Figure 3-9. Flowchart for Branching Structure analysis 

 

We will analyse the branching structure by first detecting the branch point and the branches 

of the blood vessels. Then the branching structure will be measured using Equations Error! 

Reference source not found.  and (3-4). The results of the branching structure will be 

classified using k-NN classification. This algorithm is shown in Figure 3-9. We will test this 

model on real world images.  

3.5.1 Real World Images 

Based on the previous section, this next experiment was conducted to translate this 

measurement to real-world images especially to analyse the images of subjects’ brain 

samples. Five images of brains from each of the three groups, AD, Old and Young images are 

segmented by pre-processing and then each segmented image had to undergo the 

morphological operation, thinning, to extract the branches. These thinned-extracted branches 

that are associated with branching points are separated and labelled for the following process. 

In real-world images, the branches are not straight, therefore, the angle cannot be determined. 

Thus, polynomial fitting is required to determine the angle between the branches. The 

algorithm is applied to the branches to find their linear position (best fitting straight line by 

least squares) in the images and then the branching structures are calculated.  

 

 

 

 

Detection of 
branchpoint

Detection of the 
branches connected 
to the branchpoint

Calculation of 
branching structure

Comparison of the 
branching structure 

using K-nn 
classification
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Every branching structure will be defined as having three legs with their angles (𝜃) between 

them (total 3 angles). The branch length (𝐿)  and angles (𝜃) will then be used as variables in 

Equation (3-5). There are multiple branching structures in each image: the maximum number 

of branching points is 77 and the minimum is 10. The extracted measures for every images 

will be averaged and named as Branching Structure and  will be assessed using ANOVA and 

Tukey HSD as multiple comparison to analyse statistical significance, and then will be 

classified using k-NN classification technique. The CCR for k-NN will be obtained using LOOCV. 

 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

Cosine-based Between Groups .134 2 .067 3.225 .076 

Within Groups .249 12 .021   

Total .383 14    

Degree-based Between Groups .001 2 .000 .556 .587 

Within Groups .007 12 .001   

Total .008 14    

Table 3-1 ANOVA table for comparison between Cosine and Degree based Branching Structure 

  In order to find which branching measure is most suitable for our feature description of AD, 

Cosine-based and Degree-based branching structures are examined using ANOVA for 

significance testing and their comparison is shown in Table 3-1. ANOVA was conducted to 

explore the impact of branching structure of different groups (Old, Young and AD). There is 

a statistically significant difference at the p<0.1 level in Branching Structure using the Cosine 

based method for the three groups [F (2, 12) =3.22, p=0.076].  

 

  The results of Cosine-based Branching Structure provided clear evidence to support the claim 

that there are some differences in the feature extracted among the group means. Under the 

null hypothesis the Branching Structures for all groups are the same.  However, contrary to 

the cosine-based measure, ANOVA shows no significant differences for degree-based 

branching structure at the significant level of 0.1 [F (2, 12) =0.556, p=0.587]. Thus, the three 

groups are indistinguishable using the Degree-based Branching Structure feature on the basis 

of the obtained data.   
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Post Hoc Tests 

Multiple Comparisons 

Tukey HSD   

(I) Grouping (J) Grouping 

Mean 

Difference (I-J) Std. Error Sig. 

90% Confidence Interval 

Lower Bound Upper Bound 

Old Young -.1337 .0911 .3402 -.3401 .0728 

Alzheimer's 

Disease 
-.2304* .0911 .0637 -.4368 -.0240 

Young Old .1337 .0911 .3402 -.0728 .3401 

Alzheimer's 

Disease 
-.0968 .0911 .5542 -.3032 .1097 

Alzheimer's Disease Old .2304* .0911 .0637 .0240 .4368 

Young .0968 .0911 .5542 -.1097 .3032 

*. The mean difference is significant at the 0.10 level. 

Table 3-2. Tukey HSD test results for Cosine-based Branching Structure. 

Post Hoc analysis is done to measure the difference among the means after ANOVA. In this 

analysis, the Tukey test is chosen as the groups have the same sample size. From the results 

shown in Table 3-2, there is no evidence that the means for the Young data are statistically 

different from those of the Old and the AD data, and there is evidence that the means of the 

Old and the Young are statistically different. In the other words, by using only this Branching 

Structure feature, we could only differentiate AD from Old. A further and alternative feature 

is needed to differentiate between Young and AD and between Young and Old. This also 

means that the angle and branching length that are associated with the branching structure 

algorithm both contribute to differentiating AD from Old. 
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The data from the Branching Structures are then classified using k-NN classification to 

investigate their capabilities for classification.  Leave-one out cross validation is used to 

measure the CCR and the result is shown in Figure 3-10. It is evident from the results that 

overall, there were higher CCRs for Cosine-based Branching Structure compared to Degree-

based Branching Structure, as expected from the previous statistical analysis.  

 

Figure 3-10. CCR for different numbers of k 

 

We extend our investigation into different comparison of AD vs Old, AD vs Young and Old vs 

Young to see which comparison will has high classification capabilities. Clearly, as proved in 

multiple comparison in Table 3-2, the comparison between AD vs Old are highest from other 

comparisons (70% for k=1 and 5, 60% for k=3) as shown in Figure 3-11. Conversely, the 

comparison between Old and Young are the lowest of all comparisons. The comparison 

between AD and Young in the other hand has CCR of 70% for k=1 but drops to 10% for k=5.  
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Figure 3-11. CCR using Cosine-based Branching Structure with different groups 

Finally, confusion matrices for all the combinations are generated as shown in Figure 3-12 

and Figure 3-13.  Confusion matrices between AD, Old and Young are compared using cosine-

based branching structure and degree-based Branching Structure are shown Figure 3-12(a) 

and Figure 3-12(b). The true positive rate for the Cosine-based Branching Structure are 60% 

CCR which is higher than for the Degree based Branching Structure which obtained only 20%. 

The precision for AD is by the Cosine measure is also higher than by the Degree measure, 

with 60% compared to 16.7% CCR.  

 
 

(a) Confusion Matrix of Cosine Branching 

Structure  

(b) Confusion Matrix of Degree Branching 

Structure  

Figure 3-12. Confusion Matrices of different group combinations for k=1 
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The precision between AD vs Old is 75% and higher than other combination as for the AD vs 

Young. However the recall for AD vs Young is 80% and higher than the other combination (AD 

vs Old=60% and Old vs Young=20%).  

   

(a) Confusion Matrix of Cosine 

Branching Structure for AD vs 

Old 

(c) Confusion Matrix of Cosine 

Branching Structure for AD vs 

Young 

(c) Confusion Matrix of Cosine 

Branching Structure for Old vs 

Young 

Figure 3-13. Confusion matrices between two groups for k=1 

 

 

 

 

 

 

 

 

  



 

36 

 

3.6 Conclusions 

The branching structure model has shown the capability to differentiate the 

samples with AD (from Old subjects) from the samples derived from the Young 

subjects. This model that depends on angle and branch length of the branches is 

improved by using cosine-based branching structure description which shows a 

lower p-value compared with a degree–based branching measure which fails to 

reject the null hypothesis and the feature was not statistically significant. Higher 

CCR of 40% were achieved compared to degree-based branching structure measure 

which could only reach 33.3% CCR.  

Interestingly, when images from AD subjects are compared between Young and 

Old, a higher classification rate is achieved (CCR=70%) compared with analysis 

between Old vs Young, even though when using statistical method only Old can 

has significant difference from the subjects with AD. This model has limitations, as 

it is just the initial stage of developing the algorithm and offers a basic description. 

Nonetheless, clearly the results show that this model has sufficient performance to 

justify extension into a three-dimensional environment such as CT, PET or MRI for 

the reason that in 2D environment, the branching structures are limited to the 

slices of the brain and do not describe the whole brain. The analysis of branching 

structures could also be extended by including diameter, density and known 

measurements that could improve the classification rate as well as increasing the 

sample size. Deeper analysis could also be done such as feature fusion to improve 

the reliability and robustness by focusing on the bifurcation ratio.  

With the new establishment of this model, we then analyse other well-known 

features such as tortuosity, FDs, compactness and new description of branching 

density to find the capability for feature description of AD in the following chapter. 

The following chapter concludes by combining the branching structure model with 

other features in order to find better classification rate and higher differentiation 

capabilities of AD with other subjects, showing that analysis of the branching 

structure can indeed contribute to the diagnosis of AD. 
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4. Capillary Structure Analysis 

4.1 Overview 

The main focus of this thesis is to find the features that might lead to the analysis and 

description of the capillary (branching) structure. Thus, in this context this chapter focuses 

on the deployment of established feature description approaches for the detection of AD in 

capillary structures using microscopic images. Therefore, we try to find the interplay of these 

features: density of the branches and their tortuosity, capillary compactness and planar FDs. 

We then use these features to classify brain images from subjects with AD against two other 

groups – Young and Old brains.   

4.2 Branch Density 

4.2.1 Introduction 

Initially, the formation of new vessels called angiogenesis that has been discussed in previous 

chapter could be a contributor to differentiate AD from other subjects. Thus, in order to find 

the correlation between angiogenesis and AD, the density by counting the number of branches 

in the image is analysed. Moreover, in order to obtain the number of branches, we pre-process 

the image to obtain a binary version and then convert vessels into their skeletons. Then, we 

seek to find the branching points so as to determine the intersections between them (should 

they occur).  

4.2.2 Density 

 

After obtaining the branching points 𝐼𝑏𝑝, they are then excluded when counting the number 

of branches 𝑁𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 in the image. This was implemented by setting the branching points to 

black, the same value as for the background image. This resulted in an image containing only 

branches with no branching points, and the branches were labelled for counting as in Equation 

(4-1).  

𝑁𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 =∑(𝐼𝑣𝑒𝑠𝑠𝑒𝑙 ∩ 𝐼𝑏𝑝̅̅ ̅̅ ) (4-1) 
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4.3 Tortuosity 

4.3.1 Introduction 

Studies have discovered that vessel tortuosity is related to many diseases, such as diabetes, 

hypertension and peripheral arterial disease [65]. Tortuosity can be defined as the property 

of a curve that has been twisted.  It has been used in the images of eye fundus to determine 

symptoms of diabetes and hypertension. For example, an increase in blood pressure causes 

an increase in a vessel’s tortuosity [66]. 

The quantitative measurement for tortuosity was discovered by Lotmar, Freiburghaus and 

Bracher [67]. Tortuosity 𝜏 is described as an arc-chord ratio:  

𝜏 =
𝐿

𝐶
 

(4-2) 

where 𝐿 is the length of the curve and 𝐶 is the distance between the ends of the curve. 

Figure 4-1 illustrates the measurement they used to calculate the vessel’s tortuosity.  

