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In this Supplemental Material we provide additional dis-
cussion of the breaking of axisymmetry in the core of
a stable singly quantized vortex in the polar phase of
the spin-1 BEC. We also give a brief overview of the
Skyrmion textures in different dimensions.

BREAKING OF VORTEX-CORE
AXISYMMETRY

In the main text, we show that the singly quantized vor-
tex without internal structure can exhibit different, en-
ergetically stable core symmetries as the (spatially uni-
form) Zeeman shifts are varied. When the level shifts are
weak, energy relaxation leads to spontaneous breaking
of axial symmetry in the core, splitting the vortex into
two half-quantum vortices, as predicted in Ref. [1]. This
splitting of the vortex core was recently experimentally
observed for a 2>Na spin-1 BEC of 3.5 x 10% atoms in an
oblate trap with (wy,wy,w,) = 27 x (4.2, 5.3,480) Hz [2].
In this experiment, singly quantized vortices were created
in a condensate initially occupying only the m = 0 Zee-
man level. A spin rotation is then applied by tuning the
quadratic Zeeman shift (induced using microwave dress-
ing [3]) to transfer population to the m = %1 levels.
After the spin rotation, the vortices are observed to split
into half-quantum vortex pairs with opposite core spin
polarization. The resulting half-quantum vortices were
identified by n situ imaging [2], in which spin-dependent
phase-contrast imaging is used to map out the condensate
magnetization. The oppositely magnetized FM cores of
the half-quantum vortices can then be discerned.

The breaking of axisymmetry and splitting of the
singly quantized vortex is made possible by the (uniax-
ial) nematic order exhibited by the polar phase of the
spin-1 BEC, which allows the existence of half-quantum
vortices. The polar order parameter may be expressed in
terms of a condensate phase 7 and a unit vector d as [4]
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(In the last expression d has been parametrized in terms
of azimuthal and polar angles o and 3, for later conve-
nience). Note that ((7,d) = {(r + 7w, —d). These two

states must therefore be identified, and the vector d is
understood as an unoriented nematic azis. Rotations of
d do not contribute to the superfluid flow, making it pos-
sible to form a vortex carrying half a quantum of circula-
tion by letting a 7 winding of 7 around the vortex line be
accompanied by a d — —d rotation of the nematic axis,
keeping the order parameter single-valued. For example,
taking d, = 0 for simplicity, a half-quantum vortex can
be written as
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where ¢ is the azimuthal coordinate around the vortex
line. Nematic order also gives rise to half-quantum vor-
tices in, e.g., the A phase of superfluid liquid *He [5],
and to w-disclinations in nematic liquid crystals [6]. The
name is also sometimes used in the context of exciton-
polariton condensates in reference to a vortex with a
7 rotation of linear polarization of the photon compo-
nent [7, 8]. This does not, however, arise from nematic
order, but is more reminiscent of a topologically very dif-
ferent coreless vortex in a two-component BEC [9].

We can now understand the splitting of the singly
quantized vortex given by Eq. (3) of the main text as
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Here the spinors on the right-hand side represent half-
quantum vortices [cf. Eq. (S2)]. In these, (12 are the
azimuthal angles relative to each vortex line, and the
spinors describe the wave function locally around each
vortex core. Away from the core region, the wave func-
tion still corresponds to the original singly quantized vor-
tex. (Note that @ here indicates the addition of topolog-
ical defects.)

SKYRMIONS AND BABY SKYRMIONS

Nonsingular textures may be topologically nontrivial by
considering maps from a compactified real space to the
compact order-parameter space. When the order param-
eter reaches the same value everywhere sufficiently far
away from the (particlelike) texture, the entire bound-
ary enclosing the texture may be identified and the vol-
ume in R?® becomes topologically S (a unit sphere in
four dimensions). One may then think of the % — S3
map as distributing (an integer number of copies of)
the full order-parameter space over the compactified real
space. The corresponding nontrivial textures are the
3D Skyrmions [10]. Analogous structures may be con-
structed in a two-component BEC [11].



An S? order-parameter space, may similarly be dis-
tributed over a (2D) real-space surface with fixed, uni-
form boundary conditions (corresponding to an S% — S2
map). Such a 2D Skyrmion is commonly referred to as
a (2D) “baby Skyrmion”, being the topologically lower-
dimensional analog of the full 3D Skyrmion, and may be
realized as a coreless vortex [12-15]. The dimensionality
of the baby Skyrmion may be further reduced by con-
sidering an S' order parameter. For uniform boundary
conditions such that 1D space can be compactified to S,
the resulting S — S! map defines a 1D baby Skyrmion.
In our system a ferromagnetic spin texture confined in-
side the core of a vortex line exhibits fixed boundary
conditions. As the boundary conditions are twisted (the
orientation of the spin vector differs by 7 in the two ends
of the vortex line, the 1D Skyrmion winding number is
equal to 1/2. Any further winding of the spin texture
would lead to higher Skyrmion winding numbers.
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