
 

Abstract 
 

Soft biometrics enable the identification of subjects 
based on semantic descriptions collected from 
eyewitnesses allowing people to search in surveillance 
databases. Although research has recently shown an 
increased interest in soft biometrics, not much of the work 
have used crowdsourcing, and it did not investigate the 
impact of feature selection on identification. In this paper, 
we introduce a new set of facial soft biometrics and labels 
with a novel description for the eyebrow region. Also, we 
examine the use of crowdsourcing for labelling the 
comparative facial soft biometrics and assess its impact on 
the identification. Moreover, we explore the impact of 
feature selection with our biometric measures and evaluate 
the effect of label scale compression. Experiments based 
on the Southampton biometric tunnel database 
demonstrate a 100% rank-1 identification rate using 20 
features only. 

1. Introduction  
Biometrics provide means of identifying people 

automatically based on their physical or behavioral traits. 
Traditionally, ‘hard’ biometrics, including fingerprints, 
DNA, and iris, have been used to identify people. 
However, hard biometrics require an individual’s 
cooperation and can be computationally time consuming 
[1]. With the recent growth of surveillance applications 
that operate under adverse visual conditions such as long 
distance and low camera resolution [2, 3], a need arose for 
biometric attributes that enable the identification of 
humans under these conditions and which do not require 
the cooperation of the individuals. In addition, the 
difference in the way by which humans and machines 
identify people prevented the utilization of humans’ 
description in automatic identification of people. All these 
factors have motivated the introduction of soft biometrics, 
which are the physical and behavioural traits that can be 
semantically described by humans [1-3]. The problem of 
human identification using soft biometrics has been 
studied by many researchers, and different forms of soft 
biometrics have been proposed such as: body, head, face, 
and clothing [1-10]. Among all aforementioned soft 
biometrics, facial traits are considered as the most 
informative and discriminative traits for human 

 
Figure 1: Examples of wanted subjects in London riots 2011.1 

identification at distance [8, 9]. Most of the research in 
human identification using facial soft biometrics has been 
based on using categorical labels [4, 6, 7], nonetheless, the 
use of comparative labels to describe people by their 
differences resulted in a more accurate representations of 
the traits and improved identification accuracy [2]. 
Moreover, previous studies on facial soft biometrics are 
limited in labeling the soft biometric on local groups, who 
annotate the traits of the datasets used in the studies 
[1-3,5], while the involvement of crowdsourced 
contributors in labelling the facial soft biometrics has not 
been well investigated. Also, the previous studies did not 
address the application of feature selection algorithms 
within facial soft biometrics and the implications of these 
algorithms on the identification performance.  

This study sets out to assess the effect of crowdsourced 
comparative facial soft biometric labels on the 
identification performance, and to investigate the role of 
different feature selection algorithms in improving the 
identification performance when applied with comparative 
facial soft biometrics. The terms “trait” and “feature” are 
used synonymously throughout this study. 

The major contributions of this study are:  
¥ The definition of an enriched set of facial soft 

biometrics that is more appropriately described. 
¥ A more complete use of eyebrow traits that emphasizes 

the eyebrow role in human face recognition [11, 12]. 
¥ The crowdsourcing of facial soft biometrics 

comparisons, which enables a more robust 
assessment of the traits and labels. 

1BBC News: bbc.co.uk/news/uk-england-london-16171972 
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¥ The application of feature selection algorithms on 
the collected comparative labels.  

 Section 2 introduces the facial soft biometrics and 
comparative labels, Section 3 describes the data 
collection and analysis of the labels. Section 4 explains 
the experimental platform and reports the results with 
discussions. Finally, Section 5 summarizes the findings. 

