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Robust Stability for Multiple Model Adaptive

Control: Part I -

The Framework

Dominic Buchstaller, Mark French, Member, IEEE

Abstract—An axiomatic framework providing robust stability
and performance bounds for a wide class of Estimation based
Multiple Model Switched Adaptive Control (EMMSAC) algo-
rithms is developed. The approach decouples development of
both the atomic control designs and the estimation processes
thus permitting the usage of standard controller design and
optimisation approaches for these components. The framework
is shown to give tractable algorithms for MIMO LTI plants,
and also for some classes of nonlinear systems (for example,
an integrator with input saturation). The gain bounds obtained
have the key feature that they are functions of the complexity
of the underlying uncertainty as described by metric entropy
measures. For certain important geometries, such as a compact
parametric uncertainties, the gain bounds are independent of the
number of plant models (above a certain threshold) which are
utilized in the implementation. Design processes are described
for achieving a suitable sampling of the plant uncertainty set
to create a finite candidate plant model set (whose size is also
determined by a metric entropy measure) which achieves a
guaranteed robustness/performance.

1. INTRODUCTION

A multiple model adaptive control scheme consists of a set
of candidate plant models, each with an associated controller,
coupled with an on-line process for ranking the ability of each
model to explain the observed signals. An on-line switching
logic selects an appropriate controller based on this ranking.
Typically the ranking process is realised via monitoring the
output errors of a bank of observers or Kalman Filters. Despite
strong advances, key challenges for this approach include the
development of a strong robust stability framework and the
development of a principled design theory. This paper provides
a framework for both robust stability and a principled approach
to synthesis, as a step towards addressing these challenges.

The outcome of any design process in MMAC must include
the construction of a candidate plant model set. A designer is
necessarily confronted with the following design questions:

1) How many plant models are needed?

2) How should the plant models be (geometrically) dis-

tributed over the uncertainty set?
Furthermore, these design questions should be addressed in a
framework that addresses the following questions:

3) What are the robustness guarantees?

4) How can a conservative design be avoided?

These four questions are central to both the development of
the EMMSAC framework given in this paper and the proof of
the gain bounds given in the companion paper [7]. Questions
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1) - 3) are addressed in this paper and Question 4) is addressed
the second paper [7]. An axiomatic approach (based on the
initial work [11]) is used to describe and prove properties
of a wide family of MMAC algorithms; the analysis differs
strongly from all preceding contributions. In particular, a novel
optimisation viewpoint of the model ranking process due to
[9], [25], is the key insight which underpins the analysis.

The first two questions are considered to be key outstanding
issues in the field of multiple model control, e.g. see [8, 2, 1].
For example, in [8] the authors ask: “How to divide the initial
parameter uncertainty set into /N smaller subsets, how large
should N be, etc.” and in [1]: “How many plants (models)
should be chosen, how does one choose a representative set
of plants (plant model set), etc.”. A major issue with previous
performance bounds developed for MMAC is their exponential
scaling with the number of plant models, irrespective of the
geometry [14], with the single important exception of the
structured switching mechanism [17] which avoids this scaling
problem when the uncertainty is a compact continuum. A key
contribution of this paper is to give gain bounds, which, for
certain important geometries, are independent of the size of
the candidate plant model set, depending instead on the com-
plexity of the uncertainty set. In turn the characterisation of
this complexity, together with optimisation of the gain bounds,
leads to a principled selection of the distribution of plant
models over the uncertainty set. An important consequence is
that a structured uncertainty described by a compact contin-
uum can always be robustly stabilised by a EMMSAC design
with a sufficiently large number of plant models, and further
refinements of the candidate plant model set do not degrade
the gain bounds. A pragmatic conclusion is that beyond a
certain threshold it does not matter how many plant models are
utilized in an implementation: there is no loss of performance
guarantees through using ‘too many’ plant models; hence the
control designer can use as many plant models as the real-time
implementation can support. Foruncertainty sets described by
continua, these issues have been central goals of the MMAC
literature, see e.g. [14], [20], [17], [8].

The third question represents a goal within the field of adap-
tive control which has been elusive for decades. Ever since the
publication of the Rohrs example [21] it has been known that
adaptive controllers can induce severe instabilities in practice
despite ideal nominal behaviour. Much of the effort of the
1980°s was concerned with modification of classical adap-
tive control schemes to achieve limited robustness guarantees
(typically restricted to unmodelled dynamics of an additive
or multiplicative type). More recently techniques introduced
from nonlinear input-output stability theory (involving the
nonlinear gap metric) have been utilized to revisit the classical
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schemes to provide more satisfactory robustness guarantees
(e.g. for gap or co-prime factor uncertainty models) [10]; and
this approach to robust stability analysis forms the approach
taken in this paper. It is of particular importance for MMAC
that robustness results incorporate uncertainty at both low and
high frequencies: uncertainties arise naturally both in the low
frequency range (due to parametric mismatch between the true
plant and the finite collection of candidate plant models) and
in the high frequency range (due to unmodelled dynamics).
Addressing question 3 pervades the entire approach, and The-
orem 18 guarantee stabilisation of both structured uncertainty
sets (for example a parametric uncertainty) together with gap
perturbations around these sets, (the size of the perturbation
being determined by the robust stability margin).

The axiomatic framework considered leads to a unified treat-
ment of large classes of algorithms, with the important feature
that the estimation component of the design is completely
decoupled from the underlying control design process for each
candidate plant model. In particular the control design process
inherits no structural constraints and can be implemented via
any standard controller structure (PID, H,, etc.). The esti-
mation process, which determines the candidate plant model
ranking, encompasses both the Kalman Filter bank of the
historical algorithms, but also a variety of ‘optimisation based’
processes, where finite horizon optimisations are aggregated
to realise an residual which ranks the quality of each model
[9], [25]. The optimisations and controller designs can be cast
in a variety of different signal spaces yielding a wide class
of algorithms. Although oriented towards the case of MIMO
LTI systems, the analysis can also apply to broad classes of
nonlinear controllers which achieve closed loop gain stability.
Whilst the nonlinear optimisations within the estimator are not
tractable in real-time in general, there are important classes of
nonlinear systems which do result in tractable algorithms: here
we illustrate the case of an integrator with input saturation.

Arguments for the benefits of MMAC compared to other
adaptive approaches have been made previously, see e.g. [13],
[8] and [6]; these apply equally to the EMMSAC class of algo-
rithms. Additionally, the ability to give stabilization guarantees
over uncertainty sets described by continua, and by unbounded
sets [7], means that the domain of MMAC now encompasses
all the uncertainty sets considered in classical (linear) adaptive
control. Furthermore, MMAC inherits none of the standard
adaptive control requirements of convex uncertainty sets, or
parameterisations limited to particular forms, which limit the
problem domain of classical adaptive control. MMAC can deal
with plants where the sign of the high frequency gain is un-
known; such plant pairs are not simultaneously stabilizable by
LTT design compensators, nor do classical adaptive algorithms
have satisfactory performance (e.g. the Nussbaum universal
controller). Unfalsified control [29, 23, 26, 3] is an alternative
approach to switching between compensators wherein robust
stability follows from a weak feasibility assumption. It is
likely that schemes incorporating both MMAC and unfalsified
concepts will prevail: see for example [3] for work in this
direction; on the other hand, a version of dynamic EMMSAC
considered in [7] has unfalsified characteristics.

Since adaptive control is necessarily a theory of controlling

processes with large uncertainties, the framework is cast in
a setting in which closed loops are shown to be robust w.r.t.
a combination of large structured uncertainty sets and small
unstructured uncertainties. A description of the complexity of
a large uncertainty set is given, in terms of metric covers
and entropy. The resulting gain bounds are shown to be
functions of the complexity of the uncertainty set. Key to
the development of the theory is to analyse not the actual
realisation of the algorithm, but rather a potentially infinite
dimensional object which comprises of (typically) a continuum
of estimators and potentially also a continuum of controllers
(e.g. a MMAC controller based on an infinite number of
candidate plant models in one to one correspondence with
the structured uncertainty set and with one estimator and one
controller associated to each candidate plant). A reduction
theory is given to approximate this by a finite dimensional
realisation (e.g. a MMAC controller based on a finite number
of controllers and estimators), and bounds are given to relate
the performance of the finite dimensional realisation to that of
the infinite dimensional object. The necessary complexity of
the finite dimensional controller (i.e. the size of the candidate
plant set) is bounded in terms of the metric entropy of the
uncertainty, and the resulting realisable algorithms are then
proven to be robust to both the uncertainty set sampling error
and the underlying unstructured uncertainty.

The objective of design therefore arises as the question
of how to achieve the finite dimensional realisation via an
appropriate sampling of the structured uncertainty sets to arrive
at a finite number of nominal candidate plant models and hence
an implementable controller. Here the construction is similar
to the explicit, albeit heuristic, design procedures of [8], [2],
[14], [20] which construct a candidate plant model set based
on covers generated from the atomic closed loop performance
of matching plant and controller pairs.

The paper is structured as follows. In Section 2 we introduce
the setting and notation. The structure of the EMMSAC
algorithm is given in Section 3, and the axiomatic requirements
of the estimation process are given in Section 4 together
with important examples of estimators. The main result which
establishes complexity dependent gain bounds and robust
stability is given in Section 5. The proof of this result, which
is long and involved, is given in the sequel [7]. Section 6
presents a number of consequences of the theorem, including
complexity based interpretations, robust stability certificates
and develops the approach to design synthesis. In particular
the question of how to select the number and distribution of the
plant models is addressed, a concrete example is developed,
and nonlinear EMMSAC in the setting of LTI plants with
input saturation is discussed. In addition to the proof of the
gain bound, the sequel [7] also considers dynamic versions
of EMMSAC, in particular demonstrating non-conservatism
in the dynamic case and outlining their design flexibilities.

