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Abstract—The axiomatic development of a wide class of
Estimation based Multiple Model Switched Adaptive Control
(EMMSAC) algorithms considered in the first part of this two
part contribution forms the basis for the proof of the gain
bounds given in this paper. The bounds are determined in terms
of a cover of the uncertainty set, and in particular, in many
instances, are independent of the number of candidate plant
models under consideration.The full interpretation, implications
and usage of these bounds within design synthesis are discussed
in part I. Here in part II, key features of the bounds are also
discussed and a simulation example is considered. It is shown
that a dynamic EMMSAC design can be universal and hence
non-conservative and hence outperforms static EMMSAC and
other conservative designs. A wide range of possible dynamic
algorithms are outlined, motivated by both performance and
implementation considerations.

1. INTRODUCTION

The establishment of closed loop gain bounds lie at the

centre of any robustness analysis based on small gain ap-

proaches. The primary contribution of this paper is to establish

gain bounds for the class of estimation based multiple model

adaptive controllers (EMMSAC) introduced in [2]. The nom-

inal bounds are given in a form which is independent of the

choice of the candidate plant model set, and which allows

the development of bounds dependent only on the underlying

complexity of the plant uncertainty. Whilst the bounds are

complex in form, the elements of the bound are simple; a

detailed interpretation is given. The fully modularised nature

of the EMMSAC approach permits systematic (and standard)

design procedures to optimise these terms independently. Such

bounds lead naturally to design processes, such as those

described in [2]. In particular, these bounds lead to simple

approaches to determine:

1) The required number of candidate plant models.

2) Suitable geometric distributions of the plant models over

the uncertainty set.

3) Robust stability certificates.

4) Non-conservative designs.

The contribution in part I [2] addressed the first three issues –

and the primary contribution of this paper is to complete the

analysis of part I [2] by the provision of the underpinning gain

bound analysis. The algorithms of EMMSAC have been cast

in an abstract axiomatic setting, this approach gives generality

to the analysis. The derivation of the gain bounds derived here

are thus applicable to many different algorithmic variants.
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The secondary contribution of this paper is to address the

fourth issue by consideration of a dynamic version of EMM-

SAC. This has not been addressed previously for MMAC and

we argue for it’s importance as follows. It is known that LTI

controllers, in contrast to classical adaptive controllers, cannot

stabilize systems in the presence of unbounded parametric

uncertainties. Furthermore, even if the parameters lie within an

a-priori known compact set, the performance of an LTI control

design typically degrades with the size of this set. On the other

hand, controllers which can stabilize systems with unbounded

parametric uncertainties are said to be universal. They possess

the feature that even if the uncertainty is known to lie inside

a known compact set, the performance for a fixed plant is

necessarily independent of the size of this set, and hence is

non-conservative. In this situation, universal controllers (for

example, classical adaptive controllers) necessarily outperform

conservative designs (for example, LTI controllers). Unfortu-

nately, existing MMAC designs are all constrained to a priori

fixed and finite candidate plant model sets; hence are not uni-

versal, and cannot be applied to many uncertainty sets which

contain unbounded parametric variations, which is the classical

domain for adaptive control. Further, all the known bounds

scale with the size of the uncertainty set and we show that the

true gain also scales poorly for classes of MMAC: thus basic

MMAC is also conservative. However, versions of dynamic

EMMSAC, whereby the candidate plant set is varied in size

online, are shown to be universal and hence non-conservative,

thus satisfying a key rationale for adaptive control. There are

many other algorithmic possibilities with dynamic EMMSAC,

and this paper also briefly discuss the possibilities to manage

computational complexity in the dynamic setting.

The paper is structured as follows. The notation is developed

in Section 2 and the structure and the required properties of

an EMMSAC controller are described in Section 3. A full

discussion of these requirements and examples of estimators

can be found in part I [2]. In Section 4 we present the

main result and it’s proof. In Section 5 we discuss dynamic

EMMSAC algorithms, and show that dynamic EMMSAC is

universal. We then characterise a situation in which it out-

performs static EMMSAC and other designs such as robust

LTI controllers. In Section 6, and we outline other possibilities

with dynamic EMMSAC. A simulation example is given in

Section 7. The paper is self-contained, but is intended to be

read in conjunction with [2].

2. PRELIMINARIES

For 0 ≤ a ≤ b, a, b ∈ Z let [a, b] := {x ∈ Z | a ≤
x ≤ b}, [a, b) := {x ∈ Z | a ≤ x < b}. Let the size of
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Fig. 1. Closed loop [P,C]

the given intervals | · | be defined by |[a, b]| := b − a + 1
and |[a, b)| := b − a. For a signal v ∈ S we then define

the restriction of v over the interval I = [c, d] by v|I :=
(v(c), · · · , v(d)) where c ≤ d, c, d ∈ Z, and similarly for

I = [c, d). Let S := map(Z,Rh) denote the collection of

all maps and let S|[a,b] := map([a, b],Rh). Let Tt : S ∪b∈Z

S|[0,b] → S, t ∈ Z denote the truncation operator defined by:

(Ttv)(τ) =

{
v(τ) if τ ∈ dom(v), τ ≤ t.
0 otherwise

.

For x ∈ S define the norms ‖x‖ = ‖x‖r =
(∑

i∈dom(x) |x(i)|
r
)1/r

for 1 ≤ r < ∞, and ‖x‖ = ‖x‖∞ =
supi∈dom(x) |x(i)|. We repeatedly use the lr identity:

‖‖x‖r, ‖y‖r‖r = ‖(x, y)‖r, x, y ∈ S, 1 ≤ r ≤ ∞. (2.1)

We consider signal spaces V ⊂ S and extended signal spaces

Ve ⊂ S:

V := {v ∈ S | v(−t) = 0, ∀t ∈ Z; ‖v‖ < ∞}

V[a,b] :=
{
v ∈ S|[a,b]

∣
∣ ∃x ∈ V s.t. v = x|[a,b] = v

}
.

Ve := {v ∈ S | ∀t ∈ Z : Ttv ∈ V} . (2.2)

We take V = lr to be defined by (2.2) with ‖ · ‖ =
‖ · ‖r. The input and output signal spaces are defined as:

U := V × · · · × V
︸ ︷︷ ︸

m

= Vm,Y := V × · · · × V
︸ ︷︷ ︸

o

= Vo, and let

W := U ×Y . Given a plant P : Ue → Ye satisfying P (0) = 0
and a controller C : Ye → Ue satisfying C(0) = 0, the closed-

loop system [P,C] in Figure 1 is defined by equations

y1 = Pu1 (2.3)

u0 = u1 + u2 y0 = y1 + y2 (2.4)

u2 = Cy2. (2.5)

Here wi = (ui, yi)
⊤ ∈ We represents the plant input and

output (i=1), disturbances (i=0) and observations (i=2). [P,C]
is said to be well-posed if for all w0 ∈ W there exists a unique

solution (w1, w2) ∈ We × We. Note that linear switched

systems are well-posed. Define PLTI to be the set of all

p = (A,B,C,D) ∈ ∪n≥1R
n×n × R

n×m × R
o×n × R

o×m

such that p is minimal and

Pp : Ue → Ye, up
1 7→ yp1 , p = (A,B,C,D) (2.6)

xp(k + 1) = Axp(k) + pup
1(k) (2.7)

yp1(k) = Cxp(k) +Dup
1(k) (2.8)

xp(−k) = 0, k ∈ N (2.9)

Note that since xp(−k) = 0 for all k ∈ N it follows that

yp1(−k) = (Ppu
p
1)(−k) = 0 for all k ∈ N. Also define

P̄LTI := {(A,B,C,D) ∈ PLTI | D = 0}. Analogously,

K : P → C (3.11)

X : We → map(N, map(P,R+)) : w2 7→ [k → (p 7→ rp[k])]
(3.12)

G : We → map(N,P∗) (3.13)

M : (map(N, map(P,R+)), map(N,P∗)) → map(N,P∗) (3.14)

[

k 7→ (p 7→ rp[k]), k 7→ G(k)
]

7→
[

k 7→ qf (k)
]

(3.15)

qf (k) := argmin
p∈G(k)

rp[k], ∀k ∈ N (3.16)

∆ : P → N (3.17)

D : map(N,P) → map(N,P) (3.18)

[k 7→ qf (k)] 7→ [k 7→ q(k)] (3.19)

q(k) :=

{

qf (k) if k − ks(k) ≥ ∆(q(ks(k)))
q(ks(k)) else

(3.20)

S : We → map(N,P∗) : w2 7→ q (3.21)

S = DM(X,G) (3.22)

ks(k) := max{i ∈ N | 0 ≤ i ≤ k, q(i) 6= q(i− 1)} (3.23)

C : Ye → Ue : y2 7→ u2 (3.24)

u2(k) = CK(q(k))(y2 − Tks(k)−1y2)(k) (3.25)

TABLE 1
EQUATIONS SPECIFYING THE ALGORITHM

define CLTI to be the set of all (A,B,C,D) ∈ ∪n≥1R
n×n ×

R
n×o×R

m×n×R
m×o such that (A,B,C,D) is minimal, and

the control operator

Cc : Ye → Ue : y
c
2 7→ uc

2, c = (A,B,C,D) (2.10)

is defined analogously to equations (2.7) - (2.9). Also let

C̄LTI := {(A,B,C,D) ∈ CLTI | D = 0}. Throughout, P is

topologised by the nonlinear gap metric, see [2, Section 2].

3. THE EMMSAC STRUCTURE

We now recall the structure of the EMMSAC algorithm

introduced in [2]. Table 1 summarizes the structural require-

ments that specify the switching algorithm, where P , C denote

the parametric space of plants and controllers, e.g. P = P̄LTI ,

C = CLTI and P∗ denotes the powerset of P . If there are mul-

tiple minimising disturbance estimates, an arbitrary ordering

on G(k) is imposed a priori, i.e. G(k) = {p1, p2, · · · , pn},

and argminp∈G(k) rp[k] is defined to return the parameter

pi ∈ G(k) with the smallest index i such that rp[k] is minimal.

Recall that G is an example of plant generating operator:

Definition 1: A causal map Q : We → map(N,P∗ \ ∅)
is said to be a plant-generating operator. We define PQ is

the union of all plant model sets possibly represented by Q:

PQ := ∪w2∈We ∪k∈N Q(w2)(k) ⊂ P . Q is said to be finite

if Q(w2)(k) is a finite set for all w2 ∈ W , i ∈ N, constant if

Q(w2)(i) = Q(w2)(j), for all w2 ∈ W , i, j ∈ N, monotonic

if Q(w2)(k) ⊂ Q(w2)(k + 1) for all w2 ∈ W , k ∈ N. For

notational economy we often write Q(k) := Q(w2)(k).
To formulate the properties required of the atomic closed

loop systems, let

yp1 = Ppu
p
1, up

0 = up
1 + u2, yp0 = yp1 + y2, (3.26)
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uc
2 = Ccy

c
2 (3.27)

Furthermore, let σ(c), c ∈ C be defined by

σ(c) = min







k ≥ 0 :

∀l ≥ 0,
uc
2 = Ccy

c
2, ûc

2 = Ccŷ
c
2,

(uc
2, y

c
2)

⊤|[l,l+k] = (ûc
2, ŷ

c
2)

⊤|[l,l+k],
yc2 = ŷc2 ⇒ uc

2 = ûc
2







(3.28)

Similarly define σ(p), p ∈ P . Then:

Assumption 2: There exist functions α, β : P×C×R×R →
R such that the following holds:

1) (Linear growth of [Pp, Cc]): Let p ∈ P , c ∈ C and the

closed-loop system [Pp, Cc] be well-posed. Let t1, t2, t3, t4 ∈
N, t1 < t2 ≤ t3 < t4 and I1 = [t1, t2), I2 = [t2, t3), I3 =
[t3, t4). Suppose w2, w

c
2, w

p
1 ∈ We, w

p
0 ∈ W satisfy equations

(3.26),(3.27) on I1 ∪ I2 ∪ I3. Suppose that either

wc
2|I1 = 0, wc

2|I2∪I3 = w2|I2∪I3 or

wc
2|I1∪I2∪I3 = w2|I1∪I2∪I3

where |I1| = t2− t1 ≥ max{σ(p), σ(c)}. Then, in both cases:

‖w2|I3‖ ≤ α(p, c, |I2|, |I3|)‖w2|I1‖

+ β(p, c, |I2|, |I3|)‖w
p
0 |I1∪I2∪I3‖. (3.29)

2) (Stability of [Pp, CK(p)]): Let p ∈ P and x ∈ N. Then

α(p,K(p), a, x) → 0 as a → ∞ (3.30)

and α is monotonic in a.