2. Facial Soft Biometric Traits 
The human face has various traits that have different 

levels of distinctiveness and saliency. To consider a 
certain facial trait as a soft biometric identifier, it should 
retain an adequate level of discriminative power (i.e. be 
identifiable), and it should be easy to remember and 
describe by humans [8]. Although facial biometrics are 
vital in law enforcement, they lack for a vocabulary to 
describe them [3].   In this work, we have defined a new 
set of facial soft biometrics and the corresponding 
comparative labels. Our selection of traits has paid a 
special attention to the upper components of human face 
(i.e. eyebrows, and eyes) due to their significance in face 
recognition [11, 12]. One of the novelties of this work is 
the use of eyebrow vertical height and horizontal length as 
facial soft biometrics in addition to introducing a 
description of forehead hair. Other face components (e.g. 
nose, mouth, cheek, etc.) were included in our soft 
biometrics set assess their discriminative power. 

All the labels used in this study are comparative since 
this has been shown to have greater discriminative 
capability than categorical description [2], except for 
eyebrow shape since it requires many details in its 
description. Also, the global soft biometrics (i.e. gender, 
figure, skin colour, and age) were included with the soft 
biometric set to assess their impact on the identification 
performance. The gender was in a comparative format as 
introduced in [13] to achieve a level of consistency among 
the traits. Table 1 shows the traits selected for this study 
along with the terms that are used as comparative labels.  
A trait comparison between two subjects is defined as the 
extent to which the trait differs between the two subjects 
and its value is set based on a five-point bipolar scale that 
ranges from -2 to +2 according to the label assigned to that 
trait. All the traits have a “Do not know” label to address 
the cases in which a trait is occluded. Nevertheless, the 
experimental results have shown that compression of the 
comparison levels improves the identification 
performance. Therefore, the five-point scale was 
compressed to a three-point scale by excluding the -1 and 
+1 levels from the rating and the inference (more insights 
are presented in Section 4). 

3. Methodology 

3.1. Data Acquisition Through Crowdsourcing 

The dataset used for this study was extracted from the 
Southampton biometric tunnel database [14], which 
contains video recordings from more than 200 subjects 
using different viewpoints. The dataset was formed using 
the frontal video frame that was closest to the camera for 
100 different subjects. The face of each subject was 
automatically detected on each frame using the 
Viola-Jones technique [15], then it is cropped from the rest 
of the scene. In a similar approach to that used in [16], all 
the face images were normalised by adjusting the 
inter-pupil distance to 70 pixels to ensure a rational 
comparisons between the subjects. Also, it is important to 
mention that the images used in this study have a low 
resolution and are affected by motion blur. In addition, 
some subjects exhibited a skewed face pose, and some 
have partial occlusion of some traits due to pose 
variability, long forehead hair, or presence of spectacles as 
shown in Figure 2. These factors make the dataset more 
reflective of the actual visual conditions of surveillance, 
which are characterised by: low resolution; high pose 
variability; and partial occlusion of faces. 

The labelling of the facial soft biometrics of the subjects 
was accomplished through crowdsourcing. A total of 4950 
subject comparison tasks were generated and launched as 
a job on the CrowdFlower platform as shown in Figure 3. 
For each crowdsourced task, the contributor was required 
to compare the facial traits between the two subjects using 
the labels listed in Table 1. The job resulted in the 
completion of 3522 comparisons whereas the remaining 
comparisons were inferred. The dataset of the collected 
labels will be publically available. Table 2 summarizes the 
job statistics.  

3.2. Relative Ranking of Traits 

During the labelling of facial soft biometrics, each 
comparison was given a label value that represents the 
difference in the trait between two subjects. There is an 
essential need to rate the subjects according to their traits’ 
strengths in order to analyse the traits and labels defined in 
this study in addition to generate a feature vector for each 
subject, which is used in the identification.  The Elo rating 
system [8] is a well-known scheme that is used to rank 
chess players based on their expected and actual scores. 
Given two players A and B with the rates RA and RB 
respectively, the expected score E for each of the players 
is calculated as follows: 
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Based on the game outcome, the updated rates, ! ! and 𝑅! , 
for subjects A and B respectively are: 