 

 

Figure 4-1. Normal tortuosity measurement 

Another alternative method to define the shape is curvature. It is a very important boundary 

feature for humans to judge similarity between shapes. It also has prominent perceptual 

characteristics and has proven to be very useful for shape recognition. Curvature can be 

considered as the rate of change in edge direction.  This rate of change characterises the 

points in a curve; points where the edge direction changes rapidly are corners, whereas points 

where there is a little change in edge direction correspond to a straight line.  
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Such extreme points are very useful for shape recognition, and therefore can be used to define 

the shape tortuosity, since they represent significant information to define the measure. Nixon 

(2012) described the curvature 𝜅 as the changes in the direction 𝜑(𝑡) with respect to the 

changes in arc length [37]: 

𝜅(𝑡) = d𝜑(𝑡)/d𝑠  

(4-3) 

where s is arc length, which represents the edge itself and 𝜑 is the angle of the tangent to the 

curve: 

𝜑(𝑡) = tan−1(𝑦̇(𝑡)/𝑥̇(𝑡))  

(4-4) 

Since a curve parameterised by the arc length maintains a constant speed of motion, curvature 

represents changes in direction for constant displacement along the curve. Nixon applied the 

chain rule to derive the curvature as: 

𝜅(𝑡) =
d𝜑(𝑡)

d𝑡

d𝑡

d𝑠
 

(4-5) 

As the differential d𝑠/d𝑡 defines the change in arc length with respect to the parameter𝑡, the 

curve can be considered as the motion of point described by: 

d𝑠/d𝑡 =  |𝑣̇(𝑡)| = √𝑦̇2(𝑡) + 𝑥̇2(𝑡) (4-6) 

and: 

d𝑡/d𝑠 = 1/√𝑦̇2(𝑡) + 𝑥̇2(𝑡) (4-7) 

 

By considering the equation above, the curvature 𝜅 at the point 𝑣̇(𝑡) is given by: 

𝜅(𝑡) =
𝑥̇(𝑡)𝑦̈(𝑡) − 𝑦(𝑡)𝑥̈(𝑡)

[𝑦̇2(𝑡) + 𝑥̇2(𝑡)]
3
2⁄

 
(4-8) 

The calculation of the curvature-based tortuosity is based on Equation (4-8). 
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4.3.2 Extraction of tortuosity from curvature 

We introduce a measurement of tortuosity based on the curvature that is shown to 

be an alternative feature for measuring the tortuosity. For example, Martin 

proposed the analogy of riding a bicycle or driving a car in a trajectory with a 

constant curvature [68]. He considered that it is harder to drive on trajectories with 

a curvature that changes. He suggested that tortuosity could be measured by the 

relative change of curvature and proposed a local measure, which is a derivative of 

the logarithm of curvature, given by:  

𝜏 =
d

d𝑡
log 𝜅 

(4-9) 

 

where t is an index to a curve’s exterior boundary. In another method, Smedby et 

al. [69] evaluated five measurements of tortuosity applied in femoral arteries. 

Included are several measures of vessel fraction that have high curvature and the 

integral curvature along the blood vessel:  

𝜏 = ∫ |𝜅(𝑡)|d𝑡
𝑡1

𝑡0

 

(4-10) 

 

Where 𝑡𝑛 represents boundary points on the curve. In this thesis, we have 

developed another curvature-based tortuosity measured by implementing the 

average bending energy published by Young [70], given by:  

𝜏 = 𝐵𝐸 =
1

𝑁
∑𝜅(𝑡)2
𝑁−1

𝑡=0

 

(4-11) 

 

where BE is the average bending energy of a point on a contour containing N 

points. In this study, we compare these three calculations of tortuosity based on 

curvature with the standard approach of tortuosity, aiming to find the best 

measure of tortuosity.  
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Framework of Tortuosity 

The figure below shows the branching points using the approach in Section 3.3.1; the branch 

points are then labelled and counted. The branch points themselves (shown in Figure 4-2) are 

not used within the calculation of number of branches and its tortuosity.  

 
 

(a) Branches (b) Branching points 

Figure 4-2. Extracting branch points 

After obtaining the number of branches, the tortuosity of branches is derived as in Equation 

(4-2). Figure 4-3(a) shows the path length of each branch and Figure 4-3(b) shows its 

tortuosity. The mean tortuosity of branches then describes the overall structure within the 

image. 

 
 

(a) Branch path lengths  (b) Branch Tortuosity values  

Figure 4-3. The tortuosity measurement by Equation (4-2)  
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For curvature-based tortuosity, we first find the boundary of the image using the boundary 

function that implements the Moore-Neighbor tracing algorithm modified by Jacob's stopping 

criteria [71]. This function is based on the boundaries function presented by Gonzalez [39]. 

Then we apply the calculation of curvature in Equation (4-8) to the extracted boundary. 

Subsequently, the tortuosity measures described in Equation (4-9), (4-10) and (4-11) are then 

applied to this curvature value and the classification rate is calculated. The best measure of 

tortuosity is described in the next chapter. For validation, we use the image in Figure 4-4 to 

ensure that the calculation is correct. The boundary graph in Figure 4-4(b) and the curvature 

of the boundary is shown in Figure 4-5.  In this graph, there appear two peaks which refer to 

the curvature extrema in Figure 4-4. 

  

(a) Binary image (b) The boundary of 

binary image 

Figure 4-4. Boundary extraction from binary image 

 

Figure 4-5. The curvature graph of the object in Figure 4-4 
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4.4 Compactness 

Classical Compactness 

Compactness plays an important role in classification and shape analysis as this 

measurement is extracted using the main properties for planar shape: perimeter 

and area of objects. This measure is also becoming an essential feature in medical 

applications such as in detection of lung nodules [72], cancer [41] and 

atherosclerotic disease [73]. In this feature, the compactness of the vessel shapes 

is used as a feature to differentiate AD from other normal brains. The compactness 

C of an object can be measured by the ratio of the perimeter to the area of a given 

shape as follows:  

 𝐶(𝑆) =
4𝜋𝐴(𝑆)

𝑃2(𝑆)
 (4-12) 

Compactness measures the efficiency with which a boundary encloses area. For a 

perfect circular region 𝐶 = 1, which represents the maximum compactness value as 

a circle is the most compact shape [37]. In contrast, in a convoluted region, the 

value will be lower. If we measure the perimeter of a convoluted region and draw a 

circle with the value, the circle will contain a greater area. Thus, the object is not as 

compact as the circle. The example of variety of compactness is illustrated in 

Figure 4-6 

 

 

Image source: redistrictingthenation.com 

Figure 4-6. The variety of objects with their compactness  
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As this measurement is an intrinsic property of objects, the measure of 

compactness is invariant under geometric transformations, such as translation, 

rotation and scaling. In our analysis, compactness is deployed to measure the 

compactness of the blood vessels in the brain. 

 

Discrete Compactness 

Due to the noise within the input images, many shapes have no well-defined 

contours. The measurement in Equation (4-12) might produce perimeters affected 

by noise or enclosing-surfaces with larger values which will affect the measure of 

compactness.  Therefore, the measurement of compactness has to be improved to 

solve this problem in the digital domain. An approach originally developed by 

Brisbiesca [74] is to assume that an entity has been isolated from the real world. 

Therefore, the equation of compactness employs pixels for 2D images and voxels 

for 3D volumes. The compactness by this measure is defined to be maximum for a 

square region (in 2D images) and a cube (in 3D images) and has the highest 

possible value (which is 1) if and only if the measured shape is a square region or a 

cube. 

This definition of compactness is a measure that is sensitive to changes in shape 

and is computed, for a given structure, as the ratio of contact perimeter 𝑃𝑐 to the 

maximum contact perimeter 𝑃𝑐𝑚𝑎𝑥. The contact perimeter is essentially a measure 

of the number of occasions when pixels within a shape are adjacent. The maximum 

contact perimeter 𝑃𝑐𝑚𝑎𝑥   is that obtained for a square or a cube. The measure is 

normalised to be of value between 0 and 1, and is invariant to scaling, rotation, 

and translation. Even though it is not a new definition, this measurement is yet to 

be implemented in this field. Thus, in this research we implement this 

measurement for finding its capabilities as blood feature descriptor.   

The new definition of compactness 𝐶𝑑 by Brisbiesca for 2D as follows: 

 𝐶𝑑 =
𝑃𝑐

𝑃𝑐𝑚𝑎𝑥
 (4-13) 
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The contact perimeter 𝑃𝑐, of a 2D shape composed of pixels corresponds to the 

sum of the length of segments that are common to each pair of pixels within the 

shape. In other words the greater contact perimeter every object has higher 

compactness of the object.  The equation of 𝑃𝑐 can be expressed as: 

 2𝑃𝑐 + 𝑃 = 4 × 𝑙 × 𝑛 (4-14) 

where 𝑛 is the number of pixels of the object, 𝑙 is the length of side of the pixel (in 

this case 𝑙 is assumed to be one) and 𝑃 is the perimeter of the object, which means 

the sum of the segments lengths of the closed shape’s sides. This measure 

corresponds to the classical concept of perimeter.  

 

 

 

(a) The perimeter 𝑃 of a 

shape, in bold  

(b) The contact perimeter 𝑃𝑐 of a 

shape, in bold  

(c) Pixels in fragmented 

object 

Figure 4-7. Comparison between the perimeter and the contact perimeter 

 

In Figure 4-7, the rectangular shape has a perimeter value of eight pixels (a) and 

the contact perimeter of four pixels (b). Thus, when a rectangular shape is 

separated into a fragmented shape like (c), the total perimeter of the shape is four 

sides of one pixel times the number of pixels, which results in 16 pixels. It is equal 

to the sum of two times the contact perimeter 𝑃𝑐 plus the perimeter  𝑃. 

The contact perimeter 𝑃𝑐 is defined as:  

 𝑃𝑐 =
4𝑙𝑛 − 𝑃

2
 (4-15) 

Then, the maximum measure of the contact perimeter 𝑃𝑐𝑚𝑎𝑥of discrete compactness 𝐶𝑑 for a 

square composed of n pixels is obtained using Equation (4-16), as:  

 𝑃𝑐𝑚𝑎𝑥 = 2(𝑛 − √𝑛)  (4-16) 

given that a square region of pixels is the most compact shape and its perimeter 𝑃 is 4√𝑛.  
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We have illustrated the example of the definition of 𝑃𝑐 in Equation (4-4). For a 

region containing 9 pixels the square region has the greatest value of 𝑃𝑐 and the 

irregular figure has the smallest value. Note that the value of 𝑃𝑐 in (c) is the same 

as that for a straight line since neither has any compactness. 

 

 

 

 

(a) 

 

 

 

(b) 

 

 

 

(c) 

Figure 4-8. Variety of shapes and their contact perimeter 

 

The compactness 𝐶𝑑 is obtained by combining Equations (4-15) and (4-16) as: 

 
𝐶𝑑 =

𝑛 − 𝑃 4⁄

𝑛 − √𝑛
 (4-17) 

where n is the number of pixels in the objects and 𝑃 is its perimeter. This method 

considers that all images that are analysed using the computer vision technique 

are based on pixels. This method also varies linearly, which indicates that this 

feature is suitable for shape classification. It produces a robust measure for noisy 

perimeters as this method largely depends on the summation of contact 

perimeters of the side-connected pixels. For the case presented in Figure 4-8 (a-c), 

when substituting these values in Equation (4-17), the compactness of the shapes 

is 1, 0.7 and 0.2, respectively. 

