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Robust Stability for Multiple Model Adaptive

Control: Part I - The Framework
Dominic Buchstaller, Mark French, Member, IEEE

Abstract—An axiomatic framework providing robust stability
and performance bounds for a wide class of Estimation based
Multiple Model Switched Adaptive Control (EMMSAC) algo-
rithms is developed. The approach decouples development of
both the atomic control designs and the estimation processes
thus permitting the usage of standard controller design and
optimisation approaches for these components. The framework
is shown to give tractable algorithms for MIMO LTI plants,
and also for some classes of nonlinear systems (for example,
an integrator with input saturation). The gain bounds obtained
have the key feature that they are functions of the complexity
of the underlying uncertainty as described by metric entropy
measures. For certain important geometries, such as a compact
parametric uncertainties, the gain bounds are independent of the
number of plant models (above a certain threshold) which are
utilized in the implementation. Design processes are described
for achieving a suitable sampling of the plant uncertainty set
to create a finite candidate plant model set (whose size is also
determined by a metric entropy measure) which achieves a
guaranteed robustness/performance.

1. INTRODUCTION

A multiple model adaptive control scheme consists of a set

of candidate plant models, each with an associated controller,

coupled with an on-line process for ranking the ability of each

model to explain the observed signals. An on-line switching

logic selects an appropriate controller based on this ranking.

Typically the ranking process is realised via monitoring the

output errors of a bank of observers or Kalman Filters. Despite

strong advances, key challenges for this approach include the

development of a strong robust stability framework and the

development of a principled design theory. This paper provides

a framework for both robust stability and a principled approach

to synthesis, as a step towards addressing these challenges.

The outcome of any design process in MMAC must include

the construction of a candidate plant model set. A designer is

necessarily confronted with the following design questions:

1) How many plant models are needed?

2) How should the plant models be (geometrically) dis-

tributed over the uncertainty set?

Furthermore, these design questions should be addressed in a

framework that addresses the following questions:

3) What are the robustness guarantees?

4) How can a conservative design be avoided?

These four questions are central to both the development of

the EMMSAC framework given in this paper and the proof of

the gain bounds given in the companion paper [7]. Questions
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1) - 3) are addressed in this paper and Question 4) is addressed

the second paper [7]. An axiomatic approach (based on the

initial work [11]) is used to describe and prove properties

of a wide family of MMAC algorithms; the analysis differs

strongly from all preceding contributions. In particular, a novel

optimisation viewpoint of the model ranking process due to

[9], [25], is the key insight which underpins the analysis.

The first two questions are considered to be key outstanding

issues in the field of multiple model control, e.g. see [8, 2, 1].

For example, in [8] the authors ask: “How to divide the initial

parameter uncertainty set into N smaller subsets, how large

should N be, etc.” and in [1]: “How many plants (models)

should be chosen, how does one choose a representative set

of plants (plant model set), etc.”. A major issue with previous

performance bounds developed for MMAC is their exponential

scaling with the number of plant models, irrespective of the

geometry [14], with the single important exception of the

structured switching mechanism [17] which avoids this scaling

problem when the uncertainty is a compact continuum. A key

contribution of this paper is to give gain bounds, which, for

certain important geometries, are independent of the size of

the candidate plant model set, depending instead on the com-

plexity of the uncertainty set. In turn the characterisation of

this complexity, together with optimisation of the gain bounds,

leads to a principled selection of the distribution of plant

models over the uncertainty set. An important consequence is

that a structured uncertainty described by a compact contin-

uum can always be robustly stabilised by a EMMSAC design

with a sufficiently large number of plant models, and further

refinements of the candidate plant model set do not degrade

the gain bounds. A pragmatic conclusion is that beyond a

certain threshold it does not matter how many plant models are

utilized in an implementation: there is no loss of performance

guarantees through using ‘too many’ plant models; hence the

control designer can use as many plant models as the real-time

implementation can support. Foruncertainty sets described by

continua, these issues have been central goals of the MMAC

literature, see e.g. [14], [20], [17], [8].

The third question represents a goal within the field of adap-

tive control which has been elusive for decades. Ever since the

publication of the Rohrs example [21] it has been known that

adaptive controllers can induce severe instabilities in practice

despite ideal nominal behaviour. Much of the effort of the

1980’s was concerned with modification of classical adap-

tive control schemes to achieve limited robustness guarantees

(typically restricted to unmodelled dynamics of an additive

or multiplicative type). More recently techniques introduced

from nonlinear input-output stability theory (involving the

nonlinear gap metric) have been utilized to revisit the classical
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schemes to provide more satisfactory robustness guarantees

(e.g. for gap or co-prime factor uncertainty models) [10]; and

this approach to robust stability analysis forms the approach

taken in this paper. It is of particular importance for MMAC

that robustness results incorporate uncertainty at both low and

high frequencies: uncertainties arise naturally both in the low

frequency range (due to parametric mismatch between the true

plant and the finite collection of candidate plant models) and

in the high frequency range (due to unmodelled dynamics).

Addressing question 3 pervades the entire approach, and The-

orem 18 guarantee stabilisation of both structured uncertainty

sets (for example a parametric uncertainty) together with gap

perturbations around these sets, (the size of the perturbation

being determined by the robust stability margin).

The axiomatic framework considered leads to a unified treat-

ment of large classes of algorithms, with the important feature

that the estimation component of the design is completely

decoupled from the underlying control design process for each

candidate plant model. In particular the control design process

inherits no structural constraints and can be implemented via

any standard controller structure (PID, H∞, etc.). The esti-

mation process, which determines the candidate plant model

ranking, encompasses both the Kalman Filter bank of the

historical algorithms, but also a variety of ‘optimisation based’

processes, where finite horizon optimisations are aggregated

to realise an residual which ranks the quality of each model

[9], [25]. The optimisations and controller designs can be cast

in a variety of different signal spaces yielding a wide class

of algorithms. Although oriented towards the case of MIMO

LTI systems, the analysis can also apply to broad classes of

nonlinear controllers which achieve closed loop gain stability.

Whilst the nonlinear optimisations within the estimator are not

tractable in real-time in general, there are important classes of

nonlinear systems which do result in tractable algorithms: here

we illustrate the case of an integrator with input saturation.

Arguments for the benefits of MMAC compared to other

adaptive approaches have been made previously, see e.g. [13],

[8] and [6]; these apply equally to the EMMSAC class of algo-

rithms. Additionally, the ability to give stabilization guarantees

over uncertainty sets described by continua, and by unbounded

sets [7], means that the domain of MMAC now encompasses

all the uncertainty sets considered in classical (linear) adaptive

control. Furthermore, MMAC inherits none of the standard

adaptive control requirements of convex uncertainty sets, or

parameterisations limited to particular forms, which limit the

problem domain of classical adaptive control. MMAC can deal

with plants where the sign of the high frequency gain is un-

known; such plant pairs are not simultaneously stabilizable by

LTI design compensators, nor do classical adaptive algorithms

have satisfactory performance (e.g. the Nussbaum universal

controller). Unfalsified control [29, 23, 26, 3] is an alternative

approach to switching between compensators wherein robust

stability follows from a weak feasibility assumption. It is

likely that schemes incorporating both MMAC and unfalsified

concepts will prevail: see for example [3] for work in this

direction; on the other hand, a version of dynamic EMMSAC

considered in [7] has unfalsified characteristics.

Since adaptive control is necessarily a theory of controlling

processes with large uncertainties, the framework is cast in

a setting in which closed loops are shown to be robust w.r.t.

a combination of large structured uncertainty sets and small

unstructured uncertainties. A description of the complexity of

a large uncertainty set is given, in terms of metric covers

and entropy. The resulting gain bounds are shown to be

functions of the complexity of the uncertainty set. Key to

the development of the theory is to analyse not the actual

realisation of the algorithm, but rather a potentially infinite

dimensional object which comprises of (typically) a continuum

of estimators and potentially also a continuum of controllers

(e.g. a MMAC controller based on an infinite number of

candidate plant models in one to one correspondence with

the structured uncertainty set and with one estimator and one

controller associated to each candidate plant). A reduction

theory is given to approximate this by a finite dimensional

realisation (e.g. a MMAC controller based on a finite number

of controllers and estimators), and bounds are given to relate

the performance of the finite dimensional realisation to that of

the infinite dimensional object. The necessary complexity of

the finite dimensional controller (i.e. the size of the candidate

plant set) is bounded in terms of the metric entropy of the

uncertainty, and the resulting realisable algorithms are then

proven to be robust to both the uncertainty set sampling error

and the underlying unstructured uncertainty.

The objective of design therefore arises as the question

of how to achieve the finite dimensional realisation via an

appropriate sampling of the structured uncertainty sets to arrive

at a finite number of nominal candidate plant models and hence

an implementable controller. Here the construction is similar

to the explicit, albeit heuristic, design procedures of [8], [2],

[14], [20] which construct a candidate plant model set based

on covers generated from the atomic closed loop performance

of matching plant and controller pairs.

The paper is structured as follows. In Section 2 we introduce

the setting and notation. The structure of the EMMSAC

algorithm is given in Section 3, and the axiomatic requirements

of the estimation process are given in Section 4 together

with important examples of estimators. The main result which

establishes complexity dependent gain bounds and robust

stability is given in Section 5. The proof of this result, which

is long and involved, is given in the sequel [7]. Section 6

presents a number of consequences of the theorem, including

complexity based interpretations, robust stability certificates

and develops the approach to design synthesis. In particular

the question of how to select the number and distribution of the

plant models is addressed, a concrete example is developed,

and nonlinear EMMSAC in the setting of LTI plants with

input saturation is discussed. In addition to the proof of the

gain bound, the sequel [7] also considers dynamic versions

of EMMSAC, in particular demonstrating non-conservatism

in the dynamic case and outlining their design flexibilities.

2. PRELIMINARIES

For 0 ≤ a ≤ b, a, b ∈ Z let [a, b] := {x ∈ Z | a ≤ x ≤
b}, [a, b) := {x ∈ Z | a ≤ x < b} and define |[a, b]| :=
b − a + 1 and |[a, b)| := b − a. For a signal v ∈ S we then
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Fig. 1. Closed loop [P,C]

define the restriction of v over the interval I = [c, d] by v|I :=
(v(c), · · · , v(d)) where c ≤ d, c, d ∈ Z, and similarly for

I = [c, d). Denote the collection of all maps S := map(Z,Rh)
and let S|[a,b] := map([a, b],Rh). Let Tt : S ∪b∈Z S|[0,b] →
S, t ∈ Z denote the truncation operator defined by:

(Ttv)(τ) =

{
v(τ) if τ ∈ dom(v), τ ≤ t.
0 otherwise

.

For x ∈ S define the norms ‖x‖ = ‖x‖r =
(∑

i∈dom(x) |x(i)|r
)1/r

, 1 ≤ r < ∞, ‖x‖ = ‖x‖∞ =
supi∈dom(x) |x(i)|. We consider signal spaces V ⊂ S, interval

spaces V|[a,b] and extended signal spaces Ve ⊂ S:

V := {v ∈ S | v(−t) = 0, ∀t ∈ N; ‖v‖ < ∞}
V[a,b] :=

{
v ∈ S|[a,b]

∣
∣ ∃x ∈ V s.t. v = x|[a,b]

}
.

Ve := {v ∈ S | ∀t ∈ Z : Ttv ∈ V} . (2.1)

We take V = lr to be defined by (2.1) with ‖ · ‖ =
‖ · ‖r. The input and output signal spaces are defined as:

U := V × · · · × V
︸ ︷︷ ︸

m

= Vm,Y := V × · · · × V
︸ ︷︷ ︸

o

= Vo, and let

W := U ×Y . Given a plant P : Ue → Ye satisfying P (0) = 0
and a controller C : Ye → Ue satisfying C(0) = 0 the closed

loop system [P,C] in Figure 1 is defined by:

y1 = Pu1 (2.2)

u0 = u1 + u2, y0 = y1 + y2 (2.3)

u2 = Cy2. (2.4)

Here wi = (ui, yi)
⊤ ∈ We represents the plant input and

output (i=1), disturbances (i=0) and observations (i=2).