( )A A A AR R K S E= + −  (3) 

( )B B B BR R K S E= + !  (4) 

where K is the score adjustment factor and S is the actual 
score of the player that is set as: 1 for a win; 0 for a loss; 
and 0.5 for a draw. The Elo rating system was used to 
generate the relative score of the subjects for each trait 
based on the strength of the trait presence in the subject. 
Each trait comparison between two subjects is considered 
as a game between two players, and a subject’s relative 
rank for the trait is set based on the comparative label 
value, which ranges from -2 to 2. The relative rates of the 
trait are used to create the subject’s feature vector that is 
used in the identification process (described in Section 4). 

3.3.  Data Analysis 

The analysis was performed with the relative scores for 
each trait and has two objectives: exploring the normality 
 

Table 1: Facial Traits and Corresponding Comparative Labels 
No. Trait  Labels 
1 Age [Much Younger, More Young, Same, More Old, Much Older] 
2 Figure [Much Thinner, More Thin, Same, More Thick, Much Thicker] 
3 Skin Colour [Much Lighter, More Light, Same, More Dark, Much Darker] 
4 Gender [Much Feminine, More Feminine, Same, More Masculine, Much Masculine] 

5 Eye Shape [Much Tilted Inward, More Tilted Inward, Same, More Tilted Outward, 
Much Tilted Outward] 

6 Eye Size [Much Smaller, More Small, Same, More Large, Much Larger] 

7 Inter-pupil 
Distance [Much Closer, More Close, Same, More Wide, Much Wider] 

8 Eye-to-Eyebrow 
Distance [Much Smaller, More Small, Same, More Large, Much Larger] 

9 Eyebrow 
Thickness [Much Thinner, More Thin, Same, More Thick, Much Thicker] 

10 Eyebrow Length [Much Shorter, More Short, Same, More Long, Much Longer] 

11 Inter Eyebrow 
Distance [Much Closer, More Close, Same, More Wide, Much Wider] 

12 Chin Height [Much Smaller, More Small, Same, More Large, Much Larger] 

13 Jaw Shape [Much Chiseler, More Chiseled, Same, More Lantern-Shaped, Much 
Lantern-Shaped] 

14 Cheek Shape [Much Flatter, More Flat, Same, More Prominent, Much Prominent] 
15 Cheek Size [Much Smaller, More Small, Same, More Large, Much Larger] 
16 Forehead Hair [Much Less Hair, Less Hair, Same, More Hair, Much More Hair] 
17 Mouth Width [Much Narrower, More Narrow, Same, More Wide, Much Wider] 
18 Lips Thickness [Much Thinner, More Thin, Same, More Thick, Much Thicker] 
19 Face Width [Much Narrower, More Narrow, Same, More Wide, Much Wider] 
20 Face Length [Much Shorter, More Short, Same, More Long, Much Longer] 
21 Nose Length [Much Shorter, More Short, Same, More Long, Much Longer] 
22 Nose Width [Much Narrower, More Narrow, Same, More Wide, Much Wider] 

23 Nose-Mouth 
Distance [Much Shorter, More Short, Same, More Long, Much Longer] 

24 Face Shape [Much Ovoid, More Oval, Same, More Round, Much Rounder] 
 

Table 2. Crowdsourced job statistics 
 Collected Inferred  Total 

Total traits comparisons 37968 78969 116937 
Total subjects’ comparisons 3522 1428 4950 
Average judgements per comparison 2.22 33.68 N/A 
No. of subjects 100 
Total number of contributers 3073 

 

for each trait, which aids in choosing the feature selection 
algorithm; and studying the correlation between the traits. 
 