2. PRELIMINARIES
For0<a<b, a,bcZletfab):={z€Z|a<x<
b}, [a,b) :={z € Z | a < = < b} and define |[a,b]| :
b—a+1 and |[a,bd)]

:= b — a. For a signal v € § we then
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Ug +~ U1 P Y1

uz C Y2 + Yo

Fig. 1. Closed loop [P, C]

define the restriction of v over the interval I = [¢,d] by v|; :=
(v(c),---,v(d)) where ¢ < d, ¢,d € Z, and similarly for
I = [c, d). Denote the collection of all maps S := map(Z, R")
and let S|[a,b] = map([a,b],Rh). Let 7 : S Ubez 8|[07b] —
S, t € Z denote the truncation operator defined by:

] () if 7 € dom(v), T < t.
(Zew)(7) = { 0  otherwise
For * € S define the norms |z|| = J|z|, =
ey /T
(Xicdom@ [#@I") 7 1 < r < oo, |zl = [alle =

SUD;cdom() [7(7)]- We consider signal spaces V C S, interval
spaces V|, and extended signal spaces V., C S:

V = {veS |v(-t)=0,VteN; |v|| <oco}
V[a,b] = {’U € S|[a,b] ‘ dreVstv= «T|[a,b]} .
Ve = {ve8S |VteZ: FweV}. (2.1)

We take V = [, to be defined by (2.1) with | - || =

|| - |l-- The input and output signal spaces are defined as:

U =VXx--xVY=V"Y =Vx---xV =V° and let
—_——— —_———

W :=U X JT Given a plant P : U, — 33; satisfying P(0) =0
and a controller C' : V. — U, satisfying C(0) = 0 the closed
loop system [P, C] in Figure 1 is defined by:

y = Pu 2.2)
up = uitu2, Yo = Y1ty (2.3)
(75 = Cyz, (2.4)

Here w; = (u;,y;)" € W, represents the plant input and
output (i=1), disturbances (i=0) and observations (i=2).

[P,C] is said to be well-posed if for all wg € W there
exists a unique solution (w1, ws) € W, X W,. Note that linear
switched systems are well-posed. For a well-posed system
[P, C] we define the closed loop operator:

W = We x W,
[P, C] is said to be gain stable if there exists a M > 0 s.t.:

HP//C Dwo — (wl,wg).

sup  ————— = [[IIp//c|| < M < c0.

woEW, wo#0

Define Prr; to be the set of all p = (4,B,C,D) €

Up>1 R x R™X™ x RO*™ x R°*™ such that p is minimal.
Let

P, U= Ve, vl = Y, p € Prrr (2.5)
be defined by
zp(k+ 1) = Azy(k) + Bul (k) (2.6)
vi (k) = Cap(k) + Duf (k) (eN))
zp(—k) =0, ke N. (2.8)

Note that since z,(—k) = 0 for all k¥ € N it follows that
Yy (—=k) = (Pyul)(—k) = 0 for all k € N. Also define

ﬁLTI = {(A,B,C, D) € Prrr | D = 0}

Similarly, let Crry to be the set of all ¢ = (A4, B,C, D) €
Up>1 R?X™ x R™¥¢ x R™*™ x R™*? such that ¢ is minimal,
and define the control operator

2.9)

Cc:ye—ﬂ/{e:ygwug, CECLT] (210)
analogously to equations (2.6) - (2.8) and let
Crri={(A,B,C,D) €Crrs | D=0}. .11)

The collection of bounded pairs (u},y})T € W compatible
with the plant P,, p € P where P is an indexing set (for
example P = Prry) forms the graph M, C W :

M, = {U cw ‘ 3(ul,yh)" € Wt Byuf =1, }

v = (uf,yy)
An appropriate measure of the ‘distance’ between graphs
defines the nonlinear gap as follows. Let O, p,, =
{®: M), - M,, | D is causal, bijective, and ®(0) = 0}.
Define the non-linear directed gap between p1,p2 € P by
< (II%(‘?—I):CII)

0(p1,p2) := _ inf sup
Prp2) = o B P o\ [ Za]

if O p, # 0, and 8(p1,p2) = oo if O, = 0. Define
§(p1,p2) = max{d(p1,p2),0(p2,p1)}. Note that the non-
linear gap is a generalisation of the standard linear definition
via coprime factors [12, Appendix]. In the linear setting, small
time delays, multiplicative, inverse multiplicative, parametric
and co-prime factor perturbations are all small in the gap.
For nonlinear systems, similar relationships hold. The central
robust stability theorem is as follows:

Theorem 1: LetU =Y =1,, 1 <r < oo. Let Py, : U —
Ve, Pp, :Ue,— Ve, C': Yo — U, and suppose that the closed
loops [P,,,C], i = {1,2} are well-posed. Let the closed loop
[Py, ,C] be gain stable. If

g(plupQ) < ||HPT—'1//C||_1 = bPP1)C

then the closed loop system [P,,, C] is gain stable and

-

1+ 6(p1,p2)
IMp,, /el < Wp,, //cl = :
’ ' 1- ||HPPI//CH5(I?17P2)
Proof: The proof can be found in [12]. [ ]

Throughout the paper we consider P to be a topological space,
with topology determined by the gap 0.

As v € V has the property that v(—t) = 0 for t € N and
since we are requiring P(0) = C(0) = 0, it follows that LTI
state space models for P and C are required to have their
initial conditions set to zero (z(0) = 0). This is a standard
assumption in the input/output setting. However, it should be
noted that the discrete-time analogue of the approach via input,
output injection of [10, Theorem 5.3] means that for linear
plants (but with potentially nonlinear controllers, as here) the
zero initial condition results also imply stability results for
non-zero initial conditions.
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3. ESTIMATION-BASED MULTIPLE MODEL SWITCHED
ADAPTIVE CONTROL

In this Section we develop the structure of EMMSAC. We
introduce the controller design procedure K that assigns a
stabilising controller to every plant model and then describe
the structure for switching between these ‘atomic’ controllers.

A. Finite horizon behaviour of the atomic closed loop

The controller design procedure is specified by a map K :
P — C where C is a set parametrising a collection of controller
operators
(3.12)

uy = Ceys

for ¢ € C, for example C = Crp;. K : P — C is said to be a
stabilising design if [P,, Ck ()] is gain stable for all p € P.

Let o(c), ¢ € C denote the minimum length of the interval
that the signal (u$,%S)" needs to be observed to uniquely
determine the initial condition of C., i.e.

Vi >0,

Y5, 15 = Cys,

(uS, ¥$) iisr) = (@5, 95) T 14k
Y3 = U3 = uj = U3

o(c)=min< k>0: Y2 =

(3.13)
Similarly let o(p), p € P denote the minimum length of
the interval that the signal (u},y})T needs to be observed to
uniquely determine the initial condition of P,. For p € Prrr,
¢ € Crr1 note that o(p) = n, — 1, o(c) = n. — 1 where n,,
n. are the McMillan degrees of p and c respectively.
We now state two general requirements imposed upon the
atomic closed loop systems [P, C.] and [Py, Ck(p)].
Assumption 2: There exist functions o, 8 : PXCxRxR —
R such that the following holds:
1) (Linear growth of [P,, C¢]): Let p € P, ¢ € C and suppose
[Pp, Cc] is well-posed. Letty,to,t3,t4 E N, 11 <ty <tz <ty
and Il = [tl,tg),jg = [tg,tg),]g = [t37t4). Suppose
wa, w§, w € We, wh € W satisfy the equations
yi = Pyuts ug = Ceys, ug = uy +us, Yo = Y1 +y2
on I; U Iy U I3. Suppose that either
w§|11 = 0, w§|12U13 = w2|l2UI3v or

C
w2|[1U[2U13 w2|]1U[2U13

where
|I1| = ta — t1 > max{o(p),o(c)}. (3.14)
Then, in both cases:
|walrs |l < elp, ¢, L], [13])||wa] 1 ||
+ B(pv c, |12|7 |I3|)ng|11U12UI3H' (3.15)

2) (Stability of [P,, Ck(,]): Let p € P and x € N. Then

alp, K(p),a,z) = 0 as a — oo (3.16)

and « is monotonic in a.

Note that the monotonicity requirement in the second as-
sumption follows without loss of generality since any function
« satisfying equation (3.16) can be dominated point-wise by a

monotonic function & satisfying equation (3.16). Assumption
2 is interpreted as follows. The choice w§|;, = 0 corre-
sponds to an initialisation of the controller to zero at time
to and the choice w§|;, = wsa|;, corresponds to continued
closed loop operation of the same controller. We expect to
be able to bound future signals ||ws|r,|| by some function
of the size of the system’s initial conditions, determined by
llwi|r, ||, ||wz]r, ||, and the system’s input w |7, ur,ur, for any
well-posed closed loop system [P,, C.]. This is reflected by
equation (3.15). However w1 |1, , wa|7, can only be interpreted
as an initial condition if the interval I; is sufficiently long. This
is reflected by equations (3.13),(3.14). For K : P — C where
(P,C) C (75LT17€LTI) N (PLTI,éLTI) it can be shown that
Assumption 2(1) holds as follows. II¢_,,p, is linear and hence
a state space representation (A, B,C, D), with state xz, so
wy(t) = C Atz + C(Ile, /p,wo)(t) + Dwo(t), Observability
matrices M, N can be constructed from (A, B, C, D) such that
x(0) = Mwo|r, + Nws|r, since wo and wsq are the inputs and
outputs of IIp, . Hence: ||wa|r,| < ||C(A%, ..., A")xo +
C(Il¢,//p,wo)|1; + (Dwo)|r,], and consequently inequality
3.15 holds with

| M, N|[[| A", ..., A" (3.17)
T, p, |+ [|M, N|[[|A%, ..., A%, (3.18)

(e

B

Tighter expressions for a and S can be found in [6]. If
additionally K : P — C is an (asymptotic) stabilising design,
it can be shown that Assumption 2(2) holds since asymptotic
stability implies /,. stability 1 < r < oc.

B. The switching algorithm

We now formally introduce the estimation-based switching
operator S = DM (X,G) where G is the ‘plant-generating
operator’ which specifies which candidate plants can be con-
sidered at each step, X is the residual operator which returns a
scalar for each plant which assesses the quality of the model,
M is the minimisation operator which returns the plant model
with the smallest residual and D is the ‘delay’ operator whose
role is to prevent rapid destabilising switches. The dynamic
versions of EMMSAC, as motivated in the introduction, are
characterised by a time varying set of candidate plant models.
These are specified by the notion of a plant generating operator
defined as follows. Let P* be the powerset of P. Then:

Definition 3: A causal map Q : W, — map(N,P*\ 0) is
said to be a plant-generating operator. We define P? is the
union of all plant model sets represented by @:

Q.
P = wnge kLEJNQ(w2)(k) cP.
Q@ is said to be finite if Q(w2)(k) is a finite set for all wy € W,
k € N, constant if Q(w2)(i) = Q(w2)(j), for all wy € W,
i,7 € N, monotonic if Q(wz2)(k) C Q(wz)(k + 1) for all
wy € W, k € N and compact if Q(wz)(k) is compact as a
subset of P for all wes € W, k € N. For notational economy
we often write Q(k) := Q(w2)(k), k € N.