[P,C] is said to be well-posed if for all w0 ∈ W there

exists a unique solution (w1, w2) ∈ We×We. Note that linear

switched systems are well-posed. For a well-posed system

[P,C] we define the closed loop operator:

ΠP//C : W → We ×We : w0 7→ (w1, w2).

[P,C] is said to be gain stable if there exists a M > 0 s.t.:

sup
w0∈W, w0 6=0

‖ΠP//Cw0‖
‖w0‖

= ‖ΠP//C‖ < M < ∞.

Define PLTI to be the set of all p = (A,B,C,D) ∈
∪n≥1R

n×n ×R
n×m ×R

o×n ×R
o×m such that p is minimal.

Let

Pp : Ue → Ye, up
1 7→ yp1 , p ∈ PLTI (2.5)

be defined by

xp(k + 1) = Axp(k) +Bup
1(k) (2.6)

yp1(k) = Cxp(k) +Dup
1(k) (2.7)

xp(−k) = 0, k ∈ N. (2.8)

Note that since xp(−k) = 0 for all k ∈ N it follows that

yp1(−k) = (Ppu
p
1)(−k) = 0 for all k ∈ N. Also define

P̄LTI := {(A,B,C,D) ∈ PLTI | D = 0}. (2.9)

Similarly, let CLTI to be the set of all c = (A,B,C,D) ∈
∪n≥1R

n×n ×R
n×o ×R

m×n ×R
m×o such that c is minimal,

and define the control operator

Cc : Ye → Ue : y
c
2 7→ uc

2, c ∈ CLTI (2.10)

analogously to equations (2.6) - (2.8) and let

C̄LTI := {(A,B,C,D) ∈ CLTI | D = 0} . (2.11)

The collection of bounded pairs (up
1, y

p
1)

⊤ ∈ W compatible

with the plant Pp, p ∈ P where P is an indexing set (for

example P = PLTI) forms the graph Mp ⊂ W :

Mp =

{

v ∈ W
∣
∣
∣
∣

∃(up
1, y

p
1)

⊤ ∈ W s.t. Ppu
p
1 = yp1 ,

v = (up
1, y

p
1)

⊤

}

.

An appropriate measure of the ‘distance’ between graphs

defines the nonlinear gap as follows. Let Op1,p2 =
{Φ : Mp1 → Mp2 | Φ is causal, bijective, and Φ(0) = 0}.
Define the non-linear directed gap between p1, p2 ∈ P by

~δ(p1, p2) := inf
Φ∈Op1,p2

sup
x∈Mp1\0, k>0

(‖Tk(Φ− I)x‖
‖Tkx‖

)

if Op1,p2 6= ∅, and ~δ(p1, p2) := ∞ if Op1,p2 = ∅. Define

δ(p1, p2) = max{~δ(p1, p2), ~δ(p2, p1)}. Note that the non-

linear gap is a generalisation of the standard linear definition

via coprime factors [12, Appendix]. In the linear setting, small

time delays, multiplicative, inverse multiplicative, parametric

and co-prime factor perturbations are all small in the gap.

For nonlinear systems, similar relationships hold. The central

robust stability theorem is as follows:

Theorem 1: Let U = Y = lr, 1 ≤ r ≤ ∞. Let Pp1 : Ue →
Ye, Pp2 : Ue,→ Ye, C : Ye → Ue and suppose that the closed

loops [Ppi , C], i = {1, 2} are well-posed. Let the closed loop

[Pp1 , C] be gain stable. If

~δ(p1, p2) < ‖ΠPp1//C
‖−1 = bPp1 ,C

then the closed loop system [Pp2 , C] is gain stable and

‖ΠPp2//C
‖ ≤ ‖ΠPp1//C

‖ 1 + ~δ(p1, p2)

1− ‖ΠPp1//C
‖~δ(p1, p2)

.

Proof: The proof can be found in [12].

Throughout the paper we consider P to be a topological space,

with topology determined by the gap δ.

As v ∈ V has the property that v(−t) = 0 for t ∈ N and

since we are requiring P (0) = C(0) = 0, it follows that LTI

state space models for P and C are required to have their

initial conditions set to zero (x(0) = 0). This is a standard

assumption in the input/output setting. However, it should be

noted that the discrete-time analogue of the approach via input,

output injection of [10, Theorem 5.3] means that for linear

plants (but with potentially nonlinear controllers, as here) the

zero initial condition results also imply stability results for

non-zero initial conditions.
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3. ESTIMATION-BASED MULTIPLE MODEL SWITCHED

ADAPTIVE CONTROL

In this Section we develop the structure of EMMSAC. We

introduce the controller design procedure K that assigns a

stabilising controller to every plant model and then describe

the structure for switching between these ‘atomic’ controllers.

A. Finite horizon behaviour of the atomic closed loop

The controller design procedure is specified by a map K :
P → C where C is a set parametrising a collection of controller

operators

uc
2 = Ccy

c
2 (3.12)

for c ∈ C, for example C = CLTI . K : P → C is said to be a

stabilising design if [Pp, CK(p)] is gain stable for all p ∈ P .

Let σ(c), c ∈ C denote the minimum length of the interval

that the signal (uc
2, y

c
2)

⊤ needs to be observed to uniquely

determine the initial condition of Cc, i.e.

σ(c) = min







k ≥ 0 :

∀l ≥ 0,
uc
2 = Ccy

c
2, ûc

2 = Ccŷ
c
2,

(uc
2, y

c
2)

⊤|[l,l+k] = (ûc
2, ŷ

c
2)

⊤|[l,l+k],
yc2 = ŷc2 ⇒ uc

2 = ûc
2







(3.13)

Similarly let σ(p), p ∈ P denote the minimum length of

the interval that the signal (up
1, y

p
1)

⊤ needs to be observed to

uniquely determine the initial condition of Pp. For p ∈ PLTI,

c ∈ CLTI note that σ(p) = np − 1, σ(c) = nc − 1 where np,

nc are the McMillan degrees of p and c respectively.

We now state two general requirements imposed upon the

atomic closed loop systems [Pp, Cc] and [Pp, CK(p)].
Assumption 2: There exist functions α, β : P×C×R×R →

R such that the following holds:

1) (Linear growth of [Pp, Cc]): Let p ∈ P , c ∈ C and suppose

[Pp, Cc] is well-posed. Let t1, t2, t3, t4 ∈ N, t1 < t2 ≤ t3 < t4
and I1 = [t1, t2), I2 = [t2, t3), I3 = [t3, t4). Suppose

w2, w
c
2, w

p
1 ∈ We, wp

0 ∈ W satisfy the equations

yp1 = Ppu
p
1, uc

2 = Ccy
c
2, up

0 = up
1 + u2, yp0 = yp1 + y2

on I1 ∪ I2 ∪ I3. Suppose that either

wc
2|I1 = 0, wc

2|I2∪I3 = w2|I2∪I3 , or

wc
2|I1∪I2∪I3 = w2|I1∪I2∪I3

where

|I1| = t2 − t1 ≥ max{σ(p), σ(c)}. (3.14)

Then, in both cases:

‖w2|I3‖ ≤ α(p, c, |I2|, |I3|)‖w2|I1‖
+ β(p, c, |I2|, |I3|)‖wp

0 |I1∪I2∪I3‖. (3.15)

2) (Stability of [Pp, CK(p)]): Let p ∈ P and x ∈ N. Then

α(p,K(p), a, x) → 0 as a → ∞ (3.16)

and α is monotonic in a.

Note that the monotonicity requirement in the second as-

sumption follows without loss of generality since any function

α satisfying equation (3.16) can be dominated point-wise by a

monotonic function α̂ satisfying equation (3.16). Assumption

2 is interpreted as follows. The choice wc
2|I1 = 0 corre-

sponds to an initialisation of the controller to zero at time

t2 and the choice wc
2|I1 = w2|I1 corresponds to continued

closed loop operation of the same controller. We expect to

be able to bound future signals ‖w2|I3‖ by some function

of the size of the system’s initial conditions, determined by

‖w1|I1‖, ‖w2|I1‖, and the system’s input wp
0 |I1∪I2∪I3 for any

well-posed closed loop system [Pp, Cc]. This is reflected by

equation (3.15). However w1|I1 , w2|I1 can only be interpreted

as an initial condition if the interval I1 is sufficiently long. This

is reflected by equations (3.13),(3.14). For K : P → C where

(P , C) ⊂ (P̄LTI , CLTI) ∩ (PLTI , C̄LTI) it can be shown that

Assumption 2(1) holds as follows. ΠCc//Pp
is linear and hence

a state space representation (A,B,C,D), with state x, so

w2(t) = CAtx0 +C(ΠCc//Pp
w0)(t)+Dw0(t), Observability

matrices M,N can be constructed from (A,B,C,D) such that

x(0) = Mw0|I1 +Nw2|I1 since w0 and w2 are the inputs and

outputs of ΠP//C . Hence: ‖w2|I3‖ ≤ ‖C(At3 , . . . , At4)x0 +
C(ΠCc//Pp

w0)|I3 + (Dw0)|I3‖, and consequently inequality

3.15 holds with

α = ‖M,N‖‖At3, . . . , At4‖ (3.17)

β = ‖ΠCc//Pp
‖+ ‖M,N‖‖At3, . . . , At4‖. (3.18)

Tighter expressions for α and β can be found in [6]. If

additionally K : P → C is an (asymptotic) stabilising design,

it can be shown that Assumption 2(2) holds since asymptotic

stability implies lr stability 1 ≤ r ≤ ∞.

B. The switching algorithm

We now formally introduce the estimation-based switching

operator S = DM(X,G) where G is the ‘plant-generating

operator’ which specifies which candidate plants can be con-

sidered at each step, X is the residual operator which returns a

scalar for each plant which assesses the quality of the model,

M is the minimisation operator which returns the plant model

with the smallest residual and D is the ‘delay’ operator whose

role is to prevent rapid destabilising switches. The dynamic

versions of EMMSAC, as motivated in the introduction, are

characterised by a time varying set of candidate plant models.

These are specified by the notion of a plant generating operator

defined as follows. Let P∗ be the powerset of P . Then:

Definition 3: A causal map Q : We → map(N,P∗ \ ∅) is

said to be a plant-generating operator. We define PQ is the

union of all plant model sets represented by Q:

PQ := ∪
w2∈We

∪
k∈N

Q(w2)(k) ⊂ P .

Q is said to be finite if Q(w2)(k) is a finite set for all w2 ∈ W ,

k ∈ N, constant if Q(w2)(i) = Q(w2)(j), for all w2 ∈ W ,

i, j ∈ N, monotonic if Q(w2)(k) ⊂ Q(w2)(k + 1) for all

w2 ∈ W , k ∈ N and compact if Q(w2)(k) is compact as a

subset of P for all w2 ∈ W , k ∈ N. For notational economy

we often write Q(k) := Q(w2)(k), k ∈ N.

Within an EMMSAC algorithm, the candidate plant models

G(w2)(k) which are available for consideration at any time k
are determined by an underlying plant-generating operator:

G : We → map(N,P∗) (3.19)
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The dependence on w2 allows this set of candidate plants to

be determined adaptively.

The residual operator is of the form:

X : We → map(N,map(P ,R+)) : w2 7→ [k → (p 7→ rp[k])]
(3.20)

where rp[k] is said to be the residual of a plant Pp, p ∈ P
at time k ∈ N. The residual is a scalar that represents the

quality assessment of the associated plant model. In classical

MMAC it is the residual of the Kalman filter, or the weighted

cumulative output error of the associated observer. Alternative

residuals based on optimisations are considered in Section 4.

Note that all residuals considered will necessarily measure the

performance of the models over the full period [0, k].
At time k, the minimising operator M selects the plant

with the smallest residual which is available for switching (i.e.

which lies in G(w2)(k)):

M : (map(N,map(P ,R+)),map(N,P∗)) → map(N,P∗)
(3.21)[

k 7→ (p 7→ rp[k]), k 7→ G(k)
]
7→

[
k 7→ qf (k)

]
(3.22)

where

qf (k) := argmin
p∈G(k)

rp[k], ∀k ∈ N. (3.23)

If there are multiple minimising residuals, an arbitrary ordering

on G(k) is imposed a priori, i.e. G(k) = {p1, p2, · · · , pn},

and argminp∈G(k) rp[k] is defined to return the parameter

pi ∈ G(k) with the smallest index i such that rpi [k] is

minimal. Equation (3.23) also includes the implicit assumption

that a minimiser exists. In the scenario considered in this

paper, whereby G is finite or G is compact and p 7→ rp[k]
is continuous, this holds.