3.3.1 Normality Test: To assess the normality of traits 
data, Anderson-Darling statistical test, was applied with 
the relative scores for each trait. Trait data is considered as 
normally distributed if the resulted p-value p ! 0.05.   The 
test showed that: age, figure, skin colour, eyebrow to eye 
distance, eyebrow length, and forehead hair violate the 
normality assumption. The normality violation for age, 
figure, and skin colour can be attributed to the database 
makeup, while the normality violation of eyebrow length 
and eye to eyebrow distance might be attributed to the high 
exposure of eyebrow to beauty treatments. Finally, the 
rejection of normality for forehead hair is likely caused by 
the high level of variability associated with front hair.   

3.3.2 Trait Correlation: To discover association 
between the traits, we have performed correlation analysis 
and the Pearson’s correlation coefficient, r, was computed 
for all the possible pairs of traits. Figure 3 shows the 
correlations between the traits. The most significant 
correlations are found between: face measurement traits 
(e.g. face length, and face width) and structural traits of 
face (e.g. face shape, and jaw shape); figure and face 
width; in addition to eyebrow thickness and gender. In 
general, these results show the independence of most 
traits, which contributes to the discriminating power of 
these trait.  

3.4. Feature Selection 

One of the main contributions of this work is the 
derivation of an optimised feature set that reduces the 
number of features used in identification while improving 
(or maintaining) the identification performance. 
Wherefore, we have used three different feature selection 
algorithms to measure the discriminating power of the 
traits: mutual information [17]; Analysis of Variance 
(ANOVA) [18]; and Kruskal–Wallis [19]. In this section, 
we present the features ranking according to each of the 
three algorithms, while their impact on identification is 
demonstrated in Section 4. 

3.4.1 Mutual Information: Mutual information reveals 
the amount of information carried by one random variable, 
X, about another random variable, Y. Mutual information 
was computed for each of the traits illustrated in Table 1 
according to the following formula: 
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where X represents the trait relative scores and Y represents 
the subjects’ labels, p(x) and p(y) are probability mass 
functions for the variables X and Y respectively, and p(x,y) 
is the joint probability mass function.  



 

3.4.2    Analysis of Variance (ANOVA): The one-way 
ANOVA test is based on F statistic. The greater is the F 
ratio, the stronger is the discriminative capability of the 
trait. The F ratio is calculated for each of the traits in this 
study as follows: 
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where N is the total number of subjects, k is the number of 
groups, 

iX is the mean relative score of the i th group, GX  
is the overall mean of the relative scores of the k groups, Xij 

is the relative score for the j th subject in the i th group, and ni 
is the number of subjects in the i th group. 

3.4.3    Kruskal-Wallis Analysis of Variance: 
Kruskal-Wallis test is the non-parametric equivalent of 
one-way ANOVA. It was used to address the 
non-normality of some traits. The Kruskal-Wallis test is 
based on the H statistic. Larger values of the H statistic 
imply stronger discriminative capability. The H ratio is 
calculated for each trait as follows: 
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where a is the number of populations, ni is the number of 
subjects per population, N is the sum of population sizes, 
and iR is the average rank of the ith population.  
 

The results of applying each of the feature selection 
algorithms are illustrated in Figure 5. The results show 
that skin colour has the highest discriminating power, 
followed by eyebrow length, which is a novel contribution 
of this work. Also, the traits derived from mouth region 
(i.e. lips thickness, mouth width, and nose-to-mouth 
distance) in addition to some of the traits derived from eye 
and eyebrow region (i.e. eye-to-eyebrow distance, 
inter-eyebrow distance, and eyebrow thickness) have 
shown a notable discriminating ability, which support our 
emphasize on these traits. With respect to the global traits 
other than skin colour (i.e., age, figure, and gender), they 
have also shown 

(a) Partial 
occlusion of 
eyebrows. 

 

 

 

(b) Skewed 
pose of face. 

 

 

(c) Effect of 
video motion 
blur. 

 

 

Figure 2. Samples of some face 
images. 

 Figure 3. The crowdsourced 
job launched to collect labels. 