To verify which method is suitable in our analysis, the analysis for compactness 

using both methods is performed and the results show that the discrete 

compactness shows a higher classification rate than the classical approach. 

  

𝑃𝑐 = 12  
𝑃 = 12  
𝑛 = 9 

𝑃𝑐 = 10  
𝑃 = 16  
𝑛 = 9 

𝑃𝑐 = 8  
𝑃 = 20  
𝑛 = 9 
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4.5 Planar Fourier Descriptors 

Fourier descriptors (FDs) have been shown to be an efficient way to recognize 

shapes due to their robustness to changes in scale, rotation, shifting and starting 

point. Furthermore, although the FDs technique is already more than 40 years Old, 

it has features that are easy to compute and robust to noise. Although curvature 

has already been shown to be a robust technique to measure tortuosity by 

preserving the information of its boundary, it is important for us to find the best 

measurement to describe the vessels. Accordingly, by considering an approach 

that is intrinsically scalable, rotational and shift invariant, we might achieve a more 

robust measurement to describe the vessels.   

 

   

 

(a) vessel with no 

branching points 

(b) contour from (a) (c) vessel with one 

branching point 

(d) contour from (c) 

Figure 4-9. Vessels for FDs analysis. 

 

As a general rule, as illustrated in  Figure 4-9, FDs are achieved by using Fourier 

analysis to find the frequency content of the whole shape by using the contour 

derived from shape boundary coordinates [37]. Based on frequency analysis, we 

can choose a small set of numbers, or better known as the Fourier coefficients, 

which describe a shape rather than any noise that might corrupt it.  
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For FDs analysis, a curve is two-dimensional (2D) and the image space is 

considered as a complex plane [39]. Thus, every pixel is represented by a complex 

number.  

𝑠(𝑘) = 𝑥(𝑘) + 𝑗𝑦(𝑘) 
(4-18) 

 

where 𝑥(𝑚) and 𝑦(𝑚) is the coordinates of the boundary.  

In FDs, the Discrete Fourier Transform  is applied since the contour of the shape is 

defined by closed curves and Fourier descriptor can be denoted as: 

𝑎(𝑢) = ∑ 𝑠(𝑘)

𝐾−1

𝑢=0

𝑒
−𝑗2𝜋𝑢𝑘

𝐾  (𝑢 = 0,1,2, …𝐾 − 1) 
(4-19) 

 

The inverse Discrete Fourier Transform of these coefficients reconstructs 𝑠̂(𝑘):  

𝑠̂(𝑘) =
1

𝑃
∑𝑎(𝑢)

𝑃−1

𝑢=0

𝑒
𝑗2𝜋𝑢𝑘
𝑃 (𝑘 = 0,1,2, … , 𝐾 − 1) 

(4-20) 

where 𝑃 is the number of specified Fourier coefficients. 

The normalisation needs to be implemented in order to obtain FDs that are 

invariant to scaling, shifting, rotating and the starting point. It is an important 

feature that makes FDs have an important role in shape analysis. As such, every 

invariant feature has to be calculated by the formulae in Table 4-1. 

Transformation Fourier Descriptor 

Translation 𝑎𝑡(𝑢) = 𝑎(𝑢) + ∆𝑥𝑦𝛿(𝑢) 

Scaling or Zooming 𝑎𝑠(𝑢) = 𝛼𝑎(𝑢) 

Starting point 𝑎𝑝(𝑢) = 𝑎(𝑢)𝑒
−𝑗2𝜋𝑘0𝑢

𝐾⁄   

Rotation 𝑎𝑟(𝑢) = 𝑎(𝑢)𝑒𝑗𝜃   

Table 4-1. The measurements of invariants in FDs 
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An alternative approach is to use Elliptic FDs which also have similar invariance to 

complex FDs, but do not include the effects of high order frequencies that are 

more prone to noise [75]. Let us denote 𝑐′(𝑡) = 𝑥′(𝑡) + 𝑗𝑦′(𝑡) as the transformed 

contour. This contour is defined as: 

[
𝑥′(𝑡)

𝑦′(𝑡)
] =

1

2
[
𝑎′𝑥0
𝑎′𝑦0

] +∑[
𝑎′𝑥𝑘 𝑏′𝑥𝑘
𝑎′𝑦𝑘 𝑏′𝑦𝑘

]

∞

𝑘=1

[
cos(𝑘𝜔𝑡)

sin(𝑘𝜔𝑡)
] 

(4-21) 

 

The advantage of these descriptors 𝑎′ and 𝑏′ with respect to complex FDs is that 

they do not involve negative frequencies. In Equation (4-22), the Elliptic FDs are 

also made invariant to contain neither the scale factor, nor rotation. 

|𝐴′𝑘|

|𝐴′1|
=
√𝑎𝑥𝑘

2 + 𝑎𝑦𝑘
2

√𝑎𝑥1
2 + 𝑎𝑦1

2

and
|𝐵′𝑘|

|𝐵′1|
=
√𝑏𝑥𝑘

2 + 𝑏𝑦𝑘
2

√𝑏𝑥1
2 + 𝑏𝑦1

2

 (4-22) 

 

Even though FDs have been one of the most popular boundary descriptions in 

shape analysis there is a limitation concerning shape recognition in as much as this 

technique can only detect similar shapes. This is because this technique was 

initially used to remove the noise that occurred in the boundary, and consequently, 

it is well applied to recognize similar objects that have a similar pattern as the 

original. Therefore, FDs cannot be used for mixed shapes, which rely on extraction 

techniques that can handle occlusion[37]. Consequently, it is difficult to implement 

FDs technique to differentiate the branching structures that have a mixture of 

shapes, even though the description is robust to scaling, starting point and 

rotation. For this reason, we have to construct an algorithm that can fit this 

technique to measuring the dissimilarity between AD and a normal brain; this is 

discussed later in the analysis section of this chapter.  
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4.6 Analysis of Extracted Features 

4.6.1 Analysis of Density measurement 

 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

Between Groups 
3130.000 2 1565.000 4.072 .045 

Within Groups 
4612.000 12 384.333   

Total 
7742.000 14    

Table 4-2 ANOVA table for analysis of density 

 

In this analysis, we compare the density of the groups using ANOVA to find whether there is 

any statistically significant difference among them. The p-value (denoted by Sig.) as shown in 

Table 4-2 is 0.045 and this means there is statistically significant difference at p<0.1 level in 

density amongst three groups. Subsequently, the Post Hoc test is done to measure the 

difference in means between the classes. Tukey HSD test is used for Post Hoc test and the 

result is shown in Table 4-3 . This table indicates that there is a significant difference between 

AD and Old in density with p-value of 0.038. However, there is no significant difference by 

comparing AD versus Young and Old versus Young with p-value = 0.562 and 0.219, 

respectively. AD shows higher density amongst the groups with mean difference between AD 

and Old of 35 and AD and Young of 13. This means that the density can be a good factor for 

the detection of AD.  

Higher density in AD may be due to the regeneration of new vessels in AD. The regeneration 

of vessels in AD is caused by the dead vessels due to the accumulation of Aβ in the brain. 

Interestingly, from three groups, it appears that the AD and Young have comparable levels of 

density. The normal vessels in Young brains may be dead and the regeneration of new vessels 

makes the density similar. The lower number of Old brains is constantly low due to dead 

vessels in its brain and indicates that the brains have no regeneration of vessels caused by 

AD. If the regeneration of new vessels happens in the AD brain, the vessels’ structure could 

be changed by their tortuosity, as the new vessels can find its new way in unaffected regions. 

Consequently, for deeper analysis, the tortuosity and other shape descriptors are analysed to 

find their connection to AD in the next analysis.  



 

51 

 

 

 

Multiple Comparisons 

Tukey HSD   

(I) Grouping (J) Grouping 

Mean 

Difference (I-

J) Std. Error Sig. 

90% Confidence Interval 

Lower Bound Upper Bound 

Old Young -22.000 12.399 .219 -50.09 6.09 

Alzheimer's 

Disease 
-35.000* 12.399 .038 -63.09 -6.91 

Young Old 22.000 12.399 .219 -6.09 50.09 

Alzheimer's 

Disease 
-13.000 12.399 .562 -41.09 15.09 

Alzheimer's 

Disease 

Old 35.000* 12.399 .038 6.91 63.09 

Young 13.000 12.399 .562 -15.09 41.09 

*. The mean difference is significant at the 0.1 level. 

Table 4-3 Multiple comparisons table for Tukey HSD test for density between groups 
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4.6.2 Analysis of Tortuosity measurement 

For the extensive analysis, we test the significance difference using ANOVA after obtaining 

the data set to choose the best tortuosity measurement for classification. As depicted in 

Table 4-4, the p-value of log T shows the lowest value amongst other measurements which is 

p=0.075. The other measurements of tortuosity are exceeding the statistical significant level 

of p=0.1 as shown in Table 4-4.  Thus, it can be concluded that the other measurements are 

not suitable to use as features for classification. For deeper analysis, we chose the best 

tortuosity measurement; log T to represent tortuosity as one of the feature descriptions. 

ANOVA 

 
Sum of Squares df Mean Square F Sig. 

logT Between Groups .023 2 .011 3.241 .075 

Within Groups .042 12 .003 
  

Total .065 14 
   

bendET Between Groups 3407617403.764 2 1703808701.882 2.130 .162 

Within Groups 9599651016.425 12 799970918.035 
  

Total 13007268420.189 14 
   

meanT Between Groups .000 2 .000 .006 .994 

Within Groups .232 12 .019 
  

Total .232 14 
   

normalT Between Groups .009 2 .005 1.750 .215 

Within Groups .031 12 .003 
  

Total .040 14 
   

Table 4-4. ANOVA table for various measurement of Tortuosity 

For log T measurement, we have run the Post Hoc test of Tukey HSD to find the difference 

means of each group. Contrary to the measurement of density which can differentiate Old and 

AD, the tortuosity using logT can only discriminate AD and Young with p=0.062 as 
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demonstrated in the Table 4-5. The angiogenesis recorded in AD may contribute to the 

complexity of the vessel network hence increasing the tortuosity of the vessel. Thus, this 

measurement will be used as one of the measures in feature description of branching vessels. 

We perform the Post Hoc Test of Tukey HSD to find the difference between groups mean. 

Surprisingly, the comparison between AD and Old are not significant as p-value of 0.413 which 

is exceeding the threshold. However, we have obtained the p-value of 0.062 which is below 

significance level of p=0.1 by comparing between AD and Young. In statistical point of view, 

the tortuosity of blood vessels of AD are different from that of Young. It might indicates that 

the angiogenesis as occurs in AD might contribute the tortuosity of the vessels. Even though 

the comparison between AD and Old are not significant, it does not mean that these are the 

same. Future works particularly on increasing the sample data may improve the analysis hence 

the better understanding will be achieved.  

Post Hoc Tests 

Multiple Comparisons 

Tukey HSD   

(I) Group (J) Group 

Mean 

Difference (I-J) Std. Error Sig. 