Recall that if (P , C) ∈ {(P̄LTI , CLTI), (PLTI , C̄LTI)} it can

be shown that Assumption 2(1) holds. If additionally K : P →
C is a stabilising design, (i.e. [Pp, CK(p)] is gain stable) it can

be shown that Assumption 2(2) holds.

The required properties of the estimator are given by as-

sumption 4 below, given that the restriction operator Rσ,t :
S → R

h(σ+1) is given by Rσ,tv := (v(t − σ), · · · , v(t)) and

we have the definition:

Definition 3: Let a ≤ b, a, b ∈ Z. The set of weakly con-

sistent disturbance signals N
[a,b]
p (w2) for a plant Pp, p ∈ P

and the observation w2 = (u2, y2)
⊤ is defined by:

N [a,b]
p (w2) :=

{

v ∈ W|[a,b]
∣
∣ ∃(up

0, y
p
0)

⊤ ∈ We s.t.

Rb−a,bPp (u
p
0 − u2) = Rb−a,b(y

p
0 − y2),

v = (Rb−a,bu
p
0,Rb−a,by

p
0)

}

.

Assumption 4: Let λ ∈ R be given. The residual operator

X factorises X = NE where N is the norm operator, E is

an estimation operator, and:

1) (Causality): E is causal.

2) (Weak consistency): For all p ∈ P there exists a map

Φλ : map(N,Rh) → R
m(λ+1) × R

o(λ+1), such that for

all w2 ∈ We and for all k ∈ N,

ΦλE(w2)(k)(p) ∈ N [k−λ,k]
p (w2), and,

‖ΦλE(w2)(k)(p)‖ ≤ ‖Rλ,kE(w2)(k)(p)‖.

3) (Monotonicity): For all p ∈ P , for all k, l ∈ N with 0 ≤
k ≤ l and for all w2 ∈ We,

‖E(w2)(k)(p)‖ ≤ ‖TkE(w2)(l)(p)‖.

X : We → map(N, map(P,R+)) : w2 7→ [k → (p 7→ rp[k])]

X = NE

E : We → map(N, map(P, map(N,Rh))) (3.31)

w2 7→
[

k 7→ (p 7→ dp[k])
]

(3.32)

dp[k] : N → map(N,Rh)

dp[k] = (dp[k](0), dp[k](1), . . . , dp[k](k), 0, · · · )

N : map(N, map(P, map(N,Rh))) → map(N, map(P,R+))
(3.33)

[

k 7→ (p 7→ dp[k])
]

7→
[

k 7→ (p 7→ ‖dp[k]‖ = rp[k])
]

. (3.34)

TABLE 2
FACTORISATION OF THE RESIDUAL OPERATOR

4) (Continuity): There exists a function χ : P × P → R
+,

χ(p, p) = 0 for all p ∈ P , such that for all k ∈ N, p1, p2 ∈ P
and w2 ∈ We,

‖E(w2)(k)(p1) − E(w2)(k)(p2)‖ ≤ χ(p1, p2)‖Tkw2‖.

5) (Minimality): There exists µ > 0 such that for all k ≥ 0,

for p ∈ P and for all (w0, w1, w2) ∈ W×We×We satisfying

equations (2.3)–(2.4) for P = Pp,

‖E(w2)(k)(p)‖ ≤ µ‖Tkw0‖.

See [2] for examples of estimators that satisfy these assump-

tions. Recall that an implementation of the algorithm requires

realisation of X , and and not necessarily a realisation of E, as

exemplified by the Kalman Filter realisation of the l2 infinite

horizon estimator [2].

The class of controllers under consideration is then:

Definition 5: An EMMSAC controller C(U,K,∆, G,X) is

said to be standard if it satisfies:

• K : P → C is a given control design satisfying

Assumption 2(1),(2)

• U satisfies

σ = max
p1,p2∈PU

max{σ(p1), σ(K(p2))} < ∞. (3.35)

• ∆ : P → N is a delay transition function satisfying

∆(p) > σ, ∀p ∈ PU . (3.36)

• K , ∆ satisfy

J(ξ) sup
p1∈PU

αξ(p1,K(p1),∆(p1)− σ, σ) < 1 (3.37)

where α is defined in Assumption 2 and J(·) is defined

by Table 3.

• E satisfies Assumptions 4(1)–(5) where

λ = max
p∈PU

(2∆(p) + σ) (3.38)

• The switching operator S = DM(X,G) is given by

equations (3.12),(3.13)–(3.16) and (3.18)–(3.23)

• The switching controller C is defined by equations

(3.24),(3.25).
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4. NOMINAL STABILITY AND GAIN BOUND ANALYSIS

In this section we will establish lr, 1 ≤ r ≤ ∞ norm

bounds on the observation signal w2 ∈ We in terms of the

external disturbance signal w0 ∈ W . A particular feature of

the bounds is that they depend on the size and geometry of a

‘cover’ of the plant uncertainty set, rather than the candidate

plant set itself. The notion of the cover is as follows. Let

χ : P × P → R
+ be as in Assumption 4(4). Let

H : We → map(N,P∗) (4.39)

be a plant-generating operator and let ν : We →
map(N,map(P ,R+)) be given, where for notational conve-

nience we often write ν(k) for ν(w2)(k). Now define

Bχ(p, ν(k)(p)) := {p} ∪
{
p1 ∈ P |

χ(p, p1) < ν(k)(p)
}
∩ U(k), p ∈ P , k ∈ N. (4.40)

For an appropriate choice of (H, ν), the union of the corre-

sponding neighbourhoods in U then leads to a cover for U :

Definition 6: (H, ν) is said to be a monotonic cover for a

plant-generating operator U if for all k ∈ N, w2 ∈ We: 1) H
and ν define a cover for U : U(k) ⊂ R(k) for all k ∈ N

where R(k) := ∪p∈H(k)Bχ(p, ν(k)(p))), and 2) The cover

is monotonic: R(k) ⊂ R(k + 1), for all k ∈ N.

The main result now provides gain bounds for the intercon-

nection of the ‘true’ plant p∗ with an EMMSAC controller.

Theorem 7: Let 1 ≤ r ≤ ∞. Let P = Pp∗
, where p∗ ∈

PU ⊂ P . Let U be a monotonic plant generating operator

and suppose (H, ν) defines a monotonic finite cover for U . Let

k ∈ N. Suppose the EMMSAC controller C(U,K,∆, G,X) is

standard, and G(j) ⊂ U(j), j ≤ k. Suppose (w0, w1, w2) ∈
W ×We ×We satisfy the closed loop equations (2.3)–(2.4).

Let ε > 0. Let

k∗ :=







min{i ∈ Q∞ | ∃ p ∈ G(i), χ(p, p∗) ≤ εχν(H, ν)}
if ∃i s.t. ∃ p ∈ G(j), χ(p, p∗) ≤ εχν(H, ν), ∀j ≥ i,
∞ if not

(4.41)

and suppose k∗ < ∞. If

π(U(j), H(j), ν(j), ε, p∗) > 0, ∀j ≤ k (4.42)

then:

‖Tkw2‖ ≤ β(U(k), H(k), ν(k), ε, p∗)‖Tk∗−1w2‖

+γ̂(U(k), H(k), ν(k), ε, p∗)‖w0‖ (4.43)

where π, β, γ̂ are given in Table 3.

Note that the set Q∞ is defined in the next subsection, and

coincides with the definition given in [2]. Before proceeding

to the proof of Theorem 7, we provide a discussion and

interpretation of all the terms in the bound:

αOP , βOP , αOS , βOS , γ3, γ4, γ5 are all constants associated

with the performance of the atomic closed loop systems with

correctly matched plants and controllers. They are determined

by α and β from Assumption 2. αOP bounds the attenuation

gain over the relevant set, and can be set as a design parameter

(as in the example in Section 6B of [2], which in turn

determines the required delay transition ∆(p) for a given

controller K(p).

For Q1 ⊂ PU and ξ =

{

r for 1 ≤ r < ∞
1 for r = ∞

let:

J(ξ) = ξ

(

ξ
max{n ∈ Z | n ≤ ξ/2}

)

where

(

x
y

)

:=
x!

y!(x− y)!
,

αOP (Q1) = J(ξ) sup
p1∈Q1

αξ(p1,K(p1),∆(p1)− σ, σ)

βOP (Q1) = J(ξ) sup
∆(p1)≤x≤2∆(p1)

p1∈Q1

βξ(p1, K(p1), x− σ, σ)

αOS(Q1) = J(ξ) sup
∆(p1)≤x≤2∆(p1)

p1∈Q1

αξ(p1,K(p1), 0, x− σ)

βOS(Q1) = J(ξ) sup
∆(p1)≤x≤2∆(p1)

p1∈Q1

βξ(p1, K(p1), 0, x− σ)

γ1(p, p∗) = 1 + sup
∆(p)≤x≤2∆(p)

α(p∗,K(p), 0, x)

γ2(p, p∗) = sup
∆(p)≤x≤2∆(p)

β(p∗,K(p), 0, x),

γ̄i(Q2,Q1) = sup
p2∈Q2

sup
p1∈Q1

γ1(p2, p1), i = 1, 2,

If 1 ≤ r < ∞ let:

γ3(Q1) = (1 + α
1/r
OS (Q1))

(

αOP (Q1)

1− αOP (Q1)

)1/r

+ α
1/r
OS (Q1)

γ4(Q1) = (1 + α
1/r
OS (Q1))

(

βOP (Q1)

1− αOP (Q1)

)1/r

γ5(Q1) = β
1/r
OS (Q1),

and if r = ∞ let:
γ3(Q1) = max{1, αOS(Q1))}αOP (Q1) + αOS(Q1)

γ4(Q1) = max{1, αOS(Q1)})
βOP (Q1)

1 − αOP (Q1)

γ5(Q1) = βOS(Q1).

For Q2 ⊂ PH , v : P → R
+, µ > 0, ε > 0 let:

χν(Q2, v) = 2 sup
p∈Q2

v(p)

π(Q1,Q2, v, ε, p
∗) = 1− 21/rεχν(Q2, v)(1 + γ̄2

1 (Q2,Q1)) ·

·
(

γ4(Q1) + γ5(Q1)
)

η(Q2, v, ε, p∗) = 2
1
r (µ+εχν(O2, v)γ̄2(O2, {p∗})(1+γ̄1(Q2, {p∗})))

β(Q1,Q2, v, ε, p∗) =

(

1 + γ3(Q1)

π(Q1,Q2, v, ε, p∗)

)|Q2| ∏

p∈Q2

γ1(p, p∗)

γ̂(Q1,Q2, v, ε, p∗) = β(Q1,Q2, v, ε, p∗)





∑

p∈Q2

γ2(p, p∗)+

η(Q2, v, ε, p∗)
γ4(Q1) + γ5(Q1)

π(Q1,Q2, v, ε, p∗)

)

.

TABLE 3
FUNCTIONS SPECIFYING THE GAIN BOUND.

π lies between 0 and 1 and scales well with the size of the

cover: when |H(k)| is large, then typically χν is small and π
is close to 1; alternatively the constant ǫ can be made small.

In the special case where U(k) is a finite set, then ε can be

set to zero and π = 1. For low dimensional covers, π may

be small and contribute significantly to β and γ̂. A typical

application involves determining a value of π close to 1, and

then computing the required χν and associated cover.