 
Figure 4. The correlations between the traits 

 
 

 
Figure 5. Soft biometric traits scores based on the aggregated ranking 
from the three feature selection algorithms. 

a substantial discriminating power. The results also 
indicate that cheek size and the shape-based traits, such as: 
cheek shape, and face shape, have the lowest 
discriminating power compared to the other traits. 
Contrary to our assumptions, the results show that the 
inter-pupil distance has a significant discriminating power, 
although it was set to 70 pixels for the whole dataset. A 
possible explanation for this is that the annotators’ 
perception for inter-pupil distance could be affected by 
other traits such as: eye size, eye shape, and face 
measurements.   

4. Identification Using Comparative Facial 
Soft Biometrics 

       The purpose of human identification using facial soft 
biometrics is to recognize an unknown subject based on a 
semantic description of the subject’s facial features. There 
are three objectives behind performing human 
identification using comparative facial soft biometrics in 
the context of this research:  (1)  assessing the impact of 
our new set of facial soft biometrics and their comparative 
labels on the identification performance; (2) exploring the 
implications of applying the three feature selection 
algorithms (i.e. mutual information, ANOVA, and Kruskal 
Wallis) on identification; and (3) determining the effect of 
labels scale compression on identification. To meet the 
aforementioned objectives, an identification experiment 
was designed and performed over all the 100 subjects that 
constitute the dataset used in this study with difference 
number of comparisons and using different features 
subsets. The performance estimation was based on Leave 
One Out Cross Validation (LOOCV). For each subject s of  



 

 
Figure 6. Identification performance using the full feature set. 

 
the N total subjects of the dataset, c counterpart subjects 
are randomly selected and the corresponding comparison 
between subject s (the probe) and each of the c counterpart 
subjects is excluded from the global comparisons set M. 
Then, the relative score, t, for each element, k, of the trait 
set T (illustrated in Table 1) for the N subjects is generated 
using Elo rating system based on the M-c remaining 
comparisons. Similarly, the relative scores for the traits of 
the probe s are generated based on the c comparisons 
excluded earlier from the set M. The sum of the Euclidean 
distances D between the probe s and each subject in the 
dataset i is computed as follows: 
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and the N subjects are ranked based on their corresponding 
D in an ascending order where the subject that have the 
minimum D is considered as a rank-1 match with the 
probe s. This experiment was performed for each subject 
with 5, 10, 15, and 20 comparisons using different feature 
subsets that were generated using mutual information, 
ANOVA, and Kruskal Wallis. The overall experimental 
procedure was repeated 30 times and the mode of the 30 
trails was considered as the outcome. Cumulative Match 
Characteristic (CMC) is generated based on the position of 
the probe s in the rank and used as a performance metric. 

4.1. Identification Using Facial Comparative Labels 

      The first experiment aimed to measure the 
identification performance of the new soft biometrics and 
labels set defined in this study following the experimental 
procedure described in the introduction of this section. 
The experiment included all the traits listed in Table 1 (i.e. 
the full feature set) and it was performed with different 
number of comparisons.  The results are shown in Figure 
6. The most striking result to emerge from this experiment 
is the achievement of rank-1 identification rate of 100% 
using 10 comparisons only. This result outperforms the 
result of a prior study by Reid [3] in three respects: (1) the 
number of comparisons required to achieve the 100% 
rank-1 identification rate is 10, while the same rate was 
achieved with 20 comparisons in [3]; (2) a slightly smaller 
number of features (24) was used in this study as 
compared to [3],  

  
(a) (b) 

  
(c) (d) 

 
Figure 7. The effect of the feature selection on the identification 
performance using: (a) 5, (b) 10, (c) 15, and (d) 20 comparisons. 

which was based on 27 features, and this indicates the 
effectiveness of our new soft biometric set; (3) the 
labelling in this work is based on frontal face images only, 
while the experiment in [3] depended on frontal and side 
face images, and this shows the efficiency of 
crowdsourcing in labelling the facial features.  Moreover, 
these results outperform the identification results achieved 
by augmenting body with clothing comparative labels in 
[5] in which a 100% identification rate was achieved at 
rank 30.  