It would be natural at time k to utilize the controller

specified by plant qf (k). However, there is the potential for

instability to occur if the switches are too fast [16], hence the

purpose of the delay operator D is to ‘slow down’ the free

switching signal qf for long enough to prevent the potential

for these instabilities. We encode this information into the

‘transition delay’ function ∆ : P → N: to every plant

Pp, p ∈ P , we associate a minimum delay ∆(p) which must

elapse before another switch is permitted; the analogue of

the transition delay is taken by dwell time switching in other

versions of MMAC e.g. [18]. Here the transition delay is plant

dependent; this reduces the bounds, for if a uniform delay

is utilized, then the delay would be determined by the time-

scale of the response of the ‘slowest’ candidate closed loop

[Pp, Cp], which can produce larger than necessary transients

when a mismatched controller is switched into the loop. The

transition delays are design parameters and the required lower

limits on these delays will be determined by Assumption 13.

This leads to the following structure for the delay operator:

D : map(N,P) → map(N,P) (3.24)

[k 7→ qf (k)] 7→ [k 7→ q(k)] (3.25)

where q(k) is defined recursively:

q(k) :=

{
qf (k) if k − ks(k) ≥ ∆(q(ks(k)))

q(ks(k)) else
(3.26)

and where ks : N → N is given by

ks(k) := max{i ∈ N | 0 ≤ i ≤ k, q(i) 6= q(i− 1)}. (3.27)

Note that ks(k) returns the last time up to time k ∈ N

where the algorithm switches from one plant to another. The

switching operator is now given as follows:

S = DM(X,G) : We → map(N,P∗) : w2 7→ q.

Given a control design procedure K : P → C, the switching

controller

C : Ye → Ue : y2 7→ u2 (3.28)

is then defined via the switching signal q as follows:

u2(k) = CK(q(k))(y2 − Tks(k)−1y2)(k). (3.29)

By the definition of the truncation operator and equation

(3.26), note that y2(s) − Tks(k)y2(s) is zero for times s <
ks(k). Hence equation (3.29) ensures a zero initial condition

for the atomic controller CK(q(k)) when it is switched into

closed loop at time ks(k). Note that if X is causal and G
is causal, then S is causal. We therefore have arrived at the

closed-loop given by Figure 2 where all the involved sub

systems have been defined. Note that further structure on

the residual operator X has also been illustrated (including

operators N , E and the signals dp1 , . . . dpn ): see Section 4.

4. DISTURBANCE ESTIMATION

In this section we will impose conditions on the residual

operator X which permits the residual rp[k] to have the

interpretation of being a measure of the size of the disturbance

signals wp
0 = (up

0, y
p
0)

⊤ required to ‘explain’ the observation

w2 = (u2, y2)
⊤ in a manner consistent with the candidate

plant Pp on the interval [0, k]. We first formally define the

notion of disturbances which are consistent with a plant Pp

and an observation on a specified interval [a, b]:
Definition 4: Let a ≤ b, a, b ∈ Z. The set of weakly con-

sistent disturbance signals N [a,b]
p (w2) for a plant Pp, p ∈ P

and the observation w2 = (u2, y2)
⊤ is defined by:

N [a,b]
p (w2) :=

{

v ∈ W|[a,b]
∣
∣ ∃(up

0, y
p
0)

⊤ ∈ We s.t.

Rb−a,bPp (u
p
0 − u2) = Rb−a,b(y

p
0 − y2),

v = (Rb−a,bu
p
0,Rb−a,by

p
0)

}

.

where the restriction operator Rσ,t : S → R
h(σ+1) extracts a

finite window of a signal, i.e. for σ, t ∈ Z:

Rσ,tv := (v(t − σ), · · · , v(t)), v ∈ map(Z,Rh).

For the remainder of this paper we assume N [a,b]
p (w2) is

closed and convex for all a ≤ b ∈ Z, w2 ∈ We, noting

that if Pp is linear, then this holds.

We now give two examples of residual operators. Let k, λ ∈
N and w2 ∈ We, and define the infinite horizon operator:

XA(w2)(k)(p) = rAp [k]

= inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [0,k]
p (w2)}. (4.30)
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Pp∗

u0 y0
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‖ · ‖
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E(p1)

E(pn)

ENM

min

D

∆

arg

G
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dpn
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u2 y2

u2
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X

Fig. 2. The EMMSAC structure. The switch S outputs the switching signal q which determines the atomic controller choice CK(q(k)) . q is generated via

the delay operator D from the free switching signal qf , which in turn is generated from the minimization operator M acting on the residuals rp[k] from the
estimator X , where the admissible plants are detemined by the plant generating operator G. We also illustrate the internal structure of X as in Section 4.

Similarly, define the finite horizon operator:

XB(w2)(k)(p) = rBp [k] =
∥
∥
∥rBp [k − 1], ip[k]

∥
∥
∥, (4.31)

ip[k] = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [k−λ,k]
p (w2)}, (4.32)

where note that for lr: ‖a, b‖ = (|a|r + |b|r) 1
r if 1 ≤ r < ∞

and ‖a, b‖ = max{|a|, |b|} if r = ∞.

These examples illustrate the EMMSAC approach: control

selection is done via assessing the quality of the associated

models thorough an identification based procedure: models

are assessed on their ability to ‘explain’ the observed signals

(w2) with the ‘smallest’ disturbances (w0). Such a quality

assessment lends itself naturally to finite dimensional opti-

misations, and contrasts to the standard approach of MMAC

where model assessment is achieved via monitoring the output

of associated observers. Nevertheless, as we will see, estimator

A can be implemented by monitoring the output of Kalman

Filters, hence providing the linkage to standard MMAC.

The finite horizon estimator XB is recursive by construc-

tion, therefore the computational complexity of the direct

optimization does not depend on k ∈ N but only on the

complexity of the involved optimisation at each time step. The

direct optimisation is the computation of the optimal v0 to

determine ip[k], and this computation is bounded independent

of k ∈ N. The norm in (4.31) (also in (4.32)) can be taken

to be lr, 1 ≤ r ≤ ∞, giving rise to different optimisations.

Such standard optimisation problems can be solved by many

possible implementations, i.e. in the linear case via computing

a suitable pseudo inverse in l2 or via linear programming in

l1 or l∞, or convex programming in other norm settings. The

implementation of the estimators in the nonlinear setting is

discussed further in Section 6.3 where it is shown that linear

systems with input saturation have estimator optimisations

which can be solved by linear or quadratic programming.

The infinite horizon estimator XA has the direct inter-

pretation as generating the size of the smallest disturbances

compatible with the plant Pp and the observation w2 up

to the current time k. However, any direct implementation

of the optimisation defining the infinite horizon estimator

XA is not realisable (e.g. by using any of the optimisa-

tions methods described above for estimator B, but over the

horizon [0, k]), since the computational complexity of these

optimisation algorithms grows with k ∈ N. But, importantly,

in the l2 setting with linear plants, the residuals rAp [k] for

p = (A,B,C, 0) ∈ P̄LTI can be determined indirectly from

the residuals in a Kalman filter bank (see also [9]). With

x̂ : [0, τ ] 7→ R
n, τ ∈ N, Σ : N 7→ R

n×n, the discrete-time

Kalman filter equations are given as follows:

x̂(k + 1/2) = x̂(k)− Σ(k)C⊤[CΣ(k)C⊤ + I]−1

· [y2(k) + Cx̂(k)] (4.33)

Σ(k + 1/2) = Σ(k)− Σ(k)C⊤

· [CΣ(k)C⊤ + I]−1CΣ(k) (4.34)

x̂(k + 1) = Ax̂(k + 1/2)−Bu2(k) (4.35)

Σ(k + 1) = AΣ(k + 1/2)A⊤ +BB⊤ (4.36)

here the initial conditions are specified by Σ(0), x̂(0). As a

notion of the output error between the observation y2 and the

estimation of the Kalman filter, define the (scaled) residual

r : N → R
+ for τ ≥ 0 by

rKF(Σ)(τ) =

[
τ∑

k=0

‖y2(k) + Cx̂(k)‖2[CΣ(k)C⊤+I]−1

]1/2

.

Note that [CΣ(k)C⊤ + I]−1 is defined since it can be shown

that Σ(k) is positive semi-definite for all k ∈ N provided
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Σ(0) = Σ(0)⊤ ≥ 0. The key result establishing the equality

between the Kalman Filter residual and the infinite horizon

estimator is as follows:

Theorem 5: Let p = (A,B,C, 0) ∈ P̄LTI and suppose that

C is full row rank. Let the Kalman filter be described by

equations (4.33)–(4.36) with the interconnection specified by

(2.2) –(2.3). Let x̂(0) = 0 and Σ(0) = 0. Then

rKF(Σ)(τ) = rAp [τ ] = XA(w2)(τ)(p), ∀w2 ∈ We, τ ∈ N.

Proof: The proof can be found in [6] and is related

to previous work on the deterministic interpretation of the

Kalman Filter, see e.g. [27], [22].

This makes the realisation of XA(·)(·)(p) finite dimensional as

the Kalman filter algorithm is recursive — the computational

complexity is invariant to k ∈ N and is dependent only on the

order of the corresponding plant model p ∈ PLTI .

Finally we observe that the switching algorithm requires the

computation of the estimator X(w2)(k)(p) for all candidate

plant models p ∈ G(k). This is the limiting real-time com-

putational requirement of EMMSAC: bounds on the number

of candidate plant models required are the focus of Section

6. Note also that the computation involved in realising an

estimator bank is ideally suited to parallel computing, and may

be realised e.g. on GPU or FPGA architectures.

We now state five abstract estimator assumptions that the

residual operator is required to satisfy and on which the

subsequent analysis will rest, and show that both the infinite

and finite horizon residual operators, XA and XB , satisfy

these axioms. These axioms ensure that the residuals have an

interpretation as capturing the size of the smallest disturbances

compatible with the plant model and the observed signals. The

key to this interpretation is the requirement that X can be

factorised, X = NE, where N and E are norm and estimation

operators as defined next. For k ∈ N, p ∈ P the estimation

operator has the structure:

E : We → map(N,map(P ,map(N,Rh))) (4.37)

w2 7→
[
k 7→ (p 7→ dp[k])

]
(4.38)

where dp[k] : N → map(N,Rh) represents the time series of

the disturbance estimates at time k ∈ N corresponding to a

plant p ∈ P :

dp[k] = (dp[k](0), dp[k](1), . . . , dp[k](k), 0, · · · )

where h ∈ N∪{∞} depends on the plant. Note that, in general,

this estimate will not be recursive, i.e. Tkdp[l] 6= Tkdp[k],
l > k. The norm operator is defined:

N : map(N,map(P ,map(N,Rh))) → map(N,map(P ,R+))
(4.39)

[
k 7→ (p 7→ dp[k])

]
7→

[
k 7→ (p 7→ ‖dp[k]‖ = rp[k])

]
.

(4.40)

Assumption 6: Let λ ∈ R be given. The residual operator

X factorises X = NE where N is the norm operator, E is

an estimation operator, and:

1) (Causality): E is causal.

2) (Weak consistency): For all p ∈ P there exists a map

Φλ : map(N,Rh) → R
m(λ+1) × R

o(λ+1), such that for

all w2 ∈ We and for all k ∈ N,

ΦλE(w2)(k)(p) ∈ N [k−λ,k]
p (w2), and,

‖ΦλE(w2)(k)(p)‖ ≤ ‖Rλ,kE(w2)(k)(p)‖.
3) (Monotonicity): For all p ∈ P , for all k, l ∈ N with 0 ≤
k ≤ l and for all w2 ∈ We,

‖E(w2)(k)(p)‖ ≤ ‖TkE(w2)(l)(p)‖.
4) (Continuity): There exists a function χ : P × P → R

+,

χ(p, p) = 0 for all p ∈ P , such that for all k ∈ N, p1, p2 ∈ P
and w2 ∈ We,

‖E(w2)(k)(p1) − E(w2)(k)(p2)‖ ≤ χ(p1, p2)‖Tkw2‖.
5) (Minimality): There exists µ > 0 such that for all k ≥ 0,

for p ∈ P and for all (w0, w1, w2) ∈ W×We×We satisfying

equations (2.2)–(2.3) for P = Pp,

‖E(w2)(k)(p)‖ ≤ µ‖Tkw0‖.
The treatment of the finite and infinite horizon case in a

unified framework is possible since:

Proposition 7: Both XA and XB satisfy assumption 6.