Within an EMMSAC algorithm, the candidate plant models
G(w2)(k) which are available for consideration at any time &
are determined by an underlying plant-generating operator:

G : W, — map(N, P*) (3.19)
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The dependence on wy allows this set of candidate plants to
be determined adaptively.
The residual operator is of the form:

X W — map(N,map(P,RY)) : we = [k = (p — 7,[k])]
(3.20)
where rp[k] is said to be the residual of a plant P,, p € P
at time k£ € N. The residual is a scalar that represents the
quality assessment of the associated plant model. In classical
MMAC it is the residual of the Kalman filter, or the weighted
cumulative output error of the associated observer. Alternative
residuals based on optimisations are considered in Section 4.
Note that all residuals considered will necessarily measure the
performance of the models over the full period [0, k].
At time k, the minimising operator M selects the plant
with the smallest residual which is available for switching (i.e.
which lies in G(ws)(k)):

M : (map(N, map(P,R")), map(N, P*)) — map(N, P*)

(3.21)

[k = (p—=rplk]), k= Gk)] = [k—qr (k)]  (3.22)
where

gr(k) := argminr,[k], Vk € N. (3.23)

pEG (k)

If there are multiple minimising residuals, an arbitrary ordering
on G(k) is imposed a priori, i.e. G(k) = {p1,p2,- - ,Pn}
and argmin,cq ) 7p[k] is defined to return the parameter
p; € G(k) with the smallest index ¢ such that 7p,[k] is
minimal. Equation (3.23) also includes the implicit assumption
that a minimiser exists. In the scenario considered in this
paper, whereby G is finite or G is compact and p +— 7, [k]
is continuous, this holds.

It would be natural at time k to utilize the controller
specified by plant ¢¢(k). However, there is the potential for
instability to occur if the switches are too fast [16], hence the
purpose of the delay operator D is to ‘slow down’ the free
switching signal g; for long enough to prevent the potential
for these instabilities. We encode this information into the
‘transition delay’ function A : P — N: to every plant
P,, p € P, we associate a minimum delay A(p) which must
elapse before another switch is permitted; the analogue of
the transition delay is taken by dwell time switching in other
versions of MMAC e.g. [18]. Here the transition delay is plant
dependent; this reduces the bounds, for if a uniform delay
is utilized, then the delay would be determined by the time-
scale of the response of the ‘slowest’ candidate closed loop
[Py, Cp], which can produce larger than necessary transients
when a mismatched controller is switched into the loop. The
transition delays are design parameters and the required lower
limits on these delays will be determined by Assumption 13.

This leads to the following structure for the delay operator:

D : map(N, P) — map(N, P) (3.24)
[k qp (k)] = [k = q(F)] (3.25)
where ¢(k) is defined recursively:
= { Q) k) 2 k)

(ks(k)) else
(3.26)

and where k; : N — N is given by
ks(k) :=max{i e N | 0<i<k, q(i) # q(i —1)}. (3.27)

Note that ks(k) returns the last time up to time k € N
where the algorithm switches from one plant to another. The
switching operator is now given as follows:

S =DM(X,G): W. = map(N,P*) : wy — q.

Given a control design procedure K : P — C, the switching
controller

C: ye — Z/{e Y = U2 (328)
is then defined via the switching signal g as follows:
uz(k) = Cr(qk)) (Y2 — Th, (k)—192) (k). (3.29)

By the definition of the truncation operator and equation
(3.26), note that y2(s) — J4, (k)y2(s) is zero for times s <
ks(k). Hence equation (3.29) ensures a zero initial condition
for the atomic controller C(4(x)) When it is switched into
closed loop at time ks(k). Note that if X is causal and G
is causal, then S is causal. We therefore have arrived at the
closed-loop given by Figure 2 where all the involved sub
systems have been defined. Note that further structure on
the residual operator X has also been illustrated (including
operators IV, I and the signals d,,, ,...d),): see Section 4.

4. DISTURBANCE ESTIMATION

In this section we will impose conditions on the residual
operator X which permits the residual r,[k] to have the
interpretation of being a measure of the size of the disturbance
signals w} = (uf,yf)" required to ‘explain’ the observation
ws = (ug,y2)" in a manner consistent with the candidate
plant P, on the interval [0, k]. We first formally define the
notion of disturbances which are consistent with a plant P,
and an observation on a specified interval [a, b]:

Definition 4: Let a < b, a,b € Z. The set of weakly con-
sistent disturbance signals NIE“'“ (wg) for a plant P,, p € P
and the observation wy = (uz,y2) ' is defined by:

N,E“v” (wg) := {’U € Wlia ’ E(US,yS)T e W, s.t.

Rp—a,Pp (Ul — u2) = Bo—ap(Yh — y2),
v = (Bo—a,ptly, Bo—a,bY) '

where the restriction operator Z, ¢ : S — RMo+1) extracts a
finite window of a signal, i.e. for o, € Z:

Ry v := (vt —0),-- ,0(t), vEmap(Z,R").

For the remainder of this paper we assume /\/'p[a’b] (wg) is

closed and convex for all @ < b € Z, wy € W,, noting
that if P, is linear, then this holds.

We now give two examples of residual operators. Let k, A €
N and wy € W,, and define the infinite horizon operator:

Xa(wz)(k)(p) = 7”;34 (k]
=inf{r >0 | r=|ul, vo € Ngo’k] (w2)}. (4.30)
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U2

Y2

Fig. 2.

The EMMSAC structure. The switch S outputs the switching signal g which determines the atomic controller choice C(g(x))- ¢ is generated via

the delay operator D from the free switching signal gy, which in turn is generated from the minimization operator M acting on the residuals 7[k] from the
estimator X, where the admissible plants are detemined by the plant generating operator G. We also illustrate the internal structure of X as in Section 4.

Similarly, define the finite horizon operator:
r [ = 11,3, 4]

Xp(w)(k)(p) = ry[k]=|r, 4.31)
iplk] =inf{r >0 | 7= |uoll,v0 € NJF "M (ws)}, (4.32)

where note that for I,: ||a,b|| = (Ja|” + [b]")7 if 1 <7 < 00
and ||a, b|| = max{|al,|b|} if r = oo.

These examples illustrate the EMMSAC approach: control
selection is done via assessing the quality of the associated
models thorough an identification based procedure: models
are assessed on their ability to ‘explain’ the observed signals
(wg2) with the ‘smallest’ disturbances (wg). Such a quality
assessment lends itself naturally to finite dimensional opti-
misations, and contrasts to the standard approach of MMAC
where model assessment is achieved via monitoring the output
of associated observers. Nevertheless, as we will see, estimator
A can be implemented by monitoring the output of Kalman
Filters, hence providing the linkage to standard MMAC.

The finite horizon estimator X p is recursive by construc-
tion, therefore the computational complexity of the direct
optimization does not depend on k¥ € N but only on the
complexity of the involved optimisation at each time step. The
direct optimisation is the computation of the optimal vy to
determine i,[k|, and this computation is bounded independent
of kK € N. The norm in (4.31) (also in (4.32)) can be taken
to be [, 1 < r < oo, giving rise to different optimisations.
Such standard optimisation problems can be solved by many
possible implementations, i.e. in the linear case via computing
a suitable pseudo inverse in /5 or via linear programming in
Iy or l, Or convex programming in other norm settings. The
implementation of the estimators in the nonlinear setting is
discussed further in Section 6.3 where it is shown that linear
systems with input saturation have estimator optimisations

which can be solved by linear or quadratic programming.

The infinite horizon estimator X 4 has the direct inter-
pretation as generating the size of the smallest disturbances
compatible with the plant P, and the observation ws up
to the current time k. However, any direct implementation
of the optimisation defining the infinite horizon estimator
X4 is not realisable (e.g. by using any of the optimisa-
tions methods described above for estimator B, but over the
horizon [0, k]), since the computational complexity of these
optimisation algorithms grows with & € N. But, importantly,
in the [y setting with linear plants, the residuals 7’]‘04 [k] for
p = (A, B,C,0) € Prr; can be determined indirectly from
the residuals in a Kalman filter bank (see also [9]). With
Z:[0,7] = R", 7 €N, ¥:N— R"™", the discrete-time
Kalman filter equations are given as follows:

ik +1/2) =a(k) - X(k)CT[CEZ(R)CT 4+ 171

[y2(k) + C2 (k)] (4.33)

Y(k+1/2) = (k) — (k)CT
JCE(R)CT +1)7IC%(k)  (4.34)
#(k+1) = Ai(k + 1/2) — Bua(k) (4.35)
Y(k+1)= A%k +1/2)AT + BB' (4.36)

here the initial conditions are specified by ¥(0),2(0). As a
notion of the output error between the observation y» and the
estimation of the Kalman filter, define the (scaled) residual
r:N— R* for 7 >0 by

1/2

rkr(z)(T) = Z ly2(k) + Ci(k)n[zcz(k)(ﬁﬂ]fl
k=0

Note that [CX(k)CT + I]71 is defined since it can be shown
that (k) is positive semi-definite for all & € N provided
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$(0) = %(0)" > 0. The key result establishing the equality
between the Kalman Filter residual and the infinite horizon
estimator is as follows:

Theorem 5: Let p = (A, B,C,0) € Prr; and suppose that
C is full row rank. Let the Kalman filter be described by
equations (4.33)-(4.36) with the interconnection specified by
(2.2) —(2.3). Let £(0) = 0 and X(0) = 0. Then

rres)(T) = T?[T] = Xa(we)(7)(p), Yws € W,, 7 € N.

Proof: The proof can be found in [6] and is related
to previous work on the deterministic interpretation of the
Kalman Filter, see e.g. [27], [22]. [ |
This makes the realisation of X 4(-)(-)(p) finite dimensional as
the Kalman filter algorithm is recursive — the computational
complexity is invariant to k£ € N and is dependent only on the
order of the corresponding plant model p € Prry.

Finally we observe that the switching algorithm requires the
computation of the estimator X (w9)(k)(p) for all candidate
plant models p € G(k). This is the limiting real-time com-
putational requirement of EMMSAC: bounds on the number
of candidate plant models required are the focus of Section
6. Note also that the computation involved in realising an
estimator bank is ideally suited to parallel computing, and may
be realised e.g. on GPU or FPGA architectures.