90% Confidence Interval 

Lower Bound Upper Bound 

Old Young .04595 .03741 .460 -.0388 .1307 

AD -.04926 .03741 .413 -.1340 .0355 

Young Old -.04595 .03741 .460 -.1307 .0388 

AD -.09521* .03741 .062 -.1800 -.0105 

AD Old .04926 .03741 .413 -.0355 .1340 

Young .09521* .03741 .062 .0105 .1800 

*. The mean difference is significant at the 0.10 level. 

Table 4-5. Tukey HSD Post Hoc test for logT measurement of Tortuosity. 
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4.6.3 Analysis of Compactness 

For compactness, we compare the classical compactness method with discrete compactness 

method, and then we choose which one has the best classification rate to use as the feature 

description of the vessel.  

As an initial stage, we compare both of the measurement using ANOVA to investigate their 

statistical significance for comparison amongst groups. As presented in Table 4-6, both of 

them have lower p-value than significant level of p=0.1 which are p=0.003 for Discrete 

Compactness and p=0.002 for Classical Compactness. Since the p-value for both 

measurements are remarkably low, it indicated that measurement of compactness displays an 

important feature for blood vessel description.  

ANOVA 

 
Sum of Squares df Mean Square F Sig. 

Discrete Compactness Between Groups .000 2 .000 10.095 .003 

Within Groups .000 12 .000 
  

Total .000 14 
   

Classical Compactness Between Groups .009 2 .004 10.923 .002 

Within Groups .005 12 .000 
  

Total .013 14 
   

Table 4-6. ANOVA table for various measurement of Compactness 

 

We also performed Post Hoc analysis of Tukey HSD for comparing the difference of mean 

group. The lower p-value exhibited in Table 4-7 indicates that both measurements show 

significant difference for AD versus Old and Young versus Old. However, the comparison of 

Young versus AD has exceeded the significant level of p=0.1. It could be inferred that the 

compactness is different by disease profile and by age. Interestingly to note, the mean value 

of compactness in Old is the highest amongst the groups. This result is consistent with the 

report addressed by Geary and Buchholz[76] 
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Multiple Comparisons 

Tukey HSD   

Dependent Variable (I) Grouping (J) Grouping 

Mean 

Difference (I-

J) Std. Error Sig. 

90% Confidence Interval 

Lower Bound Upper Bound 

Discrete Compactness Old Young .007* .002 .006 .003 .011 

Alzheimer's Disease .007* .002 .005 .003 .012 

Young Old -.007* .002 .006 -.011 -.003 

Alzheimer's Disease .000 .002 .994 -.004 .004 

Alzheimer's Disease Old -.007* .002 .005 -.012 -.003 

Young .000 .002 .994 -.004 .004 

Classical Compactness Old Young .041* .012 .017 .013 .069 

Alzheimer's Disease .056* .012 .002 .028 .085 

Young Old -.041* .012 .017 -.069 -.013 

Alzheimer's Disease .016 .012 .447 -.013 .044 

Alzheimer's Disease Old -.056* .012 .002 -.085 -.028 

Young -.016 .012 .447 -.044 .013 

*. The mean difference is significant at the 0.10 level. 

Table 4-7. Post Hoc Test for measurements of compactness 
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Figure 4-10. Comparison between classical and discrete compactness by increasing the 

number of k in k-NN classification technique  

In Figure 4-10, we then measure the CCR using leave-one-out cross validation of   

k-NN classification between the classical and discrete compactness to see their 

performance. In this analysis, we can see that the compactness using discrete 

measurement shows competent capability of discrimination between AD, age-

control and Young brains. Even though the difference between p-values by ANOVA 

analysis is small, the CCR rate is higher for discrete classification suggests that this 

measurement should be used as one of the features for shape description of AD.  
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4.6.4 Analysis of Fourier Descriptors 

In order to calculate FDs for each branch, we detect the branches which have branching point 

and labelled every of them. Then, we detect their boundary for FDs calculation. We then find 

the coefficients of the FDs for those branches in every image. We specify only the first 64 

coefficients, 𝑃 of coefficient for this descriptor after finding the optimum value of Fourier 

Coefficient at highest CCR at k=1 and lower coefficient number which is 64 as shown in 

Figure 4-11. We then compare the FDs for each image using k-NN classification to differentiate 

between AD and other groups’ images.  

 

 

Figure 4-11. CCR using different number of FD coefficient. 

 

In our analysis, we compare two different FDs to find the best FDs in our feature 

descriptor using k-NN classification. As the Fourier descriptor have more than one 

variable (in our case it is 64), the comparison was not done using ANOVA, as 

ANOVA needs only one variable for the comparison of each group. Clearly, as 
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shown in Figure 4-12, the higher CCR is obtained for the complex FDs, which is 

CCR of 80%.  

The lower rate for elliptic FDs may be caused by the unsuitable shape descriptor as 

the elliptic is based on closed elliptical shape. As conclusion, the complex FDs is 

chosen for later analysis. The nature of this change is yet to be established, and is 

a likely consequence of the differing drainage of A in subjects with AD, leading to 

a high recognition capability. 

 

 

Figure 4-12. CCR using Complex and Elliptic FD  
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4.7 Results and Discussion 

This part contains all the analysis of features. We divide our analysis into two 

stages, which are the deeper statistical analysis and the analysis of the 

performance of every feature and feature fusion. For the first analysis, deeper 

understanding of every feature is performed using contrast analysis for planned 

comparison. Planned comparison is the test when we have a specific question 

(hypothesis) about a pattern of results of an ANOVA.  It is necessary when 

comparing specific group such as comparing AD with normal (defined by 

combination of Old and Young) or comparing Old and Young without looking at AD 

[77]. These questions are converted into equations that are translated by the 

contrast test into a set of numbers called contrast coefficients [78]. As described in 

Section 1.2, these are hypotheses for 2D analysis that we want to analyse using 

contrast test; 

a) Research Hypothesis 1: Is there any difference between AD and Normal Brain 

b) Research Hypothesis 2: Is there any difference between Normal Brain (Old 

versus Young) 

Contrast Coefficients 

Contrast 

Group 

Old Young 

Alzheimer's 

Disease 

1 1 1 -2 

2 1 -1 0 

 Table 4-8. Contrast coefficients of ANOVA 

The above hypotheses are transformed into statistical hypotheses as shown in 

Table 4-8. For the first contrast, we want to take the Old and Young groups and 

combined them as one group. Thus, the coefficient value will be the same which is 

1. Then as we want to compare AD with normal (Young and Old), AD will have a 

coefficient value of -2. The sum of coefficients for each statement is zero as it 

should be for a contrast. If we want to ignore one of the three groups (for example 

comparing Young with Old), then we need to adjust the other coefficient value so 

that the sum of coefficients is zero. On the other hand, for the second contrast 

analysis, we compare between Old and Young while ignoring group AD, so the 

coefficient of group Old will be 1 and of group Young will be -1 while group AD will 

have a coefficient of 0. Subsequently, coefficients with different values are 

compared and the result is shown in Table 4-9 and Table 4-10 respectively.  
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As shown in Table 4-9, the homogeneity of variances was analysed between group 

using the Levene Test of Homogeneity of Variances [77] in order to understand the 

contrast analysis. In Table 4-10, all the p-value of the features for the contrast (1) is 

lower than significant level of p=0.1. It is clearly evident that the AD is different 

from normal brain tissue for all the features. Amazingly, for the second contrast, it 

appears from the evidence that only compactness is rejecting the null hypothesis 

that Old is same with Young. As the blood vessels lose their tone due to ageing, 

they become of a different shape from Young. The smooth muscles become very 

flat and the “cement” between them (the basement membranes that are the 

drainage pathway that we are investigating) are also changing in composition and 

morphology [79] 

This result nevertheless suggests that only compactness from all the features 

tested could be used as a feature for classification of Old and Young brain. This 

indeed provides an understanding that Compactness has distinctive features that 

are different from other features. Hence, the analysis will continue to figure out the 

feature fusion for higher CCR.  

Test of Homogeneity of Variances 

 Levene Statistic df1 df2 Sig. 

Branching Structure .352 2 12 .711 

Density 11.218 2 12 .002 

Tortuosity .184 2 12 .834 

Compactness 12.731 2 12 .001 

Table 4-9. Test of Homogeneity of Variances of all 2D features 
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Contrast Tests 

Contrast   
Value of 
Contrast 

Std. 
Error t df 

Sig. (2-
tailed) 

Branching Structure Assume equal 
variances 

-.327 .158 -2.073 12.000 .060 

-.134 .091 -1.467 12.000 .168 

Does not assume 
equal variances 

-.327 .167 -1.964 6.912 .091 

-.134 .086 -1.558 7.271 .162 

Density Assume equal 
variances 

-48.000 21.476 -2.235 12.000 .045 

-22.000 12.399 -1.774 12.000 .101 

Does not assume 
equal variances 

-48.000 16.879 -2.844 7.063 .025 

-22.000 14.577 -1.509 4.435 .199 

Tortuosity Assume equal 
variances 

-.144 .065 -2.230 12.000 .046 

.046 .037 1.228 12.000 .243 

Does not assume 
equal variances 

-.144 .071 -2.025 6.273 .087 

.046 .033 1.385 7.946 .204 

Compactness Assume equal 
variances 

.008 .003 2.334 12.000 .038 

.007 .002 3.839 12.000 .002 

Does not assume 
equal variances 

.008 .003 3.010 7.311 .019 

.007 .002 3.247 4.840 .024 

Table 4-10. Results of Contrast Analysis of all 2D features 

 

Due to the similar pattern of statistical result of tortuosity, density and branching 

structure, thus we combined them as one feature to analyse their potential for 

increasing the classification rate. These three features are normalised by z-score 

normalization[80]. The significant test for this feature fusion is measured using 

ANOVA to investigate its effect of this feature on these groups. Moreover, the 

classification rate for this feature is measured using leave-one-out cross validation 

for k-NN classification.  

ANOVA 

Feature Fusion  

 Sum of Squares df Mean Square F Sig. 

Between Groups 11.440 2 5.720 7.862 .001 

Within Groups 30.560 42 .728   

Total 42.000 44    

Table 4-11. ANOVA table for feature fusion. 
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As depicted in Table 4-11, there is a very significant effect by combining these features at the 

p<0.1 level for these three groups [F (2, 42) = 7.862, p = .001]. Since we have found a 

statistically significant result in this feature, Post Hoc test (Tukey HSD) is computed to 

compare each of our groups to every condition. Post Hoc comparisons using the Tukey HSD 

test as in Table 4-12 indicates that the mean score for the AD is significantly different than 

Old and Young. However, the Old is not significantly differing from Young.  

 

Multiple Comparisons 

Dependent Variable:   Feature fusion   

Tukey HSD   

(I) Group (J) Group 

Mean Difference 

(I-J) Std. Error Sig. 

90% Confidence Interval 

Lower Bound Upper Bound 

Old Young -.35583 .31147 .494 -1.0130 .3013 

AD -1.20216* .31147 .001 -1.8593 -.5450 

Young Old .35583 .31147 .494 -.3013 1.0130 

AD -.84634* .31147 .025 -1.5035 -.1892 

AD Old 1.20216* .31147 .001 .5450 1.8593 

Young .84634* .31147 .025 .1892 1.5035 

*. The mean difference is significant at the 0.10 level. 