Proof: See appendix.

In the case of estimator A, we can take χ = χA, where

χA(p1, p2) = sup
k≥0

‖Π[0,k]
p1

−Π[0,k]
p2

‖. (4.41)

In the case of estimator B, we can take χ = χB , where

χB(p1, p2) = (λ+1)
1
r max
0≤k≤λ+σ+1

‖Π[k−λ,k]
p1

−Π[k−λ,k]
p2

‖.
(4.42)

In the important case of l2, where r = 2, we can alternatively

take χ to be the l2 gap δ by the following bound:

Proposition 8: Let r = 2. Then χA(p1, p2) ≤ δ(p1, p2).
Proof: See appendix.

The continuity of χ (with respect to (w.r.t.) the gap topol-

ogy) plays an important role in establishing the existence of

finite dimensional EMMSAC controllers for uncertainty sets

described by compact continua (Proposition 17, Theorem 18

below). In the case of Estimator A in l2, continuity follows

from Proposition 8. For Estimator B in general lr, we have:

Proposition 9: Let 1 ≤ r ≤ ∞. Suppose Ω ⊂ R
n×n ×

R
n×m×R

o×n×R
o×m ⊂ PLTI is compact. Then χ : P×P →

R+∪{∞} as given by equation (4.42) is continuous on Ω×Ω.

Proof: See appendix.

5. STABILITY AND GAIN BOUND ANALYSIS

In this section we establish the underlying gain bounds for

EMMSAC algorithms. A key feature of the bounds is the

explicit appearance of terms related to the metric complexity

(or entropy) of the underlying uncertainty set rather than on the

complexity of the controller (as measured, for example, by the

number of candidate plant models). We will show in Section 6

that the results of this section lead to gain bounds for realisable

algorithms where it is the geometry of the plant model set

that influences the gain bound, rather than the absolute size

of the plant model set. In particular in some geometries the
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performance is independent of the candidate plant set size (e.g.

beyond a certain threshold, the gain bounds are independent

of the plant model density within a fixed uncertainty set).

The complexity of the underlying uncertainty set will be

captured through the notion of a cover of the uncertainty set.

Let U : We → map(N,P∗) be a monotonic plant-generating

operator. U has the role of specifying an uncertainty set we

seek to control at a given time k ∈ N. Let χ : P × P → R
+

be as in Assumption 6(4). Let

H : We → map(N,P∗) (5.43)

be a plant-generating operator. Let ν : We →
map(N,map(P ,R+)) be given. As in Section 3 we write

U(k), H(k), ν(k) for U(w2)(k), H(w2)(k), ν(w2)(k) respec-

tively. Now define

Bχ(p, ν(k)(p)) := {p} ∪
{
p1 ∈ P |

χ(p, p1) < ν(k)(p)
}
∩ U(k), p ∈ P , k ∈ N. (5.44)

For an appropriate choice of H, ν, the union of the correspond-

ing neighbourhoods in U then leads to a cover for U :

Definition 10: (H, ν) is said to be a monotonic cover for a

plant-generating operator U if ∀k ∈ N, w2 ∈ We:

1) H and ν define a cover for U :

U(k) ⊂ R(k) := ∪p∈H(k)Bχ(p, ν(k)(p)).

2) The cover is monotonic: R(k) ⊂ R(k + 1), ∀k ∈ N.
(H, ν) is said to be a finite cover if H(k) is a finite set for

all k ∈ N, w2 ∈ We.

Sufficient conditions for the existence of a finite cover (H, ν)
for U will be established in Section 6. We will utllize the

objects U,H, ν,G in the following way:

• U is the uncertainty, or more precisely U specifies the

uncertainty set,

• The cover (H, ν) for U is the device by which we assess

the ‘complexity’ of the uncertainty U ,

• G is an appropriate sampling of the uncertainty set U and

determines the candidate plant set used by the controller.

See Figure 3. (H, ν) is the device by which we are able to

U(k)
ν(p)(k)

ν(q)(k)
p

q

∈ G(k)
∈ H(k)

Fig. 3. Uncertainty set U(k), cover (H(k), ν(k)), candidate plant set G(k).

express gain bounds which scale in terms of the number of

elements of |H(k)| rather than the size of the set G(k).
The static version of EMMSAC has G as a constant opera-

tor, which is well suited to the case where U is also constant

and U is used to directly describe the structured uncertainty

set; for example U(k) = Pamax for all k ∈ N, where

Pamax =
{
(a, 1, 1, 0) ∈ P̄LTI ⊂ R

4 | a ∈ R, |a| ≤ amax

}
.

G would then represent a suitable sampling of the un-

certainty set Pamax , for example with ǫ > 0, G(k) =
{
(nǫ, 1, 1, 0) ∈ P̄LTI ⊂ R

4 | n ∈ Z, nǫ ≤ amax

}
.

The time varying nature of the operators is motivated by

the requirements of dynamic EMMSAC. A typical dynamic

EMMSAC algorithm varies the candidate plant set available

at time K specified by G(k) until some performance require-

ment is met. For example, if the uncertainty was unbounded,

e.g. it is only known that the true plant p∗ lies in the set

P∞ =
{
(a, 1, 1, 0) ∈ P̄LTI ⊂ R

4 | a ∈ R
}

, then we could

choose G(k) = Pi(k) where i(0) = P0 and i(k) = i(k − 1)
if performance is satisfactory, else i(k) = i(k − 1) + 1.

Dynamic EMMSAC formalises this process of expansion of

the uncertainty set by choosing G dependent on the magnitude

of the observations w2, indeed in [7] we give an explicit

example of such an algorithm.

We impose the following constraint on the set PU :

Assumption 11: Let PU ⊂ P have the property:

σ := max
p1,p2∈PU

max{σ(p1), σ(K(p2))} < ∞.

After observation of the signals w1, w2 for σ time steps, the

initial condition of any closed loop [Pp1 , CK(p2)], p1, p2 ∈ PU

is uniquely determined. Further, we assume:

Assumption 12: The delay transition function ∆ : P → N

satisfies ∆(p) > σ, ∀p ∈ PU .
Assumptions 11 and 12 combined therefore ensure that there

is sufficient time between controller switches to determine the

initial conditions associated to any of the possible closed loops.

In the ‘standard’ EMMSAC design, the delay transition

function represents a sufficient period of time to ensure that

each atomic controller provides enough of a stabilising effect

on it’s associated plant before it can be switched away. This

is formalised as follows:

Assumption 13: The control design K and delay transition

function ∆ satisfies:

J(ξ) sup
p1∈PU

αξ(p1,K(p1),∆(p1)− σ, σ) < 1

where ∆ satisfies Assumption 12, α is defined in Assumptions

2 and for 1 ≤ x, y < ∞ we define ⌊c⌋ := max{n ∈ Z | n ≤
c},

(
x
y

)

:= x!
y!(x−y)! and J(ξ) = ξ

(
ξ

⌊ξ/2⌋

)

.

We note that Assumption 13 is achievable by design. Given K
satisfying Assumption 2(2) a transition delay function ∆ exists

which meets Assumption 13. For linear systems, by consider-

ing the expression for α in equation (3.17), it can be seen that

powers of the closed loop matrix A associated to [Pp, CK(p)]
will determine the necessary lower bound on ∆p. For a given

control design, this can be bounded by considering the pseudo-

spectra of A [24], or simply assessed numerically. We also

remark that the minimisation of the transient generated by the

powers of A may be a legitimate target of the control design

K e.g. through pole placement (at the extreme, a dead-beat

design sets A = 0). Alternatively the complete design freedom

available to the atomic design can be exploited and good
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transient performance can be indirectly ensured via designs

such as mixed H2/H∞ [15], LQR etc. and suitable values for

∆p can be determined post-design by the preceding comments.

In the examples in this contribution the designs are: LQR ([7,

Section 7]) and proportional (Section 6.2). Further examples

include an EMMSAC design for a pendulum system using pole

placement [9], and LQR controllers with nonlinear inversion

for an application of EMMSAC to electrical stimulation of

human muscle [5].

The construction of each K(p), ∆(p), p ∈ PG by

hand is possible for small uncertainty sets, although this

will not be feasible in many situations, i.e. if PG is large

or unknown. Automated design procedures for K and ∆
can for example be implemented by using (the code from)

suitable MATLAB toolboxes, e.g. to automatically construct

stabilising H∞, LQR, PID controllers. The design challenge

is then to set suitable parameters for the automation (e.g. plant

parameterised weights in H∞ design process); this may be

achieved, for example, by extensive off-line simulations. For

constant G, these designs would be typically computed a-

priori, however, in many dynamic schemes, the controllers can

be constructed on-line: only one controller is active at a time,

hence only a single controller and corresponding delay needs

to be calculated every time the algorithm performs a switch.

Hence determining the controller and delay on-line reduces

the (possibly infinitely large) computational complexity of

determining K and ∆ off-line to a single computational

operation every time a switch occurs. We can therefore trade

off memory size and computational off-line resource versus

computational on-line resource, or have a hybrid of both.

The following definition now defines the general class of

EMMSAC controllers considered.

y1 = Pu1 (2.2)

u0 = u1 + u2, y0 = y1 + y2 (2.3)

u2 = Cy2 (2.4)

X : We → map(N, map(P,R+)) : w2 7→ [k → (p 7→ rp[k])] (3.20)

G : We → map(N,P∗) (3.19)

M : (map(N, map(P,R+)), map(N,P∗)) → map(N,P∗) (3.21)

[

k 7→ (p 7→ rp[k]), k 7→ G(k)
]

7→
[

k 7→ qf (k)
]

(3.22)

qf (k) := argmin
p∈G(k)

rp[k], ∀k ∈ N (3.23)

D : map(N,P) → map(N,P) (3.24)

[k 7→ qf (k)] 7→ [k 7→ q(k)] (3.25)

q(k) :=

{

qf (k) if k − ks(k) ≥ ∆(q(ks(k)))
q(ks(k)) else

(3.26)

ks(k) := max{i ∈ N | 0 ≤ i ≤ k, q(i) 6= q(i− 1)} (3.27)

C : Ye → Ue : y2 7→ u2 (3.28)

u2(k) = CK(q(k))(y2 − Tks(k)−1y2)(k) (3.29)

TABLE I
RELEVANT EQUATIONS FOR DEFINTION 14 AND THEOREMS 15,18.

Definition 14: An EMMSAC controller C(U,K,∆, G,X)
is said to be standard if it satisfies:

• K : P → C is a given control design satisfying

Assumption 2(1),(2).

• U satisfies assumption 11 for σ < ∞.

• ∆ : P → N is a delay transition function satisfying

Assumption 12.

• K , ∆ satisfy Assumption 13.

• E satisfies Assumptions 6(1)–(5) where

λ = max
p∈PU

(2∆(p) + σ). (5.45)

• The switching operator S = DM(X,G) is given by

equations (3.19)–(3.23) and (3.24)–(3.27).

• The switching controller C is defined by equations

(3.28),(3.29).

The following Theorem establishes a gain bound where

a bias term arises from the behaviour of the system on an

interval [0, k∗) and a gain term depends on the behaviour on

[k∗,∞]. Here k∗ ∈ N ∪ ∞ is defined by equation (5.47),

and is the first time at which a matching condition w.r.t. p∗
and G(k) is satisfied (either exactly (ε = 0) or approximately

(ε > 0)). The interval [0, k∗) is analysed under no assumption

of the (approximate) presence of p∗ in the candidate plant

set as specified by G(k), and the period [k∗,∞] captures

the behaviour of the closed loop once (an approximation of)

the plant p∗ is available to the switching mechanism. In the

classical (static) setup (e.g. [11, 9, 13, 18, 19]) we have

p∗ ∈ G(j) = G(k), ∀j, k ∈ N so k∗ = 0. The case k∗ > 0
arises in dynamic EMMSAC.