We now state five abstract estimator assumptions that the
residual operator is required to satisfy and on which the
subsequent analysis will rest, and show that both the infinite
and finite horizon residual operators, X4 and Xp, satisfy
these axioms. These axioms ensure that the residuals have an
interpretation as capturing the size of the smallest disturbances
compatible with the plant model and the observed signals. The
key to this interpretation is the requirement that X can be
factorised, X = N F, where N and E are norm and estimation
operators as defined next. For £k € N, p € P the estimation
operator has the structure:

E : W, — map(N, map(P, map(N,R"))) (4.37)

we — [k (p > dylk])] (4.38)

where d,[k] : N — map(N,R") represents the time series of
the disturbance estimates at time & € N corresponding to a
plant p € P:

"7dp[k](k)707"')

where h € NU{oo} depends on the plant. Note that, in general,
this estimate will not be recursive, i.e. Jidp[l] # Trdplk],
I > k. The norm operator is defined:

N : map(N, map(P, map(N, R"))) — map(N, map(P,RT))
(4.39)
[ (p > dylk))] > [k > (0 [ld K] = rp[k])).

(4.40)

Assumption 6: Let A € R be given. The residual operator

X factorises X = NE where N is the norm operator, E' is
an estimation operator, and:
1) (Causality): E is causal.

2) (Weak consistency): For all p € P there exists a map

@y map(N,R?) — RO+ » RO+ guch that for
all we € W, and for all k£ € N,
rE(ws)(k)(p) € NI (wy),
[PAE(w2)(K) (D)l < [|Za 1 E(w2)(K)()]-
3) (Monotonicity): For all p € P, for all k,l € N with 0 <
k <1 and for all wy € W,,

[ E(w2) (k) ()| < [|Z%E(w2) (D) (p)]]-

4) (Continuity): There exists a function x : P x P — R™T,
x(p,p) =0 for all p € P, such that for all k € N, py,ps € P
and wy € W,,

1B (w2)(k)(p1) — E(w2)(k)(p2) | < Xx(p1, p2)|| Fews|-

5) (Minimality): There exists p > 0 such that for all £ > 0,
for p € P and for all (wg, w1, w2) € Wx W, x W, satisfying
equations (2.2)~(2.3) for P = P,,

1B (w2) (k) (p)|| < pll Fxwol-

The treatment of the finite and infinite horizon case in a
unified framework is possible since:
Proposition 7: Both X 4 and Xp satisfy assumption 6.
Proof: See appendix. [ ]
In the case of estimator A, we can take x = x4, where

sup [|[IOH — 0K (4.41)
kZ%H P1 P2 H

and,

XA(plapz) =

In the case of estimator B, we can take x = xp, where

x5 (pr,p2) = (A+1)7 [ el
(4.42)
In the important case of I, where r = 2, we can alternatively
take y to be the [ gap § by the following bound:
Proposition 8: Let r = 2. Then x4 (p1,p2) < §(p1,p2)-
Proof: See appendix. [ ]
The continuity of yx (with respect to (w.r.t.) the gap topol-
ogy) plays an important role in establishing the existence of
finite dimensional EMMSAC controllers for uncertainty sets
described by compact continua (Proposition 17, Theorem 18
below). In the case of Estimator A in l2, continuity follows
from Proposition 8. For Estimator B in general [,., we have:
Proposition 9: Let 1 < r < oo. Suppose 2 C R™ "™ x
R™X™  ROX™ x ROX™  Prrris compact. Then y: PxP —
R U{oo} as given by equation (4.42) is continuous on 2 x .
Proof: See appendix. [ ]

max
0<k<A+o+1

5. STABILITY AND GAIN BOUND ANALYSIS

In this section we establish the underlying gain bounds for
EMMSAC algorithms. A key feature of the bounds is the
explicit appearance of terms related to the metric complexity
(or entropy) of the underlying uncertainty set rather than on the
complexity of the controller (as measured, for example, by the
number of candidate plant models). We will show in Section 6
that the results of this section lead to gain bounds for realisable
algorithms where it is the geometry of the plant model set
that influences the gain bound, rather than the absolute size
of the plant model set. In particular in some geometries the
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performance is independent of the candidate plant set size (e.g.
beyond a certain threshold, the gain bounds are independent
of the plant model density within a fixed uncertainty set).

The complexity of the underlying uncertainty set will be
captured through the notion of a cover of the uncertainty set.
Let U : W, — map(N,P*) be a monotonic plant-generating
operator. U has the role of specifying an uncertainty set we
seek to control at a given time k € N. Let y : P x P — R™
be as in Assumption 6(4). Let

H: W, — map(N, P*) (5.43)

be a plant-generating operator. Let v w., —
map(N, map(P,RT)) be given. As in Section 3 we write
U(k), H(k),v(k) for U(ws)(k), H(ws)(k), v(ws2)(k) respec-
tively. Now define

By(p,v(k)(p)) == {p}U{p € P |
x(p,p1) <v(k)(p)} NU(k), pe P, keN. (5.44)

For an appropriate choice of H, v, the union of the correspond-

ing neighbourhoods in U then leads to a cover for U:
Definition 10: (H,v) is said to be a monotonic cover for a

plant-generating operator U if Vk € N, wo € W,:

1) H and v define a cover for U:

U(k) C R(k) := Uper) Bx (p, v(k) ().

2) The cover is monotonic: R(k) C R(k + 1), Vk € N.
(H,v) is said to be a finite cover if H(k) is a finite set for
all k e N, wy € W,.
Sufficient conditions for the existence of a finite cover (H, v)
for U will be established in Section 6. We will utllize the
objects U, H, v, G in the following way:
o U is the uncertainty, or more precisely U specifies the
uncertainty set,
o The cover (H,v) for U is the device by which we assess
the ‘complexity’ of the uncertainty U,
o G is an appropriate sampling of the uncertainty set U and
determines the candidate plant set used by the controller.

See Figure 3. (H,v) is the device by which we are able to

. € G(k)
x € H(k)

Fig. 3. Uncertainty set U(k), cover (H (k), v(k)), candidate plant set G(k).

express gain bounds which scale in terms of the number of
elements of |H (k)| rather than the size of the set G(k).

The static version of EMMSAC has G as a constant opera-
tor, which is well suited to the case where U is also constant

and U is used to directly describe the structured uncertainty
set; for example U(k) = P,,,, for all k& € N, where
Pamar = {(a,1,1,0) € Prrr CR* | a €R, |a] < amax}-
G would then represent a suitable sampling of the un-
certainty set P, ., for example with ¢ > 0, G(k) =
{(ne, 1,1,0) € Prrr C R* | n€Z, ne< amax} .

The time varying nature of the operators is motivated by
the requirements of dynamic EMMSAC. A typical dynamic
EMMSAC algorithm varies the candidate plant set available
at time K specified by G(k) until some performance require-
ment is met. For example, if the uncertainty was unbounded,
e.g. it is only known that the true plant p, lies in the set
P = {(a,1,1,0) € PLrr C R* | a € R}, then we could
choose G(k) = Pj(y) where i(0) = Po and i(k) = i(k — 1)
if performance is satisfactory, else (k) = i(k — 1) + 1.
Dynamic EMMSAC formalises this process of expansion of
the uncertainty set by choosing GG dependent on the magnitude
of the observations ws, indeed in [7] we give an explicit
example of such an algorithm.

We impose the following constraint on the set PU:

Assumption 11: Let PY C P have the property:

P .,Izr:l;?;lf max{o(p1),0(K(p2))} < oo.

g =

After observation of the signals wi, we for o time steps, the
initial condition of any closed loop [Py, , Ck (p,)], P1,p2 € PY
is uniquely determined. Further, we assume:

Assumption 12: The delay transition function A : P — N
satisfies A(p) > o, Vp € PY.
Assumptions 11 and 12 combined therefore ensure that there
is sufficient time between controller switches to determine the
initial conditions associated to any of the possible closed loops.

In the ‘standard” EMMSAC design, the delay transition
function represents a sufficient period of time to ensure that
each atomic controller provides enough of a stabilising effect
on it’s associated plant before it can be switched away. This
is formalised as follows:

Assumption 13: The control design K and delay transition
function A satisfies:

J(€) sup o (p1, K(p1), A(p1) — 0,0) < 1
p1EPY

where A satisfies Assumption 12, « is defined in Assumptions
2 and for 1 < z,y < oo we define [¢] :=max{n € Z | n <
c}, <”y”> = o and J(€) = ¢ <L§§2J> :

We note that Assumption 13 is achievable by design. Given K
satisfying Assumption 2(2) a transition delay function A exists
which meets Assumption 13. For linear systems, by consider-
ing the expression for « in equation (3.17), it can be seen that
powers of the closed loop matrix A associated to [P,, Ck (p)]
will determine the necessary lower bound on A,,. For a given
control design, this can be bounded by considering the pseudo-
spectra of A [24], or simply assessed numerically. We also
remark that the minimisation of the transient generated by the
powers of A may be a legitimate target of the control design
K e.g. through pole placement (at the extreme, a dead-beat
design sets A = 0). Alternatively the complete design freedom
available to the atomic design can be exploited and good
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transient performance can be indirectly ensured via designs
such as mixed Hs/H, [15], LQR etc. and suitable values for
A, can be determined post-design by the preceding comments.
In the examples in this contribution the designs are: LQR ([7,
Section 7]) and proportional (Section 6.2). Further examples
include an EMMSAC design for a pendulum system using pole
placement [9], and LQR controllers with nonlinear inversion
for an application of EMMSAC to electrical stimulation of
human muscle [5].

The construction of each K(p), A(p), p € PE by
hand is possible for small uncertainty sets, although this
will not be feasible in many situations, i.e. if P¢ is large
or unknown. Automated design procedures for K and A
can for example be implemented by using (the code from)
suitable MATLAB toolboxes, e.g. to automatically construct
stabilising Ho., LQR, PID controllers. The design challenge
is then to set suitable parameters for the automation (e.g. plant
parameterised weights in H° design process); this may be
achieved, for example, by extensive off-line simulations. For
constant (G, these designs would be typically computed a-
priori, however, in many dynamic schemes, the controllers can
be constructed on-line: only one controller is active at a time,
hence only a single controller and corresponding delay needs
to be calculated every time the algorithm performs a switch.
Hence determining the controller and delay on-line reduces
the (possibly infinitely large) computational complexity of
determining K and A off-line to a single computational
operation every time a switch occurs. We can therefore trade
off memory size and computational off-line resource versus
computational on-line resource, or have a hybrid of both.