Table 4-12. Post Hoc result using Tukey HSD for feature fusion 

It is interesting to note that when we performed the same contrast test to feature fusion, 

similar result from the test that has been conducted for each feature (tortuosity, density and 

branching structure) has been obtained. The AD is statistically different from Normal (Old and 

Young) and Old and Young is not statistically significant. It indicates that these features are 

associated with each other. 

For the second analysis, we performed the classification using k-NN classification 

in order to obtain the CCR for those features including the feature fusion. We use 

LOOCV and take one image from the dataset to test the image and the rest become 

the training set for that classification. We then find the CCR for each cycle and the 

average for all cycle.  Overall, we performed the classification of six features and 

obtained the CCR for each feature. For the overall section, we used k =1, 3 and 5.  
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Figure 4-13. CCR of k for each features between three groups. 

 

Figure 4-13 shows the CCR for each feature applied to the three groups together, 

discriminating the images from subjects with AD from the images derived from 

other brains. The best performance (excluding the feature fusion) was achieved by 

the FDs: this shows a CCR of 80% for the nearest neighbour and reduces somewhat 

with increasing values of k suggesting that the discrimination of the shape in this 

dataset needs the invariants that are well described in the FDs algorithm. The low 

CCR for k=3 suggests that there is some uncertainty in the feature space, which 

warrants further investigation.  

Interestingly, the CCRs related to compactness exhibit steadiness with increasing 

values of k, indicating that the feature space associated with compactness is 

smoother than those associated with other measures. This could be achieved by 

improving the pre-processing technique, such as the skeletonisation process. This 

technique computed in this study is highly complicated so much so that it might 

contribute to the lower CCR of the feature associating to it (tortuosity and 

branching structure). Clearly, the results show that discrimination can be achieved, 

however, the underlying procedures could benefit from further investigation and 

refinement.  

Even though that the measures of tortuosity, branching structure, compactness 

and FDs are simply averaged over all branches to obtain single values per image, 

we could still achieve a good classification rate. At this particular stage we are 
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interested as to whether the broad class has a capability to discriminate the 

structures of interest. As all numbers can be normalised, it becomes a matter of 

consistency. Thus, in pattern recognition, it is about whether we can yield the same 

measures consistently for different samples of the same class. If the measures are 

inconsistent, recognition cannot be achieved.  

Comparing to all single features, the feature fusion obtained the highest CCR when 

k=3 and k=5 which is 87%. The performance of this feature fusion is better than 

when performing classification separately to branching structure, density and 

tortuosity. This fusion is also better than compactness and FD which have higher 

classification rate.  

4.8 Conclusions 

In conclusion our pilot study of branching density by using the number of branches 

shows that this measure is a novel contributor to discriminate AD from a normal 

brain. It also can be concluded that the AD are different from other subjects due to 

formation of a new branches (angiogenesis). Furthermore, the result of tortuosity 

has contributed in defining the branching structure and motivated us to increase 

the performance of the classification by finding a better way to measure tortuosity. 

As a result, we developed another measurements based on curvature.  

 

Unsurprisingly, the curvature-based tortuosity showed a competitive CCR 

compared to the normal measurement of tortuosity. By focusing on the curvature, 

we can conclude that the measurement of log-based tortuosity has a significant 

result for the CCR suggesting that the definition of tortuosity in log-based-

curvature measurement is trustworthy.  The calculation of differentiation on the 

curvature measure has to be looked at further to ensure robust calculation of the 

curvature. 

Next, the measurement of compactness showed high classification capability. The 

definition of vessels according to their compactness indicates the efficiency of the 

blood flow in the vessels. The implementation of existing discrete compactness 

equation for this analysis appears to be new in this area and it shows higher 

discrimination capability than classical compactness, since the measure considered 

digitisation in its formulation. Even though the discrete compactness is not new 

but the implementation of this measurement is still new. Thus, this measurement 

will be chosen for the next analysis.  
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Finally, we used FDs as one of features to define the shape of vessels. With regard 

to FDs that are invariant to scale, rotation and translation, as well as the starting 

point helped to provide a significant result for recognition; we obtained a good 

result for FDs suggesting the capability of this feature for shape classification. We 

perform the analysis using Complex FDs which showed a higher classification rate 

than Elliptic FDs. 

In our final analysis, we tested the abilities of these features to compare AD versus 

Normal Old versus Young using a contrast analysis. As result, AD is statistically 

different from Normal for these features. While by only using compactness, Old 

and Young are statistically different. These results could indicate the 

understanding of the features better in terms of medical analysis.  

By combining three features which are tortuosity, branching structure and 

branching density, we obtained highest CCR compared to all single features. This 

indicated that these features are associated with each other.  

Our measurements are conducted in 2D environment using microscopic images 

show good discrimination capabilities. However, this environment has limitation on 

dimensions of the branches hence the branches are not well represented for whole 

brain. Hence, the classification capability could be improved by using another 

environment which is a three-dimensional approach. The studies so far have been 

on brain tissue samples and are thus in vitro tests. Development of recognition 

capability on live subjects is of considerably more interest, though analysis 

protocols naturally need to follow established medical guidelines. For our next 

chapter, MRI based 3D-environment are used to magnify our method for feature 

description of branching in brain.  
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5. MRI Image Analysis 

5.1 Introduction 

One novelty in this thesis lies with the data and its analysis of Magnetic Resonance 

Angiography (MRA) which is a technique in common use to extract images of blood vessels. 

MRA is a group of techniques based on magnetic resonance imaging (MRI) that generate 

images of arteries in order to evaluate them for abnormality in the neck or brain, such as 

stenosis (abnormal narrowing), occlusions, aneurysms (vessel wall dilatations, at risk of 

rupture) or other abnormalities. Even though this technique does not involve any radiation, 

the area of the body being studied will be injected with a dye to make the vessels show up 

more clearly. Therefore, allergic reactions to the substance might occur, especially in the 

patients with AD. Moreover, there is considerable discussion regarding the capabilities of MRA 

to detect the abnormalities in the body [81].  

Notwithstanding these potential problems, the advantages of MRA are immense. By 

undergoing just one simple process of MRI, we should have the capability to detect changes 

and abnormalities in the body with the help of computer vision. In this chapter, different 

features are studied by extending the features in the studies of capillaries to MRI. We define 

the anterior and posterior capillaries as part of a first stage in MRI image analysis targeted to 

later find the detection capabilities of AD via MRI in future work. Our new approach develops 

and deploys an extended 3D model-based branching structure described in the next section 

followed by other features, which are described in Section 5.3. The overall analysis is 

summarized in Section 5.4  with discussion and conclusions later.  

5.1.1 Why posterior and anterior? 

Cerebral amyloid angiopathy (CAA) is a neurological condition characterised by the build-up 

of proteins such as amyloid on the walls of arteries in the brain. The condition increases the 

risk of stroke and dementia and occurs in 80-100% of the cases associated with AD [82]. The 

amyloid disturbs the blood flow of the vessel as well as the vascular network of the brain. Thal 

found some alteration in blood flow in the thalamic region of mice [83]. In most cases, CAA 

is found in the temporal and occipital lobes. This part of the brain is supplied mostly by the 

posterior cerebral artery, which may indicate an inclination for this region of the vascular 

network circulation to develop CAA [8]. In this research, comparing the structure of the 

branches in the posterior circulation to those in the anterior circulation will identify markers 

that can be used in future to assess those patients with mild cognitive impairment and 

therefore at risk of progressing to AD.  
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5.1.2 Pre-processing 

The segmentation of vessels in 3D images has received growing attention in recent 

years due to its importance in assisting the diagnosis of many diseases. It is indeed 

an essential phase for the accurate visualization of vessels from sophisticated 

datasets and for the assessment of pathologies. works have been on 3D 

segmentation and have been reviewed thoroughly by Lesage D et al.[84]. It can be 

concluded that 3D segmentation can be categorised into different kind of 

approaches. The main approach of 3D segmentation is to use a Hessian matrix 

which requires second-order partial derivatives of an image [85]. Generally in these 

approaches that has been applied by Frangi et al.[86], Sato et al. [87],  Koller et al. 

[88], Krissian et al.[89], Bullitt et al.[90] and Manniesing et al.[91], eigenvalues and 

eigenvectors of the Hessian are exploited, and often a vesselness measure is 

defined based on eigenvalues. However, the segmentation of vessels from MRI is 

difficult and challenging for many reasons such as the noise in the images and 

various of types and width of vessels which can make the segmentation difficult 

[85].  

Thus, for our pre-processing of 3D features, as this is our pilot project, we 

implemented manual segmentation using morphological operations, which include 

erosion, dilation and skeletonisation of the MRI images as shown in Figure 5-1. 

Furthermore, as our main analysis focuses on the description of the shapes and 

features of blood vessels, manual segmentation is done by manually selecting the 

region of interest (ROI) which is the middle part of the brain by deleting the skull 

and the unnecessary parts of each frames in each images. It is necessary as the 

skull has a similar intensity value to the blood vessels. Then, the grayscale-images 

are converted to binary images using thresholding.  
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Figure 5-1. Example of 3D MRI montage of a normal brain 

 

Morphological operation is used to improve the segmented vessel by using erosion and 

dilation.  

  

(a) MRI Image before segmentation (b) MRI image after segmentation 

Figure 5-2. Comparison between original image and segmented image 
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In Figure 5-2, the segmentation of the brain is necessary to remove the skull, which has higher 

contrast than the main vessels. Although there are vessels in the skull, as shown in this figure, 

the vessels are considered not significant as our main interest is to extract the vessels in the 

centre of the brain. The view of manual segmentation is shown in Figure 5-3.  

 

 

 

 

 

 

 

 

 

 
 

3D view of input MRI image  3D view of manual segmentation 

Figure 5-3. 3D view for 3D MRI images 
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Skeletonisation 

First, the images from the 2D stacked image are manually identified according to 

their type; anterior and posterior regions. Using a threshold value of 0.5, the 

images are converted to binary images. Next, the images are labelled, and, in order 

to find the features for later use, both regions are skeletonised using the thinning 

algorithm described by Kollmannsberger [92]. The skeletonised branches are 

shown in Figure 5-4. 

 

  

(a) 3D Projection of normal brain (b) 3D Skeletonisation of normal brain 

Figure 5-4. 3D Skeletonisation process in normal brain 
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5.2 3D Model-based Branching Structures 

Our novel approach to analysing model based branching structures in capillaries showed a 

maximum capability of just over 60% CCR of AD from subjects with Young and Old brains. 

The model could be extended to a 3D approach aiming to improve reliability, and hence 

increasing the classification rate. For that purpose, in this section, the model is modified to 

suit the 3D environment and applied to MRI images to show the feature description 

capabilities of the new model.     