β is the final bias term. By minimising γ3 by the atomic

control design K , the effect of the exponent |H(k)| can be

reduced. In general the control designer has little influence
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over the term
∏

p∈H(k) γ1(p, p∗), with the exception of the

terms γ1(p, p) ≥ 1 (here with p = p∗), which are a natural

target for minimisation by the control design K . The number

of terms in the product is determined by the cover, and hence

a cover of small size reduces the effect of this term. γ̂ is the

final gain term. The summation
∑

p∈H(k) γ2(p, p∗) may be

large and reflects the difficulty of controlling a large model

set: the number of terms in the sum is determined directly

by the size of the cover. Both terms are directly influenced

by the size of the cover. The minimisation constant µ ≥ 1
which arises in property 5 of Assumption 4 can be reduced to

1 with optimal estimators, although this term is O(µ) and has

a relatively small effect.

Finally we remark that if (4.43) holds e.g. in l2, then since

‖w2‖∞ ≤ ‖w2‖2, w2 is guaranteed to be bounded in both l2

and l∞. However, as in [1], if (4.43) holds in l2 then it does not

follow that a similar inequality holds in l∞. Our viewpoint is

very much that the signal space choice is an integral part of the

specification of the problem that one is trying to solve. Thus

if one was interested in simultaneous l2 and l∞ guarantees,

it would seem likely that a mixed norm should be chosen, as

per [1]; this is outside the scope of the framework at present.

The bounds reflect the modularity of EMMSAC. The control

design K can be optimised directly independently of the

estimator parameters µ, η and c, and the estimator and atomic

controllers performance interact within the bounds via the

linkage of the cover. The closed loop [P,C] is independent

of the cover (H, ν) which is utilized for analysis terms only.

The characterisation and trade-off between χν , ε and |H(k)| is

given by the metric entropy, which has been discussed further

in [2]. Given K and µ, the optimal cover can in principle be

determined directly from the bounds.

We can now begin the construction of the gain bound.

A. Switching times

Let qf ∈ map(N,P), and let q = Dqf (equations (3.18)–

(3.23)) denote the switching signal. Let

Lk = {l0 = 0, l1, l2 · · · }

= {l ∈ N | q(l − 1) 6= q(l), 0 ≤ l ≤ k} (4.44)

be an ordered set, i.e. if li, lj ∈ Lk, i ≤ j then li ≤ lj ,

where Lk is interpreted as the set of physical switching times

up to time k ∈ N. These are the times where the algorithm

switches from one controller to another. To every pair of

consecutive physical switching times li, li+1 define the set of

virtual switching times V (li, li+1) by

V (li, li+1) =

{

a ∈ N

∣
∣
∣
∣

∃b ∈ N s.t. a = li + b∆(q(li)),
li < a ≤ li+1 −∆(q(li))

}

.

(4.45)

Virtual switches arise when the algorithm switches to a

controller CK(q(li)) and remain switched to that controller

for a period of time longer than the associated transition

time ∆(q(li)). This is interpreted as a series of consecutive

switches to the same controller separated in time by ∆(q(li)).
A virtual switch differs from a physical switch in that the

atomic controller state is not intentionally initialised to zero

at the virtual switching time. Note that virtual switching times

are defined purely for analytical purposes and do not determine

the actual switching algorithm. Now define the ordered set of

all switching times, physical and virtual,

Qk = {k0 = 0, k1, k2, · · · }, 0 ≤ ki ≤ ki+1 ≤ k (4.46)

by

Qk = Lk ∪
⋃

i≥0

{V (li, li+1) | li, li+1 ∈ Lk}. (4.47)

Let Qk(p) = {i ∈ Qk | q(i) = p} ⊂ Qk be the switching

times where the algorithm switches to a plant p ∈ P . Let

p ∈ H(k) and let

Qk(p, ν(k)(p)) = ∪x∈Bχ(p,ν(k)(p)){Qk(x)} (4.48)

be the set of all switching times corresponding to the plants in

the neighbourhood Bχ(p, ν(k)(p)) around a plant p ∈ H(k).
For p ∈ H(k), let

Fk(p, ν(k)(p)) :=







{max(Qk(p, ν(k)(p)))}
if max(Qk(p, ν(k)(p))) 6= ∅

∅ otherwise
(4.49)

be the switching time where the algorithm switches to a plant

within the neighbourhood Bχ(p, ν(k)(p)) for the last time in

the interval [0, k]. Note that Fk(p, ν(k)(p)) is always defined

since maxQk(p, ν(k)(p)) ≤ k. Let

Fk = ∪p∈H(k)Fk(p, ν(k)(p)) (4.50)

and note that Fk(p, ν(k)(p)) ⊂ Fk ⊂ Qk. Let

Ok(p, ν(k)(p)) :=







Q(p, ν(k)(p)) \ Fk(p, ν(k)(p))
if Qk(p, ν(k)(p)) 6= ∅

∅ otherwise
(4.51)

be the set of all ‘ongoing’ switching times corresponding to the

plants in the neighbourhood Bχ(p, ν(k)(p)) around the plant

p, i.e. the switching times where the algorithm will switch

back to a plant within Bχ(p, ν(k)(p)) at a subsequent time

within the interval [0, k]. We let

Ok = ∪p∈H(k)Ok(p, ν(k)(p)) (4.52)

and note that Ok(p, ν(k)(p)) ⊂ Ok ⊂ Qk.

For all switching times ki ∈ Qk define the intervals

Ai = [ki − σ, ki), Bi = [ki, ki+1 − σ), (4.53)

Note that by Lemma 8, ki+1 − ki ≥ ∆(q(ki)) > σ hence

ki+1 − σ > ki, hence Ai, Bi are defined and form a disjoint

cover of N. Upper and lower bounds on the switching times

are now given as follows:

Lemma 8: Suppose ∆ : P → N is a given delay transition

function and suppose the delay operator D is given by equa-

tions (3.18)–(3.23). Let k ∈ N and let qf ∈ map(N,PU ). Let

q = Dqf . Suppose ki ≤ ki+1 are consecutive switching times,

ki, ki+1 ∈ Qk, where Qk is defined by equations (4.44)–

(4.47). Let p = q(ki). Then:

∆(p) ≤ ki+1 − ki < 2∆(p). (4.54)
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Proof: By the definition of the switching delay in equation

(3.20) it follows that ∆(p) ≤ ki+1 − ki. If ki+1 is a virtual

switching time, then ki+1−ki = ∆(q(ki)) by equation (4.45),

and if ki+1 is a physical switching time, then

ki := li + b∆(q(li)) ≤ ki+1 −∆(q(li))

< li + (b + 1)∆(q(li)) = ki +∆(q(li)),

hence ki+1−ki < 2∆(q(ki)) and inequality (4.54) follows.

B. Gain bounds for atomic closed-loop systems

The first result, Proposition 9, establishes bounds on the

gain from the disturbance signals w0 to the internal signals

w2 for the atomic closed-loop interconnection between the

true plant and the controller switched into closed-loop at

time ki, i.e. [Pp∗
, CK(q(ki))], on the various intervals of

type Ai, Bi, ki ∈ Qk. The two cases wc
2|Ai = 0 and

wc
2|Ai = w2|Ai correspond to the case whereby the controller

is initialised to zero at time ki i.e. ki ∈ Lk (a physical switch)

or the case where the controller is not intentionally initialised

to zero at time ki i.e ki ∈ Qk \ Lk (a virtual switch).

Proposition 9: Let 1 ≤ r ≤ ∞. Suppose PU ⊂ P satisfies

Assumption 3.35. Let p∗ ∈ PU and P = Pp∗
. Let K : P → C

be a given control design satisfying Assumption 2(1). Suppose

∆ is a given delay transition function satisfying Assumption

3.36 and suppose the delay operator D is given by equations

(3.18)–(3.23). Let k ∈ N and let qf ∈ map(N,PU ). Let q =
Dqf . Suppose ki ≤ ki+1 are consecutive switching times,

ki, ki+1 ∈ Qk where Qk is defined by equations (4.44)–(4.47)

and let the intervals Ai, Ai+1, Bi be given by (4.53). Suppose

(w0, w1, w2) ∈ W × We × We, wc
2 ∈ We satisfy equations

(2.3)–(2.4),(3.27) on the interval Ai ∪ Bi ∪ Ai+1, where p =
q(ki), c = K(p) and either

wc
2|Ai = 0, wc

2|Bi∪Ai+1 = w2|Bi∪Ai+1 or

wc
2|Ai∪Bi∪Ai+1 = w2|Ai∪Bi∪Ai+1 .

Then, in both cases,

‖Tki+1−1w2‖ ≤ γ1(p, p∗)‖Tki−1w2‖+ γ2(p, p∗)‖w0‖

where γ1 and γ2 are given by Table 3.

Proof: Let I1 = Ai = [ki − σ, ki), I2 = ∅, I3 =
Bi ∪ Ai+1 = [ki, ki+1). Since |I1| = |Ai| = σ ≥
max{σ(p∗), σ(K(q(ki)))} by Assumption 2(1), we have for

the closed-loop [Pp∗
, CK(q(ki))] that

‖Tki+1−1w2‖ ≤ ‖Tki−1w2‖+ ‖w2|I3‖

≤ ‖Tki−1w2‖

+α(p∗,K(q(ki)), 0, |I3|)‖w2|I1‖

+β(p∗,K(q(ki)), 0, |I3|)‖w0|I1∪I2∪I3‖

≤ (1 + α(p∗,K(q(ki)), 0, |I3|))‖Tki−1w2‖

+β(p∗,K(q(ki)), 0, |I3|)‖w0‖.

By Lemma 8 we now have ∆(p) ≤ |I3| = ki+1−ki ≤ 2∆(p).
and obtain:

‖Tki+1−1w2‖ ≤ (1 + α(p∗,K(p), 0, |I3|))‖Tki−1w2‖

+β(p∗,K(p), 0, |I3|)‖w0‖

≤ γ1(p, p∗)‖Tki−1w2‖+ γ2(p, p∗)‖w0‖

as required.

The next result establishes bounds on the gain from the

disturbance signals wp
0 to the internal signals w2 for the atomic

closed-loop [Pp, CK(p)], p = q(ki) on the various intervals of

type Ai, Bi, ki ∈ Qk. That is the closed-loop interconnection

between: the controller to which the algorithm switches to at

time ki, and its corresponding plant.

Proposition 10: Let 1 ≤ r ≤ ∞. Suppose p ∈ Q ⊂
PU ⊂ P , c = K(p) and PU satisfies equation (3.35).

Let K : P → C be a given control design satisfying

Assumption 2(1),(2). Suppose ∆ is a given delay transition

function satisfying inequality (3.36) and suppose the delay

operator D is given by equations (3.18)–(3.23). Let k ∈ N

and let qf ∈ map(N,PU ). Let q = Dqf and suppose

q(ki+1) = p. Suppose ki ≤ ki+1 are consecutive switching

times, ki, ki+1 ∈ Qk where Qk is defined by equations (4.44)–

(4.47). Let the intervals Ai, Ai+1, Bi be given by (4.53).

Suppose (wp
0 , w

p
1 , w2) ∈ W × We × We, wc

2 ∈ We satisfy

equations (3.26),(3.27) on the interval Ai ∪ Bi ∪ Ai+1 and

either

wc
2|Ai = 0, wc

2|Bi∪Ai+1 = w2|Bi∪Ai+1 , or (4.55)

wc
2|Ai∪Bi∪Ai+1 = w2|Ai∪Bi∪Ai+1 . (4.56)

Then, in both cases, for 1 ≤ r < ∞:

‖w2|Ai+1‖
r
r ≤ αOP (Q)‖w2|Ai‖

r
r

+βOP (Q)‖w
q(ki+1)
0 |Ai∪Bi∪Ai+1‖

r
r

‖w2|Bi‖
r
r ≤ αOS(Q)‖w2|Ai‖

r
r

+βOS(Q)‖w
q(ki+1)
0 |Ai∪Bi‖

r
r

and similarly for r = ∞:

‖w2|Ai+1‖∞ ≤ αOP (Q)‖w2|Ai‖∞

+βOP (Q)‖w
q(ki+1)
0 |Ai∪Bi∪Ai+1‖∞,

‖w2|Bi‖∞ ≤ αOS(Q)‖w2|Ai‖∞

+βOS(Q)‖w
q(ki+1)
0 |Ai∪Bi‖∞

where αOP , βOP , αOS and βOS are given by Table 3.