The following definition now defines the general class of
EMMSAC controllers considered.

y1 = Pu 2.2)
up = uitwuz, Yo = Y1t+y2 (2.3)
uz = Cy2 24
X : We = map(N, map(P,RY)) : wz = [k = (p = rp[k])] (3.20)
G : We — map(N, P*) (3.19)
M : (map(N, map(P,RT)), map(N, P*)) — map(N, P*) (3.21)
[k (p = rplk]),k = G(k)] = [k gz (k)] (3:22)
qs(k) := argminrp[k], Vk € N (3.23)
peG(k)
D : map(N, P) — map(N, P) (3.24)
(k= qp (k)] = [k — q(k)] (3.25)
e { Ll & A0SO o
ks(k) :=max{i e N| 0 <4 <k, q(i) # q(i — 1)} (3.27)
C:Ye > Ue : y2 — uz (3.28)
uz(k) = Cr(q(r)) W2 — Thy(k)—192) (k) (3:29)
TABLE I
RELEVANT EQUATIONS FOR DEFINTION 14 AND THEOREMS 15,18.

Definition 14: An EMMSAC controller C(U, K, A, G, X)
is said to be standard if it satisfies:

« K P — C is a given control design satisfying
Assumption 2(1),(2).

o U satisfies assumption 11 for o < oo.

e A : P — Nis a delay transition function satisfying
Assumption 12.

o K, A satisfy Assumption 13.

o [ satisfies Assumptions 6(1)—(5) where

A = max (2A(p) + o). (5.45)
p

S
o The switching operator S = DM (X,G) is given by
equations (3.19)—(3.23) and (3.24)-(3.27).
e The switching controller C' is defined by equations
(3.28),(3.29).

The following Theorem establishes a gain bound where
a bias term arises from the behaviour of the system on an
interval [0, k) and a gain term depends on the behaviour on
[k«,0]. Here k. € N U oo is defined by equation (5.47),
and is the first time at which a matching condition w.r.t. p,
and G(k) is satisfied (either exactly (¢ = 0) or approximately
(¢ > 0)). The interval [0, k) is analysed under no assumption
of the (approximate) presence of p, in the candidate plant
set as specified by G(k), and the period [k.,o0] captures
the behaviour of the closed loop once (an approximation of)
the plant p, is available to the switching mechanism. In the
classical (static) setup (e.g. [11, 9, 13, 18, 19]) we have
p« € G(j) = G(k), Vj,k € N so k., = 0. The case k* > 0
arises in dynamic EMMSAC.

In order to define the time £* > 0 by equation (5.47), we let
0 =1y <l; <lj+1 form the ordered sequence of times when
the switching sequence changes value, i.e. when ¢(l; — 1) #
q(1); and define

Qoo = Uisolli, liv1] N {li + bA(q(l;)) | b € N}.

The main result establishes closed loop gain bounds for both
dynamic and static EMMSAC.

Theorem 15: Let 1 < r < oco. Let P = P,_, where p, €
PY C P. Let U be a monotonic plant generating operator and
suppose (H,v) defines a monotonic finite cover for U. Let
k € N. Suppose the EMMSAC controller C(U, K, A, G, X)
is standard, and G(j) C U(j), j < k. Suppose (wp, w1, ws) €
W x We x W, satisfy the closed loop equations (2.2)—(2.3).
Let € > 0. Let

min{i € Qoo | Ip € G(i), X(p,p+) < exv(H,v)}

(5.46)

ko= if Jist. Ip € G(), x(p,p+) < exw(H,v), Vj >4,
oo if not
(5.47)
and suppose k. < oco. If
T(U@G), H(j),v(j),&,p") >0, Vj<k (5.48)
then:
[Fewall < BUK), H(k),v(k), & ps) | T, -1w2]|

+9(U(k), H(k),v(k), e, p«)|[wol|
Proof: See [7] |

(5.49)

where 7, 3, 4 are given in Table II.
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U _Jr for 1<r<oo .
For Q1 C PY and & = 1 for r— oo let:
= h = —_
J (&) 6(max{neZ|n§§/2}> where (y) Tk
aop(Q1) = J() sup of(p1,K(p1),A(p1) — 0, 0)
P1€EQ1
Bop(Q1) = J(© sup B5(p1, K(p1), = — 0,0)
A(p1)<z<2A(p7)
P1EQ
QOS(Ql) = J(&) sup a£(p17K(p1)707x_0)
A(p1)<z<2A(p7)
P1EQY
Bos(Q1) = J(&) sup B4 (p1, K(p1),0,z — o)
A(p1)<z<2A(p1)
P1EQq
npx) = 1+ sup a(p«, K(p),0,z)
A(p)<z<2A(p)
Y2(pspx) = sup B(p«, K(p),0, z),
A(p)<z<2A(p)
7i(Q2,Q1) = sup sup m(p2,p1), i=1,2

P2€Q2P1€Q1

Ifl<r<oolet

_ 1/r aop(Q1) )UT 1/r
w@) = (+afien) (1222) " vaien
1/r
= (1aolT ( Bor(Q1) )
74(Q1) (1+agg(Q1)) T—aop(Q1)
1(Q1) = Bg5(Q),
and if » = oo let:
13(Q1) = max{l,aps(Q1))}aopr(Q1)+ aos(Q1)
_ Bor(Q1)
14(Q1) = maX{LaOS(Ql)})il —oor (1)
15(Q1) = Pos(Q1).
For Qo C PH, v :P - Rt, n>0,e> 0 let:
xv(Q2,v) = 2 sup v(p)
PEQ2
(91, Q2,v,6,p*) = 1—2"7ex,(Q2,v)(1 +72(Q2, Q1)) -
(v4(Q1) +5(Q1))
n(Qz,v, &, px) = 227 (utexu (O2,v)72 (02, {p« }) (1471 (Q2, {p+})))
14 v3(Q1) )IQzI
Q 7Q7 sy €y Px) — A ALy ) ok
B(Q1,Q2,v,€,p«) (W(Qth,v,e,p*) pg2’71(p P+)
(Q1, Q2,v,8,px) = B(Q1,Q2,v,&,px) (Z ¥2(p; px)+
pPEQ2

n(QQ,v,s,p*)M) .

77(917 QZy U757P*)

TABLE II
FUNCTIONS SPECIFYING THE GAIN BOUND.

A detailed discussion of the interpretation of the terms in the
above bounds can be found in the companion paper [7]. Prior
to fully exploiting the implications of this result in Section 6,
we make some observations. There are two principal condi-
tions under which Theorem 15 holds. The requirement that the
design is standard, incorporates Assumption 13 which requires
the condition that app(U(j)) < 1. As discussed previously,
this is a condition on the atomic controllers which is achievable
by design. The second condition (inequality (5.48)) relates
the allowable cover H to the underlying uncertainty set U.
Proposition 17 below shows how a construction of a finite

cover H meeting inequality (5.48) can be achieved for the
case of compact U.

We discuss three special cases. Firstly if the structured
uncertainty set is finite, as for example in the case of seek-
ing to stabilize a discrete integrator with unknown sign:
p« = (A, B,C,D) € {(1,1,1,0),(1,-1,1,0)} C Prrs, then
we can choose G = U to be constant, G(k) = U(k) =
{(1,1,1,0), (1,—1,1,0)} C Przr. Then taking H = G,
v = 0, yields gain bounds for any stabilising atomic con-
trollers, where note that we can take ¢ = 0, and hence k, = 0.
Consequently, Theorem 1 provides robustness margins.

Secondly, in the case where the underlying uncertainty
set is a continuum, for example, if p, € P, .. =
{(a,1,1,0) € Prrr CR* | a € R, |a| < @max }, then choos-
ing G = U to be constant, G(k) = U(k) = Papus
together with a continuum of stabilising controllers, yields
finite gain bounds (where again we can take ¢ = 0 and hence
k.« = 0) provided H is a finite cover (we provide sufficient
conditions for this in Proposition 17 below). Such an infinite
dimensional controller has a robustness margin provided by
Theorem 1 but will not be directly implementable. However,
in the following Section 6 we will show how the underlying
infinite dimensional controller can be sampled to produce a
realisable design with guaranteed robustness margins, based
on a finite candidate plant model set of appropriate geometry.
This realisation will be based on an application of Theorem
15 with G # U.

The third case is also in the setting where the underlying
constant uncertainty set U is a continuum. Suppose K is a
stabilising control design where K (U) C {C1,...,Cy,}, that
is, such that each p € U is stabilised by K (p) which is one of
{C4,...,Cy}. In Section 6 it is shown that by taking € > 0
to be sufficiently small we can determine a suitable cover G
thus determining a suitable estimator structure for the given
controller bank (again with k, = 0). This procedure typically
yields multiple plant estimators per atomic controller.

The gain bound in Theorem 15 is a function of the complex-
ity of U, as measured by (H,v), and U itself, however is in-
variant to the number of elements in either U or G. Instead the
gain bound scales (exponentially) with the number of elements
in H. This is a substantial improvement on previous bounds,
which scaled exponentially with the number of elements in the
candidate plant set (i.e. with ). For example, this invariance
suggests that there is no disadvantage in having a large number
of high fidelity models in the candidate plant set (we will
return to this point in Section 6). In Proposition 17 below we
show that for compact operators U, suitable covers H exist and
we bound the size of H (and hence the exponential exponents
in the gain bound) in terms of the metric entropy of U(j),
j € N where the metric entropy of a set {2 with distance x
and ¢ > 0 is given by:

Ce(x,Q,¢) =min{n € N [ h={p1,....pn} CP
QCUpen{ge Pl x(pg) <C} )
A higher complexity implies less prior information. This

concept of interlinking information with complexity is due to
[28], where it is utilised to seek to define the term ‘adaptive’
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in a control context.

Definition 16: Let o € N. Let U be a plant-generating oper-

ator. Let «, 3 be defined by Assumptions 2 and let A : P — N
be the transition delay function. A control design K : P — C
is said to be U regular if for all A(p) < a < 2A(p),
the functions a(p, K(p), A(p) — o0,0), B(p1, K(p),xz — 0,0),
a(p1, K(p),0,z — o), B(p1,K(p),0,z — o), x € N are
continuous with respect to all py,p € PY.
The key result establishing the existence and complexity of a
finite cover is given next. It is dependent on the continuity
of x, as for example established by Propositions 8, 9 for
X4 (r=2)and Xp (1 < r < o0) respectively. Note also
that the continuity and compactness requirements are w.r.t.
the topology on P induced by the nonlinear gap (-, -).