 

Figure 5-5. 3D Branching Structure for whole brain 

 

5.2.1 Angle description 

The angle in 3D should represent two component angles, as the perceived view will be 

different if the object is rotated. As we want to measure the angles with reference to the 

branch point, azimuth and elevation represent the angle in 3D coordinate systems. In simple 

words, elevation refers to the vertical angular measurement and the azimuth is to horizontal 

angle measurement (Figure 5-6).  
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Image source: mathworks.com 

 

Figure 5-6. Comparison between Azimuth and Elevation angle 

 

The angles of azimuth 𝜃 and elevation 𝜑 are as follows,  

𝜃 = tan−1(𝑦, 𝑥) (5-1) 

𝜑 =  tan−1 (𝑧, √𝑥2 + 𝑦2) (5-2) 

where the implementation is,  

atan2(𝑦, 𝑥) =

{
 
 
 
 

 
 
 
 tan

−1 𝑦
𝑥
                          𝑥 > 0

tan−1
𝑦
𝑥
+ 𝜋      𝑦 ≥ 0, 𝑥 < 0

tan−1
𝑦
𝑥
− 𝜋      𝑦 < 0, 𝑥 < 0

+
𝜋
2
                    𝑦 > 0, 𝑥 = 0

−
𝜋
2
                    𝑦 < 0, 𝑥 = 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑      𝑦 = 0, 𝑥 = 0

 (5-3) 
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5.2.2 Model Description  

As the angle in 3D has two component angles, our branching structure equation from Eqn. 

3-3 has to be modified by including the elevation angle 𝜃𝐸 and the azimuth angle 𝜃𝐴. Therefore, 

we can define the equation by: 

 𝐵𝑐𝑜𝑠 =
∑ (𝐿(𝑖) + 𝐿(𝑗)) × cos(𝜃𝐴(𝑖, 𝑗))  × cos (𝜃𝐸(𝑖, 𝑗))𝑖=1,𝑁,𝑗=1,𝑁

∑ 𝐿𝑁𝑁
𝑖 ≠ 𝑗 (5-4) 

 

We then deployed this equation to five MRI volumes of normal brains (described in Section 0), 

to allow comparison of the posterior and anterior artery structures. These structures are 

segmented first as pre-processing procedure in Section 5.1.2 to extract branches and branch 

points in order to find their angle and the length. In order to find the branching point, the 

skeleton is converted into a network topology described by nodes, links and cells. Voxels with 

more than two neighbours were defined as a node or branching point, and voxels with two 

neighbours were defined as links or branches. All branches shorter than 10 voxels, all loops 

and isolated voxels were deleted. This algorithm was described by Kollmannsberger [92] . 
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5.3 3D Feature Detection  

5.3.1 3D Tortuosity 

Pathological modifications of vasculature can be an indicator of the existence of disease. The 

detection of the pathological changes in three-dimensional images could help the diagnosis 

of the disease in early stages. Tortuosity or the twistiness of the vasculature is a significant 

feature to detect the changes of the vasculature’s network. An advanced technology, such as 

MRI and CT scans, cannot provide the user with direct information about the tortuosity of the 

vasculature as pre-processing has to be done before the feature can be detected and 

classified. In this section, we analyse the 3D tortuosity in MRI Images of normal subjects to 

find the differences between the posterior and anterior arteries of the brain.  

 

 

 

 

(a) 3D projection  (b) Labelling  

Figure 5-7. Preprocessing of 3D anterior artery 

 

In order to find the tortuosity in the vessel, using the same equation in 2D 

tortuosity measurement described by = 𝐿 𝐶⁄  , we had to extract the vessel’s 

branching points and extract the branches from the vasculature as shown in 

Figure 5-7(a). This procedure of branch point extraction uses the same method 
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described in Section 5.2.2. In Figure 5-7(b) the branching points are depicted in 

blue and the branches in pink. The same process is shown for the posterior artery 

in Figure 5-8. The 3D tortuosity was then calculated by dividing the length of the 

branches (defined by the number of voxels) with the length between the two end 

points of the branches. 

  

(a) 3D projection  (b) Labelling 

Figure 5-8. Preprocessing of 3D posterior artery 
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5.3.2 3D Compactness 

3D Classical Compactness 

2D compactness shows high capability to classify objects, whilst the results of previous 

chapter demonstrated a higher rate compared to the other features in AD classification. The 

classical definition of compactness can easily be extended to 3D in which the most compact 

possible shape is a sphere, as in Equation (5-5) [39]: 

𝐶3𝐷(𝑆) =
36𝜋 ∙ 𝑉𝑜𝑙𝑢𝑚𝑒(𝑆)2

𝑆𝑢𝑟𝑓𝑎𝑐𝑒(𝑆)3
 

(5-5) 

 

In the context of this measure, compactness is unity for a sphere. In implementation however, 

this measure depends on the enclosing surface of the objects. In real volumes, most (discrete) 

objects have a noisy enclosing surface, which makes the measurement of compactness 

sensitive to noise. This factor could contribute to a lower classification rate when used for 

feature description. For that reason, we implement an existing measurement of compactness 

introduced by Bribiesca [74] to the new environment in the following section.  

3D Discrete Compactness 

Discrete compactness has exhibited promising performance in AD classification from 2D 

images. 3D discrete compactness was introduced by Bribiesca to overcome the noisy 

enclosing surface of 3D objects in Equation 5-5.  The measure of 3D discrete compactness 𝐶𝐷 

is defined by the ratio of contact surface area  𝐴𝑐 to the maximum contact surface area  𝐴𝑐𝑚𝑎𝑥 

[72] as in Equation (5-6): 

𝐶𝐷 =
𝐴𝑐

𝐴𝑐𝑚𝑎𝑥
 

(5-6) 

where 𝐴𝑐  is defined by the contact surface area of a rigid solid composed of a finite number 

𝑛 voxels, obtained by the summation of the areas of the contact surfaces that are common to 

two voxels. For every voxel that is connected to another voxel, the summation of twice the 

contact surface area and the surface area 𝐴 is the same as 6𝑛 voxels since every voxel has six 

surfaces. Thus: 

2𝐴𝑐 + 𝐴 = 6𝑎𝑛 (5-7) 

Where 𝑛 is the number of voxels and 𝑎 is the area of the each voxel surface (in this analysis 

we assume 𝑎 = 1). For example, as in Figure 5-9(a), when one voxel connects to another voxel, 
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only one surface area is common to the two voxels. Hence, there is only one contact surface 

area for this case.  

 

 

 

 

a) Two connected voxels b) Two fragmented voxels  

Figure 5-9. The understanding of contact surface area 

 

By Equation (5-7), the contact surface area can be defined as follows: 

𝐴𝑐 = 3(𝑛 − 𝐴 6⁄ ) (5-8) 

given 𝑎=1. For maximum contact surface area, 𝐴𝑐𝑚𝑎𝑥 for a shape composed of 𝑛 voxels, where 

a perfect cube is defined by 𝑛 = 𝑚3 where 𝑚 is the length of the voxel’s side. On the other 

hand, the surface area 𝐴 can be defined as 𝐴𝑚𝑎𝑥 = 6𝑚2 for a perfect cube. By substituting these 

expression into Equation (5-8) and 𝑎=1, the definition of maximum contact surface in Equation 

(5-7) with 𝑎=1,  𝐴𝑐𝑚𝑎𝑥 can be expressed as: 

𝐴𝑐𝑚𝑎𝑥 = 3(𝑚
3 −𝑚2) (5-9) 

In conclusion, an approximation of 𝐴𝑐𝑚𝑎𝑥is given by: 

𝐴𝑐𝑚𝑎𝑥 ≈ 3(𝑛 − (√𝑛
3
)
2
) (5-10) 
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Finally, by substituting these equations into Equation (5-8) and (5-10) in Equation (5-6), the 

measurement of 3D compactness is obtained and expressed as below: 

𝐶𝐷 =
𝑛 −

𝐴
6

𝑛 − (√𝑛
3
)
2 

(5-11) 

 

where 𝑛 is the number of voxels of the objects and 𝐴 is the surface area of the objects. From 

the equation we can understand that the equation relies on the sum of the contact surface 

area of the face-connected voxels of objects which produces a more robust measure for noisy 

enclosing-surfaces. As such the capability of discrete compactness are compared with that of 

classical compactness for the discrimination of anterior vs posterior arteries.  

5.3.3 3D Fourier Descriptors 

Unlike 2D FDs (that used boundary extraction), 3D FDs uses another feature to represent the 

objects for description. One of the ways is to use the surface representation to create the 

Fourier coefficients from the images. First, the binary objects are converted to a polygon 

mesh, which is basically a group of 2D polygons (in this case triangles) that are all connected 

together to create a 3D object. Figure 5-10 shows the triangle mesh for the anterior artery.  

 

 

 

 

Figure 5-10. 3D anterior arteries represented as a mesh of 2D triangles 
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Many 3D FDs have been applied in 3D object retrieval including a work done by Vranic [76] 

who described a technique with low complexity and computational cost. Vranic introduced a 

bounding box, which refers to the tightest cube surrounding the normalised object. A 

normalisation process was used so as to determine 3D descriptors that are invariant to 

position, rotation and scale. Vranic’s method for rotation invariance used Principal 

Components Analysis (PCA) to determine the canonical coordinate system axes of a 3D model 

by calculating the corresponding eigenvectors and eigenvalues.  The covariance matrix is 

obtained in order to extract the eigenvectors and eigenvalues. Subsequently, the eigenvalues 

are re-arranged in decreasing order to indicate the most important factor. In our work, Vranic’s 

method was implemented for translation and scaling where the mesh was translated into a 

voxel structure. The FDs were derived by Fourier transformation of normalised object’s voxel 

coordinates and classified using the k-NN approach in order to compare the posterior with 

anterior arteries. The process of 3D FDs is illustrated in Figure 5-11. 

 

 

 

Figure 5-11. Flowchart of 3D FDs Algorithm 
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5.4 Analysis of 3D Features 

As previously mentioned in Section 2.3, our analysis was conducted using five images 

acquired from 7T MRI from five subjects of normal groups. These images consist of 219 

frames where each image is segmented using morphological operations and the vessels are 

labelled for the 26-connected components in binary images using Matlab function bwlabeln. 

Each subject’s image will consists of 4 blood vessels which are the right and left anterior and 

the right and left posterior. This is added up to total 20 vessels which are 10 anterior and 10 

posterior. The labelled vessels are then used for the analysis of the different features in order 

to assess its feature capability for discrimination and to assess the classification accuracy of 

these features.  

5.4.1 Analysis of 3D Model-based Branching Structure 

For our investigation in 3D, different types of Branching Structure were analysed using 

independent t-test to find its statistical significances difference between the features 

computed for the anterior and posterior. If the test shows there is a significant difference, it 

means that the posterior structure is different from the anterior.  Thus, there is probability 

that the accumulation of amyloid beta has occurred only on the posterior vasculature and not 

the anterior.  