In order to define the time k∗ ≥ 0 by equation (5.47), we let

0 = l0 ≤ li < li+1 form the ordered sequence of times when

the switching sequence changes value, i.e. when q(li − 1) 6=
q(l)i and define

Q∞ = ∪i≥0[li, li+1] ∩ {li + b∆(q(li)) | b ∈ N}. (5.46)

The main result establishes closed loop gain bounds for both

dynamic and static EMMSAC.

Theorem 15: Let 1 ≤ r ≤ ∞. Let P = Pp∗
, where p∗ ∈

PU ⊂ P . Let U be a monotonic plant generating operator and

suppose (H, ν) defines a monotonic finite cover for U . Let

k ∈ N. Suppose the EMMSAC controller C(U,K,∆, G,X)
is standard, and G(j) ⊂ U(j), j ≤ k. Suppose (w0, w1, w2) ∈
W ×We ×We satisfy the closed loop equations (2.2)–(2.3).

Let ε > 0. Let

k∗ :=







min{i ∈ Q∞ | ∃ p ∈ G(i), χ(p, p∗) ≤ εχν(H, ν)}
if ∃i s.t. ∃ p ∈ G(j), χ(p, p∗) ≤ εχν(H, ν), ∀j ≥ i,
∞ if not

(5.47)

and suppose k∗ < ∞. If

π(U(j), H(j), ν(j), ε, p∗) > 0, ∀j ≤ k (5.48)

then:

‖Tkw2‖ ≤ β(U(k), H(k), ν(k), ε, p∗)‖Tk∗−1w2‖
+γ̂(U(k), H(k), ν(k), ε, p∗)‖w0‖ (5.49)

where π, β, γ̂ are given in Table II. Proof: See [7]
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For Q1 ⊂ PU and ξ =

{

r for 1 ≤ r < ∞
1 for r = ∞

let:

J(ξ) = ξ

(

ξ
max{n ∈ Z | n ≤ ξ/2}

)

where

(

x
y

)

:=
x!

y!(x− y)!
,

αOP (Q1) = J(ξ) sup
p1∈Q1

αξ(p1, K(p1),∆(p1)− σ, σ)

βOP (Q1) = J(ξ) sup
∆(p1)≤x≤2∆(p1)

p1∈Q1

βξ(p1,K(p1), x− σ, σ)

αOS(Q1) = J(ξ) sup
∆(p1)≤x≤2∆(p1)

p1∈Q1

αξ(p1,K(p1), 0, x− σ)

βOS(Q1) = J(ξ) sup
∆(p1)≤x≤2∆(p1)

p1∈Q1

βξ(p1,K(p1), 0, x− σ)

γ1(p, p∗) = 1 + sup
∆(p)≤x≤2∆(p)

α(p∗,K(p), 0, x)

γ2(p, p∗) = sup
∆(p)≤x≤2∆(p)

β(p∗,K(p), 0, x),

γ̄i(Q2,Q1) = sup
p2∈Q2

sup
p1∈Q1

γ1(p2, p1), i = 1, 2,

If 1 ≤ r < ∞ let:

γ3(Q1) = (1 + α
1/r
OS (Q1))

(

αOP (Q1)

1− αOP (Q1)

)1/r

+ α
1/r
OS (Q1)

γ4(Q1) = (1 + α
1/r
OS (Q1))

(

βOP (Q1)

1− αOP (Q1)

)1/r

γ5(Q1) = β
1/r
OS (Q1),

and if r = ∞ let:
γ3(Q1) = max{1, αOS(Q1))}αOP (Q1) + αOS(Q1)

γ4(Q1) = max{1, αOS(Q1)})
βOP (Q1)

1 − αOP (Q1)

γ5(Q1) = βOS(Q1).

For Q2 ⊂ PH , v : P → R
+, µ > 0, ε > 0 let:

χν(Q2, v) = 2 sup
p∈Q2

v(p)

π(Q1,Q2, v, ε, p
∗) = 1− 21/rεχν(Q2, v)(1 + γ̄2

1(Q2,Q1)) ·

·
(

γ4(Q1) + γ5(Q1)
)

η(Q2, v, ε, p∗) = 21/r(µ+εχν(O2, v)γ̄2(O2, {p∗})(1+γ̄1(Q2, {p∗})))

β(Q1,Q2, v, ε, p∗) =

(

1 + γ3(Q1)

π(Q1,Q2, v, ε, p∗)

)|Q2| ∏

p∈Q2

γ1(p, p∗)

γ̂(Q1,Q2, v, ε, p∗) = β(Q1,Q2, v, ε, p∗)





∑

p∈Q2

γ2(p, p∗)+

η(Q2, v, ε, p∗)
γ4(Q1) + γ5(Q1)

π(Q1,Q2, v, ε, p∗)

)

.

TABLE II
FUNCTIONS SPECIFYING THE GAIN BOUND.

A detailed discussion of the interpretation of the terms in the

above bounds can be found in the companion paper [7]. Prior

to fully exploiting the implications of this result in Section 6,

we make some observations. There are two principal condi-

tions under which Theorem 15 holds. The requirement that the

design is standard, incorporates Assumption 13 which requires

the condition that αOP (U(j)) < 1. As discussed previously,

this is a condition on the atomic controllers which is achievable

by design. The second condition (inequality (5.48)) relates

the allowable cover H to the underlying uncertainty set U .

Proposition 17 below shows how a construction of a finite

cover H meeting inequality (5.48) can be achieved for the

case of compact U .

We discuss three special cases. Firstly if the structured

uncertainty set is finite, as for example in the case of seek-

ing to stabilize a discrete integrator with unknown sign:

p∗ = (A,B,C,D) ∈ {(1, 1, 1, 0), (1,−1, 1, 0)} ⊂ P̄LTI , then

we can choose G = U to be constant, G(k) = U(k) =
{(1, 1, 1, 0), (1,−1, 1, 0)} ⊂ P̄LTI . Then taking H = G,

ν = 0, yields gain bounds for any stabilising atomic con-

trollers, where note that we can take ε = 0, and hence k∗ = 0.

Consequently, Theorem 1 provides robustness margins.

Secondly, in the case where the underlying uncertainty

set is a continuum, for example, if p∗ ∈ Pamax =
{
(a, 1, 1, 0) ∈ P̄LTI ⊂ R

4 | a ∈ R, |a| ≤ amax

}
, then choos-

ing G = U to be constant, G(k) = U(k) = Pamax ,

together with a continuum of stabilising controllers, yields

finite gain bounds (where again we can take ε = 0 and hence

k∗ = 0) provided H is a finite cover (we provide sufficient

conditions for this in Proposition 17 below). Such an infinite

dimensional controller has a robustness margin provided by

Theorem 1 but will not be directly implementable. However,

in the following Section 6 we will show how the underlying

infinite dimensional controller can be sampled to produce a

realisable design with guaranteed robustness margins, based

on a finite candidate plant model set of appropriate geometry.

This realisation will be based on an application of Theorem

15 with G 6= U .

The third case is also in the setting where the underlying

constant uncertainty set U is a continuum. Suppose K is a

stabilising control design where K(U) ⊆ {C1, . . . , Cn}, that

is, such that each p ∈ U is stabilised by K(p) which is one of

{C1, . . . , Cn}. In Section 6 it is shown that by taking ε > 0
to be sufficiently small we can determine a suitable cover G
thus determining a suitable estimator structure for the given

controller bank (again with k∗ = 0). This procedure typically

yields multiple plant estimators per atomic controller.

The gain bound in Theorem 15 is a function of the complex-

ity of U , as measured by (H, ν), and U itself, however is in-

variant to the number of elements in either U or G. Instead the

gain bound scales (exponentially) with the number of elements

in H . This is a substantial improvement on previous bounds,

which scaled exponentially with the number of elements in the

candidate plant set (i.e. with G). For example, this invariance

suggests that there is no disadvantage in having a large number

of high fidelity models in the candidate plant set (we will

return to this point in Section 6). In Proposition 17 below we

show that for compact operators U , suitable covers H exist and

we bound the size of H (and hence the exponential exponents

in the gain bound) in terms of the metric entropy of U(j),
j ∈ N where the metric entropy of a set Ω with distance χ
and ζ > 0 is given by:

CE(χ,Ω, ζ) = min{n ∈ N | h = {p1, . . . , pn} ⊂ P
Ω ⊂ ∪p∈h{q ∈ P | χ(p, q) < ζ} }.

A higher complexity implies less prior information. This

concept of interlinking information with complexity is due to

[28], where it is utilised to seek to define the term ‘adaptive’
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in a control context.

Definition 16: Let σ ∈ N. Let U be a plant-generating oper-

ator. Let α, β be defined by Assumptions 2 and let ∆ : P → N

be the transition delay function. A control design K : P → C
is said to be U regular if for all ∆(p) ≤ x ≤ 2∆(p),
the functions α(p,K(p),∆(p)− σ, σ), β(p1,K(p), x− σ, σ),
α(p1,K(p), 0, x − σ), β(p1,K(p), 0, x − σ), x ∈ N are

continuous with respect to all p1, p ∈ PU .

The key result establishing the existence and complexity of a

finite cover is given next. It is dependent on the continuity

of χ, as for example established by Propositions 8, 9 for

XA (r = 2) and XB (1 ≤ r ≤ ∞) respectively. Note also

that the continuity and compactness requirements are w.r.t.

the topology on P induced by the nonlinear gap δ(·, ·).
Proposition 17: Let U be a compact plant-generating op-

erator and suppose K is U regular. Suppose PU is bounded

and χ is continuous on PU × PU . Suppose αOP (U(j)) < 1.

Let k ∈ N and j ≤ k. Let ε > 0. Then there exists a finite

cover (H, ν) of U which satisfies inequality (5.48). The size

of the cover is bounded:

#H(j) ≥ CE
(

χ,U(j),2−(r+1)/rε−1(1 + γ̄2
1(PU ,PU ))−1

(
γ4(U(j)) + γ5(U(j))

)−1
)

. (5.50)

Proof: Let j ≤ k ∈ N. Since U is compact

and K is U regular it follows that αOP (Q) =
J(ξ) supp1∈Q αξ(p1,K(p1),∆(p1) − σ, σ) < ∞,

for Q ⊂ PU . Similarly, αOS(U(j)) < ∞ and

βOP (U(j)) < ∞. By assumption αOP (U(j)) < 1 and

hence γ4(U(j)), γ5(U(j)) are defined. Let 0 < ζj <
(
2(r+1)/rε(1 + γ̄2

1(PU ,PU ))
(
γ4(U(j)) + γ5(U(j))

)−1
.

Since χ|PU×PU is continuous, it follows from equation

(5.44) that Bχ(p, ζj) is open for p ∈ PU and hence

{Bχ(p, ζj)}p∈U(j) is an open cover of U(j) with

respect to the subspace topology of U(j). Since U(j)
is compact, there exists a finite set hj ⊂ U(j) such that

{Bχ(p, ζj)}p∈hj covers U(j). Let νj(p) = ζj , ∀p ∈ P
hence (hj , νj) ∈ (PU ,map(P ,R+)) is a finite cover of

U(j). We construct a monotonic cover (H, ν) by letting

H(k) = ∪j≤khj , ν(k)(p) = minj≤k ζj , ∀p ∈ PH .

Since p∗ ∈ PU , H(j) ⊂ U(j) it follows that

γ̄1(H(j), {p∗}) ≤ γ̄1(PU ,PU ), and since νj is constant it

follows that ζj = 1
2χνj (hj , νj) and hence equation (5.48)

holds. By construction, the size of H(j) is given by the right

hand side of (5.50).