Proof: By Lemma 8, inequality (4.54) we have

∆(p) ≤ |Bi∪Ai+1| = |Bi|+σ = ki+1−ki ≤ 2∆(p). (4.57)

Let I1 = Ai = [ki − σ, ki), I2 = Bi = [ki, ki+1 − σ) and

I3 = Ai+1 = [ki+1 − σ, ki+1). By equation (3.35),

|I1| = |Ai| = σ ≥ max{σ(p), σ(K(p))},

and it follows from Assumption 2(1) inequality (3.29) that:

‖w2|Ai+1‖
ξ
r ≤

(
α(p,K(p), |Bi|, |Ai+1|)‖w2|Ai‖r

+β(p,K(p), |Bi|, |Ai+1|)

·‖wp
0 |Ai∪Bi∪Ai+1‖r

)ξ

≤
(
α(p,K(p),∆(p)− σ, σ)‖w2|Ai‖r

+β(p,K(p), |Bi|, σ)‖w
p
0 |Ai∪Bi∪Ai+1‖r

)ξ
,

where the second inequality follows from Assumption 2(2))

and since |Bi| ≥ ∆(p) − σ (inequality (4.57)). Hence by

inequality (4.57) and since

(a+ b)ξ ≤ J(ξ)(aξ + bξ), a, b ≥ 0 (4.58)
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we obtain

‖w2|Ai+1‖
ξ
r ≤ J(ξ)αξ(p,K(p),∆(p)− σ, σ)‖w2|Ai‖

ξ
r

+J(ξ)βξ(p,K(p), |Bi|, σ)

·‖wp
0 |Ai∪Bi∪Ai+1‖

ξ
r

≤ αOP ‖w2|Ai‖
ξ
r + βOP ‖w

p
0 |Ai∪Bi∪Ai+1‖

ξ
r.

Now let I1 = Ai = [ki−σ, ki), I2 = ∅, I3 = Bi = [ki, ki+1−
σ). By equation (3.35), |I1| ≥ σ ≥ max{σ(p1), σ(K(p2))}
and it follows from Assumption 2(1) (inequality (3.29)),

inequality 4.58 and inequality (4.57) that:

‖w2|Bi‖
ξ
r ≤

(
α(p,K(p), 0, |Bi|)‖w2|Ai‖r

+β(p,K(p), 0, |Bi|)‖w
p
0 |Ai∪Bi‖r

)ξ

≤ J(ξ)αξ(p,K(p), 0, |Bi|)‖w2|Ai‖
ξ
r

+J(ξ)βξ(p,K(p), 0, |Bi|)‖w
p
0 |Ai∪Bi‖

ξ
r

≤ αOS‖w2|Ai‖
ξ
r + βOS‖w

p
0 |Ai∪Bi‖

ξ
r

as required.

C. Bounds on disturbance estimates

The next proposition follows gives a bound on a series of

disturbance estimates corresponding to the switching signal.

Repeated application of the minimality property (Assumption

4(2)) allows us to bound the series of disturbance estimates in

terms of the disturbance estimate corresponding to the switch

at the end of the sequence.

Proposition 11: Let the switching operator

S = DM(NE,G) be given by equations (3.14)–

(3.16),(3.18)–(3.23), (3.31)–(3.34), where G is a plant-

generating operator. E is given by equations (3.31),(3.32)

and satisfies Assumptions 4(2)–(3) for λ ∈ N. Suppose

w2 ∈ We. Let ki ∈ Qk, i ∈ N be defined by equations

(4.44)–(4.47), q(ki) = S(w2)(ki), let k̃i = ki+1 − 1, and let

dz[k] = E(w2)(k)(z). Then:

‖Φλdq(km+1)[k̃m],Φλdq(km+2)[k̃m+1], · · · ,Φλdq(kn+1)[k̃n]‖

≤ 21/r‖dq(kn+1)[kn+1]‖ (4.59)

where Φλ is defined by Assumption 4(2).

Proof: We first claim that for 1 ≤ j ≤ i:

‖Φλdq(km+1)[k̃m],Φλdq(km+2)[k̃m+1], · · · ,Φλdq(kj+1)[k̃j ]‖

≤ ‖dq(kj)[k̃j−1], dq(kj+1)[k̃j ]‖. (4.60)

We now prove the claim by induction. Let i = j = 1. For ease

of notation let Rσdz[k] = Rσ,kdz[k]. Since

‖Rλdq(kl+1)[k̃l]‖ ≤ ‖dq(kl+1)[k̃l]‖, (4.61)

we have

‖Φλdq(km+1)[k̃m],Φλdq(km+2)[k̃m+1]‖

4(2),(2.1)

≤ ‖‖Rλdq(km+1)[k̃m]‖, ‖Rλdq(km+2)[k̃m+1]‖‖
(4.61),(2.1)

≤ ‖dq(km+1)[k̃m], dq(km+2)[k̃m+1]‖.

Therefore the base step is shown. For the inductive step,

assume inequality (4.60) holds for 1 ≤ j ≤ i − 1. We first

show for l ≥ 0,

‖dq(kl−1)[k̃l−2],Rλdq(kl+1)[k̃l]‖ ≤ ‖dq(kl+1)[k̃l]‖. (4.62)

This follows since:

‖dq(kl−1)[k̃l−2]‖ = ‖dq(kl−1)[kl−1 − 1]‖

Ass. 4(3)

≤ ‖dq(kl−1)[kl−1]‖

≤ ‖dq(kl+1)[kl−1]‖ (4.63)

where the third inequality follows from the definition of the

switch (3.16) and the fact that kl−1 ∈ Qk, hence qf (kl−1) =
q(kl−1). Then since kl−1 < k̃l − λ,

‖dq(kl−1)[k̃l−2],Rλdq(kl+1)[k̃l]‖
(4.63)

≤ ‖dq(kl+1)[kl−1],Rλdq(kl+1)[k̃l]‖

Ass. 4(3)

≤ ‖Tkl−1
dq(kl+1)[kl],Rλdq(kl+1)[k̃l]‖

≤ ‖dq(kl+1)[k̃l]‖.

as required. Then by the inductive hypothesis:

‖Φλdq(km+1)[k̃m],Φλdq(km+2)[k̃m+1], · · · ,Φλdq(ki+1)[k̃i]‖

(4.60),(2.1)

≤

∥
∥
∥
∥

‖dq(ki−2)[k̃i−3]‖, ‖dq(ki−1)[k̃i−2]‖,

‖Φλdq(ki)[k̃i−1]]‖, ‖Φλdq(ki+1)[k̃i]‖

∥
∥
∥
∥

Ass. 4(2)

≤

∥
∥
∥
∥

‖dq(ki−2)[k̃i−3]‖, ‖dq(ki−1)[k̃i−2]‖,

‖Rλdq(ki)[k̃i−1]]‖, ‖Rλdq(ki+1)[k̃i]‖

∥
∥
∥
∥

(2.1)
=

∥
∥
∥
∥

‖dq(ki−2)[k̃i−3],Rλdq(ki)[k̃i−1]]‖,

‖dq(ki−1)[k̃i−2],Rλdq(ki+1)[k̃i]‖

∥
∥
∥
∥

(4.62)

≤ ‖dq(ki)[k̃i−1], dq(ki+1)[k̃i]‖

This completes the inductive step and establishes the claimed

inequality (4.60) for j = n as required. Since (3.16) implies

‖dq(kn)[kn]‖ ≤ ‖dq(kn+1)[kn]‖, the result follows:

‖dq(kn)[k̃n−1], dq(kn+1)[k̃n]‖

Ass.4(3)

≤ ‖dq(kn)[kn], dq(kn+1)[kn+1]‖,

≤ ‖dq(kn+1)[kn], dq(kn+1)[kn+1]‖

Ass.4(3)

≤ ‖dq(kn+1)[kn+1], dq(kn+1)[kn+1]‖

≤ ‖1, 1‖‖dq(kn+1)[kn+1]‖

= 21/r‖dq(kn+1)[kn+1]‖.

The next proposition shows that if the algorithm switches at

time x to a plant z then the disturbance estimate at time x,

can be bounded by the real disturbance w0 and a correction

factor dependent on w2 and the χ distance between the true

plant p∗ (which generates the closed loop system signals) and

a plant p ∈ G(x) (which models p∗).

Proposition 12: Let 1 ≤ r ≤ ∞. Suppose p∗ ∈ PU ⊂ P .

Suppose ∆ is a given delay transition function and sup-

pose the delay operator D is given by equations (3.18)–

(3.23). Suppose G is a plant-generating operator. Suppose
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E satisfies Assumptions 4(1)–(5) for some λ ∈ R and the

switching operator S = DM(NE,G) is given by equations

(3.14)–(3.16),(3.18)–(3.23), (3.31)–(3.34). Let k ∈ N. Suppose

(w0, w1, w2) ∈ W × We × We satisfy equations (2.3)–(2.4)

for P = Pp∗
. Let x ∈ Qk, z = q(x) = S(w2)(x) where Qk

is defined by equations (4.44)–(4.47) and suppose p ∈ G(x).
Then:

‖E(w2)(z)(x)‖ = ‖dz[x]‖ ≤ µ‖Txw0‖+ χ(p, p∗)‖Txw2‖.

Proof: By definition, qf (t) = M(NE,G)(t), t ∈ N,

will always point to the plant whose corresponding disturbance

estimates are minimal. By the definition of M and since p ∈
G(x), we have

‖dqf (x)[x]‖ = inf
p∈G(x)

‖dp[x]‖ ≤ ‖dp[x]‖.

SInce qf (x) = q(x) by the definition of D, it follows that

‖dz[x]‖ = ‖dq(x)[x]‖ = ‖dqf (x))[x]‖ ≤ ‖dp[x]‖. (4.64)

Then

‖dp[x]‖ = ‖E(w2)(x)(p)‖

≤ ‖E(w2)(x)(p∗)‖+ χ(p, p∗)‖Txw2‖

≤ µ‖Txw0‖+ χ(p, p∗)‖Txw2‖.

where the first inequality follows by Assumption 4(4) and the

second by Assumption 4(5), and the result follows.

D. Gain bounds for non-final switching intervals

We first give an intermediate result that is self-contained

and purely combinatorial.

Proposition 13: Let 1 ≤ r ≤ ∞ and

ξ =

{
r for 1 ≤ r < ∞
1 for r = ∞

. Let z, f, β, ǫ : N → R
+

and a, b, d, e ∈ R
+, a < 1. Let m,n ∈ N and suppose for all

m ≤ i ≤ n:

zξi+1 ≤ azξi + dβξ
i (4.65)

f ξ
i ≤ bzξi + eǫξi . (4.66)

Then:

∥
∥z|[m+1,n+1], f |[m,n]

∥
∥

≤ γ̃3(G)|zm|+ γ̃4(G)‖β|[m,n]‖+ γ̃5(G)‖ǫ|[m,n]‖

where G = (a, b, d, e) and

γ̃3(G) =

{ (
(1+b1/r)ra

1−a

)1/r

+ b1/r if 1 ≤ r < ∞,

max{1, b}a+ b if r = ∞,

γ̃4(G) =







(
(1+b1/r)rd

1−a

)1/r

if 1 ≤ r < ∞,

max{1, b} d
1−a if r = ∞,

γ̃5(G) =

{
e1/r for 1 ≤ r < ∞,
e for r = ∞.

Proof: Let 1 ≤ ξ = r < ∞. By (4.65) we have

zrm+1 ≤ azrm + dβr
m

zrm+2 ≤ a2zrm + d
(
aβr

m + βr
m+1

)

zrm+3 ≤ a3zrm + d
(
a2βr

m + aβr
m+1 + βr

m+2

)

...

zrn+1 ≤ an−m+1zrm + d
(

βr
man−m + · · ·

· · ·+ βr
m+1a

n−m−1 + βr
n−1a+ βr

n

)

.

Summing vertically gives:

n+1∑

i=m+1

zri = zrm

n−m+1∑

i=1

ai + d
(

βr
m

n−m∑

i=0

ai + · · ·

· · ·+βr
m+1

n−m−1∑

i=0

ai+βr
n−1

1∑

i=0

ai+βr
n

)

≤ zrm

n−m+1∑

i=1

ai + d

n∑

j=m

βr
j

n−j
∑

i=0

ai.