Proposition 17: Let U be a compact plant-generating op-
erator and suppose K is U regular. Suppose PV is bounded
and  is continuous on PY x PY. Suppose app(U(j)) < 1.
Let £ € N and j < k. Let ¢ > 0. Then there exists a finite
cover (H,v) of U which satisfies inequality (5.48). The size
of the cover is bounded:

RHG) > Cp (3, UG) 20+ (14 3PV, PY)) !

(74(U(j))+~y5(U(j)))’1). (5.50)

Proof: Let 57 < k € N. Since U is compact
and K is U regular it follows that aop(Q) =
J (&) sup,, co @ (p1, K (p1), A(p1) o, 0) < oo,

for Q < PY. Similarly, aps(U(j)) < oo and
Bop(U(j)) < oo. By assumption aop(U(j)) < 1 and
hence v4(U(j)), v(U(j)) are defined. Let 0 < (; <
(20+0/72(1 4+ 32(PY, PY)) (va(U () + 15U (7))

Since x|puypv is continuous, it follows from equation
(5.44) that By (p,(;) is open for p € PY and hence
{By(p,{j)}pev(;) is an open cover of U(j) with
respect to the subspace topology of U(j). Since U(j)
is compact, there exists a finite set h; C U(j) such that
(B, ) bpen, covers UG). Let wi(p) = G, ¥p € P
hence (hj,v;) € (PY,map(P,RT)) is a finite cover of
U(j). We construct a monotonic cover (H,v) by letting
H(k) = Uj<why, V(k)(p) = minj<x (;, Vp € PH,
Since p. € PY, H(j) C U(j) it follows that
Y (H(5),{p+}) < 3 (PY,PY), and since v; is constant it
follows that (; = 3xu,(h;,v;) and hence equation (5.48)
holds. By construction, the size of H(j) is given by the right
hand side of (5.50). [ |

6. DESIGN

We consider the case of design for a compact structured
uncertainty set, for example as specified by a closed and
bounded parametric uncertainty 2 C P. U is taken to be
a constant, compact plant generating operator representing
the uncertainty: U(j) = €, j € N. Determining stability
guarantees for feasible MMAC controllers where the uncer-
tainty is given by a continuum has been a central topic in
the literature [14], and is unresolved in general, with the
exception of [17] where a structured switching mechanism
achieves the requisite stability. Section 5 has established a

complexity dependent gain bound, applicable to EMMSAC
controllers C'(U, K, A, G, X)) which can be applied with G =
U, ie. to C(U,K,A,U, X), however, this typically yields
an unrealisable infinite dimensional controller (for example if
the uncertainty U represents a continuum, then a continuum
of estimators are required, and the atomic control design K
generally represents a continuum of distinct controllers). In
this section we give a principled route to constructing a finite
dimensional controller (based on a finite number of estimators)
which robustly stabilises all plants in the uncertainty set and
inherits a gain bound which is quantifiably close to the original
bound. Additionally, and as an alternative route, we show that
by starting from a stabilising atomic control design based
on only a finite number of controllers, we can construct a
corresponding finite dimensional estimator structure yielding a
stabilising EMMSAC controller. As the optimal x cover gives
a measure of the complexity of the underlying uncertainty,
we can thus interpret both routes as design processes which
take the uncertainty description (U) and yield a concrete algo-
rithm C(U, K, A, G, X), together with associated complexity
dependent gain bounds.

A. Candidate plant sampling of compact uncertainty sets

Suppose that for a given constant and compact uncertainty
set U, the cover (H,v) satisfies inequality (5.48). The final
design step is then to construct a suitable finite plant model set
G whose associated EMMSAC controller C(U, K, A, G, X)
has guaranteed robust stability. Since the gain bounds of The-
orem 15 and hence the robust stability margins (determined by
Theorem 1) are independent of G, all that is now required is to
ensure that the true plant either lies inside the candidate plant
set, or lies sufficiently close to an element within the candidate
plant set, where the maximum distance is determined by the
robust stability margin given by Theorem 15. Here it is critical
that the gain bound (and hence the robust stability margin) is
independent of G — in the previous literature the gain bounds
scaled with the size of the candidate plant set, hence the
margins decreased as the plant set grew, and so it was unclear
whether it was possible to give a stabilisation guarantee for all
plants within a continuum — for large candidate plant sets the
margins were smaller, so it may not have been possible to find
a plant set whereby the whole of the uncertainty was included
within the the union of the plants guaranteed to be stable via
the robustness margins, see [14] for a similar discussion.

To specify the number of candidate plants required, we
introduce a notion of metric entropy where non-uniform neigh-
bourhoods are considered. Given ¢ : 2 — R, the functional
metric entropy Csg is given by:

Cre(6,0¢)=min{fn e N |h={p,...,pn} CP

In turn this is bounded by the standard metric entropy of PU:

CfE(gvaaC(p)) < CE(gaPUag)a where 5 = inprPU g(p)
We note that constructing candidate plant sets via covers of
the uncertainty sets has its antecedents in, for example, [8],
(2], [14], [20].
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Theorem 18: Let U be a constant, compact plant-generating
operator. Suppose the EMMSAC controller C'(U, K, A, U, X)
is standard. Suppose there exists a function ¥: P — R
such that [Tl x.a,u,x)//p, < 4(p). for all p € PY.
Let 1 > & > 0. Then there exists a constant plant gener-
ating operator G(k) = {p1,...pn}, Vk € N, where n =
Cre(8,PY,£4()1) < oo, and,

d(p) == inf &(pi,p) <&(p)~",  WpePY. (651
pi€G(0)
For all p. € Uy, epa{p € P | 3(p1.p) < d(p)},
£(1+d(p+))
||HPC(U,K,A,G,X)//PP* < (7)() (6.52)

Furthermore, any monotonic plant generating operator GG sat-
isfying (6.51) also yields the gain bound (6.52).

Since Up, //cwkacx) = I —lowkaex)y/p, it
follows that under the conditions of Theorem 18, that
[Py.,C(U,K,A,G, X)] has the property that

P A
(1= &)d(p.)

Proof: Since () is compact, and by the definition of
CyE, there exists pi1,...,pn C P, n < oo such that for all
p € PY, g(pi,p) < &4(p;)~" for some 1 < i < n. Hence
by choosing GG to be the constant plant generating operator
G(k) = {p1,...,pn}, it follows that inequality (6.51) holds.

Let p, € PV and let 1 < i < n be such that é(p;, p,) =
d(p.) < &y(p;)~!. Then by Theorem 1,

[ Frwn || < [ Zwol k= 0.

1+ 6(]91'7 P*)
L- 5(1%‘,]?*)@(1%‘)7
thus yielding inequality (6.52). This holds for any G satisfying
inequality (6.51) as required. ]

The condition of the theorem, i.e. the existence of 4: P —
R such that [|Iew,k,a,0,x)//p, || < A(p), for all p € PV, is
exactly the form of the bound supplied by Theorem 15 (with
G = U) noting that k* = 0 since p € U(0). Additionally it is
important to note that by taking ¥(p) = [|Ilcw,x,a,v,x)//P, ||,
the result shows how the true gains ||l x A v,x)//p,, || and
1P v xc.a.0.x),, 5, || are related.

If G is constant then this theorem shows that a system with
a compact uncertainty can always be robustly stabilised by
a MMAC algorithm with a fixed, finite candidate model set.
To determine an appropriate geometry for the candidate plant
set, we have to construct a covering of U by gap balls as
determined from Theorem 15, and we can then take G to
comprise the centres of these neighbourhoods. Theorem 18
also caters for the case where G is time varying. For a compact
uncertainty set, this may arise by a dynamic mechanism which
‘refines’ the candidate plant model set over time, introducing
new higher fidelity models and controllers as required, see [7].

If computational resource is unlimited we may include as
many plant models in G C U as we like without weakening
the gain bounds from Theorem 18. Furthermore when G = U
the bounds are minimised and collapse to the one in Theorem
15. This leads to the pragmatic guideline: populate the candi-
date plant set at as high a resolution as the implementation

A(pi)

e, //cwracxl <

hardware constraints permit. An apparent ‘over-population’
of plant models may arise also from a lack of tightness in
the bounds utilized in the design process. So this is a rather
unusual situation: bounds which may not be tight are required
to be used in a design process; but performance does not
degrade with the conservatism of these bounds.

B. Determination of an estimator for a fixed controller bank

By exploiting the fact that the control design K is not
required to be injective, we can choose a stabilising control
design s.t. K(U) C {C4,...,C,}, that is, such that each
p € U is stabilised by K(p) which is one of a fixed a-
priori chosen bank of controllers {C1,...,C,}. There are
a variety of means to obtain such designs, for example
the mixed p and % FNARC technique of [8]. By now
taking ¢ > 0 to be sufficiently small, we can construct a
constant cover (G, p) which satisfies the dual requirement
that 7(U(5), H(j),v(j),&,p*) > 0 (inequality (5.48)) where
p =ex,(H,v) and that x(p,psx) < p forall p € G, p, € U
(equation (5.47)). Note that the construction of G does not
require the construction of H. H is only required to determine
performance bounds, and the trade-off between ¢ and x,, (H, v)
is not relevant at the design stage. Typically, there are multiple
estimators corresponding to each controller.

We illustrate this process in the following academic example
which is chosen to enable exact computation, although this
procedure remains tractable on more complex examples with
numerical computation. We consider SISO LTT plants defined
by the uncertainty set: U = U; = {z € R* r =
(a1,1,1,0), a1 € I}, M > 0; our final numerical results
will be for I = [N,M] where N = 0.7, M = 1.2. We
consider proportional controllers, with the design requirement
that each controller C; achieves closed loop pole placement
within the disk of radius d = 0.14 centred at 0 for each
associated plant, i.e. for every plant in U N K~1(C;). A
straightforward calculation shows that 2 controllers suffice
with gains 0.84, 1.12 corresponding to C;, Cy respectively,
with K~1(C1) NU = Upp.7,0.08, K1 (Co) NU = Ufo.08,1.2]-

Since o(p) = 1, o(K(p)) = 0, it follows that we can take
A(p) =0 =1 for all p € U. EMMSAC will be implemented
by Estimator B, with A = 1. It follows that ;= (A + 1)+ =
V2, and ||c|| = V2.

Some lengthy (but elementary) calculations establish:

aos(U) = aop(U) < 4(1+ M?)d*(1+d?),
Bop(U) < 4(1+ M?)((4+2M?),

+d*(2 4+ 2M?) + d*(1 + M?)),
Bos(U) < 8(1+ M?)*(1+d?).

