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In this Supplemental Material we provide additional dis-
cussion of the breaking of axisymmetry in the core of
a stable singly quantized vortex in the polar phase of
the spin-1 BEC. We also give a brief overview of the
Skyrmion textures in different dimensions.

BREAKING OF VORTEX-CORE

AXISYMMETRY

In the main text, we show that the singly quantized vor-
tex without internal structure can exhibit different, en-
ergetically stable core symmetries as the (spatially uni-
form) Zeeman shifts are varied. When the level shifts are
weak, energy relaxation leads to spontaneous breaking
of axial symmetry in the core, splitting the vortex into
two half-quantum vortices, as predicted in Ref. [1]. This
splitting of the vortex core was recently experimentally
observed for a 23Na spin-1 BEC of 3.5× 106 atoms in an
oblate trap with (ωx, ωy, ωz) = 2π× (4.2, 5.3, 480) Hz [2].
In this experiment, singly quantized vortices were created
in a condensate initially occupying only the m = 0 Zee-
man level. A spin rotation is then applied by tuning the
quadratic Zeeman shift (induced using microwave dress-
ing [3]) to transfer population to the m = ±1 levels.
After the spin rotation, the vortices are observed to split
into half-quantum vortex pairs with opposite core spin
polarization. The resulting half-quantum vortices were
identified by in situ imaging [2], in which spin-dependent
phase-contrast imaging is used to map out the condensate
magnetization. The oppositely magnetized FM cores of
the half-quantum vortices can then be discerned.
The breaking of axisymmetry and splitting of the

singly quantized vortex is made possible by the (uniax-
ial) nematic order exhibited by the polar phase of the
spin-1 BEC, which allows the existence of half-quantum
vortices. The polar order parameter may be expressed in
terms of a condensate phase τ and a unit vector d̂ as [4]
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(In the last expression d̂ has been parametrized in terms
of azimuthal and polar angles α and β, for later conve-
nience). Note that ζ(τ, d̂) = ζ(τ + π,−d̂). These two

states must therefore be identified, and the vector d̂ is
understood as an unoriented nematic axis. Rotations of
d̂ do not contribute to the superfluid flow, making it pos-
sible to form a vortex carrying half a quantum of circula-
tion by letting a π winding of τ around the vortex line be
accompanied by a d̂ → −d̂ rotation of the nematic axis,
keeping the order parameter single-valued. For example,
taking dz = 0 for simplicity, a half-quantum vortex can
be written as
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where ϕ is the azimuthal coordinate around the vortex
line. Nematic order also gives rise to half-quantum vor-
tices in, e.g., the A phase of superfluid liquid 3He [5],
and to π-disclinations in nematic liquid crystals [6]. The
name is also sometimes used in the context of exciton-
polariton condensates in reference to a vortex with a
π rotation of linear polarization of the photon compo-
nent [7, 8]. This does not, however, arise from nematic
order, but is more reminiscent of a topologically very dif-
ferent coreless vortex in a two-component BEC [9].
We can now understand the splitting of the singly

quantized vortex given by Eq. (3) of the main text as
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Here the spinors on the right-hand side represent half-
quantum vortices [cf. Eq. (S2)]. In these, ϕ1,2 are the
azimuthal angles relative to each vortex line, and the
spinors describe the wave function locally around each
vortex core. Away from the core region, the wave func-
tion still corresponds to the original singly quantized vor-
tex. (Note that ⊕ here indicates the addition of topolog-
ical defects.)

SKYRMIONS AND BABY SKYRMIONS

Nonsingular textures may be topologically nontrivial by
considering maps from a compactified real space to the
compact order-parameter space. When the order param-
eter reaches the same value everywhere sufficiently far
away from the (particlelike) texture, the entire bound-
ary enclosing the texture may be identified and the vol-
ume in R

3 becomes topologically S3 (a unit sphere in
four dimensions). One may then think of the S3 → S3

map as distributing (an integer number of copies of)
the full order-parameter space over the compactified real
space. The corresponding nontrivial textures are the
3D Skyrmions [10]. Analogous structures may be con-
structed in a two-component BEC [11].
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An S2 order-parameter space, may similarly be dis-
tributed over a (2D) real-space surface with fixed, uni-
form boundary conditions (corresponding to an S2 → S2

map). Such a 2D Skyrmion is commonly referred to as
a (2D) “baby Skyrmion”, being the topologically lower-
dimensional analog of the full 3D Skyrmion, and may be
realized as a coreless vortex [12–15]. The dimensionality
of the baby Skyrmion may be further reduced by con-
sidering an S1 order parameter. For uniform boundary
conditions such that 1D space can be compactified to S1,
the resulting S1 → S1 map defines a 1D baby Skyrmion.
In our system a ferromagnetic spin texture confined in-
side the core of a vortex line exhibits fixed boundary
conditions. As the boundary conditions are twisted (the
orientation of the spin vector differs by π in the two ends
of the vortex line, the 1D Skyrmion winding number is
equal to 1/2. Any further winding of the spin texture
would lead to higher Skyrmion winding numbers.
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I. Bloch, Phys. Rev. A 73, 041602 (2006).

[4] U. Leonhardt and G. Volovik, JETP Lett. 72, 46 (2000).
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