Since a < 1, it follows that
∑j

i=0 a
i ≤ 1

1−a for all j > 0, and

hence

‖z|[m+1,n+1]‖
r
r =

n+1∑

i=m+1

zri ≤
1

1− a

(

azrm + d

n∑

i=m

βr
i

)

.

(4.67)

Therefore

‖z|[m+1,n+1]‖r ≤

(
1

1− a

) 1
r (

a
1
r |zm|+ d

1
r

∥
∥β|[m,n]

∥
∥
r

)

.

By inequality (4.66) we have

∥
∥f |[m,n]

∥
∥
r

≤

(

b

n∑

i=m

zri + e

n∑

i=m

ǫri

) 1
r

≤ b
1
r

∥
∥z|[m,n]

∥
∥
r
+ e

1
r

∥
∥ǫ|[m,n]

∥
∥
r
. (4.68)

By inequalities (4.67) and (4.68) we then obtain:

∥
∥z|[m+1,n+1], f |[m,n]

∥
∥
r

≤
∥
∥z|[m+1,n+1]

∥
∥
r
+ b

1
r

∥
∥z|[m,n]

∥
∥
r
+ e

1
r

∥
∥ǫ|[m,n]

∥
∥
r

≤
(

1 + b
1
r

) ∥
∥z|[m+1,n+1]

∥
∥
r
+ b

1
r |zm|+ e

1
r

∥
∥ǫ|[m,n]

∥
∥
r

≤





(

1 + b
1
r

)r

1− a





1
r

(

a
1
r |zm|+ d

1
r

∥
∥β|[m,n]

∥
∥
r

)

+ b
1
r |zm|+ e

1
r

∥
∥ǫ|[m,n]

∥
∥
r

≤ γ̃3(G)|zm|+ γ̃4(G)‖β|[m,n]‖r + γ̃5(G)‖ǫ|[m,n]‖r

as required.
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Let r = ∞, so ξ = 1. By inequality (4.65) we have

zm+1 ≤ azm + dβm

zm+2 ≤ a2zm + d (aβm + βm+1)

zm+3 ≤ a3zm + d
(
a2βm + aβm+1 + βm+2

)

...
...

...

zn+1 ≤ an−m+1zm + d
(
βman−m + βm+1a

n−m−1

+ · · ·+ βn−1a+ βn

)
.

Taking norms leads to

∥
∥z|[m+1,n+1]

∥
∥
∞

≤ a|zm|+ d

n−m∑

i=0

ai‖β|[m,n]‖∞

≤ a|zm|+
d

1− a
‖β|[m,n]‖∞.

Furthermore by inequality (4.66) we have

∥
∥f |[m,n]

∥
∥
∞

≤ b
∥
∥z|[m,n]

∥
∥
∞

+ e
∥
∥ǫ|[m,n]

∥
∥
∞

.

Substitutions lead to:

∥
∥z|[m+1,n+1], f |[m,n]

∥
∥
∞

≤ max{‖z|[m+1,n+1]‖∞, b‖z[m,n]‖∞ + e‖ǫ[m,n]‖∞}

≤ max{1, b}‖z|[m+1,n+1]‖∞ + b|zm|+ e‖ǫ[m,n]‖∞

≤
(
max{1, b}a+ b

)
|zm|+max{1, b}

d

1− a
‖β|[m,n]‖∞

+ e‖ǫ[m,n]‖∞

≤ γ̃3(G)|zm|+ γ̃4(G)‖β|[m,n] ‖∞ + γ̃5(G)‖ǫ[m,n]‖∞

as required.

In Proposition 10 we established a gain relationship between

w2 and disturbance signals wp
0 which are consistent with the

plant p ∈ P and the observed signal w2 ∈ We over some

finite interval. Since it is the overall goal to establish a bound

on the gain from the disturbances w0 to the internal signals

w2 we need to bound the consistent disturbance signals wp
0 by

the true disturbances w0. We do this by considering intervals

[km, kn], m, n ∈ N, m ≤ n, km, kn ∈ Qk where all interme-

diate switching times are ongoing, i.e. ki ∈ Ok, m ≤ i ≤ n
and then use the fact that after a series of ongoing switches

there must follow a final switch hence Proposition 12 is

applicable. The next result establishes bounds on w2 in terms

of w0 over certain intervals.

Proposition 14: Let 1 ≤ r ≤ ∞. Suppose p∗ ∈ PU ⊂ P
where PU satisfies Assumption 3.35. Let P = Pp∗

. Let

U be a monotonic plant generating operator and suppose

(H, ν) defines a monotonic cover for U . Let k ∈ N. Suppose

the EMMSAC controller C(U,K,∆, G,X) is standard, and

G(j) ⊂ U(j), j ≤ k. Suppose (w0, w1, w2) ∈ W×We×We

satisfy the closed-loop [P,C] equations (2.3)–(2.5) over the

interval [0, k). Let ki, i ∈ N be defined by equations (4.44)–

(4.47) and suppose kn+1 ≤ k. Let m,n ∈ N, suppose

Fk ∩ [km − σ, kn+1] = ∅ . Let ε > 0. If there exists

p ∈ G(j), j ≥ km such that χ(p, p∗) ≤ εχν(H, ν),

π(Q1,Q2, ν(k), ε, p∗) > 0, ∀j ≤ k (4.69)

and αOP (U(k)) < 1 then

‖Tkn+1−1w2‖ ≤ γ6(U(k), H(k), ν(k), ε, p∗)‖Tkm−1w2‖

+γ7(U(k), H(k), ν(k), ε, p∗)‖w0‖,(4.70)

where αOP , χν , γ3, γ4, γ5, π, η are given by Table 3 and γ6,

γ7 are given by

γ6(Q1,Q2, v, ε, p∗) =
1 + γ3(Q1)

π(Q1,Q2, v, ε, p∗)

γ7(Q1,Q2, v, ε, p∗) =
η(Q2, v, ε, p∗)

(
γ4(Q1) + γ5(Q1)

)

π(Q1,Q2, v, ε, p∗)

Proof: Let k ∈ N. Let (w0, w1, w2) ∈ W × We × We

denote the solution to the closed-loop equations (2.3)–(2.5)

with P = Pp∗
and C as in equations (3.24),(3.25). Let

the intervals Ai, Bi be defined by (4.53). In particular

(w0, w1, w2) ∈ W × We × We satisfy equations (2.3)–(2.5)

on the intervals Ai ∪Bi ∪ Ai+1 where

Ai ∪Bi ∪ Ai+1 ⊆ [km − σ, kn+1) ⊆ [0, k)

for m ≤ i ≤ n. For ki ∈ Qk, let k̄i = ki+1 − ki + σ − 1,

k̃i = ki+1 − 1 and note that Ai ∪Bi ∪Ai+1 = [k̃i − k̄i, k̃i].
We now intend to apply Proposition 10. By Lemma 8,

inequality (3.36) and equations (3.38) we have

0 ≤ k̄i = ki+1 − ki + σ − 1 ≤ 2∆(q(ki)) + σ ≤ λ. (4.71)

Let p = q(ki). Define

wp
0(k) =

{

Φk̄i
dp[k̃i](k) if k ∈ Ai ∪Bi ∪ Ai+1

0 otherwise
.

By Assumption 4(2) we know that Φk̄i
dp[k̃i] ∈

N
[k̃i−k̄i,k̃i]
p (w2). For every ki ∈ Qk let wc

2 ∈ We satisfy

wc
2(k) =







w2(k) if k ∈ Bi ∪ Ai+1 and ki ∈ Lk

w2(k) if k ∈ Ai ∪Bi ∪ Ai+1 and ki ∈ Qk \ Lk

0 otherwise.

Note that w2, w
c
2 satisfy equations (4.55),(4.56) of Proposition

10. There exists a wp
1 ∈ We such that (wp

0 , w
p
1 , w2) ∈

W×We ×We satisfies equations (2.3)–(2.5) for P = Pp and

C as in equation (3.25) on the intervals

Ai ∪Bi ∪ Ai+1 = [ki − σ, ki+1) = [k̃i − k̄i, k̃i].

To see this observe that w2 is generated by the special structure

of C, i.e. from the controller Cc at time ki which is initialised

to zero if ki ∈ Lk and inherits an initial value at time ki
determined from w2|Ai if ki ∈ Qk \ Lk. Let

a = αOP (U(k)) b = αOS(U(k))
d = βOP (U(k)) e = βOS(U(k))
zi = ‖w2|Ai‖r fi = ‖w2|Bi‖r

βi = ‖w
q(ki+1)
0 |Ai∪Bi∪Ai+1‖r = ‖Φk̄i

dq(ki+1)[k̃i]‖r

ǫi = ‖w
q(ki+1)
0 |Ai∪Bi‖r ≤ βi = ‖Φk̄i

dq(ki+1)[k̃i]‖r

where we note that zi = ‖w2|Ai‖r ≥ ‖wc
2|Ai‖r. Since U is

monotonic, hence G(ki) ⊂ U(ki) ⊂ U(k), it follows that for
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all ki ∈ Qk that:

αOP (G(ki)) ≤ αOP (U(ki)) ≤ αOP (U(k)) < 1

αOS(G(ki)) ≤ αOS(U(ki)) ≤ αOS(U(k))

βOP (G(ki)) ≤ βOP (U(ki)) ≤ βOP (U(k))

βOS(G(ki)) ≤ βOS(U(ki)) ≤ βOS(U(k)).

Since ‖w2|Bi‖r = ‖wc
2|Bi‖r it follows from Proposition 10

that zξi+1 ≤ azξi + dβξ
i and f ξ

i ≤ bzξi + eǫξi . Since ǫi ≤ βi it

follows that ‖ǫ|[m,n]‖ ≤ ‖β|[m,n]‖ and by Proposition 13 we

then have for 1 ≤ r ≤ ∞ that:

‖w2|[km,kn+1)‖

=
∥
∥‖w2|Am+1‖, ‖w2|Am+2‖, · · · , ‖w2|An+1‖,

‖w2|Bm‖, ‖w2|Bm+1‖, · · · , ‖w2|Bn‖
∥
∥

=
∥
∥z|[m+1,n+1], f |[m,n]

∥
∥

≤ γ3(U(k))|zm|+ γ4(U(k))‖β|[m,n]‖

+ γ5(U(k))‖ǫ|[m,n]‖

≤ γ3(U(k))|zm|

+
(
γ4(U(k)) + γ5(U(k))

)
‖β|[m,n]‖. (4.72)

It remains to show that
∥
∥β|[m,n]

∥
∥, |zm| are bounded by ‖w0‖

and ‖w2‖. Recall that Ridp[j] := Ri,jdp[j], i ≤ j, p ∈ P . By

Assumption 4(2) we have

‖w
q(ki+1)
0 |Ai∪Bi∪Ai+1‖

= ‖Φk̄i
dq(ki+1)[k̃i]‖ ≤ ‖Rk̄i

dq(ki+1)[k̃i]‖.