6. DESIGN

We consider the case of design for a compact structured

uncertainty set, for example as specified by a closed and

bounded parametric uncertainty Ω ⊂ P . U is taken to be

a constant, compact plant generating operator representing

the uncertainty: U(j) = Ω, j ∈ N. Determining stability

guarantees for feasible MMAC controllers where the uncer-

tainty is given by a continuum has been a central topic in

the literature [14], and is unresolved in general, with the

exception of [17] where a structured switching mechanism

achieves the requisite stability. Section 5 has established a

complexity dependent gain bound, applicable to EMMSAC

controllers C(U,K,∆, G,X) which can be applied with G =
U , i.e. to C(U,K,∆, U,X), however, this typically yields

an unrealisable infinite dimensional controller (for example if

the uncertainty U represents a continuum, then a continuum

of estimators are required, and the atomic control design K
generally represents a continuum of distinct controllers). In

this section we give a principled route to constructing a finite

dimensional controller (based on a finite number of estimators)

which robustly stabilises all plants in the uncertainty set and

inherits a gain bound which is quantifiably close to the original

bound. Additionally, and as an alternative route, we show that

by starting from a stabilising atomic control design based

on only a finite number of controllers, we can construct a

corresponding finite dimensional estimator structure yielding a

stabilising EMMSAC controller. As the optimal χ cover gives

a measure of the complexity of the underlying uncertainty,

we can thus interpret both routes as design processes which

take the uncertainty description (U ) and yield a concrete algo-

rithm C(U,K,∆, G,X), together with associated complexity

dependent gain bounds.

A. Candidate plant sampling of compact uncertainty sets

Suppose that for a given constant and compact uncertainty

set U , the cover (H, ν) satisfies inequality (5.48). The final

design step is then to construct a suitable finite plant model set

G whose associated EMMSAC controller C(U,K,∆, G,X)
has guaranteed robust stability. Since the gain bounds of The-

orem 15 and hence the robust stability margins (determined by

Theorem 1) are independent of G, all that is now required is to

ensure that the true plant either lies inside the candidate plant

set, or lies sufficiently close to an element within the candidate

plant set, where the maximum distance is determined by the

robust stability margin given by Theorem 15. Here it is critical

that the gain bound (and hence the robust stability margin) is

independent of G – in the previous literature the gain bounds

scaled with the size of the candidate plant set, hence the

margins decreased as the plant set grew, and so it was unclear

whether it was possible to give a stabilisation guarantee for all

plants within a continuum – for large candidate plant sets the

margins were smaller, so it may not have been possible to find

a plant set whereby the whole of the uncertainty was included

within the the union of the plants guaranteed to be stable via

the robustness margins, see [14] for a similar discussion.

To specify the number of candidate plants required, we

introduce a notion of metric entropy where non-uniform neigh-

bourhoods are considered. Given ζ : Ω → R+, the functional

metric entropy CfE is given by:

CfE(~δ,Ω, ζ) = min{n ∈ N | h = {p1, . . . , pn} ⊂ P
Ω ⊂ ∪p∈h{q ∈ P | ~δ(p, q) < ζ(p)} }.

In turn this is bounded by the standard metric entropy of PU :

CfE(~δ,PU , ζ(p)) ≤ CE(~δ,PU , ζ̄), where ζ̄ = infp∈PU ζ(p).
We note that constructing candidate plant sets via covers of

the uncertainty sets has its antecedents in, for example, [8],

[2], [14], [20].
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Theorem 18: Let U be a constant, compact plant-generating

operator. Suppose the EMMSAC controller C(U,K,∆, U,X)
is standard. Suppose there exists a function γ̂ : P → R

such that ‖ΠC(U,K,∆,U,X)//Pp
‖ ≤ γ̂(p), for all p ∈ PU .

Let 1 > ξ > 0. Then there exists a constant plant gener-

ating operator G(k) = {p1, . . . pn}, ∀k ∈ N, where n =
CfE(~δ,PU , ξγ̂(·)−1) < ∞, and,

d(p) := inf
pi∈G(0)

~δ(pi, p) < ξγ̂(pi)
−1, ∀p ∈ PU . (6.51)

For all p∗ ∈ ∪p1∈PG{p ∈ P | ~δ(p1, p) < d(p)},

‖ΠPC(U,K,∆,G,X)//Pp∗
‖ ≤ ξ(1 + d(p∗))

(1− ξ)d(p∗)
. (6.52)

Furthermore, any monotonic plant generating operator G sat-

isfying (6.51) also yields the gain bound (6.52).

Since ΠPp∗//C(U,K,∆,G,X) = I − ΠC(U,K,∆,G,X)//Pp∗
, it

follows that under the conditions of Theorem 18, that

[Pp∗
, C(U,K,∆, G,X)] has the property that

‖Tkw1‖ ≤ 1 + ξ

(1− ξ)d(p∗)
‖Tkw0‖ ∀k ≥ 0.

Proof: Since Ω is compact, and by the definition of

CfE , there exists p1, . . . , pn ⊂ P , n < ∞ such that for all

p ∈ PU , ~δ(pi, p) < ξγ̂(pi)
−1 for some 1 ≤ i ≤ n. Hence

by choosing G to be the constant plant generating operator

G(k) = {p1, . . . , pn}, it follows that inequality (6.51) holds.

Let p∗ ∈ PU and let 1 ≤ i ≤ n be such that ~δ(pi, p∗) =
d(p∗) < ξγ̂(pi)

−1. Then by Theorem 1,

‖ΠPp∗//C(U,K,∆,G,X)‖ ≤ γ̂(pi)
1 + ~δ(pi, p∗)

1 − ~δ(pi, p∗)γ̂(pi)
,

thus yielding inequality (6.52). This holds for any G satisfying

inequality (6.51) as required.

The condition of the theorem, i.e. the existence of γ̂ : P →
R such that ‖ΠC(U,K,∆,U,X)//Pp

‖ ≤ γ̂(p), for all p ∈ PU , is

exactly the form of the bound supplied by Theorem 15 (with

G = U ) noting that k∗ = 0 since p ∈ U(0). Additionally it is

important to note that by taking γ̂(p) = ‖ΠC(U,K,∆,U,X)//Pp
‖,

the result shows how the true gains ‖ΠC(U,K,∆,U,X)//Ppi
‖ and

‖ΠPC(U,K,∆,G,X)//Pp∗
‖ are related.

If G is constant then this theorem shows that a system with

a compact uncertainty can always be robustly stabilised by

a MMAC algorithm with a fixed, finite candidate model set.

To determine an appropriate geometry for the candidate plant

set, we have to construct a covering of U by gap balls as

determined from Theorem 15, and we can then take G to

comprise the centres of these neighbourhoods. Theorem 18

also caters for the case where G is time varying. For a compact

uncertainty set, this may arise by a dynamic mechanism which

‘refines’ the candidate plant model set over time, introducing

new higher fidelity models and controllers as required, see [7].

If computational resource is unlimited we may include as

many plant models in G ⊂ U as we like without weakening

the gain bounds from Theorem 18. Furthermore when G = U
the bounds are minimised and collapse to the one in Theorem

15. This leads to the pragmatic guideline: populate the candi-

date plant set at as high a resolution as the implementation

hardware constraints permit. An apparent ‘over-population’

of plant models may arise also from a lack of tightness in

the bounds utilized in the design process. So this is a rather

unusual situation: bounds which may not be tight are required

to be used in a design process; but performance does not

degrade with the conservatism of these bounds.

B. Determination of an estimator for a fixed controller bank

By exploiting the fact that the control design K is not

required to be injective, we can choose a stabilising control

design s.t. K(U) ⊆ {C1, . . . , Cn}, that is, such that each

p ∈ U is stabilised by K(p) which is one of a fixed a-

priori chosen bank of controllers {C1, . . . , Cn}. There are

a variety of means to obtain such designs, for example

the mixed µ and % FNARC technique of [8]. By now

taking ε > 0 to be sufficiently small, we can construct a

constant cover (G, ρ) which satisfies the dual requirement

that π(U(j), H(j), ν(j), ε, p∗) > 0 (inequality (5.48)) where

ρ = εχν(H, ν) and that χ(p, p∗) < ρ for all p ∈ G, p∗ ∈ U
(equation (5.47)). Note that the construction of G does not

require the construction of H . H is only required to determine

performance bounds, and the trade-off between ε and χν(H, ν)
is not relevant at the design stage. Typically, there are multiple

estimators corresponding to each controller.

We illustrate this process in the following academic example

which is chosen to enable exact computation, although this

procedure remains tractable on more complex examples with

numerical computation. We consider SISO LTI plants defined

by the uncertainty set: U = UI = {x ∈ R
4 : x =

(a1, 1, 1, 0), a1 ∈ I}, M > 0; our final numerical results

will be for I = [N,M ] where N = 0.7, M = 1.2. We

consider proportional controllers, with the design requirement

that each controller Ci achieves closed loop pole placement

within the disk of radius d = 0.14 centred at 0 for each

associated plant, i.e. for every plant in U ∩ K−1(Ci). A

straightforward calculation shows that 2 controllers suffice

with gains 0.84, 1.12 corresponding to C1, C2 respectively,

with K−1(C1) ∩ U = U[0.7,0.98], K
−1(C2) ∩ U = U(0.98,1.2].

Since σ(p) = 1, σ(K(p)) = 0, it follows that we can take

∆(p) = σ = 1 for all p ∈ U . EMMSAC will be implemented

by Estimator B, with λ = 1. It follows that µ = (λ + 1)
1
r =√

2, and ‖c‖ =
√
2.

Some lengthy (but elementary) calculations establish:

αOS(U) = αOP (U) ≤ 4(1 +M2)d2(1 + d2),

βOP (U) ≤ 4(1 +M2)((4 + 2M2),

+d2(2 + 2M2) + d4(1 +M2)),

βOS(U) ≤ 8(1 +M2)2(1 + d2).

Hence αOP(U) = αOS(U) ≤ 0.4, βOP (U) ≤ 67.81 and

βOS(U) ≤ 48.56. Consequently, γ4(U) ≤ 10.85 and γ5(U) ≤
6.99. Similar computations show

γ̄1(U,U) ≤ 1 + (1 +M2)
√

D2 +D4 +D6 = 1.89

where D = N − M = 0.5. We next compute χ(p1, p2).
Let x1 = (1,−a1,−1)⊤, x2 = (1,−a2,−1)⊤, x̂1 =
x1

‖x1‖ , x̂2 = x2

‖x2‖ , wk = (y2(k), y2(k − 1), u2(k − 1)⊤.
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The projection Πk
pi

:= Π
[k−λ,k]
pi , i = 1, 2 is given by

Πk
pi
(w2) = x̂⊤

i wkx̂i, so χ(p1, p2) = maxk≥0 ‖Πk
p1

− Πk
p2
‖ =

maxk≥0 max{‖Πk
p2
(I − Πk

p1
) ‖, ‖(I − Πk

p2
)Πk

p1
‖}. Since

‖Πk
p2
(I − Πk

p1
) ‖ = sup‖wk‖=1 ‖x̂⊤

2 (wk − x̂⊤
1 wkx̂1)x̂2‖ =

sup‖wk‖=1 ‖(x̂2 − x̂⊤
1 x̂2x̂1)

⊤wkx̂2‖ = ‖(x̂2 − x̂⊤
1 x̂2x̂1)‖, and

similarly, ‖(I − Πk
p2
)Πk

p1
‖ = ‖x̂1 − x̂⊤

2 x̂1x̂2‖ = ‖(x̂2 −
x̂⊤
1 x̂2x̂1)‖, it follows that:

χ(p1, p2) = ‖x̂2 − x̂⊤
1 x̂2x̂1‖ (6.53)

= (1− (x̂⊤
1 x̂2)

2)
1
2 =

√

2(a1 − a2)2

(2 + a21)(2 + a22)

By the definition of π(U,Q2, ǫ) and by the bounds on

γ4(U), γ5(U) and γ̄1(U,U) we can obtain the requirement

ρ := εχν(Q2, ǫ) ≤ 0.00864. To determine the estimator struc-

ture, when G = H , we need to find a constant (G, ρ) cover,

where ρ = 0.00864/2. We solve this by finding points an such

that χ(an+1, an) = 0.00864 = δ. That is, solving the iteration

(from (6.53)): an+1 = −b+
√
b2−4ac
2a where a = 2−2δ2−δ2a2n,

b = 4an and c = 2a2n−2δ2a2n−4δ2, initialized with a0 = 0.7.