4.2. The Effect of Feature Selection 

In section 3, we have presented three feature rankings 
based on three feature selection algorithms: mutual 
information [17]; ANOVA [18]; and Kruskal Wallis [19]. 
To analyse the impact of these algorithms on the 
identification performance, a series of identification 
experiments was performed using feature subsets that 
were derived from each of the three rankings with 
different number of comparisons. Figure 7 shows the 
identification performance at rank-1 for each subset and 
we can see that the impact of each subset is highly 
dependent on the number of comparisons used in the 
identification in addition to the subset size. The most 
significant differences in impact are observed when 5 
comparisons are used. As the comparisons increases to 10, 
the subsets derived from ANOVA ranking have the best 
performance impact among the other subsets for the larger 
sizes (i.e. 18 features and above), thus the 100% 
identification rate was achieved by the top 18 and 20 
features derived from ANOVA ranking. Moreover, these 
two subsets maintain their superiority as the number of 
comparisons increases to 15 and 20 thereafter. As the 
number of features used in the identification decreases 
below 18, the subsets derived from mutual information 
ranking show the best performance impact although the 
maximum identification rate is not maintained at 100%. 
These results demonstrate the effectiveness of our facial 
soft biometrics set as 18 features are sufficient to achieve 
the maximum identification rate of the full feature set. The 
results also reveal the effectiveness of ANOVA for feature 
selection in the context of this study. Furthermore, the  



 

 

Figure 8. The effect of label scale compression on identification. 

results suggest that Kruskal-Wallis algorithm has no 
significant advantage over ANOVA for our soft 
biometrics, and this may be due to the fractional effect of 
non-normality, which is presented in 6 out of the 24 
features. Nevertheless, it does not reduce the importance 
of assessing the features normality prior to choosing a 
feature selection algorithm. 

4.3. The Effect of Label Scale Compression 

As mentioned in section 3, the experimental results 
showed a significant increase in the identification rate 
when the five-point bipolar scale is compressed to a 
three-point scale by excluding the levels of -1 and +1 (i.e. 
the “less” and the “more” labels). Figure 8 shows the 
performance gains resulted from an identification 
experiment that was performed to assess the effect of scale 
compression. A possible explanation for this gain is the 
insignificance of levels -1 and +1 in distinguishing the 
traits of the subjects, which is caused by the subjectivity of 
visual perception by humans [20]. Another possible 
explanation is that the scale compression to three levels is 
more reflective of the actual scenario assumed by the Elo 
rating system, which is based on three game outcomes (i.e. 
win, loss, or draw). Also, this gain could be attributed to 
the effect of introducing categorical description to the 
comparative basis, which is antithetical to the nature of 
comparative descriptions. Certainly, reducing the 
comparisons to greater or less than and the same, improves 
performance considerably. 

5. Conclusions and Discussion 
 The purpose of this study was to introduce a enriched 
set of facial soft biometrics and to determine the effect of 
crowdsourced comparative labels on the identification 
performance, in addition to evaluating the impact of 
feature selection on the identification performance. The 
experiments showed that the use of our new facial soft 
biometrics set and the crowdsourcing of soft labels 
improve the identification performance that a rank-1 
identification rate of 100% was achieved using 10 
comparisons only. Also, the experiments revealed that 
feature selection could reduce the number biometric 
measures used in identification while preserving the 
identification rate.  In addition, we have shown the 
positive effect of soft labels scale compression on the 
identification performance. Taken together, the findings of 

this study highlight the effectiveness of our new facial soft 
biometrics set as well as the role of crowdsourcing in 
improving the human identification performance using 
comparative labels, and it show the potential gains from 
applying feature selection on facial soft biometrics. The 
dataset of the crowdsourced annotations will be publicly 
available to enable further studies on the collected labels. 
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