Observe that k̃i = ki+1 − 1 ≤ k̃i+1 = ki+2 − 1 and that

0 ≤ k̄i ≤ λ (equation (4.71)). By Proposition 11, inequality

(2.1) and by Assumption 4(2), we obtain:

‖β|[m.n]‖ = ‖‖Φk̄m
dq(km+1)[k̃m]‖, ‖Φk̄m+1

dq(km+2)[k̃m+1]‖,

· · · , ‖Φk̄n
dq(kn+1)[k̃n]‖‖

≤ ‖Φλdq(km+1)[k̃m],Φλdq(km+2)[k̃m+1], · · ·

· · · ,Φλdq(kn+1)[k̃n]‖

≤ 21/r‖dq(kn+1)[kn+1]‖ (4.73)

Since kn+1 ∈ Qk, it follows from Proposition 12 that

‖dq(kn+1)[kn+1]‖ ≤ µ‖Tkn+1w0‖ + χ(p, p∗)‖Tkn+1w2‖. It

follows from inequality (4.73) that

‖β|[m.n]‖

≤ 21/r
(
µ‖Tkn+1w0‖+ χ(p, p∗)‖Tkn+1w2‖

)

≤ 21/r
(

µ‖w0‖+εχν(H(k), ν(k))(‖Tk̃n
w2‖+|w2(kn+1)|)

)

,

By a double application of Proposition 9 we obtain:

|w2(kn+1)|

≤ γ1(q(kn+1), p∗)‖Tk̃n+2
w2‖+ γ2(q(kn+1), p∗)‖w0‖

≤ γ1(q(kn+1), p∗)γ1(q(kn), p∗)‖Tk̃n+1
w2‖

+(γ1(q(kn), p∗)γ2(q(kn+1), p∗)+γ2(q(kn), p∗))‖w0‖

hence:

‖β|[m.n]‖ ≤

21/rεχν(H(k), ν(k))((1 + γ̄2
1(H(k), {p∗}))‖Tk̃n

w2‖

+ 21/r(µ+ εχν(H(k), ν(k))γ̄2(H(k), {p∗})·

· (1 + γ̄1(H(k), {p∗}))‖w0‖ (4.74)

Since |zm| = ‖w2|Am‖ ≤ ‖Tkm−1w2‖, by inequalites (2.1),

(4.74), (4.73), (4.72) we have

‖Tk̃n
w2‖ ≤ ‖Tkm−1w2‖+ ‖w2|[km,kn+1)‖

≤ ‖Tkm−1w2‖+ γ3(U(k))|zm|

+
(
γ4(U(k)) + γ5(U(k))

)
‖β|[m,n]‖

≤ (1 + γ3(U(k)))‖Tkm−1w2‖

+
(
γ4(U(k)) + γ5(U(k)

)(

η(H(k), ν(k), ε, p∗)‖w0‖

+21/rεχν(H(k), ν(k))((1+γ̄2
1 (H(k), {p∗}))‖Tk̃n

w2‖
)

,

≤ (1 + γ3(U(k)))‖Tkm−1w2‖

+
(
γ4(U(k)) + γ5(U(k)

)
η(H(k), ν(k), ε, p∗)‖w0‖

+ (1− π(U(k), H(k), ν(k), ε, p∗)‖Tk̃n
w2‖.

Since inequality (4.69) holds, we can now rearrange to obtain

(4.70) as required.

E. Main result

In Proposition 14 we have established gain bounds for

sequences of intervals (ongoing intervals) relating to ongoing

switches, i.e. to times ki ∈ Ok. In Proposition 9 we have

established gain bounds which can be applied to intervals

(final intervals) relating to final switches, i.e. ki ∈ Fk.

Now observe the following: to every p ∈ H(k), provided

that Qk(p, ν(k)(p)) is not empty, there exists a plant z in

the neighbourhood Bχ(p, ν(k)(p)), such that the algorithm

switches to that plant for the last time on the interval [0, k],
i.e. z = q(Fk(p)), z ∈ Bχ(p, ν(k)(p)). This implies that

none, one, or a sequences of ongoing intervals is always

followed by a final interval. This progression may repeat

itself a maximum of |H(k)| times since there can be only

a maximum of |Fk| = |H(k)| final switches. These facts will

be used to prove the main result, thus establishing gain bounds

on w2 in terms of w0.

Proof: Theorem 7. Let γ6, γ7 be as in Proposition 14.

Suppose 0 ≤ k ≤ k∗ − 1. For j ≤ k, observe that since the

gain γ3(U(j)) ≥ 0, and π(U(j), H(j), ν(j), ε, p∗) > 0 by

assumption, it follows that γ6(U(j), H(j), ν(j), ε, p∗) ≥ 1.
Also observe that since α(p∗,K(p), 0, x) ≥ 0, for p ∈ PU ,

x ∈ N, it follows that γ1(p, p∗) ≥ 1 for all p ∈ PU , therefore

β(U(j), H(j), ν(j), ε, p∗) ≥ for j ≤ k, and inequality (4.43)

holds as required.

Now suppose k ≥ k∗. Let {kf0 = k∗, kf1 , · · · , kfm} =
∪p∈H(k){max(Ok(p))} ∪ {k∗} ∪ Fk be an ordered set of

switching times, i.e. kfi ≤ kfi+1 , 0 ≤ i < m. Observe

that the algorithm might not switch to some neighbourhood

Bχ(p, ν(k)(p)), p ∈ H(k) at all, i.e. there might exist a

p ∈ H(k) such that Fk(p) = Ok(p) = ∅, and indeed
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Ok(pi) ∩ Fk(pj) may not be empty for all i, j ≤ k, however

m = |Fk|+ | ∪p∈H(k) {max(Ok(p))}| ≤ 2|H(k)|. Let

afi =

{
γ6(U(k), H(k), ν(k), ε, p∗) if kfi ∈ Ok

γ1(q(kfi), p∗) if kfi ∈ Fk

bfi =

{
γ7(U(k), H(k), ν(k), ε, p∗) if kfi ∈ Ok

γ2(q(kfi), p∗) if kfi ∈ Fk

where afi ≥ 0 since γ1, γ6 ≥ 1, as previously. Now define

kfm+1 = min{a > kfm | a ∈ Qa} and observe that kfm ≤
k < kfm+1 where kfi ∈ Qk ⊂ Qkfm+1

, 0 ≤ i ≤ m and

kfm , kfm+1 ∈ Qkfm+1
. Then, with zfi = ‖Tkfi

−1w2‖r for

0 ≤ i ≤ m+ 1, it follows from Propositions 9, 14 that:

zfi+1 ≤ afizfi + bfi‖w0‖, 0 ≤ i ≤ m,

and so,

zfm+1 ≤
m∏

i=0

afizf0 +
( m∏

i=1

afibf0 +

m∏

i=2

afibf1 + · · ·

· · ·+
m∏

i=m

afibfm−1 + bfm

)

‖w0‖

≤
m∏

i=0

afi

(

zf0 +
m∑

i=0

bfi‖w0‖

)

≤ γ
|H(k)|
6 (U(k), H(k), ν(k), ε, p∗)

∏

p∈H(k)

γ1(p, p∗)

·
(

zf0 +
(

µ|H(k)|γ7(U(k), H(k), ν(k), ε, p∗)

+
∑

p∈H(k)

γ2(p, p∗)
)

‖w0‖
)

.

Since kf0 = k∗, it follows that zf0 = ‖Tk∗−1w2‖, hence,

‖Tkw2‖ ≤ zfm+1

≤ β(U(k), H(k), ν(k), ε, p∗)‖Tk∗−1w2‖

+γ̂(U(k), H(k), ν(k), ε, p∗)‖w0‖

as required.

5. CONSERVATISM, UNIVERSALITY AND EMMSAC

The following material is based on [4, 5]. One of the

key motivating rationales for adaptive control is the ability

to overcome conservativeness of alternative control designs

for large (structured) uncertainty sets. This follows from

the property of universality introduced below. Following [5]

we define the notion of a conservative design as follows.

Suppose {∆(β)}β≥0 is a parameterised collection of nested

subsets of P . Here, the parameter β represents the (structured)

uncertainty level of the uncertainty set ∆(β). For example,

we might be interested in controlling a plant of the form

(a, 1, 1, 0) ∈ P̄LTI, where a is an uncertain parameter, and

∆(β) could be taken to be:

∆(β) = {(1 + a, 1, 1, 0) ∈ R
4 : a ∈ [−β, β]}. (5.75)

The notion of conservativeness of a control design is the

property that nominal performance degrades as the uncertainty

set on which the design is based becomes larger. Given a

controller C, a bounded set D ⊂ W and an uncertainty set

Ω ⊂ P , we define the worst case cost :

JR(Ω, C) = sup
p∈Ω

sup
‖w0‖<R

∥
∥ΠPp//Cw0

∥
∥ , (5.76)

and make the definition:

Definition 15: Let R > 0, and suppose {∆(β)}β≥0 is a

parameterised collection of nested subsets of P . A control

design Γ: R+ → C is said to be:

1) JR(∆)-stable if for all β ≥ 0 and for all β∗ ≥ β,

JR(∆(β),Γ(β∗)) < ∞.

2) JR(∆)-conservative if for all β ≥ 0,

lim
β∗→∞

JR(∆(β),Γ(β∗)) = ∞,

3) JR(∆)-semi-universal if for all β ≥ 0, there exists J̄ >
0 such that for all β∗ ≥ β,

JR(∆(β),Γ(β∗)) < J̄ .

It is a clear requirement of any control design Γ that it is

JR(∆)-stable, this is simply the requirement that the controller

Γ(β) designed for uncertainty level β does indeed stabilize

all plants Pp, p ∈ ∆(β). But, many control designs are also

conservative, i.e. have the property that as the uncertainty

level β∗ used in the control design becomes an increasingly

high over-bound of the ‘true’ uncertainty β, the performance

degrades unboundedly. For example, the fact that both LTI and

memoryless control designs are conservative for our exemplar

uncertainty set given in equation (5.75), is established in

continuous time in [5, Proposition 7.5] and [5, Proposition

7.4] respectively. Analogous results holds for alternative model

uncertainties and in discrete time.

Clearly a semi-universal design Γ1 will outperform a con-

servative design Γ2 as β∗ becomes large w.r.t. β, since for all

β ≥ 0 there exists β∗∗ ≥ β such that, for all β∗ ≥ β∗∗,

JR(∆(β),Γ1(β
∗)) < JR(∆(β),Γ2(β

∗)).

Adaptive designs can often be shown to be semi-universal and

hence non-conservative via a universality property:

Definition 16: Let R > 0, and suppose {∆(β)}β≥0 is a

parameterised collection of nested subsets of P . A controller

C ∈ C is said to be universal if for all β > 0, JR(∆(β), C) <
∞. A JR(∆)-stable mapping Γ: R+ → C, which is constant

is said to be a universal control design.

It is simple to see that a universal control design is auto-

matically JD-semi-universal. This universality property is a

key feature of classical adaptive control designs (see [5] for

further discussion). This supplies a clear rationale for adaptive

controllers: for large uncertainty sets, nominal performance

will degrade for LTI control designs; but it does not degrade

for universal adaptive designs.

By establishing an lower bound on performance, Theorem

17 below shows that static EMMSAC is also conservative. It

is anticipated that this property holds also for other variants

of MMAC by similar constructions, note that the MMAC

literature to date restricts attention either to structured uncer-

tainty sets defined by finite candidate model sets or to compact
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continua [6]; and in all cases the derived upper gain bounds

diverge as the uncertainty set becomes larger. This motivates

the development of dynamic EMMSAC which is shown to be

JR semi-universal and hence not conservative in Theorem 18.

A. Static MMAC is conservative

We now consider the construction of universal EMMSAC

designs which yield non-conservative performance. Such de-

signs are dynamic, and we show how they outperform static

EMMSAC and LTI controllers.

Consider the following example. For β > 0, let U be a

constant plant-generating operator defined by

U(j) = ∆(β), j ∈ N. (5.77)

where ∆(β) is given by equation (5.75). A possible sampling

of U is then given as follows. Let the refinement level m > 0
and the parameter bound β > 0 define the plant model set

Pm(β) ={(1 + β − i/m, 1, 1, 0) ∈ P̄LTI |

i ∈ N, |β − i/m| ≤ β} (5.78)

Let the (dead-beat) controller design satisfy:

K((a, 1, 1, 0)) = (0, 0, 0,−a) ∈ CLTI . (5.79)

Under the conditions of the theorem below, it is straight-

forward to verify that Γ is JR(∆)-stable provided m > 0
is sufficiently small. However, the algorithm is necessarily

conservative:

Theorem 17: Let U = Y = lr, 1 ≤ r ≤ ∞, and suppose

R = ∞. Let m > 0 and let the plant set Pm(β), constant

plant generating operator U and control design K be given

by equations (5.77),(5.78), (5.79). Let X = XA or XB where

λ ≥ 3. Let the constant plant generating operator Gβ be given

by Gβ = Pβ,m. Let the switching control design Γ(β∗) =
C(U,K, 1, Gβ∗ , X) be determined by equations (3.24),(3.25).