This yields 17 estimators a0 = 0.7, . . . , a16 = 0.963 corre-

sponding to the controller C1. Initializing the iteration again at

a17 = 0.98 yields 12 estimators a17 = 0.980, . . . , a28 = 1.194
corresponding to controller C2.

Due to the high degree of correlation between the estimator

residuals of nearby estimators, a far courser grid of estimators

is likely to remain effective. This is supported by indicative

simulations, and remains a rich area for further theoretical

studies. It is relevant to contrast this design procedure to results

to [29, 23, 26, 3], where stabilising schemes based on model

falsification require only a feasibility assumption, that is they

can be built with the minimum number of (atomic) controllers

required to stabilize the uncertainty set U . The above design

process shows that MMAC can also be based on a limited

number of stabilizing controllers: it is the estimator structure

which may require a larger number of candidate plants: note

that this has no analogue in falsification schemes.

C. Nonlinear systems: input saturation

Although our presentation has in the most part been ori-

ented towards linear systems, a key feature of the axiomatic

framework is that no assumption of linearity is made. The

tractability of the EMMSAC in the nonlinear setting rests on

a) the ability to achieve the controller assumptions (e.g. gain

stability for the atomic closed loops) and b) the feasibility

of the implementation of the optimisation required by the

estimator. For linear systems and for lr, 1 ≤ r ≤ ∞ signal

spaces, estimator B reduces to standard convex optimisations

(linear, quadratic programming etc). In the more general

setting, the direct estimator optimisations may not be tractable,

unless restrictive convexity assumptions are imposed; however,

the following example shows that there are important nonlinear

cases for which EMMSAC is implementable.

We first establish a result that shows that the optimisation

required within the finite horizon estimator for a linear system

with saturation (i.e. the computation of ip[k] (equation (4.32))

is equivalent to a constrained optimisation problem, which in

turn is solvable by standard convex optimisations:

Proposition 19: Let 1 ≤ r < ∞. Let p = (A,B,C, 0) ∈
P̄LTI , p̃ = (p, S) and define Pp̃ = Pp ◦ SATS , where

SATS(u)(k) =

{

u(k) if |u(k)| ≤ S
u(k)
|u(k)| if |u(k)| > S.

Then, i(p,S)[k] is determined by the following convex optimi-

sation:

i(p,S)[k] = min
v0∈N1

‖v0‖

where N1 = {(u0, y0)
⊤ ∈ W | (u0, y0)

⊤ ∈
N [k−λ,k]

p (u2, y2)
⊤, |u0(t)− u2(t)| ≤ S, t ∈ [k − λ, k]}.

Proof: Let N2 = N [k−λ,k]
(p,S) (u2, y2)

⊤. Clearly N1 ⊂ N2,

since if v = u0(t) − u2(t) and |v| ≤ S, then v =
SATS(u0 − u2). Let r1 = minv0∈N1 ‖v0‖. Suppose w0 =
argminv0∈N2

‖v0‖, and by equation (4.32), r2 = ‖w0‖ =
i(p,S)[k]. Since N1 ⊂ N2, it follows that r1 ≥ r2. It thus

suffices to show w0 ∈ N1, for then r2 ≥ r1, and hence

i(p,S)[k] = r1 as required.

For a contradiction, suppose w0 = (u0, y0)
⊤ 6∈ N1

and let k be a time at which |u0(k) − u2(k)| > S. Let

ũ0(t) =







u0(t) if t 6= k

u2(k) + S if t = k and u0(k)− u2(k) > S

u2(k)− S if t = k and u0(k)− u2(k) < −S.
Then SATS(ũ0(t) − u2(t)) = SATS(u0(t) − u2(t)) for all

t ≥ 0, hence w̃0 = (ũ0, y0)
⊤ ∈ N2. But, by construction,

‖w̃0‖ < ‖w0‖ for 1 ≤ r < ∞, hence w0 is not the minimizer

in N2. This is a contradiction, and w0 ∈ N1 as required.

Hence the difference between the optimisation required in the

linear case to that of the case with input saturation is simply

the addition of an inequality constraint. The optimisation

remains convex, and for example is solvable e.g. via linear

programming (r = 1) and quadratic programming (r = 2).

This fully addresses point b) for this class of systems.

For point b), since our analysis is global, the system class

is further restricted to the class neutrally stable LTI plants

with saturation, i.e., those which have the eigenvalues of the

state space matrix A inside or on the unit circle, with those

on the unit circle having all Jordan blocks of size one, see

[4]. As a concrete example, we note the pair of saturated

stable first order systems of unknown input sign, i.e. the plant

model set {P(a,a,1,0) ◦ SAT1, P(a,−a,1,0) ◦ SAT1}, a < 1 can

be usefully controlled by EMMSAC, since the atomic pole-

placement controllers can gain stabilize and meet the controller

assumptions (e.g. Cy2 = ±(a+ γ)y2, |γ| < 1).

Alternatively, we can consider a saturation occurring at

the output of the controller, e.g. the above equation becomes

u1 = u0 − SATS(u2) (this is a common scenario, for

example corresponding to a mechanical force actuator with

limited authority and u0 representing an external force). Then

given LTI plant dynamics, the resulting estimator optimisations

remain as in the fully linear setting. This underlines further that

the estimator optimisations for a linear plant and a nonlinear

controller are linear estimation problems only, and the nonlin-

earity does not complicate the estimation part of EMMSAC;

thus the implementation of EMMSAC remains tractable. This

idea is taken further in [5], which considers an application
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example of a Hammerstein system with uncertainty in both

the nonlinearity and the linear dynamics, and a tractable (and

exact) estimator based on Kalman filtering is constructed.

7. CONCLUSION

This paper presents comprehensive robustness and per-

formance guarantees for Estimation-based Multiple Model

Switched Adaptive Control (EMMSAC) algorithms in terms

of lr, 1 ≤ r ≤ ∞ gain (function) bounds on the gain from

the external disturbances w0 to the internal signals w2. The

axiomatic style of the analysis leads to the generality of the

results: they apply to the class of minimal MIMO LTI plants

but also to non-linear plants which can be gain stabilized.

The axiomatic approach utiliized makes future generalisations

appear inevitable, e.g. to time-varying plants and to non-linear

plants with super-linear growth. Investigating the viability of

the resulting estimator (sub-)optimisations in the nonlinear

setting is an interesting open area; identifying tractable classes

of nonlinear systems is very worthwhile. The EMMSAC ap-

proach is completely modularised: allowing for the integration

of standard control designs for the atomic controllers and

standard optimisation approaches such as Kalman filters or

convex programming methods for the estimators.

The robustness analysis leads naturally to a principled route

to design, and we have shown how the complexity of the

underlying uncertainty set leads to complexity dependent gain

bounds for infinite dimensional controllers which can then

be systematically reduced to finite dimensional realisations

with guaranteed performance and robustness. The resulting

complexity of the controller has also been related to met-

ric entropy measures of the underlying uncertainty. A key

consequence is that, for many geometries, the bounds are

independent of the size of the candidate plant model set above

a certain threshold, hence the designer can maintain (even

improve) performance bounds whilst increasing the number

of plant models to the maximum which are supportable

in real-time. A pragmatic design guideline is therefore to

populate the candidate plant set at as high a resolution as

the implementation hardware constraints permit. We have thus

provided an integrated, conceptual approach to address the first

three questions stated in the Introduction. The fourth question

concerning the construction of non-conservative designs is

considered in the sequel [7].
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APPENDIX

Proof of Proposition 7: We first consider estimator A.

Let 1 ≤ r ≤ ∞ and let λ = h = ∞. For k ∈ N, w2 ∈ W , let

EA be given by:

EA(w2)(k)(p) = dAp [k] ∈ map(N,Rh) (7.54)

dAp [k] = Tk argmin
w0∈N [0,k]

p (w2)

‖w0‖ (7.55)

if there exists a unique minimum, or any dAp [k] ∈ N [0,k]
p (w2)

such that ‖dAp [k]‖ ≤ ‖v‖ for all v ∈ N [0,k]
p (w2) if the mini-

mum is not unique. To see that XA factorises as XA = NEA,

observe that for all w2 ∈ We, k ∈ N and p ∈ P ,

NEA(w2)(k)(p) = ‖dp[k]‖ = rp[k] = XA(w2)(k)(p),

as required. We now verify 1-5.

1) Causality: The disturbance estimate at time k ∈ N does not

depend on future information w2|(k,∞) and is therefore causal.

2) Weak consistency: Let p ∈ P , w2 ∈ We. Let Φλ be defined

by Φλx = Rλ,kx, x ∈ S, and clearly ‖ΦλEA(w2)(k)(p)‖ ≤
‖Rλ,kEA(w2)(k)(p)‖. We then have

ΦλEA(w2)(k)(p) = Rλ,kEA(w2)(k)(p)

∈ Rλ,kN [0,k]
p (w2) ⊂ N [k−λ,k]

p (w2).

3) Monotonicity: Let p ∈ P , let 0 ≤ k ≤ l, k, l ∈ N. Observe

that TkEA(w2)(l)(p) ∈ TkN [0,k]
p (w2). Since

‖EA(w2)(k)(p)‖ = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [0,k]
p (w2)}

it follows that ‖EA(w2)(k)(p)‖ ≤ ‖TkEA(w2)(l)(p)‖ as

required. 4) Continuity: For p1, p2 ∈ P let χ(p1, p2) be given

by (4.41). Then χ(p, p) = δ(p, p) = 0 for all p ∈ P . Define

Π
[0,k]
p : W|[0,k] → W|[0,k] by the projection: Π

[0,k]
p Rk,kw2 =

dAp [k]. Then,

‖E(w2)(k)(p1)− E(w2)(k)(p2)‖
≤ ‖Π[0,k]

p1
Rk,kw2 −Π[0,k]

p2
Rk,kw2‖

≤ ‖Π[0,k]
p1

−Π[0,k]
p2

‖‖Rk,kw2‖
= χ(p1, p2)‖Tkw2‖.

It remains to show χ(p1, p2) < ∞. Define Lk : W → W
by: Lk = Tk(Π

[0,k]
p1 − Π

[0,k]
p2 )Rk,k. It is easily follows that

‖Lk‖ = ‖Π[0,k]
p1 −Π

[0,k]
p2 ‖. Now, for all w2 ∈ W ,

sup
k≥0

‖Lkw2‖ = ‖Tk(Π
[0,k]
p1

−Π[0,k]
p2

)Rk,kw2‖

≤ (‖(Π[0,k]
p1

‖+ ‖Π[0,k]
p2

‖)‖Rk,kw2‖
≤ 2‖w2‖ < ∞.

Hence by the Banach-Steinhaus Theorem, χ(p1, p2) =
supk≥0 ‖Lk‖ < ∞. 5) Minimality: Observe that for any

(w0, w1, w2) ∈ W×We×We satisfying equations (2.2)–(2.3)

for P = Pp and for k ∈ N we have Tkw0 ∈ TkN [0,k]
p (w2).

Hence by the definition of EA, ‖EA(w2)(k)(p)‖ ≤ ‖Tkw0‖.
We now consider estimator B. Let 1 ≤ r ≤ ∞ and let

λ ∈ N, h = (m + o)(λ + 1). For 0 ≤ i ≤ k, w2 ∈ W , let

estimator B be given by:

EB(w2)(k)(p) = dBp [k] ∈ map(N,Rh) (7.56)

dBp [k](i) = argmin
w0∈N [i−λ,i]

p (w2)

‖w0‖, (7.57)

if there exists a unique minimum, or any dBp [k](i) ∈
N [i−λ,i]

p (w2) satisfying ‖dBp [k](i)‖ ≤ ‖v‖ for all v ∈
N [i−λ,i]

p (w2) if the minimum is not unique. To see that

XB does indeed factorise as XB = NEB , we argue as

follows. Since dBp [k](i) = dBp [i](i) for 0 ≤ i ≤ k and
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‖a, b‖r =
∥
∥‖a‖r, ‖b‖r

∥
∥
r
, a, b ∈ lr, 1 ≤ r ≤ ∞, we have

for all w2 ∈ W2 that:

NEB(w2)(k)(p) = ‖dp[k]‖
= ‖dp[k](0), dp[k](1), · · · , dp[k − 1](k), dp[k](k)‖
= ‖dp[k − 1](0), dp[k − 1](1), · · · ,

dp[k − 1](k − 1), dp[k](k)‖
= ‖‖dp[k − 1]‖, ‖dp[k](k)‖‖

where dp[k](k) ∈ {w0 ∈ N [k−λ,k]
p (w2) | ‖w0‖ =

inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [k−λ,k]
p (w2)}. Since ip[k] =

‖dp[k](k)‖ = inf{r ≥ 0 | r = ‖v0‖, v0 ∈ N [k−λ,k]
p (w2)}, and

NEB(w2)(k)(p) = ‖dp[k]‖, we obtain:

NEB(w2)(k)(p) =
∥
∥
∥rp[k − 1], ip[k]

∥
∥
∥ = XB(w2)(k)(p).