Independent Samples Test 

  

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

F Sig. t df 

Sig.                
(2-

tailed) 
Mean 

Difference 
Std. Error 
Difference 

90% Confidence 
Interval of the 

Difference 

Lower Upper 

Cosine Equal 
variances 
assumed 

.761 .395 3.287 18.000 .004 .076 .023 .036 .117 

Equal 
variances not 
assumed 

    3.287 15.710 .005 .076 .023 .036 .117 

Degree Equal 
variances 
assumed 

.102 .753 .855 18.000 .404 928.176 1085.098 -953.453 2809.805 

Equal 
variances not 
assumed 

    .855 16.391 .405 928.176 1085.098 -963.511 2819.864 

Table 5-1. Result of Independent Sample t-test of different measurement of 3D Branching 

Structure 
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As shown in Table 5-1, the p-value for 3D Cosine Branching Structure is 0.004 and there is 

significant difference at the p<0.1 level between anterior and posterior (Cosine-based 

Branching Structure has equal variances when tested using Levene’s Test). However, the 

Degree-based Branching Structure exceeded the significant level of p=0.1 as having p-value 

of 0.404. Thus, there is no statistically significant difference between the groups by using 

Degree-based Branching Structure.  

Independent Samples Test 

  

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

F Sig. t df 

Sig.                
(2-

tailed) 
Mean 

Difference 
Std. Error 
Difference 

90% Confidence 
Interval of the 

Difference 

Lower Upper 

Cosine Equal 
variances 
assumed 

.761 .395 3.287 18.000 .004 .076 .023 .036 .117 

Equal 
variances not 
assumed 

    3.287 15.710 .005 .076 .023 .036 .117 

Degree Equal 
variances 
assumed 

.102 .753 .855 18.000 .404 928.176 1085.098 -953.453 2809.805 

Equal 
variances not 
assumed 

    .855 16.391 .405 928.176 1085.098 -963.511 2819.864 

 

 

Figure 5-12. CCR using 3D Branching Structure measures 
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Next, the measurement using degrees was compared with the measurement using cosine 

function using LOOCV of k-NN classification as shown in Figure 5-12. By applying the cosine 

function, a higher CCR of 90 per cent was the most significant classification achieved here. 

Clearly in both analyses, the Cosine Branching Structure shows good capability to become a 

feature and classify the groups. The feature also means that the blood vessels description is 

associated with angle and the length of the vessels. Hence, the cosine-based branching 

structure was chosen for the 3D feature description of the blood vessels. Future works 

particularly on automatic pre-processing and extending the formula may increase the 

classification capability of this feature.  

5.4.2 Analysis of 3D Tortuosity 

For the next analysis, statistical significant difference of tortuosity between groups is analysed 

using independent sample t-test. As depicted in Table 5-2, p-value for tortuosity measurement 

is higher than significant level of p=0.1 which is 0.616 and hence there is no significant 

difference of tortuosity between posterior and anterior. This proves that in there are not much 

differences in tortuosity at large artery level. Furthermore, the accumulation of amyloid beta, 

which is the reason of AD, is starts to take place only in the cortices of the brain.   

Independent Samples Test 

  

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

90% Confidence 
Interval of the 

Difference 

Lower Upper 

Tortuosity Equal 
variances 
assumed 

.650 .431 .510 18.000 .616 .013 .026 -.032 .059 

Equal 
variances 
not assumed 

    .510 17.672 .616 .013 .026 -.032 .059 

Table 5-2. Result of Independent Sample t-test for 3D Tortuosity 

Subsequently, the tortuosity is classified using k-NN classification and the accuracy of the 

classifier is tested using LOOCV. The result of 3D tortuosity only achieved at best CCR at k=1 

with 65% and then decreased with increasing the number of neighbours, k. When k are 3, 5, 

7 and 9, the CCR is lower than the random rate.  



 

83 

 

 

Figure 5-13. Recognition of Anterior vs Posterior Vessels by Tortuosity 

5.4.3 Analysis of 3D Compactness 

In order to determine the best method to be used for classification, the measurement of 3D 

discrete compactness was compared with classical 3D compactness using independent 

samples t-test and k-NN classification. As shown in Table 5-3, independent sample t-test is 

analysed between Discrete Compactness and Classical Compactness. For Discrete 

Compactness, there is highly significant difference between anterior and posterior with p-

value less than 0.001 at significant level p<0.1.  However, there is no significant difference 

(p=0.772) for Classical Compactness between each group at significant level p<0.1. Thus, 

discrete compactness shows good discrimination capability for anterior and posterior.  
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Independent Samples Test 

  

Levene's Test 
for Equality of 

Variances 
 

t-test for Equality of Means 
 
 

 

F Sig. t df 

Sig. 

(2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

90% 
Confidence 

Interval of the 
Difference 

Lower Upper 

Discrete Equal 
variances 
assumed 

.853 .368 4.587 18.000 .000 .051 .011 .032 .070 

Equal 
variances 
not 
assumed 

    4.587 16.319 .000 .051 .011 .031 .070 

Classical Equal 
variances 
assumed 

1.196 .288 .294 18.000 .772 .138 .469 -.676 .951 

Equal 
variances 
not 
assumed 

    .294 15.808 .773 .138 .469 -.682 .957 

Table 5-3. Result of Independent Sample t-test of different measurement of 3D Compactness 

 Figure 5-14 presents the CCR using a k-NN classifier which was employed to compare the 

classical compactness against discrete compactness. It is noted that a higher classification 

rate was obtained using discrete compactness, whereas, classical compactness is lower than 

a random choice. This is due to the measurement of classical compactness, which is based on 

surface area that is prone to noise, where the results confirm the ambiguity of the classical 

compactness measured in 3D. Henceforward, discrete compactness is used in our feature 

description of vessels in 3D MRI.   

  

Figure 5-14. CCR using 3D compactness measures 
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5.4.4 Analysis of 3D Fourier Descriptor 

As the Fourier Descriptor uses coefficients as vectors for features, we are unable to perform 

t-test for this feature as this test only requires one variable to test. Therefore, we proceeded 

with our test to find the CCR using LOOCV of k-NN classification. High classification rate 

achieved for 3D Fourier Descriptor as CCR for k=7 and 9 was 85%.  

 

Figure 5-15. CCR using 3D Fourier Descriptor 
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Table 5-4 Result of SFFS for Fourier descriptors  

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9

C
o

rr
e

ct
 C

la
ss

fi
ci

at
io

n
 R

at
e

(%
)

number of Neighbours, k

Fourier Descriptor



 

86 

 

For an in-depth analysis of FDs to investigate its contribution in our research, the Sequential 

Floating Feature Search (SFFS) technique [93] was used to find the best three FDs. Surprisingly, 

the results in the Table 5-4 that were obtained from the SFFS for both in 2D and 3D 

environment, show that the best feature overall features is in the lower order descriptors. The 

table shows that the second FD is consistently selected as one of the most important features 

for recognition. FDs show reliability for shape differentiation of an object, and therefore the 

classification by using this feature is much higher compared to other features. Fascinatingly, 

FDs shows a remarkable performance confirming that deeper analysis of this technique is well 

justified.  

The FDs is usually used for object retrieval and object enhancement as one of its properties 

is to improve the smoothness of the objects, hence the object could be easily matched by 

other objects. Interestingly, by using FDs for classification, the significant value obtained 

shows that the method is suited to these classifications. 
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5.5 Results and Discussion 

This part contains all the analyses associated with classification from all 3D methods in order 

to discriminate the posterior and anterior vasculature. Initially, the classification was 

performed using k-NN classification in order to determine the CCR for those methods. We 

then used LOOCV which is a well-established technique for the evaluation of small datasets. 

In other words, we selected one image from the dataset to be tested the image and the rest 

became the training set for that classification. All features were derived from all volumes in 

precisely the same way, with the same parameter settings. 

For summary, the structures from the anterior and posterior parts of the brain were compared 

using the Branching Structure, FDs, Tortuosity, and Compactness. Unlike the 2D classification, 

this does not include the density as the segmentation was executed manually and the 

segmented vessels did not contain all the branches. Our classification was performed using 

k-NN classification on four features in order to find the CCR obtained from LOOCV. For the 

overall section, we used k =1, 3, 5, 7 and 9 as the maximum number of every group is 10. 

 

 

Figure 5-16. CCR for different features of 3D 
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In Figure 5-16, Branching Structure and Compactness shows a high CCR of 90% with an 

increasing number of neighbours. This is followed by FDs which obtained at best of 85% CCR 

and was largely attributed to the high number of coefficients used in FDs.  

The branching structure has a CCR of 90%, which suggests the reliability of this method for 

to be used as a feature description (and with better capability than was observed for 2D 

images). A better description of the bifurcation ratio of the branch could improve the overall 

description, and hence, CCR could be increased. Thus, a deeper understanding of the 

branching structure of the vessels is necessary. This novel algorithm of branching structure 

could reveal new knowledge of the branching structure in medical understanding. 

Tortuosity appeared to be 65% CCR for k=1 and decreased with increasing number of 

neighbours. Tortuosity on average showed the lowest CCR. Even though the results of 

tortuosity on average showed the lowest CCR, this could be one of the reasons that the 

accumulation of Aβ of AD does not happen in larger vessels and just happens at the capillary 

level, suggesting a deeper understanding is needed of tortuosity and the pathology of the 

vessels in the brain. Naturally, lack of recognition capability could imply that either this feature 

has no discriminatory capability or that the measure of this feature is inappropriate (or both).  

The compactness feature showed robust recognition with 90 per cent accuracy, and hence 

this feature could provide new knowledge towards medical understanding of vessel shapes. 

We suspect that the compactness measure could also describe the flow efficiency of a vessel. 

The higher compactness the vessel has, the better the blood flow becomes. Thus, the 

accumulation of Aβ in the posterior vasculature could be caused by the inefficiency of the 

blood flow in those regions. This is reflected by the results that showed lower compactness 

for the posterior vasculature when compared to anterior vasculature.  

Even though, the result of FDs showed a high CCR of 85%, the meaning of the coefficients 

derived by FDs is not yet established in medical knowledge. However, in computer vision, the 

FDs could be used to define the shape as it defined the boundary for the 2D environment and 

the surface in the 3D environment. Furthermore, the measurement of the boundary and the 

surface is also included as one parameter to find compactness. Thus, using FDs also 

contributes to the knowledge of the blood vessel’s shape and the efficiency of the blood flow. 

Clearly for the future, branching structure, compactness and FDs could be applied to compare 

AD with normal brain in 3D environment. The feature description for 3D also could be 

extended by including the density measurement as automatic segmentation can be 

implemented in future. This result can be further improved by increasing the dataset in such 

a way the anterior vasculature can be differentiated from the posterior vasculature using these 

features.  
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5.6 Conclusion 

For overall analysis on 3D environment using 7T MRI images, we can conclude that the 

classification rates for 3D is high. As this environment included all the 3D spaces (𝑥, 𝑦, 𝑧) in 

the analysis, the vessels are 3D structures rather than planar 2D tissue images.  

Firstly the new branching structure measurement is analysed in 3D. By implying this feature, 

there is significant different between anterior and posterior. It is supported by the high 

classification rate for the branching structure achieved in this analysis. Our measurement 

featuring the branching angle is defined in azimuth and elevation in 3D to measure the 

branching structure. The measurement of tortuosity in 3D is applied to the posterior and 

anterior arteries. Fair classification rates are achieved suggesting the similarity of tortuosity 

between posterior and anterior arteries.  