Then Γ is JR(Pm)-conservative.

Proof: Let m = 1. First we show that we can al-

ways make the switching algorithm switch to the controller

corresponding to the plant with the largest possible v ∈
N, (0, 0, 0, v) ∈ Cβ∗,m, that is v = β∗ ∈ N. Secondly we

show that this switch leads to an unbounded increase in closed

loop cost as β∗ increases.

Let pb = (b, 1, 1, 0), pβ∗ = (β∗, 1, 1, 0) ∈ Pβ∗,1, 1 ≤
b < β∗. Let B > 0 and consider the closed-loop system

[P,C[Pβ∗,1]] with
(
u0

y0

)

=

((
0
B

)

,

(
0
0

)

,

(
0

B − β∗B

)

,

(
0
0

)

,

(
0
0

)

, · · ·

)

.

We now claim that these disturbances make the algorithm

switch to the controller Cpβ∗ in two time steps, i.e. q(2) =
pβ∗ = qf (2) = S(w2)(2), and that the signals in Table 4 are

consistent with
(
u1

y1

)

= ΠP//Γ(β∗)

(
u0

y0

)

, u0 = u1 + u2, y0 = y1 + y2.

Note that in Table 4 and throughout this proof, an entry marked

× indicates that the entry is irrelevant to the calculation that

k

(

u0

y0

) (

u1

y1

) (

u2

y2

)

0

(

0
B

) (

B
0

) (

−B
B

)

1

(

0
0

) (

−B
B

) (

B
−B

)

2

(

0
B − β∗B

) (

β∗(B − β∗B)
0

) (

β∗(β∗B −B)
B − β∗B

)

3

(

0
0

) (

×
β∗(B − β∗B)

) (

×
×

)

TABLE 4
SIGNALS FOR THE TRUE PLANT P = Pp∗ UP TO TIME k = 3

follows. To establish the claim as follows. Let:

P = Pp∗
: y1(k + 1) = y1(k) + u1(k)

Ppb
: yb1(k + 1) = byb1(k) + ub

1(k)

Ppl
: yl1(k + 1) = lyl1(k) + ul

1(k),

where y1(0) = yb1(0) = yl1(0) = 0. Since the zero initial

conditions are zero and y0(0) = B, the consistency property

forces dp[0](0), p ∈ {pb, p∗β} to satisfy:

dp[0](0) =

(
up
0(0)

yp0(0)

)

=

(
0
B

)

, p ∈ {pb, p
∗
β}.

Hence ‖dp[0]‖ = B, p ∈ {pb, pβ∗}. Note that since the

disturbance estimates are of identical size, we impose an

ordering on G such that pβ∗ = (1, 1, 1, 0) ∈ P is the plant

model with the smallest index, hence q(0) = p∗ = p1. 1 With

u2(0) = −y2(0) = −B and u0(0) = 0 we have u1(0) = B.

At time k = 1 we have y1(1) = B and since y0(1) = 0 it

follows that y2(1) = −B. The smallest disturbance dp[1], p ∈
{pb, p∗β} consistent with (T0u2,T1y2) and Ppb

, Ppβ∗ can, by

the general property ‖dp[k]‖ ≤ ‖dp[k + 1]‖, p ∈ P , k ∈ N,

be found to be

(dpβ∗ [1](0), ‖dpβ∗ [1](1)) =

((
0
B

)(
0
0

))

, p ∈ {pb, pβ∗}.

Since ‖dpβ∗ [1]‖ = ‖dpb
[1]‖, q(1) = p∗ and no switch occurs.

Furthermore with u2(1) = −y2(1) = B and u0(0) = 0 we

have u1(1) = −B.

At k = 2 we have y1(2) = 0 and since y0(2) = B − β∗B
it follows that y2(2) = B − β∗B. The smallest disturbance

estimate for dpβ∗ [2] consistent with (T1u2,T2y2) and Ppβ∗

satisfies

(dpβ∗ [2](0), dpβ∗ [2](1), dpβ∗ [2](2)) =

((
0
B

)(
0
0

)(
0
0

))

since similarly minimality is ensured by consistency and

‖dpβ∗ [2]‖ = ‖dpβ∗ [1]‖. Since ypb

0 (0) = B, ‖dpb
[2]‖ ≥

‖dpβ∗ [2]‖, however the choice dpb
[2] = dpβ∗ [2], pb 6= pβ∗ is

not possible since the trajectories would have the property that

ΠΓ(β∗)//Ppb
dpb

[2] = ΠΓ(β∗)//Ppb
dpβ∗ [2] 6= (T1u2,T1y2).

This can be seen by choosing

(dpβ∗ [2](0), dpβ∗ [2](1), dpβ∗ [2](2)) =

((
0
B

)(
0
0

)(
0

ypb

0 (2)

))

.

1Observe that if the smallest index is assigned such that p1 = (β∗, 1, 1, 0),
then q(0) = p∗β , and the proof can be considerably shortened).
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In this case we have ypb

1 (2) = bB−B. With ypb

2 (2) = B−β∗B
from above we would have to choose ypb

0 (2) = bB−β∗B 6= 0,

for all b 6= β∗ to be consistent with (T1u2,T2y2) and Ppb
.

Hence ‖dpβ∗ [2]‖ = B < ‖dpb
[2]‖. Hence we have q(2) = β∗

and obtain u2(2) = β∗(β∗B−B). Furthermore with u0(2) =
0 it follows u1(2) = β∗(B−β∗B). A direct calculation shows

y1(3) = β∗(B − β∗B). This establishes the first claim.

Let w0 = (0, B, 0, 0, 0, B(1 − β∗), 0, 0, . . . ), and let λ =
R

B‖1,1−β∗‖ , so ‖λw0‖ ≤ R. Then since ΠP//Γ(β∗) is homoge-

neous,

JR(∆(β),Γ(β∗)) = sup
p∈∆(β)

sup
‖w̃0‖≤R

∥
∥ΠPp//Γ(β∗)w̃0

∥
∥ ,

≥
∥
∥ΠP//Γ(β∗)λw0

∥
∥ ,

≥ λ|y1(3)|

=
R|β∗ − β∗2|

‖1, 1− β∗‖
≥ Rβ∗

hence JR(∆(β),Γ(β∗)) → ∞ as β∗ → ∞. The analysis is

analogous for all m > 0 hence the proof is complete.

B. Dynamic EMMSAC as a Universal Algorithm

The conservativeness of static EMMSAC, as illustrated

above in Theorem 17, can be overcome by a dynamic ver-

sion of EMMSAC, which we now develop. The idea is to

progressively enlarge the model set, based on monitoring

the performance. If the performance is inconsistent with the

EMMSAC bound at the current model set size, the model

set is enlarged, until the performance is consistent with the

EMMSAC bound with the true plant present in the model set.

For simplicity, assume that the uncertainty set, as specified

by the plant-generating operator U , is finite. We can therefore

let U = G = H and achieve a finite dimensional EMMSAC

design. This leads to the following construction of a dynamic

EMMSAC algorithm. Let a plant level set be given by

Pi ∈ P∗, ∅ 6= Pj ⊂ Pj+1, 1 ≤ j < i, i ∈ N (5.80)

where we assume that all Pi, i ∈ N are finite and that there

exists an index i ∈ N such that p∗ ∈ Pl, ∀l ≥ i. Let

γ̃(Q) = max
p∈Q

(γ̂(Q,Q, 0, p) + β(Q,Q, 0, p)) , Q ⊂ PG

where γ̂ and β are from Theorem 7. Let v > 2 and take the

expansion rule to be given by

G(k) = Pi(k), k ∈ N, (5.81)

i(k) :=







max{a ∈ N | γ̃v(Pa)− γ̃v(P1) ≤ ‖Tkw2‖}
if 0 ≤ k < ∞,

∞ if k = ∞
.

(5.82)

This expansion rule can be interpreted as a soft model fal-

sification procedure (compare to [7, 8]): the model set is

only expanded if the previous model set has been falsified at

that hypothesised performance level. The form of the update

ensures that eventually this performance is necessarily met,

for any permissible plant and disturbance level. Theorem 7

applies with the choice G(k) = U(k) = H(k), ν = 0. This

brings us to our next result:

Theorem 18: Let k ∈ N. Let Pi be given by equations

(5.80) and suppose that there exists i ∈ N such that p∗ ∈
Pl, l ≥ i. Let the expansion rule be given by equation (5.82)

which gives the plant-generating operator G via equation

(5.81). Suppose the EMMSAC algorithm is standard. Suppose

(w0, w1, w2) ∈ W×We×We satisfy the closed loop equations

(2.3)–(2.5). Then for all w0 ∈ W :

‖w2‖ ≤ β1 + β2‖w0‖+ β3‖w0‖
2

where β and γ̂ are from Theorem 7, N := min{i ≥ 1 | p∗ ∈
Pi}, and

γ̃(Q) = max
p∈Q

(γ̂(Q,Q, 0, p) + β(Q,Q, 0, p))

β1 = γ̃v+2(PN ) + γ̃(PN )γ̃v(P1)

β2 = 2γ̃2(PN ) + γ̃1−v(PN )γ̃v(P1)

β3 = γ̃2−v(PN ).

Proof: Let w0 ∈ W and let k∗ be given by equation

(4.41). By equation (5.82)

‖Tkw2‖ ≤ γ̃v(Pi(k)+1))− γ̃v(P1) ≤ γ̃v(Pi(k)+1), ∀k ∈ N.
(5.83)

From the definition of k∗ it follows that i(k∗) ≥ N ≥ i(k∗ −
1)+1. Hence since γ̃(Pi) is monotonically increasing with i,
we can write equation (5.83) with k = k∗ − 1 as

‖Tk∗−1w2‖ ≤ γ̃v(Pi(k∗−1)+1) ≤ γ̃v(PN ). (5.84)

We now have to consider the two possibilities that either k∗ =
∞ or k∗ < ∞. For k∗ = ∞ we have by equation (5.82) that no

plants can be introduced to G hence there does not exits a k∗ ∈
N such that p∗ ∈ G(k∗). Hence β1 ≥ γ̃v+2(PN ) ≥ γ̃v(PN )
and ‖w2‖ = ‖Tk∗−1w2‖ ≤ γ̃v(PN ) ≤ β1. For k ≤ k∗ − 1 it

follows similarly that ‖Tkw2‖ ≤ β1. For k > k∗ − 1 we have

by equations (5.82), Theorem 7 and inequality (5.84) that

γ̃v(Pi(k)) ≤ ‖Tkw2‖+ γ̃v(P1)

≤ γ̃(Pi(k))(‖Tk∗−1w2‖+ ‖w0‖) + γ̃v(P1)

≤ γ̃(Pi(k))(γ̃
v(PN ) + ‖w0‖) + γ̃v(P1).

Multiplication with γ̃1−v(Pi(k)) > 0 yields

γ̃(Pi(k)) ≤ γ̃2−v(Pi(k))(‖w0‖+γ̃v(PN ))+γ̃1−v(Pi(k))γ̃
v(P1).

Furthermore, since γ̃(Pi) is monotonically increasing with i
and i(k∗) ≥ N ≥ i(k∗ − 1) + 1 we have that γ̃(PN ) ≤
γ̃(Pi(k)). Hence γ̃q−v(Pi(k)) ≤ γ̃q−v(PN ) for all q < v and

we obtain

γ̃(Pi(k)) ≤ γ̃2(PN ) + γ̃2−v(PN )‖w0‖+ γ̃1−v(PN )γ̃v(P1).
(5.85)

By Theorem 7, inequality (5.85) and inequality (5.84) we now

have that:

‖Tkw2‖ ≤ γ̃(Pi(k))(‖Tk∗−1w2‖+ ‖w0‖)

≤
(

γ̃2(PN ) + γ̃2−v(PN )‖w0‖

+γ̃1−v(PN )γ̃v(P1)
)

(‖Tk∗−1w2‖+ ‖w0‖)

≤ β1 + β2‖w0‖+ β3‖w0‖
2.