Hence XB = NEB as required. We now verify 1–5.

1) Causality: EB is invariant to w2|(k,∞). 2) Weak consistency:

Let p ∈ P . Let Φλ be defined by Φλd
B
p [k] = Rλ,λd

B
p [k](k).

Since Rλ,λd
B
p [k](k) ⊂ Rλ,kd

B
p [k], it follows

that ‖ΦλEB(w2)(k)(p)‖ = ‖Rλ,λd
B
p [k](k)‖ ≤

‖Rλ,kd
B
p [k]‖ = ‖Rλ,kEB(w2)(k)(p)‖. Furthermore,

Φλd
B
p [k] = Rλ,λd

B
p [k](k) ∈ N [k−λ,k]

p (w2). 3) Monotonicity:

Let p ∈ P , let 0 ≤ k ≤ l, k, l ∈ N. Since Tkd
B
p [l] = dBp [k]

it follows that ‖EB
p (w2)(k)(p)‖ = ‖TkE

B
p (w2)(l)(p)‖ as

required. 4) Continuity: Let k ∈ N, p ∈ P . From Assumption

2 let Φλ be defined by Φλd
B
p [k] = Rλ,λd

B
p [k](k). Define

Π
[k−λ,k]
p : W|[k−λ,k] → W|[k−λ,k] by the projection:

Π
[k−λ,k]
p Rλ,kw2 = dBp [k](k). For p1, p2 ∈ P let χ(p1, p2) be

given by (4.42). It follows trivially that χ(p, p) = 0, p ∈ P .

Since Φλd
B
p [k] = Π

[k−λ,k]
p Rλ,kw2, it follows that

‖E(w2)(k)(p1)− E(w2)(k)(p2)‖
= ‖dp1 [0](0)− dp2 [0](0), . . . , dp1 [k](k)− dp2 [k](k)‖‖
= ‖Π[−λ,0]

p1
Rλ,0w2 −Π[−λ,0]

p2
Rλ,0w2,

. . . ,Π[k−λ,k]
p1

Rλ,kw2 −Π[k−λ,k]
p2

Rλ,kw2‖
≤ max

k≥0
‖Π[k−λ,k]

p1
−Π[k−λ,k]

p2
‖‖‖Rλ,0w0‖, . . . , ‖Rλ,kw0‖‖

≤ χ(p1, p2)‖Tkw0‖
5) Minimality: Observe that for any (w0, w1, w2) ∈ W×We×
We satisfying equations (2.2)–(2.3) for P = Pp and for k ∈ N

we have Rλ,iw0 ∈ N [i−λ,i]
p (w2), 0 ≤ i ≤ k. Hence by the

definition of dBp [k](i), ‖dBp [k](i)‖ ≤ ‖Rλ,iw0‖, 0 ≤ i ≤
k, k ∈ N. Hence we obtain:

‖EB(w2)(k)(p)‖ = ‖‖dBp [k](0)‖, . . . , ‖dBp [k](k)‖‖
≤ ‖‖Rλ,0w0‖, . . . , ‖Rλ,kw0‖‖
≤ (λ+ 1)1/r‖Tkw0‖,

which is the required inequality (with µ = (λ+ 1)1/r).

Proof of Proposition 8: Let k ≥ 0 and Πk
1 = I −Π

[0,k]
p1 ,

Πk
2 = I−Π

[0,k]
p2 , Π1 = I−Π∞

1 , Π2 = I−Π∞
2 . The following

identity holds for any projections ΠA, ΠB :
(

ΠB

Π⊥
B

)

(ΠA −ΠB)( Π⊥
A ΠA )

=

(
−ΠBΠ

⊥
A 0

0 Π⊥
BΠA

)

. (7.58)

Let ΠA = Πk
1 , ΠB = Πk

2 . Then since
(
ΠB Π⊥

B

)⊤

and ( Π⊥
A ΠA ) are isometric isomorphisms, it follows

that: ‖Πk
1 − Πk

2‖ = max{‖Πk
2(Π

k
1))

⊥ ‖, ‖(Πk
2)

⊥Πk
1‖}. Since

(Πk
1)

⊥Πk
2 has the adjoint: ((Πk

1)
⊥Πk

2)
∗ = Πk

2(Π
k
1)

⊥, it follows

that: ‖Π[0,k]
1 −Π

[0,k]
2 ‖ = max{‖(Πk

1)
⊥Πk

2‖, ‖(Πk
2)

⊥Πk
1‖}.

Let L = (M N) be a normalized right co-prime factori-

sation of P1 over H∞. Let L∗ = (M∗ N∗), so we have the

Bezout identity L∗L = I . For every zk ∈ Rk,kGp1 , there

exists z̃ ∈ Gp1 such that Rk,kz̃ = zk. Since z̃ ∈ Gp1 it

follows that there exists v ∈ W such that z̃ = Lv. Then

by the causality of L, we have Tkzk = Tkz̃k = TkLTkv.
Define z̃k = LTkv. Since L is bounded, and Tkv ∈ W ,

it follows that z̃k ∈ Gp1 . Hence by the causality of L,

Rk,kz̃k = Rk,kLTkv = Rk,kTkLTkv = Rk,kTkzk = zk.

Observe that since z̃k = LTkvk, it follows that L∗z̃k = Tkv
and TkL

∗z̃k = Tkv. Furthermore, since L is normalized

and L∗ is causal, we have: ‖z̃k‖ = ‖LTkv‖ = ‖Tkv‖ =
‖TkL

∗z̃k‖ = ‖TkL
∗Tkz̃k‖ = ‖TkL

∗Tkzk‖. It is straightfor-

ward to see that ‖TkL
∗Tk‖ ≤ ‖L∗‖ ≤ 1, hence ‖z̃k‖ ≤ ‖zk‖.

Since Πk
2 : W[0,k] → Rk,kGp2 is a projection, z̃k ∈ Gp1

and hence Rk,kΠ2z̃k ∈ Rk,kGp2 , it follows that for all zk ∈
Rk,kGp1 : ‖(Πk

2)
⊥zk‖ = ‖zk −Πk

2zk‖ ≤ ‖zk −Rk,kΠ2z̃k‖ ≤
‖Rk,kΠ

⊥
2 z̃k‖, hence it follows that

‖(Πk
2)

⊥Πk
1‖ = ‖(Πk

2)
⊥|Rk,kGp1

‖

≤ sup
zk∈Rk,kGp1

‖Rk,kΠ
⊥
2 z̃k‖

‖z̃k‖
‖z̃k‖
‖zk‖

≤ ‖Π⊥
2 |Gp1

‖ sup
zk∈Rk,kGp1

‖z̃k‖
‖zk‖

≤ ‖Π⊥
2 Π1‖

Hence ‖(Πk
2)

⊥Πk
1‖ ≤ ‖Π⊥

2 Π1‖ = ‖(I −Π2)Π1‖ = ~δ(p1, p2),
where the equality with the directed gap follows from [12].

Similarly ‖(Πk
1)

⊥Πk
2‖ ≤ ~δ(p2, p1). Hence ‖Π[0,k]

1 −Π
[0,k]
2 ‖ ≤

δ(p1, p2). Since this holds for all k, the proof is complete.

Proof of Proposition 9: Let k ≥ 0 and ΠA = Π
[k−λ,k]
p1 ,

ΠB = Π
[k−λ,k]
p2 . Since ΠA, ΠB are projections, by an

analogous argument to the proof of Proposition 8, we have

‖ΠA−ΠB‖ ≤ c0 max{‖ΠBΠ
⊥
A ‖, ‖Π⊥

BΠA‖} for some c0 > 0,

since the identity (7.58) holds and where ( Π⊥
B ΠB )⊤ and

( Π⊥
A ΠA ) are isomorphisms (not isometric for r 6= 21).

It therefore suffices to check the continuity of ‖ΠBΠ
⊥
A‖,

‖Π⊥
BΠA‖ w.r.t. p1, p2. Let w2 = (u2, y2)

⊤ ∈ W|[k−λ,k] \{0},

wp1

0 = (up1

0 , yp1

0 )⊤ = ΠAw2 and wp1

1 = −Π⊥
Aw2. Let

x0 ∈ R
n be such that equations (2.6), (2.7), (2.8) hold on

[k−λ, k] with x(k−λ) = xp1(k−λ) = x0. Let yp2

1 ∈ Y|[k−λ,k]

be the output of the system p2 when xp2 (k−λ) = xp1(k−λ),
and up2

1 = up1

1 ∈ U|[k−λ,k] .

We first consider ‖Π⊥
BΠA‖. Let wp2

0 = (u2 + up2

1 , y2 +
yp2

1 )⊤. Since ΠB is a projection, it follows that ‖Π⊥
BΠAw2‖ =

‖wp1

0 −ΠBw
p1

0 ‖ ≤ ‖wp1

0 −wp2

0 ‖ = ‖yp1

0 −yp2

0 ‖ = ‖yp1

1 −yp2

1 ‖.

We now consider ‖ΠBΠ
⊥
A‖. Let up2

2 = −up1

1 = up2

1 so up2

0 =
0. We let yp2

0 = yp2

1 −yp1

1 , so yp2

2 = −yp1

1 . By definition of ΠB ,

it follows that ‖ΠBΠ
⊥
Aw2‖ = ‖ΠB(−wp1

1 )‖ = ‖ΠB(w
p2

2 )‖ ≤
‖wp2

0 ‖ = ‖yp2

0 ‖ = ‖yp1

1 − yp2

1 ‖.

Let ǫ > 0. In both cases, by the continuity of the solution of

a discrete time system with respect to the entries of (A,B,C)
over a finite time interval, it follows that there exists δ > 0
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such that if |p1 − p2| ≤ δ, then ‖yp1

1 − yp2

1 ‖ ≤ ǫ. Further,

we have the bound: ‖yp1

1 − yp2

1 ‖ ≤ c1ǫ(‖Rλ,ku
p1

1 ‖ + |xp1

0 |)
for some c1 > 0. By observability and λ ≥ σ, it fol-

lows that |xp1

0 | ≤ c2‖wp1

1 ‖ = c2‖(I − ΠA)w2‖. Hence

max{‖ΠBΠ
⊥
Aw2‖, ‖Π⊥

BΠAw2‖} ≤ c1c2ǫ‖(I −ΠA)w2‖ and

‖ΠA−ΠB‖ ≤ c0 max{‖ΠBΠ
⊥
A‖, ‖Π⊥

BΠA‖}

= c0 sup
w2 6=0

max{‖ΠBΠ
⊥
Aw2‖, ‖Π⊥

BΠAw2‖}
‖w2‖

≤ c0c1c2ǫ sup
w2 6=0

‖Π⊥
Aw2‖

‖w2‖
≤ c0c1c2‖Π⊥

A‖ǫ.

For all p ∈ Ω, Π
[i−λ,i]
p = Π

[j−λ,j]
p for all i, j > λ +

σ, i, j ∈ N since N [i−λ,i]
p (w2) = N [j−λ,j]

p (w2) for all

i, j > λ+σ. As ‖Π[k−λ,k]
p1 −Π

[k−λ,k]
p2 ‖ and hence χk(p1, p2) is

continuous on Ω× Ω, and χ(p1, p2) = maxk≥0 χk(p1, p2) =
max0≤k≤λ+σ+1 χk(p1, p2), χ is continuous on Ω× Ω.
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