Hence OLOP(U) = Ozos(U) S 0.4, ﬂop(U) S 67.81 and
Bos(U) < 48.56. Consequently, v4(U) < 10.85 and v5(U) <
6.99. Similar computations show

(U, U) <1+ (14 M?)/D? + D4 4 D6 = 1.89

where D = N — M = 0.5. We next compute x(p1,p2)-
Let 1 = (1,—0,1,—1)T, To = (1,—0,2,—1)T, T =
e #2 = e we = G20k),2(k — Doup(k — 1T
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H[k_’\ k], i = 1,2 is given by

maxg>0 an — Hk H =

The pro_]ectlon Hk =
H’C (wo) = o Wi, SO X(Pupz)

maxk>0max{||Hk (I —1) ILid - Hk2) kY- Smce
([TT%, (1 — 1% ) H = SUD|y, =1 12 (Wi — fffwkfl)@ﬂ =
SUD| =1 | (@2 — & #2d1) Twiia|| = || (22 — & #221)]|, and
similarly, [|(I — TIE)IP || = |21 — &9 122 = [|(22 —
#{ Zo#1)]|, it follows that:

X(p1,p2) = |2 = @] @2 | (6.53)

_aTa2h = [ 2la —az)?
(1= (@ 22)7) \/(2+a§)(2+ag)

By the definition of w(U, Q2,¢) and by the bounds on
v4(U), v5(U) and 41 (U,U) we can obtain the requirement
p = eXxy(Qa,€) < 0.00864. To determine the estimator struc-
ture, when G = H, we need to find a constant (G, p) cover,
where p = 0.00864/2. We solve this by finding points a,, such
that x(@p+1, an) = 0.00864 = 4. That is, solving the iteration
(from (6.53)): @y 1 = _bJ”bz da¢ where a = 2—26%—6%a2,
b = 4a, and ¢ = 2a2 —25%a 2 —462, initialized with ag = 0.7.
This yields 17 estimators ao = 0.7,...,a16 = 0.963 corre-
sponding to the controller C';. Initializing the iteration again at
a7 = 0.98 yields 12 estimators a;7 = 0.980,...,a25 = 1.194
corresponding to controller Cs.

Due to the high degree of correlation between the estimator
residuals of nearby estimators, a far courser grid of estimators
is likely to remain effective. This is supported by indicative
simulations, and remains a rich area for further theoretical
studies. It is relevant to contrast this design procedure to results
to [29, 23, 26, 3], where stabilising schemes based on model
falsification require only a feasibility assumption, that is they
can be built with the minimum number of (atomic) controllers
required to stabilize the uncertainty set U. The above design
process shows that MMAC can also be based on a limited
number of stabilizing controllers: it is the estimator structure
which may require a larger number of candidate plants: note
that this has no analogue in falsification schemes.

C. Nonlinear systems: input saturation

Although our presentation has in the most part been ori-
ented towards linear systems, a key feature of the axiomatic
framework is that no assumption of linearity is made. The
tractability of the EMMSAC in the nonlinear setting rests on
a) the ability to achieve the controller assumptions (e.g. gain
stability for the atomic closed loops) and b) the feasibility
of the implementation of the optimisation required by the
estimator. For linear systems and for [, 1 < r < oo signal
spaces, estimator B reduces to standard convex optimisations
(linear, quadratic programming etc). In the more general
setting, the direct estimator optimisations may not be tractable,
unless restrictive convexity assumptions are imposed; however,
the following example shows that there are important nonlinear
cases for which EMMSAC is implementable.

We first establish a result that shows that the optimisation
required within the finite horizon estimator for a linear system
with saturation (i.e. the computation of i,[k] (equation (4.32))
is equivalent to a constrained optimisation problem, which in
turn is solvable by standard convex optimisations:

_ Proposition 19: Let 1 < r < oco. Let p = (A, B,C,0) €
Prrr, p= (p,S) and define P; = P, o SATg, where

u(k) if Ju(k)| < S
SATs(u)(k) = { (k)
5 \u§:§| if Ju(k)| > S.

Then, i(,, s)[k| is determined by the following convex optimi-
sation:

- m
ip,3)[K] = min lvol|

{(wo,90)" € W | (uo,pp)' €
NFHM (g, )T Juo(t) — ua(6)] < S, ¢ € [k — A K]},
Proof: Let Ny = N{» " (uz, ). Clearly Ny € Na,
since if v = wo(t) — ﬁg(t) and |[v|] < S, then v =
SATs(up — uz2). Let r1 = min,en, ||vol|. Suppose wy =
argmin, ¢y, [[vol|, and by equation (4.32), 72 = ||wo| =
i(p,9)[k]. Since N1 C N, it follows that r; > ry. It thus
suffices to show wg € Np, for then ro > 71, and hence
i(p,5)[k] = 71 as required.
For a contradiction, suppose wy = (ug,%0)' & Ni
and let k£ be a time at which |ug(k) — ua(k)] > S. Let

where N =

Uo(t) = Sua(k)+ S ift =kandup(k) —ua(k) > S
ug(k) — S if t =k and up(k) — ua(k) < —S.

Then SATg(tg(t) — ug( )) = SATg(uo(t) — ua(t)) for all
t > 0, hence wg = (uo,yO)T € N,. But, by construction,
lwo] < ||woll for 1 < r < oo, hence wy is not the minimizer
in No. This is a contradiction, and wg € N7 as required. W
Hence the difference between the optimisation required in the
linear case to that of the case with input saturation is simply
the addition of an inequality constraint. The optimisation
remains convex, and for example is solvable e.g. via linear
programming (r = 1) and quadratic programming (r = 2).
This fully addresses point b) for this class of systems.

For point b), since our analysis is global, the system class
is further restricted to the class neutrally stable LTI plants
with saturation, i.e., those which have the eigenvalues of the
state space matrix A inside or on the unit circle, with those
on the unit circle having all Jordan blocks of size one, see
[4]. As a concrete example, we note the pair of saturated
stable first order systems of unknown input sign, i.e. the plant
model set {Pq,4,1,0)© SAT1, P(g,—q,1,0) ©SAT1}, a < 1 can
be usefully controlled by EMMSAC, since the atomic pole-
placement controllers can gain stabilize and meet the controller
assumptions (e.g. Cyo = +(a + v)y2, [7| < 1.

Alternatively, we can consider a saturation occurring at
the output of the controller, e.g. the above equation becomes
u; = up — SATg(uz2) (this is a common scenario, for
example corresponding to a mechanical force actuator with
limited authority and ug representing an external force). Then
given LTI plant dynamics, the resulting estimator optimisations
remain as in the fully linear setting. This underlines further that
the estimator optimisations for a linear plant and a nonlinear
controller are linear estimation problems only, and the nonlin-
earity does not complicate the estimation part of EMMSAC;
thus the implementation of EMMSAC remains tractable. This
idea is taken further in [5], which considers an application
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example of a Hammerstein system with uncertainty in both
the nonlinearity and the linear dynamics, and a tractable (and
exact) estimator based on Kalman filtering is constructed.

7. CONCLUSION

This paper presents comprehensive robustness and per-
formance guarantees for Estimation-based Multiple Model
Switched Adaptive Control (EMMSAC) algorithms in terms
of I,, 1 < r < oo gain (function) bounds on the gain from
the external disturbances wg to the internal signals wy. The
axiomatic style of the analysis leads to the generality of the
results: they apply to the class of minimal MIMO LTI plants
but also to non-linear plants which can be gain stabilized.
The axiomatic approach utiliized makes future generalisations
appear inevitable, e.g. to time-varying plants and to non-linear
plants with super-linear growth. Investigating the viability of
the resulting estimator (sub-)optimisations in the nonlinear
setting is an interesting open area; identifying tractable classes
of nonlinear systems is very worthwhile. The EMMSAC ap-
proach is completely modularised: allowing for the integration
of standard control designs for the atomic controllers and
standard optimisation approaches such as Kalman filters or
convex programming methods for the estimators.

The robustness analysis leads naturally to a principled route
to design, and we have shown how the complexity of the
underlying uncertainty set leads to complexity dependent gain
bounds for infinite dimensional controllers which can then
be systematically reduced to finite dimensional realisations
with guaranteed performance and robustness. The resulting
complexity of the controller has also been related to met-
ric entropy measures of the underlying uncertainty. A key
consequence is that, for many geometries, the bounds are
independent of the size of the candidate plant model set above
a certain threshold, hence the designer can maintain (even
improve) performance bounds whilst increasing the number
of plant models to the maximum which are supportable
in real-time. A pragmatic design guideline is therefore to
populate the candidate plant set at as high a resolution as
the implementation hardware constraints permit. We have thus
provided an integrated, conceptual approach to address the first
three questions stated in the Introduction. The fourth question
concerning the construction of non-conservative designs is
considered in the sequel [7].
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APPENDIX

Proof of Proposition 7: We first consider estimator A.
Letl<r<ooandlet \=h=o00. For k€N, wy € W, let
E 4 be given by:

Ea(wp)(K)(p) = dj[k] € map(N,R")
dik) = T

(7.54)

argmin  |lwg]  (7.55)

woe/\/é“”“] (w2)

if there exists a unique minimum, or any d4 XS N [0%] (we)

such that [|d:MK]|| < [Jv]| for all v € N (wy) if the mini-
mum is not unique. To see that X 4 factorlses as X A=NEy,
observe that for all we, € W,, k € Nand p € P,

NEa(w3)(k)(p) = || dp[F]| = Xa(w2)(k)(p),

as required. We now verify 1-5.