Since this holds for all k ∈ N, the proof is complete.
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Theorem 7
true gain
Theorem 17
︸ ︷︷ ︸

static EMMSAC

l

g[P,C[Pl,m]](r)

Theorem 18
true gain
︸ ︷︷ ︸

dynamic EMMSAC

Fig. 2. Gain comparison of static and dynamic EMMSAC for a parametric
uncertainty of level β∗

Theorem 18 shows that the given dynamic EMMSAC

algorithm Γ(β∗) = C is universal. The constants β1, β2, β3 are

invariant to any uncertainty level information and only depend

on Pi and N where N defines the smallest ‘learning level’ i
such that the true plant p∗ is included in PN . We are now in the

position to compare these result for dynamic EMMSAC to the

ones obtained in Theorem 7 for static EMMSAC (and other

conservative designs, such as any LTI controller). Consider

Figure 2. Earlier in this section we have discussed how the

algorithm behaves in the presence of an increasingly large

parametric uncertainty governed by the parameter β∗ > 0
and represented by the plant model set G = Pβ∗,1, where

it can be seem from the proof of Theorem 17 that the actual

closed loop gain ‖ΠPp∗//Γ(β
∗)‖ scales at least linearly with

the uncertainty level β∗ > 0. This gives a lower bound on the

closed loop gain in Figure 2 at a disturbance level R ∈ R, as

a function of β∗ > β. Now observe that an increasingly large

β∗ in G = Pβ∗,1 corresponds to an increasingly large constant

U since G ⊂ U . This however means that the upper bound

γ̂ on the closed-loop gain from Theorem 7 scales with β∗. In

contrast we have shown in Theorem 18 that for a special (dy-

namic) choice of G we obtain a gain (function) bound which

is invariant to β∗. Hence, for large parametric uncertainties,

dynamic EMMSAC outperforms static EMMSAC.

The gain bounds for dynamic/static EMMSAC also have

differing scaling characteristics with respect to the size of

the disturbance. Recall that for a constant, compact plant-

generating operator U and a corresponding constant cover

(H, ν), assuming p∗ ∈ G ⊂ U , there follows k∗ = 0 hence

‖Tk∗−1w2‖ = 0. By Theorem 7 we then obtain a (linear) gain

bound (Figure 3 (A)) of the form ‖w2‖ ≤ γ̂(U,H, ν, p∗)‖w0‖,
where the gain γ̂ depends on the uncertainty set specified by

U and the corresponding cover (H, ν). From Theorem 18, we

have for a dynamic construction of U = G = H, ν = 0,

assuming that there exists a k∗ < ∞ such that p∗ ∈ G(k∗),
a gain function bound of the form ‖w2‖ ≤ β1 + β2‖w0‖ +
β3‖w0‖2 where β1, β2, β3 are constant and depend on v > 2,

the design of the level set Pi and the true plant P = Pp∗

(Figure 3 (B)). Since our goal is to optimise the bound on the

signal amplification from the disturbances ‖w0‖ to the internal

signals ‖w2‖, we can now intersect these two curves and argue

by Figure 3 (C) that for disturbances ‖w0‖ < a or ‖w0‖ > b
the gain bound obtained for static EMMSAC is better than

‖w0‖

‖w2‖

γ̂

‖w0‖

‖w2‖

β1, β2, β3

‖w0‖

‖w2‖

A B C

a b

Fig. 3. Gain bound comparison of static and dynamic EMMSAC

that for dynamic EMMSAC whereas for a < ‖w0‖ < b the

converse holds. Note that the intersection points a, b depend

on γ̂ and β1, β2, β3 where in some scenarios they do not

intersect at all, i.e. for γ̂ < β2, and a constant plant set should

be preferred over a time-varying one. In all other cases the

two curves will intersect for sufficiently large ‖w0‖ since the

(quadratic) gain function grows faster then the (linear) gain.

Hence when large disturbances are very likely, a constant

plant model set should be preferred over a time-varying one.

Observe that increasingly large v (as appears in the expressions

for β1, β2 and β3) will effectively straighten the curve since

β3 will become increasingly small and the influence of the

quadratic term is diminished. However the offset β1 will

increase. Alternatively, small v will lead to small offsets and

a faster quadratic growth. The choice of v > 2 is therefore

dominated by the available information on the size of ‖w0‖,

i.e. if ‖w0‖ is expected to be large it is advantageous to choose

v large since then the gain function curve is more linear,

which leads to smaller signal amplification. However if ‖w0‖
is expected to be small, v should be small since the constant

G case has a zero offset in the gain bound.

6. DYNAMIC EMMSAC – MANAGING COMPUTATIONAL

COMPLEXITY

In this last section we tentatively outline further classes

of dynamic EMMSAC algorithms, wherein the candidate

plant set is adapted on-line in response to the closed loop

measurements, in order that the computational complexity of

the algorithm is moderated (i.e. the number of candidate plant

models), whilst at the same time allowing the highly tuned

models into the candidate plant set. We do not prove results

or even give concrete algorithms; this section is intended

to be of a more speculative and open ended nature: the

purpose of which is to illustrate the utility and flexibility of

dynamic EMMSAC over and above the rationale established

in Section 5.

Although Theorem 18 of [2] shows there is no loss of

performance from high plant densities in the candidate plant

model set, there are clear implementation constraints which

arise from the computational requirements of realising a large

number of estimators. One possibility is to control this com-

putational complexity by adaptively refining the plant model

set in the regions of model space close to models with low

residuals, thus reducing the numbers of models considered (it

is only necessary to have a high density of plant models in

areas where the estimators are reporting low residuals).
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Computational resource can also be released by selectively

discontinuing the estimators associated to plant models with

high residuals. Although implementations which ‘discard’

plants with high residuals do not produce monotonic plant

operators G, they do behave identically to implementations

maintaining these plants within the plant set, providing the

switch never points to them. For example, if p∗ ∈ G(k) and

‖w0‖ < W , where W > 0 is known, then at any time k > 0
where X(w2)(k)(p) ≥ µW , the plant Pp has been falsified

(hence q(s) 6= p for all s ≥ k) and can be safely removed

from the candidate plant set from time k onward. Hence, in

practice, discarding plants with high residuals is safe.

More complex dynamic refinement schemes could include a

local search for the smallest disturbance estimate, for example

by computing a local gradient from the plants closest to the

plant with the smallest residual and then to consecutively add

plant models along this gradient (gradient descent): note that

the problem of local minima is not an issue as the search

is only conducted locally, the estimator ranking can cause a

switch to any plant in G(k). Yet another possibility would be

to run an on-line parameter identification algorithm, and ‘seed’

new candidate plants from this. Essentially any performance-

driven search scheme which generates a monotonic G can

be incorporated in EMMSAC. Such schemes only need to

ensure that there exists a time k such that the static algorithm

associated to G(k) is stabilising to ensure stability.

Finally we remark that the introduction of a new plant at

time k does in principle carry the requirement that the residual

is back computed on the interval [0, k], thus the computational

cost scales with k. However, it is more pragmatic to take the

‘closest’ plant in the previous plant model set to define the

residual up to time k, and then to begin the recursive update of

the residual based on the new model from time step k onward.

This is equivalent to thinking of the new model as a switched

model, switching from a previously considered model to the

new form at time step k. This is straightforward to implement

with both the Kalman Filter and finite horizon estimators, and

achieves a computational cost which is independent of k, and

simply scales with the number of models.

7. ILLUSTRATIVE EXAMPLE

To illustrate both static and dynamic EMMSAC algorithms,

we consider the following example. The continuous time

system matrices describing an (inverted or non-inverted) pen-

dulum on a cart are given by

pl =













0 1 0 0

0 − (i+ml2)b
v

m2gl2

v 0
0 0 0 1

0 −mlb
v

mgl(M+m)
v 0






,







0
i+ml2

v
0
ml
v






, I, 0







,

where v = (i + ml2)(m + M) and where M = 0.6kg,

m = 0.3kg, b = 0.1N/ms, i = 0.005m2kg, g = 9.8m/s2 are

the cart mass, pendulum mass, cart-friction, pendulum inertia

and gravitational acceleration, respectively. The state vector is

given by
[

x ẋ Φ Φ̇
]⊤

. Φ is the angle between the positive

y-axis and the pendulum in the upward configuration and the

angle between the negative y-axis and the pendulum in the

downward configuration; x is the distance of the cart center to

the origin. The control task is to stabilise the pendulum around

the vertical axis, i.e. Φ = 0, by applying a force F to the cart,

however the pendulum length l and orientation (upwards or

downwards) is uncertain. The corresponding uncertainty set

is given by U = {pl : l ∈ [−0.4,−0.2] ∪ [0.2, 0.4]}. The

corresponding discrete-time models pl are then constructed via

zero-order-hold sampling with sampling period τ = 10−3s.

To each p ∈ U , we let K(p) represent the LQR controllers

with discrete-time weights Q = diag(500, 1, 500, 1), R = 1.

We utilize infinite horizon estimators in l2 with a constant

switching delay of ∆(p) = 25. The uncertainty set is sampled

to give G+ = {pl : l ∈ {0.2, 0.25, 0.3, 0.35, 0.4}},

G− = −G+ and for static EMMSAC we choose a constant

G operator: G = G− ∪G+ ⊂ U . We take:

(u0(k), y0(k)) =

{
(10 + nu, ny) if 100 < k < 105

(nu, ny) else
,

where nu and ny are uniformly distributed disturbances in the

range [−1 · 10−2,+1 · 10−2]. This corresponds to an input

disturbance of 10N for the duration of 3 samples (a push

to the cart) at time k = 101 with additional actuator and

sensor noise. Furthermore, suppose that the input of the true

plant is perturbed by multiplicative unmodeled dynamics of

the form 500
s+500 · 500−s

500+s · e−0.01s, i.e. a first order lag, an all-

pass factor and an actuator delay of 10ms. Figure 4 illustrates

typical trajectories when the true (unknown) plant P is given

by P = Pp, p = p0.32m /∈ G. Note that a laboratory

implementation of a similar scheme is documented in [3,

Chapter 8].

k
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Fig. 4. Closed-loop signals, residuals and switching sequence (magnified)
for EMMSAC operating on the pendulum example.
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Fig. 5. Performance comparison between static and dynamic EMMSAC.

We observe that the EMMSAC algorithm does not initially

identify the sign of the true plant and applies controllers that

are designed for a downward configuration of the pendulum,

hence providing a transient destabilising response. However,

the very act of switching destabilising controllers in closed-

loop further exposes the dynamics of P which helps the

estimators to identify better plant models. This allows the

algorithm to switch to stabilising controllers for k > 500.

On the other hand, a dynamic version of EMMSAC can

trade off the performance on G− with G+ as illustrated in

Figure 5 which clearly demonstrates the dynamic algorithm

outperforming the static approach on G+ and vice-versa on

G−. Here the dynamic update rule is taken to be:

G(k) =

{

G+ if ‖Tk(u2, y2)‖ ≤ 30

G+ ∪G− if ‖Tk(u2, y2)‖ > 30.

and the LQ cost with Q = I , R = 1, averaged over

10 trials, is plotted against the nominal plant value of l.
The plant generating operator is constructed to ensure that

the unstable plants are rapidly stabilized (the de-stabilising

controllers are not available in the first ‘learning level’), whilst

the stabilisation of the stable plants is delayed (as in this case,

the stabilising controllers are in the second ‘learning level’),

hence the larger transient occurs on the stable plants which

can better tolerate recovery from such transients. Hence the

trade-off between performance on the unstable plants in G+

and the stable plants in G− is entirely appropriate.

8. CONCLUSION

This paper has established the key gain bound underpinning

the axiomatic EMMSAC framework. A key technical feature

is the introduction of covers of the uncertainty set which lead

to performance bounds dependent explicitly on the cover size

rather than on the size of the candidate model set. In turn

this leads to the principled design approaches described in

part I of this contribution [2]. The secondary focus of this

paper concerns dynamic versions of EMMSAC. This enables

non-conservative designs to be constructed and for which an

analysis and a detailed comparison with the qualitative features

of static EMMSAC was provided. The dynamic case opens the

door to many algorithmic variants to manage computational

resource and adaptively refine the candidate model set and

this was informally discussed. Exploring these algorithmic

possibilities is a rich area for future research.
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