Following tortuosity, the dissimilarity of compactness is studied between posterior and 

anterior vasculature using different measurements of discrete and classical compactness. A 

higher classification rate was achieved by discrete compactness compared to the classical 

approach.  It also reinforces our conclusions in the previous chapter that the compactness is 

indicates the smoothness of the blood flow in the vessels. This argument can also be extended 

to the definition of tortuosity as the tortuosity of the vessels is defined to smoothness of the 

vessels.  

The last analysis of this chapter is 3D Fourier Descriptors comparing the posterior with 

anterior vasculature. The whole structure of the vessels is analysed in 3D FDs ensuring a good 

classification rate as this approach involving Fourier coefficients. By using these coefficients, 

we can describe the irregularity of vessels more accurately.  
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6. Conclusions and Future Work 

6.1 Overall Conclusions 

The formation of plaques and tangles in bloodvessels is due to the failure to 

eliminate the amyloid beta, which, hence, modifies the vascular network in the 

human brain.  Research has found that while slight changes are detected in aging, 

severe vascular modifications are detected in AD. Furthermore, the formation of 

new vessels called angiogenesis, which is triggered by amyloid beta that also 

occurs in the AD. Angiogenesis disrupts the natural structure of the brain, which 

causes the changes in the vessel network.  Thus, by quantifying changes in the 

blood vessels of the brain, angiogenesis might be identified as a consequence or a 

contributory factor to AD. 

Our study uses for the first time computer vision techniques together with 

statistical approaches for the assessment of blood vessels characteristics that may 

be used to aid in early detection of AD. The analyses were achieved automatically 

using the combination of established and new computer vision techniques, such as 

Fourier descriptors, compactness, tortuosity and branching structure. A new 

approach has been developed to determine branching structure by medial distance 

analysis that can be used to analyse shape topology. The analysis of branching 

structure can be deployed in other forms of cell analysis and is considered a radical 

new approach to analysing shape to differentiate between tissue samples derived 

from subjects known to be affected or not by AD. 

In order to test the first hypothesis of this study, immmunocytochemistry and 

novel software quantification methods were employed to compare the histological 

pattern of vascular basement membrane components in brains with AD compared 

to normal brains of similar ages. A new reliable tool for quantifying the 

immunohistochemical changes in human cerebrovascular basement membranes 

was demonstrated via image processing techniques associated with the analysis of 

branching structures. This study confirmed by using machine learning techniques 

such as k-NN classification and leave-one-out cross validation and validated using 

statistical approaches such as ANOVA, Tukey HSD and a contrast analysis. Thus, 

the density, compactness and tortuosity can be measured and these features can 

be used for discriminating AD with Young and Old subjects. Neuropathological 

studies on post-mortem human tissue have described that the small vessels of 

aged brains are more tortuous compared to Young brains and tortuosity increases 
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with the presence of AD pathology. Furthermore, experimental studies using 

transgenic mice that develop AD’s pathology demonstrated that tortuosity 

increases with deposition of Aβ in the walls of arteries. The increase in tortuosity of 

the small vessels was associated with a change in the geometry and biochemistry 

of the cerebrovascular basement membranes that represent clearance pathways for 

AThis indeed resulted in a failure of perivascular drainage of A and its 

accumulation in the walls of vessels as CAA. 

The measurement of Fourier descriptors to differentiate the AD with other subjects 

is uncommon as Fourier descriptor is generally used for object recognition. High 

classification rates were achieved by applying the measures, indicating thereby its 

importance for discrimination of AD.  

Actually, the application of computer vision analysis to MRI-Angiograms is deemed 

nascent. Due to the invasive nature of angiography which requires an intravenous 

tracer to highlight the vasculature, the number of patients used in this study was 

limited. Patients with AD were not used, as the primary aim of our study was to 

develop the techniques necessary for extracting the compactness features, 

tortuosity branching structure and Fourier descriptors. The comparison between 

the features of the vessels of the posterior circulation (associated with high Aβ) and 

anterior circulation (low Aβ) was the second target of our study. Patients with AD 

had blood vessels that are susceptible to rupture and hemorrhages, which 

necessitate proper administration and stringent control over the intravenous 

tracer.  

This study has demonstrated that it is possible to apply the computer vision 

techniques of identifying features of 3D compactness, 3D tortuosity, 3D branching 

structure and 3D Fourier descriptor to vessels of the posterior and anterior 

circulation as identified on MRI images. Compactness is a feature demonstrating 

the ratio of perimeter to area. Anterior vessels are more compact compared to 

posterior vessels. This suggests that blood flow in the anterior circulation is faster 

in vessels of the anterior circulation compared to vessels of the posterior 

circulation. As the motivating force for perivascular drainage appears to be derived 

from the amplitude of the pulsatile forces in the vessel and the degree of 

deformation of the wall of the basement membranes, a faster blood flow may be 

associated with more efficient perivascular clearance. Furthermore, a more efficient 

blood flow to the cortex is associated with a better perfusion of the cortical tissue, 

slowing the neurodegenerative processes. 
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The discrimination of tortuosity of the anterior and posterior can be achieved by 

simple calculation of tortuosity. This may be a significant factor in AD, with the 

accumulation of Aβ in artery walls are more affected in posterior circulation. 

However, low discriminant capability of tortuosity between posterior and anterior 

might be one of the reasons the accumulation of Aβ of AD in larger vessels does 

not happen and it only occurs at the capillary level (cortices) instead. 

 The branching patterns differ between anterior and posterior arteries. This may 

likely affect the geometry of the basement membranes and the efficiency of 

perivascular clearance of A along them. It is technically difficult to study the 

cerebrovascular basement membranes, as they are buried deep in the walls of 

arteries, and therefore considered inaccessible. The arrangement of the basement 

membranes at branching points is yet to be determined. Mathematical studies 

showed that the symmetrical branching pattern for vessels was more efficient for 

perivascular drainage of A. As the perivascular drainage of solutes advanced 

along the narrow 100nm thick basement membranes within the walls of capillaries 

and then arteries, it becomes so important to establish the morphological changes 

of the basement membranes in relation to the morphological features of arteries 

for better apprehension the pathogenesis of CAA and AD’s. 

In summary, this study has developed novel computer vision techniques for the 

assessment of the features of small vessels on histological images, as well as for 

the assessment of angiographic large arteries at the brain. The features derived 

from the measurement of compactness, tortuosity, Fourier descriptor and 

branching structure showed discrimination capability in both 2D and 3D 

environments. This indeed may help in identifying patients with risk of AD for 

whom early therapies may be beneficial.  
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6.2 Future Work 

In future, we will focus on improving the measurement of this novel method for 

deeper understanding of bifurcation ratio of the branching structure. Furthermore, 

we will develop an automatic segmentation of 3D images that could improve the 

quality of our features and to increase the computational cost of the process. By 

using automatic segmentation of 3D images, we shall also investigate the 

determination and description of branching structures in greater depth. 

Based on the promising initial result of our analysis in 3D, hopefully we could 

obtain AD images via MRI, therefore applying our feature descriptions for AD. By 

applying these features to AD, the detection capability of AD could be investigated 

and provide new knowledge of AD detection in early stages. Equally, our new 

features are well suited to the study of classifier fusion, with potential 

improvement in performance by selecting the best set of features for accurate 

discrimination. We can also improve the classification performance by applying 

different weights to every feature.  

For each feature used in this study, there are several improvements that can be 

made to increase the feature discrimination capability. The measurement of 

tortuosity could be improved in many ways, such as the implementation of discrete 

compactness in the tortuosity measurement. In this study, we had discovered that 

by using discrete compactness to find the measure of compactness is quite 

promising. Since the equation employed on the discrete measurement based on 

square/cube as every images are made of pixels (2D) and voxels (3D), the noise 

from the measurement was expected to be much lower than other measurement 

which are based on simple mathematics equation by neglecting the digitisation 

condition of images in 2D and 3D. In this case, the compactness could become the 

measure of tortuosity if the diameter of the branches are the same, such as in a 

skeleton condition. Since discrete compactness is defined by the number of times 

pixels are adjacent, the higher compactness of the object is influenced by the 

higher number of times when pixels are adjacent. Hence, it also can be defined to 

reflect lower tortuousity of the objects.   

Another area of improvement could be the ability to extract the branch angle and 

length to find the appropriate branching structure. The common use of 

skeletisation is to find their branching structure measurement and can be 

improved by using another method such as Hough transform to achieve the 

desired measurement. The Hough transform could improve the branching structure 
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measurements as the skeletonisation process is prone to noise with high 

possibility of mislabelling branches which would not occur with the Hough 

transform. 

FDs are considered as one of the most accurate measurement for shape 

recognition in computer vision and application in medical approach especially in 

AD analysis. Since the technique has not yet been established in this area, 

expansion of the method to improve the classification rate is required. The 

descriptors of the whole vessel in our 3D analysis could be extended to singular 

vessel analysis.  Furthermore, the FDs analysis between AD and other brain 

diseases could help to define the AD descriptors in medical applications. As the 

brain is a complex system that has not yet been fully understood, this descriptor 

could be also applied to other structures in the brain such as the corpus and 

medulla oblongata.  

Furthermore, this study can be extended to analyse the blood vessels in other 

parts of the human body including the blood vessels in the heart and in the retina 

to find the similarity and dissimilarity for branches for different parts of the human 

body. It would be useful to detect AD using the retina as it is easier to analyse and 

access than the human brain. The application of this study could be extended into 

different kinds of diseases that affect the brain such as high blood pressure, 

trauma, diabetes, cancer and other dementia. The discrimination between each 

disease could be analysed. As such, the new techniques have shown capability for 

the detection of AD in vitro, and of discriminating between anterior and posterior 

vasculature and have capability for extension to other application domains. 
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Appendix A 

Human tissue images 

 

Figure A-1. Human tissue image of AD subject 1 
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Figure A-2. Human tissue image of AD subject 2 

 

Figure A-3. Human tissue image of AD subject 3 

 

 

 

 

 



 

97 

 

 

Figure A-4. Human tissue image of AD subject 4 

 

Figure A-5. Human tissue image of AD subject 5 
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Figure A-6. Human tissue image of Old subject 1 

 

Figure A-7. Human tissue image of Old subject 2 
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Figure A-8. Human tissue image of Old subject 3 

 

Figure A-9. Human tissue image of Old subject 4 
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Figure A-10. Human tissue image of Old subject 5 
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Figure A-11. Human tissue image of Young subject 1 

 

Figure A-12. Human tissue of Young subject 3 
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Figure A-13. Human tissue image of Young subject 4 

 

Figure A-14. Human tissue image of Young subject 5 
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Figure A-15. Human tissue of Young subject 5 
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Appendix B 

MRI montage images 

 

 

Figure B-1. MRI montage image of normal subject 1 
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Figure B-2. MRI montage image of normal subject 2 
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Figure B-3. MRI montage image of normal subject 3 
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Figure B-4. MRI montage image of normal subject 4 
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Figure B-5. MRI montage image of normal subject 5 
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