1) Causality: The disturbance estimate at time k£ € N does not
depend on future information ws| (k,00) and is therefore causal.
2) Weak consistency: Let p € P, wy € W,. Let @ be defined
by ®ax = Zxkx, v € S, and clearly ||PyE4(w2)(k)(p)] <
%2, Ea(w2)(k)(p)||. We then have

PrEA(w2)(F)(p) = ZxxEa(w2)(k)(p)
€ Zrx N (we) € NI (wy).
3) Monotonicity: Let p € P, let 0 < k <, k,l € N. Observe
that F Ea(ws)(1)(p) € FeN. " (1), Since
1B (w2) (k) (p)|| = inf{r 2 0 | 7 = [[ool, vo € MM (w2)}

it follows that || Ea(w2)(B)(p)| < | FiEa(wa)D)(p)] as
required. 4) Continuity: For p1,ps € P let x(p1,p2) be given
by (4 41). Then x(p,p) = é(p,p) = 0 for all p E P. Define

[0 W|[0 k] — W,k by the projection: H %’k LW =
dA[k] Then,

| E(w2) (k) (p1) — E(w2)(k)(p2) ||
< |0 2y, wws — TTOM ) jws |
< T — T 9| 22, s |
= x(pl,pz)l\fszIL

= rp[k]

w - W

It remains to show X(pl,pQ? < oo. Define Ly:
)Zki.. 1t is easily follows that

by: Ly = Z(1py" — 1"

| L) = |TTe* — 1M Now, for all wy € W,
sup [|Lgws || = (| Z (M — TI0H) 22 s |
k>0
(H(HLOI ) T2 w2 |

<
< 2w < .
Hence by the Banach-Steinhaus Theorem, x(p1,p2) =
Supyso [[Lk|]| < oo. 5) Minimality: Observe that for any
(wo, w1, wz) € W x W, x W, satisfying equations (2.2)~(2.3)
for P = P, and for k € N we have Jwy € %J\/;Eo’k] (w2).
Hence by the definition of Ey4, ||E4(w2)(k)(p)| < || Trwol-
We now consider estimator B. Let 1 < r < oo and let
AeN,h=(m+0o)(A+1). For 0 <i <k, wyg €W, let
estimator B be given by:

Ep(wa)(k)(p) =
dy [Kl(i) =

B h
d,; [k] € map(N,R")

||w0||7

(7.56)

argmin (7.57)

wQGNT[,ifA’i](wﬂ
if there exists a unique minimum, or any dP[k](i) €
NF ) satisfying ([ dB[k](@)]| < o] for all v €
NEF=2 () if the minimum is not unique. To see that

Xp does indeed factorise as Xp = NEp, we argue as
follows. Since dJ[k](i) = dP[i](i) for 0 < i < k and
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lla, bl = ||lallr 116l
for all wy € W, that:

NEp(w2)(k)(p) = ||d
= [|dp[K](0), dp[K] (1
](1 » Ty

)
= [|dp[k —1](0), p[k—
dplk = 1](k = 1), dp K] (F)]|
= [llldplk = 1[I, lIdp[K](R) |

where dyk](k) € {wo € NFE M (wy) | Jwol =
inf{r > 0| r =], vo € N[k Aokl (wg)} Since i,[k] =
dy k) (k)| = inf{r >0 | r = |[voll,v0 € N3" " (ws)}, and
NEg(w2)(k)(p) = ||dp[k]||, we obtain:

NEg(wa)®)p) = [[rolk = 11, [8]]| = X5 (ws) () ().

Hence Xp = NEp as required. We now verify 1-5.

1) Causality: E'p is invariant to w2|(k100). 2) Weak consistency:
Let p € P. Let ® be defined by ®rdZ[k] = Zx xdZ[K] (k).
Since  Zadf[k](k) C P kdB[k], it follows
that [|0xEp(w2)(k)(p)ll = [Zadf[k(R)] <
[ZxrdB K] = ||%xxEp(w2)(k)(p)|l. Furthermore,
PrdB k] = ZandF[k](k) € N (40,). 3) Monotonicity:
Letpe P,let 0 <k <1, k,l € N. Since %df[l] = df[k]
it follows that [ EZ (ws)(R)(p)]| = | ZEF (wa) (D)) as
required. 4) Continuity: Let £ € N, p € P. From Assumption
2 let ®y be defined by ®xdZ[k] = ZxxdF[k](k). Define
Hz[jkd’k] Wlk=xk] — Wlgr-ak by the projection:
M%) ws = dP[k](k). For p1,pa € P let x(p1,p2) be
given by (4.42). Tt follows trivially that x(p,p) =0, p € P.

a,b €l., 1 <r < oo, we have

plk ]II
= dp[k = 1] (k) dp[K](F)|

Since ®xdZ[k] = Iy %) yws, it follows that
1B (w2) (k) (p1) — E(w2)(k)(p2)]|
= [ldp, [0)(0) = dp, [0](0), .- ., dp, [k} (k) — dyp, [E](K)l]

= ||H£,:’\’O]%,\,ow2 - HL;’\’O]:%’,\,owm
.. ,H[k_k’k]%k LWy — H[k_)"k]e@)\)kwgu

< mae [T =TI [ 92 owol - 1125 kewo

< x(p1, p2)l| Trwo |
5) Minimality: Observe that for any (wo, wy, ws) € WX W, X
We satisfying equations (2.2)—(2.3) for P = P, and for keN
we have %) ;wo € N,EZ_’\’Z] (we), 0 < i < k. Hence by the

definition of df[k](i), ||df[k](z)|| < |2 woll, 0 < i <
k, k € N. Hence we obtain:
1Es(w2)(K) )| = g [K]O)], - ld; (k] (R)
[Zx.0woll, - ., |2 kwoll |

<

< A+ DY Fwol|,

which is the required inequality (with g = (X + 1)'/7). [ |
Proof of Proposition 8: Let k >0 and IT¥ = — H;[Dol’k],

Ik = 1 —119M, 1, = 7 —TI%°, 1, = T — I, The following

identity holds for any projections 114, IIp:

< gg >(HA—HB)( Iy Iy )

[ -Hplly 0
_( ; AT ) (7.58)

Let Ty = T%, Tz = TI%. Then since (Tp TI5 )
and ( II; TI4 ) are isometric isomorphisms, it follows
that: [T} — TT5]| = max{||TI5(TT}))* ||, ||(IT5)IIF}. Since
(I1%)~LTI% has the adjoint: ((IT¥)LTI5)* = II5 (IT¥) L, it follows
that: [T — T | = mauc{ | (%) T2 |, | (0T8) 4 T4 3.

Let L = (M N) be a normalized right co-prime factori-
sation of P; over Hy. Let L* = (M* N*), so we have the
Bezout identity L*L = I. For every z; € Ry rGp,, there
exists 2 € G,, such that Ry 1z = z,. Since 2 € G, it
follows that there exists v € W such that Z = Lv. Then
by the causality of L, we have Jzr, = 42 = T LI}v.
Define z, = LJv. Since L is bounded, and v € W,
it follows that Z; € G,,. Hence by the causality of L,
Rikzk = R LIwv = Ry T LIwv = R Thzk = 2k

Observe that since z, = L.Z,vy, it follows that L*Z, = Jv
and 9, L*%2, = Jv. Furthermore, since L is normalized
and L* is causal, we have: ||2x|| = || LIv| = ||%%v| =
| T L* 2| = || 90 L* Tiz|| = || T L* Tize|. 1t is straightfor-
ward to see that || 7, L* || < ||L*|| < 1, hence || Zx|| < ||z&]-

Since Hg: Wion — Ri,xGp, is a projection, Z € G,
and hence Ry, 1122, € Ry 1Gp,, it follows that for all z;, €
RikGpt (M5 2kl = [l21 — T zp]| < flon — R Tl2Zk]| <
| Ri.x113 Z ||, hence it follows that

@) 5 = 1(I5) =, 0,
R 1112 z
< sup [ k,k~2zk|| [EAl
Rl NERIL N2kl
[l Z |
< |Mglg,, || sup < ||y I |
2k €ER K, kGpy || H

Hence [|(T15)-11F || < |[TI3 1L | = [|(7 = TI2)TL || = &(p1, p2),
where the equality with the directed gap follows from [12].
Similarly [|(ITf)* TI5|| < 3(p2, p1). Hence ||TI{"* — TIM)| <
d(p1, p2)- Since this holds for all k, the proof is complete. W
Proof of Proposition 9: Let k> 0 and 114 = Hg,kf)"’k],
IIp = HI[)]fA’k]. Since II4, Il are projections, by an
analogous argument to the proof of Proposition 8, we have
[TLa—TIg| < comax{||ILpITY ||, |[TI5IL4]|} for some ¢y > O,
since the identity (7.58) holds and where ( 1T TIp )T and
( II§ TI4 ) are isomorphisms (not isometric for r # 21).
It therefore suffices to check the continuity of [,
[T5IA |l W.rt. p1, po. Let wy = (u2,y2) " € Wi 4 \ {0},
wh = (Wb, yh")T = Mawe and w}' = —Hjws. Let
zg9 € R™ be such that equations (2.6), (2.7), (2.8) hold on
(k= k] with z(k—X) = 2P (k—X) = xo. Let y* € V|—x 1
be the output of the system py when 22 (k— ) = 2Pt (k—)),
andu *ul EU|;€ K]
We first consider ||HJ-HAH. Let wh? = (u2 + ui?,yo2 +
y’fz)T. Since Il is a projection, it follows that | IT5IT 4ws || =
|wg' —Tpwg" || < [wg! _U’OZH = llvo' —wo°ll = llv7* —v1° |-

We now consider ||HBHA|| Let ub? = —ul" = ul? so uf? =
0. We let yb* = y¥ —y1 ,s0 yb? = —y'*. By definition of [T,
it fzo)llows that HHBHAU)QH = HHB(—wfl)H = || Up(wh?)| <
lwg® | = llyg® 1l = llvi™* — w3l

Let € > 0. In both cases, by the continuity of the solution of
a discrete time system with respect to the entries of (A, B, C)
over a finite time interval, it follows that there exists 6 > 0
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such that if |p1 — po| < 4, then ||y}" — y}?|| < e. Further,
we have the bound: ||y} — v1?|| < cre(||Zrwud* || + |25 )
for some ¢; > 0. By observability and A > o, it fol-
lows that [z'| < eof|wl"|] = e2||(I — Ia)we|. Hence
max{|[IIpIT ws |, [[TIaws [} < crczel|(I — Ia)w2]| and

ITa—Tp| < comax{|[ILpITx]|, [TI1all}
max{ || I ws |, [T Taws | }

= Cp Sup
wa#0 [[wa|
HJ_
< cgciea€e sup M < cocreo|[II4]le.

For all D (= Q, Hg_>\7i] = Hg_A"j] for all Z,] > A +

o, 1,7 € N since J\/;Ei*)"’i] (wg) = Nzﬁj**ﬂ (wg) for all
1,7 > Ao. As ||H£,kf)"'k] —Hg,k;)"k] || and hence xi(p1, p2) is
continuous on £ x €, and x(p1,p2) = maxg>o Xk (p1,p2) =
maxo<k<it+o+1 Xk(P1,P2), X is continuous on € x Q. [ ]
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